
XML, XSLT,
Java, and JSP:
A Case Study in
Developing a
Web Application

Contents At a Glance
1 Introduction and Requirements

2 An Environment for Java Software
Development

3 Java Servlets and JavaServer Pages:
Jakarta Tomcat

4 XML and XSLT: Xerces and Xalan

5 bonForum Chat Application: Use
and Design

6 bonForum Chat Application:
Implementation

7 JavaServer Pages:The Browseable
User Interface

8 Java Servlet and Java Bean:
BonForumEngine and
BonForumStore

9 Java Applet Plugged In:
BonForumRobot

10 JSP Taglib:The bonForum
Custom Tags

11 XML Data Storage Class:
ForestHashtable

12 Online Information Sources

A CDROM Contents

B Some Copyrights and Licenses

C Source Code for bonForum Web
Application

D Sun Microsystems, Inc. Binary
Code License Agreement

00 1089-9 FM 6/26/01 8:20 AM Page i

00 1089-9 FM 6/26/01 8:20 AM Page ii

XML, XSLT, Java,
and JSP:
A Case Study in
Developing a Web
Application

201 West 103rd Street, Indianapolis, Indiana 46290
An Imprint of Pearson Education
Boston • Indianapolis • London • Munich • New York • San Francisco

Westy Rockwell

www.newriders.com

00 1089-9 FM 6/26/01 8:20 AM Page iii

Publisher
David Dwyer

Associate Publisher
Al Valvano

Executive Editor
Stephanie Wall

Managing Editor
Gina Brown

Product Marketing
Manager
Stephanie Layton

Publicity Manager
Susan Nixon

Software
Development
Specialist
Jay Payne

Project Editor
Elise Walter

Copy Editor
Krista Hansing

Indexer
Larry Sweazy

Manufacturing
Coordinator
Jim Conway

Book Designer
Louisa Klucznik

Cover Designer
Aren Howell

Proofreader
Jeannie Smith

Composition
Gina Rexrode

XML, XSLT, Java, and JSP: A Case
Study in Developing a Web Application
Translation from the German language edition of: XML,
XSLT, Java, and JSP by Westy Rockwell  2000 Galileo Press
GmbH Bonn, Germany

FIRST EDITION: July 2001

All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying or recording, or by any
information storage and retrieval system, without written
permission from the publisher, except for the inclusion of
brief quotations in a review.

International Standard Book Number: 0-7357-1089-9

Library of Congress Catalog Card Number: 00-110885

05 04 03 02 01 7 6 5 4 3 2 1

Interpretation of the printing code:The rightmost double-
digit number is the year of the book’s printing; the right-
most single-digit number is the number of the book’s
printing. For example, the printing code 01-1 shows that the
first printing of the book occurred in 2001.

Composed in Bembo and MCPdigital by New Riders
Publishing

Printed in the United States of America

Trademarks
All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately capital-
ized. New Riders Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service
mark. Java and JavaServer Pages (JSP) are registered trade-
marks of Sun Microsystems, Inc.

Warning and Disclaimer
This book is designed to provide information about XML,
XSLT, Java, and JSP. Every effort has been made to make this
book as complete and as accurate as possible, but no war-
ranty or fitness is implied.

The information is provided on an as-is basis.The authors
and New Riders Publishing shall have neither liability nor
responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this
book or from the use of the discs or programs that may
accompany it.

00 1089-9 FM 6/26/01 8:20 AM Page iv

❖
THIS BOOK IS DEDICATED

TO MEMORIES
OF YOU,

DON ROCKWELL, SR.
YOU GAVE SO MUCH TO ME!

DID I EVER SAY ENOUGH, SOMEHOW,
FOR YOU TO KNOW HOW MUCH I LOVE YOU?

WITHOUT YOUR LOVE AND KIND
GENEROSITY,

I WOULD NOT FEEL HALF SO FORTUNATE
TO BE ALIVE TODAY. BESIDES THAT,

YOU TAUGHT ME TO ENJOY THIS LIFE,
SWIM IN THE BLUE OCEANS,AND

DIVE DOWN SO DEEPLY.
I WOULD MISS YOU FOREVER,

IF I WERE NOT SO SURE
THAT YOU ARE

HERE.

THANK YOU!

W. R.
❖

00 1089-9 FM 6/26/01 8:20 AM Page v

TABLE OF CONTENTS

1 Introduction and
Requirements 1
1.1 The Goal of This Book 1
1.2 Why Use This Book? 2
1.3 How to Use This Book 4
1.4 Some Choices Facing Web

Application Developers 6
1.5 Development Choices Made for

This Book 8
1.6 A Note About Platform

Independence 14

2 An Environment for
Java Software
Development 15
2.1 Java 2 Platform,

Standard Edition 15
2.2 Compiling Java Programs 19
2.3 Running Java Programs 30
2.4 Debugging Java Programs 32
2.5 Other Features of ElixirIDE 33

3 Java Servlets and
JavaServer Pages:
Jakarta Tomcat 35
3.1 Apache Software

Foundation 35
3.2 Jakarta Tomcat 36
3.3 Installing Tomcat 37
3.4 Running Tomcat 39

00 1089-9 FM 6/26/01 8:21 AM Page vi

3.5 Tomcat Examples of Servlets and
JSPs 49

3.6 Adding Your Tomcat Web
Application 49

3.7 Java Servlets and JSPs 53
3.8 The ServletConfig and

ServletContext Classes 57
3.9 Web Application Scopes 58

4 XML and XSLT: Xerces
and Xalan 61
4.1 Apache XML Project 61
4.2 Installing Xerces 62
4.3 Xerces Parses XML 64
4.4 SAX Sees XML as Events 67
4.5 Installing Xalan 67
4.6 Xalan Transforms XML Using

XSLT 70
4.7 Using Beanshell with Xalan 72
4.8 Using Xalan from the Command

Line 73
4.9 Zvon XSL Tutorial 73
4.10 Xerces and Xalan versus XT

and XP 73
4.11 JSP and XML Synergy 74

5 bonForum Chat Application:
Use and Design 77
5.1 Installing and Running

bonForum 77
5.2 Changing the bonForum Web

Application 83
5.3 Using XML to Design Web

Applications 86
5.4 XML Data Flows in Web

Applications 98

viiContents

00 1089-9 FM 6/26/01 8:21 AM Page vii

6 bonForum Chat Application:
Implementation 103
6.1 Building the bonForum Web

Chat 103
6.2 Displaying and Selecting Chat

Subjects 138
6.3 Displaying Chat Messages 140
6.4 Finding the Chat Element 146
6.5 Displaying and Selecting Chats

148
6.6 Displaying Guests in Chat 150
6.7 Outputting the bonForum Data

as XML 150
6.8 Future of bonForum Project

151

7 JavaServer Pages:The
Browseable User
Interface 155
7.1 JSP-Based Web Applications

155
7.2 Viewing bonForum from Its JSP

Documents 163
7.3 Further Discussion About the JSP

in bonForum 187

8 Java Servlet and Java Bean:
BonForumEngine and
BonForumStore 189
8.1 The BonForumEngine

Servlet 189
8.2 The BonForumStore Class 262

9 Java Applet Plugged In:
BonForumRobot 285
9.1 Hands-on with Java Applets 285
9.2 XSLTProcessor Applet 290
9.3 BonForumRobot 290

viii Contents

00 1089-9 FM 6/26/01 8:21 AM Page viii

10 JSP Taglib:The bonForum
Custom Tags 303
10.1 Java Servlets, JSP, and Tag

Libraries 303
10.2 The bonForum Tag Library

316
10.3 The OutputDebugInfoTag

Class 324
10.4 The OutputPathNamesTag

Class 331
10.5 The OutputChatMessagesTag

Class 340
10.6 XSLT and the TransformTag

Class 352
10.7 Displaying the Available Chats

371
10.8 Displaying the Available

bonForums 376
10.9 Displaying the Guests

in a Chat 379

11 XML Data Storage Class:
ForestHashtable 385
11.1 Overview of bonForum Data

Storage 385
11.2 The NodeKey Class 387
11.3 The BonNode Class 388
11.4 ForestHashtable Maps Data

Trees 390
11.5 Caching Keys for Fast Node

Access 398
11.6 Adding ForestHashtable Nodes

404
11.7 Deleting ForestHashtable Nodes

411
11.8 Editing ForestHashtable Nodes

414
11.9 Getting ForestHashtable as

XML 416

ixContents

00 1089-9 FM 6/26/01 8:21 AM Page ix

11.10 More Public ForestHashtable
Methods 424

11.11 Initializing the bonForumXML
Database 427

11.12 Runtime bonForumXML
Database 429

11.13 More ForestHashtable
Considerations 432

12 Online Information
Sources 437
12.1 Always Useful Sites 437
12.2 Apache Software Foundation

438
12.3 Big Corporations 438
12.4 CSS 439
12.5 DOM Information 439
12.6 HTML 439
12.7 HTTP 439
12.8 Java 440
12.9 JavaServer Pages 441
12.10 Java Servlets 443
12.11 Linux 445
12.12 Open Source 445
12.13 RDF 446
12.14 Web Applications 446
12.15 Web Browsers 446
12.16 Web Servers 446
12.17 XML 447
12.18 XSL 452

A CD-ROM Contents 455
\Sun 456
\Apache 456
\bonForum 456
\tools 458
E-Book 458

x Contents

00 1089-9 FM 6/26/01 8:21 AM Page x

B Some Copyrights
and Licenses 459
BonForum License 459
Apache Xerces License 460
Apache Xalan License 461
Jakarta Tomcat License 462

C Source Code for
bonForum Web
Application 465

D Sun Microsystems, Inc.
Binary Code License
Agreement 703

Index

xiContents

00 1089-9 FM 6/26/01 8:21 AM Page xi

xii

About the Author
Westy Rockwell considers himself a world citizen. Currently he is a
senior developer at tarent GmbH, a Web development company in
Bonn, Germany. His greatest pleasure is enjoying the company of his
wife, Zamina, and their two daughters, Joaquina and Jennifer.
Somehow, they tolerate his intense involvement with computers.

Westy has more than 15 years of experience as a professional soft-
ware developer, but his involvement with computers dates back
longer yet. In 1965, he programmed the Pythagorean theorem into
an IBM 1620 with punched cards. His faculty adviser told him to
stop spending so much time on programming, which had no career
future. In 1970, while studying IBM 360 programming, he was con-
sidered too radical for saying that computers would one day play
chess. It was not until the early 1980s, with the arrival of micro-
computers, that his career and his passion could merge.

His real software education came from deeply hacking many
microcomputers, including the ZX80, the Osborne, the Vic20, the
C64, various Amigas, and, of course, IBM PCs. His career, mean-
while, involved him with more respectable software and hardware,
including UNIX, workstations, minicomputers, mainframes, and, of
course, IBM PCs. Interest in hardware design, along with C and
assembly languages, culminated in 1994 when he built the prototype
for an extremely successful dual-processor alcohol analyser, including
the PCB design, operating system, and application software.
Soon afterward, while developing man-machine interfaces, the pre-
release version of Borland Delphi turned Westy into a Windows
developer. He went on to work on three-tier systems based on
Windows NT, including corporate asset management, document
imaging, and work management systems. For more than a year now
he has refused to touch SQL or Visual tools, and he is enthusiastically
pursuing Web browser- and server-based applications using Java,
Tomcat, Xerces, and Xalan.

00 1089-9 FM 6/26/01 8:21 AM Page xii

xiii

About the Technical Reviewers
These reviewers contributed their considerable hands-on expertise to the entire
development process for XML, XSLT, Java, and JSP:A Case Study in Developing a Web
Application.As the book was being written, these dedicated professionals reviewed all
the material for technical content, organization, and flow.Their feedback was critical
to ensuring that XML, XSLT, Java, and JSP:A Case Study in Developing a Web
Application fits our reader’s need for the highest-quality technical information.

Brad Irby holds a bachelor of computer science degree from the University of
North Carolina, and he has been a programmer and system designer since 1985. He
has worked with many different languages and databases over the years, but he now
specializes in application development using a Microsoft SQL Server back end.A pri-
vate consultant for eight years, Brad has been following the progress of the W3C and
the XML specification since its inception, and he has done extensive work using the
XML extensions of SQL Server to transfer data over secure internet links. He can be
reached at Brad@BradIrby.com.

Perry Tew graduated from Georgia Institute of Technology with a degree in chemi-
cal engineering, but he has since fallen in love with computer programming. Perry
began his IT career as a MCSD and currently programs with Java. He works as an
integration specialist for a major contact lens producer. He spends his free time with
his wife, Paula, basking in they joy of parenthood brought by the arrival of their
newborn, Joshua.

Acknowledgments
Most of all, I want to thank Jennifer, Joaquina and Zamina Rockwell, who are the real
treasures in my life.Without their love, understanding, playfulness and patience this
book could never have been written.

There are so many others to thank, I know I will omit some here: those who
toiled behind the scenes, those who taught me, worked with me, helped me come to
this point in my professional career. If you are one of these, I would like to thank you
as well. Please forgive the unintentional omission of your name.

Thanks are especially due to Elmar Geese, CEO of tarent GmbH, for making this
book possible.Also, Manfred Weltecke, for his masterful translation of the first book
version into German, to which it largely owes its success. Much credit for that success
also belongs to Harald Aberfeld, Michael Klink and Florian Hawlitzek, for their tech-
nical editing of the German edition.

00 1089-9 FM 6/26/01 8:21 AM Page xiii

xiv

Thanks to all my colleagues at tarent GmbH, for their selfless support of the book
project:Alex Steeg,Alexander Scharch, Boris Esser, Harald Aberfeld, Hendrik Helwich,
Kerstin Weber, Markus Heiliger, Martina Hundhausen, Matthias Esken, May-Britt
Baumann, Michael Klink, Robert Schuster,Thomas Mueller-Ackermann,Vanessa
Haering, and Vera Schwingenheuer. My absence from their projects while working on
this book created extra work for them; I appreciate that truly.

Thanks to the staff of Galileo Press, especially my editors Judith Stevens and
Corinna Stefani, for making the German edition happen. Others there whose work
on the book is appreciated are: proofreaders Claudia Falk and Hoger Schmidt, cover
designer Barbara Thoben, illustrator Leo Leowald, producer Petra Strauch, and com-
puter typographer Joerg Gitzelmann.Thanks also to Petra Walther and Stefan
Krumbiegel of Galileo Press for supporting the German edition online.

Thanks to Lau Shih-Hor and Agnes Chin of Elixir Technologies, for adding value
to the CDROM.Thanks to the developers of TextPad, so useful for a technical writer.
Thanks to Jen Wilson for creating bonForum.links2go.com, in support of the book
project.

This book depends so much upon those who make the open source projects it and
its example project depend upon.Thanks to all involved with the Apache Software
Foundation, especially its Jakarta and Apache XML projects.Thanks also to the staff
and providers of SourceForge for making it a superb place to develop and learn about
open source software.Thanks to Sun for making its JDK available for learning Java.

Many thanks to the staff of New Riders who made the English version of the
book happen. Especially to Stephanie Wall (Executive Editor), who went way beyond
the call of duty to keep the book alive until publication, and to Elise Walter (Project
Editor), who always kept her good humor no matter how late my requests for changes
came to her.The book was vastly improved by the “no-holds-barred” technical edi-
tors, including Brad Irby, Erin Mulder, and Perry Tew.Thanks to Jay Payne (Media
Developer), who produced the CD-ROM.After working with words for over a year
myself, I know I owe so much of this book’s existence to Krista Hansing (Copy
Editor), Larry Sweazy (Indexer), Gina Rexrode (Compositor).Thanks also to Susan
Nixon (Public Relations).

Thanks to Jeffrey E. Northridge, whose friendship and partnership-in-programming
has been so valued by me.Thanks to Jaime del Palacio, a superb software developer
(and nephew).Thanks to PhoenixFire, for giving me that first, all-important chance as
a professional software developer (If you read this, please contact me!).Thanks to John
Haefeli of ISI, who provided so many difficult real-world problems to solve with C.
Thanks to Alvaro Pastor, Glenn Forrester, and all the gang who were at Intoximeters
West, especially to Doug, Iza, Petcy who helped so much to develop me as a software
developer.Thanks to Paul McEvoy for his mentoring and my appreciation of cafe
latte.Thanks to Elliot Mehrbach for helping me learn SQL and Delphi.

Finally, I would like to thank especially Daph, Cita and Marcos Rockwell, and all
my other relatives, for their unconditional love.Thanks also to Nature and Life, for
their unconditional and priceless support.

00 1089-9 FM 6/26/01 8:21 AM Page xiv

xv

Tell Us What You Think
As the reader of this book, you are the most important critic and commentator.We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

As an Executive Editor at New Riders Publishing, I welcome your comments.You
can fax, email, or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as
your name and phone or fax number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Fax: 317-581-4663
Email: stephanie.wall@newriders.com

Mail: Stephanie Wall
Executive Editor
New Riders Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 1089-9 FM 6/26/01 8:21 AM Page xv

xvi

Introduction
For more than 20 years, I have read books about software development. Many of these
repeated information available to me elsewhere. Formerly, that information was often
from magazines; recently its source is the Internet.A few books, refreshingly, were
based instead upon the authors’“hands on” experiences with the art and science of
software development.

You can now write a book about how to become a gourmet chef without ever
having cooked a meal. Simply download a collection of recipes from the Web, organize
and paraphrase them, and, presto! A book is born, ready to meet the market demand.
Especially in the field of software development, many books seem to have been writ-
ten in this way.

When I was asked to write a book about Web application development with XML
and Java, I replied that the book would have to be a practical “how-to” manual, based
upon real development experiences. Its target audience would be software developers
trying to understand and harness those technologies. I knew that to write that book, I
would have to “cook the meal” myself. My fundamental task would be to develop a
functional and timely Web application project, of at least plausible utility.

Surfing the Web, I soon gathered very much information. I determined which of all
the available tools and products this book would feature. Most of them were then in a
state of flux, and all are still evolving. In fact, a worldwide effort is continually imple-
menting products based on ever-evolving tools and standards related to XML and Java.

Even for an experienced software developer, putting all this information and tech-
nology to practical use was no simple task. Many of the well-documented tools were
obsolete, and the more current tools were often not well documented. Extremely
active mailing lists were frequented by early adopters building real Web applications;
these pioneers often faced with incompatibilities between the tools and the standards.

At first, my plan was to complete the earlier chapters, which present the tools and
technologies, and then to develop the book project and write the later chapters. It
soon became clear that this would put the cart before the horse. I decided to first cre-
ate the Web application and only then, always in the context of that project, to discuss
how XML and Java-based technologies could be applied by the reader.

That is when the fun started. I designed and implemented a Web chat application
called bonForum. It is based on XML and XSLT, Java servlets and applets, and JSP. It
presented me with many of the most challenging tasks of Web application design.As a
very popular and timely type of Web application, I trust that it will interest the reader.
As an experiment and a tutorial, its design and implementation provide a framework
for ongoing development by the readers of this book. It can and should morph into
other types of Web applications besides a chat room.

I welcome bug reports, fixes, suggestions, feedback, and communication! Please
contact me at mail@bonforum.org. Look for errata, version updates, mailing lists, and
related information at http://www.bonforum.org.

00 1089-9 FM 6/26/01 8:21 AM Page xvi

xvii

Conventions Used in This Book
Monospaced font is used to indicate code, including commands, options, objects, and
so on. It is also used for Internet addresses. Italics are used to introduce and define a
new term. Code continuation characters are used in code listings that are too long to
fit within the book’s margins.They should not be used in actual implementation.

How This Book Is Organized
This book is organized so that you can easily follow along with the case study and
build the Web chat application along with the author and his team. Each chapter
builds on the previous one.

Chapter 1,“Introduction and Requirements,” explains the goal of writing this
book. It also describes why certain tools were selected for the project.

Chapter 2,“An Environment for Java Software Development,” teaches you how to
set up an inexpensive Java development environment. It shows you how to compile,
debug and run the Web application example project.

Chapter 3,“Java Servlets and JavaServer Pages: Jakarta Tomcat,” introduces Tomcat,
which is an HTTP server and a container for Java Servlets and JavaServer Pages.

Chapter 4,“XML and XSLT: Xerces and Xalan,” introduces Xerces, a DOM and a
SAX parser, and Xalan, an XSLT and XPATH processor.

Chapter 5,“BonForum Chat Application: Use and Design,” introduces you to
bonForum, the Web chat application that will be the major subject of the rest of the
book. It was designed as a tool to explore each of the subjects of this book, XML,
XSLT, Java Servlets, Java Applets and JavaServer Pages, while solving some real Web
application problems.

Chapter 6,“BonForum Chat Application: Implementation,” continues the overview
of bonForum that began in Chapter 5. Some tougher implementation problems are
also highlighted, and suggestions for future development of the Web chat are given.

Chapter 7,“Java Servlet and Java Bean: BonForum Engine and bon Forum Store,”
teaches the JSP technology that the Tomcat Server supports, as JavaServer Pages are
used to create a BUI, a browseable user interface, for our Web application.

Chapter 8,“Java Servlet in Charge: BonForumEngine,” describes the central class in
the bonForum Web application. It also illustrates some themes common to using Java
Servlets in Web applications.

Chapter 9,“Java Applet Plugged In: BonForumRobot,” discusses the
bonForumRobot applet, which is part of the bonForum Web chat application.This
chapter teaches how to create and deploy a Java Applet to control a Web application
user interface and use Sun Java Plug-in to support an Applet on the client.

00 1089-9 FM 6/26/01 8:21 AM Page xvii

xviii

Chapter 10,“JSP Taglib:The bonForum Custom Tags,” explains how to use a JSP
Tag Library with the bonForum Web application.All the functions that are included in
the multi-purpose ChoiceTag are discussed, which are used on many of the JSP docu-
ments in the Web chat example.This chapter also shows you how the Apache Xalan
XSLT processor is used from the custom tag.

Chapter 11,“XML Data Storage Class: ForestHashtable,” shows how data storage
for the XML data in the bonForum chat application is implemented.This chapter also
teaches how to add a few tricks to a descendant of the Hashtable class to optimize
XML element retrieval and simulate a database program design.

Chapter 12,“Online Information Sources,” provides links to XML, XSLT, Java
Servlet and JSP information.

Appendices A and B provide the CD-ROM contents and copyright information.
The project’s source code is listed in Appendix C.

An added note: when the author uses the term “we” throughout the book, he is
referring to the team that worked on the bonForum Web application.

00 1089-9 FM 6/26/01 8:21 AM Page xviii

Introduction and Requirements

1

IN THIS CHAPTER,YOU FIND OUT WHAT we want this book to provide.We also pre-
sent the choices made to support the “practical” side of the book. Here we try to jus-
tify the software tools and libraries that we selected to illustrate a large subject:
developing Web applications powered by XML, XSLT, Java servlets, Java applets, and
JavaServer Pages.

1.1 The Goal of This Book
While writing this book, we have assumed that you, its reader, are a software developer
with some Java experience and that you want to build Web applications based on
XML, XSLT, Java servlets, Java applets, and JavaServer Pages.The goal of this book is to
support you as you learn about using all of these increasingly important technologies
together.This book will help you become familiar with a set of widely available and
professional software tools that covers all these technologies. Furthermore, it will intro-
duce you to many of the tasks that you will encounter in your own projects, by tack-
ling these tasks within the context of a realistically large example project: a Web
application named bonForum.

The examples and the Web application project for this book were developed on a
PC using Windows NT 4.0. If you prefer, you can use this book together with
Windows 95, 98, or 2000 instead.With a bit more effort, an experienced developer
could use much of the material in this book with a Linux or UNIX operating

01 1089-9 CH01 6/26/01 7:24 AM Page 1

2 Chapter 1 Introduction and Requirements

system—we have tried to minimize any platform dependencies both in the code
examples and in the case study.

Except for using Windows NT 4.0 as our operating system, we have preferred to
feature freely available, platform-independent, open-source software technologies.
Nevertheless, the technologies and tools that we have chosen are among the most
popular ones currently in use by XML and Web application developers.

We do not intend this book to be a complete reference to XML, XSLT, Java
servlets, Java applets, or JSP. Nor do we intend it to be an introduction to these topics.
However, if you are an aspiring Web application developer who is new to XML tech-
nologies or new to Java server-side technologies, you can start the book with Chapter
12,“Online Information Sources.” By using the many Web links there, you can find
everything that is needed to understand the material in this book.

1.2 Why Use This Book?
The popularity of the Extensible Markup Language (XML) and Java server-side soft-
ware technologies (servlets and JSP) is exploding as developers become aware of their
power and purpose. One result is that books on these subjects are growing in number
and are being translated into many languages. For example, Steve Holzner’s Inside
XML, published by New Riders (ISBN: 0-7357-1020-1), is selling extremely well.The
excellent book Core Servlets and JavaServer Pages, by Marty Hall (ISBN: 0-1308-9340-
4) and published by Prentice Hall PTR/Sun Microsystems Press, will be translated
into at least eight languages from its original English.We could give many additional
examples of similar books.There is something behind this popularity: XML, XSLT,
Java servlets, and JavaServer Pages are quite well established in professional software
development.They’ve now been around long enough to become extremely useful in
real projects.

They are also evolving rapidly, which is illustrated by the release dates of their
related proposals and recommendations published by the W3C. (The World Wide Web
Consortium, an official standards body for Web technologies.) Consider some dates
related to XML technologies. On February 10, 1998, the XML 1.0 specification
became a recommendation of the W3C.The second edition of the specification is
dated October 6, 2000. XSL was submitted as a proposal to the W3C on August 27,
1997.Version 1.0 of XSL Transformations (XSLT) is dated November 16, 1999.Version
1.0 of XSL was a candidate for official W3C recommendation by November 21, 2000.

Now consider some dates related to Java server-side Web technologies.The
JavaServer Pages 0.092 specification is dated October 1998. JSP 1.0 was publicly
released in June 1999. JSP 1.1, which is featured in this book, is from spring 2000. By
a now robust and useful Web technology, it is based upon the Java Servlets API 2.1,
which dates from April 1999.

The fast evolution of these technologies is being driven by their usefulness in the
development of Web applications. Of course, you know how crucial the role of

01 1089-9 CH01 6/26/01 7:24 AM Page 2

31.2 Why Use This Book?

HTML has been (and still is) within the World Wide Web.The following is a quote
from the XML FAQ (http://www.ucc.ie/xml/), which suggests one reason for the
increasing importance of XML:

HTML is already overburdened with dozens of interesting but incompatible inven-
tions from different manufacturers because it provides only one way of describing
your information.

XML allows groups of people or organizations to create their own customized
markup applications for exchanging information in their domain (music, chemistry,
electronics, hill-walking, finance, surfing, petroleum geology, linguistics, cooking,
knitting, stellar cartography, history, engineering, rabbit-keeping, mathematics,
etcætera ad infinitum).

HTML is at the limit of its usefulness as a way of describing information, and while
it will continue to play an important role for the content it currently represents,
many new applications require a more robust and flexible infrastructure.

If XML is a better way of describing information (and it is), then XSLT is a better
way of transforming that information from one description to another.When used to
transform data into HTML, the power of XSLT becomes particularly useful in Web
applications, which rely on HTML browsers for their visual presentation to a user.

Now take a look at some quotes from the Sun press release announcing JSP 1.0:

Sun announces the immediate availability of JavaServer Pages technology, which for
the first time allows Web page developers to easily build cross-platform, truly inter-
active Web sites.

Harnessing the full power of the Java platform, JavaServer Pages technology sepa-
rates the functions of content generation and page layout, providing developers
with a simplified and more efficient way to create server-generated Web pages that
combine content from a wide variety of enterprise data sources. Because JavaServer
Pages technology encapsulates much of the functionality required to generate
“dynamic,” or constantly changing, content,Web page developers can concentrate
on the “look” and display of the site without the need for application development
expertise.

These are big promises. It is because they are more than just promises that JSP is
increasingly popular.These paragraphs of PR are, in fact, a quite accurate description
of JSP. For a good overall view of the increasing popularity of JSP (and servlets), visit
the Industry Momentum page for JSP at Sun, at http://java.sun.com/products/jsp/
industry.html.

The popularity of JSP and Java servlet technologies is also illustrated by the fact
that more than a million downloads of Tomcat, an open-source server for Java servlets
and JavaServer Pages, had occurred by the year 2001.The number of downloads of the
current Java 2 software development kit from Sun (Java 2 SDK) will no doubt surpass
five million by the time you are reading this.All these downloads are votes for the
importance of the technologies central to our book.

01 1089-9 CH01 6/26/01 7:24 AM Page 3

4 Chapter 1 Introduction and Requirements

This might convince you of the importance of the technologies that appear in the
title of this book, if you were not convinced of that already! The question remains,
though:Why should you use this book, especially with so many other resources avail-
able? The best answer is that this book is a hands-on “laboratory manual.” It is meant
to complement, not replace, other books on XML, XSLT, Java servlets and applets, and
JSP. Like any laboratory manual, this book assumes at least a basic understanding of the
subjects of its experiments.This book uses original material for learning its topics,
within a context that invites experimentation and even controversial solutions. It
avoids simple repetition of documentation that can be more easily and fully accessed
elsewhere.

1.3 How to Use This Book
Although you might enjoy reading this book on a long airplane ride, we hope that
you will read it while you are trying out its code examples and while you are online.
Perhaps this book is best seen as part laboratory manual and part travel guide; its use-
fulness to you will depend on how much you try the examples and visit the Web links
provided.

As we know too well, today you can find on the Web a “fact” related to a subject of
this book, only to have it become a “fiction” (or, at least, an irrelevant fact) by the time
the book is published.This is a side effect of the very popularity of our subjects; the
technologies that we cover are evolving rapidly, and major changes are common.This
book will provide links for you to the most relevant Internet sources and relies on
your willingness to visit these for the latest information.

The quantity of information on the Internet that is related to this book is increas-
ing rapidly. Particularly active are the various mailing lists and forums, where thousands
of developers worldwide are engaged in spirited debate and information interchange.
Follow our advice: Subscribe to some of these mailing lists, and take part in the online
forums.You will soon experience the fast pace at which these technologies are evolv-
ing, as well as the excitement that they are generating in the worldwide community of
software developers.

1.3.1 How to Stay Current
You can find some links to information relevant to this book in Chapter 12.We feel
that, with evolving technology, it is vital to have sources of current information, so we
will also provide some links for you here. One way to keep in touch with the entire
subject of Java programming is to subscribe to related newsgroups. One important one
is comp.lang.java.programmer.

You can also search all the newsgroups, including their archives, which is a great
way to generate leads to answer just about any question that comes up.To do that, just
use the search engine at http://www.dejanews.com.

01 1089-9 CH01 6/26/01 7:24 AM Page 4

51.3 How to Use This Book

Another way to keep current with Java, including Java servlets, Java applets, and JSP,
is with the Sun mailing lists and archives, which you can find using these URLs:

http://archives.java.sun.com/cgi-bin/wa

http://archives.java.sun.com/archives/index.html

Especially relevant to this book are discussions related to Java servlets and JSP as
implemented by the Jakarta project of the Apache Software Foundation.These can be
found at http://jakarta.apache.org/getinvolved/mail.html.

For staying up-to-date with XML technologies, you can join another Apache mail-
ing list by visiting http://xml.apache.org/mail.html. For a more general discussion
of XML and its development, try the archives of the XML-L mailing list, at
http://listserv.heanet.ie/xml-l.html.

Among the most useful sources of current information relevant to the subject of
this book are the Java Technology Forums hosted by Sun Microsystems. Here are some
URLs that merit your attention:

http://developer.java.sun.com/developer/community/forum.jshtml

http://forum.java.sun.com/list/discuss.sun.javaserver.pages

http://forum.java.sun.com/list/discuss.sun.java.technology.and.xml

http://forum.java.sun.com/list/discuss.sun.java.servlet.development.kit

1.3.2 Our Technology Choices in Brief
The following is a list of the technology choices that we made for developing applica-
tions based upon XML, XSLT, Java servlets and applets, and JSP:

n SDK 1.3
n Windows NT 4.0
n Jakarta Tomcat
n Xerces XML parser
n Xalan XSLT processor

The rest of this chapter discusses and attempts to justify our choices.This will be of
most interest to those developers who are new to the world of Web applications.

If You Already Know These Products...
You might already be familiar with these chosen products and our reasons in support of their selection. If

so, you can safely skip the rest of this chapter and proceed directly to Chapter 2, “An Environment for

Java Software Development.” As another alternative, some of the highlights of the following discussion

are presented in italics, to allow you to quickly get the gist of the content.

It might be useful to point out that we first discuss a list of questions, without answer-
ing them. Later in the chapter, we provide our own answers to those same questions.

01 1089-9 CH01 6/26/01 7:24 AM Page 5

6 Chapter 1 Introduction and Requirements

Some readers would no doubt prefer to have each question followed by our answer.
We would rather present you with an appreciation of the fact that any discipline that
can raise many questions about how to proceed will surely have room for many cre-
ative sets of answers.We do not want to leave you with the impression that our
answers are the only ones that you should try.

1.4 Some Choices Facing Web Application
Developers
When you want to develop Web applications, you immediately face a series of quan-
daries. For example, should you take advantage of all the relevant programming that is
built in only on Windows and NT computers, especially considering the popularity of
the Microsoft Web browser? Alternatively, should you try to conform fully to the stan-
dards and attempt a platform neutral solution? In the latter case, which versions of the
standards should you adopt? Which tools should you use? Which development envi-
ronments and languages should you use? Should you seek a solution that is based
upon Linux, or one based on a commercial UNIX platform?

1.4.1 Client-Side Versus Server-Side Processing
Web application developers who want to take advantage of Microsoft technologies
often emphasize client-side processing.They leverage library files (DLLs) that reside on
the same machine as the Web browser. Many who choose this path use Microsoft
developer tools, especially Visual Basic.

However, there are many advantages to emphasizing the server side when develop-
ing Web applications. One of these advantages is especially compelling to those of us
who have supported widely distributed software that we had to install and configure
on every last client machine!

A Web application that can change, adapt, and evolve by changing only the software on a few
server machines is far easier to deploy, maintain, and support than is a Web application made up
of programs that must be installed and configured on thousands of client machines.

We stated above “emphasizing the server side” because the most practical approach
seems to be to allow for both server-side and client-side processing, depending upon
what needs to be done. Java developers can take advantage of Java applets, which
enable you to use client-side processing in a Web application while avoiding some of
the software distribution problems.The Java plug-in provides a way to run Java applets
transparently on differing Web browsers.According to James Gosling, the creator of
Java, the closer integration of the plug-in and browser technology is an important goal
for Java.That will help dispel criticisms of those who find the delays of downloading
the Java plug-in and Java applets time-consuming and disruptive.

01 1089-9 CH01 6/26/01 7:24 AM Page 6

71.4 Some Choices Facing Web Application Developers

1.4.2 Which Web Server to Use
Increasingly,Web application developers prefer doing things on the server. However,
they still might face a quandary, one having less to do with the Web browser than with
the Web server.Three brands of Web servers are responsible for most of the traffic on
the Internet. One, of course, is Microsoft Internet Information Server (IIS).Another is
Netscape Enterprise Server.The third is Apache Server, which, as far back as October
2000, was credited in a Netcraft report with 59% of the server installations on the
Internet.Although such statistics are controversial, there is still no doubt about the
importance of more than one brand of server on the Web.

Many questions arise.Will these three popular Web servers be capable of hosting
your Web application? Which implementation of the various XML and Java server-side
technologies should you choose to enable these Web servers to host the application?
Alternatively, should you create your Web application using one of the many commer-
cially available Web application frameworks?

1.4.3 Which Platform(s) to Use
You face many other initial questions as a Web application developer.Which platform
(operating system) will you select to host the server-side components of the Web
application? You might decide to do so on Microsoft Windows NT 4.0, especially if
you are already familiar with its development tools and environments, or if you decide
to use Internet Information Server (IIS).As a Java programmer, on the other hand, you
likely will seek a platform-independent solution and then will develop that on the
platform of your choice: NT, Linux, Solaris, or whatever.

1.4.4 Which Software Language(s) and Tools to Use
Any computer language that does not try to become more useful for developing Web
applications is most likely a dead language because it is one that is no longer evolving.
As a developer who wants to create server-based Web applications, you have a wide
choice of languages and tools to use. Some important languages are Java, C++,Visual
Basic, Perl, and Python. Of course, HTML (especially now as XHTML) is crucial for
controlling browser content. XML and its related languages are becoming increasingly
important, especially for representing and transforming data.ASP, PHP, and Cold
Fusion, specialized as they are for Web application development, are even more directly
comparable to JSP and Java servlets; each of these three “languages” has many adher-
ents among developers.

XML, XSLT, Java servlets, Java applets, and JavaServer Pages will all be crucial to
our development efforts for this book.As a direct consequence of that, we have prefer-
entially looked for tools and solutions among Java-based technologies.

01 1089-9 CH01 6/26/01 7:24 AM Page 7

8 Chapter 1 Introduction and Requirements

1.5 Development Choices Made for This Book
This book will not even pretend to cover all the possible answers to the previous
questions. Instead, we will present the one set of answers that we chose for ourselves.
Our hope is that even if your answers turn out to be different, you will still find value
in learning about our experience with our tools and components. In the following
sections, we present the reasoning behind our strategic choices.

1.5.1 Development Platform: Microsoft NT Server 4.0
Based on the goals chosen for the book, there were many good reasons to choose
Linux as the development platform. For one thing, it is freely available, and we intend
to keep the cost of learning as low as possible. In addition to having its own ISP, Linux
is arguably the natural choice for hosting the freely available Apache server—at least
until the Windows version of this server has been as thoroughly tested and debugged
as the Linux version (perhaps by the time you read this).

Regardless of these reasons, we consider that by developing our Web application
project on a Windows platform, we will make it accessible to a larger audience, espe-
cially among developers who are just beginning their adventure in the world of Web
application programming.We guess also that more Linux (and UNIX) developers can
use information based on the Windows platform than vice versa.

The software for this book was developed on NT 4.0, while trying to remain compatible with
all Win32 platforms.

We developed our examples for this book on a Windows NT Server,Version 4.0
(Build 1381: Service Pack 5).We did nothing that would not have been identical on
an NT workstation of the same version, build, and service pack.We chose to use NT
because, in our experience, it has been the most robust Microsoft platform for devel-
oping network applications. However, very little would have been different had we
used a Windows 95 or 98 platform instead; indeed, we have often run our book pro-
ject Web application on both these platforms. (If we were starting today, we would
probably select Windows ME or 2000 instead, but we have not tested our software
with either.)

We are assuming that most of our readers have access to a Windows platform and
that they will be able to adapt our NT-based examples and discussion to their environ-
ment.Those not using Windows might need to alter the examples to use UNIX paths
and naming conventions.

We have tried to minimize the impact of choosing Windows NT 4.0 as a development plat-
form.We trust that readers will share information about using the book with other platforms,
which can be done on the book project Web site at http://www.bonforum.org.

01 1089-9 CH01 6/26/01 7:24 AM Page 8

91.5 Development Choices Made for This Book

1.5.2 Java Development Environment: Java 2 SDK Version 1.3
We are aware that, as a reader of this book, you might already have a favorite Java
development environment—perhaps VisualAge for Java from IBM, JBuilder from
Inprise/Borland, Forte from Sun, or one of many others. Moreover, you surely would
prefer it if we used the same tools that you want to work with.

In theory, the choice of development environment should not affect the Java Web
application.That is the promise of Java, after all. However, in practice, it could affect
the way that we present the information in this book.That might affect your ability to
follow along with the examples by actually compiling and running them.Therefore,
we will use for our development environment one that can be inexpensively installed
and used by everyone.

We will try to keep our discussions and examples independent of any particular development
environment.You can easily use the command-line interface to the Java 2 SDK for all examples.

We will assume that you have at least the freely available standard version of the Sun
Java 2 SDK version 1.3 on your development machine. (This version is on this book’s
CD-ROM.) It will be possible for you to use version 1.2.2 instead, although you might
find that some things work differently or look different. However, Java versions earlier
than 1.2.2 will not work with the XML-related software that we will be using.

Many Java programmers reading the book will already be familiar with using the
command-line interfaces to the various tools in the Java SDK. Others could benefit by
becoming familiar with them. Nevertheless, window-based development environments
evolved to make using the underlying SDK easier. Some readers might feel more
comfortable using an integrated development environment (IDE). Indeed, those of you
who have recently come to Java development from the worlds of Visual Basic or
Delphi, for example, might have no experience at all with command-line interfaces. If
you are shopping around for a Java IDE, you have several good choices, depending on
your machine and pocketbook resources. Readers who are new to Java development
will certainly want to explore both the free and the trial versions available to them,
including the ones mentioned at the beginning of this section.

To provide one choice of IDE to our readers, we have arranged to include the
ElixirIDE-Lite trial software on the CD-ROM accompanying this book. Note that
this is a special edition provided for this book; this means that a greater number of Java
files can be used than the normal trial version so that it can be used with the book
project.We find that one advantage of this IDE is that it requires fewer hardware
resources than most others do; this can be an attractive to those whose machines have
been filled to the brim with Microsoft tools, for example. Readers will also find a sec-
ond IDE on this book’s CD-ROM that is worth trying: Forte for Java Community
Edition, from Sun.

1.5.3 Server-Based Web Application Architecture
Another of the initial developer questions that we discussed was whether to stress
client-side or server-side processing when designing a Web application.We believe that
the advantage of using a server-side implementation outweighs its disadvantages.

01 1089-9 CH01 6/26/01 7:24 AM Page 9

10 Chapter 1 Introduction and Requirements

It is often expressed that an advantage of doing things on the Web browser (client-
side processing) is that you reduce network traffic.The idea is that the browser does
not have to keep accessing the server for another view for the user because it has the
locally available Web application to turn to for that next view. However, that depends
on the application. Often, client-side processing can instead increase network traffic,
requiring the download of large JavaScript files or much more data than the user will
need to view.

Another commonly mentioned advantage of client-side processing is that it reduces
the load on the servers, but intelligent caching can often easily offset this effect.

The Web application project for this book will lean heavily in favor of processing on the Web
server rather than on the client machine.

If we were being consistent, we would try to maintain neutrality toward the choice
of browsers.That would mean serving plain-vanilla HTML to the browsers, something
that would work on any platform’s favorite and not-so-favorite browsers. In fact, it is
important for a Web application to be compatible with at least the two major browsers
(Internet Explorer and Netscape).Although such cross-compatibility is preferable, we
have decided to reduce the complexity of this book and its project by supporting only
Internet Explorer.

The software for this book has been developed and tested using only the Internet Explorer
5.5 Web browser from Microsoft.

Note that it can be argued that because content ports more easily from Netscape to
Internet Explorer than vice versa, it makes more sense to begin with Netscape com-
patibility. For us, the more important issue is compatibility with the more commonly
used browser at an earlier date.

1.5.4 XML-Related Standards from W3C
Another question is about which XML-related standards we should apply.There is an
easy answer:We will use the “real” standards, which are those decided upon by the
W3C.

This book should adhere to the XML-related standards as proposed and recommended by the
W3C.

You can find out all about the W3C by visiting the Web site http://www.w3.org/.
With new recommendations for XML-related technologies appearing often, and

with rapidly evolving software that constantly pushes beyond current W3C recom-
mendations and for newer versions of the standards, this “easy answer” turns out to be
not quite so simple.

Here’s how we see it: Unless you come from certain software development back-
grounds, especially those that use SGML, it will probably take a fair amount of dedi-
cated time to learn all the various things that go into making XML Web applications
with Java.Thus, you might as well go for the latest standards that you can. Be aware
that this means that you will sometimes be trying to learn about XML using software
that is buggier than some previous stable version.

01 1089-9 CH01 6/26/01 7:24 AM Page 10

111.5 Development Choices Made for This Book

The advantage to this approach is that, when you have gathered the understanding
of XML that you need to finish a project, you will be as current as possible regarding
the standards.This lessens the chances that you will do what Microsoft did with its
XML support for IE5.0. In other words, you will be less likely to use something that
turns out to be defined only in a dialect of an XML-related technology.

Some Confusing XML Information on the Web

XML-related technologies have been changing and growing at a fast pace.This has
produced some confusion in the information that you will find on the Internet. Many
posts to mailing lists, for example, contain useful tips and code but do not indicate
which servers, browsers, and tools (and which versions of these) were being used by
the developer who posted the mailing list item.

Perhaps a greater source of confusion for the new user of Web-related XML infor-
mation is that the developers of the most widely available and most advanced Web
browser, Microsoft Internet Explorer, chose to extend some XML-related proposals in
certain “unofficial” ways. It can be argued that this was necessary to use those XML
proposals at that time. Nevertheless, the outcome was that, although a more useful
browser was created, pervasive dialects of the proposals were also created.These dialects
differed quite a lot from the standard XML technologies that later evolved.

More recently, version 5.5 of Internet Explorer went partway toward implementing
these newer,“truer” standards, recommended by the W3C. Microsoft’s intention is evi-
dently to fully implement the W3C recommendations in some future release of
Internet Explorer. Meanwhile, Microsoft has added to the mix of vendor-dependent
differences in XML-related technologies.

1.5.5 XML Technologies: Xerces and Xalan
XML and its related technologies, such as XSLT, have very exciting potential to push
the evolution of the Internet.This has spurred many interesting projects, each one
seeking to make this potential real. Some projects are aimed at creating XML-related
developer tools. Other projects are creating applications to fulfill some commercial or
other user requirement. Some projects have developed products ready for real use.
Others are simply experimental.

For this book, we examined projects that are creating freely available XML-related
tools.The question that we faced was, which of all those XML-related tools should we
select to learn about building Web applications? This book will be complex enough
without trying to discuss more than a minimal set of XML-related software tools. Of
course, that is part of the reason we limited our choices of tools. Indeed, we can
enthusiastically recommend our two choices, which are among the most popular
open-source products ever.

This book will feature two products of the Apache XML Project: Xerces and Xalan.The Java
versions of these tools will be used exclusively for our XML- and XSLT-related processing.

01 1089-9 CH01 6/26/01 7:24 AM Page 11

12 Chapter 1 Introduction and Requirements

A very strong point in favor of Xerces and Java is that both have versions written in
pure Java, so both provide natural extensions for a JSP/servlet programmer to use.You
can find out more about the Apache Software Foundation, the Apache XML Project,
and the origins of the Apache projects with these links:

http://www.apache.org

http://xml.apache.org

http://xml.apache.org/pr/0001.txt

Let’s look at other reasons for supporting these choices. Consider that both Xerces and
Xalan are based partly on source code donated to the Apache Software Foundation by
IBM, Sun, and other companies and individuals with XML expertise.These companies
decided to take advantage of the open-source development model (the same model
that has made Linux and Apache Server so successful) as a way to improve, develop,
and test their own XML-related code base.They have also decided that this is the best
way to create a reference code base for those standards that are evolving (through the
W3C).

As an illustration of this fact, when we began our book project, the current IBM
XML parser was actually just a wrapper for the Xerces XML parser.The wrapper was
there only to maintain compatibility with the previous software. Sun has also been
generously providing source code to the Apache XML Project, profiting no doubt
from the same worldwide developer force that IBM discovered in the open-source
movement. In choosing to use Xerces and Xalan as our XML parser and XSLT
processor, we are actually in good company!

You can bet on one thing: Given the pace of developments in the XML world, by
the time you read this, better versions of Xerces and Xalan will be available than the
ones we used here.You can appreciate the difficulty of trying to keep the content of
this book detailed enough to be relevant but general enough to be applicable, even
after each newer version of Xerces and Xalan appears.

To be at all able to do this, we must assume that much of your learning will take
place by following the Web links that we provide. Only then will your learning mater-
ial be dynamic enough to keep up with the times.What you can learn from our own
experience might be primarily that you will need a stubborn attitude to get software
to work! You will also need a set of suitable starting points.We will attempt to help
you answer these two needs in the upcoming chapters.

While you are learning about XML, undoubtedly new versions will be released of
the very components that you are attempting to use.These, in turn, will often require
newer versions of other components that you are also using.You will be tempted to
ignore the newer versions, but, in our experience, you should jump to the newer ver-
sions as soon as possible—often great improvements in both software and documenta-
tion accompany these version changes.To try to stay with earlier versions that are
more tested and known makes sense in many development situations, but not with
XML-related software.This technology is simply developing in too many important,
fundamental ways to ignore the changes.

01 1089-9 CH01 6/26/01 7:24 AM Page 12

131.5 Development Choices Made for This Book

1.5.6 Web Server, Servlet, and JSP Engine: Jakarta Tomcat
We mentioned earlier the three prominent Web servers (HTTP servers): IIS, Netscape,
and Apache. More than likely, you will want your own Web applications to be deploy-
able to Web hosts that use one or more of those Web servers. However, when it comes
to developing Web applications with Java servlet and JSP, there is a compelling reason
to look further:These Web servers must all rely upon add-on software to implement
the Java servlet and JavaServer Pages technologies. Such software is known technically
as a container, but it is also referred to as a servlet and JSP engine.Whatever it is
called, we will need one!

The software for this book relies upon a very popular open-source product, called Tomcat, to
enable the serving of Java servlets and JavaServer Pages.

Tomcat is being developed by the Jakarta Project. Like the Apache XML Project
that develops Xalan and Xerces, the Jakarta Project is part of the Apache Software
Foundation.You can find out more about the Jakarta Project and all its various prod-
ucts at http://jakarta.apache.org.

The intention of the Jakarta Project as it creates Tomcat is to provide a reference
implementation for the Java servlet and JSP technologies.These are both defined as
part of the Sun J2EE specification. If you want to learn the latest standards for these
vital Web technologies, you will surely want to learn about Tomcat.Tomcat is also
freely available open-source software, and it fits our low-cost development goal for this
book. Furthermore, there is an unusually active developer community involved in the
Tomcat project, so this is a great way to get directly involved in the excitement of
building dynamic Web technology.

Unlike many other servlet and JSP container add-on modules for Web servers,
Tomcat can function as a standalone Web server itself.This means that it can be used
for development and testing purposes, without any reliance on another Web server.To
simplify our book presentation, we use the HTTP server potential of Tomcat exclu-
sively throughout this book.

It is important to stress that we are not using Tomcat because it is a better Web
server than Apache, Netscape, or IIS servers. Later in the book we point you to the
information that you will need to use Tomcat with Apache or IIS.

You can use Tomcat as a standalone Web server, as we do for the project in this book. Note,
however, that deployed Web applications should use Tomcat together with another production-
quality Web server.

The one compelling feature of Tomcat is that it is a Java servlet and JavaServer
Pages container. In servlets and in compiled JSP pages, Java code, together with a suit-
able engine such as Tomcat, gives a Web server the capability to serve dynamic content
to a Web browser. Such content is determined only at the time the browser makes a
request to the Web server.You can find out more about this by reading Sun’s white
paper on JSP technology, at http://java.sun.com/products/jsp/whitepaper.html.

As you develop your own Web applications, you will want to examine other possi-
ble choices for a servlet and JSP container. One popular choice is Jrun, which is

01 1089-9 CH01 6/26/01 7:24 AM Page 13

14 Chapter 1 Introduction and Requirements

available for Windows, Linux, Solaris, and others. It can be run with IIS,Apache,
Netscape, and other servers.You can find out about JRun at the Allaire Web site, at
http://www.allaire.com/Products/JRun/.

Many Web-application framework products also understand servlets and JSP.
Prominent among these are Netscape Application Server and iPlanet, Oracle
Application Server, BEA Weblogic, and Resin.

1.6 A Note About Platform Independence
If you want to base your Web applications on the Java language, you probably know
that one of its main advantages is platform independence.You should appreciate, then,
that with the exception of the browser, the tools and software modules that we have
selected are not bound to one particular operating system.Apache Server,Tomcat,
Sun’s Java Development Kit, Xalan, and Xerces can all be installed on both Windows
NT and UNIX.

We hope that the next edition of this book will more explicitly cover the use of
our chosen Web application tools on Linux-powered servers. In the meantime, as you
are learning Web application development on an NT Server, you can rest assured that
your newly acquired skills can be easily transplanted to UNIX-type operating systems.

01 1089-9 CH01 6/26/01 7:24 AM Page 14

An Environment for Java
Software Development

2

IN THIS CHAPTER,YOU LEARN ABOUT setting up an inexpensive Java development
environment.This will enable you to compile and run our Web application example
project.

2.1 Java 2 Platform, Standard Edition
We will be using the Java 2 platform for all the Java code in this book.To follow along
and to get the real value of hands-on programming, you should first make sure that
you can compile and run Java 2 source code on your own system.

Of course, it is possible—especially because you have chosen this book—that you
already are running a Java 2 development environment. Perhaps yours is one of several
available products, such as JBuilder, from Inprise Corporation;Visual Age, from IBM;
Forte, from Sun; or Visual Cafe 4, from Symantec. In this case, you are probably quite
capable, using your present setup, of compiling and running our examples and Web
application project.

02 1089-9 CH02 6/26/01 7:25 AM Page 15

16 Chapter 2 An Environment for Java Software Development

Who Is This Chapter For?
If you are an experienced Java programmer, you probably know most of the information in this chapter.

We are aiming the following material at those who are learning about Java. If you can develop, compile,

and run Java programs already, you can safely skip this chapter. The latter half of the chapter, however,

might still be useful to you if you intend to try out the ElixirIDE trial product provided on the CD-ROM

accompanying this book.

2.1.1 Installing the Java 2 SDK
For readers who need some hints about setting up a Java 2 development environment
or who just want to use the same one that we used as we wrote the book, we present
here an overview of how to find and install the Java 2 SDK, which is available on thsis
book’s CD-ROM also from the Sun Web site.To download it, log on to
http://java.sun.com and follow the product links to the download page for the
Windows standard edition (J2SE) of the product. Here is the URL:
http://java.sun.com/j2se/1.3/download-windows.html.

Version to Use

We recommend that you use version 1.3.X, unless you have a reason to use version
1.2.X.You can use either 1.2.X or 1.3.X with this book, but we assume that you have
the Java 2 SDK version 1.3 on your system. If not, you will need to change the file
paths in our instructions accordingly.

Installation Notes

You should start with the readme.txt file in the root of the download archive.There
are also some important links on the download page itself: README, Release Notes,
Features, License, and Installation Notes.We found the installation notes for version
1.3 in the Web document http://java.sun.com/products/jdk/1.3/
install-windows.html.

This document is very useful. It will tell you about the requirements for using the
SDK and also how to install it on all different Windows platforms that can use it. In
addition, it has hints for troubleshooting installations that fail. It might help to know
that the name for older versions of the SDK was Java Development Kit, abbreviated
JDK; you will still find references to the JDK (for example, in the name of the root
folder for the installation).

Be sure to read the Sun Microsystems, Inc., Binary Code License Agreement, by
following the links from the download page before you get and install the Java 2 SDK.
As a licensee of this product, you will be bound to the terms of this license, so you
should know what you are agreeing to when you use this software.

02 1089-9 CH02 6/26/01 7:25 AM Page 16

172.1 Java 2 Platform, Standard Edition

Setting the Path in the System Environment

As mentioned in the installation notes, you will want to add the Java 2 SDK system
path to your NT system path variable (or the equivalent, for other Win32 systems). In
NT, you can do this by bringing up the Control Panel and using the System tool. Find
the tab for the Environment settings, and edit the Path variable.Add a semicolon and
then c:\jdk1.3\bin (or whatever is equivalent for your system).

Here is what our Path environment variable looks like:
Path=c:\jdk1.3\bin;c:\winnt\system32;c:\winnt

Setting the JAVA_HOME Environment Variable

While you are setting up the Path variable, you can also set up an environment vari-
able needed by the Java 2 SDK.You should define the variable, JAVA_HOME, something
like the one shown here, according to the location of the SDK on your system:

JAVA_HOME = c:\jdk1.3

Setting the CLASSPATH Environment

If you are looking for some clarity regarding which, if any, setting for the CLASSPATH
environment you should use, we can think of no better place for you to find answers
than http://java.sun.com/products/jdk/1.3/docs/tooldocs/win32/classpath.html.

2.1.2 Documentation for the Java 2 SDK
You can find a plethora of information regarding the Java 2 SDK itself, so we will cer-
tainly not try to provide all your answers about its features and use. One obvious
source of answers is the SDK documentation.While you are installing the SDK, you
will want to consider downloading the documentation for it. Sun makes available the
documentation for version 1.3 at http://java.sun.com/products/jdk/1.3/download-
docs.html.

Due to license restrictions, we cannot put the documentation on the book’s CD-
ROM. Of course, you can also browse the documentation over the Internet, so if you
have an inexpensive connection to it, there is no need to download it—that can save
you quite a bit of disk space.This also gives you the advantage of a using the search-
able version of the documentation.

If you decide to download the documentation, try to use the same root folder for
both the SDK and the documentation.The default folder choice for the version that
we downloaded is c:\jdk1.3.Therefore, our documentation for the Java 2 SDK ended
up in c:\jdk1.3\docs, and the SDK was installed into c:\jdk1.3\bin, c:\jdk1.3\lib, and
so on.

2.1.3 The Java 2 Runtime Environment
Notice that if you want to deploy the software products that you develop with the
Java 2 SDK, you can be sure that the user will be able to run your products by deploy-

02 1089-9 CH02 6/26/01 7:25 AM Page 17

18 Chapter 2 An Environment for Java Software Development

ing your products together with the Java 2 Runtime Environment.This includes just
the core Java classes and support files, without all the development tools.The SDK
comes with its own copy of the Runtime Environment, so you do not need to install
it separately to develop Java software.

You cannot redistribute the SDK itself; you can distribute only the Runtime
Environment. New Riders Publishing has a special agreement with Sun to provide it
to you on the book’s CD-ROM.You should definitely check out the wealth of other
useful material that is dynamically made available to you on the Sun Java Web site.

2.1.4 Examining the SDK
If you are new to Java, take some time to familiarize yourself with the Java 2 SDK.
There is a lot there, and this should make you glad that you do not need to reinvent
all those wheels!

Notice the folder c:\jdk1.3\jre.This is a Java Runtime Environment that enables
you to use Java applications.Another large JAR file, called rt.jar, is in the folder
c:\jdk1.3\jre\lib.That JAR file is the runtime library that we will be using.This Java
Runtime Environment in the Java 2 SDK is not the same as the one that you can
freely distribute; it is for use during development only.

Notice also a large file called tools.jar, which is in the folder c:\jdk1.3\lib.This
JAR file is quite important because it contains the Java compiler that our Web applica-
tion will use to compile JavaServer Pages.When you create a Web application that uses
JSP, such as the project in this book, the container that runs that application needs to
have a suitable Java compiler available; JSP pages must be compiled into Java servlets
before they are useful.The standard way for you to distribute a Web application is as a
Web archive (WAR file), and you commonly assume that the recipient of a WAR file
has a Web server, together with a container (such as Tomcat) that can compile JSP
pages and a suitable compiler for the container to use. Providing the compiler is not
usually your concern as a Web application developer. However, we provide this discus-
sion because those coming to Java from other environments will naturally think of
compilation as something that happens only before distribution; it helps to see that it
can be otherwise.

2.1.5 Using Internet Explorer 5.x with the SDK
We will be using Internet Explorer 5.5 as our Web browser in this book. If you have
Internet Explorer 5.x on your machine, you might be tempted, as we were, to test the
browser’s capability to run a Java applet. For example, try browsing
file://c:\jdk1.3\demo\applets\Animator\example1.html.

You will most likely find that the browser cannot find a Java class that it needs
(java.util.List). Microsoft has not updated its JVM since JDK 1.1.5, and it does not
contain the Swing library. Microsoft will not update it, either, because the company is

02 1089-9 CH02 6/26/01 7:25 AM Page 18

192.2 Compiling Java Programs

competing against Java with C#.This means, for example, that any applet created with
the Swing GUI will also not function with the Java virtual machine built into Internet
Explorer.

In Chapter 9,“Java Applet Plugged In: BonForumRobot,” we discuss using the Java
plug-in from Sun, which enables you to run Java applets in most Web browsers,
including those brands and versions that have no built-in capability to run applets.
Using the Java plug-in is also the correct solution for running applets on Internet
Explorer.

2.1.6 Other Java Development Tools
If you plan to make sizeable Java projects, you might find many freely available tools
and code libraries (complete with source) that could save you time both learning and
implementing software.

Bean Development Kit

For example, you might want to try downloading and testing the Bean Development
Kit (when we did, it was called BDK1.1) from the Sun Web site. Here are a couple of
links that will help you locate and use the BDK:

http://java.sun.com/products/javabeans/software/index.html

http://developer.java.sun.com/developer/onlineTraining/Beans/

Beans1/index.html

The BDK will give you an easier way to make those beans.As you might know
already, one of the things you can do using JSP is to use Java Bean technology.This
can give you advantages when you want to serialize your class instances.Additionally, it
provides a good way to utilize the different scopes present in JSP.The BDK can be a
useful kit to have while developing Web applications.

Note that there are two big differences between JSP JavaBeans and GUI JavaBeans.
The first is that the JSP Beans are nonvisual—that is, they are server-side objects that
have no graphical representation.The second difference is that JSP Beans do not inter-
act with the BeanContext.

2.2 Compiling Java Programs
You have many options available when it comes time to compile your Java source files.
These range from using the command-line interface to using the SDK, through some
options that integrate the SDK with an editor/highlighter, to your choice of using a
full-blown integrated development environment (IDE) with all the bells and whistles.
We briefly discuss only two options: first the command-line interface and then a trial
version of an IDE that we are including on the book’s CD-ROM.

Note that the Textpad editor, which also is included on the book’s CD-ROM as a

02 1089-9 CH02 6/26/01 7:25 AM Page 19

20 Chapter 2 An Environment for Java Software Development

trial version, covers middle-of-the range compilation options quite well. It is an excel-
lent text editor and has some features integrating it with Java and the SDK.

2.2.1 A Useful Command Prompt Window for Compilation
We like to use the command-line interface to the Java 2 SDK because it can be a fast
and simple way to do things such as compile and run programs or list JAR file con-
tents. However, the NT command window Command Prompt must be set up differ-
ently than its default mode, which is difficult to work with.What we want to see is a
window that has a scrolling display. Otherwise, we will miss many messages and out-
puts that are larger than the window coordinates.

In Windows NT Explorer, find the file WinNT\System32\cmd.exe. (In Windows
95 and 98, look for Windows\System32\command.com instead.) Create a shortcut to
that file.Then move this new shortcut icon onto the desktop. Right-click the icon,
open its Properties item, and then select the tab Layout.There, in the Screen Buffer
Size panel, set Width to 128 and Height to 512. In the Window Size panel, set Width
to 78 and Height to 32.You can use even larger numbers for the Window Size set-
tings, but these work even with an 800 ✕ 600 screen resolution. (Note that in Win9x,
you can only set the number of screen lines.)

If you want, you can put this edited shortcut icon in the Start Menu folder in your
Windows NT Profile and rename it Big, Scrollable Cmd.exe, or whatever.That way,
you can quickly get a useable NT Command Prompt window from your Start menu.
Another alternative to changing the Layout properties using a shortcut icon as
described previously is to make similar changes to the Layout properties using the
MS-DOS Console tool in the Control Panel.This sets set the default layout for all
instances of the NT Command window.

Now that we have a more useful command window, let’s see an example of a batch
file used for compiling Java programs.This batch file, which we have named
bonMakeIt.bat, can be used to compile the entire Web application project for this
book, bonForum.We keep this batch file in the src folder, which contains the root of
the bonForum package, de.tarent.forum. It expects there to be another folder named
classes at the same hierarchical level as the src folder.The javac.exe compiler puts all
the compiled Java class files in the proper package folders within the classes folder.At
the end of the batch processing, two class files are copied explicitly into the applet
folder where they are needed.This batch file assumes that your system Path variable
includes the folder with the javac.exe Java compiler. Here is a listing of the batch file:

javac de/tarent/forum/BonForumUtils.java -d ../classes

javac de/tarent/forum/BonLogger.java -d ../classes

javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
➥de/tarent/forum/BonForumTagExtraInfo.java -d ../classes

javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
➥de/tarent/forum/OutputPathNamesTag.java -d ../classes

02 1089-9 CH02 6/26/01 7:25 AM Page 20

212.2 Compiling Java Programs

javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
➥de/tarent/forum/OutputChatMessagesTag.java -d ../classes

javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
➥de/tarent/forum/OutputDebugInfoTag.java -d ../classes

javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
➥de/tarent/forum/NoCacheHeaderTag.java -d ../classes

javac -classpath “.;c:\xalan-j_1_2_2\xalan.jar;c:\xalan-
➥j_1_2_2\xerces.jar;c:\jakarta-tomcat\lib\servlet.jar;”
➥de/tarent/forum/Xalan1Transformer.java -d ../classes

javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;c:\xalan-
➥j_2_0_1\bin\xalan.jar;c:\xalan-j_2_0_1\bin\xerces.jar;”
➥de/tarent/forum/Xalan2Transformer.java -d ../classes

javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;c:\xalan-
➥j_2_0_1\bin\xalanj1compat.jar;c:\xalan-j_2_0_1\bin\xalan.jar;c:\xalan-
➥j_2_0_1\bin\xerces.jar;” de/tarent/forum/TransformTag.java -d ../classes

javac de/tarent/forum/NodeKey.java -d ../classes

javac de/tarent/forum/BonNode.java -d ../classes

javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
➥de/tarent/forum/ForestHashtable.java -d ../classes

javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
➥de/tarent/forum/BonForumStore.java -d ../classes

javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
➥de/tarent/forum/BonForumEngine.java -d ../classes

javac BonForumRobot.java -d ../classes
copy ..\classes\BonForumRobot.class ..\..\jsp\forum\applet
copy ..\classes\BonForumRobot$RefreshThread.class ..\..\jsp\forum\applet

rem CLASS FILES MUST BE IN
rem bonForum WEBAPP CLASS FOLDERS FOR USE!

Do not worry if not everything in this batch file is clear at this point.You can return
after reading Chapter 5,“bonForum Chat Application: Use and Design,” which shows
you how to install the bonForum Web application and give some hints about compil-
ing it.You can find this batch file always on the CD-ROM in the folder
bonForum\installed\webapps\bonForum\WEB-INF\src.

After you have installed the bonForum project, you will find the batch file in a
folder with a path something like c:\jakarta-tomcat\webapps\bonForum\
WEB-INF\src.

02 1089-9 CH02 6/26/01 7:25 AM Page 21

22 Chapter 2 An Environment for Java Software Development

Note that, to be useful, the batch file must be executed in a command window
after setting the current directory to the previous folder path (or its equivalent, on
your Tomcat server machine).

2.2.2 Integrated Development Environments
Many developers find it a great advantage to use an integrated development environ-
ment. In fact, Sun suggests that you use its SDK via an IDE and provides links to
several on its SDK download page. Be aware that some IDEs available are large, expen-
sive, and slow on older computers, and they sometimes want a large amount of RAM.
We certainly do not want our readers to think that they must own an IDE to success-
fully develop Web applications.

If you prefer not to depend on simple command-line tools and a good editor, there
are plenty of lightweight commercial IDEs around. For example, you can investigate
JBuilder Foundation or Forte.You can also try the trial version of ElixirIDE or Forte
for Java Community Edition, which we have included on the book’s CD-ROM for
your convenience.

2.2.3 ElixirIDE
ElixirIDE, from Elixir Technology, is a useful Java Editor and IDE that is freely avail-
able in the version ElixirIDE-Lite, which you can try before buying.The Lite version
available on the Elixir Web site is limited to 10 Java files per project, however, which is
too limiting for our book project.The same version of ElixirIDE-Lite (2.4.2) is avail-
able on the book’s CD-ROM as a special release that allows 20 Java files, which is
plenty for use with our book project.You can find out more about Elixir Technology
and its Java products at http://www.elixirtech.com.

2.2.4 Installing ElixirIDE-Lite
We will assume that you have on your machine an ElixirIDE-Lite installation file and
an ElixirIDE documentation installation file, from our CD-ROM. If you purchased
the full version from the Elixir Technologies Web site, these instructions should be
approximately correct as well.We assume that you have these files:

ElixirIDE-2.4.2-Lite.zip

ElixirIDE-2.4.0-Docs.zip

First, unzip the documentation installation file. Browse the documentation files, start-
ing with ElixirIDE.html.There you will find information about the requirements for
using ElixirIDE, along with instructions for installing and running it.We unzipped all
files into a folder called c:\Elixir, and the following discussion assumes this root path.

After unzipping both files, you will have a JAR file (ElixirIDE-2.4.2-Lite.jar) that
contains all the ElixirIDE classes, plus a license file, a change log, and the HTML doc-

02 1089-9 CH02 6/26/01 7:25 AM Page 22

232.2 Compiling Java Programs

umentation and tutorial files.
As part of the installation, you will also need to set up an environment variable

called ELIXIR_HOME. Here is what ours looks like:
ELIXIR_HOME=c:\elixir

2.2.5 Batch Files for Starting ElixirIDE
We found that the best way to start Elixir was to put the following into a batch file.
We call ours StartElixir.bat, and we keep it in the ELIXIR_HOME folder. Here is
what it contains:

java -mx32m -jar c:\Elixir\ElixirIDE-2.4.2-Lite.jar

Note that the heap size argument (-mx) is not displayed when typing java or java –X
to see a list of arguments.

In an NT Command Prompt window, execute the new StartElixir batch file. If all
goes well, you will have the initial screen of the ElixirIDE displayed.This will cause
some other changes, which you can verify with the NT Explorer. Notice that Elixir
added a configuration folder to your NT user folder.

The usual place to find your user folder is in the NT profiles. For example, assume
that you are using version 2.4.x. If you logged in as Samuel and installed your NT
Server using its default installation locations, you should be able to find an ElixirIDE
configuration folder named c:\WINNT\Profiles\Samuel\.ElixirIDE\2.4.

Note that if you log into your system using different profiles—for example, to
access different NT domains—you will end up with more than one ElixirIDE config-
uration folders, one in each profile.We solved this particular problem by copying the
folder that had the latest files in it over all the other ones.

2.2.6 Elixir Plug-in Extensions
Assuming that you are using version 2.4.x of ElixirIDE, you should find Elixir’s
extension folder named something like c:\WINNT\Profiles\samuel\.ElixirIDE
\2.4\ext.

Notice that there is a period before the ElixirIDE in one of the folder names in
that path.The Ext folder is where you will place plug-in JAR extension APIs for
Elixir.

A Web site makes available a worldwide community of Elixir users, plus quite a few
useful plug-in extension modules.To search for plug-ins for ElixirIDE, click the Elixir
Plug-ins link on the page http://www.elixirbase.com.

To use the plug-in extension modules, you simply unzip the JAR files from the
downloadable ZIP files into Elixir’s extension folder.When you restart Elixir, it will
automatically load and start all extensions in this folder.We recommend using at least
the two plugins described next, if not more.You will find versions of these on the
book CD-ROM in the Elixir\plugins folder.

02 1089-9 CH02 6/26/01 7:25 AM Page 23

24 Chapter 2 An Environment for Java Software Development

A Class Hierarchy Inspector

The plug-in file called inspector.jar will enable you to examine the class files within
any Java JAR or package.You can use FTP to get the latest version of the inspector at
ftp://www.elixirbase.com/pub/elixir/plugins/inspector.zip.

We found this plug-in to be very useful.You can add databases easily to the Elixir
configuration folder so that you can examine the classes in all the Java packages that
you are using in your application.

BeanShell, an Interactive Java Shell

Be sure to get the BeanShell, which is distributed under the LGPL license.This is
available from the Elixir Base Web site mentioned previously as a plug-in file called
bsh.jar.You can also get it with FTP at ftp://www.elixirbase.com/pub/elixir/
plugins/bsh.zip. For more information about this cool tool, visit the BeanShell Web
site at http://www.beanshell.org.

We have found it a great learning exercise to create scripts for the BeanShell that
create Java objects.We can then interactively play with a real instance of the object,
exercising its properties and methods.This experimental approach sometimes works
best for answering your questions, especially if they sound like this:“I wonder what
happens if I do this with that object method?”

BeanShell’s Shell

Do not confuse the BeanShell plug-in with another Shell console available in
ElixirIDE.The Shell console gives you access to the system shell or command proces-
sor.This means that can stay within ElixirIDE and still run GUI or text-based pro-
grams. Especially if your computer has marginally enough storage to run whatever you
have running at one time, using this shell will save you time and give a history to your
sequence of commands within the shell.

2.2.7 Creating the bonForum Folder Hierarchy
So that you can exercise the ElixirIDE in a realistic way, we will describe how it could
be used to start our Web application project example, which is called bonForum. Later
in this book, we will be discussing bonForum and developing it more fully. Right
now, we will just set it up as a project in ElixirIDE.

Finding the Folders and Files
You can find all the folders and files for the book example project on the accompanying CD-ROM in several

forms. The ones in folders named Webapps will be discussed in Chapter 5, “bonForum Chat Application:

Use and Design.” In the bonForum\source folder, you will find a zipped archive, named something like

bonForum_0_5_1.zip, which will unzip into a folder hierarchy similar to the one that we will create later.

You can also find the unzipped source archive on the CD-ROM, under thebonForum\installed\source folder.

You can simply unzip the source archive file from the CD-ROM into the ELIXIR_HOME\projects folder on

your own system and then use that to follow along with the book. However, it might be useful for you to

know a procedure that you can use to set up a project like bonForum, so we will present that information

here in addition to the source files on the CD-ROM.

02 1089-9 CH02 6/26/01 7:25 AM Page 24

252.2 Compiling Java Programs

Here we will use a Shell process within Elixir to create the needed folders for the
bonForum project.These folders are mostly the same ones suggested for creating Web
applications for the Apache Tomcat Server. Setting up our project in this way will
make it easier to deploy our Web application as a WAR archive and also will make it
easier to follow other Tomcat examples that use this structure.

Select the Shell item in the Process combo box in the bottom pane of the Elixir
window.You should get a command-line input and, above it, a console. Enter the
command cmd.You should get a Microsoft Windows NT copyright notice, followed by
the prompt that is the name of your ELIXIR_HOME folder.

File Paths for Elixir
We will assume that you have Elixir installed in the folder c:\Elixir. If not, use your ELIXIR_HOME instead

of ours in the file paths that we use throughout the book. We will also assume that you do not have the

bonForum project folders already created.

Now that you have an NT command line, it is simple to create the following folder
hierarchy using the command input line, under the NT prompt:

c:\Elixir\Projects

c:\Elixir\Projects\bonForum

c:\Elixir\Projects\bonForum\classes

c:\Elixir\Projects\bonForum\etc

c:\Elixir\Projects\bonForum\etc\docs

c:\Elixir\Projects\bonForum\lib

c:\Elixir\Projects\bonForum\src

c:\Elixir\Projects\bonForum\web

c:\Elixir\Projects\bonForum\web\images

c:\Elixir\Projects\bonForum\web\jsp

c:\Elixir\Projects\bonForum\web\mldocs

2.2.8 Creating the bonForum Project in ElixirIDE
Before creating this project, make sure that you have created the project folder hierar-
chy in your file system, as described previously.Also make sure that you have saved the
project settings, if you made any changes to them.

If you have a preferred look and feel for your GUI components, then select the
Look and Feel menu and pick your settings there. Use the Project New menu com-
mand to add our project to Elixir. Select the ELIXIR_HOME\Projects\bonForum
folder and, inside it, create the new project. Elixir will automatically name the
ElixirIDE project file as bonForum.

02 1089-9 CH02 6/26/01 7:25 AM Page 25

26 Chapter 2 An Environment for Java Software Development

You should see a folder icon with the label bonForum appear in the Project view
in Elixir. Congratulations! You now own the beginning of a Web application project.

If you leave the cursor over the Project icon for a while, the hint that appears will
show you that this icon represents a file that Elixir created for you. In fact, Elixir cre-
ated two files for you, with names like these:

c:\Elixir\Projects\bonForum\bonForum.project

c:\Elixir\Projects\bonForum\bonForum.project.settings

2.2.9 bonForum Project Settings in ElixirIDE
Now that we have an Elixir project, it is time to add some settings. From the Project
menu, select the Settings item.You should next edit the bonForum.project.settings file
that appears in the editor panel.

WorkRoot and ClassRoot Settings

In General Settings, make whatever changes are necessary so that when you are done,
the following lines are there to define WorkRoot and ClassRoot.These two variables
are commented out by default:

WorkRoot=\\Elixir\\Projects\\bonForum\\src
ClassRoot=\\Elixir\\Projects\\bonForum\\classes

Now Elixir knows where to look for Java source files and knows where to put com-
piled class files.

Refer to the following two notes after you have installed our bonForum Web
application in Tomcat (see Chapter 5).

Copying Compiled Class File
You can avoid having to copy all but two of the compiled class files to the right Tomcat folder location

by resetting this ClassRoot value as follows:

ClassRoot=\\jakarta-tomcat\\webapps\\bonForum\\WEB-INF\\classes

After you make that change, the two compiled class files for the BonForumRobot Java applet used in the

bonForum project must be copied manually to a different location than the ClassRoot location for the

rest of the package. This note affects the following two class files:

BonForumRobot.class
BonForumRobot$RefreshThread.class

After each compilation, these two files must be copied into the folder

TOMCAT_HOME\webapps\bonForum\jsp\forum\applet.

02 1089-9 CH02 6/26/01 7:25 AM Page 26

272.2 Compiling Java Programs

Path Setting

Now make sure that you have the Path.Windows_NT setting (assuming NT as operating
system) set to something like our path expression here:
c:\\WinNT;c:\\jdk1.3\\bin;c:\\WinNT\\System32;

HelpPath Setting

The HelpPath.Windows_NT setting is another list of pathnames separated by a semi-
colon. Besides giving ElixirIDE access to the JDK documentation, we are adding the
API documentation for the XML and XSLT packages that we will discuss in Chapter
4,“XML and XSLT: Xerces and Xalan.” Notice that you will have to adjust version
numbers as required if you use later versions, such as xalan-j_2_0_1, provided on the
CD-ROM.

To our ElixirIDE HelpPath.Windows_NT variable setting, we equated a list of the
following pathnames (but all in one long line, not on separate lines, as shown here for
the book):

c:\\jdk1.3\\docs;

c:\\xerces-1_2_2\\docs\\apiDocs;

c:\\xalan-j_1_2_2\\docs\\apiDocs;

SourcePath Setting

The SourcePath.Windows_NT setting you use will enable you to browse source code
files in Elixir.Again, the setting for the variable that we suggest using here includes the
source paths for the source code and samples provided with both the Xerces and
Xalan products, which we will tell you how to install in Chapter 4.Again, note that
your version numbers might end up being different that these; if so, you will have to
remember to change these settings to reflect the later versions.

We added the following pathnames to our SourcePath.Windows_NT variable setting
(again, all in one long line, not on separate lines as shown here for the book):

c:\\jdk1.3\\src;

c:\\xerces-1_2_2\\src;

c:\\xerces-1_2_2\\samples;

c:\\xalan-j_1_2_2\\src;

c:\\xalan-j_1_2_2\\samples;

To enable Elixir to find the source code for the JDK using this variable setting, you
must have the source code at the given path. It must also be unarchived, not just pre-
sent in a JAR file.Therefore, we include here the following section on how to expand
the SDK source files.

02 1089-9 CH02 6/26/01 7:25 AM Page 27

28 Chapter 2 An Environment for Java Software Development

Expanding the SDK Source Files

If you have the space on your storage media (about 20MB), we suggest that you
unpack the source code files that you get with a Java 2 SDK installation.To do so, just
create a new folder for the source.We call ours c:\jdk1.3\src.Then bring up an NT
Command Prompt window, using the new scrollable type display that you created ear-
lier. Use a jar command, first to look at the contents and then to expand them into
your new src folder.You might want to first enter just jar as a command to see the
help information.

Here is the command to enter, from within the c:\jdk1.3 folder, to examine the
contents of the JAR file:

jar –tvf src.jar

If you have the room on your drive, you can expand the source code into a file hierar-
chy under the current directory.To do so, just use the following command, from the
c:\jdk1.3 folder, to expand the source code into the c:\jdk1.3\src folder:

jar –xvf src.jar

Debugger Setting

If you are using JDK1.3 (or JDK1.2.x, and downloaded the JPDA package for it from
the Sun Web site), then you probably want to take advantage of the JPDA technology
to help you debug your projects within ElixirIDE. If so, turn on the debugger with
the following setting:

Debugger=YES

Other Settings

Other settings, such as those for the RCS versioning, are all documented by Elixir.We
leave those up to you to use or to ignore.

Updating Settings
Remember, you must edit some of these settings when (and if) you change to a future version of the JDK.

Saving Project Settings

After making the previous edits to your bonForum.project.settings file, be sure to save
them.

2.2.10 Default Project Settings in Elixir
You might want to use settings similar to some of the ones previously discussed for
your other projects in ElixirIDE. If so, you can change the default project settings in
another configuration file, called default.project.settings. However, you might first want

02 1089-9 CH02 6/26/01 7:25 AM Page 28

292.2 Compiling Java Programs

to see what works for your particular situation and only then edit the defaults for all
new projects.

The default.project.settings file is in the configuration folder in the NT user folder.
Be careful—it is possible to use the Project Open menu item to open this file as a
project (you have to change the file type to All first). If you make that mistake (as we
did late one night), you will find that you have a file called default.project.settings.set-
tings in your configuration folder, plus a whole lot of Java exception messages waiting
for you when you exit ElixirIDE.

2.2.11 Adding a New Java Class to a Project
For now, we will just create one Java class source file to our new project so that you
can see one way to do that. (Later, of course, we would add many more files to our
new project folders.) Be careful not to go over the limit of 20 classes to an ElixirIDE-
Lite project: It is not too easy to reopen the project without much wrangling.The
recursive add function will add too many files without complaint and then will lock
you out for exceeding the limit. (Hopefully, that was just on an earlier version, but we
are not sure.)

Creating a Java Class in ElixirIDE

Now click the bonForum folder icon in the project tree display, to select it. Choose
the menu item called Script/Java/Add Class.Add a new Java class by entering in the
CLASSNAME script parameter this name:

de.tarent.forum.bonForum

In the messages process, a message should appear about the new Java source file just
created.You will find that you now have a folder hierarchy for the Java package name
that you gave to the class. Elixir created each folder for the Java package, starting inside
the folder named src under the bonForum Elixir Project folder.

You now also have a Java source file with skeleton code for your class. Elixir can be
used together with CVS to keep concurrent versions safely archived and available to
multiple developers, if need be.We will not describe that here, but you can find out
more at the Elixir Web site.

Adding a File to a Project in Elixir

Right-click the bonForum icon in the project tree display.You can see an item called
New Folder on the context menu that appears.We could use that to add each folder
in the Java package folder hierarchy that we just created.Then we could use the Add
File item to add our new Java class source file.

Instead, let’s take advantage of a faster solution. Select instead the Recursive Add
menu item. In the dialog box that appears, select the folder ELIXIR_HOME\Projects\
bonForum\src\de.

02 1089-9 CH02 6/26/01 7:25 AM Page 29

30 Chapter 2 An Environment for Java Software Development

When you click the Add button now, you should see a new icon named Tarent
appear under the bonForum icon in the project tree display panel. By clicking the
icon handles, you can open the entire project folder and file hierarchy.The yellow
color of the icon means that this source file needs to be compiled.

2.2.12 Compiling bonForum.java in ElixirIDE
Right-click the mouse on the bonForum.java icon in the ElixirIDE project tree dis-
play.You should be able to select Compile from the context menu that appears.After a
while, the yellow color of the icon will change and a message “Done” will appear.

If you look in the file system, you should find a new bonForum.class file in the
proper folder hierarchy for the project package. In other words, you should find a file
with a name something like this:
c:\Elixir\Projects\bonForum\classes\de\tarent\forum\bonForum.class.

2.3 Running Java Programs
Just as with compilation of Java source files, you have a choice of methods for running
the compiled class files.We present here information about running Java classes both
from the command line and from the ElixirIDE, to parallel the previous compilation
information.

2.3.1 Batch Files for Compilation and Running
One simple way to compile and run Java programs is to use a batch file.The following
is an example of such a batch file for running the command-line XSLT processor pro-
vided with Apache Xalan.This assumes that your system Path variable includes the
folder that contains the java.exe program. Note that this batch file contains one long
line, which is wrapped here by the book margin:

java -classpath “c:\xalan-j_1_2_2\xerces.jar;c:\xalan-j_1_2_2\xalan.jar”
org.apache.xalan.xslt.Process -IN bonForumIdentityTransform.xml -XSL
bonForumLinks.xsl -OUT bonForumLinksTEST.html

For reasons that will be discussed in Chapter 4, we did not follow Sun’s recommenda-
tion to put application JAR files in the extension folder. However, when we switched
to release 2.0.1 of Xalan, we were able to do that by putting its xerces.jar, xalan.jar,
and xalanj1compat.jar files all in the folder c:\jdk1.3\jre\lib\ext. Now java.exe would
find the JARs without a classpath argument, and we could simplify our batch file as
follows:

java org.apache.xalan.xslt.Process -IN bonForumIdentityTransform.xml
-XSL bonForumLinks.xsl -OUT bonForumLinksTEST.html

Of course, even more useful would be the following batch file:
java org.apache.xalan.xslt.Process –IN %1 -XSL %2 -OUT %3

02 1089-9 CH02 6/26/01 7:25 AM Page 30

312.3 Running Java Programs

You can keep a file like this one in a folder with a compiled Java class file, and you can
call it xalanProc.bat or whatever you like.Then you can enter a command line like
this one to run this Java program with arguments:

xalanProc bonForumIdentityTransform.xml bonForumLinks.xsl bonForumLinksTEST.html

2.3.2 Running Java Programs from ElixirIDE
Select the Show Classpath item from the Script menu in ElixirIDE.You will see that
ElixirIDE has added the ClassRoot value from the Project Settings file to whatever
CLASSPATH environment variable value you had when you started ElixirIDE. In the
messages process display, you will see a line that begins with something like the fol-
lowing:

CLASSPATH=\Elixir\Projects\bonForum\classes;

The rest of the line will be the CLASSPATH value that existed when you started
ElixirIDE, including its JAR file.

From the ElixirIDE, you can quite easily run your compiled program (assuming
that it can be run). Just select the Execute item from the context menu that you get
when you right-click the mouse on the Java file icon.

If the Execute item appears disabled in that context menu, check that the class you
are trying to execute has a main method in it.The bonForum.java file that we created
previously did not, for example. Double-click its icon on the Project panel, and edit it
so that it has a main method like this:

public class bonForum
{
public static void main (String[] args) {
System.out.println(“Hello, World!”);

}
}

Notice that when you save this change, the color of the icon changes back to yellow
to indicate that the source file is newer than the compiled class file. Recompile
bonForum.java, and now you should be able to execute the class. ElixirIDE creates a
new process for you called de.tarent.forum.bonForum.The output from the program
will go to its display panel.You should see there something close to the following:

java “de.tarent.forum.bonForum”
Hello, World!
Program Terminated (exit code 0) —-

When we tried this, we were quite surprised to see “Hello!” instead of “Hello,World!”
Then we remembered that we had put a de.tarent.forum.bonForum class file under
the jdk1.3\classes folder during earlier experimentation.The Java virtual machine
found and executed that class file instead of our newly compiled one. If we had used
“Hello,World!” in that earlier class instead of “Hello,” we would never have noticed
that we had executed our old class instead.

02 1089-9 CH02 6/26/01 7:25 AM Page 31

32 Chapter 2 An Environment for Java Software Development

Classpaths can be a problematic thing, as this experience illustrates.We suggest that
you search for a document called classpath.html at java.sun.com. It might help you, as
it did us. For further information, see “Setting the CLASSPATH Environment,” earlier in
this chapter.

2.4 Debugging Java Programs
You should be able to browse the user manual for ElixirIDE by opening the file
c:\Elixir\IDEManual\ElixirIDEManual.html (or its equivalent) in your browser. In
that ElixirIDE manual, you can find instructions for debugging your Java programs
within ElixirIDE.

ElixirIDE is capable of using the JPDA debugger from Sun.This debugger is
included within the JDK1.3 (in tools.jar). However, if you are using the JDK1.2.2
instead, you will have to find and download the JPDA (jpda.jar) separately.

To use the debugger on a project, you must have the Debugger setting set to true
in the project settings file.You must also make sure that ElixirIDE can find the JAR
file.To do that with JDK1.3, we use the batch file c:\Elixir\StartElixirOnlyDebug.bat
(edited here for the book page margins). Be sure to use this batch file from a
command prompt window.

rem THIS IS FOR USE WITH JDK1.3
rem This starts ElixirIDE-2.4.2-Lite
rem together with the Sun JPDA debugger.
set JPDAJAR=c:\jdk1.3\lib\tools.jar
set ELIXIRJAR=c:\Elixir\ElixirIDE-2.4.2-Lite.jar
set CP=%CLASSPATH%;%JPDAJAR%
set CP=%CP%;%ELIXIRJAR%
java -classpath %CP% com.elixirtech.IDE
set CP=

In Chapter 3,“Java Servlets and JavaServer Pages: Jakarta Tomcat,” and Chapter 4, we
show you how to obtain and install Tomcat, Xalan, and Xerces.We could insert some
Elixir-specific batch file listing into each of those two chapters, but they will be read
by those who are not intending to use Elixir.Therefore, we instead present those of
you reading this Elixir-specific section with a listing of our complete startup file:
c:\Elixir\StartElixirDebug.bat.

This batch file gives us access to JPDA,Tomcat, and Xalan and Xerces packages
while running programs from Elixir:

rem THIS IS FOR USE WITH JDK1.3
rem This starts ElixirIDE-2.4.2-Lite
rem together with the Sun JPDA debugger.
set JPDAJAR=c:\jdk1.3\lib\tools.jar
set ELIXIRJAR=c:\Elixir\ElixirIDE-2.4.2-Lite.jar
set JASPERJAR=c:\jakarta-tomcat\lib\jasper.jar
set SERVLETJAR=c:\jakarta-tomcat\lib\servlet.jar
set XMLJAR=c:\jakarta-tomcat\lib\xml.jar
set XERCESJAR=c:\xalan-j_1_2_2\xerces.jar
set XALANJAR=c:\xalan-j_1_2_2\xalan.jar
set CP=%CLASSPATH%;%JPDAJAR%

02 1089-9 CH02 6/26/01 7:25 AM Page 32

332.5 Other Features of ElixirIDE

set CP=%CP%;%ELIXIRJAR%
set CP=%CP%;%JASPERJAR%
set CP=%CP%;%SERVLETJAR%
set CP=%CP%;%XMLJAR%
set CP=%CP%;%XERCESJAR%
set CP=%CP%;%XALANJAR%
java -classpath %CP% com.elixirtech.IDE
set CP=

When we were using JDK1.2.2, we made another batch file, called c:\Elixir\
StartElixirDebug_jdk122.bat, which started up ElixirIDE together with the JPDA
debugger.The file is the same as the previous one, except for the first few lines shown
here, which change the PATH setting and use a different JAR file for the JPDAJAR
variable.Again, be sure to run this batch file from a command prompt window.

rem THIS COMMAND IS FOR USE WITH JDK1.2.2,
rem This starts ElixirIDE-2.4.2-Lite
rem together with the Sun JPDA debugger
set PATH=%PATH%;c:\jpda\bin
set JPDAJAR= c:\jpda\lib\jpda.jar
rem CONTINUE HERE AS IN c:\Elixir\StartElixirDebug.bat!

2.5 Other Features of ElixirIDE
We have only touched upon the features of Elixir that are of immediate interest to a
developer who is relatively new to Java. However, it would be unfair to leave the sub-
ject without at least mentioning that Elixir contains some much more powerful fea-
tures that have not been described here.We will do no more than list these; if you are
curious about these more advanced features, you can read about them in the HTML-
based documentation provided with the product.

n Capability to custom-build processes, using the new Build Engine
n Scripting engines (Scheme interface provided)
n Version control systems (RCS interface provided)
n Syntax coloring for Java, XML, IDL, C++, HTML, OCL, and Scheme
n Novel source code collapse/expand feature (so that you can treat your source

code like a tree control)
n Auto-expand capability to automate repetitive typing, incorporating dialog

boxes, if required
n Project packager, which can generate obfuscated JAR files

Try the menu item Project Packager from the Project menu in ElixirIDE. It is easy to
package your project Java classes into a JAR file in whatever path you want. For exam-
ple, you could use this to deploy our Web application classes from Elixir project sub-
folders to the Tomcat Web application folders.

02 1089-9 CH02 6/26/01 7:25 AM Page 33

02 1089-9 CH02 6/26/01 7:25 AM Page 34

Java Servlets and JavaServer
Pages: Jakarta Tomcat

3

THIS CHAPTER INTRODUCES A GREAT PRODUCT from the Apache Software
Foundation.Tomcat is the reference implementation of the Java Servlet 2.2 and
JavaServer Pages 1.1 specifications. Used together with Web servers such as Apache and
IIS, it adds powerful dynamic response capabilities to their repertoire.As an HTTP
server,Tomcat can also be useful alone during Web application development.

3.1 Apache Software Foundation
Most likely, you are familiar with the Apache Server.Arguably the most popular Web
server in the world, it hardly needs an introduction.Along with Linux, the Apache
Server has brought the efficacy and legitimacy of open-source software development
to the attention of nearly everyone with an interest in computing. Hoping for similar
success, some major corporate players, such as IBM and Sun, are releasing the products
of their own development efforts in the open-source arena.A cast of thousands, using
as a base the best code from such products, is forging some exciting and freely distrib-
uted application components.

The Apache Software Foundation is a membership-based, not-for-profit corpora-
tion that exists to take care of several of these open-source software projects, including
Apache Server. Our book depends heavily upon two Apache projects: the Jakarta
Project and the Apache XML Project.This chapter talks about Tomcat, which is the
main product from the Jakarta Project.The next chapter talks about Xerces and Xalan,
two of several products from the Apache XML Project.

03 1089-9 CH03 6/26/01 7:26 AM Page 35

36 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

If you are not already familiar with the Apache Software Foundation, we urge you
to visit its Web site, which you can find at http://www.apache.org.

Following the links from this Web site, you can learn about the various Apache pro-
jects and also the people responsible for them.You can also find out how you can play
a part in this dynamic development phenomenon.

3.2 Jakarta Tomcat
The Jakarta Project Web site is the place to find the most current official information
about Tomcat Server.You can familiarize yourself with that Web site at
http://jakarta.apache.org.

The Jakarta Tomcat project goal is to create a world-class implementation of the
Java Servlet 2.2 and JavaServer Pages 1.1 specifications.Tomcat, the main product of its
open-source development efforts, is, in fact, the reference implementation for those
specifications.

Tomcat can be used to extend other HTTP servers, such as the popular Apache
Server, enabling them to handle requests for both Java servlets and JavaServer Pages.
Tomcat Server can also be used as a standalone HTTP server.We will frequently refer
to Tomcat in this book simply as “the server,” but keep in mind that it is usually used
in tandem with another Web server.

3.2.1 Reasons to Use Tomcat
Tomcat is a great choice for learning about Java servlets, JavaServer Pages, and Web
applications. First, it is freely available. Second, what you learn will become more rele-
vant as other servlet containers match Tomcat’s reference implementation.Third, this is
an extremely popular product—it is being downloaded from the Jakarta Web site at a
rate that is fast approaching a million copies per year!

This popularity gives Tomcat another advantage related to developer support. So
many people are using and enhancing Tomcat that help requests posted to its mailing
lists are answered very quickly. Support is often faster and better than it is for commer-
cial products.

3.2.2 Tomcat Versus Apache Server
Is Tomcat a replacement for Apache Server? No—not yet, anyway.That is why Web
applications that use Tomcat usually use Apache as well. Sometimes the decision to do
that is obvious. One example is when an Apache Server is already being used and is
configured to use other necessary software. But the best reason to use both servers is
that Tomcat is not as fast as Apache Server is at serving static HTML pages.

By itself,Apache Server cannot handle Java servlets and JSPs. Usually, when you use
Tomcat, it will be to provide this service to Apache (or another Web server). Used as a
JSP container,Tomcat usually needs access to a Java compiler to compile the JavaServer
Pages.As a developer, that is usually not your concern; you can assume that the system

03 1089-9 CH03 6/26/01 7:26 AM Page 36

373.3 Installing Tomcat

hosting your Web application will make available either a licensed Sun SDK or the
IBM Jikes compiler.

On the other hand,Tomcat can be used in standalone mode, without Apache (or
another Web server).This means that you can use Tomcat alone (as we will in this
book) to develop Web applications that will later be hosted by another server plus
Tomcat.This also means that you can even build Tomcat itself into a Web-enabled
product as both an HTTP server and a servlet and JSP engine. Note that, in that case,
you probably will want to also include with your product the Jikes compiler, which is
freely redistributable.

3.2.3 Apache License for Tomcat
The Apache projects are released under the Apache license.An open source license, it
basically allows any use of the software as long as several conditions are met. Mostly
these deal with acknowledgement of the copyright, name protection, and legal protec-
tion.The text of the Tomcat license is included with the distribution file on the CD-
ROM.

3.3 Installing Tomcat
The version of Tomcat that we are using now is 3.2.1.This release should be used
instead of 3.2 because it fixed a security problem. (Earlier, the project for this book
used version 3.1. If you need to use a 3.1 version for some reason, you can, but do use
3.1.1, which has the security update.) You should check the Jakarta Web site for even
later releases; definitely use the latest stable version for your own projects.We cannot
promise that our discussion—or the code as provided with this book—will still work
with the next version of Tomcat (probably 4.0), though.When using that becomes
possible, news and updates will be posted on the project Web site (http://
www.bonforum.org).

You can get a Tomcat distribution from the CD-ROM provided with this book.
Otherwise, download it from the Web.You can start at http://jakarta.apache.org/
builds/tomcat/release/.

The following discussion assumes that you will use version 3.2.1.There are both
binary and source downloads available for Tomcat.To use Tomcat, you need only the
binary download. However, if you have the necessary resources, we recommend that
you get both the binary and the source downloads.You can benefit from having the
source code for the Tomcat servlet and the JSP container.The source download also
gives you important information about running Tomcat together with Apache Server
or Microsoft IIS.The download files for Windows are named jakarta-tomcat-3.2.1.zip
and jakarta-tomcat-3.2.1-src.zip.

The API documentation for Java servlets and JSPs is also very useful to have on
hand. Note that the basic 3.2 distributions don’t include these, but you can find them
on this book’s CD-ROM and at http://java.sun.com/products/servlet/
2.3/javadoc/index.html and http://java.sun.com/products/jsp/javadoc1_1.zip.

03 1089-9 CH03 6/26/01 7:26 AM Page 37

38 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

3.3.1 Unzipping Tomcat Distribution Files
Unzip the distribution archives into the root folder of your drive.We will assume that
you are using the C drive, which will put Tomcat into the folder c:\jakarta-tomcat.

If your Java SDK is installed in c:\jdk1.3, you will have Tomcat conveniently close
to it in an explorer display that is sorted alphabetically.That is a pretty good reason not
to simplify jakarta-tomcat to tomcat.

3.3.2 Tomcat User Guide
Tomcat has a user manual that is gradually improving over time. Look for it with the
name c:\jakarta-tomcat\doc\uguide\tomcat_ug.html.

You can also browse the user guide on the Jakarta Web site along with some other
helpful Tomcat documentation.Try http://jakarta.apache.org/tomcat/
jakarta-tomcat/src/doc/index.html.

Use its user guide to get Tomcat running on your system.We gave up trying to
provide comprehensive instructions for the Apache products.A colleague said it best:
“Don’t try to document other peoples’ software!” However, we will give some mini-
mal instructions, as well as some advice that might help sometimes—at least until it
too becomes obsolete.

3.3.3 Using Tomcat with IIS
As a Windows NT user, you are most likely familiar with the Microsoft Internet
Information Server (IIS) Web server, which is included with the NT 4.0 Option Pack.
For more information about IIS, you can visit the Microsoft Web site at
http://www.microsoft.com/ntserver/web/.

It is not difficult to set up Tomcat to work together with IIS, enabling it to respond
to requests for Java servlets and JSP pages. Doing so involves adding a DLL file and
some registry keys to your system, and then adding an ISAPI filter to IIS and reboot-
ing it. Complete instructions can be found in the Tomcat user guide, or online at
http://jakarta.apache.org/tomcat/jakarta-tomcat/src/doc/tomcat-iis-

howto.html.
The DLL that you need is the ISAPI redirector server plug-in isapi_redirect.dll,

which is available online and also on the CD-ROM for this book in the folder
Apache\jakarta\tomcat\release\v3.2.1\bin\win32\i386.

3.3.4 Using Tomcat with Apache Server
The open-source Apache Server is available for NT and various UNIX systems. It is
included with most Linux distributions.You can download this free HTTP server by
following the links from the Apache Software Foundation Web site at
http://www.apache.org.

03 1089-9 CH03 6/26/01 7:26 AM Page 38

393.4 Running Tomcat

You can quite easily configure Tomcat to work with the Apache Web server.That
usually means that Apache will listen to incoming requests and forward those for JSPs
and Java servlets to Tomcat. Complete instructions can be found in the Tomcat user
guide mentioned previously and also online at http://jakarta.apache.org/tomcat/
jakarta-tomcat/src/doc/tomcat-apache-howto.html.

Note that this HTML file is also available in the Tomcat source distribution file. In
addition, you will need a DLL file called ApacheModuleJServ.dll, which is available
online.The latest version available to us is on the CD-ROM for this book, in the
folder Apache\jakarta\tomcat\release\v3.2.1\bin\win32\i386.

We will not repeat here the information from the user guide and other HTML
documents, but we will mention one item that confused us when we set up Apache
and Tomcat together.

There is a “correct” version of ApacheModuleJServ.dll, which you can get from the
Tomcat download Web page.There is another “wrong” version of this file that is for
use with another program called JServ, which, like Tomcat, is also a Java servlet con-
tainer.That “wrong” DLL might actually be among the Apache Server modules, which
are in something like the folder c:\program files\Apache Group\Apache\modules.

Make sure that the “correct” version is in that folder to use Tomcat instead of JServ.

