TIMELY. PRACTICAL. RELIABLE.

wiLEy |\

J2EE

Best Practices

Java Design
Patterns,

Automation,
and Performance

.

Darren Broemmer

WILEY

advantage

Dear Valued Customer,

We realize you're a busy professional with deadlines to hit. Whether your goal is to learn a new
technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective is
to provide you with the insight and knowledge you need to stay atop the highly competitive and ever-
changing technology industry.

Wiley Publishing, Inc. offers books on a wide variety of technical categories, including security, data
warehousing, software development tools, and networking - everything you need to reach your peak.
Regardless of your level of expertise, the Wiley family of books has you covered.

¢ For Dummies — The fun and easy way to learn

® The Weekend Crash Course —The fastest way to learn a new tool or technology
e Visual — For those who prefer to learn a new topic visually

e The Bible — The 100% comprehensive tutorial and reference

® The Wiley Professional list — Practical and reliable resources for IT professionals

In the book that you now hold in your hands, Darren Broemmer shares best practices and lessons
learned for J2EE development. As you design and build a banking application with J2EE and design
patterns, you'll also utilize metadata-driven configurable foundation components to help automate
much of the development for Web-based business applications. And of course, the tools and
technologies used to construct the sample application are not from any one vendor, but best of
breed—]Jakarta Struts, Servlets, JSP, XML, EJB, UML, WebLogic, WebSphere, and many more.

Our commitment to you does not end at the last page of this book. We’d like to open a dialog with you
to see what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks to
review our complete title list and explore the other resources we offer. If you have a comment,
suggestion or any other inquiry, please locate the “contact us” link at www.wiley.com.

Thank you for your support and we look forward to hearing from you and serving your needs again in
the future.

Sincerely,

R K)
Richard K. Swadley
Vice President & Executive Group Publisher
Wiley Publishing, Inc.

$
<\5 Bible punMES

Visual

S WILEY

Independent Thinkers more information

on related titles

J2EE™ Best Practices
Java™ Design Patterns,
Automation, and

Performance

Darren Broemmer

Wiley Publishing, Inc.

Publisher: Bob Ipsen

Editor: Theresa Hudson

Developmental Editor: Kenyon Brown

Editorial Manager: Kathryn A. Malm

Managing Editor: Pamela Hanley

New Media Editor: Brian Snapp

Text Design & Composition: Interactive Composition Corporation

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where Wiley Publishing, Inc., is aware of a claim, the product names
appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the ap-
propriate companies for more complete information regarding trademarks and registration.

This book is printed on acid-free paper.
Copyright © 2003 by Darren Broemmer. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspointe Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to
the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss
of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN 0-471-22885-0

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

This book is dedicated to my mother, Joan,
and in loving memory of my father, Gary,
for all of their love, support,

and encouragement.

Contents

Acknowledgments

About the Author

Introduction

Chapter 1

Chapter 2

Overview of the Book and Technology
How This Book Is Organized

Who Should Read This Book

Tools You Will Need

What's on the Web Site

Summary

Building Business Applications with J2EE

Elements of Transactional,
Web-Based Business Applications

The Reference Architecture
The J2EE Platform Approach
The Model-View-Controller Architecture Approach

Best Practices for Building Business Applications
with J2EE

Summary

The Business Object Architecture: Design Considerations
Business Objects in a Banking Application
Elements of Business Objects

Xi
xii
xii
XX

xXxiii
xxiii
XXiv

XXiv

16
20
21

23
25
26

vii

viii Contents

Design Considerations 29
Best Practices for Designing Business Objects 50
Summary 53
Chapter 3 Building Business Objects: Managing Properties
and Handling Errors 55
Managing Properties 55
Value Objects and Lightweight Business Objects 83
Object Validation and Error Handling 87
Best Practices for Implementing Business Objects: Part One 102
Summary 103
Chapter 4 Building Business Objects: Persistence, Relationships,
and the Template Method Pattern 105
Object Persistence 105
The Base Class as a Template 159
Overall Business Object Metadata Approach 168
Data Caching 174
Best Practices for Implementing Business Objects: Part Two 185
Summary 188
Chapter 5 The Service-Based Architecture: Design Considerations 189
Elements of Service-Based Components 193
Design Considerations 196
Best Practices for Designing Service-Based Components 207
Summary 208
Chapter 6 Building Service-Based Components 209
The Actual Service Interface 209
An Implementation for Argument Lists 210
The Session Bean as a Component Wrapper to the Service 215
Responsibilities of the Service Component 221
Update Service Examples 225
Updating Multiple Business Objects 233
The New Customer Service 234
Data Retrieval Services 240
Building Generic, Reusable Services 2561
Implementing the Controller Pattern in Services 253

Best Practices for Implementing Service-Based
Components 255

Summary 257

Contents

ix

Chapter 7 The User Interaction Architecture: Design
Considerations and an Overview of Jakarta Struts 259
Elements of the User Interaction Architecture 261
Design Considerations 265
An Overview of Jakarta Struts 284
Best Practices for Designing the User
Interaction Architecture 298
Summary 300
Chapter 8 Building the User Interaction Architecture 301
The Change Address Page 301
The Change Address JSP 307
The View Accounts Page 332
The New Customer Wizard 342
A Template for the Action Class 362
Web Services 369
Best Practices for Implementing the
User Interaction Architecture 371
Summary 372
Chapter 9 Strengthening the Bank Application: Adding Security
and Advanced Functionality 375
Application Security 375
Interesting Aspects of the Bank Application 392
Best Practices for Advanced Web Application Development 417
Summary 418
Chapter 10 Performance 421
Overall Performance Approach 421
Performance in J2EE Applications 430
Best Practices for J2EE Performance Engineering 440
Summary 442
Chapter 11 Moving toward Reuse in the Reference Architecture 443
Common Roadblocks and Corresponding Best Practices 444
Reuse in the Reference Architecture 452
The Strategic View of the Architecture 454
Best Practices for Moving toward Reuse 456
Summary 457
Bibliography 459
Index 461

Acknowledgments

I owe countless thanks to my parents, John and Joan, Shirley and my late father Gary,
for always being there and giving so much of themselves to help me. Without question,
this book would not have been possible without everything that they have done for
me. Special thanks also goes to John Abbey, Jeff Nelms, and Ken Young for reviewing
the chapters, providing their insight, and contributing to this effort. John and I have
collaborated for years on J2EE development and had many a lively and entertaining
discussion on the topic. Likewise, Jeff and I have debated the finer points of business
objects many times and much of the performance slant in this book can be traced back
to his influence. Ken’s early feedback helped to shape the perspective that the book
eventually took. I would also like to recognize Ron Carden for his influence in my
work and the development of this material. Another person who made this book pos-
sible is my wife Caroline who enthusiastically supported me throughout the effort. I
would also like to acknowledge Bill Hough who unquestionably supported this effort.
Special thanks to Jack Greenfield, Terri Hudson, and all the folks at Wiley for their sup-
port and help in putting this book together. Finally, thanks to God through whom all
things are made possible.

Darren Broemmer
September 2002

About the Author

Darren Broemmer is an application architect working on next-generation J2EE soft-
ware solutions in the mortgage industry at Freddie Mac. His previous work includes
architecture, development, and management experience in Internet and client-server
systems implementations for consulting clients in North America, Europe, and the
Middle East. Darren specializes in Java and J2EE technology and is the coinventor of a
Java application development framework called jPylon, a set of reusable, extensible
software components based on J2EE. JPylon was chosen to be a part of the Sun
Microsystems ONE Studio Developer Resources program (formerly Forte for Java
Extension Partners Program). Throughout his career, Darren has regularly consulted
with projects on best practices for J2EE development and has spoken at corporate con-
ferences about jPylon and J2EE technology. When he is not busy thinking of ways to
abstract and automate software development, Darren tries to stay in shape by playing
basketball and running, although he will never be able to keep up with his wife at
Ultimate Frisbee.

Introduction

Java 2 Enterprise Edition (J2EE) technology is becoming a pervasive platform for
the development of Internet-based, transactional business applications. It provides a
robust development platform upon which to build flexible, reusable components and
applications. It is a powerful standard that is well-suited for Internet-based applica-
tions because it provides many of the underlying services such as HTTP request pro-
cessing (Java servlet API), transaction management (Enterprise JavaBeans), and
messaging (Java Message Service), just to name a few. However, J2EE is also a complex
and changing standard that leaves the technologist with many design decisions and
performance considerations. Each component service adds a level of overhead to the
application processing that must be considered. Additionally, there are a number of
common business logic functions, such as error handling, that must be designed and
developed for each component and application.

An application development effort using J2EE should give careful consideration to
the services provided by the platform and how application components can best utilize
them. There are a number of best practices one should consider in order to be highly
effective in building J2EE components and integrating them into applications. These
practices include evaluating and selecting the right set of software components and
services to do the job. This is no different than in other professions; a carpenter or a
steelworker both use an architecture plan to build things, although the tools they use
to do so are quite different. A scalable, modular architecture built upon J2EE will likely
comprise a selection of the appropriate set of J2EE services combined with a custom
foundation of common business logic functions.

Overview of the Book and Technology

This book will supply a set of best practices for J2EE software development and
then use them to construct an application architecture approach referred to as the ref-
erence architecture. The reference architecture will provide a basis for rapidly building

xii

Building Business Applications with J2EE

transactional business applications using J2EE technology. The design and implemen-
tation of the reference architecture is based on a set of guiding principles that will be
used to optimize and automate J2EE development.

Guiding Principles of the
Reference Architecture

The goal of constructing the reference architecture is to create a development environ-
ment that can be used to build applications faster and with better performance, qual-
ity, and reusability. The following set of guiding principles are used to accomplish
these goals:

m Applying proven design patterns to J2EE
m Automating common functions
m Using metadata-driven, configurable foundation components

m Considering performance and scalability

These principles are essential in driving the architecture and building the founda-
tion for development. These concepts will be discussed throughout this book in detail
and applied to each segment of the J2EE architecture. Much of software development
in general and J2EE development in particular can be optimized and automated
through these concepts and their realization in the form of common foundation logic.
Solid analysis of design choices as input to the architecture and application compo-
nents is essential in order to provide solutions that balance the needs of rapid devel-
opment, faster performance, higher quality, and greater reusability.

Figure I.1 shows the inputs and outputs of the architecture. This diagram essentially
represents the guiding principles and the benefits that can be derived from applying
them to application development.

These principles provide the motivation and the basis for the approach to this study
of developing applications using J2EE. Each aspect of the enterprise architecture within
J2EE will be studied for its behavior and characteristics. By using this information and
applying the development principles and best practices, you can create an approach to
effectively use the technology to reach our application development goals.

The goals at the right side of Figure 1.1, such as flexibility and reusability, should be
considered and addressed from the beginning of any software development project.
These types of goals are realized at two different levels: the software architecture level
described earlier and the application component design. The reference architecture
will guide much of the application design, so it is important to understand and distin-
guish these levels before undertaking enterprise software development. Each of the
two levels will provide different types of benefits to both the end users and the devel-
opment organization.

Applying Proven Design Patterns

A design pattern is a defined interaction of objects to solve a recurring problem
in software development. There are a number of documented design patterns (E.

xiv J2EE Best Practices: Java Design Pattens, Automation, and Performance

Best Software Application
Practices Architecture Development
Benefits

Consider Performance
Throughout the Process

End-User Applicati ’ Rapid Application
nd-User ications i,
Analysis of Design PP AR Development
Choices —_— —
Application Components K Quality Product

Applying Design
Patterns

x High-Performance
= Applications
Java/]J2EE Application Server

- - x Reusability

Business Logic Foundation

Automating Common
Functions

K Flexibility

Metadata-Driven
Components

Figure I.1 Architecture Principles and Benefits.

Gamma, R. Helm, R. Johnson,]. Vlissides, 1995. Design Patterns. Boston, MA:
Addison-Wesley) that represent proven solutions that you can use to solve common
problems in object-oriented (OO) development. You can also apply many of these pat-
terns to the J2EE architecture. One example is the concept of a service within the
Service-Based Architecture. The service component layer of the reference architecture
will resemble both the Facade and Mediator patterns (Gamma et al. 1995). The service
component provides a simple interface to the client and decouples the presentation
components (JavaServer Pages or servlets) from the back-end business logic compo-
nents. This provides the benefit of increased reusability and a simplified view of the
world from the client perspective. If you add a standard interface to the service com-
ponents, you can now implement the Command pattern (Gamma et al. 1995) from a
front-end component. This allows you to build a generic, configurable controller com-
ponent in the front end that invokes these standardized back-end services.

If you apply these well-documented, proven design patterns to J2EE architecture,
you will see that the stateless Session Bean is the perfect implementation for the
Service-Based Architecture. This becomes the Session-Fagade pattern (D. Alur,]. Crupi,
D. Malks. 2001. Core J2EE Patterns. Mountain View, CA: Sun Java Center), an imple-
mentation of the Facade pattern applied to a Session Enterprise Java Bean. If you con-
sider a Session Bean component merely to be a wrapper around your service object
that adds the ability to distribute the service and manage transactions around it, you

Building Business Applications with J2EE

XV

utilize the J2EE component-based services without changing the object-oriented view
of the world very much at all. In the case of stateless Session Beans, you also gain these
benefits without adding much overhead to the processing time. The session fagade act-
ing as an EJB component wrapper around a service implementation object is referred
to as the Service Component pattern in the reference architecture.

Figure 1.2 illustrates the UML representation of this service component pattern.

The business objects and presentation components also contain numerous examples
of proven design patterns that can be applied. The Template Method pattern (Gamma
et al. 1995) provides an excellent mechanism for providing extensible foundation com-
ponents for both business objects and service objects. In the case of business objects, it
provides a template for common operations such as a save operation to cause the
object’s data to persist in the database. The base class, or template, provides hooks for
subclasses, the specific business objects, to implement validation rules and presave or
postsave logic. Enterprise JavaBeans uses a number of design patterns applied to the
Java language. Some of them are variations of existing patterns that use Java interfaces,
such as with Entity Beans. Entity Beans must implement a common interface
javax.ejb.EntityBean that provides hooks for insert, update, and delete logic.
Each architecture layer discussed builds on these existing patterns and looks at some
additional patterns that provide flexibility and reusability within the software archi-
tecture on top of J2EE.

ServiceE]JBWrapper
executeService ()
\
ServiceImpl
doService()
Business Object
Packages | v
MyBusinessObjectl MyBusinessObject2
Attributel:String Attributel:String
Attribute2:String Attribute2:String
businessMethodl () businessMethodl ()
businessMethod?2 () businessMethod? ()

Figure 1.2 UML Diagram of Service Component Pattern.

xvi

J2EE Best Practices: Java Design Pattens, Automation, and Performance

Automating Common Functions
The approach of automating common functions provides a number of benefits:

= Time is not wasted on monotonous, error-prone tasks.

m A higher-quality product through better-tested software; there is less total code
to run through and it gets hit on every request; in essence, the foundation of
much of the processing becomes a black box process with inputs.

= Automated functions and their common interfaces make it easier to develop
and maintain consistent software across the application.

Even with easy-to-use APIs such as the Java servlet API, there are still many func-
tions that must always be done in an application. For example, one of the common
elements of business applications is the ability to process user form submissions. On
each of these requests, the data from the form submission needs to be read out of the
HttpServletRequest object, packaged in some data structures, and sent to the
requested service or back-end function. One alternative is to write a custom servlet or
JSP to handle every form on all pages. This usually isn’t very efficient because the num-
ber of forms in a typical business application is relatively high. You might find that the
logic to handle each form is repetitive and even has the same blocks of code in it. The
other alternative is to abstract the basic flow of handling a form request and put it into
a common servlet that can be used by all of the Web pages that have forms. Using a
configuration service, you could define each form, its input data, and a service that
should be used to process the request. Almost any function or process that is repeatable
is a candidate for automation. This book looks at the nature of transactional Web ap-
plications in order to define a set of common elements that can be automated. As it
turns out, due to the nature of Web applications and J2EE application architectures,
many of these common elements need to be implemented for any given application. A
set of configurable foundation components that implement these functions will
increase both the quality and quantity of application functionality built on the
reference architecture. As this book goes through the process of discussing the set of
common elements and applying them to the Java platform, additional requirements
for this foundation layer will be flushed out. Some basic work can be done at this level
that provides immense value in meeting the overall goals of a scalable, modular
architecture.

A set of configurable foundation components that automate basic elements of an ap-
plication is often referred to as a framework. Building upon an earlier principle, many
of these foundation components will be implemented using proven object-oriented
design patterns. These framework components and patterns are what make up the ref-
erence architecture that will be used to rapidly develop quality J2EE applications. As
many developers know, there is a gap between the total sum of services needed to de-
velop just purely application-specific logic and those that are currently provided with
the development platform. A software layer, referred to in this book as the Business
Logic Foundation (BLF), will attempt to bridge this gap. The Java and J2EE platform
continues to evolve and close the gap. However, it still remains even as a large number
of people and organizations are working to add services to the platform. Due to the
complexity of enterprise development, the widely varying set of requirements that dif-

Building Business Applications with J2EE

ferent businesses and organizations have, and the many design considerations, it will
take a significant amount of time for the standard to mature to the point where it ad-
dresses all of these needs. In fact, even as the underlying platforms and standards
evolve, technology and problem domains also grow, thus making it likely that closing
the gap will resemble a calculus equation represented by a curve which slowly ap-
proaches zero, but never actually gets there.

The automation capabilities within technical frameworks provide a high level of
reusability across applications. Reusability is of course the “Holy Grail” of object-
oriented software development. However, it has been very hard to achieve in many
practical settings. Given a strategic application architecture and the set of guiding
principles, you can position yourself to benefit from software reuse. The Enterprise
JavaBean specification goes a long way toward having standard, reusable business
components across applications. However, it is the role of the application architecture
on top of J2EE to enable those components to be reused. It is important to have an ap-
plication architecture that easily allows components to be plugged in to the rest of the
system without adding significant overhead.

One way to plug in different components is through a messaging layer that buffers
the different interfaces and systems. In complex architectures, this is the right solution,
but for many applications, the overhead is too much of a price to pay. Two primary
strategies to promote and enable the reuse of domain components are realized through
the first two principles, design patterns and automated foundation components. One
such example is that of the Service-Based Architecture layer that provides a standard
interface for process-based components. By creating a standard interface that is used
by the user presentation layer, a service such as Retrieve Account Data can be reused
from different screens that require customer data. Services such as Account Deposit
and Account Withdrawal can be reused as building blocks in an overall service, Trans-
fer Funds. The fact that there is a service layer at all in the architecture allows the ser-
vices themselves to be reused from different client devices. Finally, the standard
interface of the service components allows you to automate their invocation through a
configurable foundation layer within the reference architecture.

Use Metadata-Driven Components

Metadata is usually defined as data that describes other data. This book also uses the
term “metadata” to refer to the many data elements that define the attributes and
behaviors of various software components. Some examples of this could be the list of
properties and their respective data types for a given business object, or it could be the
form name and associated configuration information for a Web page. Much of the
metadata that defines these components comes from design models described in UML.

The principle of using metadata to drive components again builds upon a previous
principle, that of automating the tasks of software development. Metadata is used as
an input to the “framework” services that automate and drive the behavior of J2EE
components. This is applicable at all levels of the architecture. In the case of business
objects, metadata can be used to define the business entities and their attributes. At the
workflow or transaction level, metadata can be used to drive the process flow of
complicated tasks. At the user interface level, it can define a particular Web page form

J2EE Best Practices: Java Design Pattens, Automation, and Performance

and how it should be processed. All of these elements of applications can be abstracted
and defined using metadata. The J2EE specifications themselves rely on different
forms of metadata to configure and deploy components. A perfect example is the ab-
stract approach taken by EJB 2.0 toward Container-Managed Persistence (CMP). The
EJB deployment descriptors contain the metadata that maps the bean’s properties to
database tables, as well as defining any relationships that the bean may have with
other components.

Not every process or function should be defined using metadata (everything in
moderation, as they say). There are some drawbacks to this approach that should be
considered and that may not make it the right approach for every task. A metadata-
driven abstraction usually will add some overhead to the execution of the task when
compared to explicit lines of code used to do the same job. This overhead is typically
negligible when compared to something like a single database I/O request. However,
it should be considered nonetheless in the overall approach to software development,
especially where transaction throughput is essential to the success of an application.

Another potential drawback of this approach is the fact that it can make reading and
debugging code a bit more difficult. A separate file or repository that contains the
metadata determines portions of the flow through the code. There are a number of ar-
guments to counteract this point, some of which have been mentioned here already.
The primary argument is that these foundation components, which are configurable
through metadata, become highly tested components that become almost like a black
box to the rest of the application. Once you have these components working correctly,
very little time is spent looking at the “framework” code. The behavior of an applica-
tion can be determined simply by looking at the client code and the metadata inputs
to the service. Consistent use of these foundation components rapidly makes this
contention less of an issue. Another less structured argument is that well-written
object-oriented code is difficult to sit down and read in the first place because the meth-
ods are typically very small and you often have to jump back and forth from object
to object anyway in order to decipher what is going on. This issue was dealt with on a
different level when software development moved in large part from procedural code
to object-oriented development. It is usually easier to read and understand a contigu-
ous block of procedural code than it is object-oriented code, but the many benefits
found in OO development far outweigh this minor and perhaps even debatable disad-
vantage. Some of these same arguments apply to a metadata-driven approach as well.

As in many aspects of the J2EE architecture, both the pros and the cons must be
weighed for a given design decision before making a choice. As is the case with so
many architecture decisions you will see, the solution is often a middle-of-the-road
choice in which metadata is used for key components that provide the maximum ben-
efit. Elements of business applications that are data intensive and heavily used, such as
forms processing and business object persistence, will use metadata to rapidly develop
quality implementations.

The industry seems to be moving to storing many pieces of data in XML format, and
metadata is no exception. Storing metadata as XML provides a number of benefits:

m XML data provides a standard format that can be stored either in a file or in a
database table.

Building Business Applications with J2EE

m Most design tools can generate XML data from their models; many tools now
support XMI (XML Metadata Interchange), a standard XML format for object
metadata.

m XML can be created or modified using a number of different tools including
XML editors, custom-written tools, or in many cases, even a simple text editor.

An interesting effect of using metadata is that it separates pieces of the application
design from the code. This is helpful for a number of reasons:

m A higher number of application functions driven by the design imply that
fewer application changes will require actual code changes. This increases the
speed of maintenance cycles and deployment.

m XML supports a model-driven development approach; the design models
become accurate pieces of documentation for the system and are used to
generate application components or the metadata input to foundation
components.

= Much of the input to application code can originate from design models.
The object models for the business entities contain the properties and the
relationships between the entities. This metadata can be exported from design
tools into XML. The XMI specification provides one such format to do so, and
design tools are starting to support it. If a configurable business object base
class can manage the properties and relationships for a business object, you
have now automated this portion of the business object through metadata
input almost completely through the design process. Of course, specific
business methods and other application components will also modify the
properties of the business object and create instances of relationships, but the
logic to do so has been automated through the metadata-driven process.

Practicality: Performance and Scalability

The last principle, essentially performance engineering, is one that underlies all else.
Avoiding this topic until the final phases of any project can have serious consequences.
The quickest thing (no pun intended!) that will keep people from using your system is
poor performance, especially in today’s fast-paced Internet world. Business application
users are accustomed to the performance of client-server applications over private net-
works and consumers or Internet users are very impatient when it comes to waiting for a
Web-site page to load. Thus, although it is true that computers are getting faster and more
hardware is always an option (if you built a scalable solution), you must keep a watchful
eye and build performance into the development process from the very beginning. It
must be a part of the design process because it often involves trade-offs with other as-
pects of a system, most often the flexibility that an application provides to the user.
Java, the language itself, can quickly approach the performance of C/C++ in many
situations, a language widely regarded as a high-performance choice for even the most
demanding applications. This is primarily due to the evolution of just-in-time (JIT) com-
pilers that now aggressively translate Java byte code and perform code optimizations.

XX

J2EE Best Practices: Java Design Pattens, Automation, and Performance

This is particularly true on the server side, where you typically have a large set of
Java classes that will be executed many times. The initial overhead of performing the
translation into native instructions is usually not worth mentioning, and thus in theory,
the majority of the code should be comparable to compiled C++ code. One weakness
that Java still has when compared to C++ is the garbage collection process, which adds
some overhead. However, the programming benefits are well worth the minimal cost
involved in terms of memory allocation and management, so this really does not even
become an issue. In fact, as processor speeds continue to increase, the difference
between the two languages themselves is likely to become almost insignificant. How-
ever, component services provided by J2EE add another layer on top of the language,
and you must look very closely at the impact that component services have on the
application’s overall performance. While J2EE provides many valuable services, such
as object persistence and naming and directory services, their benefits must be
weighed against their costs.

Many solutions will involve using Enterprise Java services in cases in which they
provide the most benefit, but not as a standard across the board. This is a common ten-
dency of building J2EE architectures, to use the enterprise components across the
board from front-to-back in the software architecture. A key example of this is the use
of Entity Beans. Relatively speaking, Entity Beans are fairly heavyweight components,
and thus should not be used to model every business object in an application, particu-
larly if each business object maps to a row in the database. Doing this can quickly
degrade the scalability, and thus the usability, of an application. A scalable architecture
is a must for almost any system, and design guidelines discussed in this book for each
layer of the architecture must be applied when deciding on the foundation for software
components as well as in building the individual components themselves.

How This Book Is Organized

The structure of this book starts with a conceptual view of business applications and
moves all the way to the realization of a corresponding application architecture and
sample application. An introduction is first given to the reference architecture ap-
proach and how it is applied to J2EE technology. The three basic layers of the reference
architecture (business objects, services/processes, and user interaction) are each built
from the ground up, starting with design concepts, moving to relevant J2EE best prac-
tices, and ending with a J2EE implementation. Each layer is discussed as a general
foundation for development in addition to its practical use in the form of a sample
bank application that is constructed throughout the book. After having moved through
the architecture vision, best practices, and implementation, the last set of chapters then
take a step back and look deeper into topics such as application security, performance,
and reuse.

Chapter 1, “Building Business Applications with J2EE,” introduces and discusses
the common elements of business applications. The common characteristics are
abstracted out as a foundation for an application architecture approach. The layers of
the reference architecture are introduced, and the components within each layer are de-
fined. The J2EE platform is briefly covered, and the reference architecture is mapped to
its implementation as J2EE components. The Model-View-Controller architecture pat-

Building Business Applications with J2EE

tern, also commonly known as the Model 2 approach in Web development, is presented
as an overarching aspect of both J2EE technology and the reference architecture.

Chapter 2, “The Business Object Architecture: Design Considerations,” covers
design elements of the business object layer of the reference architecture. This chapter
introduces the bank application’s object model as an example to study. The elements of
business object components are discussed and the implementation options in J2EE are
considered. Design elements discussed include stateful versus stateless, Entity Beans
versus regular Java objects, persistence mechanisms, and transaction concurrency.

Chapter 3, “Building Business Objects: Managing Properties and Handling
Errors,” walks through an implementation of the first half of business object responsibil-
ities, which include property management, business validations, and handling error con-
ditions. Due to the amount of functionality within business objects, their implementation
is divided into chapters 3 and 4. An explicit implementation of the Account business ob-
ject is discussed and then a generic property management approach is introduced. A
metadata-driven base class implementation is described that can be used for all business
objects. A standard interface for business objects is introduced so that all objects can be
dealt with generically and consistently. Value objects and bulk accessor methods are also
discussed. An error list mechanism is introduced and implemented that manages a set of
configurable business errors for an object. General error and exception-handling tech-
niques are discussed and applied to the business object implementation.

Chapter 4, “Building Business Objects: Persistence, Relationships, and the
Template Method Pattern,” walks through an implementation of the second half of
business responsibilities, which include persistence of the object’s data to a database,
management of interactions with other objects, and the use of the Template Method pat-
tern to build extensible, reusable business logic templates. Options for persistence that
are discussed include the explicit use of JDBC, a metadata-driven JDBC framework,
third-party and open-source persistence frameworks, and Entity Bean Container-Man-
aged Persistence. Sample implementations are shown and discussed for each of the op-
tions. The business object lifecycle is abstracted through the construction of a business
object factory, and implementations are shown for JDBC, Entity Beans, and Castor, a
popular open-source persistence framework for Java. Object collection services are also
discussed as a faster alternative to using business objects for read-only operations, and
best practices are provided for using JDBC if that alternative is chosen. Data caching
and a JMS-based refresh mechanism are also addressed as an option to prevent unnec-
essary database I/O. The responsibilities of aggregated business objects are discussed
and corresponding methods are added to the standard business object interface. The
Template Method pattern, which enables a key concept of the reference architecture, au-
tomation with extensibility, is discussed. Implementations of a save template, an object
creation template, and an aggregated object template are constructed to automate basic
business object functionality. The overall metadata DTD and implementation are then
discussed. At the end of this chapter, readers will have a set of design concepts and code
that can be used to quickly build robust business object components.

Chapter 5, “The Service-Based Architecture: Design Considerations,” covers
design elements and the rationale behind the service component layer of the reference
architecture. The basic elements of these process-oriented objects are discussed, and
implementation options are considered. Services are categorized as either update or
data retrieval. The concept of the Session Bean as a component wrapper to regular

J2EE Best Practices: Java Design Pattens, Automation, and Performance

Java implementation classes is introduced. The majority of the chapter then covers the
interface of the service components, the benefits of choosing a standard interface, and
the considerations for different data structures such as XML, value objects, and
argument lists.

Chapter 6, “Building Service-Based Components,” walks you through the imple-
mentation of service components in the reference architecture. Examples are given for
both explicit interfaces and a standard interface. A service data class is created that en-
capsulates value objects, argument lists, and error data in order to create a standard
service interface. The implementation of an EJB wrapper around a regular Java class
implementation is constructed. A service component base class is introduced for stan-
dard error handling, transaction management, and the invocation of the implementa-
tion classes. The general responsibilities of both data retrieval and update services are
discussed. Some service implementations from the bank application are constructed
such as TransferFunds, ChangeAddress, and GetAccountList. Strategies for building
generic reusable services, invoking services within other services, and using the con-
troller pattern are also discussed.

Chapter 7, “The User Interaction Architecture: Design Considerations and an
Overview of Jakarta Struts,” covers design elements and the common aspects of the
user interaction layer of the reference architecture. The key aspects of web-based user
interaction are abstracted as events, actions, services, and Web pages. These abstrac-
tions and the design considerations are used so that the core responsibilities of the con-
troller architecture can be broken down into eight steps. These steps are automated to
the extent possible and partitioned effectively between the controller and the action
classes. Design considerations for state management are discussed with a brief
overview of scope within the JSP/servlet architecture. Best practices for applying the
Model-View-Controller architecture to J2EE are discussed including managing the ses-
sion size, and JSP templates and encapsulating presentation logic in reusable custom
tags. The last part of this chapter provides an overview of the Jakarta Struts project, an
open-source implementation of the Model 2 architecture. The controller architecture of
Struts is discussed, but the real power is shown to be within the JSP tag library that eas-
ily integrates request-handling functionality into dynamic Web pages.

Chapter 8, “Building the User Interaction Architecture,” walks through the imple-
mentation of the user interaction layer using Struts. Implementation aspects are dis-
cussed and illustrated through practical examples of constructing the bank’s Web site.
The change address and view accounts pages are constructed as examples of simple
update and data retrieval functions. The new customer wizard is constructed as an
example of a multipage form. Strategies for the implementation of the user interaction
components are discussed. Options are shown for implementing the event object and
service data objects both independently and separately. Integrating error handling
from front to back in the reference architecture is discussed and implemented. Some
custom tags are created to illustrate the power of reusable presentation logic that inte-
grates with the reference architecture, such as the drop-down tag, which automatically
gets its data from a specified object cache. The implementation of the JSP template
mechanism, as used by the bank’s pages, is defined and discussed. The creation of
extensible base action classes for standard logic is discussed and implemented. At the
end of this chapter, readers have a complete set of tools and design concepts to rapidly
build transactional Web sites using J2EE technology and a Business Logic Foundation.

Building Business Applications with J2EE

Chapter 9, “Strengthening the Bank Application: Adding Security and Advanced
Functionality,” gives a brief overview of application security in J2EE and its use in the
bank application. Some of the more interesting design aspects of Web-based applica-
tions are discussed through advanced pages within the bank application. A set of ad-
ministrative pages that introduce implementation strategies for multiple submit
buttons on a form and multiple objects being updated on the same form are developed.

Chapter 10, “Performance,” presents an approach to performance engineering that
balances the focus throughout the software development lifecycle. An emphasis is
placed on scalable architectures and benchmark testing up front to determine the
validity of proposed solutions. Strategies for measuring and optimizing performance
are discussed including object instantiation, object caching, and the use of J2EE com-
ponents such as Entity Beans.

Chapter 11, “Moving toward Reuse in the Reference Architecture,” focuses on
common roadblocks to reuse and best practices that can be used to offset these hurdles.
Roadblocks range from the social aspects all the way to technical limitations. Both J2EE
and the reference architecture are positioned as key aspects of a reuse architecture
based on configuration and extensibility, the use of standard interfaces, and a layered
modular architecture. Reuse and adaptability are considered in a strategic view of the
reference architecture.

Who Should Read This Book

This book is intended for those who have already had some exposure to J2EE tech-
nologies such as E]JB and JSP/servlets, although architects and software engineers of
all skill levels will find the design considerations, implementation techniques, and
reusable code useful. Technically astute managers and other information technology
professionals will also find many sections of the book, such as the chapters on security,
performance engineering, and reuse and strategic architecture, helpful.

This material will be of interest to any Java technologist building business applica-
tions using J2EE because it provides concepts and examples of how to build applica-
tions faster and with greater quality. Many J2EE books on the market provide basic API
examples but do not go into detail about the design implications of different J2EE ar-
chitectures or how to automate the development of J2EE components. This book does
those things on both a theoretical and practical level.

Tools You Will Need

To run the sample application and use the business logic foundation software, you will
need the following:

= Any J2EE 1.3—compliant application server such as BEA Weblogic 6.1

m Jakarta Struts v1.0 or greater, which is available at
http://jakarta.apache.org/struts

m (Optional) The Castor Data Binding Framework, part of the ExoLab project,
which is available at ht tp://castor.exolab.org/

xxiv

J2EE Best Practices: Java Design Pattens, Automation, and Performance

What's on the Web Site

The companion Web site contains all of the code from the Business Logic Foundation
that is discussed as part of the reference architecture. It also contains the code for the
sample bank application. You will also find links to relevant Web sites, open-source
projects, and industry information on:

m J2EE and]2EE Blueprints
The Jakarta Struts project
The Jakarta Commons project

The Castor project

]
|
|
m Performance testing

Summary

The concepts and principles that are discussed here provide a foundation for a set of
best practices that will be used effectively to build Internet applications using J2EE
technology. These design and development guidelines feed into the creation of a pow-
erful architecture that is used to develop Internet applications faster and with greater
performance, quality, and reusability. J2EE provides a powerful standard upon which
you can build components and applications; with the right set of development prac-
tices and software assets, Web-based business application development moves closer
to a process known as software fabrication, in which applications are built using pre-
fabricated components and frameworks.

Building Business Applications
with J2EE

The approach to developing Web applications with J2EE (Java 2 Enterprise Edition) is
based on a number of factors, which include:

m The common elements of business applications

m The vision of the software architecture; that is, the definition of the components
and their interaction

m The J2EE technology platform used to implement the software

Business applications share a number of common elements because they are all used
to implement business processes and manage the information of a business. Conse-
quently, business entities and processes can be modeled as software components. In
today’s world, users access many business applications and their underlying compo-
nents through the Internet, usually by using a Web browser but increasingly through
wireless and other Internet devices. The vision of the software architecture should in-
tegrate the common elements into a component structure that models the business
today and positions it for the future. On the technical side, the architecture should po-
sition the development organization to meet the requirements of flexibility, perfor-
mance, and time-to-market constraints. The execution of the software architecture
vision is driven by the guiding principles discussed in the introduction and a number
of J2EE best practices described in this book.

J2EE Best Practices: Java Design Patterns, Automation, and Performance

This chapter defines a set of fundamental elements that are common among Web-
based business applications. This set of key elements drives the definition of a refer-
ence architecture that comprises three layers: business objects, process-oriented or
service-based objects, and user interaction components. The basic theory behind the
J2EE platform approach is briefly discussed and followed by an introduction to a cen-
tral design pattern that is predominantly used to implement J2EE applications, the
Model-View-Controller (MVC) architecture pattern.

Elements of Transactional, Web-Based
Business Applications

Business applications, especially Web-based transactional applications, share many
common characteristics. It is important to take a step back and look at these character-
istics because they form the basis of many application architectures. In fact, these
elements are the model on which the software architecture is based. From these char-
acteristics, you derive the different types of application components and services that
are required. The architectures discussed in the remainder of this book are based on
these elements. These elements map to software layers and components, and a thor-
ough analysis of how the mapping should be done is given in the following chapters.
In short, these elements provide the foundation of the architecture, and they drive the
software layers that enable flexibility and reusability.

Business Entities

Businesses deal with different entities all of the time. These range from higher-level
entities such as a customer or a supplier down to lower levels such as purchase orders
or even perhaps individual line items on a contract. These entities share a number of
common characteristics:

= Behaviors

= Properties

m Relationships with other entities
|

Rules or policies

An example used throughout the book is a bank. Two primary entities that banks
deal with are customers and accounts. Accounts have properties, such as a current bal-
ance and minimum allowed balance, as well as rules that enforce policies of what hap-
pens when the current balance falls below the minimum. Accounts also have behaviors
such as deposit and withdrawal, and they interact with customers, the other entity in
the bank example.

Entities become participants in business processes. They often have different sets of
business policies or rules that must be enforced. An application will likely be interested
in the persistence of the state of the entities, for example, the status of a purchase order
or the current balance of a bank account.

Building Business Applications with J2EE

Business entities are of course the foundation of object-oriented design and devel-
opment. While this book is not meant to be a discussion of object-oriented theory, it is
important to take note of these primary characteristics to motivate further discussion
on their place in the software architecture and on how a technical solution can address
this element of business applications.

Business Processes

Businesses use many processes to carry out the work of their business. These processes
often have some sort of specified workflow and often involve one or more business en-
tities. They must be executed in a secure manner, and they involve units of work that
cannot be broken apart. One example that illustrates both points is the process of trans-
ferring money from a checking account to a money market account. The bank provid-
ing the service does not want the deposit credited without also accounting for the
withdrawal, or it loses money.

The accessibility of these business processes, or services, is becoming ever more of
an issue. In the example, a bank’s customer may want the ability to transfer the funds
from a home PC through a browser or from a wireless device while on the road. Busi-
nesses exchange funds all of the time, and a Web service for a transfer of funds through
a secure, B2B (business-to-business) Internet client provides another potential access
point.

Based on the bank example, business processes share the following characteristics:

m [nclude some flow of activities
m [nvolve business entities as participants
m Need to be executed in a secure manner
m Comprise units of work essential to the business
m Need to be accessible from different clients:
m Browser-based applications
m Wireless devices
m B2B Web services
]

Other Internet clients

User Interaction

Many business processes would not be very helpful or effective if end users could not
access them. As described in the previous section, the types of access points are grow-
ing, and the requirements can vary widely based on how the information or service
should be presented to each access device.

The user interaction portions of applications typically share the following charac-
teristics:

m Application presentation, such as HTML or XML over HTTP

m Access to business functions and services

4

J2EE Best Practices: Java Design Patterns, Automation, and Performance

= Static and dynamic content

m Screen flow, or page navigation
= Forms processing
|

Error handling

The sample bank Web site exhibits these characteristics. There are both static content
(account holder policies) and dynamic content (list of customer accounts and detailed
information about each). In order to transfer funds between accounts, the user must fill
out a quick form to select the amount and the from and to accounts. Any data entry
mistakes, such as entering an amount greater than the balance, must be handled ac-
cordingly and the user must be given the opportunity to retry the transaction.

A bank customer accessing this service from a handheld wireless device would en-
counter all of the same elements. The application itself would need to tailor the content
to fit onto the smaller screen and communicate using WML instead of HTML, but the
same issues exist.

.m A Web service that can be used by a B2B partner to transfer funds would
share many of the same characteristics except for the content-generation and
screen-navigation elements, but all of the forms-processing and error-handling
logic would still be needed. A Web service is actually a simpler example than the
first two, although it does introduce its own set of challenges. For the most part,
the user interaction layer in the case of a Web service is an HTTP wrapper
around the business process.

The Reference Architecture

The primary elements of business applications naturally fit into layers, starting with
the business entities themselves. They are at the core of what the business deals
with every day. Every business has processes or transactions that involve these entities.
Finally, these processes and transactions need to be accessible to users or business
partners. Figure 1.1 shows how these layers fit together in a reference architecture.
Once you move toward technical solutions to implement these layers, you will see that
your software architecture diagrams closely resemble this diagram.

The software architecture models the three primary elements of business applica-
tions and provides technical implementations for each of them. Each of these cate-
gories is a conceptual layer in the architecture: business entities, business processes,
and user interaction. This book defines a set of terms to describe these software layers
in relation to the reference architecture. Note that these are not standard J2EE terms,
simply a shorthand notation used to communicate the vision of the application archi-
tecture and describe how the components fit together.

Business Object Architecture. The business entities become the core of the
“Business Object Architecture.” This term is used to describe the layer of
business object components that model these entities and interact with
enterprise information systems. This typically involves some combination of

Building Business Applications with J2EE

User Business Business
Interaction Processes Entities
[— $
Thick.-Cli.ent
Application Transfer
E Funds Account
 —
Web
Browser @
[=]
|.| Product
ko>
. Purchase
erel_ess Product
Device
[]
123 Main.
B2B Web o
e
Service gg‘gnge C
Client ress ustomer

Figure 1.1 The Structure of a Business Application.

regular Java classes and Entity Beans in J2EE architectures. Business entities
within the bank example include a Customer and an Account.

Service-Based Architecture. The business processes become a part of the
“Service-Based Architecture.” This term is used to describe the layer of
the business components that implement the processes and workflows of the
business. The typical incarnation of a “service” in this reference architecture is
a stateless Session Bean, although your definition is not limited to this. In this
book, “service” describes a process-oriented object as opposed to an object
that models a particular business entity. A Session Bean can act simply as a
component wrapper to one of your process-oriented objects, although these
objects could be invoked directly from another service or business component
as well. Business processes within the bank example include TransferFunds and
ChangeAddress.

User Interaction Architecture. The user interface and client interaction aspects
are simply called the “User Interaction Architecture.” In a J2EE architecture, this
is typically implemented under the Model 2 approach, which uses servlets and
JavaServer Pages (JSP) to implement a Model-View-Controller (MVC) Web
architecture. User interaction within the bank example includes Web pages with
which the user can transfer funds and change their address.

As described in this book, these layers define interaction points in the software archi-
tecture. Note that at this point you should not consider network or hardware

6

J2EE Best Practices: Java Design Patterns, Automation, and Performance

2

="
Thick-Client
Application
i <A
_ N
—\ N
Web Application
Browser Databases
| sl User Interaction |] Service-Based | Business Object |] L
|i| Architecture Architecture Architecture
o
Wireless Enterprise
Device Application

B2B Web
Service
Client

Figure 1.2 The Basic Architecture Layers Diagram.

architecture. These software layers could reside on the same physical tier or be distrib-
uted across a network. For now, this is somewhat irrelevant. The interaction of the soft-
ware components and the partitioning of functionality is the key point to be drawn
from this view of the architecture.

Figure 1.2 illustrates the software architecture diagram, which closely resembles the
diagram that represents the flow of business application characteristics.

Business Object Architecture

The Business Object Architecture contains the components that implement the busi-
ness entities in the system. Each of these components manages the data and business
logic associated with a particular business entity. This includes the persistence of that
object’s data, typically to a relational database. This database access can be imple-
mented by the container in the case of CMP (Container-Managed Persistence) Entity
Beans or by the developer in the case of BMP (Bean-Managed Persistence) Entity Beans
or regular Java classes. In the last two cases, in which the developer does the work, it is
a best practice to isolate the database access into a separate data-access layer. If there
is any data access outside of the business object model, this should also be included in
this layer. This includes database queries that are run in order to retrieve read-only
data for presentation to the user.

In the bank application, a business object could represent entities such as a customer,
a bank account, or even an individual transaction on the bank account such as a with-
drawal. These business objects can be implemented either as Java classes, Entity Beans,
or some combination of the two. The persistence of each business object is abstracted

Building Business Applications with J2EE

out to the extent possible so that separate data objects, persistence frameworks, or
Container-Managed Persistence services can be used to have the object data persist in
the database.

Service-Based Architecture

The Service-Based Architecture contains the components that implement the business
processes and transactions of an application. These typically are process-oriented
objects that represent units of work or implement a business workflow. Many of the
service components are relatively small in content because the business objects are
used to do much of the work. Other services are quite complicated in nature. Not all
software architectures include a service-based layer; however, it can add tremendous
value in terms of flexibility, reusability, and component design. The concept of services
allows the front end to be decoupled from the back-end business object components.
Service objects are used to coordinate transactions that involve multiple business com-
ponents and provide a simple interface to the user interaction layer. Services them-
selves become reusable across screens, applications, and different client access points.
As you will see, a simple stateless Session Bean wrapper around a service object allows
you to easily distribute the service and manage the transaction as well, one of the great-
est benefits of the EJB (Enterprise JavaBeans) architecture.

One important aspect of the Service-Based Architecture is that services typically fall
into one of two categories: read-only and update. Remember that in the architecture
diagram, all the back-end functionality that is required to create the presentation layer
needs to be provided by a service. Thus, many services within the application archi-
tecture will be data retrieval services.

.m Depending on the technical architecture, the presentation layer may or
may not be able to contact the data-access layer directly. Some configurations will
separate the user interaction layer (Web container) and the Business Object Archi-
tecture (EJB container) onto different physical tiers with no direct path from the
user interaction layer to the database. Other architectures combine the two layers
on one physical tier. Thus, for maximum efficiency, you would not need a service
to retrieve a result set. This issue is hotly contested in the industry, and will be
covered later in the chapters on User Interaction and Service-Based Architecture.

In the bank application, the business processes include allowing customers access to
their account information, transferring funds between accounts, and changing the cus-
tomer address. These services are implemented as process-oriented objects and then
wrapped with stateless Session Beans to implement the service component pattern dis-
cussed in the introduction. They are initially deployed as remote EJB components so
that the services can be potentially accessed from a number of different clients. How-
ever, a deployment with local interfaces would work equally well in cases where the
Web tier and EJB tiers are colocated on the same physical machine. The J2EE platform
section later in this chapter discusses the different tiers and the nature of the respective
J2EE components in more detail.

J2EE Best Practices: Java Design Patterns, Automation, and Performance

User Interaction Architecture

The User Interaction Architecture contains components that process user requests, in-
voke application services, and generate responses sent back to the user. In a Web-based
application, this layer would process HTML form submissions, manage state within a
user session, generate Web-page content, and control navigation between pages. It is
easy to see that the user interaction layer has a large number of responsibilities. Thus,
itis not surprising that the User Interaction Architecture has more types of components
than the other two layers combined. Whereas there are only service components in the
Service-Based Architecture and only data and business objects in the Business Object
Architecture, the User Interaction Architecture contains page components, request-
processing components, state management, tag libraries, and user action components
just to name a few. And that doesn’t count content generation, personalization, portals,
and other complexities that factor into many business applications.

