XML, XSLT,

Java™, and JSP™:

A Case Study in
Developing a
Web Application

Contents At a Glance

10

11

12

Introduction and Requirements

An Environment for Java Software
Development

Java Servlets and JavaServer Pages:
Jakarta Tomcat

XML and XSLT: Xerces and Xalan

bonForum Chat Application: Use
and Design

bonForum Chat Application:
Implementation

JavaServer Pages: The Browseable
User Interface

Java Servlet and Java Bean:
BonForumEngine and
BonForumStore

Java Applet Plugged In:
BonForumR obot

JSP Taglib: The bonForum
Custom Tags

XML Data Storage Class:
ForestHashtable

Online Information Sources
CDROM Contents
Some Copyrights and Licenses

Source Code for bonForum Web
Application

Sun Microsystems, Inc. Binary
Code License Agreement






XML, XSLT, Java™,

and JSP™:
A Case Study in

Developing a Web
Application

Westy Rockwell

New

Riders

www.newriders.com

201 West 103rd Street, Indianapolis, Indiana 46290

An Imprint of Pearson Education
Boston ® Indianapolis ® London ® Munich ® New York ® San Francisco



XML, XSLT, Java", and JSP": A Case
Study in Developing a Web Application
Translation from the German language edition of: XML,

XSLT, Java, and JSP by Westy Rockwell © 2000 Galileo Press
GmbH Bonn, Germany

FIRST EDITION: July 2001

All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, or by any
information storage and retrieval system, without written
permission from the publisher, except for the inclusion of
brief quotations in a review.

International Standard Book Number: 0-7357-1089-9
Library of Congress Catalog Card Number: 00-110885
0504030201 7654321

Interpretation of the printing code: The rightmost double-
digit number is the year of the book’ printing; the right-
most single-digit number is the number of the book’s
printing. For example, the printing code 01-1 shows that the
first printing of the book occurred in 2001.

Composed in Bembo and MCPdigital by New Riders
Publishing

Printed in the United States of America

Trademarks

All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately capital-
ized. New Riders Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service
mark. Java™ and JavaServer™ Pages (JSP) are registered trade-
marks of Sun Microsystems, Inc.

Warning and Disclaimer

This book is designed to provide information about XML,
XSLT, Java, and JSP. Every eftort has been made to make this
book as complete and as accurate as possible, but no war-
ranty or fitness is implied.

The information is provided on an as-is basis. The authors
and New Riders Publishing shall have neither liability nor
responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this
book or from the use of the discs or programs that may
accompany it.

Publisher
David Dwyer

Associate Publisher
Al Valvano

Executive Editor
Stephanie Wall

Managing Editor
Gina Brown

Product Marketing
Manager
Stephanie Layton

Publicity Manager
Susan Nixon

Software
Development
Specialist

Jay Payne
Project Editor
Elise Walter

Copy Editor
Krista Hansing

Indexer
Larry Sweazy

Manufacturing
Coordinator
Jim Conway

Book Designer
Louisa Klucznik

Cover Designer
Aren Howell

Proofreader
Jeannie Smith

Composition
Gina Rexrode



R
0.0

THIS BOOK IS DEDICATED
TO MEMORIES
OF YOU,
DON ROCKWELL, SR.
YOU GAVE SO MUCH TO ME!

DID I EVER SAY ENOUGH, SOMEHOW,
FORYOUTO KNOW HOW MUCH I LOVEYOU?
WITHOUT YOUR LOVE AND KIND
GENEROSITY,

IWOULD NOT FEEL HALF SO FORTUNATE
TO BE ALIVE TODAY. BESIDES THAT,
YOU TAUGHT ME TO ENJOY THIS LIFE,
SWIM IN THE BLUE OCEANS, AND
DIVE DOWN SO DEEPLY.
IWOULD MISSYOU FOREVER,

IF IWERE NOT SO SURE
THAT YOU ARE
HERE.

THANKYOU!

W R.

0,
0’0



TABLE OF CONTENTS

1 Introduction and
Requirements 1

1.1
1.2
1.3
1.4

1.5

1.6

The Goal of This Book 1
‘Why Use This Book? 2
How to Use This Book 4

Some Choices Facing Web
Application Developers 6

Development Choices Made for
This Book 8

A Note About Platform
Independence 14

2 An Environment for
Java Software
Development 15

21

2.2
2.3
2.4
2.5

Java 2 Platform,
Standard Edition 15

Compiling Java Programs 19
Running Java Programs 30
Debugging Java Programs 32
Other Features of ElixirIDE 33

3 Java Servlets and
JavaServer Pages:
Jakarta Tomcat 35

3.1

3.2
3.3
3.4

Apache Software
Foundation 35

Jakarta Tomcat 36
Installing Tomcat 37
Running Tomcat 39



Contents

3.5 Tomcat Examples of Servlets and
JSPs 49

3.6 Adding Your Tomcat Web
Application 49

3.7 Java Servlets and JSPs 53

3.8 The ServletConfig and
ServletContext Classes 57

3.9 Web Application Scopes 58

XML and XSLT: Xerces

and Xalan 61

4.1 Apache XML Project 61

4.2 Installing Xerces 62

4.3 Xerces Parses XML 64

4.4 SAX Sees XML as Events 67
4.5 Installing Xalan 67

4.6 Xalan Transforms XML Using
XSLT 70

4.7 Using Beanshell with Xalan 72

4.8 Using Xalan from the Command
Line 73

4.9 Zvon XSL Tutorial 73

4.10 Xerces and Xalan versus XT
and XP 73

4.11 JSP and XML Synergy 74

bonForum Chat Application:

Use and Design 77

5.1 Installing and Running
bonForum 77

5.2 Changing the bonForum Web
Application 83

5.3 Using XML to Design Web
Applications 86

5.4 XML Data Flows in Web
Applications 98

vii



viii  Contents

6 bonForum Chat Application:
Implementation 103

6.1 Building the bonForum Web
Chat 103

6.2 Displaying and Selecting Chat
Subjects 138

6.3 Displaying Chat Messages 140
6.4 Finding the Chat Element 146

6.5 Displaying and Selecting Chats
148

6.6 Displaying Guests in Chat 150
6.7 Outputting the bonForum Data

as XML 150
6.8 Future of bonForum Project
151

7 JavaServer Pages: The
Browseable User
Interface 155

7.1 JSP-Based Web Applications
155

7.2 Viewing bonForum from Its JSP
Documents 163

7.3 Further Discussion About the JSP
in bonForum 187

8 Java Servlet and Java Bean:
BonForumEngine and
BonForumStore 189

8.1 The BonForumEngine
Servlet 189

8.2 The BonForumStore Class 262

9 Java Applet Plugged In:
BonForumRobot 285
9.1 Hands-on with Java Applets 285
9.2  XSLTProcessor Applet 290
9.3 BonForumRobot 290



Contents

10 JSP Taglib: The bonForum
Custom Tags 303

10.1  Java Servlets, JSP, and Tag
Libraries 303

10.2  The bonForum Tag Library
316

10.3 The OutputDebuglnfoTag
Class 324

10.4 The OutputPathNamesTag
Class 331

10.5 The OutputChatMessagesTag
Class 340

10.6 XSLT and the TransformTag
Class 352

10.7 Displaying the Available Chats
371

10.8 Displaying the Available
bonForums 376

10.9  Displaying the Guests
in a Chat 379

11 XML Data Storage Class:
ForestHashtable 385

11.1  Overview of bonForum Data
Storage 385

11.2 The NodeKey Class 387
11.3 The BonNode Class 388

11.4 ForestHashtable Maps Data
Trees 390

11.5 Caching Keys for Fast Node
Access 398

11.6  Adding ForestHashtable Nodes
404

11.7 Deleting ForestHashtable Nodes
411

11.8 Editing ForestHashtable Nodes
414

11.9  Getting ForestHashtable as
XML 416



X

Contents

12

11.10 More Public ForestHashtable
Methods 424

11.11 Initializing the bonForumXML
Database 427

11.12 Runtime bonForumXML
Database 429

11.13 More ForestHashtable
Considerations 432

Online Information
Sources 437
12.1  Always Useful Sites 437

12.2 Apache Software Foundation
438

12.3 Big Corporations 438
12.4 CSS 439

12.5 DOM Information 439
12.6 HTML 439

12.7 HTTP 439

12.8 Java 440

12.9  JavaServer Pages 441
12.10  Java Servlets 443
12.11 Linux 445

12.12  Open Source 445
12.13 RDF 446

12.14 Web Applications 446
12.15 Web Browsers 446
12.16 Web Servers 446
12.17 XML 447

12.18 XSL 452

CD-ROM Contents 455
\Sun 456

\Apache 456

\bonForum 456

\tools 458

E-Book 458



Contents Xi

B Some Copyrights
and Licenses 459
BonForum License 459
Apache Xerces License 460
Apache Xalan License 461
Jakarta Tomcat License 462

C Source Code for
bonForum Web
Application 465

D Sun Microsystems, Inc.
Binary Code License
Agreement 703

Index



About the Author

Westy Rockwell considers himself a world citizen. Currently he is a
senior developer at tarent GmbH, a Web development company in
Bonn, Germany. His greatest pleasure is enjoying the company of his
wife, Zamina, and their two daughters, Joaquina and Jennifer.
Somehow, they tolerate his intense involvement with computers.

‘Westy has more than 15 years of experience as a professional soft-
ware developer, but his involvement with computers dates back
longer yet. In 1965, he programmed the Pythagorean theorem into
an IBM 1620 with punched cards. His faculty adviser told him to
stop spending so much time on programming, which had no career
future. In 1970, while studying IBM 360 programming, he was con-
sidered too radical for saying that computers would one day play
chess. It was not until the early 1980s, with the arrival of micro-
computers, that his career and his passion could merge.

His real software education came from deeply hacking many
microcomputers, including the ZX80, the Osborne, the Vic20, the
C64, various Amigas, and, of course, IBM PCs. His career, mean-
while, involved him with more respectable software and hardware,
including UNIX, workstations, minicomputers, mainframes, and, of
course, IBM PCs. Interest in hardware design, along with C and
assembly languages, culminated in 1994 when he built the prototype
for an extremely successful dual-processor alcohol analyser, including
the PCB design, operating system, and application software.

Soon afterward, while developing man-machine interfaces, the pre-
release version of Borland Delphi turned Westy into a Windows
developer. He went on to work on three-tier systems based on
Windows NT, including corporate asset management, document
imaging, and work management systems. For more than a year now
he has refused to touch SQL or Visual tools, and he is enthusiastically
pursuing Web browser- and server-based applications using Java,
Tomcat, Xerces, and Xalan.

xii




About the Technical Reviewers

These reviewers contributed their considerable hands-on expertise to the entire
development process for XML, XSLT, Java, and JSP: A Case Study in Developing a Web
Application. As the book was being written, these dedicated professionals reviewed all
the material for technical content, organization, and flow. Their feedback was critical
to ensuring that XML, XSLT, Java, and JSP: A Case Study in Developing a Web
Application fits our reader’s need for the highest-quality technical information.

Brad Irby holds a bachelor of computer science degree from the University of
North Carolina, and he has been a programmer and system designer since 1985. He
has worked with many different languages and databases over the years, but he now
specializes in application development using a Microsoft SQL Server back end. A pri-
vate consultant for eight years, Brad has been following the progress of the W3C and
the XML specification since its inception, and he has done extensive work using the
XML extensions of SQL Server to transfer data over secure internet links. He can be
reached at Brade@BradIrby.com.

Perry Tew graduated from Georgia Institute of Technology with a degree in chemi-
cal engineering, but he has since fallen in love with computer programming. Perry
began his IT career as a MCSD and currently programs with Java. He works as an
integration specialist for a major contact lens producer. He spends his free time with
his wife, Paula, basking in they joy of parenthood brought by the arrival of their
newborn, Joshua.

Acknowledgments

Most of all, I want to thank Jennifer, Joaquina and Zamina Rockwell, who are the real
treasures in my life. Without their love, understanding, playfulness and patience this
book could never have been written.

There are so many others to thank, I know I will omit some here: those who
toiled behind the scenes, those who taught me, worked with me, helped me come to
this point in my professional career. If you are one of these, I would like to thank you
as well. Please forgive the unintentional omission of your name.

Thanks are especially due to Elmar Geese, CEO of tarent GmbH, for making this
book possible. Also, Manfred Weltecke, for his masterful translation of the first book
version into German, to which it largely owes its success. Much credit for that success
also belongs to Harald Aberfeld, Michael Klink and Florian Hawlitzek, for their tech-
nical editing of the German edition.

xiii



Thanks to all my colleagues at tarent GmbH, for their selfless support of the book
project: Alex Steeg, Alexander Scharch, Boris Esser, Harald Aberfeld, Hendrik Helwich,
Kerstin Weber, Markus Heiliger, Martina Hundhausen, Matthias Esken, May-Britt
Baumann, Michael Klink, Robert Schuster, Thomas Mueller-Ackermann, Vanessa
Haering, and Vera Schwingenheuer. My absence from their projects while working on
this book created extra work for them; I appreciate that truly.

Thanks to the staff of Galileo Press, especially my editors Judith Stevens and
Corinna Stefani, for making the German edition happen. Others there whose work
on the book is appreciated are: proofreaders Claudia Falk and Hoger Schmidt, cover
designer Barbara Thoben, illustrator Leo Leowald, producer Petra Strauch, and com-
puter typographer Joerg Gitzelmann. Thanks also to Petra Walther and Stefan
Krumbiegel of Galileo Press for supporting the German edition online.

Thanks to Lau Shih-Hor and Agnes Chin of Elixir Technologies, for adding value
to the CDROM. Thanks to the developers of TextPad, so useful for a technical writer.
Thanks to Jen Wilson for creating bonForum.1links2go.com, in support of the book
project.

This book depends so much upon those who make the open source projects it and
its example project depend upon. Thanks to all involved with the Apache Software
Foundation, especially its Jakarta and Apache XML projects. Thanks also to the staff’
and providers of SourceForge for making it a superb place to develop and learn about
open source software. Thanks to Sun for making its JDK available for learning Java.

Many thanks to the staff of New Riders who made the English version of the
book happen. Especially to Stephanie Wall (Executive Editor), who went way beyond
the call of duty to keep the book alive until publication, and to Elise Walter (Project
Editor), who always kept her good humor no matter how late my requests for changes
came to her. The book was vastly improved by the “no-holds-barred” technical edi-
tors, including Brad Irby, Erin Mulder, and Perry Tew. Thanks to Jay Payne (Media
Developer), who produced the CD-ROM. After working with words for over a year
myself, I know I owe so much of this book’s existence to Krista Hansing (Copy
Editor), Larry Sweazy (Indexer), Gina Rexrode (Compositor). Thanks also to Susan
Nixon (Public Relations).

Thanks to Jeftrey E. Northridge, whose friendship and partnership-in-programming
has been so valued by me. Thanks to Jaime del Palacio, a superb software developer
(and nephew). Thanks to PhoenixFire, for giving me that first, all-important chance as
a professional software developer (If you read this, please contact me!). Thanks to John
Haefeli of ISI, who provided so many difficult real-world problems to solve with C.
Thanks to Alvaro Pastor, Glenn Forrester, and all the gang who were at Intoximeters
West, especially to Doug, Iza, Petcy who helped so much to develop me as a software
developer. Thanks to Paul McEvoy for his mentoring and my appreciation of cafe
latte. Thanks to Elliot Mehrbach for helping me learn SQL and Delphi.

Finally, I would like to thank especially Daph, Cita and Marcos Rockwell, and all
my other relatives, for their unconditional love. Thanks also to Nature and Life, for
their unconditional and priceless support.

Xiv



Tell Us What You Think

As the reader of this book, you are the most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you're
willing to pass our way.

As an Executive Editor at New Riders Publishing, I welcome your comments. You
can fax, email, or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every message.
When you write, please be sure to include this book’ title and author, as well as
your name and phone or fax number. I will carefully review your comments and share

them with the author and editors who worked on the book.

Fax: 317-581-4663
Email: stephanie.wall@newriders.com
Mail: Stephanie Wall

Executive Editor

New Riders Publishing

201 West 10314 Street
Indianapolis, IN 46290 USA

XV



Introduction

For more than 20 years, I have read books about software development. Many of these
repeated information available to me elsewhere. Formerly, that information was often
from magazines; recently its source is the Internet. A few books, refreshingly, were
based instead upon the authors’“hands on” experiences with the art and science of
software development.