3.3.5 Environment Settings for Tomcat
Just in case you installed Tomcat without consulting the user guide and also skipped
making the environment settings that we suggested in Chapter 2,“An Environment
for Java Software Development,” we are repeating the basics here.After unzipping the
distribution files, you should do something to set the following values in environment
variables (or similar values that are the correct ones for your own system). On
Windows NT, you can use the Environment tab of the system applet in the Control
Panel to set these. On other Windows platforms, use the autoconfig.bat file or a
startup file. Be sure to read the tomcat.bat file in the TOMCAT_HOME\bin folder
because it explains and automates these environment settings.These are the required
variables:

set TOMCAT_HOME=c:\jakarta-tomcat

set JAVA_HOME=c:\jdk1.3

set path=c:\jdk1.3\java\bin;%path%

3.4 Running Tomcat
We like to keep a shortcut icon in our startup menu that launches an NT command
window for using Tomcat. In the properties of the command program, we set the size
of the window high and wide, and we give it a big screen buffer. Our window opens
showing the current folder for running Tomcat commands, which is

03 1089-9 CH03 6/26/01 7:26 AM Page 39

40 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

TOMCAT_HOME\bin.
If you do not create a shortcut like that to click, you will have to launch your

default NT command prompt window and then manually set the current folder to the
bin folder with a command something like this:

cd c:\jakarta-tomcat\bin

Either way, you should now be able to set up the Tomcat environment by entering this
command:

tomcat env

Start Tomcat in a separate NT command window by entering this command:
startup

When you are done with Tomcat, you can stop it with this command:
shutdown

Note that it is possible to start Tomcat so that it does not start in a separate window
but instead uses the same window in which you are entering your commands.You can
do that by entering the following command instead of the startup command shown
earlier:

tomcat run

This last command is useful if you are having problems and want to be able to use
your big, scrolling NT command window to view all the messages that have disap-
peared off the screen.

Whichever way you start Tomcat, the messages that you get on the NT command
console should look somewhat like the following lines:

Including all jars in c:\jakarta-tomcat\lib in your CLASSPATH.

Using CLASSPATH: c:\jakarta-tomcat\classes;c:\jakarta-
tomcat\lib\ant.jar;c:\jakarta-tomcat\lib\jaxp.jar;c:\jakarta-
➥tomcat\lib\servlet.jar;c:\jakarta-tomcat\lib\parser.jar;c:\jakarta-tomcat\lib\we
➥bserver.jar;c:\jakarta-tomcat\lib\jasper.jar;c:\jakarta-
➥tomcat\lib\xalanservlet.jar;c:\jakarta-tomcat\lib\xerces.jar;c:\jakarta-
➥tomcat\lib\xalanj1compat.jar;c:\jakarta-tomcat\lib\aaxalan.jar;c:\jdk1.3\lib\too
➥ls.jar
2001-05-23 01:05:14 - ContextManager: Adding context Ctx(/examples)
2001-05-23 01:05:14 - ContextManager: Adding context Ctx(/admin)
Starting tomcat. Check the logs/tomcat.log file for errors
2001-05-23 01:05:14 - ContextManager: Adding context Ctx()
2001-05-23 01:05:14 - ContextManager: Adding context Ctx(/test)
2001-05-23 01:05:14 - ContextManager: Adding context Ctx(/bonForum)
2001-05-23 01:05:14 - ContextManager: Adding context Ctx(/wml)
2001-05-23 01:05:25 - PoolTcpConnector: Starting HttpConnectionHandler on 8080
2001-05-23 01:05:25 - PoolTcpConnector: Starting Ajp12ConnectionHandler on 8007

03 1089-9 CH03 6/26/01 7:26 AM Page 40

413.4 Running Tomcat

After all these messages appear, you can try the Tomcat examples just to see that things
are working the way they should be. Browse http://localhost:8080.

Of course, if your browser and Tomcat are not on the same host, you will have to
use a hostname instead of localhost.The browser should display a page from which
you can begin exploring Tomcat documentation and trying out the Java servlet and
JSP examples provided.

Note that in version 3.2, the Tomcat page incorrectly claims to be in a folder called
Webpages.That was correct for version 3.0, but it’s true no longer.The default Tomcat
page is now the file TOMCAT_HOME/webapps/ROOT/index.html.

Another thing to note is that, unlike Web servers that register themselves as ser-
vices, you will need to start up Tomcat manually to try it out (even, for example, if
you have set it up as an ISAPI filter with IIS). Fortunately, it is not hard to set up
Tomcat as an NT service.The instructions to do that are in the file
TOMCAT_HOME\doc\NT-Service-howto.html.

As you can see in that file, you will just download jk_nt_service.exe, make two
small additions to wrapper.properties, execute two commands that register it as a ser-
vice, and then start it.You can optionally set it to start automatically, using the Services
tool in the Control Panel.That will give you a more convenient startup, although you
might still find yourself shutting down and restarting Tomcat quite often during devel-
opment.

3.4.1 Problems Running Tomcat
We hope that you do not run into problems starting Tomcat on your system. If you
do, we suggest that you check the FAQ lists and the archives of the mailing lists. It is
likely that if you have a problem, someone has solved it for you. If neither of those
options works, do not hesitate to ask the question on the Tomcat user list, where peo-
ple are usually happy to help.

We will discuss a couple of problems we have encountered, just in case it helps
someone with a similar problem. If you are not having problems, these next subsec-
tions might not make much sense, and you can safely skip ahead to section 3.4.2,
“Tomcat Log Files.” If you are trying to use these clues to solve a problem, you might
have to look up any forward references to some material mentioned here but covered
only later in the next chapter.

HTTP 500 “Internal Server Error”

While trying to run Tomcat, you might find that servlets work fine but that JSP pro-
duces an HTTP 500 “internal server error.”When we got that error, it usually (but not
always) meant that the Java compiler was not being found, which we confirmed by
looking at the Tomcat log and the messages on the NT command console window.

This problem is a bit tricky because it happens only when the JSP that you are
requesting is not already compiled and sitting in the Tomcat Work folder hierarchy

03 1089-9 CH03 6/26/01 7:26 AM Page 41

42 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

ready to use. If you want to test that JSPs are being compiled, you can try a Tomcat
JSP example, after first making sure that you delete any class files that exist for that
example in the work folder for the Examples Web app. (You can read more about
work folders later.) That work folder on our system is localhost_8080%2Fexamples.

When you try such a “fresh” (not compiled) Tomcat JSP example, you should end
up with both the Java work file and its compiled class file in the Examples work
folder. If you want to simulate the “compiler not found” problem, try repeating the
previous test with the JAVA_HOME environment variable set to a wrong value.

The solution to this problem is to make sure that the JAVA_HOME environment vari-
able is correctly set.Try the set command from the NT command console from
which you want to start Tomcat, and check that JAVA_HOME has the right value. If you
fix the environment variables, you must shut down Tomcat and then also use a fresh
NT command console that has the new settings.Also, whenever you change versions
of the Java SDK, you might need to adjust this setting.

HTTP 404 “file not found” Error

At different times, we got HTTP 404 errors that puzzled us at first.We then ran some
experiments deleting files in the Examples work folder (see preceeding section).We
started with a successfully working JSP and deleted its class file.That caused no prob-
lem; it just got compiled again upon the next request, which came when we clicked
on the “refresh” button on the browser toolbar. (Note that the “go to” button on the
browser does not compile the JSP again; it just gets the display from the cache.This
also happens when you click the forward or back arrow buttons.)

We then deleted the Java work file, and again the refresh had no problem accessing
the class file. Deleting both the source file and the class file was likewise not a problem
for a refresh;Tomcat replaced both.

However, when we tried deleting the entire Examples Work subfolder (see preceed-
ing section), we got the HTTP 404 error page.That is, we got that until we shut
down and restarted Tomcat, which re-created the work folder for the examples and
the Java servlet source and then compiled files that it needed to refresh the example.

Startup Fails,Tools.Jar Not Found

You might find that Tomcat cannot find the tools.jar file even if TOMCAT_HOME is set. If
this is the case, try putting a copy of the tools.jar file from the JAVA_HOME\lib
folder into the TOMCAT_HOME\lib folder.You’ll find a FAQ link that will tell you
more about this bug at http://jakarta.apache.org/jyve-faq/Turbine/screen/
DisplayQuestionAnswer/action/SetAll/project_id/2/faq_id/12/topic_id/43/

question_id/414.

Startup Fails, Explorer Starts Instead

Also make sure that the PATH environment you are using allows the compiler to be
found. On our system, that means that it includes c:\jdk1.3\bin. If you do not have

03 1089-9 CH03 6/26/01 7:26 AM Page 42

433.4 Running Tomcat

this correct, you might be surprised to find that instead of starting up Tomcat, you will
have an Explorer window set to the c:\WINNT\Java folder, or something like that.

Startup Fails, Error Creating Sax Parser

When we started developing our Web application project for this book, we ran into
some other very thorny problems that we have since learned to avoid.We were going
to include a long section here about all these troubles, but we finally decided that it
could be more confusing than helpful. Instead, we will just show you the error we
were getting and tell you what the problem turned out to be. Here are the exception
messages that were displayed:

java.lang.ClassNotFoundException: com.sun.xml.parser.Parser
at java.net.URLClassLoader$1.run(URLClassLoader.java:200)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:188)
at java.lang.ClassLoader.loadClass(ClassLoader.java:297)
at java.lang.ClassLoader.loadClass(ClassLoader.java:253)
at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:313)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:120)
at org.xml.sax.helpers.ParserFactory.makeParser(ParserFactory.java:124
at org.apache.tomcat.util.xml.XmlMapper.readXml(XmlMapper.java:191)
at org.apache.tomcat.startup.Tomcat.stopTomcat(Tomcat.java:186)
at org.apache.tomcat.startup.Tomcat.execute(Tomcat.java:130)
at org.apache.tomcat.startup.Tomcat.main(Tomcat.java:163)
FATAL: configuracion error
java.lang.Exception: Error creating sax parser
at org.apache.tomcat.util.xml.XmlMapper.readXml(XmlMapper.java:207)
at org.apache.tomcat.startup.Tomcat.stopTomcat(Tomcat.java:186)
at org.apache.tomcat.startup.Tomcat.execute(Tomcat.java:130)
at org.apache.tomcat.startup.Tomcat.main(Tomcat.java:163)

After coming up with some false solutions (they worked!) to this problem, we deter-
mined the real cause:We had put the xerces.jar file in the folder c:\jdk1.3\jre\lib\ext.

What we thought would be an easy way to get this JAR file in the default classpath
turned out to confuse Tomcat, which needs to find its XML parser in the xml.jar file
that comes with it, not in xerces.jar.

In the next chapter, we will give you instructions about the way we install Xerces
so that Tomcat can still access its own XML JAR file. (We will also discuss there how
we avoid some problems caused by xalan.jar when it is put in the Ext folder.) After we
had solved this problem with the Xerces JAR file, our technical reviewer told us about
another “gotcha” that happens when you put xerces.jar in the Ext folder, and we have
also installed there the jaxp.jar file (containing the Java XML classes). Java then incor-
rectly tries to find certain Xerces classes in jaxp.jar because JARs are loaded alphabeti-
cally, and jaxp comes before Xerces.A solution to this problem is to rename xerces.jar
to aaxerces.jar and then rename xalan.jar to aaxalan.jar A similar solution is given in
the Cocoon SubProject of the Apache XML Project, where xml.jar is renamed to

03 1089-9 CH03 6/26/01 7:26 AM Page 43

44 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

zzz.jar to get around a conflict between Tomcat and Cocoon. For more on this and
other jar conflicts, search for “xerces” at the Cocoon Web site at the page
http://xml.apache.org/cocoon/faqs.html.

3.4.2 Tomcat Log Files
When Tomcat starts up the first time, it creates some folders for you.Among these is
TOMCAT_HOME\logs.Tomcat puts its error messages into log files inside this
folder.These messages can be useful for troubleshooting problems.

Take a look at the Tomcat configuration file called server.xml.You should find it in
the conf folder in the TOMCAT_HOME folder. Note that if you try to use Internet
Explorer 5.x to view the file, you will get an error about a reference to an undeclared
namespace (xmlmapper).To view the file in IE 5.x, you will first have to use a text
editor to comment out the following line:

<xmlmapper:debug level=”0” />

In server.xml, you can see how and where the log files are configured.We discuss their
use later in this chapter (see Section 3.5.1,“Using Tomcat Log Files”).

3.4.3 Tomcat Work Folders and Files
After Tomcat runs once, new folders will appear, something like this:

TOMCAT_HOME\work

TOMCAT_HOME\work\localhost_8080

TOMCAT_HOME\work\localhost_8080%2Fadmin

TOMCAT_HOME\work\localhost_8080%2Fexamples

TOMCAT_HOME\work\localhost_8080%2Ftest

Look again at server.xml.You will see that this XML file has a root element called
server. One child element of that server element is called ContextManager.This has an
attribute called workDir, which determines the folder in which Tomcat will keep its
work files, such as the compiled servlets that are created from your JSP files.The
default attribute setting, which you can change, if necessary, is WorkDir=”work”.

3.4.4 Tomcat Web App Folders and WAR Files
Other folders created the first time you run Tomcat are the following:

TOMCAT_HOME\webapps\admin

TOMCAT_HOME\webapps\examples

TOMCAT_HOME\webapps\Root

TOMCAT_HOME\webapps\test

03 1089-9 CH03 6/26/01 7:26 AM Page 44

453.4 Running Tomcat

When you unzipped the downloadable installation file jakarta-tomcat.zip, there were
some files in the Webapps folder that had an extension of .war; these are known as
WAR files.These are their names:

admin.war

examples.war

ROOT.war

test.war

These files contain archived Web applications.When you start up Tomcat, it expands
any WAR files that it finds in the Webapps folder.This is one way to deploy Tomcat
Web applications. Such WAR files (Web archives) are JAR files (Java archives) with a
different extension. In fact, both WAR and JAR files use the ZIP file format, so you
can use zip and unzip tools on either type.This also means that you can sign Web
components in a WAR file.Why not just call WAR files JAR files? Because JAR files,
unlike WAR files, are meant to hold a set of class files that can be placed in the class-
path and double-clicked using a GUI to launch an application.

If you add a Web application to Tomcat “automatically” by simply copying in a
WAR file to the Webapps folder,Tomcat will not only expand the archive into a
folder hierarchy of the same name (also under Webapps), it will also “know” that this is
a Web application.You do not need to make any changes to the server.xml file, as dis-
cussed in a few paragraphs, before Tomcat can find that Web application context.
However, you might sometimes need different settings for your Web application than
the “automatic” ones provided, so we also will discuss how you can add a Tomcat Web
application the hard way: by editing server.xml.We do that later, in the section
“Editing the Server Configuration.”

Tomcat Web App Contexts

The definition of a Web application is given in the Java Servlet Specification, v2.2, as
follows:

A web application is a collection of servlets, JavaServer Pages, HTML documents,
and other web resources which might include image files, compressed archives, and
other data.A web application may be packaged into an archive or exist in an open
directory structure.

A Web application can run on containers from different vendors.A Web application
also has a root, which is a path within the Web server. For example, the Web applica-
tion that is the subject of most of this book is mapped to the root /bonForum.That
means that every request that starts with that path as a prefix is mapped to the Web
application and is handled by its ServletContext.As one fictitious example, a
JavaServer Page resource that is part of that Web application might be located by
http://www.bonforum.org/bonforum/jsp/hello.jsp.

03 1089-9 CH03 6/26/01 7:26 AM Page 45

46 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

3.4.5 Tomcat Web Application Contexts
Each collection of Web resources making up one Web application shares a context.
Except for the Root folder that maps to an empty URI prefix, the Web application
folders mentioned previously (such as examples) are each mapped to a Web application
context, in the server.xml Tomcat configuration file.The ContextManager element in
that XML file contains child elements called Context, for example:

<Context path=“/examples” docBase=“webapps/examples” debug=“0” reloadable=“true” >

This particular Context element comes included with the Tomcat installation. It sets
up a Web application context mapped to the path “/examples”.This path is relative to
the “webapps” folder, by design.The docBase is instead relative to the ContextManager
home.After a fresh installation of Tomcat, the ContextManager home is the same as
TOMCAT_HOME, but that can be changed, if necessary, by adding an attribute named home
to the ContextManager element in the server.xml configuration file.

Consider what happens, for example, when your browser sends a request with a
URL of http://www.servername.com/examples/jsp/snp/snoop.jsp. Or, if you are
developing Tomcat applications with both the browser and Tomcat server on the same
machine, that request could be, for example, http://localhost:8080/examples/jsp/
snp/snoop.jsp.

If Tomcat is responding to this request, it will use the path attribute of the
Examples Context to transform that URL to a file system pathname. Let’s assume that
nobody has changed the ContextManager home from the default, which is
TOMCAT_HOME.The previous URL will be mapped then, to the file
TOMCAT_HOME\webapps\examples\jsp\snp\snoop.jsp.

You can try to use a local browser to open the file using a URL something like
file://c:/jakarta-tomcat/webapps/examples/jsp/snp/snoop.jsp.

The browser will receive the source for snoop.jsp, which is text.What it does with
that will depend on whether the extension has been mapped to a program on the
client, such as a text editor. By default, it brings up a dialog box to ask the user what
program should open the file. However, the browser does not have a servlet container.
It will not be capable of compiling the JSP source to a servlet or executing such a
servlet, if it already exists.To carry out those two vital functions and provide HTML
to the Web browser is the job of a JSP engine, such as Tomcat.

3.4.6 Tomcat Web App Configuration Files
Every Web application installed in Tomcat has a configuration file, which contains its
deployment descriptor. For an example, use Internet Explorer to examine the one for
the Examples Web app, which is the file TOMCAT_HOME\webapps\examples\
Web-inf\web.xml.

To understand this configuration file, you can use a text editor to read the file
c:\jakarta-tomcat\conf\web.dtd, which is the DOCTYPE for a Web application.

A detailed discussion of everything in this file is beyond the scope of this book.

03 1089-9 CH03 6/26/01 7:26 AM Page 46

473.4 Running Tomcat

Remember, this book is meant to be a laboratory manual—it assumes that you are also
relying on a textbook and class handouts.You should read web.dtd together with other
material that you have for learning about servlets and JSP (such as the book Core
Servlets and JavaServer Pages, by Marty Hall). Here we will briefly mention some of the
configuration tasks that you can thus become familiar with.

One task is creating context parameters.These are used as global variables:They
contain information that is visible to all the servlets, JSP pages, HTML, and so on in
the Web application. For example, you could add the email address of a Webmaster to
a Web app by adding the following element to its deployment descriptor in its
web.xml file:

<context-param>
<param-name>

Webmaster
</param-name>
<param-value>

webmaster@bonforum.org
</param-value>

</context-param>

Unlike context parameters, servlet init parameters are visible only within the servlet
for which you define them.You can use these init-params for many different purposes,
whenever you need to be able to use a value in a servlet that can be altered by the
Tomcat administrator, for example.The Tomcat Examples Web app uses the classic—
and useless—“foo,bar” pair to show you how to create an init-param and set its value.
You can see how this works by uncommenting (if necessary) the init-param element
that appears in the snoop servlet element, which is in the web.xml file for the
Examples Web app. It should look something like this when you are done:

<servlet>
<servlet-name>

snoop
</servlet-name>
<servlet-class>

SnoopServlet
</servlet-class>
<init-param>

<param-name>foo</param-name>
<param-value>bar</param-value>

</init-param>
</servlet>

After you have done this, you need to shut down and restart Tomcat.This means that
you will obviously not be using init-params for values that need to change often.You
can then access the snoop servlet example (note that this is not the same as the snoop
JSP example available from the Tomcat home page), using a URL something like
http://:8080/examples/servlet/snoop.

03 1089-9 CH03 6/26/01 7:26 AM Page 47

48 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

Near the top of the information that is displayed on the browser, you should see
the name of the param and its value, as follows:

Servlet init parameters:
foo = bar

Another configuration task useful to understand is servlet mapping.This assigns an
alias to a servlet, relative to the context path for the Web application (and thus also rel-
ative to TOMCAT_HOME). For example, two servlet mappings in the examples deployment
descriptor (in web.xml) enable you to request the same snoop servlet as in the last
example, using either of these URLs instead of the one shown previously:

http://:8080/examples/snoop

http://:8080/examples/anyname.snp

We will return to the topic of servlet mapping again in this chapter, in the section
“Editing the Web App Configuration.” Meanwhile, look at those servlet mappings in
the Examples deployment descriptor that allow these two variant URLs. Here is what
they look like:

<servlet-mapping>
<servlet-name>

snoop
</servlet-name>
<url-pattern>

/snoop
</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>
snoop

</servlet-name>
<url-pattern>

*.snp
</url-pattern>

</servlet-mapping>

There are many more uses for the deployment descriptor in the web.xml file of a Web
application. It says this in the Tomcat users guide:

A detailed description of web.xml and the Web application structure (including
directory structure and configuration) is available in Chapters 9, 10, and 14 of the
Servlet API Spec, and we are not going to write about it.

There is, however, a small Tomcat-related “feature” that is related to web.xml.
Tomcat lets the user define default web.xml values for all contexts by putting a
default web.xml file in the conf directory.When constructing a new Context,
Tomcat uses the default web.xml file as the base configuration and the application-
specific web.xml (the one located in the application’s WEB-INF/web.xml) only to
overwrite these defaults.

03 1089-9 CH03 6/26/01 7:26 AM Page 48

493.6 Adding Your Tomcat Web Application

3.4.7 Help for Developing Tomcat Web Applications
A guide to developing Web applications for Tomcat is included with the distribution.
Be sure to check the Tomcat documentation on the Jakarta Web site for newer ver-
sions because this guide will surely be updated.After we installed Tomcat, we could
find the guide at file://c:\jakarta-tomcat\doc\appdev\index.html.

In this book, we do not follow all the procedures outlined in that guide. However,
it is useful to understand how to use the Apache ant tool to build Tomcat Web apps—
especially if you want to get involved with the Apache projects. Besides the hypertext
guide, you can read the text file c:\jakarta-tomcat\doc\appdev\build.xml.txt, which
shows how to use ant to build Web apps.

3.5 Tomcat Examples of Servlets and JSPs
One of the best ways to learn about Java servlet and JSP technologies is to study the
examples that are included with Tomcat.You are urged to try all the examples.You can
also study their source code, which is included in the main binary distribution in the
Examples folder under jsp and WEB-INF/classes (which contains .java and .class files).

A simple way to try the examples is to browse the main Tomcat page, which will
be at a URL something like http://localhost:8080, depending on your system.

You can also access the examples directly. For example, here is the URL that we
used to access the snoop servlet on our ginkgo server, from a different host on the
network: http://ginkgo:8080/examples/servlet/snoop.

3.5.1 Using Tomcat Log Files
After trying all the Tomcat examples, look at the files in TOMCAT_HOME\logs
folder.You should be able to understand the entries now.The file jasper.log shows
parameter values, query strings, and more; that can be quite useful for debugging JSP-
based Web apps.

3.6 Adding Your Tomcat Web Application
Here we explain one quick way to add a new Web application to an NT machine on
which Tomcat Server is available.You can follow these instructions to develop a skele-
ton Web application called MyApp. Feel free to change this name to something real,
by the way.

3.6.1 Creating a Web Application
First, create a new folder, where you can put the files for the new Web application.
The name of this folder is TOMCAT_HOME\webapps\MyApp.

Next, copy and paste all the subfolders of the TOMCAT_HOME\webapps\
examples folder to the folder that you created.Your new Web application now has lots

03 1089-9 CH03 6/26/01 7:26 AM Page 49

50 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

of files, including all the subfolders that you need, some vital configuration files, and
copies of all the Java servlet and JSP examples for Tomcat.

You can use these new copies of the servlet and JSP examples to test your new
Web application, after you change two configuration files as discussed in the next two
sections. The advantage of testing is that you know that the examples were working
in the Examples context, so they should also work in the new MyApp context.After
you get things working right, you can delete all the example files, or just leave them
there.

When editing any configuration file, such as server.xml and web.xml, you should
make a backup first.

3.6.2 Editing the Server Configuration
The next step is to configure the server so that it can find your new Web application.
Use your favorite text editor to edit the principal Tomcat configuration file,
TOMCAT_HOME\conf\server.xml.

As we mentioned earlier, adding a Web application means adding a context element
to server.xml.Again take the easy way out: Use copy and paste to clone an existing
context element, such as the one for the examples context.Then change the new con-
text element to MyApp. Here is the result:

<Context path=“/MyApp” docBase=“webapps/MyApp” debug=“0” reloadable=“true”
➥></Context>

The context path is relative to TOMCAT_HOME\webapps, and the docBase is rela-
tive to TOMCAT_HOME. Note that you will have to change examples to MyApp in
two places within the context element. One is the value of the docBase attribute.The
other is for the value of the path attribute. Leave all the other attributes alone—if it
ain’t broke, don’t fix it. Save the new server.xml file.

3.6.3 Editing the Web App Configuration
Now edit the Web application deployment descriptor, which is in the XML file
TOMCAT_HOME\webapps\MyApp\WEB-INF\web.xml.

You need to edit this deployment descriptor to define and configure all the Java
servlet and JavaServer Pages that are part of the new Web application.The most com-
mon configuration task involves adding servlet and servlet-mapping tagged elements.

For each servlet and JSP that you want to use in the Web application, you can add
a servlet element in this web.xml file.This element can also give your servlet or JSP an
alias that is more user-friendly.Another advantage to using an alias is that it encapsu-
lates a servlet or JSP; the application can refer to the alias, and you are free to change
to a different servlet or JSP by editing only the web.xml deployment descriptor.

For each Web application servlet, you can also add a servlet-mapping element.This
will give the servlet a path relative to the root of the Tomcat server space,
TOMCAT_HOME. For example, assume that a compiled servlet called test.class is
actually in the folder TOMCAT_HOME\webapps\MyApp\WEB-INF\classes.

03 1089-9 CH03 6/26/01 7:26 AM Page 50

513.6 Adding Your Tomcat Web Application

If you add a servlet mapping, a client can request that servlet with a URL some-
thing like http://localhost:8080/MyApp/test. By using a different mapping, without
moving the servlet, you can change that URL to something like http://
localhost:8080/MyApp/foo/bar/test.

Without any mapping, the only way that the servlet can be requested is with a
URL something like http://localhost:8080/MyApp/servlet/test.

Note that this last URL assumes that the RequestInterceptor prefix is set to its
usual value (/servlet/) in the server.xml file.This prefix is a setting that applies to all
Web apps under the Tomcat server configured by that file.

This web.xml file is defined by a DTD that you should take some time to investi-
gate.You will see there many ways to set global information that will be available to all
the objects that share the Web application.You can find this DTD at
TOMCAT_HOME\conf\web.dtd.

3.6.4 Restarting Tomcat with the New Web App
If Tomcat is running now, you certainly will have to stop it before your changes will
be effective because Tomcat processes this configuration file only during startup. Bring
up an NT command window, and run this command:

TOMCAT_HOME\bin\shutdown.bat

That will bring down the server, eventually. If you look at the command window
where Tomcat is running, you will see some messages. If you started Tomcat with
startup.bat, you must look quickly because the command window will disappear when
Tomcat stops.

Start Tomcat again, using either the startup or the tomcat run commands.While
Tomcat starts up, watch its messages on its command window.This time, the context
for MyApp should be among those that get initialized. Now use your browser to
request the SnoopServlet copy that is in your new Web application (not the original
one in the Examples Web app). For all the following tests to work, the web.xml file for
your new Web application must still contain this servlet element:

<servlet>
<servlet-name>

snoop
</servlet-name>
<servlet-class>

SnoopServlet
</servlet-class>

</servlet>

That web.xml file should also still have these servlet-mapping elements:
<servlet-mapping>

<servlet-name>
snoop

</servlet-name>
<url-pattern>

03 1089-9 CH03 6/26/01 7:26 AM Page 51

52 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

/snoop
</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>
snoop

</servlet-name>
<url-pattern>

*.snp
</url-pattern>

</servlet-mapping>

Try requesting SnoopServlet with something like each of the following URLs:

http://localhost:8080/MyApp/snoop

http://localhost:8080/MyApp/servlet/SnoopServlet

http://localhost:8080/MyApp/servlet/snoop

You should also be able to use URLs similar to these next two:

http://localhost:8080/MyApp/foo.snp

http://localhost:8080/MyApp/servlet/foo.snp

When we tried these, our Internet Explorer tried instead to download and open a
“snapshot file” for the SnapView application, at least until we deleted that file exten-
sion setting from the File Types panel on the NT Explorer View Options menu item.

After each successful servlet request, look at the details about the HTTP request
object in the browser display. Notice which fields change when you use different
URLs.

Now also try the snoop JSP copy in your Web application.This is a JSP page that
displays only some of the information that SnoopServlet displays.You can request it
with the URL http://localhost:8080/MyApp/jsp/snp/snoop.jsp.Again, look at the
resulting browser page for some details from the Request object.

Assuming that your web.xml file still has its original mappings from the Examples
Web app, try this next exercise. Request the servletToJsp servlet (case matters!) using
something like one of the following URLs:

http://localhost:8080/MyApp/servletToJsp

http://localhost:8080/MyApp/servlet/servletToJsp

To understand how this example works, look at the following two files in your text
editor:

TOMCAT_HOME\webapps\MyApp\WEB-INF\classes\servletToJsp.java

TOMCAT_HOME\webapps\MyApp\jsp\jsptoserv\hello.jsp

Now try this final exercise. Request the jsptoservlet JSP using something like the
URL http://localhost:8080/MyApp/jsp/jsptoserv/jsptoservlet.jsp.

03 1089-9 CH03 6/26/01 7:26 AM Page 52

533.7 Java Servlets and JSPs

You should get the same result as you did in the last exercise.To understand why,
look at the file TOMCAT_HOME\webapps\MyApp\jsp\jsptoserv\hello.jsp in your
text editor.

Congratulations! You now have a new Web application installed.As the chess saying
goes,“the rest is all a matter of details.”You have what you need: an example of a Java
servlet calling a JSP page, and an example of another JSP page calling a Java servlet
(actually, calling a servlet that calls a JSP page). You can start building upon this skele-
ton to develop your MyApp Web application.

3.7 Java Servlets and JSPs
At this point, we could start adding detailed information about Java servlets and JSPs
to this book, and certainly we would have enough material to fill two books.
However, we will not do so, for two reasons.The first is that the goal of this book is
similar to that of a human anatomy class.We will provide an example of a Web appli-
cation project and then thoroughly dissect it to illustrate the discussion of several pop-
ular technologies, including servlets and JSPs.You will be able to learn function as well
as form because you can exercise the example that is being studied—do not try that in
your human anatomy class!

The second reason we see no need to cover servlets in depth here is that many
servlet resources already exist.We would rather refer you to those than reproduce their
information here.The following sections will give a few suggestions and starting points
for readers who want to learn more about Java servlets and JSPs. If you have a good
understanding of these technologies already, you may safely skip to the next chapter
and use the rest of this chapter as a reference only.

3.7.1 The Servlet API Javadoc
The Tomcat 3.1 source distribution includes the Servlet API Javadoc.This API docu-
mentation is a valuable help for the developer.With Tomcat 3.2, the servlet API
documentation is available as two download files that are separate from the Tomcat
distribution file. One of the files is for the binary download, and the other is for the
source download.These files are called jakarta-servletapi-3.2.zip and jakarta-servletapi-
3.2-src.zip.You can also find these files on this book’s CD-ROM.

It is a good idea to study the servlet API documentation. One thing this will do is
make the subject of Java servlets and JSPs a lot less daunting than it might otherwise
seem. In fact, the design involved is quite compact and clear, and the API Javadoc is a
good place to answer your own programming questions.

If you downloaded the source Tomcat 3.1 distribution, you should browse some-
thing like c:\jakarta-tomcat\src\webpages\docs\api\overview-summary.html. If you
obtained the servlet API Javadoc in a separate download (for example, with version 3.2
of Tomcat), the file to browse is more like c:\jakarta-servletapi\docs\api\overview-
summary.html.

03 1089-9 CH03 6/26/01 7:26 AM Page 53

54 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

Take a look at this API page, and you will see the top-level logical design of Java
servlets and JSPs.

3.7.2 Learning About Java Servlets
Be sure to check Chapter 12,“Online Information Sources,” for leads related to Java
servlets.

One excellent way to look for anything related to servlets is to visit
http://java.sun.com/products/servlet.

Servlet Resources

You can find a list of books, tutorials, and other learning opportunities at
http://java.sun.com/products/servlet/resources.html.

Java Servlet Specification V2.2

All developers of Java servlets should read the Java Servlet Specification.That docu-
ment, servlet2_2-spec.pdf, is available for download from the Sun Java servlet Web site.
Look for a link at http://java.sun.com/products/servlet/download.html.

Servlet Tutorial

You are perhaps familiar with the excellent Java tutorial available online at the Sun
Web site.A great way to learn the basics of servlets is by following the servlets trail,
which is at http://java.sun.com/docs/books/tutorial/servlets/index.html.

The Java Forums

Among the most important learning resources for Java servlets, as well as all other Java
topics, are the popular Java forums hosted by Sun.You can find these at
http://forum.java.sun.com/.

3.7.3 Learning About JSP
There will be quite a few JavaServer Pages in our Web application that you can learn
from. Here we provide a few suggestions to help you find more comprehensive cover-
age to supplement the “laboratory manual” approach of this book.

Many of our suggestions are related to useful destinations that you can reach from
http://java.sun.com/products/jsp.

Also be sure to check Chapter 12 for other leads related to JavaServer Pages.

JSP Books and Resources

If you are looking for books about JSP, check the list at http://java.sun.com/
products/jsp/resources.html. On that page, among many other useful resources, is a

03 1089-9 CH03 6/26/01 7:26 AM Page 54

553.7 Java Servlets and JSPs

list of books.We even found there a link to information about a JSP book in German:
http://shannon.informatik.fh-wiesbaden.de/jsp/index.html.

JSP Specification V1.1

We will use version 1.1 of JSP.The JavaServer Pages Specification is obtainable as
jsp1_1-spec.pdf.You should be able to download it at http://java.sun.com/
products/jsp/download.html.

JSP Tutorials

The JSP by Example tutorial provides a quick start to anyone who wants to create and
understand JavaServer Pages.You can find that at http://java.sun.com/products/jsp/
html/jspbasics.fm.html.

Try also a different tutorial athttp://www.builder.com/Programming/JSP/
ss01.html.

JSP Mailing List

Joining an active mailing list can be one of the best ways to get answers and gain a
practical perspective on a technology. For JSP, you should send an email to
listserv@java.sun.com. In the body of the email, write:

subscribe jsp-interest yourlastname yourfirstname

Of course, you must substitute your names for the last two items, unless your name is
“yourfirstname yourlastname”!

The Java Forums

We will repeat this tip given previously because it is that important.Among the most
important learning resources for Java servlets and JavaServer Pages, as well as all other
Java topics, are the popular Java forums hosted by Sun.You can find these at
http://forum.java.sun.com/.

3.7.4 The JSP Package
What is JSP? For one thing, it is a Java package, javax.servlet.jsp.A lot can be learned
about JSP by studying the API document. If you took our advice and downloaded the
Tomcat source code, you should be able to browse the file src\webpages\docs\api\
javax\servlet\jsp\package-summary.html, which is inside your TOMCAT_HOME
folder.

Some of the interfaces and classes are quite important.Two that are particularly
worth studying are HttpJspPage and PageContext.

03 1089-9 CH03 6/26/01 7:26 AM Page 55

56 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

HttpJspPage

This interface is quite important because of its _jspService method.You will often
see the statement made that a JSP is compiled into a servlet that then processes a
request and produces a response according to the content of the JSP document that is
not compiled. Based on that statement, you might look for a put, get, or service
method in one of the Java files that represents a translated JSP. However, try looking in
one of those Java files in a subfolder of the Tomcat Work folder.What you will find
instead is a _jspService method.

Compare the _jspService method to the service method or any of the doXXX
methods in a servlet.This first excerpt shows the signature of the _jspService
method, taken from a JSP processor-generated Java file in a Tomcat Work subfolder:

public void _jspService(HttpServletRequest request, HttpServletResponse response)
➥throws IOException, ServletException {

This second excerpt shows the signature of the doGet method:
public void doGet(HttpServletRequest request, HttpServletResponse response) throws
➥ServletException, IOException {

The compiled JSP page is a servlet, but there is one important difference between it
and other servlets.You cannot override the _jspService method as you can the doGet
method, the service method, and so on. But you can write a JSP document, and then
the containing server (Tomcat) will customize this method according to the static and
dynamic content that you add to the JSP.

PageContext Class

If you want to have a way to measure your progress while learning about JSP, you can
hardly find a better one than the PageContext class. If you can understand everything
that is done by this abstract class, you will have come far in your understanding of JSP.
When a JSP becomes a servlet, its _jspService() method calls on a JspFactory object
to create one instance of an implementation-dependent subclass of the PageContext
class, named pageContext. By using the methods of this object, the JSP servlet has
access to the other objects that make up the Web application. Furthermore, the use of
JspFactory and pageContext subclasses allows different JSP container implementations
to provide the JSP servlet with one set of objects and methods to carry out its pro-
gram.The following direct quote from the API documentation for the PageContext
class will convince you of the central importance of this class in the JSP scheme of
things:

“The PageContext class provides a number of facilities to the page/component
author and page implementer, including these:

n A single API to manage the various scoped namespaces
n A number of convenience APIs to access various public objects
n A mechanism to obtain the JspWriter for output

03 1089-9 CH03 6/26/01 7:26 AM Page 56

573.8 The ServletConfig and ServletContext Classes

n A mechanism to manage session usage by the page
n A mechanism to expose page directive attributes to the scripting environment
n Mechanisms to forward or include the current request to other active compo-

nents in the application
n A mechanism to handle error page exception processing”

Some methods of pageContext return objects that are more conveniently accessible
using “implicit” JSP variables (out, request, response, session, application, config).
In Chapter 10,“JSP Taglib and Custom Tag: Choice Tag,” you will see that custom JSP
tags still need to use the pageContext methods to get these important objects. In the
next section, we briefly discuss two of these objects, the ServletContext
(application) and ServletConfig (config) instances related to the JSP servlet. Like all
the implicit JSP objects, these two are quite useful for all servlets, not just those com-
piled from JSP.

3.8 The ServletConfig and ServletContext Classes
When a servlet container initializes a servlet instance, it provides it a ServletConfig
object.That object encapsulates initialization parameters, which can be used, for exam-
ple, to tailor the behavior of a servlet to the particular operating system environment
that it executes in.The ServletConfig object also contains another important object
for the servlet, which is an instance of the ServletContext class.

The ServletContext object provides a servlet a way to share objects and communi-
cate with other components of a Web application. Here is a quote from the API docu-
mentation for the ServletContext class:

There is one context per Web application per Java virtual machine.
(A Web application is a collection of servlets and content installed
under a specific subset of the server’s URL namespace, such as
/catalog, and possibly installed via a .war file.)

If a Web application is not marked as distributed in its deployment descriptor
(web.xml file), then the ServletContext object is global to all the servlets in the Web
application.Any object can be added to the ServletContext as an attribute and can be
accessed by another servlet or JSP, for example. (Distributed Web applications are an
advanced topic beyond the scope of this book. If you think that your Web application
will end up being distributed—meaning that it will employ more than one Java virtual
machine for the same instance of the application—then you will need to use a different
solution, such as a database for establishing a truly global context for the servlets and
JSP in the Web app.)

Another very useful object provided by the ServletContext to a servlet is a
RequestDispatcher object.This can be used to pass the request that came from a
browser onward to another destination such as a different servlet or JSP.This allows
different components of your Web application to cooperate in creating a response for
the browser.

03 1089-9 CH03 6/26/01 7:26 AM Page 57

58 Chapter 3 Java Servlets and JavaServer Pages: Jakarta Tomcat

3.9 Web Application Scopes
As a software developer, you should be aware of the importance that the concept of
scope plays in programming.The scope of an object determines its visibility within the
code and also determines its lifetime.To use Java servlets and JSPs to build Web appli-
cations, you need an understanding of four different scopes. Each scope is related to an
object that has a certain lifetime (it might vary in duration).These objects are known
to other objects within different logical contexts.These two characteristics of the
scope-determining objects give different scopes to objects (such as attributes) that they
contain.

3.9.1 Application Scope
Objects with application scope are contained by a ServletContext instance.Thus,
application-scope objects are shared by servlets and JSPs within one Web app executed
by a container (within one JVM). Such objects can remain available via the
ServletContext object as long as the Web application is running.

3.9.2 Session Scope
Objects with session scope are contained by an HttpSession instance.A session is asso-
ciated with an HttpRequest object. It is also associated with a particular browser (or
other client), for example, through the use of a cookie and a unique identifier.A ses-
sion, therefore, allows different requests to be associated with a particular client; this is
very important, for example, in shopping cart applications. Session scope lasts as long
as its session object, which has an indefinite life span: If the client is inactive for longer
than a settable period of time (30 minutes, by default), the session object and the scope
that it provides come to an end.

3.9.3 Request Scope
Objects with request scope are contained by a ServletRequest object. Because a
request may be forwarded from one servlet or JSP to others, it is clear that objects in
request scope can outlive any particular servlet within which they are available.
However, after the request object has been handled, the objects that it held in request
scope will no longer be available.

3.9.4 Page Scope
Objects in page scope are contained by a PageContext instance. Specifically, they are
contained by the pageContext object created at the beginning of the _jspService()
method in a compiled JSP servlet.While the JSP is handling the request object from
its client, the objects in page scope are available as attributes of the pageContext
object.A finally clause at the end of the _jspService() method makes sure that the

03 1089-9 CH03 6/26/01 7:26 AM Page 58

593.9 Web Application Scopes

pageContext object is released, which also means that its contained objects “go out of
scope” and are no longer available.

3.9.5 Learning About Scopes
A full discussion of the important subject of Web application scopes is beyond the
scope of this book (pun intended).A good resource for learning about scope is avail-
able at http://developer.java.sun.com/developer/onlineTraining/JSPIntro/
contents.html.

Another way to start learning about scope in relation to Web applications is to read
Bruce Eckel’s Thinking in Java (ISBN: 0-1302-7363-5, published by Prentice Hall).You
can even download a free trial version of that book from http://www.mindview.net.
One section of the book that is quite relevant to our book project is “JSP Page
Attributes and Scope,” in the chapter “Distributed Computing.”

Another useful exercise in that highly recommended book is “Manipulating
Sessions in JSP.” Our Web application project for this book is quite dependent on the
existence of session objects. Understanding these will be useful while reading the rest
of our book.

One thing to be aware of is that these four scopes are not subsets of each other.
Each scope depends on the lifetime and visibility of a different object, and those
objects are not nested. However, they are all dependent upon a Java virtual machine,
and so, therefore, are the four scopes listed previously.

03 1089-9 CH03 6/26/01 7:26 AM Page 59

03 1089-9 CH03 6/26/01 7:26 AM Page 60

XML and XSLT: Xerces and
Xalan

4

THIS CHAPTER INTRODUCES TWO MORE great offerings from the Apache Software
Foundation.These two products are from the XML Project. Xerces is a DOM and
SAX parser. Xalan is an XSLT and XPATH processor.

4.1 Apache XML Project
This chapter discusses two tools that will be quite important for your Web application
project. Xerces and Xalan are both open source software products, and like Tomcat
Server, they are being developed by projects of the Apache Software Foundation.As
we did in the preceding chapter, we suggest that you visit their Web site, which you
can find at the following URL:

http://www.apache.org

One overall suggestion we would like to make is that as a software developer, you will
gain much from reading the source code for the Xerces and Xalan projects. Often the
comments that appear with the code itself are written with more understanding than
much of the secondhand material about XML that you will find elsewhere.The devel-
opers of the code, after all, had to understand the XML recommendations in a very
unambiguous fashion, which can be considered quite an accomplishment!

A good, short description of the launching of the Apache XML project is available
in a press release that you can get at the following URL:

http://xml.apache.org/pr/0001.txt

04 1089-9 Ch04 6/26/01 7:28 AM Page 61

62 Chapter 4 XML and XSLT: Xerces and Xalan

This document describes the software that was donated to the open source XML pro-
ject, as well as the companies donating it and some of the people involved.

The home page for the Apache XML project is the following:
http://xml.apache.org

This Web site is an important destination for anyone interested in using XML.We
urge you to visit it to get a good top view of the project and its various products.

4.1.1 Apache Licenses for Xerces and Xalan
The Apache projects are released under the Apache license.An open source license, it
basically allows any use of the software as long as several conditions are met. Mostly,
these deal with acknowledgment of the copyright, name protection, and legal protec-
tion.The text of the Apache licenses for Xerces and Xalan appears in Appendix B,
“Some Copyrights and Licenses.”

4.2 Installing Xerces
The XML parser that we will use is part of Xerces. During the course of writing this
book, we used several versions of Xerces. Considering the ongoing evolution of XML,
you will probably do the same with any XML parser that you use for a while.
Changing versions inevitably seems to produce housekeeping chores for Web applica-
tion development.

While we were developing the software for this book, the latest stable release of
Xerces for Java was 1.2.3. Since then, release 1.3.0 has become available. Even more
significantly, Xerces Java Parser 2.0 was released as the book goes to press.Although
we usually recommend that you adopt the latest stable releases as soon as possible, an
additional consideration applies here.As discussed later in this chapter, each Xalan
XSLT processor release requires the use of a compatible Xerces release.When we
developed the book project, the latest stable release of Xalan was 1.2.2, which was
tested with Xerces 1.2.2.Therefore, if you use Xalan release 1.2.2, you should use it
together with Xerces release 1.2.2.

As the book goes to press, Xalan 2.0.1 has just become available.This release of
Xalan was tested only with Xerces 1.3.0, so if you use Xalan release 2.0.1, you should
use it together with Xerces release 1.3.0.The rest of this chapter mainly discusses
Xerces 1 and Xalan 1, while noting some differences you will encounter in Xerces 2
and Xalan 2. In Section 4.5,“Installing Xalan,” you can find some information about
using Xalan 2 with the Web application project for this book.

Please note that you do not actually have to download a Xerces distribution in
order to run the Web application project for this book.This applies to the Xerces 1.2.3
distribution if you will use Xalan 1.2.2. It also applies to the Xerces 1.3.0 distribution
if you will use Xalan 2.0.1.This is because every Xalan distribution includes the right
Xerces JAR file to use with its Xalan JAR file.Actually, the only reason we suggest
downloading a Xerces distribution in this chapter is so you can learn more about it
and use all its features in your own projects.

04 1089-9 Ch04 6/26/01 7:28 AM Page 62

634.2 Installing Xerces

The Xerces release we will discuss here has two installation files for Windows—one
for binaries and one for sources.These installation files, totaling roughly 3MB, have the
following names:

xerces-J-bin.1.2.2.zip

xerces-J-src.1.2.2.zip

You will find these installation files on the CD-ROM accompanying this book.You
can also download them by following the links from the Apache XML Web site at

http://xml.apache.org

Unzip both installation files so that everything ends up in a folder named xerces-
1_2_2 under your root drive. If you unzip into your root folder, be sure that the Use
Folder Names checkbox is selected. Check all the pathnames in the zip files to make
sure that no files will end up in the root folder.

We will assume that XERCES_HOME=C:\xerces-1_2_2. If that is not true for
you, please take that into consideration as you read this book.We will note some dif-
ferences we have found while using Xerces 1.3.0 with Xalan 2.0.1.

There is a lot of helpful information about Xerces in the Xerces Java Parser
Readme, which you can browse starting at the following file:

C:\xerces-1_2_2\Readme.html

4.2.1 Xerces JAR File
If you are using Xerces release 1.2.2, do not put the xerces.jar file in the extension
folder for the JDK runtime environment. It is true that Java automatically finds JAR
files put in that folder. However, you should not put JAR files that rely upon native
methods there.

When we did put the Xerces 1.2.2 JAR file in the ext folder, we had no problem
until we tried to start the Tomcat Server. It would not start. It would not stop either if
we put the JAR file in the ext folder after starting Tomcat.We got the following error:

java.lang.ClassNotFoundException: com.sun.xml.parser.Parser

If you are using Xerces 1.2.2 with Tomcat 3.2, the easiest way to get access to Xerces
from your Tomcat Web applications is by copying C:\xerces-1_2_2\xerces.jar into the
TOMCAT_HOME\lib folder.Tomcat will then automatically add this JAR file to its
classpath while starting.

This did not work for us with Xerces and Tomcat 3.1.With that Tomcat version
(and also with Tomcat 3.2), you can use different solution. Simply add one line to the
following file:

TOMCAT_HOME\bin\tomcat.bat

After the existing line in that file that adds tools.jar to the classpath, add another
line that adds the xerces.jar file, like this:

set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar
set CLASSPATH=%CLASSPATH%;c:\xerces-1_2_2\xerces.jar

04 1089-9 Ch04 6/26/01 7:28 AM Page 63

64 Chapter 4 XML and XSLT: Xerces and Xalan

Warning
If you want to use the Xerces 1.3.0 JAR file because you are using the Xalan Java 2.0.1 JAR file, disregard

the advice just given. In this case, as we found out the hard way, you SHOULD put both JAR files in the

JDK extension folder (along with the Xalan 1 compatibility JAR, xalanj1compat.jar). If you put these JAR

files into the tomcat lib folder, you will get an HTTP error 500 with a SAXException when our project

tries to use Xalan Java 2.

4.2.2 Xerces Documentation
After you install Xerces on your system, you will have available to you a wealth of
information about how to use it.The starting URL for its documentation will be
something like this:

c:\xerces-1_2_2\Readme.html

If you are online, hyperlinks in this Xerces documentation will let you browse much
important XML-related documentation on the Internet.

The documentation also includes the API Javadocs for DOM and SAX.As you may
know, these are the two major approaches to parsing XML, both of which are imple-
mented by Xerces.We will summarize both for you briefly.

DOM parsers are based on the Document Object Model.This approach models an
XML document as a tree structure containing nodes for each part (element, attribute,
text, processing instruction, and so on). DOM parsers read an entire XML document
and construct a tree of node objects in memory.An application can then access and
process this tree, which resides in memory, as a model of the XML document.

SAX parsers instead use an event-based model to parse XML.A SAX parser reads
through an XML document and “fires” events particular to each part of the document
it encounters (element, attribute, text, processing instruction, and so on).An applica-
tion adds event-handling code to access and process the XML document. Note that
SAX parsers can work on a file incrementally, requiring much less memory than
DOM parsers, and allowing larger XML files to be parsed with a given amount of
memory.

In the Xerces documentation you can also find discussions of the eight samples
included with the distribution, as well as a FAQ that provides answers to some com-
mon questions.

A comprehensive discussion of XML is beyond the scope of this book. Fortunately,
there exist many excellent sources of XML information, which are frequently updated.
Chapter 12,“Online Information Sources,” lists various Web sources that can help you
begin or advance your understanding of XML.We also recommend Inside XML by
Steven Holzner, published by New Riders.

4.3 Xerces Parses XML
We use Xerces in our Web application project, but we exercise only some of its poten-
tial. It is used as a DOM parser to parse XML in files and strings.The project also uses
the Xalan XSLT processor, which in turn uses Xerces as its XML parser.

04 1089-9 Ch04 6/26/01 7:28 AM Page 64

654.3 Xerces Parses XML

We will give a few suggestions for ways you can familiarize yourself with concepts
and code that we make use of in the book project.

4.3.1 Xerces Samples
Definitely, your first experiences with Xerces should be with the sample programs
provided with the distribution. Start by clicking the Samples hyperlink on the top-
level page of the HTML documentation. For the purposes of understanding this book,
the most important of the sample programs is DOMWriter.

Try all the samples, and be sure to look at their source code as well.You will find
that using them as skeleton code will save you time when you develop your own
code. Just be sure to give credit where credit is due, and follow the Apache License
stipulations.

In our book project, we got a big head start by using some of the code from
DOMWriter.java.We are grateful to the developers for making their sources available
to the worldwide developer community, and we urge our readers to consider the
advantages of open source software development. Check out the Internet links for
“Open Source” in Chapter 12 to get more information about the open source move-
ment and its guiding philosophy.

4.3.2 Studying the API Javadocs
When you browse the API Javadocs, be aware that for the purposes of this book you
can concentrate your attention on the following two packages:

org.w3c.dom

org.apache.xerces.dom

The interfaces in the org.w3c.dom package give you a feel for the DOM approach to
parsing and representing XML.The org.apache.xerces.dom package shows you one of
the technical “hearts” of the Xerces product.

4.3.3 Studying the Source Code
One of the best ways to learn programming is to read lots of good code. If you only
look at the top-level descriptions and documentation for a software project, you are
looking at entities that intentionally shield you from the details.That is very useful, of
course, and is a faster way to get the big picture. However, when you have to write
details yourself, it is useful to have seen a lot of similar ones.The problem, then, is to
decide where to begin in a project such as Xerces, which contains a wealth of code.

We suggest that if you want to study some of the source code for Xerces, begin
with the files from the same two packages that we recommended for API Javadoc
browsing—namely, the Java files in the following two folders (assuming the “normal”
drive and top-level Xerces folder):

C:\xerces-1_2_2\src\org\w3c\dom

C:\xerces-1_2_2\src\org\apache\xerces\dom

04 1089-9 Ch04 6/26/01 7:28 AM Page 65

66 Chapter 4 XML and XSLT: Xerces and Xalan

The first of these packages sets up the interfaces that define a way to represent XML
(and HTML) in software.The second package does the work of making this plan hap-
pen.The following two lists contain source code files that are good to start with.As
you can see, there are many paired methods in the two packages.The first list is of
source from the org.w3c.dom package:

Document.java

Node.java

Element.java

Attr.java

The next list is of source files from the org.apache.xerces.dom package that we feel
should be studied initially:

DocumentImpl.java

NodeImpl.java

ElementImpl.java

AttrImpl.java

In node.java, you can see all the node types that make up the DOM view of an XML
document:

public interface Node {
// NodeType
public static final short ELEMENT_NODE = 1;
public static final short ATTRIBUTE_NODE = 2;
public static final short TEXT_NODE = 3;
public static final short CDATA_SECTION_NODE = 4;
public static final short ENTITY_REFERENCE_NODE = 5;
public static final short ENTITY_NODE = 6;
public static final short PROCESSING_INSTRUCTION_NODE = 7;
public static final short COMMENT_NODE = 8;
public static final short DOCUMENT_NODE = 9;
public static final short DOCUMENT_TYPE_NODE = 10;
public static final short DOCUMENT_FRAGMENT_NODE = 11;
public static final short NOTATION_NODE = 12;

4.3.4 Compiling and Running IBM Samples
We found a useful IBM tutorial on XML programming with Java at the following
Web address:

http://www-4.ibm.com/software/developer/education/xmljava/xmljava-6-3.html

It turned out to be quite easy to compile Java programs in that tutorial, such as
domOne.java.All we had to do was substitute import org.apache.xerces.parsers.* for
import com.ibm.xml.parsers.*.The kinship between the IBM and Apache parsers
came in handy.

One important point to note is that when dealing with DOM, the natural thing is
to apply a recursive method.This shows the advantage of the self-similarity property of

04 1089-9 Ch04 6/26/01 7:28 AM Page 66

674.5 Installing Xalan

a tree structure.The document is a node, and you call a method with that as an argu-
ment.Then you call the method with the document-element.At that point, you can
iterate through its children, and to each of these apply the same method.These points
are illustrated in the IBM sample domOne.java.

4.4 SAX Sees XML as Events
We will barely mention the SAX processing capabilities of the Xerces-J Java class
library, because we have not made use of them in the Web application project for this
book. However, when you are developing XML applications, you will definitely want
to familiarize yourself with this alternative (complement?) to the DOM parsing
methodology.

The most compelling reason to use SAX parsers is their reduced memory require-
ment relative to DOM parsers (as discussed earlier, in the section “Xerces
Documentation”). Creating a DOM for very large XML files would use a vast quan-
tity of memory, whereas a SAX parser can handle files incrementally. SAX parsing also
tends to be faster.A third advantage is often the familiarity of its event-driven process-
ing to developers.

4.4.1 Xerces and Megginson SAX
Besides the information contained in the Xerces documentation, you can also get
information about the SAX parser from the Web site of David Megginson, who led its
development on the XML_DEV mailing list.Try the following URL:

http://www.megginson.com

A Javadoc online there is a useful overview of SAX technology.You can find it at
http://www.megginson.com/SAX/Java/javadoc/index.html

We tried Xerces with a code example called “Quick Start for SAX Application
Writers” from the Megginson Web site.The only change we had to make to adapt the
code to Xerces was to the following line:

static final String parserClass = “com.microstar.xml.SAXDriver”;

Here is the replacement line that allowed us to use Xerces:
static final String parserClass = “org.apache.xerces.parsers.SAXParser”;

4.5 Installing Xalan
The XSL processor that we will use is part of Xalan.We have upgraded the version of
Xalan that we work with several times, just as we did with Xerces.While we devel-
oped the software for this book, the latest stable release of Xerces for Java was 1.2.2.

Xalan Java 2 is now available—its latest release at press time is 2.0.1.Again, we usu-
ally recommend that you adopt the latest stable releases as soon as possible.Although
Xalan Java 2 includes some major changes with respect to Xalan Java 1, these changes

04 1089-9 Ch04 6/26/01 7:28 AM Page 67

68 Chapter 4 XML and XSLT: Xerces and Xalan

have had a relatively minor impact upon the book project because it only uses Xalan
and Xerces for simple parsing and transformation tasks.

Xalan Java 1 or 2?
You can use either Xalan Java 1 or Xalan Java 2 with the book project. Of course, the latter has not been

tested much yet—hopefully it will work as well on your system as on ours. For the latest information

regarding this and other updates of Apache software as they relate to the book project, please visit the

bonForum Project Web site:

http://www.bonforum.org

We have made some late changes to the book project to allow the use of Xalan Java 2,
release 2.0.1. However, little time was available for testing that, nor for changing the
text. Some readers will prefer to keep using Xalan Java 1 until the bug list for version
2 gets a bit shorter. For now, we have simply put a checkbox near the beginning of the
application to allow you to run the project in either its “Xalan Java 1” mode or its
“Xalan Java 2” mode.

If you do want to use Xalan 2, first check on the CD-ROM, which might have
more up-to-date information than here, and where you can find the latest Xalan
release available to us. Basically, as we write this, you have three options with regard to
Xalan and the bonForum book project Web app:

1. Use bonForum only in “Xalan Java 1” mode. First place two Xalan 1.2.2 JAR
files (xalan.jar and xerces.jar) in the Tomcat lib folder (TOMCAT_HOME\lib).
This is an easy choice, unless you need to use Xalan Java 2 (and its Xerces JAR).
Do not put the Xalan 1.2.2 JAR files in the JDK extension folder.

2. Use bonForum in either “Xalan Java 1” or “Xalan Java 2” mode. First place three
Xalan 2.0.1 JAR files (xalanj1compat.jar, xalan.jar, and xerces.jar) in the JDK
extension folder (for example, C:\jdk1.3\jre\lib\ext).The Xalan 1 compatibility
JAR allows you to run software designed for Xalan 1, together with Xalan 2.
Do not put the Xalan 2.0.1 JARs in the Tomcat lib folder.

The only disadvantage to the second option is that the following discussion in this
chapter is based on Xalan 1.2.2 and will not always apply to Xalan 2.We will note
some differences.

Xalan Java 1, release 1.2.2, has only one installation file for Windows, which
includes both the binaries and the sources. That installation file has the following
name:

xalan-j_1_2_2.zip

This installation file is included on the CD-ROM accompanying this book.You can
also download it from the Apache XML download page, which can be reached from
the main Web site at

http://xml.apache.org

Unzip the installation file so that everything ends up in a folder named xalan-j_1_2_2
under your root drive. If you unzip into your root folder, be sure that the Use Folder

04 1089-9 Ch04 6/26/01 7:28 AM Page 68

694.5 Installing Xalan

Names checkbox is selected. Check all the pathnames in the zip file to make sure that
no files will end up in the root folder.

We will assume that XALAN_HOME=C:\xalan-j_1_2_2. If that is not true for
you, please take that into consideration as you read this book.

There is a lot of helpful information about Xalan in the “Xalan Overview,” which
you can browse by starting at the following file:

C:\xalan-j_1_2_2\README.html

4.5.1 Xalan JAR File
Do not put the Xalan 1.2.2 JAR files in the ext folder for the JDK runtime environ-
ment. If you do put it there, you will not have any problems using the Xalan parser in
some situations, such as from the command line. However, when it comes time to use
it from a JSP, as we do several places in our Web application project for the book, you
will get an HTTP 500 internal servlet error.

If you are using Xalan 1.2.2 with Tomcat 3.2, the easiest way to get access to
Xerces from your Tomcat Web applications is by copying both C:\xalan-
j_1_2_2\xalan.jar and C:\xalan-j_1_2_2\xerces.jar into the TOMCAT_HOME\lib
folder.Tomcat will then automatically add these two JAR files to its classpath while
starting. Note that if you added a Xerces JAR file to this lib folder earlier in this
chapter, you will want to overwrite it with this Xerces JAR file from the Xalan
distribution (see the next section).

This solution did not work for us with Tomcat 3.1 (as discussed in the earlier sec-
tion “Xerces JAR File”).With that version (and also Tomcat 3.2), you can use a differ-
ent solution—simply add one line to the following file:

TOMCAT_HOME\bin\tomcat.bat

After the existing line that puts tools.jar on the classpath, make sure there are two
lines that put both xerces.jar and xalan.jar on the classpath, like this:

set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar
set CLASSPATH=%CLASSPATH%;c:\xalan-j_1_2_2\xerces.jar
set CLASSPATH=%CLASSPATH%;c:\xalan-j_1_2_2\xalan.jar

This will cause some extra work when you want to access Xalan from outside of
Tomcat Web applications. For example, when you run Xalan from the command line
(see the later section “Using Xalan from the Command Line”), both the Xerces and
Xalan JAR files must be on the classpath.

Warning
If you want to use the Xalan Java 2.0.1 JAR file, and its companion Xerces 1.3.0 JAR file, disregard the

advice just given. In this case, as we found out the hard way, you SHOULD put both JAR files in the JDK

extension folder (along with the Xalan 1 compatibility JAR, “xalanj1compat.jar”). If you put these JAR

files into the Tomcat lib folder, you will get an HTTP error 500 with a SAXException when our project

tries to use Xalan Java 2.

04 1089-9 Ch04 6/26/01 7:28 AM Page 69

70 Chapter 4 XML and XSLT: Xerces and Xalan

4.5.2 Matching Xalan and Xerces Versions
In the last batch file editing example, we made sure the folder for xerces.jar was the
xalan-j_1_2_2 folder. Using the xerces.jar file that comes with the Xalan download
ensures that you will still be using the correct Xerces version for the Xalan version
you are using, even if someone changes the Xerces distribution.

Changing to a newer version of Xalan usually requires a newer Xerces.The
xerces.jar file included with the Xalan download takes care of that in most situations,
but unless you have a reason not to, it is probably best to keep the entire distribution
sets for both Xalan and Xerces synchronized.

4.5.3 Xalan Documentation
Xalan is distributed with lots of information about how to use it.The documentation
also includes the API Javadoc for Xalan Java, which includes two groups of packages—
one for XPATH and the other for XSLT. (Note that Xalan 2 added and removed
packages and rearranged everything!) Also documented are the sample applications
using Xalan, which are available for you to try. In addition, a FAQ answers some com-
mon questions.The starting URL for the documentation will be something like the
following:

c:\xalan-j_1_2_2\README.html

If you are online, hyperlinks on the Overview page will let you browse much impor-
tant XSLT and XPATH documentation on the Internet. Comprehensive discussions of
XSLT and XPATH are beyond the scope of this book. Fortunately, many excellent
sources include that information. Chapter 12 lists various Web sources that can help
you begin or advance your understanding of XSLT and XPATH.Again, we also rec-
ommend Inside XML by Steven Holzner, published by New Riders.

4.6 Xalan Transforms XML Using XSLT
We use Xalan in the Web application project with this book, but only (at the present
time) for its XSLT processing capabilities.As we did for Xerces, we will give you a few
suggestions to help you familiarize yourself with concepts and code that we make use
of in the book project.

4.6.1 Xalan Samples
After you have Xalan installed, your next step should be to try the samples provided
with the distribution. First choose Sample Apps from the documentation’s menu.
Although you will gain much from trying all the samples, for the purposes of this
book it is sufficient to try only these two:

SimpleTransform

TransformToDom

04 1089-9 Ch04 6/26/01 7:28 AM Page 70

714.6 Xalan Transforms XML Using XSLT

Be sure to also read the source code for the samples.As with Xerces, you can certainly
find ways to jump-start your own development efforts by taking advantage of the
information that is provided with the source code. Just be sure to give credit to the
developers, and follow the stipulations of the Apache License.

4.6.2 Studying the API Javadocs
When you browse the API Javadoc for Xalan Java 1, be aware that for the purposes of
this book you can concentrate your attention on just one package:

org.apache.xalan.xslt

The most important Javadoc page to study in this package is the one for the
XSLTProcessor interface. In particular, you should read about its process method.You
can find lots of concise information about the process of transforming XML with XSL
stylesheets by clicking the Description hyperlinks on two of the Javadoc pages: the
Overview page for Xalan-Java and the Package page for the org.apache.xalan.xslt
package.

Much has been done to shield you as a developer from the nasty details. Click the
XSLTProcessorImpl hyperlink on the page for the XSLTProcessor class, and you will
see what we mean!

As mentioned earlier, much is changed in Xalan 2, which handles XSLT processing
using a different approach. One way to get a quick view of the changes is by following
the What’s New link from the Xalan 2 documentation Web page:

http://xml.apache.org/xalan-j/index.html

4.6.3 Studying the Source Code
If you are going to spend time studying the source code for Xalan, we recommend
that you concentrate your efforts on Xalan Java 2, because it will better prepare you to
join in the efforts of the Apache XML Project! If you also want a quick look at some
source code for Xalan 1, begin with the files from the same package we recommended
for API Javadoc browsing—namely, the Java files in the following folder (assuming the
“normal” drive and top-level Xalan folder):

C:\xalan-j_1_2_2\src\org\apache\xalan\xslt

Again, as in the API documentation, you will see that considerable complexity is
involved in this package. However, you can stay away from that by only examining the
source files for the top-level interfaces.We suggest that you look only at the files
included in the following group:

C:\xalan-j_1_2_2\src\org\apache\xalan\xslt\XSLT*.java

The code in XSLTEngineImpl.java is probably the most important in the entire pack-
age, because it is how Xalan accomplishes transformation of XML. However, it could
take a while to understand everything in that one source code file!

04 1089-9 Ch04 6/26/01 7:28 AM Page 71

72 Chapter 4 XML and XSLT: Xerces and Xalan

4.7 Using Beanshell with Xalan
We had a lot of fun using the Beanshell to learn about Xalan. In Chapter 2,“An
Environment for Java Software Development,” we mentioned the Beanshell as a plug-
in for the ElixirIDE, called bsh.jar. Look in the ElixirIDE documentation for instruc-
tions on installing the plug-in.You will then have a tabbed panel in ElixirIDE with a
Beanshell console where you can interactively execute Java statements.That is how we
use Beanshell, but you can also obtain, for free, a stand-alone version.Whether you use
it through ElixirIDE or by itself, you’ll want to check out the exciting uses for this
great tool by visiting the Beanshell Web site, which is at the following URL:

http://www.beanshell.org

We highly recommend the Beanshell approach to building applications. Interactive
environments are also ideal for learning about third-party software components,
because they let you quickly answer questions and follow up discoveries as soon as
they are made.

For example, we took some code from the Xalan 1.2.2 documentation and used
the Beanshell to step through it one line at a time.The code, which is supposed to be
compiled, illustrates the use of the trace facility that is built into Xalan.You can see the
original code by browsing a URL something like the following:

file://C:/xalan-j_1_2_2/docs/usagepatterns.html#debugging

The following is a transcript (console command history) of our interactive Beanshell
session. Note that we did have to add the last three import statements, which were not
in the Xalan sample code:

import org.apache.xalan.xslt.XSLTProcessor;
import org.apache.xalan.xslt.trace.PrintTraceListener;
import org.apache.xalan.xslt.XSLTProcessorFactory;
import org.apache.xalan.xslt.XSLTInputSource;
import org.apache.xalan.xslt.XSLTResultTarget;
java.io.FileWriter fw = new java.io.FileWriter(“c:\\temp\\events.log”);
java.io.PrintWriter pw = new java.io.PrintWriter(fw);
PrintTraceListener ptl = new PrintTraceListener(pw);
ptl.m_traceElements = true;
ptl.m_traceGeneration = true;
ptl.m_traceSelection = true;
ptl.m_traceTemplates = true;
XSLTProcessor processor = XSLTProcessorFactory.getProcessor();
processor.addTraceListener(ptl);
String xmlFile = “c:\\temp\\foo.xml”;
String xslFile = “c:\\temp\\foo.xsl”;
String targetFile = “c:\\temp\\foo.out”;
XSLTInputSource xmlIn = new XSLTInputSource(xmlFile);
XSLTInputSource xslIn = new XSLTInputSource(xslFile);
XSLTResultTarget targetOut = new XSLTResultTarget(targetFile);
processor.process(xmlIn, xslIn, targetOut);
pw.close();
fw.close();

04 1089-9 Ch04 6/26/01 7:28 AM Page 72

734.10 Xerces and Xalan versus XT and XP

Note that you must use \\ instead of \ in the file path strings.You will get an error if
you instead try something like this:

java.io.FileWriter fw = new java.io.FileWriter(“c:\temp\events.log”);

If you try this example, be sure to take a look at the events.log produced by this ses-
sion, as well as the target file. Of course, where the use of the Beanshell really makes
sense is during the development of your own classes.The example we just gave is a
rather contrived example of its use, but we selected it because it is “on topic” here.
Hopefully it is less confusing out of context than some other trials we made.

4.8 Using Xalan from the Command Line
Choose the Command Line menu item in the Xalan documentation to find out how
to use the Xalan command-line utility. Be sure to check out the many options avail-
able, which you can also see by entering the processing command line without any
arguments at all.

This utility is a great way to set up a fast interactive session for learning XSLT and
XPATH.We have made use of Xalan from the command line in several ways. One
way, discussed later in the book, was to develop the XSL style sheets that we use in the
Web application project for this book.

Another way we used “command-line Xalan” was to organize the many notes we
took while doing online research for this book.These notes were kept in XML files,
each item within paired XML tags. Our tags established a hierarchical classification
system of topics based on our initial outline for the book.After the research, we wrote
some style sheets to select notes for each chapter and section of the book.We used
Xalan from the command line to extract the notes into separate files.This was an
extremely convincing XSLT exercise!

4.9 Zvon XSL Tutorial
We found online an excellent tool for learning XSLT and XPATH. It is an interactive
tutorial.You can either use it online or download it for use on your own system.The
URL when we visited was as follows:

http://zvon.vscht.cz/HTMLonly/XSLTutorial

You might want to try browsing the main Web site page to see the other tutorials and
information available at this interesting Web site:

http://zvon.vscht.cz

4.10 Xerces and Xalan versus XT and XP
We were curious to see how the XSLT transformation examples would work with
Xerces and Xalan, instead of XT and XP, which were used in the Zvon tutorial just
discussed. So we used the Xalan command-line utility to replicate some of the trans-

04 1089-9 Ch04 6/26/01 7:28 AM Page 73

74 Chapter 4 XML and XSLT: Xerces and Xalan

formations.We found only two minor differences.This was a while ago, so the newer
versions might do even better.You can expect a convergence of functionality among
the leading XML parsers and XSL processors, with the possible exception of the
Microsoft ones.

4.11 JSP and XML Synergy
Because the focus of our book includes JSP as well as XML, it is interesting to look
for the possible synergy between the JSP technology and the XML-related technolo-
gies.We should see what support for XML there is in the JSP implementation avail-
able to us, which is version JSP1.1.We can get the best information, right from the
horse’s mouth, at the following Web address:

http://java.sun.com/products/jsp/

The JavaServer Pages 1.1 Specification of November 30, 1999 (JSP 1.1) only begins to
deliver on two powerful planned features.The first is that XML tools will be able to
create, open, and edit JSP pages in their new XML representation.The second is that
JSP tools will then accept these XML “formatted” JSP files.

4.11.1 XML Compatibility of JSP
Most, but not all, of the JSP syntax is XML-compliant. Specifically, most JSP content
can be contained between valid XML tags. But the “original” syntax for JSP has some
other elements that are not valid XML. One example of this is the way JSP allows ele-
ments for its scripting and directives, which is for the page author to include such
content within opening and closing <% and %> tokens.

There are other XML “incompatibilities” about JSP as well. One is that an XML
file can have only one root element, but a JSP maintains more than one layer of infor-
mation on a page by using more than one tree.An XML parser will not ignore a tag
that it doesn’t know, but a JSP container must do so. In order for you to use a left-
angle-bracket character in an XML document without the parser seeing it as a tag-
opening token, the left-angle-bracket character must be put inside a CDATA element. In
JSP, you can put the left-angle-bracket character within the <% and %> without a
problem.

The JSP 1.1 specification did not try to get rid of these differences in syntax.
Instead, the step it took was to define an XML representation of a JSP page. It is
therefore now possible to convert a JSP page into an XML page and to convert such
an “XML” JSP page back into “real” JSP.This means that JSP-enabled servers will be
able to accept JSP content represented in XML.

How does the translation of JSP into an XML-compliant form work? First, in
order to satisfy the “one root” rule of XML, the process of translating a JSP page into
XML begins by “encapsulating” the JSP content in a single root XML element like
this:

04 1089-9 Ch04 6/26/01 7:28 AM Page 74

754.11 JSP and XML Synergy

<jsp:root xmlns:jsp=http://java.sun.com/products/jsp/dtd/jsp_1_0.dtd>
All the JSP stuff goes here...
</jsp:root>

Note that in the opening tag, a namespace is declared for the JSP prefix.The rest of
the translation of “normal” JSP syntax into acceptable XML syntax uses that JSP
prefix.

4.11.2 Putting Java Code in XML
We will not describe all the mechanics of the translation process just discussed.You can
read about that in the specification. Here is one example, though, that shows the plan.
Let’s say you have scriptlet code in its JSP representation:

<% Code Goes Here %>

To translate it to an XML representation, you need to create a prefixed element as fol-
lows:

<jsp:scriptlet> Code Goes Here </jsp:scriptlet>

Note that you can therefore use JSP tags to put Java code in an XML document.

4.11.3 Creating XML with JSP
You can include XML in a JavaServer Page as part of its passive template content. It
will then be output to a browser just as HTML tagged content is. Perhaps more useful
is to define some custom JSP tags, or a bean object, that will put your XML into the
JSPWriter output from the compiled JSP.

04 1089-9 Ch04 6/26/01 7:28 AM Page 75

04 1089-9 Ch04 6/26/01 7:28 AM Page 76

bonForum Chat Application:
Use and Design

5

THIS CHAPTER INTRODUCES YOU TO BONFORUM, the Web chat application that will
be the major subject of the rest of the book. bonForum was designed as a tool to
explore each of the subjects of this book, XML, XSLT, Java servlets, Java applets, and
JavaServer Pages, while solving some real Web application problems.

5.1 Installing and Running bonForum
You can understand the remainder of this book much more easily if you have installed
and tried out the Web chat application that it features.Therefore, we begin this chapter
with instructions for installing and running bonForum.

5.1.1 A Preview of the Rest of the Book
After helping you install and try bonForum, this chapter gives you some hints about
how you can customize bonForum and develop it further yourself.After that, we dis-
cuss the design process.This chapter ends with some additional material about using
XML data in Web applications.

The next chapter continues this overview of the entire bonForum project and
begins by describing the implementation that our design led us to develop.That chap-
ter ends with highlights of some of the major problems that we encountered, together
with solutions found and solutions planned.

05 1089-9 CH05 6/26/01 7:29 AM Page 77

78 Chapter 5 bonForum Chat Application: Use and Design

In Chapters 7–11, we cover in detail the code that we developed as we created this
prototype for a multiuser, server-based Web application. Each of those chapters focuses
on a different software technology that we applied to create the bonForum Web chat
and uses excerpts from the source code to illustrate the discussion.

At the end of the book, you will find a listing of Web sources that might help you
as you further explore the subjects of this book or as you try to fill in the gaps in its
coverage of those subjects.Appendix A,“CD-ROM Contents,” shows you what is on
the book’s accompanying CD. Finally, in the back of this book you’ll find the full
source code for the bonForum project, with all its warts and wrinkles.

5.1.2 Checking Tomcat Server Availability
If you have read this far in the book, you likely have realized that to develop Web
applications using Tomcat Server, you will need to have one available that you are free
to use as a developer. Quite a few network and machine setups exist—some quite
complex—that enable you to develop and test Tomcat Web applications. Some installa-
tions, for example, might feature several Tomcat Servers being used by developers, even
while other Tomcat Servers are running deployed applications over the Internet or an
intranet.

To avoid introducing such complexity into the discussion, we usually assume that
you have full access rights to a Tomcat Server that is on the same domain as the
browsers that you will be using to test the bonForum Web application.We usually will
not be giving URL examples that include domain names.We always assume that you
have the freedom to stop and restart the Tomcat Server and to edit and add files to its
directory space.

Instructions for getting, installing, and running Tomcat Server are covered in
Chapter 3,”Java Servlets and JavaServer Pages—Jakarta Tomcat.”You will need to have
a suitable Java SDK installed on the Tomcat Server machine to use JSP and, therefore,
to use the bonForum Web chat application.

Port Number for Tomcat
Throughout this book, we assume that your Tomcat Server is configured to use its default port number,

port 8080. If that is not the case, you will need to change that in the examples given to the port number

that you are using. If you are accessing Tomcat through another Web server, such as Apache Server, you

might need no port number at all.

Trying the Tomcat Examples

First, be sure that you have a Tomcat Server installed and running on your system.You
can verify this by using your browser to display the HTML document that gives access
to the JSP and Java servlet examples packaged with Tomcat. If the browser is on the
same host as Tomcat, first try to browse the following URL:

http://localhost:8080

05 1089-9 CH05 6/26/01 7:29 AM Page 78

795.1 Installing and Running bonForum

If the browser that you are using is on a different host from Tomcat, you should
instead use one similar to this one for a host named Freedom:

http://freedom:8080

Using IP Address Instead of Hostnames

With Internet Explorer 5.X, you can use a URL with the hostname even for the local
host. However, we tried without success in our Netscape browser to use both of the
previous address examples to browse the bonForum Web application.After that failure,
we ran the ntconfig.exe program from an NT command window.That gave us the IP
address for the machine on which Netscape was running, and we put that in the URL
instead.That gave us an address like the following:

http://192.168.165.99:8080

That URL worked for Netscape and brought up the Examples Web page for the
Tomcat Server.At least we knew then that the problem was a result of using the
domain name form for the address. However, the bonForum application then ran only
until it needed to use frames on a page, when it displayed instead our (nonfunctional)
noframes.html link, which is for browsers that are not frames-capable or that have
frames capability turned off.

To avoid wasting effort, we decided to postpone handling cross-browser compati-
bility issues until we had settled on a final user interface.We stayed with our plan to
make Internet Explorer 5.X the only browser until after extensive testing of a
prototype.

When Tomcat Server Is Not a Standalone Server

You might be running another Web server besides Tomcat—for example,Apache
Server or Microsoft IIS. If so—and if you have configured it to use the Tomcat Server
to handle JSP and Java servlet requests, and if you have also configured it to use
Tomcat for requests whose paths begin with /examples—then you can test the Tomcat
Server by requesting its Examples Web app through the “main”Web server.To do so,
you browse a URL like one of the following:

http://localhost/examples
http://freedom/examples/

Many possible ways exist to set up Tomcat as the Java servlet container for another
Web server.Therefore, the best advice that we can give you is that you should review
the information about setting up Tomcat with Apache Server, found in the document
“Tomcat—A Minimalistic User’s Guide.”That very helpful guide is supplied with the
Tomcat Server download in the file TOMCAT_HOME\doc\uguide\tomcat_ug.html.

TOMCAT_HOME is the path to the folder where you installed Tomcat Server.
On our system, it is c:\jakarta-tomcat. Of course, you will need to substitute your own
Tomcat Server home folder path in the previous URL, as in many others in this book.

05 1089-9 CH05 6/26/01 7:29 AM Page 79

80 Chapter 5 bonForum Chat Application: Use and Design

5.1.3 Installation as a Tomcat Web App
The most convenient way to install a Web application for Tomcat is as a single com-
pressed file containing all the required files. In reality, such a file is just a .zip file, but
the convention is for it to have a filename extension of .war.We have provided our
chat room example on the accompanying CD in a .war file called bonForum.war.

Installing bonForum could not be simpler. First, make sure that there is not a folder
with the name TOMCAT_HOME\webapps\bonForum on the server with Tomcat. If
this folder exists, then it must be deleted before the new bonForum.war distribution
file is used.

Copy the bonForum.war file into the Webapps folder under your
TOMCAT_HOME folder. For example, if your Tomcat was installed with a
TOMCAT_HOME of c:\jakarta-tomcat, then you should end up with
c:\jakarta-tomcat\webapps\bonForum.war.

If the Tomcat Server is running, shut it down using the shutdown.bat command file
in the TOMCAT_HOME\bin folder.When you restart Tomcat, it will find the .war
file and automatically unzip it under the Webapps folder into its own folder named
bonForum. On the NT command window for Tomcat Server, you now should find a
line something like the following:

2001-03-09 02:11:55 - ContextManager: Adding context Ctx(/bonForum)

Tomcat assumes that a .zip archive file that it finds in its Webapps folder is an
archived Web application and automatically installs the context for it to run.There
is also an alternate way to install a Web application, by entering some information
about it into the server.xml Tomcat configuration file, which is found in the
TOMCAT_HOME\conf folder.You will need to use this nonautomatic installation
method for either or both of two reasons: First, you want to install a nonarchived
Web application. Second, you want to specify values for some Web application
settings (such as docBase) that differ from the default values.

5.1.4 Running bonForum
You should now be able to begin your tour of the bonForum Web chat by browsing a
URL something like one of the following (with or without the 8080 port number):

http://localhost:8080/bonForum
http://balderdash:8080/bonForum
http://192.168.165.99:8080/bonForum

That should display in your browser the default document for the bonForum Web
application, the file TOMCAT_HOME\\webapps\bonForum\index.html. Click the
bonForum logo to start the Web application on your browser.The bonForum user
interface is simple enough, so little help is needed for you to try it out now. If you
need help, you can look ahead to Chapter 7,“JavaServer Pages:The Browseable User
Interface.”

05 1089-9 CH05 6/26/01 7:29 AM Page 80

815.1 Installing and Running bonForum

Here are a few tips to get you started:
n Don’t expect a polished application or user interface.This is an experimental

prototype, and you will find problems to solve.
n First try becoming a host by starting a chat; otherwise, you might find no chats

listed for you to join.
n Start up a second browser, on the same host or another that can access the Web

app. Become a guest on the chat you are hosting.
n Nicknames in bonForum must be unique. If one is rejected, try again.There are

no messages yet to explain the rejection.
n You may or may not need to download or configure the Java plug-in. Enabling

Java Console for Plug-in might provide help.
n Using the browser’s Back arrow is not always convenient here. Exit or reenter a

new nickname instead.
n You may get frequent errors regarding .gif files on the console output.This is a

harmless problem often reported with Tomcat 3.2.

5.1.5 First JSP Requests Require Patience
Be patient. Especially if you are running your computer at nearly its limit for memory
and machine cycle resources, be patient.You will experience user-unfriendly delays.
Your computer might need to find and start up a new Java virtual machine and then
load all the classes it needs to compile JSP files into Java HTTPServlet class files. Each
new JSP file that it encounters will need to be compiled, which takes time.After com-
pilation, JSP can output HTML to your browser at a much more exciting tempo.

Here are two thoughts to keep in mind whenever you first try using any Web
application that uses JSP technology:

n Be patient! Compiling takes time, and a JavaServer Page will not thrill you with
its speed the first time a browser requests it.

n Users will not experience JSP compilation delays if you make sure to visit all
the JSP documents in the application when you deploy it.

5.1.6 One Java Applet and the Sun Java Plug-In
Perhaps you already have the Sun Java Plug-in installed on the machine with the
browser, for example, from this book’s CD-ROM. In that case, there will be some
delay while it starts up the BonForumRobot Java applet that is used by bonForum.
This delay happens only once—each time you start the bonForum application on the
server, which happens automatically whenever Tomcat Server is restarted. Depending
on how your Sun Plug-in is configured, starting up the applet can take quite some
time.

However, if you do not yet have the Sun Plug-in installed on the machine on
which the browser is running, you will be asked to approve its download from the Sun
Web site. Before you OK that, be aware that this might require quite some time if you

05 1089-9 CH05 6/26/01 8:10 AM Page 81

82 Chapter 5 bonForum Chat Application: Use and Design

have a slow connection to the Internet.You will not be able to run this version of the
bonForum Web chat without having the Sun Java plug-in available. For more on that,
see Chapter 9,“Java Applet Plugged In: BonForumRobot.”

Non-Applet Version of bonForum

Some people have objected to the use of an applet in bonForum and would rather see
a purely server-side chat solution.That would require replacing our applet-based
mechanism for refreshing user interface content (chat messages and so on) with differ-
ent mechanisms that are not based upon an applet. In fact, our first version of
bonForum did work without an applet (using the refresh Pragma), but the flashing of
the refresh bothered us, so we went to the BonForumRobot applet solution.

5.1.7 Frames and Tables Required
The browser that you use to enter bonForum must be capable of displaying HTML
tables and frames.Again, we “certify” bonForum use only with the IE5.X browsers, in
which that is not a problem. It would be possible to have a version of bonForum that
does not require tables or frames. In fact, we also began the project without either
tables or frames, but we found the results to be less than satisfactory.

5.1.8 Problems Running bonForum
Perhaps the most common problem encountered while trying to install and run a new
Java application is that it throws the java.lang.NoClassDefFoundError exception. If
you did not tell Tomcat where to find the Apache Xerces XML package correctly, for
example, you will not get far into bonForum before you encounter such an exception.
Such exceptions should be politely shown to the user on an error page, and Tomcat
has a facility for doing that.We did not add “polite” error handling to bonForum yet,
so you will get the following rude message on your browser instead:

Error: 500
Location: /bonForum/servlet/BonForumEngine
Internal Servlet Error:
java.lang.NoClassDefFoundError: org/apache/xerces/framework/XMLParser
at java.lang.Class.newInstance0(Native Method)
at java.lang.Class.newInstance(Class.java:237)
at org.apache.tomcat.core.ServletWrapper.initServlet(
ServletWrapper.java:298)

The result of this error is that you cannot proceed; you must quit the application and
fix the classpath problem.

05 1089-9 CH05 6/26/01 8:10 AM Page 82

835.2 Changing the bonForum Web Application

5.2 Changing the bonForum Web Application
Although you might want to wait until you have read the rest of this book before
editing and recompiling the source for the bonForum project, we feel certain that you
will be sorely tempted to do so at some point.The software contains many loose ends
and potential bugs that will no doubt aggravate you, and fixing these can be valuable
learning experiences. (We would like very much to hear of these—you can email us at
email@bonforum.org).

5.2.1 Compilation of Java Source
See Chapter 2,“An Environment for Java Programming,” for help in setting
up the necessary tools to compile this Web application.All the Java source
code files for the de.tarent.forum package are found in the folder
TOMCAT_HOME\webapps\bonForum\web-inf\src\.

You can configure your IDE to compile these and place the compiled
class files into the folder where they will be used.An alternative is to run the
BonMakeIt.bat command file provided in the source folder.The compiled
de.tarent.forum package (but not the bonForumRobot applet class) goes in
the folder TOMCAT_HOME\webapps\bonForum\web-inf \classes\.

The Java source code files can be compiled in the following order, among others:

BonForumUtils.java

BonLogger.java

BonForumTagExtraInfo.java

OutputPathNamesTag.java

OutputChatMessagesTag.java

OutputDebugInfoTag.java

NoCacheHeaderTag.java

Xalan1Transformer.java

Xalan2Transformer.java

TransformTag.java

NodeKey.java

BonNode.java

ForestHashtable.java

BonForumStore.java

BonForumEngine.java

These Java files are not all there are, however.The source for the BonForumRobot
applet source file can also be found in the folder TOMCAT_HOME\webapps\
bonForum\web-inf\src\. Compile it after the others, and arrange to have its two
compiled class files stored in the folder TOMCAT_HOME\webapps\
bonForum\jsp\applet\.

05 1089-9 CH05 6/26/01 7:29 AM Page 83

84 Chapter 5 bonForum Chat Application: Use and Design

5.2.2 Editing of JSP Files
To be accessed by Tomcat Server as part of the bonForum Web application, the JSP
files for bonForum must be located in the folder TOMCAT_HOME \webapps\
bonForum\jsp\forum.

We have found the Textpad editor from Helios Software Solutions to be very
convenient for editing the JSP files.A trial version has been included on the CD
for this book, under the \tools folder.You can find out more about this editor at
the following URL:

http://www.textpad.com

If you have already requested any JSP files from Tomcat Server using a browser, you
can look in its work folder, which is called work (unless this default name has been
changed in its server.xml configuration file).You will find a folder there for each con-
text. For example, for the examples that come with Tomcat, you will find the folder
TOMCAT_HOME\work\localhost_8080%2Fexamples.

Inside these Work subfolders, you will see some Java class files with long, strange
names, such as this one:

_0002fjsp_0002fsnp_0002fsnoop_0002ejspsnoop_jsp_0.java
_0002fjsp_0002fsnp_0002fsnoop_0002ejspsnoop.class

These are the .java files and compiled .class files created by Tomcat from the JSP files.
The first time that each JSP file is requested, it gets compiled and placed here, where it
can then serve requests for the JSP file. If you make any changes to the JSP file,
Tomcat creates a new .java and .class file, changing the numbers that are embedded in
the long filenames. It is very instructive to look at the Java files that are produced in
the Work subfolder in your favorite editor because you can experiment with using JSP
files. Doing so can also help you understand the error messages that you get from JSP
compilation because they have line numbers that you can look up in the source here.

Some Problems Found with JSP

A few times we found that Tomcat could not compile a JSP file.Then, strangely
enough, it sometimes used not the most recent successfully compiled class file, but the
next older one! In these cases, stopping and restarting Tomcat fixed the problem.

Another useful trick required at times has been to stop Tomcat, delete the entire
Work folder for the bonForum project, and then restart Tomcat. Sometimes it has also
been necessary to restart the browser (note that you always must do that if you change
and recompile an applet class). In one case, we even needed to reboot the NT Server
before we could get the new JSP functioning.

You should definitely keep backups of any JSP files that you do not want to lose.
For a while, our Internet Explorer was fond of changing the JSP file into an HTML
file—in Unicode and full of browser-specific stuff. It somehow did so without even
changing the file attributes.These JSP files became noneditable and had to be replaced
by the backups that we had luckily made.

05 1089-9 CH05 6/26/01 7:29 AM Page 84

855.2 Changing the bonForum Web Application

Lest you think that you are in for an unpleasant development experience, we hasten
to add that the latest versions of Tomcat and the other software that we use have
proven themselves very robust and stable. Hopefully, you will not need these tricks that
we mention!

5.2.3 Modifying Style Sheets
The XML and XSL files for the bonForum Web application (plus a few batch files for
testing things) are found in the folder TOMCAT_HOME\webapps\bonForum\
mldocs (the “ml” stands for “markup language”).

You can experiment quite easily with the chatItems.xsl style sheet document to
change the appearance and even the functionality of the list of available chats that is
displayed for a user who is looking for a chat to join.Alternatively, you can come up
with a new version of chatGuests.xsl to change the way the list of guests in a chat is
presented to its host for rating changes. Read the last section of Chapter 10,“JSP
Taglib and Custom Tag—Choice Tag,” for help with XSLT as it is applied in the
bonForum Web application.

5.2.4 Using Logs to Develop and Debug
The best and most inexpensive way to debug what a servlet does is by having
it create a log file for you. Our log files are built up by the accumulated results
of calls to a method in our BonLogger class.They are created in the folder
TOMCAT_HOME\webapps\bonForum\WEB-INF\logs\.

Our crude implementation of logging in the project could definitely be improved,
but it helped enormously anyway.You can control its output destination by setting the
logging init parameter in the web.xml configuration file to none, all or file.

This time-honored technique from lower-level programming practice should not
be underestimated.We routinely log lots of output from our Java servlets.

Periodic Maintenance of Log Files Required

A few of the many calls to logging methods (in the source code) have been left in the
source code because they give indications of errors that have occurred. Unless you
have turned off logging in web.xml, the resulting log files (which, for now, are created
in the TOMCAT_HOME\logs folder) will continue to grow, requiring eventual dele-
tion by a human operator. Unlike all those Java class instances that you can leave lying
around for the garbage collector, these log files will stick around until you—or some-
one else—delete them. In the future, the task of managing the growing log files could
be assigned to a background task.

05 1089-9 CH05 6/26/01 7:29 AM Page 85

86 Chapter 5 bonForum Chat Application: Use and Design

5.3 Using XML to Design Web Applications
Before we designed and developed the bonForum chat application, we spent some
time using XML to model the structure, dynamics, and data that exist in a simple mar-
ketplace.The possibilities that this approach opened up were exciting.We wanted to
simulate a marketplace by using that XML-based model for a Web application, but we
knew that a simpler case would make a better first choice for a prototype and experi-
mentation.

At about the same time, we stumbled upon the “Cluetrain Manifesto” on the Web,
found at the following URL:

http://www.cluetrain.com

Although the entire manifesto is fascinating, it was the first statement of the manifesto
that really struck us:“Markets are conversations.”

We had also just been checking out a chat Web site.This simple statement instantly
made clear to us that our marketplace-modeling project should be preceded by a sim-
pler chat-modeling project.A model of a conversation would intrinsically include the
essence of a market.A model of a forum could be extended into a model of a market-
place.

5.3.1 What Is Meant by an XML Design
We followed one simple design rule:The model that we built was to be representable
as an XML document.The root of this document, in the case of the marketplace
model, was named bonMarketPlace, where bon is Latin word for “root,” meaning
“good.”The root element of the new forum project could have been bonChat, but
bonForum seemed to better encompass the greater possibilities inherent in conversa-
tions, such as commerce. Conversations—that is, chats—are only one commodity of
those that could be exchanged using the bonForum Web application framework.

In the succeeding months, we found that by developing an application based upon
an XML-representable design, we gained both simplicity and power.This simple devel-
opment model kept us from creating an architecture and implementation that were
overly complex, which is a common pitfall in many software projects. Just as impor-
tant, the data that our application needed to handle became active—the data partici-
pated in the design of the application from the very beginning.

These are some of the real benefits of XML-based technologies. XML is not just a
way to mark up and organize data. XML also can—and should—guide the definition
and design of the Web application itself.

Too often, the architecture and logic of an application determine its input and out-
put requirements. However, just as JSP has inverted the Java servlet, XML should
invert the Web application. Both of these inversions can be used for the same purpose:
to enable human (or robot) interaction, in one case with the servlet and in the other
case with the Web application.

In this part of this chapter, we discuss the process of designing the bonForum Web
application. Some of the ideas that we cover were used in the project; others were left
out for one reason or another.

05 1089-9 CH05 6/26/01 7:29 AM Page 86

875.3 Using XML to Design Web Applications

5.3.2 Actors, Actions, and Things
The children of the root element in the bonMarketPlace XML model are named
Actors,Actions, and Things.The Actors element has children such as Buyer and
Seller.The Actions element has children such as Sells and Buys.The Things element
has many children, such as House, Car, Pizza, and Beer.With this simple model, we can
model such market realities as Seller Sells Car and Buyer Buys Lemon.

Let’s see how a similar framework can reflect the elements to be found in a highly
simplified chat forum.There are two actors in our simple forum, one a chat host and
the other a chat guest.They are both engaged in one action:They talk.The thing they
talk about is the topic of the chat.We can diagram this forum and its mapping in our
Actors-Actions-Things XML framework, as shown in Figure 5.1.

5.3.3 XSLT in XML Web Applications
XML technologies are still evolving, and many variations and extensions of the basic
idea already exist.We can say that today one central and exciting area is the use of
XSLT to map XML on a server to HTML on a browser. In very simple terms, we can
diagram an XML Web application based on XSLT transformation in the manner
shown in Figure 5.2.

Talk

Host Topic

Forum > > > > > > >

Guest Topic

Talk

Actions

Actors Things

bonForum

Actors Things

Actions

Figure 5.1 The forum and its users are reflected in the bonForum model.

XML Data Document

XSLT Transformer

HTML Web Documents

XSL Stylesheets

Figure 5.2 The bonForum model is transformed into the bonForum Web application.

05 1089-9 CH05 6/26/01 7:29 AM Page 87

88 Chapter 5 bonForum Chat Application: Use and Design

This technology enables you to use XSL to design dynamic user interfaces. If our
Actors-Actions-Things XML model has succeeded in capturing the static and
dynamic elements of the Web application, it can be transformed into the HTML
browser representation of the application with the help of XSLT and style sheets.

5.3.4 A Model of the Interaction Between Users
Our design must also take into consideration the interaction between the users of the
application.The users of a multiuser Web application are represented in our XML-
based model as children of the Actors element. Usually we think of these users as
people sitting at a Web browser anywhere in the world, but they could just as easily
be robots or client applications.

User interaction is obviously essential to any Web chat application. In Figure 5.3,
we again include only two representative bonForum actors in this other context that
our XML-to-reality mapping must encompass.

5.3.5 No UML and Data Management Tools Used
Usually at this point in the design process, we would have used a UML modeling tool
to design our application.We also would have selected a database management system
because handling chat data is an obvious job.We decided against that for several rea-
sons. One is that we did not want to assume that all our readers are familiar with these
professional tools, a thorough discussion of which is beyond the scope of the book.A
more important reason is that a major goal of our project was exploration and experi-
mentation.We wanted to find new approaches to designing and implementing Web
applications. Furthermore, we wanted to build a learning platform for experimenting
with servlets and JSP, applets, XML, and XSLT. If you are primarily interested in find-
ing a real-world example that follows standard software engineering practice, you
might think that we are being too academic. However, we feel strongly that the best
way to learn about tools is to play around with them for a while.

HTML Web Documents

IP Networks IP Network

Chat Host Chat Host

Figure 5.3 The bonForum Web application involves and connects the forum users.

05 1089-9 CH05 6/26/01 7:29 AM Page 88

895.3 Using XML to Design Web Applications

5.3.6 No Interface and Class Design Used
Of course, we could not avoid at least considering the analysis of our application from
an object-oriented perspective.We felt compelled to look for the Java interfaces and
classes that we would build.Would not Host and Guest make good classes? Could they
not share an Actor interface?

An Action interface could act as the verb in Actor-Action-Thing statements.Then
Start, Join, Execute, and Exit would implement this Action interface, and their
instances would handle specific types of actions. Perhaps instead it would be better to
put Start, Join, Execute, and Exit methods in the Action interface.We spent some
time analyzing chat forums along these lines, coming up with designs such as the one
represented in Table 5.1.

Table 5.1 Alternative Interface-and-Class Design for bonForum

Interface Class

Actor Visitor

Host

Guest

System

Action Start

Stop

Join

Execute

Exit

Thing Identity

Subject

Chat

Message

Forum

Again, however, we turned away from familiar design methodology.We decided to stay
with our XML-based application design principle.The classes that we were busy iden-
tifying would instead become child elements of the Actors,Actions, and Things ele-
ments in our XML document.

We do not mean to say that we wanted to exclude objects from the application.
Certainly, XML and Java representations are complimentary, not exclusive.As we will
detail further, the capability of XML to model the world of a forum was to be com-
plemented by the capability of JSP to generate servlet classes mapped to that model
and to provide an extensible,Web-based view of that model.

05 1089-9 CH05 6/26/01 7:29 AM Page 89

90 Chapter 5 bonForum Chat Application: Use and Design

5.3.7 A More Developed View of bonForum
We continued designing the tree that would become our XML document. Each node
in the tree would become an XML element node.Actually, Figure 5.4 has been
updated to resemble more closely the elements that we ended up using in the project.

As you can see, we are now including “key” nodes that related their parent ele-
ments to other nodes in the tree.To get the host that had started a chat, we used the
HostKey child of the chat node. Not shown in this diagram is another aspect of the
design: Each XML element has a “key” attribute that uniquely identified it.As we shall
later discuss in detail, these keys enable us to store and retrieve the XML representa-
tion to and from a relational database.

5.3.8 An Early JSP-Based Experiment
We wanted to start experimenting with the design as something that could represent
the bonForum as data that changes with the passage of time. In other words, we
wanted to have a way to create events that would change the content of the XML
data.

bonForum

Actors

host

guest

actorNickName

actorNickName

Actions

starts

joins

chatKey

chatKey

Things

Subjects

chat

aardvarks

zylophones

SubjectKey

HostKey

GuestKey

MessageKey

Message

HostKey

Figure 5.4 Designing bonForum XML using a tree diagram.

05 1089-9 CH05 6/26/01 7:29 AM Page 90

915.3 Using XML to Design Web Applications

Using the elements of this early design, that meant being able to represent, for
example, host starts chat as an event created by a user, which would add a host
element, a starts element, and a chat element to our XML data and the various
subelements that these required.

We decided to create a JSP document that would make this possible.The page,
called choose.jsp, would display HTML on a browser to enable a user to select an
Actor, an Action, and a Thing, using three select controls that were filled using the
XML data. For example, the user could select host starts chat.

The user would have another select control available that would list all the subject
items in the data.The selected subject item would become the subject of the chat.
Experimenting with this simple JSP was very valuable and greatly influenced the
implementation of the project.

5.3.9 Experimenting with Cookies
We needed some design-testing experiments that took into consideration the fact that
bonForum was to be a multiuser application. On the Web, one way to keep track of
users is with cookie objects.A cookie object packages information so that the server
can send it to a browser.The browser keeps the cookie and then sends it back to the
server along with its next request. Having a globally unique identifier associated with
each browser allows the server to keep track of all the browsers—at least, as long as the
browser user agrees to enable cookies.