The point is that this layer encompasses a lot of functions. The good news is, how-
ever, that many of the functions within this layer can be automated through config-
urable foundation components. Web design will always require people skilled in
graphics design and human factors, but integrating business functionality into Web
pages can be done in a flexible, robust manner through the Model 2 paradigm, the
MVC (Journal of Object-Oriented Programming 1988) architecture pattern applied to
the J2EE Web tier architecture. Both Java Swing and the J2EE Blueprints (Kassem and
the Enterprise Team 2000) sample applications are based on this architecture pattern. A
major portion of the reference architecture discussed in this book is a generic, config-
urable implementation of the Model 2 architecture. This allows you to automate the
processing of user requests and page navigation, a major portion of the responsibilities
within the User Interaction Architecture. Reusable libraries can be used for many of
the other functions, such as tag libraries and style sheets for the purpose of content
generation.

For each layer of the architecture and each element of the business application
within these layers, design choices will be considered that impact the overall goals of
the system, such as performance and flexibility. The four guiding principles discussed
in the introduction will be applied to each element in order to use proven design pat-
terns and automate as much of the processing as possible. The Business Logic Founda-
tion will cut across these different elements to provide configurable, metadata-driven
components to automate the work.

The User Interaction Architecture encompasses any application components resi-
dent on the client device as well. In the case of client-server applications, this would
include the entire thick-client, Java Swing GUI (graphical user interface) application.
However, in the case of thin-client Web applications, this is typically limited to some
amount of JavaScript that runs within the browser. The JavaScript code comes from the
Web server, although it is actually run on the client side. Java applets are an additional
possibility, although they are not often used in enterprise Web development. Thus,
the majority of the user interaction processing for Web applications is handled on the
server.

In the bank application, user interaction is primarily through a set of pages for the
bank’s Web site, which provides customers with access to accounts and Internet bank-
ing functions. There is also a set of Web pages for bank administrators to facilitate

Building Business Applications with J2EE

management of some aspects of the application as well as provide the ability to make
adjustments to account transactions. Almost every page pulls in dynamic content from
the application database and provides secure access to the appropriate set of service
components.

The J2EE Platform Approach

As defined in the J2EE Blueprints, the Java 2 Enterprise Edition platform provides a
component-based approach to implementing a multitiered software architecture. This
architecture can be used to model the elements that typically characterize business
applications. The components that make up the architecture are executed in run-time
environments called containers. Containers are used to provide infrastructure-type
services such as lifecycle management, distribution, and security. In a Web-based, thin-
client application, the majority of the software resides on two containers running in-
side of an application server. J2EE application servers provide both a Web container
and an Enterprise JavaBean container. These two environments provide the basis of an
excellent foundation on which to build transactional business applications.

Containers and components in the J2EE architecture are divided into three tiers. The
tiers are defined as:

Client Tier. The Web browser or Java application client.

Middle Tier. Comprising the Web container and the EJB container, the middle
tier contains the business logic of the application and provides any services
available to the client tier.

Enterprise Information Systems Tier. The rest of the enterprise information
architecture including databases and existing applications.

Figure 1.3 shows how the tiers and containers fit together in the J2EE platform.

Note that multiple containers and software layers in the architecture are housed
on the middle tier of the J2EE architecture. This is where the bulk of the work resides;
thus the focus of this book is on this tier. The client tier for a Web application is typically
a Web browser. Other types of clients include a thick-client Java GUI application, Java
applet, and B2B Web service clients. The enterprise information tier consists primarily
of data sources and other existing applications. J2EE provides a number of interfaces
and APlIs (application programming interfaces) to access resources in this tier.

The two primary containers of the J2EE architecture, both found on the middle tier,
are the Web container and the EJB container. The function of the Web container is to
process client requests and generate a response, while the function of the EJB container
is to implement the business logic of the application.

Table 1.1 provides a summary of the primary software components that are found
on the middle tier of the J2EE architecture. Note that this list excludes J2EE interfaces
to enterprise tier resources, which are discussed in detail later in this chapter.

It is important to note, and your study of the entire architecture will demonstrate,
that not all of these components are required for every application. In fact, you will
find that many applications are better off using only those components that provide
substantial value for the type of solution being addressed.

10 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Table 1.1 J2EE Containers and Components

CONTAINER COMPONENT DESCRIPTION

Web Servlet Component that processes HTTP
requests and generates HTML or
XML responses

JSP Text-based document used to generate
dynamic content that can contain both
HTML content, scriptlets of Java code,
and JSP custom tags

EJB Session Bean Provides a service to a single client

Entity Bean Persistent object that represents an
instance of data across all clients

Message-Driven Bean A consumer of asynchronous messages

[\
B web > | Servlet Entity
rowser HTTP Bean JDBC Database
|i| Request
o
Wireless - - Session - .-
Device RMI Bean RMI/
E Local
Y Inter-
face J2EE Enterprise
" HTTP JSP Connector Application
B2B Web R
Service esponse
Client
User Service- Business
Interaction Based Object
Architecture Architecture Architecture
Web EJB
Container Container
q . Enterprise
C%l.ent M{:‘ldle Information
ier ier Tier

Figure 1.3 Basic J2EE Architecture.

Building Business Applications with J2EE

@ Entity Bean/
== Servlet Java Class
B Web | |Page Flow, Business
TOWSEr | grrp || Handle Objects
|i| Request ||_Forms So]
o ession Database
Wireless P Bean P) JDBC
Device RMI Service RMI/ Data Access
Y Components|| 1 ocal Objects
JSP Inter-
_ Screens face
B and
B2B Web HTTP C J2EE Enterprise
. Response ontent P
Service Connector Application
Client
User Service- Business
Interaction Based Object
Architecture Architecture Architecture

Figure 1.4 Elements of Business Applications in the J2EE Architecture.

Figure 1.4 shows the elements of business applications that were discussed previ-
ously. These elements are overlaid on top of the J2EE architecture and components.

The following gives you a look at how the primary J2EE components provide
implementations for the different layers of the business application architecture.

Entity Bean EJBs as Business
Object Components

Entity Beans are meant to represent persistent data entities within an application. An
instance of an Entity Bean typically represents a “row” in a database, but is not neces-
sarily limited to this definition. You can also implement much more coarse-grained
Entity Beans that use either dependent objects (regular Java classes) or other local
Entity Beans to encapsulate logic for a number of related business entities. One of the
major component services that are provided to Entity Beans is that of Container-
Managed Persistence, where the container causes the component’s data to persist in a
relational database. In the EJB 2.0 specification, however, CMP persistence is limited to
one table. Any object-relational mapping scheme more complicated than a one-to-one
table-object mapping is not explicitly supported by the EJB specification except
through Bean-Managed Persistence (BMP), in which you write the persistence code
yourself. It turns out that there are few compelling reasons to take the BMP Entity Bean
approach, but this is only one of a number of persistence options that will be discussed
thoroughly in the upcoming chapters on the Business Object Architecture.

12

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Entity Beans are provided the following services to aid in the development of busi-
ness object components:

m Container-Managed Persistence (Bean-Managed Persistence is also an option.)

m Management of transaction concurrency through transaction isolation settings

m (Container-managed transactions (Bean-managed transactions are also an
option.)

m [ifecycle management; object pooling

m Distribution services; naming and directory services

= Security (access control lists)

.m The primary aspect that makes the Entity Bean model suitable for imple-
menting business entities is that an Entity Bean represents a shared instance of
a persistent data entity that is deployable in a transactional, high-availability
environment.

Session Bean EJBs as Service-Based
Components

A Session Bean represents a service provided to a client, which makes it a natural fit for
a service-based model. Unlike Entity Beans, Session Beans do not share data across
multiple clients. Each user requesting a service or executing a transaction invokes a
Session Bean to process the request.

Session Beans can be either stateful or stateless. Stateless Session Beans do not main-
tain any state between method calls for a given client, and a given instance is typically
multithreaded, servicing multiple clients. After a stateless Session Bean processes a
given request, it goes on to the next client and next request without maintaining or
sharing any data. Stateful Session Beans are often constructed for a particular client
and can maintain state across method invocations for a single client until the compo-
nent is removed.

Session Beans are provided the following services to aid in the development of busi-
ness processes or service-based components:

m Container-managed transactions (Bean-managed transactions are also an
option.)

m [ifecycle management; object pooling
m Distribution services; naming and directory services

m Security (access control lists)

JavaServer Pages and Java Servlets as
the User Interface
JavaServer Pages (JSP) and Java servlets are the two primary components of the Web

tier in the J2EE architecture. The primary job of the Web tier and these two components
is to process and respond to Web user requests. Thus, aspects of the User Interaction

Building Business Applications with J2EE

13

Architecture such as forms processing and content generation are handled by these
components. The servlet API provides an easy-to-use set of objects that process HTTP
requests and generate HTML /XML responses. The concept of a servlet is to provide a
Java-centric approach to programming Web tier functionality.

JavaServer Pages provide an HTML-centric version of servlets. JSP components are
document-based rather than object-based, but they provide the ability to integrate any-
thing that can be done in Java as well as some other nice conveniences. JSP documents
have built-in access to servlet API objects such as the request and response objects, as
well as the user session object. JSP also provides a very powerful custom tag mecha-
nism that enables you to encapsulate a reusable piece of Java presentation code in an
HTML tag that can be placed directly into the JSP document.

JSP and servlets provide the following user presentation services:

= HTTP request processing
m HTTP response generation
= State management at different context levels:
= Application
= User session
= Request
= Page

m [ntegration of HTML /XML content with presentation logic through Java
scriptlets and custom tags in a JSP

= Java environment to invoke back-end components such as EJBs through RMI
(Remote Method Invocation) and databases through JDBC (Java Database
Connectivity)

Distributed Java Components

Two core services provided by the Java platform that overlap all of these layers of the
architecture are:

m Java Naming and Directory Interface (JNDI)
m Remote Method Invocation (RMI) protocol

The JNDI service allows you to name and distribute components within the archi-
tecture. Any Java object can be stored and retrieved using JNDI; however, you will
most often use it for looking up component interfaces to enterprise beans. The compo-
nents and resources that you look up can be either local or remote.

Look at the case of a distributed enterprise component. The client uses JNDI to look
up the corresponding EJB Home interface. This is a special type of interface in Enter-
prise Java that lets you create, access, and remove instances of Session and Entity Beans.
After using the Home interface to gain access to a remote interface of a particular
enterprise bean, you can invoke the exposed methods using RMI. The remote interface
takes the local method call, serializes the objects that will be passed as arguments, and
invokes the corresponding remote method on the distributed object. The serialized

14

J2EE Best Practices: Java Design Patterns, Automation, and Performance

JNDI |

Context 1|

I

lookup !

create, find,
remove
Client ~ IR
Interface

]

I
business :
methods BB :

> Component [*-—-—-4
Interface

Pass-by-value
RMI/Serialization
(remote)

\
Pass-by-reference
(local)

/

EJB Bean
Implementation

Figure 1.5 Use of INDI and RMI with EJB
Components.

objects passed as arguments are converted back to normal Java objects, and the method
invocation continues as normal until the method returns its value, upon which the
same process occurs in reverse going back to the remote interface client. This process
of using JNDI and RMI with EJB is illustrated in Figure 1.5.

In the case of local Entity Beans, the local Home interface is discovered using a JNDI
lookup. This interface lets you create, access, and remove instances of local Entity
Beans that you then can access through the corresponding bean’s local interface. A
method invocation on a local interface is proxied directly to the bean’s implementation
class and does not go through RMI.

J2EE Access to the Enterprise
Information Systems (EIS) Tier

J2EE provides a number of different interfaces and APIs to access resources in the EIS
tier. Table 1.2 shows the different resource types and the J2EE interface mechanism.

The use of the JDBC API is encapsulated primarily in the data-access layer or within
the Container-Managed Persistence classes of an Entity Bean. Data sources that map
connections to a database are defined in JDBC. A client who wishes to access a partic-
ular database resource uses JNDI to look up the corresponding data source. The J2EE
application server uses this mechanism to provide connection pooling to the different
data resources. It is crucial that clients using these connections close them as soon as

Building Business Applications with J2EE

15

Table 1.2 J2EE Interfaces and APIs to Access EIS Tier Resources

EIS RESOURCE J2EE API DESCRIPTION

Relational Java Database Database-independent APIs to manage

databases Connectivity connections, transactions, and all SQL
(JDBC) and stored procedure execution.

Legacy and Java Connector Provides a standard adapter mechanism

other enterprise Architecture for integrating enterprise applications.

applications

Email server JavaMail API Java API to send and receive email.

Enterprise Java Message A Java messaging architecture that

messaging Service (JMS) supports both point-to-point and

publish/subscribe mechanisms. Also
provides for asynchronous processing
within J2EE environment.

they are done to prevent bottlenecks. For this reason, a data-access layer should
encapsulate all JDBC access.

C1FIM A VXA 1[99 The logic to access the database connections and close all
of the JDBC resources properly, especially during any error conditions, should be
implemented in one place and used throughout the application.

The Java Connector Architecture provides a standard way in Java to build adapters
to access existing enterprise applications. Another standard interface, the JavaMail API,
provides a nice way to access mail server functions.

The Java Message Service (JMS) provides a standard interface to enterprise messag-
ing systems. It is used within the J2EE architecture to provide asynchronous commu-
nication with other distributed components in a reliable manner. One other interesting
thing to note about JMS is that it is the only mechanism provided in the E]B tier to
perform asynchronous processing. Message-Driven Beans, the third type of EJB, are
consumers of JMS messages and can be used to perform asynchronous or parallel
processing.

As you can see, the J2EE platform provides a wide array of services and components
that can be used to build Web applications. The commonly used Model-View-
Controller design pattern structures the interaction of these components, particularly
on the Web tier. Servlets and JSP naturally fit into the controller and view roles,
respectively, within this pattern. Their usage in this pattern is now commonly referred
to as the Model 2 architecture. MVC has been used within the paradigm of a thick-client
application to tie controls on a screen to their data source within the model. The state-
less nature of Web applications, however, does present some interesting challenges to
applying this pattern in J2EE. Nonetheless, the MVC pattern still provides the best way
to modularize components that handle the user interaction. The next section describes
the MVC approach and applies it to the J2EE architecture.

16

J2EE Best Practices: Java Design Patterns, Automation, and Performance

The Model-View-Controller
Architecture Approach

The Model 2 architecture is based on the Model-View-Controller design pattern,
referred to earlier in this chapter. MVC is a cornerstone of software development best
practices, especially in terms of developing the user interface. The pieces of this pattern
are defined as follows:

View. The screens presented to the user
Controller. A component that controls the flow and processing of user actions

Model. The application business logic components

The benefit of using the MVC pattern is that you isolate the different portions of an
application in order to provide greater flexibility and more opportunity for reuse. A
primary isolation point is between the presentation objects and the application back-
end objects that manage the data and business rules. This allows a user interface to
have many different screens that can be changed to a large degree without impacting
the business logic and data components.

Use the MVC, or Model 2, architecture pattern to isolate
and modularize screen logic, control logic, and business logic. A generic MVC
implementation is a key component of the reference architecture as it provides
a flexible and reusable foundation for rapid Web application development.

A view needs to have application data in order to present it to the user. However,
views do not contain the definitive source of data. The model contains and manages the
definitive source of data for all application objects. Thus, when the model updates
its data, it must inform the view that the data has changed. The MVC architecture uses
this notification concept of informing the view of any data that has changed so it can
rerender the display to the user with the accurate and up-to-date information.

Java Swing uses this pattern throughout all of its GUI components. Each screen
widget, such as a JTable, has a model behind it, and the GUI widgets are notified when
the model has been updated so that it can redraw its display with the new data. A Web
application can be thought of in the same way. View objects live in the JSP container,
while model objects live in the EJB container. If view objects persist for the life of a
user’s session within an application, they would need to be notified when the corre-
sponding model objects on the E]B tier are updated.

The controller component isolates how a user’s actions on the screen are handled by
the application. This allows for an application design to flexibly handle things such as
page navigation and access to the functionality provided by the application model in
the case of form submissions. This also provides an isolation point between the model
and the view. Because the controller component handles the user requests and invokes
functions on the model as necessary, it allows for a more loosely coupled front and
back end. Interaction between the model and the view is only through an event-based
mechanism that informs the view of changes to the model’s data.

Building Business Applications with J2EE

17

—
Web Servlet
Browser HTTP - Controller
|i| Request Session Bean EntityBean/
Wiess Can Be Java Classes -
. - > | Controller [<+* [
Device RMI and/or Model JDBC Database
] , Model
B Jsp
B2B Web HTTP View
Service ~|Response
Client
Web EJB
Container Container

Figure 1.6 MVC Components Mapped to J2EE.

This and the previous section have discussed how some of the MVC patterns apply
to the Web architecture. Figure 1.6 gives a complete picture of how objects in the MVC
architecture are mapped to the J2EE architecture.

Note that in architectures that do not use Enterprise JavaBeans, the model objects
could just as easily live in the JSP container. MVC is only a software pattern and does
not restrict where components live in the technical architecture. As you look at differ-
ent design patterns and architecture considerations, note that model components may
actually live in both the JSP and EJB containers in the case of value objects or light-
weight business objects. Value objects are primarily objects that act as data structures,
and they may be used as a means to transport data from the E]B tier to the Web tier. In
some cases, they contain a small amount of validation logic, which qualifies them for
the title of “lightweight” business objects. In this sense, they are a part of the model.
The rest of the application logic of the model may be found in stateless or stateful com-
ponents that live on the EJB tier.

Data from the model may be sent to the Web tier either as value objects, XML data,
event objects, or any kind of data structure that you can imagine. The MVC architec-
ture is based on an event notification scheme in which, after the data is initially
retrieved, updates can be received either to inform the view of the change or provide
the new data at the same time. If the new data is not provided, the view or controller is
required to go back to the model to get the new data when a change is made. However,
does the data need to persist on the Web tier or can it be just temporary for the life of a
given transaction, unit-of-work, or screen? This is the topic of a lengthy debate that will
be discussed throughout the chapters of this book. A Web application is different from
a client-server application in that it presents a page of content to a thin-client browser.
It does not need to have data resident on the Web tier any longer at that point. A Web
application typically does not rerender screen components or data without going

18

J2EE Best Practices: Java Design Patterns, Automation, and Performance

back to the Web tier, in which case the view or controller component can make another
call to the application model in order to get the data. This approach makes the data on
the Web tier “temporary.” It resides there for as long as it is needed, usually to render
a given Web page or set of pages.

In any case, performance benefits can be derived from having data on the Web tier.
Data that is cached on this tier and that is used throughout the application can save
you from invoking methods on the application model. This typically saves network
trips, EJB component access, and database processing, all of which can be costly in the
grand scheme of things for high-throughput applications. In most cases, this ends up
being an application-by-application design decision as to determine what, if any, data
should be cached on the Web tier. The HttpSession provides a place to store data for a
given user’s session. This can be easily accessed from the view JSP components. How-
ever, you want to keep the size of an individual user session fairly small.

13RI V. XA) [d A large session size can quickly degrade the scalability and
performance of an application. It is recommended that the size of the session be

kept fairly small. How small is small enough? Well, remember that the session
size multiplied by a number of users gives an amount of memory that will be
consumed on the Web tier. Taking into consideration that this amount is only a
portion of the memory needed to run the application, you can get a rough idea of
the number of concurrent users that will be supported by a single instance of a
JSP container. Multiply this number by the number of JSP container instances in
your production cluster, and this gives you a rough limit on the total number of
concurrent users your application can support.

Another benefit of the Web tier “temporary” data approach is that of application
data shared across users. If multiple users can potentially update a certain object, how
do you notify each user session of the change? It is fairly easy to notify the view objects
within the session where the update occurred; however, how do you get hold of the
other user sessions? Now the scenario is getting a bit more complex. JMS could be used
to implement the publish/subscribe mechanism that notifies the view of updates to the
model. However, is this the best option for data stored in a session? Well, it would cer-
tainly seem to work, but you would have a lot of different JMS clients going in and out
of scope as user sessions came and went. This seems like it might be a bit excessive.

.Im] The use of JMS as a publish/subscribe mechanism for updating cached
data with changes is actually an excellent approach for systemwide data, and this
is discussed in the Business Object Architecture chapter.

As you can see, there are a number of variations on how this pattern can be applied
to Web architectures. The common variations will be studied in detail in the User
Interaction Architecture chapter. Whether data in the tier containing the View is
persistent or temporary, there is tremendous value in isolating the three MVC aspects
of an application. The architecture discussed in this book also isolates the front
end from the back end. There actually is not a contradiction between the two, but a

Building Business Applications with J2EE

19

complementary relationship. All of the same components can exist, but at the high
level the distinction between the architecture layers is different. The two overlap in a
couple of different ways:

m The User Interaction Architecture includes both the view and controller
components.

= |n some architecture designs, the controller component may overlap both the
user interaction layer and the service-based layer.

m The model includes both the Service-Based Architecture and the Business
Object Architecture.

Figure 1.7 shows how the two architectures overlap.

The controller component can have different functions in the Web architecture on the
different tiers. A controller component in the Web tier can be used for processing HTTP
requests, both form submissions and, potentially, navigation links. A controller com-
ponent on the EJB tier can control the flow of business object functionality. In some
sense, a service-based component that contains workflow type logic implements a
“controller” on the EJB side. A benefit of having a controller component on the EJB side
goes back to a point discussed earlier about the controller being an isolation point
between the View and the Model. This allows the controller components on both tiers
to pass data back and forth and act as an intermediary between the view and the

Controller
—\
Web Servlet Entity Bean/
B > ntity Bean
rowser HTTP ||Controller Java Classes
] Request X
; Session Business
. Bean Objects
Wireless — ' — 1 4>
Device RMI Service RMI/
Components|| [ocal y Database
¥ Inter-|| Data Access
< Jsp face Objects
B2B Web RHTTP View
Service esponse
Client
View | | Model
User Service- Business
Interaction Based Object
Architecture Architecture Architecture

Figure 1.7 MVC and the Business Application Architecture.

20

J2EE Best Practices: Java Design Patterns, Automation, and Performance

model. The component layer can then act as a broker for update events when the model
is updated. It is easier to implement this if the update events are represented in a stan-
dard fashion, such as an event object, or with objects that implement a standard inter-
face. Value objects, “lightweight” business objects, and actual business objects can all
implement standard interfaces in order to enable this. There are many other benefits of
this approach that will be discussed in the chapter on the Business Object Architecture.

One option for implementing some of the controller logic is to use a standard base
class for all service-based components. The base class could handle communication of
update event-type functionality. A data structure that combines object data and update
events will be needed to handle this design. If a standard interface is used between the
two controller components (or one Web-tier controller and one service-based compo-
nent, depending on how you look at it), this is made even easier. The benefits of using
a standard interface for service-based components is discussed in detail later on, but
the data structure needs to include these things, as well as things like error information
from the transaction.

Best Practices for Building Business
Applications with J2EE

This section summarizes the best practices discussed within this chapter. A corre-
sponding section is used throughout the chapters of this book to break down the key
concepts and provide a synopsis of the relevant best practices for J2EE development.
At this point, the reference architecture and J2EE technology have only been intro-
duced, so the list of best practices only scratches the surface of what will eventually be
covered. The majority of the best practices will be flushed out in the remainder of the
book as it goes in-depth into each of the architecture layers. For now, a few key best
practices have been highlighted that are summarized here.

Implementing Database Access

In J2EE applications, database access can be implemented either through CMP Entity
Beans or with JDBC in BMP Entity Beans or regular Java classes. For performance rea-
sons, a combination of the two approaches may also be used: Entity Beans for transac-
tional updates and JDBC for read-only queries that are used to present data to the user.
If JDBC is used, the database logic should be isolated into a separate data-access layer
to minimize the impact to the application if either the database schema or vendor
changes. The business objects then use the data-access layer to implement the persis-
tence logic. Remember that in the case of CMP Entity Beans, the container implements
this layer for you.

Managing JDBC Resources

It is crucial that JDBC resources, such as database connections, be closed properly to
prevent resource contention and provide the maximum throughput possible for your
application. The logic to access the database connections and close all of the JDBC

Building Business Applications with J2EE

21

resources properly, especially during any error conditions, should be implemented
in one place and used throughout the application. This logic is typically encapsulated
in some type of JDBC utility class that is used by the entire data access layer.

Structuring Your Application Using
the MVC Architecture Pattern

The MVC architecture pattern should be used to isolate and modularize screen logic,
control logic, and business logic. A generic MVC implementation provides a flexible
and reusable foundation for the rapid development of Web applications. J2EE compo-
nents naturally fit into this pattern to form the Model 2 architecture where a controller
servlet processes requests and dispatches them to JSP view components. This forms the
basis of the user interaction aspect of the reference architecture. Business logic within
the model portion of MVC is implemented using service-based components and busi-
ness objects within the reference architecture.

Keeping the HTTP Session Size
to a Minimum

A large session size can quickly degrade the scalability and performance of high-
throughput applications. It is recommended that the size of the session be kept fairly
small. Exactly how small depends on the characteristics of your particular application.
Early load testing can be done on key architecture scenarios to verify that target con-
current user levels can be adequately supported with any given approach. In general,
use the session to store a minimal amount of state needed to maintain future opera-
tions. Also remember that data stored in the session is not aware of any simultaneous
updates made to the database by other users, so it usually does not make sense to cache
global data in the session.

Summary

With J2EE as the development platform, you have a portable, scalable framework on
which to build applications. However, the technologies are complex with many poten-
tial pitfalls. There is also still a large amount of coding that must be done in order to
create a robust application. Each component must be able to manage its data accurately
and enforce all of the business rules and constraints. The User Interaction Architecture
must be able to drive the user experience, provide dynamic content, process all form
transactions, and handle any errors gracefully. To do this all quickly and with great
quality, you will use the four guiding principles of design patterns, automation,
metadata, and performance considerations to drive the study of advanced J2EE
development.

These software development principles applied together can be used to form the
foundation of a generic Model 2 architecture implementation. This will be the basis of
the reference architecture that will be used to speed the development of quality busi-
ness applications. Additional services such as error handling will also be added to this

22

J2EE Best Practices: Java Design Patterns, Automation, and Performance

foundation. These principles can be equally applied to application components that are
built on top of the business logic foundation. The use of proven design patterns, the
automation of service components, and the use of metadata to drive business process-
ing are all examples of a robust application design.

The next few chapters look at the composition of each layer of the architecture in
detail, apply these principles to the elements of business applications implemented
using the architecture, and examine the ramifications of the design decisions on the
overall application.

The Business Object
Architecture: Design
Considerations

The Business Object Architecture is the cornerstone of business application develop-
ment. The majority of the business logic of a given application is found in this layer.
Business object components are the building blocks around which business transac-
tions and processes are built. The other portion of the architecture that makes up the
model of the MVC architecture pattern is the Service-Based Architecture. The service-
based components typically only provide a transactional or process wrapper around
these components. The bulk of the work is still done here within the business object
components. This chapter discusses the common elements of business objects and de-
sign considerations for their implementation in a J2EE environment. Business objects
make up the first layer of the reference architecture that will be discussed and imple-
mented. The central debate within this chapter revolves around two things: options for
object persistence to a database and the criteria for using Entity Beans to implement
business objects. These design considerations are crucial to the next two chapters, in
which the Business Object Architecture is implemented.

One of the core aspects of online transactional applications is managing the persis-
tent state of the business entities. It is the responsibility of the business objects to do
this. Typically, business object data is persistent in a database. The responsibility of
object persistence can be delegated either to the EJB container or to a separate layer
of data-access objects, depending on the business object implementation. Access to
read-only data does not necessarily need to go through the business objects (see debate

23

24

J2EE Best Practices: Java Design Patterns, Automation, and Performance

continued below), but all update operations must go through the business objects in
order to ensure data integrity, because that is where the business rules and validations
exist for a particular object.

Now, the topic of accessing the database outside of the business object model could
easily start a lengthy debate between object-oriented purists and those who value
every CPU cycle in terms of performance. The opinion of this author is that it is quite
all right to do so when the database access is for a read-only operation. If any updates
are being made, it is imperative that the business object model be used because this is
where the business rules and validations that maintain data integrity exist. As it turns
out, a common approach is that of the factory, which ends up being somewhat of a
hybrid of the two. It uses the concept of value objects that act primarily as a data struc-
ture. The data-access layer then provides a result set as a collection of the value objects.
Depending on the implementation of business objects in the architecture, this can be
more efficient than always using the business objects themselves. Of course, the most
efficient approach is iterating through a JDBC result set, a table of rows read directly
from the database. When using this approach, the concept of smart instantiation can be
a helpful one if the read-only operation can lead to an update operation. In this case, a
database query is executed, and the result set is iterated without using the business
object model. However, when it is time for an update operation to occur, a business
object is instantiated from the particular row in the result set.

Figure 2.1 shows the high-level components within the Business Object Architecture
and how they fit into the overall architecture. Keep in mind that in some implementa-
tions, the data objects are not required because the EJB container implements them.

O

=555 Servlet
Web Pa
ge Flow, -
Browser Entity Bean/
HTTP Handle Java Class
|i| Request Forms -
Session Business
Qo .
Wireless -— Bean — Ob]“ects
Device RMI Service RMI/
i Components|| 1 ocal ¥ JDBC Database
Jsp Inter- (| Data Access
- Screens face Objects
HTTP and
B2B Web Response| |_Content
Service P
Client
User Service- Business
Interaction Based Object
Architecture Architecture Architecture

Figure 2.1 High-level Business Object Architecture.

The Business Object Architecture: Design Considerations

Business Objects in a Banking Application

This book uses a banking application as an example to illustrate the elements and best
practices of J2EE applications. In order to determine the business objects within this
domain, it is important to first define a business object. A business object itself models a
business entity. A business entity is loosely defined as something that the business
deals with and that has a set of corresponding data and behaviors. Thus, in the bank-
ing application, a business object could represent things such as a customer, a bank ac-
count, or even an individual transaction on the bank account such as a withdrawal. For
the bank application in this book, the business object model consists of four primary
entities:

m Customer

m Address

= Account

= Transaction

The overall business object model is shown in the class diagram in Figure 2.2.

In this object model, the Customer has a single Address that is used for corre-

spondence with the bank. The model may have many Accounts, each of which has a
defined type such as a checking or savings account. A Transaction object is created

Customer Transaction
id:String id:String
firstName:String type:String
lastName:String transactionDate:Date

1 o] customerNumber: int |—— > amount : Decimal
pin:int | description:String
getAddress () :

0..1 setAddress () :
getAccounts () 1
setAccounts () :
Y T !
Address : Account
id:String 1 : id:String
linel:String ! number : String
line2:String | currentBalance:Decimal
city:String !___, lastModifiedDate:Date
state:String 1..M |type:String
zip:String deposit ()
country:String withdraw()

Figure 2.2 Bank’s Business Object Model.

26

J2EE Best Practices: Java Design Patterns, Automation, and Performance

each time a deposit, withdrawal, or other transaction affects a particular account. Such
transactions might also include things such as a bank fee or accumulated interest. Con-
sequently, instances of Transaction are usually created by the Account object.
This relationship was not noted as a pure aggregation relationship in the object model,
however, to show the possibilities for modeling the transaction at a higher level. An
aggregated object is owned by another object and shares a similar lifecycle. The
bank application could be designed such that when a customer transfers funds from
one account to another, it is a single business transaction that affects two different
accounts. In this approach, it would not make sense to have the Account aggregate
the Transact ion because you would have to choose which of the two accounts is the
“owner.” In the sample application, however, each account object logs a transaction for
this event, so it primarily behaves like an aggregated object in the examples.

.m This banking example refers to these objects throughout the study of
the Business Object Architecture. Throughout the remainder of the book, you
will build services and Web pages on top of these business objects in order to
construct a transactional Web site for the bank. This J2EE Web application allows
customers to access their accounts, transfer funds, change their addresses, and
perform a number of other functions. You also build Web pages to allow adminis-
trators of the Web site to perform some basic tasks such as recording transaction
adjustments.

Elements of Business Objects

A study of the structure of overall business applications shows that there are many
common elements, with business objects being at the heart of many applications. In
fact, business objects in general drive many of the characteristics of applications be-
cause they are at the foundation of business functionality. They represent the entities
that a business deals with day in and day out. The common characteristics of business
objects are derived from the concepts of object-oriented development. It is important to
take a brief look again at these characteristics because they form the basis of the dis-
cussion of how to implement business objects in the J2EE architecture. The business
object component structure will be based on these elements.

As defined earlier, a business object itself models a business entity, which has a set
of corresponding data and behaviors. Business objects can represent both high-level
entities, such as the account that encompasses large amounts of data, as well as low-
level entities, such as individual transactions against that account. This is enabled by
the fact that business objects can encompass, or aggregate, other business objects. As
another example, a Contract business object could aggregate many LineItem
business objects. At each level of the hierarchy, you can view the objects as potentially
reusable business objects that encapsulate the management of that entity’s data and
business rules.

Consequently, business objects must be able to handle the following basic constructs:

m Behaviors, or business methods

= Properties

The Business Object Architecture: Design Considerations

27

m Business rules and data validations

m Relationships with other business objects (aggregation, association, and
specialization)

Properties

Every business object has data that it must manage. In the case of a Customer busi-
ness object, these properties include the customer’s first name and last name. To man-
age the state of these properties, business objects have methods to set and get the value
of each property. Thus, the Customer object has a setFirstName method and a
getFirstName method. The state of a business object is made up of the values of all
of its properties.

The state of a business object often persists in a relational database. The business
object needs to be able somehow to map its data to the schema of the relational data-
base being used. Each property usually maps to a database column in a given table.
The simple approach to take (dare I say, keep it simple . . .) is to have the entire set of
properties map to the same database table. There are, however, many more complex
options to object-relational mapping that can be used as well. These options include
mapping a single class to multiple tables as well as mapping inheritance hierarchies to
the same table. Object-relational mapping and other persistence design considerations
are discussed in detail later in this chapter.

Business Methods

Most business objects have a set of operations, or methods, that implement functional-
ity related to the object. Business methods often change the state of the business object
and invoke functionality on other business objects. These changes of state and method
invocations on other objects typically become part of a unit-of-work and thus should
be included as a part of an overall transaction declared by the application.

Business methods contain the business logic that is associated with the given
business entity. For the Account object, the methods include operations such as
withdraw and deposit. Other methods may not be exposed to the client and may
be used only internally, for example, a validate method that gets called when the
object’s data is about to be set to persist in a database.

Business Rules and Validation Logic

Business objects must enforce the data integrity of the entity they represent. All update
operations must go through the business objects for this reason. This includes many
levels of validation. The property values must all be validated. For example, the state
field in an Address component must be a valid state in the United States. This is
referred to as field-level validation. Other types of validation occur at the level of the
entire business object, going across the different properties of the object. Validations
also often go across aggregated objects of a given business component; this type is
discussed next.

28

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Relationships with Other
Business Objects

Many business objects relate to other business objects in a number of ways. There are
three primary categories of relationships: aggregation, association, and specialization.

Aggregation

A business object can contain, or aggregate, another business object. From the earlier
discussion of the bank object, the Customer component contains an Address
component. The Account component contains zero to many Transaction objects.
Aggregation can be either a one-to-one (1:1) or a one-to-many (1:M) relationship. In
object terms, the aggregated object is stored as a member variable or, in the case of a
one-to-many, as a collection of instances. A business object client usually can access
data or methods of the aggregated component through the parent, or containing, com-
ponent. In this example, the Customer component may have a changeAddress
method rather than the client having to get hold of the Address object and call an
individual method on it in order to change the address. In many cases, the design calls
for encapsulation of this type of functionality. You may not want the business object
client to be required to have knowledge of the Customer underlying object model.
Consequently, you may not want to expose the Address component to the client, so
you'll need to provide a wrapper function on the primary entity. This type of decision
is often determined by whether the business entity being encapsulated is meaningful
when it stands on its own or whether it really makes sense only as a part of the parent
business object.

Aggregated business objects typically share a common lifecycle. For instance, when
an object that aggregates other objects is deleted, the aggregated object may also be
removed in the same manner. In this example, if an instance of the Cust omer compo-
nent was deleted from the database, you would also want to delete the aggregated
Address instance. Otherwise, you would leave an Address instance in the database
that belongs to a nonexistent customer leading to data integrity problems.

13RI V.Y [9 The delete operation of a business object should also
encapsulate the deletion of any aggregated objects in order to ensure data

integrity.

.]m] Many business applications do not physically delete records from the
database in order to keep a history of transactions and entities. Instead, they
“inactivate” records through an end date or some other indicator on the record.
The same concept applies for this kind of a delete operation. If you inactivate the
parent business object, you also want to inactivate the child object that was
aggregated.

Likewise, some aggregated objects may not be created until the parent is created.
This object creation may happen either immediately after the parent has been created
or at some point in the future based on a particular behavior. Aggregated objects that

The Business Object Architecture: Design Considerations

29

share the same lifecycle boundaries as their parent are often referred to as dependent
objects. In the customer example, the corresponding Address object should be
created at the same time as the customer if the business requirement dictates that all
customers must have an address on file. In this case, the customer create operation
should also create the address object for that customer.

The create operation of a business object should also
encapsulate the creation of any required aggregated objects such as a Customer
and the corresponding Address. Other aggregated objects are created later in
the parent lifecycle by corresponding business methods, such as the aggregated
Transaction object that is created by the deposit method on an Account
object.

Association

Business objects often refer to other business objects that are not aggregated compo-
nents. They may invoke business methods on other objects or create instances of other
business objects that have a different object lifecycle. In these cases, the objects are said
to be associated. An example of an association relationship might be between the
Account and an InterestRate object that models a rate of return for a bank
account. The account uses the interest rate object to calculate monthly interest; how-
ever, there is no aggregation relationship between the two objects.

Specialization

Business objects may specialize or, in object terms, inherit from other business objects.
Specialized business objects share the data and behaviors of the inherited business
object, although they may override these behaviors and add additional behaviors and
properties. One example of this might be the Account object. There are different types
of accounts, such as a checking account and a savings account. Instead of making the
account type a property of Account, it could be modeled as the specialized business
objects CheckingAccount and SavingsAccount. These subclasses, or special-
ized classes, could add additional properties that are specific to the account type as
well as additional behaviors that do not exist for a normal account. In other cases, the
Account may have defined methods that are overridden by the specific account
classes because they implement them differently.

Design Considerations

Because the Business Object Architecture is such an integral part of the application
architecture, it must be modeled carefully. There are a number of issues to look at in
creating the implementation model for business objects. First, look at the issue of busi-
ness objects maintaining their own state. In most object-oriented viewpoints, it is a
given that business objects are stateful, that is, they maintain their instance data across
multiple method invocations. However, the concept is worth briefly discussing in

30

J2EE Best Practices: Java Design Patterns, Automation, and Performance

order to look at the ramifications of this on the EJB container. Then, look at how to
implement your business objects in the J2EE environment. The primary options are as
follows:

m Regular Java classes
= Entity Beans

m Stateful Session Beans

.:m] This book will refer to the use of regular Java classes to implement busi-
ness objects as Java business objects as a shorthand notation throughout the
remainder of the chapters. This is not a new concept, but rather simply refers to
concrete Java classes that store their state as member variables and contain the
business logic related to a particular business entity. These classes are not EJB
components and cannot use standard enterprise bean services in and of them-
selves. However, they can still realize some of the benefits, such as partaking in
container-managed transactions, if wrapped by an EJB component.

Stateful versus Stateless
Business Objects

Two different approaches to business application development have been used in the
past, each with a unique set of advantages and disadvantages.

Stateful. The object maintains its instance data across business logic method
invocations.

Stateless. The object requires that the instance data be passed in as an argument
to business logic methods. No state is maintained within the object itself.

The more object-oriented approach of the two is the concept of stateful business
objects that encapsulate both the application data and its particular business logic. All
of the object’s properties are stored as members of the object, and a given instance of
the object represents a particular instance of a business entity. This is the general
approach taken with Entity EJB. In fact, any time the state of the business object is
changed, it persists in the database as part of an overall transaction. This allows a purer
view of the object-oriented world, in which application service components and busi-
ness methods can modify the state of business objects without being concerned about
the persistence of that state. It is automatically taken care of by the Business Object
Architecture.

A ramification of the stateful approach is that only one client can use an instance of
the business object at a particular time. You cannot multithread operations of a stateful
business object, because the member variables can hold the data for only one instance
at a time. Partially for this reason, Entity Beans are pooled in an application server and
given out to clients as they are requested. However, for each client, the application
server must load the state of the object into its member variables before it is safe for the
client to use it. Another part of the reason an EJB container pools instances is because
Entity Beans are fairly heavyweight components that have a high cost of instantiation.

The Business Object Architecture: Design Considerations

31

A straight Java object implementation of stateful business objects would not necessarily
need to pool instances because of a lower cost of instantiation, and thus they might not
need to be shared among clients. Nonetheless, a straight Java business object approach
requires the instantiation of different instances for each client because the multi-
threaded limitation still holds true.

This leads to one of the primary advantages of the stateless approach. In general,
stateless services usually compare quite favorably to stateful services in terms of
scalability and performance. You will see in the discussion of the Service-Based Archi-
tecture that stateless services are favored over stateful services partially for this reason.
A stateless business object does not need multiple instances to handle multiple clients
because it does notstore the state of a business object in its member variables. This allows
stateless business objects to be multithreaded and saves time on object instantiation and
garbage collection, one of the keys to increasing the performance of Java applications.

A stateless business object has the state of a given instance passed into the business
methods, usually with a value object that acts as a data structure for the object. It is
easy to see why stateful business objects represent the true object-oriented view of the
world. Stateless business objects are really like process-oriented objects that deal with
a particular entity and the business methods related to it. Business methods of a state-
less business object take in the data object, or value object, manipulate the properties
on the value object, and perform the business logic. They can then have the data per-
sist in the database typically by passing the modified value object to a data-access
object. Some developers find this model works quite well, although it does violate ob-
ject-oriented theory a bit in terms of encapsulating the data and behaviors of an object
in order to accomplish the goal. This technique can be used when performance consid-
erations are taken to the extreme in order to avoid extra object instantiations. However,
it is not used as a regular practice.

Object Lifecycle

The fact that an instance of a stateful business object can be used by only one client at
a time drives the concept of object lifecycle. An instance of an object is instantiated at
some point, initially not containing the state of any given business entity instance. To
be used by a client, the object is first given the state of a particular business object
instance. These first two steps may or may not happen at the same time. After being
used by a client, the business object will at some point either be marked for garbage
collection or put back into an object pool to be reused by another client who repeats the
process of setting the state and invoking business methods. The Enterprise JavaBeans
model handles this lifecycle for you. It manages the creation and instantiation of
objects, the pooling of component instances, and the pooling process of handing them
out to business object clients with the state of the requested object. This functionality is
handled through the EJB Home interface, which also provides APIs to create and
remove instances of particular business objects.

Choosing between the Two

So which approach is better? Stateful business objects are widely used in the industry.
In fact, the folks who wrote the Enterprise JavaBeans specification felt that stateful

32

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Table 2.1 Stateful versus Stateful Business Objects

STATEFUL STATELESS

Pure object-oriented view; Enables Business objects are more process-

encapsulation of data and behaviors oriented; no encapsulation of data and
behaviors

Higher performance cost Multithreaded efficient implementation;
increased performance

Requires object lifecycle Simplified object lifecycle

management

business objects made sense in the case of Entity Beans. They are inherently stateful,
and this fact allows the container to easily provide the service of Container-Managed
Persistence. It maps the member variables to columns in a database through the de-
ployment step. The fact that stateful business objects require object lifecycle manage-
ment was also handled by the Enterprise JavaBeans specification. The EJB container
manages the lifecycle of a component, and the client interaction with this lifecycle is
handled through the EJB Home interface.

Table 2.1 describes the pros and cons of both business object approaches.

Either approach can and has been used with great success. However, the use of
stateful business objects is much more prevalent in the industry due to its adherence to
object-oriented theory, primarily the encapsulation of both the data and the behaviors
of an entity within an object. These issues are very closely tied in to the implementation
model that is used for business objects, which is the next design consideration.

.:Im Stateful business objects are the approach used throughout the remain-
der of this book. They adhere to the object-oriented theory of encapsulation and
are a predominantly used approach. The Entity Bean model fully supports this
paradigm, and it can also be easily implemented using regular Java classes.

Implementation Model: Entity Bean,
Session Bean, or Java Object

The J2EE architecture provides a number of options for implementing business objects.
As in standard Java development, you can always build your business objects as regu-
lar Java objects, but in the J2EE architecture, there are also two types of enterprise
beans that can be used. The advantage of using an EJB is that a number of additional
component services are provided, as well as a standard deployment model if the busi-
ness object is to be reused across applications or organizations.

Entity Beans are components designed to represent shared instances of persistent
data entities within an application. An instance of an Entity Bean typically represents
a row in a database, but it is not necessarily limited to this definition. Session Beans
are modeled more like process-oriented objects, particularly stateless Session Beans,
although stateful Session Beans are a possibility for business object implementation.

The Business Object Architecture: Design Considerations

33

Because Session Beans, similar to Entity Beans, provide many component services,
they are fairly heavyweight objects and usually have a high instantiation cost within
the container. A stateful Session Bean must be instantiated for each client that re-
quires the use of the business object, as opposed to Entity Bean instances, which can be
pooled by the container and handed out for the use of each client. For this reason,
Entity Beans are around a third faster on some application servers than their stateful
Session Bean counterparts when used as stateful business objects. Consequently, this
book will consider only Entity Beans and Java objects as the primary alternatives from
this point.

Two primary concepts of the business component implementation decision are the
persistence model and the transaction model. Take a detailed look at each for the
different options.

Object Persistence

Business objects implemented as regular Java classes do not have any built-in frame-
work to manage object persistence. An application framework that automates much of
the JDBC processing and ties in to the business object model can make this less of an
issue. While the construction of basic JDBC frameworks can be done fairly quickly, the
creation of highly optimized JDBC frameworks is not a trivial task. Persistence frame-
works that can be used by either BMP Entity Beans or Java business objects are dis-
cussed later in this chapter.

Entity Bean Persistence

One of the primary component services provided with Entity Beans is Container-
Managed Persistence (CMP). In this option, the container uses a deployment configu-
ration to map a set of beans to their respective database tables in order to automatically
manage the selects, inserts, updates, and deletes to the database. The EJB 2.0 persis-
tence model, unlike EJB 1.1, uses an abstract persistence schema.

.m The abstract persistence schema used by EJB 2.0 refers to the fact that a
bean developer implements only abstract getter and setter methods for both CMP
and CMR (container-managed relationships) fields. The container, upon deploy-
ment, generates a subclass that implements these abstract methods for all of the
properties of the bean. This is vastly different from the EJB 1.1 model, which
required public member variables. The EJB 2.0 model allows the container to
optimize much of the database access because it has greater control over when
to load data and more information about what data was modified. These control
points are provided through the implementation of the abstract getter and setter
methods. For example, the container can choose either to aggressively load a col-
lection of beans or to wait until a getter method is invoked to load the state of an
individual bean. It can also update only those properties of the bean that were
modified in a given transaction because it can take note of this during the setter
methods.

34

J2EE Best Practices: Java Design Patterns, Automation, and Performance

EJB 2.0 CMP Entity Beans provide the following persistence services:

m Persistence of each Entity Bean’s properties to a single database table (CMP
fields).

m Container-managed relationships between related Entity Beans (CMR fields).

m Database queries to return individual components or collections of them. This
is done both through the use of finder methods on the EJB Home interfaces as
well as ejbSelect methods within an Entity Bean class.

It is important to note that the EJB specification provides explicit support only for a
one-to-one bean to table mapping. It does not specify a standard mechanism for map-
ping properties of a single Entity Bean to multiple database tables. In terms of more
complicated object-relational mapping with Entity Beans, J2EE container vendors and
object-relational mapping tools vendors compete to provide more flexible persistence
engines built into the Entity Bean component mechanism as a value-added service
within their products.

Entity Beans can also manage their own persistence using the Bean-Managed
Persistence (BMP) option. In this option, the developer uses the EJB hook methods
(ejbStore, ejbLoad, ejbCreate, ejbRemove) as placeholders to implement
persistence on its own. The object lifecycle is still managed by the container because
these hooks are called as determined by the container at various points within a
transaction.