You can now write a book about how to become a gourmet chef without ever
having cooked a meal. Simply download a collection of recipes from the Web, organize
and paraphrase them, and, presto! A book is born, ready to meet the market demand.
Especially in the field of software development, many books seem to have been writ-
ten in this way.

‘When I was asked to write a book about Web application development with XML
and Java, I replied that the book would have to be a practical “how-to” manual, based
upon real development experiences. Its target audience would be software developers
trying to understand and harness those technologies. I knew that to write that book, I
would have to “cook the meal” myself. My fundamental task would be to develop a
functional and timely Web application project, of at least plausible utility.

Surfing the Web, I soon gathered very much information. I determined which of all
the available tools and products this book would feature. Most of them were then in a
state of flux, and all are still evolving. In fact, a worldwide eftort is continually imple-
menting products based on ever-evolving tools and standards related to XML and Java.

Even for an experienced software developer, putting all this information and tech-
nology to practical use was no simple task. Many of the well-documented tools were
obsolete, and the more current tools were often not well documented. Extremely
active mailing lists were frequented by early adopters building real Web applications;
these pioneers often faced with incompatibilities between the tools and the standards.

At first, my plan was to complete the earlier chapters, which present the tools and
technologies, and then to develop the book project and write the later chapters. It
soon became clear that this would put the cart before the horse. I decided to first cre-
ate the Web application and only then, always in the context of that project, to discuss
how XML and Java-based technologies could be applied by the reader.

That is when the fun started. I designed and implemented a Web chat application
called bonForum. It is based on XML and XSLT, Java servlets and applets, and JSP. It
presented me with many of the most challenging tasks of Web application design. As a
very popular and timely type of Web application, I trust that it will interest the reader.
As an experiment and a tutorial, its design and implementation provide a framework
for ongoing development by the readers of this book. It can and should morph into
other types of Web applications besides a chat room.

I welcome bug reports, fixes, suggestions, feedback, and communication! Please
contact me at mail@bonforum.org. Look for errata, version updates, mailing lists, and
related information at http://www.bonforum.org.

XVi



Conventions Used in This Book

Monospaced font is used to indicate code, including commands, options, objects, and
so on. It is also used for Internet addresses. Italics are used to introduce and define a
new term. Code continuation characters are used in code listings that are too long to
fit within the book’s margins. They should not be used in actual implementation.

How This Book Is Organized

This book is organized so that you can easily follow along with the case study and
build the Web chat application along with the author and his team. Each chapter
builds on the previous one.

Chapter 1, “Introduction and Requirements,” explains the goal of writing this
book. It also describes why certain tools were selected for the project.

Chapter 2,“An Environment for Java Software Development,” teaches you how to
set up an inexpensive Java development environment. It shows you how to compile,
debug and run the Web application example project.

Chapter 3, “Java Servlets and JavaServer Pages: Jakarta Tomcat,” introduces Tomcat,
which is an HTTP server and a container for Java Servlets and JavaServer Pages.

Chapter 4,“XML and XSLT: Xerces and Xalan,” introduces Xerces,a DOM and a
SAX parser, and Xalan, an XSLT and XPATH processor.

Chapter 5, “BonForum Chat Application: Use and Design,” introduces you to
bonForum, the Web chat application that will be the major subject of the rest of the
book. It was designed as a tool to explore each of the subjects of this book, XML,
XSLT, Java Servlets, Java Applets and JavaServer Pages, while solving some real Web
application problems.

Chapter 6, “BonForum Chat Application: Implementation,” continues the overview
of bonForum that began in Chapter 5. Some tougher implementation problems are
also highlighted, and suggestions for future development of the Web chat are given.

Chapter 7,“Java Servlet and Java Bean: BonForum Engine and bon Forum Store,”
teaches the JSP technology that the Tomcat Server supports, as JavaServer Pages are
used to create a BUI, a browseable user interface, for our Web application.

Chapter 8,“Java Servlet in Charge: BonForumEngine,” describes the central class in
the bonForum Web application. It also illustrates some themes common to using Java
Servlets in Web applications.

Chapter 9, “Java Applet Plugged In: BonForumRobot,” discusses the
bonForumR obot applet, which is part of the bonForum Web chat application. This
chapter teaches how to create and deploy a Java Applet to control a Web application
user interface and use Sun Java Plug-in to support an Applet on the client.

XVii



Chapter 10, “JSP Taglib: The bonForum Custom Tags,” explains how to use a JSP
Tag Library with the bonForum Web application. All the functions that are included in
the multi-purpose ChoiceTag are discussed, which are used on many of the JSP docu-
ments in the Web chat example. This chapter also shows you how the Apache Xalan
XSLT processor is used from the custom tag.

Chapter 11,“XML Data Storage Class: ForestHashtable,” shows how data storage
for the XML data in the bonForum chat application is implemented. This chapter also
teaches how to add a few tricks to a descendant of the Hashtable class to optimize
XML element retrieval and simulate a database program design.

Chapter 12,“Online Information Sources,” provides links to XML, XSLT, Java
Servlet and JSP information.

Appendices A and B provide the CD-ROM contents and copyright information.
The project’s source code is listed in Appendix C.

An added note: when the author uses the term “we” throughout the book, he is
referring to the team that worked on the bonForum Web application.

xviii



Introduction and Requirements

I N THIS CHAPTER, YOU FIND OUT WHAT we want this book to provide. We also pre-
sent the choices made to support the “practical” side of the book. Here we try to jus-
tify the software tools and libraries that we selected to illustrate a large subject:
developing Web applications powered by XML, XSLT, Java servlets, Java applets, and
JavaServer Pages.

1.1 The Goal of This Book

While writing this book, we have assumed that you, its reader, are a software developer
with some Java experience and that you want to build Web applications based on
XML, XSLT, Java servlets, Java applets, and JavaServer Pages. The goal of this book is to
support you as you learn about using all of these increasingly important technologies
together. This book will help you become familiar with a set of widely available and
professional software tools that covers all these technologies. Furthermore, it will intro-
duce you to many of the tasks that you will encounter in your own projects, by tack-
ling these tasks within the context of a realistically large example project: a Web
application named bonForum.

The examples and the Web application project for this book were developed on a
PC using Windows NT 4.0. If you prefer, you can use this book together with
Windows 95, 98, or 2000 instead. With a bit more effort, an experienced developer
could use much of the material in this book with a Linux or UNIX operating



2

Chapter 1 Introduction and Requirements

system—we have tried to minimize any platform dependencies both in the code
examples and in the case study.

Except for using Windows NT 4.0 as our operating system, we have preferred to
teature freely available, platform-independent, open-source software technologies.
Nevertheless, the technologies and tools that we have chosen are among the most
popular ones currently in use by XML and Web application developers.

We do not intend this book to be a complete reference to XML, XSLT, Java
servlets, Java applets, or JSP. Nor do we intend it to be an introduction to these topics.
However, if you are an aspiring Web application developer who is new to XML tech-
nologies or new to Java server-side technologies, you can start the book with Chapter
12,“Online Information Sources.” By using the many Web links there, you can find
everything that is needed to understand the material in this book.

1.2 Why Use This Book?

The popularity of the Extensible Markup Language (XML) and Java server-side soft-
ware technologies (servlets and JSP) is exploding as developers become aware of their
power and purpose. One result is that books on these subjects are growing in number
and are being translated into many languages. For example, Steve Holzner’s Inside
XML, published by New Riders (ISBN: 0-7357-1020-1), is selling extremely well. The
excellent book Core Servlets and JavaServer Pages, by Marty Hall (ISBN: 0-1308-9340-
4) and published by Prentice Hall PTR/Sun Microsystems Press, will be translated
into at least eight languages from its original English. We could give many additional
examples of similar books. There is something behind this popularity: XML, XSLT,
Java servlets, and JavaServer Pages are quite well established in professional software
development. They’ve now been around long enough to become extremely useful in
real projects.

They are also evolving rapidly, which is illustrated by the release dates of their
related proposals and recommendations published by the W3C. (The World Wide Web
Consortium, an official standards body for Web technologies.) Consider some dates
related to XML technologies. On February 10, 1998, the XML 1.0 specification
became a recommendation of the W3C. The second edition of the specification is
dated October 6, 2000. XSL was submitted as a proposal to the W3C on August 27,
1997.Version 1.0 of XSL Transformations (XSLT) is dated November 16, 1999.Version
1.0 of XSL was a candidate for official W3C recommendation by November 21, 2000.

Now consider some dates related to Java server-side Web technologies. The
JavaServer Pages 0.092 specification is dated October 1998. JSP 1.0 was publicly
released in June 1999.JSP 1.1, which is featured in this book, is from spring 2000. By
a now robust and useful Web technology, it is based upon the Java Servlets API 2.1,
which dates from April 1999.

The fast evolution of these technologies is being driven by their usefulness in the
development of Web applications. Of course, you know how crucial the role of



1.2 Why Use This Book?

HTML has been (and still is) within the World Wide Web. The following is a quote
from the XML FAQ (http://www.ucc.ie/xml/), which suggests one reason for the
increasing importance of XML:

HTML is already overburdened with dozens of interesting but incompatible inven-
tions from different manufacturers because it provides only one way of describing
your information.

XML allows groups of people or organizations to create their own customized
markup applications for exchanging information in their domain (music, chemistry,
electronics, hill-walking, finance, surfing, petroleum geology, linguistics, cooking,
knitting, stellar cartography, history, engineering, rabbit-keeping, mathematics,
efcetera ad infinitum).

HTML is at the limit of its usefulness as a way of describing information, and while
it will continue to play an important role for the content it currently represents,
many new applications require a more robust and flexible infrastructure.

If XML is a better way of describing information (and it is), then XSLT is a better
way of transforming that information from one description to another. When used to
transform data into HTML, the power of XSLT becomes particularly useful in Web
applications, which rely on HTML browsers for their visual presentation to a user.
Now take a look at some quotes from the Sun press release announcing JSP 1.0:

Sun announces the immediate availability of JavaServer Pages technology, which for
the first time allows Web page developers to easily build cross-platform, truly inter-
active Web sites.

Harnessing the full power of the Java platform, JavaServer Pages technology sepa-
rates the functions of content generation and page layout, providing developers
with a simplified and more efficient way to create server-generated Web pages that
combine content from a wide variety of enterprise data sources. Because JavaServer
Pages technology encapsulates much of the functionality required to generate
“dynamic,” or constantly changing, content, Web page developers can concentrate
on the “look” and display of the site without the need for application development
expertise.

These are big promises. It is because they are more than just promises that JSP is
increasingly popular. These paragraphs of PR are, in fact, a quite accurate description
of JSP. For a good overall view of the increasing popularity of JSP (and servlets), visit
the Industry Momentum page for JSP at Sun, at http://java.sun.com/products/jsp/
industry.html.

The popularity of JSP and Java servlet technologies is also illustrated by the fact
that more than a million downloads of Tomcat, an open-source server for Java servlets
and JavaServer Pages, had occurred by the year 2001. The number of downloads of the
current Java 2 software development kit from Sun (Java 2 SDK) will no doubt surpass
five million by the time you are reading this. All these downloads are votes for the
importance of the technologies central to our book.

3



4

Chapter 1 Introduction and Requirements

This might convince you of the importance of the technologies that appear in the
title of this book, if you were not convinced of that already! The question remains,
though: Why should you use this book, especially with so many other resources avail-
able? The best answer is that this book is a hands-on “laboratory manual.” It is meant
to complement, not replace, other books on XML, XSLT, Java servlets and applets, and
JSP. Like any laboratory manual, this book assumes at least a basic understanding of the
subjects of its experiments. This book uses original material for learning its topics,
within a context that invites experimentation and even controversial solutions. It
avoids simple repetition of documentation that can be more easily and fully accessed
elsewhere.

1.3 How to Use This Book

Although you might enjoy reading this book on a long airplane ride, we hope that
you will read it while you are trying out its code examples and while you are online.
Perhaps this book is best seen as part laboratory manual and part travel guide; its use-
fulness to you will depend on how much you try the examples and visit the Web links
provided.

As we know too well, today you can find on the Web a “fact” related to a subject of
this book, only to have it become a “fiction” (or, at least, an irrelevant fact) by the time
the book is published. This is a side eftect of the very popularity of our subjects; the
technologies that we cover are evolving rapidly, and major changes are common. This
book will provide links for you to the most relevant Internet sources and relies on
your willingness to visit these for the latest information.

The quantity of information on the Internet that is related to this book is increas-
ing rapidly. Particularly active are the various mailing lists and forums, where thousands
of developers worldwide are engaged in spirited debate and information interchange.
Follow our advice: Subscribe to some of these mailing lists, and take part in the online
forums. You will soon experience the fast pace at which these technologies are evolv-
ing, as well as the excitement that they are generating in the worldwide community of
software developers.

1.3.1 How to Stay Current

You can find some links to information relevant to this book in Chapter 12. We feel
that, with evolving technology, it is vital to have sources of current information, so we
will also provide some links for you here. One way to keep in touch with the entire
subject of Java programming is to subscribe to related newsgroups. One important one
is comp.lang.java.programmer.

You can also search all the newsgroups, including their archives, which is a great
way to generate leads to answer just about any question that comes up. To do that, just
use the search engine at http://www.dejanews.com.



1.3 How to Use This Book

Another way to keep current with Java, including Java servlets, Java applets, and JSP,
is with the Sun mailing lists and archives, which you can find using these URLs:
http://archives.java.sun.com/cgi-bin/wa

http://archives.java.sun.com/archives/index.html

Especially relevant to this book are discussions related to Java servlets and JSP as
implemented by the Jakarta project of the Apache Software Foundation. These can be
found at http://jakarta.apache.org/getinvolved/mail.html.

For staying up-to-date with XML technologies, you can join another Apache mail-
ing list by visiting http://xml.apache.org/mail.html. For a more general discussion
of XML and its development, try the archives of the XML-L mailing list, at
http://listserv.heanet.ie/xml-1.html.

Among the most useful sources of current information relevant to the subject of
this book are the Java Technology Forums hosted by Sun Microsystems. Here are some
URLs that merit your attention:

http://developer.java.sun.com/developer/community/forum.jshtml
http://forum.java.sun.com/list/discuss.sun.javaserver.pages
http://forum.java.sun.com/list/discuss.sun.java.technology.and.xml

http://forum.java.sun.com/list/discuss.sun.java.servlet.development.kit

1.3.2  Our Technology Choices in Brief

The following is a list of the technology choices that we made for developing applica-
tions based upon XML, XSLT, Java servlets and applets, and JSP:

= SDK 1.3

= Windows NT 4.0

= Jakarta Tomcat

= Xerces XML parser

= Xalan XSLT processor

The rest of this chapter discusses and attempts to justify our choices. This will be of
most interest to those developers who are new to the world of Web applications.

If You Already Know These Products...

You might already be familiar with these chosen products and our reasons in support of their selection. If
so, you can safely skip the rest of this chapter and proceed directly to Chapter 2, "An Environment for
Java Software Development.” As another alternative, some of the highlights of the following discussion
are presented in italics, to allow you to quickly get the gist of the content.

It might be useful to point out that we first discuss a list of questions, without answer-
ing them. Later in the chapter, we provide our own answers to those same questions.



6

Chapter 1 Introduction and Requirements

Some readers would no doubt prefer to have each question followed by our answer.
We would rather present you with an appreciation of the fact that any discipline that
can raise many questions about how to proceed will surely have room for many cre-
ative sets of answers. We do not want to leave you with the impression that our
answers are the only ones that you should try.

1.4 Some Choices Facing Web Application
Developers

When you want to develop Web applications, you immediately face a series of quan-
daries. For example, should you take advantage of all the relevant programming that is
built in only on Windows and NT computers, especially considering the popularity of
the Microsoft Web browser? Alternatively, should you try to conform fully to the stan-
dards and attempt a platform neutral solution? In the latter case, which versions of the
standards should you adopt? Which tools should you use? Which development envi-
ronments and languages should you use? Should you seek a solution that is based
upon Linux, or one based on a commercial UNIX platform?

1.4.1 Client-Side Versus Server-Side Processing

Web application developers who want to take advantage of Microsoft technologies
often emphasize client-side processing. They leverage library files (DLLs) that reside on
the same machine as the Web browser. Many who choose this path use Microsoft
developer tools, especially Visual Basic.

However, there are many advantages to emphasizing the server side when develop-
ing Web applications. One of these advantages is especially compelling to those of us
who have supported widely distributed software that we had to install and configure
on every last client machine!

A Web application that can change, adapt, and evolve by changing only the software on a few
server machines is far easier to deploy, maintain, and support than is a Web application made up
of programs that must be installed and configured on thousands of client machines.