Other information included in the cookie allows the server software to maintain a
context that includes multiple visits by one or more browsers.The HTTP protocol by
itself is “stateless.” Requests coming from browsers to a server are disconnected events.
One way to connect the various requests is to use information stored in the cookies
that a browser includes with each request.That can connect browsers in a Web appli-
cation, and it can also connect requests coming from a given browser.

Displaying Cookies in JSP

Just in case you want to experiment with cookies from a JSP page, here is some code
that we used to display their name/value pairs on the browser page:

<%
Cookie[] cookies = request.getCookies();
Cookie cookie = null;
out.println(“<H3>Cookies in request:</H3>
“);
for (int i = 0; i < cookies.length; i++) {
cookie = cookies[i];
out.println(“\t“ + cookie.getName() + “ = “ + cookie.getValue() + ““);
}
%>

Experiments with cookies led us to create a design that was later discarded but that
nevertheless began to clarify the problems that would have to be solved to deal with

05 1089-9 CH05 6/26/01 7:29 AM Page 91

92 Chapter 5 bonForum Chat Application: Use and Design

multiple-user contexts.This design was based on using cookies to control the XSLT
process that was illustrated previously in Section 5.3.3,“XSLT in XML Web
Applications.”

One example can illustrate the plan.When a user started a chat in the bonForum,
the browser would include in its response to that action a cookie that had two
key/value pairs, one with the new user status and the other with a key to the chat that
was created.That would look like this:

Cookie: Status=“host”, Key=“8734568345”

When the browser sent its next request—say, to send a message to the chat—the
server-side software knew from the cookie that the user’s status was “host.”The key
value identified one element in an XML file.With that key, the application did not
need to use some complex XPATH expression to find that element; it got it directly
using the key.Also, the XSL to apply to the XML data using the XSLT processor was
determined according to the cookie value.

It turned out that we did not use that design, but it was through experimentation
such as this that we found out the real problems that we had to solve in any design.
Although these problems could have been solved by manipulating cookies directly, we
instead availed ourselves of the more complete, robust, and user-friendly session man-
agement offered by the Tomcat Servlet engine (which itself uses cookies and URL
parameters to maintain state). If you want to explore this fascinating subject in depth,
we suggest studying what the Jakarta Servlet API 3.2 documentation has to say about
the cookie, HTTPSession class, and related interfaces and classes.Then study the source
code that implements this API, which is in the package org.apache.tomcat.session in
the Tomcat source.

5.3.10 And the Winner Is JSP Design
Initially, we were using JSP as a convenient way to write server-side Java code that
understood the HTTP game of request and response, application contexts, and so on.
Our focus was on using XSLT and cookies to design our application. Gradually, how-
ever, we started realizing that JSP could play a much more direct role in bringing our
XML-based design to the Web.

The main reason for the increased role of JSP was the ease of establishing a rela-
tionship between a series of Web pages that a user traverses as they change states in the
application, and between a series of JSP pages that create the HTML for those Web
pages.

Sending Three-Part Commands to the Server

At first, our idea was to send our Actor-Action-Thing statements to a Java servlet,
which would interpret them and control an XSLT engine.That XSLT engine would
thus create HTML as an application-dependent response to each Actor-Action-Thing
statement.We started calling these statements “three-part commands.”We created a

05 1089-9 CH05 6/26/01 7:29 AM Page 92

935.3 Using XML to Design Web Applications

simple prototype Web page that could be used to send such commands to a server. It
posted each of the three parts of a command in separate input fields of an HTML
form element. Here are the contents of that file:

<html>
<body>
<h1>Test the bonForum:</h1>
<h2>Enter combinations of actor, action and thing, for testing!</h2>
<form method=“POST” action=“forum” >
<input type=“text” name=“actor”>
<input type=“text” name=“action”>
<input type=“text” name=“thing”>
<input type=“submit” name=“forum”>
</form>
</body>
</html>

To POST or to GET,That Is the Question

We would rather use a POST operation because we do not want to have all the para-
meters and values appended to the URL, especially if we start sending encoded XML
parameters.The URL displayed in the browser is part of the page, and it affects the
appearance. However, there is a price to pay for this aesthetic decision. POST operations
have two very large drawbacks:They require extra user input to refresh, and they
expire in the browser, limiting the user’s ability to navigate with browser controls.Also,
the decision to use POST operation was made before our project began using frames.
The ugly URLs of GET operations are of less importance now, so perhaps we will
revise that decision.

Forwarding Each Request to a JSP

At about the same time, we realized that it was easier to create a different JSP page to
handle each three-part command than it was to continually revise a Java servlet so that
it could parse each command and act accordingly.The servlet task could then be to
simply forward the request to the correct JSP, which would be named after the three-
part command. For example, if the command were visitor creates chat, then the
servlet would forward the request that it received from the form POST to a JSP file
named visitor_creates_chat.jsp.

We had now found the central control mechanism for the Web chat application.
This seed became the bonForumEngine class, the “central station” of the Web applica-
tion. It was the natural way to implement bonForum further, as discussed in more
detail later in this chapter. However, before proceeding to create the many JSP docu-
ments that would be needed, we had a couple more problems to solve.

05 1089-9 CH05 6/26/01 7:29 AM Page 93

94 Chapter 5 bonForum Chat Application: Use and Design

5.3.11 Choice of Bean or Custom Tag
Each JSP would have application-related work to do on the server side.We did not
want to put that code on the JSP pages because that would obscure their function to
represent the XML-inspired structure we had created. JSP documents should be kept
easy to maintain and change—it is one of their strong points that they allow changes
to be easily made to a Web application.

The code would go into methods in Java server-side objects.There were two possi-
bilities to explore.To add functionality to our JSP pages in a manner that did not
obfuscate the design, we could either create Java Beans and access their methods via
JSP, or create a tag library and use JSP custom tags.

We liked the idea of including a JSP tag library in the project because it presents a
very friendly way to add method calls to a JSP document. However there is an even
more important point to consider, and that is a basic distinction between the use of
beans and custom tags on JSP.A custom tag can affect the HTML that is output by
the JSP, whereas a bean, by default, cannot do so.That means the decision of which to
use should be based on the nature of the task at hand. Processing that does not affect
the JSP page output should use a bean, whereas processing that does affect the output
should use a custom tag.

To save some time, we needed a quick way to prototype the various functions that
would be required by the interaction of the JSP pages with the other server-side com-
ponents.We decided to temporarily house all the methods required in the one Java
Servlet class that we already had, bonForumEngine.Then we decided to put all our JSP-
side functionality, regardless of its effect upon the JSP output, into one bloated, tempo-
rary chameleon tag.

The plan was to use this setup only as a testbed.After deciding which tags and
beans were to be used and what their requirements were, we would break the code
out into the many files that would be required. Unfortunately, when the first edition
of this book was published in Germany, we had not yet broken down those two huge
classes.That is a regretful situation but nevertheless better than the alternative, which
was to ship the book’s project in a nonfunctioning but better designed state.Thus, our
ugly testbed classes have become immortalized in print, further strengthening our
opinion that most technical books are obsolete because of their slow refresh rate.

5.3.12 Original Plan: Follow the XML Design
At first, we were quite religious about having the XML data faithfully reflect both the
data and the dynamics of the forum.After all, a major purpose of the project was to
explore the consequences of designing software in this way.As we proceeded, we dis-
covered that some parts of the original XML design needed to be simplified for the
sake of both understandability and performance.

However, our initial strict adherence to the original plan turned out to be a valu-
able exercise: It helped identify the complex, unnecessary, and redundant elements in

05 1089-9 CH05 6/26/01 7:29 AM Page 94

955.3 Using XML to Design Web Applications

the design.We will give here one example to illustrate how our first trial implementa-
tions manipulated the XML data.This example will explain how the statement
visitor starts chat was implemented by the software.

A user of the application would enter and become a visitor.To represent the user in
that state, the software would create a visitor element in the XML data as a child of
the Actors element.Then an identity element would be added as a child of the
Things element.This identity element would contain the nickname and age given by
the visitor.An actorKey attribute in this identity node would link this information
with the user’s visitor element.

If that visitor then started a chat, the software would first add a start element to
the Actions element.Then it would add a chat element to the Things element.After
getting the topic for the chat from the user via an HTML form, it would add a host
element to the Actors element and change the value of the actorKey attribute of the
user’s identity node so that it was linked to the new host node.The visitor node
and the start elements would then be removed from the XML data.

5.3.13 Simplifying the Grand Plan
In our initial designs, we were trying to find a kind of Lego set that would serve to
express all possible states of the chat forum. Each Actor,Action, and Thing entity in
the real chat forum would be represented by an element in the XML database. Each
combination of these three types of entities would generate a “three-part statement”
that would have meaning to the application. Each of these statements would be
mapped to a JSP document that would create the appropriate response to the user.

However, even the very simple models that we started with quickly generated a
complex matrix of “Actor-Action-Thing” statements.The steps required to dynami-
cally modify the XML database to reflect the changing state of the forum also were
numerous. It was time to simplify the design.

We started by throwing out many of the “Actor-Action-Thing” statements that
were initially in the plan. One example was the statement host joins chat. In early
plans, we included this sequence of statements:

visitor starts chat
visitor becomes host
host joins chat

This sequence of statements was replaced by just the first one, visitor starts chat.
The visitor still becomes a host and joins the chat, but all this occurs without any for-
mal representation in the three related architectural spheres: XML data, JSP docu-
ments, and three-part commands.

Our next major simplification involved the XML database.Although the various
Action elements (starts, joins, executes, and exits) still play a part in the three-part
commands and JSP filenames, they are no longer represented in the XML database.We
did keep the Actions element, because in future versions of bonForum, we might add

05 1089-9 CH05 6/26/01 7:29 AM Page 95

96 Chapter 5 bonForum Chat Application: Use and Design

some Action elements to handle added functionality, such as a send element that will
control a background email-sending process.

We took yet another simplifying step.We had planned to include all the features
from the best of chat Web sites on the Web today. However, it was necessary to avoid
doing that.The freedom to experiment and explore new models and technologies
would be overwhelmed by such a long list of product requirements at such an early
stage in the game.

Many of the chat programs on the Web today rely on client-side programming to
achieve their complex user interfaces and feature lists. If we included similar interfaces
and features as requirements in the first version of bonForum, we would probably have
to rely on the same client-side, operating system code libraries that have allowed
JavaScript or VBScript to create such rich Web applications.We would perhaps please
the bonForum user, but we would miss our goal of prototyping a server-side Web
application framework.

So, the red pencil came out, and we went to work shortening the feature list for
the bonForum project.There would be no private chat rooms.The software would not
remember which banner ads you clicked on the last time you were there and present
you with new ones custom-picked according to your interests.The software would
now have no answers to many situations that arise in real chat rooms—for example,
what happens if the host of a moderated chat exits for good?

Much more needed to be done before bonForum could become a competitive
Web chat solution. However, that has not been our goal. Instead, we are exploring
techniques to lay down a novel framework, one that can possibly engender never-
before-seen features. Best would be if the framework that we eventually develop
becomes “boiled down” enough to become reusable in the context of various different
Web applications, such as e-commerce, collaborative engineering, knowledge manage-
ment, or online billing and product delivery. Unfortunately, the design as presented is
not scalable to any of these applications, all of which would certainly need real data
persistence (for example, a real database), fault-tolerant design, and so on.At this point,
it may be more believable to present this as an exercise than to propose that it form
the base of a future array of products.

5.3.14 Some Important Functionality Left Out
Before deploying the bonForum application, many things must be considered that we
are not taking care of here in the book project. Some very important Web application
features will be left out of our example project.These include some that make Web
applications fast enough and scalable enough for real use.

Consider, for example, the scalability of our application.We could try to design dis-
tributed pools of bonForum components, communicating data with each other.A
good reason to leave out such things in this prototype is that there are better ways of
providing features like this.The new enterprise Java packages from Sun will give you
much better ways to connect a large number of users to the Web application.

05 1089-9 CH05 6/26/01 7:29 AM Page 96

975.3 Using XML to Design Web Applications

We will also pretend that load balancing, security, and encryption issues are all han-
dled in some manner not discussed.The Web application that we develop will not take
into account such real-world issues as speed and bandwidth. If the result is too slow
for testing our hypotheses, we will try using faster hardware and fatter network con-
nections.

The Need to Scavenge Old Chat Data

As we will discuss in detail later, one way that we simplified our programming
requirements was by establishing the rule that a user client can remove an element
from the XML data only if that element was added by the same client during the
same HTTP session.We ensure this in a simple manner:The key of the element is
made up of the session ID value followed by the element name. But what happens to
all those entries in bonForum XML that are connected to sessions that are finished?
According to our rule, no client can remove these orphan elements.

The bonForum Web application will thus require the addition of a background
daemon thread whose sole job is to remove old elements from bonForumXML.To
know which are old, the application will need to track all the session IDs that take
part in bonForum. Perhaps a certain period of inactivity by a given session will be
defined as sufficient reason to remove all elements connected to that session.

Persistent Data Storage

In addition, we will keep some of the data that the Web application requires in XML
files.This is not the best way to do it, particularly if we want speed and scalability to
be optimized. However, we will just imagine that our XML file can instead be XML-
streamed from some new database, or that we have mapped the XML representation
of our data into another form (say, within one or more relational database tables) that
can be much more efficiently processed than XML files.

Again, this choice is related to the question of where best to learn the skills
required for handling data for a server-based application.As we see it, you can find
good books and sources of information that will show you how to use JBDC, for
example, to persist data for a Web application in your favorite relational database tables.
These resources will show you how to convert relational data into XML form. But if
your favorite database does not already do that for you, it soon will. So, we will leave
that work to someone else and instead focus on experimentation for the sake of
learning.

Security Issues

Java has well-developed tools for ensuring the security of personal information in Web
applications.These are all beyond the scope of this book.They are not necessarily
beyond the scope of the Web application when it is deployed, though, depending on
how much personal information it includes. Furthermore, plans to prevent the theft or
destruction of data in bonForum have not received consideration and definitely
should.

05 1089-9 CH05 6/26/01 7:29 AM Page 97

98 Chapter 5 bonForum Chat Application: Use and Design

5.3.15 Other Uses for the bonForum Design
The JSP pages and other parts of the bonForum can be used to generate all the frames
of a multipanel GUI. For example, this could be one of those extensive control panels
that are found on large industrial installations.The same isolation that has been built
into the Web application so that multiple users can execute commands will help estab-
lish a robust interface in other multiuser and multifunction environments.

5.4 XML Data Flows in Web Applications
We believe that passing XML data within a Web application will turn out to be as
important as passing XML data between systems and applications.The latter use of
XML is much discussed and heralded in particular as a great benefit in connecting
legacy applications to modern Web-based applications.

Within a Web application, passing even one parameter that contains XML data can
be a simple yet powerful way to pass a lot of structured information. Passing a long list
of name=value attributes is cumbersome, by comparison. Let’s look at various possibili-
ties for creating XML data flows between the typical components of a Java-based Web
application.

Please note that, unlike most of this book, this section is not based upon examples
taken from our bonForum Web chat project.Although we certainly pass request para-
meters around in bonForum, they do not contain XML data.We are excited by our
preliminary research into this use of XML.These techniques are included in our
future development plans for bonForum.We think that this information may be useful
to present here, even before we back it up with “real Web application experience,” as
we prefer.

5.4.1 Sending XML from an HTML Form
Many of the examples that follow involve putting XML data as a string into an
HTTPRequest parameter from a browser. If you need to send XML in a request para-
meter from HTML documents, then you can put it in a string attribute value of an
input element within a form element, as in this example:

<input type=“hidden” name=“fragment”
value=“&lt;tree&gt;&lt;topic&gt;Chess Players
Chat&lt;/topic&gt;&lt;moderator&gt;Harvey
Wilkinson&lt;/moderator&gt;&lt;/tree&gt;”>

Notice that the ampersand character (&) must be escaped twice.You have to escape
the escape! The first replacement will produce the characters that are to be replaced
with the “less than” character (<).

05 1089-9 CH05 6/26/01 7:29 AM Page 98

995.4 XML Data Flows in Web Applications

5.4.2 XML from Browser to Servlet
You can send XML from a browser to a Java servlet by putting the XML as a string
into a request parameter.You can test this by putting it into an HTML form input ele-
ment.Try pasting “doubly escaped” XML strings like the one used in the previous
example into a form input element and posting that to your servlet.

Your Java servlet must then do something like the following to get the XML back
into a string:

String sXML = (String)request.getParameter(“paramXML”);

In the next sections, we discuss ways to use the XML passed in from a browser,
including servlet control and XSLT processing. Notice that those same ideas can
be applied either to XML passed from a browser to a Java servlet, or from a browser
to JSP.

5.4.3 XML from Browser to JSP
Remember that a JSP is essentially a way of turning a servlet inside-out so that its
contents can be written using Java as a scripting language.A new JSP causes a servlet
container, such as Tomcat, to create a newly compiled instance of an HTTPServlet class.
This servlet will have available a _jspService method containing Java code that
depends on the scripting elements that you put into the JSP.

The service method in a JSP servlet has access to the HTTPRequest object, which
can have parameters.You can pass XML to the servlet via one or more of these para-
meters.You can process that XML using Java code that you add to the JSP script.

JSP Applies XSLT to XML from Browser

We are indebted to Steve Muench for information about passing XML from a browser
to a JSP, which he posted on the xsl-list hosted by mulberrytech.com. From his mail
we learned the following code fragment, needed to get the XML string transformed
by an XSLT processor:

<%
// more code goes here…
java.io.ByteArrayInputStream bytesXML = new java.io.ByteArrayInputStream(
➥sXML.getBytes());
InputSource xmlInputSource = new InputSource(bytesXML);
// more code goes here…
%>

To see how to use JSP “page import” elements to access the needed Java classes, as well
as how to create the XSLT processor to process this InputSource and an XSL style
sheet, you can refer to the code we used to do that in the bonForum project. (Note
that to use Xalan 2.0 with that code, you will need to make use of its “compatibility
jar,” as described in the Xalan 2.0 documentation.) That code is discussed in Chapter
10,“ JSP Taglib and Custom Tag: Choice Tag.”

05 1089-9 CH05 6/26/01 7:29 AM Page 99

100 Chapter 5 bonForum Chat Application: Use and Design

5.4.4 Controlling Java from a Browser with XML
Web-based server-object control could be accomplished by passing the XML from the
browser request to an XSLT processor along with an XSL document.The XML
InputStream can be used to fire custom tag extensions in the XSL document. In this
way, you can put the flow of processing inside Java servlet methods under the indirect
control of browser-originated XML content.

Clearly, XSLT is useful to control the display of XML data streams. For this, XSL
data streams are the controlling, declarative script.What is less obvious at first is that
XSLT also allows XML data streams to control programs. If you can pass a data stream
“into” a program at runtime (request time), then you can control that program with it.
This is fertile ground for Web application designers, and not just for the ones working
with embedded systems. (Think of the Internet—all that software is embedded now!)

Another similar experiment that we would like to try is feeding an XML
InputSource from a browser request parameter into a SAX parser.We could then use
the contents of the XML to fire Java classes via the SAX event handlers. Could these
classes access the whole JSP context? What could be done within Java objects that are
controllable via XML from a browser?

5.4.5 XML from Servlet to JSP
To send XML from an HTTPServlet to a JSP page, you can override any one of the
several servlet methods that have access to the HTTPRequest object (doGet, doPost, or
service). Inside the method, you get a RequestDispatcher to forward the request and
response to the JSP page.All you need is to know the URL for the JSP. Be sure to
take into consideration the Web application configuration file, (web.xml) and the
Tomcat servlet container configuration file (server.xml).

To see how to do this, read the file TOMCAT_HOME\examples\jsp\
jsptoserv\stj.txt.There you will find the source code of the servletToJsp servlet.As you
can see, the servlet overrides the doGet method and adds these two relevant lines of
code:

request.setAttribute (“servletName”, “servletToJsp”);
getServletConfig().getServletContext().getRequestDispatcher(“/jsp/jsptoserv/hello.
➥jsp”).forward(request, response);

So, what about passing XML? You can add that to the request object as one or more
parameters, just as we did in the browser-to-servlet and browser-to-JSP examples dis-
cussed earlier.

5.4.6 XML from JSP to Servlet, or JSP to JSP
It is also possible to send XML from a JSP page either to a Java servlet or to another
JSP. Simply use a form element (as shown earlier) or some other means to get the
XML into a request parameter, and then use a jsp:forward element to send the
request to the desired destination servlet or JSP.

05 1089-9 CH05 6/26/01 7:29 AM Page 100

1015.4 XML Data Flows in Web Applications

Here is a simple example that you can try. Create a JSP page, called
TOMCAT_HOME\webapps\bonForum\jsp\forwardToSnoop.jsp. Put in this file only
the following lines:

<html>
<%
request.setAttribute(“hello”,
“<?xml version="1.0" encoding="ISO-8859-
1"?><doc>Hello</doc>“);
%>
<jsp:forward page=“/snoop”/>
</html>

Find the web.xml file for the bonForum Web app, in the folder TOMCAT_HOME\
webapps\bonForum\WEB-INF. Make sure that the file has a servlet element for
snoop, like the following (if not, you can copy and edit the one in the Tomcat
Examples Web app):

<servlet>
<servlet-name>

snoop
</servlet-name>
<servlet-class>

SnoopServlet
</servlet-class>
<init-param>

<param-name>
fooSnoop

</param-name>
<param-value>

barSnoop
</param-value>

</init-param>
</servlet>
<servlet>

Copy the SnoopServlet.class file from the Tomcat Examples Web app into
the bonForum Web app.You should find the class file in the folder
TOMCAT_HOME\webapps\examples\WEB-INF\classes. Copy it to the
folder TOMCAT_HOME\webapps\bonForum\WEB-INF\classes.

Now try browsing (with Tomcat running) your forwardToSnoop.jsp page using this
(or your similar) address:

http://localhost:8080/bonForum/jsp/forwardToSnoop.jsp

When you try this example, you should get a page full of detailed information about
the HTTP request on your browser. (By the way, this works with only the
SnoopServlet, not the snoop.jsp example.) The browser display should include the
following lines:

Request attributes:
hello = <?xml version="1.0" encoding="ISO-8859-

1"?><doc>Hello</doc>;

05 1089-9 CH05 6/26/01 7:29 AM Page 101

102 Chapter 5 bonForum Chat Application: Use and Design

Of course, this is the XML sent from JSP to the servlet:
hello = <?xml version=”1.0” encoding=”ISO-8859-1”?><doc>Hello</doc>

Yet, nowhere in all the snoop information can you see anything that would reveal the
original receiver of the browser request—namely, the JSP forwardToSnoop.jsp.

5.4.7 Displaying HTML or XML Using JSP
As a final tidbit, here is a way to display an XML document using JSP. Putting this line
on a JSP

<%= “<I>hello</I>“ %>

displays the text in bold and italics:
hello

This second excerpt can display an XML or an HTML element. Putting this one line
on a JSP

<%= “<I>hello</I>“ %>

displays these tags instead:
<I>hello</I>

05 1089-9 CH05 6/26/01 7:29 AM Page 102

bonForum Chat Application:
Implementation

6

THIS CHAPTER CONTINUES THE overview of bonForum that began in the last chap-
ter. Knowing how our design turned into a working prototype will prepare you for
the more detailed code analyses in the following five chapters. Some of the tougher
implementation problems are also highlighted. Finally, suggestions for future develop-
ment of this Web chat are given.

6.1 Building the bonForum Web Chat
While creating the implementation for bonForum, we tried to follow one main prin-
ciple.The XML-based, chat-forum model that we had designed would control our
implementation of the Web application.The goal was to make the XML data from the
chat forum active. By “active,” we mean that its form and content would drive the
appearance and the dynamics of the Web application.

A pure instance of this principle’s successful application can be seen in the use of
XSLT to transform XML into HTML. In most cases, XSLT is used in a Web applica-
tion to create a data-driven application process.

In that sense, our goal has been to make the data active. By expressing the applica-
tion requirements as XML data and then developing an application implementation
that “transforms” this data into a Web-browseable collection of documents, we wanted
to produce in all areas of bonForum the same kind of benefits of using XSLT.

06 1089-9 CH06 6/26/01 7:30 AM Page 103

104 Chapter 6 bonForum Chat Application: Implementation

6.1.1 XML Representation of Web Applications
In Chapter 5,“bonForum Chat Application: Use and Design,” we discussed the first
steps of the design process.We used tree diagrams to plan an XML data structure rep-
resenting a chat forum. Now we will show you what the data looks like as an XML
document.You can find a more complete version of some similar XML data in
Chapter 11,“XML Data Storage Class: ForestHashtable.”That chapter also gives you
many more details about the way the Web application uses the data.

What you see here is a simplified version of the real XML data document.We have
left out most of the attributes so that you can more clearly see the basic design.
Actually, in the real data, every element contains a nodeKey attribute, which encodes the
hierarchical relationship between the elements when they are randomly stored in a
hashtable (discussed in Chapter 11).

In the simplified version here, we have left in only those nodeKey attributes that are
being referred to elsewhere in the XML document.These nodeKey attribute values (in
the host, guest, and message elements) are matched either by an attribute value (mes-
sage hostKey, message guestKey) or by the text content of an element (the
messageKey, hostKey, and guestKey children of a chat element).

<?xml version=“1.0”?>
<bonForum>
<actors>
<guest nodeKey=”965506098557.965501551999.965501551959”>

<actorNickname>eve</actorNickname>
<actorAge>40</actorAge>
<actorRating>7</actorRating>

</guest>
<host nodeKey=”965503119944.965501551999.965501551959”>

<actorNickname>adam</actorNickname>
<actorAge>47</actorAge>
<actorRating>5</actorRating>

</host>
</actors>
<actions/>
<things>
<forums>
<forum>

<name>bonForum</name>
<weblink>www.bonforum.org</weblink>

</forum>
<forum>

<name>tarent</name>
<weblink>www.tarent.de</weblink>

</forum>
</forums>
<subjects>
<Vehicles>
<Autos>

<BMW/>

06 1089-9 CH06 6/26/01 7:30 AM Page 104

1056.1 Building the bonForum Web Chat

<Ferrari>
<Testarossa/>

</Ferrari>
</Autos>
<Trucks>

<Mac/>
<Other>

<sessionID_v7iabpmzg1_992808272761
chatTopic=“my other truck is a ferrari” />

</Other>
</Trucks>

</Vehicles>
<Health>

SPONSORED BY YOUR FRIENDLY CORPORATION
<Prevention>
<Headaches>

<Migraine/>
</Headaches>

</Prevention>
</Health>

</subjects>
<message
nodeKey=”965503142126.965501552059.965501551959”
dateStamp=“Saturday 05 09:08:09 2000”
hostKey =“965503119944.965501551999.965501551959”>
adam::this is dynamite!

</message>
<message
nodeKey=”965502489387.965501552059.965501551959”
dateStamp=“Saturday 05 09:19:02 2000”
guestKey=”965506098557.965501551999.965501551959”>
eve::Is anybody there?

</message>
<chat>

<guestKey>
965506098557.965501551999.965501551959

</guestKey>
<messageKey>
965503142126.965501552059.965501551959

</messageKey>
<messageKey>
965502489387.965501552059.965501551959

</messageKey>
<hostKey>
965503119944.965501551999.965501551959

</hostKey>
</chat>

</things>
</bonForum>

06 1089-9 CH06 6/26/01 7:30 AM Page 105

106 Chapter 6 bonForum Chat Application: Implementation

You may have noticed another long key value lost among all the triple-valued ones:
“sessionID_v7iabpmzg1_992808272761”

This is a chatItem element name, made from the HTTP session ID of the actor that
started the chat and a time stamp. It marks a chat subject (Vehicles.Trucks.Other)
and contains a chatTopic attribute value. For now, all we want to show here is the big
picture.

6.1.2 Chat Information as a Hierarchy
The information that makes up one bonForum “universe” of chats, as we have seen, is
structured so that it can be represented by an XML document. Let’s consider further
some of the implications of this design.

XML Is Representable as a Tree

One of the strengths of XML is that it is based on a tree data structure, with a node
for each XML component, including elements, attributes, text, and so on.Tree struc-
tures, of course, have a long history in software development, and they have enabled
many powerful algorithms.

Trees Made of Trees,Which Are Made of Trees

One of the advantages of using tree data structures is that each node of a tree can be
treated as if it were the root of another tree. Some subtrees, of course, consist of only
one node, a “leaf ” node.This characteristic of tree structures means that you can
develop methods that can be applied to a tree of data as well as to any node of that
tree.The advantages of this, especially in the design of recursive algorithms, are well
known.

Forests Made of Trees,Which Make Forests

One of the constraints on an XML document is that it can contain only one docu-
ment node.With the exception of the information that brands the document as an
XML document, all the data in an XML document, therefore, is contained in only one
tree structure, with one root.To join two or more XML documents into a new docu-
ment, their document nodes must be included under one new document node.

Although each instance of bonForum can be represented by one XML document,
we also want to explore the dynamics of a network of distributed bonForums—on the
Internet, for example. Such a network implies the existence of many XML docu-
ments.These documents are related in terms of their design and function, but they
exist as separate data structures.

Inconsistencies or redundancies may exist in the data content of these XML docu-
ments. If you put such XML documents into one superdocument and then related

06 1089-9 CH06 6/26/01 7:30 AM Page 106

1076.1 Building the bonForum Web Chat

them under one new root document node, you might not be able to conveniently
process that new parent XML document in the same manner as you can process each
of the child documents. For this and other reasons, we chose to consider our data as a
forest and not a tree in the bonForum Web application.

A data forest can be implemented in many ways. One way is to use a collection of
XML documents, which can be files, database objects, or other entities.Another way is
to use the ForestHashtable object that we designed for bonForum. Chapter 11 pro-
vides all the details about our forest data storage class.

Meanwhile, we list here two features of forest data structures that we plan to take
advantage of when we begin experimenting with many bonForum instances distrib-
uted on the Internet:

n Trees can be packaged together in a forest without this implying any relation-
ship or compatibility between them.

n Branches can be removed from a tree in a forest and then be kept as trees in the
same forest.

6.1.3 The Browsers of the bonForum Users
Let’s follow our “broad brush” view of the bonForum data with a quick look at the
client side of the Web application. In a Web application, the users’ browsers are impor-
tant components in the architecture.The variety and mutability of existing browsers is
one of the most challenging aspects of making any Web application that is truly
worldwide.Although ideally a Web application should be both cross-platform and
cross-browser, this is too ambitious of a goal for an experimental prototype such as
bonForum.

The following is a list of the requirements that a user’s browser must meet before it
can provide entrance into bonForum and thus become a part of the architecture of
this Web application.The browser must have the capabilities to do the following:

n POST HTML forms
n Display HTML tables
n Display HTML frames
n Have HTTP cookies enabled
n Allow the Java plug-in to be installed and used

The need for a Java applet and the Sun Java plug-in has proven to be the most contro-
versial and negatively received aspect of the bonForum Web application.You can find
out much more about the issues involved in Chapter 9,“Java Applet Plugged In:
BonForumRobot.”

06 1089-9 CH06 6/26/01 7:30 AM Page 107

108 Chapter 6 bonForum Chat Application: Implementation

6.1.4 The Server Connects Users
Now let’s take an equally brief look at the server side of our Web application.
Obviously, in a server-side Web application, the software running on the server
assumes a centrally important role.Although there is one Java applet in bonForum, this
Web application’s architecture is intended to be as “server-side” as possible. Listed here
are a few of the responsibilities that the server-side software must shoulder:

n Provide various contexts for information
n Enable multiple users to simultaneously use application
n Handle and respond to requests coming from many browsers
n Provide each user with his own state in the application
n Store and retrieve data that is related to each user

This list could easily be made much longer, of course. Indeed, it would be so much
longer that we must instead refer you to four out of the next five chapters (all except
Chapter 9), which deal almost exclusively with server-side implementation details.At
the beginning of Chapter 8,“Java Servlet in Charge: BonForumEngine,” you will find
a table that lists many more of the functions that server-side software must handle to
make even a prototype version of a Web chat.

6.1.5 The States of the Forum
We have written quite a lot of material regarding the goals and purposes of the soft-
ware design and implementation.We did so for several reasons. Knowing the history of
the design can help you make sense of the current source code and its nomenclature.
Our discussion also can help you appreciate the experimental nature and value of the
bonForum project. Finally, we want to answer criticisms of the type that begin with,
“Why was this done that way? Does the author not realize that it can be done much
better this way?”

Now it is time to drop down a level in the discussion, to begin discussing the
details of our actual implementation of the bonForum Web chat.We begin by detailing
all the states that the application goes through for each user progressing through
bonForum.

The following “states” of the bonForum Web application are abstractions. It is
important to keep in mind that each state is expressed in several contexts within the
implementation. Of these contexts, the three most important are the JSP documents,
the three-part commands, and the XML data.

While you read the next five chapters, it may be a good idea to review this list of
bonForum states, which discusses in detail all the states of bonForum.

06 1089-9 CH06 6/26/01 7:30 AM Page 108

1096.1 Building the bonForum Web Chat

bonForum Web Application URL

1. The URL that starts bonForum for one user on a browser takes the reader to
index.html, which is the default HTML page for a Web application.The file
index.html can be browsed by any Web browser. It acts as a splash screen for the
Web application, giving it a wider context, for example, by displaying informa-
tion about this book.

2. This page displays a logo designed by the author, which is also a link to the
bonForum chat application. Clicking that link takes a user to the forum login
state of the Web application.

Forum Login

1. Before we let a user enter the Web application, we might want to put that user
through an authorization procedure.We do not have any authorization process
in this book, but this application state is defined and reserved for this purpose.

2. In this state the application first meets a user’s browser, so it is here where the
application handles any initialization required. For example, this is where the ses-
sion ID is checked and registered with the application. Users are not allowed
into the application without going through this state.

3. In future versions, the application will recognize users who are returning after an
absence and will be able to reconnect them with their previous chat context.

4. Leaving this state takes a user to the forum entry state.

Forum Entry

1. In this state each user entering the Web chat application is asked to give a nick-
name and an age.

2. Each nickname is registered in a nickname registry.The registry allows no
duplicate values, so this state continues until the user enters a new and unique
nickname.

3. The age given can be used in future versions to limit user entry to some chats
by age group. However, verifying ages is not a trivial problem, and its solution is
not attempted here.

4. Leaving this state takes a user to the “visitor executes choice” state of the
application.

06 1089-9 CH06 6/26/01 7:30 AM Page 109

110 Chapter 6 bonForum Chat Application: Implementation

Visitor Executes Choice

1. A visitor to bonForum is greeted by nickname and asked to make a choice: start
a new chat, join an existing chat, or exit bonForum.

2. Depending on the choice made, leaving this state takes a user to one of three
application states:“visitor starts chat,”“visitor joins chat,” or bonForum.

Visitor Joins Chat

1. In this state, a visitor who has chosen to join an existing chat in the “visitor exe-
cutes choice” state is now asked to choose a chat to join from a list of all the
available chats.

2. By joining a chat, a visitor becomes a guest of that chat in the bonForum.

3. Leaving this state takes a visitor to the “guest executes chat” state.

Visitor Starts Chat

1. In this state, a visitor who has chosen to start a new chat in the “visitor executes
choice” state is now asked to choose a chat subject category from a list.The visi-
tor must also enter a description or topic for the chat to be created.That user
can also choose whether to moderate the new chat.

2. By starting a new chat, a visitor becomes a host of that chat in bonForum.

3. Leaving this state takes a visitor to the “host executes chat” state.

Guest Executes Chat

1. In this state, a guest is in the chat joined in the “visitor joins chat” state.The chat
messages entered by the guest and all others in the same chat are displayed
chronologically. Each message is prefixed by the nickname of its sender.The
guest can compose messages in a text input field provided.

2. A guest is here presented with a choice: send this message, exit this chat, or enter
command mode.

3. If a guest sends a new message, it appears after a short delay to the chat messages
display the next time this is refreshed.

4. The chat messages being displayed are intermittently refreshed so that messages
entered by all chat members appear as soon as possible.

5. Depending on the choice made, leaving this state takes a guest to either of two
states:“guest executes command” or “guest exits chat.”

06 1089-9 CH06 6/26/01 7:30 AM Page 110

1116.1 Building the bonForum Web Chat

Guest Executes Command

1. In this state, a guest is presented with a choice of available commands. In the
simplified book application example, there is only one:The guest can set the
number of messages to display in the “guest executes chat” state.

2. Other possible commands that will be included in a full version of the
bonForum Web application are listed in Section 6.8.7,“Host and Guest
Commands for the Future.”

3. Leaving this state takes a guest to the “guest exits command” state.

Guest Exits Command

1. In this state, the application can carry out any processing required because of
choices made by a guest while in the “guest executes command” state. In the
future, this will include setting up a private chat between the guest and another
guest or host, for example.

2. In the simple book example, this state does nothing but forward a guest back to
the chat.

3. Leaving this state takes a guest back to the “guest executes chat” state.

Guest Exits Chat

1. In this state, the Web application can make whatever changes are required by the
exit of a guest from a chat.This includes, for example, removing data no longer
needed and perhaps saving information that will be useful for reinstating the
guest that user returns to the same chat. In the simplified book version of the
Web application, this state does nothing but forward a guest to the next state.

2. In future versions of bonForum, leaving this state will take a guest to a “guest
executes choice” state that will allow more complex relationships between a
guest and various chats. One way to leave that new state will be to go to a
“guest exits forum” state (also not yet included), where the Web application will
make changes required by the exit of a guest from the bonForum (such as
removing unneeded data, saving information for reinstating the guest later, and
so on). Leaving that “guest exits forum” state will take a guest to the bonForum
state.

3. Leaving this state (in this simple version of the Web application) takes a guest
back to the “visitor executes choice” state (from where it is possible to leave to
the bonForum state).

06 1089-9 CH06 6/26/01 7:30 AM Page 111

112 Chapter 6 bonForum Chat Application: Implementation

Host Executes Chat

1. In this state, a host is in the chat that he started in the “visitor starts chat” state.
Chat messages entered by this host and all others who join the chat are dis-
played. Each message is prefixed by the nickname of its sender.The host can
compose messages in a text input field provided.

2. A host is presented with a choice: send this message, exit this chat, or enter
command mode.

3. If a host sends a new message, it appears after a short delay to the chat messages
display the next time this is refreshed.

4. The chat messages being displayed are intermittently refreshed so that messages
entered by all users appear as soon as possible.

5. Depending upon the choice made, leaving this state takes a host to either of two
states:“host executes command” or “host exits chat.”

Host Executes Command

1. In this state, a host is presented with a choice of available commands. In the sim-
plified book application example, there are only three:The guest can set the
number of messages to display in the “host executes chat” state, the host can
increase the status of a guest, or the host can decrease the status of a guest.

2. A list of all the guests currently in the chat is displayed. Relevant details about
each guest are also shown, including the guest’s current rating. In future versions
of this application, a status of 0 will cause the guest to be removed from the
chat, while a status of 10 will cause the guest to become a co-host of the chat.

3. Other possible commands that will be included in a full version of the
bonForum Web application are listed in Section 6.8.7,“Host and Guest
Commands for the Future.”

4. Leaving this state takes a host to the “host exits command” state.

Host Exits Command

1. In this state, the application can carry out any processing required because of
choices made by the host while in the “host executes command” state. In the
future, this will include setting up a private chat between the host and another
guest or host, for example.

2. In the simple book example, this state does nothing but forward the host back
to the chat they are hosting.

3. Leaving this state takes a host to the “host executes chat” state.

06 1089-9 CH06 6/26/01 7:30 AM Page 112

1136.1 Building the bonForum Web Chat

Host Exits Chat

1. In this state, the Web application can make whatever changes are required by the
exit of a host from a chat.This includes, for example, removing data no longer
needed and perhaps saving information that will be useful for reinstating the
host if he returns to the same chat. In the simplified book version of the Web
application, this state does nothing but forward a host to the next state.

2. In future versions of bonForum, leaving this state will take a guest to a “host
executes choice” state that will allow more complex relationships between a host
and various chats. One way to leave that new state will be to go to a “host exits
forum” state (also not yet included) where the Web application will make
changes required by the exit of a host from bonForum (such as removing
unneeded data, saving information for reinstating the host later, and so on).
Leaving that “host exits forum” state will take a host to the bonForum state.

3. Leaving this state (in this simple version of the Web application) takes a host
back to the “visitor executes choice” state (from where it is possible to leave to
the bonForum state).

Host Increases Rating

1. In this state, a host can increase the status of a guest in the chat. If the increased
status is above a threshold, the guest will automatically become a co-host of the
chat (this will be an option to select as a host command).

2. This state is left automatically in the book version of the project. It forwards a
host back to the “host executes command” state.

Host Decreases Rating

1. In this state, a host will be able to decrease the status of a guest in the chat. If
the decreased status is below a threshold, the guest will automatically be
removed from the chat.

2. This state is left automatically in the book version of the project. It forwards a
host back to the “host executes command” state.

BonForum Links

1. This state shows information about the bonForum Web-chat software and its
source.

2. Links to bonForums worldwide are provided to the user.

3. One link enables the user to return to the previous bonForum.

4. Instructions remind the user that the way to exit bonForum is simply to browse
a different URL.

06 1089-9 CH06 6/26/01 7:30 AM Page 113

114 Chapter 6 bonForum Chat Application: Implementation

6.1.6 Forum States and the XML Database
In the original design for the Web application, as based on the XML description of a
Web chat, most of the various states described previously changed the contents of the
XML data in some way. Changes in the state of the chat, as modeled with our Actor-
Action-Thing method, were to be immediately reflected in the XML data.

However, as we developed the application according to that design, it became clear
that in many cases we could simplify the code considerably and yet preserve the over-
all functionality of the application.These simplifications were departures from the
original design.

In other cases, we decided to leave out some desirable functionality until some
future version of the software.This was done so that we would more quickly have a
working application that we could use to test the most important characteristics of the
design.

The result of all these major simplifications was a great reduction in the number of
interactions between the various states of the application described previously and the
XML database.To fully understand the details of these interactions, you will need to
read several more chapters in this book and perhaps the source code (in Appendix C,
“Source Code for bonForum Web Application”) as well.

Here we give only an overview of those application states that change the XML
data and list the changes that they make.These listings are an excellent and very useful
way to pin down exactly how the application works.

XML Effects of “Guest Executes Chat”

This application state has the following effects upon the contents of the
bonForumXML database:

1. Adds a guest element to a bonForum/things/actors element

2. Adds an actorNickname element to the new guest element

3. Adds an actorAge element to the new guest element

4. Adds an actorRating element to the new guest element

5. Adds a guestKey element to the correct chat element

6. Adds message elements to a bonForum/things element

7. Adds messageKey elements to the correct chat element

XML Effects of “Host Executes Chat”

This application state has the following effects upon the contents of the
bonForumXML database:

1. Adds a host element to a bonForum/things/actors element

2. Adds an actorNickname element to the new host element

3. Adds an actorAge element to the new host element

06 1089-9 CH06 6/26/01 7:30 AM Page 114

1156.1 Building the bonForum Web Chat

4. Adds a chat element to a bonForum/things element

5. Adds a hostKey element to the new chat element

6. Adds a session ID element to the correct subject element

7. Add an itemKey attribute to the new chat element

8. Adds message elements to a bonForum/things element

9. Adds messageKey elements to the new chat element

XML Effects of “Host Increases Rating”

1. This application state increments the value of an actorRating in a guest
element.

2. The actor is optionally promoted to host when the actorRating reaches a
settable upper-threshold value.

XML Effects of “Host Decreases Rating”

1. This application state decrements the value of an actorRating in a guest
element.

2. The actor is optionally removed from the chat when the actorRating reaches a
settable lower-threshold value.

6.1.7 Some Java Methods Required
We had already settled on the idea that each bonForum state described would be rep-
resented by a JSP document. Now, to take one bonForum user from one state to
another, we will need a few basic methods. Our first analysis of this yielded a surpris-
ingly short list of methods, as detailed here:

n addNode—This method simply gives us the ability to add a node anywhere in
the bonForum XML data.

n removeNode—This complements the addNode method, allowing the removal of
XML data.

n forwardToJSP—We need a way to get from one JSP to another because they
represent and implement the various states through which the bonForum will
transition for each user.This method turned out to be (usually!) the job of the
service method of the Java servlet. For details, see Chapter 8.

n refresh—We thought we might need a method that would refresh the informa-
tion displayed to a user in a certain state. It turned out to be a bit more complex
than that. For details, see Chapter 9.

06 1089-9 CH06 6/26/01 7:30 AM Page 115

116 Chapter 6 bonForum Chat Application: Implementation

n Other Methods—We need a few other methods—again, surprisingly few.These
are all discussed later in this chapter, as well as in the following chapters.The
method outputForumPathNames is needed to display available chat subjects to
users so that they can categorize a chat that they are starting.The method
outputForumChatMessages is perhaps the most important one for a chat
application.

6.1.8 Forum States, bonCommands, and JSP
We have already mentioned that one of the centrally important mechanisms in the
bonForum Web application is the use of JSP pages to represent each of the various
chat forum states (described in Section 6.1.5,“The States of the Forum”) to each user
as an HTML page. Furthermore, each JSP page is also responsible for much of the
processing that is necessary in its related forum state.Transitions from state to state,
therefore, are accompanied by transitions from JSP document to JSP document.

A Simple Plan Grew Complicated

We began with a rather simple mechanism: Each Web application state was related by
name to one bonCommand and one JSP document. Here is an example:

Forum State: visitor joins chat
bonCommand: visitor_joins_chat
JavaServer Page: visitor_joins_chat.jsp

At the end of each forum state, its JSP would put the bonCommand for the next state in
an HTML form input element and POST it to the BonForumEngine Java servlet.The
servlet would take care of forwarding that HTTP request to the JSP for the next
forum state.To get the filename of that next JSP, the servlet only needed to add a .jsp
extension to the value of the bonCommand request parameter.

For reasons that will be much discussed in the rest of the book, we were not able
to keep this mechanism simple for long.Among the changes that complicated this ini-
tial design were those that introduced these three characteristics:

1. More than one JSP document can exist per forum state.

2. More than one bonCommand can exist per forum state.

3. A JSP can be requested from a JSP in four ways.

It might take a while before the design we are describing becomes clear to you
because it is comprised of several interlocking mechanisms. In fact, most of the rest of
this chapter details of higher-level views of the design, and most of the next five chap-
ters will cover the details.

06 1089-9 CH06 6/26/01 7:30 AM Page 116

1176.1 Building the bonForum Web Chat

More Than One JSP per Forum State

One way that the original,“simple: mechanism for bonForum application-state transi-
tions grew complex was related to the use of HTML framesets and frames.We needed
to find a way to refresh information on the Web application HTML pages—for exam-
ple, to update the display of chat messages. Our first attempts to set up a “refreshing”
JSP caused an unpleasant flickering effect that was clearly unacceptable.As we will
later more fully discuss, our best solution for this problem involved the use of HTML
frames.

The result was that most forum states are now represented on the browser by an
HTML page with a frameset. Either five or six JSP documents handle the display and
processing required by these forum states.This means that, for these states, two to four
bonCommands also are involved.

Forum States and Related bonCommand Values

Table 6.1 lists all the forum states, together with their name-related JSP files and
name-related bonCommands.To make sense of this table, you will have to refer also to
Table 6.2 and Table 6.3, as well as the discussion about them.

Table 6.1 Relating JSP Filenames and bonCommand Values to Each Forum State

Forum State

JSP Filenames (.jsp) bonCommandValues

web-app URL

(index.html) (not needed)

forum login

forum_login (not needed)

forum entry

forum_entry forum_entry

visitor executes choice

visitor_executes_choice visitor_executes_choice

visitor joins chat

visitor_joins_chat visitor_joins_chat

visitor_joins_chat_controls (not needed)

visitor_joins_chat_frame visitor_joins_chat_frame

visitor_joins_chat_ready visitor_joins_chat_ready

visitor_joins_chat_robot visitor_joins_chat_robot

continues

06 1089-9 CH06 6/26/01 7:30 AM Page 117

118 Chapter 6 bonForum Chat Application: Implementation

visitor starts chat

visitor_starts_chat visitor_starts_chat

visitor_starts_chat_controls (not needed)

visitor_starts_chat_frame visitor_starts_chat_frame

visitor_starts_chat_ready visitor_starts_chat_ready

visitor_starts_chat_robot (not needed)
guest executes chat

guest_executes_chat (not needed)

guest_executes_chat_console guest_executes_chat_console

guest_executes_chat_controls guest_executes_chat_controls

guest_executes_chat_frame (not needed)

guest_executes_chat_ready guest_executes_chat_ready

guest_executes_chat_robot (not needed)
guest executes command

guest_executes_command (not needed)

guest_executes_command_controls guest_executes_command_controls

guest_executes_command_frame (not needed)

guest_executes_command_ready guest_executes_command_ready

guest_executes_command_robot (not needed)

guest exits command

guest_exits_command (not needed)

guest exits chat

guest_exits_chat (not needed)

host executes chat

host_executes_chat (not needed)

host_executes_chat_console host_executes_chat_console

host_executes_chat_controls host_executes_chat_controls

host_executes_chat_frame (not needed)

host_executes_chat_ready host_executes_chat_ready

host_executes_chat_robot (not needed)

host executes command

host_executes_command (not needed)

host_executes_command_controls host_executes_command_controls

host_executes_command_frame (not needed)

host_executes_command_ready host_executes_command_ready

host_executes_command_robot (not needed)

Table 6.1 Continued

Forum State

JSP Filenames (.jsp) bonCommandValues

06 1089-9 CH06 6/26/01 7:30 AM Page 118

1196.1 Building the bonForum Web Chat

host exits command

host_exits_command (not needed)

host exits chat

host_exits_chat (not needed)

host increases rating

host_increases_rating host_increases_rating

host decreases rating

host_decreases_rating host_decreases_rating

bonForum

bonForum bonForum

Requesting the Next JSP from the Current JSP

Table 6.2 lists the four ways in which a JSP is requested from a JSP. Each request
description in the right column is associated with its request type in the left column.
The type of request relates this table to Table 6.3, which lists each JSP together with
all the JSP files requesting it.

Table 6.2 Four Ways That One JSP Is Requested from Another JSP

Type of Request Description of Request

Frame The requested JSP is the src attribute for a frame element in the
requesting JSP.

bonCommand bonCommand is an input element in an HTML form on the
requesting JSP.

The form is submitted by a user via a POST to the
BonForumEngine Java servlet.

BonForumEngine forwards the POST request to the requested
JSP, getting its filename by adding a .jsp suffix to the
bonCommand value.

jsp:forward The requested JSP is the page attribute in a jsp:forward ele-
ment on the requesting JSP.

BonForumRobot The requesting JSP has a jsp:plugin element with its code
attribute set to the BonForumRobot Java applet.

Either the requesting JSP or another JSP sets a document session
attribute value to the name of the requested JSP.

BonForumRobot uses a document parameter that is set from the
document session attribute.

Forum State

JSP Filenames (.jsp) bonCommandValues

continues

06 1089-9 CH06 6/26/01 7:30 AM Page 119

120 Chapter 6 bonForum Chat Application: Implementation

BonForumRobot mangles the document parameter value, suffix-
ing a unique time value and .tfe.

BonForumRobot invokes the applet showDocument method with
the mangled name of the requested JSP.The added .tfe causes the
request to go to BonForumEngine Java servlet due to servlet map-
ping in the Web application deployment descriptor (web.xml).
The added unique time value prevents cached responses from
being supplied by browsers.

BonForumEngine unmangles the requested JSP name and for-
wards the request to that JSP.

A request for a JSP can have one of several effects upon the Web application, including
those in the following list. Note that by “robot JSP,” we mean a JavaServer page that
contains the BonForumRobot applet in a jsp:plugin element. In this application, these
robot JavaServer pages are “in” a frame.

n A Frame type request can display HTML in a frame and run server-side–
compiled code.

n A bonCommand type request can cause a transition from one forum state to the
next.

n A jsp:forward type request can cause a transition from one forum state to the
next.

n A jsp:forward type request can request a robot JSP frame.
n A robot JSP frame can refresh the JSP for a different frame in the display.
n A robot JSP frame can request the JSP for a new forum state, which can set up a

new frameset browser display.
n A JSP can request itself and thus refresh itself.

How Each JSP Is Requested

Table 6.3 lists every JSP in the bonForum Web application and also the types of
requests that are used to fire that JSP. Note that a plus sign (+) before a requesting JSP
name means that it sets up the document session attribute with the requested JSP name
(see Table 6.1).A “5X” after a request type entry means that there are five separate
requests in the one requesting JSP file.

Table 6.2 Four Ways That One JSP Is Requested from Another JSP

Type of Request Description of Request

06 1089-9 CH06 6/26/01 7:30 AM Page 120

1216.1 Building the bonForum Web Chat

Table 6.3 Relating Each JSP to the Source(s) of Its Request(s)

Requested JSP File

Type of Request Requesting JSP Files

(index.html)

Default Web-app URL (Web browser)

forum_login.jsp

HTML link (index.html)

forum_entry.jsp

bonCommand forum_login.jsp

visitor_executes_choice.jsp

bonCommand forum_entry.jsp

jsp:forward host_exits_chat.jsp

guest_exits_chat.jsp

visitor_joins_chat.jsp

bonCommand visitor_executes_choice.jsp

visitor_joins_chat_controls.jsp

Frame visitor_joins_chat.jsp

visitor_joins_chat_frame.jsp

Frame visitor_joins_chat.jsp

bonCommand visitor_joins_chat_frame.jsp

visitor_joins_chat_ready.jsp

bonCommand visitor_joins_chat_controls.jsp

visitor_joins_chat_robot.jsp

jsp:forward visitor_joins_chat_ready.jsp

visitor_starts_chat.jsp

bonCommand visitor_executes_choice.jsp

visitor_starts_chat_controls.jsp

Frame visitor_starts_chat.jsp

visitor_starts_chat_frame.jsp

Frame visitor_starts_chat.jsp

bonCommand visitor_starts_chat_frame.jsp

visitor_starts_chat_ready.jsp

bonCommand visitor_starts_chat_controls.jsp

visitor_starts_chat_robot.jsp

jsp:forward visitor_starts_chat_ready.jsp

continues

06 1089-9 CH06 6/26/01 7:30 AM Page 121

122 Chapter 6 bonForum Chat Application: Implementation

guest_executes_chat.jsp

BonForumRobot visitor_joins_chat_ready.jsp

jsp:forward guest_exits_command.jsp

guest_executes_chat_console.jsp

bonCommand guest_executes_chat_controls.jsp

guest_executes_chat_controls.jsp

Frame guest_executes_chat.jsp

bonCommand (5X) guest_executes_chat_controls.jsp

guest_executes_chat_frame.jsp

Frame guest_executes_chat.jsp

BonForumRobot guest_executes_chat_robot.jsp

+ guest_executes_chat.jsp

guest_executes_chat_ready.jsp

bonCommand guest_executes_chat_controls.jsp

guest_executes_chat_robot.jsp

Frame guest_executes_chat.jsp

jsp:forward guest_executes_chat_console.jsp

jsp:forward guest_executes_chat_ready.jsp

guest_executes_command.jsp

BonForumRobot guest_executes_chat_console.jsp

guest_executes_command_controls.jsp

Frame guest_executes_command.jsp

bonCommand guest_executes_command_controls.jsp

guest_executes_command_frame.jsp

Frame guest_executes_command.jsp

BonForumRobot guest_executes_command_robot.jsp

+ guest_executes_command.jsp

guest_executes_command_ready.jsp

bonCommand guest_executes_command_controls.jsp

guest_executes_command_robot.jsp

Frame guest_executes_command.jsp

jsp:forward guest_executes_command_ready.jsp

Table 6.3 Continued

Requested JSP File

Type of Request Requesting JSP Files

06 1089-9 CH06 6/26/01 7:30 AM Page 122

1236.1 Building the bonForum Web Chat

guest_exits_command.jsp

BonForumRobot guest_executes_command_robot.jsp

+ guest_executes_command_ready.jsp

guest_exits_chat.jsp

BonForumRobot guest_executes_chat_robot.jsp

+ guest_executes_chat_ready.jsp

host_executes_chat.jsp

BonForumRobot visitor_starts_chat_ready.jsp

jsp:forward host_exits_command.jsp

host_executes_chat_console.jsp

bonCommand host_executes_chat_controls.jsp

host_executes_chat_controls.jsp

Frame host_executes_chat.jsp

bonCommand (5X) host_executes_chat_controls

host_executes_chat_frame.jsp

Frame host_executes_chat.jsp

BonForumRobot host_executes_chat_robot.jsp

+ host_executes_chat.jsp

host_executes_chat_ready.jsp

bonCommand host_executes_chat_controls.jsp

host_executes_chat_robot.jsp

Frame host_executes_chat.jsp

jsp:forward host_executes_chat_console.jsp

jsp:forward host_executes_chat_ready.jsp

host_executes_command.jsp

BonForumRobot host_executes_chat_robot.jsp

+ host_executes_chat_console.jsp

host_executes_command_controls.jsp

Frame host_executes_command.jsp

bonCommand host_executes_command_controls.jsp

jsp:forward host_decreases_rating.jsp

jsp:forward host_increases_rating.jsp

Requested JSP File

Type of Request Requesting JSP Files

continues

06 1089-9 CH06 6/26/01 7:30 AM Page 123

124 Chapter 6 bonForum Chat Application: Implementation

host_executes_command_frame.jsp

Frame host_executes_command.jsp

bonCommand host_executes_command_frame.jsp

BonForumRobot host_executes_command_robot.jsp

+ host_executes_command.jsp

host_executes_command_ready.jsp

bonCommand host_executes_command_controls.jsp

host_executes_command_robot.jsp

Frame host_executes_command.jsp

jsp:forward host_executes_command_ready.jsp

host_exits_command.jsp

BonForumRobot host_executes_command_robot.jsp

+ host_executes_command_ready.jsp

host_exits_chat.jsp

BonForumRobot host_executes_chat_robot.jsp

+ host_executes_chat_ready.jsp

host_increases_rating.jsp

bonCommand host_executes_command_controls.jsp

host_decreases_rating.jsp

bonCommand host_executes_command_controls.jsp

bonForum.jsp

bonCommand visitor_executes_choice.jsp

6.1.9 XML Data Storage
In a later version, we will use JDBC and an SQL database to store and retrieve
bonForum data.That will handle large data sets, such as those found in a chat room
Web site. However, for now, we are using Java to model the database design that will
be used.

All database engines of the future likely will understand XML.They will do so
using highly optimized processing like that found in all major SQL database engines of
today. Some XML-aware database systems already are available.Why did we not select
one of these? Because we would learn more about how to process XML using Java,
and because we wanted to explore our own ideas about storing XML in relational
databases.

Table 6.3 Continued

Requested JSP File

Type of Request Requesting JSP Files

06 1089-9 CH06 6/26/01 7:30 AM Page 124

1256.1 Building the bonForum Web Chat

Some think that although XML may be catching on for interapplication communi-
cation, it still has a long way to go before it’s competitive as a relational database.
Furthermore, you might need to integrate your XML usage with a third-party
RDBMS and perhaps are more interested in finding examples of XML-generating
data access classes than following an experimental project. Fortunately, many other
books cover these subjects—here are some links that may be useful in that regard:

n Storing XML in databases, by Uche Ogbuji: http://www.linuxworld.com/
linuxworld/lw-2001-02/lw-02-xml3databases.html.

n XML and databases, by Ronald Bourret:
http://www.rpbourret.com/xml/XMLAndDatabases.htm

n Modeling relational data in XML:
http://www.extensibility.com/tibco/resources.modeling.htm

ForestHashtable Class

We called our XML data storage solution ForestHashtable because it extends the
hashtable class and allows you to store and retrieve data trees. Chapter 11,“XML
Data Storage Class: ForestHashtable, is devoted to a detailed explanation of this Java
class.There is no need here to add to what is covered in that chapter. Instead, we will
make general observations about the ForestHashtable data storage class.

We have used the techniques that are the basis of ForestHashtable for many years
to optimize the storage, retrieval, and display of hierarchical data.What is new this
time is that we are applying these techniques to XML data. In addition, as is usually
the case, implementing the underlying algorithms in a different programming language
(Java) has clarified for us both the techniques involved and their value.

The ForestHashtable class is a model intended for later implementations in a rela-
tional or object database system. It provides no persistent data storage for our applica-
tion data (although serialization could be later employed for that purpose).Along with
the rest of the bonForum project, it is a just a learning tool and a blueprint.

Not Ready for Prime Time

Until we reimplement the design of the ForestHashtable class using persistent objects
or tables, we cannot support the deployment of a real, high-volume chat Web site.
However, we can now test the bonForum Web application design. If bonForum as a
prototype crawls along but functions correctly, it will be a success.The new version
will be built using a relational database to handle the real data requirements of a
Web chat.

06 1089-9 CH06 6/26/01 7:30 AM Page 125

126 Chapter 6 bonForum Chat Application: Implementation

6.1.10 Prototyping Custom JSP Tags
The first tag added to our JSP tag library was a multipurpose tag. It was designed to
serve only as a JSP custom tag testbed, allowing the rapid prototyping of the various
tag classes that we would need for bonForum.We could quickly add new commands
to this one tag, without having to take the time to add new source files, attribute
names, entries in the .tld file, and so on.This tag used an attribute named type to
select from among the tag prototypes, and three generic attributes for sending any
needed arguments to the tag class.

Only after we had decided which of our tag experiments were useful in the
bonForum project did we break those commands out of the ChoiceTag class into a
separate tag classes of their own.

The implementation of our chameleon tag’s many methods took considerable
effort.The details are the subject of Chapter 10,“JSP Taglib:The bonForum Custom
Tags.” In this section, we give only an overview of the implementation process using
the ChoiceTag class.The actual tags that we ended up with are described in Chapter
10.

Calling Servlet Methods from a JSP Tag

We began by studying the simpletag example that comes with the Jakarta-Tomcat
distribution, which gave us two tags to use as starting points.The log tag showed us
some of the basics, such as how to output text to the HTML produced by a JSP.The
foo tag, however, showed us something that would prove very useful: how to set up a
loop structure using the tag-processing events.

We began experimenting with our ChoiceTag class even while our design was in its
early stages.The outcome of this experimentation thus could affect the design deci-
sions. Had we waited until more of the design was fixed, our tag implementation
would have been much more constrained by pre-existing Java methods. Instead, the
design of the ChoiceTag and the Java methods it relied upon could proceed hand in
hand.

However, we did have our basic design principles in place, namely that the project
would be based upon an XML definition of a chat forum.We knew that we would be
using an Actor-Action-Thing command syntax. So, our first experiment was to add a
type attribute value of boncommand to our ChoiceTag class that could be used to get
actor, action, and thing values to a tag method.The following code is an example of
that tag, which is not part of bonForum. It listed the attributes to the browser display,
which just gave us some feedback so that we could test the command.This basically
just replicated the functionality of the foo tag Tomcat example:

<bon:choice type=“bonCommand” attrOne=“host” attrTwo=“executes”
attrThree=“command”>
<%= member %>
</bon:choice>

06 1089-9 CH06 6/26/01 7:30 AM Page 126

1276.1 Building the bonForum Web Chat

Our experiments with developing our JSP tag soon revolved around outputting our
bonForum XML data and displaying it to chat users in the various formats that they
would need the most:

n To start a chat, a user would need a list of subjects.
n To choose a chat, a user would need a list of available chats.
n To actually chat, a user would need to see the messages in the chat.
n To rate a chat guest, a chat host would need to see a list of guests.

Early Experiments with Xerces DOMFilter

The samples that come with the Apache Xerces download seemed a good place to
start.We compiled and ran these and then studied their source code. (Doing that is a
highly recommended exercise.) The DOMFilter and DOMWriter examples helped
especially.

In early experiments, we took the guts of the DOMWriter and DOMFilter exam-
ples that come with the Apache XML packages and hacked them into our altered foo
tag class.The results were two types of ChoiceTag, BonWriter and BonFilter, which
output all our XML data or just selected attribute values from the data.These
ChoiceTag types are not part of the application—they were just experiments that were
valuable for the design process.

To have an XML representation of bonForum that we could use for developing
and testing, we created a file called bonForum.xml.That was intended to be an exam-
ple of what the data in our application would eventually look like.This is a very
important point and one of the driving forces behind XSLT architectures: Application
logic and presentation logic can be developed in parallel with only an initial DTD and sample
XML file joining the two, long before the underlying data model is complete.

We still did not have any real data to work with. First, we would have to finish our
“database”—that is, the ForestHashtable class.Then we would have to get it to out-
put its contents as XML. In the meantime, our fake XML file allowed us to test our
new tag types, as in the following examples:

<bon:choice type=“bonWriter” attrOne=“false” attrTwo=“DEFAULT”
attrThree=“..\\webapps\\bonForum\\mldocs\\bonForum.xml”>
<%= “HELLO bonWriter”%>
</bon:choice>

The bonWriter tag type, shown in the previous code, output the entire XML file onto
the browser display—not so useful, but it was a start.The bonFilter tag type, shown in
the next lines, output all the attributes named Key with a value of guest. It was not
used in bonForum either, but we were getting the mechanics down.

<bon:choice type=“bonFilter” attrOne=“Key” attrTwo=“guest”
attrThree=“..\\webapps\\bonForum\\mldocs\\bonForum.xml”>
<%= “HELLO bonFilter”%>
</bon:choice>

06 1089-9 CH06 6/26/01 7:30 AM Page 127

128 Chapter 6 bonForum Chat Application: Implementation

Displaying Subjects and Messages

We then used ChoiceTag to prototype two other tag classes that are used in the
bonForum Web application.When we got them working, we took the code from
ChoiceTag and used it to fully develop these two tags for our library.Although they
ended up looking quite simple on the JSP after we had them working, each one rep-
resents quite a bit of effort and code.

These two tag classes are called OutputPathNamesTag and OutputChatMessagesTag.
They depend on methods that are in the ForestHashtable and BonForumStore classes.
Therefore, you might need to read Chapters 8, 10, and 11 (which cover these four
classes), and also Chapter 7,“JavaServer Pages:The Browseable User Interface” (which
discusses many of the JSP documents), before these two seemingly simple tags will
become clear to you.

The first task that we encapsulated in a tag was that of displaying all the various
chat subject categories to a user about to start a new chat.These categories (we call
them subjects) are initially loaded from an XML file into the ForestHashtable
instance named bonForumXML. OutputPathNamesTag is used to access the subjects from a
JSP.That happens in the JSP document named visitor_starts_chat_frame.jsp.

The second task encapsulated by ChoiceTag was that of displaying the messages to
each host or guest in a chat.That task involved many problems, such as how to refresh
the messages on each client browser and how to page the display of messages in an
HTML page, among others.These problems would not have been so difficult to solve
had we allowed ourselves to use client-side techniques, but we were committed by
design to looking for server-side solutions whenever possible.

In the end, the OutputChatMessagesTag class was capable of hiding all the
complex code we had created behind the simple-looking tag command that you
can see on the two JSP documents named guest_executes_chat_frame.jsp and
host_executes_chat_frame.jsp.

XSLT from a Tag Proves Powerful

Eventually, our tag-building efforts were concentrated predominantly on prototyping
the TransformTag class. It gave us access to the Apache Xalan XSLTProcessor class from
our JSP pages.We will return to that later and in Chapter 10.

As we had hoped when we began the project, this combination of XSLT and JSP
turned out to be powerful and promising.We found that the TransformTag class was
clearly the optimal tool to apply in data-display tasks, except in two tasks (displaying
chat subject categories to a user starting a chat, and displaying the messages in a chat).
TransformTag was so useful that we were able to stop adding new tags entirely!

We highly recommend the use of a JSP tag library because it very neatly packages
the interfaces between the JSP pages and the Java servlets.Although developing cus-
tom tags requires some extra effort, this actually leads one to simplify those interfaces.
If you use scriptlets instead of tags, it is easy to come up with a much more complex
matrix of possibilities, and that can lead to a lot of undesigned contracts between the
user interface (JSP) and the background processing (servlets).

06 1089-9 CH06 6/26/01 7:30 AM Page 128

1296.1 Building the bonForum Web Chat

6.1.11 BonForumEngine and BonForumStore

As we stated previously, the BonForumEngine Java servlet is the “central station” of the
bonForum Web application: It handles most of the HTTP requests. It also coordinates
all the JSP pages.Together with the BonForumStore class, it synchronizes all the users.

BonForumEngine has a member named bonForumStore, which is the one static
instance of the BonForumStore class. One of the main functions of this bean is to
encapsulate the XML database, a static ForestHashtable instance named bonForumXML.
Access to the XML data from the JSP pages and from their custom tag classes is han-
dled by methods in the one bonForumStore member of the bonForumEngine.

When we first began prototyping bonForum, we had only the BonForumEngine
servlet class. It was all too convenient to try out new code ideas by adding fields and
methods to BonForumEngine.This bloated class was criticized by many because it suf-
fered the fate of early release in book form. Release early, release often—then hide out
a while.The life of a “bottoms-up” software developer is never easy, it seems. Of
course that was the wrong place for much of that code, so it now resides in
BonForumStore (which itself will be factored someday).

A full description of these important classes is provided in Chapter 8.

All Requests Go Through the service Method

All of the Web application’s HTTP requests to the Tomcat Server are handled by the
service method in BonForumEngine.As you have seen in the previous tables (see
Section 6.1.8,“Forum States, bonCommands, and JSP”), many JSP pages include one (or
more) HTML form that is POSTed to this servlet.

In addition, the Tomcat deployment descriptor for the bonForum Web application
(in the web.xml file) includes a servlet-mapping entry that causes Tomcat to send
every bonForum URL that ends in .tfe to BonForumEngine.The BonForumRobot applet
adds that extension to each document that it requests, via its showDocument() method.

The only requests for Web application URLs that are not routed through the
service() method of BonForumEngine are those made by a jsp:forward element on a
JSP page and the requests made to fill the HTML frame elements in each frameset in
bonForum.

6.1.12 Forwarding from a Servlet to a JSP
In Chapter 8, we thoroughly discuss the process that BonForumEngine uses to forward
the HTTP requests because that is one of its most important tasks in the application.
In particular, read Section 8.1.13,“The service() Method: Forwarding HTTP
Requests.”

06 1089-9 CH06 6/26/01 7:30 AM Page 129

130 Chapter 6 bonForum Chat Application: Implementation

We had a problem at first trying to get BonForumEngine to forward a request to a
JSP page.This was because of the pathname we were using. Here is an example of one
that did not work: /bonForum/jsp/forum/visitor_join_chat.jsp.The correct path to
use was /jsp/forum/visitor_join_chat.jsp.This path seems to imply that you can move
a JSP page from one Web application to another.We have not tried that yet to find out
for sure.

It was easy to fall into the problem we had. The form on the JSP page was cor-
rectly being POSTed using the following path, which was the source of our confusion:

<form method=“POST” action=“/bonForum/servlet/BonForumEngine”>

The servlet container (Tomcat Server) will concatenate this path to the Webapps folder
path. On the other hand, an instance of the BonForumEngine servlet, when forwarding
a request, will add its path to the bonForum folder path—in other words, to the Web
application folder.

6.1.13 Including Documents in a JSP
At this point in the implementation, we were running the Xalan XSLT processor from
our JSP documents using our prototype for the TransformTag class.We had decided
that during prototyping we would save the output of the XSLT processing in an
HTML file (we now usually use XML output to a string variable instead).Then we
made a big mistake—we confused the include directive with the jsp:include tag! We
tried to use the include directive to display the XSLT results on the browser, some-
thing like this:

<%@ include file=“../../mldocs/bonForumView.html”%>

The first time we accessed the JSP,Tomcat tried to create the Java source file for its
servlet in the Work folder. However, TransformTag had not yet fired because that hap-
pens at request time.Therefore,Tomcat found no HTML output file because none
existed yet. It gave up trying to create a Java file, much less compile it into a class file.
The browser showed us the following error display:

Error: 500,
Internal Servlet Error
org.apache.jasper.compiler.CompileException: C:\jakarta-
➥tomcat\webapps\bonForum\jsp\forum\forum_test.jsp(23,2) Bad file argument to
➥include

We took out the include directive and then requested the JSP again.This time the
page could be compiled, so TransformTag fired and created the HTML file.Then we
put the include directive back in (to fix it, presumably, although it was really doing
just fine). Now, because Tomcat could find the HTML file this time, it could compile
the JSP again with the include directive. Now we got exactly the browser display that
we were looking for—or so we thought.Actually, it was displaying stale content, but
we had changed neither the input nor the style sheet of the XSLT transform, so there
was no way for us to see that the HTML results were from the transform on the pre-
vious page (the one without any include directive).

06 1089-9 CH06 6/26/01 7:30 AM Page 130

1316.1 Building the bonForum Web Chat

Then, to see the thing work, we changed the XML input for the XSLT transform.
Instead of a different browser display, as we expected, we got the same old one again!
Must be a caching problem? You might think this story is getting too long, but we
think it is rather funny. It is easy to see why the server-side Java forums are such busy
places.

About that time, we realized our mistake:We should have used the jsp:include
element.The include directive cannot be used this way for dynamic updates of the
JSP output.The correct way to include a document at request time in the output of a
JSP is to use the jsp:include action, doing something like this:

<jsp:include page=”../../mldocs/bonForumView.html” flush=”true” />

If you want more information about this topic, read the excellent book Core Servlets
and JavaServer Pages, by Marty Hall, published by Prentice Hall PTR/Sun
Microsystems Press.

Before we leave this topic, one more observation may be useful.Whenever you find
yourself scratching your head about the behavior of a JSP, an obvious step is to look at
the Java source code that the page translates into in the Work folder. Had we done
that, we would have seen that our include directive produced the following source
code in the servlet:

out.write(“<html>\r\n<head>\r\n<title>bonForum</title>\r\n</head>\r\n<body
➥bgcolor=cyan>\r\n<select name=\”chatGuest\”
size=\”9\”>\r\n<option>Adam age:44 rating:4</option>\r\n<option>Eve age:33
➥rating:7</option>\r\n</select>\r\n</body>\r\n</html>\r\n”);

This would have told us something important:The display we were getting was hard-
wired into the servlet. It was not dynamic; the HTML was not being read at request
time.

On the other hand, here is what we would have seen in the servlet source when
we (finally) used the jsp:include element instead:

{
String _jspx_qStr = “”;
pageContext.include(“../../mldocs/bonForumView.html” + _jspx_qStr);
}

Looking up the pageContext.include method in the Jakarta servlet API docs would
have been (and still is) very educational.

6.1.14 XSLT Transform from a JSP
Being able to use the Apache Xalan XSLT processor from our JSP documents was a
major goal for our project.The results are described in Chapter 10. In this chapter, we
are presenting only a short chronological overview of the implementation effort.
Looking back, we can see that our biggest problem was that Xalan had very little doc-
umentation available when we first began using it.

06 1089-9 CH06 6/26/01 7:30 AM Page 131

132 Chapter 6 bonForum Chat Application: Implementation

Using Xalan-Java 2 Instead of Xalan-Java 1

The bonForum release with this book was developed before a stable release of Xalan-
Java 2 was available. It turned out that the part of Xalan that we use (XSLT transfor-
mation) was among the most reworked parts of the Xalan product as it went to
version 2. Here is what the version 2 readme.html says:

Given the scope of the redesign, the changes with respect to Xalan-Java 1.x are
global in nature …. Xalan-Java 2 implements the TraX (Transformation API for
XML) interfaces.The product of extensive open-source collaboration by mem-
bers of the XML developer community,TrAX provides a conceptual framework
and a standard API for performing XML transformations.

Fortunately, the changeover to Xalan-Java 2 did not have a major impact on the design
of bonForum—it requires only a somewhat different way to create and use an XSLT
processor—so the input and output of that processor will remain the same. For infor-
mation about using either Xalan Java 1 or 2 with the bonForum project, please refer
to Chapter 4,“XML and XSLT: Xerces and Xalan,” Section 4.5,“Installing Xalan.”
Also, check for the latest bonForum information at www.bonForum.org.

Xalan’s XSLT Servlet

At the time we were developing our XSLT custom tag, there was no XSLT servlet in
Xalan.Today, we may be tempted to solve the XSLT requirements of our JSP tag by
having it access the XSLT servlet that is now provided with Xalan.We recommend
that you try that approach in similar situations.We tried again, with Xalan 2.0.0, but it
still had the old documentation for the Xalan-Java 1.2.2 servlet, although it has
changed drastically, including the name of the servlet. Now, with Xalan 2.0.1, the
servlet sample is a very useful resource. Relative to the root folder for either Xalan-
Java 1 or Xalan-Java 2, look for the XSLT servlet documentation at
/docs/samples.html#servlet.

JSP Scripting with Java Code

We found some code in the Xalan sample TransformToDom that looked promising.
We decided to put some similar code directly on a JSP, using scriptlets, just to test it.
After it was working, we would encapsulate it in a tag class.The details of that code
are discussed in section 10.6,“XSLT and the TransformTag Class,” of
Chapter 10.

We had hit upon perhaps the best procedure for developing the Web application.
Developing and testing code directly on a JSP is fast and simple.After it works, you
can move it into a separate class, which makes the JSP simpler and enables you to
reuse the code elsewhere.We do this only to speed up development; the code usually
doesn’t belong in the JSP servlet and needs encapsulation in its own object.

XSLT from a JSP Custom Tag

Our JSP custom tag for choosing an Actor-Action-Thing command was already send-
ing three generic attributes as arguments to a Java servlet method. It was an easy step

06 1089-9 CH06 6/26/01 7:30 AM Page 132

1336.1 Building the bonForum Web Chat

to alter that testbed tag so that it could function also as an XSLT processor.The code
that we had used to test our JSP scriptlets was further developed on our chameleon tag
and finally found a home in the TransformTag class.With it, we could do the follow-
ing on our JSP:

<bon:transform
type=”XalanVersion”
inDoc=”..\\webapps\\bonForum\\mldocs\\foo.xml”
styleSheet=”..\\webapps\\bonForum\\mldocs\\foo.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\foo.html” >
</bon:transform>

Actually, the type value shown is a rather late addition.We now use type attribute val-
ues to select XSLT processes. Current acceptable values are “Xalan Java 1” and “Xalan
Java 2”.There is also a session attribute called “xalanVersion” which can be set to any
acceptable value for the type attribute. One way you can set that session attribute is by
including something like the following HTML form (JSP or otherwise) that is
POSTED to the BonForumEngine:

<form name=”forum_entry” method=”POST” action=”/bonForum/servlet/BonForumEngine”>
<label for=”xalanVersion”>
Apache Xalan Version?
</label>
<input id=”xalan1” type=”radio” name=”xalanVersion” value=”Xalan-Java 1”>
Xalan-Java 1
</input>
<input id=”xalan2” type=”radio” name=”xalanVersion” value=”Xalan-Java 2” CHECKED>
Xalan-Java 2
</input>
<input type=”hidden” name=”actorReturning” value=”yes”>
</input>
<input type=”hidden” name=”bonCommand” value=”visitor_executes_choice”>
</input>
<input type=”submit” value=”continue” name=”submit”>
</input>
</form>

The BonForumEngine servlet will set the session attribute from the request parameter.
The tag class will get and use that session attribute if a value of xalanVersion is used
for the type attribute in the custom tag on the JSP. Do not worry if the details are not
clear at this point, more will be said about all this later. The output of the XSLT
process need not be HTML—it can be XML, for example. It can also go to a custom
scripting variable named output, which it does when the outDoc attribute is set to
output or outputNormalized.

Instead of using a file for its XML InputSource, TransformTag can instead use the
contents of the ForestHashtable XML database. It does that if the first attribute is set
to the string value bonForumXML.This turned out to be one of our best tools for devel-
oping bonForum (see Chapter 10). Our JSP now has powerful possibilities using
TransformTag. For example, we can dump our entire database out to the browser for
debugging like this:

06 1089-9 CH06 6/26/01 7:31 AM Page 133

134 Chapter 6 bonForum Chat Application: Implementation

<bon:transform
type=”bonTransform”
inDoc=” bonForumXML “
styleSheet=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”outputNormalized” >
<%=output%>
</bon:transform>

6.1.15 Style Sheets
When we had TransformTag working, we were able to use some XSL style sheets to
accomplish some of our XML data-display goals. Eventually, as the prototype is further
developed, we expect that there will be many more style sheets.The ones that we have
used already are discussed in Chapter 10.

All the style sheets that we used in the book version of bonForum were applied
using XSLT to the entire contents of the bonForumXML ForestHashtable. In the
future, we plan to have a more selective mechanism for determining the XML
InputSource for the XSLT process. For that reason, we have already included in the
project a second ForestHashtable object, named bonBufferXML. It will help when we
want to apply XSLT to only a selected subset of the entire data contents of
bonForum.

The XSL style sheet files are all found in the folder TOMCAT_HOME\webapps\
bonForum\mldocs.

Here is a list of the XSL style sheet documents in use when this book went to
print.They are used for getting a list of available chats, a list of the guests in a chat, and
a list of links to other resources, (including other bonForums, presumably):

bonChatItems.xsl

bonChatGuests.xsl

bonForumLinks.xsl

6.1.16 Session-Based Application Information
We highly recommend to any reader interested in Java the book Thinking in Java, by
Bruce Eckels, published by Prentice Hall.At this time, you can freely download a pre-
view version of the entire book. Find out more about this very useful book by visiting
the Web address http://www.mindview.net.

One chapter of that book that may be helpful for understanding bonForum is
Chapter 15,“Distributed Computing.” In particular, the two sections entitled
“Servlets” and “JavaServer Pages” are recommended because they explain the use of
the session object in servlets and the various data scopes available in JSP.

Much of the bonForum application information that is not kept in the
bonForumXML data storage object typically ends up being kept in HTTP session attrib-
utes.We have seen, for example, that on our JavaServer pages many HTML form ele-
ments are POSTed to the BonForumEngine servlet.These forms include input elements
whose values are visible within that servlet as HTTP request parameter values.

06 1089-9 CH06 6/26/01 7:31 AM Page 134

1356.1 Building the bonForum Web Chat

If one of these application variables will be required again, when a different HTTP
request (from the same browser session) is being serviced, the BonForumEngine servlet
copies it to a session attribute that it creates with the same name as the request para-
meter. Here is an example, from BonForumEngine.java:

chatTopic = normalize((String)request.getParameter(“chatTopic”));
if(chatTopic.trim().length() > 0) {
session.setAttribute(“chatTopic”, chatTopic);
}

In case you are wondering what the normalize method does, it serves two purposes. It
makes sure that strings input by the users can be legally included in the XML data, by
substituting inadmissible characters with the appropriate character entities. It also
replaces null values with empty strings so that we do not later have to add code to
check for null values. Nor do we have to handle null-value exceptions commonly
caused by passing null string values to Java methods that expect a string.

One session attribute in the application is called bonForumStore. It enables us to
find the application interface to its XML database from anywhere, including JSP, that
can access the session object with this attribute.

The use of session attributes to store information has important features and conse-
quences that must be grasped to understand the Web application implementation:

n Each user is provided a separate variable context in the Web application.
n Each user context is tied to the existence and duration of one session, which

connects all the requests made by one browser for a configurable period of
activity.

n When a session expires, all information in its user context becomes inaccessible.

In addition to maintaining user-related information in storage locations with session
scope, we used a user’s current session ID to connect the user to important elements
in the XML storage so that these could be quickly found and retrieved.That is dis-
cussed in the next section. Meanwhile, notice that when a session expires, these XML
elements also become “orphans” in the application, inaccessible to the code.

Obviously, these effects of the volatility of session objects must be handled by
bonForum before it is deployed.This task has been left for a future version, mostly
because it involves design decisions that are better made based on the results of experi-
menting with the current implementation.At the very least, we will have to purge
“orphan” session-related information from the data.At the other extreme, we could do
what some commercial chat sites do, which is to implement a system of associating
registered users with unique IDs and then track each user across all their bonForum
sessions.

6.1.17 Avoiding Parsing and Searching
A major theme in the implementation of bonForum has been to find ways to opti-
mize the application for speed.We have tried to find mechanisms that will scale up to
installations handling thousands of simultaneous users.That is not to say that the
prototype bonForum can do that. In fact, some of its methods will certainly need

06 1089-9 CH06 6/26/01 7:31 AM Page 135

136 Chapter 6 bonForum Chat Application: Implementation

some more work before they can. Nevertheless, one of our experiments turned out
promising.

Session-Unique Elements

As discussed previously, one way to know which data items are related to a particular
user of the Web application is to keep those items in session attributes. However, what
about all the data that we keep in an XML database? It includes items pertaining to
each user, and there must be some way to know what belongs to whom.

Of course, this kind of problem is not at all new.There are obvious solutions using
relational database tables. On the other hand, if we were using an XML document
only to store data, the solution would most likely involve the use of XPATH.
However, bonForum stores XML documents in a special hashtable class,
ForestHashtable, which is a simulation for a relational database table design. Each ele-
ment node of the XML is stored in a table row with a key called a NodeKey, which
encodes the position of the node in a tree structure.We had to find our own solution
to the problem of relating data to the bonForum users.

Let’s use an example here.A user of the bonForum is associated with at particular
chat.That chat is represented by an element node in the XML data.We could associate
the user with the chat by adding a child element inside the chat element.That child
element would either represent the user or point to an element elsewhere that repre-
sents the user (we did the latter).

We wanted to avoid repeated searches through our data every time the same piece
of information was required.There were many places in the code where we needed to
know which chat element belonged to the current user. If every time we needed that
answer we had to search through all the data looking for the chat element that con-
tained a child that was associated with that user, it was time to find a better way.

First, we made a rule.Whenever possible, we defined elements in our XML so that
they would be unique for each user.That meant that they would be unique within an
HTTP session. One session can “own” only one chat element. One session can own
only one guest element.

The second thing we did was to create another hashtable, called a
NodeNameHashtable.The elements that this hashtable holds are NodeKey values.The
keys that it uses associate the NodeKeys with a user session.To use the previous example
given, the key for the NodeKey of an XML chat node would be something like
To1012mC7576871324604071At:chat.The key’s prefix is the ID of the session that owns
the chat node.

These two things together gave us a mechanism for fast access to data that is related
to a particular session and, thus, the user and browser.This mechanism plays a part in
quite a few places in the code.You can read more about it in Chapter 11, Section
11.5,“Caching Keys for Fast Node Access.”

06 1089-9 CH06 6/26/01 7:31 AM Page 136

1376.1 Building the bonForum Web Chat

PathNameHashtable

In Chapter 11, section 11.5, you can also read about another mechanism we employed
to prevent time-consuming processing.When a user wants to join a chat, he must
choose one from a list displayed by the browser.The list shows the user the subject
and topic of each available chat. Processing the user choice involves locating a particu-
lar node in the XML data—in this case, a subject node.

Instead of searching through the XML somehow, we again have a fast way to get
the NodeKey of the node we need.This involves yet another hashtable, this time one
called PathNameHashtable. In this case, NodeKeys are stored in the hashtable using keys
that indicate the path to a subject element in the XML data tree.

As noted elsewhere, we have constrained the possible names that these elements can
have. Duplicate sibling-node names are not allowed.Thus, we have a unique set of
subject pathnames.When a user chooses a chat to join, the choice is associated with a
unique pathname.This pathname can then be used to quickly retrieve the subject ele-
ment required for the user to join the chat.

6.1.18 Synchronizing Multiple Threads
We soon had to pay more attention to the question of how our Web application
would handle an environment in which it was being used by not one developer, but
by many clients. One of Java’s strengths is its built-in thread management.We hoped
that it could solve the problem of multiple, simultaneous access to our BonForumEngine
Java servlet.

Again, we recommend to the reader the book Thinking in Java, by Bruce Eckels.
Especially helpful in the present context are Chapters 14 and 15:“Multiple Threads”
and “Distributed Computing.”That book is a good resource for learning about those
two topics.

Critical Resources

Essentially, we had to find a way to use the Java mechanism of synchronization to pro-
tect access to critical resources.We could synchronize access either to methods or to
blocks of code.A lot can be said about the topic of synchronization in Java by using
the following two analogies:

n Synchronizing all the public methods in a class is like saying,“I’m doing this
action, so you cannot do that action, nor that action, and so on.”

n Synchronizing a block of code on an object is like saying,“I have this thing, so
you cannot do that, nor that, and so on.”

Of course, the first of the two cases is really the same as the second one, with this class
instance being the object upon which code processing is being synchronized.

06 1089-9 CH06 6/26/01 7:31 AM Page 137

138 Chapter 6 bonForum Chat Application: Implementation

In any case, it is quite apparent that we must protect the bonForum data.The
progress of the forum continually depends upon the current contents of its XML rep-
resentation, which is what we have chosen to keep in the bonForumXML
ForestHashtable object.This XML representation is continually being changed in
response to the actions of the actors. In other words, the application data change in
response to multiple asynchronous user inputs.

Typically, while interacting with one JSP-generated HTML page, each client causes
more than one change to bonForumXML.This means that access to that XML represen-
tation must be transactional.We made sure that only one client at a time could access
the bonForumXML object:We used the synchronized Java keyword.

At first, we thought that meant synchronizing all the public methods in
BonForumEngine.These include methods that are capable of changing the bonForumXML
object. However, if we did that, the lock being used would be on the Java servlet
object. It would not be much of a servlet if only one client can access it at a time, so
we knew that there must be a better way.

Instead, we synchronize any “critical code” sections on the bonForumXML instance. In
effect, this means that whoever owns the XML representation of bonForum can access
the methods that are capable of changing its contents.All the other users must wait
their turn; they are blocked—in effect, queued up and buffered—by the Java synchro-
nization mechanism.

Questions Regarding Synchronization

Certainly, the way that we have set up multiple thread access to the data is an area that
needs far more testing. For one thing, it is important to minimize the number and size
of synchronized code sections in the application because they constitute bottlenecks
and overhead.

We also want to make sure that there are no ways to defeat the protections offered
by the synchronization that we have added—for example, by accessing methods from
JSP.

Getting thread synchronization right is partly an art, and we will not be surprised if
problems surface. However, after we have implemented a persistent database table from
our ForestHashtable design, we will at least be able to recover from a thread clash,
which is not possible now!

6.2 Displaying and Selecting Chat Subjects
As you have read, our implementation began as a system involving many JSP docu-
ments, which used custom tags to access an XML data-interface object and an XSLT
processor.At that point, we still had some major problems to solve before this system
could work as a chat application.

Obviously, one of the first problems that we had to solve was how a visitor to the

06 1089-9 CH06 6/26/01 7:31 AM Page 138

1396.2 Displaying and Selecting Chat Subjects

bonForum would start a new chat.We knew from our design that it would involve
selecting one element from a subtree of subjects in our XML data.The technical ques-
tion became how to display the subjects on a browser and then how to find the XML
subject element using the display item that the visitor selected on the browser.

We were looking for places to apply XSLT and XPATH in bonForum. In some
ways, this seemed like a good place to start, but we decided against that. It was not a
simple problem on which to begin applying those technologies. Second, everything
else in the project was contingent upon creating a chat, so we wanted a fast solution
for that. In addition, our XML data structure was morphing and evolving in response
to our attempts to find fast node-lookup mechanisms.

6.2.1 Complexities of Starting a Chat
The solutions that we created instead involved the PathNameHashtable, which we dis-
cussed earlier. However, starting a chat turned out to be quite a complex problem.
Here we list some things involved:

n Many chats can exist that all have the same subject, with each chat belonging to
a different session.

n Each chat element in the XML must somehow be connected to the XML ele-
ment for its subject.

n Each chat also has a short description added by the user who starts it.This
chatTopic must also be stored, related, and retrieved.

This chapter is not the place to describe the solution that we devised. Indeed, the
solution involved working with all the various parts of our new Web application sys-
tem.Therefore, again, understanding what is going on in bonForum may require read-
ing relevant sections in several of the more technical chapter yet to come. Here we
simply list the book chapters and sections that will help you the most.You might want
to mark this list and refer back to it later!

n Chapter 7:“JavaServer Pages:The Browseable User Interface”
n Section 7.2.5:“visitor_starts_chat_frame.jsp”

n Chapter 8:“Java Servlet in Charge: BonForumEngine”
n Section 8.1.20: “The processRequests() Method: Handling Host

Executes Chat”
n Section 8.2.12:“Invoking Chat Methods from JSP Custom Tags”

n Chapter 10:“JSP Taglib and Custom Tag: ChoiceTag”
n Chapter 11:“XML Data Storage Class: ForestHashtable”

n Section 11.5.2:“NodeKeyHashtables Cache NodeKeys”
n Section 11.5.4:“PathNameHashtable”
n Section 11.6.4:“Automatic Parent Node Location Retrieval”

06 1089-9 CH06 6/26/01 7:31 AM Page 139

140 Chapter 6 bonForum Chat Application: Implementation

6.3 Displaying Chat Messages
After we had a chat with a host, we were ready to tackle the problems involved in
presenting the chat to a user.We decided to work on the “host executes chat” forum
state before the “guest joins chat” forum state. Our solution would also apply to the
“guest executes chat” forum state. In addition, it would be more challenging and more
capable of positively influencing the rest of the implementation work.The problem
turned out to be much more complex than we ever imagined.

Getting the job done required solving several challenging technical problems, all
related to displaying the chat history for the user.Although we had foreseen some of
them during the design phase of the project, we were glad that we had not tried to
solve them at that time.The solutions to these problems truly required experimenta-
tion.The principles of rapid application development were vindicated in this instance.
Actual experience with a prototype was worth much more than theoretical discussion
of the technological possibilities.

Again, we first considered basing our solution upon XSLT and XPATH. Our rea-
sons for not doing so are well covered elsewhere, along with the solutions that we
devised.Therefore, in this chapter we will try to discuss only the implementation
process itself. Here is a list of all the chapters and sections that will help you to under-
stand the process of displaying chat messages:

n Chapter 7:“JavaServer Pages:The Browseable User Interface”
n Section 7.2.9:“host_executes_chat.jsp”

n Chapter 8:“Java Servlet in Charge: BonForumEngine”
n Section 8.2.12:“Invoking Chat Methods from JSP Custom Tags”

n Chapter 9:“Java Applet Plugged In: BonForumRobot”
n Section 9.3:“BonForumRobot”

n Chapter 11:“XML Data Storage Class: ForestHashtable”
n Section 11.11:“Initializing the bonForumXML Database”
n Section 11.12:“Runtime bonForumXML Database”

6.3.1 The outputForumChatMessages Method
There is one very important thing to note about the method that provides the chat
messages to list on the browser page. In its current implementation, it iterates through
the bonForumXML ForestHashtable contents searching for elements that are named
“message.”This works for the prototype, but the results will take longer to get as the

06 1089-9 CH06 6/26/01 7:31 AM Page 140

1416.3 Displaying Chat Messages

database grows. Our plan is to iterate only the message pointers that exist within a
particular chat element in the XML data.We had to settle for this interim solution for
this version because the real solution had a bug that was found too late to fix before
writing this book. It is possible that the version on the CD-ROM does include the
correct, efficient algorithm.Also, please check the project Web site at http://
www.bonforum.org for news and new releases.

6.3.2 Session Local Data Versus Chatting
One of the rules of our system is that the code that handles one particular user can
access only elements in the XML database that belong to that user’s session.That
means, for example, that it is not possible for one user’s thread to add an
actorNickname child to a different user’s guest actor element.

We suddenly realized that by allowing a session to add elements only to parent ele-
ments that were also added by that same session, we were making chatting impossible.
It seemed that the process of adding a messageKey element to a chat element was dif-
ferent from all other add operations.A guest must be allowed to add messages for any
chat joined, even if the guest has not added that chat’s element.

6.3.3 The Need to Refresh Chat Messages
When an actor adds a message to a chat, that message should be seen very soon by all
the other actors in the chat.We needed to find a technique to do this in our
bonForum.Without this, it could hardly be called a chat forum; it would be more like
a message board than a chat room.

Possible Refresh Mechanisms

We considered some mechanisms for refreshing the chat history display on the
browsers. Some of these were rejected for being too “client-side.”

We tried using a Pragma setting to cause a refresh of the page that had the chat
messages displayed on it.We got that working, but it had two problems for us. One
was that it was quite browser-dependent and would not work on all browsers.
Although that was not an immediate consideration because we were only testing with
IE5.X, we wanted our Web application eventually to be browser-independent.

The worse problem was that there was a lot of flickering in the message’s display. It
seems that when IE5 repainted the display, it first erased the old one to white.We
started looking for other uses of the refresh Pragma on Web sites and found some that
seemed to work.An occasional refresh is not bothersome, especially if you are not
always looking right at the frame that is being refreshed. In our case, we wanted one
refresh every 5 seconds, so the user would be staring at the flickering messages display
most of the time.That was quite bothersome.

06 1089-9 CH06 6/26/01 7:31 AM Page 141

142 Chapter 6 bonForum Chat Application: Implementation

6.3.4 BonForumRobot Java Applet to the Rescue
When we started the book project, we wanted to complete it without any use of
client-side programming. HTML that worked on any “plain vanilla” browser was to be
the ideal output from our server-side programming efforts. Had we not chosen a chat
room for the Web application project, we might not have ended up creating an applet.

Therefore, after some frustrating time spent trying to solve the problem, we reluc-
tantly turned the problem into an opportunity to have some hands-on discussion
about applet use in Java Web applications. First, we made an applet that included a
timer mechanism based on putting a thread to sleep.We then set it up to repeatedly
call the showDocument method of the applet class, with the URL of the JSP that dis-
played the chat messages.At first, the applet was also embedded on that same JSP using
a jsp:plugin element.

It might seem like a wrong decision not to use our applet to also display the mes-
sages, as other chat applets do.We could have perhaps avoided the caching, scrolling,
and flickering problems we encountered. However, we were still hoping (and are yet)
to get rid of the applet entirely, so we have minimized its role. It is our experience that
without an applet, this project would be much more interesting to many who have
seen it.

In any case, our own applet experiment was still not satisfactory.The JSP also had
an input form field for the user to enter the next chat message. Refreshing the JSP
with the applet interfered with typing in that input field. (By the way, this problem of
the refresh interfering with user input had also existed with the nonapplet, Pragma-
only methods of handling the refresh requirements). However, we also had a couple of
other problems.We tackled the most pressing one first, which is the subject of the next
section.

6.3.5 The Caching Problem with BonForumRobot
We were getting a refresh action due to the applet, but the browser seemed to be
showing the document from the browser cache instead of from the server.We could
see messages that had been added from different browsers, but always the same ones.
We then tried some well-known techniques to prevent caching of the pages, but noth-
ing worked.The browser stubbornly refused to repeatedly request the JSP from the
server.

Again, we started to think that we would need even more client-side power to
solve this problem. However, we finally found a smaller trick that works.The
showDocument method in the BonForumRobot applet refreshes the page using a different
JSP filename each time.We do that by concatenating the current time in milliseconds
with the real JSP filename to get unique names.We then add a new “fake” file exten-
sion (.tfe) that we have mapped in the Tomcat Server configuration file so that it is
sent to the BonForumEngine servlet.The servlet strips off the time and extension and
forwards the request to the correct JSP.

06 1089-9 CH06 6/26/01 7:31 AM Page 142

1436.3 Displaying Chat Messages

The only problem we found with this was that the browser happily cached a page
every time a refresh occurred.After a while, the browser cache was full of copies of
essentially the same JSP document, such as the following series (this was before we
added frames):

http://localhost:8080/bonForum/guest_executes_chat.jsp960816479237.tfe
http://localhost:8080/bonForum/guest_executes_chat.jsp960816479247.tfe
http://localhost:8080/bonForum/guest_executes_chat.jsp960816479257.tfe

6.3.6 Testing of Web Application Begins
We now had something resembling a Web application, albeit an unusable one, so we
started trying to use it to foresee and forestall problems.At the same time, we were
testing the wisdom of that well-known rule of rapid application development:“Get it
working first, and then make it work right!”

We started up six instances of the browser and put the program through its paces.
Or, rather, we put what was there of the program through its paces because we had
not yet finished any but the first six or so forum states of the application.We were
actually surprised by the way things were working.We were trying this on a machine
with only 64MB of RAM and a 266MHz Pentium processor. Many other programs
were running as well, which resulted in lots of disk thrashing.

We got things to slow down considerably this way, but only after much torturing of
the application did we get our first indication of a problem: a “null pointer exception”
message displayed on one of six Java consoles that were showing applet runtime infor-
mation for each of the six browser instances.

6.3.7 The Need for Frames
Now that we were successfully refreshing the chat messages, we proceeded to the next
biggest problem, which was the unpleasant interaction of our refresh mechanism and
the users’ efforts to use the application.To fix the applet solution, we broke another
one of our starting rules:We used HTML frames.We needed to do that to provide a
better user experience with the Web application.

We solved that by adding a frameset to our JSP output HTML.The applet, embed-
ded in one frame, refreshes the chat messages in a different frame.A third frame holds
the HTML form that lets the user input the next chat message, now without any
interference at all.

6.3.8 Frames and JSP
Adding frames to our application caused a major shakeup of the design. Before we did
this, our system usually had a straightforward correspondence between forum states,
bonCommands, and JSP pages required. For example, the forum state “host executes
chat” was reached by posting the host_executes_chat bonCommand, which caused the
firing of the host_executes_chat.jsp JSP document.

06 1089-9 CH06 6/26/01 7:31 AM Page 143

144 Chapter 6 bonForum Chat Application: Implementation

Because we added frames to the application, we use several JSP documents together
to create most of the forum states. One JSP page creates a frameset with two or three
frames in it.Another JSP creates the content of one of the frames, which usually dis-
plays information to the user.Another JSP fills a frame that displays user input fields
and controls.Yet another frame holds BonForumRobot in a jsp:plugin element.We will
discuss others later in this chapter.

So as not to lose track of our design, we came up with a naming convention that
retains the original JSP name for the document that creates the frameset.The other
JSP documents that help to create the same forum state use the same name with addi-
tional suffixes.