Because Entity Beans are fairly heavyweight components, you might not want to
use a large number of them in a given transaction. The EJB 2.0 specification attempts to
address this by providing local interfaces to access related components in the same
JVM (Java Virtual Machine) without the overhead of RMI. For the purposes of this dis-
cussion, you will see that local interfaces do provide a slightly more efficient way to
use colocated Entity Beans as helper classes that can be used solely for the persistence
of data aggregated within a more complex business object.

.m An EJB 2.0 component can have a local interface, a remote interface, or
both. Because the interface to an Entity Bean can now be either local or remote,
these are referred to as component interfaces in the specification. Thus, this term
is used when no distinction is required between the two.

In EJB 1.1, every component was assumed to be location independent. This means
that the component could be colocated in the same JVM or it could reside on a remote
server. Thus, every remote call to the Entity Bean was required to go through RMI,
which adds a layer of overhead. All method invocations were pass-by-value requiring
the arguments to be copied, serialized, and sent through the RMI protocol. Well, in
order to efficiently model the concept discussed earlier of aggregated business
objects, you would naturally want to colocate them in the same container instance so
that the method calls between the two aggregated business objects did not actually
have to go over a network. However, the method invocations were still required to go
through RMI because of the location independence feature. Local interfaces in E]JB 2.0

The Business Object Architecture: Design Considerations

35

provide a mechanism through which a component can invoke another EJB that does
not go through RMI through its local interface. This is essentially equivalent to a
normal method call. However there is still an interface class implementation (the
component interface), generated by the container, that intercepts and proxies the
method invocation. The local component must be resident in the same JVM, and
the arguments are now passed by reference. This changes the programming paradigm
a bit because developers must be aware that objects passed as arguments to EJB
through the local interface can be modified. However, you can now avoid the RMI
overhead on these method calls, allowing yourself to build more fine-grained compo-
nents such as aggregated or dependent objects. Thus, local interfaces should be used
wherever possible.

Comparing Container-Managed
and Bean-Managed Persistence

Following is a comparison between the CMP and BMP approaches. Using CMP actu-
ally has a number of distinct advantages over the BMP approach. The first one is sim-
ple; it is one less component service that you are responsible for developing. If you
consider things such as database optimizations, object relationships, and concurrency
issues, this is a major benefit to application developers. The second reason is that the
EJB 2.0 specification’s abstract persistence schema has provided containers with the
ability to optimize much of the bean’s database access. Although the two options
might be relatively equal with regards to individual database calls, a CMP Entity Bean
usually outperforms a BMP Entity Bean within a transactional application context. An
individual database interaction with either a CMP or BMP Entity Bean, or a regular
Java class for that matter, exhibits similar characteristics on its own because all of the
options execute generally the same JDBC operations. The only noteworthy difference
to this may come with containers that use native calls underneath the hood rather than
JDBC calls. For the most part, however, this has not taken place in the application
server market as products strive to be 100% Java. It is, in fact, the behavior of the com-
ponent implementation model within a transactional application where you see the
differences emerge. For example, consider a finder method invoked on a BMP Entity
Bean’s Home interface. The finder method itself causes a database lookup to get the
primary key. Once a business method is invoked on the component interface, the con-
tainer calls the ejbLoad method to load the state of the instance from the database
prior to the bean’s business method being executed. Thus, the simple operation of
locating an instance of a business object required two database interactions as opposed
to one. It should be noted that CMP Entity Beans have the potential to exhibit the same
behavior if run in a container that does not optimize database access. However, newer
versions of EJB containers are providing much more robust persistence engines, and
the amount of optimization being done has greatly increased. EJB containers are now
also providing much more control over these types of operations in the deployment
configuration so that the application deployer can tune the behavior of Entity Beans.
This can make a significant difference in terms of performance, particularly when
defined data-access patterns exist.

For all of these reasons, there are few compelling reasons to use BMP Entity Beans as
a persistence approach. You get the additional overhead of Entity Beans without

36

J2EE Best Practices: Java Design Patterns, Automation, and Performance

deriving many of the benefits. CMP Entity Beans can provide better performance if
deployed correctly. As you will see, however, the transaction model and general com-
ponent overhead can also greatly affect the overall performance of your applications.
In particular, the Entity Bean model has the potential to increase the amount of data-
base interaction and disk I/O under a heavy user load, which of course decreases the
overall performance and then becomes a factor in the overall decision. One situation
in which this can happen is when there are enough concurrent transactions with
EJB clients that the entire pool of Entity Bean instances is being used at once. In these
cases, the container is often forced to activate and passivate bean instances in order to
balance the load and meet the throughput demands being placed on it. Each of these
operations adds additional I/O, which can slow down the application. This topic is
discussed in detail in the chapter on performance.

Another such example of the component implementation model increasing the
number of database interactions is that of finder methods in Entity Beans. A finder
method declared on a Home interface can return a collection of Entity Bean component
interfaces if the associated database query can return more than one instance. The
client can then iterate through the collection of component interfaces invoking meth-
ods on each one. Similar to the BMP/CMP comparison scenario, if you say the number
of objects found with the query is n, then the number of database interactions used by
the Entity Bean model to call the finder and iterate through the collection can actually
be (n + 1).If the container is using a lazy-loading approach, this is the number of
actual database calls that would be made, which would be horribly inefficient. This
results from the following steps that take place:

1. The finder method is called to run the initial query. This returns a list of primary
keys to the container that translates into component interfaces.

2. As the collection returned from the finder method is iterated, each method
invocation on the Entity Beans can result in another database query (ejbLoad)
if the state of the instance has not already been loaded into the Entity Bean
component. This occurs if either BMP or a lazy-loading CMP implementation
is used.

In many early application server implementations, this inefficient behavior was the
result. Some application servers now allow some control over this behavior by giving
the container a hint to use an aggressive-loading approach. This would populate the
Entity Beans on the initial finder method query. This provides a much more efficient
database interaction, one that you would expect from a high-performance transac-
tional application. However, this approach is also not without its potential problems.
Because Entity Beans are fairly heavyweight components, you can have a large num-
ber of instances that are used for a particular query. If more than a few users are hitting
this particular data retrieval operation at the same time, you could quickly reach the
limit on the pool size for your particular Entity Bean. Once this happens, a pending
client request could cause some of the beans that were just retrieved to passivate. This
causes another level of overhead to be applied to the application when the client iter-
ates through the list, although managing a pool of shared component instances is one
of the EJB container’s specialties, so this may be less of an issue.

The Business Object Architecture: Design Considerations

37

Do not use Entity Bean finder methods to iterate through a
result set of business objects unless you can enforce either a read-only caching
strategy or an aggressive-loading approach by the container. For a result set of
n objects using lazy loading, this can actually cause (n + 1) database interac-
tions. Use a JDBC wrapper component to run the database query and either hold
the result set for iteration or return a set of value objects. This limits the operation
to one database interaction.

For read-only operations, the client can also easily iterate through the data using a
JDBC wrapper component. If transactional update operations are required, a business
object can be instantiated from a given row in the result set. This JDBC wrapper can
become a generic, smart-instantiation list service that is a part of the Business Logic
Foundation. This concept is discussed in full in the next section on building the
Business Object Architecture.

Object-Relational Mapping

There are many different approaches to object-relational mapping, which defines how
an object’s properties map to database tables and columns. As discussed earlier, CMP
Entity Beans are limited to persistence to one table. Any object-relational mapping
scheme more complicated than a one-to-one table-object mapping is not currently sup-
ported specifically by the EJB specification. To implement a more complex approach,
you are required to use either Bean-Managed Persistence, vendor-specific persistence
mechanisms, or your own Java business objects and JDBC. You have already seen that
there are potential performance issues with BMP Entity Beans, so this is not an ideal
approach. The one nice thing about using vendor-specific mechanisms here is that it
largely does not affect the portability of your code. The mapping between object prop-
erties and database columns is done in the deployment step and container-managed
relationships abstract the database specifics of foreign key relationships. Thus, your
bean’s code can operate without specific knowledge of the persistence strategy or data-
base schema. There are a number of object-relational mapping tools that integrate both
into EJB and Java components to cause persistence of the business object data in a data-
base. All of these tools, of course, add some overhead to the processing but provide
additional flexibility in terms of abstracting the object model from the data model.

It is sometimes best to start with the simple approach and see if that works to some
degree of satisfaction. The one-to-one table-object mapping is straightforward and pro-
vides a decent level of performance compared to some of the more complicated
schemes available. The trade-off comes in terms of the object-oriented design. Assume
that for data architecture reasons, the data for a Customer component is actually
stored in four different database tables. Conceptually speaking, a customer is a single
business entity, and thus you would like to represent it with a single business object.
With the one-to-one table mapping, this presents a bit of a problem.

Short of using an object-relational mapping tool, there are some things that you can
do to alleviate this type of problem. The primary tool is that of encapsulation. If you
use a lightweight business object implementation, you can define “business objects”

38

J2EE Best Practices: Java Design Patterns, Automation, and Performance

for each table, although some will be used only for database purposes. These could be
called “helper” objects because they really are used only for persistence. The business
logic, in this case, is contained within the “super” business objects that aggregate the
helper objects. In the banking example, you create a Customer business object and
three helper classes, which although technically are business objects in this particular
implementation, will be used only by the primary Cust omer object for the persistence
of the additional data to those tables. All of the actual business logic associated with
the customer entity resides in the primary Customer object. From the perspective of
a business object client, it looks as if there is a single business object that deals with the
customer, and that is all it needs to know about. The rest of the database logic is
encapsulated within the Cust omer component. This approach is particularly appeal-
ing if you already have code-generation capabilities for business objects based on the
data model. You can then generate all of the business objects to deal with persistence
and then code business logic in your primary entities.

This approach does have the disadvantage of moving the knowledge of your data
model into the business object layer. However, this is the trade-off for simplicity and,
in many cases, performance. It might not bring a smile to the face of an object purist,
but it is a very commonly used approach. The other model to use is encapsulating this
knowledge in the data-access layer. Thus, you would have only one Cust omer busi-
ness object and a single data-access object whose data is persistent. Once inside the
data access object, the data fields are moved to the appropriate database tables. This
removes any knowledge of the data model from the business object, although it is dif-
ficult to generate this type of data object through standard code generation. In order to
go to this level, you would either need to hand-code these data objects or use an object-
relational mapping tool.

Transaction Model

The transaction model used by the different implementations is important to under-
stand. If not used correctly, it can greatly affect the overall performance of the compo-
nents in an application.

.m This section uses the term transaction model to cover not only the transac-
tion management service itself (that is, begin transaction, commit/rollback), but
also how the component behaves throughout the life of a transaction (that is, how
and when it is read from the database, stored back to the database, and so on).

Entity Bean Transaction Model

First, take a look at the model used by Entity Beans. Bean developers can either man-
age the transaction demarcation themselves using bean-managed transactions, or they
can use the container’s transaction management service. This second option, called
container-managed transactions, relies on the transactional nature of Entity Bean meth-
ods to be declared in the deployment process. There are a couple different transaction
settings for a method, REQUIRES, REQUIRES_NEW, and SUPPORTS being the pri-
mary ones. If a method is declared to require a transaction, the container automatically

The Business Object Architecture: Design Considerations

39

starts one if the method call is not already part of an overall transaction. Any container-
managed operations or Bean-Managed Persistence code sharing the same JDBC
data source can participate in the database transaction. The transaction is committed
after the highest level method that started the transaction completes, unless any one
of the components participating in the transaction invokes the EJBContext.
setRollbackOnly () method.

Once in a transaction, a client usually makes a request to obtain a particular instance
of an object. An Entity Bean client uses a finder method to locate an instance by the pri-
mary key or some other defined finder method on the Home interface. This requires a
database lookup unless the container has previously cached the primary keys in mem-
ory. The container then grabs a free instance of the component from the pool and loads
the state from the database through an invocation of the e jbLoad method. This must
be done before any component-method invocations are processed by the container.
Although instances of Entity Beans can be cached by the container, it is important to
note that the container must still load the state at the beginning of every transaction in
a clustered environment. Why? Because although the container knows that the state
has not changed in this application server instance, it may have changed on any of the
other server instances in the cluster. Thus, to be safe, it always loads the state from the
database before a client can use the object. Thus, there is very little benefit to be gained
from caching with regards to Entity Beans. In addition to this, each remote method
invocation must go through RMI and serialize all of the arguments in order to make
the method call. Thus, it is recommended that in most cases, Entity Beans be exposed
through their local interface and fronted with a Session Bean component. This concept
is discussed in detail in the Service-Based Architecture chapter. If the Entity Beans do,
in fact, require remote access, they should be designed to be coarse-grained so that it is
not necessary to make a large number of remote method calls to the component.

With regards to the timing of the persistence methods, it is partly up to the discre-
tion of the container when the ejbLoad and ejbStore methods are invoked, as
long as transactional integrity is maintained. However, the normal case and mini-
mum requirement is to invoke ejbLoad at the beginning of every transaction and
ejbStore at the end of every committed transaction, although these methods have
the potential to be invoked more frequently. Once an Entity Bean is loaded for a client
in a transaction, the state of the object may be modified, and it is basically used as a
cache until that transaction completes. No other client can use that particular instance
unless the state is passivated so that it can be restored to complete the transaction.
This can happen under periods of heavy transaction volume if all of the beans in a
given EJB pool are being used. When an Entity Bean is passivated, the state of the
bean is temporarily saved either to disk or to the database in order to ensure transac-
tional integrity and failover. This is something to look out for when sizing the Entity
Bean pools in the container, because the additional I/O can start to really affect the
overall application performance under heavy user loads.

As EJB container implementations mature, developers are starting to see more
optimized database reads and writes within the CMP engine implementations. This
includes optimizing the e jbSt ore logic so that only modified fields are updated to the
database, or else no update at all takes place in the case where no properties have been
modified. Many vendors also offer some level of control over the read and write strate-
gies the container uses regarding its ejbLoad and ejbStore behavior. These

40

J2EE Best Practices: Java Design Patterns, Automation, and Performance

@

Finder Method

Home ejpFind<Method>

Interface

A Y

. Entity Bean
Client Instance

3 A

Remote ‘@ ejbLoad
Interface

Business Method @ Business Method Invocation
Invocation @ ejbStore

Executed in EJB
Transactional Context

Figure 2.3 Entity Bean Transaction Model: Example of Single Client, Single
Transactional Method.

strategies can be adjusted for particular access patterns such as read-only, read-mostly,
and updatable entities. However, the majority of business objects in transactional ap-
plications fall into the last category, and thus exhibit the same behavior previously
described, in which at least one call to ejbLoad and ejbStore is required at the
beginning and end of every transaction. This minimum pattern of database access is, of
course, what you would expect from a transactional application and is the same for
objects implemented as regular Java classes.

Figure 2.3 illustrates the behavior of this Entity Bean transaction model for a single
client invoking a transactional business method. This diagram represents a simple
case. Remember that the Entity Bean could also be a part of a larger transaction already
started by a Session Bean or another Entity Bean.

In its optimized form, the Entity Bean transaction model is comparable to the Java
business object equivalent in which state is loaded at the beginning of the transaction
(ejbLoad) and saved at the end (e jbStore). In nonoptimized or extreme conditions
in a clustered environment, Entity Beans can be very database and disk intensive be-
cause of the need to manage the free pool and activate and passivate instances in a
transactional manner. Other points to consider are that Entity Beans are still fairly
heavyweight components and that local interfaces should be used wherever possible
to avoid RMI overhead.

If you can model your Entity Beans as coarse-grained components, these issues
become less of a consideration, but this has been very difficult to do in practice, espe-
cially because Entity Beans using Container-Managed Persistence have a one-to-one
object-relational mapping limitation. Most business object interaction also requires
multiple method calls. Using only one method invocation takes away many of the

The Business Object Architecture: Design Considerations

411

advantages of having a stateful business object. EJB 2.0 has addressed many of these
issues with local interfaces, although you still must rely on vendor-specific services or
third-party object-relational mapping tools to fully address the persistence issues. The
next sections compare the Entity Bean transaction model against that of regular Java
business objects.

Java Business Object Transaction Model

The transaction model using regular Java classes as business objects depends on the
particular implementation. It does not include declarative transactions on the business
object itself, although they can participate in existing EJB transactions, particularly
those started by a Session Bean. In general, the Java business object approach uses a
similar approach to dealing with business objects within transactions with two notice-
able differences:

m Instances of Java business objects are not usually pooled; typically, Java objects
are instantiated for a particular client from the database to represent an instance
of the business entity. Thus, the trade-off is cost of object instantiation versus
cost of activation/passivation under heavy user loads.

= Java business objects require participation in a Session Bean transaction,
whether it is a container-managed transaction or a bean-managed transaction.
In either case, it is recommended to wrap business objects with a Session Bean
layer, so there is not much of a trade-off on this point.

Business object persistence within a transaction follows the same pattern under nor-
mal circumstances in either option. A business object is either instantiated or grabbed
from the pool, and the state of that particular instance is loaded from the database.
Methods are invoked on the business objects, and the state is modified. This can hap-
pen for a number of business objects in memory at a time within a transaction. Either
at different points along the way or when all of the work is completed, each business
object can save its data to the database. As long as the data-access objects or Entity
Beans being used share the same data source provided by the application server, the
business objects can participate in the same overall transaction. This works for either
a container-managed transaction declared by a Session Bean or for a user-managed
transaction that is executed specifically in the code. The pattern of using Session Beans
to declare transactions and wrap the business objects in a service is explored in detail
in the chapter on Service-Based Architecture.

One nice benefit provided by the Entity Bean model is that it has a built-in mecha-
nism to handle transaction concurrency. There are different transaction isolation
settings that can be used to prevent multiple users from updating the same instance of
the same business object at the same time. The strictest setting for Entity Beans,
TRANSACTION_SERIALIZABLE, allows only one client at a time to execute a method
on a given instance as defined uniquely by the Entity Bean’s primary key. Note that,
however, this is also the most expensive setting and that a looser setting is more com-
monly used for better performance. A Java business object implementation is required
to implement its own mechanism for transaction concurrency, commonly known as
locking. This topic is discussed in detail in the next design consideration about
handling transaction concurrency.

42

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Overall Comparison of Entity Beans
versus Java Business Objects

So what is the best implementation model to use for business objects? Well, this
depends on your particular situation. You have seen that the performance of the Entity
Bean model is greatly improved in E]JB 2.0, although it still presents potential issues
with regard to its behavior under heavy user loads. It is a more heavyweight imple-
mentation model when compared to the Java equivalent, although the container pools
the Entity Bean instances. Again, the issue is how the container is managing the free
pool given the nature of the application and the access patterns it is using. As in most
cases, it is best to do a proof-of-concept in the early stages of developing your architec-
ture by performing some basic load tests. This gives you some general benchmarks to
consider with regards to meeting your performance requirements. This process is dis-
cussed in detail in the Performance chapter. With regard to the straight Java option,
keep in mind that there are a number of infrastructure services, such as persistence and
transaction concurrency, that you must either build on your own or for which you
must use third-party frameworks. Transaction management itself is not really an issue
because Java business objects can participate in a transaction declared by a Session
Bean service component, but an optimized JDBC framework presents a much bigger
challenge. There are a number of JDBC persistence frameworks available including
Webgain’s TopLink, Thought Inc.’s CocoBase, and the open-source Castor project that
will be used in some of the examples in chapter 4. If you have these key services pro-
vided in a Java foundation layer and there are strict performance requirements for
your application, consider the prospect of using Java business objects. However, Entity
Beans can also be an effective solution if you do not have the resources to build these
other services and you can mitigate the performance risks. How do you do this? Well,
with the emergence of the EJB 2.0 specification and more robust CMP engine imple-
mentations from the application server vendors, the J2EE community is seeing higher
levels of optimization, more controls over the persistence strategy, and an increased
ability to effectively model fine-grained components. Mitigating performance risks
with Entity Beans used to be an extremely difficult task under the EJB 1.1 specification,
although it is now starting to get a bit easier.

Thus, the two keys points to look at when considering Entity Beans and Java busi-
ness objects are:

1. Application performance requirements.

2. Ability to develop a Business Logic Foundation layer (or have access to an
existing one) to provide key component services.

When you look at point number two, you may ask yourself, “Why would I want to
develop or use a separate framework when I have the EJB container to provide many
of these services for me?” Well, it really comes down to the first item, performance, and
the maturity of the Entity Bean implementation you are using. EJB 2.0 goes a long way
toward addressing these key points. However, it still does not include the lightweight
persistence option that many people are looking for. The EJB specification group ini-
tially looked at the idea of dependent objects with a different implementation model,
one that was more lightweight, similar to the search for a more lightweight persistence

The Business Object Architecture: Design Considerations

43

option. However, in the end, the approach was simply too awkward, and the group
settled on the local interface approach. The Java Data Objects (JDO) specification is also
out there being addressed separately, outside of the J2EE specification for now, and
may provide an eventual solution for this problem. However, within the J2EE specifi-
cation, the EJB 2.0 abstract persistence schema approach has provided vendors with
the ability to create highly optimized containers, so the focus now changes to execu-
tion. It is your responsibility as a solution provider to put these containers to the test in
your own application environments to see if they meet the challenge.

The major new change introduced in EJB 2.0 was the concept of local interfaces,
which explicitly allow you to avoid the overhead of RMI for colocated beans.

.Im] For the most part, Entity Beans will likely have either a local interface or
a remote interface because of the difference in programming paradigm (pass-by-
value versus pass-by-reference) and the nature of remotely distributed compo-
nents versus dependent, or aggregated, components.

Although the local interface approach is good, many EJB container vendors have
already solved part of the problem of inefficient remote method invocations. Many
pre-EJB 2.0 containers, either implicitly under the covers or explicitly through deploy-
ment steps, can optimize RMI calls when E]Bs are located in the same JVM. With EJB
2.0, you have a standardized method of controlling this behavior. One thing to note is
that a JNDI (Java Naming and Directing Interface) lookup is still required to locate a
local Entity Bean. This adds some overhead, but can be mitigated through caching of
the Home interface. This topic is discussed in detail in the Performance chapter.

The whole discussion of local and remote Entity Beans also begs the question Why
would I want to expose the business object (in this case, an Entity Bean) remotely any-
way? The architecture described in this book includes a Service-Based Architecture
layer in front of the business objects that addresses this issue. However, even for archi-
tectures without this formal layer, you can always put the Entity Bean behind a state-
less Session Bean component in order to distribute the functionality and manage the
transaction.

Look to the additional performance gains that are being realized through the fact
that J2EE vendors are focused on providing more robust CMP engines to ensure that
the Entity Bean implementation model is a success. A well-optimized CMP engine
implementation can make a big difference in the overall performance of an application.
J2EE application server vendors are providing much more of this in their products, and
they are also allowing more control over some of the optimizations through the de-
ployment step. You have already learned one such optimization with regards to using
finder methods for returning collections of Entity Beans. Using the lazy-loading ap-
proach, you would end up hitting the database once to return the set of primary keys
and then again for each object in the collection. An aggressive-loading approach would
populate all of the Entity Beans at the time the finder method was invoked, thus saving
potentially numerous database calls depending on the size of the collection. Optimized
writes, in which only fields that are modified (if any) are updated as part of the trans-
action, are another improvement.

44

J2EE Best Practices: Java Design Patterns, Automation, and Performance

With the new specification and more robust implementations, Entity Beans become
a very viable option for application development. With either option that you choose,
you may want to plan for a potential migration path between Java objects and EJB 2.0
Entity Beans once you see how they behave in your particular application environ-
ment, particularly with robust implementations of the EJB 2.0 specification.

Migrating from Java Objects to Entity Beans

A positive aspect of using standard Java classes as business objects is that it does not
inhibit you from migrating to Entity Beans at some point in the future. This migration
is made even easier if you plan the business object APIs to correspond to functions
provided by the Entity Bean model. Because you need to address the same common
elements of business objects with either approach, an Entity Bean component wrapper
could be added later to an existing Java business object implementation. A business
object factory abstraction, which is used to create, locate, and delete instances, can
make a migration even easier. These topics are addressed in the next chapters on build-
ing the Business Object Architecture. The component wrapper idea follows the same
pattern as the Service-Based Architecture, which is to implement the service as a Java
object and then wrap it with a Session Bean to take advantage of all of the E]B services.
This allows for reuse outside of having you go through the EJB layer.

Comparing Entity Bean and Regular Java Business
Object Implementation Models

So, after all of this discussion, what is the verdict? Well, as it stands currently, Java busi-
ness objects may be better for extremely high-performance applications; however, EJB
2.0 has very closely narrowed the gap and provides a large number of services that you
would have to implement yourself otherwise. One of the primary services to imple-
ment is object persistence. As you will see through the discussion of building the Busi-
ness Object Architecture, you can develop a fairly simple, but effective, persistence
layer without much trouble. However, it will not have all of the optimization features
built in to it as some of the EJB containers would. You can add these features to your
own persistence layer, but this can be an intense endeavor. There are also a number of
other component services that you need to develop that would otherwise be provided
by the EJB container. The next two chapters deal with building the business object
foundation and its corresponding services. After going through this exercise and see-
ing what all is required, you will have a better appreciation for how much work is
involved if you choose not to use EJB to implement business objects. At the end of this
discussion, there is a table that summarizes these component services and how they
can be implemented in either model.

A third hybrid option exists, which is to use a combination of the two. When would
you want to do this? One possible situation might be if you want to take advantage of
the distribution and transaction management features of Entity Beans for a set of
related business objects. This usually happens in a business object hierarchy in which
a business object aggregates many smaller business objects. For example, a Contract
business object might aggregate many LineItem business objects. It may be too

The Business Object Architecture: Design Considerations

45

costly to implement each LineItem as an Entity Bean, even with local interfaces.
However, they may make sense as Java business objects within a Contract Entity
Bean. In this sense, you can build more coarse-grained components that encapsulate a
larger set of functionality. To do this, you would likely use Bean-Managed Persistence
and implement the store and load methods yourself to manage the parent-child busi-
ness objects. You would also want to design the interfaces of the Contract business
object to take all of the data needed to perform a given operation, rather than model it
as a number of smaller method calls.

Table 2.2 compares the two primary models and the hybrid option at a high level,
taking a look at the key aspects of business objects in transactional applications.

When to Use an Entity EJB
over a Java Object

Because Entity Beans add some level of overhead, you should use them where there is
an advantage to do so. As in many design decisions, it is the cost/benefit analysis that
provides the answer to the question. Some possible factors or system requirements that
would drive an implementation toward Entity Beans include:

m Coarse-grained component design

m Need to distribute the component directly to remote clients, outside of a
service-based component wrapper

= Lack of available or planned component framework, including an optimized
JDBC layer for object persistence (that is, use of Container-Managed
Persistence and other Entity Bean services)

= Managing transaction concurrency using Entity Bean transaction isolation
setting (noting the associated performance implications)

m Desire for industry standard component interfaces and deployment for all
business objects

The last bullet point is one that has not been discussed yet but is worth mentioning.
There is some value to having business objects implemented as Entity Beans because
it provides the basis for an industry-standard component interface. For example, all
Entity Beans have a Home interface that is used to locate, create, and delete instances
of business objects. A Java-based business object approach would need to create its
own object lifecycle mechanism analogous to the features of the Home interface,
although it would still not use the exact mechanism. So, is the Java-based approach
taking away component reusability? To a large extent, no, this is not a limiting factor.
Object lifecycle is but one aspect of a business object. The set of business methods is
always application specific. Additionally, reuse can be achieved at the object level
just as it can at the component level. In many cases, you can reuse services imple-
mented as EJB components that provide remote access to business object functionality
with most of the same benefits. Thus, there is not a distinct argument for wanting to
switch based on this reason alone, but it does provide some standardization that is
worth mentioning.

(Iwy pue |anNn

uauodwod paseq-adinIRs
ueag uoIssas e ypm deim
‘Ajuowiwiod asow ‘10 [INY

SS9Jdk 9j0Wal

ueag Ajpu3g se swes asn Appijdxs 0} pasN apinoid o031 [Ny pue IaNr sasn Ajpuaiayuj uonnqguisiqg
suoneziwndo sui8us
sueaq dIND woly syyauaq Ajjersuald ydnoyje ‘suonenyis
suondo Aiewnd Amu3 oy pasedwod SWIIXd Ul SAISUSIUI YSIp pue aseqelep 3q 0}
0M} 93U} UsaM3aq punoid 3|ppIN WSionmy3i) Ajteq |enuajod sey ‘ainypnis jusuodwod ySiominesy 9oURWIOAd
paiepdn shemje si uonedidde
palqo aied se 3uo| se Sumas l1o yJomawely ul Aouaunouod sjpuey Aouannouod

uolje|osl uonpesuel) asn ue)

wisiueydaw UMo paspN

0} pasn aq ued mc_ﬁwm uoijejosl uolpesuel]

uoijesuel]

uolpesuel} ueag Ayug
yym a3ei3ajul ued spalqo eaef

suonpesuel} 13sn asn 10
suolpesuel} ueag UoOISSaS
yum ajeidaqur ued

suoipesuel 1asn 10 padeuew-1auieluo)

suolpesuel|

91e82133e 1o} ylomawely
24dr 19y1o pue dNg asn 0} pasN

S1J3140 VAVI d3ilyDIYDDV

somatuely
J49dr Jayio pasN

1331490 VAvI

90ULIsISIAd

padeue|y-ueag 1o (Suiddew |euonejai-1alqo
x3a]dwod aiow Joj poddns oyads-lopuan
‘8uiddew ajqe)-palqo sauo-03-auo 1o}
Hoddns 1d1jdxs) padeuepy-1auiejuo)

NV3ig ALILN3

20Uuajsisiad

IN3IW3I13 103140

ANV SNVY3€ ALLLNG ‘AIYEAH

s|apo uonejuawa|dwi 13[qO ssauisng eaer 1ejnday pue ueag Ayjug jo uosuedwo) T'T dqeL

SSANISnd

The Business Object Architecture: Design Considerations 47

Perform some amount of load testing early on in your
projects to determine if Entity Beans provide an acceptable level of performance
in your application environment. As a general rule, you may want to consider
using Java business objects instead of Entity Beans for extremely high throughput
application components. If performance is acceptable, use Entity Beans to take
advantage of a standard component model that provides services such as object
persistence and transaction concurrency. Also, use Entity Beans if you want to
distribute business objects directly to remote clients. When using either
implementation model, consider planning for a migration path between the two.
Application requirements or transaction volumes may change. Robust EJB 2.0
container implementations will likely provide a much increased boost from earlier
versions; however, test in your environment before making a decision to commit
to the Entity Bean model.

Remember that even if you decide not to implement your business objects as Entity
Beans, you can still take advantage of many of the EJB container-provided services
through the use of the service-based components implemented as Session Beans that
sit in front of the business objects in the architecture. For example, the Session Bean
facade can declare the transaction using container-managed transactions and distrib-
ute the functionality with a service wrapper using JNDI and RMLI. This is, in fact, a best
practice that is discussed in detail in the chapter on Service-Based Architecture.

Handling Transaction Concurrency

The majority of transactional applications require protection from two users updating
the same business entity at the same time. This can result in one user’s changes over-
riding the other’s and incorrect updates being made because the data was changing
underneath a user during execution of the transaction. In general, there are many pos-
sible conflicts when this occurs. Although unlikely, it can happen and must be handled
in the application architecture. The concept of handling this potential transaction
concurrency is commonly referred to as locking.

There are two general approaches to handling this problem, optimistic or pessimistic
locking.

Optimistic Locking

The optimistic locking strategy focuses on preventing the update collision at the time
that it may occur. When an update collision is actually caught, the first user to get there
is successful, and the second user trying to make an update is informed that the trans-
action failed because of a previous update. The second user usually is allowed to make
a retry attempt after refreshing on the screen the data that was changed during the
other user’s transaction.

Pessimistic Locking

The pessimistic locking strategy focuses on preventing two users from ever getting to
the point at which they could both update the entity at the same time. It prevents users

48

J2EE Best Practices: Java Design Patterns, Automation, and Performance

from update collisions by marking each instance that has been opened for update. Any
subsequent attempt by a user to open that instance for edit results in a notification that
another user has the object open, and the second user typically is only allowed to view
the data. Once the original user has released the lock on the object, another user can
open it for update.

Choosing a Locking Strategy and Implementation

The optimistic approach is usually the preferred approach if the chances of an update
collision are slim. Many business applications have users who are “owners” of partic-
ular sets of data. In other cases there is a small group of users who are allowed to
update certain sets of data. In these cases, the chance of two users updating the same
instance of the same business entity at the same time is fairly slim. If this is the case, the
optimistic approach is favored because it typically has less overhead associated with it,
mainly because it does not require a separate lock table or threading mechanism. The
downside of this approach is that when a collision does occur, the second user has to
resubmit the transaction. If optimistic locking is used, it is a good idea to build into the
user interface framework the ability to redraw form fields with the data from the pre-
vious submission so the user does not have to retype the information before resubmit-
ting the form. In other cases, the business requirements dictate a more conservative
approach, and the pessimistic approach should be used when one user opening an
object for update should prevent other users from being able to do the same.

Entity Beans provide a container-managed mechanism for implementing the opti-
mistic locking approach through the transaction isolation setting. This deployment
setting manages the relationship between different transactions using the same Entity
Bean. The strictest setting, TRANSACTION_SERIALIZABLE, allows only one client
to execute a method at a time on a given instance of the Entity Bean. An instance is
defined uniquely by the primary key class for the Entity Bean. Note that using this
technique adds extra overhead to any method defined on your component to be trans-
actional; however, it is a nice service to use that is built in to your EJB. One thing to
watch for when using this technique is not to use Entity Beans to model a small set of
commonly used reference objects, because this will cause a bottleneck. All transactions
will try to invoke methods on these reference objects, and the transactions will be
lining up waiting for their turn because method invocation on an instance of the entity
is single-threaded. When using this technique, it is also important to mark as transac-
tional only methods that actually require it.

There are two primary drawbacks of using the Entity Bean transaction isolation
approach to solve the locking problem. The first of these is that it requires your busi-
ness objects to be implemented as Entity Beans, which, as discussed earlier, is not the
proper approach for all solutions because of the overhead that is incurred by the Entity
Bean model. If you have an application that for reasons discussed stands to benefit
from using Entity Beans, there is still one more thing to consider. The second drawback
is that there is no built-in mechanism to inform users of the fact that another user
updated the business entity underneath them. In terms of update conflicts, the likely
scenario is that two users would navigate to an update screen for the given business
entity. The first user’s transaction would be successful; however, the second user
would now have updated the entity without knowing that the first update is taking

The Business Object Architecture: Design Considerations

49

place. There may be a data conflict between the two changes, and the second user
needs to be made aware of this. If there is a data conflict and the business rules catch
the problem, the error comes back to the second user causing confusion because there
was no problem when the user first viewed the data. This drawback of not providing a
mechanism to inform the user of semiconcurrent updates may not be a problem for all
applications. However, in many cases, it is a system requirement to prevent the second
user’s update from happening and inform the second user that someone else has up-
dated this entity. The best course of action then usually is to send the second user back
to the update screen with the new data for review and resubmission of the transaction
if it still makes sense.

This leads to a solution that works both for regular Java classes and can also cause
the second transaction to fail in the case of an update collision. A commonly used tech-
nique for this is to add an integer property to business objects for which locking is re-
quired. This property is retrieved along with the rest of the object’s data and sent to the
client. In a Web-based application, it might be sent as a hidden HTML field in the form.
When the object is updated (that is, the form is submitted), this property is sent back
and passed along to the data-access layer. The UPDATE SQL includes this property in
the WHERE clause and increments the value by one. If the row in the database is not
found, this means that from the time the object was retrieved and displayed on the
screen, another user updated that instance of the entity. In the case where the UPDATE
statement does not find the row, an Optimistic Lock exception can be thrown. This
would also occur in the case in which another user physically deleted the row; how-
ever, this is really the same business condition as when another user somehow
changed the entity in the time period after the initial data retrieval. By signifying this
condition with a particular exception or error, the User Interaction Architecture layer
can either react to it in some defined manner, or it can treat it as any other error mes-
sage. It is best to use a standard property name for all optimistic lock columns so the
Business Logic Foundation can handle them generically.

For a lightweight optimistic locking solution, use an integer
property with a standardized name on business objects as an optimistic lock col-
umn to handle transaction concurrency. The data access objects can generically
increment the property’s value and include it in the WHERE clause on UPDATE
and DELETE statements. If no rows are found from the SQL statement, an
Optimistic Lock exception is thrown. Many J2EE containers and object-relational
mapping vendors provide support to make implementing optimistic locking quite
easy by allowing the developer to designate an optimistic locking column.

A pessimistic locking approach is much more heavyweight than an optimistic solu-
tion; however, it provides a solid solution for conservative system requirements. The
approach is more complex and usually involves some kind of application lock table in
the database. When a user opens an entity for update, an entry is put in the lock table.
Another user is prevented from opening the entity for update if a lock entry is found
for the given instance. This approach usually requires some application-specific coding
in the user interaction layer as well as some extra logic in the data retrieval services;

J2EE Best Practices: Java Design Patterns, Automation, and Performance

however, this part can be generalized to some extent. A pessimistic data retrieval ser-
vice always checks the lock table first and returns an extra indicator denoting that the
entity is available for “view-only.” Note that this solution does create a potential bot-
tleneck on the lock table in the database for high-throughput applications.

Best Practices for Designing
Business Objects

A summary of the best practices for designing the Business Object Architecture is given
in this section.

Deciding between Entity Beans and
Regular Java Objects as the Business
Object Implementation

Entity Beans offer a number of compelling component services for business objects
such as Container-Managed Persistence; however, you should load-test early in your
development project to ensure that the use of Entity Beans meets the performance
requirements of your application. Applications with many fine-grained objects or a
large number of business objects in a given transaction should pay particular attention
to the widespread use of Entity Beans. Business objects implemented as Java classes
provide a more lightweight alternative, although you lose the standard component
model and you need to implement the equivalent component services on your own.
Many applications also involve a combination of the two. Use Entity Beans where they
provide the most value in terms of optimized persistence and standard component
deployment and distribution.

Designing Business Objects with a
Potential Migration as an Alternative

If you are unsure of the best option, implement the business objects with a potential
migration in mind between the two models. Your application requirements or transac-
tion volumes may dictate a change at some point. The interface to business objects can
be defined in a similar way for either Entity Beans or Java classes. This includes the use
of template methods on Java objects for create and save operations that correspond to
the ejbCreate and ejbStore methods. This approach facilitates any future migra-
tions between the two implementation models.

Configuring the Entity
Bean Deployment

In its optimized form, the Entity Bean transaction model is comparable to the Java
business object equivalent for which state is loaded at the beginning of the transaction

The Business Object Architecture: Design Considerations

(ejbLoad) and saved at the end (ejbStore). In nonoptimized or extreme condi-
tions in a clustered environment, Entity Beans can be very database and disk intensive
because of the need to manage the free pool and activate and passivate instances in a
transactional manner. Use a number of load tests to try and determine the optimal pool
size for the Entity Beans in your particular application.

Using CMP Entity Beans Instead
of BMP Where Possible

CMP Entity Beans should typically be used instead of BMP in order to take advantage
of container optimizations and avoid two database hits when using a business object
(that is, one on the finder method and another on the e jbLoad operation). BMP can
be used to support object-relational mapping strategies not supported by the con-
tainer or to manage the persistence of dependent Java business objects used within an
Entity Bean.

Be Aware of Entity Bean Finder
Implementation Strategies

Do not use Entity Bean finder methods to iterate through a collection of objects unless
you can enforce either a read-only caching strategy or an aggressive-loading approach
by the container. This avoids the (n + 1) database access problem that also appears
on a single BMP Entity Bean lookup. Check your application server’s documentation
for the ability to enforce these strategies or consider the use of JDBC for read-only
operations.

Managing Aggregated
Business Objects

Create and delete operations of business objects should also encapsulate the corre-
sponding creation and deletion of aggregated objects that share the same lifecycle. This
logic can be placed in template methods of your own Java business object implemen-
tation or the equivalent Entity Bean hook methods. In the case of cascading deletes,
Entity Beans can be configured so the logic is accomplished by the container automat-
ically when the parent object is deleted.

Using EJB Local Interfaces
Wherever Possible

In many cases, EJB components do not need to be distributed. Thus, they are typically
deployed uniformly throughout a production application server environment. Local
interfaces should be used in these cases to avoid RMI and serialization overhead on
method invocations. Keep in mind that arguments are passed by reference using local
interfaces, so you must be aware that changes to objects passed as arguments are
visible to the client.

52

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Considering the Simple Case
of a One-to-One Object-Relational
Mapping Approach

There is a lot to be said for keeping the object-relational mapping approach simple and
using a one-to-one table mapping. This allows for a standard code-generation process
to create the data-access objects. Database normalization can still be hidden through
encapsulation on primary business objects. EJB 2.0 local interfaces provide an efficient
way to access related Entity Beans colocated in the same JVM. If a one-to-one table
mapping scheme is used and there are many fine-grained objects in your model, it is
important to use a lightweight business object implementation. You should carefully
consider using Entity Beans across the board in this type of architecture. A lighter-
weight Java object implementation or a combination of Entity Beans and Java objects
might be better in this case.

Implementing More Complex
Persistence Options

One option for implementing complex database mappings is to encapsulate the logic
within the data-access layer. This makes the data-access objects tougher to generate,
but this provides a purer approach to business object persistence. You may still be able
to generate a majority of the data-access layer and hand-code only the objects for
which complex mapping becomes an issue. A variation of this approach is to generate
data access objects that map one-to-one for each table and then implement business
object save logic that uses the appropriate set of data objects.

Considering the Use of
Persistence Tools

For both automation and complex database mapping, it is best to use an object-
relational mapping tool or vendor-specific persistence mechanism if you can afford the
additional overhead cost in terms of performance. Remember that Entity Beans and
Java objects using persistence frameworks are still largely portable even if a vendor-
specific mechanism is used at deployment. In all cases, it is best to do a short proof-of-
concept with some amount of load testing in order to see if an advanced persistence
schema meets your system requirements. While the tools and containers themselves
are fairly well optimized, your particular database schema and access patterns will
largely define the type of performance realized through this type of an approach.

Using an Optimistic Lock Column
for a Lightweight Solution

For a lightweight optimistic locking solution, use an optimistic lock column to detect
and notify users of concurrent updates to business objects. If you are using straight
JDBC, choose a standardized property name for this column. Persistence frameworks
and some J2EE containers already support this mechanism out of the box.

The Business Object Architecture: Design Considerations

53

Summary

Business objects are the implementation of business entities in the reference architec-
ture. In most cases, they are implemented as stateful objects that encapsulate both the
data and behaviors of a given entity. They manage relationships to other objects and
persistence to the database and enforce business rules related to a particular business
entity. The implementation model is typically regular Java classes, Entity Beans, or a
combination of the two.

With the design considerations and best practices from this chapter in mind, the
next two chapters walk through the implementation of business objects in the refer-
ence architecture. Implementations are shown for both Entity Beans and regular Java
classes as well as a number of different persistence options. Keep in mind that there is
no one-size-fits-all approach, so use the guidelines and principles discussed here to
choose the best implementation model for your application.

Building Business Objects:
Managing Properties
and Handling Errors

There are many important design decisions that should be factored into the construc-
tion of the Business Object Architecture. One of the primary considerations discussed
in the last chapter is the use of Java classes versus Entity Beans. This chapter gets into
the basics of building business object components using both regular Java classes as
well as E]B 2.0 Entity Beans. Basic elements of business objects such as managing prop-
erties and handling errors are discussed in this chapter, while the remainder of the
functionality, such as persistence and relationships, are discussed in the next chapter.

Managing Properties

Properties of a business object typically use individual getter and setter methods to
manage their values. Most explicit getter and setter methods follow the JavaBeans
specification. This specification states that, for example, a String property fieldl
will have methods defined as:

public String getFieldl();
public void setFieldl (String wvalue) ;

55

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Many programs that use business objects refer explicitly to these methods in order
to get and set property values. A benefit of using this specific naming convention is
that the Java language can determine at run time what the properties of a given object
are. This allows a business object to have explicit methods for each property but also
allows a Java program to discover what the properties are at run time and then invoke
the methods to manage the property using introspection.

.m The JavaBeans specification is different from the Enterprise JavaBeans
specification. It is geared toward GUI components whereas the EJB specification is
geared toward business logic and server-side application components. However,
with regard to properties and the interface of business objects, the two basically
follow the same model. Previously, this was not the case in EJB 1.1 components,
but EJB 2.0 components that use Container-Managed Persistence are required to
do so. Note that the implementations of Entity Bean accessor methods are de-
clared as abstract. An example of this will be discussed in a moment.

Let’s take the sample Account business object and look at its implementation as
both a Java business object and an Entity Bean.

Properties on a Java Object

As aregular Java object, the Account business object stores its properties as private
member variables. The Account has properties that include an internal identifier, an
account number, and a current balance. With this set of properties, the class might start
out looking something like the following using the JavaBeans naming convention:

public class Account {

/*
* The account internal identifier
*/

private String id;

/*
* The external account number
*/

private String number;

/*
* The account current balance
*/

private BigDecimal currentBalance;

/*
* Default constructor to create a new account
*/

public Account () {

currentBalance = new BigDecimal (0) ;

Building Business Objects: Managing Properties and Handling Errors

/*
* Get the account internal identifier.
*/
public String getId () {
return id;
}
/*
* Set the account internal identifier.
*/

public void setId (String value) {
id = value;

/*
* Get the external account number.
*/

public String getNumber () {

return number;

}

/*

* Set the external account number.
*/

public void setNumber (String value) {
number = value;

/*
* Get the account current balance.
*/
public BigDecimal getCurrentBalance () {
return currentBalance;
}
/*
* Set the account current balance.
*/

public void setCurrentBalance (BigDecimal value) {
currentBalance = value;

Code to manipulate these types of business objects is fairly straightforward. A
deposit method that adds money to the current balance of the account might look
like the following;:

/*
* Deposit money into the account.
*/
public void deposit (BigDecimal value) {

58 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Get the current balance and add the new value.
BigDecimal balance = getCurrentBalance() ;
setCurrentBalance (balance.add(value)) ;

}

CIRIM A VX {d] it is a good practice always to use the getter and setter

methods of a given property, even within other methods in that business object.
This is the strictest form of encapsulation, in which only the getter and setter
methods actually refer to the member variable. The member variables are declared
as private to help enforce this concept, although use within the class itself
requires discipline by the programmer. This technique can be beneficial in many
ways. One example of when this comes in handy is the case in which a property
does not have an assigned value. If you referred directly to the member variable,
your code would get a NullPointerException in this case. However, use of
the getter method can protect you from this condition by checking for this and
initializing the value. This logic can then be implemented and encapsulated in one
place, and other methods do not need to worry about this condition. This concept
becomes even more powerful when the concept of lazy instantiation is used in
getter methods for aggregated objects.

Properties on an Entity Bean

If you are developing a BMP Entity Bean, it is up to you how you want to manage
the properties. In most cases, it is recommended to use the same JavaBeans naming
convention and implementation approach as was just discussed for regular Java
objects. However, a CMP Entity Bean uses abstract accessor methods that implement
the JavaBeans naming specification in order to implement the abstract persistence
approach. The same Account object implemented as an Entity Bean would start to
look like the following.

public abstract class AccountBean implements EntityBean {

//

// Property methods, that is, CMP fields
//

public abstract String getId();

public abstract void setId(String value) ;

public abstract String getNumber () ;
public abstract void setNumber (String value) ;

public abstract BigDecimal getCurrentBalance() ;
public abstract void setCurrentBalance (BigDecimal wvalue) ;

//
// EJB methods to follow...
//

Building Business Objects: Managing Properties and Handling Errors

59

Note that both the class itself and the accessor methods are declared as abstract.
This is because the container is responsible for creating a subclass that implements
these methods at deployment time. Because the container has control of the imple-
mentation of these methods, it can perform the CMP optimizations discussed earlier,
such as lazy loading or dirty checking.