We stated above “emphasizing the server side” because the most practical approach
seems to be to allow for both server-side and client-side processing, depending upon
what needs to be done. Java developers can take advantage of Java applets, which
enable you to use client-side processing in a Web application while avoiding some of
the software distribution problems. The Java plug-in provides a way to run Java applets
transparently on differing Web browsers. According to James Gosling, the creator of
Java, the closer integration of the plug-in and browser technology is an important goal
for Java. That will help dispel criticisms of those who find the delays of downloading
the Java plug-in and Java applets time-consuming and disruptive.



1.4 Some Choices Facing Web Application Developers

1.4.2 Which Web Server to Use

Increasingly, Web application developers prefer doing things on the server. However,
they still might face a quandary, one having less to do with the Web browser than with
the Web server. Three brands of Web servers are responsible for most of the traffic on
the Internet. One, of course, is Microsoft Internet Information Server (IIS). Another is
Netscape Enterprise Server. The third is Apache Server, which, as far back as October
2000, was credited in a Netcraft report with 59% of the server installations on the
Internet. Although such statistics are controversial, there is still no doubt about the
importance of more than one brand of server on the Web.

Many questions arise. Will these three popular Web servers be capable of hosting
your Web application? Which implementation of the various XML and Java server-side
technologies should you choose to enable these Web servers to host the application?
Alternatively, should you create your Web application using one of the many commer-
cially available Web application frameworks?

1.4.3 Which Platform(s) to Use

You face many other initial questions as a Web application developer. Which platform
(operating system) will you select to host the server-side components of the Web
application? You might decide to do so on Microsoft Windows NT 4.0, especially if
you are already familiar with its development tools and environments, or if you decide
to use Internet Information Server (IIS). As a Java programmer, on the other hand, you
likely will seek a platform-independent solution and then will develop that on the
platform of your choice: NT, Linux, Solaris, or whatever.

1.4.4 Which Software Language(s) and Tools to Use

Any computer language that does not try to become more useful for developing Web
applications is most likely a dead language because it is one that is no longer evolving.
As a developer who wants to create server-based Web applications, you have a wide
choice of languages and tools to use. Some important languages are Java, C++,Visual
Basic, Perl, and Python. Of course, HTML (especially now as XHTML) is crucial for
controlling browser content. XML and its related languages are becoming increasingly
important, especially for representing and transforming data. ASP, PHP, and Cold
Fusion, specialized as they are for Web application development, are even more directly
comparable to JSP and Java servlets; each of these three “languages” has many adher-
ents among developers.

XML, XSLT, Java servlets, Java applets, and JavaServer Pages will all be crucial to
our development efforts for this book. As a direct consequence of that, we have prefer-
entially looked for tools and solutions among Java-based technologies.



8

Chapter 1 Introduction and Requirements

1.5 Development Choices Made for This Book

This book will not even pretend to cover all the possible answers to the previous
questions. Instead, we will present the one set of answers that we chose for ourselves.
Our hope is that even if your answers turn out to be different, you will still find value
in learning about our experience with our tools and components. In the following
sections, we present the reasoning behind our strategic choices.

1.5.1 Development Platform: Microsoft NT Server 4.0

Based on the goals chosen for the book, there were many good reasons to choose
Linux as the development platform. For one thing, it is freely available, and we intend
to keep the cost of learning as low as possible. In addition to having its own ISP, Linux
is arguably the natural choice for hosting the freely available Apache server—at least
until the Windows version of this server has been as thoroughly tested and debugged
as the Linux version (perhaps by the time you read this).

Regardless of these reasons, we consider that by developing our Web application
project on a Windows platform, we will make it accessible to a larger audience, espe-
cially among developers who are just beginning their adventure in the world of Web
application programming. We guess also that more Linux (and UNIX) developers can
use information based on the Windows platform than vice versa.

The software for this book was developed on N'T' 4.0, while trying to remain compatible with
all Win32 platforms.

We developed our examples for this book on a Windows NT Server, Version 4.0
(Build 1381: Service Pack 5). We did nothing that would not have been identical on
an NT workstation of the same version, build, and service pack. We chose to use NT
because, in our experience, it has been the most robust Microsoft platform for devel-
oping network applications. However, very little would have been difterent had we
used a Windows 95 or 98 platform instead; indeed, we have often run our book pro-
ject Web application on both these platforms. (If we were starting today, we would
probably select Windows ME or 2000 instead, but we have not tested our software
with either.)

We are assuming that most of our readers have access to a Windows platform and
that they will be able to adapt our N'T-based examples and discussion to their environ-
ment. Those not using Windows might need to alter the examples to use UNIX paths
and naming conventions.

We have tried to minimize the impact of choosing Windows N'T 4.0 as a development plat-

form. We trust that readers will share information about using the book with other platforms,

which can be done on the book project Web site at http: | /www.bonforum.org.



1.5 Development Choices Made for This Book

1.5.2 Java Development Environment: Java 2 SDK Version 1.3

We are aware that, as a reader of this book, you might already have a favorite Java
development environment—perhaps VisualAge for Java from IBM, JBuilder from
Inprise/Borland, Forte from Sun, or one of many others. Moreover, you surely would
prefer it if we used the same tools that you want to work with.

In theory, the choice of development environment should not affect the Java Web
application. That is the promise of Java, after all. However, in practice, it could affect
the way that we present the information in this book. That might affect your ability to
follow along with the examples by actually compiling and running them. Therefore,
we will use for our development environment one that can be inexpensively installed
and used by everyone.

We will try to keep our discussions and examples independent of any particular development
environment. You can easily use the command-line interface to the Java 2 SDK for all examples.

We will assume that you have at least the freely available standard version of the Sun
Java 2 SDK version 1.3 on your development machine. (This version is on this book’s
CD-ROM.) It will be possible for you to use version 1.2.2 instead, although you might
find that some things work differently or look different. However, Java versions earlier
than 1.2.2 will not work with the XML-related software that we will be using.

Many Java programmers reading the book will already be familiar with using the
command-line interfaces to the various tools in the Java SDK. Others could benefit by
becoming familiar with them. Nevertheless, window-based development environments
evolved to make using the underlying SDK easier. Some readers might feel more
comfortable using an integrated development environment (IDE). Indeed, those of you
who have recently come to Java development from the worlds of Visual Basic or
Delphi, for example, might have no experience at all with command-line interfaces. If
you are shopping around for a Java IDE, you have several good choices, depending on
your machine and pocketbook resources. Readers who are new to Java development
will certainly want to explore both the free and the trial versions available to them,
including the ones mentioned at the beginning of this section.

To provide one choice of IDE to our readers, we have arranged to include the
ElixirIDE-Lite trial software on the CD-ROM accompanying this book. Note that
this is a special edition provided for this book; this means that a greater number of Java
files can be used than the normal trial version so that it can be used with the book
project. We find that one advantage of this IDE is that it requires fewer hardware
resources than most others do; this can be an attractive to those whose machines have
been filled to the brim with Microsoft tools, for example. Readers will also find a sec-
ond IDE on this book’s CD-ROM that is worth trying: Forte for Java Community
Edition, from Sun.

1.5.3 Server-Based Web Application Architecture

Another of the initial developer questions that we discussed was whether to stress
client-side or server-side processing when designing a Web application. We believe that
the advantage of using a server-side implementation outweighs its disadvantages.



10

Chapter 1 Introduction and Requirements

It is often expressed that an advantage of doing things on the Web browser (client-
side processing) is that you reduce network traffic. The idea is that the browser does
not have to keep accessing the server for another view for the user because it has the
locally available Web application to turn to for that next view. However, that depends
on the application. Often, client-side processing can instead increase network traffic,
requiring the download of large JavaScript files or much more data than the user will
need to view.

Another commonly mentioned advantage of client-side processing is that it reduces
the load on the servers, but intelligent caching can often easily offset this effect.

The Web application project for this book will lean heavily in favor of processing on the Web
server rather than on the client machine.

If we were being consistent, we would try to maintain neutrality toward the choice
of browsers. That would mean serving plain-vanilla HTML to the browsers, something
that would work on any platform’s favorite and not-so-favorite browsers. In fact, it is
important for a Web application to be compatible with at least the two major browsers
(Internet Explorer and Netscape). Although such cross-compatibility is preferable, we
have decided to reduce the complexity of this book and its project by supporting only
Internet Explorer.

The software for this book has been developed and tested using only the Internet Explorer
5.5 Web browser from Microsoft.

Note that it can be argued that because content ports more easily from Netscape to
Internet Explorer than vice versa, it makes more sense to begin with Netscape com-
patibility. For us, the more important issue is compatibility with the more commonly
used browser at an earlier date.

1.5.4 XML-Related Standards from W3C

Another question is about which XML-related standards we should apply. There is an
easy answer: We will use the “real” standards, which are those decided upon by the
W3C.

This book should adhere to the XML-related standards as proposed and recommended by the
W3C.

You can find out all about the W3C by visiting the Web site http://www.w3.org/.

With new recommendations for XML-related technologies appearing often, and
with rapidly evolving software that constantly pushes beyond current W3C recom-
mendations and for newer versions of the standards, this “easy answer” turns out to be
not quite so simple.

Here’s how we see it: Unless you come from certain software development back-
grounds, especially those that use SGML, it will probably take a fair amount of dedi-
cated time to learn all the various things that go into making XML Web applications
with Java. Thus, you might as well go for the latest standards that you can. Be aware
that this means that you will sometimes be trying to learn about XML using software
that is buggier than some previous stable version.



1.5 Development Choices Made for This Book

The advantage to this approach is that, when you have gathered the understanding
of XML that you need to finish a project, you will be as current as possible regarding
the standards. This lessens the chances that you will do what Microsoft did with its
XML support for IE5.0. In other words, you will be less likely to use something that
turns out to be defined only in a dialect of an XML-related technology.

Some Confusing XML Information on the Web

XML-related technologies have been changing and growing at a fast pace. This has
produced some confusion in the information that you will find on the Internet. Many
posts to mailing lists, for example, contain useful tips and code but do not indicate
which servers, browsers, and tools (and which versions of these) were being used by
the developer who posted the mailing list item.

Perhaps a greater source of confusion for the new user of Web-related XML infor-
mation is that the developers of the most widely available and most advanced Web
browser, Microsoft Internet Explorer, chose to extend some XML-related proposals in
certain “unofficial” ways. It can be argued that this was necessary to use those XML
proposals at that time. Nevertheless, the outcome was that, although a more useful
browser was created, pervasive dialects of the proposals were also created. These dialects
diftered quite a lot from the standard XML technologies that later evolved.

More recently, version 5.5 of Internet Explorer went partway toward implementing
these newer, “truer” standards, recommended by the W3C. Microsoft’s intention is evi-
dently to fully implement the W3C recommendations in some future release of
Internet Explorer. Meanwhile, Microsoft has added to the mix of vendor-dependent
differences in XML-related technologies.

1.5.5 XML Technologies: Xerces and Xalan

XML and its related technologies, such as XSLT, have very exciting potential to push
the evolution of the Internet. This has spurred many interesting projects, each one
seeking to make this potential real. Some projects are aimed at creating XML-related
developer tools. Other projects are creating applications to fulfill some commercial or
other user requirement. Some projects have developed products ready for real use.
Others are simply experimental.

For this book, we examined projects that are creating freely available XML-related
tools. The question that we faced was, which of all those XML-related tools should we
select to learn about building Web applications? This book will be complex enough
without trying to discuss more than a minimal set of XML-related software tools. Of
course, that is part of the reason we limited our choices of tools. Indeed, we can
enthusiastically recommend our two choices, which are among the most popular
open-source products ever.

This book will feature two products of the Apache XML Project: Xerces and Xalan. The Java
versions of these tools will be used exclusively for our XML- and XSLT-related processing.

11



12

Chapter 1 Introduction and Requirements

A very strong point in favor of Xerces and Java is that both have versions written in
pure Java, so both provide natural extensions for a JSP/servlet programmer to use.You
can find out more about the Apache Software Foundation, the Apache XML Project,
and the origins of the Apache projects with these links:

http://www.apache.org
http://xml.apache.org
http://xml.apache.org/pr/0001.txt

Let’s look at other reasons for supporting these choices. Consider that both Xerces and
Xalan are based partly on source code donated to the Apache Software Foundation by
IBM, Sun, and other companies and individuals with XML expertise. These companies
decided to take advantage of the open-source development model (the same model
that has made Linux and Apache Server so successful) as a way to improve, develop,
and test their own XML-related code base. They have also decided that this is the best
way to create a reference code base for those standards that are evolving (through the
W3C).

As an illustration of this fact, when we began our book project, the current IBM
XML parser was actually just a wrapper for the Xerces XML parser. The wrapper was
there only to maintain compatibility with the previous software. Sun has also been
generously providing source code to the Apache XML Project, profiting no doubt
from the same worldwide developer force that IBM discovered in the open-source
movement. In choosing to use Xerces and Xalan as our XML parser and XSLT
processor, we are actually in good company!

You can bet on one thing: Given the pace of developments in the XML world, by
the time you read this, better versions of Xerces and Xalan will be available than the
ones we used here.You can appreciate the difficulty of trying to keep the content of
this book detailed enough to be relevant but general enough to be applicable, even
after each newer version of Xerces and Xalan appears.

To be at all able to do this, we must assume that much of your learning will take
place by following the Web links that we provide. Only then will your learning mater-
ial be dynamic enough to keep up with the times. What you can learn from our own
experience might be primarily that you will need a stubborn attitude to get software
to work! You will also need a set of suitable starting points. We will attempt to help
you answer these two needs in the upcoming chapters.

While you are learning about XML, undoubtedly new versions will be released of
the very components that you are attempting to use. These, in turn, will often require
newer versions of other components that you are also using. You will be tempted to
ignore the newer versions, but, in our experience, you should jump to the newer ver-
sions as soon as possible—often great improvements in both software and documenta-
tion accompany these version changes.To try to stay with earlier versions that are
more tested and known makes sense in many development situations, but not with
XML-related software. This technology is simply developing in too many important,
fundamental ways to ignore the changes.



1.5 Development Choices Made for This Book

1.5.6 Web Server, Servlet, and JSP Engine: Jakarta Tomcat

We mentioned earlier the three prominent Web servers (HTTP servers): IS, Netscape,
and Apache. More than likely, you will want your own Web applications to be deploy-
able to Web hosts that use one or more of those Web servers. However, when it comes
to developing Web applications with Java servlet and JSP, there is a compelling reason
to look further: These Web servers must all rely upon add-on software to implement
the Java servlet and JavaServer Pages technologies. Such software is known technically
as a container, but it is also referred to as a servlet and JSP engine. Whatever it is
called, we will need one!

The software for this book relies upon a very popular open-source product, called Tomcat, to
enable the serving of Java servlets and JavaServer Pages.

Tomcat is being developed by the Jakarta Project. Like the Apache XML Project
that develops Xalan and Xerces, the Jakarta Project is part of the Apache Software
Foundation.You can find out more about the Jakarta Project and all its various prod-
ucts at http://jakarta.apache.org.

The intention of the Jakarta Project as it creates Tomcat is to provide a reference
implementation for the Java servlet and JSP technologies. These are both defined as
part of the Sun J2EE specification. If you want to learn the latest standards for these
vital Web technologies, you will surely want to learn about Tomcat. Tomcat is also
freely available open-source software, and it fits our low-cost development goal for this
book. Furthermore, there is an unusually active developer community involved in the
Tomcat project, so this is a great way to get directly involved in the excitement of
building dynamic Web technology.

Unlike many other servlet and JSP container add-on modules for Web servers,
Tomcat can function as a standalone Web server itself. This means that it can be used
for development and testing purposes, without any reliance on another Web server. To
simplify our book presentation, we use the HTTP server potential of Tomcat exclu-
sively throughout this book.

It is important to stress that we are not using Tomcat because it is a better Web
server than Apache, Netscape, or IIS servers. Later in the book we point you to the
information that you will need to use Tomcat with Apache or IIS.

You can use Tomcat as a standalone Web server, as we do for the project in this book. Note,
however, that deployed Web applications should use Tomcat together with another production-
quality Web server.

The one compelling feature of Tomcat is that it is a Java servlet and JavaServer
Pages container. In servlets and in compiled JSP pages, Java code, together with a suit-
able engine such as Tomcat, gives a Web server the capability to serve dynamic content
to a Web browser. Such content is determined only at the time the browser makes a
request to the Web server.You can find out more about this by reading Sun’s white
paper on JSP technology, at http://java.sun.com/products/jsp/whitepaper.html.