This is better seen from examples.The JSP files that display and refresh the chat
messages to a host and that allow the host to enter a new message are located in files
named as follows:

host_executes_chat.jsp

host_executes_chat_frame.jsp

host_executes_chat_controls.jsp

host_executes_chat_robot.jsp

After we introduced frames to one of our forum states, it was natural to put them into
most of the application. One of the main reasons for that was to achieve a consistent
look and feel across all the browser pages.We did not need to refresh the available chat
subjects in the “visitor starts chat” forum state frequently, as we did the chat messages.
However, we put the display of chat subjects in its own frame anyway. Perhaps later
the subjects will be added by users and need refreshing also.

The Need to Leave a Frame

Now we could load JSP-generated documents into HTML frames.These frames were
also JSP-generated. Nevertheless, we had a new problem to solve.At some point, we
needed to load a new part of the Web application that did not use the same frameset.
We could not do that using bonRobotApplet, which was itself in a frame.The next
document would load completely into one of the existing frames.

We needed a way to get rid of the existing frames.We tried just using the value
_top for the second argument of the applet showDocument method.We tried several
things.At one point, we succeeded in setting up an infinite regress of smaller framesets
inside frames, like the proverbial Chinese boxes. Cute as it was, it was not exactly
practical.

To make a long story short, we finally added another JSP file that also had the
robot embedded in it but that was not associated with any frame or display at all.All

06 1089-9 CH06 6/26/01 7:31 AM Page 144

1456.3 Displaying Chat Messages

this JSP does is load the first JSP of the next forum state.This technique proved to be
useful quite a few times; some forum states have two examples of its use. One such
case is the “host executes chat” forum state, which uses JSP documents in addition to
the four listed previously, in this manner:

host_executes_chat_console.jsp

host_executes_chat_ready.jsp

We do need to make things a bit prettier.We can put a cute image on the robot.We
can put some advertising space on the applet panel. Perhaps we can make the robot
into an animated agent-like creature.

6.3.9 The Scrollbar Reset Problem
At this point, the most important remaining problem was the fact that the list of chat
messages was scrolled back to the beginning after each refresh by the applet.The prac-
tical way to do this is with dynamic HTML, or other client-side solutions.Again, we
rejected these to explore server-side solutions to the problem.

In fact, not only did the select list scroll unpleasantly, but as soon as there were
more messages than the frame could display in the HTML select element, the frame
itself would get a second scrollbar of its own, and that made the display twice as ugly.
Still, it looked better now than it had without the frames.

Our solution for this problem turned out to be quite involved.The chat messages
are now output one page at a time, with the page size being selectable by the user.
Four buttons on the browser display, labeled First, Previous, Next, and Last, allow navi-
gation through all the messages in the chat history. Missing is a one-message-at-a-time
scrolling action, which will be added later.This solution needs more work.

The real work for all this happens in the method bonOutputForumChatMessages of
the BonForumStore class.You will probably have to refer to the source code for that
Java class to understand how that method works.There are also some relevant discus-
sions in Chapters 7, 8 and 10.

6.3.10 Filtering Chat Messages by Session
When we first got some chat messages to display, we were getting all the messages in
bonForum, not just the ones in the same chat as the user getting the display.Although
it now displays the correct messages, the way this is accomplished is not the best way
to do that.We “solved” the problem that way because we did not find until later a bug
that kept guest messages from being stored in the correct chat element.

Now that we fixed the bug, there is no need to go through all the data looking for
messages that are in the right chat for the current session, as is still being done now.
Instead, we will iterate the children of the chat element for the current session.Among

06 1089-9 CH06 6/26/01 7:31 AM Page 145

146 Chapter 6 bonForum Chat Application: Implementation

these will be the messageKey elements whose contents will be the NodeKey values of
the message elements.We can use these messageKey elements to directly access, order,
and display the message elements.This important change will be made to the source
code later, hopefully in time for the CD-ROM production for the book. Please check
the project Web site, http://www.bonforum.org, for new releases.

The next section is relevant to the problem we have been discussing: displaying the
chat messages. See especially Section 6.4.1,“The itemKey Attribute.”This next section
is also important in relation to the theme of displaying and selecting a chat, which will
be the topic of Section 6.5,“Displaying and Selecting Chats.”

6.4 Finding the Chat Element
One problem that had not been foreseen provided somewhat of an implementation
challenge. Our plan called for elements to be “attached” to the HTTP session that cre-
ated them, as a way of providing user scope, albeit of short duration.The problem was
that for a user to join a chat as a guest, its thread had to first find the chat.The chat
was not attached to the session of the would-be guest. Rather, the chat was attached
to the session of the host that created it.

The way we solved that problem is perhaps not immediately obvious.Although
much is said about it in code comments and in the chapters to come, it will help to
have an overview here as well. It might be that the overview is confusing without the
details, and the details are confusing without the overview. If you are a software devel-
oper, you are probably accustomed to that kind of situation by now.You might want
to just fold the corner of the page (unless you are reading it in the bookstore) and
move on to the next book section (in this book, not the store!).

When a visitor chooses a chat to join, the selection includes both a chat subject
and a chat topic.The chat subject gives the complete path to the correct chat subject
element in the XML database. Each chat that exists for that subject is represented by a
child element of that subject element.That child element has as its name the session
ID value related to the host that created that chat.An attribute of the child element is
set to the chat topic added by the chat host.

We can find the chat subject element from the would-be guest’s choice by using
pathNameHashtable. By iterating its children, searching for the one with the correct
chat topic, we locate the element whose name gives us the session ID of the chat host.
That enables us to find the chat element using nodeNameHashtable, which solves the
problem.The user’s thread can now add a guestKey to the chat element, transforming
the user from a visitor to a guest.

One place to get details about this important bonForum theme is Chapter 8, in the
section “Passing Information between Sessions.”

06 1089-9 CH06 6/26/01 7:31 AM Page 146

1476.4 Finding the Chat Element

6.4.1 The itemKey Attribute
Each time that a chat is created for a subject, the chosen subject element gets a new
child element that is named after the session ID value of the visitor who creates the
chat (a host session ID).This child element is known in the source code as a chat
item, or chatItem.This unfortunate and vague term should have been avoided.
Instead, it engendered another vague term, itemKey, which refers to the NodeKey for
that chatItem.The chat host thread saves the value of the itemKey in two places. One is
a session attribute (for the host’s session, of course).The other is an XML attribute of
the chat element in the data, named itemKey.

When a chat guest thread finds the chosen chat element, as described in the previous
section, it gets the value of the itemKey attribute from it and saves it in a session
attribute (for the guest’s session).That is done to make it available for the guest’s thread
to brand messages and to display messages.

Whenever a message is sent to a chat by either a host or a guest, it is associated
with the itemKey of the chat, which is unique in bonForum. Because that same
itemKey is stored as an attribute of the chat element, a relationship is formed between
all the message elements and the chat to which they belong.The
outputChatMessages() method can then use this relationship to find the messages that
it outputs (although, as we mentioned, that is probably not the best way to do that).

6.4.2 New XML Methods
Solving the problems that we just discussed gave us good chances to develop our
XML data functionality further.We added methods to get attribute values and to find
a child element with a given attribute value.We also added a method to edit a BonNode
in a ForestHashtable (such as bonForumXML). Rather than creating an object that
understands the entire official XML recommendation, we would rather let necessity
dictate the evolution of the object.

If you want to see more details about finding the chat element, you can look in the
source code. First, look in the file BonForumEngine.java. Look for all the code that
uses term chatItem and the context of that code.Then look in the file
ForestHashtable.java. Look at the code for these two methods:

subjectNodeKeyFromPathName

getChildNodeFromAttributeValue

6.4.3 Normalizing User Input
Another problem that we tried to solve at this time was to make sure that any input
that came from a user could be used as an XML attribute value.The example that
prompted that (hopefully code-wide) precaution was the chatTopic attribute that is
added to the subject item element.

06 1089-9 CH06 6/26/01 7:31 AM Page 147

148 Chapter 6 bonForum Chat Application: Implementation

6.5 Displaying and Selecting Chats
When we could display chat messages usefully, we tackled the next major problems:
the display of existing chats to a bonForum visitor wanting to become a guest, and the
selection by that visitor of one of these available chats.We decided that the time was
right to apply XSLT to the solution. Indeed, using XSLT had always been a major
goal of the project, but this was judged the first good opportunity.

Again, in this chapter we are trying to give a quasichronological account of some
of the major implementation themes we have encountered so far.Therefore, the details
of how our XSLT custom JSP tag works and of the XSL style sheets that it uses in this
project are left for the more technical chapters to come.We hope that this more topi-
cal account will help you digest that material more easily and will make the source
code easier to read and change.

Mostly for debugging purposes, we developed early a method called getXML(),
which output the entire contents of the bonForumXML (a ForestHashtable) as a string.
Now we decided to make it the input XML stream for the Xalan XSLT processor as
part of our TransformTag class.

Displaying the available chats would mean showing both the chat subject and the
chat topic.We began with the following vague idea:We would create a style sheet that
would find each chat subject item. It would accumulate the path to each such element
in a variable.Then it would append the chat topic attribute to that subject path, and
output that.

6.5.1 Including XSLT Output on JSP Output
As we discussed in Section 6.1.13,“Including Documents in a JSP,” we had grabbed
the wrong JSP include to display the output of the TransformTag prototype. Before
we found our mistake (and after we had started using XML output from the XSLT
processor instead of HTML), we came up with a different solution using a JSP script-
let and a JSP expression.That is a great thing about JSP development: It is rich in pos-
sibilities. Even if one of the main reasons JSP was developed was to separate the roles
of page designers and code developers, there are times when scriptlets are very handy
for getting things working. Here is the code, which should really have used a
StringBuffer:

<%
String selectChatGuests = “”;
String optionChatGuest = “”;
DataInputStream in = new DataInputStream(

new BufferedInputStream(
new FileInputStream(

“..\\webapps\\bonForum\\mldocs\\bonChatGuests.xml”)));
while((optionChatGuest = in.readLine())!= null)
selectChatGuests += optionChatGuest + “\n”;
in.close();
%>
[...]

06 1089-9 CH06 6/26/01 7:31 AM Page 148

1496.5 Displaying and Selecting Chats

<form method=”POST” action=”/bonForum/servlet/BonForumEngine”>

<%— here we list the guests in the chat in a select box created by the
stylesheet. —%>
<p>
<%= selectChatGuests %>
</p>

[...]

6.5.2 Command-Line XSLT Development
If you will be doing much XSLT development, you probably will want to try out
some of the many XSL design tools available for trial. For example, Excelon enables
you to specify a dummy XML file and then edit your XSL in one pane while you see
the transformation in another.You can find more information about Excelon at
http://www.exceloncorp.com/products/excelon_stylus.html.

However, for a simple solution, Xalan comes with a standalone XSLT processor
that can be used from the command line. It was much faster to use it to design XSL
style sheets than it would have been using the XSLT JSP tag.

As an example, here is a batch file (for Xalan 1.2.2) that was used to develop the
display of available chats:

Rem xalanTest.bat:
java org.apache.xalan.xslt.Process -IN test.xml -XSL bonChatItems.xsl -OUT
bonChatItems.xml
type bonChatItems.xml

Note that if you are using Xalan Java 2, you will have to update the command in this
batch file.You can find information about that by reading the Xalan command line
page of the Xalan 2.0.1 docs.Assuming the usual drive and installation folder, browse
the following document: C:\xalan-j_2_0_1\docs\commandline.html.

The file, called test.xml, contained fake bonForumXML data that included just enough
to test the XSLT processing. In the actual bonForum project, the XML input data for
the transforms come from the bonForumXML.All this is described in Chapter 10, so
there is no need to elaborate here.

Our XSLT solution could use some improvement. In accordance with our experi-
mental agenda, we pressed on as soon as a minimally acceptable result was obtained.
Getting a full system up and running is a higher priority than taking care of the details.

Successful Display of Available Chats

The details about displaying available chats are covered in Section 7.2.13,
“visitor_joins_chat_frame.jsp,” in Chapter 7.The output of the XSLT process now
does not need to go to a file and then be read back into the page output, as in our
prototype. Now we can output it to a scripting variable named output, which we can
display within the TransformTag element. (You can read about the TagExtraInfo class
in the Jakarta servlet API docs.) We could also change the scope of the variable to

06 1089-9 CH06 6/26/01 7:31 AM Page 149

150 Chapter 6 bonForum Chat Application: Implementation

access the XSLT results from elsewhere on the page, for example. Now, we can also
have output the XSLT directly into the page from the TransformTag class as well, and
we may yet find that we do not need more than that.

6.6 Displaying Guests in Chat
When chat hosts want to change the ratings of chat guests, they need to see a list of
guests.To make this happen, we simply reused the XSLT functionality that we had
developed to display the available chats.To understand the code, start by looking at the
JSP file host_executes_command_frame.jsp.

As you can see there, the XSLT uses a style sheet called
TOMCAT_HOME\webapps\bonForum\mldocs\bonChatGuests.xsl. On the JSP file
mentioned, you can see how this XML output file from the XSLT process is displayed
on the HTML output file from the JSP.The chat host can then see the guest names,
ages, and ratings.

6.6.1 Rating a Guest
Host actors can control the rating of the guests in their chat, incrementing or decre-
menting the value. New guests begin with a status of 5. If a guest reaches a rating of
10, he or she automatically becomes a co-host of the chat. (That may not yet be
implemented.) If a guest reaches a rating of 0, on the other hand, that guest is auto-
matically removed from the chat.

On the JSP pages corresponding to these two processes—namely,
host_increases_rating.jsp and host_decreases_rating.jsp—we will use a jsp:useBean
element to access the method bonForumXML.editBonNode in the BonForumStore class.
We use that, along with lots of other gnarly-looking methods in the BonForumStore
and ForestHashtable classes, to change the value of the rating attribute of the guest
chosen by the host actor.

6.6.2 Displaying a Guest List to Guests
A technique similar to that used to display the guests in a chat to a host executing a
command should be used again to show the guest list to each guest.That is, indeed, an
expected feature of a chat room.

6.7 Outputting the bonForum Data as XML
It is useful to have the bonForum data in the form of an XML stream.This can be
done two ways in the prototype version of bonForum. Eventually, this will be some-
thing that can be done by the system actor.At present, that actor does nothing.

Because these files provide overviews of the project useful for design, study, and
debugging, we will show the JSP code here in this chapter.The first example provides

06 1089-9 CH06 6/26/01 7:31 AM Page 150

1516.8 Future of bonForum Project

a file that is a literal version of the simple XML contents of the bonForumXML
ForestHashtable. It uses a so-called “identity” style sheet that simply copies the XSLT
XML input to XML output.To create it, simply put the right TransformTag element
on any JSP file (results vary accordingly).We do that from system_dumps_xml.jsp, so
you should be able to find the XML output file in the mldocs folder after accessing
the bonForum.jsp page in the Web application.The output file is named
bonForumIdentityTransform.xml.

Here is a suitable tag command to use to “dump” the bonForum XML database:
<bon:transform type=”Xalan Java2”
inDoc=”bonForumXML”

styleSheet=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\bonForumIdentityTransform.xml”>

</bon:transform>

The second utility for viewing the contents of the bonForumXML data-storage object
produces an emulation of an Internet Explorer view of the data. It uses a style sheet
called default.xsl, which imitates Internet Explorer 5.X’s default style sheet.That style
sheet is provided with the Apache Xalan distribution. Here is the custom tag code to
put on a JSP:

<bon:transform type=”Xalan Java2”
inDoc=” bonForumXML “

styleSheet=”..\\webapps\\bonForum\\mldocs\\default.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\bonForumView.html” >

</bon:transform>

Note that you can use another provided style sheet called default2.xsl instead, and
obtain a simpler result that does not rely on JavaScript.The default.xsl style sheet uses
JavaScript to produce an output that has nodes that can be collapsed and expanded by
clicking on them in the browser display.

6.8 Future of bonForum Project
In this section, we discuss some things that have not been done or that have not been
done right. Certainly, although writing a book about developing code might have its
own benefits for a project, it also takes time away from the development process. It has
often been necessary to omit some necessary features or leave in some annoying prob-
lems so that we can complete the book.The items in this section remain high on our
list of priorities—and should for anyone joining the open source BonForum project
on SourceForge (http://www.bonforum.org).

6.8.1 System Actor Functionality
From the beginning, a System actor has been planned that would function as a higher
authority in bonForum.This actor would have access to all the commands and states
of bonForum, plus some of its own supervisory states that would enable tuning,
troubleshooting, and regulating the Web application.

06 1089-9 CH06 6/26/01 7:31 AM Page 151

152 Chapter 6 bonForum Chat Application: Implementation

6.8.2 Protecting Data from Deletion
We have built in a (very untested) remove method in the BonForumStore class that
wraps the element deletion method in the ForestHashtable XML data class. Much
more needs to be done to protect data from any deletion that adversely affects the
state of the application.

For example, it will be best to prevent easy removal of messageKeys from a chat ele-
ment.The system actor should control their removal and ensure the concurrent, trans-
actional removal of the message element pointed to by the messageKey being removed.

6.8.3 Scavenging Stale Data
In a full bonForum system, there will be scavenger threads that can remove stale ses-
sion objects.This might require some kind of session tracking.That would be pro-
vided, for example, by a kind of “window in time,” consisting of a hashtable with
session ID values using a datestamp as a key. If the size of the hashtable exceeds the
acceptable limit in size and processor expense, any session ID older than some set
number of days will be eligible for removal. Such removal would cascade throughout
the bonForumXML ForestHashtable, removing all objects that belong to that session
ID. For example, the nodeNameHashtable would be purged of elements having keys
beginning with that session ID.

6.8.4 Tracking Stale Sessions
One of the most important additions required by bonForum is a way for a user iden-
tity to span a longer time than a session.There are various solutions to this problem of
“stale” session ID values. Some sort of permanent registration is required. One simple
way is to keep track of a permanent unique user nickname for each user.At the other
end of the spectrum of possibilities is registration of a user using a credit card.The lat-
ter method is used by some Web sites to prevent access to adult sites by minors.

Whatever system is established will need to provide continuity for a user across dif-
ferent HTTP sessions. Data that is flagged with a session ID value can have the stale
value replaced with a new one to keep the connection between the data and the user
identity.The connection between a guest and a chat is made by referencing the session
ID value of the chat’s host, and these values must be updated as well when they grow
stale.

Perhaps it would be better to leave the session ID values alone in the key values
and to use the first one that a user gets as that user’s ID.Then we only need to associ-
ate the user with a chain of session ID values that ends at the current one for that
user.

It is very instructive to look over the Tomcat source code for its session-manage-
ment classes.A lot of problems have been solved regarding keeping sessions in a server
that are relevant to keeping users.You can find the session-management code in the
Tomcat source in the package org.apache.tomcat.session.

06 1089-9 CH06 6/26/01 7:31 AM Page 152

1536.8 Future of bonForum Project

6.8.5 Internationalization and Encoding Issues
We have been developing with a blithe disregard for a very real need: Different loca-
tions will require that different language and character encoding be used in the
HTML and XML output that creates the application user interface on the browsers.

6.8.6 Host Priority over Guest
Currently, it is possible for a bonForum user to become a host by starting a chat and
then re-enter the same chat as a guest.The problem is that that user then loses the
capability to again be a host of that chat. Having a dual role might be an acceptable
feature, if it worked. Otherwise, the user, in this case, should probably be recognized as
the host and not allowed to become a guest, unless demoted with permission by
another host.

6.8.7 Host and Guest Commands for the Future
As you have no doubt noticed if you tried the bonForum prototype, we have very few
examples of host commands and guest commands.This is an obvious place to grow
this application in terms of both utility and user interest. Here are just a few of the
many possible candidates for addition as new commands:

1. Setting the refresh rate of chat messages

2. Setting the size of select lists (besides the chat messages list done now)

3. Setting the relative sizes of the various HTML frames

4. Setting properties of the applets

5. Setting color preferences

6. Setting font types and sizes

7. Selecting subsets of messages to display

8. Setting up private chat rooms

6.8.8 Better Display Method for Chat Messages
There is a more efficient way to search for the chat messages, which may not yet be in
the project code that ships with this book. Check the project Web site. For more
details, see Section 6.3.10,“Filtering Chat Messages by Session.”

6.8.9 Unique Chat Topics per Chat Subject
It should not be possible to enter the same chat topic twice under the same subject
category. Note:This problem has now been fixed.

06 1089-9 CH06 6/26/01 7:31 AM Page 153

154 Chapter 6 bonForum Chat Application: Implementation

6.8.10 Guest Promotion and Removal
The functionality to promote guests to hosts and to remove guests from chats needs to
be finished.The user interface is done.

6.8.11 Displaying Guests to Each User
Each user must be able to see a list of all the guests in any chat.

6.8.12 Improvements to Use of Applets
There are ways to improve the timing used by the applets that refresh display lists and
leave framesets.This involves being able to fire the action of the BonForumRobot applet
on demand, instead of via a timer.The size of the applets can be improved and
adjustable as well.

6.8.13 Dynamic Subject Reloading
The system should check the subjects.xml file datestamp and reload the list of chat
subjects from it if it is newer than the last one used for that purpose.

6.8.14 User Editing of Subjects
The subjects.xml file could be made editable by hosts and perhaps guests.

6.8.15 Banning Rude Guests
There should be a way to banish guests who interfere with a chat.

6.8.16 Thread Lock Watchdog
One thing we have not addressed of is to make sure that one thread does not hold on
to the synchronization lock on the bonForumXML object forever. One way to do that
might be to add a “watchdog.”We would need to calculate the maximum time a
thread can hold the lock and then time out the thread if its exceeds that period.We
would have to be generous with our time estimate because of the non–real-time
nature of Java runtime. It is no wonder that Java comes with some license disclaimers
regarding real-time application.

06 1089-9 CH06 6/26/01 7:31 AM Page 154

JavaServer Pages:The Browseable
User Interface

7

IN THIS CHAPTER,YOU LEARN ABOUT HOW WE harness JavaServer pages to create a
BUI, a browseable user interface, for our Web application.

7.1 JSP-Based Web Applications
The Web application example for this book will have human users, whose interface to
the application will be through a Web browser. Of course, it is possible to create Web
applications that do not have a user interface at all, but simply connect various client-
or server-side applications together. However, the subject here is the use of JavaServer
pages in the development of the bonForum Web chat application.A major promise of
JavaServer pages is that they can be used to easily produce dynamic HTML pages for a
browser.

We should be clear from the beginning that this chapter is not a tutorial on JSP,
nor is it a JSP reference. Instead, it is a description of some of the JSP files in
bonForum.We discussed in the last two chapters how we mapped these JSP files to
our chat model. Now, with details from a few representative JSPs, you can understand
all of them and how they relate to the other components of bonForum.

If you need to learn more about JSP technology, refer to the suggestions and
resources provided in Section 3.7,“Java Servlets and JSP,” in Chapter 3,“Java Servlets
and JavaServer Pages: Jakarta Tomcat.”We also find Marty Hall’s book, Core Servlets and
JavaServer Pages, published by Prentice Hall PTR/Sun Microsystems Press, to be very

07 1089-9 CH07 6/26/01 7:32 AM Page 155

156 Chapter 7 JavaServer Pages: The Browseable User Interface

useful, and we will certainly purchase the next edition to catch up with the new JSP
specification. Remember also to browse some of the JSP Web links listed in Chapter
12,“Online Information Sources,” in Section 12.9.9,“JSP:Tutorials.”

We also have all those Web links and more available for you on the BonForum
Project Web site, http://www.bonforum.org.

7.1.1 Getting Input from a Web Application User
Of course, we will need to get input from users on browsers into the application.To
accomplish this using an interface designed with JSP, we can simply add a FORM ele-
ment to the HTML that the compiled JSP will produce.

That form will allow the user to input information that will be submitted to what-
ever destination the action of the FORM element dictates. In our example Web applica-
tion, the FORM data is submitted using POST to the central Java servlet, BonForumEngine.

Request Parameters

When the FORM is submitted using POST, its fields become parameters in the HTTP
request object that is an argument to the service() method in the BonForumEngine
servlet.What happens then is the topic of Chapter 8,“Java Servlet and JavaBean:
BonForumEngine and BonForumStore.”

7.1.2 Getting Output to a Web Application User
A servlet can use the attributes of HttpSession objects to store information about
each user.That information will then be available to display to each user, for example,
in an HTML document produced by a JSP page.We have used this fact quite fre-
quently throughout the bonForum Web application.

We will show you an example with a pair of code excerpts.The first excerpt is
from the BonForumEngine servlet. Here a user nickname, after being stored in a
hashtable named nicknameRegistry, is being made available to the current session.
The “current session” means during requests made by the same browser, until the ses-
sion associated with the browser expires.A session expires only when the browser is
inactive longer than a set period of time: a busy browser’s session will not expire, and
an unused browser’s session will eventually expire. Here is the code from the
BonForumEngine servlet:

if(nicknameOK) {
nicknameRegistry.put(actorNickname, sessionId);
session.setAttribute(“actorNickname”, actorNickname);
}

The actorNickname value that is stored in the session attribute can thus be retrieved
later by any JSP, servlet, or bean that has access to the same HTTPSession object. On a
JSP page, you can access the session attribute by using a scriptlet such as the following:

07 1089-9 CH07 6/26/01 7:32 AM Page 156

1577.1 JSP-Based Web Applications

<%-- greet forum actor by nickname: --%>
<%
String actorNickname = ((String)session.getAttribute(“actorNickname”));
String chatWelcomeMessage = “Hello, “ + actorNickname + “!”;
%>

We have it rather easy in our example because we have decided that in the prototype
application, any user will have only the same lifespan as the current session for the
browser.Your application may have a requirement to create a more persistent context
for each user. For example, an e-commerce venture will want to keep records of pur-
chases made by each customer. In such cases, you will have to add the complexities of
user registration and verification.You will also need to create a persistent data storage
solution, perhaps using JDBC.These will also be added to bonForum in a later release;
you can be involved with that at the open source project Web site http://www.
bonforum.org.

7.1.3 Other Communication Between Servlets and JSP
Session attributes are not only good for sending data to the human users of the appli-
cation.There is also communication going on between the programming in the servlet
and the other code on the JSP page.When you also consider the capability of JSP tag
libraries to involve other Java servlets during the runtime of a compiled JSP, you can
easily comprehend the need for moving data between independent threads and
modules.

Session Attributes

Here is an example of code in a bean, BonForumStore, setting two attributes of the
current session object (accessed through a method).This makes two integer values
available in the session context as string objects:

this.getSession().setAttribute(“chatPageNumber”, Integer.toString(pageNumber));
. . .
this.getSession().setAttribute(“chatNumberOfPages”,
Integer.toString(numberOfPages));

Two different JSP later use the same session attributes to access these stored String
values:

<% String chatPageNumber =
String)session.getAttribute(“chatPageNumber”);%>
<% String chatNumberOfPages =
(String)session.getAttribute(“chatNumberOfPages”);%>

The values are then displayed as part of the HTML page that is output to the browser:
page: <%= chatPageNumber %> of <%= chatNumberOfPages %>

It might be argued that we could have—and probably should have—arranged for the
JSP to access the data directly from the bean object instead. However, the
BonForumStore instance is static and unique, whereas we want different values of

07 1089-9 CH07 6/26/01 7:32 AM Page 157

158 Chapter 7 JavaServer Pages: The Browseable User Interface

chatPageNumber for each user.We would have to add a user manager to keep track of
all the values for the users.That is what the session object gives us, so why not use it?

Using jsp:useBean

We can use the same bean in a JSP, however. Here is an example from the JSP:
host_increases_rating.jsp

First, we make the bean available with a jsp:useBean element:
<jsp:useBean id=”bonForumStore” class=”de.tarent.forum.BonForumStore”
scope=”application”/>

Then a bean method is called to increase the rating of a chat guest that was previously
chosen by the chat host. (The BonForumEngine earlier stored a copy of a request para-
meter from another JSP in a chatGuest session attribute, so the bean can find the right
one there. Here is the JSP scriptlet that invokes the bean method:

<%
bonForumStore.changeChatActorRating(“1”);
%>

Of course, it also is possible to get data from a bean to a JSP.We will show three dif-
ferent ways to accomplish that (none of which is actually used in bonForum yet, by
the way). First, here’s the “pretty” way to get the bean:

<jsp:useBean id=”bonForumStore” class=”de.tarent.forum.BonForumStore”
scope=”application”/>

Now that we have the bean, we can access its properties, again the “pretty” JSP way:
<p>
initDate: <jsp:getProperty name=”bonForumStore” property=”initDate”/>

</p>

We could also get the property via its get method, thus:
<p>
initDate: <%=bonForumStore.getInitDate()%>

Here is a different way to get the bean, the “ugly” way (the argument value 4 means to
get an application scope attribute):

<%! de.tarent.forum.BonForumStore bFS; %>
<%
bFS = (de.tarent.forum.BonForumStore)pageContext.getAttribute(“bonForumStore”, 4);
%>

Finally, here is the “not-so-pretty” way to get the same property value as we did
earlier:

<p>
initDate: <%= bFS.getInitDate()%>

</p>

07 1089-9 CH07 6/26/01 7:32 AM Page 158

1597.1 JSP-Based Web Applications

Request Attributes

Sometimes we use a request attribute rather than a session attribute.That is not often,
mostly because forwarding requests from the JSP in one frame to a JSP in another
frame is not usually useful. One example, from several similar ones, in which we use
request attributes, is in the communication between the two JSPs that takes a guest
out of a chat. In this example, the action involves cooperation among these three JSPs:

guest_executes_chat_ready.jsp

actor_leaves_frameset_robot.jsp

guest_exits_chat.jsp

In the first of these JSPs, we can see many statements like the following:
request.setAttribute(“target”, “_top”);

The request is then forwarded using a jsp:forward action to the next JSP:
<jsp:forward page=”actor_leaves_frameset_robot.jsp”/>

The page receiving that request then accesses the target value from the request
attribute, thus:

<% String target = (String)request.getAttribute(“target”); %>

The _robot JSP then uses that target string to set the applet parameter within the
jsp:plugin element, as follows:

<jsp:plugin type=”applet” code=”BonForumRobot.class”
codebase=”/bonForum/jsp/forum/applet”
jreversion=”1.3.0” width=”400” height=”160” >
<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
. . .
</jsp:params>
. . .
</jsp:plugin>

In this case, using a request attribute works because the application does not need that
information again—the “robot action” here is a one-shot thing. If we did need this
target value again, we would be out of luck:The request object is at a dead end here
because the embedded applet on the _robot JSP requests the next destination via a
showDocument applet method invocation.

Note that session attributes would work just as well in this case as request attrib-
utes. But that would be abusing the session object because the next time a target value
is needed, it is hard-wired right into the code that started off this example.

More Session Attributes

Many other situations involving communication between two JSPs in the bonForum
project look very similar to this last _robot JSP example that we gave. In these cases,

07 1089-9 CH07 6/26/01 7:32 AM Page 159

160 Chapter 7 JavaServer Pages: The Browseable User Interface

the purpose of the _robot JSP is to refresh the output of a JSP in a different frame of
the browser display. However, here we cannot use request objects to pass information.
Instead, we have used session attributes.

One example of several like this involves the following three JSPs:

guest_executes_command.jsp

guest_executes_command_robot.jsp

guest_executes_command_frame.jsp

The first JSP stuffs attributes with values destined to be applet parameters, such as this
one:

<%
session.setAttribute(“target”, “display”);
. . .
%>

The second JSP accesses those attributes, such as this one:
<%
String target = (String)session.getAttribute(“target”);
. . .
%>

Then the second JSP goes on to set the applet parameter inside the jsp:plugin ele-
ment, like this:

<jsp:param name=”target” value=”<%=target%>”/>

If you tried to use request attributes instead of session attributes in these, as well as the
other parallel pairs of JSP, you would find that the applet does not repeatedly refresh
the other JSP anymore.The reason is that, in this case, there is no jsp:forward action
being used.We cannot find a request object that is available from both the first and the
second JSP.The second JSP is requested by the browser when it sets up the frameset,
and we have no access to that request.That is why we use the session object instead to
pass information between them.

At the end of this chapter, in Section 7.3,“Further Discussion About the JSP in
bonForum,” we will again discuss our use of session attributes with the _robot JSP
files, when we discuss several alternatives to our present JSP-based browser interface
design.

7.1.4 What Drives the Web Application?
In Chapter 8, we will claim that the BonForumEngine servlet is in charge of the Web
application—after all, it is the communication hub in the Web application. However,
viewed from the point of view of the JSP documents in the Web application, appar-
ently the user is actually driving.The user does that by making choices using the many
HTML elements displayed.The engine should just make the car go, after all, not
decide where to go.

07 1089-9 CH07 6/26/01 7:32 AM Page 160

1617.1 JSP-Based Web Applications

In the code shown here, another string object is being accessed on a JSP page.As
you can see, the code on a JSP page can use a session attribute to communicate back
to servlet code as well. In this simple case, the value received from the servlet, which
sets the size of an HTML select element, is verified and corrected, if necessary, by the
JSP code. In effect, this grants the designer of the JSP page the capability to overrule,
or default, the values that are received from the code written by the designer of the
servlet.

<%-- get lines per page for chat messages display --%>

<% String chatMessagesPageSize =
(String)session.getAttribute(“chatMessagesPageSize”);
int size = 10;
try {
size = Integer.parseInt(chatMessagesPageSize);
}
catch (NumberFormatException nFE) {
chatMessagesPageSize = “10”;
}
if(size > 99) {
chatMessagesPageSize = “99”;
}
else if(size < 1) {
chatMessagesPageSize = “1”;
}
session.setAttribute(“chatMessagesPageSize”, chatMessagesPageSize);
%>

The verified chatMessagesPageSize value is used later in the page to set the size
attribute of an HTML select element:

<select size=”<%= chatMessagesPageSize %>” name=”chatMessages”>
. . .
</select>

7.1.5 Keeping the Prototype User Interface Simple
We have intentionally tried to keep the user interface created by all the JSP docu-
ments in the bonForum Web application as simple as possible.This is in keeping with
the raison-d’être of JSP as we understand it; the page designers do not have to create
computer code, and the software designers do not have to create page designs.

The beauty of this is that, unlike many simplified mockups of “real” software, what
we end up with here should actually be easily extensible without much need to touch
the existing scaffolding. Much can be done to change the appearance of the user
interface, while still incorporating the fundamental message communication function-
ality that allows this simplified version to be as fully functional as it is.

The bonForum Web app is still evolving. It seems that we must always stress that
one of its main reasons for existence is as an experimental platform for studying the

07 1089-9 CH07 6/26/01 7:32 AM Page 161

162 Chapter 7 JavaServer Pages: The Browseable User Interface

use of Tomcat, Xerces, and Xalan. Getting feedback from the application is important
for exploration and experimentation.While we work with the project, we find that it
is very helpful to have access to as much information about it as possible.To that end,
we often place the following code at the bottom of many of our JSP files.We finally
put it (and more) in a custom tag:

<%@ page import=”java.util.*” %>
<%

out.println(“<H3>Headers: </H3>
”);
Enumeration eh = request.getHeaderNames();
while (eh.hasMoreElements()) {

String name = (String)eh.nextElement();
String value = (String)request.getHeader(name);
out.println(“\t” + name + “ = “ + value + “”);

}
out.println(“<H3>Parameters: </H3>
”);
Enumeration ep = request.getParameterNames();
while(ep.hasMoreElements()) {

String name = (String)ep.nextElement();
String value = (String)request.getParameter(name);
out.println(“\t” + name + “ = “ + value + “”);

}
out.println(“<H3>Attributes: </H3>
”);
int scope;
for(scope = 2; scope <= 3; scope++) {

out.println(“<H3>Scope: “ + scope + “</H3>
”);
Enumeration ea = pageContext.getAttributeNamesInScope(scope);
while(ea.hasMoreElements()) {

String name = (String)ea.nextElement();
if (name == null) name = “hello”;
String value = (String)pageContext.getAttribute(name,

scope).toString();
out.println(“\t” + name + “ = “ + value + “”);

}
}

%>

7.1.6 Using JSP Tag Libraries Is a Good Thing
There is another way to add to the basic substructure in the bonForum prototype: by
leveraging the tag classes. Creating your own custom tags is as important in a JSP-
based design as having subroutines was in early BASIC programs. It furthers the sepa-
ration of page design from code design, and that is the central appeal of JSP.

In this chapter, we do not discuss using tag libraries to design, but we do discuss
one complex tag example: the TransformTag class.You can understand what we do
with custom tags in the bonForum project by studying the BonForumStore class and all
three custom tag classes: OutputPathnamesTag, OutputChatMessagesTag, and
TransformTag.You can read about BonForumStore in Chapter 8, and about the custom

07 1089-9 CH07 6/26/01 7:32 AM Page 162

1637.2 Viewing bonForum from Its JSP Documents

tag classes in Chapter 10,“JSP Taglib:The bonForum Custom Tags.” Refer back and
forth between this chapter and those chapters to get a complete picture of what our
tag commands are accomplishing.

7.1.7 JSP Files for the Example Web Application
The JSP files for this Tomcat Web application are all the files with an extension of .jsp
that are found in the folder TOMCAT_HOME\webapps\bonforum\jsp\forum.

The first time that any of these JSP files is requested,Tomcat makes sure that it is
translated into a servlet and compiled.That is why Tomcat requires access to a Java
compiler.The Java servlet source and the compiled class files that are created from JSP
are placed by Tomcat into the work folder (as determined by the server.xml Tomcat
configuration file).The default work folder is TOMCAT_HOME\work.

If you look in that folder after Tomcat has compiled some JSP files that you have
created, you will find that both the .java files and the .class files in the work folder for
your Web application will have long, strange filenames.These are the mangled versions
of the JSP page filenames, but with extensions typical of Java class files.

Tomcat Troubleshooting
If you are having insoluble problems with a Tomcat Web app you are developing, try down shutting

Tomcat, deleting its work folder with all the work files it needs, and then restarting Tomcat.

Tomcat can tell when a JSP file has been modified, and it retranslates and recompiles it
when necessary.This is one of the advantages of using JSP pages, in fact. It means that
they are dynamic in many ways:They have a runtime behavior associated with them
in their compiled form, but they also can be changed without shutting down the
entire Web application.

Note that a Tomcat Web app can be set up so that changes that you make to any of
its Java servlets (not just its JSP pages) will be detected and incorporated into the Web
app without any requirement to stop and restart the server. Because this feature adds
overhead to the processing, it is recommended that you develop and test the Web app
with this feature turned on, and then turn it off afterward for better performance.You
can turn it off by setting the reloadable flag to False in the Context element for the
Web app in the server.xml file.You might need to add a Context element in that file,
if you have been relying on the automatic Web app defaults.

7.2 Viewing bonForum from Its JSP
Documents
In this section, we describe the important features of many of the most important JSP
pages used in the bonForum chat application.

If you need a bird’s eye view of the application as you read the rest of this chapter
(and the book), refer to Section 6.1.5,“The States of the Forum,” in Chapter 6,
“BonForum Chat Application: Implementation.”

07 1089-9 CH07 6/26/01 7:32 AM Page 163

164 Chapter 7 JavaServer Pages: The Browseable User Interface

7.2.1 Index.html
The first URL requested by a Web browser when a new user wants to enter
the bonForum Web chat application is something like http://www.forums.com/
bonForum.

That request, which tells Tomcat only the Web app name, must be fleshed out by
Tomcat before it can be useful.The default is to assume a request for the file
index.html in the document base of the Web app. (See Figure 7.1.) Section 3.6.2,
“Editing the Server Configuration,” in Chapter 3, contains an example of setting a
document base using the Tomcat configuration file server.xml.

Our index.html file is a purely static HTML file inviting the traveler into the
bonForum Web chat application.A button hyperlinks you to the first JSP “page,”
which is made up both of a “written” file and its compiled form as a Java servlet of a
class descended from the HTTPServlet Java class.That first page is called forum_login.jsp.

7.2.2 forum_login.jsp
The JSP page forum_login.jsp seems superfluous. It could easily be left out of the
GUI for the Web app simply by changing it so that it forwards requests to the
forum_entry.jsp page. Nevertheless, it is here for two reasons. For one, it serves as a
placeholder for any user login that will be added to the Web application in the future.
As of this writing,Tomcat has built-in user authorization features that are subject to
change. If you want to experiment with this, read the details in the Tomcat configura-
tion file server.xml.

Figure 7.1 The bonForum default Web page displayed by index.html.

07 1089-9 CH07 6/26/01 7:32 AM Page 164

1657.2 Viewing bonForum from Its JSP Documents

A button on the forum_login.jsp page only gets the user to the next page, which is
forum_entry.jsp. But forum_entry.jsp should also remain in the Web application
because it serves an important role as a testbed for new code. Such new code can be
added as new JSP tag invocations. It can also be added in JSP scriptlets (Java code
added to the text of the JSP document within the tag pairs <% and %>).

The logic behind such a test procedure is that the “shallower” into a Web applica-
tion that you can do your debugging, the easier it is because it is a lengthy enough
process to shut down and start up Tomcat and perhaps delete files, shut down
browsers, and so on. Such a process is often required, in spite of the capability of
Tomcat to allow the automatic reloading of servlets.

7.2.3 forum_entry.jsp
This JSP page has a form on it that uses an HTTP POST to send some information
about you to BonForumEngine.The information includes your chosen nickname and
age.With a yes value, another input value (and, thus, request parameter) named
actorReturning tells BonForumEngine that the application has seen the user before
(when forum_login.jsp was requested).This value is really just a convenient switch for
some testing during development.A yes value for the resulting request parameter sim-
ply turns on the processing of other user-related form data on this (and other) JSP
pages.

The most important request parameter posted by the form is the one called
bonCommand, which tells the engine what to do and where to send you next.

In the case of the request made by forum_entry.jsp, BonForumEngine will take you
next to visit visitor_executes_choice.jsp because the value of bonCommand is set to
visitor_executes_choice.This simple, extensible mapping of filename to functionality
is used throughout the Web application. Nevertheless, as you shall see later (especially
in Chapter 9,“Java Applet Plugged In: BonForumRobot”), this handy method of jump-
ing from JSP page to JSP page needed to be elaborated to complete the Web applica-
tion.

7.2.4 visitor_executes_choice.jsp
On this JSP page, you can see how we use a session attribute to hold information
related to one user. More accurately, it is related directly to one HTTPSession object
and, therefore, to one browser instance for a variable period of time.The session object
will continue to exist as long as the browser is reasonably active:The session will cease
to exist if no requests are made by the browser for a certain period of time, the length
of which can be set in the web.xml file that configures the Web application.

In the JSP file visitor_executes_choice.jsp, you can find something like this:
<%-- greet forum actor by nickname: --%>
<%
String actorNickname = ((String)session.getAttribute(“actorNickname”));

07 1089-9 CH07 6/26/01 7:32 AM Page 165

166 Chapter 7 JavaServer Pages: The Browseable User Interface

if(actorNickname == null || actorNickname..trim().length() < 1) {
actorNickname = “<unknown visitor>”;
}
String chatWelcomeMessage = “Hello, “ + actorNickname + “! Please make a choice:”;
%>

(more code was left out here)

<%= chatWelcomeMessage %>

The JSP expression in the last line displays a greeting containing the user nickname,
entered on a different Web page. In the previous state of the Web application, forum
entry, the user entered a nickname in a form element.That nickname value was
POSTed to the BonForumEngine servlet as a request parameter.The servlet copied its
value into a session attribute.There it will remain available as long as the current ses-
sion lasts.

That may not seem like much, but such is the glue that holds together most of the
Web applications out there today.Without something to “hold” a context for a
sequence of actions by a given actor or set of actors, we can hardly have a program
intelligent enough to maintain a meaningful user experience.

In the bonForum Web application, we also use another mechanism to relate differ-
ent Web pages together: Each page usually determines the next page to be displayed.
This is often controlled by the value of an input element in a form that is posted to
the BonForumEngine servlet. For example, on the visitor_executes_choice.jsp page, you
will find something like the following code listing.The table row elements in the
original have been removed here for clarity:

<form name=”visitor_executes_choice” method=”POST”
action=”/bonForum/servlet/BonForumEngine”>
<label for=”join”>join a chat</label>
<input type=”radio” id=”join” name=”bonCommand”
value=”visitor_joins_chat”></input>
<label for=”start”>start a chat</label>
<input type=”radio” id=”start” name=”bonCommand” value=”visitor_starts_chat”
CHECKED></input>
<label for=”exit”>exit this forum</label>
<input type=”radio” id=”exit” name=”bonCommand” value=”bonForum”></input>
<input type=”hidden” name=”actorReturning” value=”yes”></input>
<input type=”submit” value=”do it!” name=”submit”></input>
</form>

The result is that in the HTML displayed by this JSP page, a choice is offered to the
actor: join an existing chat, start a new chat, or exit this forum. (See Figure 7.2.) It is a
simple menu action based on the one input element: bonCommand. Because it is in the
form element on this page, it gets POSTed to BonForumEngine as a request parameter
and causes that servlet to forward the HTTP request to the next page based on the
value of whichever input element is checked by the user.

07 1089-9 CH07 6/26/01 7:32 AM Page 166

1677.2 Viewing bonForum from Its JSP Documents

Figure 7.2 HTML displayed by visitor_executes_choice.jsp.

Of course, things are never that simple, as they say, so there must be more to it than
that. Let’s check out one of these three possible candidates for the next JSP page in the
application. In the file visitor_starts_chat.jsp, we see the following JSP code:

<frameset rows=”65%, 35%”>

<frame src=”/bonForum/jsp/forum/visitor_starts_chat_frame.jsp” name=”display”>

<frame src=”/bonForum/jsp/forum/visitor_starts_chat_controls.jsp” name=”controls”
>

</frameset>

We have arrived at a fork in the road.The next two JSPs that we will discuss are these
frame sources.Together, they make possible the “visitor starts chat” application state.

7.2.5 visitor_starts_chat_frame.jsp
This page displays in the top display frame a list of all the available chat subject cate-
gories.The user must select and submit one of these as the chat subject when a new
chat is started. (See Figure 7.3.)When the HTML form produced by this JSP is
submitted to the BonForumEngine servlet, the subject category value that was selected
by the user in the HTML select list is copied by that servlet into the chatSubject
session attribute.This page also shows the user the current value, if any, of that
chatSubject session attribute and also the chatTopic session attribute (also discussed
in the next section).

07 1089-9 CH07 6/26/01 7:32 AM Page 167

168 Chapter 7 JavaServer Pages: The Browseable User Interface

Figure 7.3 HTML displayed by visitor_starts_chat.jsp and related JSP documents.

Note that, as do all the other JSP pages in this Web application, this page needs to tell
the BonForumEngine Java servlet what the next destination in the Web application
should be.We can see that happening in the following excerpt taken from the HTML
form element on this JSP file:

<input type=”hidden” name=”bonCommand” value=”visitor_starts_chat_frame”></input>
<input type=”submit” value=”choose selected chat subject” name=”submit”></input>

When the user clicks the Submit button, the HTML form that contains these two
input elements is posted to the BonForumEngine servlet.The value of the bonCommand
input element arrives at the servlet as a request parameter. It tells the servlet where the
request produced by the form submission should be forwarded.The eagle-eyed reader
will have noticed that, in this case, the destination is the very same JSP that produced
the page making the request.The request makes a round-trip to the BonForumEngine
servlet. Nevertheless, this does accomplish the following:

n Sets the selected subject into a session attribute
n Updates the display of the subject category on this frame
n Updates the subject categories displayed in the selection list

The last of these three effects is not currently important to the application because the
list of categories is loaded at startup and is not (yet) changing. However, in similar situ-
ations, that sort of refresh action can be useful. For example, we could add another
form with a Refresh Submit button on it that also did nothing but request its own
JSP again.

07 1089-9 CH07 6/26/01 7:32 AM Page 168

1697.2 Viewing bonForum from Its JSP Documents

So, the HTTP request made by the form submission is therefore caught in a loop
here. It always gets forwarded to the same destination, and that simply refreshes the
form’s page.That means that we cannot use the standard practice of passing the values
from this form to another page as request parameters because the request is never for-
warded to another page. For the same reason, we cannot set anything into a request
attribute hoping to send it onward to another JSP document (for example).Therefore,
we use a session attribute for that instead.The session object can and does make the
chat subject category selected by the user available elsewhere in the application.This
chatSubject value can then be displayed again by other pages in the same session, as it
is by the following two JSP pages:

guest_executes_chat_frame.jsp

host_executes_chat_frame.jsp

Let’s get back to the page now under discussion.You can see that it also contains two
examples of how to get and display a session attribute. Here is the code that gets the
chat topic description from a session attribute:

<% String chatTopic = (String)session.getAttribute(“chatTopic”);
String chatTopicMessage = “topic: <none>”;
if(chatTopic != null && chatTopic.trim().length() > 0) {
chatTopicMessage = “topic: “ + chatTopic;
}
%>

From farther down in the JSP, here is the expression that displays that chat description:
<%=chatTopicMessage%>

The chatTopic contains the latest chat description (if any) that has been entered by
the user into the form on the bottom frame of the frameset (see the next section). If
the user submits the form that controls the frame to the BonForumEngine servlet before
selecting and submitting a chat subject in the top display frame, the servlet will detect
the missing chat subject and refuse to go on to the next application state. Instead, it
will forward the request back to the JSP that creates the frameset.The user, however,
will not have to re-enter the chat topic value because it has been preserved via the
session attribute.

Again, notice that from the top frame we have no access to the request parameters
created by the form submission on the bottom frame.The HTML in the bottom
frame also cannot send a request (or have the servlet forward a request) to the JSP that
creates the HTML for the top frame.That would simply create a duplicate copy of the
HTML for the top frame in the bottom frame. Fortunately, by using session attributes,
we can share data among two or more frames that are simultaneously being displayed.

There is another interesting thing to discuss in this JSP.The following code makes
available to the user the available chat categories:

<select size=”12” name=”chatSubject”>
<bon:outputPathNames docName=”bonForumXML”

07 1089-9 CH07 6/26/01 7:32 AM Page 169

170 Chapter 7 JavaServer Pages: The Browseable User Interface

pathToSubTreeRootNode=”bonForum.things.subjects” ancestorReplacer=”COMPLETE_PATHS”
➥nodeSeparator=”/”>
<option><%= output %></option>
</bon:outputPathNames>
</select>

As you can see, this creates in the HTML result output by the JSP page a select listbox
with the option value as its list item. But wait! How does that give us a list of what
may be dozens of values? As we shall discuss in Chapter 10, the answer is that this
option element, with the value <% output %>, is embedded in our own JSP tag called
bon:outputPathNames.

Let’s briefly talk about what happens here:An instance of the Java class defined by
the file OutputPathNames Tag.java executes a method called outputForumPathNames.
That method somehow causes two things to happen:The <%= output %> JSP expres-
sion is evaluated repeatedly in a loop, and the value of the variable named output con-
tain a different one of the many available subjects in the XML data for the Web
application each time through the loop.

The list of available chat subjects comes from an XML file when Tomcat is started
up.That file may be freely edited to give the desired subject categories available to the
tarent chat forum.You can find that chat subjects initialization file at the following
location:

TOMCAT_HOME”\webapps\bonForum\docs\subjects.xml

You can browse this subjects initialization XML document by using something like
the following URL:

http://localhost:8080/bonForum/mldocs/subjects.xml

As mentioned earlier in this section, submitting the HTML form element created by
this JSP sends a request on a round-trip to the BonForumEngine servlet—and that
updates the subject categories displayed in the selection list. However, as this book
goes to print, a restart of the Tomcat Server still is required to load a changed sub-
jects.xml document into bonForum, and thus to change the option items in the select
element. In a future release, we plan to periodically check the file and reload it if it
changes, rather than requiring a restart.That will make the chat subject selection list
truly dynamic.

As you have seen, by having the select box control displayed in an HTML form
that requests the same JSP that created the form itself, instead of requesting a different
JSP that would remove the select box from view, we have gained these three charac-
teristics:

n Reusability—The user can change a selection already submitted; we can use
repeated selection events.

n Feedback—Submission of the form updates a separate display of the last
selected option(s).

n Dynamic content—Submission of the form refreshes the option list; a separate
“refresh only” form is possible.

07 1089-9 CH07 6/26/01 7:32 AM Page 170

1717.2 Viewing bonForum from Its JSP Documents

In our Web application, this is the first JSP in which we find HTML frames.You may
well ask why.The short answer is that there is absolutely no need for frames in this
application state.We can just as easily add another HTML form element to this JSP
that does request a new and excitingly different destination, and get rid of frames alto-
gether. In fact, we previously did just that.

The real reason we use frames here is that, in a future release of bonForum, the
chat actors will be able to add to the list of chat subject categories.When that hap-
pens, we will want to refresh the chat subject selection list very frequently.That will
cause an annoying flicker in the list, a problem that we encountered while refreshing
chat messages and that we solved elsewhere by using frames. But, we are getting ahead
of our story!

We have delegated the problem of going somewhere else in the Web application to
the other frame in the same HTML framework.We shall see how that happens next.

7.2.6 visitor_starts_chat_controls.jsp
This is the JSP that produces the HTML to display in the bottom (controls) frame, in
the frameset created for the “visitor starts chat” state.A form on this HTML enables a
visitor to input and submit a chat topic description to the Web application.The visitor
is told to first select and submit a chat subject in the top (display) frame of the display,
as we discussed in the previous section.The submission of a chat topic also signals the
BonForumEngine servlet to create a new chat.The visitor becomes its host.

The chat topic description submitted here later will be shown to other visitors who
are looking for a chat to join.When the form on this controls frame is submitted to
the BonForumEngine servlet, it finds the chat topic description in a request parameter
and copies its value into the chatTopic session attribute.As discussed in the preceding
section, it is then available to JSPs and other objects that can access the current session
object, including the JSP that produces HTML for the top frame of the current
frameset.

The request-forwarding mechanism in the BonForumEngine servlet takes each user
to the next JSP destination, which is the one we will discuss next.The servlet relies on
the following HTML code, which you can find in the JSP file now being discussed:

<input type=”hidden” name=”bonCommand” value=”visitor_starts_chat_ready”></input>

7.2.7 visitor_starts_chat_ready.jsp
It is the task of this JSP to get users to the next state of the Web application: the state
in which they are using their new chats. It might seem that this should simply involve
forwarding a request to another JSP page, just as we have been doing all along. Indeed,
a request is forwarded, but this time, two things are different:

n The request is forwarded directly from this JSP page.
n The JSP destination does not create the HTML seen next on the browser

screen.

07 1089-9 CH07 6/26/01 7:32 AM Page 171

172 Chapter 7 JavaServer Pages: The Browseable User Interface

In fact, the next HTML that the user sees is determined by the Java applet
BonForumRobot.As an applet, it will be executed on the client machine, unlike our JSP
and servlet classes that we have so far discussed in this chapter. In fact, this applet will
be taken care of by a Java plug-in in the browser. (If the plug-in is not on the client
machine already, the user automatically is given the chance to install it.)

In the next section, we discuss how that Java applet is invoked from a JSP. Let’s first
see how the application gets to that page from this one. In the code, examine the fol-
lowing lines:

<%
request.setAttribute(“target”, “_top”);
request.setAttribute(“document”,
request.getScheme() + “://” +
request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/host_executes_chat.jsp”);
request.setAttribute(“refresh”, “true”);
request.setAttribute(“increment”, “100”);
request.setAttribute(“limit”, “1”);
request.setAttribute(“message”, “Preparing new chat!”);
%>
<%--
attributes become applet parameters there:
--%>

<jsp:forward page=”actor_leaves_frameset_robot.jsp.tfe”/>

What you see here is the use of the jsp:forward command to send the request to its
next service provider, which is the JSP actor_leaves_frameset_robot.jsp, by way of the
BonForumEngine servlet, which is mapped to the .tfe extension.

We also see request attributes being set; their values will be used as arguments for
the Java applet BonForumRobot.Among these arguments is to be found the name of
another JSP document file, host_executes_chat.jsp. Notice that the scheme, server
name, and server port must be prefixed to the JSP filename so that the client-side
applet can find it.

The robot acts as a relay station, to get a forum actor from the status of visitor to
the status of host, in the action of executing a chat “thing.” (About time, you say?)

You may well ask, why all the convoluted indirection? Why not just forward the
request directly from this page to host_executes_chat.jsp because that is our next desti-
nation? Or, why not get the BonForumEngine to forward a request there? Because the
destination JSP would then produce its HTML page output only within the controls
frame.We would end up with a new frameset inside the bottom frame of our existing
frameset.We want to create a new HTML frameset that fills the entire browser display.

Well, let’s then do our forwarding, either directly or through the BonForumEngine
servlet, not from this _ready page we are discussing, but instead from the _controls
JSP—that is, visitor_starts_chat_controls.jsp

After all, we are using the _ready page only to get to the JSP that has the embed-

07 1089-9 CH07 6/26/01 7:32 AM Page 172

1737.2 Viewing bonForum from Its JSP Documents

ded robot applet. It turns out that forwarding to host_executes_chat from the
_controls form fails the same way:We get a new frameset, but, again, it is entirely con-
tained in the old controls frame.

Still, something is fishy. Let’s accept that we do need the robot applet to break out
of the frame. However, why not request the _robot JSP from the _controls JSP instead
of requesting the _ready JSP? We can do that quite simply by changing the HTML
form so that it has this line

<input type=”radio” name=”bonCommand” value=”actor_leaves_frameset_robot”>

instead of the following line:
<input type=”radio” name=”bonCommand” value=”host_executes_chat_ready”>

We would also need to set up all the robot applet’s parameters on the _controls JSP
just as we did on the _ready JSP.

It turns out that this last plan does work—however, not before you do these other
things also:

n Set the values for the applet parameters in session attributes, not request
attributes.

n Change actor_leaves_frameset_robot.jsp so that it looks for the robot parameters
in session attributes, not request attributes.

So, then, something is fishy! Why didn't we do it that way, which seems simpler, after
all? One justification is that, as far as we can tell, using request attributes involves less
overhead than using session attributes. Request attributes should be preferred over ses-
sion attributes whenever they can do the job at hand.

The actual reason, however, comes from the fact that, in later states of the
bonForum Web application, we also use the robot applet class. In fact, we use it two
ways. One is to break out of a frame, as we have discussed already, but with a differ-
ence: In those later states, we need to be able to break out to more than just one desti-
nation.That means that we must set up our document attribute differently for each
destination JSP.The most modular, expandable, and supportable way to do that is to
have a different JSP for each destination, with different suffixes on the filenames
(_frame, _console, _system, and so on).Arguably, we might better have used beans than
JSPs because these JSPs produce no HTML output. However, we should at least keep
things as similar as possible in the various states of the application, including the “visi-
tor starts chat” state being discussed.

Our second use of the robot applet later in the Web application is to frequently
refresh the content of a display frame.We do that in several bonForum states. (To do
that, it turns out that we need to use session attributes instead of request attributes to
set up the applet parameters.)

The question becomes, can we use one applet to do both tasks—first to periodi-
cally fire a refresh action and second to break out of the frameset to the next applica-
tion state? The answer is that we can use the same applet class, but not the same
instance.We cannot simply change the session attributes, hoping that the applet’s

07 1089-9 CH07 6/26/01 7:32 AM Page 173

174 Chapter 7 JavaServer Pages: The Browseable User Interface

behavior will change.We need to load a new applet instance as well.
Well, that was a long section, but you asked, so we told you. (You didn’t?)

7.2.8 actor_leaves_frameset_robot.jsp
As discussed more fully in Chapter 9, this JSP starts up a Java applet of the class
BonForumRobot on the client machine. It also passes quite a few parameter values to the
applet (these parameters are discussed in the following paragraphs).

In this JSP document, you can see within an HTML table element the jsp:plugin
element that takes care of the robot applet:

<table>
<tr>
<img border=”0” src=”/bonForum/images/bonForumLogo.gif” alt=”bonForum” width=”112”
➥height=”112”>
</tr>
<tr>
<jsp:plugin type=”applet” code=”BonForumRobot.class”
codebase=”/bonForum/jsp/forum/applet” jreversion=”1.3.0” width=”400” height=”160”
>
<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
<jsp:param name=”document” value=”<%=document%>”/>
<jsp:param name=”refresh” value=”<%=refresh%>”/>
<jsp:param name=”increment” value=”<%=increment%>”/>
<jsp:param name=”limit” value=”<%=limit%>”/>
<jsp:param name=”message” value=”<%=message%>”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED not supported by browser.
</jsp:fallback>
</jsp:plugin>
</tr>
</table>

Among the parameter values passed to the robot applet, two are more important here.
These two are initialized using request attributes in the following JSP lines (before the
table with the jsp:plugin element, shown previously):

<% String target = (String)request.getAttribute(“target”); %>
<% String document = (String)request.getAttribute(“document”); %>

You can see also, how you can display the values of these attributes right on the
browser during the software development stages.This is one of the simplest and best
ways to debug your development efforts. (Note that you can also use the Java console
for runtime logging.)

Here is one example from the page under discussion, of the use of a JSP expression
tag to get the JSPwriter to include the value of a variable into the resulting HTML
document:

target:<%= session.getAttribute(“target”) %>

07 1089-9 CH07 6/26/01 7:32 AM Page 174

1757.2 Viewing bonForum from Its JSP Documents

As you saw earlier, the attributes (and thus the applet parameters), for example, are set
to certain values by the following JSP page:

visitor_starts_chat_ready.jsp

The value of target is set to this:
_top

As you probably know, the HTML definition of frames contains some preestablished
values of the target into which a linked document will be displayed by the browser.
The value _top tells the browser to display in the top-level frame, which is the highest
ancestor of the frame containing the link.

The value of document for the robot applet to display, in our particular example, is
set to a rather long Java expression:

request.getScheme() + “://” + request.getServerName() + “:” +
request.getServerPort() + “/bonForum/jsp/forum/host_executes_chat.jsp”.

That expression evaluates to the very URL for the JSP document that we are going to
discuss next. Before we do, we should point out that the JSP discussed in this present
section does not belong to only one Web application state, as do most of the other JSP.
Instead, it is shared by all the states, which rely on it to move from one frameset to the
next.

7.2.9 host_executes_chat.jsp
In this JSP document, you should notice two things.The first is that you again see
attributes being set with the desired applet parameter values. However, this time
these are not request attributes, but session attributes.Also, nowhere on the page
do we find the expected Java plug-in element that calls the applet itself. (Hint:You
will find that plug-in element on another JSP page, which we discuss later:
host_executes_chat_robot.jsp.) See Figure 7.4 for an example display of
host_executes_chat.jsp, in the lower right frame.

The other thing you should notice is that we now are establishing a frameset
within the Web application user’s browser that contains three frames, not only two, as
discussed previously.

<frameset rows=”55%, 45%”>
<frame src=”/bonForum/jsp/forum/host_executes_chat_frame.jsp” name=”display”/>
<frameset cols=”77%, 23%”>
<frame src=”/bonForum/jsp/forum/host_executes_chat_controls.jsp” name=”controls”/>
<frame src=”/bonForum/jsp/forum/host_executes_chat_robot.jsp” name=”robot”/>
</frameset>
</frameset>

07 1089-9 CH07 6/26/01 7:32 AM Page 175

176 Chapter 7 JavaServer Pages: The Browseable User Interface

Figure 7.4 HTML displayed by host_executes_chat.jsp and related JSP documents.

We’ll discuss the contents of each of these three frames next.

7.2.10 host_executes_chat_controls.jsp
On this JSP page, we create an input text box that the user can use to enter a message
into the list of chat messages added by all the chat actors.That input field on the form
is created as part of the following HTML form:

<table border=”0” cellspacing=”0” cellpadding=”0” rows=”4” cols=”1” width=”100%”
➥bgcolor=”#00FFFF”>
<form method=”POST” action=”/bonForum/servlet/BonForumEngine”>
<tr width=100%>
<table border=”0” cellspacing=”0” cellpadding=”0”
rows=”1” cols=”1” width=”100%” bgcolor=”#00FFFF”>
<tr>
<label for=”chatMessage”>chat message</label>

<input type=”text” name=”chatMessage” size=50></input>

</tr>
</table>
</tr>
…
</form>
…
</table>

07 1089-9 CH07 6/26/01 7:32 AM Page 176

1777.2 Viewing bonForum from Its JSP Documents

This form inside a table contains, in fact, not only the previous code to set up the chat
message input line, but also the following code, which contains the rest of the form
innards:

<tr width=100%>
<table border=”0” cellspacing=”0” cellpadding=”0”
rows=”4” cols=”1” width=”100%” bgcolor=”#00FFFF”>
<tr>
<label for=”bonCommand”>send this message</label>
<input type=”radio” name=”bonCommand”
value=”host_executes_chat_controls” CHECKED></input>
</tr>
<tr>
<label for=”bonCommand”>exit this chat</label>
<input type=”radio” name=”bonCommand”
value=”host_executes_chat_ready”></input>
</tr>
<tr>
<label for=”bonCommand”>enter command mode</label>
<input type=”radio” name=”bonCommand”
value=”host_executes_chat_console”></input>
</tr>
<tr>
<input type=”hidden” name=”actorReturning” value=”yes”></input>
<input type=”submit” value=”Do it!” name=”submit”></input>
</tr>
</table>
</tr>

By choosing one of the three available values of bonCommand, the user (a chat host) can
descend into the labyrinth of JSP pages contained in this Web application. Is this need-
less complexity? Well, if every destination page on your Web application offers three or
for further destinations, you can see that it is not hard to create considerable complex-
ity.Anyone who does not believe that should consider the example (once famous) of
the chessboard being filled with amounts of wheat that double on each successive
square.The number of wheat grains soon exceeds the number of known stars in the
universe—and then finally the number of atoms as well!

We are not finished yet, though.The top-level table on the resulting HTML page
also contains more code.That code sets up some page-navigation buttons, labeled
First, Previous, Next, and Latest.The user can use these buttons to page through the
list of chat messages that are being displayed.These chat messages are in the display
frame on the browser and are being displayed by the JSP document
host_executes_chat_frame.jsp.

Here is the code for the navigation buttons:
<tr width=10%>
<table border=”0” cellspacing=”0” cellpadding=”0”
rows=”1” cols=”4” width=”10%” bgcolor=”#00FFFF”>

07 1089-9 CH07 6/26/01 7:32 AM Page 177

178 Chapter 7 JavaServer Pages: The Browseable User Interface

<%--here we display navigator buttons to page through chat messages --%>

<label for=”chatMessagesNavigator”>page messages</label>

<td width=10%>
<form method=”POST” action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator” value=”first”></input>
<input type=”hidden” name=”actorReturning” value=”yes”></input>
<input type=”hidden” name=”bonCommand”
value=”host_executes_chat_controls”></input>
<input type=”submit” value=<%=chatNavigatorFirst%> name=”submit”></input>
</form>
</td>
<td width=10%>
<form method=”POST” action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator” value=”previous”></input>
<input type=”hidden” name=”actorReturning” value=”yes”></input>
<input type=”hidden” name=”bonCommand”
value=”host_executes_chat_controls”></input>
<input type=”submit” value=<%=chatNavigatorPrevious%> name=”submit”></input>
</form>
</td>
<td width=10%>
<form method=”POST” action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator” value=”next”></input>
<input type=”hidden” name=”actorReturning” value=”yes”></input>
<input type=”hidden” name=”bonCommand”
value=”host_executes_chat_controls”></input>
<input type=”submit” value=<%=chatNavigatorNext%> name=”submit”></input>
</form>
</td>
<td width=10%>
<form method=”POST” action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator”
value=”last”></input>
<input type=”hidden” name=”actorReturning”
value=”yes”></input>
<input type=”hidden” name=”bonCommand”
value=”host_executes_chat_controls”></input>
<input type=”submit” value=<%=chatNavigatorLast%>
name=”submit”></input>
</form>
</td>
</table>
</tr>

Notice that the values of the bonCommand request parameter that will be submitted to
the BonForumEngine along with the rest of one HTML form are all set to forward the
request to the same page that is sending in the form submission.That means, as dis-
cussed earlier, that submitting this form is not what will take the user to the next des-
tination in the Web application.

07 1089-9 CH07 6/26/01 7:32 AM Page 178

1797.2 Viewing bonForum from Its JSP Documents

In fact, there are two doorways for the user to get out of the “host executes chat”
frameset.These two doorways are controlled by two JSP documents, both of which we
will discuss later.These two are in the following files:

host_executes_chat_ready.jsp

host_executes_chat_console.jsp

As an aside, let’s continue the thread of discussion begun earlier about the complexity
of JSP-based Web applications.As you are following the code to handle just one user
who is becoming a host, consider that in reality we must handle hundreds of such
actors simultaneously.Aren't you as glad as we are now that the able developers of the
Java servlet and JSP packages have taken care of the details, and that Java hides the
mechanics of multithreaded programming from our view?

Sometimes while developing and debugging a Web application, you might find it
useful to insert the following JSP code, which serves to brand each browser instance
with its own identifying label:

sessionId: <%= session.getId() %>

Next, we discuss the frame where the chat history appears to a chat host, which is the
frame that is constructed by the compiled JSP document whose source code is called
host_executes_chat_frame.jsp.

7.2.11 host_executes_chat_frame.jsp
Again, on the HTML produced by this JSP document, you see our familiar theme:
how to use session attribute values to connect two otherwise stateless Web pages. Here
is one example from this JSP file:

<%
String chatSubject = (String)session.getAttribute(“chatSubject”);
String chatSubjectMessage = “”;
if(chatSubject != null && chatSubject.trim().length() > 0){
chatSubjectMessage = “category: “ + chatSubject;
}
%>

A similar code section gets the chatTopic—that is, the description of the chat that was
input by the visitor becoming a chat host. Both of these useful pieces of information
are displayed to the Web application user with the following JSP elements:

<%=chatSubjectMessage%>
<%=chatTopicMessage%>

The same HTML table that contains the display of the chat category (chatSubject
value) and description (chatTopic value) also contains a form like this:

<form method=”POST” action=”/bonForum/servlet/BonForumEngine”>

<select size=”<%= chatMessagesPageSize %>” name=”chatMessages”>

07 1089-9 CH07 6/26/01 7:32 AM Page 179

180 Chapter 7 JavaServer Pages: The Browseable User Interface

<bon:outputChatMessages command=”bonForumXML”>
<option><%= output %></option>
</bon:outputChatMessages>

</select>

</form>

You see here one example of many in the Web application in which we decided to
use a JSP custom tag.We already discussed using a custom tag to request a list of all
the available chat subjects. Now the job is to get chat messages for the user to see.
More specifically, it is to get one full page of messages out of all those that have ever
been sent by the host and guests.As discussed in the last section, which page of chat
messages is retrieved by the custom tag is determined in part by the last navigator but-
ton that was clicked (if any).The buttons are created in the bottom frame by the JSP
host_executes_chat_controls.jsp.

The default, of course, is to display the latest page of messages.The label text for
the First button changes to “FIRST” whenever it was the last button clicked.The
Latest button similarly changes to “LATEST.”The other two buttons do not change
text because they function in a “one-shot” mode.

This host_executes_chat_controls.jsp document also shows the user which of all the
pages of chat messages is being currently displayed in the frame’s select box.That trick
is accomplished by the following line:

page: <%= chatPageNumber %> of <%= chatNumberOfPages %>

Notice that the text that is not contained within the JSP elements simply is output
verbatim to the HTML result page.

How many chat messages are obtained is controlled by another variable that the
chat host is free to change: Instead of sending a message to the chat, the host can select
a different radio button so that the Do It! button causes the engine to forward the
request to the form host_executes_chat_console.jsp.

That JSP then sets request attributes with all the right BonForumRobot applet para-
meters.The applet is used to change the state of the application to the “host executes
command” bonForum state, where the user can change the setting for the number of
messages to display per page.After setting the request attributes, the _console JSP sim-
ply forwards the request to the JSP actor_leaves_frameset_robot.jsp.

If you have followed the discussion thus far, you know that there are still other JSP
documents awaiting discussion. (Not all—we are almost done!) However, the next one
to discuss is the one that displays in the third frame of our “host executes chat” frame-
set.That new JSP document is in the file host_executes_chat_robot.jsp. Understanding
the operation of this JSP will give you a handle on several other JSP documents that
have the word robot in their filenames.

07 1089-9 CH07 6/26/01 7:32 AM Page 180

1817.2 Viewing bonForum from Its JSP Documents

7.2.12 host_executes_chat_robot.jsp
We previously discussed some session attributes that are saved by the JSP document
that set up the current framework visible on the user’s browser, that JSP being
host_executes_chat.jsp.

Those same session attributes, here in this new _robot JSP page we are discussing,
are retrieved from the current session object and are used to set the various applet
parameters required by any BonForumRobot applet.While it runs, that applet is an
instance of the class that we define in the file BonForumRobot.java and that we will
discuss in more detail in Chapter 10.

In addition, we have above discussed the cooperation of these two JSP documents:

visitor_starts_chat_ready.jsp

actor_leaves_frameset_robot.jsp

Working together, they manage the “breakout” from the frameset established by the
JSP visitor_starts_chat.jsp.

The applet on the _robot JSP uses its showDocument method to cause the applica-
tion to display its document to the _top target, thereby creating a new top-level
frameset.

Therefore, it may seem that in the page now under discussion we have only
another example of doing this same trick. In fact, we do have a parallel here, but that
involves the functioning of not two, but three, JSP pages:

host_executes_chat_robot.jsp

host_executes_chat_ready.jsp

host_executes_chat_console.jsp

What is more interesting now, however, is to notice a second and more important use
of the BonForumRobot applet.

The BonForumRobot.class file does one thing that is the real reason for its exis-
tence. It has a built-in clock that ticks at settable intervals.That interval in the pulse of
the robot applet is settable by changing the value of the interval applet parameter.

The robot applet is set to redisplay a document in a target every time that the
clock fires, up to a limit number of times (another applet parameter).The job for the
robot here is to cause a browser to refresh a page (as fast as every 5 seconds) without
causing annoying side effects for the user.

We did not embark on the task of creating the BonForumRobot applet lightly.We
tried to use existing, simple solutions first. For example, we tried to just set a META tag
in the HTML head element that would refresh the document periodically.What we
found (with our setup, at least) is that, with a fast enough refresh rate for a chat, there
was always an unacceptable amount of flicker in the browser display.

It seems that the display was being cleared to white before the new display of
host_executes_chat_frame.jsp was painted on the screen. It may well be that there is
some other way to control this flicker, but our idea to use an applet would kill two

07 1089-9 CH07 6/26/01 7:32 AM Page 181

182 Chapter 7 JavaServer Pages: The Browseable User Interface

birds with one stone: It would solve the refresh problem and give us material for our
chapter about applets, Chapter 9,“Java Applet Plugged In: bonForumRobot.”

Because we also wanted to avoid using scripting languages on the client side, we
decided not to pursue the experimentation with HTML pragma, buffering pages, and
so on. Instead, the robot applet idea was born and provided an alternative, Java-related
solution to the problems inherent in frequent refreshes of a page. For all the gory
details of how it works, read Chapter 9.

We pointed out that the robot applet on the _robot JSP we are discussing gets its
parameter values from session attribute values that are set on the top page in the group
of pages handling the “host executes chat” phase of the Web application host_exe-
cutes_chat.jsp.

If we look there again, we will see by the value used to set the document session
attribute that this particular applet instance will continually try to display the file
named host_executes_chat_frame.jsp.

This means that it is going to refresh the display of the chat messages that the host
sees.That is something that we would like to do as frequently as possible, allowing for
the bandwidth and physical manifestation of such a repeatedly fired Web page.When a
guest in the chat adds a message, we want it to show up in the display of all the users
as soon as possible.

How does the user break out of the frameset that is representing the “host executes
chat”Web application phase? We saw before, in host_executes_chat_controls.jsp, that
the host can do one of three things: send a message to the chat guests, exit from this
chat, or enter command mode.Again, this choice is presented in the code as follows:

<table border=”0” cellspacing=”0” cellpadding=”0” rows=”4” cols=”1” width=”100%”
➥bgcolor=”#00FFFF”>
<tr>
<label for=”bonCommand”>send this message</label><input type=”radio”
name=”bonCommand” value=”host_executes_chat_controls” CHECKED></input>
</tr>
<tr>
<label for=”bonCommand”>exit this chat</label><input type=”radio”
name=”bonCommand” value=”host_executes_chat_ready”></input>
</tr>
<tr>
<label for=”bonCommand”>enter command mode</label><input type=”radio”
name=”bonCommand” value=”host_executes_chat_console”></input>
</tr>
<tr>
<input type=”hidden” name=”actorReturning” value=”yes”></input>
<input type=”submit” value=”Do it!” name=”submit”></input>
</tr>
</table>

One of these Web app destinations, the “host executes command” state, will be dis-
cussed only briefly here. If you have followed the discussion so far, you will possess the
information needed to understand the following seven interrelated JSP pages that are

07 1089-9 CH07 6/26/01 7:32 AM Page 182

1837.2 Viewing bonForum from Its JSP Documents

together involved in offering the chat host some commands to execute.You will have
noticed that we have not provided many commands yet, but we have set up the frame-
work and the manner in which more host (and other actor) commands will be added
later.

host_executes_command.jsp

host_executes_command_frame.jsp

host_executes_command_controls.jsp

host_executes_command_ready.jsp

host_executes_command_robot.jsp

host_increases_rating.jsp

host_decreases_rating.jsp

The three commands now available for the host to execute do the following:
n Increase the status of a guest
n Decrease the status of a guest
n Change the number of messages displayed to the host

A host can select one guest in the chat from a list of guests displayed by the _frame
JSP host_executes_command_frame.jsp.

That list is being produced by an XSLT transformation of the information con-
tained in the hashtable-based database of the BonForumEngine class. For a relevant dis-
cussion, see Section 10.13,“Displaying the Guests in a Chat,” in Chapter 10.

The overall idea is that the Web application will automatically remove from a chat
any guest whose rating has decreased to 0. Furthermore, the Web application will
automatically change the role of an actor from that of chat guest to that of chat host as
soon as the rating of that guest reaches some set value, such as 10 points.

The design envisions these multihosted chats, as well as multichat forums and mul-
tiforum chat networks. However, the code for these was not considered as high of a
priority as those more fleshed-out portions of the Web application.

When you are trying out this part of the Web application (you are doing that, aren’t
you?), you should definitely try increasing and decreasing a guest’s rating, changing the
number of chat messages being displayed, and exercising the navigator buttons in con-
junction with smaller lists. (You may even discover that showing the first page of sev-
eral is still a bit rough, although it works.) This simple exercise in user feedback in JSP
should make you aware of the possibilities of control mechanisms that can be designed
with similar techniques.

Notice that there is again a robot applet on a JSP:
host_executes_command_robot.jsp. In a manner similar to the one discussed for the
host executes chat bonForum state, this JSP works in conjunction with its top-level
JSP, host_executes_command.jsp.Together, they refresh the list of chat guests on the
HTML produced by the JSP host_executes_command_frame.jsp.

07 1089-9 CH07 6/26/01 7:32 AM Page 183

184 Chapter 7 JavaServer Pages: The Browseable User Interface

At this point in this chapter, you should know enough about the bonForum Web
application to be able to decipher the functioning of the rest of the JSP files in the
folder TOMCAT_HOME\webapps\bonForum\jsp\forum. Some of these files are
better discussed in other contexts, such as the use of Java servlets in Java-and-
XML–based software, so they will be visited in later chapters.

7.2.13 visitor_joins_chat_frame.jsp
We next briefly discuss visitor_joins_chat_frame.jsp, which is of considerable interest
in the context of XML and XSLT.We concentrate on presenting things from the JSP
point of view.

We first make sure that we can use our tag library from this page by referring to
the taglib URL:

<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib” prefix=”bon” %>

The Tomcat Server will know how to resolve this reference and will be capable of
using the .tld file to find the tag classes when it translates the JSP file into a Java
servlet source file. Look at one of these sometime for a JSP with a custom tag on it, to
better understand how tags merge your tag class code into the code produced by a
JSP.

The JSP now being discussed simply lists all the available chats to the bonForum
visitor, allowing that user to select and submit a chat to join.To actually join it, the
user must then click a button on the controls frame.

Too Many Clicks?
As an aside, this has been criticized as a stupid design—why so many clicks just to join a chat? Our

answer is that we are not trying to design the simplest and best user interface now, but instead we’re

trying to design a prototype that will enable us to explore and solve problems. For example, we are inter-

ested in the problems encountered when several cooperating JSP reside in frames. We are essentially in

the business here of creating problems! That does get criticized for being an academic exercise rather

than a serious, practical example of a Web application. We would rather call it R&D than academic, but

we also recognize that the way we research software technologies is not everyone’s cup of tea. As to

whether it is practical, that depends on whether you can learn anything practical from it (we certainly

have!). As to whether it is serious, that depends on whether you are having fun yet (seriously!).

We first developed the code to display available chat topics with XSLT by writing JSP
scriptlets directly on the JSP document.After we had the code working (at least, for
one or two users), we moved it all into a custom tag class.The code ended up finally
in the TransformTag class, defined by the file TransformTag.java. (See Figure 7.5.)
Prototyping the XSLT custom tag to produce a chat list display is discussed in section
10.10,“XSLT and the bonTransform Command,” in Chapter 10.

07 1089-9 CH07 6/26/01 7:32 AM Page 184

1857.2 Viewing bonForum from Its JSP Documents

What we designed is a way to call the Apache Xalan XSLT processor to apply an
XSL style sheet to the chat room data that the Web application contains at runtime.
The outcome of such a process will be an XML document, which (in this case) is
used to display to the user the list of chats that can be joined in bonForum. Here is
how the TransformTag is used to generate that list:

<bon:transform type=”bonTransform” inDoc=”bonForumXML”
styleSheet=”..\\webapps\\bonForum\\mldocs\\bonChatItems.xsl”
outDoc=”output”>
<%=output%>
</bon:transform>

We have already discussed the way we first put the results of the XSLT into the
HTML produced by the JSP. (See section 6.1.13,“Including Documents in a JSP,” and
section 6.5.1,“Including XSLT Output on JSP Output,” in Chapter 6.) We now out-
put the resulting select list of available chats not to a file, but to a string named output
that is created by the BonForumTagExtraInfo class.This gives us the possibility of
reusing the results elsewhere, if we change the setting of the extra tag information so
that it is visible outside the custom tag body.

Figure 7.5 HTML displayed by visitor_joins_chat.jsp and related JSP documents.

In the following code scriptlet, you can see how this JSP page gets the value of the
currently chosen chatItem to display to the user.When the user clicks the Submit but-
ton to choose the selected chat, the form is sent by an HTTP POST method to the
BonForumEngine servlet.The request makes a round-trip because of the value of the
bonCommand request parameter.That refreshes the HTML produced by the JSP and

07 1089-9 CH07 6/26/01 7:32 AM Page 185

186 Chapter 7 JavaServer Pages: The Browseable User Interface

updates the selected chatItem—the chat that was just chosen from the selection list.
<%
String chatItem = (String)session.getAttribute(“chatItem”);
String chatItemMessage = “chat: <none>”;
if(chatItem != null && chatItem.trim().length() > 0) {
chatItemMessage = “chat: “ + chatItem;
}
%>

Finally, the current chat is displayed to the user using the following JSP expression:
<%=chatItemMessage%>

7.2.14 All Those Other JSP Files
By now, you should have the information required to understand all the other JSP
pages in the Web application.They are just variations on the themes we have been dis-
cussing here. You can read functional descriptions of all the JSP pages in Section
6.1.5,“The States of the Forum,” in Chapter 6. Figure 7.6 shows the HTML dsplayed
by guest_executes_chat.jsp. Some of the JSP pages not discussed are quite simple.They
only forward the request to the next page using the following JSP trick:

<jsp:forward page=”visitor_executes_choice.jsp”/>

Figure 7.6 HTML displayed by guest_executes_chat.jsp and related JSP documents.

It might seem that these pages are not needed, but remember that this version of
bonForum is really just a framework for building a complete Web chat application.

These pages that just forward the request (such as host_exits_forum.jsp) represent one
Actor-Action-Thing state in the Web application. It will be far easier to add function-

07 1089-9 CH07 6/26/01 7:32 AM Page 186

1877.3 Further Discussion About the JSP in bonForum

ality later, if we have the entire design represented in the JSP pages.
For example, later we will change things so that, when a host leaves the bonForum,

most of the data that was added for that host will be deleted.We can do this very con-
veniently from our host_exits_forum.jsp page.

Quite a bit more complex is the processing that is done by the JSP servlet com-
piled from the JSP page bonForum.jsp.There we use the bon:Transform tag command
again, this time to use XSLT to get a list of available bonForum locations.The style
sheet produces these in the form of a list of Web hyperlinks.We will discuss that more
fully in Chapter 10 because the XSLT transform is handled by the code of the
TransformTag class.

7.3 Further Discussion About the JSP in
bonForum
Before we leave this chapter, we want to further discuss two interrelated topics:

n Using session attributes to pass data between JSPs
n Reducing versus increasing the number of JSP files

We are aware that we may be improperly using session objects when we use them to
pass values for our applet parameters from one JSP to another.The criteria is whether
these applet parameter values qualify as information about a specific user of the appli-
cation and, thus, session information.They probably are better treated as thread-spe-
cific information instead, and we should develop a way to use beans to pass the
information in a thread-safe manner between these JSPs.

Furthermore, why do we need to pass the applet parameter values into the _robot
page at all? Why not just put the values directly into the applet parameters right on
the _robot page? Using the same target parameter as we did in the last section as an
example, that would mean doing this:

<jsp:param name=”target” value=”display”/>

The various other applet parameters would then also be hard-wired. Of course, that
would work as well.The applet doesn’t care where it gets its strings. If we did it this
way, we would have no need to use the session attributes to pass values from the JSP
that creates the frameset to the JSP with the embedded robot applet.

In fact, we could just put the jsp:plugin element in the _controls JSP and not
even have a third frame.We would then get rid of all the _robot JSP files except for
actor_leaves_frameset_robot.jsp.

It all comes down to a balancing act. On one hand, especially in a chat application,
performance is important, and “simpler” usually means “better performance.”That
would argue in favor of reducing the number of frames, objects, and files—no need for
all the robot session attributes, nor all the _robot JSP files.

On the other hand, a key purpose of JSP is to create dynamic Web pages that are
easily expandable and customizable.We see the design of bonForum as being a lot like
one of those new and empty land subdivisions that will later become an entire suburb.
Each JSP can be seen as Web real estate that can later be filled in with content.The

07 1089-9 CH07 6/26/01 7:32 AM Page 187

188 Chapter 7 JavaServer Pages: The Browseable User Interface

application pages could certainly use more and better content.
You will also no doubt have noticed, for example, that there is very little difference

among many of the JSP files in the bonForum project. If that is so, why not just
replace every group of similar JSP files with just one? We could take care of any differ-
ences that exist some other way. For example, we could replace this lot of files:

guest_executes_chat_robot.jsp

guest_executes_command_robot.jsp

host_executes_chat_robot.jsp

host_executes_command_robot.jsp

visitor_joins_chat_robot.jsp

visitor_starts_chat_robot.jsp

These six JSPs could all be replaced by one file, which we could call
actor_refreshes_frame_robot.jsp.

The only other changes needed would be to the top-level JSP files in each
bonForum state that uses a refresh robot, which are these files:

guest_executes_chat.jsp

guest_executes_command.jsp

host_executes_chat.jsp

host_executes_command.jsp

visitor_joins_chat.jsp

visitor_starts_chat.jsp

We would replace the entire robot frame element in all these files.Those are now all
similar to this:

<frame src=”/bonForum/jsp/forum/host_executes_chat_robot.jsp” name=”robot”/>

They would now all contain the same robot frame element, which would be like this:
<frame src=”/bonForum/jsp/forum/actor_refreshes_frame_robot.jsp” name=”robot”/>

On the face of it, replacing six files with one seems like a no-brainer. However, if you
look at each one of those replaceable _robot JSP files as defining a customizable piece
of Web real estate that is related to a particular state of a Web application (for example,
the user is joining, starting, chatting, commanding, hosting, and being a guest), then
you can argue that having all those files is a better framework to build upon than hav-
ing just the one file. It is a bit like biodiversity being favorable for evolution.

07 1089-9 CH07 6/26/01 7:32 AM Page 188

Java Servlet and Java Bean:
BonForumEngine and

BonForumStore

8

IN THIS CHAPTER,YOU LEARN ABOUT TWO classes central to the bonForum Web
application. BonForumEngine is a servlet in charge of handling HTTP requests and
responses. BonForumStore is a nonvisual bean that implements chat logic and encapsu-
lates the XML chat database.You will want to have the source code and javadocs for
the project—and a large cup of java—available because the discussion here will not shy
away from the details.The chapter also illustrates some themes common to using Java
servlets and beans in Web applications.

8.1 The BonForumEngine Servlet
This chapter is divided into two parts:The first covers the BonForumEngine servlet, and
the second covers the BonForumStore bean.The servlet will be discussed in more detail
because the problems that it solves are more universally encountered by developers of
Web applications.After a brief introduction to the purposes of the servlet and its con-
text in the Web application, we proceed to a discussion of its two major methods, the
service() method and the processRequest() method.Whenever possible, code that is
not dependent on the nature of the application (chatting) has been placed in the
service() method, while code that is more related to the specific needs of the Web
application (chatting) has been put in the processRequest() method.

08 1089-9 CH08 6/26/01 7:33 AM Page 189

190 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

8.1.1 Purpose of the BonForumEngine Class
The main purpose of the BonForumEngine class is to connect and coordinate all the
JSP documents in the Web application. By extending the HttpServlet abstract class, it
can receive the many simultaneous HTTP requests being generated by the browser
user interface discussed in Chapter 7,“JavaServer Pages:The Browseable User
Interface.” BonForumEngine forwards each request it receives to a “destination” JSP.This
servlet is the engine that moves every instance of bonForum from one state to the
next.

Before forwarding each request, it can also process it, which it does in relation to
the bonForum Web application.That “chat” processing relies heavily on the methods
of the BonForumStore class, which is the subject of the second part of this chapter (see
Section 8.2,“The BonForumStore Class”). Here is a listing of most of the functions of
BonForumEngine:

n Provides multiple, simultaneous contexts for Web application
n Allows multiple simultaneous user threads to be serviced
n Prevents entry to an application except from login page
n Enforces unique nicknames within application instance
n Acts as a switchyard for different HTTP request categories
n Manages the Web application session objects
n Processes HTTP request objects as a Web (chat) application
n Processes and forwards applet-generated JSP requests
n Processes information from all JSPs in the Web application
n Initializes the XML data wrapper, a BonForumStore instance
n Sets up an application scope reference to BonForumStore
n Makes user input available to chat processes, by session
n Processes chat messages from JSP users to other JSP users
n Manages XML data items for multiple simultaneous users
n Forwards users from JSP to JSP with programmatic control
n Provides extension and customization mechanism for Web app
n Provides some examples of user input verification

The best way to understand any distributed application is perhaps from the point of
view of the host (or hosts) that connect the clients.These connections create contracts
that define the allowable transactions: between the clients, between the clients and
databases, and so on. Just trying out the bonForum chat software as a chat host or as a
chat guest will not reveal the mechanics of this Web application.The following discus-
sion of the BonForumEngine and BonForumStore classes will hopefully make clear some
of the Ozian wizardry behind the curtain.

08 1089-9 CH08 6/26/01 7:33 AM Page 190

1918.1 The BonForumEngine Servlet

8.1.2 Web Application Context for this Servlet
Although Tomcat is a complete HTTP server, its specialty is handling Java servlets and
JavaServer Pages (JSP).The Tomcat configuration file web.xml determines what
Tomcat does with the various requests that it gets, whether directly from a browser or
from another server such as Apache.The following document type links the web.xml
configuration file to a definition of what a Web application should look like:

<!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
➥“http://java.sun.com/j2ee/dtds/web-app_2.2.dtd”>

According to that definition, a Web application description is enclosed in a pair of
matching root element tags, <web-app> and </web-app>.

Among the many element types that can exist within that Web app element are
child elements enclosed within the tag pair <servlet> and </servlet>.These servlet
elements enclose other elements that can contain the name, class, and parameter infor-
mation for each servlet that the Web app should know about.

Web Application Deployment Descriptor for bonForum

The web.xml Web application deployment descriptor for bonForum can be found in
the following file:

TOMCAT_HOME\webapps\bonForum\web-inf\web.xml

Servlet Element

This is the servlet element for the BonForumEngine Java servlet, as found in that con-
figuration file:

<servlet>
<servlet-name>

BonForumEngine
</servlet-name>
<servlet-class>

de.tarent.forum.BonForumEngine
</servlet-class>
<init-param>

<param-name>
bonfoo47

</param-name>
<param-value>

bonbar47
</param-value>

</init-param>
</servlet>

This servlet element in the web.xml file tells Tomcat that within the context of the
Web app that is being configured (bonForum), the name “BonForumEngine” will refer
to the Java class:

de.tarent.forum.BonForumEngine

08 1089-9 CH08 6/26/01 7:33 AM Page 191

192 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

Servlet Initialization Parameters

To illustrate how you can pass initialization parameters to a servlet, we have included a
purely illustrative parameter name, bonfoo47, and value bonbar47.To access this para-
meter from within the BonForumEngine servlet, you could use something like either of
these two equivalent statements (the second is a convenient shortcut for the first):

String bonFoo47 = getServletConfig.getInitParameter(“bonfoo47”);
String bonFoo47 = getInitParameter(“bonfoo47”);

Context Initialization Parameters

You can also define initialization parameters for the entire Web application context.
These are shared by all the servlets in the Web app. Here is one example from our Web
application.The parameter named Logging has a value of all, which turns on the log-
ging output both to logfiles (one for each major object) and to the console (the stan-
dard error output, actually). Here is how we make that Web app global information
available:

<context-param>
<param-name>

Logging
</param-name>
<param-value>

all
</param-value>

</context-param>

To access context-initialization parameters from within a servlet, you can use some-
thing like either of the following equivalent statements (the second, again, is a conve-
nient shortcut for the first):

String logging =
➥getServletConfig().getServletContext().getInitParameter(“Logging”));
String logging = getServletContext().getInitParameter(“Logging”);

Servlet-Mapping Elements

Some other elements are present in a Web-app deployment descriptor, one or more of
which can exist on the same tree level as the servlet elements.These are enclosed by
the paired tags <servlet-mapping> and </servlet-mapping>.The following servlet-
mapping element, together with the servlet element described previously, is critical to
the behavior of the BonForumEngine:

<servlet-mapping>
<servlet-name>

BonForumEngine
</servlet-name>
<url-pattern>

*.tfe
</url-pattern>

08 1089-9 CH08 6/26/01 7:33 AM Page 192

1938.1 The BonForumEngine Servlet

</servlet-mapping>
<servlet-mapping>

<servlet-name>
BonForumEngine

</servlet-name>
<url-pattern>

/BonForumEngine
</url-pattern>

</servlet-mapping>

This is an example of mapping by using both an extension and a directory.The first
servlet-mapping element in this excerpt from web.xml tells Tomcat that any request
URL that has an extension of .tfe should be sent to the servlet named
BonForumEngine.That servlet name could be a different one, but it must be the one
used in the servlet tag.

The second servlet-mapping element in the web.xml file tells Tomcat that a URL
pattern that matches /BonForumEngine should also cause Tomcat to forward the request
to the servlet known as BonForumEngine because of the servlet tag seen earlier.

8.1.3 The service() Method: An Overall View
First and foremost, the BonForumEngine is a descendant of HTTPServlet.The direct
benefit that you get from that includes many things that were already taken care of for
you as a developer:You simply do not have to solve some hard problems in the area of
communication across the world.The best place to start examining the doings of this
HTTPServlet is right at its heart: the service() method.

Servicing HttpServletRequest Objects

As you know already (or could guess by looking at its arguments’ types), the service()
method in an HTTPServlet accepts an HttpServletRequest object and an
HttpServletResponse object.The servlet and the JavaServer Pages API documentation
says the following about the service method:

There’s almost no reason to override the service() method. service() handles
standard HTTP requests by dispatching them to the handler methods for each
HTTP request type (the doxxx methods …).

These doXXX methods are doGet(), doPost(), doPut(), and doDelete().The standard
approach, when only post and get actions are to be handled (and handled in the same
way), is to override doPost() instead of service(), and then to override doGet() to
simply invoke doPost().The bonForum Web app uses only the post action. If we
were to override doPost() instead of service() and then later decided to use the get
action also, we would have to add “and also in doGet()” everywhere in the book
where we had written “in doPost().” We decided that was reason enough to override
service()!

08 1089-9 CH08 6/26/01 7:33 AM Page 193

194 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

What service() Does in BonForumEngine

So what is in the service() method of BonForumEngine? Table 8.1 gives a brief list of
its tasks.

Table 8.1 Tasks of the service() Method in BonForumEngine

1 Entrance security Prevent access to Web app except via the
front door: forum_login.jsp.

2 Manage sessions Make sure that each user has a valid
HttpSession object.

3 Nickname security Make sure that users have nicknames when
they enter.

4 Classify requests from HTML forms Route HttpRequests submitted to
BonForumEngine by HTML forms—some
are processed before forwarding, and others
are not.

5 Classify requests mapped to Route requests mapped to
servlet in deployment descriptor BonForumEngine—some are processed

before forwarding, and others not.

6 Invoke processRequest() Calls a method that implements a request-
based Web application (a chat, in this case).

7 Forward requests Dispatch each request to a destination JSP
or an error JSP, based on processing, form
data, or servlet-mapped URL decoding.

Hopefully, you will now be able to make faster sense out of the source code with this
information.

Pseudocode Listing for the service() Method

The following listing in pseudocode shows the logic of the service method in the
BonForumEngine class.This listing can serve as a reference while you read the following
sections, which discuss its concepts, terms, and details.

set serviceStatus to CheckForServicing

get requestUri

get boncommand request parameter

if requestUri is for BonForumEngine
set bonForumCommand to bonCommand
if bonCommand request parameter full

if boncommand includes “forum entry”
set serviceStatus to CheckInAtEntrance

if boncommand includes “UserMustLogin”

08 1089-9 CH08 6/26/01 7:33 AM Page 194

1958.1 The BonForumEngine Servlet

set serviceStatus to UserMustLogin
else if boncommand includes “system_executes_command”

set serviceStatus to SystemCommands
else

set serviceStatus to ProcessRequest
endif

else
set serviceStatus to ProcessRequest

endif
else

set serviceStatus to DecodeServletMappedURI
endif

if requestUri includes “forum_login”
set serviceStatus to ForwardToLoginPage

endif
else if requestUri includes “forum_error”

set serviceStatus to ForwardToErrorPage
endif
else if requestUri includes “UserMustLogin”

set serviceStatus to UserMustLogin
endif

if serviceStatus is CheckInAtEntrance
create session
get sessionId
// Get a servlet context attribute, or
// if not, then an init param named,
// “SessionMaxInactiveMinutes”
// (default is forever).
// Use it to set chat inactivity limit:
set maxInactiveInterval for session
set serviceStatus to ProcessRequest

else if serviceStatus is not ForwardToLoginPage nor ForwardToErrorPage
// It is ProcessRequest,
// DecodeServletMappedURI,
// or SystemCommands!
check for existing session
if no session

set serviceStatus to UserMustLogin
else

get sessionId
check requested sessionId
if requested sessionId is not valid

set serviceStatus to UserMustLogin
endif

if request is from forum_entry (nickname input page)
get input nickname from request parameter

else
get existing nickname from session attribute

endif

08 1089-9 CH08 6/26/01 7:33 AM Page 195

196 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

if nickname gotten
if nickname in registry

if nickname is for another session
if at forum_entry

// nickname is taken!
set serviceStatus to ForwardWithoutServicing
➥set bonForumCommand to forum_entry
save nickname in actorNicknameNotAvailable
➥session attribute

else
// existing nickname not ok,
// session expired?
set serviceStatus to UserMustLogin
endif

// else re-entered nickname is ok
endif

else
// nickname not in registry
if at forum_entry

// nickname unique and available
put nickname in registry
put nickname in session attribute

else
// existing nickname not ok!
set serviceStatus to UserMustLogin

endif
endif

else
// nickname missing in request or session!
if at forum_entry

set serviceStatus to ForwardWithoutServicing
set bonForumCommand to forum_entry

else
set serviceStatus to UserMustLogin

endif
endif

endif
endif

if serviceStatus is DecodeServletMappedURI
set serviceStatus to ForwardWithoutServicing
if requestUri contains embedded bonForum JSP name

set bonForumCommand to embedded JSP name
if request needs processing (guest_executes_chat, host_executes_chat)

➥set serviceStatus to ProcessRequest
endif

endif
endif

if serviceStatus is ProcessRequest, or serviceStatus is SystemCommands
try

save serviceStatus in a request attribute

08 1089-9 CH08 6/26/01 7:33 AM Page 196

1978.1 The BonForumEngine Servlet

invoke processRequest with request, response, session, bonForumCommand
➥set serviceStatus from the request attribute

catch exception
printStackTrace

endtry
endif

if serviceStatus is not ForwardWithoutServicing, nor ForwardAfterRequestProcessed
➥// service was not successful!
if serviceStatus is ForwardToLoginPage

set bonForumCommand to forum_login
endif
else if serviceStatus is ForwardToErrorPage

set bonForumCommand to forum_error
endif
else if serviceStatus is SystemCommands

set bonForumCommand to system_executes_command
endif
else //serviceStatus is UserMustLogin, or unknown

if session exists
try

invalidate session
catch IllegalStateException

printStackTrace
endtry

endif
create new session
get new sessionId
set bonForumCommand to forum_login_robot
set robot applet parameters in session attributes
// document is set to “forum_login.jsp”
// target is set to “_top” frame
// applet will restart the webapp!

endif
endif

create JSP filename from bonForumCommand

Forward request and response to JSP using RequestDispatcher

Some Notes for the service() Method

We list here a series of items that can help you understand the functioning of the
service() method. Rather than try to understand these items now, it is best to keep
them as a reference to use while reading the sections that follow, which cover the
service() method.