Using a Standard Java Interface

Instead of using explicit methods, you can also use a generic property interface. This
approach uses a standard Java interface, which can be called BusinessObject to
retrieve and modify property values. Using a standard interface is a powerful concept
in the Java language and one that recurs throughout the study of the overall reference
architecture.

Use of a standard interface for business objects is a good
technique that can ensure consistency across business objects. In addition to
making code more maintainable, this standard interface enables you to automate
a number of business object functions and services because you can implement
them generically, referring only to the Java BusinessObject interface.

By using a standard interface, you can generically refer to a business object without
the knowledge of its specific type and method signatures. This concept allows you to
create generic services that refer to business objects only by their interface. You can in-
voke business object methods without knowing what specific business object you are
dealing with. This means you can implement a generic update service that calls a stan-
dard set Property method and then saves the object to the database. Of course, you
still need to discover the exact properties at run time. You could do this by providing
the object with metadata that defines the properties and their data types. This some-
times can be easier than dealing with JavaBeans and introspection in application code
because you don’t need to write code to deal with an unknown method; you already
know that the set Property method exists in the standard business object interface.
In the case of Entity Beans, you are required to have explicit accessor methods as shown
in the last example, although you could also additionally implement a generic interface
in order to gain some of the same benefits. The combination of a business object’s meta-
data and a generic property interface can still add value in an Entity Bean scenario by
acting as a helper method for easily iterating an object’s properties in a standard way.
For example, one situation in which this might be helpful is when you are getting all
string values from the front end for properties of different data types. A standard prop-
erty interface that accepts St ring values can hide the work of converting data types
to explicit setter methods. The details of this approach and the generic property inter-
face will be discussed as the next section studies the implementation of this concept.

Generic Property Interface for Java Objects

If you define a standard set Property method for Java business objects, you need a
way to deal with different Java data types, such as String and BigDecimal. One
alternative is to use strings for everything and then convert to Java data types when

J2EE Best Practices: Java Design Patterns, Automation, and Performance

you need to deal with the specific properties in your code. The other alternative is to
deal with the properties as their normal objects. You can define the setProperty
method to take an Object parameter and then allow either the specific data type or a
String as aninput argument. One reason to do this is based on the fact that data from
the front end of an application usually originates in a string format, such as data from
an HTTP form submission. If you take this approach, the interface will look something
like the following;:

public interface BusinessObject {

/*
* Property management methods
*/
public void setProperty (String propertyName, Object value);

public String getProperty (String propertyName) ;

public int getIntProperty (String propertyName) ;
public BigDecimal getDecimalProperty (String propertyName) ;
public Date getDateProperty (String propertyName) ;

The setProperty () methods need a property name and a value. The object value
can be converted to the St ring representation using either the basic toString()
method or a defined conversion routine. The latter option is discussed further in the
upcoming section on property formatting. The basic getter method, get Property (),
returns a String. You can also provide some convenience methods so that business
object clients are not always required to do data type conversions when they know
what type they want to deal with. Thus, methods, such as get DecimalProperty ()
and getDateProperty (), that automatically convert from the string to the desired
data type, are provided.

This type of data conversion logic is general to all business objects and can be
implemented in a base class for all business objects. This allows this logic to be imple-
mented once and reused across all business objects. This may not be enough of a rea-
son alone to use a common base class. However, there are other benefits as well, such
as the ability to use superclass methods as templates for common business object
behaviors. An example of this is the save operation that causes the object’s state to
persist in the database. You want the save operation to invoke any validations that
may be required for data integrity. You can implement a save method on the common
base class that provides this behavior as a template for all specific business object sub-
classes. As discussed earlier, Enterprise JavaBeans use a similar template concept for
their persistence mechanism as well.

With regards to properties, you can put the logic of managing the properties in a
common base class. As an added benefit, this also reduces the size of the code base
because the specific business objects require very little code to provide basic property
manipulation functionality.

Figure 3.1 shows the object design of the business objects using a standard interface
and generic property manipulation methods. The specific business object subclasses

Building Business Objects: Managing Properties and Handling Errors

BaseBusinessObject <<interface>>
BusinessObject
setProperty ()
getProperty ()
setProperty ()
getProperty ()
A A
MyBusinessObjectBean <<interface>>
MyBusinessObject
propertyl:<data type> .
<<realize>> i
property2:<data type> |f———aa=== | buS}nessMethodl 0
businessMethod?2 ()
businessMethodl ()
businessMethod? ()

Figure 3.1 Business Object Class Diagram.

inherit from a common base class and implement the standard BusinessObject
interface.

In order to put the property management logic in the business object base class, you
need a generic scheme to store and manipulate property values. One way to implement
this is to store the property names and values in one of the Collections data structures,
such as a HashMap. The HashMap would store the name of the property as the key and
the property value as the HashMap value. The value could be stored either as a
Stringinall cases or as the specific object type that represents that property. If the ap-
proach of storing the specific object is used, you would need to create wrapper objects
for primitive types, such as an Integer object to wrap an int value. Another option is
to define the member variables and explicit accessor methods as you normally would
and then use Java introspection and reflection to implement the generic property meth-
ods. This option provides less flexibility in terms of dynamically defining properties,
but it does provide a nice, straightforward implementation. In most cases, the proper-
ties of a business object are well defined, so this is not much of a consideration. The next
section considers the implementation of both approaches, but in the end, the dynamic
collection of properties will probably only be used as a solution for flexible value
objects. This concept of dynamic value objects will be expanded in the upcoming chap-
ters on the service-based components and the User Interaction Architecture.

Using Metadata to Implement
the Standard Interface

The business object base class can use a metadata configuration to define what the set
of properties is for a given object. The flexibility of XML can be used as a data structure
to define the business object metadata. The Account object might require metadata

62

J2EE Best Practices: Java Design Patterns, Automation, and Performance

that looks something like the following:

<Metadata>
<BusinessObject name="Account">
<Property name="id" type="String" />
<Property name="number" type="String" />
<Property name="currentBalance" type="Decimal" />
</BusinessObject>
</Metadata>

The constructor for the business object base class would need to know only the
name of the business object that is being instantiated. Using this, it could look up the
business object in the metadata file and deal with a set of properties accordingly that
can be managed by the standard set Property and get Property methods. For the
setProperty method, the first option discussed is the implementation that stores
the collection of properties as a HashMap of String objects.

Storing Properties as a Collection of Strings

A basic implementation of the set Property method would look like the code that
follows. Keep in mind that a more robust version of this method will be shown in the
next section using a structured data conversion routine, but for now, the example
simply uses the toString method.

public void setProperty (String propertyName, Object value)
throws PropertyException {

// Ensure that this is a property on this object.
if (lattributeMetadata.containsKey (propertyName)) {
throw new PropertyException (propertyName +

" is not a property of " + bom.getName()) ;

// Set the property value.
attributes.put (propertyName, value.toString());
}

The corresponding get Property methods would use the property name as a key
value to look up the value in the attributes HashMap. Using these methods, the
deposit method on the Account object would now look like this:

public void deposit (BigDecimal value)
{
/*
* Get the current balance and add the new value.
*/
BigDecimal balance =
getDecimalProperty ("currentBalance") ;
setProperty ("currentBalance", balance.add(value)) ;

}

The get Property method would then retrieve properties from the collection using
the property name as the key.

Building Business Objects: Managing Properties and Handling Errors

63

Generic Property Methods Using
Explicit Accessors

A more conventional approach is to define properties as members and have explicit
accessor methods. However, you can still use the generic property methods as a part of
the standard BusinessObject interface. The get /setProperty methods of the
generic interface should use introspection to accomplish this. Rather than go through
the work of coding the introspection yourself, an open-source utility can be used to
make this task very easy. The Jakarta Struts project, which will be looked at in detail in
an upcoming chapter, has a set of bean utilities for this purpose.

.m The Struts bean utility classes have now been deprecated and moved to
the Jakarta Commons Beanutils project, although they are currently still available
through Struts.

The primary methods used from this package are the corresponding methods on the
PropertyUtils class, which generically implement getter and setter functions on
classes that follow the JavaBeans naming convention.

public static void setProperty (Object bean,
String name,
Object value)
throws IllegalAccessException, InvocationTargetException,
NoSuchMethodException;

public static Object getProperty (Object bean,
String name)
throws IllegalAccessException, InvocationTargetException,
NoSuchMethodException;

An implementation of the set Property method would look something like the
following using the PropertyUtils class. Note that this method will be revisited in
the next section with a full implementation using a set of data conversion routines.

public void setProperty (String propertyName, Object value)
throws PropertyException {

// Ensure that this is a property on this object.
if (l!attributeMetadata.containsKey (propertyName)) {
throw new PropertyException (propertyName +

" is not a property of " + bom.getName()) ;

// Validate the data type first because you
// are going to set the actual member variable.
PropertyMetadata prop =
getPropertyMetadata (propertyName) ;
String propType = prop.getType();

64 J)2EE Best Practices: Java Design Patterns, Automation, and Performance

try {
// Validate the data type first.
validatePropertyDataType (propType, value) ;

// Use the utility class to invoke the set method.
PropertyUtils.setProperty (this, propertyName,
value) ;

} catch (Exception ex) {
throw new PropertyException(ex.getMessage()) ;

.m The validatePropertyDataType method will be explained in the
next section on field-level validation. Its primary purpose in these examples is to
ensure that the proper data type is being sent for the given property.

The getter methods for the different data types donot have to perform any conversion
such as would be required from a St ring stored in a generic collection. They can sim-
ply return the object value cast to its particular type. For example, a decimal property
that would otherwise have been stored asa St r ing in a collection and then used to con-
struct a new BigDecimal object is now simply returned as the BigDecimal object
from the getter method. For example, the getDecimalProperty method can be
implemented as follows:

public BigDecimal getDecimalProperty (String propertyName)
throws PropertyException {

Object value = null;
try {
value =
PropertyUtils.getProperty (this, propertyName) ;
} catch (Exception e) {
throw new PropertyException(e.getMessage()) ;

return (BigDecimal) value;

Metadata and the JavaBeans Property Model

Again, look at the JavaBeans approach compared to the metadata model. The JavaBeans
approach uses a standard naming convention to define the set of properties. These
properties can be discovered at run time using introspection. If this can be used, why
would you want to define a separate metadata mechanism for this purpose? Aside from
the convenience, the primary reason is that the metadata can store all of the other
aspects of properties needed to build the application, outside of just the property name
and data type.

Building Business Objects: Managing Properties and Handling Errors

65

m By using XML metadata to define the properties, you can define for
each property an entire set of information that can be used to further automate
business object functionality. For example, you can add things to the metadata
about each property such as an indicator for required fields and primary key fields.
This allows you to automatically check that all required fields have a value. You
could go beyond this and define the name of a validation class to use to ensure that
the property value is valid. There are endless possibilities to what could be defined
and used to automate business application functionality, especially with regard to
the common characteristics of business applications that show up time after time.

As the study of building the Business Object Architecture continues, you will see
things continually added to the business object metadata for the purposes of automa-
tion. The overall metadata approach for business objects and the resulting DTD (docu-
ment type definition) will be discussed in detail in the next chapter.

Comparing Explicit Property Methods
and Generic Interface Methods

For many developers, using the generic interface methods (setProperty,
getProperty) may seem a bit uncomfortable at first. The generic methods have their
drawbacks when compared to the explicit methods. One major drawback is that of
compile time type checking on the setProperty method. Because any property
value can be passed in as a generic Object argument, this type of edit would not
occur until run time. This drawback must be weighed against the benefit gained from
having all business objects implement a standard interface. There are also human fac-
tors to consider, such as getting your development staff used to the concept of using a
generic interface. On the positive side, service components and other business objects
can easily access data on the business objects if they implement a standard interface.
You can also easily build generic services, such as an update service, that can get and
set property values on an object by referring to objects only by their standard interface
and not by their specific object type.

One other negative point to make about the generic method approach is that it goes
against the JavaBeans specification discussed earlier. Although Java business objects
are not required to implement this specification for property methods, it does provide
a good standard that is commonly used in the industry. So, which approach is better
to use?

m Although the business object interface is important, it is not the end
goal here in this discussion. The primary objective is to provide a mechanism that
generically deals with a set of properties. This mechanism should have some kind
of interface that can be used by other business objects and service components.
Thus, as long as you can generically store, manage, and validate properties, the
specific interface is not so important. This is true for either the JavaBeans explicit
getter/setter approach or a generic get/set property approach. A metadata-driven
approach can actually be used underneath either business object interface option.

J2EE Best Practices: Java Design Patterns, Automation, and Performance

One design that brings the best of both worlds is to actually have both sets of meth-
ods available to business objects. A standard interface can still be used as both helper
methods and standard hooks for validation and formatting logic. These concepts will
be discussed in the next section of this chapter. The explicit accessors in combination
with the generic set Property and get Property methods provide the benefits of
the JavaBeans interface while still allowing you to manage the properties generically
and automate data marshalling and validation.

.m The combination of the explicit and generic accessor methods is an inter-
esting concept that will be looked at further in the Entity Bean implementation.
In the case of CMP Entity Beans, the explicit accessor methods are required, and
they must be defined as abstract on the bean.

The combination approach works extremely well if you have code-generation capa-
bilities out of your design models. You can customize your business object templates to
generate specific getter and setter methods that follow this pattern based on the data
type of the property. This allows clients of the business object to use either method
while still achieving the automation of the property management. This logic can still
reside in the business object base class, so the core template for the business object sub-
class is just this set of getter and setter methods. In the case in which only the standard
interface is used for properties, the core template of the business object subclass is ac-
tually quite empty. To define a business object with properties using this method, you
simply need a constructor that indicates the object name and the metadata defined in
the configuration. Your core Account object (without any business logic added)
would consist of the following;:

public class Account extends BaseBusinessObject {

/*

* Default constructor to create a new account
*/

public Account ()

{

super ("Account") ;

}

Here, the business object base class takes care of looking up the object in the meta-
data and dealing with the list of properties. The combined approach would add the set
of explicit setter and getter methods previously described. In either case, you would
now already have a business object that can manage its properties.

Standard Property Interface
with Entity Beans

In order for the generic property management implementation to work with Entity
Beans, you typically add the explicit accessor methods. The primary reason for this is

Building Business Objects: Managing Properties and Handling Errors

67

the fact that Entity Beans require abstract accessor methods for each property in order
to use Container-Managed Persistence. This allows the generated container classes to
implement the CMP properties specified in the deployment descriptors. The container
is not able to access the properties if they are stored as member variables; thus, you are
required to use the explicit getter and setter methods to manipulate the properties.
The implementation of the get /set Property methods is the same as the previous
example that used the PropertyUtils class to dynamically invoke accessor
methods using reflection.

If you wanted to expose the explicit property accessors of the Entity Bean to clients,
you would add them to their respective component interface. In most cases, Entity
Beans are accessed through a local interface, so the local version of the Account com-
ponent interface is shown here:

public interface AccountLocal extends EJBLocalObject {

// CMP methods

public String getId();

public void setId(String value);

public String getNumber () ;

public void setNumber (String value) ;

public BigDecimal getCurrentBalance() ;

public void setCurrentBalance (BigDecimal wvalue) ;

Remember that there is very little overhead with the invocation of a local interface
method, so you are more likely to have a situation in which you would want to have
fine-grained access to your component’s properties. This is the opposite of how you
usually want to deal with a remote component. In these cases, you usually want to
avoid the RMI and network overhead by using a bulk getter method that returns a set of
the object’s properties through a value object or some analogous data structure. Bulk
getter methods and value objects are discussed in upcoming sections of this chapter. If
you are using the generic property interface, you can create a standard business object
interface that extends EJBLocalObject forlocal access. The specific objects will then
extend this standard interface, which canbe called EntityLocalBusinessObject.
The code for this interface follows:

public interface EntityLocalBusinessObject
extends EJBLocalObject {

/**
* Property management methods
*/
public void setProperty (String propertyName, Object value)
throws PropertyException;

public String getProperty (String propertyName)
throws PropertyException;

public int getIntProperty (String propertyName)
throws PropertyException;

J2EE Best Practices: Java Design Patterns, Automation, and Performance

public BigDecimal getDecimalProperty (String propertyName)
throws PropertyException;

public Date getDateProperty (String propertyName)
throws PropertyException;

}

Note that the methods are essentially equivalent to directly invoking the method on
the implementation class, as there is no additional RemoteException that can be
thrown. The actual AccountLocal interface is then implemented as follows:

public interface AccountLocal extends EntityLocalBusinessObject
{
}

You could also add the explicit accessors to this interface if you want clients of the
bean to have the ability to use either option.

Field Validation

Three basic types of validation take place at the individual property level:

m Data type validation
m Required field checking

m Application-specific logic (for example, a valid Social Security number).

Business objects often have these validations coded into either the setter methods or
specific validation methods. Separate validation objects are also used in some cases to
isolate validation logic. This technique can be helpful either if the validations can be
reused across objects or if a business object is getting particularly large, and it helps to
move code out to “helper” objects. For business objects that use explicit setter methods,
most data type validation is done inherently through compile-time checking because
the methods take only specific Java data types. Thus, the business object client can pass
only a valid object or primitive type. As far as required field validations and application-
specific edits, you must write code to do that either in the setter method or in a validate
method of the business object.

In the implementation that uses the standard Java interface and the generic
setProperty method, you are required to do your own data type validations because
ageneric ObJject is accepted as an argument. You can define both the data type and the
required status of properties in the property metadata. The set Property method can
then automatically validate the data type based on the metadata. A general method
validateRequiredFields can be created that goes through the list of property
metadata and validates that each required field has a value.

Using Metadata and Reusable
Property Definitions

Much of the property-level validation logic will be redundant. If you use separate
validation classes to enforce these edits, you can reuse them across business objects. To

Building Business Objects: Managing Properties and Handling Errors

69

do this, you need to know the type of each property. Metadata can be used to define the
data types themselves and the name of a corresponding class to use to validate the value.
Thus, when you want to validate a given property, you pass it through the appropriate
validation class. If a standard interface is used for these classes, you can generically refer
to them and plug in new data types very easily.

An interface for the validator class might be as follows:

public interface PropertyValidator {

public void validateProperty (Object wvalue)
throws ValidationException;

In the metadata file, you can add the following, which defines the data types and
handler classes:

<Metadata>
<PropertyDefinitions>
<PropertyType name="Decimal"
handler="blf.Decimalvalidator" />
<PropertyType name="int"
handler="blf.NumbervValidator" />
<PropertyType name="Date"
handler="blf.Datevalidator" />
</PropertyDefinitions>
</Metadata>

.m The prefix b1 £ will be used as the package name for the foundation layer
classes. This is an acronym for Business Logic Foundation. Any generic class used
as a foundation for the applications goes into this package.

In the foundation layer, you can create validation classes that implement this inter-
face for all of the standard data types. As an example, the decimal validator class
would look like this:

public class DecimalValidator implements PropertyValidator {

public void validateProperty (Object value)
throws ValidationException

// Since this method can be invoked with any
// object type, you need to check.
if (value instanceof BigDecimal) return;

if (value instanceof String) {
try {
BigDecimal decimal =
new BigDecimal ((String)value) ;
} catch (Exception e) {

70

J2EE Best Practices: Java Design Patterns, Automation, and Performance

throw new ValidationException(value +
" is not a valid property value.");
}
} else {
throw new ValidationException (
"Invalid object type for decimal property.");

.:Im For the time being, the PropertyValidator code examples throw a
ValidationException to report an error to the client. Later on in this chapter,
error and exception handling will be discussed and a more robust mechanism
called ErrorList will be implemented to handle and report business errors to
users.

The logic to invoke validator classes for each property can be embedded into the
business object base class. As a part of the validation routine, a validateProperty-
Values method that loops through each property and calls the validation routine can
be invoked. This is illustrated in the following code:

public void validatePropertyValues ()
throws ValidationException, PropertyException {

// For each attribute, validate the property value.
Iterator iter = attributeMetadata.values().iterator();
while (iter.hasNext ()) {
PropertyMetadata pmd =
(PropertyMetadata) iter.next ();
this.validatePropertyDataType (
pmd.getType (),
getProperty (pmd.getName ())) ;

public void validatePropertyDataType (String type,
Object value)
throws ValidationException {

// If no value exists, you can’t validate it.
// Return with no error because either
// required checks or validation classes will get this.
if (value == null) {
return;

// Look up the property type, get an instance of the
// validator class based on the metadata, and

Building Business Objects: Managing Properties and Handling Errors

71

// validate the value.
PropertyValidator validator = null;
try {
validator = (PropertyValidator)
CachelList.getInstance() .getObject (
"PropertyTypeCache", type) ;
} catch (BlfException ignoreForNow) {}

if (validator == null) {
throw new ValidationException ("Property type " +
type + " is not a defined type in " +

"the metadata.");

validator.validateProperty (value) ;

}

.m There is a reference to a CacheList object in this code snippet that
obtains a value of the Propertyvalidator. It would seem like wasteful
overhead to create one of these validator classes for each method invocation of
setProperty, especially because it is a stateless service. A good practice for
these types of objects is to cache them and reuse the object instances, because
small, temporary objects are a major cause of performance degradation in Java
applications. This is the first of many reference-type objects that will be cached in
memory. It would be helpful if there was a general-purpose caching mechanism to
do this. Thus, in the next chapter, a CacheList mechanism will be created for
this purpose. This mechanism can be used to store the validator objects.

The last type of field-level validation is put into the category of application-specific
checks. These can be coded into the specific business object methods. However, you
can also put this logic in the property validator classes used to edit field values. This
allows you to define reusable properties, such as a Social Security number property. As
the earlier metadata example showed, you can define these custom property types and
their corresponding PropertyValidator class that should be used for editing their
values.

If you created a reusable Social Security property whose value was expected to be
xxx-xXx-xxxx where x is an integer value between 0 and 9, its validation class might
look like this:

public class SSNValidator implements PropertyValidator
{

/*
* Validate a Social Security number string value.
*/
public void validateProperty (Object value)
throws ValidationException

72)2EE Best Practices: Java Design Patterns, Automation, and Performance

if (! (value instanceof String)) {
throw new ValidationException (
"Invalid object type for numeric property.");

String strvValue = (String) value;

// You are expecting the format XXx-Xx-XxXXX.
int size = strValue.length();

// If it’s not the right length, it is invalid.
if (size !'= 11)
{
throw new ValidationException (strValue +
" is not a valid property value.");

// Loop through the characters and ensure that
// digits and dashes are in the correct positions.
for (int loop=0; loop < size; loop++)
{
if ((loop == 3) |l (loop == 6))
{
if (strValue.charAt (loop) != ‘-")
{
throw new ValidationException (strValue +
" is not a valid property value.");

}
else if (!Character.isDigit(
strValue.charAt (loop)))

throw new ValidationException (strValue +
" is not a valid property value.");

Thus, in some cases, you can combine both data type and application-specific checks
in the validator classes. But what if you had an integer property against which you also
wanted to perform an application-specific edit, such as validating the numeric value
against a valid range? You could create a validator called NumberRangevalidator
that extended Numbervalidator and called the superclass method before doing the
range check. This class might look like the following;:

public class RangeFieldvValidator extends NumberValidator
implements PropertyValidator {

/*
* Validate the property value against a specific

Building Business Objects: Managing Properties and Handling Errors

73

* numeric range.
*/
public void validateProperty (Object value)
throws ValidationException

int intValue;

// First, validate that the value is numeric.
super.validateProperty (value) ;

// If numeric, validate that it falls within the
// given range.

// Get a common int value.
if (value instanceof Integer) {
intvValue = ((Integer)value).intValue();
}
else if (value instanceof String) {
intvalue =
(Integer.valueOf ((String)value)) .intValue() ;
} else {
// You should not ever get here because
// of superclass validation.
throw new ValidationException (
"Invalid object type for numeric property.");

if ((intvalue < 0) || (intvValue > 1000))
{
throw new ValidationException(value +
" is not a valid property value.");

Property Value Formatting

There may be times when you want to get a non-St ring property value asa String.
Perhaps you are retrieving a numeric or date value only to return it to the front end to
display to the user. In these cases, you want to format the property values appropriately
as a St ring. This formatting often involves converting a Java data type to a specific
string format. Many non-St ring properties require additional logic in order to do this
correctly. In other cases, there is also a general need to convert the other way, from a
String to the specific data type. For some data types, this conversion and formatting
is fairly straightforward. Integers and decimals have standard conversion routines
already provided by Java. For others such as a date field, there is not one standard for-
mat or conversion routine. A date can be specified as a string in a number of different
ways, often determined by the locale and internationalization. For example, the date of
July 14, 1972, could be displayed as ‘07/14/1972’, “1972-07-14’, or ‘Jul-14-1972" just to
name a few options.

74)2EE Best Practices: Java Design Patterns, Automation, and Performance

.m You may be thinking, why would you put a form of presentation logic in
your business objects? Well, this property-handling mechanism can also be used
to convert values between external formats and internal storage formats. This can
be seen as a business object function. This also provides a nice clean implementa-
tion to allow the standard setProperty interface to take String values for
any property type. Normally you would not put presentation logic in the business
objects, but you will see in the next section that business objects and value
objects are closely related. The value objects can definitely use this type of
presentation logic, and you may be able to reuse this same property-handling
mechanism in a value object base class.

A reusable property mechanism that provides validation has already been created.
You can extend this mechanism to include formatting also. In addition to implementing
a PropertyValidator interface, the property classes can also implement a standard
interface called PropertyHandler. The implementation classes for these interfaces
can be called property handlers now that they provide conversion and formatting rou-
tines in addition to validation. Thus, the validation classes can be renamed appropri-
ately and the corresponding property type metadata can be changed to reflect this. The
PropertyHandler interface can be specified as:

/**
* This interface is used for formatting and converting
* a property value.
*/

public interface PropertyHandler {

public Object convertToStringFormat (Object value)
throws PropertyException;

public Object convertToObjectFormat (Object value)
throws PropertyException;

public String convertToDisplayFormat (Object value)
throws PropertyException;

In essence, the primary purpose of this interface is to convert between Java data type
objects and their string representations. Note that the conversion methods could be
used conversely if a value object or business object base class stored properties as a col-
lection of St ring objects. In most cases however, the conversion to a St ring format
happens only for display purposes. Because this mechanism is used in many different
scenarios, each PropertyHandler takes an Object, and the implementations need
to deal with different object types.

For simplicity, assume that the application has settled on the date format
MM/dd/yyyy to be used throughout the application. The property handler class for
dates can now be specified as the following class. Note that this same class implements
the PropertyValidator and PropertyHandler interfaces; thus, you can encap-
sulate the property manipulation in one implementation class.

Building Business Objects: Managing Properties and Handling Errors

75

package blf;

import java.text.SimpleDateFormat;
import java.util.Date;

/**
* This class 1s used to handle date properties.
*/

public class DateHandler

implements PropertyValidator, PropertyHandler {

public void validateProperty (Object value)
throws ValidationException {

// Since this method can be invoked with any
// object type, you need to check.
if (value instanceof Date) return;

if (value instanceof String) {
try {

SimpleDateFormat sdf =

new SimpleDateFormat ("MM/dd/yyyy") ;

java.util.Date myDate

sdf.parse((String)value) ;
} catch (java.text.ParseException pe) {
throw new ValidationException(value +

is not a valid property value.");
}

} else {
throw new ValidationException (

"Invalid object type for date property.");

public Object convertToStringFormat (Object wvalue)
throws PropertyException {

if (value instanceof String) {
return value;

}

else 1f (value instanceof Date) {
SimpleDateFormat sdf =

new SimpleDateFormat ("MM/dd/yyyy");

return sdf.format ((Date)value) ;

} else {

throw new PropertyException("Invalid date format");

public Object convertToObjectFormat (Object value)
throws PropertyException {

76)2EE Best Practices: Java Design Patterns, Automation, and Performance

if (value instanceof String) {

SimpleDateFormat sdf =
new SimpleDateFormat ("MM/dd/vyyy") ;

try {
Date myDate = sdf.parse((String)value) ;
return myDate;

} catch (Exception e) {
throw new PropertyException(e.getMessage()) ;

}
else if (value instanceof Date) {
return value;
} else {
throw new PropertyException("Invalid date format");

public String convertToDisplayFormat (Object value)
throws PropertyException {

return convertToStringFormat (value) .toString() ;

Effect on get Property Method

The standard getProperty method that returns a String can be modified to
use these formatting classes to return the proper formatted value. Likewise, if the
setProperty method takes a St ring, it can use these classes to convert to the spe-
cific Java object. The code for get Property would look like the following code snip-

pet that uses the generic property-handling mechanism:

/**
* The standard getProperty method that returns a string
*/
public String getProperty (String propertyName)
throws PropertyException {

// Ensure that this is a property on this object.
if (!attributeMetadata.containsKey (propertyName)) {
throw new PropertyException (propertyName +

" is not a property of " + bom.getName()) ;

Object value = null;

try {
// Get the member variable value as an object.
Object obj =
PropertyUtils.getProperty (this, propertyName) ;

Building Business Objects: Managing Properties and Handling Errors

// Convert the object to a string using the
// property-handler mechanism.
PropertyMetadata prop =

getPropertyMetadata (propertyName) ;
String type = prop.getTypel() ;
value = convertToStringFormat (type,obj) ;

} catch (Exception ex) {
throw new PropertyException(ex.getMessage()) ;

if (value == null) return null;
return value.toString() ;

/**
* A helper method to invoke the
* property-handling mechanism
*/
public Object convertToStringFormat (String type,
Object value)

throws PropertyException {

// If no value exists, you can’t convert it.
if (value == null) {
return null;

// Look up the property type, get an instance of the
// handler class based on the metadata, and
// convert the value.
PropertyHandler handler = null;
try {
handler = (PropertyHandler)
CachelList.getInstance() .getObject (
"PropertyTypeCache", type) ;
} catch (BlfException ignoreForNow) {}

if (handler == null) {

throw new PropertyException("Property type " + type
+ " is not a defined type in the metadata.");

return handler.convertToStringFormat (value) ;

Thus, if the sample Account Entity Bean had a last-modified date property and the
following statement was executed:

System.out.println("The account was modified on: " +
account .getProperty ("lastModifiedDate") ;

78

J2EE Best Practices: Java Design Patterns, Automation, and Performance

You would see the following written to standard out:

The account was modified on: 07/14/1972

.m If the property-handling mechanism was used generically as in the pre-
ceding example, you need to implement PropertyHandler classes for all of
the data types. This is not a problem or even a performance issue because of the
simplicity. However, it does require the implementation of some primitive
implementations in the business logic foundation.

For example, the St ringHandler class would look like this:

public class StringHandler
implements PropertyValidator, PropertyHandler {

public void validateProperty (Object wvalue)
throws ValidationException {

if (! (value instanceof String)) {
throw new ValidationException (
"Invalid object type for numeric property.");

public Object convertToStringFormat (Object value)
throws PropertyException {

return value;

public Object convertToObjectFormat (Object value)
throws PropertyException {

return value;

public String convertToDisplayFormat (Object value)
throws PropertyException {

return convertToStringFormat (value) .toString() ;

The property-handler implementation for decimals is fairly simple as well. If
you are happy with the toString implementation of the object, as is the case for
BigDecimal, you can simply return the object when converting to the external for-
mat. Converting to internal format in this case only requires you to construct a
BigDecimal object, passing the string as an argument.

Building Business Objects: Managing Properties and Handling Errors

79

Effect on setProperty Method

Similar to getProperty, you could allow the standard set Property method to
take String representations for non-String properties. The setProperty
method can be modified to use the property-handler class to convert values into the ex-
plicit Java data types for Entity Beans and to strings for Java business objects. The code
for Entity Bean set Property would be modified as such:

public void setProperty (String propertyName, Object value)
throws PropertyException {

// Ensure that this is a property on this object.
if (l!attributeMetadata.containsKey (propertyName)) {
throw new PropertyException (propertyName +

" is not a property of " + bom.getName()) ;

// Validate the data type first because you
// are going to set the actual member variable.
PropertyMetadata prop =
getPropertyMetadata (propertyName) ;
String propType = prop.getType();

try {
// Validate the data type first.
validatePropertyDataType (propType, value) ;

// Use the utility class to invoke the set method.
PropertyUtils.setProperty (this, propertyName,
convertToObjectFormat (propType, value)) ;

} catch (Exception ex) {
throw new PropertyException(ex.getMessage()) ;

/**
* Helper method to invoke the property-handling mechanism
*/
public Object convertToObjectFormat (String type,
Object value)
throws PropertyException {

// If no value exists, you can’t convert it.
if (value == null) {
return value;

80 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Look up the property type, get an instance of the
// handler class based on the metadata, and
// convert the value.
PropertyHandler handler = null;
try {
handler = (PropertyHandler)
CacheList.getInstance () .getObject (
"PropertyTypeCache", type) ;
} catch (BlfException ignoreForNow) {}

if (handler == null) {
throw new PropertyException("Property type " + type
+ " is not a defined type in the metadata.");

return handler.convertToObjectFormat (value) ;

.]m] A corresponding Java business object implementation that stored
properties as a collection of String objects would invoke the convert-
ToStringFormat method instead within setProperty.

Use in Value Conversions

You can also use this mechanism for another purpose. Sometimes the storage format,
or internal format, is different than the input format (or external format). As a con-
trived example, take the Social Security number property. Assume the external format
is “xxx-xx-xxxx.” However, you don’t want to store the extra dashes and waste two
characters, so you will store the SSN as “xxxxxxxxx.” You can use the property-handler
mechanism to convert between the two. The convertToObjectFormat removes
the dashes and the convertToStringFormat adds the dashes. The SSNHandler
would look like this:

public class SSNHandler
implements PropertyValidator, PropertyHandler

/*
* Validation method from previous example
*/
public void validateProperty (Object value)
throws ValidationException {

// validation code here...

public Object convertToStringFormat (Object value)
throws PropertyException {

Building Business Objects: Managing Properties and Handling Errors 81

// Ensure that you are dealing with a string.
if (! (value instanceof String)) {
throw new PropertyException (
"SSN must be a string value");

// Make sure the string is the right length.
String strValue = (String) value;
if (strvValue.length() != 9) {
throw new PropertyException (
"SSN must be 9 digits");

// Construct the display string,

// adding the '-' characters.
StringBuffer buffer = new StringBuffer();
buffer.append(strvalue.substring(0,3));
buffer.append('-");
buffer.append(strvValue.substring(3,5));
buffer.append('-"');
buffer.append(strvalue.substring(5,9));

// Return the formatted string.
return buffer.toString() ;

public Object convertToObjectFormat (Object wvalue)
throws PropertyException {

// Ensure that you are dealing with a string.
if (! (value instanceof String)) {
throw new PropertyException (
"SSN must be a string value");

// Convert to a string for convenience.
String strValue = (String) value;

// Make sure the string is the right length.
if (strvalue.length() != 11) {
throw new PropertyException (
"Formatted SSN must be 11 characters");

// Construct the string storage format

// removing the '-' characters.
StringBuffer buffer = new StringBuffer();
buffer.append(strvValue.substring(0,3));
buffer.append(strvValue.substring(4,6));
buffer.append(strvalue.substring(7,11));

82

J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Return the formatted string.
return buffer.toString() ;

Variations on Property-Handling Approach

The SSN property may not come from the front end with the dashes in it. You may have
the user type the numbers in directly without the dashes. In this case, you could mod-
ify convertToObjectFormat to simply pass along the string. However, now you
have somewhat of a problem because a client of the business object with this property
would not be able to execute the following code:

busObj.setProperty ("ssn",busObj.getProperty ("ssn")) ;

This would fail because the getProperty would return the display format
("xxx-xx-xxxx") but the set Property is expecting a different format, one without the
dashes. Thus, you can use the convertToDisplayFormat method for this pur-
pose. The business object could expose this through a getDisplayProperty
method on the standard interface. This approach would clearly delineate between get-
ting the property for display and for usage in code. A third option is to have only the
value objects use this external conversion, because they are the ones that may be used
in the User Interaction Architecture as a data transport. Thus, this is where you would
want to have this type of presentation logic.

.m If the application architecture uses value objects as a data transport
between tiers, you may want to use this property handling mechanism only in the
value object base class. As a convenience, it is left in the business object base
class so that clients can deal with property values either as String objects or
their native Java objects. If this still bothers the purist out there, you can always
choose to keep this mechanism in the value object class so that the presentation-
type logic remains in the User Interaction Architecture.

There are a number of different ways to implement this. You can choose the best one
for your application. The concept is a powerful one that can reduce and encapsulate the
data conversion code that is often found interspersed throughout an application.

Bulk Getter and Setter Methods

It is sometimes desirable to use a single method invocation to set a number of proper-
ties on a given business object. In the case of distributed Entity Beans accessed through
a remote interface, the use of value objects is recommended for this purpose because of
the transactional and RMI overhead associated with a single remote method invoca-
tion. In the case of Java business objects and local Entity Beans, it can also be used as a
convenience to shorten the amount of code required to populate the properties of a

Building Business Objects: Managing Properties and Handling Errors

83

business object. Often there are different combinations of fields that you want to set on
a business object. With explicit setter methods, you would likely have to provide a
couple different methods to group the properties or one large method that took all of
the values. This would result in an extremely large method signature in the case of
primary objects within a design model that may have a lot of properties. With the stan-
dard business object interface, you have a generic set Property method that you can
wrap with a method that takes a collection of properties and values. This wrapper
method can then invoke set Property repeatedly. In the case of remote Entity Beans,
this is extremely effective because each of the set Property method invocations
would be local as opposed to individual remote method calls.
A bulk setter method like this might look like the following:

public void setProperties(Collection propertyNames,
Collection propertyValues) ;

If you are using property objects that encapsulate both, you could use a method like
this that takes a collection of property objects:

public void setProperties(Collection propertyObjects) ;

A more popular technique is the use of setter and getter methods that deal with
value objects. Value objects are basically objects used as data structures to hold all of
the property values for a given object. This interface might look like this for the
Account object:

public void setProperties (AccountData accountValueObject) ;

An implementation of this method is shown in the next section on value objects. The
code for the AccountData class could also have been listed here, but it would be very
similar to the first listing of the Account business object because no business logic has
been added to it yet. This comparison brings out an interesting point about value ob-
jects and business objects. They share the same core elements: the storage and manip-
ulation of a set of defined properties. Because they have these commonalities, perhaps
they should be modeled in a similar way.

Value Objects and Lightweight
Business Objects

You have just seen that value objects and business objects have an interesting relation-
ship. They both have the same state, or set of properties, although a value object is used
primarily to avoid RMI and network overhead with remote beans by transporting the
entire set of object properties at once. By comparison, a business object also contains
the business logic and persistence functions of the entity. A primary aspect of the busi-
ness object that has just been discussed is data validation at the field level. If you are
going to use value objects to transport data from the Web tier to the business objects on
the EJB tier, do you want to wait until that point to do some of this data validation?

84

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Wouldn't it be better to perform some of this validation before you get to this point so
a network trip is not wasted? If the value objects could also perform the field-level
validation, this would allow these edits to be performed further up front, and time
would be saved in these cases. Now, the value objects are more than just data struc-
tures; they have some amount of “smarts” in them. This is the concept of lightweight
business objects. You don’t want a value object to have all of the logic of a business ob-
ject because a value object should have a smaller memory footprint and lower instan-
tiation cost. However, it sometimes makes sense to put this extra bit of logic in the
value objects.

Same Properties, Same Interface

Because the value objects share the same set of properties, it makes sense that they
should share the same interface with respect to property manipulation. In the case of
explicit getter and setter methods, this means that the two objects have the same set of
methods. In the standard business object interface example, the value objects can have
their own standard interface that performs the same property management functions.
And why not use the same method signatures so that you don’t need to learn a whole
new interface? Thus, the value object interface might also look like this:

public interface ValueObject {

/*
* Property management methods
*/
public void setProperty (String propertyName, Object value)
throws PropertyException;

public String getProperty (String propertyName)
throws PropertyException;
public int getIntProperty (String propertyName)
throws PropertyException;
public BigDecimal getDecimalProperty (String propertyName)
throws PropertyException;
public Date getDateProperty (String propertyName)
throws PropertyException;

The value objects can use the same PropertyHandler mechanism described ear-
lier for general formatting logic particular to a data type. Methods to retrieve proper-
ties as specific data types are provided in the value object interface. However, the
getProperty method, which returns a St ring, will likely be used by the presenta-
tion layer. This is where the formatting logic in the PropertyHandler classes is
used. Many non-St ring properties, such as date fields, will be formatted as strings in
order to be displayed on the screen. Although this general mechanism is also used
in the business objects, you normally would not use the presentation logic piece of it in
the business object. However, the value object, if used across the architecture as is

Building Business Objects: Managing Properties and Handling Errors

85

being discussed here, is in a unique situation in that it lives on both tiers. It can be cre-
ated within either architecture layer, and it is used to transport data between the two
tiers. Thus, general formatting logic particular to a data type can be done using the
PropertyHandler mechanism in the value object base class, and additional meth-
ods on a value object subclass are a possible placeholder for other presentation logic
that can be encapsulated and reused.

As mentioned earlier with regard to bulk getter and setter methods, the business
object base class can easily implement a standard method to populate the object from a
value object. The properties in the internal value object collection map directly to the
properties in the internal business object collection. The method could be implemented
as follows for both Java business objects and Entity Beans:

public void setProperties(ValueObject value)
throws BlfException {

// Get the collection of property metadata objects.
Iterator iter = attributeMetadata.values().iterator();
while (iter.hasNext()) {
// For each one except the key field,
// set the property from the value object.
PropertyMetadata prop =
(PropertyMetadata) iter.next ();
if (!prop.isKey()) {
String propValue =
value.getProperty (prop.getName()) ;

if ((propvalue != null) &&
(!propvValue.equals(""))) {
setProperty (prop.getName (), propValue) ;

.IEm The value of key fields is not modified here because their value can be
set only at the time the object instance is created. In fact, Entity Beans throw
an IllegalStateException if the set method for a primary key field is
invoked outside of the ejbCreate method. Thus, properties that are a part of
the primary key are only set based on either the create and finder methods in the
EJB Home interface or the ejbSelect methods invoked from within a bean.

A Unified Structure for Value Objects
and Business Objects
As you have seen, the interfaces and behaviors of value objects and business objects

share a common foundation in terms of managing the set of properties that define an
object. Thus, you can leverage the value object infrastructure when building the

J2EE Best Practices: Java Design Patterns, Automation, and Performance

business objects. There are several options for structuring the value objects and
business objects:

m eave the two as separate object hierarchies.
m Have the business object interface extend the value object interface.

m Have the business object implementation classes extend their respective value
object implementation classes.

The first option does not allow as much reuse between the two, and thus is not the
preferred solution given their core similarities. You can, if you choose, implement
options two and three independently. A nice solution might also be to implement both
of them together.

By having a common interface hierarchy, you gain some flexibility when dealing
with business objects in common services or utilities. There will be cases in which you
don’t care whether you have the actual business object itself, or the lightweight version
of it (that is, the value object), you simply want to access or manage the data associated
with that object. The common interface hierarchy allows references to either type of
object as a ValueObject when you simply want to access the object’s set of proper-
ties. This modeling also works well to show the relationship between the two types of
objects in the application architecture.

The case for putting the implementation classes in a common hierarchy is a little less
clear. Because a value object simply manages the properties, you can easily have the
business object implementation classes extend their corresponding value classes. In
this case, the value object class handles the property management; the business object
subclass can extend (and override if necessary) to provide the specific business logic
functionality. This works in either the case of a standard property interface or explicit
getter and setter methods. However, if this is done, you start to dull the distinction
between the two. The business object base class can also include functionality such as
persistence and management of aggregated objects. If a common base class is shared,
this means that the value objects now have all of this functionality that goes with them,
a core set of the business object functionality aside from specific business logic meth-
ods. The concept of the value object being a “lightweight” business object gets lost a bit
because you want to be able to manage data as a set of thin objects with a small mem-
ory footprint. This becomes difficult to do if every value object carries around with it
this additional codebase, which may not even be applicable when used in the context
of the Web tier.

Thus, you may want to implement only the second option, that is, to have the busi-
ness object interface extend from the value object interface. The downside of this
approach is that the property management functionality is duplicated somewhat
between the value object base class and the business object base class. The choice of
approach can be different depending on the specifics of the project architecture. For
example, smaller applications that may not have an enterprise tier may put all of their
logic into the servlet/JSP container. In this case, there is not much need for a pure value
object. You may always want to have the actual business object, because you will
be modifying and specifying the persistence of the object’s state from within the same
context in which it is created. Architectures for larger scale implementations have a
separate Web tier and enterprise tier, and thus, they may want to distinguish between

Building Business Objects: Managing Properties and Handling Errors 87

BaseValueObject <<interface>>
) ValueObject
<<realize>> op .
PropertyValues:HashMap|-—-—-—-—--—- »| setProperty ()
getProperty ()
setProperty () getDecimalProperty ()
getProperty () getDateProperty ()
My ValueObject <<1.nterface.>> BaseBusinessObject
BusinessObject
create ()
save ()
methodl () delete() setProperty ()
method?2 () getProperty ()
<<interface>> . .
. _ MyBusinessObjectBean
MyBusinessObject ¥)
businessMethodl () :<_rEa_li_2e_>_>_ propertyl:<data types>
businessMethod?2 () property2:<data type>
businessMethodl ()
businessMethod? ()

Figure 3.2 UML Representation of Value Object and Business Object Structure.

the two as previously described. Either approach can work quite well depending on
the application requirements. For the purposes of the examples in this book, option
number two will be used where the value objects and business object share a common
interface hierarchy but have separate implementation hierarchies.

Figure 3.2 represents this design in UML (Unified Modeling Language).

Object Validation and Error Handling

Validation at the property level has already been discussed. The remaining sets of val-
idations for a given business object are:

= Object-level validation

m Cross object-level validation

Object-level validation edits require checking multiple property values in an object
and applying some business rule. An example of this might be a minimum balance

allowed for different account types. A savings account might have a higher minimum
balance than a checking account, so this edit would first look at the account type before

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Table 3.1 Types of Business Object Validation

VALIDATION TYPE EXAMPLE WHERE IMPLEMENTED
Data type Valid date format Business object base class
validate, setProperty
Required field Account number Business object base class
checks required validate
Application-specific SSN must have format PropertyHandler class
field level XX6-xx-xxxx where x is
integer 0-9
Object level If account type is Business object subclass
‘checking’, minimum template method
balance must be > $100 (i.e. blfvalidate)
Cross-object level If an account is inactive, Business object method or
no transactions can be service component invoking
posted against it business objects

validating the current balance. Validation at this level is often encapsulated in one
method of a business object, aptly called validate. This method is always invoked
as part of a save operation. Both the save and validate methods are part of the
standard interface because they are common behaviors of a business object.

Cross object-level validation edits require applying business rules across multiple
business objects. This often occurs within a hierarchy of aggregated business objects.
An example of this might be a business rule edit that prevents any new transaction
objects from being posted against an inactive account. These types of validations are
typically implemented in another business method or in a service-based component
that uses the business objects, although they can also be a part of the parent object’s
validate method.

Table 3.1 summarizes all of the different types of validation within a business object
and where they occur. Note that there is a bl fValidate method that is referred to for
object-level validation. This is a business object subclass method that will be discussed
in the next chapter on using the base class as a template for common behaviors.

The Account validation example might look like this if you assume that a checking
account has a $100 minimum balance and a savings account has a $50 dollar minimum
balance.

public void validate() throws ValidationException
{
BigDecimal balance = null;
try
{
// Get hold of the current balance.
balance = getDecimalProperty ("currentBalance") ;

// If this is a checking account, compare the
// balance against its minimum.