As you develop your own Web applications, you will want to examine other possi-
ble choices for a servlet and JSP container. One popular choice is Jrun, which is

13



14  Chapter 1 Introduction and Requirements

available for Windows, Linux, Solaris, and others. It can be run with IIS, Apache,
Netscape, and other servers. You can find out about JRun at the Allaire Web site, at
http://www.allaire.com/Products/JRun/.

Many Web-application framework products also understand servlets and JSP.
Prominent among these are Netscape Application Server and iPlanet, Oracle
Application Server, BEA Weblogic, and Resin.

1.6 A Note About Platform Independence

If you want to base your Web applications on the Java language, you probably know
that one of its main advantages is platform independence.You should appreciate, then,
that with the exception of the browser, the tools and software modules that we have
selected are not bound to one particular operating system. Apache Server, Tomcat,
Sun’s Java Development Kit, Xalan, and Xerces can all be installed on both Windows
NT and UNIX.

We hope that the next edition of this book will more explicitly cover the use of
our chosen Web application tools on Linux-powered servers. In the meantime, as you
are learning Web application development on an NT Server, you can rest assured that
your newly acquired skills can be easily transplanted to UNIX-type operating systems.



An Environment for Java
Software Development

I N THIS CHAPTER, YOU LEARN ABOUT setting up an inexpensive Java development
environment. This will enable you to compile and run our Web application example
project.

2.1 Java 2 Platform, Standard Edition

We will be using the Java 2 platform for all the Java code in this book.To follow along
and to get the real value of hands-on programming, you should first make sure that
you can compile and run Java 2 source code on your own system.

Of course, it is possible—especially because you have chosen this book—that you
already are running a Java 2 development environment. Perhaps yours is one of several
available products, such as JBuilder, from Inprise Corporation;Visual Age, from IBM;
Forte, from Sun; or Visual Cafe 4, from Symantec. In this case, you are probably quite
capable, using your present setup, of compiling and running our examples and Web
application project.



16

Chapter 2 An Environment for Java Software Development

Who Is This Chapter For?

If you are an experienced Java programmer, you probably know most of the information in this chapter.
We are aiming the following material at those who are learning about Java. If you can develop, compile,
and run Java programs already, you can safely skip this chapter. The latter half of the chapter, however,
might still be useful to you if you intend to try out the ElixirIDE trial product provided on the CD-ROM
accompanying this book.

2.1.1 Installing the Java 2 SDK

For readers who need some hints about setting up a Java 2 development environment
or who just want to use the same one that we used as we wrote the book, we present
here an overview of how to find and install the Java 2 SDK, which is available on thsis
book’s CD-ROM also from the Sun Web site. To download it, log on to
http://java.sun.com and follow the product links to the download page for the
Windows standard edition (J2SE) of the product. Here is the URL:
http://java.sun.com/j2se/1.3/download-windows.html.

Version to Use

We recommend that you use version 1.3.X, unless you have a reason to use version
1.2.X.You can use either 1.2.X or 1.3.X with this book, but we assume that you have
the Java 2 SDK version 1.3 on your system. If not, you will need to change the file
paths in our instructions accordingly.

Installation Notes

You should start with the readme.txt file in the root of the download archive. There
are also some important links on the download page itself: README, Release Notes,
Features, License, and Installation Notes. We found the installation notes for version
1.3 in the Web document http://java.sun.com/products/jdk/1.3/
install-windows.html.

This document is very useful. It will tell you about the requirements for using the
SDK and also how to install it on all different Windows platforms that can use it. In
addition, it has hints for troubleshooting installations that fail. It might help to know
that the name for older versions of the SDK was Java Development Kit, abbreviated
JDK; you will still find references to the JDK (for example, in the name of the root
folder for the installation).

Be sure to read the Sun Microsystems, Inc., Binary Code License Agreement, by
following the links from the download page before you get and install the Java 2 SDK.
As a licensee of this product, you will be bound to the terms of this license, so you
should know what you are agreeing to when you use this software.



2.1 Java 2 Platform, Standard Edition

Setting the Path in the System Environment

As mentioned in the installation notes, you will want to add the Java 2 SDK system
path to your NT system path variable (or the equivalent, for other Win32 systems). In
NT, you can do this by bringing up the Control Panel and using the System tool. Find
the tab for the Environment settings, and edit the Path variable. Add a semicolon and
then c:\jdk1.3\bin (or whatever is equivalent for your system).

Here is what our Path environment variable looks like:

Path=c:\jdk1.3\bin;c:\winnt\system32;c:\winnt

Setting the JAVA _HOME Environment Variable

While you are setting up the Path variable, you can also set up an environment vari-
able needed by the Java 2 SDK.You should define the variable, JAVA_HOME, something
like the one shown here, according to the location of the SDK on your system:

JAVA_HOME = c:\jdk1.3

Setting the CLASSPATH Environment

If you are looking for some clarity regarding which, if any, setting for the CLASSPATH
environment you should use, we can think of no better place for you to find answers
than http://java.sun.com/products/jdk/1.3/docs/tooldocs/win32/classpath.html.

2.1.2 Documentation for the Java 2 SDK

You can find a plethora of information regarding the Java 2 SDK itself, so we will cer-
tainly not try to provide all your answers about its features and use. One obvious
source of answers is the SDK documentation. While you are installing the SDK, you
will want to consider downloading the documentation for it. Sun makes available the
documentation for version 1.3 at http://java.sun.com/products/jdk/1.3/download-
docs.html.

Due to license restrictions, we cannot put the documentation on the book’s CD-
ROM. Of course, you can also browse the documentation over the Internet, so if you
have an inexpensive connection to it, there is no need to download it—that can save
you quite a bit of disk space. This also gives you the advantage of a using the search-
able version of the documentation.

If you decide to download the documentation, try to use the same root folder for
both the SDK and the documentation. The default folder choice for the version that
we downloaded is c:\jdk1.3. Therefore, our documentation for the Java 2 SDK ended
up in c:\jdk1.3\docs, and the SDK was installed into ¢:\jdk1.3\bin, c:\jdk1.3\lib, and

SO On.

2.1.3 The Java 2 Runtime Environment

Notice that if you want to deploy the software products that you develop with the
Java 2 SDK, you can be sure that the user will be able to run your products by deploy-

17



18  Chapter 2 An Environment for Java Software Development

ing your products together with the Java 2 Runtime Environment. This includes just
the core Java classes and support files, without all the development tools. The SDK
comes with its own copy of the Runtime Environment, so you do not need to install
it separately to develop Java software.

You cannot redistribute the SDK itself; you can distribute only the Runtime
Environment. New Riders Publishing has a special agreement with Sun to provide it
to you on the book’s CD-ROM.You should definitely check out the wealth of other
useful material that is dynamically made available to you on the Sun Java Web site.

2.1.4 Examining the SDK

If you are new to Java, take some time to familiarize yourself with the Java 2 SDK.
There is a lot there, and this should make you glad that you do not need to reinvent
all those wheels!

Notice the folder c:\jdk1.3\jre. This is a Java Runtime Environment that enables
you to use Java applications. Another large JAR file, called rt.jar, is in the folder
c:\jdk1.3\jre\lib. That JAR file is the runtime library that we will be using. This Java
Runtime Environment in the Java 2 SDK is not the same as the one that you can
freely distribute; it is for use during development only.

Notice also a large file called tools.jar, which is in the folder ¢:\jdk1.3\lib. This
JAR file is quite important because it contains the Java compiler that our Web applica-
tion will use to compile JavaServer Pages. When you create a Web application that uses
JSP, such as the project in this book, the container that runs that application needs to
have a suitable Java compiler available; JSP pages must be compiled into Java servlets
before they are useful. The standard way for you to distribute a Web application is as a
Web archive (WAR file), and you commonly assume that the recipient of a WAR file
has a Web server, together with a container (such as Tomcat) that can compile JSP
pages and a suitable compiler for the container to use. Providing the compiler is not
usually your concern as a Web application developer. However, we provide this discus-
sion because those coming to Java from other environments will naturally think of
compilation as something that happens only before distribution; it helps to see that it
can be otherwise.

2.1.5 Using Internet Explorer 5.x with the SDK

We will be using Internet Explorer 5.5 as our Web browser in this book. If you have
Internet Explorer 5.x on your machine, you might be tempted, as we were, to test the
browser’s capability to run a Java applet. For example, try browsing
file://c:\jdk1.3\demo\applets\Animator\examplei.html.

You will most likely find that the browser cannot find a Java class that it needs
(java.util.List). Microsoft has not updated its JVM since JDK 1.1.5, and it does not
contain the Swing library. Microsoft will not update it, either, because the company is



2.2 Compiling Java Programs

competing against Java with C#.This means, for example, that any applet created with
the Swing GUI will also not function with the Java virtual machine built into Internet
Explorer.

In Chapter 9, “Java Applet Plugged In: BonForumRobot,” we discuss using the Java
plug-in from Sun, which enables you to run Java applets in most Web browsers,
including those brands and versions that have no built-in capability to run applets.
Using the Java plug-in is also the correct solution for running applets on Internet
Explorer.

2.1.6 Other Java Development Tools

If you plan to make sizeable Java projects, you might find many freely available tools
and code libraries (complete with source) that could save you time both learning and
implementing software.

Bean Development Kit

For example, you might want to try downloading and testing the Bean Development
Kit (when we did, it was called BDK1.1) from the Sun Web site. Here are a couple of
links that will help you locate and use the BDK:

http://java.sun.com/products/javabeans/software/index.html

http://developer.java.sun.com/developer/onlineTraining/Beans/
Beans1/index.html

The BDK will give you an easier way to make those beans. As you might know
already, one of the things you can do using JSP is to use Java Bean technology. This
can give you advantages when you want to serialize your class instances. Additionally, it
provides a good way to utilize the different scopes present in JSP. The BDK can be a
useful kit to have while developing Web applications.

Note that there are two big differences between JSP JavaBeans and GUI JavaBeans.
The first is that the JSP Beans are nonvisual—that is, they are server-side objects that
have no graphical representation. The second difterence is that JSP Beans do not inter-
act with the BeanContext.

2.2 Compiling Java Programs

You have many options available when it comes time to compile your Java source files.
These range from using the command-line interface to using the SDK, through some
options that integrate the SDK with an editor/highlighter, to your choice of using a
full-blown integrated development environment (IDE) with all the bells and whistles.
We briefly discuss only two options: first the command-line interface and then a trial
version of an IDE that we are including on the book’s CD-ROM.

Note that the Textpad editor, which also is included on the book’s CD-ROM as a

19



20  Chapter 2 An Environment for Java Software Development

trial version, covers middle-of-the range compilation options quite well. It is an excel-
lent text editor and has some features integrating it with Java and the SDK.

2.2.1 A Useful Command Prompt Window for Compilation

We like to use the command-line interface to the Java 2 SDK because it can be a fast
and simple way to do things such as compile and run programs or list JAR file con-
tents. However, the NT command window Command Prompt must be set up differ-
ently than its default mode, which is difficult to work with. What we want to see is a
window that has a scrolling display. Otherwise, we will miss many messages and out-
puts that are larger than the window coordinates.

In Windows NT Explorer, find the file WinNT\System32\cmd.exe. (In Windows
95 and 98, look for Windows\System32\command.com instead.) Create a shortcut to
that file. Then move this new shortcut icon onto the desktop. Right-click the icon,
open its Properties item, and then select the tab Layout. There, in the Screen Buffer
Size panel, set Width to 128 and Height to 512. In the Window Size panel, set Width
to 78 and Height to 32.You can use even larger numbers for the Window Size set-
tings, but these work even with an 800 X 600 screen resolution. (Note that in Win9x,
you can only set the number of screen lines.)

If you want, you can put this edited shortcut icon in the Start Menu folder in your
Windows NT Profile and rename it Big, Scrollable Cmd.exe, or whatever. That way,
you can quickly get a useable NT Command Prompt window from your Start menu.
Another alternative to changing the Layout properties using a shortcut icon as
described previously is to make similar changes to the Layout properties using the
MS-DOS Console tool in the Control Panel. This sets set the default layout for all
instances of the NT Command window.

Now that we have a more useful command window, let’s see an example of a batch
file used for compiling Java programs. This batch file, which we have named
bonMakelt.bat, can be used to compile the entire Web application project for this
book, bonForum. We keep this batch file in the src folder, which contains the root of
the bonForum package, de.tarent.forum. It expects there to be another folder named
classes at the same hierarchical level as the src folder. The javac.exe compiler puts all
the compiled Java class files in the proper package folders within the classes folder. At
the end of the batch processing, two class files are copied explicitly into the applet
folder where they are needed. This batch file assumes that your system Path variable
includes the folder with the javac.exe Java compiler. Here is a listing of the batch file:

javac de/tarent/forum/BonForumUtils.java -d ../classes

javac de/tarent/forum/BonLogger.java -d ../classes

javac -classpath ".;c:\jakarta-tomcat\lib\servlet.jar;"
=de/tarent/forum/BonForumTagExtraInfo.java -d ../classes

javac -classpath ".;c:\jakarta-tomcat\lib\servlet.jar;"
=de/tarent/forum/OutputPathNamesTag.java -d ../classes



2.2 Compiling Java Programs

javac -classpath ".;c:\jakarta-tomcat\lib\servlet.jar;"
=de/tarent/forum/OutputChatMessagesTag.java -d ../classes

javac -classpath ".;c:\jakarta-tomcat\lib\servlet.jar;"
=de/tarent/forum/OutputDebugInfoTag.java -d ../classes

javac -classpath ".;c:\jakarta-tomcat\lib\servlet.jar;"
=de/tarent/forum/NoCacheHeaderTag.java -d ../classes

javac -classpath ".;c:\xalan-j_1_2 2\xalan.jar;c:\xalan-
=j_1_2 2\xerces.jar;c:\jakarta-tomcat\lib\servlet.jar;"
=de/tarent/forum/XalaniTransformer.java -d ../classes

javac -classpath ".;c:\jakarta-tomcat\lib\servlet.jar;c:\xalan-
=j 2 0 1\bin\xalan.jar;c:\xalan-j_2 0@_1\bin\xerces.jar;"
=de/tarent/forum/Xalan2Transformer.java -d ../classes

javac -classpath ".;c:\jakarta-tomcat\lib\servlet.jar;c:\xalan-
=j_2 0 _1\bin\xalanjicompat.jar;c:\xalan-j_2 0 1\bin\xalan.jar;c:\xalan-
=j_2_0_1\bin\xerces.jar;" de/tarent/forum/TransformTag.java -d ../classes

javac de/tarent/forum/NodeKey.java -d ../classes
javac de/tarent/forum/BonNode.java -d ../classes

javac -classpath ".;c:\jakarta-tomcat\lib\servlet.jar;"
=de/tarent/forum/ForestHashtable.java -d ../classes

javac -classpath ".;c:\jakarta-tomcat\lib\servlet.jar;"
=de/tarent/forum/BonForumStore.java -d ../classes

javac -classpath ".;c:\jakarta-tomcat\lib\servlet.jar;"
=de/tarent/forum/BonForumEngine.java -d ../classes

javac BonForumRobot.java -d ../classes
copy ..\classes\BonForumRobot.class ..\..\jsp\forum\applet
copy ..\classes\BonForumRobot$RefreshThread.class ..\..\jsp\forum\applet

rem CLASS FILES MUST BE IN
rem bonForum WEBAPP CLASS FOLDERS FOR USE!

Do not worry if not everything in this batch file is clear at this point.You can return
after reading Chapter 5, “bonForum Chat Application: Use and Design,” which shows
you how to install the bonForum Web application and give some hints about compil-
ing it.You can find this batch file always on the CD-ROM in the folder
bonForum\installed\webapps\bonForum\WEB-INF\src.

After you have installed the bonForum project, you will find the batch file in a
folder with a path something like c:\jakarta-tomcat\webapps\bonForum\
WEB-INF\src.

21



22

Chapter 2 An Environment for Java Software Development

Note that, to be useful, the batch file must be executed in a command window
after setting the current directory to the previous folder path (or its equivalent, on
your Tomcat server machine).

2.2.2 Integrated Development Environments

Many developers find it a great advantage to use an integrated development environ-
ment. In fact, Sun suggests that you use its SDK via an IDE and provides links to
several on its SDK download page. Be aware that some IDEs available are large, expen-
sive, and slow on older computers, and they sometimes want a large amount of RAM.
We certainly do not want our readers to think that they must own an IDE to success-
fully develop Web applications.