1. You can think of a bonCommand as a petition by one JSP to have a request for-
warded to another JSP destination in the Web app.The bonCommand originates on
a JSP-generated form and is available to the service() method as a request
parameter.

08 1089-9 CH08 6/26/01 7:33 AM Page 197

198 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

2. You can think of bonForumCommand as the ticket out of the service() method—
and, thus, out of the servlet.The value of bonForumCommand determines where
each request gets forwarded because it generates the destination’s JSP filename.
The bonForumCommand variable is local to the service() method.

3. JSP-generated HTML forms in the browser interface are always posted to the
BonForumEngine servlet, so their related requestURI values are always
BonForumEngine as well.

4. A request with a URI of BonForumEngine and a valid bonCommand value auto-
matically gets a BonForumEngine with the same value as the bonCommand.That is
how a JSP form can select the next JSP in the Web application.

5. Other requests transiting the service() method have arrived only because of a
servlet mapping for URIs that end in .tfe (as discussed in the previous section,
“Servlet-Mapping elements”). For example, the BonForumRobot applet includes
the “true” request destination (the value of its document parameter) as part of a
mangled URI that ends in .tfe.These servlet-mapped requests are given a
BonForumCommand that is obtained from the embedded JSP filename value.

6. To ensure that all requests pass through the service() method of
BonForumEngine, we also added a .tfe suffix to the JSP filename values of all src
attributes of HTML frame elements (for example, the frames on
host_executes_chat.jsp) and the JSP filename values of all page attributes of the
jsp:forward elements (for example, the frames on host_exits_command.jsp).

7. The only application state in which a bonCommand of forum_entry is posted as a
request parameter is the forum_login state (created by forum_login.jsp).
Therefore, if a request has a bonCommand value of forum_entry, it is correctly
entering bonForum.

8. Unless a request is correctly entering bonForum, it must already have a session.
Otherwise, the request gets forwarded to the forum login state, for re-entering
bonForum.

9. Unless a request is correctly entering bonForum, it must already be associated
with a nickname. If the request originated in the nickname input page
(forum_entry.jsp), the nickname will be in a request parameter. Other nonenter-
ing requests should have a nickname stored in an attribute of a session that
belongs to the request. Nonentering requests without nicknames are forwarded
back so that a user can re-enter a nickname. These “bad nickname” requests are
forwarded back to the nickname input page, if they originated on one.
Otherwise, they are forwarded back to the forum_login state.

10. For normal request forwarding, either to the expected destination or back to the
page that originated the request, the engine can just set BonForumCommand to the

08 1089-9 CH08 6/26/01 7:33 AM Page 198

1998.1 The BonForumEngine Servlet

JSP filename (without path or extension) and set ServiceStatus to
ForwardWithoutServicing or ProcessRequests.

11. To handle abnormal request forwarding, the engine needs to use BonForumRobot
to forward the request to the forum login page. Otherwise, problems can hap-
pen. (For example, if a request without a session is not correctly entering, then
the usual situation is that its session has expired due to browser inactivity. If such
a request originates within an HTML frame, and if the engine used the forward-
ing method described in item 9, the login page would end up being displayed
inside the frame!) The applet came in handy here, even though its real jobs are
refreshing JSP-generated HTML frames and switching application framesets, as
explained in Chapter 7 and Chapter 9,“Java Applet Plugged In: BonForumRobot.”

After this look at the overall tasks and design of the service() method, and the details
of a few key characteristics, we now describe the way BonForumEngine classifies
requests associated with the various threads “traversing” its code.

8.1.4 The service() Method: Classifying Requests for Processing
One of the most important tasks of the service() method is to classify and route each
arriving request so that the processing executed by its thread is correct for the func-
tion of the request within the logical context of the application.That is the topic of
this section.

Because each thread executing code within a service() method has its own copies
of all the method variables, we can use the variables freely in the code, without worry-
ing that one thread can affect the value of the variables for a different thread. Much of
the beauty of Java lies in its built-in multithreaded processing capability. (Later, in sec-
tion 8.1.20,“The processRequest() Method: Handling ‘Host Executes Chat’”we will
discuss the decidedly different situation that we face when two or more threads are
sharing the same resource—for example, our database.)

The ServiceStatus Variable

BonForumEngine uses the serviceStatus variable to classify and route all incoming
requests to the service() method.The value of this variable sorts the requests into
various handling categories. It is used to route each request through the various pro-
cessing choices in the method.Table 8.2 lists all possible values of serviceStatus, each
with a description of its implied request category.

08 1089-9 CH08 6/26/01 7:33 AM Page 199

200 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

Table 8.2 Request Types Handled in the service() Method

Value of serviceStatus Situation of Request

CheckForServicing Request has just entered service().
CheckInAtEntrance Request is for entering the Web app and needs a

session.

SystemCommands Request is for access to Web app administration pages.

ProcessRequest Request needs processing—invoke processRequest()
for it.

DecodeServletMappedURI Request is mapped to this servlet and needs its URL
decoded.

ForwardToLoginPage Request is servlet-mapped by robot applet to force
relogin, so only forward it.

ForwardToErrorPage Request is for error page, so only forward it.

UserMustLogin Request has failed session or nickname verification, so
get the BonForumRobot applet on the
forum_login_robot JSP page to request the
forum_login page.

ForwardWithoutServicing Request needs to be only sent on its way (or else back
where it came from), using the bonForumCommand to
get the name of the JSP destination.

InProcessRequestMethod Request is in processRequest() method now.

ForwardAfterRequestProcessed Request is completely processed—send it on its way.

All requests entering the service() method are classified in the CheckForServicing
service status:

String serviceStatus = “CheckForServicing”;

Request URI

The next lines of code reclassify each request, if possible, using several criteria.An
important one is obtained by the following code statement:

String requestUri = request.getRequestURI();

The URIs that are associated with requests coming to this service() method are of
two types, as follows:

1. URI for the BonForumEngine

2. URI servlet-mapped to the BonForumEngine

The first type of request URI is always due to the following HTML code that is gen-
erated by the typical bonForum JSP:

<form method=”POST” action=”/bonForum/servlet/BonForumEngine”>

08 1089-9 CH08 6/26/01 7:33 AM Page 200

2018.1 The BonForumEngine Servlet

The getRequestURI() method for any request posted by this form will, of course,
return the following:

/bonForum/servlet/BonForumEngine

The second type of request URI is generated in three very different situations, each
one producing a URI that ends in .tfe. One situation includes all requests used by the
browser to fill frames in framesets using JSPs and is exemplified by the following
HTML code taken from guest_executes_chat.jsp:

<frame src=”/bonForum/jsp/forum/guest_executes_chat_controls.jsp.tfe”
➥name=”controls”/>

A servlet-mapped request URI is generated also by every jsp:forward tag in the Web
app, as exemplified by this one taken from host_exits_chat.jsp:

<jsp:forward page=”visitor_executes_choice.jsp.tfe”/>

Finally, servlet-mapped request URIs are generated also by the BonForumRobot applet
class using the following statement taken from its source file:

uncachedDocument = document + millis + “.tfe”;

As discussed in the next chapter, the applet does this to produce requests with URIs,
as in the following example:

/bonForum/jsp/forum/guest_executes_chat.jsp986480673940.tfe

In fact, there are four different subtypes of these “robot” request URIs.The one just
shown is used to change application states, from “visitor joins chat” to “guest executes
chat.”A second subtype, shown next, is used to refresh the frame that displays chat
messages to a guest:

/bonForum/jsp/forum/guest_executes_chat_frame.jsp986480680219.tfe

The third subtype, shown next, is used to display an error page, while ensuring that it
will not display within a frame:

/bonForum/jsp/forum/forum_error.jsp986480474353.tfe

The fourth and final subtype is used to request the very first JSP of the Web app, while
ensuring that it can be requested from a frame without being displayed in that frame.
Here is an example:

/bonForum/jsp/forum/forum_login.jsp986480582348.tfe

Later in this chapter, in the section “Request Control and Security,” we discuss what
may become a fifth kind of servlet-mapped URI.

The bonCommand

The next criteria used by the service() method to classify and route incoming
requests is obtained by this statement:

String bonCommand = normalize((String)request.getParameter(“bonCommand”)).trim();

08 1089-9 CH08 6/26/01 7:33 AM Page 201

202 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

The bonCommand request parameter is sent to the servlet when a user submits an
HTML form created by a compiled JSP page.

Here are some example boncommand values:

forum_entry

visitor_executes_choice

visitor_starts_chat

visitor_starts_chat_frame

visitor_starts_chat_ready

host_executes_chat_controls

visitor_joins_chat

visitor_joins_chat_frame

visitor_joins_chat_ready

guest_executes_chat_controls

system_executes_command

system_dumps_xml

bonForum

As you know, these represent both the states of the Web app and the JSP files that it
uses to create its user interface.The service() method checks that the request URI
for a bonCommand is for the BonForumEngine and then uses the bonCommand value to set
the all-important variable bonForumEngine, which determines the next JSP page to be
executed for the user of the current thread. Here is the code that sets that variable:

if((requestUri.indexOf(“BonForumEngine”) > -1)) {
if(bonCommand.length() > 0) {
bonForumCommand = bonCommand;

Notice that bonCommand here has an empty value whenever the request is servlet
mapped to the BonForumEngine (see the previous section “Request URI”). In that
case, information that is equivalent to that of bonCommand can instead be found embed-
ded in the URI itself.)

CheckInAtEntrance

Requests that have bonCommand values end up classified in the ProcessRequest service
status, unless they fall in either of two special categories.The first belong to the
CheckInAtEntrance service status. By design, only the first page of the Web app creates
a boncommand parameter with a value of forum_entry.The service() method uses that
information to produce this category of incoming requests generated by users coming
into the application through its proper entrance:

// Check if request came from
// the first page (forum_login.jsp).
if(bonCommand.indexOf(“forum_entry”) > -1) {
serviceStatus = “CheckInAtEntrance”;

08 1089-9 CH08 6/26/01 7:33 AM Page 202

2038.1 The BonForumEngine Servlet

SystemCommands

The second special category of requests belong to the SystemCommands service status.
These request resources that only the bonForum server administration and developers
can use.This area of the Web app has a “doorway” of its own, which is created by the
JSP system_executes_command.To be immediately useful, these requests need to be
given a session and a nickname.After that is done, the requests are classified into a sep-
arate status and request handling of their own, as follows:

else if(bonCommand.indexOf(“system_executes_command”) > -1) {
// here later add password security on system.
// for now, no security at all
// Get the session, creating it if none
session = request.getSession();
session.setAttribute(“actorNickname”, “system”);
serviceStatus = “SystemCommands”;
}

ProcessRequest and DecodeServletMappedURI

The final act of request classification at this early stage of the service() method is to
throw the rest of the requests with a BonForumEngine URI into the ProcessRequest
service status, and put all the servlet-mapped requests into the
DecodeServletMappedURI service status.

Request Classification

We will now show the entire first part of the service() method, as much as we have
discussed in this section:

public void service(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

HttpSession session = null;
String sessionId = “”;
String serviceStatus = “CheckForServicing”;
String bonForumCommand = “”;

String requestUri = request.getRequestURI();

String bonCommand = normalize((String)request.getParameter(“bonCommand”
➥)).trim();

if((requestUri.indexOf(“BonForumEngine”) > -1)) {
if(bonCommand.length() > 0) {

bonForumCommand = bonCommand;
if(bonCommand.indexOf(“forum_entry”) > -1) {

serviceStatus = “CheckInAtEntrance”;
}
else if(bonCommand.indexOf(“system_executes_command”) > -1) {

08 1089-9 CH08 6/26/01 7:33 AM Page 203

204 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

session = request.getSession();
session.setAttribute(“actorNickname”, “system”);
serviceStatus = “SystemCommands”;

}
else {

serviceStatus = “ProcessRequest”;
}

}
}
else {

serviceStatus = “DecodeServletMappedURI”;
}
[the rest of the method is here. . .]
}

Request Control and Security

Notice that it is part of the design that each request involved in the Web application
should traverse the service() method of the BonForumEngine and thus be subject to
control by whatever Java code there can accomplish. In effect, the servlet provides
security within an application context. Just before this book went to print, there were
still some requests that were not subject to this control.These (discussed previously in
the section “Request URI”) included all “frame-filling” requests made by browsers
and all requests by jsp:forward tags.The fix for all these “out-of-control” requests
turned out to be extremely simple:We only added a .tfe suffix to all the requested JSP
filenames.

That left one other source of requests that were not being routed through the
service() method of BonForumEngine: the error page JSP requests. Each JSP (except
forum_error.jsp) has in it a page directive like this:

<%@ page errorPage=”forum_error.jsp” %>

It would be a simple matter to also add .tfe to this JSP filename, which would route
the request through the service() method.We are still debating whether it is better to
gain control (and access) to all these error page requests in BonForumEngine or whether
all JSP errors should be handled only by Tomcat.

After that fix, all the requests are sent to the service() method because of the
servlet mapping.Without any additional changes to the code, we are ready to establish
total control of all requests in the Web application. In the “if-else-if-else-if-else” con-
struct that handles all servlet-mapped requests in the service() method, we can easily
add new code that responds to these “frame-filling” and direct “JSP-to-JSP” transi-
tions. (In a future release, we will use three different suffixes, not just .tfe, to provide an
easy way to sort these three types of servlet-mapped requests.)

08 1089-9 CH08 6/26/01 7:33 AM Page 204

2058.1 The BonForumEngine Servlet

8.1.5 The service() Method: Requests for Engine Control
Some requests are used not to implement the Web application, but rather to control
the engine that implements the Web application.As of now, the only examples in
BonForumEngine control the error page display and reboot the application.They are
described fully later in this chapter, in Section 8.1.12,“The service() Method:
Handling Abnormal Outcomes.”

These control requests need no further processing and, indeed, should not be
processed.These are detected early in the service() method and are given a
serviceStatus value that will route them past all the code to the request-forwarding
mechanism at the end of the method.That is all done by checking the incoming
request URIs, as follows:

if(requestUri.indexOf(“forum_login”) > -1) {
serviceStatus = “ForwardToLoginPage”;

}
else if(requestUri.indexOf(“forum_error”) > -1) {

serviceStatus = “ForwardToErrorPage”;
}
else if(requestUri.indexOf(“UserMustLogin”) > -1) {

serviceStatus = “UserMustLogin”;
}

In Section 8.1.2,“Web Application Context for this Servlet,” we discuss what becomes
of requests that are given these Web app control serviceStatus values.

8.1.6 The service() Method: Requests to Enter the Web
Application
As discussed in Section 8.1.4,“The service() Method: Classifying Requests for
Processing,” some incoming requests get a serviceStatus of CheckInAtEntrance.The
service() method makes sure that each of these requests has a session object (and gets
its ID for later use).The maximum inactivity interval for each session is set from a
user-supplied value. Finally, the serviceStatus is changed to ProcessRequest.

Until we add a user manager and chat data persistence, a chat in bonForum can last
only as long as the session that creates it. (More accurately, a chat can outlive the ses-
sion that created it, but it will no longer have a host, and so is not fully functional.) A
session can last until it is inactive for more than a maximum inactivity interval, which
can be set using the setMaxInactiveInterval session method.We set that to allow
chats to withstand inactivity longer than they would by default.This also allows us to
experiment with session timeouts and to test the code that handles session timeouts.

The service() method code first looks for the max inactive interval (in minutes), a
ServletContext attribute string called sessionMaxInactiveMinutes. Failing that, it
looks in an initialization parameter of the same name.The default, if neither is found,
is –1, meaning that sessions persist until Tomcat shuts down.

08 1089-9 CH08 6/26/01 7:33 AM Page 205

206 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

Here is the code that handles new requests coming it at the entrance to the Web
application:

if(serviceStatus.equals(“CheckInAtEntrance”)) {
session = request.getSession();
sessionId = session.getId();
String sessMax = normalize((String)getServletContext().getAttribute(

➥“sessionMaxInactiveMinutes”));
if(sessMax.trim().length() < 1) {

sessMax = getServletContext().getInitParameter(
“sessionMaxInactiveMinutes”);

if(sessMax == null) {
sessMax = “-1”;

}
}
int minutes = -1;
try {

minutes = Integer.parseInt(sessMax);
}
catch (NumberFormatException nFE) {

minutes = -1;
}
session.setMaxInactiveInterval(minutes);
serviceStatus = “ProcessRequest”;

}

8.1.7 The service() Method: Handling Normal Requests Within
the Web Application
In Section 8.1.5,“The service() Method: Requests for Engine Control,” we saw that
some requests are to be routed around most of the code in the service method. Except
for those login and error requests and the special Web app entrance requests that we
just discussed in Section 8.1.6,“The service() Method: Requests to Enter the Web
Application,” all requests must be checked for two requirements:

n They must have a valid session object.
n They must have a valid actor nickname.

These checks are applied to all requests with the following serviceStatus values:
n ProcessRequest

n DecodeServletMappedURI

n SystemCommands

The first two are the normal requests related to users already in the Web application.
Requests for system URIs also need access to all processing functionality in the
servlet. Leaving the details out for now, this next code excerpt shows how requests are
selected for session and nickname checking:

08 1089-9 CH08 6/26/01 7:33 AM Page 206

2078.1 The BonForumEngine Servlet

if(serviceStatus.equals(“CheckInAtEntrance”)) {
//
// Code left out here, (see Section 8.1.6).
//

}
else if (!serviceStatus.equals(“ForwardToLoginPage”) &&
➥!serviceStatus.equals(“ForwardToErrorPage”) &&
!serviceStatus.equals(“UserMustLogin”)) {

//
// Code left out here is listed in
// sections 8.1.8 and 8.1.9,
// and does the following things:
//
// If request has no session, force relogin,
// otherwise validate the session.
//
// If the session is not valid, force relogin,
// otherwise validate nickname for request.
//
// If nickname is not valid, force relogin,
// otherwise, allow further request processing.
//

}

8.1.8 The service() Method:Validating Session Objects
The best way to give Web application pages any lasting meaning within the stateless
context of an HTTP Internet world is by using session objects.These are maintained
by the server, using cookies (if the browser cooperates) or rewriting the URL (if not).
By using a unique identifier, a session can “brand” all the requests that come from one
browser instance over a period of relative activity.

If you need to learn more about how Java handles sessions, we recommend
reading Chapter 9,“Session Tracking,” of Marty Hall’s book, Core Servlets and JavaServer
Pages.Another excellent and very interesting way to learn more is to study the source
code in Tomcat that implements session tracking. If you have the Tomcat source
code installed on your system, you will find the source code in the folder
TOMCAT_HOME\src\org\apache\tomcat\session.

To continue from the last section, let’s first see how the service() method validates
the session object of each normal request. If the user entered the application through
the entrance, there should be a session object (see Section 8.1.6,“The service()
Method: Requests to Enter the Web Application”). First, it checks to see if the request
has a session object. If not, something is wrong.The serviceStatus is set to
UserMustLogin, which will soon take that user back to the forum login page (with a
brand new session) to start all over again.

08 1089-9 CH08 6/26/01 7:33 AM Page 207

208 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

If the request does have a session, its ID is saved for later use. If the browser
requested a different ID, the user must log in again.The code that accomplishes these
session validation steps is shown in the following listing (for its context, see the listing
in preceding section):

// See if session exists, but don’t create one:
session = request.getSession(false);
if(session == null) {

serviceStatus = “UserMustLogin”;
}
else {

sessionId = session.getId();
if(!request.isRequestedSessionIdValid()) {

serviceStatus = “UserMustLogin”;
}
//
// Code left out here is listed
//in section 8.1.9, and
// validates nickname for request.
//

}

Notice that if you use the getSession() method without any arguments, it will make
sure that you get a session. Sometimes you do not want this behavior, and you should
then pass false as an argument.We put that argument to good use previously because
a null return value tells us that an incoming request has no session—and that is infor-
mation we need.

8.1.9 The service() Method: Managing Unique Nicknames
In this section, we discuss how the service() method ensures that every normal
request that it receives has a valid and unique nickname associated with it. (This fills in
more of the details that were left out of the code excerpt listed in Section 8.1.8,“The
service() Method:Validating Session Objects.”)

Except for the special nickname system, the only place that a user of the Web appli-
cation gets a nickname is by filling in a form field on the HTML page produced by
forum_entry.jsp.That same nickname entry form has a bonCommand that is unique in
the application:

visitor_executes_choice

The nickname-handling code checks for that boncommand. If it finds it, it knows that
the request came from the forum_entry state, and it gets a user-entered nickname from
a request parameter named actorNickname (disallowing the restricted value of system).
If the request did not originate in the forum_entry state, the code gets an existing
nickname value from a session attribute also named actorNickname.

Whether it gets a newly input nickname or a preexisting one, the code looks it up
in its nickname registry, a hashtable that associates each nickname in the Web app

08 1089-9 CH08 6/26/01 7:33 AM Page 208

2098.1 The BonForumEngine Servlet

with the ID value of the session that created and registered it.The nickname is the
key, so nickname values must be unique. (The special “system” nickname is again
treated differently—it is always stored in the hashtable before the lookup is done and
will always be found during the lookup.)

There are three possible outcomes of the hashtable lookup:
n The nickname is not found in the registry.
n The nickname is found with the current session ID.
n The nickname is found with a noncurrent session ID.

The code uses logic as expressed in Table 8.3 to decide what to do next.

Table 8.3 Logic for handling actor nicknames in service()

actorNickname New Input Preexisting

Not in registry Nickname is unique Error: User must log in
and available: Register again.
and put it in the session
attribute.

In registry with Nickname is okay:The user Nickname for request is
current session ID returning, so continue processing. okay: Continue processing.

In registry with Nickname is taken: Return Error: User must log in
noncurrent Session ID for another input by user. again.

Not in request parameter Nickname input was an empty Error, missing nickname:
or session attribute string: Return for another input User must log in again.
(whichever was expected) by user.

If the nickname is taken, it is set in a session attribute called
“actorNicknameNotAvailable”, so the user can be told the bad news.

To send a user back for another nickname, just set the serviceStatus to
ForwardWithoutServicing and bonForumCommand to forum_entry. Sending a user back
to relogin, when an existing nickname is not okay, is even simpler:The serviceStatus
is set to UserMustLogin.

It should now be easy to follow the nickname-handling code, which is listed in the
following excerpt (for its context, see the listings in the two preceding sections):

String actorNickname;
session.setAttribute(“actorNicknameNotAvailable”, “”);
boolean isForumEntry = false;
// Only forum_entry allows nickname input,
// check for its bonCommand here:
if(bonCommand.indexOf(“visitor_executes_choice”) > -1) {

isForumEntry = true;
actorNickname = normalize((String)request.getParameter(“actorNickname”

➥)).trim();
if(actorNickname.equals(“system”)) {

actorNickname = “”;

08 1089-9 CH08 6/26/01 7:33 AM Page 209

210 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

}
}
else {

actorNickname = normalize((String)session.getAttribute(“actorNickname”
➥)).trim();
}
if(actorNickname.length() > 0) {

if(actorNickname.equals(“system”)) {
nicknameRegistry.put(actorNickname, sessionId);

}
if(nicknameRegistry.containsKey(actorNickname)) {

if(!(nicknameRegistry.get(actorNickname).equals(sessionId))) {
➥// registered for another session!
if(isForumEntry) {

// nickname is taken!
serviceStatus = “ForwardWithoutServicing”;
bonForumCommand = “forum_entry”;
session.setAttribute(“actorNicknameNotAvailable”,

➥actorNickname);
actorNickname = “”;

}
else {

// session wrong for nickname!
serviceStatus = “UserMustLogin”;

}
} // else existing nickname is OK

}
else {

// nickname not in registry
if(isForumEntry) {

// nickname is available!
nicknameRegistry.put(actorNickname, sessionId);
session.setAttribute(“actorNickname”, actorNickname);

}
else {

// nickname lost from registry!
serviceStatus = “UserMustLogin”;

}
}

}
else {

// nickname missing in request or session!
if(isForumEntry) {

// user entered empty string
// send user back for another try:
serviceStatus = “ForwardWithoutServicing”;
bonForumCommand = “forum_entry”;

}
else {

// nickname is missing!
serviceStatus = “UserMustLogin”;

}
}

08 1089-9 CH08 6/26/01 7:33 AM Page 210

2118.1 The BonForumEngine Servlet

8.1.10 The service() Method: Handling Servlet-Mapped
Requests
In this section, we describe the way that the service() method handles servlet-
mapped requests.The following list restates what has been said so far:

n There is a servlet-mapping element in the deployment descriptor in web.xml
(see the previous section “Servlet-Mapping Elements”).

n Requests that do not have a URI for BonForumEngine can arrive at its service()
method only by means of a servlet-mapping element.They are identified early
and get serviceStatus values of DecodeServletMappedURI.

Three main types (and several subtypes) of request generators produce URIs that end
in .tfe.These will all end up at the BonForumEngine service() method because of the
mapping. (For more information on this, see “Request URI” in Section 8.1.4.)

After going through session and nickname checking (along with other normal
requests), the servlet-mapped requests are handled separately.There are two tasks are to
be done for each such request, as follows:

n Find the bonForumCommand for the request—what should be its forwarding
destination?

n Determine whether the request should take part in the processing that imple-
ments the logic of the Web application (a chat, in this case).

The block of code that does these two tasks is quite long and repeats a format, so we
show only a representative part of it in this next code listing:

if(serviceStatus.equals(“DecodeServletMappedURI”)) {

serviceStatus = “ForwardWithoutServicing”;

if(requestUri.indexOf(“guest_executes_chat”) > -1) {

if(requestUri.indexOf(“guest_executes_chat_frame”) > -1) {
bonForumCommand = “guest_executes_chat_frame”;
}
else if(requestUri.indexOf(“guest_executes_chat_controls”) > -1) {
bonForumCommand = “guest_executes_chat_controls”;
}
else if(requestUri.indexOf(“guest_executes_chat_robot”) > -1) {
bonForumCommand = “guest_executes_chat_robot”;
}
else if(requestUri.indexOf(“guest_executes_chat_ready”) > -1) {
bonForumCommand = “guest_executes_chat_ready”;
}
else if(requestUri.indexOf(“guest_executes_chat_console”) > -1) {
bonForumCommand = “guest_executes_chat_console”;
}
else {
bonForumCommand = “guest_executes_chat”;
serviceStatus = “ProcessRequest”;

08 1089-9 CH08 6/26/01 7:33 AM Page 211

212 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

}
}
else if(requestUri.indexOf(“host_executes_chat”) > -1) {
// code left out here, follows pattern as above
}
// much code left out here:
// includes many “else if” compound
// statements like the last one shown, each
// in turn containing other “if else if”
// compound statements.
// This sieve looks for every application
// filename (without extension) embedded within
// each servlet-mapped request URI.
//
else {
bonForumCommand = “forum_error”;
serviceStatus = “ForwardToErrorPage”;
}
}

As you can see, to handle these requests we put in a whole scaffolding of if-else-if-
else-if constructs that look for hardwired JSP filenames embedded in any request
URIs that are not for BonForumEngine.The BonForumCommand is then set to the value
of the embedded filename, without the .jsp extension and added timestamp suffix.

By default, the serviceStatus variable is set to ForwardWithoutServicing for all
these URI cases.That causes their request threads to be routed around request process-
ing. However, there are two requests (for now) that do require lots of Web application-
specific (that is, chat) processing.Those two requests are for the two JSPs
host_executes_chat.jsp and guest_executes_chat.jsp.

When a request being handled is for either of these two pages, the code sets the
thread’s serviceStatus variable to ProcessRequest.We will discuss how these two
requests are processed in Section 8.1.20,“The processRequest() Method: Handling
‘Host Executes Chat,’” and Section 8.1.21,“The processRequest() Method: Handling
‘Guest Executes Chat.’”

Notice that this “if then else if ” scaffolding makes future development very easy. It
sorts requests according to names that it finds embedded in their URIs, checking for
all the JSP names that exist in the bonForum Web application.We can easily add map-
pings for other URI extensions besides .tfe—utilizing different suffixes and prefixes
can add extra meaning to requests in a structured way.We can also easily add new
code processing these new types of requests.What is cool is that these requests are
mapped to JSP pages and, thus, to the user interface.

Also notice that instead of checking the incoming requestUri values for equality,
we use constructs such as the following:

if(requestUri.indexOf(“host_executes_command”) > -1)

That makes it easy to try out variants of a JSP by simply adding a suffix such as _test

08 1089-9 CH08 6/26/01 7:33 AM Page 212

2138.1 The BonForumEngine Servlet

to the filename.There is no need to revise the servlet code and recompile it, as long as
these JSP variants should be treated equally. In fact, earlier in the project, we had only
the high-level if statements here (such as for host_executes_command), and it was easy
later to add the second tier of the JSP hierarchy (such as forhost_executes_
command_frame) without changing the servlet code nearly as much as we would have
otherwise.

You probably noticed that not all the JSP pages in the application are being
requested via the servlet mapping, but they are nevertheless represented in this
“switchyard.”We added all the pages in the Web app to make experimenting easier.
Working with JSP can be quite fast and interactive, and we like things that make it
more so.

One final point: Instead of having a bunch of if statements with strings, it might
look nicer to have a switch statement with “constants” for page names here. However,
we would still have to compare all the requestUri values to strings somewhere! We
could hide all this code away in another method, but we feel that having all this
“broad-brush” code here, right in the middle of the method, makes us think more
often about all those JSP pages, what they do, and what they could do.

Free Advice, If You Buy It

Although “hardwiring” filenames into a program is considered poor style, doing that
can often let you look sooner at the fundamental questions being raised by sometimes
overly ambitious plans.As long as we are waxing pedagogical, we might mention two
rules of thumb that we like:

1. Get it done first, then get it done right.

2. As many problems in software stem from premature overdesign as from late
under-design.

Some might disagree and say that they have always subscribed to “Do it right the
first time.” Our hats are off if that works for them! In our experience, computer
programs get good only the third time they are developed, preferably by the same
people, and preferably in different languages. Some might also like us to present
statistical evidence to back up our second rule. Instead, all we did was rename them
from “principles” to “rules of thumb.” But we should put a survey on the bonForum
Web site on SourceForge to gather some anecdotal “evidence” in support of and
against these rules.

Do not start designing the details about the best way to do something until you
know what you have to do.That might seem obvious, but it is amazing how many
problems encountered in software projects are actually there only because some hasty,
ambitious planning created the problems. Especially when you are on a steep learning
curve or two, it can be better to determine the problem first and then find the
solution.

Keep trying things, and keep making problems for yourself. Only when you have

08 1089-9 CH08 6/26/01 7:33 AM Page 213

214 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

solved enough problems can you see a pattern emerge for some of these. If their
impact upon the software is significant, they may deserve the application of a more
refined design approach. Delay your cost-benefits analysis until you have a basis to
determine the costs and the benefits.

8.1.11 The service() Method: Invoking processRequest()
We have seen that some requests are to be forwarded by BonForumEngine without fur-
ther processing; these include most servlet-mapped requests, as well as some error page
and login page requests. However, every other request ends up with a serviceStatus
value of either ProcessRequest or SystemCommands. Either of these two values will
route a request into the code that invokes the processRequest() method. Because of
its size and separate functionality, we discuss that method in its own section, Section
8.1.20,“The processRequest() Method: Handling ‘Host Executes Chat.” In this cur-
rent section, we show only how the invocation of this method is handled inside
service().

Before the processRequest() method is called, a request attribute named
serviceStatus is set with the current value of the serviceStatus variable. If all goes
well, we expect the processRequest() method to return a value of
ForwardAfterRequestProcessed in this same request attribute.The real return value of
the method is a value for the bonForumCommand variable, which will determine the JSP
forwarding destination at the end of the service() method.

The following excerpt is the code that takes care of invoking the processRequest()
method:

if(serviceStatus.equals(“ProcessRequest”) ||
➥serviceStatus.equals(“SystemCommands”)) {

try {
request.setAttribute(“serviceStatus”, serviceStatus);
bonForumCommand = processRequest(request, response, session,

➥bonForumCommand);
serviceStatus = (String)request.getAttribute(“serviceStatus”);

➥}
catch(Exception ee) {

ee.printStackTrace();
}

}

One way to look at the processRequest() method of bonForumEngine is that it simply
moves a lot of code out of the service() method.You can tell that when you look at
two of its arguments, request and response, which allow us to do the same kinds of
things in processRequest() as can be done in service().

What is important about the processRequest() method is that it plugs this
HttpServlet descendant into the context of a specific Web application.When this
method is invoked, the service() method has already provided user verification and a

08 1089-9 CH08 6/26/01 8:34 AM Page 214

2158.1 The BonForumEngine Servlet

session context.After processRequest() returns, the service() method takes the Web
application to its next destination by forwarding the HTTP request. It is inside the
processRequest() method that application-specific processing takes place, using the
request, response, and session objects, as well any other objects within the Web applica-
tion context.

8.1.12 The service() Method: Handling Abnormal Outcomes
After the processRequest() method returns (or after it is not called), the service()
method can determine whether a particular request represents a successful transition
from one Web app state to another. Success here means one of two things, as follows:

1. All Web app processing succeeded for this request.

2. The request was sent to only the engine to be forwarded.

Either way, the request will be forwarded (see the next section).All requests need to be
forwarded somewhere! The engine servlet produces no HTML output itself, so if a
request is not forwarded somewhere, then that user execution path through the Web
app comes to a dead end.The user will have to use the back arrow, try a refresh, or try
another fork in the road without knowing what happened. Unsuccessful outcomes
must also take the Web app to a next state.We add four possible “non-normal” JSP
destinations to the two “normal” ones listed previously. Each destination is associated
with a serviceStatus value, as shown in Table 8.4.

Table 8.4 Outcomes of the service() Method, Normal and Otherwise

Normal serviceStatus Outcome and Destination

Yes ForwardWithoutServicing bonForumEngine to JSP
Yes ForwardAfterRequestProcessed bonForumEngine to JSP

No ForwardToLoginPage forum_login.jsp

No ForwardToErrorPage forum_error.jsp

No SystemCommands system_executes_command.jsp

No UserMustLogin forum_login_robot.jsp

The code shown in the next excerpt ignores the two normal request categories
entirely. It handles the login, error, and system requests very simply: It selects the cor-
rect forwarding destination by putting its JSP filename (without an extension) into the
bonForumCommand variable.We show what happens with that value in the next section.

All other non-normal requests are given special treatment as UserMustLogin
requests. In case the request involved originated from HTML inside a frame on the
browser, the BonForumRobot applet is used to call up the login page, which ensures that
the page will display at the top display level, without any frameset involved.You can
read more details about BonForumRobot in Chapter 9.

08 1089-9 CH08 6/26/01 8:34 AM Page 215

216 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

The next list shows five situations that warrant such a drastic action as a forced
relogin.

1. The request is not for forum_entry, but it had no session.

2. The request’s session ID is not valid for the current session.

3. The existing nickname check failed—wrong session.

4. The existing nickname check failed—not in registry.

5. The existing nickname check failed—not found in session.

Before the request can be forwarded to the robot applet, a couple things must be
done.The current session, if any, has its invalidate() method called to clear up error
conditions. Calling invalidate() gets rid of the session object and also all the other
attributes that it holds. (It also creates “orphan nicknames” in the nickname registry
which become unusable.That is a problem that will be fixed when we add a user
manager.)

If a new request from the forum_login page is requested later, a new session will be
created for the browser (in the CheckInAtEntrance service status handling). However, a
new session is needed now to send parameter values to the robot applet, which
receives them in session attributes.Therefore, a new session is created. Next, the
bonForumCommand variable is set with the name of the applet, forum_login_robot, and
the session.setAttribute() method called for each of the applet parameters, includ-
ing the absolute URI for the forum_login JSP.

When the request is forwarded, that will be enough to cause a clean return to the
beginning of the Web application.The robot applet will use the showDocument()
method of its context to request the forum_login JSP, using a servlet-mapped URI
ending in .tfe.That request will enter the service() method, where it will be given a
serviceStatus of ForwardToLoginPage.That will bring the thread for that request
to the same code being discussed in this section. It will then be forwarded by the
service() method to the forum_login JSP.All that to get a clean new start after an
error condition arises!

The following excerpt includes all the code that is discussed in this section:
if(!(serviceStatus.equals(“ForwardWithoutServicing”) ||
➥serviceStatus.equals(“ForwardAfterRequestProcessed”))) {
if(serviceStatus.equals(“ForwardToLoginPage”)) {
// robot is requesting login page:
bonForumCommand = “forum_login”;
}
else if(serviceStatus.equals(“ForwardToErrorPage”)) {
bonForumCommand = “forum_error”;
}
else if(serviceStatus.equals(“SystemCommands”)) {
// enforce only one main system page:
bonForumCommand = “system_executes_command”;
}
else {

08 1089-9 CH08 6/26/01 8:34 AM Page 216

2178.1 The BonForumEngine Servlet

// catch unknown serviceStatus errors:
serviceStatus = “UserMustLogin”;
}
if(serviceStatus.equals(“UserMustLogin”)) {
if(session != null) {
try {
session.invalidate();
}
catch(java.lang.IllegalStateException ex) {
ex.printStackTrace();
}
}
session = request.getSession(); // creates one
sessionId = session.getId();
bonForumCommand = “forum_login_robot”;
session.setAttribute(“target”, “_top”);
session.setAttribute(“document”, request.getScheme() + “://” +
➥request.getServerName() + “:” + request.getServerPort() +
“/bonForum/jsp/forum/forum_login.jsp”);
session.setAttribute(“refresh”, “true”);
session.setAttribute(“increment”, “100”);
session.setAttribute(“limit”, “1”);
session.setAttribute(“message”, “Enter!”);
}
}

In the next section, we finally arrive at the end of our detailed discussion of the
service() method.We discuss the forwarding of requests, the mechanism that moves
the user through the Web application.

8.1.13 The service() Method: Forwarding HTTP Requests
The only remaining task for the service() method is to forward the request and
response objects to another JSP, which will dynamically create another piece of the
bonForum browser interface.This next excerpt shows all the code used to accomplish
this important task:

request.setAttribute (“servletName”, “BonForumEngine”);

getServletConfig().getServletContext().getRequestDispatcher(“/jsp/forum/” +
➥bonForumCommand + “.jsp”).forward(request, response);

Identifying a Servlet in the Request

It can be useful to know where a request comes from.Therefore, although it is not
used yet for anything, each request forwarded by the service() method is branded
with the class name, as follows:

request.setAttribute(“servletName”, “BonForumEngine”);

08 1089-9 CH08 6/26/01 8:34 AM Page 217

218 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

Forwarding Requests in service() Method

The service() method forwards each request to a destination determined by the
bonForumCommand value.We previously discussed the several ways that value can be
determined. Here is a short summary list:

n Set from a boncommand request parameter
n Set from a robot-generated request URI
n Set in the processRequest method

The correct filename for the forwarding destination JSP page is constructed from the
bonForumCommand value by the following expression:

“/jsp/forum/”+bonForumCommand+”.jsp”

Forwarding the Request

To forward the request, we use the simplest code. Everything is included in this one
long statement:

getServletConfig().getServletContext().getRequestDispatcher(“/jsp/forum/” +
➥bonForumCommand + “.jsp”).forward(request, response);

Of course, if we needed to use any of the objects involved here again, we do have a
choice of longer constructions that achieve the same goal. Here we show the longest
way:

ServletConfig scfg = getServletConfig();
ServletContext sctx = scfg.getServletContext();
String NextPage = “/jsp/forum/” + bonForumCommand + “.jsp”;
RequestDispatcher rd = sctx.getRequestDispatcher(NextPage);
rd.forward(request, response);

What to Do When Things Go Wrong: forum_error.jsp

At first, we put all the statements setting up and doing the actual forwarding of the
request into a try block and tried to catch and handle all the exceptions that could be
thrown by the forward method. However, while testing, we could not seem to catch
the errors that interested us.

For example, what if the forwarding destination did not exist, perhaps because
of a typo in a JSP page sending a request? That doesn’t bother the
getRequestDispatcher() method. It still gets a request dispatcher, without throwing
an exception.Then when its forward() method is called with a nonexistent destina-
tion, that does not raise an exception. Instead, it generates an “HTTP 404 (Not
Found)” error, which brings up that ugly page in the Internet Explorer. Okay, you
might say that should not happen unless testing is inadequate; it is a programming
error that should not be released.

We were trying to catch exceptions thrown by the forward() method, which are
these three:

08 1089-9 CH08 6/26/01 8:34 AM Page 218

2198.1 The BonForumEngine Servlet

n ServletException—If the target resource throws this exception
n java.io.IOException—If the target resource throws this exception
n java.lang.IllegalStateException—If the response was already committed

However, none seems to be relevant to our situation.The first two are not because our
target resources are always JSP and do not throw those exceptions.The third is not
because we do nothing in the service() method that would commit the response.

What we really wanted was a simple way to display forum_error.jsp for any unfore-
seen error condition, regardless of its origin.The error page displays information that
might help develop the software. It always resolves the situation by causing a new
login using the robot applet. (That also allows the error page to display within a
frame.) Known errors do something different—they skip the forum_error page and go
directly to a new login page. (We should add a message to inform the user why it’s
necessary to restart the Web application.)

We got rid of the try and catch blocks, and we kept just two ways to handle errors.
To handle errors generated by the applet and within the servlet, we rely on the code
described in Section 8.1.12,“The service() Method: Handling Abnormal Outcomes.”
To handle errors generated within JavaServer Pages, we make sure that all the JSPs in
bonForum (except forum_error.jsp) contain a page directive as follows:

<%@ page errorPage=”forum_error.jsp” %>

The forum_error.jsp page itself, of course, has a different page directive, as follows:
<%@ page isErrorPage=”true” %>

Now, any exceptions happening on one of our JSP pages would bring up the same
error page as the applet-generated errors and the servlet-generated errors.Things were
simple again!

8.1.14 The processRequest() Method: Overall View
We discussed the invocation of the processRequest method of the service() method
in Section 8.1.11,“The service() Method: Invoking processRequest().” In the next
few sections, we discuss in detail how this method processes successive HTTP requests
in the context of a Web chat application.The following discussions will be easier to
follow if you have the source in an editor in front of you and an XML dump of
bonForumXML in an XML viewer. It can also help to view bonForum.gif and
subjects.gif, in the WEB-INF\docs folder.

The processRequest() method has access to the all-important request argument
of the service() method.The session is passed as a convenience argument; it could
be gotten from the request argument.The return string can be assigned to
bonForumCommand in the service() method and determines the forwarding destination
of the request.The method’s signature is the following:

protected String processRequest(HttpServletRequest request, HttpServletResponse
response, HttpSession session, String bonForumCommand) throws IOException {. . .}

08 1089-9 CH08 6/26/01 8:34 AM Page 219

220 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

As mentioned before, the main general features of this method are as follows:
n It specializes the servlet (to be a chat).
n User verification can be assumed complete.
n The session object is provided.
n The request object is provided.
n The response object is available.
n Forwarding can be controlled using the method return value, which is assigned

to the bonForumCommand variable by the calling method, service(), when the
processRequest() method returns.

n A synchronized XML database wrapper object is available.

To carry out its tasks, the processRequest() method relies greatly upon a
BonForumStore object called BonForumStore, which is a static member of
BonForumEngine.The BonForumStore class is a wrapper for a ForestHashtable object
called bonForumXML, which is a static member of BonForumStore.The BonForumStore
class will be the last subject of this chapter.The ForestHashtable class will be the sub-
ject of Chapter 11 of this book.

The BonForumEngine servlet handles the traffic between the Web application user
interface and the XML database wrapper. In this method, many string objects are
being used to contain data passed back and forth from JSP pages to the servlet.That is
acceptable in this prototype, but, in the future, it will be more efficient to pass grouped
data in a container object or XML document.

The following list shows an overall view of the tasks that are done by the
processRequest() method:

1. Setting serviceStatus and sessionId

2. Initializing bonForumStore

3. Getting bonForumCommand

4. Handling chat variables

5. Handling specific chat JSPs

6. Handling “host executes chat”
� Getting Chat Subject and Topic
� Performing thread synchronization
� Synchronizing the XML database

� Finding the chat and actor status in Chat
� Rejoining existing chats

� Starting a chat
� Adding a host actor
� Adding a chat element

08 1089-9 CH08 6/26/01 8:34 AM Page 220

2218.1 The BonForumEngine Servlet

� Adding a chat item marker
� Adding an itemKey to a chat

7. Handling “guest executes chat”
� Getting chat item
� Synchronizing the XML database

� Finding chat and actor status in chat
� Rejoining a chat

� Joining a chat
� Adding a guest actor
� Joining a chat, continued

8. Handling chat messages

9. Setting serviceStatus for return

As you can see, most of the action takes place in handling requests to enter the “host
executes chat” and “guest executes chat” bonForum states. Our discussion of the
processRequest() method will be organized according to the major divisions of this
task list.

8.1.15 The processRequest() Method: Setting serviceStatus and
sessionId
We have seen the important role played by the serviceStatus variable in the
service() method.The processRequest() method communicates with the service()
method, using, in addition to its return value, a request attribute named
serviceStatus.The service() method sets the attribute with the value of its
serviceStatus variable before calling processRequest(), and it updates the variable
with the request parameter when processRequest() returns.The default return value
is set by the following statement:

request.setAttribute(“serviceStatus”, “InProcessRequestMethod”);

The unique ID of the session associated with the request argument plays an important
part in processRequest(). For convenience, it is put in the sessionId variable:

String sessionId = session.getId();

8.1.16 The processRequest() Method: Initializing bonForumStore
The BonForumEngine class contains a very important member called bonForumStore,
which is a static object of the BonForumStore class. It wraps the XML data and pro-
vides access to them with its methods. It also provides other methods for use by the

08 1089-9 CH08 6/26/01 8:34 AM Page 221

222 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

BonForumEngine and the JSP-related objects in bonForum.A single instance of it is
created by BonForumEngine as follows:

private static BonForumStore bonForumStore = new BonForumStore();

When we explore the BonForumStore class later, we will see that it functions in rela-
tion to a “current” session. It gets these when its initialization method is called in
processRequest(), as follows:

bonForumStore.initialize(sessionId);

The bonForumStore member of a BonForumEngine instance is very useful, so access to
it is made possible from anywhere in the servlet context, as follows:

Object temp = getServletContext().getAttribute(“bonForumStore”);
if (temp == null) {
getServletContext().setAttribute(“bonForumStore”, getBonForumStore())
};

In Section 8.2.12,“Invoking Chat Methods from JSP Custom Tags,” and Section
8.2.13,“Invoking Chat Methods from JSP Scriptlets,” you can read examples of how
the value of this attribute, which has application scope, can be used to access the prop-
erties and methods of BonForumStore from JSP.

8.1.17 The processRequest() Method: Getting bonForumCommand
After a thread leaves the processRequest() method, a very important variable is the
one called bonForumCommand because it will determine the next destination in the Web
application.The value put into this string object comes from one of three sources,
listed here in order of priority:

n The bonForumCommand method argument
n The bonCommand request parameter
n A composite of actorStatus, actionStatus, and thingStatus request parameter

values

As you will recall,Actors,Actions, and Things were intrinsic to the initial design of
bonForum.The entire Web application grew out of a model of a marketplace that
used these three elements to describe states and organize data.The three elements also
served as a vector to the next application page.Although we usually combine these
three within the boncommand values passed from the JSP, the possibility of passing the
command parts separately is being kept in the code because it may prove useful in the
future (for one-part or two-part commands, or for commands combining parts from
different sources). Here is the code that makes sure that there is a valid
bonForumCommand for processRequest to later return:

bonForumCommand = normalize(bonForumCommand).trim();
if(bonForumCommand.length() < 1) {

String bonCommand = normalize((String)request.getParameter(“bonCommand”
➥)).trim();

08 1089-9 CH08 6/26/01 7:33 AM Page 222

2238.1 The BonForumEngine Servlet

if(bonCommand.length() > 0) {
bonForumCommand = bonCommand;

}
else {

String actorStatus = normalize((String)request.getParameter(“
➥actorStatus”)).trim();

String actionStatus = normalize((String)request.getParameter(
➥“actionStatus”)).trim();

String thingStatus = normalize((String)request.getParameter(
➥“thingStatus”)).trim();

if((actorStatus.length() > 0) || (actionStatus.length() > 0) ||
➥(thingStatus.length() > 0)) {

bonForumCommand = actorStatus + “_” + actionStatus + “_” +
➥thingStatus;

// later, trim off leading and trailing underscore chars, if any
➥}
else {

bonForumCommand = “forum_error”;
request.setAttribute(“serviceStatus”, “ForwardToErrorPage”);

➥}
}

}

You can see at the end of that excerpt how processRequest can use a combination of
bonForumCommand and the serviceStatus request attribute to control forwarding of the
request later by the service() method.

8.1.18 The processRequest() Method: Handling Specific Chat
JSPs
Next in the processRequest() method of BonForumEngine is an “if else if else if …
else endif ” construction that filters threads according to their bonForumCommand values.
In other words, it processes requests separately, according to their intended forwarding
destinations. (In this Web application these are JSPs, by design; we may later change
some code in the service() method so that any type of URI can be used.) The
bonForumCommand value controls what will happen next in the application.That is why
we call it a “forum command” and why we call this long set of if statements a “forum
command processor.” Here is how it appears when simplified:

if(bonForumCommand.indexOf(“host_executes_chat_controls”) > -1) ||
➥(bonForumCommand.indexOf(“guest_executes_chat_controls”) {

// handle chatMessagesNavigator
// handle chatMessage

}
else if(bonForumCommand.equals(“host_executes_chat”)) {

// start a chat
}
else if (bonForumCommand.equals(“guest_executes_chat”)) {

// join a chat

08 1089-9 CH08 6/26/01 7:33 AM Page 223

224 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

}
else if(bonForumCommand.indexOf(“visitor_starts_chat”) > -1) {

if(bonForumCommand.equals(“visitor_starts_chat”)) {
// not used yet

}
else if(bonForumCommand.indexOf(“visitor_starts_chat_frame”) > -1) {

// handle chatSubject
}
else if(bonForumCommand.indexOf(“visitor_starts_chat_ready”) > -1) {

// handle chatTopic
}

else if(bonForumCommand.indexOf(“visitor_joins_chat”) > -1) {
if(bonForumCommand.equals(“visitor_joins_chat”)) {

// not used yet
}
else if(bonForumCommand.indexOf(“visitor_joins_chat_frame”) > -1) {

// handle chatModerated
// handle chat item

else if(bonForumCommand.indexOf(“guest_executes_command”) > -1) {
if(bonForumCommand.equals(“guest_executes_command”)) {

// not used yet
}
else if(bonForumCommand.indexOf(“guest_executes_command_controls”) > -1) {

➥ // handle chatMessagesPageSize
}

}
else if(bonForumCommand.indexOf(“host_executes_command”) > -1) {

if(bonForumCommand.equals(“host_executes_command”)) {
// not used yet

}
else if(bonForumCommand.indexOf(“host_executes_command_controls”) > -1) {

➥// handle chatMessagesPageSize
}
else if(bonForumCommand.indexOf(“host_executes_command_frame”) > -1) {

➥// handle chatGuest
}

}
else if(bonForumCommand.indexOf(“visitor_executes_choice”) > -1) {

//actor nickname is handled in service() method,
// handle actorAge

}
else if(bonForumCommand.indexOf(“system_sets_timeout”) > -1) {

// handle sessionMaxInactiveMinutes
}
else if(bonForumCommand.indexOf(“system_executes_command”) > -1) {

// handle xalanVersion
// handle actorRatingType

}
else if(bonForumCommand.indexOf(“forum_entry”) > -1) {

// not used yet
}
else {

// no special processing current bonForumCommand
}

08 1089-9 CH08 6/26/01 7:33 AM Page 224

2258.1 The BonForumEngine Servlet

In the service() method, you saw a similar “if else if else if … else endif ” construct
that is used to handle servlet-mapped request URIs. Both these similar constructs are
good places to extend the functionality of the bonForum Web application. In each if
statement, code has a context related to the architecture of the Web application, and it
stands between one JSP document and the next intended JSP document. In the
processRequest() method, there are “else if ” clauses for many but not all of the exist-
ing bonForumCommand values.As each new processing is added for a given JSP destina-
tion, existing clauses should be used, or a new clause should be added if none is
available for the bonForumCommand involved.

Again, as in the case of the servlet-mapped request processor, in the service()
method, we have used the indexOf() method instead of the equals() method wher-
ever possible.That allows us to create variant JSP pages without changing the servlet
source code, simply by adding different suffixes to the basic filename.These variant
pages share the same processing in the engine because they are all “trapped” by the
indexOf() method.

8.1.19 The processRequest() Method: Handling Chat Variables
The processing of request threads depending on their bonForumCommand values is very
much related to the many HTML forms created by the JSP of the browser interface.
The value of each input element in a submitted form is available as a request parame-
ter. In this section, we present an overall view of these bonForum variables, and give
some examples of how they are handled.

Table 8.5 shows, in alphabetical order, all the bonForum variables currently used.
Also shown for each is the name of the JSP where an HTML input element for the
variable exists and the type of input element it is.The first column rates the priority of
handling these variables based on estimated access frequency and importance to the
application.

Table 8.5 bonForum Variables: Priority, Name, Origin,Type

bonForum Variable Originating JSP HTML Input Type

14 actorAge forum_entry.jsp Text
13 actorNickname forum_entry.jsp Text

15 actorRatingType None yet —

12 chatGuest host_executes_command_frame.jsp Select (xslt gen.)

3 chatItem visitor_joins_chat_frame.jsp Select1 (xslt gen.)

1 chatMessage guest_executes_chat_controls.jsp Text

2 chatMessage host_executes_chat_controls.jsp Text

9 chatMessagesNavigator host_executes_chat_controls.jsp Hidden (on four
forms)

continues

08 1089-9 CH08 6/26/01 7:33 AM Page 225

226 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

8 chatMessagesNavigator guest_executes_chat_controls.jsp Hidden (on four
forms)

11 chatMessagesPageSize host_executes_command_controls.jsp Text

10 chatMessagesPageSize guest_executes_command_controls.jsp Text

7 chatModerated visitor_starts_chat_controls.jsp Radio

4 chatModerated visitor_joins_chat_frame.jsp (later) Radio

6 chatSubject visitor_starts_chat_frame.jsp Select

5 chatTopic visitor_starts_chat_controls.jsp Text

16 sessionMaxInactive system_sets_timeout.jsp Text
Minutes

17 xalanVersion system_executes_command.jsp Radio

In Table 8.6, the same bonForum variables are shown again, each with its correspond-
ing bonForumCommand.These represent the forwarding destination for the HTTP
request that submits the variable to the BonForumEngine.The bonForumCommand values
were determined by looking up bonCommand input elements in the variable’s HTML
forum, on its originating JSP.The rows are sorted by the bonForumCommand values, and
the priority rankings have been transferred to the bonForumCommand values, using the
highest bonForum variable ranking for each bonForumCommand.

Table 8.6 bonForum Variables: Priority, Name, Destination

bonForum Variable bonForumCommand

1 chatMessage guest_executes_chat_controls

1 chatMessagesNavigator guest_executes_chat_controls

2 chatMessage host_executes_chat_controls

2 chatMessagesNavigator host_executes_chat_controls

3 chatItem visitor_joins_chat_frame

3 chatModerated visitor_joins_chat_frame

5 chatTopic visitor_starts_chat_ready

5 chatModerated visitor_starts_chat_ready

7 chatSubject visitor_starts_chat_frame

10 chatMessagesPageSize guest_executes_command_controls

11 chatMessagesPageSize host_executes_command_controls

12 chatGuest host_executes_command_frame

13 actorNickname visitor_executes_choice

13 actorAge visitor_executes_choice

Table 8.5 Continued

bonForum Variable Originating JSP HTML Input Type

08 1089-9 CH08 6/26/01 7:33 AM Page 226

2278.1 The BonForumEngine Servlet

15 actorRatingType None yet

16 sessionMaxInactiveMinutes system_sets_timeout

17 xalanVersion system_executes_command

This is how we decided the priority of the bonForumCommand handlers described in
Section 8.1.18,“The processRequest() Method: Handling Specific Chat JSPs.” It’s
hard to say if that was worth doing, but it may allow higher-priority threads to get to
shared resources first. Exercises like this have a built-in benefit:They familiarize you
with the source code, which always pays dividends somewhere.

One request parameter, actorReturning, was left off the table because it is pro-
duced by virtually all the HTML forms that post to the BonForumEngine.Thus, all
threads in processRequest() handle that generic variable, which does nothing now. It
might be used in the future to pass extra information, options, and so on in a request,
which can be associated with a particular destination and bonForumCommand processing.
That will help create more complex combinations of the bonForum chat logic, by
making one more variable available to each JSP-produced page of a bonForum
instance.

The incoming request parameters are validated and made available to the Web
application in whatever scope is appropriate.We will give two examples next.

In Section 8.1.6,“The service() Method: Requests to Enter the Web Application,”
you saw that whenever a new session object is created, its maximum inactivity period
is set preferentially using a value that has application scope supplied by a servlet con-
text attribute.That attribute gets the value from browser input by a bonForum admin-
istrator, as seen in the following excerpt from the processRequest() method source
code:

sessionMaxInactiveMinutes = normalize((String)request.getParameter(
➥“sessionMaxInactiveMinutes”));
if(sessionMaxInactiveMinutes.trim().length() > 0) {
getServletContext().setAttribute(“sessionMaxInactiveMinutes”,
sessionMaxInactiveMinutes);
}

As a second example of request parameter handling, see how simply the age value
input by a bonForum user is made available in the session scope (to JSP pages, for
example). In fact, it is done so rather too simply—there are no constraints yet on the
user input, which could be pizza or 11,047.The input is run through the normalize
method to escape markup in the user input, so the value can safely be used as an
XML attribute value, for instance.The normalize method also changes nulls to empty
strings so that subsequent code need not check for null values. Here is the excerpt:

actorAge = normalize((String)request.getParameter(“actorAge”));
if(actorAge.trim().length() > 0) {
session.setAttribute(“actorAge”, actorAge);
}

bonForum Variable bonForumCommand

08 1089-9 CH08 6/26/01 7:33 AM Page 227

228 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

In the bonForumCommand processor, you will find similar processing of many request
parameters. For now, only two are saved to the application scope. (Besides the one
shown, there is another that allows bonForum to use either Xalan-Java 1 or Xalan-Java
2 for its XSLT processing.) Those two are as follows:

sessionMaxInactiveMinutes
xalanVersion

The values of other incoming request parameters must remain persistent and also
unique for each user.These are copied into session attributes.That way, the values
involved are available to the processRequest() method later, when it is processing dif-
ferent request objects. (Notice that we cannot use request attributes instead of session
attributes here because those subsequent requests are different objects.) The session
attributes are also available to all the JSP pages and other objects in the Web applica-
tion that have access to the same session object.This group of session-relative
bonForum variables includes the following:

actorAge

actorRatingType

chatGuest

chatItem

chatMessagesNavigator

chatMessagesPageSize

chatModerated

chatSubject

chatTopic

Of course, the bonForumCommand-specific processing is not limited to setting session
attribute values, and some of these variables are subject to more code than the
actorAge example given. Specifically, the chatSubject handling also produces a session
attribute to indicate whether the user has just selected a new subject.The chatTopic
handler does the same.The chatItem handler recovers the chatSubject and chatTopic
values from the chatItem (we will discuss why later).

Finally, one other incoming request parameter, chatMessage, is not now kept
around in any attribute because it has not yet been needed again after processing.The
chatMessage values are obviously quite important in a chat application. It will be eas-
ier to understand chatMessage handling after understanding the code that makes it
possible for a bonForum visitor to start a chat or join an existing one.Therefore, we
will first tackle these two themes by investigating the code in the bonForumCommand
processor that handles requests for the “host executes chat” and “guest executes chat”
bonForum destinations.The handling of chatMessage request parameters will be dis-
cussed later, in Section 8.1.22,“The processRequest() Method: Handling Chat
Messages.”

08 1089-9 CH08 6/26/01 7:33 AM Page 228

2298.1 The BonForumEngine Servlet

8.1.20 The processRequest() Method: Handling “Host Executes
Chat”
The transition from the “visitor starts chat” bonForum state to the “host executes
chat” state is brought about by a servlet-mapped request, generated using the
BonForumRobot applet.As we have seen, such requests are given a serviceStatus value
of DecodeServletMappedURI in the service() method and are handled according to
their requestUri values.Any thread with a requestUri containing host_
executes_chat (and not host_executes_chat_frame, host_executes_chat_controls,
and so on) is allowed to pass into the processRequest() method by getting a
serviceStatus value of processRequest.There it comes to the bonForumCommand
processor, where it executes an extensive chunk of code.That is the subject of this
section.

The first thing that the “host executes chat” handler does is assume some “normal”
values for some flag variables that will control the program flow—and that hopefully
have self-explanatory names:

boolean haveSubject = true;
boolean haveTopic = true;
boolean actorIsHostInChat = false;
boolean actorIsGuestInChat = false;
boolean chatExistsForSubjectAndTopic = false;
boolean actorRestartingCurrentChat = false;

Getting Chat Subject and Topic

The chat subject and topic, chosen by a visitor who will be a chat host, can be found
in the session attributes where they were set from request parameters, also in the
bonForumCommand processor, by the handlers for these bonForumCommand values:

“visitor_starts_chat_frame”
“visitor_starts_chat_ready”

For reference, refer back to Section 8.1.18,“The processRequest() Method: Handling
Specific Chat JSPs,” and Table 8.6,“bonForum Variables: Priority, Name, Destination.”

Here is the code that gets the chat subject and topic again:
chatTopic = normalize((String)session.getAttribute(“chatTopic”)).trim();
chatSubject = normalize((String)session.getAttribute(“chatSubject”)).trim();

If a variable is empty or contains the special value of NONE, then its respective “flag”
variable (haveTopic and haveSubject) will be set to false and the application will
take the user back to the page where the missing value can be supplied.

The Need for Thread Synchronization

Knowing Java, you can imagine that many threads of execution in the Java Virtual
Machine may be traversing this one method at close intervals from each other in time.
Java takes care that they can all run the code without stepping on each other by

08 1089-9 CH08 6/26/01 7:33 AM Page 229

230 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

providing each thread with its own copy of the method arguments, member objects,
and so on. However, as a developer, you must be sure not to create situations in which
threads can collide.That happens when more than one thread simultaneously uses a
shared resource—one that does not provide a different copy for each thread to use.

Consider information accessed by more than one thread within a servlet.That is
certainly going to be an important consideration while building a chat servlet.We
need a way for one thread trying to edit that information to tell all the other threads
trying also to edit it:“Hands off that information! It’s mine until I’m done with it!”
Indeed, there is a way already set up for you to do that in Java, called synchronization.

A good source of information on the hows and whys of synchronization is the
chapter on multiple threads in the book Thinking in Java, by Bruce Eckels (Prentice
Hall, 0130273635).You can also visit http://java.sun.com/docs/books/tutorial/
essential/threads/multithreaded.html to learn more about multithreaded
programming.

It turns out that applying synchronization involves a lot of art, some trial and error,
and often surprises—particularly in a complex project.While prototyping, we took the
brute force approach and went overboard with synchronization. It was a bit like letting
only one shopper into a department store at a time! Of course, that is not the purpose
of a servlet at all. It reduced the whole application to a single executing thread, and it
involved extreme overhead. Performance obviously suffered.The advantage was that
we could keep thread collisions out of the picture and more easily differentiate them
from other errors in programming.The idea was to get things working, prove the con-
cepts, and only then try to optimize the multithreading.

Because synchronization affects performance, there is a big incentive to reduce
synchronization to the minimum.As this is being written, we are still exploring
the synchronization needs of bonForum.We are using it in the processRequest()
method, as we will discuss next. Our “database” class, ForestHashtable, has synchronized
critical sections in its methods for adding, editing, and deleting data from its XML
storage.The TransformTag class, which applies the Xalan XSLT processor, synchronizes
its processing steps.We have no synchronization at all in the BonForumStore class.

Synchronizing the XML Database

There are two synchronized blocks of code in the processRequest() method, both
using a lock on the data access wrapper object, bonForumStore.The first is in the “host
executes chat” handler that we have been discussing.The second is in the “guest exe-
cutes chat” handler, which will be discussed later.The first does something like this:

synchronized(bonForumStore) {
//
// 1. check if subject+topic is available
//
// 2. if so, add a chat for them to XML database
//
}

08 1089-9 CH08 6/26/01 7:33 AM Page 230

2318.1 The BonForumEngine Servlet

We must check to see if the combination of chatSubject and chatTopic chosen by a
user has already been taken for an existing chat. If that particular pairing is available,
then we can add a new chat for it to bonForumXML (the ForestHashtable member of
the bonForumStore member of our BonForumEngine instance). However, we must
enclose both these steps in a synchronized block. If we do not do so, then two threads
having the same chatSubject and chatTopic values could go through the method
code very close together, and the following sequence of events is possible:

1. The first thread checked its subject and topic and is about to add a chat, but it
has not yet done so.

2. The second thread checks its subject and topic and finds that it is not yet taken,
so it’s clear to use.

3. The first thread then adds a chat with its subject and topic values.

4. The second thread adds its chat with the same subject and topic values.

Problems! When we try to use that subject and topic combination later to find a chat,
we can find only one of the two that were added.

Here is how synchronization makes the problem go away.The first thread (thus
session) that enters the synchronized block gets a lock on the bonForumStore object.
The synchronized block is then closed to all other threads.Automatically blocked by
Java, the other threads must wait until they can get the lock on the bonForumStore
object so that they, too, can enter (one at a time).As you can see, the synchronization
acts as a FIFO queue for the threads.

We have experimented with using a less restrictive lock for this synchronization
(and for the one in the “guest executes chat” handler), as follows:

synchronized(bonForumStore.bonForumXML) {
// FIFO here

}

For that to work, the bonForumXML member in BonForumStore must be made pro-
tected, not private.The advantage of this over the previous example is that all the
threads have concurrent access to the methods and other members of bonForumStore.
It seems to work but may require something else to be synchronized. More testing is
needed.

Finding a Chat and the Actor Status in It

After executing by itself inside the first synchronized block of code, a thread in the
processRequest() method is ready to carry out the “visitor starts chat” action leading
to the “host executes chat” state. First, it looks for an existing chat with the subject and
topic requested by the visiting actor.Table 8.7 gives the possible outcomes of that
search (and also of the search done when the action is “visitor joins chat,” which is the
subject of the next section).

08 1089-9 CH08 6/26/01 7:33 AM Page 231

232 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

Table 8.7 JSP Transitions vs. Actor-Chat Relationships
Chat Exists Already Chat DoesNot

Exist
Actor Is Not Actor Is Actor Is
in Chat Host Guest

visitor guest host guest host executes
starts chat executes chat(1) executes chat(1) executes chat(1)(2) chat

visitor guest executes host guest forum
joins chat chat executes chat(3) executes chat error

Here are some notes for this table:
n Numbered table items are optional, to be set by user preferences in a command,

with alternatives as follows:

1. visitor starts chat

2. host executes chat, if multihosted chat allowed

3. guest executes chat

n If the actor is a host or a guest, the actor is rejoining the chat.

Rejoining Existing Chats

As you can see, if a chat with the requested subject and topic combination does not
exist, the visitor will become the host of a new chat for that combination. If the
requested chat exists already, then what happens depends upon an option setting. One
option is that the user will be taken back to “visitor starts chat” to try again with a dif-
ferent subject, topic, or both. (Actually, in the release of bonForum for this book, this
and other options listed in the notes are not yet available!)

As seen in the table cells for the “visitor starts chat” row, the outcome when a
requested chat already exists can be made to depend upon whether the visitor is
already a host or a guest in that chat. If not, the visitor becomes a new guest in the
chat. If the visitor already a member of the chat, the visitor rejoins as a host or a guest,
whichever was the case before. (Again, in the book release of bonForum, the options
within the table cells are the only options!)

In a later release of bonForum, we will implement user preference settings using
session attributes. Choices can be offered for the behavior of “visitor starts chat” when
the requested chat already exists, as follows:

1. Always warn the user and request a new subject or new topic.

2. If the actor was in the chat, always join it with the previous status; otherwise,
warn and ask again.

3. If the actor was in the chat, always join as a guest; otherwise, warn and ask again.

08 1089-9 CH08 6/26/01 7:33 AM Page 232

2338.1 The BonForumEngine Servlet

All these choices can be modified further according to whether the actor is restarting
the current chat. Until these preference settings are added, bonForum implements only
the second choice.

Looking at the table again, it is very easy to cause the various outcomes of this
desired logic to happen.You simply need to set the bonForumCommand value to the cor-
responding value in the table cell (or optional value, when that is implemented).

Implementing the logic can also be quite simple.We leave the “visitor joins chat”
part aside until Section 8.1.21,“The processRequest() Method: Handling ‘Guest
Executes Chat.’”Also leaving aside the numbered options (in the table notes), we
could suggest the following pseudocode:

set bonForumCommand to host_executes_chat
if chat exists

if actor is not host in chat
set bonForumCommand to guest_executes_chat

endif
endif

However, the code that actually exists is not that simple.Are the subject and the topic
okay? If not, the user is sent back to reinput them. If the subject and the topic are
okay, the code determines whether they have already been taken by an existing chat. If
they are available, then a new chat will be started now. If they are taken, the code finds
out even more. Is the visitor trying to restart the current chat for the session? (In the
future, that information can be used for user messages or to control user preferences.)
Is the actor already in the chat as a host or as a guest? If so, will the actor be joining or
rejoining an existing chat? If so, the code must set some session attributes with the
right values so that they reflect the chat.

Some of the methods and variables used by this code might not become clear until
later in the section. Here is the code, excerpted from the processRequest() method,
with one part of it substituted by comments that show the pseudocode for the omit-
ted source:

if(haveSubject && haveTopic) {

String fakeChatItem = chatSubject + “_[“;
fakeChatItem = fakeChatItem + chatTopic + “]”;
// ‘_’ is separator in a chatItem
// ‘.’ is separator in pathNameHashtable keys
fakeChatItem = fakeChatItem.replace(‘.’, ‘_’);
// example fakeChatItem:
// Animals_Bird_Hawk_[Medieval falconry]

String foundChatNodeKeyKey = getBonForumStore().getBonForumChatNodeKeyKey(
➥fakeChatItem);

if((foundChatNodeKeyKey != null) && (foundChatNodeKeyKey.length() > 0)) {
➥chatExistsForSubjectAndTopic = true;
//

08 1089-9 CH08 6/26/01 7:33 AM Page 233

234 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

// There is more code here, not shown!
// It does the following:
//
// if subject and topic are not new
// (requested chat is the current chat) {
// if chatNodeKeyKey exists
// (current chat exists) {
// if foundChatNodeKeyKey is
// chatNodeKeyKey {
// set actorRestartingCurrentChat
// true;
// } else {
// set
// chatExistsForSubjectAndTopic
// false;
// set actorRestartingCurrentChat
// false;
// endif
// endif
// endif
//
String actorKeyValue = normalize((String)session.getAttribute(

➥“hostKey”));
if(actorKeyValue.trim().length() > 0) {

actorIsHostInChat = getBonForumStore().isHostInChat(
➥actorKeyValue, foundChatNodeKeyKey);

}
if(!actorIsHostInChat) {

actorKeyValue = normalize((String)session.getAttribute(
➥“guestKey”));

if(actorKeyValue.trim().length() > 0) {
actorIsGuestInChat = getBonForumStore().isGuestInChat(

➥actorKeyValue, foundChatNodeKeyKey);
}

}
}

boolean actorWillRejoinChat = false;
if(chatExistsForSubjectAndTopic) {

// cannot start an existing chat
haveTopic = false;
if(actorIsHostInChat) {

bonForumCommand = “host_executes_chat”;
actorWillRejoinChat = true;

}
else if(actorIsGuestInChat) {

bonForumCommand = “guest_executes_chat”;
actorWillRejoinChat = true;

else {
// set attribute to trigger

08 1089-9 CH08 6/26/01 7:33 AM Page 234

2358.1 The BonForumEngine Servlet

// user message that chat exists:
session.setAttribute(“chatSubjectAndTopicTaken”, fakeChatItem

➥);
chatTopic = “”;
session.setAttribute(“chatTopic”, “”);
session.setAttribute(“newChatTopic”, “no”);
bonForumCommand = “visitor_starts_chat”;

}
}

if(actorWillRejoinChat) {
// set session attributes
// usually set when actor starts new chat.
//
// nodeNameHashtable key

// for the chat node key, needed for:
// 1. adding messages to chat later.
// 2. seeing if a chat is the current chat
session.setAttribute(“chatNodeKeyKey”, foundChatNodeKeyKey);

// host session doesn’t need this,
// but if rejoining chat as guest, might?
session.setAttribute(“chatItem”, fakeChatItem);

// itemKey for this chat
// is added as message attributes later,
// is needed for finding messages
// (temporarily),
// and for guest sessions to find chat.
String foundChatItemKey =

➥getBonForumStore().getBonForumChatItemNodeKey(fakeChatItem).toString();
session.setAttribute(“itemKey”, foundChatItemKey);

}
}

Setting haveTopic (or haveSubject) to false sends the user back to the “visitor starts
chat” bonForum state.

Starting a Chat

In our discussion of the processRequest() method, we have come to a very important
block of code, the one that transforms a bonForum visitor into a chat host. It adds
quite a few elements to the XML data: a host element (if the visitor has none yet), a
chat element, and a chatItem element (that relates the chat to its subject and contains
its topic).The method also adds the key to the new chatItem as an XML attribute in
the new chat element, which will relate the chat to its chatItem and later to its mes-
sage elements. In addition, some important session attributes are set: the key to the
host element, the key to the chat nodeKey in the nodeNameHashtable, and the itemKey.

08 1089-9 CH08 6/26/01 7:33 AM Page 235

236 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

All this sounds more complex than it is.The hardest part is showing how simple it
is in this book. You can follow it with the source code to BonForumEngine, also in
Appendix C. Finally, we suggest using an XML viewer, such as Microsoft’s free
XMLpad, to follow the discussion using one of the XSLT output files that contains
the complete bonForumXML contents. First, use bonForum a while from a couple of
browser instances. Start a chat in one, join it in another, and send some messages from
both browsers.Then use the Output bonForum XML Data option on the System
Commands page (reachable from the start of bonForum).You should then be able to
view the file TOMCAT_HOME\webapps\
bonForum\mldocs\bonForumIdentityTransform.xml.

The following listing shows the entire block of code that starts a chat in
processRequest().After the listing, you will find a discussion of the code.

if(haveSubject && haveTopic) {

// actor starts chat

// Each actorNickname is unique in bonForum,
// Only one host node is allowed per actorNickname

actorNickname = normalize((String)session.getAttribute(“actorNickname”));

// Try getting key to a host node
// for current actor’s nickname

NodeKey hostNicknameNodeKey = getBonForumStore().getActorNicknameNodeKey(
➥actorNickname, “host”);

NodeKey hostNodeKey = null;
if(hostNicknameNodeKey != null) {

BonNode hostNicknameNode =
➥getBonForumStore().getBonForumXML().getBonNode(hostNicknameNodeKey);

hostNodeKey = hostNicknameNode.parentNodeKey;
}

if(hostNodeKey == null) {

// If a host node key does not exist,
// then current actor is not yet a host,
// so add a new host node,
// with actorNickname,
// actorAge and
// actorRating children,
// to the “actors” root-child node
// of bonForumXML

nameAndAttributes = “host”;

08 1089-9 CH08 6/26/01 7:33 AM Page 236

2378.1 The BonForumEngine Servlet

content = “”;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, “actors”, nameAndAttributes,

➥content, forestHashtableName, “nodeNameHashtable”, sessionId);
hostNodeKey = (NodeKey)obj;

String creationTimeMillis = hostNodeKey.aKey;
String hostNodeKeyKey = sessionId + “_” + creationTimeMillis +

➥“:host”;

// Make nodeNameHashtable key
// for the hostNodeKeyKey
// available to session.
// It gives quick access
// to last host nodeKey for session

session.setAttribute(“hostNodeKeyKey”, hostNodeKeyKey);

nameAndAttributes = “actorNickname”;
content = actorNickname;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, hostNodeKeyKey,

➥nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId
➥);

//NOTICE: the commented-out line below here
// is more efficient than the above line.
// It does not require the reconstructed
// hostNodeKeyKey. However, we may want that
// in a session attribute for later.
// Also, if we use this next statement, then
// we are using two ways to add data to the
// XML, and it may be better to only use the
// wrapper method. Still trying to decide.
// There are other similar lines below!
// They are in “host” handling, but not in
// “message” or “guest” handling.

// bonForumStore.getBonForumXML(
//).addChildNodeToNonRootNode(
// “actorNickname”, “”, content, hostNodeKey,
// “nodeNameHashtable”, sessionId);

nameAndAttributes = “actorAge”;
content = normalize((String)session.getAttribute(“actorAge”));
➥forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, hostNodeKeyKey,

➥nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId
➥);

nameAndAttributes = “actorRating”;

08 1089-9 CH08 6/26/01 7:33 AM Page 237

238 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

content = normalize((String)session.getAttribute(“actorRating”));
➥if(content.length() < 1) {

content = “5”;
}
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, hostNodeKeyKey,

➥nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId
);

}

// Add a chat node to the “things”
// root-child node of bonForumXML,
// with a chatModerated attribute,
// and no text content.

chatModerated = normalize((String)session.getAttribute(“chatModerated”));
➥if (chatModerated.equalsIgnoreCase(“yes”)) {

nameAndAttributes = “chat moderated=\”yes\””;
}
else {

nameAndAttributes = “chat moderated=\”no\””;
}
content = “”;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, “things”, nameAndAttributes,

➥content, forestHashtableName, “nodeNameHashtable”, sessionId);
NodeKey chatNodeKey = (NodeKey)obj;

// Add a hostKey to the new chat node,
// its text content is the key to the host node
// example: 987195762454.987195735516.987195735486

String creationTimeMillis = chatNodeKey.aKey;
chatNodeKeyKey = sessionId + “_” + creationTimeMillis + “:chat”;
nameAndAttributes = “hostKey”;
content = hostNodeKey.toString();
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, chatNodeKeyKey, nameAndAttributes,

➥content, forestHashtableName, “nodeNameHashtable”, sessionId);

// Make the hostKey available to this session.
// It is later used for these things:
// 1. finding out if an actor is a host in a chat
// 2. branding messages with a host as sender

session.setAttribute(“hostKey”, content);

// Make nodeNameHashtable key
// for the chat node key
// available to session.
// Example key: ofl37sijm1_987195762494:chat

08 1089-9 CH08 6/26/01 7:33 AM Page 238

2398.1 The BonForumEngine Servlet

// It is useful later for these things:
// 1. adding messages to chat
// 2. finding the chat node
// (to add nodes or attributes)
// 3. determining if a chat is the current chat

session.setAttribute(“chatNodeKeyKey”, chatNodeKeyKey);

// Add a “chatItem” child
// to the selected chat subject element.
// That selected element is
// the chat subject category
// in bonForumXML.
// The name of the new child is “sessionID_” +
// the sessionId of
// the visitor starting the chat +
// the time the chat node was created in millis.
// The time suffix allows more than one chat
// to exist per session.
// Also add an attribute called chatTopic,
// with the (escaped) chatTopic
// input by the visitor.
// The sessionId (recoverable from
// the name of the new child) can
// be used later to quickly find the chat nodeKey.
// That is useful for example
// when a visitor joins a chat

// Note: when adding the sessionId
// element, its parent is found
// using the pathNameHashtable.
// The parent nodeKey is there
// with a key which is its pathName
// (and equal to chatSubject)

nameAndAttributes = “sessionID_”;
nameAndAttributes += sessionId;
nameAndAttributes += “_”;
nameAndAttributes += creationTimeMillis;
nameAndAttributes += “ chatTopic=\””;
nameAndAttributes += chatTopic;
nameAndAttributes += “\””;

content = “”;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, chatSubject, nameAndAttributes,

➥content, forestHashtableName, “pathNameHashtable”, sessionId);
NodeKey itemNodeKey = (NodeKey)obj;

// set itemKey to itemNodeKey as a string

08 1089-9 CH08 6/26/01 7:33 AM Page 239

240 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

String itemKey = itemNodeKey.toString();

// Add the key to the chatItem element (itemKey)
// to the chat element as an attribute
// The itemKey connects a chat
// to its subject, topic and messages!

String attributeName = “itemKey”;
String attributeValue = itemKey;
NodeKey nk = bonForumStore.addChatNodeAttribute(chatNodeKeyKey,

➥attributeName, attributeValue);

// Make the itemKey available to the session

session.setAttribute(“itemKey”, itemKey);
}

if(!(haveSubject && haveTopic)) {
// missing information, must return to get it
// LATER: set attribute to trigger message to user
bonForumCommand = “visitor_starts_chat”;
}

Adding a Host Actor

Recall that in the bonForum XML data, a child of the root node is called actors. For
a chat, two important children of actors are host and guest.When processRequest()
handles the host_executes_chat bonForumCommand, which originates in the “visitor
starts chat” state, it must decide whether to add the visitor to the XML data as a host
element, a child of actors. It finds out by using the visitor’s nickname, actorNickname.

Nicknames used by bonForum users (actors) must be unique.That is enforced by
storing them as keys in a hashtable, the nicknameRegistry. Here, we make sure that
each nickname has no more than one host element related to it.A user can host more
than one chat, but all the chats share one host node.

The code gets the nickname for the current request from a session attribute, where
it was stored after input, by processRequest().To find out whether a host node exists
for the current nickname, the code first invokes a method of BonForumStore:
getActorNicknameNodeKey() with the nickname and host as arguments.The returned
nickname nodeKey, if any, is used to get the nickname node itself, using the
getBonNode() method of ForestHashtable.The parentNodeKey member of the nick-
name node is the host nodeKey.

Actually, if the getActorNicknameNodeKey() method fails to return a nodeKey, we
know already that there is no host node for the nickname.Then why continue on to
get the node itself and its parentNodeKey? Because we will need this host nodeKey as a
string (hostKey) later, to add to the new chat and to a session attribute as well (see the
section “Adding a Chat Element”).

08 1089-9 CH08 6/26/01 7:33 AM Page 240

2418.1 The BonForumEngine Servlet

If no host nodeKey is found for the nickname, then a new host node is added to the
actors child of the XML root node, using the add() method of BonForumStore, which
wraps the ForestHashtable addChildNodeToNonRootNode() method.The add()
method returns the nodeKey of the newly added host node, which is useful for the
next three steps: adding the actorNickname, actorAge, and actorRating children of the
host node.The values for these three are found in session attributes, where they were
earlier set by the processRequest method (see Section 8.1.14,“The processRequest()
Method: Overall View”).

Note the following statements from the “add a host” part of the previous long
source code listing:

hostNodeKey = (NodeKey)obj;
String creationTimeMillis = hostNodeKey.aKey;
String hostNodeKeyKey = sessionId + “_” + creationTimeMillis + “:host”;

The hostNodeKey is obtained by casting the returned object from the add() method of
BonForumStore.The next two lines re-create the nodeNameHashtable key for the host
nodeKey stored there.That is needed by the next add() method invocation to directly
add child nodes to the host node, without searching for it in the XML data.

The aKey is available from the return value after casting (as it is from any NodeKey).
The aKey was given a value using the system clock time in milliseconds.That hap-
pened when the NodeKey was used to store the host node.The NodeKey for the host
node (as a string) was then stored in the nodeNameHashtable with a key that looked
something like this:

ofl37sijm1_987195762454:host

The first part, before the underscore character, is the session ID for the thread that
added the host.The part between the underscore and the colon character is the same
system clock value that was used for the aKey in the host nodeKey when the host node
was stored.That happened deep in the bowels of the ForestHashtable class, in a state-
ment like this:

nodeKeyKey = sessionId + “_” + nodeKey.aKey +”:” + nodeName;

The nodeKey.aKey acts as a timestamp allowing multiple keys per session in
nodeNameHashtable. It is used whenever we need to be able to find multiple nodes
with the same name for one session. It allows bonForum to have multiple chats, hosts,
and guests associated with each session object. Before this timestamp part of the
nodeKeyKey was implemented (for this edition of the book), bonForum users could be
a host or a guest in only one chat per browser instance. Now, a host and a guest can
enter and leave chats at will. Before, if a user started two or more different chats in the
same session, a visitor could join only the latest one, although all would appear to be
available.This small change made a big difference in the usability of bonForum.

The same session ID and timestamp mechanism just described applies also to
chatNodeKeyKey and guestNodeKeyKey, as you will see in the following sections. Of
course, these longer timestamped keys take up memory space and entries in the
nodeNameHashtable, so we have included an option to suppress them when they are

08 1089-9 CH08 6/26/01 7:33 AM Page 241

242 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

not needed. Message nodes, for example, use a shorter nodeNameHashtable key such as
ofl37sijm1:messageKey so that only the last message nodeKey (messageKey) for each
session is kept in the nodeNameHashtable.

There is one wrinkle here that is not obvious and that you will see in several other
locations in the code. (There are some comments regarding this in the source code.) It
involves the use of the BonForumStore.add() method to add children to the host
node. In this case, we could have used the method that is wrapped by that add()
method instead.We will show and discuss the difference now. Here is the way that the
actorNickname is actually added (the first three variables are string objects):

nameAndAttributes = “actorNickname”;
content = actorNickname;
forestHashtableName = “bonForumXML”;

obj = bonForumStore.add(“bonAddElement”, hostNodeKeyKey, nameAndAttributes,
➥content, forestHashtableName, “nodeNameHashtable”, sessionId);

As you can see, that required us to reconstruct the hostNodeKeyKey. Here is the way
that the actorNickname could be added more efficiently.That substitution can be made
here and in several other locations in the code, where we already have the nodeKey of
the future parent node handy (here, the hostNodeKey).Therefore, there is no real need
for the nodeKey key and the lookup in the nodeNameHashtable.

String name = “actorNickname”;
String attributes = “”;
content = actorNickname;
forestHashtableName = “bonForumXML”;

bonForumStore.getBonForumXML().addChildNodeToNonRootNode(name, attributes,
➥content, hostNodeKey, “nodeNameHashtable”, sessionId);

The main reason that we use only the add() method is so that we will have just one
method adding elements to the XML data in the host threads, the guest threads, and
the chat message threads.When we later discuss “visitor joins chat” handling and chat
message handling, you will see why we sometimes really do need the add() method,
with its second argument (hostNodeKeyKey, chatNodeKeyKey, and so on).

Adding a Chat Element

In the next part of the long source code listing in the previous section “Starting a
Chat,” a new chat element is added to the XML data.The element has an attribute to
keep the user’s answer to the “Will you moderate this chat?” question on the browser
page.That answer is retrieved from a session attribute, where it was earlier set from a
request parameter in the visitor_joins_chat_frame handler (see Section 8.1.18,“The
processRequest() Method: Handling Specific Chat JSPs,” and Section 8.1.19,“The
processRequest() Method: Handling Chat Variables”).

After nameAndAttributes has been prepared by concatenating the chat with the

08 1089-9 CH08 6/26/01 7:33 AM Page 242

2438.1 The BonForumEngine Servlet

“moderated” attribute name and value, the new element is added with the
BonForumStore add() method.As we just discussed, we can cast the return value from
add() and use it to keep adding children to the new chat element. Here are the state-
ments that re-create the very important chatNodeKeyKey:

NodeKey chatNodeKey = (NodeKey)obj;
String creationTimeMillis = chatNodeKey.aKey;
chatNodeKeyKey = sessionId + “_” + creationTimeMillis + “:chat”;

Here is an example of a chatNodeKeyKey:
ofl37sijm1_987195762494:chat

The chatNodeKeyKey is immediately useful for adding the hostKey to the chat ele-
ment. It is added as a string value in the text node of the chat element.That string
value is also set in a session attribute named hostKey. Of course, it looks something
like this:

987195762454.987195735516.987195735486

We make the hostKey available to the session so that it can later be used for two
things:

n To find out if the session actor is the host in a chat
n To brand messages with the host that sent them

The first use was discussed previously in the section “Rejoining Existing Chats.”The
second use of hostKey is discussed later, in Section 8.1.22,“The processRequest()
Method: Handling Chat Messages.”

The last step in adding a chat to bonForum is to make the newly created
chatNodeKeyKey available to the session as its attribute.That will come in handy for the
following uses:

n To determine whether a chat is the current chat
n To find the chat node to add nodes or attributes
n To add messages to a chat

An example of the first use is described in the source code excerpt under the heading
“Rejoining Existing Chats.”We just saw the second use in action as we added the
hostKey to the chat.The third use is discussed in Section 8.1.22,“The
processRequest() Method: Handling Chat Messages.”

Adding a Chat Item Marker

As you should recall, bonForum loads an XML file called subjects.xml during it
startup initialization.That file contains the hierarchical list of possible chat subjects. Its
XML tree is added to the bonForum XML data as the subjects subtree of the things
root-child node. Now, in the processRequest() method, it is time to add another

08 1089-9 CH08 6/26/01 7:33 AM Page 243

244 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

element in that subtree, one that connects a chat element to its chatSubject node and
stores its chatTopic value as an attribute.

This new node is called the chatItem. (Note that the term chatItem is also used for
the concatenation of the chatSubject and chatTopic that a visitor selects to join a
chat, and that is sent in the request as a request parameter.That can be confusing, but
they are related: One refers to them in the tree, and the other refers to them in
words.)

The nodeKey of the new chatItem element, called the itemKey, is saved in the new
chat node.

A very important part of the new chatItem element is its name.The name given to
the new child is always something like the following example:

sessionID_ofl37sijm1_987195762494

After being concatenated with a (escaped) chatTopic in a nameAndAttributes string
for the add() method, it comes out something like this:

sessionID_ofl37sijm1_987195762494 chatTopic=”love”

The name part should look familiar, from the very similar hostNodeKeyKey that we
discussed previously.Actually, we added the sessionId prefix only to fix a bug—it
happened whenever the beginning of the name (the sessionId) started with a digit
rather than a letter. It was a cute bug, and it illustrates that Murphy never sleeps.
Before we added the prefix, the chatItem “subject marker” elements were to be like
these two, in the XML data:

<dpwsizd7y1 nodeKey=”982609718997.982609643718.982609643518” chatTopic=”lizards”>
➥</dpwsizd7y1>

<81tdw8d9k1 nodeKey=”982610159830.982609643528.982609643518” chatTopic=”bse”>
➥</81tdw8d9k1>

However, the first one worked and the second crashed the XML database because its
name is not well-formed XML—it starts with a digit.

After the fixes, the chat marker elements are like this example (they always start
with a letter):

<sessionID_65sdwkh071 nodeKey=”982619613054.982619446324.982619446314”
➥chatTopic=”Magnesium supplements stop Migraines cold?”>
</sessionID_65sdwkh071>

You probably noticed something here:This bug, and these examples, happened before
we added the creation time in milliseconds to the name of the nodeKeyKey values and
the chatItem element name.This next example is more current:

<sessionID_12rjpmlbj1_987109690411
➥nodeKey=”987109690431.987109600301.987109600251” chatTopic=”flying fish
recipes”>
</sessionID_12rjpmlbj1_987109690411>

08 1089-9 CH08 6/26/01 7:33 AM Page 244

2458.1 The BonForumEngine Servlet

Again, adding the timestamp to the name of the chatItem element allowed us to pro-
vide direct access to multiple chats per session by creating unlimited unique key values
for the nodeNameHashtable.

You will see in the next section why we have these strange names for the chatItem
elements.The chatNodeKeyKey can be reverse-engineered from the element name to
find a chat from a different session, as must be done when a visitor later joins a chat.
Meanwhile, let’s continue with the discussion of “host executes chat” handling.

After the nameAndAttributes string and other arguments are prepared, the add()
method is called, as follows:

obj = bonForumStore.add(“bonAddElement”, chatSubject, nameAndAttributes, content,
➥forestHashtableName, “pathNameHashtable”, sessionId);
NodeKey itemNodeKey = (NodeKey)obj;

What is interesting here is that we are not using the nodeNameHashtable to add the
chatItem marker element.As you see from the next-to-last argument, we use
pathNameHashtable.The second argument, in these cases, is not the key to the parent
node, but a path in the XML data (the chatSubject, in this case), which could be this:

Animals.Fish.FlyingFish

This brings our discussion to the last act involved in adding a chat.

Adding an itemKey to a Chat

The return value from the add() method is again cast to a NodeKey, as itemNodeKey.As
a string, it becomes itemKey.This time we want to add it to the chat node, not as a
child element, but instead as an attribute of the chat element.That is done using the
addChatNodeAttribute() method of BonForumStore. It requires the very handy
chatNodeKeyKey. No need, this time, to get it from a session attribute because we still
have it from adding the chat node.

We are going to need the itemKey value elsewhere in this session. It connects a chat
to its subject and topic. It also connects a chat to its messages and connects a message
to its subject. Here then, we are finally arriving at the end of the code that handles the
host_executes_chat bonForumCommand.

Before leaving the “host executes chat” handler, each thread checks to see if either
haveSubject or haveTopic has been set to false; in this case, bonForumCommand will be
set to visitor_starts_chat.That value will take the user back to where the missing
information can be supplied.

At this point, we have also completed the two steps that need synchronization, so
the next statement closes the thread-safe block of code:

} // end of synchronized block!

After this, each thread will soon be returning its bonForumCommand value and
serviceStatus value back to the service() method, to be forwarded—hopefully not
to forum_error.jsp!

08 1089-9 CH08 6/26/01 7:33 AM Page 245

246 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

8.1.21 The processRequest() Method: “Handling Guest Executes
Chat”
In this section, we continue with our discussion of the processRequest() method in
BonForumEngine, now with the code that handles the guest_executes_chat
bonForumCommand for requests that originate in the “visitor joins chat” bonForum state.
We begin here with the bonForumCommand processor in the processRequest() method,
beginning with the “else if ” clause that begins as follows:

else if (bonForumCommand.equals(“guest_executes_chat”)) {

We can call this the ”guest executes chat” handler. Its job is to process a visiting actor’s
request to join a chat, transforming the actor from a visitor to a guest. First, let’s set the
scene by recapitulating events up to this point. (If you think that you already know
what these events must have been, you can safely skip ahead to the section “Getting
the chatItem.”)

When the thread reaches the “guest executes chat” handler, the visitor has already
chosen a chatItem, which describes one available chat.As you can see in Table 8.5,
“bonForum Variables: Priority, Name, Origin,Type,” that chatItem variable value orig-
inated in an HTML select element displayed (using the XSLT processor) by the JSP
visitor_joins_chat_frame.jsp.

That chatItem value included in itself both the subject and topic of the chosen
chat, and arrived at the BonForumEngine servlet as a request parameter looking some-
thing like this example:

Animals_Bird_Hawk_[prehistoric falconry]

Furthermore, the processRequest() method has already processed the chatItem in the
“visitor joins chat” frame handler within its bonForumCommand processor.You can look
that up in Table 8.6,“bonForum Variables: Priority, Name, Destination.” Notice that, in
this case, the origin JSP and the destination JSP are the same! The request comes to
the BonForumEngine servlet from the HTML produced by the _frame JSP, and the
servlet forwards it back to the same _frame JSP after processing the chatItem request
parameter (putting its value in a chatItem session attribute).The user can sit there all
day long selecting one chat after another, without going anywhere.

Then the user clicked a button labeled Join, in the controls frame on the browser,
which submitted the HTML form produced by the JSP visitor_joins_chat_controls.jsp.

That brought a new (and different) request to the BonForumEngine and to its
processRequest() method. Its boncommand—and, thus its bonForumCommand—value was
visitor_joins_chat_ready, which does not yet have (or need) a handler in the
bonForumCommand processor.The service method then forwarded the request to the JSP
visitor_joins_chat_ready.jsp.

That JSP set up some applet parameter values in its request parameters, including
one for a target of _top, and another for a document with the full URI for the JSP
guest_executes_chat.jsp.

08 1089-9 CH08 6/26/01 7:33 AM Page 246

2478.1 The BonForumEngine Servlet

Next, the _ready JSP executed this action, obviously as its last act:
<jsp:forward page=”actor_leaves_frameset_robot.jsp.tfe”/>

That request was servlet-mapped, so it arrived at the BonForumEngine, where it was
handled by the servlet-mapped request processor block discussed earlier.With the
highest priority, and without being serviced by processRequest(), the request was for-
warded to the JSP actor_leaves_frameset_robot.jsp.

The BonForumRobot applet in the Java plug-in on that JSP got its applet parameters
from the request parameters. It dressed up the document name before asking its applet
context object to have it shown in the _top frame. Now the request URI looked
something like the following:

http://chatterbox:8080/bonForum/jsp/forum/guest_executes_chat.jsp987195879833.tfe

That was no static HTML document name but was yet another .tfe URI, again
servlet-mapped to the BonForumEngine.Arriving there, its requestURI now looked like
this:

/bonForum/jsp/forum/guest_executes_chat.jsp987195879833.tfe

The servlet-mapped request processor in the service() method matched the
guest_executes_chat substring in the requestURI and said,“Aha! This request needs a
serviceStatus of ProcessRequest and a bonForumCommand of guest_executes_chat.
And that, patient reader, is how the request we are interested in arrived at the subject
of this section, its bonForumCommand handler in the processRequest() method.

Getting the chatItem

For those of you who skipped the last section, welcome back!
The first thing done in the “guest executes chat” handler is to assume that every-

thing is okay and that the guest will get to join a chat.A flag is set as follows:
boolean haveChatItem = true;

Next the chatItem is retrieved from the session attribute, where it was safely held
through a chain of events involving several different request objects. Here is the
statement:

chatItem = normalize((String)session.getAttribute(“chatItem”)).trim();

If the chatItem is empty or is set to the special value NONE, then the haveChatItem flag
is set to false, which causes the request to be forwarded back to the “visitor joins
chat” state for new input.

Synchronizing the XML Database for the Chat

Just as in the “host executes chat” handler discussed previously, we need for synchro-
nization to enable thread-safe execution of code that shares a common resource: the
XML data. For general information about synchronization, refer to the previous

08 1089-9 CH08 6/26/01 7:33 AM Page 247

248 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

section,“The Need for Thread Synchronization“. Here, we will get specific about the
current need.

When a visitor joins a chat, we need to synchronize these two steps:

1. Checking to see whether a chat for chatItem (subject+topic) exists

2. The visitor joining that chat

At first glance, it seems that this synchronization is not necessary. Can’t we just assume
that the chat for chatItem exists because it was picked from a list generated from
existing chats? The problem is that we will soon implement processes that delete exist-
ing chats, and they will do so from a different thread than any “visitor joins
chat”–generated thread.The chat that is found to be okay in step 1 might have been
deleted by the time that thread is ready to do step 2.Worse yet, because step 2 involves
several additions to the XML data, the chat could be deleted after some of these, but
not all, are completed.

If synchronization turns out to affect performance too much, we might have other
possible solutions here, such as using a method that checks the integrity of a chat after
it is added, together with a way to clean up “bad chat” debris caused by partially com-
pleted chat additions.The addition of a chat could loop until it is successful or
exceeded a number of retries. For now, synchronization looks pretty good!

As an aside, we thought that we had a second reason to synchronize these two
steps. Until we implement a user manager and data persistence, some pieces of the
bonForum puzzle do not survive a session timeout.While we were adding the syn-
chronization, we mistakenly thought that chats expire along with the session that starts
them and that it could happen between the two steps listed. In fact, when the session
that starts a chat times out, the chat does stay in the XML data, and it remains func-
tional. However, it loses its host because the host’s session has expired. Furthermore, a
new visitor cannot get the host nickname back again, nor can any actor “reown” the
host actor element, although it is still “in” the chat.Visitors can still join as guests and
send messages back and forth. (Guest ratings do not survive a guest session timeout,
but that is a different problem.) In any case, these problems will all go away when
users can reclaim their data from session to session; that is what a user manager and
data persistence will do for bonForum in a later release.

So, how do we synchronize the two steps that we listed? We would like to use the
following way:

synchronized(bonForumStore.bonForumXML) {
// thread-safe critical section
// 1. step one
// 2. step two

}

That way, a thread arriving at the synchronized block would get a lock on the static
ForestHashtable member of the static BonForumStore member of the BonForumEngine
instance.That would still allow multiple threads to access other nonsynchronized

08 1089-9 CH08 6/26/01 7:33 AM Page 248

2498.1 The BonForumEngine Servlet

methods of bonForumStore. However, this preferred synchronization needs more test-
ing and might require adding other synchronized methods or blocks.We are instead
using the following, more severe, lock:

synchronized(bonForumStore) {

It does takes a while to rule out problems related to undersynchronization.Thread
clashes are a bit like motor vehicle accidents:They’re not easy to stage.

Finding a Chat and the Actor Status in It

The thread is now ready to fulfill the “visitor joins chat” action leading to the “guest
executes chat” state. First, it searched for the chat with the chatItem that was requested
by the visitor. (Does this sound familiar? This is similar to what was done in the “host
executes chat” handler discussed previously, with chatSubject and chatTopic instead
of chatItem.) There are parallels involved in joining and starting chats.We will try not
to be too repetitive with things covered already. For convenience, though, we will
repeat a previous table in Table 8.8 and show the possible outcomes of a chat search.
This time, the last row is relevant.

Table 8.8 JSP Transitions Versus Actor-Chat Relationships
Chat Exists Already Chat Does

Not Exist
Actor Is Actor Is Actor Is
Not in Chat Host Guest

visitor guest executes host executes guest executes host executes
starts chat chat(1) chat(1) chat(1)(2) chat
visitor guest executes host executes guest executes forum
joins chat chat chat(3) chat error

Again, are the notes for this table:
n Numbered table items are optional, to be set by user preferences in a command,

with alternatives as follows:

1. Visitor starts chat

2. Host executes chat, if multihosted chat allowed

3. Guest executes chat
n If the actor is a host or a guest, the actor is rejoining a chat.

Rejoining a Chat

In the case of “visitor joins chat,” if a chat with the requested subject and topic combi-
nation does not exist, the visitor will certainly not be able to join it! If the requested
chat does exist, then what happens will depend upon an option setting. One option is

08 1089-9 CH08 6/26/01 7:33 AM Page 249

250 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

that a visitor will join the chat as a guest, unless the visitor is already a host in the
chat; in this case, that host role will resume.The other option (not yet implemented) is
that the visitor will always enter the chat as a guest.This last option will allow a host
in a chat to re-enter the chat as a guest.