Building Business Objects: Managing Properties and Handling Errors

89

if (getProperty ("type").equals("C"))
{
if ((balance.compareTo (
new BigDecimal ("100.00"))) == -1)

throw new ValidationException (
"Minimum balance is not met " +
"for checking account");

// If this is a savings account, compare the
// balance against 1ts minimum.
if (getProperty ("type").equals("S"))
{
if ((balance.compareTo (
new BigDecimal ("50.00"))) == -1)

throw new ValidationException (
"Minimum balance is not met " +
"for savings account");

}
catch (PropertyException pe)
{

throw new ValidationException (pe.getMessage());

.m String literals in these code samples are kept for readability, but in
production code, these are often better kept as constants in the case of
property names and in resource files in the case of error messages.

There is a new class mentioned in this code snippet that has not been seen yet,
the ValidationException class. When a business error was encountered, a
ValidationException was thrown with the error message to be displayed to the
user. Luckily, this example had only one possible error condition in it. If more valida-
tions had been required, you might have noted the error condition and continued the
validation processing so that you could sum up all of the known errors and present the
user with the entire list for convenience.

Managing Business Errors

In the case where there are multiple validations, an error list utility would be helpful.
This utility class could manage a collection of business errors and integrate them with
their message definitions in resource files. This would provide a nice way to simplify
these validatemethods, especially those where multiple validations are taking place.

J2EE Best Practices: Java Design Patterns, Automation, and Performance

CIRI A VX {43 Use an error utility class to consistently and effectively

manage business errors in your application.

This error utility would be able to do the following things:

= Manage a list of business errors and informational messages

m [ntegrate errors with their user message templates that include run-time data
substitution

m Associate errors with particular properties if applicable

m Report whether there are any business errors that warrant a transaction
rollback

This error mechanism will eventually integrate with a number of application ser-
vices, such as transaction management and logging, and possibly even page naviga-
tion for the Web front end. The error list utility class should first encapsulate the
functions previously defined and then it can be extended and used further within the
Business Object Architecture to accomplish the integration goals.

In the foundation layer metadata, a set of error keys that map to user messages in a
resource file can be defined. You may also want to define different types of errors that
get processed differently. For example, you could use this mechanism to transport in-
formational messages back to the user. On a successful transaction, you might want to
show a message that provides a confirmation number. You can use the ErrorList
utility to track this message, which also has a key and a substitution value. However,
you do not want this message to cause the transaction to fail because it is only for in-
formational purposes. If you use this utility to do this, perhaps a better name for it
would be MessageList, but the name ErrorList will be used to convey the idea
that it also integrates with error handling and transaction management. Remember
that if an actual error is held in the list, you will want to roll back the transaction.
Another type of error you might want is a critical type error. In most normal error
cases, you want to continue processing and possibly add more errors to the list so you
can show the user the entire set at once. But, what if an error is so severe that you don’t
want to continue processing any longer because it just doesn’t make sense? For exam-
ple, in a trans ferFunds business method, one of the two accounts may not exist. It
would not make sense to continue in this condition and check whether there were suf-
ficient funds for the transfer because the transaction couldn’t take place anyway. A crit-
ical error is closely related to an exception condition, and the error utility may want to
immediately throw a ValidationException if a critical error is added to the list.

Thus, the basic types of errors to be defined are:

Informational. Message to be sent to the user that does not affect the transaction
Error. Message to be sent to the user that eventually causes a transaction rollback
Critical. Message to be sent to the user that immediately causes a transaction

rollback

There may be other levels that might fit in between these that can be created, but
these represent the primary distinctions in processing.

Building Business Objects: Managing Properties and Handling Errors 91

The ErrorList interface might look like this:

public class ErrorList

{
public void addError (String errorKey;

public void addError (String errorKey,
String argl) ;

public void addError (String errorKey,
String argl,
String arg2) ;

public void addError (String errorKey, String [] args);
public boolean isTransactionSuccess();
public int getNumberOfErrors() ;

public void throwExceptionIfErrors()
throws ValidationException;

The primary method is addError, which takes an array of arguments. The meth-
ods that take individual St ring arguments are added for convenience. You also want
a convenient method such as the isTransactionSuccess method to indicate
whether there are any errors in the list that warrant a transaction rollback.

How do you know what type a given error key represents? You can define the
error keys in the metadata and provide a type for them, or you can also override
the addError method and let the client provide the type at run time. A nice solution
is to combine the two and give the client the opportunity to override the default type
defined in the metadata. To do this, you would add the following method to your
ErrorList class:

public void addError (String errorKey,
String [] args,
int type) ;

You can define constants for the different error types for ease of use. The account
validate example could be rewritten using the error utility as follows:

ErrorList error = new ErrorList();

try
{
// Get hold of the current balance.
BigDecimal balance =
getDecimalProperty ("currentBalance") ;

92 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Validations for a checking account
if (getProperty ("type") .equals ("Checking"))
{
// Validate that the balance is above
// the minimum allowed.
if ((balance.compareTo (
new BigDecimal ("100.00"))) == -1)

errorList.addError ("CHECKING_MIN_BALANCE",
balance.toString()) ;

// Validations for a savings account
if (getProperty ("type").equals("Savings"))
{

// Validate that the balance is above
// the minimum allowed.
if ((balance.compareTo (

new BigDecimal ("50.00"))) == -1)

errorList.addError ("SAVINGS_MIN_BALANCE",
balance.toString());

}
catch (PropertyException pe)

{
errorList.addError ("GEN_PROPERTY_ERROR",
pe.getMessage()) ;

You can add the error definitions to the business object metadata. There are three
errors in the last code sample that could be defined as follows:

<BusinessErrors>
<BusinessError name="CHECKING_MIN_BALANCE" type="ERROR"
message="Minimum balance not met for checking account" />
<BusinessError name="SAVINGS_MIN_BALANCE" type="ERROR"
message="Minimum balance not met for checking account" />
<BusinessError name="GEN_PROPERTY_ERROR" type="ERROR"
message="A general property error occurred: {0}" />
</BusinessErrors>

.m The easiest substitution format to use is that of java.text.
MessageFormat because you can use this utility class in Java to do the
substitution for you. It simply states that each ordered substitution value with
the index x be specified as {x} in the message string.

Building Business Objects: Managing Properties and Handling Errors

93

The ErrorList utility needs a data structure to hold each bit of error information.
You can define a BusinessError class that holds this data for a single error. It really
acts only as a data structure with getter and setter methods. Its definition is shown
as follows:

public class BusinessError {
private String errorKey;

// Default is standard error.

private int type = TYPE_ERROR;
private String [] substitutionValues;
public final static int TYPE_INFO = 1;
public final static int TYPE_ERROR = 2;

public final static int TYPE_CRITICAL

1}
w

// Get and set methods to follow...

The eventual resulting list of these errors for a given transaction can be sent back to
the User Interaction Architecture. Within the presentation logic for displaying errors,
the error key can be used to look up the error messages from a resource file or config-
uration service. The corresponding arguments can be substituted into the message and
the error list can be displayed to the user.

When to Use Exceptions Instead of Errors

A general rule of thumb to follow regarding the use of exceptions and errors is sum-
marized by the following Best Practice statement.

1IN 4 VY91 (93 Use exceptions whenever processing should halt immedi-
ately in a given method. Business errors should then be used wherever processing
may continue in the case of an error occurring.

An extension to this rule is that the ErrorList utility should be used anytime
there are multiple edits taking place in a method. It is used to manage a list of errors,
and it works well for this purpose. However, how should the business object client be
notified if errors have occurred in a given method? You don’t usually want to make the
ErrorList the return argument for a method because business methods usually
want to return some result. Rather than create return objects that encapsulate both an
ErrorList and a return value, you can use the ValidationException class to
hold the list of errors that occurred.

m You can use the ValidationException to communicate a list of
errors back to a business object client.

94

J2EE Best Practices: Java Design Patterns, Automation, and Performance

If business errors are encountered in a method, you can throw a Validation-
Exception to notify users of the situation. This takes advantage of the power of ex-
ceptions in a programming language, which is the fact that your main body of code can
assume that operations are successful. A catch block at the bottom, outside of the main
processing logic, can be used to handle the error conditions. To use exceptions for com-
municating business errors, a method is added to the ErrorList utility that creates
aValidationException with the list of errors already in it.

public ValidationException createValidationException()
{
// Add error list to ValidationException.
ValidationException ve =
new ValidationException (
"ValidationException: see error list",
getErrorList());

return ve;

The ValidationException class would look like this:

public class ValidationException extends Exception
{
/*
* The list of errors that occurred
*/
protected ArrayList errorList = null;

/*

* Default constructor

*/
public ValidationException (String message)
{

super (message) ;

/*
* Construct a validation exception with error list.
*/
public ValidationException(String message,
ArrayList errorList)

super (message) ;
this.errorList = errorList;

/*
* Returns the list of BusinessError objects that caused
* this validation exception
*/

public ArrayList getErrorList ()

Building Business Objects: Managing Properties and Handling Errors

95

return errorList;

You can then use the throwExceptionIfErrors method on ErrorList to
communicate errors to the client. This method automatically creates the exception and
throws it if any errors occurred. It can be invoked at the end of all validate methods.

public void throwExceptionIfErrors/()
throws ValidationException

if (!isTransactionSuccess())

{

ValidationException ve = createValidationException() ;

throw ve;

For each business method that requires validation, either you can create an instance of
ErrorList,oryoucan giveall of the business objectsan ErrorList byaddingitasa
member variable to the base class. In this case, you need to add a clear method to be
able to empty thelist of errors so you can start fresh within a given method. Younow have
all of the tools you need on the ErrorList to manage business errors successfully. So
that there is an example in which multiple errors can occur, assume also that the account
number must start with a ‘C” for checking accounts (such as ‘C1234") and an ‘S’ for sav-
ings accounts (such as ‘S5678’). The validate method code would now look like this:

public void validate() throws ValidationException

{

// Create an error list for the validation.
ErrorList error = new ErrorList();

try
{
// Get hold of the current balance.
BigDecimal balance =
getDecimalProperty ("currentBalance") ;

// Validations for a checking account
if (getProperty("type").equals("C"))
{
// Validate that the account number starts
// with a 'C'.
if (! (getProperty ("number").startsWith("C")))
{
errorList.addError ("INVALID_ACCT_ NUMBER",
getProperty ("number")) ;

96

J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Validate that the balance is above
// the minimum allowed.
if ((balance.compareTo (

new BigDecimal ("100.00"))) == -1)

errorList.addError ("CHECKING_MIN_BALANCE",
balance.toString()) ;

// Validations for a savings account
if (getProperty("type").equals("S"))
{
// Validate that the account number starts
// with an 'S'.
if (! (getProperty ("number").startsWith("s")))
{
errorList.addError ("INVALID_ACCT_NUMBER",
getProperty ("number")) ;

// Validate that the balance is above
// the minimum allowed.
if ((balance.compareTo (

new BigDecimal ("50.00"))) == -1)

errorList.addError ("SAVINGS_MIN_BALANCE",
balance.toString());

}
catch (PropertyException pe)
{
errorList.addError ("GEN_PROPERTY_ERROR",
pe.getMessage()) ;

// Use the error list utility to automatically throw
// an exception with the business errors

// if any occurred.
errorList.throwExceptionIfErrors() ;

The validate example can be used as a sort of template for all validation methods.
You start out by creating an ErrorList instance, applying the validation edits within
a try-catch block, and then calling the throwExceptionIfErrors method at the
end. The try-catch block is used primarily to catch system exceptions or other general
type exceptions. In this example, the PropertyException is thrown if a given
property name does not exist for a business object. This is an exception thrown by the
business logic foundation layer. It is analogous to a system level exception that you

Building Business Objects: Managing Properties and Handling Errors

97

would not normally expect. Note that the code maps this exception to one of the de-
fined business errors. This is a common technique you will want to use for system-level
exceptions such as a RemoteException ora SQLExcept ion. These exceptions that
have technical messages will not make much sense to a user, so they should be
wrapped with some kind of meaningful business error that has been defined.

1IN X9 1[99 Map system-level exceptions to defined business errors that

have more meaningful messages that can be presented to the users.

Note that if you allow a system-level or other run-time exception to be thrown
out of a transactional EJB method, the container automatically rolls back the transac-
tion and throws either a RemoteException or a TransactionRolledBack-
Exception depending on the transaction context. In these cases, the client needs to
handle these exceptions and extract the wrapped exception to determine the cause of
failure.

The addError method can automatically throw a ValidationExceptionifa
critical level error is added to the bucket. Thus, you can use ValidationException
as the primary application-level exception. The other categories of exceptions already
mentioned include system-level exceptions such as database failures, resource unavail-
able, and other run-time Java exceptions. Many of these conditions can be handled in
try-catch blocks at the highest level of the application code on the EJB tier, usually the
service component. Again, these conditions need to be mapped to one of the defined
business errors so that consistent error messages can be provided to the user. You can
also provide the option to show or log the actual exception stack trace, which will be of
interest to any support staff, but not usually of much interest to the end user. Remember
that if you allow EJBException or other run-time exceptions to be thrown out of a
transactional method, the container rolls back the transaction automatically. If you use
an application exception, such as ValidationException, then you need to explic-
itly roll back the transaction using EJBContext .setRollbackOnly ().

The Application Exception Hierarchy

Currently a ValidationException class is defined that holds a list of business
errors. However, you may have other types of application exceptions that have mes-
sages you want to display to the user. Thus, you can move the error list member variable
to a base class for the application exceptions. There are already two exception classes
that can extend from this base class, ValidationException and Property-
Exception. The base class can be called B1 fException. This also allows you to
generically handle exceptions from the business logic foundation if you so choose. The
application exception hierarchy now looks like Figure 3.3.

Integrating Business Errors

with Transaction Management

Whenever a business error occurs, it means that a validation has failed and any data-
base updates that have already occurred should be rolled back to ensure data integrity.

98 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Exception

Message:String

getMessage ()
A

BlfException

errorList:ArrayList

getErrorList ()

A

ValidationException PropertyException

Figure 3.3 Application Exception Hierarchy.

The ErrorList utility uses a standard mechanism for communicating these business
errors back to the client, the ValidationException. You can easily integrate this
error-handling mechanism into the transaction management service by adding some
logic around the call to the validate method. This logic will actually be used in the
save template method in the business object base class, which is discussed in the next
chapter.

Here is the logic for an Entity Bean business object. The method getEntity-
Context is simply a convenience getter method added for the required Entity-
Context property of the bean. Remember that you need to explicitly vote to roll back
the transaction in the case of an application exception.

try {
// Perform the object validation.
validate() ;

} catch (BlfException ex) {
// If a business error occurred,
// vote to roll back the transaction
// and rethrow the exception that
// has the error list inside to
// communicate to the client.
getEntityContext () .setRollbackOnly () ;
throw ex;

If you were dealing with a Java business object, you would need to move this logic
back to the Session Bean service component that wrapped the business object, because
you would need to access the session context in order to vote for the transaction
rollback. When you look at the chapter on the Service-Based Architecture, you will see

Building Business Objects: Managing Properties and Handling Errors

that there may be cases in which you would want to move this logic out to the highest
level of the transaction anyway.

Revisiting Validation in the
Property-Handler Mechanism

There is now a mechanism for handling and communicating business errors to the
client. Earlier, a set of property-handling classes was created that included validation.
In the previous code examples, an exception was thrown with a message to describe
the error. In order to simplify the client code and provide consistency across the appli-
cation, the business error mechanism can also be used in the property-handler classes.

One thing to note in the property-handling classes is the fact that processing usually
halts after the first error. Thus, you might not normally be inclined to use the
ErrorList mechanism that provides more value for handling multiple errors. How-
ever, you still want to be able to use the standard error message and communication
mechanism. To do this now, you would need to create the ErrorList, add an error,
and then throw the exception. It seems as if it would be nice in this case to have a
convenience method for a single error. Thus, the following methods can be added to
ErrorList for this purpose.

public static ArrayList createSingleErrorList (String errorKey) ;

public static ArrayList createSingleErrorList (String errorKey,
String argl) ;

public static ArraylList createSingleErrorList (String errorKey,
String [] args);

The DateHandler class, discussed earlier, that manages date properties might
look like this now using these new single error methods:

public class DateHandler
implements PropertyValidator, PropertyHandler ({

public void validateProperty (Object value)
throws ValidationException {

// Since this method can be invoked with any
// object type, you need to check.
if (value instanceof Date) return;

if (value instanceof String) {
try {
SimpleDateFormat sdf =
new SimpleDateFormat ("MM/dd/yyyy") ;
java.util.Date myDate =
sdf.parse((String)value) ;
} catch (java.text.ParseException pe) {
throw new ValidationException (pe.getMessage(),
ErrorList.createSingleErrorList (
"GEN_PROP_ERR", (String) value));

100

J2EE Best Practices: Java Design Patterns, Automation, and Performance

}
} else {
throw new ValidationException (
"Invalid object type for date property.",
ErrorList.createSingleErrorList (
"INVALID_PROP_TYPE")) ;

// Property handler methods to follow...

If this same error mechanism is used throughout the code, the front end of the
application and the service components become much simpler. This will be illustrated
in the upcoming chapters on these topics.

Cross Object Validation

Validation that goes across multiple business objects may reside either in a business
object method, a separate validator class, or in a service-based component that uses
multiple business objects. This type of validation logic can also use the error list utility.

This case presents some different challenges in terms of integrating the error list
with the overall transaction management service. There may be business errors occur-
ring in multiple business objects as well as in a service component. You need a way to
merge errors coming from different sources. If all of the components are using
ErrorList, you can put an add method that takes a collection of errors and adds
them to the list. This can be defined as:

public void addErrors (ArrayList errors);

As an example, assume you have the Cust omer object that aggregates an Address
object. The customer has a PIN number that must be a set of digits but cannot be a set of
repeating digits. The address, among other validations, requires that the state be one
of the valid fifty United States. The customer validation method might be implemented
by using the new add method on ExrrorList:

public void validate() throws BlfException
{

// Initialize the error list.

ErrorList errorlList = new ErrorList();
try
{

/*

* Validate the PIN value.

*/

String PIN = getProperty ("pin");

// The PIN digits cannot be all of the same number

Building Business Objects: Managing Properties and Handling Errors

101

// (for example, 2222).
char ¢ = pin.charAt (0);
int length = pin.length();
boolean bOtherCharFound = false;
for (int 1 = 1; i < length; i++)
{
if (pin.charAt (i) != c)
{
bOtherCharFound = true;
break;

}
if (!bOtherCharFound)
{
errorList.addError ("PIN_SAME_NUMBER", pin);

// Validate the aggregated address object.
getAddress () .validate() ;

}

catch (validationException ve)

{
// Add any business errors from the address
// in with your current list of errors.
errorList.add(ve.getErrorList ());

}

catch (PropertyException pe)

{
errorList.addError ("GEN_PROPERTY_ERROR",

pe.getMessage()) ;

// Throw a validation exception if any
// errors occurred.

errorList.throwExceptionIfErrors() ;

Impact of EJB 2.0 on Exception Handling

There is one small side effect of the introduction of local interfaces into the EJB specifi-
cation. Method invocations through the remote interface always led to the possibility
of a RemoteException being thrown if a system-level error occurred. Well, a local
interface is not allowed to throw a Remot eExcept ion under any of these conditions.
Thus, there is an analogous, but separate, hierarchy of local exceptions that can be
thrown from a local method invocation. Applications using the E]JB 2.0 specification
should be aware of this and handle such cases similarly to their corresponding system-
level exceptions.

102

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Best Practices for Implementing Business
Objects: Part One

This section summarizes the best practices discussed in this chapter for managing
properties and handling errors, two primary elements of implementing business
objects.

Use Strict Encapsulation

Use strict encapsulation by always accessing properties through their accessor method
in order to avoid conditions in which property values are not initialized. CMP Entity
Beans actually force this behavior due to the use of abstract accessor methods on
the bean implementation class.

Use a Standard Interface for
Business Objects

Have business objects implement a standard interface so that they may be referred to
generically throughout application and foundation layer code. Consider the use of a
generic property management interface to provide convenient methods for property
access. The standard business object interface can extend a standard value object inter-
face so that services can generically refer to either one when no distinction is required.

Consider the Use of Metadata-Driven
Components and Reusable
Property Definitions

Metadata can be used to define the validation and formatting of property values. A
business object base class can provide an extendible foundation that uses the metadata
to implement reusable property definitions. This approach or some equivalent mecha-
nism should be used where possible to avoid redundant code and ensure property
validation takes place.

Develop a Consistent Approach
for Managing Business Errors

A consistent, manageable approach to error handling is an important aspect of busi-
ness objects in transactional applications. Use a mechanism such as the error list utility
discussed in this chapter to manage a list of business errors and communicate them
back to clients in a standard way. A standard application exception can be used to com-
municate a list of errors back to a client. The error list utility should be integrated into
the transaction management service to ensure data integrity.

Building Business Objects: Managing Properties and Handling Errors

103

Using Exceptions

Use exceptions when processing should be halted or to communicate a list of errors to
a client. Use the error list utility and business errors when multiple validations are
taking place or processing should continue in the case of a business error.

Presenting Meaningful Error

Messages to the User

Map all system-level exceptions to defined business error codes. Each business error
code should have a defined error message that is meaningful to the user. The defined

messages can also be used as templates so that run-time values can be added to pro-
vide additional information.

Summary

Two primary responsibilities of business objects are to manage the properties of the
object and handle any errors that occur. Property management includes providing
accessor methods, formatting and converting property values, and validating basic
data. In addition to field-level validations, error handling as a whole includes business
logic validations at the object level and cross-object level, as well as general exception
handling. The approach for all of these responsibilities can be implemented in a simi-
lar way for either Java classes or Entity Beans.

These practices provide the basics for building business object components that can
manage data and handle errors. The next chapter builds on these concepts to provide
a complete business object implementation. The topics of persistence, object relation-
ships, and the use of the template method pattern are discussed next.

Building Business Objects:
Persistence, Relationships, and
the Template Method Pattern

This chapter first discusses the persistence implementation used by the business
objects. It then looks at how object relationships are implemented, in particular, aggre-
gated objects that are managed by their parent object. The Template Method pattern
will also be applied to the business object hierarchy in order to execute common busi-
ness logic that is customized for each object. A primary example of this is the save
template that is executed before the object is saved to the database.

Object Persistence

This section discusses four different options for implementing business object
persistence:

m JDBC (Java Database Connectivity) using explicit data objects
JDBC using a metadata-driven approach

L
m Use of persistence frameworks and object-relational mapping tools
m CMP Entity Beans

105

106

J2EE Best Practices: Java Design Patterns, Automation, and Performance

The first three options can be used with either Java business objects or BMP
Entity Beans. The fourth option is limited to persistence that is invoked through the
container’s Entity Bean mechanism. Keep in mind that persistence vendors are likely
to have products that work with both Java classes and Entity Beans, so the distinction
between options 3 and 4 can be viewed as the use of the Entity Bean CMP specification
to invoke the persistence service as opposed to Java Data Objects (JDO) or some other
specification.

Keep in mind that if you use a Java business object implementation, you must
implement your own persistence layer or else use a third-party solution. Even if you
use Entity Beans, you may still want to use your own collection and database query
services for efficiency. The JDBC utility class referred to in these chapters can be used
in either approach to perform regular database queries outside the scope of business
objects. For collections or lists of objects, there is a section in this chapter on collection
services. For now, however, the focus is on single business objects and their persistence
in a database.

JDBC in Explicit Data Objects

In this option, you can add methods to the standard business object interface to deal
with object persistence. As discussed earlier, the actual database logic is isolated in a
set of objects called the data-access layer. The actual implementation of the persistence
methods on the business object (for example, insert, update, and delete) will
delegate their responsibilities to the corresponding data-access object. A typical pattern
for implementing this logic involves populating a value object with the property
values and passing it as an argument to the corresponding data-access method. The
data object methods could take the individual property values as arguments, but it is
usually easier to wrap them all in a value object, especially if value objects are used
throughout the Business Object Architecture. Assume for the persistence examples that
the properties of the Account object (for example, ID, account number, and current
balance) are all stored in the same table named ‘account.’
The persistence methods of the Account object might look like this:

public class Account

{

public void insert() throws PersistenceException

{

// Construct a value object from the property values.
AccountData valueObject = new AccountDatal() ;
valueObject.setId(generateNewAccountId()) ;
valueObject .setNumber (getNumber ()) ;
valueObject.setCurrentBalance (getCurrentBalance()) ;

// Delegate the persistence to the data-access object.
AccountDataObject dataObject
= new AccountDataObject () ;

Persistence, Relationships, and the Template Method Pattern

107

dataObject.insert (valueObject) ;

public void update() throws PersistenceException

{
// Construct a value object from the property values.
AccountData valueObject = new AccountDatal() ;
valueObject.setId(getId());
valueObject .setNumber (getNumber ()) ;
valueObject.setCurrentBalance (getCurrentBalance()) ;

// Delegate the persistence to the data-access object.
AccountDataObject dataObject

= new AccountDataObject () ;
dataObject.update (valueObject) ;

public void delete() throws PersistenceException

{
// Construct a value object from the property values.
// You need only the key value to delete the instance.
AccountData valueObject = new AccountDatal() ;
valueObject.setId(getId()) ;

// Delegate the persistence to the data-access object.
AccountDataObject dataObject

= new AccountDataObject () ;
dataObject.delete(valueObject) ;

The actual data object methods construct the proper SQL statement, marshal the
property values, and execute the statement. As an example, the update method
would look like this:

public int update (AccountData account)
throws PersistenceException

Connection conn = null;
Statement stmt = null;
PreparedStatement pStmt = null;
int result = 0;

try

{
// Obtain a database connection from
// a defined data source named 'txDataSource'.
InitialContext ctx = new InitialContext () ;

108 J2EE Best Practices: Java Design Patterns, Automation, and Performance

DataSource ds =
(DataSource) ctx.lookup("txDataSource") ;
conn = ds.getConnection();

// Create a prepared statement to update
// your object to the database.
pStmt = conn.prepareStatement ("update account " +
"set number = ?, balance = ? where id = ?");
pStmt.setString(1l, account.getNumber()) ;
pStmt .setBigDhecimal (2,
account .getCurrentBalance()) ;
pStmt .setString (3, account.getId());

// Execute the statement.
result = pStmt.executeUpdate() ;

}
catch (SQLException sglEx)
{
throw new PersistenceException ("SQLException" +
" occured in account update. Message=> " +
sqlEx.getMessage ()) ;
}
catch (Exception ex)
{
throw new PersistenceException("General exception"
+ " occured in account update. Message => "
+ ex.getMessage());

}

finally
{
if (pStmt != null)
{
try {
pStmt.close() ;
} catch (SQLException sglEx) {
sqlEx.printStackTrace () ;
}
}
if (conn != null)

{
try {
conn.close() ;
} catch (SQLException sglEx) {
sglEx.printStackTrace () ;

return result;

Persistence, Relationships, and the Template Method Pattern

109

Best Practices for Using JDBC within
an Application

If you choose to use straight JDBC code within your application, there are a few best
practices that are important to consider. The first of these is to isolate the JDBC logic in
one place.

Isolating JDBC Access

One reason to isolate JDBC access is to ensure that resources are properly managed. For
example, database connections are pooled by the application server and can be accessed
in J2EE application servers through the JDBC data source. It is important that these
resources be closed and returned to the pool immediately after being used by enterprise
components. Any resources that are left open can cause resource contention among
transactions and lead to degradations in scalability. Thus, it is a good practice to isolate
the actual JDBC code in one place so that it can be implemented correctly and handle all
error conditions appropriately.

13RI VX9 (9] Isolate the JDBC logic to execute a SQL statement in a com-
mon utility class. This prevents every application developer from having to write
this common logic and ensures that all resources are closed properly.

A JDBC utility class can be created that provides methods to execute prepared state-
ments. This utility can be used in the data object methods to actually perform the JDBC
operations. The logic to marshal the data and construct the proper prepared statements
is done in the particular data object, but the execution of the query or statement is del-
egated to the utility class. A core method used to execute a PreparedStatement within
the JDBCUt 111ty follows:

public int executePreparedStatement (String sqgl,
ArrayList args)
throws ValidationException

int result = 0;

try

{
// Obtain a database connection from
// a defined data source named 'txDataSource'.
InitialContext ctx = new InitialContext();
DataSource ds =

(DataSource) ctx.lookup ("txDataSource") ;

conn = ds.getConnection();

// Create a prepared statement from the given SQL.
pStmt = conn.prepareStatement (sqgl) ;

// Loop through the arguments and set them in
// the prepared statement according to object type.
int count = 1;

110 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Iterator iter = args.iterator();
while (iter.hasNext ())
{
Object arg = iter.next();
if (arg instanceof String)
{
pStmt .setString (count,
(String) argqg);
}
if (arg instanceof BigDecimal)
{
pStmt .setBigDecimal (count,
(Bigbhecimal) arg) ;
}
//
// and so on for the other data types...
//

count++;

// Execute the statement.
result = pStmt.executeUpdate() ;

}
catch (SQLException sglEx)

{
throw new PersistenceException("SQLException " +
" occured in account update. Message=> " +
sglEx.getMessage ()) ;
}
catch (Exception ex)
{
throw new PersistenceException("General execption"
+ " occured in account update. Message => "
+ ex.getMessage());
}
finally
{

if (pStmt != null)
{
try {
pStmt.close() ;
} catch (SQLException sglEx) {
sqlEx.printStackTrace () ;

}
if (conn != null)
{

try {

Persistence, Relationships, and the Template Method Pattern

111

conn.close() ;
} catch (SQLException sglEx) {
sqlEx.printStackTrace () ;

return result;

This method takes a SQL prepared statement string and a collection of arguments to
be put into the prepared statement. It takes care of obtaining the connection, creating
the prepared statement, and setting all of the property values. It wraps all of this logic
in a try-catch block and closes all of the resources ina £inally clause. In order to deal
with the different data types, it uses the instanceof operator to determine what
type of object each argument is. This small example only uses Strings and BigDecimals,
but the complete implementation would simply be expanded to check for all possible
data types.

The account data object update method that uses this utility would become much
simpler. In fact, it would be responsible only for creating the SQL and passing the
correct arguments from the object’s property values. Because the JDBC logic is imple-
mented in one place, the rest of the data objects now become simpler, and they will
have a smaller code base than if this logic was duplicated. It can also ensure that
exception conditions are handled properly in one place, and this does not have to be
implemented everywhere. This also makes your testing easier because this utility gets
used quite often.

The account data object updat e method would now look like this:

public int update (AccountData account)
throws ValidationException

// Create an instance of a database utility class.
JDBCUtility dbutil = new JDBCUtility();

// Populate a collection of arguments
// to go into the prepared statement.
ArrayList args = new ArrayList(3);
args.add(account.getNumber ()) ;
args.add(account.getCurrentBalance()) ;
args.add(account.getId()) ;

// Use the utility to execute the SQL update.
// The utility populates the prepared statement
// based on the object type of the argument.
return dbutil.executePreparedStatement (
"update account set number = ?, balance = ? "
+ "where id = ?", args);

112

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Externalizing the SQL from the Code

The data-access object for the Account business object has the update SQL string
directly in the update method code. This works fine; but what if you need to change
the column names in your database? You will need to go into the data-access object
code to make the change, recompile the application, and redeploy it to the application
server. In some organizations, the database schemas are relatively stable, and this does
not often become an issue. In other organizations and also in many software develop-
ment projects, the database schemas are often being changed quite frequently. Thus, it
can be beneficial to externalize the SQL from the data-access objects so that it does not
need to be hard-coded into the application.

Externalize the SQL from the Java code to minimize impacts
to the application if the database schema changes. The SQL strings could be
stored in a resource file or in the XML metadata and then referenced from the
application. This approach also makes it fairly easy to determine impacts to the
application if the database schema changes because the SQL is all in one
searchable repository.

It would be fairly easy to modify the executePreparedStatement method on
JDBCUtility to take a SQL identifier rather than the actual SQL string itself. The
SQL identifier could be used to look up the actual SQL string from a metadata file. This
allows you to simply make the change in the configuration file rather than in the code
itself.

JDBC Using a Metadata-Driven
Approach

Now that the majority of the JDBC logic is encapsulated in a utility class, the primary
responsibilities of the data-access object are to generate the correct SQL string and map
the property values to the database columns. If the business objects are configured
using metadata, as was described in the last chapter, you can accomplish both of these
tasks by using the metadata and a bit of extra logic in the business object base class.

To do this, you need to add the database information to the business object meta-
data. You need to know the corresponding database column names for each property.
You also need to know what the key fields are in order to construct the WHERE clause
for UPDATE and DELETE statements. At the business object level, you need to know
what database table this object is stored in.

The business object metadata will now look like this:

<Metadata>
<BusinessObject name="Account" table="account">
<Property name="id" dbname="id" type="String"
required="true" key="true" />

Persistence, Relationships, and the Template Method Pattern

113

<Property name="number" dbname="number" type="String"
required="true" />
<Property name="currentBalance" dbname="balance"
type="Decimal" required="true" />
</BusinessObject>
</Metadata>

The property metadata can now do the mapping between object properties and
database columns. Previously, this knowledge was hard-coded into the data access
method. Given the set of column names and an indicator of which one is the key field,
you can generate INSERT, UPDATE, and DELETE SQL strings for the object. The logic
to do this can be done generically in the business logic foundation, because it is entirely
driven by the metadata.

The metadata is stored in memory in an object called BusinessObject-
Metadata. Because the SQL strings are the same every time, you can put the logic to
create the SQL at this level. That way, it needs to be generated only once and can then
be shared by all business object instances of the same type. Thus, BusinessObject -
Metadata has the following methods:

i

public String getSelectSQL ()

public String getInsertSQL () ;

public String getUpdateSQL () ;
)

public String getDeleteSQL (

7

These methods construct the SQL string based on the metadata. As an example, in
the case of update, it creates a StringBuffer starting out with UPDATE <tablename>
SET and then iterates through the property list adding <columnName> = ? for each
property. Finally, a WHERE clause is added based on the key field indicated by the
property list.

You can now implement a generic update method in the business object base class.
It will not have very much logic in it. It will simply instantiate a JDBCUt11ity class
and invoke the updat e method passing the business object itself as an argument. The
generic update method on JDBCUt 111ty will implement the following logic:

1. Obtain the UPDATE SQL string from the business object metadata.

2. Iterate through the property metadata and map between property names and
database columns, setting the property value in the prepared statement. (Note
that the order of the property metadata must be the same for the SQL
generation and execution. Using ordered collections in the implementation of
the metadata classes takes care of this.)

3. Invoke the generic executePreparedStatement logic of the
JDBCUtility thatis already encapsulated.

You now have a metadata-driven persistence layer that works with any business
object configured according to the metadata schema previously shown. This is a very
powerful utility that you can use in the development of the Business Object Architec-
ture if you want to write your own persistence.

114 J2EE Best Practices: Java Design Patterns, Automation, and Performance

.m There are also other ways to accomplish the same goal of automating the
business object persistence functions. One popular way is to code-generate each
of the data access objects for each business object based on the same set of
metadata. Either method works just fine. There are a number of development
tools that use code generation to build data-access objects given a database,
object model, or set of metadata. The metadata-driven utility classes previously
described are nice if you do not have one of these code-generation utilities
available to you. One other minor benefit of this approach is a smaller code
base due to repetitive code blocks being eliminated through isolation in one
place. However, the generated data objects may be slightly faster due to their
explicit nature, which requires slightly less processing to determine data types,
and so on.

Using Persistence Frameworks
and Object-Relational Mapping Tools

Before deciding to use you own JDBC persistence solution, keep in mind that it is
fairly easy to build a simple persistence layer to use with the business objects. Either a
metadata-driven approach or code generation can be used to rapidly implement one-
to-one object to table data objects. The difficult part is building a persistence layer that
is both highly optimized and uses more complex object-relational mapping schemes.
Optimization techniques such as preventing unnecessary updates, updating only
modified fields, and using aggressive- and lazy-loading strategies can greatly affect the
overall performance of an application. These things are not trivial to implement.
Outside of using Entity Beans, there are a handful of products available, both com-
mercial and open source, that can be used for this purpose. For the examples in this
book, a popular open-source package called Castor is used.

.]m] Castor is a part of the ExoLab project. Examples in this book are based on
version 0.9.3.9. Castor can be found on the Internet at http://castor.exolab.org/.

Persistence as a Component Service

Most Java-based persistence packages, including Entity Beans, use a similar approach.
After looking at the Entity Bean approach next, it will be evident that the two business
object implementations are actually quite similar in nature. A deployment configura-
tion is used to map object properties to database tables and columns. The persistent
objects are required to implement the JavaBeans naming convention for properties so
that reflection can be used to access them at run time. A layer of abstraction is usually
placed over the persistence functions, so that in most cases, an application developer
does not explicitly control when the persistence events are invoked. A factory or query
mechanism is usually used to locate object instances. The save, or update, to the data-
base is usually triggered by the container committing the transaction. The abstract
approach allows the tools to use different optimization strategies underneath the

Persistence, Relationships, and the Template Method Pattern

115

covers such as aggressive or lazy loading. Object creation and deletion is, however, still
an explicit event that is invoked by the application developer. A standard interface is
used to provide callback methods for persistence events. This allows the application
code to be informed of the event and react to it, if necessary. For example, these inter-
faces include notification methods for the object being loaded from the database and
stored to the database. This is analogous to the ejbLoad and ejbStore methods on
the Ent ityBean interface.

Persistence Using Castor

The Castor project provides data-binding from Java objects to SQL tables, XML docu-
ments, and a number of other sources. This chapter looks only at the SQL mapping
functionality, which is implemented in the org.exolab.castor. jdo package. An
object using Castor for persistence must implement the Persistent interface. This
standard interface has the callback methods for persistence events. In addition to the
notification methods described earlier, this includes a method to give the object a
reference to the Castor Database object. The Database object represents the con-
nection to the database and is used to add Java objects to the persistence engine for a
given transaction. It has methods to create, update, and remove Persistent objects.
Existing objects are located using the OQLQuery class. This class is used to implement
a subset of the object query language as defined by the Object Management Group
(OMG) 3.0 Object Query Language (OQL) Specification. OQL is used to select objects
from the database. The basic structure of OQL is similar to SQL, except that OQL refers
to objects and properties rather than tables and columns. For a full description of these
classes, please refer to the production documentation available on the OMG Web site.

Because persistent objects must implement a Castor-specific interface, a version of
the business object base class, called CastorBaseBusinessObject, is created
specifically for the Castor implementation. This base class, as well as all of the founda-
tion classes related to Castor, is put in the bl f.castor package of the reference
architecture. The application business objects now implement both the Business-
Object interface and Castor’s Persistent interface. A basic outline of the base
class, CastorBaseBusinessObject, is shown here:

package blf.castor;

import org.exolab.castor.jdo.Database;
import org.exolab.castor.jdo.Persistent;
import blf.*;

public class CastorBaseBusinessObject
implements Persistent, BusinessObject {

protected HashMap attributeMetadata;
protected BusinessObjectMetadata bom;
protected ErrorList errorList;
protected String objectName;

private Database _db;

116 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public CastorBaseBusinessObject (String objectName) {
try {
bom =
MetadataManager.getBusinessObject (objectName) ;
attributeMetadata = bom.getPropertyMap () ;
this.objectName = objectName;

} catch (BlfException be) {
be.printStackTrace() ;

public CastorBaseBusinessObject (String objectName,
ValueObject valueObject) {
try {
bom =
MetadataManager.getBusinessObject (objectName) ;
attributeMetadata = bom.getPropertyMap () ;
setProperties (valueObject) ;
this.objectName = objectName;

} catch (Exception e) {
e.printStackTrace() ;

!/

// Implementation of business object methods to follow,

// that is, standard property management methods, and so on
//

//

// Castor JDO callbacks

//

public void jdoPersistent (Database db) {
_db = db;

public void jdoTransient () {
_db = null;

public Database getDatabase() {
return _db;

public Class jdoLoad(short accessMode) {
return null;

public void jdoBeforeCreate(Database db) {
}

Persistence, Relationships, and the Template Method Pattern

117

public void jdoAfterCreate() {

}

public void jdoStore (boolean modified) {

}

//

// Rest of JDO callbacks to follow...

//

.:Im In this code snippet, you see that no real work is being done in the
persistence callbacks. One reason for this is that the create methods cannot be
overloaded as is the case with ejbCreate methods on Entity Beans. In the next
section on object creation and instantiation, you will see that some of these
lifecycle events for Castor business objects are handled by the business object
factory mechanism. This pattern will be used to abstract the persistence mecha-
nism and simplify its integration into the Business Object Architecture. Once the
Entity Bean implementation is discussed, you will see the persistence callbacks
being used to implement business logic template methods.

The Account business object using Castor as an object-relational mapping tool then
extends CastorBaseBusinessObject and implements the JavaBeans convention
for properties. The basic code for the Account object is shown here:

package bank.castor;

import blf.*;

import org.exolab.castor.jdo.Database;

import org.exolab.castor.jdo.Persistent;

import java.math.BigDecimal;

import java.util.Date;

public class Account extends CastorBaseBusinessObject

implements java.io.Serializable, Persistent, BusinessObject

private
private
private
private
private

String id;

String number;

String type;

BigDecimal currentBalance;
Date lastModifiedDate;

public Account () {

super ("Account") ;

118 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public Account (ValueObject values) {
super ("Account",values) ;

public String getId() {
return 1id;

}

public void setId(String value) {
id = value;

public String getNumber () {
return number;
}
public void setNumber (String value) {

number = value;

public String getType() {
return type;

}

public void setType(String value) {
type = value;

public BigDecimal getCurrentBalance() {
return currentBalance;

}

public void setCurrentBalance (BigDecimal value) {
currentBalance = value;

public Date getLastModifiedDate() {
return lastModifiedDate;

}

public void setLastModifiedDate (Date value) {
lastModifiedDate = value;

//
// Business methods to follow...
//

The deployment configuration to map the account’s properties to the database is
shown here. In this case, it maps all of the properties to a single table named “account.’
Note that the ‘field” and “sql’ types have different values in some cases to properly map

Persistence, Relationships, and the Template Method Pattern

119

between SQL data types and Java data types. The mapping.xml file for the example

is as follows:

<!DOCTYPE databases PUBLIC
"-//EXOLAB/Castor Mapping DTD Version 1.0//EN"
"http://castor.exolab.org/mapping.dtd">
<mapping>
<class name="bank.castor.Account"
identity="id">
<description>Account</description>
<map-to table="account" />
<field name="id" type="string" >
<sgl name="id" type="varchar"/>
</field>
<field name="type" type="string">
<sgl name="type" type="char" dirty="check" />
</field>
<field name="number" type="string">
<sgl name="number" type="char" dirty="check" />
</field>
<field name="currentBalance" type="big-decimal">
<sgl name="balance" type="decimal" dirty="check"
</field>
<field name="lastModifiedDate" type="date">
<sgl name="last_modified_date" type="date"
dirty="check" />
</field>
</class>
</mapping>

Entity Bean Container-Managed
Persistence

/>

The abstract persistence approach used by EJB 2.0 CMP has already been discussed. It
follows a very similar pattern to the Castor business object implementation. A common
base class for Entity Beans, called EntityBaseBusinessObject, which imple-
ments the EntityBean interface, is created. Rather than having explicit property
members, abstract accessor methods are declared on the business object subclasses that
adhere to the JavaBeans property specification. The shell of the base class is shown

here:

package blf.entity;

import blf.*;
import javax.ejb.*;

public class EntityBaseBusinessObject implements EntityBean {

120 J2EE Best Practices: Java Design Patterns, Automation, and Performance

protected HashMap attributeMetadata;
protected BusinessObjectMetadata bom;
protected ErrorList errorList;

protected EntityContext myContext;

public EntityBaseBusinessObject (String objectName) {
try {
bom =
MetadataManager.getBusinessObject (objectName) ; \
attributeMetadata = bom.getPropertyMap () ;
} catch (BlfException be) {
be.printStackTrace() ;

public EntityBaseBusinessObject (String objectName,
ValueObject valueObject) {
try {
bom =
MetadataManager.getBusinessObject (objectName) ;
attributeMetadata = bom.getPropertyMap () ;
setProperties (valueObject) ;
} catch (BlfException be) {
be.printStackTrace() ;

//

// Entity Bean callback methods
//

public void ejbActivate() {

}

public void ejbPassivate() {

}

/'k'k
* Creates a new instance of the business object

* and generates a new unique object identifier
*

*/
public String ejbCreate()
throws CreateException, BlfException {

blfCreate(null) ;
return null;

public void ejbPostCreate() throws BlfException {

Persistence, Relationships, and the Template Method Pattern

121

blfPostInsert();

public String ejbCreate(ValueObject initialValues)
throws CreateException, BlfException {

try {
blfCreate(initialvalues) ;
} catch (BlfException be) {

// NOTE: This should be called only if
// the create was done in a transactional
// context. Your architecture always has
// business objects wrapped with a
// transactional service object, but
// you may want to check here first
// if there is a transaction running.
getEntityContext () .setRollbackOnly () ;
throw be;

}

return null;

public void ejbPostCreate(ValueObject initialvValues)

throws BlfException {

blfPostInsert (initialvValues) ;

public void ejbLoad() {

}

public void ejbRemove () {

}

public void ejbStore() {
}

public void setEntityContext (EntityContext newContext) {
myContext = newContext;

public void unsetEntityContext () {
myContext = null;

public EntityContext getEntityContext () {

return myContext;

122 J2EE Best Practices: Java Design Patterns, Automation, and Performance

.m In this implementation, there are not business logic template methods for
all of the entity callbacks, as is the case with ejbCreate which calls a template
method blfCreate. You could easily add hook methods for all of these, or you
can always override any of these methods in the subclass if you want to
implement functionality at these points.

The Account Entity Bean extends this base class and declares the accessor methods

as abstract.

package bank.entity;

import java.math.BigDecimal;

import java.sqgl.Date;

import blf.entity.*;

import blf.*;

public abstract class AccountBean

extends EntityBaseBusinessObject {

public AccountBean() {

super ("Account") ;

!/

// Property methods, that is, CMP fields

//
public abstract
public abstract

public abstract
public abstract

public abstract
public abstract

public abstract
public abstract

public abstract
public abstract

!/

String getId();
void setId(String value);

String getNumber () ;
void setNumber (String wvalue) ;

String getTypel();
void setType(String value) ;

BigDecimal getCurrentBalance() ;
void setCurrentBalance (BigDecimal wvalue) ;

Date getLastModifiedDate() ;
void setLastModifiedDate (Date value) ;

// Business methods to follow...

//

The ejb-jar.xml standard deployment file is used to define the CMP fields.

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd'>

Persistence, Relationships, and the Template Method Pattern 123

<ejb-jar>
<description>
<! [CDATA [Bank Sample Application]]>
</description>
<display-name>Bank Sample Application</display-name>

<entity>
<description>
<! [CDATA [Models a bank account]]>
</description>
<ejb-name>Account</ejb-name>
<local-home>bank.entity.AccountLocalHome</local-home>
<local>bank.entity.AccountLocal</local>
<ejb-class>bank.entity.AccountBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Account</abstract-schema-name>
<cmp-field>
<field-name>id</field-name>
</cmp-field>
<cmp-field>
<field-name>type</field-name>
</cmp-field>
<cmp-field>
<field-name>number</field-name>
</cmp-field>
<cmp-field>
<field-name>currentBalance</field-name>
</cmp-field>
<cmp-field>
<field-name>lastModifiedDate</field-name>
</cmp-field>
<cmp-field>
<field-name>customerId</field-name>
</cmp-field>
<primkey-field>id</primkey-field>
<ejb-local-ref>
<ejb-ref-name>Transaction</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>bank.TransactionLocalHome</local-home>
<local>bank.TransactionLocal</local>
<ejb-link>Transaction</ejb-1link>
</ejb-local-ref>
</entity>

The specific mapping from the bean’s properties to database tables is done in a
vendor-specific manner in another XML deployment descriptor.