If you prefer not to depend on simple command-line tools and a good editor, there
are plenty of lightweight commercial IDEs around. For example, you can investigate
JBuilder Foundation or Forte.You can also try the trial version of ElixirIDE or Forte
for Java Community Edition, which we have included on the book’s CD-ROM for
your convenience.

2.2.3 ElixirIDE

ElixirIDE, from Elixir Technology, is a useful Java Editor and IDE that is freely avail-
able in the version ElixirIDE-Lite, which you can try before buying. The Lite version
available on the Elixir Web site is limited to 10 Java files per project, however, which is
too limiting for our book project. The same version of ElixirIDE-Lite (2.4.2) is avail-
able on the book’s CD-ROM as a special release that allows 20 Java files, which is
plenty for use with our book project.You can find out more about Elixir Technology
and its Java products at http://www.elixirtech.com.

2.2.4 Installing ElixirIDE-Lite

We will assume that you have on your machine an ElixirIDE-Lite installation file and
an ElixirIDE documentation installation file, from our CD-ROM. If you purchased
the full version from the Elixir Technologies Web site, these instructions should be
approximately correct as well. We assume that you have these files:

ElixirlDE-2.4.2-Lite.zip
ElixirIDE-2.4.0-Docs.zip

First, unzip the documentation installation file. Browse the documentation files, start-
ing with ElixirIDE.html. There you will find information about the requirements for
using ElixirIDE, along with instructions for installing and running it. We unzipped all
files into a folder called c:\Elixir, and the following discussion assumes this root path.
After unzipping both files, you will have a JAR file (ElixirlDE-2.4.2-Lite jar) that
contains all the ElixirIDE classes, plus a license file, a change log, and the HTML doc-



2.2 Compiling Java Programs

umentation and tutorial files.
As part of the installation, you will also need to set up an environment variable
called ELIXIR_HOME. Here is what ours looks like:

ELIXIR_HOME=c:\elixir

2.2.5 Batch Files for Starting ElixirIDE

We found that the best way to start Elixir was to put the following into a batch file.
We call ours StartElixir.bat, and we keep it in the ELIXIR_HOME folder. Here is
what it contains:

java -mx32m -jar c:\Elixir\ElixirIDE-2.4.2-Lite.jar

Note that the heap size argument (-mx) is not displayed when typing java or java -X
to see a list of arguments.

In an NT Command Prompt window, execute the new StartElixir batch file. If all
goes well, you will have the initial screen of the ElixirIDE displayed. This will cause
some other changes, which you can verify with the NT Explorer. Notice that Elixir
added a configuration folder to your NT user folder.

The usual place to find your user folder is in the NT profiles. For example, assume
that you are using version 2.4.x. If you logged in as Samuel and installed your NT
Server using its default installation locations, you should be able to find an ElixirIDE
configuration folder named c:\WINNT\Profiles\Samuel\.ElixirIDE\2.4.

Note that if you log into your system using different profiles—for example, to
access different NT domains—you will end up with more than one ElixirIDE config-
uration folders, one in each profile. We solved this particular problem by copying the
folder that had the latest files in it over all the other ones.

2.2.6 Elixir Plug-in Extensions

Assuming that you are using version 2.4.x of ElixirIDE, you should find Elixir’s
extension folder named something like c:\WINNT\Profiles\samuel\.ElixirIDE
\2.4\ext.

Notice that there 1s a period before the ElixirIDE in one of the folder names in
that path. The Ext folder is where you will place plug-in JAR extension APIs for
Elixir.

A Web site makes available a worldwide community of Elixir users, plus quite a few
useful plug-in extension modules. To search for plug-ins for ElixirIDE, click the Elixir
Plug-ins link on the page http://www.elixirbase.com.

To use the plug-in extension modules, you simply unzip the JAR files from the
downloadable ZIP files into Elixir’s extension folder. When you restart Elixir, it will
automatically load and start all extensions in this folder. We recommend using at least
the two plugins described next, if not more. You will find versions of these on the
book CD-ROM in the Elixir\plugins folder.

23



24  Chapter 2 An Environment for Java Software Development

A Class Hierarchy Inspector

The plug-in file called inspector.jar will enable you to examine the class files within
any Java JAR or package.You can use FTP to get the latest version of the inspector at
ftp://www.elixirbase.com/pub/elixir/plugins/inspector.zip.

We found this plug-in to be very useful. You can add databases easily to the Elixir
configuration folder so that you can examine the classes in all the Java packages that
you are using in your application.

BeanShell, an Interactive Java Shell

Be sure to get the BeanShell, which is distributed under the LGPL license. This is
available from the Elixir Base Web site mentioned previously as a plug-in file called
bsh.jar. You can also get it with FTP at ftp://www.elixirbase.com/pub/elixir/
plugins/bsh.zip. For more information about this cool tool, visit the BeanShell Web
site at http://www.beanshell.org.

We have found it a great learning exercise to create scripts for the BeanShell that
create Java objects. We can then interactively play with a real instance of the object,
exercising its properties and methods. This experimental approach sometimes works
best for answering your questions, especially if they sound like this: “I wonder what
happens if I do this with that object method?”

BeanShell’s Shell

Do not confuse the BeanShell plug-in with another Shell console available in
ElixirIDE. The Shell console gives you access to the system shell or command proces-
sor. This means that can stay within ElixirIDE and still run GUI or text-based pro-
grams. Especially if your computer has marginally enough storage to run whatever you
have running at one time, using this shell will save you time and give a history to your
sequence of commands within the shell.

2.2.7 Creating the bonForum Folder Hierarchy

So that you can exercise the ElixirIDE in a realistic way, we will describe how it could
be used to start our Web application project example, which is called bonForum. Later
in this book, we will be discussing bonForum and developing it more fully. Right
now, we will just set it up as a project in ElixirIDE.

Finding the Folders and Files

You can find all the folders and files for the book example project on the accompanying CD-ROM in several
forms. The ones in folders named Webapps will be discussed in Chapter 5, "bonForum Chat Application:
Use and Design." In the bonForum\source folder, you will find a zipped archive, named something like
bonForum_0_5_1.zip, which will unzip into a folder hierarchy similar to the one that we will create later.
You can also find the unzipped source archive on the CD-ROM, under thebonForum\installed\source folder.
You can simply unzip the source archive file from the CD-ROM into the ELIXIR_HOME\projects folder on
your own system and then use that to follow along with the book. However, it might be useful for you to
know a procedure that you can use to set up a project like bonForum, so we will present that information
here in addition to the source files on the CD-ROM.



2.2 Compiling Java Programs

Here we will use a Shell process within Elixir to create the needed folders for the
bonForum project. These folders are mostly the same ones suggested for creating Web
applications for the Apache Tomcat Server. Setting up our project in this way will
make it easier to deploy our Web application as a WAR archive and also will make it
easier to follow other Tomcat examples that use this structure.

Select the Shell item in the Process combo box in the bottom pane of the Elixir
window. You should get a command-line input and, above it, a console. Enter the
command cmd.You should get a Microsoft Windows NT copyright notice, followed by
the prompt that is the name of your ELIXIR_HOME folder.

File Paths for Elixir

We will assume that you have Elixir installed in the folder c:\Elixir. If not, use your ELIXIR_HOME instead
of ours in the file paths that we use throughout the book. We will also assume that you do not have the
bonForum project folders already created.

Now that you have an NT command line, it is simple to create the following folder
hierarchy using the command input line, under the NT prompt:

c:\Elixir\Projects
c:\Elixir\Projects\bonForum
c:\Elixir\Projects\bonForum\classes
c:\Elixir\Projects\bonForum\etc
c:\Elixir\Projects\bonForum\etc\docs
c:\Elixir\Projects\bonForum\lib
c:\Elixir\Projects\bonForum\src
c:\Elixir\Projects\bonForum\web
c:\Elixir\Projects\bonForum\web\images
c:\Elixir\Projects\bonForum\web\;jsp
c:\Elixir\Projects\bonForum\web\mldocs

2.2.8 Creating the bonForum Project in ElixirIDE

Before creating this project, make sure that you have created the project folder hierar-
chy in your file system, as described previously. Also make sure that you have saved the
project settings, if you made any changes to them.

If you have a preferred look and feel for your GUI components, then select the
Look and Feel menu and pick your settings there. Use the Project New menu com-
mand to add our project to Elixir. Select the ELIXIR_HOME\Projects\bonForum
folder and, inside it, create the new project. Elixir will automatically name the
ElixirIDE project file as bonForum.

25



26  Chapter 2 An Environment for Java Software Development

You should see a folder icon with the label bonForum appear in the Project view
in Elixir. Congratulations! You now own the beginning of a Web application project.

If you leave the cursor over the Project icon for a while, the hint that appears will
show you that this icon represents a file that Elixir created for you. In fact, Elixir cre-
ated two files for you, with names like these:

c:\Elixir\Projects\bonForum\bonForum.project

c:\Elixir\Projects\bonForum\bonForum.project.settings

2.2.9 bonForum Project Settings in ElixirIDE

Now that we have an Elixir project, it is time to add some settings. From the Project
menu, select the Settings item. You should next edit the bonForum.project.settings file
that appears in the editor panel.

WorkRoot and ClassRoot Settings

In General Settings, make whatever changes are necessary so that when you are done,
the following lines are there to define WorkRoot and ClassRoot. These two variables
are commented out by default:

WorkRoot=\\Elixir\\Projects\\bonForum\\src
ClassRoot=\\Elixir\\Projects\\bonForum\\classes

Now Elixir knows where to look for Java source files and knows where to put com-
piled class files.

Refer to the following two notes after you have installed our bonForum Web
application in Tomcat (see Chapter 5).

Copying Compiled Class File
You can avoid having to copy all but two of the compiled class files to the right Tomcat folder location
by resetting this ClassRoot value as follows:

ClassRoot=\\jakarta-tomcat\\webapps\\bonForum\\WEB-INF\\classes

After you make that change, the two compiled class files for the BonForumRobot Java applet used in the
bonForum project must be copied manually to a different location than the ClassRoot location for the
rest of the package. This note affects the following two class files:

BonForumRobot.class
BonForumRobot$RefreshThread.class

After each compilation, these two files must be copied into the folder
TOMCAT_HOME\webapps\bonForum\jsp\forum\applet.



2.2 Compiling Java Programs

Path Setting

Now make sure that you have the Path.Windows_NT setting (assuming NT as operating
system) set to something like our path expression here:

c\\WinNT;c:\\jdk1.3\\bin;c:\\WinNT\\System32;

HelpPath Setting

The HelpPath.Windows_NT setting is another list of pathnames separated by a semi-
colon. Besides giving ElixirIDE access to the JDK documentation, we are adding the
API documentation for the XML and XSLT packages that we will discuss in Chapter
4,“XML and XSLT: Xerces and Xalan.” Notice that you will have to adjust version
numbers as required if you use later versions, such as xalan-j_2_0_1, provided on the
CD-ROM.

To our ElixirIDE HelpPath.Windows_NT variable setting, we equated a list of the
following pathnames (but all in one long line, not on separate lines, as shown here for
the book):

c:\\jdk1.3\\docs;
c:\\xerces-1_2_2\\docs\\apiDocs;
c:\\xalan-j_1_2_2\\docs\\apiDocs;

SourcePath Setting

The SourcePath.Windows_NT setting you use will enable you to browse source code
files in Elixir. Again, the setting for the variable that we suggest using here includes the
source paths for the source code and samples provided with both the Xerces and
Xalan products, which we will tell you how to install in Chapter 4. Again, note that
your version numbers might end up being different that these; if so, you will have to
remember to change these settings to reflect the later versions.

We added the following pathnames to our SourcePath.Windows_NT variable setting
(again, all in one long line, not on separate lines as shown here for the book):

c\\jdk1.3\\src;

c:\\xerces-1_2_2\\src;

c:\\xerces-1_2_2\\samples;

c:\\xalan-j_1_2 2\\src;

c:\\xalan-j_1_2_2\\samples;
To enable Elixir to find the source code for the JDK using this variable setting, you
must have the source code at the given path. It must also be unarchived, not just pre-

sent in a JAR file. Therefore, we include here the following section on how to expand
the SDK source files.

27



28

Chapter 2 An Environment for Java Software Development

Expanding the SDK Source Files

If you have the space on your storage media (about 20MB), we suggest that you
unpack the source code files that you get with a Java 2 SDK installation. To do so, just
create a new folder for the source. We call ours c:\jdk1.3\src. Then bring up an NT
Command Prompt window, using the new scrollable type display that you created ear-
lier. Use a jar command, first to look at the contents and then to expand them into
your new src folder. You might want to first enter just jar as a command to see the
help information.

Here is the command to enter, from within the ¢:\jdk1.3 folder, to examine the
contents of the JAR file:

jar -tvf src.jar
If you have the room on your drive, you can expand the source code into a file hierar-

chy under the current directory. To do so, just use the following command, from the
c:\jdk1.3 folder, to expand the source code into the c:\jdk1.3\src folder:

jar -xvf src.jar

Debugger Setting

If you are using JDK1.3 (or JDK1.2.x, and downloaded the JPDA package for it from
the Sun Web site), then you probably want to take advantage of the JPDA technology
to help you debug your projects within ElixirIDE. If so, turn on the debugger with
the following setting:

Debugger=YES

Other Settings

Other settings, such as those for the RCS versioning, are all documented by Elixir. We
leave those up to you to use or to ignore.

Updating Settings
Remember, you must edit some of these settings when (and if) you change to a future version of the JDK.

Saving Project Settings

After making the previous edits to your bonForum.project.settings file, be sure to save
them.

2.2.10 Default Project Settings in Elixir

You might want to use settings similar to some of the ones previously discussed for
your other projects in ElixirIDE. If so, you can change the default project settings in
another configuration file, called default.project.settings. However, you might first want



2.2 Compiling Java Programs

to see what works for your particular situation and only then edit the defaults for all
new projects.

The default.project.settings file is in the configuration folder in the NT user folder.
Be careful—it is possible to use the Project Open menu item to open this file as a
project (you have to change the file type to All first). If you make that mistake (as we
did late one night), you will find that you have a file called default.project.settings.set-
tings in your configuration folder, plus a whole lot of Java exception messages waiting
for you when you exit ElixirIDE.

2.2.11 Adding a New Java Class to a Project

For now, we will just create one Java class source file to our new project so that you
can see one way to do that. (Later, of course, we would add many more files to our
new project folders.) Be careful not to go over the limit of 20 classes to an ElixirIDE-
Lite project: It is not too easy to reopen the project without much wrangling. The
recursive add function will add too many files without complaint and then will lock
you out for exceeding the limit. (Hopefully, that was just on an earlier version, but we
are not sure.)

Creating a Java Class in ElixirIDE

Now click the bonForum folder icon in the project tree display, to select it. Choose
the menu item called Script/Java/Add Class. Add a new Java class by entering in the
CLASSNAME script parameter this name:

de.tarent.forum.bonForum

In the messages process, a message should appear about the new Java source file just
created. You will find that you now have a folder hierarchy for the Java package name
that you gave to the class. Elixir created each folder for the Java package, starting inside
the folder named src under the bonForum Elixir Project folder.

You now also have a Java source file with skeleton code for your class. Elixir can be
used together with CVS to keep concurrent versions safely archived and available to
multiple developers, if need be. We will not describe that here, but you can find out
more at the Elixir Web site.

Adding a File to a Project in Elixir

Right-click the bonForum icon in the project tree display. You can see an item called
New Folder on the context menu that appears. We could use that to add each folder
in the Java package folder hierarchy that we just created. Then we could use the Add
File item to add our new Java class source file.

Instead, let’s take advantage of a faster solution. Select instead the Recursive Add
menu item. In the dialog box that appears, select the folder ELIXIR_HOME\Projects\
bonForum\src\de.

29



30  Chapter 2 An Environment for Java Software Development

When you click the Add button now, you should see a new icon named Tarent
appear under the bonForum icon in the project tree display panel. By clicking the
icon handles, you can open the entire project folder and file hierarchy. The yellow
color of the icon means that this source file needs to be compiled.

2.2.12 Compiling bonForum.java in ElixirIDE

Right-click the mouse on the bonForum java icon in the ElixirIDE project tree dis-
play. You should be able to select Compile from the context menu that appears. After a
while, the yellow color of the icon will change and a message “Done” will appear.

If you look in the file system, you should find a new bonForum.class file in the
proper folder hierarchy for the project package. In other words, you should find a file
with a name something like this:
c:\Elixir\Projects\bonForum\classes\de\tarent\forum\bonForum.class.

2.3 Running Java Programs

Just as with compilation of Java source files, you have a choice of methods for running
the compiled class files. We present here information about running Java classes both
from the command line and from the ElixirIDE, to parallel the previous compilation
information.