A user preference setting can later offer a choice of options for the behavior of
“visitor joins chat” when the visitor is found already in the chat as a host or guest:

1. Always join it with the previous status.

2. Always join as a guest.

3. Always offer a choice if the visitor already is a host.

At this time, the transitions given in Table 8.8 itself are implemented, and the options
given in the notes are not yet implemented.We decided to tackle the harder ones first.

In the previous section “Finding a Chat and the Actor Status in It,” where this table
first appeared, we showed a simple way to implement the transitions for the “visitor
starts chat” row. Here, we do the same for the “visitor joins chat” row:

if chat exists
if actor is not host in chat

set bonForumCommand to guest_executes_chat
else

set bonForumCommand to host_executes_chat
endif

else
set haveChatItem false //error

endif

Setting the haveChatItem flag to false causes the request to be forwarded back to the
“visitor joins chat” state—that is, back where it came from.

Eventually, when we are finished with the prototyping, we might decide that the
visitor should always have access to both the “visitor joins chat” and “visitor starts
chat” functionality on the same page. It will then be quite easy to implement all the
logic in the table, as in this pseudocode:

if visitor starts chat or visitor joins chat
if chat exists

if actor is not host in chat
set bonForumCommand to guest_executes_chat

else
set bonForumCommand to host_executes_chat

endif
else if visitor starts chat

set bonForumCommand to host_executes_chat
else if visitor joins chat

set haveChatItem false //error
endif
endif

08 1089-9 CH08 6/26/01 7:33 AM Page 250

2518.1 The BonForumEngine Servlet

These pseudocode listings make it all look so easy. However, as is often the case, the
devil is in the details. Let’s start examining the actual code.

Passing Information Between Sessions

In the previous section “Adding a Host Actor,” we discussed the structure of keys in
the nodeNameHashtable and showed how they could be reverse-engineered in the fol-
lowing general manner:

nodeKeyKey = sessionId + “_” + nodeKey.aKey +”:” + nodeName;

We also showed that we did not really have to do that while adding elements to a new
host element because whenever we have a nodeKey to get the aKey from, we already
have the key to find the node.We wanted to use only the add() method of
BonForumStore, however, which requires a nodeKeyKey argument, and we also wanted
the nodeKeyKey anyway, to put in a session attribute for other purposes.

However, getting back to the code for joining a chat (we can call it the guest
thread), we really could use a nodeKeyKey for the chat, for two reasons: to see if the
chat exists and to add elements to it.This time, we do not have the chatNodeKey, and
having a chatNodeKeyKey would allow us to look up the chatNodeKey in the
nodeNameHashtable.Yet, in this present situation, we cannot reconstruct the
chatNodeKeyKey. One problem is this:The session ID that the chatNodeKeyKey includes
as its prefix is for the session of the chat host, the actor that started the chat.That host
session ID is not available to this guest thread.A second problem is this:The guest
thread cannot get the aKey from the chatnodeKey to use in the reconstruction of the
chatNodeKeyKey. If it had that nodeKey, it could simply use that to find the chat.

This situation is very different than the one in the section “Adding a Host Actor.”
There, the host node had just been added and its nodeKey had been returned by the
add() method.That returned object could be cast to a NodeKey and used along with
the available host session ID to reconstruct the hostNodeKeyKey.

As you no doubt know by now, this problem of passing information between
sessions is the reason that we gave the chat subject marker elements in the XML
(chatItem nodes) a name that is made from the chatNodeKeyKey.When a visitor
chooses a chat to join (a chatItem variable), we can get from that choice the node that
marks the subject and the topic (the chatItem node), that node’s name, and thus the
chatNodeKeyKey.Then, instead of searching through all the XML for the chat node, we
can find it using its nodeKey from the nodeKeyHashtable, which we get with the
chatNodeKeyKey.

Some of you who are waiting patiently for more standard ways to use XML in a
Web application (a book in itself!) are perhaps saying,“Wait! Isn’t that cheating?”Well,
indeed it is, and for a good reason. Ensuring direct access to an object that you are
going to require again in a different context looks good compared to some of the
alternatives.

08 1089-9 CH08 6/26/01 7:33 AM Page 251

252 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

Here is an example of the way this cheat works.The bonForum variable called
chatItem must get as its value the complete node path to a child element of a subject
element that contains, in turn, an element whose name contains the two unique parts
of the chatNodeKeyKey value. For example, let’s say that the key to the chat nodeKey is
as follows:

3vwx74igk1_987288911256:chat

There will be one node in the subjects XML subtree that represents the subject of the
chat—for example:

bonForum.things.subjects.Animals.Fish.Piranhas

That chat subject node will have a chatItem child element with the following name:
sessionID_3vwx74igk1_987288911256

That chatItem node will have an attribute something like this:
chatTopic=”first aid for fish breeders”

Like all bonForum nodes, it also will have a nodeKey attribute, with a value something
like this:

nodeKey=”987288999022.987288885569.987288885549”

That chatItem nodeKey value becomes the itemKey attribute value in the chat element
and in all the messages for the chat.

Along comes a visitor who picks a chat to join from the list generated by an XSLT
processor.That choice generates the following chatItem variable:

Animals_Fish_Piranhas_[first aid for fish breeders]

Now we can convert the chatSubject part of this chatItem string into a key for the
pathNameHashtable. It contains nodeKey values for the subjects subtree that was loaded
at startup from subjects.xml.That key looks like this:

Animals.Fish.Piranhas

The key gives us the Piranha nodeKey, and we can use that to iterate the children of
the Piranha node, looking for a child that has the chatTopic attribute value matching
the chatTopic part of the chatItem,“first aid for fish breeders.” From the name of that
child, we can get the chatNodeKeyKey and, with it, the nodeNameHashtable the chat
node itself. Isn’t it great that computers are so fast?

Of course, most of the code that takes care of all these details is not in
BonForumEngine, but in BonForumStore of ForestHashtable.We thought that it would
be difficult to understand the code in the processRequest() method without review-
ing the details here.We are now ready to look at more code in that method. Here is
all the code that looks for the chat and the actor status in it:

if(haveChatItem) {

boolean chatExistsForSubjectAndTopic = false;
boolean actorIsHostInChat = false;

08 1089-9 CH08 6/26/01 7:33 AM Page 252

2538.1 The BonForumEngine Servlet

boolean actorIsGuestInChat = false;
boolean actorWillRejoinChat = false;

chatNodeKeyKey = getBonForumStore().getBonForumChatNodeKeyKey(chatItem);

if((chatNodeKeyKey != null) && (chatNodeKeyKey.length() > 0)) {

chatExistsForSubjectAndTopic = true;

String actorKeyValue = normalize((String)session.getAttribute(
➥“hostKey”));

if(actorKeyValue.trim().length() > 0) {

actorIsHostInChat = getBonForumStore().isHostInChat(
➥actorKeyValue, chatNodeKeyKey);

}

if(!actorIsHostInChat) {

actorKeyValue = normalize((String)session.getAttribute(
➥“guestKey”));

if(actorKeyValue.trim().length() > 0) {

actorIsGuestInChat = getBonForumStore().isGuestInChat(
➥actorKeyValue, chatNodeKeyKey);

}
}

}

if(chatExistsForSubjectAndTopic) {

// needed to add messages to chat
session.setAttribute(“chatNodeKeyKey”, chatNodeKeyKey);

if(actorIsHostInChat) {

bonForumCommand = “host_executes_chat”;
actorWillRejoinChat = true;
haveChatItem = false;

}
else if(actorIsGuestInChat) {

actorWillRejoinChat = true;
haveChatItem = false;

}

08 1089-9 CH08 6/26/01 7:33 AM Page 253

254 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

// else join as new guest
}

if(actorWillRejoinChat) {

// chatItem hasn’t changed, but
// session does need right itemKey:
String foundChatItemKey = getBonForumStore(

➥).getBonForumChatItemNodeKey(chatItem).toString();

session.setAttribute(“itemKey”, foundChatItemKey);

}
}
else {

// missing information, must return to get it
// LATER: set attribute to trigger message to user
bonForumCommand = “visitor_joins_chat”;

}

This “one-liner” does a lot of what we discussed previously:
chatNodeKeyKey = getBonForumStore().getBonForumChatNodeKeyKey(chatItem);

After that, the code just implements the logic shown in the last table. Finally, unless
something has set haveChatItem to false, the thread proceeds with the transformation
of a visitor into a chat guest.

Joining a Chat

Many parallels exist between the code that implements starting a chat and the code
that implements joining a chat.After reading about the former, you will undoubtedly
be able to easily understand the latter, just using the following commented excerpt
BonForumEngine.java and referring back to the section “Starting a Chat.”After the
listing, we will briefly discuss this part of the processRequest() method and then
move on to describe the process of handling chat messages. Here is the code that
allows a visitor to join a chat:

// Check chat node OK before
// bothering to do anything else.

if(haveChatItem) {
chatNode = bonForumStore.getBonForumChatNode(chatNodeKeyKey); // chatNode is a
➥BonNode
if(chatNode == null) {

haveChatItem = false;
bonForumCommand = “forum_error”;
request.setAttribute(“serviceStatus”, “ForwardToErrorPage”);

08 1089-9 CH08 6/26/01 7:33 AM Page 254

2558.1 The BonForumEngine Servlet

}
}

if(haveChatItem) {
// actor joins chat

// An actorNickname is unique in bonForum,
// Allow only one guest node per actorNickname.
// Get the guest nickname from session.

actorNickname = normalize((String)session.getAttribute(“actorNickname”));

// Get guest nickname key

NodeKey guestNicknameNodeKey = getBonForumStore().getActorNicknameNodeKey(
➥actorNickname, “guest”);

NodeKey guestNodeKey = null;

// If got key, get guest nickname node,
// use its parent key to get guest node key

if(guestNicknameNodeKey != null) {

BonNode guestNicknameNode = getBonForumStore().getBonForumXML(
➥).getBonNode(guestNicknameNodeKey);

guestNodeKey = guestNicknameNode.parentNodeKey;

}

// If guest node key does not exist,
// neither does guest, so add guest node,
// with its nickname, age and rating children
// to the “actors” rootchild node of database.

if(guestNodeKey == null) {

//add guest node to actors

nameAndAttributes = “guest”;
content = “”;
forestHashtableName = “bonForumXML”;

obj = bonForumStore.add(“bonAddElement”, “actors”, nameAndAttributes,
➥content, forestHashtableName, “nodeNameHashtable”, sessionId);

guestNodeKey = (NodeKey)obj;

// add actorNickname to guest

08 1089-9 CH08 6/26/01 7:33 AM Page 255

256 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

// the aKey in the NodeKey is
// a timeMillis value from node addition
// It is used also in the
// nodeKeyHashtable key values

String creationTimeMillis = guestNodeKey.aKey;

String guestNodeKeyKey = sessionId + “_” + creationTimeMillis +
➥“:guest”;

// Make nodeNameHashtable key
// for the guestNodeKey
// available to session.
// It gives quick access to last
// guest nodeKey for session

session.setAttribute(“guestNodeKeyKey”, guestNodeKeyKey);

// add actorNickname to guest

nameAndAttributes = “actorNickname”;

content = normalize((String)session.getAttribute(“actorNickname”));

forestHashtableName = “bonForumXML”;

obj = bonForumStore.add(“bonAddElement”, guestNodeKeyKey,
➥nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”,
➥sessionId);

// Again, as discussed more fully
// in the code for “starting a chat”,
// above, (see comment marked NOTICE:)
// there is a more direct way
// of adding many of these elements.
// Here is a commented-out example:
//
// bonForumStore.getBonForumXML(
//).addChildNodeToNonRootNode(
// “actorNickname”, “”, content,
// guestNodeKey, “nodeNameHashtable”,
// sessionId);

// add actorAge to guest:

nameAndAttributes = “actorAge”;

content = normalize((String)session.getAttribute(“actorAge”));

forestHashtableName = “bonForumXML”;

08 1089-9 CH08 6/26/01 7:33 AM Page 256

2578.1 The BonForumEngine Servlet

obj = bonForumStore.add(“bonAddElement”, guestNodeKeyKey,
➥nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”,
➥sessionId);

// add actorRating to guest

nameAndAttributes = “actorRating”;

content = normalize((String)session.getAttribute(“actorRating”));

if(content.length() < 1) {
content = “5”;

}

forestHashtableName = “bonForumXML”;

obj = bonForumStore.add(“bonAddElement”, guestNodeKeyKey,
➥nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId
➥);

}

if(chatNode != null) {

// add guestKey to chat,
// that is how guest joins chat.

nameAndAttributes = “guestKey”;

content = guestNodeKey.toString();

forestHashtableName = “bonForumXML”;

//chatNodeKeyKey = normalize((String)session.getAttribute(
➥“chatNodeKeyKey”));

obj = bonForumStore.add(“bonAddElement”, chatNodeKeyKey,
➥nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId
);

// set the guestKey for this chat
// into a session attribute

session.setAttribute(“guestKey”, guestNodeKey.toString());

// set the itemKey for this chat
// into a session attribute
// for the guest’s session

String chatItemKey = bonForumStore.getBonForumAttributeValue(
➥chatNode, “itemKey”);

08 1089-9 CH08 6/26/01 7:33 AM Page 257

258 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

session.setAttribute(“itemKey”, chatItemKey);

}
else {

// chatNode is null,
// cannot add guest to chat,
// nor set guestKey and
// itemKey session attributes!

}
}

Let’s continue our discussion at the beginning of this last code excerpt.The specialized
getBonForumChatNode() method of BonForumStore is used to retrieve the chatNode.
That will not be needed until the very end of the code excerpt by the
getBonForumAttributeValue() method of BonForumStore. However, we might as well
get it right at the beginning because if something is wrong here, nothing else needs
doing.Without a chatNode, there is not much point in joining a chat!

You can see here how the chatNodeKeyKey is what a guest thread in one session
needs to have to retrieve a chat node, which belongs to a host thread with a different
session.

chatNode = bonForumStore.getBonForumChatNode(chatNodeKeyKey); // chatNode is a
➥BonNode

We expect the chatNode to be there because we found the chatNodeKeyKey earlier. If it
is not there, the haveChatItem flag is set to false, sending the user back to the “visitor
joins chat” bonForum state. If the haveChatItem flag is still true, the thread tries to put
the visitor into the chat.

Actor nicknames are unique in bonForum.We do not want more than one guest
node per nickname.The code tries to find the key of an existing one using a special-
ized BonForumStore method, getActorNicknameNodeKey(), and a ForestHashtable
method, getBonNode(). (All this code should be later rolled into one method call.) If it
cannot find a guest nodeKey, then it is okay to add a guest node and its children:
actorNickname, actorAge, and actorRating elements.That should happen only if the
actor has never joined a chat as a guest. (In the prototype, we can add to that during
the current session.)

Adding a Guest Actor

The code for adding a guest node and its children is nearly identical to that for adding
a host node.This makes you wonder if the two actions should be combined. Perhaps,
but if we later want to add features specific to one or the other, it is harder to do.This
is a classic dilemma in programming.When memory and storage were tight and longer
source files meant more difficult editing and source code control, the tendency was to

08 1089-9 CH08 6/26/01 7:33 AM Page 258

2598.1 The BonForumEngine Servlet

combine and shorten whenever possible. Now, with better and faster tools and com-
pilers, it is increasingly more attractive to spread out code and let the increased redun-
dancy and territory foster evolutionary diversity.

As when we added the host node, we used the add() method of BonForumStore,
even though that meant more overhead and required the guestNodeKeyKey.We hope
to put the key to good use later.

Joining a Chat, Continued

At this point in the code, the visitor finally is promoted to the status of guest in the
chosen chat.That is done quite simply:The nodeKey of the guest node, as a string,
becomes the content of a guestKey element, which is added as a child of the chat
node.That relates the guest and the chat.

The same guest nodeKey string is also put in a session attribute, so it can be used
later for two things:

n To stamp a chat message with the guest as its sender
n To find out if a visitor is already a guest in a chat

The second item is done both when a visitor wants to start a chat and it exists already,
and when a visitor wants to join a chat.

Another session attribute will be needed, the itemKey for the chat that was just
joined.To get that, we use yet another specialized BonForumStore method, which is
the one that we got the chat node object for earlier. Here is the statement that gets
the nodeKey of the chatItem so that we can put it as a string in a session attribute
called chatItem:

String chatItemKey = bonForumStore.getBonForumAttributeValue(chatNode, “itemKey”
➥);

Before leaving the “guest executes chat” handler, each thread checks to see if the
haveChatItem flag was set to false; in this case, bonForumCommand will be set to
visitor_joins_chat.That value will take the user back to where the missing informa-
tion can be supplied.

At this point, we have completed the two steps that need synchronization, so the
next statement closes the thread-safe block of code:

} // end of synchronized block!

Again, as after each bonForumCommand handler, each thread will soon be returning its
bonForumCommand value and serviceStatus value back to the service() method, to be
forwarded to the next JSP.

8.1.22 The processRequest() Method: Handling Chat Messages
It would not be a chat without messages! Treatment of the chatMessage parameter by

08 1089-9 CH08 6/26/01 7:33 AM Page 259

260 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

processRequest() is more involved than that for any other parameter.We will discuss
the code in this section piece by piece. It will help you to have the source code handy.

Because the processing for chatMessage parameters is lengthy and the parameters
originate in two different bonForum states, the two bonForumCommand values involved
are caught by their own separate if clause at the beginning of the bonForumCommand
processor, as shown in the following excerpt. (The chatMessagesNavigator parameters
originate on the same pages as the chatMessage ones, so they are also handled here.)

if(bonForumCommand.indexOf(“host_executes_chat_controls”) > -1) ||
➥(bonForumCommand.indexOf(“guest_executes_chat_controls”) {

// handle chatMessagesNavigator
// handle chatMessage

}

The first thing done is to get the message value that was input by the user in a safe form:
chatMessage = normalize((String)request.getParameter(“chatMessage”));

Next, the chatMessage is processed, if it is not empty. Leaving out the details, this is
the if statement that processes the chat message:

if(chatMessage.trim().length() > 0) {
// process the chat message
}

Let’s look next at what is referred to by the simple comment process the chat
message.An itemKey value relates a chat to its subject and topic. It also relates a chat to
all the messages that it contains.When a message is stored in the bonForum XML
data, the itemKey for the current chat is stored with it as an attribute.That itemKey
value is obtained from a session attribute, where it was set when the chat was started
or when it was joined. Here is the code that does that:

String itemKey = normalize((String)session.getAttribute(“itemKey”));
if(itemKey.trim().length() < 1) {
logBFE.logWrite(“err”, “processRequest() ERROR: session has no itemKey!”);
//itemKey is “”;
}

The method in BonForumStore that adds an element to the XML chat data takes the
name and attributes for the element together in one string argument. Besides the
itemKey, we add the system time in milliseconds and a formatted date, both courtesy
of a utility class. (Is the latter redundant, convenient, or both?) That much of the
nameAndAttributes string is prepared with these statements:

nameAndAttributes = “message”;
nameAndAttributes = nameAndAttributes + “ itemKey=\”” + itemKey + “\””;
nameAndAttributes = nameAndAttributes + “ timeMillis=\”” +
➥BonForumUtils.timeMillis() + “\””; JSP;BonForumEngine;chat messages
(processRequest() method)>
nameAndAttributes = nameAndAttributes + “ dateStamp=\”” +
➥BonForumUtils.getLastDate() + “\””;

08 1089-9 CH08 6/26/01 7:33 AM Page 260

2618.1 The BonForumEngine Servlet

Another useful attribute for the XML element relates a message to either the chat host
or the guest who added it to the chat.This hostKey or guestKey is concatenated to the
nameAndAttributes string as a result of the following statements, which first look for a
valid host or guest in that order:

String actorKeyValue = normalize((String)session.getAttribute(“hostKey”));
➥if(actorKeyValue.trim().length() < 1) {
actorKeyValue = normalize((String)session.getAttribute(“guestKey”));
if(actorKeyValue.trim().length() < 1) {
logBFE.logWrite(“err”, “no hostKey or guestKey for message!”);
actorKeyValue = “”;
}
else {
nameAndAttributes = nameAndAttributes + “ guestKey=\”” + actorKeyValue + “\””;
➥}
}
else {
nameAndAttributes = nameAndAttributes + “ hostKey=\”” + actorKeyValue + “\””;
➥}

A message element will be added to the bonForum XML as a child of the root-child
“things” element.Then the string value of the message element’s nodeKey will be
added as an element of the current chat element.This messageKey will relate the mes-
sage element to the chat.To find the current chat, the add() method needs its
chatNodeKeyKey, which is used to look up the chat’s nodeKey value in the
nodeKeyHashtable.That provides direct access to the chat node.This next statement
gets that important key from the session attribute where it was set when the chat was
started or joined:

chatNodeKeyKey = normalize((String)session.getAttribute(“chatNodeKeyKey”));

Finally, the message and its key can be added to the XML database.The actor’s nick-
name is retrieved from a session attribute and is prefixed to the message before it is
used as the content of a new bonForum.things.message element.The return value of
the add() method is the nodeKey of the new message element, and its string value
becomes the content of a new bonForum.things.chat.messageKey element, whose
parent chat element represents the chat for the current request and session being han-
dled in the processRequest() method. Here are the lines of code that accomplish all
that:

if(!actorKeyValue.equals(“”) && !chatNodeKeyKey.equals(“”)) {
content = normalize((String)session.getAttribute(“actorNickname”));
content += “::” + chatMessage;

forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, “things”, nameAndAttributes, content,
➥forestHashtableName, “nodeNameHashtable”, sessionId);
NodeKey messageNodeKey = (NodeKey)obj;

String messageKey = messageNodeKey.toString();

08 1089-9 CH08 6/26/01 7:33 AM Page 261

262 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

nameAndAttributes = “messageKey”;
content = messageKey;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, chatNodeKeyKey, nameAndAttributes,
➥content, forestHashtableName, “nodeNameHashtable”, sessionId);

session.setAttribute(“messageKey”, messageKey);
}

That completes the coverage of the details that were summed up earlier by the simple
comment process the chat message.

8.1.23 The processRequest() Method: Setting serviceStatus for
Return
Finally, before a thread leaves this long processRequest() method, two important steps
remain to be done. One gives the okay to the service() method to forward the
request object.The other tells it where to forward the request.These important steps
can be seen in this code fragment:

session.setAttribute (“ServiceStatus”, “ForwardAfterRequestProcessed”);
return bonForumCommand;
}// end of processRequest()

We come here to the end of our detailed discussion of the BonForumEngine servlet. For
the rest of this long chapter, we will discuss the BonForumStore class, a nonvisual bean
that wraps the XML database and provides methods to implement our chat Web appli-
cation.

8.2 The BonForumStore Class
Throughout the discussion of the BonForumEngine class, we have seen its dependence
on the methods of the BonForumStore class. It is now time to look in more detail at
that class.We will not go into as much detail in our discussion because the methods of
BonForumStore are less universal in their applicability than those of BonForumEngine.
Also, we will discuss only BonForumStore methods that are invoked from outside the
class itself, except for a few methods that are helpful for understanding the purpose or
implementation of those.The best way to find out about all the methods that are not
detailed here is to look up BonForumStore in the Java docs for bonForum, which are
provided with the Web application.

08 1089-9 CH08 6/26/01 7:33 AM Page 262

2638.2 The BonForumStore Class

8.2.1 BonForumStore Is a Nonvisual Bean
For a good introduction to using beans with JSP, we recommend the chapter “Using
JavaBeans with JSP” in the book Core Servlets and JavaServer Pages, by Marty Hall
(Prentice Hall, 0130893404).As he points out, a class must have three things to qualify
as a bean:

n A constructor without any arguments
n No public fields (instance variables)
n Access to persistent values through getXXX and setXXX methods (isXXX for

Booleans)

The BonForumStore is a nonvisual JavaBean. It does not display anything on the screen
because it is strictly a way to package properties and methods for server-side use by
the bonForum application.As you probably know, the subject of JavaBeans is a large
one, and many entire books are devoted to it—mostly to beans that do display some-
thing.We will certainly not try to replace any of those books for you in the remainder
of this chapter.

8.2.2 Purpose of the BonForumStore Class
BonForumStore wraps the XML data for the chat Web application controlled by
BonForumEngine, providing access to the data in the context of the application.This
includes methods to get data into and out of the XML, and methods to change the
data that is there. In the prototype so far implemented, we have modeled that database
as an instance of the ForestHashtable class.The details of that class are covered in
Chapter 11,“XML Data Storage Class: ForestHashtable.”

BonForumStore also provides methods that the BonForumEngine servlet uses as it
processes HTTP requests coming from the browser interface of the application. Other
methods in BonForumStore are used by JavaServer Pages and custom tag classes.All
these methods currently tend to be quite specialized to the purpose of implementing a
chat application. Later, after more experimentation, they will be generalized to give
them a wider range of application.

The following list covers most of the things that the bonForum Web application
gets from the BonForumStore class.The rest of the chapter discusses these in terms of
examples taken from the source code.

n Acts as wrapper for XML database (now a ForestHashtable)
n Initializes the XML database for use as a chat Web app
n Loads XML files into a database using its methods
n Dumps the content of the database as XML in a string
n Provides access to the database as a property
n Has methods to edit, add, and remove XML database nodes

08 1089-9 CH08 6/26/01 7:33 AM Page 263

264 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

n Has methods that are used by BonForumEngine processing
n Has methods for use by JSP custom tag classes
n Has methods for use by code in JSP scriptlets
n Outputs chat messages from XML with page navigation
n Outputs tree from XML as a list of pathnames to nodes

8.2.3 ConstructorBonForumStore
BonForumStore has only one constructor, without any arguments. It creates three
objects that initialize static instance variables, as you can see here:

public BonForumStore() {
super();
bonForumXML = new ForestHashtable(5000);
bonBufferXML = new ForestHashtable();
outputTreeMap = new TreeMap();

}

In earlier chapters, we have already written quite a lot about the ForestHashtable
class used by bonForum to store XML data. Often we refer to that as the “XML data-
base” because the purpose of the class is to model a database containing XML.As you
recall, a BonForumEngine object has a static member called bonForumStore.As an
instance of the BonForumStore class, it contains two instances of the ForestHashtable
class, both static, and therefore acts as an interface between the BonForumEngine servlet
and the XML data.The data for the chat application is stored in bonForumXML.

The bonBufferXML object is still being developed and is untested; its purpose will be
to hold subsets of the forum data for faster transformation processing and for more
complex processing involving buffered intermediate results. It can also be used to
input and output XML from the application without disturbing the working copy of
the data.

As a descendant of the Hashtable class, ForestHashtable has one constructor that
takes an argument for its capacity factor.We have used 5,000 for the bonForumXML
capacity. For now, the XML buffer uses the default capacity value. In a future release,
both ForestHashtable objects should have their capacity values taken from servlet
context initialization parameters.

The outputTreeMap object is used to provide a sorted list for some methods to out-
put. Currently, it is used to output all the messages in a chat and the list of available
chat subjects.

8.2.4 Properties
As a bean, the BonForumStore should provide access to its fields only through get, is,
and set methods.Two of the instance variables initialized in the constructor are avail-
able as read-only properties.These objects are accessed using their get methods even

08 1089-9 CH08 6/26/01 7:33 AM Page 264

2658.2 The BonForumStore Class

within the BonForumStore class itself, hopefully to make it easier to later add different
data storage objects besides the ForestHashtable ones now used.These two members
are as follows:

private static ForestHashtable bonForumXML;
private static ForestHashtable bonBufferXML;

Two other instance variables available as properties have so far been useful only to
develop the software.At the end of this chapter, we show examples of accessing these
from a JSP:

private String hitTimeMillis;
private String initDate;

A larger group of instance variables have property methods that have until now been
used only from within the BonForumStore class itself.They provide access to the two
top levels of the XML forum data and buffer data.The property methods for these
have been kept around on the premise that they may someday be useful:

private NodeKey rootNodeKey;
private NodeKey actorsNodeKey;
private NodeKey actionsNodeKey;
private NodeKey thingsNodeKey;
private NodeKey bufferRootNodeKey;
private NodeKey bufferActorsNodeKey;
private NodeKey bufferActionsNodeKey;
private NodeKey bufferThingsNodeKey;

Finally, one other instance variable is available through get and set methods. It is used
to control the log file output from a BonForumStore object:

private static String logging = “none”;

8.2.5 Accessing BonForumStore
Of course, to be useful, the BonForumStore class must be instantiated.A
BonForumEngine servlet object has a static BonForumStore member called
bonForumStore. Here is the statement that creates that:

private static BonForumStore bonForumStore = new BonForumStore();

This “XML database” for the bonForum Web application is made available by the
BonForumEngine as a public read-only property (unused, as yet) by the following
method:

public BonForumStore getBonForumStore() {
return bonForumStore;

}

The static bonForumStore member object of the BonForumEngine servlet can also be
accessed from elsewhere in bonForum by using an attribute of application scope. Here
is the statement in the BonForumEngine source code that sets that attribute:

08 1089-9 CH08 6/26/01 7:33 AM Page 265

266 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

getServletContext().setAttribute(“bonForumStore”,getBonForumStore());

From another bean object in bonForum, for example, we could get access to the data-
base wrapper class using a statement like the following:

BonForumStore bonForumStore = (BonForumStore)getServletConfig(
➥).getServletContext().getAttribute(“bonForumStore”);

We do not use any statement like that yet, but we do access bonForumStore often from
JSP and from JSP custom tags by using their PageContext object (or a jsp:useBean
tag) to get the bonForumStore attribute.We will discuss examples of that in Section
8.2.12,“Invoking Chat Methods from JSP Custom Tags,” and 8.2.13,“Invoking Chat
Methods from JSP Scriptlets.”

Although the ForestHashtable class has thread-safe methods for changing the data
within it, transactions outside that class still need thread synchronization.You can read
more about that in the previous sections “The Need for Thread Synchronization,”
“Synchronizing the XML Database,” and “Synchronizing the XML Database for the
Web Chat.” For now, all the critical code sections, which are in the BonForumEngine
and TransformTag classes, use the static bonForumStore object as the lock that allows
only one thread access at a time.All the examples have this form:

synchronized(bonForumStore) {
// one thread at a time here

}

When new code is added to the project that changes the contents of bonForumXML
using the data access methods of bonForumStore, the possibility that a similar synchro-
nized block is required must be considered.

8.2.6 Initializing
For bonForum to start up, it is not enough to have an instance of BonForumStore that
must also access the minimal data needed to function. Until data persistence is imple-
mented in a later version, the bonForum Web application contains no chat-related data
in memory when it starts up. However, it does have some XML configuration files
with the minimal set of chat-related data needed for the application to function.

Every thread “passing through” the processRequest() method of BonForumEngine
calls the initialize method of BonForumStore, as follows:

String sessionId = session.getId();
bonForumStore.initialize(sessionId);

The initialize method calls the initXML() method, which calls the
initializeBonForum() method. If bonForumXML is empty, it gets filled with the minimal
data content, including some values that are parsed from the XML configuration files
using a Xerces Parser object.

Only the first thread should need to fill the data store. Ones that arrive later will
find that it already contains all the initialization elements from the configuration files.

08 1089-9 CH08 6/26/01 7:33 AM Page 266

2678.2 The BonForumStore Class

It will also contain all the chats, hosts, guests, messages, and other data that this thread
and others have added since startup.

We will next show how bonForumXML is filled with what it needs for bonForum to
successfully boot.To understand the discussion, you should know that any
ForestHashtable like bonForumXML has a place to keep important node addresses, called
nodeNameHashtable. (That is discussed in Chapter 11.) This statement clears the con-
tents of that table:

getBonForumXML().getNodeNameHashtable().clear();

Adding the Root Node

An XML tree determines the playing field of this Web application. Its root node is the
element named bonForum. Here we show the code that creates the first step in the
XML database:

String rootNodeName = normalize(“bonForum”);
String rootNodeAttributes = “type = \”prototype\””;
String rootNodeContent = normalize(“”);
BonNode rootNode = getBonForumXML().addRootNode(rootNodeName, rootNodeAttributes,
➥rootNodeContent, “nodeNameHashtable”);
setRootNodeKey(rootNode.nodeKey);

The last statement sets one of the BonForumStore property values, which could be use-
ful when we start combining more than one XML data tree in the future.

Objects of the class BonNode here represent the nodes of the database.This is better
discussed in Chapter 11.We have not tried to make our ForestHashtable fulfill all the
XML recommendations—that is a work in progress. For this project, it is sufficient
that the data storage be capable of containing a tree of elements in a hierarchy. Each
element optionally contains a list of name=value attribute pairs and can have content
corresponding to XML text() nodes.

Adding Children of the Root Node

The root node in the bonForum XML database definition has three children: actors,
actions, and things.We will show only the initialization of the actors element.This
node serves as the parent of host, guest, and system nodes.Treating the children of the
root a bit differently than their descendant nodes enables us to streamline the code for
adding nodes. Here is the code to add the actors root child node:

String childNodeName = normalize(“actors”);
String childNodeAttributes = “type = \”READ_ONLY\””;
String childNodeContent = normalize(“”);
BonNode nonRootNode = getBonForumXML().addChildNodeToRootNode(childNodeName,
➥childNodeAttributes, childNodeContent, rootNode.nodeKey, “nodeNameHashtable”);
setActorsNodeKey(nonRootNode.nodeKey);
NodeKey holdNodeKey = nonRootNode.nodeKey;

08 1089-9 CH08 6/26/01 7:33 AM Page 267

268 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

The next-to-last statement sets the key to the actors node in a property to allow easy
access to the root of the actors subtree in bonForumXML.The last statement only
illustrates that the return value of the element addition methods often need to be kept
to make addition of the next-generation nodes possible.

Adding Children of a Nonroot Node

All the varied elements that are added and removed during the operation of this Web
application are at least grandchildren of the root node. Here we see the addition of the
first such node, which is the actor named system.

childNodeName = normalize(“system”);
childNodeAttributes = “type = \”SYSTEM\””;
childNodeContent = normalize(“”);
nonRootNode = getBonForumXML().addChildNodeToNonRootNode(childNodeName,
➥childNodeAttributes, childNodeContent, nonRootNode.nodeKey, “nodeNameHashtable”,
sessionId);

In fact, the system node is not very developed yet. In the future, it will provide access
to the bonForum Web application in the manner of a system console, allowing the
owner of the application to carry out necessary maintenance and tuning tasks.

Notice that the addChildNodeToNonRootNode() method takes one more argument
than the addRootNode() and addChildNodeToRootNode() methods.That is because an
element that is a child of a nonroot node can have its nodeKey put in the
nodeNameHashtable with a key that is related to the session adding the element.That
means that elements added in bonForum, such as chat messages, can “belong” to the
user that added them.

After setting up the most basic XML chat document, the initializeBonForum()
method proceeds to load some subjects and Web links into the database, which com-
pletes the initialization of bonForumXML. Because loading data from XML files is
something useful that can also be done outside the initialization process, it is covered
in its own section next.

8.2.7 Loading XML Data into bonForumXML
BonForumStore has some methods to load data into bonForumXML and bonBufferXML
from XML files.We first describe how the loadForumXML() method is used during the
initialization of bonForumXML to load a document node that is parsed from an XML
file.Afterward, we expand on the method that make this possible, which you can also
use by means of a wrapper method called loadForumXMLFromURI() that takes care of
parsing its XML file argument. (The corresponding “buffer” methods are
loadBufferXML() and loadBufferXMLFromURI(), which are both still untested.)

A visitor to bonForum who wants to start a new chat is offered a choice of chat
subjects. In the XML representation of the chat, the subjects are a subtree of element
nodes with a unique set of pathnames from the root.This subjects tree is loaded into
bonForumXML with the bonForum.things element as its parent, and it provides the list of

08 1089-9 CH08 6/26/01 7:33 AM Page 268

2698.2 The BonForumStore Class

subject categories that is shown to the visitor. Here is the code that loads the subject
data tree from a file named subjects.xml:

String pathToSubTreeRootNode = “”; // later
String parentNodeInDestination = “things”;
String xmlUri = “..\\webapps\\bonForum\\mldocs\\subjects.xml”;
try {

DOMParser parser = new DOMParser();
parser.parse(xmlUri);
Document document = parser.getDocument();
try {

loadForumXML(pathToSubTreeRootNode, parentNodeInDestination,
➥document, “pathNameHashtable”, sessionId);

}
catch(Exception ee) {

logBFS.logWrite(“err”, “exception loading subjects.xml into
➥bonForumXML:” + ee.getMessage());

}
}
catch(Exception ex) {

logBFS.logWrite(“err”, “exception parsing subjects.xml” +
ex.getMessage());
}

It is easy to see that this method can be used for far more than just getting chat sub-
jects.As one further example, the forums.xml configuration file is loaded in a similar
manner.That loads another XML subtree that represents a list of Web sites.These are
later displayed as HTML links by using the XSLT processor functionality of the
TransformTag JSP custom tag.The code that loads the forums XML file comes right
after the previous code in the BonForumStore source file.The custom tag is discussed
in Chapter 10,“JSP Taglib and Custom Tag: Choice Tag.”

Meanwhile, if you get tired of the subjects that are listed in bonForum, or if you
want to add some links to the exit page displayed by bonforum.jsp, simply edit the
subjects.xml or forums.xml files in the mldocs folder.

Rapid Lookup of Loaded XML Elements

The loadForumXML() method loads XML from a DOM node into the bonForumXML
ForestHashtable. It has the option of storing all the nodeKeys loaded into a hashtable
with a pathNameToNode key.The hashtable was added to provide rapid lookup of a
node using only the pathname to the node from some ancestor node in the tree.
Essentially, we force some user input and program output to be connected to a sorted
list of pathnames to XML nodes.

As an example, an HTML SELECT list of pathnames to all the available chat subject
categories is shown to the visitor who is about to start a new chat. Each OPTION in the
SELECT control is thus the key in the hashtable to the XML node that the pathname
points to. Using the key to get the nodeKey from the hashtable is a lot faster than
searching through all the elements looking for some matching value.

08 1089-9 CH08 6/26/01 7:33 AM Page 269

270 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

loadXMLSubTreeIntoForestHashtable()

The loadForumXML() method relies on another method,
loadXMLSubTreeIntoForestHashtable(),which loads a specified node recursively into a
ForestHashtable. Note that it loads only element nodes with attributes and any text
node children they have.This class will take some more work to meet all the recom-
mendations for XML compatibility.This method should also probably be moved to
the ForestHashtable class. It could then be accessed through an interface that sup-
ported other database options in addition to ForestHashtable.

The Java code in this method is based in part on code from an Apache Software
Foundation sample.That source code is copyrighted by the Apache Software
Foundation.All rights reserved.

8.2.8 Dumping XML Data from bonForumXML
While on the subject of bonForumXML, we might as well mention that as a
ForestHashtable, it has a method called getXMLTrees() that can dump its entire XML
contents as a string.After the bonForumXML initialization described previously, we write
that string to the log file for the BonForumEngine class with the following statement:

logBFS.logWrite(“”, getBonForumXML().getXMLTrees());

Elsewhere, we use the getXMLTrees() method with the Xalan XSLT processor.The
JSP custom tag for XSLT is called TransformTag and is discussed in Chapter 10.When
its inXML attribute is set to bonForumXML, the resulting XSLT transformation gets its
input from the string output of the getXMLTrees() method.Transforming the
bonForumXML data onto JSP produced HTML pages has become an important part of
the application.

8.2.9 Using the bonForumXML Property
When you read Chapter 10, you will see that to invoke the getXMLTrees() method as
we just discussed in the last section, the TransformTag class must go through the
bonForumStore member of the BonForumEngine servlet to get to the “official”
bonForumXML instance, the one with the data.We show how it gets the bonForumStore
in Section 8.2.12,“Invoking Chat Methods from JSP Custom Tags.” Here, we just
want to show that not all useful ForestHashtable members and methods are wrapped
by convenient BonForumStore methods: Some must be accessed by getting the
bonForumXML property of the BonForumStore object, as follows:

bonForumStore.getBonForumXML().getXMLTrees();

Here is another example of using the bonForumXML property, taken from the “guest
executes chat” bonForumCommand handler code in BonForumEngine (see Section 8.1.21,
“The processRequest() Method: Handling Guest Executes Chat”).

08 1089-9 CH08 6/26/01 7:33 AM Page 270

2718.2 The BonForumStore Class

BonNode guestNicknameNode = getBonForumStore().getBonForumXML().getBonNode(
➥guestNicknameNodeKey);

8.2.10 Adding, Editing, and Removing XML Elements
The purpose of BonForumStore is to wrap the XML database for bonForum.That
implies that the Web application should add, edit, or remove XML data using
BonForumStore methods. In this section, we discuss the current situation of these
important database functions. Unfortunately, node editing has not yet been wrapped
by a BonForumStore method; it must still be done by invoking a ForestHashtable
method on the bonForumXML property.

The add() Method

The add() method is the workhorse of the processRequest() method in
BonForumEngine.You will find 15 or so examples of using add() in processRequest().
This method does its work by calling the protected addNode() method, which wraps
the database method addChildNodeToNonRootNode().The following is an excerpt from
the addNode() method source code in BonForumEngine.java:

bonNode = forestHashtable.addChildNodeToNonRootNode(name, attributes, content,
➥nonRootNodeKey, nodeKeyHashtableName, sessionId);

To supplement the information given here, please refer also to some examples given
previously.We showed the ForestHashtable addChildNodeToNonRootNode() method
being used to add elements to the XML data store (see the section “Adding Children
of a NonRoot Node,” in the context of the bonForum data design, and also see the
section “Adding a Host Actor”).We described somewhat how the pathNameHashtable
works, while describing the addition of a child element to the subject node with the
add() method (see “Adding a Chat Item Marker”). Be forewarned that these next
paragraphs repeat some of the information given previously to make it easier to find
this information.

Using configuration XML files available at Web application startup time, the soft-
ware adds the root and the children of the root.The add() method cannot be used for
adding root nodes or adding children to root nodes. It is designed only for adding
grandchildren to the root and their descendants.

Adding an element to one of the “intrinsic” elements in bonForumXML (actors,
actions, or things) is called “fast” because the keys to these root-child nodes are kept
in class properties for direct access.

When the BonForumStore.add() method adds a node, it finds its parent node using
its nodeKey. How it automatically finds the parent nodeKey depends upon the parent
node, as shown in Table 8.9.

08 1089-9 CH08 6/26/01 7:33 AM Page 271

272 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

Table 8.9 NodeKey Hashtable Keys Versus Type of Parent Node

Parent Node nodeKey Hashtable nodeKey Key Notes

Root nodeNameHashtable Root name 1
Child of root nodeNameHashtable Parent name 2

Descendant of nodeNameHashtable Session ID + 3
root-child creation time +

parent name

Subject pathNameHashtable Path from root to 4
element subject node

Notes:

1. The parent is the intrinsic root element (bonForum).You cannot use add() to add
a child to the root node. Use the addChildNodeToRootNode() method of the
database instead.

2. The parent is a nonroot, intrinsic element (actors, actions, things).The name
of that element is also the key to the parent nodeKey in the nodeNameHashtable.

3. The parent is not an intrinsic element (for example, it is a chat element under
the things element). (The parent is also not a subject element; the children’s
nodeKeys are put in the pathNameHashtable, not a nodeNameHashtable.) The key
to the parent nodeKey in the nodeKeyHashtable is normally made up of the fol-
lowing:

<sessionId> + “_” + <nodeKey.aKey> + “:” <elementName>

The length of the session ID can vary according to encryption used. Here is an
example key:

54w5d31sq1_985472754824:chat

Because the aKey of the nodeKey is the system time in milliseconds, the central
portion of the nodeKey key is also referred to as the CreationTimeInMillis and
is the time when the node was added to the data.

There is also an option to leave out the nodeKey.aKey portion of the key, if the
name of the parent node has been added to a selection list.That list is the
ForestHashtable property called UniqueNodeKeyKeyList.This option was added
to reduce the size requirements of the nodeKeyHashtable; for example, there is
no need to store all the many message nodeKey keys, so messageKey is put on the
list by default.With this option, nodeKey keys have the following format:

<sessionId> + “:” <elementName>.

Here is an example of such a “short-form” key:
54w5d31sq1_:messageKey

08 1089-9 CH08 6/26/01 7:33 AM Page 272

2738.2 The BonForumStore Class

4. The parent is one of certain elements loaded into the bonForumXML (such as the
subjects subtree loaded with the loadForumXML command, for example), so the
nodeKey is in the corresponding hashtable for that upload. For example, each
subject element has its nodeKey in the pathNameHashtable with a key that is
equal to the node path to that subject element node.An example of a subject
nodeKey key is as follows:

bonForum.things.subjects.Vehicles.Motorcycles

Each time you call the add() method, it returns an object that can be cast to a
NodeKey and kept as a reference to the nodeKey.These are useful for the following two
purposes:

n To re-create the nodeKeyHashtable nodeKey key
n To recall elements by NodeKey

The addToBuffer() Method

The add() method works only with the bonForumXML data storage object.Another
method called addToBuffer()works with bonBufferXML in a manner similar to add().
The addToBuffer() method is still under development and has not yet been tested.

The remove() Method

The remove() method is very similar to the add() method. It calls the removeNode()
method, which, in turn, calls a ForestHashtable method, as follows:

forestHashtable.deleteNode((NodeKey)nodeKey, deleteLeafOnly);

As you can see from the argument, the deleteNode() method provides a choice
between deleting elements that have no descendants (leaf nodes) and deleting elements
together with any descendants that they have.That choice is made available to the
remove() method by its third argument, leafOnly. If leafOnly is TRUE, uppercase, then
the node is removed only if it is a leaf. Other values of leafOnly allow the method to
prune branches.

The second argument to the remove() method is a string, nodeKeyKey. Currently,
the remove() method can be used only to remove a descendant of a root-child whose
nodeKey was put in the nodeKeyHashtable. (See the corresponding row in Table 8.9,
“NodeKey Hashtable Keys Versus Type of Parent Node,” and its note for details). If you
want to remove a root node or a child of the root, or remove subject nodes (which
have their nodeKeys in the pathNameHashtable), then you must use the
ForestHashtable delete() method directly, after getting the nodeKey yourself.

The removeFromBuffer() Method

The remove() method works only with the bonForumXML data storage object.Another
method, called removeFromBuffer(),works with bonBufferXML in a manner similar to

08 1089-9 CH08 6/26/01 7:33 AM Page 273

274 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

remove().The removeFromBuffer() method is still under development and has not yet
been tested.

The edit() and editBonNode() Methods

The planned edit() method in BonForumStore does not yet exist.The
ForestHashtable editBonNode() method, which can edit an existing XML node, has
not yet been wrapped by a BonForumStore editNode() method.When it is, that will be
called by edit() and editBuffer() methods. Meanwhile, the editBonNode() method
can be used for editing nodes, by first getting the ForestHashtable member
(bonForumXML or bonBufferXML).This is done, for example, by the
loadXMLSubTreeIntoForestHashtable() method, which is used by loadForumXML(),
which is used by loadForumXMLUri(), as follows:

NodeKey nk = getBonForumXML().editBonNode((NodeKey)(nextParentNodeKey), null,
➥null, nodeContent);

The editBonNode() method is used also by the addChatNodeAttribute() method (see
Section 8.2.11,“Invoking Chat Methods from BonForumEngine”).Yet another method
that uses editBonNode() is changeActorRating(), which is used by
changeChatActorRating() (see Section 8.2.13,“Invoking Chat Methods for JSP
Scriptlets”).

8.2.11 Invoking Chat Methods from BonForumStore
BonForumStore contains some methods that are quite specialized for the implementa-
tion of a chat application.These methods are used by the processRequest() method
of BonForumEngine, while it processes threads whose bonForumCommand values are “host
executes chat” or “guest executes chat.” In the first case, the visitor is starting a chat; in
the second, the visitor is joining a chat.

These BonForumStore methods are invoked when a visitor starts a chat and when
visitor joins a chat:

getBonForumChatNodeKeyKey
isHostInChat
isGuestInChat
getBonForumChatItemNodeKey
getActorNicknameNodeKey

This BonForumStore method is called only when a visitor starts a chat:
addChatNodeAttribute

These BonForumStore methods are called only when a visitor joins a chat:
getBonForumChatNode
getBonForumAttributeValue

The rest of this section is one example of each of these BonForumStore chat methods
being used.This section is definitely meant to be read with the source code as a ready

08 1089-9 CH08 6/26/01 7:33 AM Page 274

2758.2 The BonForumStore Class

reference. For a detailed discussion of the code that uses these BonForumStore meth-
ods, refer back to Section 8.1.20,“The processRequest() Method: Handling Host
Executes Chat,” and Section 8.1.21,“The processRequest() Method: Handling
Guest Executes Chat.”

The getBonForumChatNodeKeyKey() Method

The getBonForumChatNodeKeyKey() method returns the nodeNameHashtable key for a
chat node nodeKey in bonForumXML.That allows direct access the chat node and is used,
for example, to add child elements to a chat using the add() method.You can see the
getBonForumChatNodeKeyKey() method in action in the previous listings. Refer to the
previous sections “Rejoining Existing Chats” and “Passing Information Between
Sessions.”

When a visitor joins a chat, the method is used like this:
chatNodeKeyKey = getBonForumStore().getBonForumChatNodeKeyKey(chatItem);

The chatItem argument is a string combining a chat subject and a topic. It could be
this, for example:

animals_fish_piranha_[first aid for fish breeders]

The getBonForumChatNodeKeyKey() method works by invoking the
getChatItemNodeFromChatItem() method to get the chatItem node. It can then
recover the chatNodeKeyKey from the name of the chatItem node by removing its
prefix.

The getChatItemNodeFromChatItem() method works by first recovering the
chatSubject and chatTopic from the chatItem string. Next, it uses the chatSubject
with the subjectNodeKeyFromPathName() method to get the nodeKey for the subject
node. Finally it uses the chatTopic and the getChildNodeFromAttributeValue()
method of the bonForumXML object to find the chatItem node, which is the only child
of the subject node with the given chatTopic as a chatTopic attribute value.

The isHostInChat() and isGuestInChat() Methods

The isHostInChat() method returns true if a host is in a chat, given the nodeKey of
the host (as a string) and a chatNodeKeyKey.The isGuestInChat() method returns
true if a guest is in a chat, given similar arguments.You can see both these methods in
action in the same source code listings as the method covered in the last section. Refer
to the sections “Rejoining Existing Chats” and to “Passing Information Between
Sessions.”

An example of using one of these methods follows:
actorIsGuestInChat = getBonForumStore().isGuestInChat(actorKeyValue,
➥chatNodeKeyKey);

The isGuestInChat() method works by first calling the getGuestKeysInChat()
method to get a list of nodeKey string values for all the guests in the chat. It then iter-
ates the list looking for the given guest nodeKey value.

08 1089-9 CH08 6/26/01 7:33 AM Page 275

276 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

The getGuestKeysInChat() method works by first getting the chat node, using the
chatNodeKeyKey and the getBonForumChatNode() method. It can then pass the nodeKey
of the chat node and the name for chat node children that contain guest nodeKey val-
ues (guestKey) to the getChildNodeContentsFromName() method.That is a database
method (for now, ForestHashtable method only) that returns an ArrayList with the
combined contents of all child nodes with a given name.

The getBonForumChatItemNodeKey() Method

The getBonForumChatItemNodeKey() method returns a chatItem node’s nodeKey from
bonForumXML, given a “subject plus topic” string.You can see this method in action
toward the end of the same source code listings as the methods covered in the last two
sections. Refer to the sections “Rejoining Existing Chats” and “Passing Information
Between Sessions.”

Here is one example of the method in use:
String foundChatItemKey =
➥getBonForumStore().getBonForumChatItemNodeKey(fakeChatItem).toString();

The getBonForumChatItemNodeKey() method works by calling the
getBonForumChatItemNodeKey() method.That is the same method that is called by the
getBonForumChatNodeKeyKey() method.This time, the chatItem nodeKey is returned. It
is used to link the chat subject and messages.

The getActorNicknameNodeKey() Method

The getActorNicknameNodeKey() method returns the nodeKey of an actor node for a
given actorNickname.You can see this method in action in previous code listings.
Refer to the sections “Starting a Chat,”“Joining a Chat,” and “Adding a Host Actor.”

Here is an example of the method being used:
NodeKey hostNicknameNodeKey =
➥getBonForumStore().getActorNicknameNodeKey(actorNickname, “host”);

The getActorNicknameNodeKey() works by calling the database method
getChildNodeKeysFromName(), which returns a list of nodeKeys for all nodes with the
given name that are children of a given node. In this example just given, that method
call looks like this:

ArrayList actorNodeKeys =
➥getBonForumXML().getChildNodeKeysFromName(getActorsNodeKey(), actorNodeName);

The returned list therefore contains the nodeKeys of all the host children of the intrin-
sic actors node.

The getActorNicknameNodeKey() method continues by iterating the list of actor
nodeKey values. It needs to look for one whose actorNickname child node has as its
content the nickname that it is seeking. It can do that by calling the
getChildNodeByNameAndContent() database method for each item in the list, which

08 1089-9 CH08 6/26/01 7:33 AM Page 276

2778.2 The BonForumStore Class

can return the (unique) actorNickname nodeKey for each actor nodeKey.When it has
that, it can get the corresponding actorNickname node, compare its content to the
nickname that it is seeking, and return the actorNickname nodeKey when (and if) it
gets a match.

The addChatNodeAttribute() Method

The addChatNodeAttribute() method adds one attribute (name=value) to a chat node
in bonForumXML. Currently, it works only for a ForestHashtable “database.”You can see
this method in action near the end of the source listing in the previous section
“Starting a Chat.”There is also further discussion of this method in the earlier section
“Adding an itemKey to a Chat.”

Here is an example of this method in use:
NodeKey nk = bonForumStore.addChatNodeAttribute(chatNodeKeyKey, attributeName,
➥attributeValue);

The addChatNodeAttribute() method works by first getting the chat nodeKey from
the nodeNameHashtable using the chatNodeKeyKey argument.With the chat nodeKey, it
can get the chat node itself—and, therefore, its attributes. It concatenates the new
attribute with any existing ones and then calls the editBonNode() database method
(which requires the chat nodeKey again as an argument).The editBonNode() method
replaces the chatNode with a copy containing new string of attributes.

The getBonForumChatNode() Method

The getBonForumChatNode() method returns the chatNode from bonForumXML for a
given chatNodeKeyKey.You can see this method in action in the previous source code
listing in the section “Rejoining Existing Chats.”

This method is used internally by other BonForumStore methods as well as by
processRequest() in BonForumEngine, where it is called like this:

BonNode chatNode = null;
// . . .
chatNode = bonForumStore.getBonForumChatNode(chatNodeKeyKey);

The getBonForumChatNode method works by getting the nodeKey for the chat node (if
any) from the nodeKeyHashtable using its argument as the key. It can then use the
database method as follows to get the chat node that is returned:

chatNode = getBonForumXML().getBonNode(chatNodeKey);

It returns a null value if there is not a chat nodeKey for that nodeKeyKey in the
nodeNameHashtable.

The getBonForumAttributeValue() Method

The getBonForumAttributeValue() method returns the value of a BonNode attribute,
given the BonNode and the attribute name.You can see this method in action in the

08 1089-9 CH08 6/26/01 7:33 AM Page 277

278 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

previous source code listing above in the section “Joining a Chat.”There is also some
discussion of the method call in both that section and in the section “Joining a Chat,
Continued.”

The method is called as in this example:
String chatItemKey = bonForumStore.getBonForumAttributeValue(chatNode, “itemKey”
➥);

The method works by passing the attributes of a node (the chatNode, in the given
example) to the getAttributeValue() database method, which returns the value of an
attribute given a string of name=value attributes and an attribute name (itemKey, in the
given example).

8.2.12 Invoking Chat Methods from JSP Custom Tags
Some of the methods described previously were merely convenience methods, wrap-
ping a bunch of lower-level code.That is definitely not the case for the methods dis-
cussed in this section, which have a major role to play in the application (at least, the
ones with “forum” in their names do now—the ones with “buffer” in their names are
not yet being used). Using a JSP tag library and custom tags in bonForum is the sub-
ject of Chapter 10, and the JSP custom tags invoking these methods will be fully dis-
cussed there.We will try not to repeat information here, so be sure to refer to Chapter
10 for a complete description of these methods.This section is definitely meant to be
read with the source code handy.

The outputForumPathNames() Method

The outputForumPathNames() method outputs pathNames and nodeKeys from an XML
subtree (for now, a bonForumXML subtree) into a TreeMap.The TreeMap is returned and
can be used as a sorted list of the paths to all the nodes in the subtree.

The method is still under development. Currently, only one of its arguments is
used, and it gives the path to the root node of the subtree to iterate.The other argu-
ments will be used to format the output in different ways. One will provide a string
(ancestorReplacer) that will replace all the nodes except for the last in each output
node path.Another (nodeSeparator) will provide a string that separates each node in
the node path output items.The first argument can later be used to add the
chatSubjectList option discussed previously, as well as others.

This method is used for now only to get the list of subjects for a visitor to choose
from when starting a chat.To make that easier, it skips over the chatItems nodes in
the subjects subtree in bonForumXML. Doing that should be one available option, but
not the default behavior, so that the method can be used for other purposes.

The outputForumPathNames() method iterates through the elements in the database
(bonForumXML), starting at some element and descending through the tree hierarchy.
The method uses the pathNameFromNodeKey() method to get a string object describing
the ancestry of each node.The pathname of each visited node is output into a TreeMap

08 1089-9 CH08 6/26/01 7:33 AM Page 278

2798.2 The BonForumStore Class

object.That means that all the pathnames are available again but are sorted alphabeti-
cally.The code on a JSP document likes it that way.

The OutputPathNamesTag class essentially executes the following statements to
invoke this method:

BonForumStore bonForumStore = null;
[. . .]
bonForumStore = (BonForumStore)(pageContext.getServletContext().getAttribute(
“bonForumStore”));
[. . .]
outputTable = bonForumStore.outputForumPathNames(“bonForumXML”,
➥pathToSubTreeRootNode, ancestorReplacer, nodeSeparator);

For the details, see the source code for the custom tag and Chapter 10.

The outputBufferPathNames() Method

This method is still under development. It is essentially the same as the
outputForumPathNames() method, but it’s for use with the bonBufferXML hashtable.
The two could probably be combined, but they will be called from custom tags ,and
we are making it easier for their implementation to diverge widely in the future.

The outputForumChatMessages() Method

An actor active in a bonForum chat will see a display of chat messages posted by the
host and guests of that chat. (Someday, chats will allow more than one host per chat.)
The outputForumChatMessages() method gets for that display a TreeMap object full of
messages from the XML chat data. It is planned that the XML source of the messages
can include any XML resource with a URI. For now, it is only the bonForumXML data
object.

This method is being developed further. For example, the attributes now unused
will later select subsets of chat messages by actor, date, and so on.This method is now
called only by a JSP custom tag from the two JSP documentshost_executes_chat_
frame.jsp and guest_executes_chat_frame.jsp.

Simplifying the actual code, we can say that the outputForumChatMessages()
method in BonForumStore is called by OutputChatMessagesTag using the following
statements:

BonForumStore bonForumStore = null;
[. . .]
bonForumStore = (BonForumStore)(pageContext.getServletContext().getAttribute(
“bonForumStore”));
[. . .]
outputTable = bonForumStore.outputForumChatMessages(“bonForumXML”, attr1, attr2,
➥attr3, pageContext.getSession());

Notice the last argument, which is the HTTP session for one particular user of the
application, the one that will see the message list output by the method.The session is
needed to get all the various user settings regarding message display page navigation

08 1089-9 CH08 6/26/01 7:33 AM Page 279

280 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

and size, which are available in session attributes.A session attribute is also temporarily
being used to provide the itemKey for the current chat.The itemKey is being used to
search for all the messages that belong to a chat.This algorithm is not the correct one,
and it will slow down as chat data increases.The correct way to find the chatMessage
nodes is by iterating the messageKey children of the chat node. Perhaps there will be
time to test the correct one before publication of the book CD-ROM, or perhaps it
will await future releases on the bonForum SourceForge Web site at www.bonforum.org.
For more about this method, see Chapter 10.

The outputBufferChatMessages() Method

This method is still under development. It is essentially the same as the
outputForumChatMessages() method, but it is for use with the bonBufferXML
hashtable.Again, the two could probably be combined—we are simply making it eas-
ier for their implementation to diverge widely in the future.

The getXMLTrees() Method

Previously discussed in Section 8.2.8,“Dumping XML Data from bonForumXML,” and
Section 8.2.9,“Using the bonForumXML Property,” the getXMLTrees() method is
another BonForumStore method that is used from a JSP custom tag, the TransformTag
class.This method simply puts the entire contents of the bonForumXML data object into
a string.The transform tag hands that over to another class that executes an XSLT
process of the XML chat data to provide dynamic content to the browser interface.
Currently, there are two such XSLT classes, one for Xalan-Java 1 and one for Xalan-
Java 2.

Simplifying greatly, here are the statements called by the TransformTag class to get
its XML database in a string:

private static BonForumStore bonForumStore;
String inXML; // actually, a string argument
[. . .]
bonForumStore = (BonForumStore)(pageContext.getServletContext().getAttribute(
➥“bonForumStore”));
[. . .]
inXML = “<?xml version=\”1.0\” encoding=\”UTF-8\”?>”
synchronized(bonForumStore) {
inXML += bonForumStore.getBonForumXML().getXMLTrees();
}

Notice that we call the getXMLTrees() method from within a block that is synchro-
nized to the BonForumStore.That locks out other threads from the database while
dumping its contents so that they cannot change its content during the dump, perhaps
changing relations between data items in the process.

Another point to mention is that dumping the XML buffer object is simply done
by calling the same method on it instead of bonForumXML, as follows:

inXML = bonForumStore.getBonBufferXML().getXMLTrees();

08 1089-9 CH08 6/26/01 7:33 AM Page 280

2818.2 The BonForumStore Class

In the real code, all this is a bit more involved and flexible than that because the tag is
capable of transforming XML from a URI as well as from the chat database. For more
about this method, see Chapter 10.

8.2.13 Invoking Chat Methods from JSP Scriptlets
In this final section of the chapter, we present the BonForumStore methods that are
now being invoked by Java code within JSP scriptlet elements.The techniques shown
here have barely been used in bonForum until now and will no doubt assume much
more importance in the future of the project. First, we take a look at how a host can
rate a chat guest.After that, we discuss a variety of ways to call bean methods from JSP.

The changeChatActorRating() Method

A command available to chat hosts (and someday to guests as well) allows them to rate
other actors in their chat.The TransformTag is used to display XSLT-generated lists of
chat hosts and guests.When a chat host selects an actor from a list, that sends a request
to the BonForumEngine with a parameter called either chatHost or chatGuest.That
parameter contains the selected actor’s name, age, and rating, and its value is set in a
session attribute by the servlet.The actor doing the rating then clicks a button to
increase or decrease the rating of the actor selected from the list. Clicking the button
submits a request to the BonForumEngine, which forwards it to eitherhost_decreases_
rating.jsp or host_increases_rating.jsp.

These JSPs are quite simple, for now.They contain the following tag, which allows
the code after it to access methods and properties of a bean—in this case,
BonForumStore.

<jsp:useBean id=”bonForumStore”
class=”de.tarent.forum.BonForumStore”
scope=”application”/>

Farther down, on the first JSP you can find the following scriplet:
<%
bonForumStore.changeChatActorRating(“-1”, session);
%>

To increase the rating, the other JSP uses an argument of 1 instead of –1.That is how
simple it is to invoke the changeChatActorRating() method of BonForumStore from
a JSP.

It wasn't so simple getting the changeChatActorRating() method to work—this
turned out to be far more complex than we had anticipated.The method first gets the
chatNodeKeyKey from a session attribute, where it was put when the host created the
chat.Then the method checks for a chatHost session attribute (described at the begin-
ning of this subsection). If it finds none, it looks for a chatGuest session attribute
instead. If it finds neither, it is “game over.” Otherwise, the chatNodeKeyKey is used as
an argument to either the getHostKeysInChat() or the getGuestKeysInChat()

08 1089-9 CH08 6/26/01 7:33 AM Page 281

282 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

method, as appropriate.That returns actorKeys, which is an array list of nodeKeys,
either for all host nodes or for all guest nodes in bonForumXML.

The chatGuest and chatHost session attribute values (chatActor strings) have the
following format, which depends upon the XSL document used in the XSLT process
that displays the lists of hosts and guests:

actorNickname age:actorAge rating:actorRating

Here is an example:
John Doe age:47 rating:11

The actorNickname is recovered from that string and is used as follows:
NodeKey actorNodeKey = getActorByNickname(actorKeys, actorNickname);

The getActorByNickname() method selects the correct actor nodeKey from the list for
the correct one. It is then used as follows:

NodeKey actorRatingNodeKey = getActorRatingForActor(actorNodeKey);

The getActorRatingForActor() method gets the nodeKey of the actorRating node.
That node is a child of the actor node for the actorNodeKey. The content of the
actorRating node is the current rating for the actor being rated.

The final statement in the changeChatActorRating() method is the following:
return changeActorRating(actorRatingNodeKey, amount);

The changeActorRating() method gets the actorRating node from its key, the first
argument. It then parses the actorRating node content and the amount argument as
integer values.The rating value is offset by the amount value (1 or –1, in our case) to
get a new rating, which is converted to a string. Finally, the actorRatingNodeKey and
the new rating value for the actorRating node content are both passed to the
editBonNode() method of the database object.That method takes care of updating the
actor rating in the XML data (we will spare you the details).

Accessing Bean Properties and Methods from JSP

You just saw a bean method, changeChatActorRating(), being called from a JSP.We
will now show several ways to access bean properties and to call bean methods from
JSP.The property examples will use two BonForumStore properties, hitTimeMillis and
initDate, which are mostly useful for examples like this. For convenience, the method
examples will use the get and set property access methods of these same two proper-
ties, although the techniques that we show apply to other public bean methods as
well.

First, let’s introduce the properties that we will use.Whenever a thread goes
through the processRequest() BonForumStore method, it calls the initialize()
method of the class. In that method, it leaves a timestamp in the hitTimeMillis prop-
erty with the following statement:

setHitTimeMillis(null);

08 1089-9 CH08 6/26/01 7:33 AM Page 282

2838.2 The BonForumStore Class

With a null argument, the set method uses the system clock to set the current time
in the property. Both set and get methods for hitTimeMillis have been declared
public so that we can both read and write the property from JSP in bonForum.

The thread next calls the initializeXML() method. If the bonForumXML data object
is empty (normally true only after application startup), it will be filled with necessary
data.When that happens, the setInitDate() method of BonForumStore is called with a
null argument, which puts a datestamp in the initDate property, which shows the
date and time that the database was initialized.The getInitDate() method is public,
but the setInitDate() method is protected. From JSP, therefore, initDate is a read-
only property.

One easy way to use a JavaBean from JSP is to use a jsp:useBean tag, as follows:
<jsp:useBean id=”bonForumStore”
class=”de.tarent.forum.BonForumStore”
scope=”application”/>

It is important to realize that jsp:useBean will create a new instance of the bean only
if it does not find an already existing one with the name given by the id attribute, in
the scope given by the scope attribute. Because BonForumEngine has created a servlet
context attribute called bonForumStore and has set it to its static bonForumStore data
object, this tag will find the “real” data storage object, not create a new one.

You can then use a jsp:getProperty tag to display a property value, if you are
looking for a property that is readable and that provides a value (we are, in this
example):

initDate: <jsp:getProperty name=”bonForumStore”
property=”initDate”/>

Alternatively, you can use a JSP expression to display the same property value by using
the id from the jsp:useBean tag to access the bean and its method, as follows:

initDate: <%=bonForumStore.getInitDate()%>

The setInitDate() method is protected, so attempts to set initDate from JSP will
cause a compile time error. Instead, let’s try to set the hitTimeMillis property value
from a JSP, using something like this example:

<jsp:setProperty name=”bonForumStore” property=”hitTimeMillis” value=”HELLO!”/>

Another way to set the same property is to use something like this:
<%
bonForumStore.setHitTimeMillis(“GOODBYE!”);
%>

Notice that this last example uses a scriptlet, not an expression, which would cause a
compilation error because the set method returns void.Also, as you can see, we
should have put some validation code in the set method.

These last examples illustrate some important points. Public access to a Web appli-
cation—through bean properties and methods, for example—can defeat one of the

08 1089-9 CH08 6/26/01 7:33 AM Page 283

284 Chapter 8 Java Servlet and Java Bean: BonForumEngine and BonForumStore

main goals of JSP, which is to separate the job of the page designer from the job of the
Java developer. Making writeable public properties (or readable ones with side effects)
and public methods available for JSP development can create possibilities for uninten-
tional behavior in a Web application.At the very least, changes in JSPs can then
require extensive retesting of the application.

The last two examples rely on the jsp:useBean tag that we showed earlier.There
are other ways to get the bean. One rather long one follows:

<%
bFS = (de.tarent.forum.BonForumStore)
pageContext.getServletContext().getAttribute(“bonForumStore”);
bFS.setHitTimeMillis(null);
%>

A shorter way to accomplish the same thing as this last example is to use the built-in
application JSP variable, like this:

<%
bFS = (de.tarent.forum.BonForumStore) application.getAttribute(“bonForumStore”);
%>
hitTimeMillis: <%= bFS.getHitTimeMillis()%>

Yet another way to get the bean in JSP is to use the getAttribute() method of
pageContext, with the appropriate scope value. (The value for an application scope
attribute is 4, session is 3, request is 2, and page is 1).You must cast the object returned
from the attribute to the right class before assigning it to a variable, which can then be
used to access the bean and its methods, as in the JSP expression shown here:

<%
de.tarent.forum.BonForumStore bFS =
➥(de.tarent.forum.BonForumStore)pageContext.getAttribute(“bonForumStore”, 4);
%>
initDate: <%= bFS.getInitDate()%>

By the time you try using the XML versions for all the JSP tags used in the examples,
you will see that lots of variations are possible here. Depending on your point of view,
JSP is either a rich palette or a complicated mess!

08 1089-9 CH08 6/26/01 7:33 AM Page 284

Java Applet Plugged In:
BonForumRobot

9

IN THIS CHAPTER,WE DISCUSS THE BonForumRobot applet, which is part of the
bonForum Web chat application. Here you learn how to create and deploy a Java
applet to control a Web application user interface.You also use the Sun Java plug-in to
support an applet on the client.

9.1 Hands-on with Java Applets
As you can see by searching in a bookstore or on the Internet, much information
about Java applets is available. Here we will be brief about topics that are well docu-
mented elsewhere.To find out more about applets, we suggest the Applet trail of the
Sun Java Tutorial, which you can find at the following URL:

http://java.sun.com/docs/books/tutorial/applet/index.html

You can also find useful information and examples at the following URL:
http://java.sun.com/applets/index.html

If you want to use applets in your Web applications, you will certainly want to study
the Java API documentation on the applet class.You may have already downloaded the
documentation. It is available for browsing or downloading at the following URL:

http://java.sun.com/j2se/1.3/docs.html

09 1089-9 CH09 6/26/01 7:34 AM Page 285

286 Chapter 9 Java Applet Plugged In: BonForumRobot

As experimenters by nature, we hope that you will begin by trying out the demos and
examples provided with the SDK, and we will provide the minimum help you need to
get started. We will proceed from there to discuss some essentials that you will need
to put your own applet programming efforts to use in your Web application.This
includes telling your HTML that it should use your applet also getting the client com-
puter to be a good applet container for your applet.

9.1.1 Try the Applet Demos
The best way to get a quick feel for what can be accomplished by adding applets to a
Web application is to try some out. If you have installed the SDK for Java 1.3, you
should try out the many demo applet programs provided.We will discuss only two of
these here, but they all deserve study, together with their source code.You might need
to compile these applet demos before trying them out.

GraphLayout

You can find the GraphLayout demo applet at something like the following location:
C:\jdk1.3\demo\applets\GraphLayout\example1.html

One of our favorites when we tried the demo applets was this visually appealing stunt
that certainly takes advantage of a need for client computing power and reduces band-
width requirements.These features are perhaps the most compelling argument for the
use of applets.

MoleculeViewer

You can find the MoleculeViewer applet at something like the following location:
C:\jdk1.3\demo\applets\MoleculeViewer\example1.html

Be sure to drag the mouse pointer around on the pictures of molecules to see them
from all angles.Try example2.html and example3.html as well.

9.1.2 Embedding Objects in HTML
You might be familiar with the now somewhat obsolete method of embedding an
applet in an HTML document using the APPLET element.

The group that creates the official recommendation for HTML thought that the
functionality of the Applet tag was better included into the new Object tag, which
allows embedding of more than just applets into a document. Look up the specifica-
tion for the embedded object tag in the HTML 4.01 specifications, which you can
find at the following URL:

http://www.w3.org/TR/html401/

09 1089-9 CH09 6/26/01 7:34 AM Page 286

2879.1 Hands-on with Java Applets

9.1.3 Using Applets with Java Plug-in
First, just for fun, try using the Java plug-in to embed one of the Sun SDK demo
applets into a JSP document.You can get the details that you will need in your
jsp:plugin element from the HTML file that is normally used to launch the applet
demo.

We did this with the demo called Fractal, which we can launch using the following
SDK document URL (yours may vary):

file://C:\jdk1.3\demo\applets\Fractal\example1.html

Put your new JSP document somewhere in the Tomcat Server document space. For
example, we saved a file as TOMCAT_HOME\webapps\examples\bonbook\
testFractal.jsp.

You must also copy the .class files.We created an Applet folder under bonbook to
make things nice and neat. Copy the CLSFractal class as well as the supporting classes
(CLSRule, CLSTurtle, and ContextLSystem).You should end up with all the .class files
in the folder TOMCAT_HOME\webapps\examples\bonbook\applet.

Now convert the applet tag to the jsp:plugin as in the example that follows. Note
the addition of the type and jreversion attributes, as well as the lack of the .class
extension in the converted code attribute.

To complete the conversion from the APPLET element in the HTML file to a
jsp:plugin element in the JSP file, you will need to add enclosing <jsp:params> and
</jsp:params> tags. Also, each parameter tag that you have needs a few changes, espe-
cially the following:

n Change each param tag into a jsp:param tag.
n Enclose the value of each attribute in double quotation marks.
n Close the parameter tags correctly with a />. (Note that the </jsp:param> clos-

ing tag throws a Jasper exception—you do need to use the trailing slash.)
n Change the codebase parameter to point to the proper location of the applet

class file.

When you get done with the conversion, your JSP document will contain something
like this:

<html>
<table>
<tr>
<jsp:plugin type=”applet” code=”CLSFractal.class” codebase=”./applet”
jreversion=”1.3.0” width=”500” height=”120” >
<jsp:params>
<jsp:param name=”level” value=”5”/>
<jsp:param name=”rotangle” value=”45”/>
<jsp:param name=”succ1” value=”F-F++F-F”/>
<jsp:param name=”delay” value=”1000”/>
<jsp:param name=”axiom” value=”F”/>
<jsp:param name=”normalizescale” value=”true”/>

09 1089-9 CH09 6/26/01 7:34 AM Page 287

288 Chapter 9 Java Applet Plugged In: BonForumRobot

<jsp:param name=”incremental” value=”true”/>
<jsp:param name=”pred1” value=”F”/>
<jsp:param name=”border” value=”2”/>
<jsp:param name=”startangle” value=”0”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED not supported by browser.</jsp:fallback>
</jsp:plugin>
</tr>
</table>
</html>

As you can see from our sample, we copied the CLSFractal.class file, along with its
supporting class files, into a subfolder of the Examples Tomcat Web app. In other
words, the class files had names similar to C:\jakarta-tomcat\webapps\examples\
bonbook\applet\CLSFractal.class.

When you request the JSP page from your Tomcat Server (which should be run-
ning, obviously), you can do so using something like the following URL:

http://localhost:8080/examples/bonbook/testFractal3.jsp

If all goes well, you should be rewarded by seeing the Fractal applet demo on your
browser display, this time being cared for by the Java plug-in. Now try changing some
things around, such as the codebase attribute value and corresponding location of the
applet class files.You will find that you can put the applet class in a descendant folder
relative to the JSP document, but you cannot put it just anywhere at all on the system.

Debugging Applets Using the Java Console

When you deploy your applet on the browser using the Sun Java plug-in tags, you
should also be aware of the Java Console setting for the plug-in.The Control Panel
that comes with the Sun Java plug-in has a setting that enables or disables whether the
Java Console is displayed when your applet is first initialized.You can launch the Java
plug-in Control Panel by double-clicking its icon in the NT Control Panel. Make sure
that Show Java Console is checked on the Basic property tab.

Notice that you can disable the Java plug-in here as well, so if a plugged-in object
is not working, this is one place to troubleshoot.

Note that you can also turn on the Java Console using the Internet Properties icon
in the NT Control Panel and choosing the Advanced tab. Scroll down and check the
Java Console Enabled option in the Microsoft VM group.

Normally, you do not want the Java Console to appear on your system, especially
because it can take quite a while to appear. For development of an applet, however, at
times the Java Console will certainly help you to trace and debug your coding efforts.
Simply use the Java System.out.println() method in your applet code to print a
trace of the processing status.You can see that trace at runtime on the Java Console.
Here is an example that prints out the value of one of our applet parameters:

System.out.println(“refresh:” + this.refresh);

09 1089-9 CH09 6/26/01 7:34 AM Page 288

2899.1 Hands-on with Java Applets

We like to use many such statements while developing.The following listing shows
the contents of the Java Console taken while we were developing the
BonForumRobot applet (reformatted to fit the margins of this book). It shows the
normal console messages and the logging output. In production code, we should dis-
play only error codes (because logging will slow performance), but while debugging,
longer messages can be useful.That certainly was true of the exception message at the
end of this example:

Java(TM) Plug-in: Version 1.3.0rc3-Z
Using JRE version 1.3.0rc3 Java HotSpot(TM) Client VM
User home directory = C:\WINNT\Profiles\westy.001
User has overriden browser’s proxy settings.
Proxy Configuration: no proxy
JAR cache enabled.
Opening
http://ginkgo:8080/bonForum/jsp/forum/applet/BonForumRobot.class with cookie
➥“JSESSIONID=To1012mC7393683872105755At”.
init()
start()
refresh:true
target:_top
document:/bonForum/jsp/forum/host_executes_chat.jsp
increment:100
limit:1
message:Preparing new chat!
uncacheableDocument:/bonForum/jsp/forum/host_executes_chat.jsp963620229925.tfe
➥thisThread:Thread[963620229674,4,http://ginkgo:8080/bonForum/jsp/forum/applet/-
➥threadGroup]
top stop
thisThread:Thread[963620229674,4,http://ginkgo:8080/bonForum/jsp/forum/applet/-
➥threadGroup]
stop()
showDocument
thisThread:Thread[963620229674,4,http://ginkgo:8080/bonForum/jsp/forum/applet/-
➥threadGroup]
MalformedURLException caught in
BonForumRobot/bonForum/jsp/forum/host_executes_chat.jsp963620229925.tfe
thisThread:Thread[963620229674,4,http://ginkgo:8080/bonForum/jsp/forum/applet/-
➥threadGroup]

9.1.4 Converting Applet Tags to Object Tags
Because the object tags are now supposed to be used instead of applet tags, you might
want to convert existing applet tags into object tags. One way to do that is by using
the HTMLConverter utility from Sun.That will also mean, however, that your applets
will be embedded in Java plug-in elements, and thus will be executed by the Sun Java
JRE instead of the browser’s default Java runtime engine.

09 1089-9 CH09 6/26/01 7:34 AM Page 289

290 Chapter 9 Java Applet Plugged In: BonForumRobot

9.2 XSLTProcessor Applet
One of the classes that comes with the Apache Xalan XSLT processor packages is an
applet called XSLTProcessorApplet.As you might guess from its name, this applet
encapsulates the basic XSLT transform functionality that is required to apply an XSLT
style sheet to an XML document. Such a transform produces as its output a document
that can be in XML, HTML, or even some other language.

This XSLT Transform applet can be found in xalan.jar in the Apache Xalan project.
The applet in compiled form will be in a file with a name something like
org/apache/xalan/xslt/client/XSLTProcessorApplet.class.

To use this applet, you must be sure that the applet can find xalan.jar and xerces.jar.
In the object tag that declares the applet, the paths to these two important jar files are
given relative to the location of the HTML that “calls” the applet.

You should be able to find an HTML file that is all set up for you to try out the
Xalan XSLT applet.We found such a document at this location:

xalan_1_1\samples\AppletXMLtoHTML\AppletXMLtoHTML.html

When we tried this HTML file, we got some frames displayed on our browser but
were informed by a message in the browser status bar that there was an error.The
applet could not find the class org.xml.sax.SAXException.As so often occurs when
setting up Java programs, we thought we had a classpath problem.

A file in the same Xalan samples folder, called README.html, informed us that
the applet might need to be run from a server because it is restricted in what it can do
by the Java “sandbox” in which it runs in a client environment. However, we found
that we could get browsing of the HTML file to work by adding a CLASSPATH variable
to our environment, with the following value:

c:\xalan-j_1_2_2\xalan.jar;c:\xalan-j_1_2_2\xerces.jar

It seemed to us that this should not be necessary.We thought that we could just set
the value of the archive attribute in the APPLET element on the HTML page. Doing
that should allow the applet to find the Xalan and Xerces JAR files.That did not turn
out to be the case, though.As a further applet adventure, you could put the Xalan
XSLTProcessor applet into a jsp:plugin element on a JSP page. In this next section,
which is about the BonForumRobot applet, we will revisit the theme of plugging in
an applet.

9.3 BonForumRobot
The BonForumRobot applet is part of the bonForum Web chat application project.
How it is used in that application is discussed in Chapter 7,“JavaServer Pages:The
Browseable User Interface.”There you can find a description of how the applet is
embedded into the JSP pages that use it. In this chapter, we discuss the design and
inner workings of the applet.To follow the discussion, refer to the source code, either
in the back of this book or on the accompanying CD. Note that the Java source file is

09 1089-9 CH09 6/26/01 7:34 AM Page 290

2919.3 BonForumRobot

not in the de.tarent.forum package.You should find the file BonForumRobot.java in
the top-level bonForum source folder.

9.3.1 Problems Solved Using This Applet
The making of this robot applet was undertaken for several reasons.The most practical
of these was to solve two or three problems encountered while creating the browser
user interface for the bonForum Web chat application.

n Using the jsp:forward tag to get from one HTML frameset to another
n Refreshing HTML forms at minimum 5-second intervals
n Flickering when using the “standard” approaches to refreshing HTML
n Preventing the browser from looking for cached HTML frame content

9.3.2 Subjects Learned Using This Applet
Not the least important reason to create this applet was to have a part of our Web
application project help us to learn and teach something about the following topics (at
least):

n Java applet
n Object tag in HTML
n Java plug-in
n Threads
n Client-side solutions

9.3.3 Applet Life Cycles
Applets have a life cycle, which means that their container agrees to a contract to call
the following methods sequentially: init(), start(), stop(), and destroy().The
names are quite self-explanatory.You take advantage of this contract by overriding the
methods that you need in a subclass that you create of the Applet class. Here is the
brief applet storyline:

The init() method of the applet is first called by its applet context (a browser
or applet viewer) when the applet is loaded into that container system.

The start() method is automatically called after init() method and also each
time the HTML client containing the applet is visited.

The stop() method is automatically called when the HTML page containing
the applet has been replaced by another, as well as right before the destroy()
method.

09 1089-9 CH09 6/26/01 7:34 AM Page 291

292 Chapter 9 Java Applet Plugged In: BonForumRobot

The destroy() method is called by the applet container right before it reclaims
the applet, giving it a chance to destroy resources that it has allocated.

9.3.4 The init() Method
In our applet, this method is quite simple.We follow the standard practice of retrieving
applet parameters in the init() method.The getParameter() method works for all
the different types of parameters expected and helps clarify the code in the init()
method.

Our applet uses these parameter value in the run() method. Retrieving init para-
meters in the run() method is possible but is not considered elegant.

If you are involved with client-side processing, you will sometimes need to do
other things within this method, such as obtain database connections.

9.3.5 The start() Method
In the applet’s start() method, a new RefreshThread object is created. RefreshThread
is an inner class that extends Thread and will do the real work of this applet, repeating
an action one or more times in a timed loop.

For debugging purposes, we also give the thread a system-unique name using the
current time. Here is the code for the start() method:

public void start() {
setBackground(Color.cyan);
System.out.println(“start()”);
if (refresh) {

RefreshThread thread = new RefreshThread(
Long.toString(System.currentTimeMillis()));

thread.start();
}

}

We also set the background color to cyan, which matches the HTML page that con-
tains the applet. Otherwise, we might have a gray rectangle showing where the panel is
located.

9.3.6 The stop() Method
The stop() method of the bonForumRobot applet is quite simple. It breaks what
would otherwise be an endless loop, putting an end to the clocking action of the
timer loop in the thread RefreshThread instance.

public void stop() {
System.out.println(“stop()”);
continueRunning = false;
}

09 1089-9 CH09 6/26/01 7:34 AM Page 292

2939.3 BonForumRobot

The applet container can stop the looping in the run() method of the RefreshThread
by using the applet’s stop() method. However, we also need a way to end the looping
from within the thread itself.That happens either because the counter has reached its
maximum count or because we want to go through the loop only once. It is also use-
ful to end error conditions.The stopRunning method is very simple:

public void stopRunning() {
stop();
}

You may be interested in learning about the perils of stopping threads.The Java API
docs are one of your best resources for that information.Another good reference for
this is the thread URL:

http://java.sun.com/j2se/1.3docs/api/java/lang/Thread.html

9.3.7 The paint() Method
With this method you can make the applet do something visible. In fact, several multi-
media output capabilities are made available to the code in an applet.You can develop
one of those Web applets that make Java famous!

We have used the paint() method to display a message to the user.That message is
given by one of the parameters, which we can pass to the applet from the HTML
object tag that contains it.

If the message parameter is set to debug, then the applet will graphically display the
values of the current applet parameters.That is useful during development of both the
applet and its surrounding application.

9.3.8 The run() Method
This method of the inner RefreshThread class contains most of the code in this
applet. Much of the rest of this chapter discusses what is happening in this method. In
the run() method, the parameters that are passed to the applet by the jsp:plugin ele-
ment are utilized.You can find a discussion about these in Chapter 7. Here we discuss
what the parameter values are used for inside the BonForumRobot applet.

9.3.9 The jsp:plugin Parameters
The next excerpt from visitor_joins_chat_ready.jsp shows some code that sets up the
BonForumRobot applet parameters.The code then forwards the HTTP request to the
actor_leaves_frameset_robot.jsp page, which contains a jsp:plugin element referenc-
ing the BonForumRobot applet class.

<%--GOING THROUGH ROBOT TO GET TO NEXT JSP PAGE ALLOWS BREAKING OUT OF A FRAMESET
--%>
➥<%
request.setAttribute(“target”, “_top”);

09 1089-9 CH09 6/26/01 7:34 AM Page 293

294 Chapter 9 Java Applet Plugged In: BonForumRobot

request.setAttribute(“document”, request.getScheme() + “://” +
request.getServerName() + “:” + request.getServerPort() +
“/bonForum/jsp/forum/guest_executes_chat.jsp”);
request.setAttribute(“refresh”, “true”);
request.setAttribute(“increment”, “100”);
request.setAttribute(“limit”, “1”);
request.setAttribute(“message”, “Joining a chat!”);
request.setAttribute(“bonForumCommand”, “visitor_joins_chat_robot”);
%>
<%-- THESE PARAMETERS GOING TO AN APPLET THERE:--%>
<jsp:forward page=”actor_leaves_frameset_robot.jsp”/>

That page where the applet receives the parameters is actor_leaves_frameset_robot.jsp.
Here is the code that takes care of starting the applet with those parameters:

<jsp:plugin type=”applet” code=”BonForumRobot.class”
codebase=”/bonForum/jsp/forum/applet” jreversion=”1.3” width=”400” height=”160” >
<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
<jsp:param name=”document” value=”<%=document%>”/>
<jsp:param name=”refresh” value=”<%=refresh%>”/>
<jsp:param name=”increment” value=”<%=increment%>”/>
<jsp:param name=”limit” value=”<%=limit%>”/>
<jsp:param name=”message” value=”<%=message%>”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED not supported by browser.</jsp:fallback>
</jsp:plugin>

In this previous example, the parameters cause the BonForumRobot applet to display
in a new frameset on the browser, the document with a URL something like this:

http://localhost:8080/bonForum/jsp/forum/guest_executes_chat.jsp

It should display this document only once. Of course, because displaying the docu-
ment in this case “jumps” out of the current frameset, there is no need to do that
more than once.

In other circumstances, the BonForumRobot applet is programmed by its parame-
ters to repeat its action of displaying a document.That periodically refreshes the infor-
mation displayed on the browser in one target frame.

The refresh Parameter

This is an example of a switch in the applet that is controllable using the refresh
parameter.This switch is rather brutal—it turns the applet on or off. In fact, it is actu-
ally just a placeholder, already conveniently present in all the many JSPs that set up the
applet parameters. It is used to select the creation of different threads besides the one
RefreshThread available now and thus will select different actions.That makes new
ideas easier to try out; if any turn out well, they could then be put in their own applet
class. However, to have the refresh parameter in the applet just to turn it on and off is
not good design.

09 1089-9 CH09 6/26/01 7:34 AM Page 294

2959.3 bonForumRobot

The target Parameter

The target parameter tells the applet where to display its output in a browser’s
HTML frameset. For example, a value of _top is a reserved value for the target para-
meter; it causes the document to display in the top frame of hierarchy of frames in the
frameset. For more information, look in the HTML specification, which you can find
at the following URL:

http://www.w3.org/TR/html401/

The document Parameter

Strangely enough, the document parameter tells the applet which document to display
in the browser.The value of document is a URL to that document. For details on
how the applet will display the URL, see the API documentation for the
Applet.showDocument() method.

The increment Parameter

Of course, when the document parameter is set to a JSP, that document can dynami-
cally change everything that happens next in the program.That JSP is as free as Java
code allows it to be! The default action, however, is to keep repeating a loop that dis-
plays the document in that target, with a time period given by the value of the
increment parameter, in milliseconds.

The limit Parameter

The limit parameter sets the upper bound for the number of times that the robot
applet should repeat its action. In the prototype version of BonForumRobot, that
action is “hardwired” to be the display of a document, using the showDocument()
method of the Applet class. However, in the future, other actions could be added,
including communication to the host Web application.

The message Parameter

While doing its robotic action, the applet should display graphically the contents of
the message parameter. Obviously, by using a more complex object for this parameter,
we could create quite sophisticated displays, control panels, and more within the
applets display panel on the browser.

9.3.10 What the BonForumRobot Applet Does
In Section 9.3.1,“Problems Solved Using This Applet,” we listed the reasons why we
developed this applet for the bonForum project.These were also discussed in earlier

09 1089-9 CH09 6/26/01 7:34 AM Page 295

296 Chapter 9 Java Applet Plugged In: BonForumRobot

chapters and will be further discussed in later sections. Here we just want to emphasize
that this applet can have one of two possible behaviors.Which of the two happens
depends on the value of the target parameter.

When target Is _top

If the target value is _top, it means that we are using the applet to break out of a
frameset on the browser.The phrase “break out of a frameset” needs clarification.
Perhaps describing one example of this will help. Consider the HTML produced by
the JSP:

“visitor_joins_chat.jsp”

That sets up a simple frameset. One of its three frames (named Display) enables the
user to select one of the available chats to join.Another frame (named Controls) dis-
plays a form that enables the user to join the selected chat.When this form is submit-
ted (to the BonForumEngine servlet), we want the browser to stop displaying the
current frameset and its three frames.

At first, it seemed that we could simply have the servlet “engine” forward the
request to the “next” JSP (guest_executes_chat.jsp), which sets up a frameset of its
own. However, when we tried that, we got a new frameset, but it was within the
Controls frame of the frameset that we were trying to leave behind. In fact, we could
create “Chinese boxes” (framesets within framesets ad infinitum), but we could not
break out of the frameset (hence, we use this term for the applet functionality).

We could probably get around this problem if we could prevent the caching of the
contents of the frames by the browser.We tried the usual methods and could succeed
in only preventing the caching of visitor_joins_chat.jsp, which sets up the first frame-
set. But that did not turn off the caching of the contents of its frames. How can we
get the browser to not cache these? We have found no way yet.

When target Is Not _top

If the target is not equal to _top, then for this Web application it means that we are
using the applet to periodically refresh a document within one frame on the browser.

The obvious question is why an applet is needed for that.After all, there are many
examples of page refreshing on the Web.That’s true enough, but usually they are rely-
ing on client-side code (such as chat applets) or they are not trying to refresh the page
every 5 seconds or less (required to chat).

Without a frameset, such a fast refresh led to unendurable flicker and interference
with other controls on the page.With a frameset, attempts to refresh the content of
one frame led to problems trying to prevent the browser from caching and reusing
stale content.

Like the problem of “breaking out of frameset,” this one seems like it should have a
simple, ready-made solution. In fact, we have been offered several suggestions. So far,

09 1089-9 CH09 6/26/01 7:34 AM Page 296

2979.3 BonForumRobot

the only one that has worked is this bonForumRobot applet. Of course, we will not
consider having the applet directly create and refresh the displays for the chat, using
data from the server.After all, our whole point is to experiment with server-side tech-
nology for browser application.

9.3.11 Repeating an Applet Task
As discussed previously, this applet repeats an action. For the bonForum Web applica-
tion, that action is to invoke the showDocument() method of the Applet object.

The action repeats at increments that are set by the value of the increment parame-
ter of the applet.The maximum number of repetitions is controlled by the limit para-
meter.

However, note that if target is _top, no repetition of the showDocument() invocation
can occur if the robot applet is not in the top frame of the frameset displayed on the
browser.

Here is a simplified version of the loop that repeats an action.The actual code in
the bonForum project is different but similar.

counter = 1;
while (continueRunning) {

// put it to sleep for “increment” milliseconds
messageLineOne = “”;
getAppletContext().showStatus(“bonForumRobot”);
repaint();

try { sleep(3*(increment/4)); }
catch (InterruptedException e) {}

// put it back to sleep for a “yellow light”
messageLineOne = “refreshing...”;
repaint();

try { sleep(increment/4); }
catch (InterruptedException e) {}

// are all iterations done?
if(counter > limit) {

System.out.println(“counter:” + counter +
“ over limit:” + limit);

stopRunning();
continue;

}

// no, do it
counter++;

// NOTE: THE CODE TO PERFORM THE ACTION GOES HERE
}

09 1089-9 CH09 6/26/01 7:34 AM Page 297

298 Chapter 9 Java Applet Plugged In: BonForumRobot

9.3.12 Using AppletContext to Show Documents
Each applet running is provided with an AppletContext interface, which allows the
applet some functionality in its client-side runtime environment. For example, we use
AppletContext to put our message in the status line at the bottom on the browser dis-
play area:

getAppletContext().showStatus(message);

As another example, this is the code that makes the robot applet display a document:
getAppletContext().showDocument(new URL(uncachedDocument), target);

That looks like it may be simple, but things are never quite simple in a real software
project! That is why we created the variable named uncachedDocument, which you can
see is the argument to the showDocument() method. The next section explains what it
is for.

9.3.13 Circumventing Cached Documents
When we want to display a JSP page after having done it once already, its “contents”
could be entirely different than they were the previous time. JavaServer Pages are
dynamic. However, the name of the JSP document, its URL, can remain the same for
both requests.

This can cause a problem if the browser has cached the result that it got when it
first requested the JSP document.When the second request is made, the browser gets
the cached result from the first request out of its cache and effectively prevents JSP
from being dynamic!

We ran into this problem when we first got our robot applet working. It was mak-
ing the requests for the JSP repeatedly, but the display was not changing. It should
have been changing because part of it was a list of chat messages, and these were being
added to from another browser acting as a guest of the same chat.

We tried to use the HTML META element that is supposed to suggest to the
browser that it not cache a document. However, we were not able to get the applet
working in this manner.The HTML that we tried was the following:

<META Pragma=”HTTP-EQUIV” value=”no-cache”> </META>

Later, after we had already developed the “no-cache” solution that we discuss later
(generating a timestamp and affixing it to the URL), we found out that Internet
Explorer will not respect cache control META tags unless it is shut down and restarted.
After that, it obeys them.At the same time, it was suggested to us that if we wanted to
prevent caching, we only needed to use the setHeader() method in our JSP pages to
send the appropriate headers:

res.setHeader(“Cache-Control”, “no-cache”);
res.setHeader(“Pragma”, “no-cache”);
res.setDateHeader(“max-age”, 0);
res.setDateHeader(“Expires”, 0);

09 1089-9 CH09 6/26/01 7:34 AM Page 298

2999.3 BonForumRobot

We were offered a simplified solution in the form of a custom JSP tag class called
NoCacheHeaderTag. It really seemed like that should do the trick. However, we tried
this tag in many places in the JSP.We also tried having the bonForumEngine servlet
set these response headers before forwarding its requests to JSP files. Of course, we
were able to prevent caching, but not everywhere—in particular, not within the frames
generated by our JSP.We already discussed this problem enough (see Section 9.3.10,
“What the BonForumRobot Applet Does”). It is time to discuss what is working
instead.

In the bonForumRobot run() method, we fix up the JSP filename in the URL in
the document parameter.We do that to force it to be a unique filename. Because the
browser has not seen the resulting URL before, it does not look for it in its cache,
even though, as we shall see, the robot may actually be requesting the very same JSP
that it did the last time.

Here is an example of how the applet “fixes up” the URL for a JSP document.The
original URL is shown here:

http://localhost:8080/bonForum/jsp/forum/visitor_joins_chat.jsp

After being altered, that URL becomes something like this:
http://localhost:8080/bonForum/jsp/forum/visitor_joins_chat.jsp.962066767851.tfe

The 12-digit number added to the filename is the current time in milliseconds
obtained from the Java System object.That timestamp value creates a unique filename
within the context of this session.

The fake extension .tfe that is also added to the URL acts as a signal to the Tomcat
Server that it should send this request to the bonForumEngine object.That is because of
the servlet-mapping element that we added to the web.xml Tomcat Web application
deployment descriptor file.

The bonForumEngine servlet strips the timestamp and the fake extension off the
altered URL.Then that servlet simply forwards the request to the JSP document that
was pointed to by the original, unaltered URL.The bonForumEngine servlet is fur-
ther discussed in Chapter 8,“Java Servlet in Charge: bonForumEngine.”

One drawback is that although the browser will look for none of these robot-
constructed and unique filenames in its cache, it will nevertheless cache the displays,
and cache them, and cache them! After some time, the browser cache could contain
nothing but cached bonForum refresh pages.

After we got this solution working, we were made aware of the fact that this
caching problem is probably most often encountered in banner ad code and that it is
usually solved just by appending a bogus parameter to the end of the URL—for
example:

http://localhost/bonForum/jsp/forum/visitor_joins_chat.jsp?nocache=962066767851

This trick serves the same purpose and requires no special handling on the server
side—that parameter can just be ignored.Were it not for the fact that we also need to

09 1089-9 CH09 6/26/01 7:34 AM Page 299

300 Chapter 9 Java Applet Plugged In: BonForumRobot

add the .tfe extension to send our requests through the servlet “engine,” we might be
tempted to change our code to use the same trick.

The List of Requests That Get Mangled

The names of the JSP filenames that the BonForumRobot is watching out for are
“hardwired” into this applet’s code, so to speak.These JSP filenames are the ones that
create documents that are to be self-refreshing through the action of the robot applet,
or those that need to “break out of a frameset,” as mentioned earlier.

We did not mind that we were reducing the generality of the action in the applet.
By hardwiring some logic, we created a restriction that adds to the security of the
bonForum game.That being said, it is nevertheless true that future versions of this
robot applet should make it easier to add requests to the list or avoid its use altogether.

9.3.14 Stopping the Timer Thread
Note that to stop the timer thread in the robot applet, we use the stop() method of
the applet. In our applet code is a loop setup that begins with this:

while (continueRunning) {

Inside the loop, to stop it, we can use the following code:
// are all iterations done?
if(counter > limit) {
System.out.println(“counter:” + counter + “ over limit:” + limit);
stopRunning();
continue;
}

The stopRunning() method simply wraps the applet stop() method to makes things
clearer for humans:

public void stopRunning() {
stop();
}

The stop() method of the applet has been written to set the value of
continueRunning to false:

public void stop() {
System.out.println(“stop()”);
continueRunning = false;
}

Avoiding Browser Cache Hits
If you add to the Web application and need to use the robot to avoid browser cache hits, then you will

need to hard-wire the JSP name as we have the existing ones. You will also need to add code to the

bonForumEngine.java file so that it appropriately handles the request received from the robot applet.

09 1089-9 CH09 6/26/01 7:34 AM Page 300

3019.3 bonForumRobot

That means that the next iteration of the loop will not occur.This is the preferred way
to stop the timer loop. Do not simply try to stop the thread itself; read more about the
problems with stopping threads in the Java API docs for the Thread class.

9.3.15 Red,Yellow, Green Light
While we were developing this applet, we wanted some sort of visual feedback. By
changing the color of the applet graphics background, we could tell what it was
doing—and the fact that the colors changed was an indication that the applet was alive
and well.

At the same time, we were curious about one thing:Would the execution of the
applet code by the Java Runtime Engine have any effect upon the user’s input of data
(the chat message) into a form element in a different frame on the browser display?
Would the user have to be instructed to do nothing while the applet was refreshing
data from the bonForumXML database?

When the timer thread in the applet was sleeping, we saw the applet panel as a
green rectangle.When the applet was about to awaken, we would see yellow. Finally,
seeing red showed us when the showDocument method was being called.

It turned out that (on our system, at least) it was not difficult for the user to submit
messages to the chat at any time, whether or not the applet was firing. In fact, the
problem turned out to be the flashing colors there in the corner of the screen—as our
traffic light cycled every 5 seconds through its colors!