124

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Business Object Creation
and Instantiation

It is a good idea to abstract the particular persistence mechanism you are using from
your business object client code. Enterprise JavaBeans enforce a similar abstraction
through the use of the Home interface. The EJB Home interface is used to create new
instances of enterprise beans, discover existing instances, and delete existing instances.
In the case of Castor, the Object Query Language (OQLQuery) object is used to dis-
cover existing instances and the Database object is used to add and remove in-
stances. If you were using Java business objects, you could create an analogous factory
object that was used to access and create business objects. There are a couple benefits
to this approach. The primary reason is to simplify the code that uses your business
objects. For example, the service components can use an EJBFactory class to handle
the JNDI lookup of the Home interface and the invocation of the finder method. In the
case of Castor, you can create some standard methods that encapsulate the use of OQL
to look up existing objects. This speeds up the development of the service components
by factoring out redundant code. It also allows you the opportunity to optimize these
steps if you choose to do so. For example, in some cases, you can cache the Home in-
terface and save yourself a JNDI lookup. This technique will be discussed in detail in
the Performance chapter. Another benefit of this approach is that it isolates the client
code as much as possible so that there is less of an impact if you choose to change your
persistence implementation. Finally, you can also standardize the error handling for
cases for which an existing business object is not found.

Whether you are using Entity Beans or regular Java business
objects, use a factory method (Erich Gamma et al. 1995) abstraction to create and
discover instances of business objects. This simplifies the client code and provides
a hook for potential future optimizations such as caching EJB Home interfaces.
You can create a BusinessObjectFactory utility class to do this. In the case
of EJBs, the BusinessObjectFactory can use the EJB Home interface to look
up the Entity Bean. In the case of Java business objects, you can instantiate and
populate the proper business object within the BusinessObjectFactory.

Figure 4.1 represents the object model for this pattern.

.]m] This pattern as shown can be used to create both EJB, Java, and
Castor business object implementations. Three implementation classes,
EJBFactoryImpl, JavaFactoryImpl, or CastorFactoryImpl, can either
implement the same interface or extend from a common base class. This can be
helpful if a project uses both Java business objects and Entity Beans or if there is
consideration for future migrations between the different options. This additional
flexibility may not be required on projects in which a clear direction has been set
on the business object implementation model.

Persistence, Relationships, and the Template Method Pattern

125

BusinessObjectFactory
<<interface>>
BusinessObject
create () creates
find () > setProperty ()
findByPrimaryKey () getProperty ()
delete()
EJBFactoryImpl JavaFactorylmpl CastorFactoryImpl

Figure 4.1 BusinessObjectFactory Object Model.

The business object factory can also help automate some common steps in compo-
nents that update or create business objects. On both insert and update operations, you
will often have data that you want to use to populate the business object coming from
the User Interaction Architecture. One common data structure used for this is the
value object. Thus, you can overload your factory method for creation to take a value
object, and the BusinessObjectFactory can populate it using the set Proper-
ties(ValueObject valueObject) method. Another common operation you
need to perform is to create an existing instance, represented by a value object, into a
business object instance that you can use. This function can also be provided by the
BusinessObjectFactory.

The factory methods are sometimes used to invoke Template Methods for insert and
update operations. The Template Method pattern, described later in this chapter, is a
complimentary technique that is used with the object factory to automate common
steps while also providing extensibility for object specific logic.

The methods for the base factory might look like this:

/*
* Create a new instance of a business object.
*/
public static Object create(String objectName)
throws BlfException;

/*

* Create a new instance of a business object with initial
* values.

*/

126 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public static Object create(String objectName,
ValueObject initialValues)
throws BlfException;

/*
* Discover an instance of a business object
* with the given key object.
*/
public static Object findByPrimaryKey (String objectName,
Object keyObject)
throws BlfException;

/*
* Discover an instance of a business object using
* the given query and arguments.
*/
public static Object find(String objectName,
String queryId,
ArrayList args)
throws BlfException;

Each method takes the business object name as an argument. In the business logic
foundation, this equates to the name of the object in the metadata. In the case of Entity
Beans, this can then be mapped to the JNDI name. It is a good idea to make the JNDI
name and the metadata name the same if you are using the foundation layer with
Entity Beans. In the case of Java objects, the factory uses the metadata to determine the
business object class name so that it can instantiate the object. In the EJB implementa-
tion, it uses a JNDI lookup to find the Home interface and call the appropriate method.

Creating New Instances

The create methods for a Castor implementation will now be discussed. To create a
new object instance, you add a method to your business object interface, create, that
sets any initial values and creates any generated key fields values for the new instance.
Thus, the factory create methods would look like this:

public class CastorFactoryImpl extends BusinessObjectFactory {

/*
* Create a new instance of a business object.
*/
public static BusinessObject create(String objectName,
Database db)
throws BlfException {

return create(objectName, null, db);

/*
* Create a new instance of a business object

Persistence, Relationships, and the Template Method Pattern

127

* with initial values.

*/

public static BusinessObject create(String objectName,

/*

ValueObject valueObject, Database db)
throws BlfException {

// Obtain the business object metadata.
BusinessObjectMetadata bom =
MetadataManager.getBusinessObject (objectName) ;

// Determine the business object class name.
String busObjectClass = bom.getBusObjClass () ;

// Use a helper method to create an instance

// of the given class.

BusinessObject instance =
createObjectInstance (busObjectClass) ;

// Invoke the business object create template method.

if (valueObject != null) {
instance.create (valueObject) ;
} else {
instance.create() ;

try {
// Add to the persistence engine.
db.create(instance) ;

} catch (PersistenceException pe) {
throw new BlfException (pe.getMessage());

// Invoke the postCreate business object method.
if (valueObject != null) {

instance.postCreate (valueObject) ;
} else {

instance.postCreate () ;

// Return the newly created instance to the client.

return instance;

* Helper method to create an instance of a class and

* cast to BusinessObject interface

*/

private static BusinessObject createObjectInstance (

String className) throws BlfException {

128 J2EE Best Practices: Java Design Patterns, Automation, and Performance

BusinessObject busObject = null;
try {
busObject = (BusinessObject)
(Class.forName (className)) .newInstance() ;
} catch(Exception e) {
throw new BlfException(e.getMessage());
}

return busObject;

The new business object creat e method looks like this:

public void create() throws BlfException {
create(null) ;

public void create(ValueObject initialValues)
throws BlfException {

// If initial values were supplied, populate

// the properties from the value object.

if (initialvalues != null) {
setProperties(initialvValues) ;

// From the business object metadata (bom), get the

// key field and check to see if you need to automatically
// generate a key value.

PropertyMetadata prop = bom.getKeyField() ;

if (prop.isAutogen()) {

// Use primitive algorithm - value of
// current milliseconds.

String keyValue = getNextKeyValue() ;
setProperty (prop.getName () , keyValue) ;

// Call the template method for preinsert logic.

if (initialvalues == null) {
blfPrelInsert () ;
} else {

blfPrelInsert (initialValues) ;

There is now a fair amount of logic in the process. This accomplishes the goal of
encapsulating the process of object creation and simplifying the business object
client logic.

Persistence, Relationships, and the Template Method Pattern

129

.m This example also needs to implement a unique primary key generation
mechanism in the getNextKeyValue method. There has been much written
about this topic, so this section won't go into detail, but a few thoughts on the
topic are appropriate. If you don’t mind locking in on a database, database se-
quences can work well. Otherwise, your factory implementation can grab a block
of numbers to allocate in the case of sequential numeric key values. The blocks
can be centrally defined by a database table. This avoids going to the database for
the purpose of getting a key value on every create operation. Most persistence
tools also support a variety of mechanisms for primary key generation. Castor
supports a ‘max’ key value, UUIDs, and database sequences in addition to a few
other popular techniques. You can specify the usage of these techniques in the
mapping.xml configuration file.

The business object interface now looks like this with regards to persistence:

public interface BusinessObject extends ValueObject {

/*
* Persistence methods
*/

// The create methods are invoked by BusinessObjectFactory.
// They do not need to be invoked directly by business
// object clients, but they do need to be in the standard
// interface so they can be referred to in the factory.
public void create() throws BlfException;
public void create(ValueObject initialValues)

throws BlfException;
public void postCreate() throws BlfException;
public void postCreate(ValueObject initialValues)

throws BlfException;

// A template method for saving an object. This method
// 1s invoked directly by business object clients.
public void save() throws BlfException;

// This method is invoked by the BusinessObjectFactory
// to remove an instance.
public void delete() throws BlfException;

One thing to note is that the save method does not actually trigger the update to
the database in the case of Castor business objects and Entity Beans. As mentioned ear-
lier, this event is triggered by the transaction being committed. The save method,
however, acts as a template method for business logic, which is discussed in the next
section. It encapsulates any validation and presave logic that you want executed before
the object is saved to the database.

130

J2EE Best Practices: Java Design Patterns, Automation, and Performance

.m There is a bit more flexibility when you use standard Java objects rather
than Entity Beans in regard to object creation. Regular Java classes can be
instantiated in memory and populated throughout the course of a transaction
without touching the database until the end. You can create the instance, generate
key field values, and call additional business methods to populate other proper-
ties of the object before invoking the actual database INSERT operation. Persis-
tence engines like the Entity Bean model can cause a SQL INSERT after the
ejbCreate method concludes. From this point, additional business methods
that update object properties require that the ejbStore method be used when
the transaction commits. This can be inefficient if you want to perform additional
logic to populate other properties when creating this object. In the Java model,
you can wait and perform one INSERT when you call save as opposed to the
Entity Bean model which might require an INSERT and UPDATE operation to
accomplish the same thing.

Finding Existing Instances

The lookup methods to find existing business object instances are a bit simpler than the
creation methods. In the case of regular Java objects, they can simply use utility meth-
ods on the JDBCUt 111ty object to query the database and instantiate the populated
business object. For the Castor objects, however, these methods can encapsulate basic
object queries used to locate existing instances. A query in OQL is very similar to a SQL
query. For example, the query to locate an Account object by its primary key is as
follows:

SELECT a FROM Account a WHERE id = s$1

The dollar signs represent placeholders for run-time values to be bound to the query.
Remember that the WHERE clause in OQL queries refers to actual property names
rather than database columns. OQL queries automatically take care of database joins
when the WHERE clause refers to associated objects. As an example, the Account
object has a ‘customer’ property that links it back to the owner of the account.
The query to obtain the collection of accounts for a given customer would then be as
follows:

SELECT a FROM Account a WHERE customer = S$1

This query would take the primary key property of the customer as an argument.

Find by Primary Key

From these examples, you can see that these queries can easily be generated if you
have the information in the business object metadata. Thus, you have the findBy-
PrimaryKey method on the CastorFactoryImpl class. This is a static method, so
you pass in the Dat abase instance being used by the transaction in order to create the
query object. This is needed on all of the persistence methods that use Castor.

Persistence, Relationships, and the Template Method Pattern

131

/*
* Discover an instance of a business object with the
* given key object.
*/
public static BusinessObject findByPrimaryKey (
String objectName, Object keyObject, Database db)
throws BlfException {

// Obtain the business object metadata.
BusinessObjectMetadata bom =
MetadataManager.getBusinessObject (objectName) ;

try {
// Create the arguments for the
// OQL string.

Object [] args = new Object[2];
args[0] = bom.getBusObjClass() ;
args[1] = bom.getKeyField() .getName () ;

// Create a standard OQL string
// to look up by primary key.
String oglString = MessageFormat.format (
"SELECT b FROM {0} b WHERE {1} = $1", args);

// Create the query and bind the

// arguments.

OQLQuery busobjOgl = db.getOQLQuery(oglString);
busobjOgl.bind(keyObject);

QueryResults results = busobjOqgl.execute() ;

// There should be only one object found.
if (results.hasMore()) {
Object obj = results.next();
return (BusinessObject) obj;
} else {
throw new ObjectNotFoundException (objectName,
keyObject) ;

} catch (PersistenceException pe) {
pe.printStackTrace () ;
throw new BlfException (pe.getMessage()) ;

}

This method took the query by primary key example discussed earlier and parame-
terized it into an OQL string template. From the business object metadata, this method
fills in the name of the business object and the key field property name. The run-time
argument is bound to the query, and it is executed. A singular object is returned to the
client, or an ObjectNotFoundException is thrown if no object is found. This
exception is a subclass of B1fException and is used as a standardized way to report

132

J2EE Best Practices: Java Design Patterns, Automation, and Performance

this condition. Usually, a search by primary key assumes the existence of an object, so
you can regard this as an error condition. The ObjectNotFoundException code is
shown here:

package blf;
public class ObjectNotFoundException extends BlfException {

public ObjectNotFoundException (String objectName,
Object keyObject) {
super (objectName + " object not found");

// Map to a standard application error.
setErrorList (ErrorList.createSingleErrorList (
"OBJ_NOT_FOUND", objectName, keyObject.toString()));

}

You can then customize the definition of the OBJ_NOT_FOUND error message for
your application. A basic definition might be defined as follows:

OBJ_NOT_FOUND=The {0} object with primary key {1} was not found.

.:Im You can see how the £indByPrimaryKey factory method could also
easily be implemented using straight JDBC as well. You could easily generate the
SQL just like you generated the OQL. The reference architecture isolates this type
of logic in the JDBCUtility class.

This example assumed that the object had an object identifier as a primary key field.
In most cases, this is the recommended approach for managing objects; however,
you may have objects with a more complicated key structure. In lieu of a primary
key object, you could use a value object to represent the key structure for the
findByPrimaryKey method. You could also easily create a specific PrimaryKey
base class to represent a key object. If you look at what that class would contain, it
would have a set of properties that it would need to manage. This is the same thing
that a value object does, and it has already been implemented. It generically manages
a set of properties. You could use it for this purpose rather than create a bunch of spe-
cific key classes for the business objects. Now, if you were using Entity Beans, you
would still need that type of artifact (that is, a primary key object with explicit prop-
erties) in order to use the component correctly. For the Java implementations, this is
not necessary and the standard value object suffices. This approach may make the
object purist a bit uncomfortable, and there may be a yearning for creating a subclass
of PrimaryKeyObject that extends ValueObject. This is certainly an option.
However, it requires you to convert value objects that come from the front end to a
subclass in order to use them for this purpose. This is applicable, of course, only if you
are using a value object approach to transport data between tiers. This topic will be
discussed in detail in the next chapter on Service-Based Architecture. The eventual

Persistence, Relationships, and the Template Method Pattern

133

decision to have a specific primary key class is purely a design preference, and either
choice works well. For the examples in this book, all of the objects have a single object
identifier as a primary key.

A General Find Method

You would also like to be able to define different queries for a business object so that
you can look up the object by non—key fields or combinations of values. This is analo-
gous to additional finder methods being added to an EJB Home interface. The unique
queries for a particular business object are defined by the WHERE clause portion of
the SQL or OQL. According to the same principle of isolating JDBC and SQL from the
application code, you can define these queries in the business object metadata.

As an example, say you want to look up an account based on the account number. The
account number is an external identifier sometimes given as input data from the user as
opposed to the primary key identifier in the database. You can define the following in
the metadata:

<BusinessObject name="Account"
busObjClass="bank.castor.Account"
valueObjClass="bank.AccountData" >
<Property name="id" type="String"
required="true" key="true" autogen="true" />
<Property name="number" type="String"
required="true" />
<Property name="currentBalance" type="Currency"
required="true" />
<Property name="lastModifiedDate" type="Date" />
<Property name="type" type="String" required="true" />
<Collection name="byCustomer"
query="where customer = $1" />
<Collection name="byNumber" query="where number = $1" />
</BusinessObject>

A <Collection> tag was added that defines a WHERE clause for the particular query.
The collection has the name ‘byNumber’ so that you can refer to it in the call to the
factory method. The factory appends this query to the base SELECT string, runs
the query, and returns the populated business object. For queries that return multiple
instances, there are a few options as to how you can handle these cases. You can throw
an exception if more than one business object is found. You can also add an additional
method to the BusinessObjectFactory such as findCollection, which
returns a collection of business objects. This type of operation may be better handled
by a collection service if you don’t want to deal with all of the results as business
objects. Some operations are geared more toward running queries and possibly instan-
tiating business objects from the results. This concept will be discussed in detail in the
section on object collection services later in this chapter.

For the example, imagine you have an account search function in your application.
It might use the factory as follows to get a handle to an instance of the Account

134

J2EE Best Practices: Java Design Patterns, Automation, and Performance

business object identified by the particular account number:

ArrayList args = new ArrayList(1l);
args.add (accountData.getProperty ("number")) ;
Account account = (Account)
BusinessObjectFactory.find("Account",
"byNumber",
args,
getDatabase()) ;

This code snippet takes an account value object and uses the account number prop-
erty as an argument to the query. The ‘byName’ string references the collection defined
in the metadata. The number of arguments must match up with the number of refer-
ences in the query’s WHERE clause. The factory could return a null if not found or
throw an exception if more than one customer record is found in this case.

You can also create a findCollection method that returns a collection of busi-
ness objects. An example of this would be if you want to retrieve the accounts for a
given customer. The byCustomer query was defined in the metadata that selects the
accounts by customer. The following code snippet takes a customer value object and
uses the identifier as an argument to the query. The factory returns a collection of
business objects that matched the query.

ArrayList args = new ArrayList(1l);
args.add(customerData.getProperty ("id")) ;
Collection accountList =
BusinessObjectFactory.findCollection("Account",
"byCustomer",
args) ;

The code to implement these two general find functions follows. The primary work
is done in findCollection. The individual £ind method simply delegates the call
to findCollection and throws an exception if more than one object is found. This
typically is considered an error condition, since the application using the £ ind method
expects a single object in return. If no object is found, a nul1l is returned. On the other
hand, a search on some set of nonprimary key fields does not necessarily imply the
existence of objects, so the application code can be allowed to directly handle this con-
dition. Here is the code from CastorFactoryImpl for these methods.

/*
* Discover an instance of a business object using the
* given query and arguments.
*/
public static BusinessObject find(String objectName,
String queryId, ArrayList args, Database db)
throws BlfException {

Object obj = null;
// Run the collection query and then

// pick off the first element. There
// should be only one object

Persistence, Relationships, and the Template Method Pattern 135

// in the result set.
Collection coll =
findCollection (objectName, queryId, args,db) ;
if (coll.size() > 1) {
throw new BlfException("Multiple Objects Found",
ErrorList.createSingleErrorList (
"MULTIPLE_OBJECTS_FOUND", objectName)) ;

}

Iterator iter = coll.iterator();
if (iter.hasNext ()) {

obj = iter.next();
} else {

return null;

return (BusinessObject) obj;

/*
* Discover a collection of business objects using the
* given query and arguments.
*/
public static Collection findCollection(String objectName,
String queryId, ArrayList args, Database db)
throws BlfException {

// Obtain the business object metadata.
BusinessObjectMetadata bom =
MetadataManager.getBusinessObject (objectName) ;

// Create the result collection.
ArrayList results = new ArrayList();

try {
// Create the arguments for the
// OQL string.
Object [] objArgs = new Object[1l];
objArgs[0] = bom.getBusObjClass() ;

// Create a standard OQL string
// to look up with the given WHERE clause.
StringBuffer buffer = new StringBuffer (
MessageFormat . format (
"SELECT b FROM {0} b", objArgs));
buffer.append(' ');
buffer.append (bom.getQuery (queryId)) ;

// Create the query and bind the

// arguments.

String oglString = buffer.toString();

OQLQuery busobjOgl = db.getOQLQuery (oglString);

136

J2EE Best Practices: Java Design Patterns, Automation, and Performance

int endLoop = args.size();
for (int loop = 0; loop < endLoop; loop++) {
busobjoOgl.bind(args.get (loop));

// There should be only one object found.

QueryResults queryResults = busobjOqgl.execute() ;

while (queryResults.hasMore()) {
results.add(queryResults.next ()) ;

} catch (PersistenceException pe) {
throw new BlfException (pe.getMessage());

return results;

BusinessObjectFactory and Entity Beans

One big advantage to using a factory for Entity Beans is that it greatly simplifies the
process of obtaining a component interface to the EJB. You can encapsulate the context
and JNDI lookup operations and simply provide the business object interface. If you
are using a standard business object interface as discussed in this chapter, you can have
it extend the EJBLocalObject interface so that it can also act as an EJB component
interface. The interface hierarchy is shown in Figure 4.2.

<<interface>>
EJBLocalObject

T

<<interface>>
EntityLocal
BusinessObject

setProperty ()
getProperty ()

T

<<interface>>
MyBusinessObject

businessMethodl ()
businessMethod?2 ()

Figure 4.2 EJB Business
Object Interface Hierarchy.

Persistence, Relationships, and the Template Method Pattern

137

Because this is encapsulating the EJB lookup process, you can also make the process
more efficient. JNDI operations can be relatively expensive if used for every business
object lookup in a transaction. Thus, the factory can cache the EJB Home interface in
order to save a JNDI lookup for each client that obtains a business object. This gives a
significant boost to performance for applications that have a large number of business
objects involved in a given transaction. This concept is explained fully in the chapter
on Performance. This concept also applies to the service components implemented as
Session Beans, although there is a slightly different interface for this because the
factory operations have a different meaning when referring to stateless components as
opposed to specific business object instances.

The factory methods map up directly to the EJB Home interfaces required for Entity
Beans. The create method and ejbCreate methods correspond directly. The
create interface that takes a value object can be implemented as an override of the
ejbCreate method that takes the same argument. The £ indByPrimaryKey method
is the same, and the £ind method would map up to the specific additional finder
methods that are added to the EJB Home interface.

Finding Existing Instances

This section discusses locating an Entity Bean business object by its primary key. The
first thing that ETBFactoryImpl mustbe able to do for all of its operations is to obtain
hold of the E]B Home interface. This logic can be isolated to a single method so that it can
cache the home interfaces later on if you need to do some performance optimizations. It
has everything needed to do this except the actual EJB Home interface class itself, which
is required in the narrow operation. Thus, this class name needs to be added to
the business object metadata. As an example, here is the Account metadata with the
addition in bold:

<Metadata>
<BusinessObject name="Account" busObjClass="bank.Account"
valueObjClass="bank.AccountData"
ejbHomeClass="bank.entity.AccountLocalHome" >
<Property name="id" dbname="id" type="String"
required="true" key="true" autogen="true" />

<Property name="type" dbname="type" type="String"
required="true" />
</BusinessObject>
</Metadata>

.m The EJB factory implementation always returns the local interface. Based
on previous design discussions, local Entity Beans are used most of the time. The
implementation, however, could be easily extended to deal with both local and
remote beans.

Here is the get Home Interface method in the EJB factory:

/*
* Helper method to get the EJBHome interface
*/

138

J2EE Best Practices: Java Design Patterns, Automation, and Performance

public static EJBHome getHomeInterface(String objectName,
BusinessObjectMetadata bom) throws BlfException

EJBHome home = null;

try {
// Get a naming context.
InitialContext jndiContext = new InitialContext () ;

// Get a reference to the Interest Bean.
Object ref = jndiContext.lookup (objectName) ;

// Get hold of the Home class.
Class homeClass =
Class. forName (bom.getEJBHomeClass ()) ;

// Get a reference from this to the

// Bean'’'s Home interface.

home = (EJBHome) PortableRemoteObject.narrow
ref, homeClass) ;

} catch (Exception e) {
throw new BlfException (e.getMessage()) ;

return home;

}

That takes care of getting the Home interface, but it still needs to invoke the
findByPrimaryKey method. Well, to do this generically, you won’t know the spe-
cific home interface class ahead of time, so you have to be able to invoke this method
on the fly using reflection methods. You couldn’t make a generic base interface for all
the business objects because, although you could create a common set of arguments
(such as a generic value object as a key structure), each method needs to return the spe-
cific business object home interface. Thus, it is probably safer to use reflection methods
to accomplish this. The £indByPrimaryKey method that has a single key property
would look like this:

/*
* Discover an instance of a business object with the given
* key object.
*/
public static Object findByPrimaryKey (String objectName,
Object keyObject)
throws BlfException {

// Obtain the business object metadata.
BusinessObjectMetadata bom =
MetadataManager.getBusinessObject (objectName) ;

// Get the home interface.
EJBLocalHome home = getHomelInterface (objectName, bom) ;

Persistence, Relationships, and the Template Method Pattern

139

// Invoke by findByPrimaryKey method.
PropertyMetadata keyProp = bom.getKeyField() ;
EJBLocalObject busObject = null;

try {
// Define the parameter types.
Class|[] parameterTypes = new Class([1];
if (keyProp.getType () .equals("String")) {
parameterTypes[0] =
Class.forName ("java.lang.String") ;
}
if (keyProp.getType () .equals ("Number")) {
parameterTypes[0] =
Class.forName ("java.lang.Long") ;
}
//
// and so on for the other data types...
//

Object[] args = new Object[1];
args[0] = keyObject;

// Get a handle to the finder method and invoke it.
Class homeClass = home.getClass();
Method findByPK =
homeClass.getMethod (" findByPrimaryKey",
parameterTypes) ;
busObject = (EJBLocalObject)
findByPK. invoke (home, args);

} catch (InvocationTargetException ite) {
Throwable t = ite.getTargetException() ;
if (t instanceof BlfException) {
throw (BlfException)t;
} else if (t instanceof FinderException) {
throw new ObjectNotFoundException (objectName,
keyObject) ;
} else {
throw new BlfException(ite.getMessage());
}
} catch (Exception e) {
throw new BlfException(e.getMessage());

return busObject;

}

To handle objects with multiple key fields, you can extend this logic to implement
this method:

public static Object findByPrimaryKey (String objectName,
ValueObject keyObject) throws BlfException;

140

J2EE Best Practices: Java Design Patterns, Automation, and Performance

The second argument would be a subclass of ValueObject, or alternatively, you
could have this method take a subclass of a PrimaryKeyClass that you created.

The AccountLocalHome interface also had a few finder methods defined specific
to the Account bean. They were findByNumber and findByCustomer, which
were analogous to the previous examples using the Castor persistence framework.
Again, you can see the similarity of the two approaches. Rather than using OQL, J2EE
uses an EJB QL to define a portable query language for enterprise beans. EJB QL is also
very similar to SQL. These two queries are defined in the ejb-jar.xml deployment
descriptor as follows:

<entity>
<description>
<! [CDATA[Models a bank account]]>
</description>

<ejb-name>Account</ejb-name>

<query>
<query-method>
<method-name>findByNumber</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</query-method>
<ejb-gl>
<! [CDATA[SELECT OBJECT (a) FROM Account a
WHERE a.number = ?1]]>
</ejb-qgl>
</query>
<query>
<query-method>
<method-name>findByCustomer</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</query-method>
<ejb-gl>
<! [CDATA[SELECT OBJECT (a) FROM Account a,
IN (a.customer) AS ¢ WHERE c.id = ?1]11>
</ejb-qgl>
</query>
</entity>

There are a few options with regard to exposing these finder methods. The first
option is to allow the business object client to use the factory’s helper method to get
the EJB’s Home interface. The client can then invoke the finder methods directly. A
second option would be to implement a £ind method on EJBFactory that used
reflection to invoke the finder method. This continues the theme of abstracting the
persistence layer, similar to what was done with the findByPrimaryKey method.
In either case, you will want to keep the get HomeInt erface method public so that

Persistence, Relationships, and the Template Method Pattern

141

clients can use it to invoke any static business methods available on the home
interface.

Creating New Instances

To create new object instances, the EJBFactoryImpl can call the create method on
the Home interface for a given Entity Bean. Just like calling the finder method, it will
use Java reflection to invoke the method. Because a database INSERT is normally
executed by the container at the end of the ejbCreate method for CMP beans, you
want to make sure you provide the ability to provide all of the initial values so that you
can avoid an UPDATE of this row in the same transaction. Thus, you should always
provide an additional create method that takes a set of initial values. You can use the
generic value object structure to hold these properties. Thus, for the Account Entity
Bean, the local home interface includes these methods:

public interface AccountLocalHome extends EJBLocalHome
{
public AccountLocal create ()
throws CreateException, BlfException;

public AccountLocal create (ValueObject initialValues)
throws CreateException, BlfException;

public AccountLocal findByPrimaryKey (String id)
throws FinderException;

//

// Additional finder methods

/7

public AccountLocal findByNumber (String number)
throws FinderException;

public Collection findByCustomer (String customerId)
throws FinderException;

}

The factory method to invoke the create methods follows. This code shows the
EJBFactoryImpl method that takes the initial values. The first method without
arguments is just a simpler version of this one.

/*
* Create a new instance of a business object
* with initial values.
*/
public static Object create(String objectName,
ValueObject valueObject)
throws BlfException {

// Obtain the business object metadata.
BusinessObjectMetadata bom =
MetadataManager.getBusinessObject (objectName) ;

142 J2EE Best Practices: Java Design Patterns, Automation, and Performance

}

One interesting thing to note about this code sample is the catch block for
InvocationTargetException. Becauseitisusing reflection toinvoke the method,
any exception that occurs is wrapped with this exception. You want the B1f-
Exception with its list of errors to be the actual exception thrown back to the client

// Get the home interface.
EJBLocalHome home = getHomelInterface (objectName, bom) ;

EJBLocalObject busObj = null;

try {
// Define the parameter types.
Class|[] parameterTypes = new Class([1];
parameterTypes[0] =
Class.forName ("blf.ValueObject") ;

Object[] args = new Object[1];
args[0] = valueObject;

// Get a handle to the finder method and invoke it.
Class homeClass = home.getClass() ;
Method createwWithInitValues =
homeClass.getMethod ("create", parameterTypes) ;
busObj = (EJBLocalObject)
createWithInitValues.invoke (home, args);

} catch (InvocationTargetException ite) {
Throwable t = ite.getTargetException() ;
if (t instanceof BlfException) {
throw (BlfException)t;
} else {
throw new BlfException(ite.getMessage());
}
} catch (Exception e) {
throw new BlfException(e.getMessage());

return busObj;

so that the error handling works as it normally does.

And finally, you have the ejbCreate implementation on the Entity Bean base
class, which delegates its work to its corresponding method, b1 fCreate. The method
getEntityContext is simply a convenience getter method added for the required

EntityContext property of the bean.

public String ejbCreate(ValueObject initialValues)

throws RemoteException, CreateException, BlfException

try {
blfCreate(initialvValues) ;
} catch (BlfException be) {

Persistence, Relationships, and the Template Method Pattern

143

// NOTE: This should be called only if
// the create was done in a transactional
// context. Your architecture always has
// business objects wrapped with a
// transactional service object, but
// you may want to check here first
// 1f there is a transaction running.
getEntityContext () .setRollbackOnly () ;
throw be;

}

return null;

public void blfCreate(ValueObject initialValues)
throws BlfException, RemoteException

// If initial values were supplied, populate
// the properties from the value object.
if (initialvValues != null) {

setProperties (initialvValues) ;

// From the business object metadata (bom), get the

// key field and check to see if you need to automatically
// generate a key value.

PropertyMetadata prop = bom.getKeyField() ;

if (prop.isAutogen()) {

// Generate the new key value and set the
// property.

String keyValue = getNextKeyValue() ;
setProperty (prop.getName () , keyValue) ;

// Call the template method for preinsert logic.
blfPrelInsert () ;

public void ejbPostCreate (ValueObject initialvalues)
throws RemoteException

blfPostInsert () ;

// Template method - Base class implementation is empty.
public void blfPreInsert () throws BlfException {
}

// Template method - Base class implementation is empty.
public void blfPostInsert () {
}

144 J)2EE Best Practices: Java Design Patterns, Automation, and Performance

There are a couple of things to note in this bit of code:

m]t explicitly votes to roll back the transaction if the e jbCreate fails due to an
application exception thrown during validation. In most cases, the Entity Beans
are wrapped by a transactional Session Bean, although you can optionally vote
to roll back the transaction if you catch the exception in the Session Bean. This
code snippet shows how to create a self-contained component that makes no
assumptions about the transactional context of the client. In either case, make
sure that the home interface create methods are declared to be transactional.

m To set the initial values, it reuses the same bulk setter method
(setProperties) that takes a ValueObject.

m |nthe ejbCreate and ejbPostCreate, it invokes the template methods
blfPrelInsert and blfPostInsert, which can be optionally
implemented by the specific business object subclasses.

Delete Operations

The delete operation should also be invoked through the business object factory. These
method implementations are fairly straightforward and follow a similar pattern as did
their predecessors. Like some of the earlier methods, the delete methods take the ob-
ject name and key object as parameters. They then invoke the corresponding remove
method on either the EJB Home interface or the persistence engine interface.

Aggregated Objects

Business objects often aggregate other business objects. In object designs with good en-
capsulation, it is the responsibility of the parent business object to manage instances of
child objects. For example, refer back to the bank’s object model. The Account object
may aggregate zero-to-many Transaction business objects that represent different
types of account transactions such as deposits, withdrawals, and fees incurred against
an account. Thus, when the deposit method on the Account object is invoked, it is
the responsibility of the Account object to create a new Transaction instance and
have its state persist in the database. If the Account is required to calculate total
deposits for a given month, it may need to iterate through all of its Transaction
instances and sum up the total of all deposit-type transactions.

Managing Aggregated Objects
The parent object is often responsible for the following actions:
m Providing accessors (get and set methods) and maintaining referential integrity

m Cascading validation and persistence (a ‘save’ template) within a transaction
m (Cascading deletes
The EJB implementation of container-managed relationships (CMR) is discussed

first. Other Java persistence frameworks such as the Castor examples handle the concept
of aggregated objects in a similar manner. The EJB 2.0 specification provides component

Persistence, Relationships, and the Template Method Pattern

145

services to manage the aspects of aggregated objects described earlier, including local
interfaces as a lightweight mechanism to communicate between the components.

Access Methods

Just as Entity Beans define get and set methods for CMP fields, they also define acces-
sor methods for aggregated business objects. These properties are defined as CMR
fields in the ejb-jar.xml deployment descriptor. Most containers offer get methods
that use the concept of lazy instantiation to make using the parent object more efficient.
This means that the object does not instantiate the aggregated objects until the get
method is invoked, that is, until it is needed. Otherwise, instantiating an Account ob-
ject just to manipulate the account type would also mean instantiating all of its
aggregated Transaction objects.

As an example, take the Customer object, which aggregates a single Address
object. The CustomerBean is defined to have an address property with the following
methods for this one-to-one relationship:

public abstract CustomerLocal getCustomer () ;
public abstract void setCustomer (CustomerLocal customer) ;

The Customer object also has zero-to-many aggregated Account objects. In this
relationship, the Account object has a customer property that points back to its
owner. For this one-to-many relationship, accessors are defined that use collections. In
practice, the set method that takes a collection is rarely used. Typically, the client gets
the collection and then adds or removes objects from it. The accessor methods follow:

public abstract Collection getTransactions() ;
public abstract void setTransactions (
Collection transactions);

The code to implement these accessor methods on an Entity Bean is supplied by the
container in its generated subclasses.

m If you want the business object clients to be able to access the
aggregated components, you need to define these methods in the local interface
as well. For convenience, you can also define standard get and set methods for
related objects in the base class and the standard business object interface. This
allows you to deal with aggregated objects in a generic manner, similar to the way
properties are handled. You can also add these relationships to the business
object metadata to verify that you are dealing with a valid relationship.

You can add the get and set relationship methods to the version of the standard
business object interface for Entity Beans. This interface now looks like this

public interface EntityLocalBusinessObject
extends EJBLocalObject {

/**
* Template methods

146 J2EE Best Practices: Java Design Patterns, Automation, and Performance

*/
public void save() throws BlfException;

public void delete() throws BlfException;

public void validate() throws BlfException;

/**
* Property management methods
*/
public void setProperty (String propertyName, Object value)
throws PropertyException;

public String getProperty (String propertyName)
throws PropertyException;
public int getIntProperty (String propertyName)
throws PropertyException;
public BigDecimal getDecimalProperty (String propertyName)
throws PropertyException;
public Date getDateProperty (String propertyName)
throws PropertyException;

public void setProperties(ValueObject valueObject)
throws BlfException;
public ValueObject getValueObject () ;

/'k'k
* Relationships management methods
*/
public void setRelationship(String cmrName,
EntityLocalBusinessObject object)
throws BlfException;
public void setRelationship(String cmrName,
Collection coll)
throws BlfException;
public EntityLocalBusinessObject getOneToOneRelationship (
String cmrName)
throws BlfException;
public Collection getOneToManyRelationship (String cmrName)
throws BlfException;
}

You can add a <Relationship> tag to the metadata to define the relationship. The
account metadata for Entity Beans might look like the following:

<BusinessObject name="Account"
valueObjClass="bank.AccountData"
ejbHomeClass="bank.entity.AccountLocalHome" >
<Property name="id" type="String" required="true"
key="true" autogen="true" />

<Property name="type" type="String" required="true" />

Persistence, Relationships, and the Template Method Pattern 147

<Relationship name="transactions" multiplicity="many" />
</BusinessObject>

The name of the relationship should be the same as the name of the CMR field. This
metadata defines the relationship in the similar manner to what you must do in the
ejb-jar.xml deployment descriptor. As another example, the Customer object has
two different relationships that would be defined as follows:

<BusinessObject name="Customer"
valueObjClass="bank.CustomerData"
ejbHomeClass="bank.entity.CustomerLocalHome" >
<Property name="id" type="String" required="true"
key="true" autogen="true" />

<Relationship name="address" multiplicity="one" />
<Relationship name="accounts" multiplicity="many" />
</BusinessObject>

The standard get and set methods on EntityBaseBusinessObject are fairly
straightforward. They can be treated basically like any other property, although you
get to ignore the formatting and validation aspects. These methods would be imple-
mented as follows:

public void setRelationship(String cmrName,
EntityLocalBusinessObject object)
throws BlfException {

try {
// Invoke the CMR set method.
PropertyUtils.setProperty (this, cmrName, object) ;

} catch (Exception ex) {
throw new BlfException (ex.getMessage()) ;

public void setRelationship(String cmrName,
Collection coll)
throws BlfException {

try {
// Invoke the CMR set method.
PropertyUtils.setProperty (this, cmrName,coll) ;

} catch (Exception ex) {
throw new BlfException (ex.getMessage());

148 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public EntityLocalBusinessObject
getOneToOneRelationship (String cmrName)
throws BlfException {

try {
// Invoke the CMR set method.
Object obj =
PropertyUtils.getProperty (this, cmrName) ;
return (EntityLocalBusinessObject)obj;

} catch (Exception ex) {
throw new BlfException (ex.getMessage()) ;

public Collection getOneToManyRelationship (String cmrName)
throws BlfException {

try {
// Invoke the CMR set method.
Object obj =
PropertyUtils.getProperty (this, cmrName) ;
return (Collection)obj;

} catch (Exception ex) {
throw new BlfException (ex.getMessage());

Cascading Save and Validation Operations

Whenever you save a parent object that aggregates another business object, you want
to validate and save any instantiated child objects as well. In the Entity Bean model, all
updates to aggregated objects are also saved because all Entity Bean methods and ob-
ject creations can be defined as transactional. However, if you are using dependent
Java objects, you also want to trigger their persistence to the database when the Entity
Bean is being saved. You can perform this logic in the ejbStore method. If you are
using the relationship metadata approach described earlier, you can also automate this
process. This concept can be used for object validation as well as persistence. This tech-
nique will be discussed in detail in the next section when the save template is
discussed.

Cascading Deletes

A similar concept applies also to delete operations. EJB 2.0 allows you to define cas-
cading deletes as a deployment property of Entity Beans that have container-managed
relationships. This means that any aggregated objects will also be deleted when the
parent object is removed. If you are using dependent Java objects, you would be
responsible for this yourself, although you could use a similar pattern to the one
described above for updates and validation.

Persistence, Relationships, and the Template Method Pattern

149

The Account and Transaction Example

The withdraw and deposit methods on AccountBean each create a Transac-
tion object to record the corresponding event. They use the getTransactions
method to obtain the collection of transaction objects in order to add a new one. The
code for the withdraw method follows. It is overloaded to allow a transaction
description to be supplied.

public void withdraw (BigDecimal value)
throws BlfException {

withdraw(value,null) ;

public void withdraw(BigDecimal value,
String transactionDescription)
throws BlfException {

// Ensure that this account will not be
// overwithdrawn.
BigDecimal currBalance =
getDecimalProperty ("currentBalance") ;
if (currBalance.compareTo(value) < 0) {
throw new ValidationException("Insufficient Funds",
ErrorList.createSingleErrorList (
"INSUFFICIENT_ FUNDS", currBalance.toString()));

// Remove the amount from the balance.
setProperty ("currentBalance",
currBalance.subtract (value)) ;

// Create a record of the transaction.
TransactionData transData = new TransactionDatal() ;
transData.setProperty ("type", "W") ;
transData.setProperty ("amount",value.negate()) ;
if (transactionDescription == null) {
transData.setProperty ("description",
"Normal Withdraw") ;
} else {
transData.setProperty ("description",
transactionDescription) ;
}
TransactionLocal transaction = (TransactionLocal)
EJBFactoryImpl.create("Transaction", transData) ;
Collection coll = getTransactions();
coll.add(transaction) ;

// Invoke the save template.
save () ;

150

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Object Collection Services

The previous example dealt with a collection of Transact ion business objectsin order
to add one to the Account. This is just one case of many in which you end up dealing
with a list of business objects in an application. In other situations, the circumstances
could be different. You may need to deal with these collections outside of the scope of an
individual business object or within a service component. Or in many other cases, it may
be for a read-only operation, or else you may need to go through the collection and
update only some subset of the list. These types of operations are so common that it
makes sense to provide a utility to easily manage collections of objects. AnObjectList
JDBC utility class can be created that provides a consistent way to implement these
operations more efficiently than might normally be done throughout an application.
Whether the business objects are implemented as Java classes or Entity Beans, busi-
ness objects are usually more heavyweight than just a data structure such as a value
object. Thus, the ObjectList can provide a collection of value objects that can be
iterated. If you are only going to read the list, this becomes especially important for
Entity Beans because of the potential performance issues. Even if you are only going to
update a subset of the list, you might want to get the list as value objects and then only
instantiate the respective business objects when you determine an update is necessary.

Managing a list of objects for data retrieval or for selective
updates is a common operation in business applications. Consider the use of a
utility class that consistently and effectively manages collections of objects for
you. If Entity Beans are used as the business object implementation, you can also
use the collection utility to get a list of value objects and have it instantiate corre-
sponding Entity Beans for any transactional updates.

Implementing the ObjectList Utility

Sometimes you want the entire set of an object from the database, but in most cases,
you want a specific collection. Earlier in the section on finder methods in the
BusinessObjectFactory interface, a mechanism was discussed in the reference
architecture through which a named collection was defined in the business object
metadata. These collections were tied to a defined SQL or OQL WHERE clause. This
same mechanism can be used to define the collections for the ObjectList utility. As
an example, assume that you wanted to retrieve active accounts for a customer. You
could define another Account collection for this as follows:

<Collection name="activeByCustomer"
query="where customer_id = ? and last_modified_date > ?" />

.m ObjectList is a JDBC wrapper utility, so it needs the database column
and table names specified in the business object metadata in order to generate
the correct SQL. This was otherwise not required in the reference architecture
metadata for Entity Beans or other persistence framework options. Also note that
the query is defined using regular SQL and Java’s PreparedStatement format
of question marks as placeholders for run-time bindings.

Persistence, Relationships, and the Template Method Pattern

151

ObjectList

objects:Collection
objectName:String
counter:int

getValueObjects ()
size()

hasNext ()

next ()

| A

EntityObjectList CastorObjectList

getAsBusinessObject () getAsBusinessObject ()

Figure 4.3 oObjectList UML Model.

The ObjectList utility can be constructed for a given object type. You can then
use it to retrieve various defined collections of the corresponding value objects. It can
hold a retrieved list until a new collection is retrieved. You can provide an interface
similar to Tterator for navigating the list. You also want to have a method that can
be used to get the current object as a business object; however, this will be imple-
mented differently based on your particular business object implementation model.
Thus, subclasses of ObjectList can be created, such as EntityObjectList, that
add a getAsBusinessObject method. The overall object design for this utility is
shown in Figure 4.3.

The code for ObjectList isshownnext. The getValueObjects method is used
to retrieve the collection. It returns the collection but also stores it to be potentially iter-
ated using the hasNext and next methods. A getSelectAl1SQL method is used
on the business object metadata class that returns the ‘select fieldl, field2, ...
from tableName’ for the object. The complete SQL string for the query is formed by
appending the WHERE clause for the collection to this string.

public class ObjectList {

// The collection of objects

protected ArrayList collection = null;

// The business object metadata

protected BusinessObjectMetadata bom = null;
// The name of the object in the list
protected String objectName = null;

// An index of the current object

// being iterated

protected int counter = 0;

152

J2EE Best Practices: Java Design Patterns, Automation, and Performance

// The size of the list
protected int collectionSize = 0;

/*
* Constructor for a given object
*/
public ObjectList (String objectName) {
this.objectName = objectName;
try {
bom =
MetadataManager.getBusinessObject (objectName) ;
} catch (Exception ex) {
ex.printStackTrace () ;

/*

* The default constructor should not be used.
*/

private ObjectList () {

}

/*
* Get the entire list of objects for this type.
*/
public Collection getValueObjects () throws BlfException {
return getValueObjects(null, null);

/*
* Get a named collection of value objects.
*/
public Collection getValueObjects (String queryId,
ArrayList args)

throws BlfException {

try {
JDBCUtility dbutil = new JDBCUtility();
if (queryId == null) {
// If no query defined, get the entire list
collection = dbutil.getValueObjects (objectName,
bom.getSelectAl1SQL()) ;
collectionSize = collection.size();
} else {

// Build the SQL string
// core select + defined query (where clause)
StringBuffer buffer =

new StringBuffer (bom.getSelectAl1SQL()) ;
buffer.append(' ');
buffer.append (bom.getQuery (queryId)) ;
String sqgl = buffer.toString() ;

Persistence, Relationships, and the Template Method Pattern

153

collection = dbutil.getValueObjects (objectName,
sqgl , args);
collectionSize = collection.size();
}
} catch (Exception e) {
throw new BlfException(e.getMessage());

return collection;

/*
* Returns an indicator of whether there
* is another object in the list
*/
public boolean hasNext () {
if (counter > (collectionSize - 1)) {
return false;
}

return true;

/*
* Return the next object in the list.
*/
public ValueObject next () {
return (ValueObject) collection.get (counter++) ;

/*
* Return the size of the list.
*/
public int size() {
return collectionSize;
}
/*
* Accessor for business object metadata
*/

protected BusinessObjectMetadata getMetadata() {
return bom;
}

The EntityObjectList subclass then just adds the getAsBusinessObject
method. The code for this class is as follows:

public class EntityObjectList extends ObjectList {

public EntityObjectList (String objectName) {
super (objectName) ;

154 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public Object getAsBusinessObject () throws BlfException {
if (counter == 0) {
throw new BlfException("You need to invoke next ()"
+ "before you can invoke getAsBusinessObject().");

ValueObject valueObj = (ValueObject)
collection.get (counter - 1);
String keyProperty =
getMetadata () .getKeyField () .getName () ;
Object obj = EJBFactoryImpl.findByPrimaryKey (
valueObj.getObjectName (),
valueObj.getProperty (keyProperty)) ;

return obj;

The primary code used from JDBCUt 111ty follows:

public ArrayList getValueObjects (String object,
String sqgl)
throws BlfException {
return getObjects (object, sqgl, emptyArgs, true) ;

public ArrayList getValueObjects (String object,
String sqgl,
ArrayList args)
throws BlfException {
return getObjects (object,sqgl,args, true) ;

public ArrayList getObjects(String object,
String sqgl,
ArrayList args,
boolean createValueObjects)
throws ValidationException {
ArrayList results = new ArrayList();
try {
// Determine the collection class name.
BusinessObjectMetadata bom =
MetadataManager.getBusinessObject (object) ;
HashMap attributeMetadata = bom.getPropertyMap () ;
String objectClassName = null;
if (createvalueObjects) {
objectClassName = bom.getValueObjClass() ;
} else {
objectClassName = bom.getBusObjClass() ;

Persistence, Relationships, and the Template Method Pattern

155

// Invoke a generic method that executes a
// prepared statement with arguments.
rs = executePreparedStatementQuery (sqgl, args);
while (rs.next()) {
// Use the common interface for the two:
// value objects and business objects.
ValueObject valueObject = (ValueObject)
(Class.forName (objectClassName)) .newInstance () ;
Iterator propertylIterator =
attributeMetadata.values () .iterator () ;
while (propertylIterator.hasNext ()) {
PropertyMetadata prop =
(PropertyMetadata)propertylterator.next () ;
String columnName = prop.getDBName () ;
// Not all properties are stored
// in the database.
if (columnName != null) {
// Call a generic method that uses
// the common value object interface to
// set the property value.
setField(rs, prop.getName(),
prop.getDBName (),
prop.getType (),
valueObject) ;

}
results.add(valueObject) ;
}
} catch (Exception e) {
throw new BlfException (e.getMessagel() ;

}
close();
return results;

Using ObjectList

There will likely be cases in which you simply want to retrieve a list of objects for dis-
play to the user. You can use ObjectList for this purpose, but you can also use it if
you potentially need to update some of the objects and don’t want to incur the over-
head of using a collection of Entity Beans. As an example, assume you are using Entity
Beans to implement the business objects and you want to assess a fee to customers if
the total of all their account balances is less than $1,000. This is a contrived example,
but it could be anything that requires some business logic that you might not do di-
rectly in a SQL query. Thus, you can use ObjectList to run the previous search ex-
ample of active accounts by customer. You then want to iterate through the collection,
calculate the total balance of all the accounts, and if it is less than $1,000, assess a fee to
one of the accounts. To do this, the get ValueObjects method is invoked to run the
query and create the list of value objects. You can then iterate through the collection
and, after calculating the total, use the get AsBusinessObject method to obtain a

156

J2EE Best Practices: Java Design Patterns, Automation, and Performance

handle to that particular Entity Bean if you want to perform an update. The code to do
this is as follows:

EntityObjectList eol = new EntityObjectList ("Account");
ArrayList args = new ArrayList(2);
args.add(customerId) ;

args.add(cutoffbDate) ;

eol.getValueObjects ("activeByCustomer",args) ;

BigDecimal total = new BigDecimal (0) ;
while (eol.hasNext ()) {
ValueObject valueObj = eol.next();
total = total.add(

valueObj.getDecimalProperty ("currentBalance")) ;

if (total.compareTo (new BigDecimal (1000)) < 0) {
AccountLocal account = (AccountLocal)
eol.getAsBusinessObject () ;
account .withdraw(new BigDecimal (10), "bank fee");

Using EJB Select Methods

If you know that you want to deal with a number of business objects within a given
Entity Bean, you can also use an ejbSelect method to retrieve a collection of objects.
EJB Select methods can be used only within a bean implementation class; however,
they avoid the need to use JNDI and the Home interface in order to locate other beans.
A powertful aspect of these select methods is that they can return any object within the
same JAR file. The container implements these methods in a similar manner to EJB
finder methods.