2.3.1 Batch Files for Compilation and Running

One simple way to compile and run Java programs is to use a batch file. The following
is an example of such a batch file for running the command-line XSLT processor pro-
vided with Apache Xalan. This assumes that your system Path variable includes the
folder that contains the java.exe program. Note that this batch file contains one long
line, which is wrapped here by the book margin:
java -classpath "c:\xalan-j_1_2 2\xerces.jar;c:\xalan-j_1_2 2\xalan.jar"
org.apache.xalan.xslt.Process -IN bonForumIdentityTransform.xml -XSL
bonForumLinks.xsl -OUT bonForumLinksTEST.html

For reasons that will be discussed in Chapter 4, we did not follow Sun’s recommenda-
tion to put application JAR files in the extension folder. However, when we switched
to release 2.0.1 of Xalan, we were able to do that by putting its xerces.jar, xalan jar,
and xalanjlcompat jar files all in the folder c:\jdk1.3\jre\lib\ext. Now java.exe would
find the JARs without a classpath argument, and we could simplify our batch file as
follows:

java org.apache.xalan.xslt.Process -IN bonForumIdentityTransform.xml
-XSL bonForumLinks.xsl -OUT bonForumLinksTEST.html

Of course, even more useful would be the following batch file:

java org.apache.xalan.xslt.Process -IN %1 -XSL %2 -OUT %3



2.3 Running Java Programs

You can keep a file like this one in a folder with a compiled Java class file, and you can
call it xalanProc.bat or whatever you like. Then you can enter a command line like
this one to run this Java program with arguments:

xalanProc bonForumIdentityTransform.xml bonForumLinks.xsl bonForumLinksTEST.html

2.3.2 Running Java Programs from ElixirIDE

Select the Show Classpath item from the Script menu in ElixirIDE.You will see that
ElixirIDE has added the ClassRoot value from the Project Settings file to whatever
CLASSPATH environment variable value you had when you started ElixirIDE. In the
messages process display, you will see a line that begins with something like the fol-
lowing;:

CLASSPATH=\Elixir\Projects\bonForum\classes;

The rest of the line will be the CLASSPATH value that existed when you started
ElixirIDE, including its JAR file.

From the ElixirIDE, you can quite easily run your compiled program (assuming
that it can be run). Just select the Execute item from the context menu that you get
when you right-click the mouse on the Java file icon.

If the Execute item appears disabled in that context menu, check that the class you
are trying to execute has a main method in it. The bonForum.java file that we created
previously did not, for example. Double-click its icon on the Project panel, and edit it
so that it has a main method like this:

public class bonForum

{
public static void main (String[] args) {
System.out.println("Hello, World!");
}
}

Notice that when you save this change, the color of the icon changes back to yellow
to indicate that the source file is newer than the compiled class file. Recompile
bonForum java, and now you should be able to execute the class. ElixirIDE creates a
new process for you called de.tarent.forum.bonForum. The output from the program
will go to its display panel.You should see there something close to the following:

java "de.tarent.forum.bonForum"
Hello, World!
Program Terminated (exit code 0) —-

When we tried this, we were quite surprised to see “Hello!” instead of “Hello, World!”
Then we remembered that we had put a de.tarent.forum.bonForum class file under
the jdk1.3\classes folder during earlier experimentation. The Java virtual machine
found and executed that class file instead of our newly compiled one. If we had used
“Hello, World!” in that earlier class instead of “Hello,” we would never have noticed
that we had executed our old class instead.

31



32  Chapter 2 An Environment for Java Software Development

Classpaths can be a problematic thing, as this experience illustrates. We suggest that
you search for a document called classpath.html at java.sun.com. It might help you, as
it did us. For further information, see “Setting the CLASSPATH Environment,” earlier in
this chapter.

2.4 Debugging Java Programs

You should be able to browse the user manual for ElixirIDE by opening the file
c:\Elixir\IDEManual\ElixirIDEManual.html (or its equivalent) in your browser. In
that ElixirIDE manual, you can find instructions for debugging your Java programs
within ElixirIDE.

ElixirIDE is capable of using the JPDA debugger from Sun. This debugger is
included within the JDK1.3 (in tools.jar). However, if you are using the JDK1.2.2
instead, you will have to find and download the JPDA (jpda.jar) separately.

To use the debugger on a project, you must have the Debugger setting set to true
in the project settings file. You must also make sure that ElixirIDE can find the JAR
file. To do that with JDK1.3, we use the batch file c:\Elixir\StartElixirOnlyDebug.bat
(edited here for the book page margins). Be sure to use this batch file from a
command prompt window.

rem THIS IS FOR USE WITH JDK1.3

rem This starts ElixirIDE-2.4.2-Lite

rem together with the Sun JPDA debugger.

set JPDAJAR=c:\jdk1.3\1lib\tools.jar

set ELIXIRJAR=c:\Elixir\ElixirIDE-2.4.2-Lite.jar

set CP=%CLASSPATH%;%JPDAJAR%

set CP=%CP%;%ELIXIRJAR%

java -classpath %CP% com.elixirtech.IDE

set CP=

In Chapter 3, “Java Servlets and JavaServer Pages: Jakarta Tomcat,” and Chapter 4, we
show you how to obtain and install Tomcat, Xalan, and Xerces. We could insert some
Elixir-specific batch file listing into each of those two chapters, but they will be read
by those who are not intending to use Elixir. Therefore, we instead present those of
you reading this Elixir-specific section with a listing of our complete startup file:
c:\Elixir\StartElixirDebug.bat.

This batch file gives us access to JPDA, Tomcat, and Xalan and Xerces packages
while running programs from Elixir:

rem THIS IS FOR USE WITH JDK1.3

rem This starts ElixirIDE-2.4.2-Lite

rem together with the Sun JPDA debugger.

set JPDAJAR=c:\jdk1.3\1lib\tools.jar

set ELIXIRJAR=c:\Elixir\ElixirIDE-2.4.2-Lite.jar
set JASPERJAR=c:\jakarta-tomcat\lib\jasper.jar
set SERVLETJAR=c:\jakarta-tomcat\lib\servlet.jar
set XMLJAR=c:\jakarta-tomcat\lib\xml.jar

set XERCESJAR=c:\xalan-j_1_2 2\xerces.jar

set XALANJAR=c:\xalan-j_1_2_2\xalan.jar

set CP=%CLASSPATHS;%JPDAJARS



2.5 Other Features of ElixirIDE

set CP=%CP%;%ELIXIRJAR%

set CP=%CP%;%JASPERJARS

set CP=%CP%;%SERVLETJARS

set CP=%CP%;%XMLJAR%

set CP=%CP%;%XERCESJAR%

set CP=%CP%;%XALANJAR%

java -classpath %CP% com.elixirtech.IDE
set CP=

When we were using JDK1.2.2, we made another batch file, called ¢:\Elixir\
StartElixirDebug_jdk122.bat, which started up ElixirIDE together with the JPDA
debugger. The file is the same as the previous one, except for the first few lines shown
here, which change the PATH setting and use a different JAR file for the JPDAJAR
variable. Again, be sure to run this batch file from a command prompt window.

rem THIS COMMAND IS FOR USE WITH JDK1.2.2,

rem This starts ElixirIDE-2.4.2-Lite

rem together with the Sun JPDA debugger

set PATH=%PATH%;c:\jpda\bin

set JPDAJAR= c:\jpda\lib\jpda.jar

rem CONTINUE HERE AS IN c:\Elixir\StartElixirDebug.bat!

2.5 Other Features of ElixirIDE

‘We have only touched upon the features of Elixir that are of immediate interest to a
developer who is relatively new to Java. However, it would be unfair to leave the sub-
ject without at least mentioning that Elixir contains some much more powerful fea-
tures that have not been described here. We will do no more than list these; if you are
curious about these more advanced features, you can read about them in the HTML-
based documentation provided with the product.

= Capability to custom-build processes, using the new Build Engine

= Scripting engines (Scheme interface provided)

= Version control systems (RCS interface provided)

= Syntax coloring for Java, XML, IDL, C++, HTML, OCL, and Scheme

= Novel source code collapse/expand feature (so that you can treat your source
code like a tree control)

= Auto-expand capability to automate repetitive typing, incorporating dialog
boxes, if required

= Project packager, which can generate obfuscated JAR files

Try the menu item Project Packager from the Project menu in ElixirIDE. It is easy to
package your project Java classes into a JAR file in whatever path you want. For exam-
ple, you could use this to deploy our Web application classes from Elixir project sub-
folders to the Tomcat Web application folders.

33






Java Servlets and JavaServer
Pages: Jakarta Tomcat

THIS CHAPTER INTRODUCES A GREAT PRODUCT from the Apache Software
Foundation. Tomcat is the reference implementation of the Java Servlet 2.2 and
JavaServer Pages 1.1 specifications. Used together with Web servers such as Apache and
I1S, it adds powerful dynamic response capabilities to their repertoire. As an HTTP
server, Tomcat can also be useful alone during Web application development.

3.1 Apache Software Foundation

Most likely, you are familiar with the Apache Server. Arguably the most popular Web
server in the world, it hardly needs an introduction. Along with Linux, the Apache
Server has brought the efficacy and legitimacy of open-source software development
to the attention of nearly everyone with an interest in computing. Hoping for similar
success, some major corporate players, such as IBM and Sun, are releasing the products
of their own development efforts in the open-source arena. A cast of thousands, using
as a base the best code from such products, is forging some exciting and freely distrib-
uted application components.

The Apache Software Foundation is a membership-based, not-for-profit corpora-
tion that exists to take care of several of these open-source software projects, including
Apache Server. Our book depends heavily upon two Apache projects: the Jakarta
Project and the Apache XML Project. This chapter talks about Tomecat, which is the
main product from the Jakarta Project. The next chapter talks about Xerces and Xalan,
two of several products from the Apache XML Project.



36  Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

If you are not already familiar with the Apache Software Foundation, we urge you
to visit its Web site, which you can find at http://www.apache.org.

Following the links from this Web site, you can learn about the various Apache pro-
jects and also the people responsible for them.You can also find out how you can play
a part in this dynamic development phenomenon.

3.2 Jakarta Tomcat

The Jakarta Project Web site is the place to find the most current official information
about Tomcat Server.You can familiarize yourself with that Web site at
http://jakarta.apache.org.

The Jakarta Tomcat project goal is to create a world-class implementation of the
Java Servlet 2.2 and JavaServer Pages 1.1 specifications. Tomcat, the main product of its
open-source development eftorts, is, in fact, the reference implementation for those
specifications.

Tomcat can be used to extend other HTTP servers, such as the popular Apache
Server, enabling them to handle requests for both Java servlets and JavaServer Pages.
Tomcat Server can also be used as a standalone HTTP server. We will frequently refer
to Tomcat in this book simply as “the server,” but keep in mind that it is usually used
in tandem with another Web server.

3.2.1 Reasons to Use Tomcat

Tomcat is a great choice for learning about Java servlets, JavaServer Pages, and Web
applications. First, it is freely available. Second, what you learn will become more rele-
vant as other servlet containers match Tomecat’s reference implementation. Third, this is
an extremely popular product—it is being downloaded from the Jakarta Web site at a
rate that is fast approaching a million copies per year!

This popularity gives Tomcat another advantage related to developer support. So
many people are using and enhancing Tomcat that help requests posted to its mailing
lists are answered very quickly. Support is often faster and better than it is for commer-
cial products.

3.2.2 Tomcat Versus Apache Server

Is Tomcat a replacement for Apache Server? No—mnot yet, anyway. That is why Web
applications that use Tomcat usually use Apache as well. Sometimes the decision to do
that is obvious. One example is when an Apache Server is already being used and is
configured to use other necessary software. But the best reason to use both servers is
that Tomcat is not as fast as Apache Server is at serving static HTML pages.

By itself, Apache Server cannot handle Java servlets and JSPs. Usually, when you use
Tomcat, it will be to provide this service to Apache (or another Web server). Used as a
JSP container, Tomcat usually needs access to a Java compiler to compile the JavaServer
Pages. As a developer, that is usually not your concern; you can assume that the system



3.3 Installing Tomcat

hosting your Web application will make available either a licensed Sun SDK or the
IBM Jikes compiler.

On the other hand, Tomcat can be used in standalone mode, without Apache (or
another Web server). This means that you can use Tomcat alone (as we will in this
book) to develop Web applications that will later be hosted by another server plus
Tomcat. This also means that you can even build Tomcat itself into a Web-enabled
product as both an HTTP server and a servlet and JSP engine. Note that, in that case,
you probably will want to also include with your product the Jikes compiler, which is
freely redistributable.

3.2.3 Apache License for Tomcat

The Apache projects are released under the Apache license. An open source license, it
basically allows any use of the software as long as several conditions are met. Mostly
these deal with acknowledgement of the copyright, name protection, and legal protec-
tion. The text of the Tomcat license is included with the distribution file on the CD-
ROM.

3.3 Installing Tomcat

The version of Tomcat that we are using now is 3.2.1. This release should be used
instead of 3.2 because it fixed a security problem. (Earlier, the project for this book
used version 3.1. If you need to use a 3.1 version for some reason, you can, but do use
3.1.1, which has the security update.) You should check the Jakarta Web site for even
later releases; definitely use the latest stable version for your own projects. We cannot
promise that our discussion—or the code as provided with this book—will still work
with the next version of Tomcat (probably 4.0), though. When using that becomes
possible, news and updates will be posted on the project Web site (http://

www. bonforum.org).

You can get a Tomcat distribution from the CD-ROM provided with this book.
Otherwise, download it from the Web.You can start at http://jakarta.apache.org/
builds/tomcat/release/.

The following discussion assumes that you will use version 3.2.1. There are both
binary and source downloads available for Tomcat. To use Tomcat, you need only the
binary download. However, if you have the necessary resources, we recommend that
you get both the binary and the source downloads.You can benefit from having the
source code for the Tomcat servlet and the JSP container. The source download also
gives you important information about running Tomcat together with Apache Server
or Microsoft 1IS. The download files for Windows are named jakarta-tomcat-3.2.1.zip
and jakarta-tomcat-3.2.1-src.zip.

The API documentation for Java servlets and JSPs is also very useful to have on
hand. Note that the basic 3.2 distributions don't include these, but you can find them
on this book’s CD-ROM and at http://java.sun.com/products/servlet/
2.3/javadoc/index.html and http://java.sun.com/products/jsp/javadoci_1.zip.

37



38  Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

3.3.1 Unzipping Tomcat Distribution Files

Unzip the distribution archives into the root folder of your drive. We will assume that
you are using the C drive, which will put Tomecat into the folder c:\jakarta-tomcat.

If your Java SDK is installed in ¢:\jdk1.3, you will have Tomcat conveniently close
to it in an explorer display that is sorted alphabetically. That is a pretty good reason not
to simplify jakarta-tomcat to tomcat.

3.3.2 Tomcat User Guide

Tomcat has a user manual that is gradually improving over time. Look for it with the
name c:\jakarta-tomcat\doc\uguide\tomcat_ug.html.

You can also browse the user guide on the Jakarta Web site along with some other
helpful Tomcat documentation. Try http://jakarta.apache.org/tomcat/
jakarta-tomcat/src/doc/index.html.

Use its user guide to get Tomcat running on your system. We gave up trying to
provide comprehensive instructions for the Apache products. A colleague said it best:
“Don’t try to document other peoples’ software!” However, we will give some mini-
mal instructions, as well as some advice that might help sometimes—at least until it
too becomes obsolete.

3.3.3 Using Tomcat with IIS

As a Windows NT user, you are most likely familiar with the Microsoft Internet
Information Server (IIS) Web server, which is included with the NT 4.0 Option Pack.
For more information about IIS, you can visit the Microsoft Web site at
http://www.microsoft.com/ntserver/web/.

It is not difficult to set up Tomecat to work together with IIS, enabling it to respond
to requests for Java servlets and JSP pages. Doing so involves adding a DLL file and
some registry keys to your system, and then adding an ISAPI filter to IIS and reboot-
ing it. Complete instructions can be found in the Tomcat user guide, or online at
http://jakarta.apache.org/tomcat/jakarta-tomcat/src/doc/tomcat-iis-
howto.html.

The DLL that you need is the ISAPI redirector server plug-in isapi_redirect.dll,
which is available online and also on the CD-ROM for this book in the folder
Apache\jakarta\tomcat\release\v3.2.1\bin\win32\i386.