Two-Phase Clock in Timer

To get the green light and yellow lights working, we put the thread to sleep twice
during each iteration of the timer loop. In effect, we have two phases in our clocks
ticking.That will come in handy in the future, when we need “on for X seconds, off
for Y seconds” types of robotic actions. However, the catch clauses for these two sleeps
should probably include continue statements because it’s possible at some point that
we might want to use an InterruptedException to stop the applet cold in the middle
of a sleep.We would not want it to go right back to sleep again after that exception,
but we would want it to do so before it gets back to the while and stops (that would
produce a weird delayed stop effect—we stopped the applet and, 3 seconds later, it
refreshed before finally stopping).

9.3.16 Implementing a Software Clock
The thread object in this applet is basically a timer. In embedded software systems that
are multithreaded, it has been popular to create a clocking action in the software by
putting a thread to sleep repeatedly in an endless loop. Java makes it easy to use this
technique in this applet, which needs a mechanism to repeat an action indefinitely.

09 1089-9 CH09 6/26/01 7:34 AM Page 301

302 Chapter 9 Java Applet Plugged In: BonForumRobot

The jsp:plugin Tag and BonRobotApplet class

As discussed previously, we embedded our Java applet in some of our JSP documents,
using the jsp:plugin syntax. Using JSP enabled us to pass parameters dynamically to
the applet because the JSP is creating the HTML that the running applet will refer to
with its getParameter() method.

Parameters take care of passing data from the server-side part of the application to
the client-side part.What about the other direction? How can we pass dynamic infor-
mation from the applet to the server? Of course, we can do that using the
showDocument() method of the applet’s context.

You might protest that showDocument still represents information (a document)
going from the server to the client.And it does, indeed. However, the URL that is
sent to the server can contain information that the applet is sending to the Web appli-
cation on the server. Indeed, that URL can be mapped in Tomcat’s configuration file,
web.xml, so that the application data in the URL is sent to a servlet in any application
context you want.

We will resist the temptation to show how that can be useful, but it does seem that
it would allow us to transfer anything from one Web application to another via applets
on HTML browsing clients.That raises interesting possibilities for distributed Web
applications.

The showDocument() method can be called with just a URL or with an additional
target argument.As you have seen, the target allows us to control the loading of doc-
uments while using frames in the HTML.Also, we can load documents into other
named windows using the target argument.

One other thing that we can do if we use multiple applets in one context is name
the applets differently.This enables us to use the getApplet(String name) method of
the AppletContext interface for interapplet control.

Note that an applet’s isActive() method can be used to determine whether
another applet in the same applet context is running.That way, different applets can
avoid running at the same time.Also, one applet can monitor the others, either to shut
them down after a certain time or to recover from errors.You can make one applet act
as a watchdog for the client-side of an application.

We leave it up to the reader to imagine the usefulness of having more than the one
applet that we provide to our example application.

09 1089-9 CH09 6/26/01 7:34 AM Page 302

JSP Taglib The bonForum
Custom Tags

10

IN THIS CHAPTER,YOU CAN LEARN ABOUT THE JSP tag library used in the bonForum
Web application. First, we review the basic whys and hows of JSP tags and discuss
some illustrative examples. Next, we discuss our own tags in depth, including three
that display chat subjects, chat messages, and debugging information.The fourth and
most powerful tag harnesses an Apache Xalan-Java XSLT processor (version 1 or 2).
We describe how we used this transform tag in bonForum to display available chats,
the guests in a chat, and a list of Web links.

10.1 Java Servlets, JSP, and Tag Libraries
We begin with a brief introduction to JSP 1.1 custom tags, which it is quite biased
toward explaining their use in the bonForum project.This is not a comprehensive JSP
custom tag reference, and it should certainly not be your only resource for this very
rich subject.This is another chapter in a laboratory manual, meant to support your
other resources, deepen your understanding of some aspects of tag libraries, and pro-
mote your own experimental approach to JSP technology.

10.1.1 JSP Tag Library Documentation
As you learn about JSP tag libraries, be sure to check the wealth of resources available
to you at the main JSP Web site, http://java.sun.com/product/jsp/.You should
definitely consult the excellent documentation available from the creators of JSP at
http://java.sun.com/products/jsp/docs.html.

10 1089-9 CH10 6/26/01 7:35 AM Page 303

304 Chapter 10 JSP Taglib: The bonForum Custom Tags

Especially important for learning about JSP tag libraries are the “Overview” and
“Tag Extensions” chapters of the JSP 1.1 specification, which is available in portable
document format as jsp1_1-spec.pdf.

While you are at the Sun Web site, you might also download the Syntax Reference
Guide JSP 1.1, which can be found at http://java.sun.com/products/jsp/tags/11/
syntaxref11.html.

Another key resource for all questions related to Java servlets and JSP is the Jakarta
servlet API documentation. If you have downloaded and installed the Jakarta servlet
API, you should find that at something like the following URI: C:\jakarta-
servletapi-3.2\docs\api\index.html.To fully explore the Java basis for JSP custom
tags, it is worthwhile to study the API Java docs for the package called
javax.servlet.jsp.tagext.

Finally, although it is definitely not the first one to turn to, there is no deeper
learning resource than the source code.Those of you who must know exactly how tag
libraries work can find answers in the folder TOMCAT_HOME\src\org\apache\
jasper\compiler\.

When you feel ready for such an advanced adventure, explore the Java classes that
help implement tag libraries in Tomcat: the files in that folder whose filenames begin
with “tag.”Then search for those filenames in all the other files in the same folder, and
you will have access to the nitty gritty. Such an adventure will take you to the
JspParseEventListener class, the Parser class, and its static final Tag class.You will see
that a deep understanding of tag libraries requires an understanding of the rest of JSP,
which requires an understanding of servlets.This is all very interesting, and all way
beyond the scope of this book!

10.1.2 What Are JSP Custom Tags?
To see where JSP taglibs and custom tags fit in, it helps to take a lightning tour of
JavaServer Pages. In JSP 1.1, a page is made up of elements and template data.An ele-
ment is something whose meaning is understood and that the JSP container responds
to. Everything that is not an element is template data, such as static HTML content for
a browser to display.An element belongs to one of three types: it can be a directive
element, a scripting element, or an action.

A directive element directs the JSP container in a global manner, such as by con-
trolling aspects of page translation, or by providing a URL to locate a needed resource.
These elements use syntax based on <%, as follows:

<%@ directive ...%>

Scripting elements makes it possible to use scripting languages on the page (in JSP 1.1,
only Java).A scripting element can be a declaration, a scriptlet, or an expression.
Scripting elements also use syntax based on <%:

<%! declaration %>
<% scriptlet %>
<%= expression %>

10 1089-9 CH10 6/26/01 7:35 AM Page 304

30510.1 Java Servlets, JSP, and Tag Libraries

A declaration element creates something that is available to all other scripting elements
(such as an instance variable in the compiled page).A scriptlet enables you to put any
code into the compiled page, allowing its logic to control and affect other page con-
tent.An expression is a complete Java expression that can be evaluated at response
time, usually providing a string to be included in the JSP output stream.

An action encapsulates useful functionality. Standard actions are always available in
JSP, while custom actions are added to JSP by means of the tag extension mechanism
provided.Actions are expressed using an XML-based syntax, as follows:

<x:foo attr1=”...” attr2=”...” attr3=”...” />

Actions can have a body and be expressed as follows:
<x:foo attr1=”...” attr2=”...” attr3=”...” >
body
</x:foo/>

We have thus arrived at our goal of positioning the subject of this chapter within the
wider context of JSP. JSP custom tags are used for adding actions to the built-in ones
available in JSP.The JSP 1.1 Specification, Section 2.11, has this to say about actions:

Actions may affect the current out stream and use, modify and/or create
objects.Actions may, and often will, depend on the details of the specific
request object received by the JSP page.The JSP specification includes some
action types that are standard and must be implemented by all conforming
JSP containers. New action types are introduced using the taglib directive.
The syntax for action elements is based on XML; the only transformation
needed is due to quoting conventions (see Section 7.5).

Elsewhere, the Specification also says the following:

Actions permit the encapsulation of useful functionality in a convenient form
that can also be manipulated by tools.

JSP custom tags can be added to the built-in JSP tags to extend JSP in a portable
manner. Each custom tag packages Java code into a reusable “action” element, which
can easily be added to JSP documents.A group of one or more custom tags is made
available to JSP documents as a tag library.This component technology extends JSP,
furthering its aims of portability, reusability, separation of static and dynamic Web con-
tent, and a wide choice of development tools.

10.1.3 How Do Custom Tags Differ from Beans?
This question is a bit of a trick.A custom tag is used to express a custom action.That
action encapsulates some Java-based functionality, made possible by a Java class called a
tag handler.This is, in fact, a server-side JavaBean.This bean implements either the Tag
or the BodyTag interface. So, here we have one answer to the question posed in our
heading.

10 1089-9 CH10 6/26/01 7:35 AM Page 305

306 Chapter 10 JSP Taglib: The bonForum Custom Tags

But we can say that a JSP developer faces the choice of using a bean or using a tag.
He can take advantage of the standard action, jsp:useBean, to access a JavaBean from a
JSP. Or, he can subclass the convenient TagSupport or BodyTagSupport classes provided
by JSP, to take advantage of the taglib protocol, which allows a feature-rich connection
between JSP and Java server-side components.We will explore this latter choice in this
chapter.And in this sense, we will often make a distinction between custom tags and
beans.

10.1.4 How Do JSP Custom Tags Work?
In this section, we give a brief overview of the mechanics of JSP custom tag exten-
sions. It should be sufficient to give you a framework to understand the rest of the
chapter.

The Tag Handler Class

The behavior of a tag is determined by a JavaBean known as a Tag Handler class. It
must implement either the javax.servlet.jsp.tagext.Tag interface or its BodyTag
extension.Two classes in the servlet API do that for you already: TagSupport and
BodyTagSupport. Usually, you can extend one of these to define a Tag Handler class.

The Tag Library Descriptor

Tags are always part of a tag library, which is defined by an XML file called a tag
library descriptor, or TLD, file. Its main purpose is to connect the Tag Handler class
with a tag name that will appear in the JSP document. It also gives the JSP container
more information about the tags that it describes. For example, it declares the tag
attributes that can be used with the tag and tells whether they are required or
optional.

The Name of a Tag

A JSP tag is approximately an XML tag. Some come standard with all JSP implemen-
tations.The name of a tag is in the form prefix:suffix.The prefix is defined in a taglib
directive in the JSP file.The directive associates the tags with that prefix and with a
particular tag library descriptor file.The suffix is the name that the TLD file associates
with a tag handler class.

Tag Attributes and Tag Handler Properties

A tag can also have attributes, like an XML tag. (There are some differences in how
quotes are used, however.) These enables the JSP page author to pass values to the Tag
Handler class. Each tag attribute corresponds to a property within the bean that imple-
ments the Tag (or BodyTag) interface.

10 1089-9 CH10 6/26/01 7:35 AM Page 306

30710.1 Java Servlets, JSP, and Tag Libraries

The BodyContent Class and Body Content Processing

Body content can exist between a start tag and an end tag.The TLD description of the
tag can enforce empty content or allow JSP or tag-dependent content.Tags that
implement only the Tag interface, usually by extending TagSupport, can only ignore or
include body content in the JSP.Tags that implement BodyTag, usually by extending
BodyTagSupport, can manipulate and iteratively process body content.The
BodyContent class is a special JspWriter object that encapsulates the body content
while a tag is manipulating it.

Tag Action Methods in a Tag Handler

The methods within the Tag Handler class are related to the various parts of the tag.
Thus, there is a method to handle the opening tag, called doStartTag().Another
method, doEndTag(), handles the closing tag. If a tag has attributes, then each one
requires a property-setter method in the Tag Handler class and can have a get method.
If the tag has a body, two other methods handle that: doInitBody() and
doAfterBody(). Each method returns certain final static constants to control the
sequential execution of these methods.

Context and Nesting of Tag Handler Instances

When a JSP is translated into source code for a servlet, the Tag Handler class for any
custom tags on the JSP is instantiated within the _jspService() method of the servlet.
The Tag Handler instance has properties set to refer to the powerful pageContext
object of the JSP.Tags can nest. If a tag is nested in another, its parent property con-
tains a reference to the tag it is nested in.Tags can find each and share objects in any
Web application scope. BodyContents can form a stack, to facilitate nested manipula-
tion of body content.

Translation-Time Tag Extension Methods

The javax.servlet.jsp.tagext package contains classes that implement JSP custom tags.
Besides the ones mentioned previously, there are others that give the JSP container
information at JSP translation time about tags and the variables they use.These classes
are TagAttributeInfo, TagData, TagExtraInfo, TagInfo, TagLibraryInfo, and
VariableInfo.

The doStartTag() Method

Implementing the Tag interface implies defining a doStartTag() method.A tag han-
dler class can either do that or extend the TagSupport class and override its
doStartTag() method to begin the action.When the method begins, the JSP con-
tainer will have set the pageContext property and also the parent property (null, if the
tag is not nested). It will also have set all the tag attribute properties provided in the
start tag.As the developer, you control whether the body content is processed next, by
returning the appropriate constant. Here is what a doStartTag looks like when you
want to ignore body content:

10 1089-9 CH10 6/26/01 7:35 AM Page 307

308 Chapter 10 JSP Taglib: The bonForum Custom Tags

public int doStartTag() throws JspException {
// do something, or nothing
return SKIP_BODY;
}

This means that everything between the opening and closing tags of the custom JSP
element will be ignored. If that is not the desired behavior, you can return a different
value, as follows:

public int doStartTag() throws JspException {
// do something, or nothing
return EVAL_BODY_INCLUDE
}

This means that everything between the opening and closing tags of the custom JSP
element will be evaluated into the current output stream object for a simple, non-
nested tag that starts out being the JspWriter object named “out.”The tag element in
the TLD for the tag must not have a value of empty, of course. SKIP_BODY and
EVAL_BODY_INCLUDE are the only return values for doStartTag() if only Tag is imple-
mented. If BodyTag is implemented, a new BodyContent output stream will be created,
and returning EVAL_BODY_TAG will throw a JspException.Tags that implement BodyTag
should return either SKIP_BODY or EVAL_BODY_TAG, as follows:

public int doStartTag() throws JspException {
// do something, or nothing
return EVAL_BODY_TAG;
}

After this last example of doStartTag(), the JSP container can invoke two other meth-
ods to process the body content: doInitBody() and doAfterBody(), discussed next.

The doInitBody() Method

The doInitBody() method can be used to do some processing before any body con-
tent is evaluated (into the BodyContent output stream).After the invocation of
doInitBody(), the tag body content is evaluated and the doAfterBody() method is
invoked.

The doAfterBody() Method

The doAfterBody() method is invoked after the first evaluation of the body content (if
it is not empty). By returning SKIP_BODY, the doAfterBody() method can tell the JSP
container that the processing of the body content is finished:

public int doAfterBody() throws JspException {
// do something, or nothing
return SKIP_BODY;
}

Sometimes the Tag Handler class must continually process the body content of a cus-
tom tag in a loop.You can tell the JSP container to repeatedly evaluate the body

10 1089-9 CH10 6/26/01 7:35 AM Page 308

30910.1 Java Servlets, JSP, and Tag Libraries

content and doAfterBody() invocation by returning EVAL_BODY_TAG from
doAfterBody(). Note that because processing can change the body content or its con-
text, each body content evaluation can have differing results.

public int doAfterBody() throws JspException {
//do something, or nothing
return EVAL_BODY_TAG;
}

The doEndTag() Method

Whether only the Tag interface or the BodyTag interface is implemented by a Tag
Handler class, the doEndTag() method is invoked by the container. It can be used for
any final processing in the action, whether body content has been evaluated or not.
The container will call the release() method to release tag state.

10.1.5 Why Use Custom Tags?
In Chapter 8,“Java Servlet and Java Bean: BonForumEngine and BonForumStore,” we
discussed BonForumStore, a server-side Java bean that makes actions available to the JSP
documents in bonForum. Our example was just complex enough to show that by
using the jsp:useBean action, much dynamic content could be created for a Web
application.The minimum requirements for a custom tag are greater than those for a
JavaBean. It takes less work to create a bean than a custom tag.Why should a devel-
oper use custom tags? The reasons include the following:

n JSP tags are more integrated than beans into JSP. By default, they have access to
the implicit JSP pageContext object.That gives tags easy access to the other
implicit JSP objects.These include the request, response, page, application, ses-
sion, and config objects. It also includes the JSPWriter object out, which makes
it easy for tags to write into the output stream of the JSP. Furthermore, the JSP
exception handling, using an error page and its implicit exception object, is
readily available to custom tags.

n Using JSP tags provides the developer with ready-made mechanisms for nesting
actions and for passing object references between actions.A mechanism for nest-
ing output stream objects make it easy to use a hierarchical set of tags to incre-
mentally construct content to be sent to a client, such as a browser.

n JSP tags can be more compact to express in the JSP document.The single tag
<my:foo bar=”47”/> could handle lots of processing.To handle it with a bean
would require at least a tag to get the bean and another to call a method.That
might not seem like much, but it keeps it simple for the page designer and also
facilitates the separation of static and dynamic Web content design and creation.

n A developer should consider using custom tags whenever output to the browser
from the processing will be involved because that is simpler to accomplish from
a custom tag than from a bean. For processing without any JSP output, a bean is
simpler and preferable.

10 1089-9 CH10 6/26/01 7:35 AM Page 309

310 Chapter 10 JSP Taglib: The bonForum Custom Tags

One thing to be aware of is that JSP custom tags do not work with JSP 1.0, so if that
version is a requirement, you must use beans.

10.1.6 Tag Libraries
Loosely speaking, a collection of custom tags is known as a tag library.Technically, a
tag library is all the Java classes for a set of custom JSP actions, plus a tag library
descriptor file that describes their tags to the JSP container.A tag library can be pack-
aged in a JAR file, as the following definition explains. It comes from the document
type definition for a tag library descriptor:

A tag library is a JAR file containing a valid instance of a tag library descrip-
tor (taglib.tld) file in the META-INF subdirectory, along with the appropriate
implementing classes and other resources required to implement the tags
defined therein.

JSP custom tags define actions in a manner that is accessible to tools as well as devel-
opers.The official way to deliver a tag library to a tool that can use it is to place it as a
JAR file in the TOMCAT_HOME\lib folder.A JSP container, such as Tomcat, can
also use tag libraries by finding the appropriate implementing classes in its default or
other class locations and locating the tag library descriptor file in a default or other
configurable location.

10.1.7 Taglib Directives
A JSP directive is a type of element that provides global information to the JSP con-
tainer. Being global, it applies for all the requests that the JSP will service. Most direc-
tive information is useful to the container at page translation or compilation time.The
syntax of a directive is as follows:

<%@ directive { attr=”value” }* %>

The curly brackets and the asterisk simply mean that 0 to N attributes may be present.
There may be optional whitespace after <%@ and before %>.

A taglib directive in a JSP document links it to an XML document that describes a
set of custom JSP tags and determines which tag-handler class implements the action
of each tag. Here is an example of a taglib directive, taken from the Jakarta-taglibs
project:

<%@ taglib uri=”http://jakarta.apache.org/taglibs/datetime-1.0” prefix=”dt” %>

Here is another taglib directive, the one used by the bonForum Web application:
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib-0.5”
prefix=”bon” %>

A taglib directive uses a URI to uniquely identify a tag library to the JSP container (in
our case,Tomcat).The directive also tells the JSP container something important: the

10 1089-9 CH10 6/26/01 7:35 AM Page 310

31110.1 Java Servlets, JSP, and Tag Libraries

prefix that the tags in the library will use on this particular JSP document.The given
prefix must appear before the tag name that appears in the descriptor file.You can see
an example of a prefix in use in section 10.1.9,“Tag Library Descriptor File.” Prefixes
enable you to use tags from different tag libraries without problems arising from clash-
ing names.You use different prefixes (of your choice) in the taglib directives for differ-
ent libraries on the same JSP.

10.1.8 Taglib Element in Web App Descriptor
The container uses the URI in the taglib directive to locate an XML file containing
the tag library descriptor.Although a relative URI can be used to locate that file, the
preferred method is the use of a taglib element in the Web application descriptor file
(WEB-INF\web.xml).The next listing shows the taglib element for the bonForum
Web app. It maps the URI from the bonForum taglib directive shown previously to
the bonForum tag library descriptor file. Note that the filename in the URI and for
the file need not be the same. Here is the bonForum taglib element:

<taglib>
<taglib-uri>

http://www.bonForum.org/taglib/bonForum-taglib-0.5
</taglib-uri>
<taglib-location>

/WEB-INF/jsp/bonForum-taglib-0.5.tld
</taglib-location>

</taglib>

10.1.9 Tag Library Descriptor File
We sometimes refer to the tag library descriptor file as a TLD file, or as a .tld file, after
its conventional file extension.This XML file contains information for the JSP con-
tainer about a set of tags that can appear in the JSP.To be a TLD file, an XML file
needs to have the right DOCTYPE declaration at the beginning, after the usual XML
declaration, as follows:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!DOCTYPE taglib

PUBLIC “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN”
“http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd”>

The root of the TLD XML document is a taglib element. It contains child elements to
contain the versions of the tag library and the minimum JSP version that it requires.
There are also elements for a short name, a URI, and an “info” string for the tag
library.Also in the XML, and the reason for its existence, are tag elements for each JSP
custom action in the library.

The tag elements contain different types of elements to describe aspects of each
action tag, including its name, its tag-handler class, information about what the tag

10 1089-9 CH10 6/26/01 7:35 AM Page 311

312 Chapter 10 JSP Taglib: The bonForum Custom Tags

body can contain, information about any attributes it uses, and more. One way to get
the whole picture in an official way, is to look at the DTD defining the JavaServer
Pages 1.1 tag library descriptor (.tld) (XML) file.We found a copy of it in the file
TOMCAT_HOME\src\org\apache\jasper\resources\web-jsptaglib_1_1.dtd.

10.1.10 Empty Custom Tag Without Attributes
Let’s look next at a very simple custom tag.The tag library corresponding to the first
taglib directive shown in Section 10.1.6,“Tag Libraries”), describes an action for a tag
named currenttime.That description is in the following XML element in the TLD
file:

<tag>
<name>
currenttime
</name>
<tagclass>
org.apache.taglibs.datetime.CurrentTimeTag
</tagclass>
<bodycontent>
empty
</bodycontent>
<info>
Gets the current time in milliseconds since Jan 1, 1970 GMT.
</info>
</tag>

The info tag should tell you what action to expect from adding the tag to a JSP. In
any page that contains the datetime taglib directive that we showed previously, each of
the action elements belonging to the datetime tag library must appear with a “dt” pre-
fix, as follows:

<dt:currenttime/>

A JSP custom tag can hardly get any simpler than this example.As you see in the tag
element in the TLD file for the currenttime action, this tag has an empty body con-
tent.That is equivalent to having a body with nothing in it; note that because white-
space here is ignored, the last tag example can also be written on a JSP using both a
start tag and an end tag, without element content, like this:

<dt:currenttime>
</dt:currenttime/>

Custom tags take on more complex actions in two ways:
n Using attributes to pass information from the JSP to the Tag Handler class
n Processing body content, whatever is between the start tag and the end tag

We will illustrate both of these mechanisms in the descriptions of the bonForum tags
in Section 10.2,“bonForum Tag Library.”

10 1089-9 CH10 6/26/01 7:35 AM Page 312

31310.1 Java Servlets, JSP, and Tag Libraries

10.1.11 Custom Tag Attributes
Custom tags can have zero to many attributes, which are in the familiar name-value
pairs format, separated by whitespace, and appear after the tag name, like this:

<mylib:mytag attr1=”value1” attr2=”value2”/>

Attributes provide a way for the custom tag user to pass information into the Tag
Handler class at request time. Note also that if a custom tag attribute is given a name
of “id,” then it is special. If a tag with this ID attribute creates a runtime object, that
object can be identified to other tags, for example, by the value of that attribute (see
Section 10.1.12,“Custom Tag with Body Content”).

Here is an example of a custom tag with attributes, one we used to test Xalan-Java
2 with its birds example files:

<bon:transform type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\birds.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\birds.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\birds.html”> </bon:transform>

All four attributes in this example are required because of the way they are described
in the TLD (and because the Tag Handler class needs them).Another tag used in
bonForum illustrates that this can be otherwise. Here are three different ways to add
the outputDebugInfo action to a JSP in bonForum:

<bon:outputDebugInfo type=”init”/>
<bon:outputDebugInfo/>
<bon:outputDebugInfo force=”yes”/>

To coordinate the Tag Handler of a tag that has attributes with the JSP document and
its container, we need to add some attribute elements to the tag element in the TLD
file.Abbreviating the actual info element content for simplicity, the outputDebugInfo
tag element in the bonForum TLD file is as follows:

<tag>

<name>
outputDebugInfo
</name>
<tagclass>
de.tarent.forum.OutputDebugInfoTag
</tagclass>
<bodycontent>
JSP
</bodycontent>
<info>
Outputs debug information.
</info>
<attribute>
<name>type</name>
<required>false</required>
</attribute>

10 1089-9 CH10 6/26/01 7:35 AM Page 313

314 Chapter 10 JSP Taglib: The bonForum Custom Tags

<attribute>
<name>force</name>
<required>false</required>
</attribute>
</tag>

10.1.12 Custom Tag with Body Content
Anything besides comments and ignorable whitespace that appears between the start
and end tags of an action element is referred to as “body content.”A tag can be
designed to ignore such content or to include it in the JSP output.Alternatively, the
tag handler class can process, or “manipulate,” the body content.The possible effects of
that upon the JSP runtime result are endless. For example, the body content can be
read as a string and used by the tag class.Another possibility is for the tag class to cre-
ate entirely new content based on the existing body content and then append it to the
output stream of the JSP. In a simple case, the tag can simply validate the body content
and optionally include it in the output. In the next section, we show an example that
is at the more complex end of the spectrum.

The content of a custom action element can be simple text, as shown here using
the log tag featured in the Tomcat JSP examples, which you can try from its index
HTML page:

<eg:log>
Remember to check for new release of bonForum!
</eg:log>

You can do much more with body content made up of JSP actions, scriptlets, and
expressions, or of XML, HTML, or anything that JSP allows.

10.1.13 Nested Custom Tags
Of particular importance is the fact that you can nest JSP custom tags within other
JSP custom tags.You can design such nested tags so that they share a context and a
design.The inner tags can find the Tag Handler class instances representing the outer
tags, and they can share variable data from these enclosing tags.Various Tag Handler
classes can work in concert.A tree of nested tags can accomplish a coordinated custom
action, much as many HTML tags do (such as form element tags). Our book project
does not use any nested tags yet, but this is an important topic that you should not
ignore.

We will illustrate the richness that markup in body content makes possible by
reproducing here a complete example JSP from the Jakarta Taglib Project.The exam-
ple is provided under the Apache Software License which is reproduced in Appendix
B,“Some Copyrights and Licenses.” It is quite valuable to download the Jakarta Taglib
Project.You can find links to it at the Apache XML Web site http://xml.apache.org/. It
is also included on this book’s CD-ROM.

10 1089-9 CH10 6/26/01 7:35 AM Page 314

31510.1 Java Servlets, JSP, and Tag Libraries

The Taglib Project download is also available from the Sun Developer Connection
Web site (www.sun.com/developers/).After installing the download, you can find the
following SQL tag library example in something like the file C:\jakarta-taglibs\sql\
examples\web\test.jsp.

Using the SQL and other tag libraries, you can learn more about JSP custom tags
than we could ever cover in this chapter. By the way, an appendix of the JSP 1.1 spec-
ification also features SQL tags as an example. Here is the JSP file we mentioned,
showing nested tags with body content:

<%@ taglib uri=”http://jakarta.apache.org/taglibs/sql-1.0” prefix=”sql” %>

<html>
<head>
<title>Examples of JSPSPEC SQL Tag Library Tag Usage</title>
</head>
<body bgcolor=”white”>

<sql:connection id=”conn1” >
<sql:dburl><%= request.getParameter(“dburl”) %></sql:dburl>
<sql:driver><%= request.getParameter(“driver”) %></sql:driver>
<sql:userid><%= request.getParameter(“userid”) %></sql:userid>
<sql:password><%= request.getParameter(“password”) %></sql:password>

</sql:connection>

<sql:query id=”getBoxen” connection=”conn1” visibility=”table”>
SELECT * FROM <%= request.getParameter(“table”) %>
<% if(request.getParameter(“where”) != null && request.getParameter(“where”) !=
➥“”) { %>
WHERE <%= request.getParameter(“where”) %>
<% } %>
</sql:query>

</body>
</html>

As you can see, all six custom tags work together to display data from a database using
an SQL query.All the tags have body content, which in different places includes text,
JSP scriptlets, JSP expressions, and nested tags.We will not discuss the entire SQL tag
library, but we will show you the primary mechanism by which the nested tags here
work together.

Let’s take a look at the dburl tag, nested within the connection tag.At request
time, the expression in the dburl tag body was replaced by the value of the dburl
request parameter, which could be from an HTML form. In the source code for the
dburlTag Handler class, DburlTag.java, we can find the following:

connectionTag.setDburl(bodyContent.getString());

It appears that the dburl tag handler is capable of calling a “setter” method on the
enclosing connection tag’s handler, to set its dburl property to the body content of the

10 1089-9 CH10 6/26/01 7:35 AM Page 315

316 Chapter 10 JSP Taglib: The bonForum Custom Tags

dburl tag (that is, the request parameter value). But how does the dburl tag handler
find the connection tag handler? It uses the findAncestorWithClass() method of the
TagSupport class.This is a mechanism of choice in the nested-tag arsenal of the JSP
taglib API:

ConnectionTag connectionTag = (ConnectionTag) TagSupport.findAncestorWithClass(
➥this, org.apache.taglibs.sql.ConnectionTag.class);

Another important mechanism for nesting JSP tags is provided by the BodyContent
class, which allows each nesting level to have its own JspWriter object, with the JSP
container taking care of a runtime execution stack of such objects.We will return to
that topic in the section “The BodyContent Class and Body Content Processing.”

Also important to the nesting capability of JSP tags is the parent property of the
Tag interface, which is what makes nesting possible. If a tag is nested in another, the
child tag gets this property set to its parent very soon after being instantiated in the
JSP servlet’s _jspService() method. Only the pageContext property is set before that.

10.1.14 Tomcat’s Not-so-Simple SimpleTag
For an overview of how custom tags work in JSP and of what you must do to get
custom tags to do something, you can study the SimpleTag example provided in the
Tomcat 3.1 distribution. In fact, the example is not such a simple tag; it illustrates quite
a few aspects of custom tags.The tag in the example, called foo, creates in the HTML
produced by a JSP an unordered list element whose list items contain the values of the
attributes of the tag itself. Studying all the files involved with this example tag will
help you to understand how the tag works.

With Tomcat running, you should be able to try the simple tag example, either by
finding it from the Tomcat default index.html page or by requesting it directly using
something like the URL http://localhost:8080/examples/jsp/simpletag/foo.jsp
(depending on your host and port number settings). Look for that JSP file for this sim-
ple tag example in a folder with the name TOMCAT_HOME\webapps\examples\
jsp\simpletag.The Java source code and compiled class files for this JSP Tag example
are found in the folder TOMCAT_HOME\webapps\examples\WEB-INF\
classes\examples.

Another vital part of this tag example is the tag library descriptor file for the exam-
ple Web application, which is an XML document named example-taglib.tld, in the
folder TOMCAT_HOME\webapps\examples\WEB-INF\jsp.

10.2 The bonForum Tag Library
After the basic information about JSP tag libraries covered in the first part of this
chapter, you should be more than ready to understand the rest of the chapter, which
concentrates on the bonForum tag library developed to explore the use of custom tags
in building a browser interface for a multiuser Web application. Of course, you have

10 1089-9 CH10 6/26/01 7:35 AM Page 316

31710.2 The bonForum Tag Library

already seen and read about the bonForum tags from several perspectives, including
the more historical presentation of the application design considerations, the JSP page
descriptions, and the discussions of the various bean methods invoked by the various
tag handlers to provide content for their actions to display on a browser page. Because
some of the tags to be discussed use similar methods and techniques, we will try to
avoid repetitive discussion by first covering topics that apply to more than one tag and
then discussing only what is unique about each tag.

We would like to point out here that these tags, and the methods underlying their
functionality, owe a debt to the generosity of open source developers, especially of
those contributing to the Apache Software Foundation’s Jakarta Tomcat and Apache
XML projects.The normalize() method that we grabbed from open source is covered
by the Apache License reproduced in Appendix B. But, as helpful as a ready-made
method or two might be, what really helps is to see lots of working code, the kind
where the details were really sweated over. It gives something that no simple tutorial
examples can give.A favorite book of ours was the complete source code for CP/M.
It is in that spirit that we will include lots of source code in this chapter.

10.2.1 Tag Library Descriptor for BonForum
The Tag Library Descriptor for the bonForum Web application is in the file
TOMCAT_HOME\webapps\bonForum\WEB-INF\jsp\bonForum-taglib.tld.You
can also find the contents of that file reproduced in Appendix C,“Source Code for
bonForum Web Application.” Of course, it might have other tags added to it soon, so
check the bonForum Web site for later releases.

10.2.2 Custom JSP Tags Available in bonForum
Table 10.1 shows the custom tags that are currently available in bonForum:

Table 10.1 Available JSP Custom Tags in bonForum

Tag Functionality

outputDebugInfo Used only for debugging Web applications. Outputs values
of request headers and parameters, servlet context init para-
meters, and attribute values in all scopes (page, request, ses-
sion, and application).

outputPathNames Outputs all successive sorted node paths from a
bonForumXML or bonBufferXML subtree.

outputChatMessages Outputs sequential chat messages from bonForumXML or
bonBufferXML.

transform XML + XSL = XML | HTML applied by Xalan XSLT
processor to a file or to bonForumXML. Output is a file or a
string page attribute.

noCacheHeader Sets headers in the response object to prevent browsers
from caching the result of requesting a JSP.

10 1089-9 CH10 6/26/01 7:35 AM Page 317

318 Chapter 10 JSP Taglib: The bonForum Custom Tags

The first four tags are used in bonForum and will be discussed in detail later in this
chapter in individual sections named after each tag.The noCacheHeader tag is in the
project by permission of Perry Tew, its author, who suggested its use in the place of
the BonForumRobot timestamp suffixes, to prevent caching on browsers from interfering
with page refreshes. Unfortunately, we have not yet found a place to place the tag
where it could accomplish that function. Perhaps a reader can provide that solution.

10.2.3 Finding Bean Methods from JSP Tags
In Section 8.2.11,“Invoking Chat Methods from BonForumEngine” in Chapter 8, we
discussed the methods of the nonvisual JavaBean class BonForumStore, used by the cus-
tom JSP actions in bonForum. It is very useful to be able to execute methods on a
server-side bean from Tag Handler classes, and there are different ways to manage that.
A bean can even be made into a tag handler itself, simply by implementing the Tag
interface.We make our bean available to the tags by setting a reference to it in an
attribute of the ServletContext (application) object.We have shown elsewhere how
we set that attribute, but perhaps a brief overview here will be convenient.

The bean whose methods we want to invoke from Tag Handler classes is a special
case:There is only one instance of the BonForumStore class, called bonForumStore, that
is a static member of the BonForumEngine servlet.We use the getBonForumStore()
method of BonForumEngine to get bonForumStore and then set it in an application
attribute.This happens in the processRequest() method of BonForumEngine, as shown
in the following code.This sets the attribute only if it is not there already:

Object temp = getServletContext().getAttribute(“bonForumStore”);
if(temp == null) {
getServletContext().setAttribute(“bonForumStore”, getBonForumStore());
}

We also must be able to get the bonForumStore application attribute from inside the
tag-handler classes for the outputPathNames, outputChatMessages, and transform tags.
We do that only once per Tag Handler class using a static variable and the method
findBonForumStore(), which is defined in handler classes for each of these tags and
is shown in the following excerpt. Of course, we can then invoke any available
BonForumStore methods to support these custom tag actions. Here is the declaration
of the object variable and the method that turns it into a reference to the database
wrapper:

private static BonForumStore bonForumStore = null;

private void findBonForumStore() {
if(bonForumStore == null) {
if (pageContext.getServletContext().getAttribute(“bonForumStore”) != null) {
bonForumStore = (BonForumStore)(pageContext.getServletContext().getAttribute(
➥“bonForumStore”));
}
else {

10 1089-9 CH10 6/26/01 7:35 AM Page 318

31910.2 The bonForum Tag Library

log(“err”, “ERROR? OutputPathNamesTag DID NOT GET bonForumStore. Session ID:” +
➥pageContext.getSession().getId());
}
}
}

10.2.4 Using TreeMap for Sorted Output
Two of the bonForum custom tags, outputPathNames and outputChatMessages, get
some string results returned from a BonForumStore method in a TreeMap object.They
then use an iterator to process the items in the TreeMap object.We will discuss the use
of TreeMap once here instead of twice later, where these tags are discussed.

Using TreeMap is an easy way to provide a sorted list of strings. Each tag handler for
the two tags involved here declares a TreeMap as follows:

TreeMap outputTable = null;
Iterator iterator = null;

At first, we worried about using instance variables here.Wouldn’t that be dangerous in
a multithreaded situation? Also, TreeMap and Iterator are not synchronized—wouldn’t
we have to do something about that?

First, we do need to have access to the outputTable object from two different
methods in the Tag Handler class: doInitBody() and doAfterBody(). For that reason,
we could not create a local TreeMap variable inside a method, but we had to declare it
outside of both methods as an instance variable of the Tag Handler class.

Second, the TreeMap instance on the bonForumStore bean does need to be synchro-
nized because it is created new as a local method variable for each thread.

Third, the situation is not as dangerous as it looks.When a JSP with the tag is
translated into a Java source file by the JSP container, the Tag Handler class is instanti-
ated within a _jspService() method in a servlet. If you have requested any JSP with a
custom tag in it, you can see that for yourself by finding its translated JSP Java servlet
source file in the Tomcat work folder. For example, if you have already started a chat
in bonForum, view the Java work file for the JSP visitor_starts_chat_frame.jsp.

It will have one of those long, funny-looking filenames, but you can find all the
words of the JSP filename in its name and a .java file extension.You should find it in
something like the folder TOMCAT_HOME\work\localhost_8080%2FbonForum,
(depending on your server and port, and work folder configuration).

Look inside the service method, which starts like this:
public void _jspService(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {

Find the statement that looks like this:
de.tarent.forum.OutputPathNamesTag _jspx_th_bon_outputPathNames_0 = new
➥de.tarent.forum.OutputPathNamesTag();

10 1089-9 CH10 6/26/01 7:35 AM Page 319

320 Chapter 10 JSP Taglib: The bonForum Custom Tags

Each thread executing the code in the service method is getting its own instance of
the Tag Handler class. So, only one thread will be accessing the instance variables
within that instance. Our outputTable and iterator do not need to be thread-safe
after all!

In fact, for the same reason the tag attribute property variables in a tag handler class
are safe for each thread. Clearly, a tag would have to be thread-safe to be useful. It does
help to understand why they are safe, however.

10.2.5 Static Variables of Tag Handler Classes
The static class variables within our Tag Handler are a different story! Only one copy
of these exists for all the instances of the Tag Handler class.We have some in our
Tag Handler classes, defined like this:

private static BonForumStore bonForumStore = null;
private static boolean loggingInitialized = false;
private static BonLogger logOCMT = null;
private static String logging = null;

That means that every Tag Handler instance is getting access to the same object here.
These are shared objects, so we need to consider synchronization if more than one
thread is going to change their value.The first question, in a situation like this, should
be: Do we need to share these at all?

The bonForumStore object wraps our database, and obviously all threads need access
to that.We certainly do not want a copy of the database for each thread, so that must
be shared. In the prototype bonForum, the database is a ForestHashtable, which
extends the Hashtable class, which is synchronized (thread-safe) already. But
ForestHashtable also uses other Hashtable objects to cash some keys, so we have
added our own synchronization to the add, edit, and delete methods of
ForestHashtable so that the entire transaction involving all its Hashtables is also
thread-safe.

In a later version of bonForum, BonForumStore will be a database connection pool,
handing out available JDBC connections to an SQL database.That setup will be
thread-safe by virtue of the database application at the other end of the connections.

10.2.6 Initializing the BonLogger Object
Now for the other three static variables, which all deal with logging output from the
tag-handler classes.The BonLogger class just writes strings out to standard out, error
out, and a log file for each class.We certainly do not want a different log file for each
session.And there is only one out and one err. So, we want one static BonLogger
instance per Tag Handler class, and it will be shared. It is thread-safe because
PrintWriter, System.out, and System.err are thread-safe, as well as because of the way
it is created.

10 1089-9 CH10 6/26/01 7:35 AM Page 320

32110.2 The bonForum Tag Library

For each Tag Handler class, one static BonLogger instance is created by the first
thread that “fires” the tag on any JSP in the Web application. It happens as the first tag
attribute is being set (we make sure that it is a required attribute). Here is the code:

public void setType(String value) {
if(!loggingInitialized) {
logging = pageContext.getServletContext().getInitParameter(“Logging”);
logTT = new BonLogger(“TransformTagLog.txt”, logging);
loggingInitialized = true;
System.err.println(“TransformTag init logging:” + logging);
}

[rest of method left out here...]

}

Is there a chance that more than one BonLogger instance gets created? If that mattered,
we could synchronize the block of code shown. But when you are first starting up the
Web application, you should visit every page so that it gets compiled (unless it is all
compiled in a JAR).That means that there will most likely be only one thread access-
ing each tag handler class that first time.Also, if two BonLogger instances were created
before one thread locks the block with the static flag, that should be innocuous: One
gets garbage-collected as an orphan, and the other gets the static variable.

10.2.7 Using TagExtraInfo for Scripting Variables
As you can see wherever we use them, three of the bonForum tags, outputPathNames,
outputChatMessages, and transform, use a variable named output. It appears within a
JSP expression in the body content of the tag, as in this example, where the expression
appears between HTML option elements:

<option><%= output %></option>

You can find that example in the JSP visitor_starts_chat_frame.jsp.
That expression results in the value of the output variable appearing in the HTML

produced by the JSP.You might have looked in vain for the place where the output
variable was defined.We will discuss how it comes to exist once here, instead of doing
it three times later (once for each tag that uses it).

The trick involved here is a bonForum class so small that we might as well list the
entire source here:

package de.tarent.forum;
import javax.servlet.jsp.tagext.*;
public class BonForumTagExtraInfo extends TagExtraInfo {

public VariableInfo[] getVariableInfo(TagData data) {
return new VariableInfo[] {

new VariableInfo(“output”,
“String”,
true,

10 1089-9 CH10 6/26/01 7:35 AM Page 321

322 Chapter 10 JSP Taglib: The bonForum Custom Tags

VariableInfo.NESTED),
};

}
}

As you see, we extend TagExtraInfo.That means that the JSP container will be capa-
ble of using this class at translation or compilation time to get information about vari-
ables that are used in the Web application. It will assume as it translates the tag that
these variables are available as page attributes. Later, when we look at the translated
Java code for a Tag Handler instance, you can see where the value of the attribute is
“loaded” into a local variable for use by the tag processing.

In our case, we have only one such scripting variable, and it is a String, so this is an
extremely simple use of the class.The last argument of the VariableInfo constructor is
the scope that you want the variable to have. It can be AT_BEGIN, AT_END, or NESTED.
AT_BEGIN means that the variable with be available from the doBeginTag() method
onward to the end of page processing. AT_END means that the variable appears in the
doEndTag() method. NESTED variables are defined only while the tag is being
processed. If you use a value other than NESTED for a tag, you will not be able to put
that tag on the same page twice because you will get an exception when the container
tries to create a variable that exists.Also, consider synchronization issues with such
variables.

We leave it up to you to further explore TagExtraInfo use.You can see another
example of TagExtraInfo use in the SQL tag library that we discussed in Section
10.1.13,“Nested Custom Tags.”The variables declared here, of course, could be other
classes besides String.When you put that together with the fact that the compiler can
check that they exist at translation time, you can see that this mechanism adds great
potential to JSP tag libraries.

To use the TagExtraInfo class, we had to do one more thing besides compile the
class.That was to add a line to the tag element in the TLD file for the bonForum tag
library, as in the following abbreviated listing of one example:

<tag>
<name>
outputPathNames
</name>
<tagclass>
de.tarent.forum.OutputPathNamesTag
</tagclass>
<teiclass>
de.tarent.forum.BonForumTagExtraInfo
</teiclass>
<bodycontent>
JSP
</bodycontent>
[info and attribute elements omitted for brevity]
</tag>

10 1089-9 CH10 6/26/01 7:35 AM Page 322

32310.2 The bonForum Tag Library

The teiclass element tells the JSP container about our TagExtraInfo descendant
class, which tells the container about our output variable.

What does the container do with that information? Again, the best way to answer
questions like this is to look at the translated JSP file—that is, the corresponding Java
servlet source file in the Tomcat work folder.The next listing shows the result seen
there, having a TEI class and the TLD tag element as shown previously, and the exam-
ple body content shown at the beginning of this section:

do {
String output = null;
output = (String) pageContext.findAttribute(“output”);
out.write(“\r\n\t\t<option>”);
out.print(output);
out.write(“</option>\r\n\t”);

} while (_jspx_th_bon_outputPathNames_0.doAfterBody() == BodyTag.EVAL_BODY_TAG);

We have simplified this excerpt greatly to show only the relevant statements.Also, all
we are showing here is the loop that iterates the doAfterBody method in the tag han-
dler.The output page attribute is what is called a scripting variable.The code inside
the do block is what is referred to often in the documentation by phrases such as “the
tag handler evaluates the body content into the existing output stream of the JSP.”The
HTML option tag and the JSP expression with the output scripting variable are the
body content here, and the out.write and out.print method invocations are process-
ing the body content.You can find this excerpt in a container translation of the same
JSP file that we used as an example in the last section (after you requested that JSP at
least once while using the Web app): visitor_starts_chat_frame.jsp.

What we have, in this case, is just a fancy way of using a page attribute. It is infor-
mative to look at the translated JSP.That is how we realized that we could do the fol-
lowing page attribute setting, in the outputPathNames tag handler class, inside the
doAfterBody() method:

if(iterator.hasNext()) {
pageContext.setAttribute(“output”, (String)iterator.next());
return EVAL_BODY_TAG;
}
else {
bodyContent.writeOut(bodyContent.getEnclosingWriter());
return SKIP_BODY;
}

But, wait! Instead of going to all the trouble of setting up the output variable with
the TagExtraInfo class and the TLD file, why not just do something like this in our
tag handler class:

bodyContent.println(“<option>” + (String)iterator.next() + “</option>”);

The answer is that we could do that. If so, then we would also want to print the
<select> and </select> tags in the doInitBody() and doAfterBody() methods.We
would lose the flexibility of being able to use the same tag to get different results. For

10 1089-9 CH10 6/26/01 7:35 AM Page 323

324 Chapter 10 JSP Taglib: The bonForum Custom Tags

example, with the output variable, we could create something besides a select list by
using a tag something like this:

<prefix:tagname attr=”value”>
<%= output %>
<prefix:tagname>

Perhaps most importantly, we would lose this opportunity to play with the
TagExtraInfo class.We demystified it in the playing more than its sparse documenta-
tion ever could. But using the scripting variable causes extra string copying and
attribute setting to happen.That is probably too expensive, especially with many
threads in a chat, so it could be argued that we should get rid of the output variable
and write the new body content directly from the tag handler methods involved.

Better yet is to make both behaviors into available options based on the value of an
attribute. In fact, we have already done that with the TransformTag tag handler class, as
you shall see when we discuss its output in section 10.6,“XSLT and the TransformTag
Class.”

10.3 The OutputDebugInfoTag Class
As mentioned in Table 10.1, the outputDebugInfo action is used to provide informa-
tion via the browser display during the development of Web applications. It can also
serve as an educational tool.To turn on the debug output, simply enter the system
commands state of bonForum from the main entrance. If the check box is checked
and the Set button is clicked, you will see the debug information there and in suc-
ceeding pages visited.We have put the outputDebugInfo tag on every JSP that displays
anything in bonForum.

You might notice that as it stands today, this tag did not really need to implement
BodyTag (by extending BodyTagSupport). It could have gotten the information that it
displays and used the JspWriter (out) to add it to the JSP output, instead of using the
BodyContent writer object.The body content processing support was added to the tag
to provide more potential for future expansion of this tag.

10.3.1 The outputDebugInfo Descriptor
The following listing shows the Tag element in the bonForum TLD that describes the
outputDebugInfo custom action tag:

<!-- outputDebugInfo tag -->
<tag>
<name>outputDebugInfo</name>
<tagclass>de.tarent.forum.OutputDebugInfoTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>
Outputs request header and parameter values.

10 1089-9 CH10 6/26/01 7:35 AM Page 324

32510.3 The OutputDebugInfoTag Class

Outputs attributes values for all scopes.
Attribute type=”init” turns tags on for entire
session, if a request parameter exists called
“output_debug_info” with a value of “yes”.
Afterwards, a tag but no attribute
is required to output debug info on page.

Attribute type=”init” turns tags off,
if no request parameter exists called
“output_debug_info” that is equal to “yes”.

Attribute force =”yes” turns that tag on only.
</info>
<attribute>
<name>type</name>
<required>false</required>

</attribute>
<attribute>
<name>force</name>
<required>false</required>

</attribute>
</tag>

The text in the info element should be sufficient to tell you how the tag behaves in a
JSP. Instead of repeating all that, we will describe how the tag accomplishes that
behavior.

10.3.2 The outputDebugInfo Tag Handler
The following listing shows the source code, stripped of lots of its javadoc comments,
for the OutputDebugInfoTag class:

package de.tarent.forum;

import java.util.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/** Tag Handler outputs debugging info.
*/

public class OutputDebugInfoTag
extends BodyTagSupport {

private static BonLogger logODI = null;
private static boolean loggingInitialized = false;
private static String logging = null;
private String type=””;
private String force=””;

private void log(String where, String what) {
if(logging != null) {

logODI.logWrite(System.currentTimeMillis(), pageContext.getSession(
➥).getId(), where, what);

10 1089-9 CH10 6/26/01 7:35 AM Page 325

326 Chapter 10 JSP Taglib: The bonForum Custom Tags

}
}

/** Sets value of the type attribute,
* and initializes logging once.
*/

public void setType(String value) {

if(!loggingInitialized) {
logging = pageContext.getServletContext().getInitParameter(“Logging”

➥);
logODI = new BonLogger(“OutputDebugInfoTagLog.txt”, logging);
loggingInitialized = true;
System.err.println(“OutputDebugInfoTag init logging:” + logging);

➥}

if (value.equals(null)) {
value = “”;

}
type = value;

}

/** Sets value of the force attribute.
*/

public void setForce(String value) {
if (value.equals(null)) {

value = “”;
}
force = value;

}

/** Sets “output_debug_info” request parameter
* value to session attribute
* @returns EVAL_BODY_TAG
* constant that causes tag body to be evaluated.
*/

public int doStartTag()
throws JspException {

if(type.equals(“init”)) {
if(pageContext.getRequest().getParameter(“output_debug_info”) !=

➥null) {
if(((String)(pageContext.getRequest().getParameter(

➥“output_debug_info”))).equals(“yes”)) {
pageContext.setAttribute(“output_debug_info”, “yes”, 4);

➥// 4 is application scope
}

}
else {

pageContext.setAttribute(“output_debug_info”, “no”, 4);
}

}

10 1089-9 CH10 6/26/01 7:35 AM Page 326

32710.3 The OutputDebugInfoTag Class

if(force.equals(“yes”)) {
return EVAL_BODY_TAG;

}
if(pageContext.getAttribute(“output_debug_info”, 4) != null) {

if(((String)(pageContext.getAttribute(“output_debug_info”, 4))
➥).equals(“yes”)) {

return EVAL_BODY_TAG;
}

}
return SKIP_BODY;

}

/** Outputs values of headers, parameters,
* attributes, etc. and ends tag processing.
* @returns SKIP_BODY constant that causes
* tag body to NOT be evaluated (again)
*/

public int doAfterBody()
throws JspException, JspTagException {

try {
HttpServletRequest req = (HttpServletRequest)

➥pageContext.getRequest();

bodyContent.println(“<H4>Request Headers: </H4>”);
Enumeration eh = req.getHeaderNames();
while(eh.hasMoreElements()) {

String name = (String)eh.nextElement();
String value = (String) req.getHeader(name);
bodyContent.println(“\t” + normalize(name) + “ = “ +

➥normalize(value) + “”);
}

bodyContent.println(“<H4>Request Parameters: </H4>”);
Enumeration ep = req.getParameterNames();
while(ep.hasMoreElements()) {

String name = (String) ep.nextElement();
String value = (String) req.getParameter(name);
bodyContent.println(“\t” + normalize(name) + “ = “ +

➥normalize(value) + “”);
}

bodyContent.println(“<H4>Application Initialization Parameters:
➥</H4>”);

Enumeration eip = pageContext.getServletContext(
➥).getInitParameterNames();

while(eip.hasMoreElements()) {
String name = (String) eip.nextElement();
String value = (String) pageContext.getServletContext(

➥).getInitParameter(name);
bodyContent.println(“\t” + normalize(name) + “ = “ +

➥normalize(value) + “”);

10 1089-9 CH10 6/26/01 7:35 AM Page 327

328 Chapter 10 JSP Taglib: The bonForum Custom Tags

}

int scope;
String title = null;
for(scope = 4; scope >= 1; scope--) {

switch(scope) {
case 1:

title = “Page Attributes:”;
break;

case 2:
title = “Request Attributes:”;
break;

case 3:
title = “Session Attributes:”;
break;

case 4:
title = “Application Attributes:”;
break;

}
bodyContent.println(“<H4>” + title + “</H4>”);
Enumeration ea = pageContext.getAttributeNamesInScope(scope);

➥while(ea.hasMoreElements()) {
String name = (String) ea.nextElement();
String value = (String) pageContext.getAttribute(name,

➥scope).toString();
bodyContent.println(“\t” + normalize(name) + “ = “

➥+ normalize(value) + “”);
}

}

bodyContent.writeOut(bodyContent.getEnclosingWriter());
return SKIP_BODY;

}
catch(java.io.IOException ex) {

log(“err”, “OutputDebugInfoTag doInitBody caught IOException”);
throw new JspTagException(“OutputDebugInfoTag doInitBody caught

➥IOException”);
}

}

/** Normalizes the given string,
* replacing chars with entities.
* NOTE: replaces null string with empty string.
* Based on Apache Software Foundation sample!
*/

protected String normalize(String s) {
StringBuffer str = new StringBuffer();
str.append(“”);
int len = (s != null) ? s.length() : 0;
for (int i = 0; i < len; i++) {

char ch = s.charAt(i);

10 1089-9 CH10 6/26/01 7:35 AM Page 328

32910.3 The OutputDebugInfoTag Class

switch (ch) {
case ‘<’: {

str.append(“<”);
break;

}
case ‘>’: {

str.append(“>”);
break;

}
case ‘&’: {

str.append(“&”);
break;

}
case ‘“‘: {

str.append(“"”);
break;

}
case ‘\r’:
case ‘\n’: {

str.append(“&#”);
str.append(Integer.toString(ch));
str.append(‘;’);
break;

}
default: {

str.append(ch);
}

}
}
return str.toString();

}
}

Code common to more than one Tag Handler class was already explained. For that,
refer to Section 10.2.3,“Finding Bean Methods from JSP Tags”; Section 10.2.5,“Static
Variables of Tag-Handler Classes”; and Section 10.2.6,“Initializing the BonLogger
Object.” With the help of those sections and Section 10.3.1,“The outputDebugInfo
Descriptor,” most of the code in this class should be quite simple to follow. Here we
will discuss only a few highlights.

10.3.3 Attribute-Setter Methods
As you see, each tag attribute is represented by a private variable with a public setter
method in the Tag Handler bean.These two property methods, setType() and
setForce(), replace any null values with empty strings to simplify code that uses the
attributes later. Of course, other argument validation steps are often useful in setter
methods.

10 1089-9 CH10 6/26/01 7:35 AM Page 329

330 Chapter 10 JSP Taglib: The bonForum Custom Tags

10.3.4 The doStartTag() Method
Notice in the doStartTag() method that the init attribute turns the tag output on or
off.A request parameter named output_debug_info with a value of yes can turn it on
by setting the output_debug_info session parameter to yes; any other situation turns
tag output off by setting the session parameter to no. If that session attribute or the
force attribute has a value of yes, then the doStartTag() method will return
EVAL_BODY_TAG; otherwise, the method returns SKIP_BODY.These constants determine
whether the tag handler executes the methods that process the body content
doInitBody() and doAfterBody() or goes instead directly to the doEndTag() method,
skipping the body.

10.3.5 The doAfterBody() Method
In this tag, we do not need to override the doInitBody() method because we can do
all our work in the doAfterBody() method. (In fact, we could have done all we do in
a doEndTag method.) You can see now how useful it is that the JSP container gives the
pageContext object to the Tag Handler instance created within the _jspService()
method. (You can see where that happens by viewing the Java translation file for any
JSP with a custom tag in it, which you find in the Tomcat work folder.We also show
it in a listing in Section 10.5.8,“The Translated Tag Handler in a JSP Servlet.”)

Looking up the PageContext class in the Jakarta servlet API documentation will
convince you how much power having the pageContext object gives to a Tag Handler
class.With that object, the tag action can use all the implied variables of its JSP (out,
page, request, response, session, application) and also has access to headers, parame-
ters, attributes, and so on in all Web application scopes. It can participate in the HTTP
game, forwarding and including requests. Custom tags can do a lot quite easily.We will
return to the discussion of the pageContext object after first looking briefly at how
the tag handler outputs to the browser.

The BodyContent Output Stream

You can see from the code that the doAfterBody() method uses the
bodyContent.println() method to “send” HTML to the browser, as it does first in
this statement:

bodyContent.println(“<H4>Request Headers: </H4>”);

The BodyContent class can be confusing at first; we will discuss it more fully in Section
10.5.7,“A Stack of BodyContentWriters.” For now, just note that, if the tag imple-
ments BodyTag, you can print to the BodyContent output stream and everything will
be buffered.The buffer will not autoflush—in fact, you cannot flush it, either.You can
discard it or write it into the enclosing writer, which could be the JspWriter, if the
tag is not nested in another, or it could be another BodyContent instance, if the tag
does have a parent tag.The doAfterTag() method returns SKIP_BODY to keep the body

10 1089-9 CH10 6/26/01 7:35 AM Page 330

33110.4 The OutputPathNamesTag Class

content loop from repeating. Before it does that, though, you can see it passing the
bodyContent back out.

bodyContent.writeOut(bodyContent.getEnclosingWriter());
return SKIP_BODY;

The Mighty pageContext Object

Way before that, we have some work to do! The method uses the pageContext object
to get the implicit request object:

HttpServletRequest req = (HttpServletRequest) pageContext.getRequest();

It can then output the “header headers” and get the request header names in an enu-
meration.Then it is easy to enumerate the header names, printing these with the
header values in HTML list item element content, as follows:

try {
bodyContent.println(“<H4>Request Headers: </H4>”);
Enumeration eh = req.getHeaderNames();
while(eh.hasMoreElements()) {

String name = (String)eh.nextElement();
String value = (String) req.getHeader(name);
bodyContent.println(“\t” + normalize(name) + “ = “ +

➥normalize(value) + “”);
}

That pretty much explains the mechanics of the tag.The rest of the output of infor-
mation in the doAfterBody() method features some different ways to get stuff to print
from the servlet context (application), for example:

String value = (String) pageContext.getServletContext(
➥).getInitParameter(name);

Another trick used is a for loop to get the attributes in all four Web application
scopes, using the following handy method to get four successive enumerations of
attribute names for each scope:

Enumeration ea =
pageContext.getAttributeNamesInScope(scope);

Having the attribute names gives the values also, courtesy of yet another pageContext
method:

String value = (String) pageContext.getAttribute(name,
➥scope).toString();

10.4 The OutputPathNamesTag Class
In the sections “The outputForumPathNames() Method” and “The
outputBufferPathNames() Method” in Chapter 8, we discussed the JavaBean methods
created to support the outputPathNames JSP custom tag action.

10 1089-9 CH10 6/26/01 7:35 AM Page 331

332 Chapter 10 JSP Taglib: The bonForum Custom Tags

The outputPathNames tag can be seen in use on the JSP page visitor_starts_chat_
frame.jsp, which presents the chat visitor with available chat subjects for a new chat.
Here is the custom tag as it appears on the JSP:

<select size=”12” name=”chatSubject”>
<bon:outputPathNames
docName=”bonForumXML”
pathToSubTreeRootNode=”bonForum.things.subjects”
ancestorReplacer=”COMPLETE_PATHS”
nodeSeparator=”/”>
<option><%= output %></option>
</bon:outputPathNames>
</select>

One of the strengths of custom tags is their reusability. It might seem strange, there-
fore, that the outputPathNames tag is used only in one place in bonForum, to output
node paths to chat subject elements from the XML database.The project is a proto-
type, and so is the tag.The tag design attempts to include features that will make it
useful in other situations when hierarchical information kept in XML needs to be
transformed into sorted lists of node paths.

We will start by showing the descriptor and the code for the tag.We’ll continue
with brief discussions of its attributes and methods, and finally we’ll include some
notes on its design.

10.4.1 The outputPathNames Descriptor
The following listing shows the Tag element in the bonForum TLD that describes the
outputPathNames custom action tag:

<!-- outputPathNames tag -->
<tag>
<name>outputPathNames</name>
<tagclass>de.tarent.forum.OutputPathNamesTag</tagclass>
<teiclass>de.tarent.forum.BonForumTagExtraInfo</teiclass>
<bodycontent>JSP</bodycontent>
<info>
Outputs pathNames (node paths)
from subTree of XML tree or forest.
(Note: ignores chatItem nodes in bonForumXML.)

</info>
<attribute>
<name>docName</name>
<required>true</required>

</attribute>
<attribute>
<name>pathToSubTreeRootNode</name>
<required>true</required>

</attribute>
<attribute>

10 1089-9 CH10 6/26/01 7:35 AM Page 332

33310.4 The OutputPathNamesTag Class

<name>ancestorReplacer</name>
<required>true</required>

</attribute>
<attribute>
<name>nodeSeparator</name>
<required>true</required>

</attribute>
</tag>

Note that the only attribute that does anything in this book release of bonForum is
docName.

10.4.2 The outputPathNames Tag Handler
The following listing shows the source code for the OutputPathNamesTag class
(stripped of its Javadoc comments, to save space):

package de.tarent.forum;

import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/** Outputs pathNames from subTree of an XML tree
* or forest (except chatItems!)
*/
public class OutputPathNamesTag extends BodyTagSupport
{

TreeMap outputTable = null;
Iterator iterator = null;

private static BonForumStore bonForumStore = null;

private static BonLogger logOPNT = null;
private static boolean loggingInitialized = false;
private static String logging = null;

private String docName = “”;
private String pathToSubTreeRootNode = “”;
private String ancestorReplacer = “”;
private String nodeSeparator = “”;

private void log(String where, String what) {
if(logging != null) {

logOPNT.logWrite(System.currentTimeMillis(), pageContext.getSession(
➥).getId(), where, what);

}
}

/** locates bonForumStore in application
*/

10 1089-9 CH10 6/26/01 7:35 AM Page 333

334 Chapter 10 JSP Taglib: The bonForum Custom Tags

private void findBonForumStore() {
// code omitted here is in appendix,
// and in Section 10.2.3,
// “Finding Bean Methods from JSP Tags “

}

/** Sets value of the docName attribute;
* also initializes logging.
*/

public void setDocName(String value) {
if(!loggingInitialized) {

logging = pageContext.getServletContext().getInitParameter(“Logging”
➥);

logOPNT = new BonLogger(“OutputPathNamesTagLog.txt”, logging);
➥loggingInitialized = true;
System.err.println(“OutputPathNamesTag init logging:” + logging);

➥}

if (value.equals(null)) {
value = “bonForumXML”;

}
docName = value;

}

/** Sets value of the pathToSubTreeRootNode attribute.
*/

public void setPathToSubTreeRootNode(String value) {
if(value.equals(null)) {

value = “”;
}
pathToSubTreeRootNode = value;

}

/** Sets value of the ancestorReplacer attribute.
*/

public void setAncestorReplacer(String value) {
if(value.equals(null)) {

value = “”;
}
ancestorReplacer = value;

}

/** Sets value of the nodeSeparator attribute.
*/

public void setNodeSeparator(String value) {
if(value.equals(null)){

value = “”;
}
nodeSeparator = value;

}

10 1089-9 CH10 6/26/01 7:35 AM Page 334

33510.4 The OutputPathNamesTag Class

/** Makes sure the body of the tag is evaluated.
*/

public int doStartTag() throws JspException {
return EVAL_BODY_TAG;

}

/** Gets bonforumStore,
* and outputTable with pathnames;
* gets iterator.and outputs first pathname.
*/

public void doInitBody() throws JspException, JspTagException {

findBonForumStore();

if(bonForumStore != null) {
try {

outputTable = new TreeMap(bonForumStore.outputForumPathNames(
➥docName, pathToSubTreeRootNode, ancestorReplacer, nodeSeparator));

if (outputTable != null) {
iterator = outputTable.keySet().iterator();
if(iterator.hasNext()) {

pageContext.setAttribute(“output”, (String
➥)iterator.next());

}
}

} catch (Exception ex) {
log(“err”, “caught Exception in OutputPathNamesTag doInitBody”

➥);
throw new JspTagException(“caught Exception in OutputPathNamesTag

➥doInitBody”);
}

}
}

/** Iterates outputTable into “output” page attribute until done.
*/

public int doAfterBody() throws JspException, JspTagException {
if(bonForumStore != null && outputTable != null && iterator != null) {

➥try {
if(iterator.hasNext()) {

pageContext.setAttribute(“output”, (String)iterator.next()
➥);

return EVAL_BODY_TAG;
} else {

bodyContent.writeOut(bodyContent.getEnclosingWriter());
➥return SKIP_BODY;

}
} catch (java.io.IOException ex) {

log(“err”, “caught IOException in OutputPathNamesTag
➥doAfterBody”);

throw new JspTagException(“caught IOException in

10 1089-9 CH10 6/26/01 7:35 AM Page 335

336 Chapter 10 JSP Taglib: The bonForum Custom Tags

➥OutputPathNamesTag doAfterBody”);
}

}
else {

//log(“”, “ERROR: OutputPathNamesTag doAfterBody no store | no
➥table | no iterator”);

return SKIP_BODY;
}

}
}

Code that is common to more than one Tag Handler class was already explained. For
that, refer to the following sections:

n Section 10.2.3,“Finding Bean Methods from JSP Tags”
n Section 10.2.4,“Using TreeMap for Sorted Output”
n Section 10.2.5,“Static Variables of Tag Handler Classes”
n Section 10.2.6,“Initializing the BonLogger Object”
n Section 10.2.7,“Using TagExtraInfo for Scripting Variables”

With the help of those sections and Section 10.4.1,“The outputPathNames
Descriptor,” you should be able to follow the code in this class.We will now discuss a
few highlights.

The outputPathNamesTag Handler class implements the BodyTag interface by
extending BodyTagSupport, which means that it can override the doInitBody() and
doAfterBody() methods and set up a looping construct. It takes advantage of that to
output a list of node paths that will contain a variable number of items.

10.4.3 Attribute-Setter Methods
As usual, each tag attribute is represented by a private variable with a public property
setter method in the tag handler bean.The first property method, setDocName(),
replaces any null incoming value with a default value so that later code will not have
to check for nulls.The other attribute methods involved are
setPathToSubTreeRootNode(), setAncestorReplacer(), and setNodeSeparator().
These set nulls to empty strings for now because they are not yet used by the bean
method that will someday do so. For the meaning and allowable values of the tag
attributes, we refer you to the references given in the first paragraph of Section 10.4,
“The OutputPathNamesTag Class.”

10.4.4 The doStartTag() Method
The doStartTag() method is overridden only to return EVAL_BODY_TAG; otherwise, the
method returns SKIP_BODY.We want to always execute the methods that process the
body content, doInitBody() and doAfterBody().This would be the place to switch off

10 1089-9 CH10 6/26/01 7:35 AM Page 336

33710.4 The OutputPathNamesTag Class

these methods, for example, depending upon some state or initialization parameters in
the Web application.

10.4.5 The doInitBody() Method
The first body content-handling method starts off by making sure that the reference to
the bonForumStore XML data wrapper object is valid, by calling findBonForumStore().
When and if it is valid, the method invokes its outputForumPathNames method, passing
the tag attributes as arguments.The bean method returns a TreeMap object filled with
the items to use sequentially for each body content evaluation in the Tag Handler.The
TreeMap returned is used to create a new one in the Tag Handler. (That a new one is
created here might be left over from attempts to use a synchronized TreeMap instance
variable on the bean.A reference to the local TreeMap method variable used on the
bean might work now, but it needs to be tested first.)

As an aside, note that the iterator here is of the keys in the TreeMap because these
contain the sorted node paths to each chat subject node in the XML data.The values
in the TreeMap object each contain the nodeKey.aKey for the node at the end of the
path in the key. Perhaps these should be included in the JSP output stream.They
would be useful to locate the subject node directly, rather than using a method that
takes the node path as an argument.

To return to the business at hand, the doInitBody() method continues by setting
the first TreeMap key value in its iterator (if it is not empty) in the output page
attribute, which is the scripting variable known to the JSP container at JSP translation
time.We could just as easily simply output the key value as a string into the
bodyContent output stream, which would make it show up on the browser page (after
the bodyContent was written to the out JspWriter of the JSP and was flushed, if nec-
essary). We discuss why that is not done in Section 10.2.7,“Using TagExtraInfo for
Scripting Variables.”

Because we are invoking a bean method that might throw an exception, we put all
this in a try block.Any exceptions caught cause an entry to the log for the Tag
Handler class and result in throwing a new JspTagException, passing the buck to the
surrounding JSP code, which should display the Web application JSP error page.

10.4.6 The doAfterBody() Method
As described in Section 10.1.4,“How Do JSP Custom Tags Work?”, the
doAfterBody() method is invoked after the doInitBody() method whenever the Tag
Handler class implements the BodyTag interface and returns EVAL_BODY_TAG from the
doStartTag() method. When the doAfterBody() method is invoked, the body con-
tent has already been evaluated into the output stream. Let’s see what that means.

In the case of the Tag Handler instance being discussed here, the body content, as
shown in Section 10.4, is this:

<option><%= output %></option>

10 1089-9 CH10 6/26/01 7:35 AM Page 337

338 Chapter 10 JSP Taglib: The bonForum Custom Tags

Therefore, the body content evaluation in the output stream in this instance of the Tag
Handler involves execution of the following statements, which appear in the transla-
tion of the JSP document into a servlet class source-code file in the Tomcat work
folder:

String output = null;
output = (String) pageContext.findAttribute(“output”);
out.write(“\r\n\t\t<option>”);
out.print(output);
out.write(“</option>\r\n\t”);

Again, these statements have already executed by the time the doAfterBody() method
begins.You might well ask what happens if the iterator obtained is empty.The option
tag would get a null in it if the page attribute did not exist.We take care of that in a
kludgy manner by making sure that no empty TreeMap can be returned at the end of
the outputForumPathNames() method in BonForumStore:

if(outputTreeMap.size()<1) {
outputTreeMap.put(“.”, “0”);
}

Worse yet, the HTML select option might get the last value left over from a previous
invocation of the Tag Handler earlier on the same page.That will not happen in this
case, where there is no change in output from one outputForumPathNames() method
call to the next, but in are general case that could happen. It would be far better to
take care of both output problems by initializing the page attribute in the
doInitBody() method and resetting it in the doEndTag() method or when the iterator
is found empty in the doAfterBody() method. Perhaps when you download a new
release of bonForum from the www.bonforum.orgWeb site we will have made those
changes!

Unless the iterator was empty or contained just one value, the doAfterBody()
method returns EVAL_BODY_TAG, which ensures that the body content will be evaluated
again and that the doAfterBody() method will be invoked again.That loop will con-
tinue until the iterator is empty, in which case the doAfterBody() method returns
SKIP_BODY, to signal that the looping should end. Before doing that, it writes the buffer
contents of the BodyContent non-autoflushing output stream into the enclosing output
stream for the tag instance, which in this non-nested tag is the original JspWriter
instance out.That ensures that all the hard work of repeatedly evaluating the tag body
content will actually reach the JSP client (browser).

The doEndTag() method will be called by the container next. It could be used to
do anything that should be done whether doStartTag() returns SKIP_BODY or
EVAL_BODY_TAG (or, in the case of a Tag Handler with only a Tag interface,
EVAL_BODY_INCLUDE).The doStartTag() method can also be used to return SKIP_PAGE,
which terminates the JSP page by executing a return statement from the jspService()
method. In our tag, we have not overridden the doEndTag() method, so it returns the
default EVAL_PAGE, and the rest of the _jspService() method is executed next.

10 1089-9 CH10 6/26/01 7:35 AM Page 338

33910.4 The OutputPathNamesTag Class

Because the output stream can throw a java.io.IOException, we wrap the process-
ing in a try block. If we catch the exception, we log the problem and throw a new
JspTagException, which will hopefully show up on the JSP error page for the Web
application.We should probably also throw a new exception if bonForumStore,
outputTable, or iterator is null when doAfterBody begins; instead, we just end the
body content processing with an unhealthy “it can’t happen here” attitude.

10.4.7 Where Is the OutputTable Tag?
Software often starts out solving one problem but turns out to have a wider utility. In
that case, the software tends to evolve toward a design that can solve the general-case
problem. In the case of two of our tag handler classes, OutputPathNamesTag and
OutputChatMessagesTag, the opposite occurred.We began by developing an
OutputTable tag to solve the general case problem of outputting tables based on XML
data. (Actually, as readers of the German version of this book know, it was really an
option called bonOutputTable of our ChoiceTag prototype Tag Handler class.) As it
turned out, that tag was never used in the project because the TransformTag XSLT
solution turned out to be so flexible that it solved the table output problem with far
less work and code duplication. (See Section 10.6,“XSLT and the TransformTag
Class.”) Ironically, the transform tag itself certainly exemplifies the rule that software
evolves toward solving a general problem!

The work we did on OutputTable was not wasted, however.What began as an
attempt at a general solution ended up being applied to some more specific problems.
The code lives on in these two heavily used bonForum Tag Handler classes:

n OutputForumPathNamesTag

n OutputForumChatMessages

10.4.8 Unique Pathnames for Speed Optimization
If you skipped some chapters, you might wonder how we can be use node paths
(pathnames) from an XML document as keys in a TreeMap because keys must have
unique values.What if there are two sibling nodes with the same name? The answer is
that, as an optimization, we built a restriction into the design of the bean method: It
can be used only with an XML subtree that has unique node paths starting from the
root node of the subtree.We can select the subtree rooted at bonForum.things.
subjects and know that there are no descendant sibling nodes with the same name.
One further assumption was made: It always outputs all the elements in that subtree,
including all its leaves.

Why not just use the TreeMap values for the pathnames and use the always unique
nodeKey.aKey values for the keys? Because we used the TreeMap to sort the pathnames.
To make the tag more widely useable, it does seem now that it would be better to fol-
low this alternative and use a different method (perhaps the Collections.sort
method) to sort the pathnames for the select list of available chat subjects.

10 1089-9 CH10 6/26/01 7:35 AM Page 339

340 Chapter 10 JSP Taglib: The bonForum Custom Tags

10.5 The OutputChatMessagesTag Class
In the sections “The outputForumChatMessages() Method” and “The
outputBufferChatMessages() Method” in Chapter 8, we discussed the JavaBean meth-
ods created to support the outputChatMessages JSP custom tag action.

The outputChatMessages custom action tag can be seen in action (pun intended)
on the following two JSPs from the bonForum Web application:

guest_executes_chat_frame.jsp

host_executes_chat_frame.jsp

Here is an excerpt from one of those files, showing the custom action tag being used
to display a page full of chat messages from the chat history:

<form method=”POST”
action=”/bonForum/servlet/BonForumEngine”>

<select size=”<%= chatMessagesPageSize %>”
name=”chatMessages”>

<bon:outputChatMessages

command=”bonForumXML”>
<option><%= output %></option>

</bon:outputChatMessages>

</select>
</form>

As do all the bonForum tags that we will discuss, the outputChatMessagesTag Handler
class implements the BodyTag interface by extending BodyTagSupport.That means that
it can override the doInitBody() and doAfterBody() methods and set up a looping
construct. In this action, that loop is used to output a list of chat messages that will
certainly vary in number, even as we display them.

We will once again first show the TLD tag element for this action and then show
the edited source code for its Tag Handler class.After that, we discuss attribute and
action methods of the Tag Handler class.Then we take a deeper look at what really
happens by dissecting some of the code produced by the JSP container when it trans-
lates a JSP in which this tag has been used.We wrap up the discussion of this tag with
some notes about its design.

10.5.1 The outputChatMessages Descriptor
The following listing shows the Tag element in the bonForum TLD that describes the
outputChatMessages custom action tag:

<!-- outputChatMessages tag -->
<tag>
<name>outputChatMessages</name>
<tagclass>de.tarent.forum.OutputChatMessagesTag</tagclass>
<teiclass>de.tarent.forum.BonForumTagExtraInfo</teiclass>

10 1089-9 CH10 6/26/01 7:35 AM Page 340

34110.5 The OutputChatMessagesTag Class

<bodycontent>JSP</bodycontent>
<info>
Outputs chatMessages from subTree of XML tree or forest.
Attributes are reserved for future use selecting messages.

</info>
<attribute>
<name>command</name>
<required>true</required>

</attribute>
<attribute>
<name>attr1</name>
<required>false</required>

</attribute>
<attribute>
<name>attr2</name>
<required>false</required>

</attribute>
<attribute>
<name>attr3</name>
<required>false</required>

</attribute>
</tag>

10.5.2 The outputChatMessages Tag Handler
The following listing shows the source code, minus its javadoc comments, for the
OutputChatMessagesTag class:

package de.tarent.forum;

import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/** Outputs chat messages from a bonForum
* XML Document or ForestHashtable.
*/
public class OutputChatMessagesTag

extends BodyTagSupport
{

TreeMap outputTable = null;
Iterator iterator = null;

private static BonForumStore bonForumStore = null;

private static boolean loggingInitialized = false;
private static BonLogger logOCMT = null;
private static String logging = null;

private String command = “”;

10 1089-9 CH10 6/26/01 7:35 AM Page 341

342 Chapter 10 JSP Taglib: The bonForum Custom Tags

private String attr1 = “”;
private String attr2 = “”;
private String attr3 = “”;

private void log(String where, String what) {
if(logging != null) {

logOCMT.logWrite(System.currentTimeMillis(), pageContext.getSession(
).getId(), where, what);

}
}

/** locates bonForumStore in application
*/
private void findBonForumStore() {

// code omitted here is in appendix,
// and similar code is in Section 10.2.3,
// “Finding Bean Methods from JSP Tags “

}

/** Sets value of the command attribute; also initializes logging.
*/

public void setCommand(String value) {

if(!loggingInitialized) {
logging = pageContext.getServletContext().getInitParameter(“Logging”

➥);
logOCMT = new BonLogger(“OutputChatMessagesTagLog.txt”, logging);
➥loggingInitialized = true;

}

if (value.equals(null)) {
value = “bonForumXML”;

}
command = value;

}

/** Sets value of the attr1 attribute.
*/

public void setAttr1(String value) {
if(value.equals(null)) {

value = “”;
}
attr1 = value;

}

// NOTE: Two similar setter methods,
// setAttr2() and setAttr3(),
// were omitted in book for brevity!

/** Makes sure the body of the tag is evaluated.
*/

10 1089-9 CH10 6/26/01 7:35 AM Page 342

34310.5 The OutputChatMessagesTag Class

public int doStartTag() throws JspException {
return EVAL_BODY_TAG;

}

/** Gets chat messages from bonForumStore,
outputs the first one, if any.

*/
public void doInitBody() throws JspException, JspTagException {

findBonForumStore();

if(bonForumStore != null) {
try {

outputTable = new TreeMap(bonForumStore.outputForumChatMessages(
➥command, attr1, attr2, attr3, pageContext.getSession()));

if (outputTable != null) {
iterator = outputTable.values().iterator();
if(iterator.hasNext()) {

pageContext.setAttribute(“output”, (String
➥)iterator.next());

}
}

} catch (Exception ex) {

log(“err”, “caught Exception in OutputChatMessagesTag
➥doInitBody”);

throw new JspTagException(“caught Exception in
➥OutputChatMessagesTag doInitBody”);

}
}

}

/** Outputs rest of chat messages, if any.
*/
public int doAfterBody() throws JspException, JspTagException {

if(bonForumStore != null && outputTable != null && iterator != null) {

try {

if(iterator.hasNext()) {

pageContext.setAttribute(“output”, (String)iterator.next()
➥);

10 1089-9 CH10 6/26/01 7:35 AM Page 343

344 Chapter 10 JSP Taglib: The bonForum Custom Tags

return EVAL_BODY_TAG;

} else {

bodyContent.writeOut(bodyContent.getEnclosingWriter());

return SKIP_BODY;

}

} catch (java.io.IOException ex) {

log(“err”, “caught IOException in OutputChatMessagesTag
➥doAfterBody”);

throw new JspTagException(“caught IOException in
➥OutputChatMessagesTag doAfterBody”);

}
}
else {

log(“err”, “ERROR: OutputChatMessagesTag doAfterBody no store | no
➥table | no iterator”);

return SKIP_BODY;

}
}

}

Code that is common to more than one Tag Handler class has been already explained.
For that, refer to the following sections:

n Section 10.2.3,“Finding Bean Methods from JSP Tags”
n Section 10.2.4,“Using TreeMap for Sorted Output”
n Section 10.2.5,“Static Variables of Tag Handler Classes”
n Section 10.2.6,“Initializing the BonLogger Object”
n Section 10.2.7,“Using TagExtraInfo for Scripting Variables”

With the help of those sections and Section 10.5.1,“The outputChatMessages
Descriptor,” you should be able to follow the code for this class.

10.5.3 Attribute-Setter Methods
Each tag attribute is represented by a private variable with a public setter method in
the Tag Handler bean.Three of the property methods, setAttr1(), setAttr2(), and
setAttr3(), are not currently used and set any null argument to an empty string.Two

10 1089-9 CH10 6/26/01 7:35 AM Page 344

34510.5 The OutputChatMessagesTag Class

are omitted for brevity. If the setCommand() setter method gets a null argument, it sets
the command property to bonForumXML, the default value.A command with this value
means that messages from the bonForum XML database of that name should be dis-
played.The messages from the data that are displayed are currently controlled by the
values of some session attributes. Notice that the command is the only required
attribute in the custom tag.

10.5.4 The doStartTag() Method
The doStartTag() method is overridden only to return EVAL_BODY_TAG; otherwise, the
method would return SKIP_BODY.We want to always execute the methods that process
the body content, doInitBody() and doAfterBody().This would be the place to switch
off these methods, for example, depending upon some state or initialization parameters
in the Web application.

10.5.5 The doInitBody() Method
The doInitBody() method of the outputChatMessages tag handler is very similar to
that of the outputPathNames tag handler, which we discussed in Section 10.4.5,“The
doInitBody Method.” One major difference is that the BonForumStore method that is
invoked by outputChatMessages is different, as shown here:

outputTable = new TreeMap(bonForumStore.outputForumChatMessages(command, attr1,
➥attr2, attr3, pageContext.getSession()));

This method returns a TreeMap object with nodeKey.aKey values as keys and chat mes-
sages (prefaced by the chat actor name) as the values.As you know, the keys are made
from unique system clock times in milliseconds, so when the TreeMap keeps them
sorted, it is effectively sorting them chronologically—important for displaying a page
of chat messages. Because we want to display the messages, not the keys, there is
another subtle difference in this doInitBody() method, compared to the one for the
outputPathName tag.The iterator is on the TreeMap values, not its keys, as shown here:

iterator = outputTable.values().iterator();

Besides using a different message in case of an exception, the rest of the method is the
same as for outputPathNames.The first (if any) value the iterator has available is put in
the output scripting variable, where the upcoming tag body evaluation will find it as it
evaluates the JSP expression used in the tag: <%= output %>.

10.5.6 The doAfterBody() Method
There were few differences between the outputChatMessages and the
outputPathNames doInitBody() methods.There are almost none between their
doAfterBody() methods.The only one, until now, is the message that gets logged and
thrown in case of an exception.That means that you can here simply refer to the

10 1089-9 CH10 6/26/01 7:35 AM Page 345

346 Chapter 10 JSP Taglib: The bonForum Custom Tags

equivalent section for outputPathNames, which is Section 10.4.6,“The doAfterBody()
Method.”

Only one thing would need to change if we were to clone that section here.That is
the kludge for making sure that no empty TreeMap can be returned, which in this case
is at the end of the outputForumChatMessages() method in BonForumStore:

if(outputTreeMap.size()<1) {
outputTreeMap.put(“0”, “::::::::::::empty chat:::::::::::::::::::”);
}

As in the case of outputPathNames, the scripting variable should be initialized and reset
within the Tag Handler class; it should not rely on the method that it calls to keep it
from outputting wrong results.

10.5.7 A Stack of BodyContent Writers
We promised previously that we would return sometime to the subject of BodyContent
on a deeper level.There has not been much new to discuss about this tag, so now is
the time.The API docs have this definition of BodyContent:

A JspWriter subclass that can be used to process body evaluations so they
can re-extracted later on.

Another clue is found in the comment given for its constructor, which says:

Protected constructor. Unbounded buffer, no autoflushing.

Recall also that JSP custom tags can nest. How does JSP keep track of all the output
from tags, even nested ones? Simple: It uses a stack of unbounded, nonflushing output
buffers.Actually, even a single isolated tag is nested, if it implements the BodyTag inter-
face in the JSP service method.At least, its output stream object is nested, and the tag
itself will have a null parent property.

It works like local variables on a stack. Each nested level of code can do what it
wants with its BodyContent.That does not affect the next outer level or the resulting
output stream of the JSP, unless that BodyContent is explicitly written out to the
enclosing writer before being popped off the stack. If an exception occurs, the
BodyContent is simply discarded, which preserves intact the content of the output
stream that is one level farther out. Look again at one of the translated JSP files with a
custom tag.You should be able to see now what purpose the bodyContent subclass of
JspWriter serves. In fact, we are going to look at one such file next.

10.5.8 The Translated Tag Handler in a JSP Servlet
This next listing represents all the code generated by the outputChatMessagesTag tag.
We took it from the _JspService() method of a translated JSP file (guest_executes_
chat_frame.jsp), or, in other words, from the servlet source code for that JSP, which we
found in the Tomcat work folder.We have shortened the tag name to output in this

10 1089-9 CH10 6/26/01 7:35 AM Page 346

34710.5 The OutputChatMessagesTag Class

listing, to make it easier to reproduce in the book.We also added some blank lines for
clarity, added some spaces here and there to promote better wrapping at the book
margin, and removed some comments.After this listing, we discuss the code while
showing again related statements from this listing:

/* ---- bon:output ---- */

de.tarent.forum.OutputTag _jspx_th_bon_output_0 = new de.tarent.forum.OutputTag(
➥);

_jspx_th_bon_output_0.setPageContext(pageContext);

_jspx_th_bon_output_0.setParent(null);

_jspx_th_bon_output_0.setCommand(“bonForumXML”);

try {

int _jspx_eval_bon_output_0 = _jspx_th_bon_output_0.doStartTag();

if (_jspx_eval_bon_output_0 == Tag.EVAL_BODY_INCLUDE)
throw new JspTagException(“Since tag handler class

➥de.tarent.forum.OutputTag implements BodyTag, it can’t return
Tag.EVAL_BODY_INCLUDE”);

if (_jspx_eval_bon_output_0 != Tag.SKIP_BODY) {

try {

if (_jspx_eval_bon_output_0 != Tag.EVAL_BODY_INCLUDE) {

out = pageContext.pushBody();

_jspx_th_bon_output_0.setBodyContent((BodyContent) out);

}

_jspx_th_bon_output_0.doInitBody();

do {

String output = null;

output = (String) pageContext.findAttribute(“output”);

out.write(“\r\n\t\t\t<option>”);

out.print(output);

out.write(“</option>\r\n\t\t”);

10 1089-9 CH10 6/26/01 7:35 AM Page 347

348 Chapter 10 JSP Taglib: The bonForum Custom Tags

} while (_jspx_th_bon_output_0.doAfterBody() ==
➥BodyTag.EVAL_BODY_TAG);

} finally {

if (_jspx_eval_bon_output_0 != Tag.EVAL_BODY_INCLUDE)
out = pageContext.popBody();

}

}

if (_jspx_th_bon_output_0.doEndTag() == Tag.SKIP_PAGE)
return;

} finally {

_jspx_th_bon_output_0.release();

}

How the Java Code for a Tag Works

First, an instance of the output tag Tag Handler class is created (for each thread).The
name of the object includes a prefix from the container (jspx_th), the prefix from the
taglib directive (bon), the tag name from the TLD (output), and a suffixed number.The
number is incremented each time the custom tag appears on the JSP (although it is
possible to reuse available tag-handler instances). Here is the statement, taken from the
previous “fixed-up” listing:

de.tarent.forum.OutputTag _jspx_th_bon_output_0 = new de.tarent.forum.OutputTag(
➥);

The all-important pageContext object, from the JSP containing the tag, is put in a
property of the Tag Handler.This tag is not nested, so the parent property is set to
null.The only attribute that appeared in the tag action (the only required attribute) is
set to the value in the action (bonForumXML). Here are the three statements that do all
that:

_jspx_th_bon_output_0.setPageContext(pageContext);
_jspx_th_bon_output_0.setParent(null);
_jspx_th_bon_output_0.setCommand(“bonForumXML”);

After this point, the entire tag action will be handled next inside a try block, with a
final clean-up when it’s done. It looks like this:

try {

//handles the tag action here!

} finally {

10 1089-9 CH10 6/26/01 7:35 AM Page 348

34910.5 The OutputChatMessagesTag Class

_jspx_th_bon_output_0.release();

}

The first method called handles the start tag. In particular, it has access to its attribute
values, if any.All tags have a start tag; this method is always called in a Tag Handler.As
you saw in Section 10.5.4,“The doStartTag() Method,” our tag does nothing in this
method except return EVAL_BODY_TAG to ensure that the doInitTag() method will be
called. Here is the method invocation:

int _jspx_eval_bon_output_0 = _jspx_th_bon_output_0.doStartTag();

As you know, some static int constants are used to control the execution flow within
a Tag Handler.The doStartTag() method, in any Tag Handler implementing the
BodyTag interface, can return SKIP_BODY to skip over the doInitBody() and
doAfterBody() method invocations and proceed immediately with the doEndTag()
method invocation. It looks like anything else returned by doStartTag(), except
EVAL_BODY_INCLUDE, will cause body content processing to take place (although for
that one it is supposed to return EVAL_BODY_TAG).The next statement checks that the
developer who wrote the doStartTag() method did not mistakenly return
EVAL_BODY_INCLUDE, which is allowed only when one does not implement BodyTag.
(See the previous section “The doStartTag() Method.”) If that mistake is made, an
exception will be thrown. Here is that insurance statement:

if (_jspx_eval_bon_output_0 == Tag.EVAL_BODY_INCLUDE)
throw new JspTagException(“Since tag handler class

➥de.tarent.forum.OutputTag implements BodyTag, it can’t return
Tag.EVAL_BODY_INCLUDE”);

Because the class we are discussing here extends the BodyTagSupport class, it imple-
ments the BodyTag interface. If we had instead defined a Tag Handler that descends
from TagSupport, we would not be able to have a doInitBody() or doAfterBody()
method.The if statement we just showed would have been different then, as would
the contents of the next if statement after that.This is what the previous one would
have looked like then:

if (_jspx_eval_bon_Date_0 == BodyTag.EVAL_BODY_TAG)
throw new JspTagException(“Since tag handler class

➥de.tarent.forum.DateDisplay does not implement BodyTag, it can’t return
BodyTag.EVAL_BODY_TAG”);

Let’s continue with the analysis of the output tag, which does implement the BodyTag
interface.The next if statement, paraphrased in this next listing, uses the return value
of doStartTag() to control access to the body content processing:

if (_jspx_eval_bon_output_0 != Tag.SKIP_BODY) {
try {

// save the old “out” writer.
// get a new “out” writer,
// and make it the bodyContent writer

10 1089-9 CH10 6/26/01 7:35 AM Page 349

350 Chapter 10 JSP Taglib: The bonForum Custom Tags

//
// invoke doInitBody() method
//
// 1. evaluate body content into out.
// 2. invoke doAfterBody() method.
// repeat 1 and 2
// as long as doAfterBody()
// returns EVAL_BODY_TAG.

} finally {
// get the old “out” writer back

}

You can now see what we got by extending BodyTagSupport instead of TagSupport.
You might wonder what this if statement would have looked like with a Tag inter-
face, not BodyTag interface, implementation. Here it is:

if (_jspx_eval_bon_Date_0 != Tag.SKIP_BODY) {
do {
// evaluate body content into out.!
} while (false);
}

You can see why, without implementing BodyTag, you can return EVAL_BODY_INCLUDE
from the StartTag() method to get the Tag Handler to evaluate the body content of
the tag into the current out output stream (a JspWriter instance, unless the tag itself is
nested).The tag body content could be anything that JSP allows. However, you will
not have that useful initialized do loop available for repeated body content evaluations,
nor the stacking BodyContent output stream objects.

In the paraphrased BodyTagSupport if statement that we just showed, you can see
that before the doInitBody() method is called, the output stream switching takes
place. Here is the actual code that does that:

out = pageContext.pushBody();
jspx_th_bon_output_0.setBodyContent((BodyContent) out);

Now the API Javadoc on the PageContext class makes sense when it says what the
pushBody() method does (behind the scenes):

Return a new BodyContent object, save the current out JspWriter, and
update the value of the out attribute in the page scope attribute namespace
of the PageContext.

The final clause will be executed no matter what happens in the doInitBody()
method and the (possibly) looping doAfterBody() method. In that finally clause, you
can see the code that restores the output stream to the enclosing writer object:

out = pageContext.popBody();

Because the popBody() call is restoring the outer-level JspWriter, it is not cast to
BodyContent, which it would have to be if this were happening deeper in the stack.

You can see why you must write the BodyContent buffer out to the enclosing

10 1089-9 CH10 6/26/01 7:35 AM Page 350

35110.5 The OutputChatMessagesTag Class

writer object in the doAfterBody() method for it to make a difference to the JSP’s
resulting output stream. Finally, here is what the API docs say the popBody() method
of PageContext does:

Return the previous JspWriter out saved by the matching pushBody(), and
update the value of the out attribute in the page scope attribute namespace
of the PageConxtext.

You do not need to call the print method of BodyContent or JspWriter in a tag
action method.You can do something like the following instead, and the popBody()
and pushBody() methods take care that you get the right object when you get the out
page attribute:

pageContext.getOut().print(new java.util.Date());

After the final clause, the doEndTag() method is invoked, your last chance to do some-
thing in the action.The release() method makes sure that properties and scripting
objects are cleaned up—unless you use a TagExtraInfo subclass to tell the container to
keep a variable around until the end of the JSP service method. But that, as they say, is
another story, and we are done with our tour of tag handling in a JSP. Hopefully, we
got some of it right; we’re still learning more each time we look into JSP.

10.5.9 Another Aside on the Project Goals
The task of displaying chat history seemed at first to be the best place in bonForum
for us to use the XSLT transformation capabilities that were we were planning for the
transform custom JSP action.We decided against using XSLT for this action, for the
following reasons:

n We wanted to refresh the chat messages on each browser as frequently as possi-
ble, and we decided that XSLT would be slower than an optimized procedure.

n We also wanted to add a way for the user to navigate through the chat history a
page at a time. It seemed that developing a style sheet to do that might be quite
time-consuming.

n We had an outputTable tag prototype that was working and could be adapted
for chat messages. Getting the entire system up fast was a priority. XSLT could
wait until later to display a list of available chats.

In the original XML-based design, connections between data items were maintained
by matching key values in related elements.The connection between a message and its
chat was based on matching key values in two XML elements called chatKey and
chatMessageKey (or something like that).

Key values were kept not in XML attribute values, but in XML text() nodes.
When we tackled the problem of displaying chat messages, that design made a big
difference!

10 1089-9 CH10 6/26/01 7:35 AM Page 351

352 Chapter 10 JSP Taglib: The bonForum Custom Tags

Trying to output chat messages with Java, we found ourselves getting deeper into
successive, nested iterations of the entire XML database.These iterations nested four or
five levels deep—very expensive in terms of processor time.We stopped, knowing that
such complexity should eliminate such code from contention.

We changed the XML design underlying the Web application design.The key
values are now kept as XML attributes, not element content.We revisited the Java
code and created the outputForumChatMessages() bean method that the
outputChatMessages custom tag utilizes.

Given all that, it might have been easier after all to use XSLT to transform the
XML data.That is what it’s for, after all! Certainly, it would have been easier to keep
all the data in an SQL database and use JDBC connections and SQL queries (tag
library are already available). But we would not have gained the insight into the differ-
ence that putting a value in attributes rather than element content could make in pro-
cessing complexity.The bonForum project is for exploration and experimentation. It
has been soundly criticized as being “just an academic exercise, without practical appli-
cation.” So were the first rockets.Try going to the moon with a train. Practicality, like
so much else, depends upon context. If you must get your company Web site out next
week, this might not be the book to read right now. But if your company’s Web site
looks like every other Web site next year, they didn’t let you play enough.

10.6 XSLT and the TransformTag Class
If you have not already done so, you should definitely visit the most important docu-
ments about XSLT, the recommendations at the Web site http://www.w3.org/TR/xslt.

In addition to assuming a basic familiarity with XSLT, the discussion that follows
assumes that you have spent some time with the Xalan-Java 1 or Xalan-Java 2 process-
ing library from the Apache XML Project. Certainly, that is the case if you have read
Chapter 4,“XML and XSLT: Xerces and Xalan.”You will certainly want to keep in
touch with the “real” authority on Xalan questions: http://xml.apache.org.

For the rest of this chapter, we will be discussing how we put Xalan to work on
our JSP-based browser interface.You already read about that from the browser point of
view in Chapter 7,“JavaServer Pages:The Browseable User Interface.” Here, we
explore the details of the transform tag and its tag handler class. Of course, no under-
standing of an XSLT-based process would be complete without a look at the XSL
style sheet that controls it, the XML input expected, and the output, so we will exam-
ine all that as well.

It might help to note one thing regarding the output of the XSLT processing. It
can be set, as you know, using a method attribute of the xsl:output element, as in the
following example from one of the bonForum style sheets:

<xsl:output method=”xml” omit-xml-declaration=”yes” indent=”no”/>

In bonForum, we set the output to xml. However, the output of the transformations
that we use to build the browser interface is actually quite simple XHTML.This is a
small point, but it’s another potential source of confusion out of the way.

10 1089-9 CH10 6/26/01 7:35 AM Page 352

35310.6 XSLT and the TransformTag Class

The transform action in the bonForum tag library is designed to be a flexible JSP
to Xalan processor interface.As such, it can be used with various input and output
combinations, which are controllable using the tag attributes.

10.6.1 Using the transform Custom JSP Tag
The transform tag has four attributes named type, inXML, inXSL, and outDoc.You can
use it as follows:

<bon:transform
type=”...”
inDoc=”...”
styleSheet=”...”
outDoc=”...” />

That is equivalent to using the tag with empty content, as follows:
<bon:transform
type=”...”
inDoc=”...”
styleSheet=”...”
outDoc=”...” >
</bon:transform>

The tag can also have body content, which will be evaluated as follows:
<bon:transform
type=”...”
inDoc=”...”
styleSheet=”...”
outDoc=”...”>
<H1>JSP body content</H1>
</bon:transform>

Here is what the attributes can do:
n The type attribute selects the XSLT processor and currently can have three val-

ues: Xalan Java 1, Xalan Java 2, or xalanVersion. If type is xalanVersion, the
Tag Handler object looks for an attribute in application scope, also named
xalanVersion, and uses its value to select the processor.At present, only Xalan
Java 1 and Xalan Java 2 are valid values for xalanVersion.

n The inXML attribute can be a URI for an XML input source to the XSLT
processor. Otherwise, inXML can be set to bonForumXML or bonBufferXML, in
which case the tag handler will use the XML content of the bonForum database
object (currently a ForestHashtable).

n The inXSL attribute can be a URI for an XSL input source to the XSLT
processor. Otherwise, it can be a string containing a valid XSL style sheet.

n The outDoc attribute can be the URI of the file to which the output of the
XSLT process should be written. Otherwise, it can be set to print, in which
case the output of the XSLT process will be written into the JSP output stream

10 1089-9 CH10 6/26/01 7:35 AM Page 353

354 Chapter 10 JSP Taglib: The bonForum Custom Tags

to the client.An alternative outDoc value to print is printNormalized, which
normalizes the XSLT output before it goes into the JSP output stream.Yet
another choice is to set outDoc to output, in which case the output of the XSLT
process is put in a page attribute named output.An outDoc value of
outputNormalized behaves the same, except that it normalizes the XSLT output
first.

In the section “The getXMLTrees() Method” in Chapter 8, we discussed a JavaBean
method that supports the transform JSP custom tag action. Using an inDoc value of
bonForumXML causes this getXMLTrees() method to be invoked internally, dumping the
bonForumXML object content to a string, which becomes the input source of XML for
the XSLT processor.That means that we can output the contents of the chat database
to an XML file, as follows:

<bon:transform type=”xalanVersion”
inXML = “bonForumXML”
inXSL =
“..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc =
“..\\webapps\\bonForum\\mldocs\\bonForumIdentical.xml”/>

Notice that you can find all these transform action examples in the system_
dumps_xml.jsp file, which is requested from a form on the system_executes_
command.jsp page, accessible from the entrance to the bonForum Web application.
All you have to do to try the examples is to edit the system_dumps_xml.jsp file,
removing comments where necessary and refreshing the browser display.