As an example, assume there is an administrative function to mark all customer
transactions as fraudulent after a certain date. The corresponding method would be
invoked once it was determined that a customer’s PIN number, or analogous creden-
tials, had been compromised and money was withdrawn from accounts. From the per-
spective of the Cust omer object, the select method should return all transactions after
a given date for any of the customer’s accounts. The select method can be defined for
the customer Entity Bean in the ejb-jar .xml file as follows:

<query>
<query-method>
<method-name>
ejbSelectTransactionsByTypeAndDate

</method-name>

<method-params>
<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>
<method-param>java.util.Date</method-param>

Persistence, Relationships, and the Template Method Pattern

157

</method-params>
</query-method>
<ejb-gl>
<! [CDATA[SELECT OBJECT (t) FROM Customer c,
IN (c.accounts) as a, IN (a.transactions) as t
WHERE c.id = ?1 and t.type = ?2 and
t.transactionDate > ?3]]>
</ejb-qgl>
</query>

On the CustomerBean implementation, the select method is defined as abstract.
The markwithdrawalsAsFraud business method is defined and added to the
CustomerLocal interface as well. This method executes the query for the customer
and marks all of the Transaction objects as fraudulent.

//
// Select method
//
public abstract Collection
ejbSelectTransactionsByTypeAndDate (String id,
String type, java.util.Date transactionDate)

throws FinderException;

//
// Business method
//
public void markWithdrawalsAsFraud (
java.util.Date beginDate) throws BlfException {
try {
Collection coll =
ejbSelectTransactionsByTypeAndDate (getId(),
"W",beginDate) ;
Iterator iter = coll.iterator();
while (iter.hasNext ()) {
TransactionLocal transaction =
(TransactionLocal) iter.next();

// Instead of a fraud indicator, you will update
// the transaction description.
String description =
transaction.getProperty ("description") ;
String fraudDescription = description +
" - FRAUD";
transaction.setProperty ("description",
fraudDescription) ;
}
} catch (Exception e) {
throw new BlfException (e.getMessage());

158

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Database Queries

Thus far, you have only seen database queries that access a single table. This is because
examples have always been referencing collections of a single object. There are many
cases in application development where a join query is required to efficiently access
the data. Object purists may argue that you should always use the object model when
accessing data. Although there are many benefits to doing this, it becomes quite ineffi-
cient for data retrieval operations when it traverses large table structures. The general
rule is to always use business objects when performing transactional updates because
they contain the validations to maintain data integrity. However, as you have seen for
read-only operations, you can use query mechanisms instead of objects if the associ-
ated risks can be mitigated. The EJB Select methods can return CMP fields; however,
they are somewhat limited in that they can only return single CMP fields for beans
within a given JAR file. A meaningful query often needs more widespread data to be
useful. Thus, this section looks at the option of using JDBC queries for this purpose.

Always use business objects for transactional updates to
ensure data integrity and avoid redundant business logic validation code. Straight
database queries can be used for read-only operations if they are more effective at
traversing large table structures. However, this should be done only if you can miti-
gate the risk of having database names permeate throughout the application code.

One of the primary risks of using queries directly in your application is that the
column names can start to appear all over the code if not managed well. This can be a
maintenance nightmare if the database schema changes or even if a few column names
change. Thus, if you are going to use database queries, try to adhere to the following
guidelines, many of which have already been mentioned during the discussion of
object persistence:

m Externalize the SQL in a metadata or configuration file.

m Jsolate all JDBC code in utility class to ensure proper management of
database resources (JDBCUt 111ty has generic methods to execute a
PreparedStatement).

= Map the result set rows to some kind of value object; this can isolate or
eliminate references to database names in application code.

The first two points have already been discussed; it is the third point that is of inter-
est here. How can you avoid referencing the database column names in your code? If
you move the result set fields to the value object structure, you need to be able to map
between the database column names and the logical property names. You have this
information in the metadata; however, it is organized by business object, and the
majority of these database queries will be join queries. Currently, the value object
structure also assumes that all properties belong to the same business object.

There are a couple of options to address this issue. You can create either a subclass
of BaseValueObject or another implementation of the ValueObject interface
that allows for properties from different objects. This class could be called
ResultSetValueObject to clearly note that this is not strict object data. You could

Persistence, Relationships, and the Template Method Pattern

159

put logic in it to reference metadata from multiple objects, although you would likely
need to add direct access to properties in the metadata classes to support this. Aside
from using application metadata, another option is to use the logical property names as
aliases in the SELECT statement. The SQL would be defined as follows in this case:

Select fieldNamel propertyNamel, fieldName2 propertyName?2,
From tableNamel, tableName?2,

The JDBCUtility could then look at the ResultSetMetaData to put the
property values into a generic ResultSetValueObject according to the logical
property name (from the result set column name due to the alias) and its data type
(from the ResultSetMetaData).

The Base Class as a Template

The Template Method design pattern can be applied to the business object base class to
provide a template for common business behaviors. A primary example of this is busi-
ness validation logic. In the last chapter, validation routines were developed to per-
form edits on individual fields and the object as a whole. You want these validation
methods to be executed when the object is saved to the database in order to preserve
data integrity. You can define a save method on the business object that acts as a tem-
plate for this validation. The save method in the base class can invoke a generic
validation method that performs required field checking and data type checking using
the PropertyHandler mechanism. The application-specific edits that occurred in
the previous validate method examples can then reside in the business objects
subclasses and be invoked as a part of the save template.

If you are implementing business objects as regular Java classes, it is also a good
idea to build the interface so that it easily maps to the Entity Bean interface methods.
This would be helpful to enable any future migrations from Java business objects to
Entity Beans. This can be accomplished without much extra effort because many of the
hook points will be the same between the two models. Enterprise JavaBeans provide
hook methods that get called prior to insert, update, and delete operations. The busi-
ness object base class can provide a corresponding set of template methods. Table 4.1
shows the mapping between the business object interface templates methods and
those of the Enterprise JavaBeans specification.

Table 4.1 Template Methods of Business Object Interface and Entity Beans

BUSINESS OBJECT INTERFACE ENTITY BEAN

OPERATION TEMPLATE METHODS INTERFACE METHODS

Create blfPrelInsert, ejbCreate,
blfPostInsert ejbPostCreate

Save blfPreSave, blfvalidate ejbStore

Delete blfPreDelete ejbRemove

160

J2EE Best Practices: Java Design Patterns, Automation, and Performance

The Save Template

The save template is used typically for the following purposes:

= Property and object-level validation integrated with transaction management
m Manipulation of aggregated objects

m Presave logic

.]m] In the case of CMP Entity Beans and other persistence frameworks, the
save method is not actually doing the work of causing the object to persist in
the database. This is taken care of by the respective EJB container or framework
when the transaction commits. Rather, the save template is used to execute
application code prior to saving the object to the database.

Some of the validation aspects of this template have already been touched on. The
last item, presave logic, is a helpful one. Many applications have standard fields that
get updated on each transaction. Other applications have business logic to execute each
time an entity is updated. There are a number of possibilities. One common occurrence
is standard auditing fields. The Account objecthasa lastModi fiedDate property.
This property should always reflect the last date that the object was updated. You can
have this automatically occur in the presave template method. The Account imple-
mentation has this code:

public void blfPreSave() throws BlfException {
// Set the audit date to today'’s date.
setProperty ("lastModifiedDate",new Date()) ;

As a part of the save template, this method always gets invoked and you do not
need to code this multiple times in every business method.

The implementation of the save method is now shown. This implementation is
common among the different business object implementation models.

public void save() throws BlfException {

// Initialize the error list for the business object.
getErrorList () .clear();

// Call the presave template method.
blfPreSavel();

try {
// Perform all of the object validation.
validate () ;

} catch (BlfException be) {
getErrorList () .addErrors (be.getErrorList ()) ;

Persistence, Relationships, and the Template Method Pattern

161

// Throw a validation exception if any
// errors occurred.
errorList.throwExceptionIfErrors() ;

/**
* Validation template for business object
*/

public void validate() throws BlfException {

validateRequiredFields () ;
validatePropertyValues () ;
blfvalidate() ;

/**
* Helper method to validate
* (checks all required fields)
*/
protected void validateRequiredFields ()
throws ValidationException {

Collection allFields = attributeMetadata.values();
Iterator iter = allFields.iterator();
while (iter.hasNext()) {
PropertyMetadata prop =
(PropertyMetadata) iter.next () ;
if (prop.isRequired()) {
String value = null;
try {
value = getProperty (prop.getName()) ;
} catch (PropertyException ignore) {}
if ((value == null) || (value.equals(""))) {
getErrorList () .addError ("REQ_FIELD",
prop.getName ()) ;

* Helper method to validate
* (iterates through all properties
* and runs the property validation routines)
*/
protected void validatePropertyValues ()
throws BlfException {

Iterator iter = attributeMetadata.values().iterator();
while (iter.hasNext()) {

162 J2EE Best Practices: Java Design Patterns, Automation, and Performance

PropertyMetadata pmd =
(PropertyMetadata) iter.next () ;
try {
validatePropertyDataType (pmd.getType (),
getProperty (pmd.getName ())) ;
} catch (ValidationException ve) {
getErrorList () .addErrors (ve.getErrorList ()) ;

}

// Base class implementations are empty.

// Implemented by subclasses

public void blfvalidate() throws BlfException {
}

public void blfPreSave() throws BlfException {
}

The save method first calls the validate method. The validate method
invokes other base class methods that perform required field checking and individual
field value edits. Both of these generic routines go through the list of property metadata
objects and perform the appropriate edit. In the case of property value checking, each
value is sent through its corresponding PropertyHandler validation class. The last
thing the validate method does is call a method called b1 fvalidate.

.m The b1f£ prefix is used to correspond to the ejb prefix found in front of
the EJB template methods (that is, e jbCreate). BLF stands for Business Logic
Foundation, the name of the foundation layer.

The blfvalidate method has a default implementation in the base class that
does nothing, but its purpose is to provide a hook that specific business object sub-
classes can implement to provide object level validation logic. If there are no edits at
this level to perform, the subclass is not required to implement the method, and the
validate return will go on as normal.

Use the Template Method pattern to implement common
behaviors in the business object base class. A primary example of this is the save
method, which can call a hook method to perform data validation, specific object
validation, and any presave logic implemented in the subclass.

Managing Aggregated Objects

If there is a hierarchy of related objects, it would be nice to invoke the save method on
the parent object and have it deal with all of the child objects as well. This can be done
either with specific code in the b1 f PreSave methods of the business object subclasses,

Persistence, Relationships, and the Template Method Pattern 163

or it can be addressed at the foundation level generically by the base class. In the latter
option, the base class can go through each relationship defined in the metadata and,
using the standard accessor methods, iterate through each aggregated object and invoke
its save method. This can be implemented as shown here:

/**
* Helper method to save (iterates
* through all aggregated objects and
* invokes the save routine)
*/
protected void saveAggregatedObjects ()
throws BlfException {

Collection coll = bom.getRelationships();
Iterator iter = coll.iterator();
while (iter.hasNext ()) {
RelationshipMetadata relation =
(RelationshipMetadata) iter.next();
if (relation.isAutoSave()) {
if (relation.isMultiple()) {
Collection relatedColl =
getOneToManyRelationship (
relation.getName ()) ;
Iterator relatedIter =
relatedColl.iterator () ;
while (relatedIter.hasNext ()) {
try {
BusinessObject busObj =
(BusinessObject)
relatedIter.next () ;
busObj.save () ;
} catch (BlfException be) {
getErrorList () .addErrors (
be.getErrorList());

}
} else {
try {
BusinessObject busObj =
getOneToOneRelationship (
relation.getName ()) ;
busObj.save () ;
} catch (BlfException be) {
getErrorList () .addErrors (
be.getErrorList());

164

J2EE Best Practices: Java Design Patterns, Automation, and Performance

.m You might notice that an autoSave indicator was added to the relation-
ship metadata. This is used as a performance optimization so this feature can
be turned on or off for specific relationships.

Entity Beans, as well as many other persistence frameworks, do not indicate whether
an aggregated component has already been loaded from the database. Thus, iterating
through aggregated objects may cause the container to load objects that were not even
used in order to invoke the save method. In many cases, the object graph is small, or
it is known that the objects are already instantiated, so this concept can be used with-
out additional, unnecessary overhead. Optionally, an indicator could be added as an
argument to the save method as to whether it should be a “deep” save operation. As
the implementation is currently shown, you can configure this behavior in the meta-
data. For example, if you wanted to have the Cust omer component automatically run
the save template on its accounts, but not on the address, the relationships would be
defined as follows:

<BusinessObject name="Customer" >

<Relationship name="address" multiplicity="one"
autoSave="false" />

<Relationship name="accounts" multiplicity="many"
autoSave="true" />

</BusinessObject>

Save Template for Entity Beans

At first glance, you might think to use the ejbStore template method provided by
the container to invoke the save template logic. However, this method only throws an
EJBException or RemoteException, and there is no way to override it and
throw an application exception. The EJB specification explicitly defines how applica-
tion exceptions are handled when thrown out of business methods, but ejbStore is
a container-invoked callback, and it treats all exceptions the same. If you could throw
the ValidationException out of this method, it seems as if it still might behave as
you intended, but there is no way to do so given the e jbSt ore method signature. The
intent here was that only system-level exceptions would occur in these container-
invoked callback methods. You will see later that ejbCreate and ejbRemot e do not
fall into this category because they are invoked directly as a result of a client invoking
the create or remove methods on the Home interface. They are still classified as
business methods.

Thus, the save logic needs to be explicitly invoked at the end of Entity Bean business
methods or service components that use the bean. You also need to consider transaction
management if the Entity Beans can be invoked directly from a client. In this case, the
transaction begins and ends with the Entity Bean business method so you need to vote
for a rollback if a business error occurs. In many cases, you can wrap the Entity Beans
with a Session Bean, and you can move this logic out to the Session Bean just as you will
need to do for Java business objects. For the time being, however, consider the case in
which you must manage the transaction in the business object. Every business method

Persistence, Relationships, and the Template Method Pattern

165

like this will have a similar pattern: an encompassing try-catch block and a save method
invocation at the end. Consider, for example, a convertToCheckingAccount
method on the Account Entity Bean. It changes the account type and account number
accordingly and then calls the save method to verify that all business validations have
been met. Once the account is converted to a checking account, the minimum balance
requirement changes, and it may not meet the requirement. If a business exception such
as this occurs, a B1 fException is thrown from the save method and is caught by this
business method. The transaction is then set to roll back in the catch block of this
exception.

public void convertToCheckingAccount ()
throws BlfException {

try {
// Change the account type
setProperty ("type","C");

// All account numbers start
// with their type, for example, CxxXXxX.
// Change the account number
// accordingly.
setProperty ("number",
"C" + getProperty ("number").substring (1)) ;

// Invoke the save template

// in case a minimum balance is
// not met, and so on.

save () ;

} catch (BlfException be) {
// If a business error occurred,
// vote to roll back the transaction
// and rethrow the exception that
// has the error list inside to
// communicate to the client.
getEntityContext () .setRollbackOnly () ;
throw be;

The Create Template

The create template actually appeared earlier in the discussion of the business object
factory. It is implemented by the base class method b1l fCreate, which is triggered by
a create operation on the factory. It has both pre and post creation methods. In the
Entity Bean implementation, these can be triggered by ejbCreate and
ejbPostCreate. In the case of the Castor business objects, this flow was controlled
directly from the object factory’s create method.

166

J2EE Best Practices: Java Design Patterns, Automation, and Performance

The b1 fPreInsert method is often used to set properties that have application-
defined initial values. The blfPostInsert method can be used to create any
aggregated objects that have a dependent lifecycle. As an example, your Customer
component can take a customer value object that also contains address data. The create
template can then be used to insert the Address object as well. The code for this
method is shown here. It uses the Castor implementation, although any object factory
could be substituted here.

/**
* Template method called from create
*/
public void blfPostInsert (ValueObject initialvalues)
throws BlfException {

/7

// Create the aggregated address.

//

CustomerData custData = (CustomerData) initialValues;

AddressData addrData =
(AddressData) custData.getAddress() ;

Address address = (Address)
CastorFactoryImpl.create("Address",
addrData,
getDatabase ()) ;

setAddress (address) ;

Also note that the save template can be used from within the create template as
well in order to run the same business validations and presave logic. In many cases, the
same logic is still applicable to an insert operation. For example, you want to run vali-
dations when you create an Address to ensure you have a valid state and zip code,
and so on. The b1 fPreInsert method is currently used to default the country, in
case one is not specified. It can also be used to invoke the save method to run the val-
idations. The code for this is shown here.

/*
* This method is called by the create new instance
* template in the business object base class.

*/
public void blfPrelInsert () throws BlfException {
//
// Default the country to the USA.
//

setProperty ("country", "USA") ;

// Run the validations.

save () ;

Persistence, Relationships, and the Template Method Pattern

167

The Template Method for
Application-Specific Logic

The template pattern can be used for application-specific logic as well as common
foundation logic. If an object model for an application has an inheritance hierarchy in
which a common process is altered based on the specific subclass, the template method
can provide a nice flexible solution. In the Account examples thus far, a type prop-
erty was used to designate what type of account the object represents; however, you
could also have implemented this using specific subclasses for checking and savings
accounts. If there was a common business behavior that differed in some steps between
the two, you could implement the business method as a template in an application
account base class.

As an example, take account close-out as a process that differs for checking and
savings accounts. The close-out process at a high level is as follows:

1. Issue a money order to withdraw the remaining balance.

2. For checking accounts, send an email to ask customer to tear up old checks and
thank the customer for banking with you. For savings accounts, send an email
to thank the customer for banking with you.

3. Send the final statement.

4. Inactivate the account in the database.

The Account base class would have the following methods:

public void closeOut ()
{

issueMoneyOrder () ;

sendCustomerEmail () ;
sendFinalStatement () ;
inactivateAccount () ;

public void sendCustomerEmail ()
{

// Do nothing here; subclases will implement.

The CheckingAccount object would have the following method implementation:

public void sendCustomerEmail ()

{

String message = "Please tear up old checks. " +
" Thank you for banking with us.";
sendEmail (message) ;

168

J2EE Best Practices: Java Design Patterns, Automation, and Performance

The SavingsAccount object would have the following method implementation:

public void sendCustomerEmail ()

{

String message = " Thank you for banking with us.";
sendEmail (message) ;

Although this example is oversimplified, the concept is a powerful one when used
appropriately. One thing to watch out for, however, is forcing the use of this pattern. If
your business entities are not modeled very well by inheritance, it is not a good idea to
force the issue so that you can use this pattern. Inheritance is a strict form of object
reuse compared to delegation, so you want to make sure that your object design fits the
application requirements well.

Overall Business Object Metadata Approach

The generic foundation layer for business objects has been using XML metadata to de-
fine the aspects of the business objects as well as other important pieces of information.
This section takes a look at the entire definition of the XML metadata now that all of the
pieces are defined.

The Metadata XML DTD

The metadata DTD (document type definition) is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!--
Business Logic Foundation Metadata DTD

-->

<l--
A set of business logic foundation metadata.
This is the top level element.

-—>
<!ELEMENT Metadata (BusinessObject*, PropertyDefinitions%*,
DatabaseQueries?, BusinessErrors?, CachelList?)>

<!--
The definition of a business object, which includes
its properties, relationships to other business objects,
and defined collections.

Persisten

ce, Relationships, and the Template Method Pattern

169

<!ELEMENT BusinessObject
<!ATTLIST BusinessObject
name CDATA
busObjClass CDATA
valueObjClass CDATA
table CDATA
ejbHomeClass CDATA

<!--

(Property+, Relationship*, Collection*)>

#REQUIRED
#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED>

A property of an object. The property type is required and

refers to a type defined within the PropertyDefinitions element.

-—>
<!ELEMENT Property EMPTY>
<!ATTLIST Property

name CDATA
dbname CDATA
type CDATA
required (true
key (true
autogen (true

<!--

#REQUIRED

#IMPLIED

#REQUIRED
|false) "false"
|false) "false"

|false) "false">

A relationship from the containing object to another. This

can be a 1-1 or a 1-M

relationship. The name is a reference

to another business object. The autosave attribute defines

whether the save template is automatically applied to these

aggregated objects.

-->

<!ELEMENT Relationship EMPTY>

<!ATTLIST Relationship

name CDATA #REQUIRED
multiplicity (onelmany) "one"
autoSave (truelfalse) "false">

<!--

A named collection of

the object. This defines, in

essence, a 'where' clause for SQL, OQL, or EJB QL,

depending on the business object implementation that is

being used.

Collections can be used to locate business objects using

BusinessObjectFactory

or to locate sets of value objects

using ObjectList. The name is any unique name you choose.

-—>

<!ELEMENT Collection EMPTY>

<!ATTLIST Collection
name CDATA
query CDATA

#REQUIRED
#REQUIRED>

170 J2EE Best Practices: Java Design Patterns, Automation, and Performance

<!--
A collection of property definitions
-=>

<!ELEMENT PropertyDefinitions (PropertyType*)>

<!--
A PropertyType defines a category of properties
that use a specific handler class for validation
and formatting.

>
<!ELEMENT PropertyType EMPTY>
<!ATTLIST PropertyType
name CDATA #REQUIRED
handler CDATA #REQUIRED>

<!--
Database queries are defined SQL queries to be
used by the DatabaseQuery utility class. They
are defined here to externalize the SQL from
the application.

-=>
<!ELEMENT DatabaseQueries (Query*)>

<!--

A defined SQL query

-——>
<!ELEMENT Query EMPTY>
<!ATTLIST Query

name CDATA #REQUIRED
sgl CDATA #REQUIRED>
<!--
A set of business errors
-——>
<!ELEMENT BusinessErrors (BusinessError*)>
<!--

Business errors are defined error codes that have

a type defined as warning, error, or critical errors.
They have a defined user message that acts as a
run-time template with substitution values.

-——>
<!ELEMENT BusinessError EMPTY>
<!ATTLIST BusinessError
name CDATA #REQUIRED
type CDATA #REQUIRED
message CDATA #REQUIRED>

Persistence, Relationships, and the Template Method Pattern

171

<!--
A set of defined caches used by the CacheList
utility class

-—>
<!ELEMENT CacheList (Cache*)>

<!--
A named cache that can be accessed by the
CachelList utility. A subclass of ObjectCache
can be used as the implementation of
ObjectCache foundation class itself.

-->

<!ELEMENT Cache EMPTY>

<!ATTLIST Cache
name CDATA #REQUIRED
class CDATA #REQUIRED>

There are efforts underway to standardize both the metadata XML formats and the
methods used to access the metadata. One format now commonly supported by mod-
eling tools is XML Metadata Interchange (XMI), a standard XML format used to repre-
sent UML models. Ideally, you would either use the XMI format itself or build a utility
to convert from the XMI format to our own. This would allow you to automate this
portion of the development process using UML design models and development tools
such as Rational Rose.

The XMI DTD is very verbose and thorough so that it can encompass all of the in-
formation from a UML model. A small portion of an XMI document for your Account
object might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE XMI SYSTEM "umll3.dtd">
<XMI xmi.version="1.0">
<XMI .header>
<XMT.metamodel xmi.name="UML" xmi.version="1.3"/>
</XMI.header>
<XMI.content>
<Model_Management .Model xmi.id="xmi.1l"
xmi.uuid="-106--106-25-11--7e352540:e17838870b:-7fed">
<Foundation.Core.ModelElement .name>Bank Example Model
</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.isSpecification
xmi.value="false" />
<Foundation.Core.GeneralizableElement.isRoot
xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isLeaf
xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isAbstract
xmi.value="false" />

<Foundation.Core.Namespace.ownedElement >

172 J2EE Best Practices: Java Design Patterns, Automation, and Performance

<Foundation.Core.Class xmi.id="xmi.2"
xmi.uuid="-106--106-25-11--7e352540:e17838870b:-7fec">
<Foundation.Core.ModelElement .name>Account
</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.isSpecification
xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isRoot
xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isLeaf
xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isAbstract
xmi.value="false"/>
<Foundation.Core.Class.isActive xmi.value="false"/>
<Foundation.Core.ModelElement .namespace>
<Model_Management .Model xmi.idref="xmi.l"/>
</Foundation.Core.ModelElement .namespace>
<Foundation.Core.Classifier.feature>
<Foundation.Core.Attribute xmi.id="xmi.3">
<Foundation.Core.ModelElement .name>currentBalance
</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.visibility
xmi.value="public"/>
<Foundation.Core.ModelElement.isSpecification
xmi.value="false"/>
<Foundation.Core.Feature.owner>
<Foundation.Core.Class xmi.idref="xmi.2"/>
</Foundation.Core.Feature.owner>
<Foundation.Core.StructuralFeature.type>
<Foundation.Core.DataType xmi.idref="xmi.4"/>
</Foundation.Core.StructuralFeature.type>
</Foundation.Core.Attribute>

</Foundation.Core.Namespace.ownedElement >
</Model_Management .Model >
</XMI.content>
</XMI>

Use a metadata format that allows your design models to be
the original source of the metadata. Either build your metadata parser to read the
XMl format or use a conversion utility to create your own XML format from XMI,
which is generated by development tools from the design models.

Accessing the Metadata from
the Application
The foundation layer would be quite inefficient if it needed to read and parse the XML

metadata file from disk every time you needed to reference it. A better approach is to
parse the file once and cache the metadata in memory. To do this, you need an object

Persistence, Relationships, and the Template Method Pattern 173

BusinessObjectMetadata
name:String RelationshipMetadata
databaseTable: String
busObjClass:String 1
valueObjClass:String

name:String
multiple:boolean

type:String

PropertyTypeMetadata
required:boolean

queryList :HashMap > ————————————— +| autoSave:boolean
1 0..M
CName () getName ()
ge
s isAutoSave ()
getKeyField()
getQuery ()
*
I
: PropertyMetadata
1: name:String
I
I
I
I

databaseName:String type:String

keyField:boolean »| handlerClass:String
autogenerated:boolean getType ()

getName () getHandlerClass ()
isAutoGenerated ()

Figure 4.4 Metadata Class Diagram.

structure to hold the data and provide easy access to the information. Some of the
previous code samples have referenced the BusinessObjectMetadata class that
stores object-level information from the metadata, such as the database name. This
class aggregates a collection of PropertyMetadata objects used to define each of the
properties of the business object. Each property has a type, which references a global
list of property definitions. These are stored as PropertyTypeMetadata objects.
The BusinessObjectMetadata also aggregates a collection of Relationship-
Metadata objects.

Figure 4.4 shows the entire object model for the metadata in a UML class diagram.

You will need two different caches to store this information:

= Business object metadata cache: A collection of BusinessObjectMetadata
objects keyed by object name. Each of these objects contains its respective list of
PropertyMetadata and RelationshipMetadata objects.

= Property type metadata cache: A collection of PropertyTypeMetadata
objects keyed by type name.

You can use the general-purpose cache mechanism, which is discussed in the next
section of this chapter, to store the metadata objects in memory. However, you proba-
bly want to wrap the general cache interface with a MetadataManager interface for
convenience because the metadata will be used so often throughout our business logic
foundation.

174

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Likewise, the business object base class will refer to the metadata so often that it is
probably best to add a member variable that references its particular Business-
ObjectMetadata object. Going even one step farther, you can add a member vari-
able that references the property list within that object, because there will be numerous
occasions on which you will wish to iterate through this collection.

.m Way back during the discussion of implementing properties for a business
object, the properties could have been stored as a collection of Property
objects that held both the metadata and the property value. This would have
allowed the business object to hold only one collection as opposed to the current
design, which has both a collection of property values and a collection of property
metadata objects. However, having these two separated is coming in handy now
for performance reasons. Because the property metadata is read-only, it can be
shared across all business objects. Thus, you don’t need to make a copy of the
property metadata objects for each new business object instance. You simply give
each business object a reference to the same shared object. This would have been
a bit more difficult if the property objects had both metadata and instance values.

Data Caching

Disk and database I/O are usually the most expensive operations that an application
performs. You can perform hundreds or perhaps thousands of CPU instructions in the
time that it takes to do one database query using JDBC. Thus, for high-performance
applications, you should look to cache data that is fairly static and used often through-
out an application. In the effort to build the Business Object Architecture, you have
already come across a number of places where you would like to cache data in mem-
ory of the application server. There are two types of caches for metadata, the business
object metadata and the property type metadata. There also is the option of caching EJB
Home interfaces encapsulated within the BusinessObjectFactory. Once you get
into developing actual applications, there likely will be a number of application objects
and lookup tables that can be cached to give the application a performance boost.

Cache Implementation Options
There are two primary options for caching data within a J2EE application server:

= Java singleton class

m Stateless Session Bean

The singleton pattern (Erich Gamma et al. 1995) is typically used to ensure that an
in-memory cache is not duplicated within a given JVM. This pattern provides a static
getter method that lazily instantiates a single static member within a synchronized
block to ensure that only one instance of the cache object is created. The cache object is
usually some type of collection that holds the objects to be stored. In many cases, this
is a very effective implementation for a cache because it has almost no overhead

Persistence, Relationships, and the Template Method Pattern

175

associated with accessing the cache. A HashMap lookup is about the only operation
required to access a cached object given its key.

On some application servers, however, there is an issue with using a regular Java
singleton. The class loaders on some servers tend to drop and reload classes at differ-
ent intervals. This will occur on some implementations while it may not on others. You
can test for the occurrence of this on your platform fairly easily by putting some debug
statements in the data loading method. After doing this, run your application under a
load test and see how often, if at all, this happens in your environment. If the class
loading does not reoccur, then this approach will likely work quite well for you.

The other primary option for caching data is to use the same pattern wrapped by a
stateless Session Bean. This approach can be used if the class loading issue becomes
a problem. This is also a nice implementation if you wish to distribute your cache to a
remote client. These benefits, however, come at the cost of the additional RMI overhead
and possibly a network trip to access the cache. Nonetheless, this is almost assuredly
more efficient than a database query to get the same data. One additional benefit of
using an EJB for the cache implementation is that the management of your cache com-
ponent lifecycle is handled by the application server. This ensures it is highly available
and pooled according to the particular client load. It is up to the server’s discretion
whether it should make multiple instances available to EJB clients. This may not be
desirable for extremely large caches because of the memory consumption involved.
However, for most normal size caches, this usually does not become a problem.

Designing the Cache Objects

With either implementation, you are building a type of singleton cache. There are al-
ready three caches to be implemented, and it is almost a certainty that you will want to
cache application data. Should you build separate caching objects for each one of these
caches? You can do this; however, this would lead to a large number of components
being deployed by the server in the case of a Session Bean cache. It would also add a
large number of objects to the code base if you created specific objects for each cache.
You probably don’t need to do this. Each cache object will basically follow the same
singleton pattern that uses a HashMap to store the objects by a given key. You can
create an encompassing CacheList object that manages these caches and stores
each one of them in a master HashMap keyed by their cache name. The caches them-
selves can be implemented using an ObjectCache class that wraps the HashMap
collection.

.:Im HashMap is not a synchronized class, so if you need to protect your cache
with synchronized access, you should create a SynchronizedObjectCache
class that uses a hashtable. If the cache data is loaded all at once when the cache
is initialized, this usually is not an issue because clients are only reading data.

If data can be added to the cache during the life of an application, then this
becomes a consideration, although the normal implementation pattern usually
involves a cache “refresh” that reloads the entire set of data within a synchronized
block. One last issue to consider regarding this topic is to ensure that your cached

176

J2EE Best Practices: Java Design Patterns, Automation, and Performance

objects are thread-safe because they will likely be accessed by multiple clients at
a time. Remember that the caches are not making copies of the data. They give all
clients a handle to the same object. There have been some problems, for example,
with caching XML documents using some earlier Document Object Model parser
implementations that were not thread-safe. In these cases, you would want to
move the data into a thread-safe data structure, such as strings in a hashtable.

The general cache mechanism should be able to manage a number of caches, thus
each method will require a cache name. You can expose the basic put and get opera-
tions on the CacheList itself so that the entire cache does not always need to be
returned to the client. In the Java singleton implementation, this would not be an issue.
However, in the stateless Session Bean model, this would cause unnecessary overhead
for simple lookup operations because it would need to serialize an entire cache object
rather than just the requested object. Exposing the access methods on the primary
CacheList object allows you to define an interface that will work with either the Java
singleton or Session Bean implementation.

The caches are implemented by a simple wrapper around HashMap, which is called
ObjectCache. They expose the put and get operations for that particular cache.
The CacheList utility stores a collection of these identified by a cache name. The
CacheList class will look something like this:

/*
* CacheList is a utility to manage a set of object caches.
* It stores a HashMap of cache objects keyed by a cache name.
*/

public class Cachelist

{

// The singleton instance
public static CacheList instance = null;

// The "master" cache - a collection of caches
// keyed by cache name
private HashMap caches;

/*

* Default constructor that initializes the
* master collection

*/

public CacheList ()

{

caches = new HashMap () ;
}
/*
* The singleton static accessor
*/

public static CacheList getInstance()
{

Persistence, Relationships, and the Template Method Pattern 177

if (instance == null)
{
synchronized (CachelList.class)
{
if (instance == null)
{
instance = new CacheList();

}

return instance;

/*
* Return an object within the named cache
* identified by the key.
*/
public Object getObject (String cacheName, Object key)
{
ObjectCache cache = getCache (cacheName) ;
return cache.get (key) ;

/*
* Store an object in the named cache with the given key.
*/
public void putObject (String cacheName,
Object key,
Object value)

ObjectCache cache = getCache (cacheName) ;
cache.put (key, wvalue);

/*
* Return the named cache.
*/
public ObjectCache getCache (String cacheName)
{
ObjectCache cache = null;

// Check to see if the cache has already
// been created.
Object obj = caches.get (cacheName) ;

// If not, go ahead and create it putting
// it in the 'master' cache.
if (obj == null)
{
cache = new ObjectCache (cacheName) ;
caches.put (cacheName, cache) ;

178 J2EE Best Practices: Java Design Patterns, Automation, and Performance

}

else

{
cache = (ObjectCache) obj;

}

return cache;

The caches need a method to load all of their data. This method will be called initially
and also when a refresh operation is needed. You can add a method 1oadbData that is
responsible for loading all of the data into the cache. The default implementation on
ObjectCache will not do anything because it is a general all-purpose cache. However,
you can create subclasses of ObjectCache that implement this method to load spe-
cific data. For example, you may have a cache of the fifty states keyed by their two-letter
abbreviations. This cache could be implemented as follows using the loadData
method:

public class StateCache extends ObjectCache
{

/*
* Construct the superclass giving the object name.
*/
public StateCache()
{
super ("States") ;

}

/*
* Standard cache method to load the data
*/
public void loadData ()
{
// Note that you could easily load from a JDBC or
// other data source, but you will simply add
// some values for the example.

put ("CA", "California");
put ("IL", "Illinois");
put ("VA", "Virginia");

}

You can add the definition for each named cache into the metadata so the first call to
CacheList automatically instantiates and loads the data for the state cache. You can
add a cache list section in the metadata file such as the following;

<CachelList>
<Cache name="States" class="bank.StateCache">
</Cacheliist>

Persistence, Relationships, and the Template Method Pattern 179

The getCache method in CacheList is now a bit more complicated. It is imple-
mented as follows in order to account for the metadata and the initial loading of data
into the cache:

/*
* Return the named cache.
*/
public ObjectCache getCache (String cacheName)
throws BlfException

ObjectCache cache = null;

// Check to see if the cache has already
// been created.
Object obj = caches.get (cacheName) ;

// If not, go ahead and create it putting
// it in the 'master' cache.
if (obj == null)
{
// Look up in the metadata to see if there is a
// defined class for this cache. Note that you
// can’t do this for the cache metadata itself.
CacheMetadata cacheMetadata = null;
if (! (cacheName.equals ("CacheTypeCache")))
{
cacheMetadata = (CacheMetadata)
getObject ("CacheTypeCache", cacheName) ;

// If you have defined metadata for this cache,
// use it to instantiate the proper object.

// Otherwise, use the standard ObjectCache.

if (cacheMetadata == null)

cache = new ObjectCache (cacheName) ;
}
else
{
// Construct the cache implementation class and
// call the loadData method to initialize its
// data.
try
{
String cacheImplClass =
cacheMetadata.getImplClass() ;
cache = (ObjectCache)
(Class.forName (cacheImplClass)) .newInstance () ;
cache.loadbData() ;
}
catch (Exception e)

{

180 J2EE Best Practices: Java Design Patterns, Automation, and Performance

throw new BlfException (e.getMessage()) ;

// Store the new cache in the ’‘master’ cache.
caches.put (cacheName, cache) ;

}

else

{
// If the cache already exists, simply return
// the handle to it.
cache = (ObjectCache) obj;

return cache;

Lookup Tables

In addition to providing methods for loading data, there is another reason you may
want to have subclasses of ObjectCache. A subclass can allow you to extend the
functionality if you want to provide more specific types of caches. One such case that
recurs in almost all business applications is the lookup table. A lookup table is a col-
lection of codes and values that are commonly used as drop-down lists on a Web page.
The previous state cache really can be implemented as a lookup table. If you create a
subclass of ObjectCache called LookupCache, you can add methods that are
commonly used against lookups such as validating that a value exists in the list of
lookup values. If the cache is used heavily in the presentation logic, you might also add
methods to create a drop-down list from the LookupCache, although it might be
better to isolate this type of logic in a set of HTML utility classes. Going back to the
validation example, the Address business object could use this cache to validate that
the state given is a valid one. To implement this in the caching mechanism, the
LookupCache might be implemented like this:

public class LookupCache extends ObjectCache
{

/*

* Construct the cache with the given name.
*/

public LookupCache (String cacheName)

{

super (cacheName) ;

/*

* Override the put method to use strings
* instead of object.

*/

Persistence, Relationships, and the Template Method Pattern

181

public void put (String code, String value)
{

collection.put (code,value) ;

/*
* Override the get method to use strings
* instead of object.

*/

public String get (String code)

{

return (String) collection.get (code) ;

/*
* Check to see whether a given code exists
* as a key in this lookup cache.

*/

public boolean isValidCode (String code)

{

return collection.containsKey (code) ;

The isvalidCode method was added as a convenience to perform valid value
edits in a business object against this cache. The validate method of the Address busi-
ness object could invoke this method to ensure a valid state was given. The code for
this is as follows:

public void blfvalidate() throws BlfException {

ErrorList errorList = new ErrorList();
try {
// Validate the state.
StateCache states = (StateCache)
CacheList.getInstance () .getCache("States");
if (!states.isValidCode (getProperty ("state"))) {

errorList.addError ("INVALID_STATE",
getProperty ("state")) ;

// Other validations here...

} catch (PropertyException pe) {
errorList.addError ("GEN_PROPERTY_ERROR",
pe.getMessage ()) ;
}

errorList.throwExceptionIfErrors() ;

182

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Configuration Cache

Another common occurrence of something you would like to cache in an application is
the configuration parameters. Most applications have a set of configuration properties,
usually stored in a Java properties file, that control how an application is set up to run.
These can be referred to quite often, and it would be very inefficient to have to read and
parse the properties file each time you wanted to use a configuration parameter.
Another subclass can be created called ConfigurationCache to hold these para-
meters. It would override the put and get methods to deal with strings as a conve-
nience, and also implement a loadData method that read the application’s
configuration properties file and loaded the values into the cache. The other important
part about this is to have a special named cache for the purpose of storing configuration
parameters that all application components use when necessary. In order to simplify
this for application components, you may want to create a wrapper class that uses the
CacheList underneath but always refers to the specific named configuration cache.
This prevents the possible mistake of referring to the wrong name and simplifies the
API for this purpose.

The primary code for ConfigurationCache is shown here. The properties file
was named BlfConfiguration.properties.

public class ConfigurationCache extends ObjectCache {

/*
* Construct the superclass giving the object name.
*/
public ConfigurationCache() {
super ("Config") ;
}
/*
* Standard cache method to load the data
*/

public void loadbata() {

try {
PropertyResourceBundle blfProperties =
(PropertyResourceBundle)
PropertyResourceBundle.getBundle (
"BlfConfiguration") ;

if (blfProperties == null) {
System.out.println("Error getting " +
"BlfConfiguration.properties file.");

Enumeration enum = blfProperties.getKeys();
while (enum.hasMoreElements()) {
String key = (String) enum.nextElement () ;
put (key,blfProperties.getString(key)) ;

Persistence, Relationships, and the Template Method Pattern

183

} catch (MissingResourceException e) {
System.out.println("Error getting " +
"BlfConfiguration.properties file.");

The convenience wrapper class to access configuration properties is shown here:
public class ConfigurationManager {

public static String getString(String key)
throws BlfException {

return (String)
CacheList.getInstance() .getObject ("Config", key) ;

Configuration parameters include things such as the level of debug output to write
to the log, what log files to use, and other similar application level parameters that con-
trol the flow or define application resources. For example, the location of the business
object metadata file could be specified in the configuration properties.

Cachelist Object Model

The caching implementation is summed up by Figure 4.5.

CachelList ObjectCache
cacheList :HashMap cache:HashMap
putObiject () > getObject ()
getObject () putObject ()
getCache () loadData ()

A

LookupCache ConfigCache
isvValidCode () loadData ()
loadbData ()

Figure 4.5 Object Model for Caching Mechanism.

184

J2EE Best Practices: Java Design Patterns, Automation, and Performance

When to Cache Data

Although data caching provides a great performance boost when used for frequently
accessed data, there are drawbacks and design considerations that should be taken into
consideration before you decide to cache a set of data. Two primary things to consider
are the amount of memory that is consumed in order to cache these objects and the rate
at which the data changes. As the entire cache mechanism consumes more and more
memory, there is less memory available for application objects, which can also slow an
application down because the JVM will be forced to collect garbage more often. The
other issue to consider is that frequently changed data will require a large amount of
effort to keep up to date in the cache, which will also consume resources.

Good candidates for cached data exhibit the following characteristics:

= Fairly static or read-only data
m Used frequently or predictably by the application

m Small volumes of data

Data that does not meet one or more of these characteristics may be better accessed
through a database. Any data that is modified through transactional updates is usually
better off being handled by an RDBMS that specializes in that exact thing. Remember
that this is not trying to implement a database here, it is only trying to provide a simple
mechanism to speed access to commonly used, static data.

Refresh Mechanism

Notice that the criteria didn’t entirely limit data caching to read-only data. There are
cases in which data remains static for the majority of the time but can be changed dur-
ing the course of an application’s uptime. If it is not updated very frequently but is still
used quite often, it may still be beneficial to cache this data. In these cases, you need a
way to make a live update to the cache. In a single JVM environment, this is trivial. You
would simply get hold of the cache and invoke the loadData method after the
update operation that modified the cached data. In a clustered application server envi-
ronment, you have a CacheList instance running in each JVM in the cluster. Thus,
you need to notify each JVM of the update so that each CacheList instance can
obtain the correct data.

The Java Message Service (JMS) provides a nice way to link these instances so that
they can all be notified of an update. The publish/subscribe mechanism is used to cre-
ate a topic for the cached data. Each cache object subscribes to the appropriate topic
corresponding to its data. The business objects that update the cached data need to be
modified to publish a message to this topic when they update the data. When this
occurs, each cache object will receive the message and will need to immediately invoke
the loadData method before processing any further requests. Note that this still
provides some lag time in between the point where the update was committed to the
database and the cache objects receive and process the message. Although this time is
minimal, it should still be considered against the application requirements. In a stock
market application, those fractions of a second may make all the difference, although
in many applications this brief time interval would be acceptable.

Persistence, Relationships, and the Template Method Pattern

185

Update Message Update Message
Y JMS Topic | !
Subscribe Subscribe L
CachelList 7y CachelList
Application Server [VM 1 Application Server JVM 2
Publish Update
Message
Business Object

Figure 4.6 Using JMS as a Cache Refresh Mechanism.

Figure 4.6 illustrates this approach. It shows how different cache objects in the
cluster subscribe to the same topic, which receives messages posted from the corre-
sponding business objects making the update.

In J2EE 1.3, JMS is required to be implemented by certified application server prod-
ucts, although many of the J]MS implementations built into the application server
products are currently not industrial-strength messaging engines. However, they are
more than powerful enough to support the refresh mechanism due to the low volume
of updates that you should have based on the data caching criteria.

Cache frequently used data that is fairly static to speed
application performance. Use a consistent, extensible cache mechanism that can
be implemented either as a Stateless Session Bean or as a Java singleton class.
If the cached data can be updated and the application needs the latest data,
consider the use of a JMS solution for notifying caches across a cluster to refresh
their data.