3.3.4 Using Tomcat with Apache Server

The open-source Apache Server is available for NT and various UNIX systems. It is
included with most Linux distributions. You can download this free HTTP server by
following the links from the Apache Software Foundation Web site at
http://www.apache.org.



3.4 Running Tomcat

You can quite easily configure Tomcat to work with the Apache Web server. That
usually means that Apache will listen to incoming requests and forward those for JSPs
and Java servlets to Tomcat. Complete instructions can be found in the Tomcat user
guide mentioned previously and also online at http://jakarta.apache.org/tomcat/
jakarta-tomcat/src/doc/tomcat-apache-howto.html.

Note that this HTML file is also available in the Tomcat source distribution file. In
addition, you will need a DLL file called ApacheModule]Serv.dll, which is available
online. The latest version available to us is on the CD-ROM for this book, in the
folder Apache\jakarta\tomcat\release\v3.2.1\bin\win32\i386.

We will not repeat here the information from the user guide and other HTML
documents, but we will mention one item that confused us when we set up Apache
and Tomcat together.

There is a “correct” version of ApacheModule]Serv.dll, which you can get from the
Tomcat download Web page. There is another “wrong” version of this file that is for
use with another program called JServ, which, like Tomcat, is also a Java servlet con-
tainer. That “wrong” DLL might actually be among the Apache Server modules, which
are in something like the folder c:\program files\Apache Group\Apache\modules.

Make sure that the “correct” version is in that folder to use Tomcat instead of JServ.

3.3.5 Environment Settings for Tomcat

Just in case you installed Tomcat without consulting the user guide and also skipped
making the environment settings that we suggested in Chapter 2,“An Environment
for Java Software Development,” we are repeating the basics here. After unzipping the
distribution files, you should do something to set the following values in environment
variables (or similar values that are the correct ones for your own system). On
Windows NT, you can use the Environment tab of the system applet in the Control
Panel to set these. On other Windows platforms, use the autoconfig.bat file or a
startup file. Be sure to read the tomcat.bat file in the TOMCAT_HOME\bin folder
because it explains and automates these environment settings. These are the required
variables:

set TOMCAT_HOME=c:\jakarta-tomcat
set JAVA_HOME=c:\;dk1.3
set path=c:\jdk1.3\java\bin;%path%

3.4 Running Tomcat

‘We like to keep a shortcut icon in our startup menu that launches an NT command

window for using Tomcat. In the properties of the command program, we set the size
of the window high and wide, and we give it a big screen buffer. Our window opens
showing the current folder for running Tomcat commands, which is

39



40

Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

TOMCAT_HOMEN\bin.

If you do not create a shortcut like that to click, you will have to launch your
default NT command prompt window and then manually set the current folder to the
bin folder with a command something like this:

cd c:\jakarta-tomcat\bin

Either way, you should now be able to set up the Tomcat environment by entering this
command:

tomcat env

Start Tomcat in a separate NT command window by entering this command:

startup

When you are done with Tomecat, you can stop it with this command:

shutdown

Note that it is possible to start Tomcat so that it does not start in a separate window
but instead uses the same window in which you are entering your commands. You can
do that by entering the following command instead of the startup command shown
earlier:

tomcat run

This last command is useful if you are having problems and want to be able to use
your big, scrolling NT command window to view all the messages that have disap-
peared off the screen.

Whichever way you start Tomcat, the messages that you get on the NT command
console should look somewhat like the following lines:

Including all jars in c:\jakarta-tomcat\lib in your CLASSPATH.

Using CLASSPATH: c:\jakarta-tomcat\classes;c:\jakarta-
tomcat\lib\ant.jar;c:\jakarta-tomcat\lib\jaxp.jar;c:\jakarta-
=tomcat\lib\servlet.jar;c:\jakarta-tomcat\lib\parser.jar;c:\jakarta-tomcat\lib\we
=pserver.jar;c:\jakarta-tomcat\1lib\jasper.jar;c:\jakarta-
=tomcat\lib\xalanservlet.jar;c:\jakarta-tomcat\lib\xerces.jar;c:\jakarta-
=tomcat\lib\xalanjicompat.jar;c:\jakarta-tomcat\lib\aaxalan.jar;c:\jdk1.3\1ib\too
=1s.jar

2001-05-23 01:05:14 - ContextManager: Adding context Ctx( /examples )

2001-05-23 01:05:14 - ContextManager: Adding context Ctx( /admin )

Starting tomcat. Check the logs/tomcat.log file for errors

2001-05-23 01:05:14 - ContextManager: Adding context Ctx( )

2001-05-23 01:05:14 - ContextManager: Adding context Ctx( /test )

2001-05-23 01:05:14 - ContextManager: Adding context Ctx( /bonForum )

2001-05-23 01:05:14 - ContextManager: Adding context Ctx( /wml )

2001-05-23 01:05:25 - PoolTcpConnector: Starting HttpConnectionHandler on 8080
2001-05-23 01:05:25 - PoolTcpConnector: Starting Ajpi2ConnectionHandler on 8007



3.4 Running Tomcat

After all these messages appear, you can try the Tomcat examples just to see that things
are working the way they should be. Browse http://localhost:8080.

Of course, if your browser and Tomcat are not on the same host, you will have to
use a hostname instead of localhost. The browser should display a page from which
you can begin exploring Tomcat documentation and trying out the Java servlet and
JSP examples provided.

Note that in version 3.2, the Tomcat page incorrectly claims to be in a folder called
Webpages. That was correct for version 3.0, but it’s true no longer. The default Tomcat
page is now the file TOMCAT_HOME/webapps/ROOT/index.html.

Another thing to note is that, unlike Web servers that register themselves as ser-
vices, you will need to start up Tomcat manually to try it out (even, for example, if
you have set it up as an ISAPI filter with IIS). Fortunately, it is not hard to set up
Tomcat as an NT service. The instructions to do that are in the file
TOMCAT_HOME\doc\NT-Service-howto.html.

As you can see in that file, you will just download jk_nt_service.exe, make two
small additions to wrapper.properties, execute two commands that register it as a ser-
vice, and then start it. You can optionally set it to start automatically, using the Services
tool in the Control Panel. That will give you a more convenient startup, although you
might still find yourself shutting down and restarting Tomcat quite often during devel-
opment.

3.4.1 Problems Running Tomcat

We hope that you do not run into problems starting Tomcat on your system. If you
do, we suggest that you check the FAQ lists and the archives of the mailing lists. It is
likely that if you have a problem, someone has solved it for you. If neither of those
options works, do not hesitate to ask the question on the Tomcat user list, where peo-
ple are usually happy to help.

We will discuss a couple of problems we have encountered, just in case it helps
someone with a similar problem. If you are not having problems, these next subsec-
tions might not make much sense, and you can safely skip ahead to section 3.4.2,
“Tomcat Log Files.” If you are trying to use these clues to solve a problem, you might
have to look up any forward references to some material mentioned here but covered
only later in the next chapter.

HTTP 500 “Internal Server Error”

While trying to run Tomcat, you might find that servlets work fine but that JSP pro-
duces an HTTP 500 “internal server error.” When we got that error, it usually (but not
always) meant that the Java compiler was not being found, which we confirmed by
looking at the Tomcat log and the messages on the NT command console window.
This problem is a bit tricky because it happens only when the JSP that you are
requesting is not already compiled and sitting in the Tomcat Work folder hierarchy

11



42  Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

ready to use. If you want to test that JSPs are being compiled, you can try a Tomcat
JSP example, after first making sure that you delete any class files that exist for that
example in the work folder for the Examples Web app. (You can read more about

work folders later.) That work folder on our system 1s localhost_8080%2Fexamples.

When you try such a “fresh” (not compiled) Tomcat JSP example, you should end
up with both the Java work file and its compiled class file in the Examples work
folder. If you want to simulate the “compiler not found” problem, try repeating the
previous test with the JAVA_HOME environment variable set to a wrong value.

The solution to this problem is to make sure that the JAVA_HOME environment vari-
able is correctly set. Try the set command from the NT command console from
which you want to start Tomcat, and check that JAVA_HOME has the right value. If you
fix the environment variables, you must shut down Tomcat and then also use a fresh
NT command console that has the new settings. Also, whenever you change versions
of the Java SDK, you might need to adjust this setting.

HTTP 404 *“file not found” Error

At different times, we got HTTP 404 errors that puzzled us at first. We then ran some
experiments deleting files in the Examples work folder (see preceeding section). We
started with a successfully working JSP and deleted its class file. That caused no prob-
lem; it just got compiled again upon the next request, which came when we clicked
on the “refresh” button on the browser toolbar. (Note that the “go to” button on the
browser does not compile the JSP again; it just gets the display from the cache. This
also happens when you click the forward or back arrow buttons.)

We then deleted the Java work file, and again the refresh had no problem accessing
the class file. Deleting both the source file and the class file was likewise not a problem
for a refresh; Tomcat replaced both.

However, when we tried deleting the entire Examples Work subfolder (see preceed-
ing section), we got the HTTP 404 error page. That is, we got that until we shut
down and restarted Tomecat, which re-created the work folder for the examples and
the Java servlet source and then compiled files that it needed to refresh the example.

Startup Fails, Tools.Jar Not Found

You might find that Tomcat cannot find the tools.jar file even if TOMCAT_HOME is set. If
this is the case, try putting a copy of the tools.jar file from the JAVA_ HOME\Ilib
folder into the TOMCAT_HOME\Iib folder. You'll find a FAQ link that will tell you
more about this bug at http://jakarta.apache.org/jyve-faq/Turbine/screen/
DisplayQuestionAnswer/action/SetAll/project_id/2/faq_id/12/topic_id/43/
question_id/414.

Startup Fails, Explorer Starts Instead

Also make sure that the PATH environment you are using allows the compiler to be
found. On our system, that means that it includes ¢:\jdk1.3\bin. If you do not have



3.4 Running Tomcat

this correct, you might be surprised to find that instead of starting up Tomcat, you will
have an Explorer window set to the c:\WINNT\Java folder, or something like that.

Startup Fails, Error Creating Sax Parser

When we started developing our Web application project for this book, we ran into
some other very thorny problems that we have since learned to avoid. We were going
to include a long section here about all these troubles, but we finally decided that it
could be more confusing than helpful. Instead, we will just show you the error we
were getting and tell you what the problem turned out to be. Here are the exception
messages that were displayed:

java.lang.ClassNotFoundException: com.sun.xml.parser.Parser

at java.net.URLClassLoader$1.run(URLClassLoader.java:200)

at java.security.AccessController.doPrivileged(Native Method)

at java.net.URLClassLoader.findClass(URLClassLoader.java:188)

at java.lang.ClassLoader.loadClass(ClassLoader.java:297)

at java.lang.ClassLoader.loadClass(ClassLoader.java:253)

at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:313)

at java.lang.Class.forName@(Native Method)

at java.lang.Class.forName(Class.java:120)

at org.xml.sax.helpers.ParserFactory.makeParser(ParserFactory.java:124

at org.apache.tomcat.util.xml.XmlMapper.readXml(XmlMapper.java:191)

at org.apache.tomcat.startup.Tomcat.stopTomcat(Tomcat.java:186)

at org.apache.tomcat.startup.Tomcat.execute(Tomcat.java:130)

at org.apache.tomcat.startup.Tomcat.main(Tomcat.java:163)

FATAL: configuracion error

java.lang.Exception: Error creating sax parser

at org.apache.tomcat.util.xml.XmlMapper.readXml(XmlMapper.java:207)

at org.apache.tomcat.startup.Tomcat.stopTomcat(Tomcat.java:186)

at org.apache.tomcat.startup.Tomcat.execute(Tomcat.java:130)

at org.apache.tomcat.startup.Tomcat.main(Tomcat.java:163)

After coming up with some false solutions (they worked!) to this problem, we deter-
mined the real cause: We had put the xerces.jar file in the folder c:\jdk1.3\jre\lib\ext.

What we thought would be an easy way to get this JAR file in the default classpath
turned out to confuse Tomcat, which needs to find its XML parser in the xml jar file
that comes with it, not in xerces.jar.

In the next chapter, we will give you instructions about the way we install Xerces
so that Tomcat can still access its own XML JAR file. (We will also discuss there how
we avoid some problems caused by xalan.jar when it is put in the Ext folder.) After we
had solved this problem with the Xerces JAR file, our technical reviewer told us about
another “gotcha” that happens when you put xerces.jar in the Ext folder, and we have
also installed there the jaxp.jar file (containing the Java XML classes). Java then incor-
rectly tries to find certain Xerces classes in jaxp.jar because JARs are loaded alphabeti-
cally, and jaxp comes before Xerces. A solution to this problem is to rename xerces.jar
to aaxerces.jar and then rename xalan.jar to aaxalan.jar A similar solution is given in
the Cocoon SubProject of the Apache XML Project, where xml.jar is renamed to

43



44  Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

zzz jar to get around a conflict between Tomcat and Cocoon. For more on this and
other jar conflicts, search for “xerces” at the Cocoon Web site at the page
http://xml.apache.org/cocoon/faqgs.html.

3.4.2 Tomcat Log Files

When Tomcat starts up the first time, it creates some folders for you. Among these is
TOMCAT_HOME\logs. Tomcat puts its error messages into log files inside this
folder. These messages can be useful for troubleshooting problems.

Take a look at the Tomcat configuration file called server.xml.You should find it in
the conf folder in the TOMCAT_HOME folder. Note that if you try to use Internet
Explorer 5.x to view the file, you will get an error about a reference to an undeclared
namespace (xmlmapper).To view the file in IE 5.x, you will first have to use a text
editor to comment out the following line:

<xmlmapper:debug level="0" />

In server.xml, you can see how and where the log files are configured. We discuss their
use later in this chapter (see Section 3.5.1, “Using Tomcat Log Files”).

3.4.3 Tomcat Work Folders and Files

After Tomcat runs once, new folders will appear, something like this:
TOMCAT_HOME\work
TOMCAT HOME\work\localhost_8080
TOMCAT_HOME\work\localhost_8080%2Fadmin
TOMCAT_HOME\work\localhost_8080%2Fexamples
TOMCAT_HOME\work\localhost_8080%2Ftest

Look again at server.xml. You will see that this XML file has a root element called

server. One child element of that server element is called ContextManager. This has an

attribute called workDir, which determines the folder in which Tomcat will keep its

work files, such as the compiled servlets that are created from your JSP files. The
default attribute setting, which you can change, if necessary, is WorkDir="work".

3.4.4 Tomcat Web App Folders and WAR Files

Other folders created the first time you run Tomecat are the following:
TOMCAT_HOME\webapps\admin
TOMCAT_HOME\webapps\examples
TOMCAT_HOME\webapps\R oot
TOMCAT_HOME\webapps\test



3.4 Running Tomcat

When you unzipped the downloadable installation file jakarta-tomcat.zip, there were
some files in the Webapps folder that had an extension of .war; these are known as
WAR files. These are their names:

admin.war
examples.war
ROOT.war

test.war

These files contain archived Web applications. When you start up Tomecat, it expands
any WAR files that it finds in the Webapps folder. This is one way to deploy Tomcat
Web applications. Such WAR files (Web archives) are JAR files (Java archives) with a
different extension. In fact, both WAR and JAR files use the ZIP file format, so you
can use zip and unzip tools on either type. This also means that you can sign Web
components in a WAR file. Why not just call WAR files JAR files? Because JAR files,
unlike WAR files, are meant to hold a set of class files that can be placed in the class-
path and double-clicked using a GUI to launch an application.

If you add a Web application to Tomcat “automatically” by simply copying in a
WAR file to the Webapps folder, Tomcat will not only expand the archive into a
folder hierarchy of the same name (also under Webapps), it will also “know” that this is
a Web application. You do not need to make any changes to the server.xml file, as dis-
cussed in a few paragraphs, before Tomcat can find that Web application context.
However, you might sometimes need different settings for your Web application than
the “automatic” ones provided, so we also will discuss how you can add a Tomcat Web
application the hard way: by editing server.xml. We do that later, in the section
“Editing the Server Configuration.”

Tomcat Web App Contexts

The definition of a Web application is given in the Java Servlet Specification, v2.2, as
follows:

A web application is a collection of servlets, JavaServer Pages, HTML documents,
and other web resources which might include image files, compressed archives, and
other data. A web application may be packaged into an archive or exist in an open
directory structure.

A Web application can run on containers from different vendors. A Web application
also has a root, which is a path within the Web server. For example, the Web applica-
tion that is the subject of most of this book is mapped to the root /bonForum. That
means that every request that starts with that path as a prefix is mapped to the Web
application and is handled by its ServletContext. As one fictitious example, a
JavaServer Page resource that is part of that Web application might be located by
http://www.bonforum.org/bonforum/jsp/hello. jsp.

45



46  Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

3.4.5 Tomcat Web Application Contexts

Each collection of Web resources making up one Web application shares a context.
Except for the Root folder that maps to an empty URI prefix, the Web application
folders mentioned previously (such as examples) are each mapped to a Web application
context, in the server.xml Tomcat configuration file. The ContextManager element in
that XML file contains child elements called Context, for example:

<Context path="/examples" docBase="webapps/examples" debug="0" reloadable="true" >

This particular Context element comes included with the Tomcat installation. It sets
up a Web application context mapped to the path “/examples”. This path is relative to
the “webapps” folder, by design. The docBase is instead relative to the ContextManager
home. After a fresh installation of Tomcat, the ContextManager home is the same as
TOMCAT_HOME, but that can be changed, if necessary, by adding an attribute named home
to the ContextManager element in the server.xml configuration file.

Consider what happens, for example, when your browser sends a request with a
URL of http://www.servername.com/examples/jsp/snp/snoop.jsp. Or, if you are
developing Tomcat applications with both the browser and Tomcat server on the same
machine, that request could be, for example, http://localhost:8080/examples/jsp/
snp/snoop.jsp.

If Tomecat is responding to this request, it will use the path attribute of the
Examples Context to transform that URL to a file system pathname. Let’s assume that
nobody has changed the ContextManager home from the default, which is
TOMCAT_HOME. The previous URL will be mapped then, to the file
TOMCAT_HOME\webapps\examples\jsp\snp\snoop.jsp.

You can try to use a local browser to open the file using a URL something like
file://c:/jakarta-tomcat/webapps/examples/jsp/snp/snoop.jsp.

The browser will receive the source for snoop.jsp, which is text. What it does with
that will depend on whether the extension has been mapped to a program on the
client, such as a text editor. By default, it brings up a dialog box to ask the user what
program should open the file. However, the browser does not have a servlet container.
It will not be capable of compiling the JSP source to a servlet or executing such a
servlet, if it already exists. To carry out those two vital functions and provide HTML
to the Web browser is the job of a JSP engine, such as Tomcat.

3.4.6 Tomcat Web App Configuration Files

Every Web application installed in Tomcat has a configuration file, which contains its
deployment descriptor. For an example, use Internet Explorer to examine the one for
the Examples Web app, which is the file TOMCAT_HOME\webapps\examples\
Web-inf\web.xml.

To understand this configuration file, you can use a text editor to read the file
c:\jakarta-tomcat\conf\web.dtd, which is the DOCTYPE for a Web application.

A detailed discussion of everything in this file is beyond the scope of this book.



3.4 Running Tomcat

Remember, this book is meant to be a laboratory manual—it assumes that you are also
relying on a textbook and class handouts. You should read web.dtd together with other
material that you have for learning about servlets and JSP (such as the book Core
Servlets and JavaServer Pages, by Marty Hall). Here we will briefly mention some of the
configuration tasks that you can thus become familiar with.

One task is creating context parameters. These are used as global variables: They
contain information that is visible to all the servlets, JSP pages, HTML, and so on in
the Web application. For example, you could add the email address of a Webmaster to
a Web app by adding the following element to its deployment descriptor in its
web.xml file:

<context-param>
<param-name>
Webmaster
</param-name>
<param-value>
webmaster@bonforum.org

</param-value>
</context-param>

Unlike context parameters, servlet init parameters are visible only within the servlet
for which you define them.You can use these init-params for many different purposes,
whenever you need to be able to use a value in a servlet that can be altered by the
Tomcat administrator, for example. The Tomcat Examples Web app uses the classic—
and useless—"“foo,bar” pair to show you how to create an init-param and set its value.
You can see how this works by uncommenting (if necessary) the init-param element
that appears in the snoop servlet element, which is in the web.xml file for the
Examples Web app. It should look something like this when you are done:
<servlet>
<servlet-name>
snoop
</servlet-name>
<servlet-class>
SnoopServlet
</servlet-class>
<init-param>
<param-name>foo</param-name>
<param-value>bar</param-value>
</init-param>
</servlet>

After you have done this, you need to shut down and restart Tomcat. This means that
you will obviously not be using init-params for values that need to change often. You
can then access the snoop servlet example (note that this is not the same as the snoop
JSP example available from the Tomcat home page), using a URL something like
http://:8080/examples/servlet/snoop

47



48  Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

Near the top of the information that is displayed on the browser, you should see
the name of the param and its value, as follows:

Servlet init parameters:
foo = bar

Another configuration task useful to understand is servlet mapping. This assigns an
alias to a servlet, relative to the context path for the Web application (and thus also rel-
ative to TOMCAT_HOME). For example, two servlet mappings in the examples deployment
descriptor (in web.xml) enable you to request the same snoop servlet as in the last
example, using either of these URLs instead of the one shown previously:

http://:8080/examples/snoop
http://:8080/examples/anyname.snp

We will return to the topic of servlet mapping again in this chapter, in the section
“Editing the Web App Configuration.” Meanwhile, look at those servlet mappings in
the Examples deployment descriptor that allow these two variant URLs. Here 1s what
they look like:
<servlet-mapping>
<servlet-name>
snoop
</servlet-name>
<url-pattern>
/snoop
</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>
snoop
</servlet-name>
<url-pattern>
*.snp
</url-pattern>
</servlet-mapping>

There are many more uses for the deployment descriptor in the web.xml file of a Web
application. It says this in the Tomcat users guide:

A detailed description of web.xml and the Web application structure (including
directory structure and configuration) is available in Chapters 9, 10, and 14 of the
Servlet API Spec, and we are not going to write about it.

There is, however, a small Tomcat-related “feature” that is related to web.xml.
Tomcat lets the user define default web.xml values for all contexts by putting a
default web.xml file in the conf directory. When constructing a new Context,
Tomcat uses the default web.xml file as the base configuration and the application-
specific web.xml (the one located in the application’s WEB-INF/web.xml) only to
overwrite these defaults.



3.6 Adding Your Tomcat Web Application

3.4.7 Help for Developing Tomcat Web Applications

A guide to developing Web applications for Tomcat is included with the distribution.
Be sure to check the Tomcat documentation on the Jakarta Web site for newer ver-
sions because this guide will surely be updated. After we installed Tomcat, we could
find the guide at file://c:\jakarta-tomcat\doc\appdev\index.html.

In this book, we do not follow all the procedures outlined in that guide. However,
it is useful to understand how to use the Apache ant tool to build Tomcat Web apps
especially if you want to get involved with the Apache projects. Besides the hypertext

guide, you can read the text file c¢:\jakarta-tomcat\doc\appdev\build.xml.txt, which
shows how to use ant to build Web apps.

3.5 Tomcat Examples of Servlets and JSPs

One of the best ways to learn about Java servlet and JSP technologies is to study the
examples that are included with Tomecat. You are urged to try all the examples.You can
also study their source code, which is included in the main binary distribution in the
Examples folder under jsp and WEB-INF/classes (which contains .java and .class files).

A simple way to try the examples is to browse the main Tomcat page, which will
be at a URL something like http://localhost:8080, depending on your system.

You can also access the examples directly. For example, here is the URL that we
used to access the snoop servlet on our ginkgo server, from a different host on the
network: http://ginkgo:8080/examples/servlet/snoop.

3.5.1 Using Tomcat Log Files

After trying all the Tomcat examples, look at the files in TOMCAT_HOME\logs
folder. You should be able to understand the entries now. The file jasper.log shows
parameter values, query strings, and more; that can be quite useful for debugging JSP-
based Web apps.

3.6 Adding Your Tomcat Web Application

Here we explain one quick way to add a new Web application to an N'T machine on
which Tomcat Server is available. You can follow these instructions to develop a skele-
ton Web application called MyApp. Feel free to change this name to something real,
by the way.

3.6.1 Creating a Web Application
First, create a new folder, where you can put the files for the new Web application.
The name of this folder is TOMCAT_HOME\webapps\MyApp.

Next, copy and paste all the subfolders of the TOMCAT_HOME\webapps\
examples folder to the folder that you created. Your new Web application now has lots

49



50  Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

of files, including all the subfolders that you need, some vital configuration files, and
copies of all the Java servlet and JSP examples for Tomcat.

You can use these new copies of the servlet and JSP examples to test your new
Web application, after you change two configuration files as discussed in the next two
sections. The advantage of testing is that you know that the examples were working
in the Examples context, so they should also work in the new MyApp context. After
you get things working right, you can delete all the example files, or just leave them
there.

When editing any configuration file, such as server.xml and web.xml, you should
make a backup first.

3.6.2 Editing the Server Configuration

The next step is to configure the server so that it can find your new Web application.
Use your favorite text editor to edit the principal Tomcat configuration file,
TOMCAT_HOME\conf\server.xml.

As we mentioned earlier, adding a Web application means adding a context element
to server.xml. Again take the easy way out: Use copy and paste to clone an existing
context element, such as the one for the examples context. Then change the new con-
text element to MyApp. Here is the result:

<Context path="/MyApp" docBase="webapps/MyApp" debug="0" reloadable="true"

=></Context>

The context path is relative to TOMCAT_HOME\webapps, and the docBase is rela-
tive to TOMCAT_HOME. Note that you will have to change examples to MyApp in
two places within the context element. One is the value of the docBase attribute. The
other is for the value of the path attribute. Leave all the other attributes alone—if it
ain’t broke, don’t fix it. Save the new server.xml file.

3.6.3 Editing the Web App Configuration

Now edit the Web application deployment descriptor, which is in the XML file
TOMCAT_HOME\webapps\MyApp\WEB-INF\web.xml.

You need to edit this deployment descriptor to define and configure all the Java
servlet and JavaServer Pages that are part of the new Web application. The most com-
mon configuration task involves adding servlet and servlet-mapping tagged elements.

For each servlet and JSP that you want to use in the Web application, you can add
a servlet element in this web.xml file. This element can also give your servlet or JSP an
alias that is more user-friendly. Another advantage to using an alias is that it encapsu-
lates a servlet or JSP; the application can refer to the alias, and you are free to change
to a different servlet or JSP by editing only the web.xml deployment descriptor.

For each Web application servlet, you can also add a servlet-mapping element. This
will give the servlet a path relative to the root of the Tomcat server space,
TOMCAT_HOME. For example, assume that a compiled servlet called test.class is
actually in the folder TOMCAT_HOME\webapps\MyApp\WEB-INF\classes.



3.6 Adding Your Tomcat Web Application

If you add a servlet mapping, a client can request that servlet with a URL some-
thing like http://localhost:8080/MyApp/test. By using a different mapping, without
moving the servlet, you can change that URL to something like http://
localhost:8080/MyApp/foo/bar/test.

Without any mapping, the only way that the servlet can be requested is with a
URL something like http://localhost:8080/MyApp/servlet/test.

Note that this last URL assumes that the RequestInterceptor prefix is set to its
usual value (/servlet/) in the server.xml file. This prefix is a setting that applies to all
Web apps under the Tomcat server configured by that file.

This web.xml file is defined by a DTD that you should take some time to investi-
gate.You will see there many ways to set global information that will be available to all
the objects that share the Web application.You can find this DTD at
TOMCAT_HOME\conf\web.dtd.

3.6.4 Restarting Tomcat with the New Web App

If Tomcat is running now, you certainly will have to stop it before your changes will
be effective because Tomcat processes this configuration file only during startup. Bring
up an NT command window, and run this command:

TOMCAT_HOME\bin\shutdown.bat

That will bring down the server, eventually. If you look at the command window
where Tomcat is running, you will see some messages. If you started Tomcat with
startup.bat, you must look quickly because the command window will disappear when
Tomcat stops.

Start Tomcat again, using either the startup or the tomcat run commands. While
Tomcat starts up, watch its messages on its command window. This time, the context
for MyApp should be among those that get initialized. Now use your browser to
request the SnoopServlet copy that is in your new Web application (not the original
one in the Examples Web app). For all the following tests to work, the web.xml file for
your new Web application must still contain this servlet element:

<servlet>
<servlet-name>
snoop
</servlet-name>
<servlet-class>
SnoopServlet
</servlet-class>
</servlet>

That web.xml file should also still have these servlet-mapping elements:
<servlet-mapping>
<servlet-name>
snoop
</servlet-name>
<url-pattern>

51



Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

/snoop
</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>
snoop
</servlet-name>
<url-pattern>
*.snp
</url-pattern>
</servlet-mapping>

Try requesting SnoopServlet with something like each of the following URLs:
http://localhost:8080/MyApp/snoop
http://localhost:8080/MyApp/servlet/SnoopServlet
http://localhost:8080/MyApp/servlet/snoop

You should also be able to use URLs similar to these next two:
http://localhost:8080/MyApp/foo.snp
http://localhost:8080/MyApp/servlet/foo.snp

When we tried these, our Internet Explorer tried instead to download and open a
“snapshot file” for the SnapView application, at least until we deleted that file exten-
sion setting from the File Types panel on the NT Explorer View Options menu item.

After each successful servlet request, look at the details about the HTTP request
object in the browser display. Notice which fields change when you use different
URLs.

Now also try the snoop JSP copy in your Web application. This is a JSP page that
displays only some of the information that SnoopServlet displays. You can request it
with the URL http://localhost:8080/MyApp/jsp/snp/snoop.jsp. Again, look at the
resulting browser page for some details from the Request object.

Assuming that your web.xml file still has its original mappings from the Examples
Web app, try this next exercise. Request the servletToJsp servlet (case matters!) using
something like one of the following URLs:

http://localhost:8080/MyApp/servlietToJsp
http://localhost:8080/MyApp/servlet/servletToJsp
To understand how this example works, look at the following two files in your text
editor:
TOMCAT_HOME\webapps\MyApp\WEB-INF\classes\servletToJsp.java
TOMCAT_HOME\webapps\MyApp\jsp\jsptoservihello.jsp

Now try this final exercise. Request the jsptoservlet JSP using something like the
URL http://localhost:8080/MyApp/jsp/jsptoserv/jsptoservlet.jsp.



3.7 Java Servlets and JSPs

You should get the same result as you did in the last exercise. To understand why,
look at the file TOMCAT_HOME\webapps\MyApp\jsp\jsptoserv\hello.jsp in your
text editor.

Congratulations! You now have a new Web application installed. As the chess saying
goes, “the rest is all a matter of details.” You have what you need: an example of a Java
servlet calling a JSP page, and an example of another JSP page calling a Java servlet
(actually, calling a servlet that calls a JSP page). You can start building upon this skele-
ton to develop your MyApp Web application.

3.7 Java Servlets and JSPs

At this point, we could start adding detailed information about Java servlets and JSPs
to this book, and certainly we would have enough material to fill two books.
However, we will not do so, for two reasons. The first is that the goal of this book is
similar to that of a human anatomy class. We will provide an example of a Web appli-
cation project and then thoroughly dissect it to illustrate the discussion of several pop-
ular technologies, including servlets and JSPs.You will be able to learn function as well
as form because you can exercise the example that is being studied—do not try that in
your human anatomy class!

The second reason we see no need to cover servlets in depth here is that many
servlet resources already exist. We would rather refer you to those than reproduce their
information here. The following sections will give a few suggestions and starting points
for readers who want to learn more about Java servlets and JSPs. If you have a good
understanding of these technologies already, you may safely skip to the next chapter
and use the rest of this chapter as a reference only.

3.7.1 The Servlet API Javadoc

The Tomcat 3.1 source distribution includes the Servlet API Javadoc. This API docu-
mentation is a valuable help for the developer. With Tomcat 3.2, the servlet API
documentation is available as two download files that are separate from the Tomcat
distribution file. One of the files is for the binary download, and the other is for the
source download. These files are called jakarta-servletapi-3.2.zip and jakarta-servletapi-
3.2-src.zip. You can also find these files on this book’s CD-ROM.

It is a good idea to study the servlet API documentation. One thing this will do is
make the subject of Java servlets and JSPs a lot less daunting than it might otherwise
seem. In fact, the design involved is quite compact and clear, and the API Javadoc is a
good place to answer your own programming questions.

If you downloaded the source Tomcat 3.1 distribution, you should browse some-
thing like c:\jakarta-tomcat\src\webpages\docs\api\overview-summary.html. If you
obtained the servlet API Javadoc in a separate download (for example, with version 3.2
of Tomcat), the file to browse is more like c:\jakarta-servletapi\docs\api\overview-
summary.html.

53



54  Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

Take a look at this API page, and you will see the top-level logical design of Java
servlets and JSPs.

3.7.2 Learning About Java Servlets

Be