Best Practices for Implementing Business
Objects: Part Two

This section summarizes the best practices discussed in this chapter for implementing
persistence, relationships, and the Template Method pattern in business objects.

Isolate and Encapsulate JDBC Logic

Isolate any JDBC logic to execute a SQL statement in a common utility class. This pre-
vents every application developer from having to write this common logic and ensures

186

J2EE Best Practices: Java Design Patterns, Automation, and Performance

that all JDBC resources are closed properly. The implementation of regular Java
business objects and BMP Entity Beans can use the JDBC utility for object data persis-
tence in the database. In the case of CMP Entity Beans, this utility might still be used
for read-only operations such as executing join queries.

Externalize SQL from the
Application Code

If JDBC is used, externalize the SQL from the Java code to minimize impacts to the
application if the database schema changes. The SQL strings could be stored in a
resource file or in the XML metadata and then referenced from the application. This
approach also makes it fairly easy to determine impacts to the application if the data-
base schema changes, because the SQL is all in one searchable repository. Enterprise
JavaBeans enforce this concept by placing the EJB QL in the bean’s deployment
descriptor. Each finder method then uses the defined query that is abstracted out of the
application code.

Always Use Business Objects for
Transactional Updates

Always use business objects for transactional updates to ensure data integrity and
avoid redundant business logic validation code. Straight database queries can be used
for read-only operations if they are more effective at traversing large table structures.
However, this should be done only if you can mitigate the risk of having database
names permeate throughout the application code. This risk is addressed in the next
best practice.

Minimize Use of Database
Names in Code

One of the primary risks of using queries directly in your application is that the
database column names can start to appear all over the code if not managed well. This
can be a maintenance nightmare if the database schema changes or even if a few
column names change. Map the result set rows to some kind of value object with
logical property names in order to isolate or eliminate references to database names in
application code.

Use a Business Object Factory
Abstraction

Use a factory method abstraction to create and discover instances of business objects.
This simplifies the client code and provides a hook for potential future optimizations
such as caching EJB Home interfaces. A common interface or base class can be used to
create implementations for each type of business object. For example, an EJB factory, a
Castor object factory, and a regular Java business object factory can be used respectively

Persistence, Relationships, and the Template Method Pattern

187

for the different business object implementations. They can all share a common inter-
face that is used to invoke the create and delete templates on the business objects.
The find method on the factory interface encapsulates the logic necessary to look up
an object. In the case of Entity Beans, this prevents the developer from having to use
JNDI and the EJB Home interface every time an Entity Bean is needed. The factory
should still expose the underlying artifacts through getter methods so that they can be
used if necessary. For example, the EJB factory should provide a method to get the
Home interface of a bean so that any static business methods may be invoked.

Use an Object Collection Service

Managing a list of objects for data retrieval or for selective updates is a common oper-
ation in business applications. Consider the use of a utility class that consistently and
effectively manages collections of objects for you. If Entity Beans are used as the busi-
ness object implementation, you can also use the collection utility to get a list of value
objects and have it instantiate corresponding Entity Beans for any transactional
updates. Within an Entity Bean, ejbSelect methods are used to retrieve other Entity
Beans deployed from the same JAR file. Use Entity Bean finder methods only if you
can mitigate the (n + 1) performance issue through CMP implementation strategies
such as aggressive loading.

Use the Template Method Pattern for
Common Business Behaviors

The Template Method pattern is an excellent mechanism for providing extensible busi-
ness object foundation classes that implement the common behaviors of business
objects. A primary example of the use of this technique is the save method, which can
call a hook method to perform data validation, specific object validation, and any
presave logic implemented in the subclass. A create template method can be used to
initialize object values and create any aggregated objects with a shared lifecycle. A
delete template method can be used to perform any predelete functionality. These
template methods map directly to the Entity Bean hook methods for an easy migration
path between a straight Java implementation of the business objects and an EJB imple-
mentation. The Entity Bean base class becomes merely a component wrapper of the Java
implementation that is used to take advantage of the many EJB component services.
The Template Method pattern is also very powerful when used for application-specific
functionality that has slight variations for different implementations.

Consider Metadata-Driven Business
Objects Derived from Design Models

Business objects that use metadata to configure properties, collections, and relation-
ships provide a powerful foundation for component development. EJB uses this con-
cept extensively to configure persistence and other services through the deployment
descriptor. The concept can be extended even further as a part of a reference architec-
ture to automate property management, relationship management, and many other

188

J2EE Best Practices: Java Design Patterns, Automation, and Performance

functions. If you choose to take this approach, use a metadata format that allows your
design models to be the original source of the metadata. Either build your metadata
parser to read the XMI format or use a conversion utility to create your own XML
format from XMI that is generated by development tools from the design models. A
configurable business object foundation that uses metadata derived from a design
model is a very powerful concept that can be used to automate business object
development.

Use a Consistent, Extensible Caching
Mechanism to Improve Performance

Cache frequently used data that is fairly static to speed application performance. Use a
consistent, extensible cache mechanism that can be implemented either as a stateless
Session Bean or as a Java singleton class. If the cached data can be updated and the
application needs the latest data, consider the use of a JMS solution for notifying
caches across a cluster to refresh their data. Keep in mind, however, that databases are
very good at what they do and that any caching mechanism should not try to replace
the database. If there are large volumes of data or if the data is updated frequently,
using the application database is likely to be just as efficient as a caching solution, if not
more efficient.

Summary

Two primary responsibilities of business objects are to manage database persistence
and relationships to other business objects. The Template Method pattern actually
helps to augment both of these functions in a consistent, extensible manner. There are
anumber of options for implementing persistence including explicit JDBC, a metadata-
driven JDBC approach, third-party persistence frameworks, and CMP Entity Beans.
No matter what approach is taken, a business object factory should be used to abstract
the creation, deletion, and discovery of business objects. This simplifies the client code
and isolates the rest of the application from the implementation model to the extent
possible. Each of the factory operations should trigger the corresponding create,
save, or delete template methods. These methods ensure that the proper valida-
tions and business logic take place during these persistence events. This business logic
typically includes managing aggregated objects and executing standard audit logic on
database saves, although the possibilities are endless.

These practices round out the implementation of business object components in
J2EE. The business objects contain the majority of the business logic in a given applica-
tion and are at the core of the reference architecture. They are used to do the majority
of the work in the next architecture layer, which contains process-oriented objects
called service components. The design of these service-based components is the topic
of the next chapter.

The Service-Based Architecture:
Design Considerations

Stateless, service-based components have been a core element of business applications
for quite some time. Before J2EE application servers came into existence, transaction-
processing monitors such as BEA Tuxedo used stateless services to distribute function-
ality and manage transactions, somewhat similar to how Enterprise JavaBeans
provides these types of infrastructure services. The Enterprise JavaBeans model is built
around components. Software components can sometimes be viewed as wrappers
around either an individual object or a set of related objects. Thus, the EJB model is
based on an object-oriented programming paradigm. The prior transaction-processing
model was based on services, which can be viewed as global functions such as in a pro-
cedural programming language. These services typically could be either stateful or
stateless, although stateless was the recommended choice for scalability and perfor-
mance. A primary reason for this is the fact that a stateful service consumes resources
that could be shared across multiple clients in between different client requests. The
other problem with the stateful approach is the potential issue of users who walk away
from their desks during the use of a client-server application. This leaves the stateful
service hanging there, consuming resources until the session or application times out.
Thus, stateless services were often the solution that formed the basis of many of these
applications.

You can use the concept of a service within the J2EE architecture as a primary
option for distributing and managing business functionality. So why would you want

189

190

J2EE Best Practices: Java Design Patterns, Automation, and Performance

to regress to a model more accustomed to procedural programming languages rather
than use the newer paradigm of object-oriented development? Well, this is not really
an accurate way to look at it. Using service-based components is not really a complete
regression into the past although it does take advantage of the many benefits that
come with using this proven design pattern in the architecture. If you go back to the
loose definition of a component, you see that a service really provides an interface into
the service’s functionality, remotely distributing a particular method of the primary
object within the component. Most likely the component encapsulates a set of related
objects; this is often the case, because service-based components in the architecture
will use business objects to do the bulk of the work. In this sense, components in the
EJB tier build on each other, at different levels encapsulating larger and larger sets of
functionality. You have already seen how business objects themselves exhibit this
characteristic in the case of aggregated business objects. Based on this view, you can
look at each of these components as building blocks in your application architecture.
This allows for great levels of reusability across a portfolio of related applications, and
it will be discussed in full detail in later chapters on reusability and the strategic
architecture.

Many service-based components are actually nothing more than workflow man-
agers that invoke business methods across multiple Entity Beans or business objects.
Consequently, the implementation of these service-based components is actually quite
object-oriented underneath the covers. It is primarily the exposure to the client that is
still modeled as a stateless service, a single method call that holds no state across invo-
cations. These stateless services are much more scalable and provide a higher level of
throughput than their stateful equivalents. Enterprise JavaBeans containers are no ex-
ception to this rule. The nice part about this model in the J2EE architecture is that it fits
nicely into the Web-based application design. The Web tier contains a primary mecha-
nism, which is called the Ht t pSession, to maintain state in an application. For this
reason, there is seldom need to use stateful Session Beans to maintain state. Most J2EE
application servers already provide high-availability clustering with failover on the
Web tier, but they have been slower to do so with stateful Session Beans. A different
viewpoint may be taken, however, for Java Swing-based applications. A thick-client
application might likely use a stateful Session Bean to maintain a connection with the
server and make repeated method invocations based on user events. However, in a
thin-client application, this happens much less frequently because the state is main-
tained on the Web tier, and invoking stateless service-based components to access busi-
ness functionality is a much more natural fit to the architecture.

Service-based components represent the business processes and transactions of a
given application. They often implement a single unit-of-work, although they may also
be combined with other services as a portion of a larger transaction. Extending the
building block view of the world, the same concept that applied for business objects
also applies to service-based components. Some services are smaller and have meaning
individually, but they can also be used as a step in a larger workflow or service that gets
used somewhere else in the application, perhaps even across applications in a par-
ticular business. Take an order processing system on an electronic commerce Web site
as an example. One service in the back-end system might be named PurchaseNew-
Product. This service would be invoked when an existing customer purchases a new
product on the Web site. However, when a customer comes to the Web site for the first

The Service-Based Architecture: Design Considerations

191

time and makes a purchase, you can’t invoke this service yet because the customer
does not exist. Thus, in one transaction you would like to invoke the services Create-
NewCustomer and CreateNewBillingAccount first, and then invoke the
PurchaseNewProduct service. One design for implementing this would be to cre-
ate a “master” service that controls the flow of invoking these services. In the correct
order and within a single transaction, the master service would create the new cus-
tomer record, create an account for the customer in the system, and then process the
new purchase order. In this manner, services can be used as building blocks for other
services. Service-based components can encapsulate different levels of functionality as
they go up or down in this hierarchy. Keep in mind that all applications and businesses
are unique, and different levels of reusability will be achievable; however, the architec-
ture and component design should always take these things into account to provide for
the possibility of extending the functionality. Businesses often change their models and
processes, so the building blocks can also get shuffled around and extended, as is often
the case. Figure 5.1 illustrates how, in this example, services are being reused as build-
ing blocks within an application.

User Interaction Architecture
Existing New Customer
Customer Shopping Cart
Shopping Cart Cl}i];ck% ut
Checkout
y Higher Level Service(s)
New Customer
Purchase
Yy VY Y \i
Purchase New Create New Create New
Product Customer Billed Account
Lower Level Service(s)/Building Blocks
Service-Based Architecture

Figure 5.1 Services as Building Blocks in an Order Processing System.

192

J2EE Best Practices: Java Design Patterns, Automation, and Performance

It is important to note that not all architectures have a service layer. Many designers
and architects implement the functionality found in the services as a business logic
method on one of the primary business objects involved in the transaction. In many
cases, this works just fine, and there is nothing wrong with doing this. However, there
are many benefits to adding a service-based layer in between the user interaction layer
and the business objects layer. The primary benefits of this design are based on two dif-
ferent thought patterns. The first of these is based on the ramifications of the overall
software architecture and how these services fit nicely into the Web-based application
architecture. The second basis point is that the study of businesses and business appli-
cations shows that business processes or transactions naturally fall out of the model.
There are numerous transactions in a typical business involving the same business en-
tities. This is the case in the recurring example of the bank account that can be a part of
many different interactions with a customer. In some cases, business entities might
even act or react differently based on which process they are currently involved in.

The first basis point deals with the rationale of the services layer in terms of software
architecture. It is based on a number of things including flexibility, reusability, and the
efficient use of Enterprise Java services. A primary benefit to note is that it isolates the
business object layer from the user interaction layer. It provides a wrapper that limits
what the front end needs to know about the back end. It simplifies the front end greatly
because the only things that it must do are package up the data for the service and in-
voke the correct service component. No knowledge of the business object model or its
interfaces is required to have access to the business functionality. This isolation point is
a primary benefit of the Model-View-Controller design pattern. This also allows the
back-end functionality to be reused across different client applications. It also allows
the client to drastically change its behavior without affecting the back end at all. To
summarize this in Enterprise Java terms, it reduces the coupling between the Web tier
and the EJB tier.

A secondary benefit of this reduced coupling is increased performance. Invoking an
Enterprise JavaBeans component can mean a network trip between the Web tier and
the EJB tier if the two tiers are physically distributed. This pattern usually reduces the
interactions between the presentation layer and the business logic layer to a single
remote method call. There may be some cases in which it is better to invoke multiple
services remotely. However, the majority of cases will be covered by a single service
invocation. Thus, this architecture layer reduces the amount of unnecessary network
and RMI overhead.

Another point to make about this model in terms of software architectureis that it pro-
vides an excellent way to take advantage of Enterprise Java services, such as distribution
and transaction management, through the most efficient type of Enterprise JavaBean,
the stateless Session Bean. This gives you the best of both worlds in a sense, the perfor-
mance and scalability of a stateless service combined with the container-provided infra-
structure services that allow you to quickly build and deploy enterprise applications.

After examining the architecture in depth, it will be argued that there is additional
benefit to be gained from creating a standard interface for these service components.
This allows the creation of a generic front-end component that invokes these services.
You can also easily plug in new services to the architecture. Taking this thought a step
further, you can also implement a common base class for these services if you want to
provide common hooks for application-level security, logging, or audit trail features.

The Service-Based Architecture: Design Considerations

193

JDBC

=== Servlet
Web Page Fl
_ ge Flow, -
Browser > Entity Bean/
HTTP Handle Java Class
|i| Request Forms -
Session Business
o= .
Wireless P Bean P Objects
Device RMI Service RMI/ ?
¥ Components|| 1 ocal Y
JSP Intf. || Data Access
- Screens Objects
HTTP and
B2B Web Response Content
Service p
Client
User Service- Business
Interaction Based Object
Architecture Architecture Architecture

Database

Figure 5.2 High-level Service-Based Architecture.

Consequently, the rationale for the Service-Based Architecture can be summed up
by the following points:

m Reduces the coupling between the Web tier (User Interaction Architecture) and
the EJB tier (Business Object Architecture)

m [imits the number of remote method calls and RMI/network overhead

m Distributes business functionality through a standard, service-based interface

m Utilizes the most efficient Enterprise JavaBean, the stateless Session Bean, to
take advantage of container-managed services such as distribution and transac-
tion management

m [s used to coordinate multiple business objects in a transaction; manages work-
flow between entity business methods

m Provides the potential for a common base class to generically manage
application-level security, logging, and audit trail functions

Thus, there are many benefits to encapsulating business process functionality in a
stateless Session Bean. Figure 5.2 shows the high-level components within the Service-
Based Architecture and how they fit into the overall architecture.

Elements of Service-Based Components

A study of business applications shows that business processes are what drive busi-
ness functionality within an application. They represent the meaningful interactions or
events that occur between a business and its customers. They are often transactions or

194

J2EE Best Practices: Java Design Patterns, Automation, and Performance

units-of-work that are crucial to the integrity of the process and the business entities
involved.

A service-based component itself models a business process or transaction. A busi-
ness process here can be loosely defined as any element of work to be done within an
application. This includes services ranging from transactions initiated by a customer
on a Web page to any service required to provide information to the user interaction
layer. In these examples, the data access and updates to the business entities are dele-
gated to the Business Object Architecture. Note that data retrieval itself can be invoked
from the service component. However, any update functionality must go through the
business objects. Because much of the work of a service is done through the business
objects, services can come in all sizes and shapes. Many services will be fairly small
with the simplest ones executing a single method on a single business object. On the
other extreme, services can model complex business processes with rules of their own
that invoke many business objects and must coordinate all the work into one transac-
tion that is exposed to the client. These services must combine any potential error con-
ditions or failures into a unified response. Because services exist at different levels,
they can also be reused across other services and applications as building blocks of
functionality.

Consequently, services exhibit the following common characteristics:

= Are used to model a business process or transaction

m Use reusable business objects to update business entity data
m Coordinate one or more business objects in a transaction
|

Are categorized as read-only or update services

Services Model Business Processes
and Transactions

Primary business functions in an application that are accessed by a client are modeled
as service-based components. These functions can represent an overall process or an
individual transaction. The service-based component is used to distribute and manage
the transaction provided by the service object. It provides a single interface for the
client to use to invoke the transaction and isolates the front end from the back end.

Examples of business processes include the recurring bank example. A customer
moving money from a checking account to a money market might invoke the
TransferFunds service. A customer of a Web-based retailer might be invoking
the PurchaseNewProduct service to buy a product from an Internet storefront.

Services Use Reusable
Business Objects
Service-based components often contain very little code because they use business

objects to do the majority of the work. Simple services usually invoke only a single
method on a business object. This is a result of the fact that either a single business

The Service-Based Architecture: Design Considerations

195

entity is affected or the business object actually aggregates related business objects that
are included in the transaction. Complex services or processes do require the service
component to contain business logic or rules that define how the service will use the
business objects.

The Trans ferFunds service in the bank example instantiates two instances of the
Account object and invokes the withdraw method on one and the deposit
method on the other. The service itself would not modify the account entities; it would
use the business objects to do so. Likewise, the CreateNewCustomer service for a
Web-based retailer would use the Customer object to create a new instance of a cus-
tomer in the database.

A single business object might get used in ten, twenty, or even a hundred different
processes or transactions within an application. The different services use the business
object in different contexts, often invoking different business methods on the object. In
a given process, the business rules or logic may differ as to how the business object is
manipulated. It is important to note that all updates to business entity data must go
through the business objects themselves rather than be updated directly through the
service component. Although there is nothing technically from preventing this, it ex-
poses places in the architecture where updates are allowed without going through the
proper data validation and business edits.

One of the primary responsibilities of the service component is to move the data re-
ceived from the interface to the different business objects involved in the transaction.
Services must be able to instantiate particular instances of business objects from the
data passed into the method. Likewise, any updated business object data or error in-
formation that results from the transaction must be returned from the business objects
and marshaled back into the form expected by the client.

Coordinating Multiple Business
Objects in a Transaction

One of the primary aspects of a service-based component is that it can encapsulate a
subset of functionality in a system. To do this, it is often necessary to instantiate and in-
voke multiple business objects within a process or transaction. Any update methods
invoked on these business objects are usually coordinated into an overall transaction.
Session Bean EJB components allow you to do this by declaring a transaction and then
having all of your business objects share in that same transaction.

The TransferFunds service example uses multiple instances of the same busi-
ness object, Account, to perform the work of the transaction. The two method invo-
cations, withdraw and deposit, must be executed as part of a single overall
transaction to ensure data integrity. In this case, even more importantly, a single trans-
action is required to ensure that the bank doesn’t lose money on the deal, which could
happen if the withdraw is successful, but the deposit is not. This is just as applica-
ble for services that invoke multiple types of business objects, such as when a new
customer comes in to open an account. A CreateNewCustomer service would use
the Customer object to create the customer record and the Account object to create
a new account.

196

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Service Categories: Data Retrieval
and Update

Services can be categorized either as data retrieval or update services. It is sometimes
helpful to distinguish between the two for modeling purposes and to understand the
overall purpose of services in the application architecture. Services that simply retrieve
data may not be viewed necessarily as a business process or transaction; however, they
are essential services in order to provide application functionality to a client. From a
modeling perspective, they provide information to a customer or client. Often they in-
volve complex logic to provide different views or calculations that involve data pre-
sented to the user.

Data retrieval services are not required to use the business objects in most cases. For
straight database access, the data-access objects can be invoked directly for better per-
formance. However, in update services, any time an actual update is going to occur, a
business object must be instantiated from the data and the proper business method
called to perform the update. An example of a data retrieval service is Get Account -
Transactions for the banking Web site. This service returns a list of transactions for
a given account and time period for a customer who went onto the bank’s Web site to
see if a deposit was posted against his or her account.

Update services are designated such that they are marked as transactional when de-
ployed as Enterprise JavaBeans. They may involve one or more business objects in the
update and are usually coordinated into an overall transaction by the service compo-
nent. Most of the examples thus far, such as TransferFunds and ChangeAddress,
have been update services.

Although it occurs much less frequently, there is another type of service that doesn’t
necessarily fit nicely into either category. This type of service often performs some kind
of calculation or data validation and returns a result that does not persist in the data-
base. A service that performs a what-if kind of analysis or calculation and returns a re-
sult might be an example of this kind of service. Most of these types of services have
the result or scenario persist in the database and are thus considered update services;
however, there can be cases in which there is no database update. For purposes of cat-
egorization, any service that does not perform a database update can be considered a
data retrieval service. Although this does not fit the definition of a data retrieval service
perfectly, it does to a degree fit the spirit of the definition. In these cases, most likely the
service returns a result, or piece of data, that is given back to the client for the purpose
of supporting the User Interaction Architecture or another larger service that is reusing
this service as a building block. In this sense, it is in fact “retrieving” a piece of data for
the front end.

Design Considerations

The Service-Based Architecture is primary a design concept and pattern implementa-
tion within the overall software architecture. The components themselves typically
contain a small amount of code, but they act as an important isolation point between
the front end and back end of any application. Nonetheless, there are still a few

The Service-Based Architecture: Design Considerations

197

design issues to take into consideration when implementing a Service-Based
Architecture.

The Enterprise Java Implementation

Based on the earlier discussions, stateless Session Beans are a perfect fit for imple-
menting service-based components in J2EE.

1IN 4 VY91 (93 Implement service-based components as stateless Session
Beans to take advantage of Enterprise Java services such as distribution and
transaction management while maximizing scalability and performance.

The service method defined for the component in the remote interface should be
marked as transactional for all update services. This method begins and ends the
transaction and is required to mark the transaction for rollback if any unhandled ap-
plication exception conditions are caught out of business object methods. To do this, all
service methods should have an overall try-catch block that catches any application
exceptions, executes EJBContext.setRollbackOnly in these conditions, and
gracefully handles the situation. Remember that the E]JB container is required only to
fail a transaction when this method is called. An application exception being thrown
does not necessarily cause the transaction to roll back in all application servers; thus, it
is better to do this explicitly in the service component code (or business object code
based on the approach to error handling).

Remember that these services are stateless, so member variables of the service com-
ponent should be used only for data that is shared across all clients that will access the
service. Any data should be held using local variables in the method or objects that are
instantiated within the service.

Using the Session Bean as a Wrapper

Because services can be reused across other services, it may be desirable to invoke a
service without going through the Enterprise JavaBeans distribution method. RMI and
JNDI add an amount of overhead that can be avoided if you are already within another
service and would like to invoke a service. Thus, it is better to use the Session Bean
artifact as a wrapper only around the actual service object implementation. Figure 5.3
illustrates how a remote client invoking a service will go through the EJB wrapper
while the server-side component would like to invoke other services directly by in-
voking their methods. This technique still allows the services to share the same trans-
action if desired.

The Session Bean in this type of design is merely a required artifact that is used to
engage the container-managed services of transaction management, distribution, and
so on. The code to actually implement the business logic of the service is housed in a
regular Java object called by the Session Bean. The interface to the actual implementa-
tion object would be similar to the remote interface provided by the EJB to the client.
The interface itself is discussed in the next design consideration topic.

198 J2EE Best Practices: Java Design Patterns, Automation, and Performance

User Interaction Architecture
Remote Remote
Client A Client B
EJB Component
Wrappers y Y
Service A Service B
Session Bean Session Bean
Y \i
Service A' Service Service B)
Implementation Reuse Implementation
Service Object Implementations
(Java Classes)
Service-Based Architecture

Figure 5.3 Session Bean as a Component Wrapper to Service Implementation Objects.

Put the actual workflow and transaction logic of the service
in a Java class. This implementation of the service can then be wrapped by the
Session Bean to engage the container-managed services of transaction manage-
ment, distribution, and so on. This allows services to be reused within other
services more efficiently because you have the option of avoiding another EJB
method invocation. Optionally, you can use a local interface of the Session Bean,
which is slightly less efficient but avoids the RMI and serialization overhead.

The common logic to invoke the service implementation object, handle errors, and
manage the transaction can be implemented in a standard Session Bean in the founda-
tion layer. Although there is not much to this, it will still be helpful to implement this
in a foundation Session Bean that can be called B1fService. If you isolate the logic
that just invokes the service implementation object in a separate method, you can make
this a template method that can be overridden by subclasses. This allows you to create

The Service-Based Architecture: Design Considerations

199

specific subclasses with different deployment properties while reusing the basic trans-
action management logic in the B1 £ Service base class. You may want to do this, for
example, if you don’t need a transactional context for a service. Because you need to
choose a transactional setting for B1fService, you need to deploy different in-
stances if you want to have a transactional service and a nontransactional service. Note
that you could also deploy the same code twice with different JNDI names and differ-
ent transactional settings, something to the effect of BlfTransactionalService
and BlfNonTransactionalService. However, there may be other types of
deployment settings for different application service components, and this concept
allows you to do that easily while still reusing foundation functionality.

Impact of the Business Object
Implementation

The actual implementation model used by the business objects in the overall architec-
ture has little bearing on the design of the Service-Based Architecture. However, there
are a few points worth noting in regard to this topic. The fact that a services layer ex-
ists at all helps to make this implementation choice less important for the overall ar-
chitecture. The services layer allows you to change the business object implementation
model with little impact to the User Interaction Architecture.

m The service-based components allow for a potential migration be-
tween either Java-based business objects to Entity Beans or vice versa. Based on
the criteria defined in the Business Object Architecture, different applications
favor different solutions. For example, if Entity Beans were chosen as a business
object implementation and system performance became a problem, the back end
could be ported to regular Java classes without affecting any of the clients or User
Interaction Architecture.

If Entity Beans are used as the business object implementation, the Session Bean
service components implement the Facade pattern (Gamma et al. 1995) to the Entity
Bean business object components. This is a recommended pattern when you use Entity
Beans. It prevents a large number of remote method invocations on the Entity Bean
component using RMI. In EJB 2.0 containers, the Session Bean service component can,
and usually should, invoke Entity Bean business objects using their local interfaces.
Figure 5.4 illustrates the component interaction in this case.

The Java Interface to the
Service Component
Java interfaces provide a very powerful mechanism that not all programming lan-

guages have the luxury of using. The Enterprise JavaBeans specification dictates that
both the Home and Remote interfaces are actual Java interfaces. A powerful aspect of

200 J2EE Best Practices: Java Design Patterns, Automation, and Performance

User Interaction Architecture

Remote Client

|

RMI/
EJB Remote Interface

Service-Based Architecture l

Session Bean
Service

Method Invocation/
EJB Local Interface
1

/ /

Business Object Business Object
Entity Bean 1 Entity Bean 2

Business Object Architecture

Figure 5.4 Services Using EJB 2.0 Entity Bean Business Objects.

interfaces is that they allow the client to deal with different implementation types with-
out having any knowledge of the actual implementation. The client deals only with the
interface class. Because they are similar to a class, Java interfaces can also extend from
other interfaces.

m The design of the interface to the service-based components is
perhaps the most important decision to make in this portion of the architecture.

The interface is the piece of the service-based component that is exposed to the
client. It dictates the form and data structure that the front end is required to create in
order to invoke the service component. It also will drive what type, if any, of data mar-
shaling is required in the service component itself in order to take input data and then
instantiate and populate business objects. Likewise, it dictates how and in what form
any data and error information that results from the service is returned to the client.

There are two basic choices that drive the design of the interface. The first question
is do all service components have their own interface that takes specific data required

The Service-Based Architecture: Design Considerations

201

for the transaction, or is there a decision to use a standard interface with a generic data
structure that can be used for all services? Second, what data structure is used in either
case to transport the data remotely from the client to the service and then back again?

Explicit versus Generic Interfaces

Similar to the business objects, the generic interface referred to here can be implemented
using a Java interface. However, there are a number of advantages to creating specific
interfaces based on the functionality of the service. It allows the reader of the interface
to determine exactly what data is required. It also simplifies the data-marshaling
process because data is probably already typed and organized based on business object.
For example, a ChangeAddress service might take a customer identifier and an
Address value object as arguments. This is the required data for the service compo-
nent to do its job. It can instantiate the correct instance of the Cust omer object based on
the identifier and invoke the changeAddress method by passing in the Address
value object. The method signature might look like the following:

public void changeAddress (String customerId,
AddressData address) ;

These are good reasons to choose unique interfaces over a generic one. However, if
you look back at the guiding principles for building effective software architectures,
you see that automation and metadata-driven components are keys to creating a foun-
dation for rapid application development. These principles are very applicable to the
Service-Based Architecture. A generic service interface that is standardized across all
service-based components allows you to automate the invocation of service compo-
nents and data packaging that is required in the front end within the User Interaction
Architecture. A standard interface allows the front end to generically call the service
components given only the name of the service to invoke. This is metadata that can be
configured based on the user event that occurred. A standard interface also implies
that a standard data structure is used to pass data back and forth. A major responsibil-
ity of the front end of a Web-based application is to package data coming from the
HttpServletRequest into a usable form for the service components. A standard
interface allows for a level of automation in terms of data packaging in the front-end
components. Finally, a standard service interface allows for easy component integra-
tion into the architecture by providing a standard way to plug-in services.

To implement a standard interface for your services with a Session Bean component
wrapper, you need to create a standard Java interface for the EJB and for the imple-
mentation class. These interfaces should have corresponding method signatures so
that the Session Bean can delegate the service request to the implementation class.
Figure 5.5 shows a UML representation of the service components and their interfaces.

The Choice of Data Structure

The second issue to decide upon for your services is the data structure. This is even
more important for the standardized service interface because it drives the automation

202

J2EE Best Practices: Java Design Patterns, Automation, and Performance

<<interface>>
EJBObject

<<interface>>
EJBService

executeService ()

A

<<realize>>

EJBServiceBean - ServiceImpl
<<interface>>

Service <<realize>>

doService ()

executeService () doService ()

Figure 5.5 UML Representation of Service Component Interfaces.

and data marshaling steps that will occur for all service components. The choice of
data structures includes:

m]ndividual Java data types and objects (that is, date, int, string, and so on)
= Value objects

m XML data
L

Argument (or parameter) list: A collection of name and value pairs (for exam-
ple, java.util. HashMap)

There are not necessarily right or wrong answers on this list. For unique method sig-
natures for each service component, the likely choice is the appropriate set of Java ob-
jects and primitive data types to represent the data for the service. For a standardized
service interface, the selection of data structure largely depends on the remainder of
the architecture decisions surrounding this component in the user interaction and
business object layers of the architecture.

Value Objects

If the Business Object Architecture uses value objects throughout to retrieve data from
the data-access layer and to populate instances of business objects, then a collection of

The Service-Based Architecture: Design Considerations

203

value objects might be the right choice for a generic service-based interface. You still
want to handle value objects generically, so you can require that value objects imple-
ment a standard Java interface as mentioned in the discussion on the Business Object
Architecture. One challenge with using value objects is that there are different types of
objects to transport and there are often multiple objects coming into services; thus, the
interface needs to handle a collection of value objects of different types. This requires
the service objects either to do object casting and typing in order to determine how to
handle different sets of object data or to assume some set of indices that represent dif-
ferent objects. Take, for example, a service that takes a Customer and an Address
object. A generic interface would require a collection of objects, thus, the client and ser-
vice would need to agree upon the fact that the Oth index in the collection contains a
Customer object and the 1st index in the collection contains an Address object. This
approach requires an agreed upon contract for the service beyond just the method sig-
nature, because it assumes an ordering of value objects within the collection. The num-
ber of cases in which indices are required can be reduced through the use of aggregated
value objects. In this example, the Address object can be aggregated by the
Customer and accessed using a get Address method. However, cases that include
disparate objects and in which aggregation is not appropriate will still require an
agreement on the ordering. In any case, the value object approach will require the front
end to have the knowledge of mapping form fields to object properties in order to
initially populate the value objects. If an agreed upon order of objects is used, it will
also need to know in what order to put the value objects in the collection. Finally, one
big benefit of this approach mentioned earlier is that it easily handles multiple
instances of objects, a requirement that often occurs in transactional business applica-
tions. The next option, a single argument list, needs to do some additional work in
order to deal with this type of situation.

Argument List

A collection, equivalent to a Java HashMap, of name and value pairs is the simplest
choice because it mirrors the Ht tpServletRequest itself coming from the front
end. Both objects have a flat naming space in which to provide attributes and their val-
ues, although the Ht tpServletRequest allows for multiple parameter values for
the same parameter name. For this reason, the choice of a HashMap-type structure re-
duces the complexity of the data packaging to be done in the front end. Note, however,
that a copy must be made of the name and value pairs from the HttpServlet-
Request object into a separate HashMap object because it would not make sense to
send this servlet-based object to the EJB tier. The limitation of the HashMap approach
that is often encountered is that it does not work well for multiple instances of objects
or hierarchies of object data. Both value objects and XML data structures provide easy
solutions for aggregated objects and collections of objects. These patterns occur quite
often, as many update screens deal with a master-detail, or parent-child, relationship.
Two very simple examples of this might be Customer-Address or Purchase-
Order-LineItem. Data from both the parent and the set of child objects would
likely appear on the same Web page to be updated, and you would want to transfer
their data together to the service. Now, this of course is not impossible using a collec-
tion of name-value pairs; it just gets to be a bit more difficult to handle when there are

204

J2EE Best Practices: Java Design Patterns, Automation, and Performance

multiple instances of objects, and even more complex when the multiple instances go
down a couple levels. In these cases, the XML and value object approaches provide
much simpler solutions. However, it is important to note that no matter what option is
chosen, in a Web-based application, you will be starting from a flat name space of name
and value pairs, because this is what HTTP and the Ht tpServletRequest object
are based on. You are allowed to have multiple values for a given HTTP parameter
name. However, you also want to be able to ensure their correct order and association
with object instances in a given form.

You must also consider how data is returned from a service. In a data retrieval ser-
vice, you will often want to return a collection of object instances, the equivalent of a
result set. This would be a little tricky, but not impossible to do, using a flat namespace
of name and value pairs.

XML

XML is a very popular data structure that is generic enough to store any type of object
data including hierarchies of objects. This works very well for generically handling ob-
jects aggregated within other objects. XML data is typically used for data transfer be-
tween applications. However, it can also be used to transfer data to and from the
service components. This type of data structure adds some amount of overhead for
XML parsing, but might be a good choice if the front end is driven by XSL stylesheets
that expect XML data as input. If XSL transformations are to be used to generate much
of the Web page content in an application, an XML interface for service components
makes a lot of sense. Another reason might be if these services are also to be deployed
as Web services using SOAP (Simple Object Access Protocol). Web services based on
SOAP, as well as many other B2B interactions, send data across HTTP requests as XML.
Thus, if your services are based on XML interfaces, only a simple translation within the
User Interaction Architecture is required to wrap these services as Web services.

Evaluating Data Structures

Table 5.1 summarizes the advantages and disadvantages of each data structure for use
as a standardized service interface.

So which then is the best choice of data structure for the service component inter-
face? Well, there is no clear-cut winner, and the choice, again, depends on the rest of the
architecture decisions. However, the focus in this book is on both value objects and
argument lists throughout the implementation examples. The integration of value
objects with the Business Object Architecture all the way through to the data-access
layer presents a strong value proposition (no pun intended). Imagine the ease of creat-
ing data retrieval services if the data-access objects return collections of value objects.
Even if the data-access layer returns the equivalent of a result set, it would be easy to
write a generic routine to create value objects from a data retrieval service component.
In this regard, value objects provide a modest amount of data marshaling while using
a data structure that can be used pervasively throughout the architecture. Additionally,
not all of the input data to a service maps directly to an object property, so an argument
list will be quite helpful for many services. This argument list can implement the
same value object interface (get /setProperty); however, it will not be tied to the

The Service-Based Architecture: Design Considerations

205

Table 5.1 Evaluation of Data Structures for Service Interface

DATA STRUCTURE ADVANTAGES DISADVANTAGES

Individual Java objects Cannot be used for a Efficiently represents

and data types generic interface service data

Argument list Maps directly from Requires complex solution

(HashMap of name HttpServletRequest for hierarchies of objects

and value pairs) form fields and result sets

Value objects Integrates well with Requires a generic
Business Object collection of value objects
Architecture that must be typed and

handled

XML Most flexible data structure; Slowest data structure
handles hierarchies and due to XML parsing and
collections of objects well; number of objects
integrates with XSL on the required to represent
front end tree structure

metadata for a single business object. In terms of performance, either kind of value
object compares quite favorably to an XML data structure.

Although it is true that XML parsing adds overhead, especially for large data sets, it
is still worth consideration for certain architectures. If you consider that HTML is noth-
ing more than a subset of XML, it seems quite natural to send XML to the front end. If
your project team has a skillset in XSL, it is even more of a reason to consider it. As pre-
viously mentioned, it integrates well into a Web service model, although it is also true
that any service can be wrapped to provide an XML interface. This would be required,
for example, with service components that return a set of value objects. In fact, in a ro-
bust architecture, value objects would know how to transform themselves in and out
of XML, so this would not likely be an issue. Nonetheless, XML deserves consideration
for a generic interface because of its great flexibility and ease of handling hierarchies
and multiple sets of objects. In terms of automation, it is quite easy to create generic
routines to transform objects and results sets into XML and then back again.

m The flexibility and self-describing nature of the XML data structure
provide a mechanism that is quite tempting to use within highly automated foun-
dation architectures. It is the performance aspect that must be kept in mind,
especially for large amounts of data.

XML parsers are becoming more efficient; however, they still use a large number of
objects underneath the covers in order to implement DOM (Document Object Model)
functionality. SAX (Simple API for XML) parsers are effective for handling XML data
in a service component. However, the DOM allows you to create an XML representa-
tion in memory, which is needed for so many application services. The DOM repre-
sents a tree structure that introduces a large number of additional objects on each XML

206

J2EE Best Practices: Java Design Patterns, Automation, and Performance

tree that is parsed or created. Performance degradation can sometimes be worse than
linear for larger XML documents because of the time needed to create and navigate the
large tree structures. The XPath lookups can be especially time-consuming if the docu-
ment grows in size, which many business applications demand.

The more types of client devices that access the business services, the more likely
that XML is a solid choice for the format of data. A standard interface that needs to
interact with many different devices lends itself to XML. As mentioned earlier, HTML
itself is merely a form of XML. Web services operate using XML data, and wireless
clients can use a variant called Wireless Markup Language (WML). In all of these cases,
the user interaction layer would simply need to use different translations of the same
XML data coming from the service for the particular device. Many content manage-
ment tools are based on this concept of storing content as XML and using different
stylesheets, or transformations, for the particular view of the data or for the particular
device.

If performance engineering can be done to the XML parser as well as other parts of
the application to a degree that is acceptable for the application requirements, the XML
data structure choice is a powerful one for automated, configurable foundation com-
ponents. In many other cases, the use of value objects is highly effective due to its
better performance and integration with the Business Object Architecture.

Service components with specific interfaces for different
functions work well in many software architectures. Use a standard interface for
service-based components in order to enable highly automated front-end compo-
nents. Choose the generic data structure that best fits your needs for this interface.
XML data is the most flexible choice for automated components. However, it per-
forms the worst, especially for large amounts of data. For many cases, a collection
of value objects that implement a standard value object interface works well. For
simpler architectures that do not involve many hierarchies or collections of objects,
an argument list containing name and value pairs can also work quite well.

Integrating Service-Based
Architecture with the Business
Object Architecture

There are a few aspects of the Business Logic Foundation that should be shared or in-
tegrated between the Service-Based Architecture and the Business Object Architecture.
The most fundamental of these is error handling. There should be a uniform approach
to error handling across these two layers. Any business errors or exceptions that occur
within the service components should use the same error-handling framework that is
used by the business objects. Additionally, the service components are responsible for
aggregating all of the business errors that may have occurred across business compo-
nents during a transaction and presenting them uniformly to the user interaction layer.

The other aspect of error handling that can be integrated in relation to the service
components is transaction management. A method on the service component will
often be the point where you want to initiate a transaction. Thus, the highest-level

The Service-Based Architecture: Design Considerations

207

service component in a transaction will typically start and end the transaction, usually
through a declarative step in the deployment of the Session Bean. Any error that occurs
in a business object or the service component itself should cause the transaction to fail.
It would be very helpful to be able to automate this step through the use of the error-
handling framework from within either a business object or a service component.

The other major integration point between the service components and the business
objects is the data. This has been discussed through the different interface options for
the service components. Data sent into the service must be used to instantiate and pop-
ulate business objects. Value objects used throughout the architecture provide an ex-
cellent way to do this. However, the options also include simple argument lists all the
way up to XML data. These approaches can be done just as easily by adding marshal-
ing methods on the business objects, although they come with their own set of costs
and benefits.

Best Practices for Designing
Service-Based Components

A summary of the best practices for designing the Service-Based Architecture is given
in this section.

Implementing Service-Based
Components

Implement service-based components as stateless Session Beans to take advantage of
Enterprise Java services such as distribution and transaction management while max-
imizing scalability and performance.

Using the Session Bean as a
Component Wrapper

Implement the actual workflow and transaction logic of the service in a regular Java
class. This implementation of the service can then be wrapped by a Session Bean to
engage the container-managed services of transaction management, distribution, and
so on. This allows services to be reused within other services more efficiently because
you have the option of avoiding another EJB method invocation. It also follows the
general design principle of implementing objects as normal and then packaging them
as EJB components when it is advantageous to do so. As an alternative, you could also
invoke other services within a service using a Session Bean local interface. This is
slightly less efficient than a pure method call, but it does avoid RMI and serialization
overhead. One thing to be aware of with this approach is that it may introduce both a
remote and local interface for the service component. If this fact is not considered
during the design phase, it could potentially cause problems later on because the
programming paradigm switches between pass-by-reference and pass-by-value.

208

J2EE Best Practices: Java Design Patterns, Automation, and Performance

Designing the Service Interface

Service components with specific interfaces for different functions work well in many
software architectures. Use a standard interface for service-based components in order
to enable highly automated front-end components. Choose the generic data structure
that best fits your needs for this interface. XML data is the most flexible choice for au-
tomated components. However, it performs the worst, especially for large amounts of
data. For many cases, a collection of value objects that implement a standard value
object interface works well. For simpler architectures that do not involve many hierar-
chies or collections of objects, an argument list containing name and value pairs can
also work quite well.

Summary

Service-based components represent the business processes and transactions of a given
application. They often implement a single unit-of-work, although they may also be
combined with other services as a portion of a larger transaction. They make up an im-
portant layer in the reference architecture because they simplify the front-end logic and
isolate the business object implementation model. Service components provide Web-
tier components with a standard interface to invoke that encapsulates the overall trans-
action and manages the workflow between multiple business objects or Entity Beans.
The implementation model for service components is typically a stateless Session Bean
as a wrapper around a Java implementation object.

With the design considerations and best practices from this chapter in mind, the
next chapter walks through the implementation of service-based components in the
reference architecture. Services from the bank application are implemented that build
on the business objects implemented in earlier chapters. A service component founda-
tion class is also constructed for the Session Bean wrapper. This foundation is used to
standardize error handling and the invocation of service implementation objects.

Building Service-Based
Components

As discussed earlier, the service component layer in the architecture is largely a design
pattern in your application. Implementation of service components does not require a
large degree of foundation code, although the amount of actual business logic will vary.
Many services will be simple and elegant, although in some applications there may also
be complex services that implement intricate business processes. In many cases, the
service components act as a workflow manager between business objects.

The Actual Service Interface

For the specific interface of the TransferFunds service example, the two account
identifiers and an amount to transfer are required as arguments. Thus, the interface
looks like this:

public interface TransferFunds extends EJBObject {
public void executeService(String accountIdl,
String accountId2,

BigDecimal amount)
throws BlfException, RemoteException;

209

210 J2EE Best Practices: Java Design Patterns, Automation, and Performance

For the ChangeAddress service, it might look like this:
public interface ChangeAddress extends EJBObject {

public void executeService(String addressId,

String linel,
String line2,
String city,
String state,
String zip,
String country)

throws BlfException, RemoteException;

}

Using a standard service interface, you need a generic way to encompass the data
for these services as well as any others that you can imagine. As concluded in the
design consideration discussion, value objects, and sometimes their implementation as
straight argument lists, provide an efficient and flexible mechanism to transport data.
Note that the data in these two service examples falls into two categories:

m Object data

= Service arguments

The address fields sent to ChangeAddress all map directly to object properties.
This type of data is well suited for value objects since it corresponds directly to an object.
However, some data sent to a service is simply a service argument. For example, the
dollar amountin TransferFunds does not map directly to any object property. It will,
of course, affect the current balance property of the account, but it does not correspond
directly. It is an argument to the business logic that will add or subtract from a given
account’s balance. Thus, it might be nice to have a data structure that supports both.

m Use a service data structure that explicitly supports an argument list

as well as a collection of value objects so that both types of data can be easily
handled.

An Implementation for Argument Lists

It would simplify things if the argument list class implemented the same
ValueObject interface. Consequently, you can create a new implementation of
ValueObject called ArgumentList, that does not associate properties with any
specific business object metadata. It is required to store everything as a collection of
strings because it won’t know the data type. Specific get methods can still be used to ex-
tract argument values as different data types. The basic code for this class is as follows:

public class ArgumentList implements ValueObject {

/*
* Collection of string argument values. You can't deal

Building Service-Based Components

211

* with specific types because you don't have the metadata.

*/
protected HashMap attributes;

/*
* Default constructor
*/

public ArgumentList () {

attributes = new HashMap () ;

/*
* Property management methods
*/

public void setProperty (String propertyName, Object value)

throws PropertyException {

attributes.put (propertyName,value.toString()) ;

public String getProperty (String propertyName)
throws PropertyException {

return (String) attributes.get (propertyName) ;

public BigDecimal getDecimalProperty (String propertyName)
throws PropertyException {

String value = (String)attributes.get (propertyName) ;
BigDhecimal decimal =

(BigDhecimal) convertToObjectFormat ("Decimal",value) ;

return decimal;

public Date getDateProperty (String propertyName)
throws PropertyException {

String value = (String)attributes.get (propertyName) ;
Date myDate =

(Date) convertToObjectFormat ("Date",value) ;
return myDate;

public Object convertToObjectFormat (String type,

Object value)
throws PropertyException {

// If no value exists, you can't convert it.
if (value == null) {

212 J2EE Best Practices: Java Design Patterns, Automation, and Performance

return value;

// Look up the property type, get an instance of the
// handler class based on the metadata, and
// convert the value.
PropertyHandler handler = null;
try {
handler = (PropertyHandler)
CacheList.getInstance() .getObject (
"PropertyTypeCache", type) ;
} catch (BlfException ignoreForNow) {}

if (handler == null) {
throw new PropertyException("Property type " +
type + " is not a defined type in the metadata.");

return handler.convertToObjectFormat (value) ;

.m Another alternative for implementing argument lists is to create specific
value object definitions in the metadata. In this option, the argument lists are re-
ally just instances of BaseValueObject. You can then