The example action shown previously assumes that you have set an application
attribute to the Xalan processor of your choice.You can set the Xalan version
from the form on system_executes_command.jsp. Note that if you have Xalan-Java-2,
you can also set xalanVersion to Xalan Java 1, as long as the compatibility JAR file
is accessible, for example, as TOMCAT_HOME\lib\xalanj1compat.jar.

Let’s do something with that new XML file with all the chat data in it:
<bon:transform type=”xalanVersion”
inXML =
“..\\webapps\\bonForum\\mldocs\\bonForumIdentical.xml”
inXSL =
“..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc =
“..\\webapps\\bonForum\\mldocs\\bonForumTest.xml”/>

Hello, Dolly! We have a clone. Successful processing also tells you that the input is
well-formed XML.We can view the bonForumTest.xml file on Internet Explorer 5.x,
for example. Now let’s transform the new bonForum XML data dump file to an

10 1089-9 CH10 6/26/01 7:35 AM Page 354

35510.6 XSLT and the TransformTag Class

HTML file that can be viewed on a browser.We use the default2.xsl style sheet,
which produces a view of the XML that looks like the Internet Explorer display of
the XML we just saw. Note that default2.xsl is a simplified version of
default.xsl—the default.xsl generated output files that have nodes that can be col-
lapsed and expanded by clicking on them with the mouse. Here is the tag command:

<bon:transform type=”xalanVersion”
inXML =
“..\\webapps\\bonForum\\mldocs\\bonForumIdentical.xml”
inXSL =
“..\\webapps\\bonForum\\mldocs\\default2.xsl “
outDoc =
“..\\webapps\\bonForum\\mldocs\\bonForumTest.html “/>

That covers using XSLT with output to a file. Now what about some XSLT with out-
put into the JSP-generated browser page? No problem. Use a value of print for
outDoc, and you have it. Here is the example action:

<bon:transform type=”xalanVersion”
inXML =
“..\\webapps\\bonForum\\mldocs\\bonForumIdentical.xml”
inXSL =
“..\\webapps\\bonForum\\mldocs\\default2.xsl “
outDoc = “print” />

Compare the viewing of the HTML file in the previous example with this direct
writing of the HTML to the browser.The print value of outDoc saves time and also
wear and tear on your browser buttons. Sometimes it’s nice to see the source behind
the display, and we can do that by using the printNormalized value of outDoc, which
gets a display with all the active characters entitized (< , &, and so on).All we have to
do is replace the outDoc attribute setting in the last example with the following one:

outDoc = “printNormalized” />

Our next example uses the output page attribute variable controlled by the
TagExtraInfo class (see Section 10.2.7,“Using TagExtraInfo for Scripting Variables”).
If we want to see anything, we will have to include within the tag body content a JSP
expression for the option variable.We can put other XHTML code in there, as shown
here in this example:

<bon:transform type=”xalanVersion”
inXML =
“..\\webapps\\bonForum\\mldocs\\bonForumIdentical.xml”
inXSL =
“..\\webapps\\bonForum\\mldocs\\default2.xsl “
outDoc=”output” >
<HR/><%= output %><HR/>
</bon:transform>

Of course, there is also the option to get the output into the output variable, but nor-
malize that XML document in a string first.That means only substituting the outDoc
command with the following:

10 1089-9 CH10 6/26/01 7:35 AM Page 355

356 Chapter 10 JSP Taglib: The bonForum Custom Tags

outDoc=”outputNormalized” >
<HR/><%= output %><HR/>
</bon:transform>

All the various ways of using the transform tag, discussed here, are made available by
the TransformTag class. It relies on other classes to carry out the actual transform pro-
cessing. Currently, there are two such classes, whose sources are the following files:

Xalan1Transformer.java

Xalan2Transformer.java

We first show and discuss the TransformerTag class source code, and then we show the
source for the two Xalan processor encapsulation classes.

10.6.2 The transform Descriptor
The following listing shows the Tag element in the bonForum TLD that describes the
transform custom action tag:

!-- transform tag -->
<tag>
<name>transform</name>
<tagclass>de.tarent.forum.TransformTag</tagclass>
<teiclass>de.tarent.forum.BonForumTagExtraInfo</teiclass>
<bodycontent>JSP</bodycontent>
<info>
XSLT processing (type) applies inXSL to inXML.

If inXML = “bonForumXML”
transforms entire forum content.

If inXML = “bonBufferXML”
transforms buffer content.

Else inXML is a URL for an XML document.

If outDoc is URL produces XML file.

If outDoc = “print”
calls out.println with the output.

If outDoc = “printNormalized”
does same as for “print”, normalizes first.

If outDoc = “output”
puts output in “output” page variable.

If outDoc = “outputNormalized”
does same as for “output”, normalizes first.

10 1089-9 CH10 6/26/01 7:35 AM Page 356

35710.6 XSLT and the TransformTag Class

Transform uses one stylesheet parameter
called “param1”, which it looks for
in a session attribute of the same name.

</info>
<attribute>
<name>type</name>
<required>true</required>

</attribute>
<attribute>
<name>inXML</name>
<required>true</required>

</attribute>
<attribute>
<name>inXSL</name>
<required>true</required>

</attribute>
<attribute>
<name>outDoc</name>
<required>true</required>

</attribute>
</tag>

10.6.3 The transform Tag Handler
In this next listing, we show the source code for the TransformTag class.To shorten
the listing, we removed Javadoc comments.Also, some methods are repeated in other
classes, so their bodies were replaced here with comments pointing to the code in
other previous listings. Here is the listing:

package de.tarent.forum;

import java.text.*;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/** JSP custom tag class for XSLT processing.
*/
public class TransformTag extends BodyTagSupport
{

private static BonForumStore bonForumStore;
private static BonLogger logTT = null;
private static boolean loggingInitialized = false;
private static String logging = null;
private String type = “”;
private String inXML = “”;
private String inXSL = “”;

10 1089-9 CH10 6/26/01 7:35 AM Page 357

358 Chapter 10 JSP Taglib: The bonForum Custom Tags

private String outDoc = “”;

private void log(String where, String what) {
if(logging != null) {

logTT.logWrite(System.currentTimeMillis(),
➥pageContext.getSession().getId(), where, what);

}
}

/** locates bonForumStore in application
*/
private void findBonForumStore() {

// code omitted here is in appendix,
// and similar code is in Section 10.2.3,
// “Finding Bean Methods from JSP Tags “

}

/** Sets type attribute to select XSLT processor.
*/

public void setType(String value) {
if(!loggingInitialized) {

logging = pageContext.getServletContext().getInitParameter(“Logging”
➥);

logTT = new BonLogger(“TransformTagLog.txt”, logging);
loggingInitialized = true;

}

if(value.indexOf(“xalanVersion”) > -1) {
try {

value = (String)pageContext.getAttribute(“xalanVersion”, 4
➥).toString(); // 4 is application scope

}
catch(java.lang.NullPointerException ex) {

value = “Xalan-Java 1”;
}

}
if(value.equals(null)) {

value = “Xalan-Java 1”;
}
type = value;

}

/** Sets inXML attribute; determines input to XSLT.
*/

public void setInXML(String value) {
inXML = value;

}

/** Sets inXSL attribute; determines XSLT stylesheet.
*/

public void setInXSL(String value) {

10 1089-9 CH10 6/26/01 7:35 AM Page 358

35910.6 XSLT and the TransformTag Class

inXSL = value;
}

/** Sets outDoc attribute, determines XSLT output.
*/

public void setOutDoc(String value) {
outDoc = value;

}

/** Makes sure the body of the tag is evaluated
*/

public int doStartTag() throws JspException {
return EVAL_BODY_TAG;

}

/** Apply XSLT to XML with XSL stylesheet.
* input XML database | file; XSL is string | file
* output to browser | page attribute | file.
*/

public void doInitBody() throws JspException {
if ((inXML != null) && (inXSL != null) && (outDoc != null)) {

if(inXML.equals(“bonForumXML”)) {

findBonForumStore();

if(bonForumStore != null) {
synchronized(bonForumStore) {

inXML = “<?xml version=\”1.0\” encoding=\”UTF-8\”?>” +
➥bonForumStore.getBonForumXML().getXMLTrees();

}
}

}
else if(inXML.equals(“bonBufferXML”)) {

findBonForumStore();

if(bonForumStore != null) {
synchronized(bonForumStore) {

inXML = “<?xml version=\”1.0\” encoding=\”UTF-8\”?>” +
➥bonForumStore. getBonBufferXML ().getXMLTrees();

}
}

}

String param1 = (String)pageContext.getSession().getAttribute(
➥“param1”);

if(param1 == null || param1.trim().length() < 1) {
param1 = “ “;

}

10 1089-9 CH10 6/26/01 7:35 AM Page 359

360 Chapter 10 JSP Taglib: The bonForum Custom Tags

if(type.equals(“Xalan-Java 1”)) {

try {
synchronized(bonForumStore) {

Xalan1Transformer transformer = new Xalan1Transformer();
➥if(outDoc.equals(“print”)) {

bodyContent.println(transformer.transform(inXML,
➥inXSL, outDoc, param1));

}
else if(outDoc.equals(“printNormalized”)) {

bodyContent.println(normalize(transformer.transform(
➥inXML, inXSL, outDoc, param1)));

}
else if(outDoc.equals(“output”)) {

pageContext.setAttribute(“output”,
➥transformer.transform(inXML, inXSL, outDoc, param1));

}
else if(outDoc.equals(“outputNormalized”)) {

pageContext.setAttribute(“output”, normalize(
➥transformer.transform(inXML, inXSL, outDoc, param1)));

}
else {

transformer.transform(inXML, inXSL, outDoc, param1);
➥}

}
}

catch (Exception ex) {
log(“err”, “Exception in TransformTag, Xalan1Transformer

➥process failed!”);
throw new JspException(“Exception in TransformTag,

➥Xalan1Transformer process failed! “ + ex.getMessage());
}

}
else if (type.equals(“Xalan-Java 2”)) {

try {
synchronized(bonForumStore) {

Xalan2Transformer transformer = new Xalan2Transformer();
➥if(outDoc.equals(“print”)) {

bodyContent.println(transformer.transform(inXML,
➥inXSL, outDoc, param1));

}
else if(outDoc.equals(“printNormalized”)) {

bodyContent.println(normalize(transformer.transform(
➥inXML, inXSL, outDoc, param1)));

}

10 1089-9 CH10 6/26/01 7:35 AM Page 360

36110.6 XSLT and the TransformTag Class

else if(outDoc.equals(“output”)) {
pageContext.setAttribute(“output”,

➥transformer.transform(inXML, inXSL, outDoc, param1));
}
else if(outDoc.equals(“outputNormalized”)) {

pageContext.setAttribute(“output”, normalize(
➥transformer.transform(inXML, inXSL, outDoc, param1)));

}
else {

transformer.transform(inXML, inXSL, outDoc, param1);
➥}

}
}

catch (Exception ex) {
String mess = “Exception in TransformTag, Xalan2Transformer

➥process failed!” + ex.getMessage();
log(“err”, mess);
throw new JspException(mess);

}

}
else {

log(“err”, “Unsupported XSLT transformer type arg in
➥TransformTag!”);

}

}
else {

log(“err”, “Error: null arg(s) in TransformTag!”);
}

}

/** Puts XSLT results out to JSP, and ends processing.
*/

public int doAfterBody() throws JspException {
try {

bodyContent.writeOut(bodyContent.getEnclosingWriter());
return SKIP_BODY;

}
catch (Exception ex) {

String mess = “TransformTag doAfterBody caught Exception!” +
➥ex.getMessage();

log(“err”, mess);
throw new JspException(mess);

}
}

/** Normalizes the given string, replacing chars
* with entities, null with empty string.

10 1089-9 CH10 6/26/01 7:35 AM Page 361

362 Chapter 10 JSP Taglib: The bonForum Custom Tags

*/
protected String normalize(String s) {

StringBuffer str = new StringBuffer();
//
// code omitted here can be seen in appendix, or in
// Section 10.3.2, “The outputDebugInfo Tag Handler”
//
return str.toString();

}
}

Code that is common to more than one Tag Handler class was already explained. For
that, refer to the following sections:

n Section 10.2.3,“Finding Bean Methods from JSP Tags”
n Section 10.2.5,“Static Variables of Tag-Handler Classes”
n Section 10.2.6,“Initializing the BonLogger Object”
n Section 10.2.7,“Using TagExtraInfo for Scripting Variables”

With the help of those sections and Section 10.6.1,“The transform Descriptor,” you
should be able to follow the code in this class.As usual, we will discuss a few high-
lights.

10.6.4 Attribute-Setter Methods
The transform tag has four attributes named type, inXML, inXSL, and outDoc.You can
use it as follows:

<bon:transform
type=”...”
inDoc=”...”
styleSheet=”...”
outDoc=”...” />

As usual, there is a method to set each tag attribute as a property of the tag handler.
The previous section about how to use the transform tag also explains the use of the
attributes. Here we will just add some notes regarding the source code for the setter
methods.

The setType() method is the first one to be invoked by the container, so we use it
to make sure that the logging for the class is ready to go if it is enabled by an applica-
tion-initialization parameter. Next, the setType() method looks for an application
attribute called xalanVersion and, if found, uses it to set the version of the Xalan
XSLT processor that will be used by the transform tag.The default for the version
setting is Xalan-Java 1.

The inXML(), inXSL(), and outDoc() methods are completely simple.Although
there are various possible ways to use these attributes with the tag, the setter methods
for these properties simply set them to the incoming string values from the tag attrib-

10 1089-9 CH10 6/26/01 7:35 AM Page 362

36310.6 XSLT and the TransformTag Class

utes. It is up to the doInitBody() method and the XSLT processing wrapper classes to
know what to do with these values.

10.6.5 The doStartTag() Method
The doStartTag() method returns EVAL_BODY_TAG, to ensure that the Tag Handler will
execute the methods that process the body content, doInitBody() and doAfterBody().

10.6.6 The doInitBody() Method
The doInitBody() method applies an XSLT transformation to an XML document
using an XSL style sheet.The input XML can be from the database or a file.The XSL
is either a string or a file.The output is to one of three destinations: the JSP output
stream, the output page attribute, or a file.

If the inXML value is bonForumXML or bonBufferXML, that means that the data to be
transformed is from the bonForum database, so the findBonForumStore() method is
called to set a reference variable to the JavaBean that wraps the database.The inXML
value is then replaced by an XML declaration plus the XML contents of the database
by the following statement (or a similar one, for the bonBufferXML data):

synchronized(bonForumStore) {
inXML = “<?xml version=\”1.0\” encoding=\”UTF-8\”?>” +

➥bonForumStore.getBonForumXML().getXMLTrees();
}

The XSL style sheet used by the transform tag can be passed one parameter (in the
current version).The doInitBody() method looks for it as a session attribute named
param1, as follows:

String param1 = (String)pageContext.getSession().getAttribute(“param1”);
➥if(param1 == null || param1.trim().length() < 1) {
param1 = “ “;
}

The next step is to invoke a method to carry out the XSLT.We have created two
classes to encapsulate the steps required for either Xalan-Java 1 or Xalan-Java 2.The
classes are called Xalan1Transformer and Xalan2Transformer. Each has one method
called transform, which returns a string containing the results of the XSLT process.
What is done with that string depends upon the value of the outDoc attribute, as we
detailed in Section 10.6.1,“Using the transform Custom JSP Tag.”With that informa-
tion, it should be easy to follow the code in the doInitBody() method. (Much of the
code is repeated exactly for the two Xalan versions; other arrangements are made
awkward by the need to synchronize some of the steps.)

You have already seen how the output scripting variable can be set to a value using
the setAttribute() method of the pageContextTag Handler property. Here you can
see a more direct way of putting a string from a Tag Handler instance into the output
stream of the JSP that contains the tag action.We used the println() method of the
bodyContent object for that, although, as we have seen, the out variable will do as well.

10 1089-9 CH10 6/26/01 7:35 AM Page 363

364 Chapter 10 JSP Taglib: The bonForum Custom Tags

It is also possible to use the transform tag with input from an XML file. In that
case, the bonForumStore object still serves in this code to provide a synchronization
lock for the block that creates the processor class instance and invokes the process
method. In this case, nothing needs to be done with the returned string from the
process method because the output is put in a file, whose name is given by the outDoc
attribute of the transform tag action.

The doInitBody() method carries out its XSLT in a try block and throws a new
JspException after logging a message that is useful for remote debugging purposes.

One last thing to mention here is that the use of transform with the bonBufferXML
object is under development and has not been tested.The idea here is that data can be
put into the buffer object from different sources and the transform tag then can be
used to dynamically use this data in the context of the Web application.

10.6.7 The doAfterBody() Method
The doAfterBody() method, as usual, is invoked after the doInitBody() method. In
the case of the transform tag, it is invoked only once because it always returns
SKIP_BODY, which means that it will not be invoked again.The only task of
doAfterBody() in the transform tag is to pass the XSLT results to the JSP. Remember,
the body content evaluation, if any, and the creation of new body content, if any, have
both taken place using a nested output stream. For anything done there to have any
effect upon the JSP output stream, the contents must be written out from the current
inner stream to the containing outer stream.That is done quite simply, with the fol-
lowing statement:

bodyContent.writeOut(bodyContent.getEnclosingWriter());

Again, this happens within a try block. If an exception is caught, a message is logged
before a new JspException, also with that message, is thrown.

10.6.8 The Xalan1Transformer Class
The following listing comes of the source code for the Xalan1Transformer class,
which encapsulates the steps necessary to carry out an XSLT process using the Xalan-
Java 1 processor from the Apache XML project.

package de.tarent.forum;

import java.text.*;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

import org.w3c.dom.*;

10 1089-9 CH10 6/26/01 7:35 AM Page 364

36510.6 XSLT and the TransformTag Class

import org.xml.sax.*;
import org.apache.xerces.dom.*;
import org.apache.xerces.parsers.*;
import org.apache.xalan.xslt.*;

/** XSLT processing using Xalan-Java 1.
*/
public class Xalan1Transformer {

/** XSLT of inXML to outDoc using inXSL
* stylesheet, with Xalan-Java 1.
*/
public String transform(String inXML, String inXSL, String outDoc, String

➥param1)
throws org.xml.sax.SAXException, Exception {

XSLTProcessor processor = null;
XSLTInputSource inputXML = null;
XSLTInputSource inputXSL = null;
XSLTResultTarget outputDoc = null;
StringWriter stringWriter = null;

try {
processor = org.apache.xalan.xslt.XSLTProcessorFactory.getProcessor(

➥);
}
catch (org.xml.sax.SAXException ex) {

System.err.println(“SAXException in Xalan1Transformer, cannot create
➥processor!”);

throw ex;
}

try {
// Set a param named “param1”,
// that the stylesheet can obtain.
processor.setStylesheetParam(“param1”, processor.createXString(

➥param1));
}
catch (Exception ex) {

System.err.println(“SAXException in Xalan1Transformer, cannot set
➥param1!”);

throw ex;
}

try {
if(inXML.indexOf(“<?xml”) == 0) {

inputXML = new XSLTInputSource(new StringReader(inXML));
➥}
else {

inputXML = new XSLTInputSource(inXML);
}
if(inXSL.indexOf(“<?xml”) == 0) {

10 1089-9 CH10 6/26/01 7:35 AM Page 365

366 Chapter 10 JSP Taglib: The bonForum Custom Tags

if(inXSL.indexOf(“<xsl:stylesheet”) > -1) {
inputXSL = new XSLTInputSource(new StringReader(inXSL));

➥}
}
else {

inputXSL = new XSLTInputSource(inXSL);
}
if(outDoc.indexOf(“output”) == 0 || outDoc.indexOf(“print”) == 0

➥) {
stringWriter = new StringWriter();
outputDoc = new XSLTResultTarget(stringWriter);

}
else {

outputDoc = new XSLTResultTarget(outDoc);
}

}
catch (Exception ex) {

System.err.println(“Exception in Xalan1Transformer, processor prep
➥failed!”);

throw ex;
}

try {
processor.process(inputXML, inputXSL, outputDoc);
if(outDoc.indexOf(“output”) == 0 || outDoc.indexOf(“print”) == 0

➥) {
return outputDoc.getCharacterStream().toString();

}
else {

return null;
}

}
catch (org.xml.sax.SAXException ex) {

System.err.println(“SAXException in Xalan1Transformer, processing
➥failed!”);

throw ex;
}

}
}

The steps to execute an XSLT process here are taken from the simple transformation
examples given in the documentation and examples that come with Xalan-Java 1.A
major improvement is to use compiled style sheets. Because bonForum uses only a few
style sheets, it would be easy to compile these and make them available to the class;
this would allow the XSLT to proceed more quickly.

As you can see in the code, the single XSL parameter that currently can be used is
hardwired with the not-very-imaginative name of param1.As we find the need to use
more than the single parameter that we have so far (see Section 10.9.3,“XSLT Style

10 1089-9 CH10 6/26/01 7:35 AM Page 366

36710.6 XSLT and the TransformTag Class

Sheet for chatGuests”), we should design a more flexible means of indicating to the
transform classes where and what those parameters are. Here is the statement that
makes the param1 argument available for use within the style sheet:

processor.setStylesheetParam(“param1”, processor.createXString(param1));

We mentioned before that the inXML and inXSL arguments could be either URI values
or strings containing XML data or an XSL style sheet, respectively. Notice here how
these cases are differentiated by searching within the argument values for the begin-
ning signature of an XML declaration (<?xml). In the case of the inXSL, success at
this is followed up by a second search for the signature of an XSL style sheet
(<xsl:stylesheet).The implication with either argument is that if the value is not an
XML string, then the value must be a URI pointing to the correct type of XML or
XSL file resource available to the transformer.

One more thing to note here is that a string can be “fed” into the Xalan-Java 1
processor. It expects an object of the XSLTInputSource class.That class is quite flexible
and takes several types of arguments, among them any StringReader object.That
enables us to get the XML chat data into the XSLT processor using the following
statement:

inputXML = new XSLTInputSource(new StringReader(inXML));

A similar thing is done to get the output of the XSLT process into a string that can be
either put into the scripting variable or written out to the JSP output stream:

outputDoc = new XSLTResultTarget(stringWriter);

Later improvements considered for this class include being able to output the trans-
form results to DOM, as well as having a SAX, event-driven processing ability.

10.6.9 The Xalan2Transformer Class
The Xalan2Transformer class was designed to encapsulate XSLT using the Xalan-Java
2 processor from the Apache XML project. In terms of what we have done, as
opposed to what was done by that project, there is very little different between this
class and the Xalan1Transformer class that was just described. By combining the previ-
ous discussion with the appropriate documentation from the Xalan-Java 2 release, it
should be quite easy to follow the listing of the source code for our class:

package de.tarent.forum;

import java.text.*;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

// Imported TraX classes

10 1089-9 CH10 6/26/01 7:35 AM Page 367

368 Chapter 10 JSP Taglib: The bonForum Custom Tags

import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerConfigurationException;

/** XSLT processing using Xalan-Java 2.
*/
public class Xalan2Transformer {

/** XSLT of inXML to outDoc using inXSL
* stylesheet, with Xalan-Java 2.
*/
public String transform(String inXML, String inXSL, String outDoc, String

➥param1)
throws TransformerException,

TransformerConfigurationException,
FileNotFoundException,
IOException {

String output = “”;

try {
TransformerFactory factory = TransformerFactory.newInstance();

Transformer transformer = null;

if(inXSL.indexOf(“<?xml”) == 0) {
if(inXSL.indexOf(“<xsl:stylesheet”) > -1) {

transformer = factory.newTransformer(new StreamSource(new
➥StringReader(inXSL)));

transformer.setParameter(“param1”, param1);
}
System.err.println(“ERROR: Xalan2Transformer No stylesheet for

➥inputXSL, thus no transformer!”);
}
else {

transformer = factory.newTransformer(new StreamSource(inXSL));
➥transformer.setParameter(“param1”, param1);

}

StreamSource inputXML = null;

if(inXML.indexOf(“<?xml”) == 0) {
inputXML = new StreamSource(new StringReader(inXML));

}
else {

inputXML = new StreamSource(inXML);
}

10 1089-9 CH10 6/26/01 7:35 AM Page 368

36910.6 XSLT and the TransformTag Class

StreamResult outputDoc = null;

if(outDoc.indexOf(“output”) == 0 || outDoc.indexOf(“print”) == 0
➥) {

outputDoc = new StreamResult(new StringWriter());
}
else {

outputDoc = new StreamResult(new FileOutputStream(outDoc));
➥ }

transformer.transform(inputXML, outputDoc);

if(outDoc.indexOf(“output”) == 0 || outDoc.indexOf(“print”) == 0
➥) {

return outputDoc.getWriter().toString();
}
else {

return null;
}

}
catch (TransformerConfigurationException ex) {

System.err.println(“Xalan2Transformer transform caught
➥TransformerConfigurationException”);

throw ex;
}
catch (TransformerException ex) {

System.err.println(“Xalan2Transformer transform caught
➥TransformerException”);

throw ex;
}
catch (FileNotFoundException ex) {

System.err.println(“Xalan2Transformer transform caught
➥FileNotFoundException”);

throw ex;
}
catch (IOException ex) {

System.err.println(“Xalan2Transformer transform caught IOException”
➥);

throw ex;
}

}
}

As you can see, the Transform method itself is unchanged from the
Xalan1Transformer class. It has the same four string arguments: inXML, inXSL, outDoc,
and param1. Underneath the hood, however, things look very different, reflecting the
major changes in this area of the Apache product. Unlike our version 1 class, the ver-
sion 2 class uses compiled style sheets for the XSLT. Gone are the XSLTInputSource
objects, replaced by the newer StreamSource objects.

First we use the static TransformerFactory.newInstance() method to instantiate a

10 1089-9 CH10 6/26/01 7:35 AM Page 369

370 Chapter 10 JSP Taglib: The bonForum Custom Tags

TransformerFactory.The javax.xml.transform.TransformerFactory system property
setting determines the actual class to instantiate:

org.apache.xalan.transformer.TransformerImpl

Our instance of the TransformerFactory class uses the style sheet to create an instance
of the Transformer class, which includes the compiled style sheet as a Templates
object.The Transformer instance can then be used repeatedly for XSLT processing,
without any need to repeatedly parse the style sheet.That is the same advantage avail-
able in Xalan-Java 1 with compiled style sheets, but, in this case, style-sheet compila-
tion is assumed to be the normal procedure.

The Transformer object has a Transform() method that takes only two arguments:
one for the XML data input and the other for the output of the XSLT processing.
Our method uses the same signature tricks as we described in our discussion of the
Xalan-Java 1 transformer class. It decides whether to prepare a string containing XML
or XSL by feeding it first to a StringReader object, before feeding it to the
StreamSource object expected by the transformer. For example, in the case of the
input XML data, this statement gets executed if the data is in a string, not a file:

inputXML = new StreamSource(new StringReader(inXML));

If the argument was a URI for an XML file resource, the statement is instead this sim-
pler one:

inputXML = new StreamSource(inXML);

If the outDoc argument contains either output or print, this indicates that the XSLT
result will be needed in a string object.The calling class can put it into either the
scripting variable or the JSP output stream.We get the transformer to output into a
string by giving it the proper type of StreamSource, which is created as follows:

outputDoc = new StreamResult(new StringWriter());

If the outDoc argument was a URI, then the situation is again different. Here is that
way to get the transform results into the file resource indicated by the URI:

outputDoc = new StreamResult(new FileOutputStream(outDoc));

In Xalan-Java 2, making a style-sheet parameter available to the XSL document is
done by calling a method on the Transformer instance, as follows:

transformer.setParameter(“param1”, param1);

When everything is in place, carrying out the XSLT processing is as simple as the fol-
lowing statement:

transformer.transform(inputXML, outputDoc);

Of course, some exceptions can occur and must be dealt with, including the new
ones, TransformerException and TransformerConfigurationException.

The calling class expects the result of the XSLT to be returned in a string if the

10 1089-9 CH10 6/26/01 7:35 AM Page 370

37110.7 Displaying the Available Chats

outDoc attribute of the transform tag was set to output, outputNormalized, print, or
printNormalized.That is accomplished by the following statement, which executes
after the successful XSLT process is done:

return outputDoc.getWriter().toString();

10.6.10 An XSLT Processing Method on a JSP
We believe that one of the most exciting things about working with JavaServer Pages
is that you can quickly and very interactively develop Java methods by scripting Java
code directly in the JSP document.The Tomcat Server automatically recompiles your
efforts when it finds a newer JSP file. Developing Java on a JSP page, using short com-
pilations of minimum amounts of new code, turned out to be a positive experience.
Even with the added effort of later moving the tested code into another server-side
component, we found that we had a net savings in development time.

Much of the code for doing XSLT from a JSP was originally developed using
scriptlets on a JSP page.After testing, we moved the code into a custom tag handler.
Besides helping to simplify the JSP document and further the JSP objective of separat-
ing page design from dynamic content production and processing, replacing the script-
let code with a much simpler custom action also allowed us to change the visibility of
some of the server-side objects that were used in the scriptlet code from public to
protected.A custom tag helps things not only from the JSP side, but also from the
bean side, by reducing to one place (the tag handler class) some common and impor-
tant programming requirements, such as handling security or data validation.

10.7 Displaying the Available Chats
The capability to do XSLT processing with the transform custom tag is a powerful
way to continue building the Web application user interface.We have been aiming
toward this since the beginning of the project.An early foundation of the bonForum
project was that XSLT processing could help achieve a major goal of JSP-based devel-
opment: separating the presentation layer from the business logic.

Therefore, we intentionally left the HTML content of the JSP pages extremely
simple, hoping that all the hype about XSLT and JSP would prove correct.We can
expect future bonForum versions to have page content created by Web designers,
using the tools and tags that we develop while experimenting with the prototype.

10.7.1 The Input XML Data from bonForumXML
Here is a fragment of the bonForumXML contents at runtime. It represents one chat in
the bonForum.We removed all other nodes of the XML, leaving only those related to
what we call one chatItem element in the project.

<?xml version=”1.0” encoding=”UTF-8”?>
<bonForum nodeKey=”987930397948.987930397948.987930397948” type=”prototype”>

10 1089-9 CH10 6/26/01 7:35 AM Page 371

372 Chapter 10 JSP Taglib: The bonForum Custom Tags

➥<things nodeKey=”987930398299.987930397948.987930397948” type=”READ_ONLY”>
<subjects nodeKey=”987930400301.987930398299.987930397948”>
<Animals nodeKey=”987930400522.987930400301.987930398299”>
<Fish nodeKey=”987930400572.987930400522.987930400301”>
<Piranha nodeKey=”987930400582.987930400572.987930400522”>
<sessionID_iee898dwc2_987947695230
➥nodeKey=”987947695250.987930400582.987930400572” chatTopic=”pet piranha
stories”/>
</Piranha>
</Fish>
</Animals>
</subjects>
</things>
</bonForum>

Depending on the level of encryption on the machine running Tomcat, the session ID
could be longer than the one shown. In this case, the previous example chatItem
name would have been something like the following:

<sessionID_To1012mC31120478618909353At_987947695230

Remember that there can be many such chatItems present at once in the bonForumXML
data object.We have left out all the other subjects, all the other things, and all the
other children of the bonForum root node.

The pathname to a node in the bonForum XML tree is a string made up of the
concatenated node names in order from the root node to the node whose pathname it
is.The pathname for the previous chatItem is as follows:

bonForum.things.subjects.Animals.Fish.Piranha.sessionID_iee898dwc2_987947695230

The innermost node is the element for the chatItem. It has a name that contains five
parts, as follows:

1. A prefix, sessionID, to prevent names starting with digits

2. An underscore character, _

3. The session ID of the visitor who started the chat and thus became its host

4. An underscore character, _

5. A suffix, the system time in millis when the chat node was created, which is also
the nodeKey.aKey of the chat node

The session ID is used as part of the name of any chatItem node because it links the
host to the chat via the session ID. It also forms part of the key for the chat element
nodeKey in the nodeNameHashtable.That allows a fast lookup of the chat node using its
nodeKey instead of the slower process of looking at all the chat elements in the data-
base for the one with an itemKey value equal to the nodeKey of the chatItem.

Before we added the prefix to the chatItem names, we had a problem—which, of
course, we found only after releasing the software the first time. If a session ID started
with a digit instead of a letter, it created an invalid XML element name.That pro-

10 1089-9 CH10 6/26/01 7:35 AM Page 372

37310.7 Displaying the Available Chats

duced a runtime error when running visitor_joins_chat.jsp. It also corrupted the XML
contents of bonForumXML so that all other XSLT processes failed also.

The only solution was to restart bonForum.
The timestamp suffix makes the chatItem name unique, which allows more than

one chat to exist per session object.That is all you need to know for this custom tag
discussion, so feel free to skip the next heading, which is definitely an “aside.”

An Aside: Session ID, nodeKey.aKey, and nodeNameHashtable
Notice that the timestamp is also a unique nodeKey.aKey in the database.Therefore, by
itself it would give direct access to the chatnode, without having the session ID. It
seems that there is no need to use the nodeNameHashtable if you have the
nodeKey.aKey, which is unique in the entire XML database.Why the extra complexity
of using the nodeNameHashtable, you might ask?

The answer to that question is partly due to the development history and partly
due to its planned future. Look at the session ID as being a “stand-in” for a user ID. In
earlier versions, the nodeNameHashtable keys had no timestamp suffixes and consisted
only of a session ID and an element name, as in these examples:

iee898dwc2:chat
iee898dwc2:host
iee898dwc2:message

These connected one element of a particular name with one particular user.The
intent was to allow that user fast access to that element by stashing its nodeKey in the
nodeNameHashtable. Remember, nodes in the XML are unordered, and to look
through all of them every time you need that chat that Joe started is expensive.At that
time, the chatItem names also had no timestamp suffix.The chatItem naming scheme
came about as a way for a visitor thread to determine the session ID for a chat’s
nodeNameHashtable key and, therefore, find the chat knowing only its subject and
topic.That all worked fine, except that it allowed a user to be a host or a guest of only
one chat at a time. Clearly, hosts and guests should be able to go in and out of chats
without losing their connection to the chat.

So, the timestamp was added as a way of having multiple host and guest items in
the nodeNameHashtable for each session. Using the unique nodeKey.aKey was a natural
choice because BonForumEngine was already getting that back from the database when-
ever any node was added.Then the timestamp had to be put in the chatItem name
also because it was used to get the nodeNameHashtable key for a chat with that subject
and topic.At that point. it became obvious that the timestamp itself pointed to the
chat node. Should we throw out the nodeNameHashtable or the session ID part of the
chatItem name? That seems like a simplification, but it is also an impoverishment.The
session ID (later, user ID) connects the chat to the user, which the nodeKey.aKey of
the chat does not directly do. (To find all the chat nodes for a particular user would
take quite a bit of searching, but to do that with a user ID is fast.)

So, there is more method to this madness than is at first apparent. In a future

10 1089-9 CH10 6/26/01 7:35 AM Page 373

374 Chapter 10 JSP Taglib: The bonForum Custom Tags

release, a user’s first session ID (perhaps encrypted) will become his user ID, which
authorization will make available.Then when the user says,“Give me a list of all my
chats for April, fast!”, this will not bring the server to its knees.

The chatTopic Attribute

A chatItem element must also have an attribute with the name chatTopic, whose
value is the description of the chat given by the actor that started the related chat.The
contents of chatTopic must be different than for all other chatItems with the same
parent subject element.That is enforced by the software that adds chatItems.The par-
ent element of a chatItem element can be called a subjectItem element.

10.7.2 The Desired HTML Output
The following is an example of the HTML select element that we create via the
XSLT processing of the bonForumXML.The select element is filled with options, which
are its child elements. Each option identifies a chatItem (an available chat). Here is an
example, with two chats:

<select name=”chatItem” size=”9”>
<option value=”Animals_Dog_LabradorRetriever_[Teaching your dog to fetch!]”>
➥Animals Dog LabradorRetriever --> Teaching your dog to fetch!
</option>
<option value=” Vehicles_Motorcycles_Honda_[Fixing vintage dirt bikes]”>
Vehicles Motorcycles Honda --> Fixing vintage dirt bikes
</option>
</select>

The XSL style sheet that we use is shown next.The style sheet produces “prettier” vis-
ible option content than the “uglier” subject-plus-topic string, and it hides that away
from the user (as the value of the option’s value attribute).

10.7.3 Using an XSL Style Sheet: bonChatItems.xsl
Our first real application use of XSLT from a custom tag was to display to a potential
chat guest this pick list of available chats.We have described everything except the
XSL style sheet that is processed together with the XML chat data to create the
HTML code for the select list.You can find that style sheet, bonChatItems.xsl, in the
folder TOMCAT_HOME\webapps\bonForum\mldocs.

Indeed, it took us a while to create a style sheet that would produce approximately
what we wanted. Creating prettier option content than the option value strings was
quite a recent addition.You might find some older information elsewhere in the book
describing the previous version. Here is the latest XSL file, at this point in time:

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

10 1089-9 CH10 6/26/01 7:35 AM Page 374

37510.7 Displaying the Available Chats

<xsl:output method=”xml” omit-xml-declaration=”yes” indent=”no”/>

<xsl:template match=”/”>
<select size=”9” name=”chatItem”>
<xsl:apply-templates select=”/bonForum/things/subjects/descendant::*[

➥@chatTopic]”/>
</select>

</xsl:template>

<xsl:template match=”text()”>
</xsl:template>

<xsl:template match=”*”>

<xsl:variable name=”option-value”>
<xsl:for-each select=”ancestor::*”>

<xsl:choose>
<xsl:when test=”name()=’bonForum’”>
</xsl:when>
<xsl:when test=”name()=’things’”>
</xsl:when>
<xsl:when test=”name()=’subjects’”>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select=”name()”/>
<xsl:if test=”child::node()”>
<xsl:text>_</xsl:text>
</xsl:if>

</xsl:otherwise>
</xsl:choose>

</xsl:for-each>

<xsl:choose>
<xsl:when test=”self::node()[@chatTopic]”>

<xsl:text>[</xsl:text>
<xsl:value-of select=”@chatTopic”/>

<xsl:text>]</xsl:text>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select=”name()”/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>

<xsl:variable name=”subject”>
<xsl:value-of select=” substring-before(string($option-value), string(

➥"["))”/>
</xsl:variable>

<xsl:variable name=”topic”>
<xsl:value-of select=” substring-before(substring-after(string($option-

10 1089-9 CH10 6/26/01 7:35 AM Page 375

376 Chapter 10 JSP Taglib: The bonForum Custom Tags

➥value), string("[")), string("]"))”/>
</xsl:variable>

<option>
<xsl:attribute name=”value”>

<xsl:value-of select=”$option-value”/>
</xsl:attribute>

<xsl:value-of select=”translate($subject, string("_"), string(
➥" "))”/>

<xsl:text> --> </xsl:text>

<xsl:value-of select=”$topic”/>
</option>

</xsl:template>

</xsl:stylesheet>

If you think that XSL document is hard to follow, you should have seen the first ver-
sion.At that time, the Xalan processor insisted on including all the whitespace in the
file, so we had to wrap most of the file lines into one big mess, without using any tabs
or spaces! Thankfully, that bug seems to be gone now—at least, while using the Xalan-
Java 1 compatibility JAR or the Xalan-Java 2 JAR.

10.8 Displaying the Available bonForums
We decided to display on the browser a list of Web links.The original idea was that
there could be many bonForum Web sites in the world, and each would display links
to all the others on the HTML page created by bonforum.jsp.That is why, in the
bonForumXML data design, these Web links are each kept in a forum element that is a
child of bonForum.things.forums. Later we decided that because there were no other
bonForum Web sites, we would keep some real Web sites there so that the links would
be functional and related to the book. Essentially, this was another opportunity to try
out the XSLT transform custom tag.

10.8.1 bonTransform Applies XSLTProcessor
If it is clear to you from the previous discussion how we used the transform tag to dis-
play available chats in a select list, then it will be easy to understand how we use the
same tag to create a list of link elements.The discussion here is therefore short.We
simply display the relevant XML data, the XML output that we require, and the XSL
style sheet, and repeat the transform action element as it appears on the JSP docu-
ment.

10 1089-9 CH10 6/26/01 7:35 AM Page 376

37710.8 Displaying the Available bonForums

10.8.2 XML Fragment with Link to Forum
The following listing shows the bonForum.things.forums XML subtree from some
bonForumXML data.We have left out all other things descendants, as well as the actor
and actions subtrees.

<?xml version=”1.0” encoding=”UTF-8”?>
<bonForum nodeKey=”987930397948.987930397948.987930397948” type=”prototype”>
<things nodeKey=”987930398299.987930397948.987930397948” type=”READ_ONLY”>

➥<forums nodeKey=”987930400922.987930398299.987930397948”>
<forum nodeKey=”987930400932.987930400922.987930398299”>
<name nodeKey=”987930400942.987930400932.987930400922”>
Galileo Press

</name>
<weblink nodeKey=”987930400952.987930400932.987930400922”>
http://www.galileocomputing.de

</weblink>
</forum>
<forum nodeKey=”987930400992.987930400922.987930398299”>
<name nodeKey=”987930401002.987930400992.987930400922”>
tarent

</name>
<weblink nodeKey=”987930401012.987930400992.987930400922”>
http://www.tarent.de

</weblink>
</forum>
<forum nodeKey=”987930400962.987930400922.987930398299”>
<name nodeKey=”987930400972.987930400962.987930400922”>
New Riders Publishing

</name>
<weblink nodeKey=”987930400982.987930400962.987930400922”>
http://www.newriders.com

</weblink>
</forum>

</forums>
</things>

</bonForum>

The forums content is loaded at startup by the initForumXML() method from the
XML configuration file TOMCAT_HOME\webapps\bonForum\mldocs\forums.xml.

It should also be possible to use the loadForumXmlFromURI() method of the
BonForumStore bean to overwrite the forums subtree at runtime, although that is as yet
untested.

10.8.3 XSLT Style Sheet for bonForum
Here is the XSL style sheet that we use in bonForum to transform the forums XML
data into a list of Web links.The style sheet creates an HTML table element contain-
ing as rows the names and links from each forum element.

<?xml version=”1.0”?>

10 1089-9 CH10 6/26/01 7:35 AM Page 377

378 Chapter 10 JSP Taglib: The bonForum Custom Tags

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>
<xsl:output method=”xml” omit-xml-declaration=”yes” indent=”no”/>

<xsl:template match=”/”>
<table width=”100%” name=”bonForums”>
<tr>
<A>
<xsl:attribute name=”href”>
http://www.bonForum.org/
</xsl:attribute>
bonForum.org

</tr>
<tr>
<xsl:text> </xsl:text>
</tr>
<xsl:apply-templates select=”/bonForum/things/forums//*”/>
</table>
</xsl:template>

<xsl:template match=”text()”>
</xsl:template>

<xsl:template match=”forum”>
<tr>
<A>
<xsl:attribute name=”href”>
<xsl:value-of select=”weblink”/>
</xsl:attribute>
<xsl:value-of select=”name”/>

</tr>
</xsl:template>

<xsl:template match=”*”>
</xsl:template>

</xsl:stylesheet>

The first template makes sure that at least one Web link is always available in the table
of links, which is the Web site for the SourceForge open source bonForum project:
http://www.bonforum.org.

10.8.4 Making a Table of Links with XSLT
Here is how the result of the bonTransform ChoiceTag command turned out on one
occasion, a bit rearranged on the page for clarity:

<table name=”bonForums” width=”100%”>
<tr>

10 1089-9 CH10 6/26/01 7:35 AM Page 378

37910.9 Displaying the Guests in a Chat

bonForum.org

</tr>
<tr> </tr>
<tr>

Galileo Press

</tr>
<tr>

tarent

</tr>
<tr>

New Riders Publishing

</tr>
</table>

10.9 Displaying the Guests in a Chat
Another type of select list used in the bonForum browser interface contains
actorNickname values, of either all the guests or all the hosts in the chat for the cur-
rent session. (Of course, until we implement multihosted chats, there is only one
member in a host list). Each nickname item contains other actor information (the
actorRating and actorAge, for now).To increase or decrease a guest rating, a chat host
can now pick a guest from such a list.These select lists of actors in a chat will also be
used in a future release in the “host executes chat” and “guest executes chat” applica-
tion states so that users can tell who is in their current chats.The XSL style sheet
shown next makes two lists: one of hosts in the chat and the other of guests in the
chat.

10.9.1 The XML Data for a Chat Guest
Here is an excerpt of the bonForumXML, showing the data for only one host in a chat.
We have simplified the XML considerably by leaving out all other actors node
descendants, as well as the entire things and actions subtrees.

<?xml version=”1.0” encoding=”UTF-8”?>
<bonForum nodeKey=”988064756730.988064756730.988064756730” type=”prototype”>
<actors nodeKey=”988064756850.988064756730.988064756730” type=”READ_ONLY”>
<host nodeKey=”988065011617.988064756850.988064756730”>
<actorAge nodeKey=”988065011637.988065011617.988064756850”>
74
</actorAge>
<actorNickname nodeKey=”988065011627.988065011617.988064756850”>

10 1089-9 CH10 6/26/01 7:35 AM Page 379

380 Chapter 10 JSP Taglib: The bonForum Custom Tags

adam
</actorNickname>
<actorRating nodeKey=”988065011647.988065011617.988064756850”>
5
</actorRating>
</host>
</actors>
</bonForum>

10.9.2 Select List for chatGuests
The following is one example of the kind of output that we need.This HTML creates
a select list of all the guests that are currently in a host’s chat.The XSLT must be capa-
ble of producing something like this, at a minimum:

select name=”chatGuest” size=”6”>
<option>larry age:49 rating:7</option>
<option>curly age:47 rating:1</option>
<option>moe age:45 rating:9</option>
</select>

10.9.3 XSLT Style Sheet for chatGuests
This is the style sheet that we used to produce the previous HTML snippet. In the
design of this and the other style sheets in this Web application project, there is great
room for additional creativity.

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”xml” omit-xml-declaration=”yes” indent=”no”/>

<xsl:param name=”param1” select=”’error in param1’”/>

<xsl:template match=”/”>
Guests in your chat:

<select size=”6” name=”chatGuest”>
<xsl:apply-templates select=”/bonForum/things/*”/>
</select>

</xsl:template>

<xsl:template match=”text()”>
</xsl:template>

<xsl:template match=”chat[@itemKey=$param1]”>
<xsl:for-each select=”*”>
<xsl:if test=”name()=’guestKey’”>
<xsl:variable name=”guestKey-value”>

10 1089-9 CH10 6/26/01 7:35 AM Page 380

38110.9 Displaying the Guests in a Chat

<xsl:value-of select=”.”/>
</xsl:variable>
<xsl:for-each select=”/bonForum/actors/guest”>
<xsl:variable name=”guest-value”>
<xsl:value-of select=”@nodeKey”/>

</xsl:variable>
<xsl:if test=”$guest-value=$guestKey-value”>
<option>
<xsl:value-of select=”actorNickname”/>
<xsl:text> age:</xsl:text>
<xsl:value-of select=”actorAge”/>
<xsl:text> rating:</xsl:text>
<xsl:value-of select=”actorRating”/>
</option>

</xsl:if>
</xsl:for-each>

</xsl:if>
</xsl:for-each>

</xsl:template>

<xsl:template match=”*”>
</xsl:template>

</xsl:stylesheet>

10.9.4 TransformTag Uses a Style Sheet Parameter
As you can see, the previous style sheet relies on a parameter that is passed before the
XSLT processing takes place.The parameter “tells” the style sheet the value of the
itemKey for the current session, which can be used to uniquely identify its chat.
However, we call the parameter param1 because we will use it also for other style
sheets where it has different meaning.

To use this style-sheet parameter, we had to add code in other places, of course.
(Note that these changes were made close to the publication date and might not be
reflected in other chapters of this book.) One place needing a change was the JSP that
has the transform tag in it, which is host_executes_command_frame.jsp.

Here is the code that we added to that JSP:
<%
String itemKey = (String)session.getAttribute(“itemKey”);
if(itemKey == null || itemKey.trim().length() < 1) {

itemKey = “000000000000.000000000000.000000000000”;
}
session.setAttribute(“param1”, itemKey);
%>

This scriptlet gets the itemKey identifying the chat for the current session, which the
host is in, and puts it in another session attribute called param1. Later in the same JSP,

10 1089-9 CH10 6/26/01 7:35 AM Page 381

382 Chapter 10 JSP Taglib: The bonForum Custom Tags

the transform tag is called, invoking the methods of its handler class.The following
code in that handler, from TransformTag.java, takes care of getting the style-sheet para-
meter:

String param1 = (String)pageContext.getSession().getAttribute(“param1”);
if(param1 == null) {
param1 = “”;
}

The TransformTag class invokes an XSLT processing method in one of several ways,
depending on the tag attribute values. Every such invocation, whether for Xalan-Java 1
or Xalan-Java 2, passes the style-sheet parameter as an argument, like this:

transformer.transform(inXML, inXSL, outDoc, param1)

10.9.5 How the Style Sheet works
The first template in the style sheet matches the root node. It begins an HTML
select element and then applies templates to all the bonForum.things nodes.A chat
element is found whose itemKey value matches the param1 value passed by the JSP tag
action.That is the current chat for the session.The children of that chat element are
iterated looking for any guestKey elements.Whenever one is found, its value (a
nodeKey string) is saved in the guestKey-value variable, and the processing jumps to a
different place altogether in the bonForum XML data: Guest elements (children of the
bonForum.actors node) are iterated.When a guest element nodeKey value matches the
saved guestKey value, that element is a guest in the chat. Its nickname, age, and rating
element contents can now be concatenated as an HTML option for the select that is
being built by this style sheet.The iteration of the guestKeys in the chat continues
until all the HTML option strings have been output.The closing tag for the HTML
select is output as well.

Why the Style Sheet Is Used

As we discussed in the section “The changeChatActorRating() Method” in Chapter 8,
a chat host has commands available to raise or lower the rating of any guest in the
“current” chat. (That functionality will later be extended to allow any chat actor to
rate any other one in its chat.) Now you know how that host gets a list of the guests
in its chat so that it can pick one to promote or demote.

10.9.6 JSP Tags and XSLT in the Future
One of the main goals of our Web application design is that it should be extensible
and customizable using technologies designed for such purposes.The two most pow-
erful ways to turn the bonForum prototype into a chat that is visually appealing and
full of features are JSP custom tags and XSLT processing.

10 1089-9 CH10 6/26/01 7:35 AM Page 382

38310.9 Displaying the Guests in a Chat

10.9.7 Sending Feedback to the Author
We hope that you enjoy altering and improving the JSP documents and the XSL style
sheets as much as we enjoyed creating the ones shown here.To send your own solu-
tions, improvements, donations, and flames, or to discuss the contents of this book, feel
free to email the author of this book at email@bonforum.org, or use the forums and
mailing lists provided by SourceForge to reach the bonForum project Web site:
http://www.bonforum.org.

10 1089-9 CH10 6/26/01 7:35 AM Page 383

10 1089-9 CH10 6/26/01 7:35 AM Page 384

XML Data Storage Class:
ForestHashtable

11

IN THIS CHAPTER,YOU CAN LEARN HOW we implemented data storage for the XML
data in the bonForum chat application.A descendant of the Hashtable class adds a few
tricks to optimize XML element retrieval, as it simulates our design for a relational
database schema.

11.1 Overview of bonForum Data Storage
One of the more controversial aspects of the bonForum project has been its data stor-
age implementation.Throughout this chapter, we will include some of the objections
that have been raised. Perhaps the most common question is why did we not use a
relational database. Certainly, that would not have been as difficult as creating the
ForestHashtable class in Java, right? Questions are also raised about the way we
designed our objects.These questions deserve an answer, so here are three:

n We are not against using a database—in fact, we will. However, we wanted to
design ours (and experiment with its design) without using a database tool.As
you read this chapter, be aware that we are not trying to replace the use of a
database engine—or to reinvent, one either.

n Our objective was never to design the best way of storing, manipulating, and
retrieving XML data using Java objects. Instead, we were using Java objects to
simulate and test a table design for a relational database.

11 1089-9 CH11 6/26/01 7:36 AM Page 385

386 Chapter 11 XML Data Storage Class: ForestHashtable

n We did it this way because we believe that putting a problem into a different
context than its usual one often stimulates insights into the problem that would
otherwise go unseen. Paradoxically, doing it the hard way first can help you find
the best way sooner.

The de.tarent.ForestHashtable class extends the java.util.Hashtable class. In this
chapter, we assume that you are familiar with the Hashtable class. If you are not, or if
you have questions about it, consult the API documentation for the Java SDK you are
using.

Briefly, a Hashtable instance keeps track of a number of objects called elements.
When you add an element to a Hashtable, you associate it with another object called
a key.You can later use this key to find the element again. Because our
ForestHashtable class is a descendant of a Hashtable, it can serve as the object storage
facility for our Web application example project.

Note that the term element is used in this chapter with two different definitions: an
object held by a Hashtable, and a type of XML node. Hopefully, each time the term
appears, context will differentiate between the two meanings.

11.1.1 ForestHashtable Stores Simple XML
A ForestHashtable caches XML documents for fast processing. Each element in a
ForestHashtable is an object that can be cast to a BonNode object, and each key is an
object that can be cast to a NodeKey object.The BonNode objects are mappable to the
element nodes in one or more XML documents.The NodeKey objects are designed
to keep track of the hierarchical tree relationship that exists between the XML nodes.
How this all works is the first subject of this chapter.

11.1.2 ForestHashtable Is an Experiment
Please note that ForestHashtable is still in a primitive state of development and
should be considered an experiment rather than an attempt to provide a comprehen-
sive XML storage object. In fact, in the version discussed in this book and used in its
Web application project, a ForestHashtable stores only XML element nodes and any
of their children that are either attribute nodes or text nodes. Other XML node types
besides these are ignored.

11.1.3 A Preview of This Chapter
By reading this far in the book, you have already learned enough theory about the
ForestHashtable class used in the bonForum Web application.These are the major
points that should be familiar as we proceed:

n The ForestHashtable is a customized Hashtable whose elements are BonNode
objects and whose keys are NodeKey objects.

11 1089-9 CH11 6/26/01 7:36 AM Page 386

38711.2 The NodeKey Class

n The BonNode objects can represent XML elements together with their attributes
and text content.

n The NodeKey objects, which simulate three “key columns” in a database table,
can map the hierarchical relationships between the XML elements and facilitate
some optimized data-access operations.

In the rest of this chapter, our discussion of ForestHashtable will focus less on its the-
oretical aspects and more on its practical aspects. Here is a list of some major areas we
will cover:

n Access to BonNode objects in a ForestHashtable can be optimized by caching
some of the keys that are used to store them.We will discuss two such optimiza-
tion mechanisms that we have developed.

n To make it useful, we added some methods to the ForestHashtable class.These
methods include those for adding, deleting, and editing the BonNode objects kept
in a ForestHashtable. Here as elsewhere, we find techniques for optimizing the
performance of these common tasks.

n To apply other XML technologies, especially XSLT, to our ForestHashtable
data, we develop a way to retrieve these data in a manner that obeys the rules of
XML.

n The bonForum Web chat application uses an instance of the ForestHashtable
class, called bonForumXML.We will show you how the data in bonForumXML is ini-
tialized, and we also will discuss an example of bonForumXML data after a couple
chats were started.

11.2 The NodeKey Class
The following excerpt from the file NodeKey.java is the definition of the NodeKey
class:

class NodeKey {
String aKey;
String bKey;
String cKey;
public NodeKey() {

this.aKey = “”;
this.bKey = “”;
this.cKey = “”;

}
public String toString() {

return aKey + “.” + bKey + “.” + cKey;
}

}

As you can see, a NodeKey instance simply encapsulates three strings, which together
form a three-part key.The three parts are known as aKey, bKey, and cKey. Its construc-

11 1089-9 CH11 6/26/01 7:36 AM Page 387

388 Chapter 11 XML Data Storage Class: ForestHashtable

tor initializes these to empty strings, so we never need to check for a null value in any
part of the triple-key value.

11.2.1 Using Unique Triple-Key Values
A NodeKey, when converted to a string by the toString() method, is simply the three
strings separated by period characters.An example of a NodeKey as a string is the
following:
“963539545905.963539545895.963539545885”

NodeKeys such as these are used to represent the hierarchical relationships between
BonNodes in a ForestHashtable.This is explained next, together with a discussion of
the reasons for using these triple keys.

11.2.2 Timestamps for Order and Uniqueness
The important thing to note for now is that the first string of 12 digits (the aKey) is
different for each NodeKey instance, something that allows each NodeKey object to
function as a unique key for a BonNode object in the ForestHashtable.The aKey is
derived from the system time in milliseconds, which gives a way to order NodeKeys in
time and also ensures that each NodeKey can be given a unique value, as long as only
one source of NodeKey values is present.

11.3 The BonNode Class
Here is the definition of the BonNode class, from the file BonNode.java:

class BonNode {
NodeKey nodeKey;
NodeKey parentNodeKey;
boolean deleted; // flag as deleted, for quick deletes
boolean flagged; // general purpose state flag
String nodeName; // name of element
String nodeAttributes; // attributes of element
String nodeContent; // text between opening and closing tags

}

11.3.1 NodeKey in a BonNode
The NodeKey that is used to retrieve a BonNode from the ForestHashtable is also kept
inside the BonNode instance itself, as the NodeKey member. If a BonNode is a child of
another BonNode, then the NodeKey of the parent is kept in the parentNodeKey mem-
ber. From these two NodeKeys kept in the BonNode, we can determine hierarchical rela-
tionships between BonNode objects from the objects themselves.

11 1089-9 CH11 6/26/01 7:36 AM Page 388

38911.3 The BonNode Class

11.3.2 parentNodeKey in a BonNode
Note that the BonNode string member known as parentNodeKey is not needed for rep-
resenting the hierarchical position of a node, as long as the NodeKey member is a mul-
tipart key object, such as the triple-key values that we use in the bonForum project
and which are discussed fully later.

Why is the parentNodeKey in the BonNode class, then? There are two reasons for
that. (Hint:You might want to revisit these two items after reading about forest tables.)

1. You could use the BonNode class with different types of keys that are not multi-
ple-valued, like the double and triple-key examples. In that case, the two mem-
bers NodeKey and parentNodeKey determine the hierarchical position of the
node.

2. If you have used a triple-valued key (discussed later) in each of the two mem-
bers NodeKey and parentNodeKey, then you will have fast access to the parent,
grandparent, and great-grandparent above the current node that is represented
by any BonNode. Of course, this would be done through methods, such as
node.getParent().getGrandParent().

11.3.3 Name of a BonNode
A BonNode is designed to represent a node in a tree. Sometimes in this book, you
might find the term node used rather loosely to refer to a BonNode.A BonNode is used
in the bonForum project to represent three types of XML nodes.An XML element is
mappable to the name that appears in an opening tag and its matching closing tag (if
any) of an XML document.The only thing that the BonNode must keep to faithfully
map an XML element node is its hierarchical position (in the NodeKey member) and
its name (in the nodeName string member).

11.3.4 Attributes of a BonNode
From a low-level XML programming view, it is advantageous to access the attributes
of an element as child nodes of the element node that they are attributes of. So, attrib-
utes are best represented as nodes in their own right, so to speak. Such “attribute
nodes” would have to be specialized in some fashion, of course, to distinguish them
from true children and ensure that the original XML could be reproduced. However,
for the purposes of the bonForum Web application, all that is needed is to keep the list
of name=value items associated with the associated XML element.A BonNode object
keeps such a list as a single string member of itself, which is called nodeAttributes.

11.3.5 Content of a BonNode
The third thing that a BonNode can represent from an XML document is a concatena-
tion of all the text nodes that are children of the element named by the nodeName
string member.The concatenated text is kept in the nodeContent string member of
the BonNode.

11 1089-9 CH11 6/26/01 7:36 AM Page 389

390 Chapter 11 XML Data Storage Class: ForestHashtable

11.3.6 Background Deletion of a BonNode
By using the flag called deleted, we intend to implement delayed deletion of nodes.
The deleteNode() method will have to be changed so that it sets this flag value to
true in a node instead of deleting the node.A background task could periodically
purge nodes marked for deletion.As an added advantage, we could implement an
unDoNodeDeletion() method.

Node deletion comes in two “flavors.” In the first, or “leaf-only” version, it can
avoid deletion of nodes that have children. In the second, or “recursive” version, it can
delete all descendants (if any) of any node deleted. Note that in the ForestHashtable
design (as opposed to a simple Java object hierarchy), it is necessary to explicitly check
for parentNode references to the deleted object to carry out either type of deletion.
For a fuller discussion as it relates to foreground instead of background deletion, see
Section 11.7.4,“Deleting Descendants or Only Leaf Nodes.”

11.3.7 Flagging Visits to a BonNode
Another flag in each node is called flagged.This is used by the getXMLForest()
method that converts the data in a ForestHashtable into XML trees.This conversion
requires repeated iterations of the Hashtable contents, first to get the root nodes, then
to get their children, and finally to recursively visit all the other nodes.We “hide” each
node that has already been processed by setting its flagged member to a value of True.
This enables us to simplify the code that we use to test the depth of a node in the
hierarchy.

Someone might raise the objection that this is mixing procedural with OOP and
can introduce multithreading and data integrity problems, and that it would be much
safer to have this method keep its own separate list of nodeKeys visited and check
against that.We hope that this objection will no longer hold when our simulation (the
ForestHashtable class) is implemented in a relational database.The getXMLForest()
method should be seen as a convenience for the simulation and not essential to the
design.

11.4 ForestHashtable Maps Data Trees
The ForestHashtable class is designed to simulate a database table that uses three
columns as key values.You can implement the same functionality as the
ForestHashtable class by creating such a table within any one of the many available
databases together with some methods that can also be programmed as stored proce-
dures within the database or within one or more Java classes.The ForestHashtable
class is simply a simulation of such a database setup.

11 1089-9 CH11 6/26/01 7:36 AM Page 390

39111.4 ForestHashtable Maps Data Trees

11.4.1 Design of the ForestHashtable
Many of the advantages of using a database table with three keys to represent hierar-
chical data structure are not utilized by the Web application project in this book.
Therefore, you might wonder why such a design was implemented at all.We will
briefly discuss the reasons in this section.

11.4.2 Hierarchical Data Representation
A hierarchy, or tree structure, is commonly implemented in software by using just one
variable to create links between the node objects of the tree. Each node object con-
tains a member that acts as a pointer or key to its parent node. Because each node has
only one parent node, such an arrangement can represent the entire tree, and methods
can be created to add, edit, delete, traverse, and otherwise manipulate its node objects.

11.4.3 Forest Tables Using Two Keys
A database table can be used to hold such hierarchical data. Each row represents a data
node. Each node uses one column to contain a primary key that uniquely identifies
that node.A second key column contains the primary key of a different row in the
table, the one that represents that node’s parent.

If a node has no parent, then it is a root node.The parent key of a root node is set
to point to the root node itself.Therefore, if the values of the node and parent key are
equal, the node in question is a root node. Usually, in Java APIs, the parent of a root
node is null—that is, it represents the absence of a parent. Notice that making the par-
ent equal to the node means that to traverse a tree, you cannot use this “usual” phrase:

for (node = someNode; node.getParent() != null; node = node.getParent()){…}

Neither can you use this stock phrase:
while ((node = node.getParent()) != null){…}

Instead, for tree traversal, you would use this:
while (node != node.getParent()) {…}

These examples were cited as a source of potential confusion stemming from our
design. However, it does seem to us that the third example is simpler, at least.

Let’s use an example to help you visualize such a table.We call the two keys node
and parent, and we give each node just two columns for a name and type. For pri-
mary key values we will use sequential integers. First we will display part of the table
in Table 11.1.

11 1089-9 CH11 6/26/01 7:36 AM Page 391

392 Chapter 11 XML Data Storage Class: ForestHashtable

Table 11.1 Tree of Life in a Double-Key Table

Node Parent Name Type

1 1 Animalia Kingdom
2 1 Mollusca Phylum

3 1 Chordata Phylum

4 3 Mammalia Class

5 4 Carnivora Order

6 2 Gastropoda Class

7 4 Primates Order

8 7 Hominidae Family

9 3 Reptilia Class

10 8 Homo Genus

11 11 Plantae Kingdom

12 10 Sapiens Species

13 10 Hacker Species

Next we display the contents of the example table fragment as a hierarchical structure.
We constructed the tree using the two key values for each node, and we use them sep-
arated by a period as a prefix in each node label:

1.1 Kingdom Animalia
2.1 Phylum Mollusca

6.2 Class Gastropoda
3.1 Phylum Chordata

4.3 Class Mammalia
5.4 Order Carnivora
7.4 Order Primates

8.7 Family Hominidae
10.8 Genus Homo

12.10 Species sapiens
13.10 Species hacker

9.3 Class Reptilia
11.11 Kingdom Plantae

11.4.4 Forest Tables Using Three Keys
The table that is simulated by the Hashtable in our ForestHashtable class uses three
key columns. In each row, we keep track of both the node’s parent and its grandparent.

We should point out here that some might think that the grandparent key is super-
fluous and redundant and that it promotes bad design/coding practices. Normalized
database design would use either the two-key approach (for single-parent trees) or a
single key and a mapping table (for multiparent relationships).

11 1089-9 CH11 6/26/01 7:36 AM Page 392

39311.4 ForestHashtable Maps Data Trees

Here is the same partial table example, this time with an additional key called
grandparent. Note that in the NodeKey used by the ForestHashtable, the three keys
are called aKey, bKey, and cKey instead of node, parent, and grandparent.

Table 11.2 Tree of Life in a Triple-Key Table

Node Parent Grandparent Name Type

1 1 1 Animalia Kingdom
2 1 1 Mollusca Phylum

3 1 1 Chordata Phylum

4 3 1 Mammalia Class

5 4 3 Primates Order

6 2 1 Gastropoda Class

7 4 3 Carnivora Order

8 7 4 Hominidae Family

9 3 1 Reptilia Class

10 8 7 Homo Genus

11 11 11 Plantae Kingdom

12 10 8 Sapiens Species

13 10 8 Hacker Species

Again we display the contents of the example table fragment as a hierarchical struc-
ture.We constructed the tree using the triple-key values for each node. In fact, as you
have seen, we need only the first two keys to make the tree.This time, we use all three
values, separated by periods as a prefix in each node label:

1.1.1 Kingdom Animalia
2.1.1 Phylum Mollusca

6.2.1 Class Gastropoda
3.1.1 Phylum Chordata

4.3.1 Class Mammalia
5.4.3 Order Carnivora
7.4.3 Order Primates

8.7.4 Family Hominidae
10.8.7 Genus Homo

12.10.8 Species sapiens
13.10.8 Species hacker

9.3.1 Class Reptilia
11.11.11 Kingdom Plantae

11.4.5 Advantages of a Triple-Key Forest Table
The simpler “double-key” table can provide all the functionality that we required for
the Web chat application project in this book.Why then did we use a solution that

11 1089-9 CH11 6/26/01 7:36 AM Page 393

394 Chapter 11 XML Data Storage Class: ForestHashtable

uses three keys? The reason is that we wanted our simplified chat application to
become the basis for a full Web e-commerce application. Using “three-key” tables to
hold hierarchical data enables some additional methods that provide superior perfor-
mance and simplified programming requirements.

Table 11.3 lists some of the methods that are especially easy and efficient to imple-
ment using a triple-key table to contain nodes.We will discuss these methods and oth-
ers as well. For further elucidation, try to implement these methods using only a
double-key table design, and then use a triple-key table design.

Table 11.3 Methods Made Easy by Triple-Key Table Design

Method of Node Key Relation to Implement Method

isNodeAChildOfRoot() aKey <> bKey and bKey = = cKey

hasNodeAGrandParent() bKey <> cKey

getGrandParentOfNode() cKey = = Grandparent’s aKey

getGrandChildrenOfNode() aKey = = Grandchildren’s cKey

Some might say that if these methods are necessary to obtain sufficient speed from a
tree, the tree is not well-designed in the first place.The argument is that putting in
extended family methods defeats the purpose of the structure and draws arbitrary,
nonintuitive boundaries between objects. (To take this to an extreme, why not have a
getGreatGrandparent() or a getGreatGreatGrandparent()?)

Well, as mentioned before, getGreatGrandparent is getParent().getGrandParent()
(or do you really like getParent().getParent().getParent() better?).Also,
getGreatGreatGrandparent() is getGrandParent().getGrandParent(), instead of
getParent().getParent().getParent().getParent(). In Section 11.4.10,“Prefetching
to Save Time and Bandwidth,” we will discuss some scenarios in which we do think
the triple-key design has merit.

11.4.6 isNodeAChildOfRoot()
Finding the result of this method that returns a Boolean value is intrinsic to the design
of the ForestHashtable.As the second column in Table 11.3 shows, you need to
determine only that the first two key values of the three-valued key are not equal and
that the last two of the same three values are equal.

Doing the same thing using only two-valued keys instead for a node at an arbitrary
depth in a tree could take many, many iterations of getting the parent node, seeing if it
has a parent, and so on.

11.4.7 hasNodeAGrandParent()
If the last two of the three values in the triple key differ from each other, then the
node has parent and grandparent nodes at least, although maybe more direct ancestors

11 1089-9 CH11 6/26/01 7:36 AM Page 394

39511.4 ForestHashtable Maps Data Trees

as well.This information is thus also intrinsic to the design of the ForestHashtable’s
triple-key table data storage (remember, although this is stored here in a Hashtable, it
could as well be in a relational or object-oriented database table).

Again, trying to find the Boolean return value for this method is more difficult
with a double-valued key system.You have to access the parent node keys and deter-
mine whether the parent has a parent, which is equivalent to determining whether the
parent is a root node.The information is not intrinsic to the node, in other words.

Remember, a node can be big and expensive to request over a network.You might
want to just get the parents’ keys, not all the objects in the node. But then, if you are
asking this question, you probably will access the rest of the node as well, which means
that you have a choice of either two object retrievals sometimes or one object retrieval
always.

11.4.8 getGrandParentOfNode()
If you use triple-key tables, then you can directly index the grandparent node of any
node in a forest. Besides getting the value of the hasNodeAGrandparent() method, the
triple key gives you the index for the nodes row in the table.As the second column in
Table 11.3 shows, you only need to find the row in the table with a primary key value
equal to the third value in the triple key of the current node (that is, the grandchild
node).

With double-key tables, you must retrieve the keys from the parent node of a given
node to find and retrieve the grandparent of the given node.Again, how big a deal
that is depends on what the nodes are and where they are, among other things. But it
certainly will not be faster access than with a three-key table.

11.4.9 getGrandChildrenOfNode()
Getting all the child nodes of a given node using a triple-key table requires only a sin-
gle pass through all the primary key values.As the second column in Table 11.3 hints,
you need to grab only the nodes whose third key is equal to the first key of the cur-
rent node (that is, the grandparent node).

To implement this method with a double-key table, you must first get each child
node and then find all its child nodes, which you retrieve. If you realize that the rows
in the table are not ordered by tree order but by insertion order, you can appreciate
that it could take much longer to retrieve all the grandchildren and that it will require
more than one pass through the rows of the table.

11.4.10 Prefetching to Save Time and Bandwidth
In e-commerce, user interfaces are often tied to large databases that have hierarchical
data structures.The user interface often requires that these data structures receive input
from a user and provide values to be displayed to the user.

11 1089-9 CH11 6/26/01 7:36 AM Page 395

396 Chapter 11 XML Data Storage Class: ForestHashtable

11.4.11 Linking List Controls
Frequently, in such user interfaces, the need arises to link two or more lists of items.
For this discussion we assume that the need exists to link two list box controls.

One of the controls contains values from one level of a hierarchical data struc-
ture—in other words, values from a set of sibling tree nodes.The second control con-
tains values from the children of whichever tree node corresponds to the selected
value in the first list.When the user picks a parent node by selecting its value in the
first list, the second list should automatically show the values of all its children.

After that, the next step is often to drill down or up in the hierarchy.This proce-
dure applies, for example, to the “explorer” type of user interface designs, such as those
used to traverse and display filesystem contents in a user interface display.

Drilling Down the Hierarchy

When it becomes necessary to drill down into a tree data structure, the selected child
becomes the new parent, and its child nodes, if any, must now be found by the soft-
ware and displayed in the user interface.Would it not be advantageous to have already
retrieved the required child nodes? Of course, we do not mean that we should try to
guess successfully which new parent node will be selected by the user ahead of time.

Using a ForestHashtable, we can easily prefetch and cache all the “next-genera-
tion” nodes in an XML data store.We can do this using the
getGrandchildrenOfNode() method, discussed previously.This way, we can search
through a much smaller data set that is guaranteed to contain all the new child nodes
that we must find instead of making many new requests from a database.

Climbing Up the Hierarchy

In the opposite direction, the ForestHashtable can more quickly find the parent of a
node (if available) and the grandparent of a node (if available).This might not be
important if the parent can be retrieved quickly and used in turn to find the grandpar-
ent. However, there may be cases in which small savings add up over time.Try iterat-
ing cousin nodes with two-valued versus three-valued keys to see the difference that
the grandparent key can make.

11.4.12 Faster Response and Reduced Bandwidth
As you have seen, this capability of the ForestHashtable to prefetch grandchildren of
a node comes from the fact that it simulates a database table that uses three keys.The
advantages of this design show themselves in two ways: faster response to user actions
and reduced bandwidth requirements with remote databases.Although our simple chat
application does not take full advantage of this design, an e-commerce application
based on the same architecture would certainly do so.

11 1089-9 CH11 6/26/01 7:36 AM Page 396

39711.4 ForestHashtable Maps Data Trees

11.4.13 Keeping XML Documents in a Table
As you can see, there can be any number of root nodes in either the double-key or
the triple-key tables discussed.That is why the Java class that we use to simulate this
table was named ForestHashtable, not TreeHashtable.

XML documents, on the other hand, can have only one root node.This means that
we can store multiple XML documents in either of these types of table, and each
XML document root will have a separate root node in the table.The ForestHashtable
can also store more than one XML document.

11.4.14 The Animal Kingdom as an XML Document
Here is what the animal kingdom data in our example table might look like if it were
in an XML document. Of course, we could add more attributes to the element start
tags, as well as some text content between the start and end tags, to make a more
informative document.We are keeping it simple, though, to better show how XML
can be stored in a database table.

<?xml version=”1.0”?>
<Kingdom name=” Animalia”>

<Phylum name=”Mollusca”>
<Class name=”Gastropoda”>
</Class>

</Phylum>
<Phylum name=” Chordata”>

<Class name=” Mammalia”>
<Order name=”Carnivora”>
</Order>
<Order name=”Primates”>

<Family name=”Hominidae”>
<Genus name=”Homo”>

<Species name=”sapiens”>
</Species>
<Species name=”hacker”>
</Species>

</Genus>
</Family>

</Order>
</Class>
<Class name=” Reptilia”>
</Class>

</Phylum>
</Kingdom>

The plant kingdom classification would have to be in a different XML document,
unless we added another higher-level root element (for example, using the tag pair
<Life></Life>.That would then be the parent of both the animal kingdom and the
plant kingdom nodes.

11 1089-9 CH11 6/26/01 7:36 AM Page 397

398 Chapter 11 XML Data Storage Class: ForestHashtable

11.4.15 Some XML Nodes Not Handled Yet
What about all the other types of XML nodes? As we stated at the beginning of the
chapter, the ForestHashtable is an experiment in progress.As such, it has been inten-
tionally kept simple, with just enough functionality to illustrate its potential and fulfill
the needs of the bonForum Web application example.

11.4.16 Future XML Capabilities Are Planned
The BonNode class actually represents three different types of XML nodes together in
one object.Therefore, a BonNode object can contain an XML element node, plus its
attribute nodes and its text nodes. In a future design, every node in an XML docu-
ment would be mapped to a single row in a table, including attribute nodes and text
nodes.

Because an XML document can be fully described as a tree of nodes, there is no
reason why the design used in this simplified ForestHashtable cannot be extended to
include all the other XML node types as well.

11.5 Caching Keys for Fast Node Access
Because a ForestHashtable extends the Hashtable class, obviously it has access to itself
as a Hashtable, and that is where it contains the nodes of data. However, it also con-
tains two other Hashtable member objects that it uses to optimize the processing of
the BonNode objects that it stores.

11.5.1 NodeKey Gives Direct Access to a BonNode
As we have seen, NodeKey objects are used as Hashtable keys for keeping the BonNodes
objects in a ForestHashtable.Therefore, having a NodeKey allows direct access to its
associated BonNode. If you do not have a NodeKey for a BonNode, you have to search the
entire ForestHashtable using an Enumeration to find that particular BonNode, and that
can be a very time-consuming search procedure. In fact, for some searches, you must
iterate several enumerations in nested loops, which is very expensive in terms of both
memory and processor time.

11.5.2 NodeKeyHashtables Cache NodeKeys
To have fast and more direct access to BonNode objects, the ForestHashtable has two
different ways of caching their associated NodeKey objects.These cached NodeKey
objects can then later be quickly found and used in turn to find their associated
BonNode objects in the ForestHashtable.The two NodeKey caches, both
java.util.Hashtable objects, are named nodeNameHashtable and pathNameHashtable.
We discuss each of these in separate subsections.

11 1089-9 CH11 6/26/01 7:36 AM Page 398

39911.5 Caching Keys for Fast Node Access

There are two different NodeKey caches because each uses a different type of key
object to store its NodeKey objects.The Hashtable key used by nodeNameHashtable
contains the nodeName value for the BonNode whose NodeKey is being cached (some-
times with a prefix identifying the HTTP session, and optionally the node-creation
time). The pathNameHashtable object uses instead a key that describes the path in the
data tree from a root node to the BonNode whose NodeKey is being cached.

The two different caches for NodeKey objects are referred to generically as
NodeKeyHashtables. Some methods that use them have an argument to select which
one to use by its specific name, and the argument is named nodeKeyHashtableName. It
is anticipated that other types of caches might be useful, so some of the code was
written with an eye to the future.

11.5.3 nodeNameHashtable
The first Hashtable objects, named nodeNameHashtable, is created by the following
statement from the file ForestHashtable.java:

public NodeNameHashtable nodeNameHashtable = new NodeNameHashtable();

Notice that a class called NodeNameHashtable has been defined that extends
java.util.Hashtable but that adds nothing to that class.This has been done solely to
make the variable available from JSP tags.

Users Only Add Children of Nonroot Nodes

In Section 8.6,“The add() Method,” of Chapter 8,“Java Servlet in Charge:
BonForumEngine,” we discuss the add() method of the BonForumEngine class.There
we point out that it eventually depends on the addChildNodeToNonRootNode() method
in the ForestHashtable class, which will be discussed in the section “Session-Visible
Children of Nonroot Nodes.” You should see by now that to get a full understanding
of how a nodeKeyHashtable works, you will need to understand both the
BonForumEngine and the ForestHashtable classes.That will most likely require study-
ing their source code, as well as Chapter 8.

The addNode() Method’s nodeKeyHashtable Cache

In the ForestHashtable class, the public classes that add data nodes all call a private
class called addNode().The addNode() method uses the nodeNameHashtable to cache
the NodeKey of the BonNode being added, whenever its nodeKeyHashtableName argu-
ment is set to the value nodeNameHashtable.

The code excerpt shown in the next subsection is from the addNode() method of
the ForestHashtable class.You can see how the NodeKey for a BonNode being added to
the ForestHashtable is saved in the nodeKeyHashtable cache.

11 1089-9 CH11 6/26/01 7:36 AM Page 399

400 Chapter 11 XML Data Storage Class: ForestHashtable

Application Global versus HTTP Session-Dependent Caching

The addNode() method has another argument called nodeKeyKeyPrefix that is set to
the value NO_NODEKEY_KEY_PREFIX when the root node and its children are added to
initialize the Web application database.The same argument is set instead to the value
SESSION_ID or SESSION_ID_AND_CREATION_TIME whenever a node is added that is at
least a grandchild of the root node.

if(nodeKeyHashtableName.equals(“nodeNameHashtable”)) {
// Hashtable is synchronized, but we need to sync two together here:
String nodeKeyKey = null;
synchronized(this) {
try {
this.put(nodeKey, node);

}
catch(Exception ee) {
log(sessionId, “err”, “EXCEPTION in addNode():” + ee.getMessage());
ee.printStackTrace();

}
if(nodeKeyKeyPrefix == SESSION_ID) {
// allows only one key per session
// use this option to reduce size of table
// by not storing key to nodeKeys not needed
// (examples: message keys, messageKey keys).
nodeKeyKey = sessionId + “:” + nodeName;

}
else if(nodeKeyKeyPrefix == SESSION_ID_AND_CREATION_TIME) {
// the nodeKey.aKey acts as a timestamp
// allowing multiple keys per session in nodeNameHashtable
// use to find multiple nodes with same name for one session
// (example: chat keys, guest keys, host keys)
nodeKeyKey = sessionId + “_” + nodeKey.aKey +”:” + nodeName;

}
else if(nodeKeyKeyPrefix == NO_NODEKEY_KEY_PREFIX) {
// use no prefix for elements global to all sessions
nodeKeyKey = nodeName;

}
else {
nodeKeyKey = nodeName; // unknown arg value, could complain

}
this.nodeNameHashtable.put(nodeKeyKey, nodeKey);

}
}

Elements Branded by HTTP Session and Creation Time

If the parent is not one of the intrinsic system elements (for example, a “message” ele-
ment inside the “things” element) then the key in the nodeKeyHashtable is made up
of the following:

<sessionId> + “_” + <nodeKey.aKey> + “:” <elementName>.

11 1089-9 CH11 6/26/01 7:36 AM Page 400

40111.5 Caching Keys for Fast Node Access

An example of such a key is 54w5d31sq1_985472754824:message.There is also an
option to leave out the nodeKey.aKey portion of the key for a selected list of node
names (see ForestHashtable, property UniqueNodeKeyKeyList).That option reduces
the size requirements of the nodeKeyHashtable (for example, by not storing all the
message nodeKey keys).

String hostNodeKeyKey = sessionId + “_” + creationTimeMillis + “:host”;
session.setAttribute(“hostNodeKeyKey”, hostNodeKeyKey);
nameAndAttributes = “actorNickname”;
content = actorNickname;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, hostNodeKeyKey, nameAndAttributes,
content, forestHashtableName, “nodeNameHashtable”, sessionId);

11.5.4 PathNameHashtable
The other Hashtable that a ForestHashtable uses, besides itself and the
nodeNameHashtable, is called the pathNameHashtable.The source code that creates that
variable is shown here:

public PathNameHashtable pathNameHashtable = new PathNameHashtable();

As with the NodeNameHashtable class, you can see that this cache is an instance of a
class (PathNameHashtable) that has been defined to extend java.util.Hashtable, but
it adds nothing else to that class.Again, this has been done only to make the
pathNameHashtable variable available from JSP tags.

BonForumEngine Uses pathNameHashtable

The ForestHashtable class contains only a definition of the pathNameHashtable mem-
ber at present.All the code that uses this second NodeKey cache facility is now in the
BonForumEngine class, although it will later be moved into the ForestHashtable class.
Therefore, it is convenient to say more about the pathNameHashtable in this chapter.
To fully understand the pathNameHashtable, however, you should also refer to the
information in Chapter 8.

Hashtable Key Used by pathNameHashtable

The pathNameHashtable uses a key for each NodeKey stored in it that is made by con-
catenating the names of all the data nodes starting from the root node and ending
with the node whose NodeKey is being cached, with a period separating each node
name used.An example of one of these keys is the following string value:

bonForum.things.Subjects.Animals.Fish.Piranha

PathNameHashtable and Chat Subjects

At present, the pathNameHashtable is used only when adding the tree of subject cate-
gories to the bonForumXML ForestHashtable.We have adopted a rule that no duplicate

11 1089-9 CH11 6/26/01 7:36 AM Page 401

402 Chapter 11 XML Data Storage Class: ForestHashtable

pathNames are allowed in this tree of subjects.This means, for example, that you cannot
have two sibling nodes named Piranha or two sibling nodes named Fish.

A pathName, such as the example just given for the Piranha subject node, is used as
the key in the pathNameHashtable to store the NodeKey object that is associated with
the node “pointed to” by the pathName. In the case of the example, the Piranha
BonNode is stored in the bonForumXML ForestHashtable with a triple-valued NodeKey.
That NodeKey is immediately put into the pathNameHashtable (as an element this time)
with a key that is a string containing the pathName that was just given as an example.

Mapping User Choices to PathName Keys

We can now display to the user any list of chat subjects that are mapped to the
pathName keys. (This is a good place to apply XSLT.) When the user selects a chat sub-
ject, the associated pathName key can be used to get immediate access to the BonNode
for the subject—for example, to add a child element to it. For example, here is the
code (from the BonForumEngine class) that adds an element named after the user’s ses-
sion ID to the chat subject element that the user has selected it:

obj = bonForumStore.add(“bonAddElement”, chatSubject, nameAndAttributes, content,
forestHashtableName, “pathNameHashtable sessionId”);
NodeKey itemNodeKey = (NodeKey)obj;

The last argument of the add() method in BonForumEngine tells it to use the
pathNameHashtable because that is where subject NodeKeys are cached.The
nameAndAttributes argument contains the session ID from the user’s HTTP request.
The chatSubject argument provides a pathName key (such as the example given previ-
ously) to find the subject node (which in our example case is the Piranha element).

HTTP Session Branding in bonForum Web Chat

Here is what the equivalent XML for a chat item with a subject category of
Animals.Fish.Piranha and a topic of pet piranha stories would look like after the
SessionID and the chatTopic child elements have been added, using the
pathNameHashtable to avoid searching for the Piranha subject parent node.

<Piranha nodeKey=”965501558519.965501558509.965501558459”>
<sessionID_v7iabpmab1_9928478272761
➥nodeKey=”965503120084.965501558519.965501558509” ➥chatTopic=”pet piranha
stories” />
</Piranha>

Filling the pathNameHashtable

You might wonder how the subject NodeKeys got into the pathNameHashtable in the
first place.That also happens in the BonForumEngine class, as shown by the following
excerpt from its Initialize() method:

String xmlUri = “..\\webapps\\bonForum\\docs\\subjects.xml”;
try {

11 1089-9 CH11 6/26/01 7:36 AM Page 402

40311.5 Caching Keys for Fast Node Access

DOMParser parser = new DOMParser();
parser.parse(xmlUri);
Document document = parser.getDocument();
try {

loadForumXML(pathToSubTreeRootNode,
parentNodeInDestination, document, “pathNameHashtable”);

}
catch(Exception ee) {

logTFE.logWrite(“err”, “bonLog1.txt”, “caught exception
trying to load subjects.xml into bonForumXML”);

}
}
catch(Exception ex) {

logTFE.logWrite(“caught exception trying to parse subjects.xml”);
}

If we follow the trail of the loadForumXML() method, we find that we must continue
on to a poorly named loadXMLSubTreeIntoForestHashtable() method, which is called
from loadForumXML() as follows:

loadXMLSubTreeIntoForestHashtable(node, parentNodeKey, bonForumXML,
nodeKeyPathName, nodeKeyHashtableName);

It is in loadXMLSubTreeIntoForestHashtable that the real job of filling the
pathNameHashtable takes place:

if(nodeKeyHashtableName.equals(“pathNameHashtable”)) {
// here save nodeKey with a pathName key
// only save descendants of bonForum.things.subjects
if (nodeKeyPathName.equals(“”)) {

if((!(nodeName.equals(“bonForum”))) &&
(!(nodeName.equals(“things”))) &&
(!(nodeName.equals(“subjects”)))) {

nodeKeyPathName = nodeName;
}

}
else {

// build the pathName by concatenating node just added
nodeKeyPathName = nodeKeyPathName + “.” + nodeName;

}
if(!nodeKeyPathName.equals(“”)) {

forestHashtable.pathNameHashtable.put(nodeKeyPathName, nextParentNodeKey);
}

}

11.5.5 Dependencies on bonForumEngine
Most of the code in bonForumEngine that relates to pathNameHashtable should really
be moved into the ForestHashtable class. In fact, that is not the only dependency
between the two classes.

11 1089-9 CH11 6/26/01 7:36 AM Page 403

404 Chapter 11 XML Data Storage Class: ForestHashtable

Originally the ForestHashtable was defined within the bonForumEngine source file,
and it has only partially been extracted as a freestanding class. Our first goal was to get
enough code working to experiment with the concepts behind the Web application
project.The results of these experiments will undoubtedly change the requirements of
both classes, so there is no point in getting too stuck in perfecting the definition of
either class now.

11.6 Adding ForestHashtable Nodes
To simplify the methods that manipulate its nodes, the ForestHashtable class distin-
guishes among three different kinds of nodes, as follows:

Root nodes

Children of root nodes

Children of nonroot nodes

A separate public method is provided for adding nodes in each of these categories, as
follows:

addRootNode()

addChildNodeToRootNode()

addChildNodeToNonRootNode()

Each of these three methods depends upon a protected method called addNode(),
which we shall discuss before the three public methods. However, as you have seen, all
the nodes in a ForestHashtable require a NodeKey, so let’s first look at the method that
provides the three public node addition methods with a unique key to store their new
nodes.

11.6.1 Creating a New, Unique NodeKey
The ForestHashtable has a private long variable named lastCurrentTimeMillis.You
can see how it uses this to provide a new, unique NodeKey instance by examining the
method that returns a NodeKey to use for storing each newly created bonNode:

private NodeKey getNextAvailableNodeKey() {
long temp = 0;
long lastCurrentTimeMillis = System.currentTimeMillis();
NodeKey nodeKey = new NodeKey();
while (temp <= lastCurrentTimeMillis) {
temp = System.currentTimeMillis();

}
nodeKey.aKey = Long.toString(temp);
// initialize other keys to first,
// that makes node a root node by default
nodeKey.bKey = nodeKey.aKey;
nodeKey.cKey = nodeKey.aKey;
return nodeKey;

}

11 1089-9 CH11 6/26/01 7:36 AM Page 404

40511.6 Adding ForestHashtable Nodes

By initializing the second and third keys to the same value as the primary key, we are
effectively making a NodeKey for a root node, by default.We discussed why this is so in
Section 11.4.1,“Design of the ForestHashtable.”

11.6.2 The addNode() Method
As mentioned previously, the public methods to add nodes at various levels of the
ForestHashtable hierarchy all depend upon the addNode() method, which is shown in
the following excerpt from the source code:

private BonNode addNode(String nodeName, String nodeAttributes, String
nodeContent, NodeKey nodeKey, NodeKey parentNodeKey, String nodeKeyHashtableName,
int nodeKeyKeyPrefix, String sessionId) {
BonNode node = new BonNode();
node.deleted = false;
node.flagged = false;
node.nodeName = nodeName;
if(nodeAttributes != null && nodeAttributes.length() > 0) {
node.nodeAttributes = “nodeKey=\””+ nodeKey + “\” “ + nodeAttributes;

}
else {
node.nodeAttributes = “nodeKey=\””+ nodeKey + “\””;

}
node.nodeContent = nodeContent;
node.nodeKey = nodeKey;
node.parentNodeKey = parentNodeKey;
// put in this ForestHashtable
// also optionally put nodeKey in nodeNameHashtable
// but not if it is a subject element, etc.
if(nodeKeyHashtableName.equals(“nodeNameHashtable”)) {
// Hashtable is synchronized, but we need to sync two together here:
String nodeKeyKey = null;
synchronized(this) {
try {
this.put(nodeKey, node);

}
catch(Exception ee) {
log(sessionId, “err”, “EXCEPTION in addNode():” + ee.getMessage());
ee.printStackTrace();

}
if(nodeKeyKeyPrefix == SESSION_ID) {
// allows only one key per session
// use this option to reduce size of table
// by not storing key to nodeKeys not needed
// (examples: message keys, messageKey keys).
nodeKeyKey = sessionId + “:” + nodeName;

}
else if(nodeKeyKeyPrefix == SESSION_ID_AND_CREATION_TIME) {
// the nodeKey.aKey acts as a timestamp
// allowing multiple keys per session in nodeNameHashtable
// use to find multiple nodes with same name for one session

11 1089-9 CH11 6/26/01 7:36 AM Page 405

406 Chapter 11 XML Data Storage Class: ForestHashtable

// (example: chat keys, guest keys, host keys)
nodeKeyKey = sessionId + “_” + nodeKey.aKey +”:” + nodeName;

}
else if(nodeKeyKeyPrefix == NO_NODEKEY_KEY_PREFIX) {
// use no prefix for elements global to all sessions
nodeKeyKey = nodeName;

}
else {
nodeKeyKey = nodeName; // unknown arg value, could complain

}
// else ifs and/or else can add other prefixes here.
// Note: it replaces older table entries, if any
this.nodeNameHashtable.put(nodeKeyKey, nodeKey);

}
}
// else ifs here can add other hashtables later
else {
// Hashtable is synchronized, so if you change ancestor class for this,
// be sure to sync addition to this here also.
this.put(nodeKey, node);

}
return node;

}

You might want to read again two relevant sections earlier in this chapter: Section
11.2,“The NodeKey Class,” and Section 11.3,“The bonNode Class.”The addNode()
method creates a new bonNode and then uses argument values to set its name, attrib-
utes, and content.

NodeKey: Key, Node Member, Child Element

Notice that the addNode() method adds an additional attribute that keeps the NodeKey
string value with the BonNode.That must be done because when ForestHashtable ele-
ments are converted into an XML document, its nodes can have attribute or child ele-
ment values that “point” to the NodeKey of another nodes. For example, in the
bonForumXML ForestHashtable used in the bonForum Web chat application, each chat
element contains a child called hostKey.This hostKey points to the host of the chat by
having the string value of a host element NodeKey as its text content.

Putting the bonNode in This ForestHashtable

After filling in the node.nodeKey and node.parentNodeKey members of the new
bonNode, the addNode() method uses the NodeKey passed in as an argument again, this
time to put the new bonNode into the ForestHashtable with the following statement:

this.put(nodeKey, node);

Caching the bonNode’s Hashtable Key

Before returning the new bonNode, the method checks to see if it should cache its
NodeKey in a NodeKeyHashtable.The reasons for doing this, and the details of how it

11 1089-9 CH11 6/26/01 7:36 AM Page 406

40711.6 Adding ForestHashtable Nodes

works, were discussed in Section 8.1.20,“Adding a Host Actor.”At the time we wrote
this, only the nodeKeyHashtable was handled inside the addNode() method.The
pathNameHashtable is still being handled in the bonForumEngine class, but it should be
moved here also. Other Hashtables can be added for specific optimization tasks in the
future.

The nodeKeyKeyPrefix argument value determines whether the NodeKey being
cached is for a globally available BonNode or whether it is associated with an HTTP
session-dependent BonNode.We have discussed this optimization already and will add
more to that later.

The addNode() method caches a NodeKey object in the nodeKeyHashtable with the
following statement:

this.nodeNameHashtable.put(nodeKeyKey, nodeKey);

The nodeKeyKey can be used later to quickly retrieve the nodeKey, which in turn
allows fast retrieval of the BonNode associated with it.

11.6.3 Adding Root Nodes
The simplest type of node to add to a ForestHashtable is a root node. Here is the
source code for the public addRootNode() method that does that:

public BonNode addRootNode(String rootNodeName, String rootNodeAttributes, String
➥rootNodeContent, String nodeKeyHashtableName) {
NodeKey nodeKey = getNextAvailableNodeKey();
NodeKey emptyParentNodeKey = new NodeKey();
return addNode(rootNodeName, rootNodeAttributes, rootNodeContent, nodeKey,
➥emptyParentNodeKey, nodeKeyHashtableName,NO_NODEKEY_KEY_PREFIX, “”);
}

The NodeKey returned by getNextAvailableNodeKey has all three keys set to the same
value, which means that the BonNode we are adding with that NodeKey will be a root
node, by definition.Therefore, we do not have to set the values of the aKey, bKey, and
cKey in the NodeKey to make our newly added node be a root node.

Because a root node has no parent, we set the parentNodeKey to a new NodeKey
that has empty key values.The value of emptyParentNodeKey as a string will be two
period characters (..).We could have instead used a null parentNodeKey value, but then
we would have to be more careful not to cause exceptions when we use it in other
methods.

ForestHashtable Root Nodes Are Global

This method calls addNode() with the right arguments for adding a root node.The
next-to-last argument value is NO_NODEKEY_KEY_PREFIX.As you can tell from the previous

11 1089-9 CH11 6/26/01 7:36 AM Page 407

408 Chapter 11 XML Data Storage Class: ForestHashtable

discussion about the addNode() method, this means that a root node in a
ForestHashtable can never “belong” to one HTTP session; it is always global to the
users of the ForestHashtable. In terms of the bonForum Web chat application, this
means that there is only one cached NodeKey object for the primary XML data ele-
ments such as bonForum.

11.6.4 Automatic Parent Node Location Retrieval
If the node being added to a ForestHashtable object is to have a parent node, then
the addNode() method must somehow “know” the location of this parent node.
Because of the way that data is stored in a ForestHashtable, it must get the NodeKey
object corresponding to that parent node. In fact, the correct parent nodeKey is found
in one of the following three ways:

1. The parent’s NodeKey is retrieved from the nodeKeyHashtable using as a key the
parent nodeName.

2. The parent’s NodeKey is retrieved from the nodeKeyHashtable using a key made
from the session ID (and optionally a timestamp) plus a colon prefixed to the
parent nodeName.

3. The parent’s NodeKey is retrieved from the pathNameHashtable using as a key the
complete path to the parent node in the data hierarchy.

Adding Children to Global Nodes

In the first case, the node that will be the parent of a newly added node may be glob-
ally available to all the users of the ForestHashtable.This means that when this parent
node was itself added to the ForestHashtable, its NodeKey was also added to the
nodeKeyHashtable with a key consisting of only the name of the parent node, without
a session ID prefix.Thus, the name of the parent node can be used as the key in the
nodeKeyHashtable to find the key in the ForestHashtable for the parent node itself.

Global BonNodes in bonForum Web Chat

This is easier to see with an example. In the bonForum Web chat application, the
global nodes are the one and only root element (bonForum) and all three of its child
elements (actors, actions, things).As you have just seen (in Section 11.6.3,“Adding
Root Nodes”), a root node added to the ForestHashtable will always be a global
node.

If you want to add a child to any of these global elements, then you do not need to
search the ForestHashtable using an enumeration.You simply use the element name
to find the element’s NodeKey in the nodeKeyHashtable, and then you use that NodeKey
to find the element in the ForestHashtable.

11 1089-9 CH11 6/26/01 7:36 AM Page 408

40911.6 Adding ForestHashtable Nodes

Adding Children with nodeKeyHashtable

In the second case, the parent node of the newly added node will “belong” to one
user.As implemented in the Web application example for this book, one user means
one HTTP session. It also means one browser and one thread.

For the addition of a node to fall in this case, the parent-node-to-be must itself
have been added by the same user that is now adding a child to it.Also, as you shall
see, it must be at least a grandchild of a root node.When a user adds a node in this
second category to a ForestHashtable, its NodeKey is stored in the nodeKeyHashtable
using a key that is made up of the HTTP session ID (and optionally a timestamp),
followed immediately by a colon plus the nodeName of the node being added.

Example from bonForum Web Chat

Let’s illustrate this with an example from the bonForum Web chat application.
Consider the addition of a chat message by a user. It is stored in the bonForumXML
ForestHashtable belonging to the bonForumEngine Java servlet.Within the XML data
structure, the message is stored as a message element inside the global
bonForum.things element.The key in bonForumXML for the newly added message will
be a NodeKey object.This NodeKey object will also be stored in the nodeKeyHashtable
belonging to bonForumXML using a key looking something like
To1010mC1859245324354153At:message.

Adding Children with pathNameHashtable

The third way to find the parent node’s key when adding a new node is to find it in
the pathNameHashtable of the ForestHashtable using a key that represents the path to
the parent node from its root node in the data.An example of such a pathName key is
this:

bonForum.things.subjects.Vehicles.Motorcycles

The pathNameHashtable has already been extensively discussed in this chapter and also
in Chapter 8, so there is little need to add more here.

Chat Subjects Cached in pathNameHashtable

The technique of using a node path to find a cached node key is currently being used
for only the Subjects configuration subtree in bonForumXML. However, it is a technique
that can be applied easily to the additional dynamic XML application-data sets that are
envisioned for other Web applications (for example, an e-commerce application named
bonMarketPlace).

NodeKeys for Node Access and Reuse

Each of the ForestHashtable methods that add a node return the node as well. (Note
that the BonForumEngine add() method, which wraps the ForestHashtable
addChildNodeToNonRootNode() method returns, instead an object that can be cast to a
NodeKey.)

11 1089-9 CH11 6/26/01 7:36 AM Page 409

410 Chapter 11 XML Data Storage Class: ForestHashtable

The return value can be important if you have more than one sibling with the
same name, and the add() method uses nodeNameHashtable. Using
nodeNameHashtable, you can recall only the last node added for a given NodeKey key.

Multiple Elements per HTTP Session

If you need to access more than one sibling node with the same name, then you can
use NameHashtable keys that have both the session ID and the timestamp in their pre-
fix, (SESSION_ID_AND_CRATION_TIME).

11.6.5 Adding a Node to a Root Node
Here is the source code for the method that can add a node to any root node:

public BonNode addChildNodeToRootNode(String childNodeName, String
childNodeAttributes, String childNodeContent, NodeKey rootNodeKey, String
➥nodeKeyHashtableName) {
NodeKey childNodeKey = getNextAvailableNodeKey();
childNodeKey.bKey = rootNodeKey.aKey;
childNodeKey.cKey = rootNodeKey.bKey;
// when the second and third key are equal, it is child of a root
return addNode(childNodeName, childNodeAttributes, childNodeContent, childNodeKey,
➥rootNodeKey, nodeKeyHashtableName, NO_NODEKEY_KEY_PREFIX, “”);
}

Setting the Keys to Add the Node

Recall that the NodeKey returned by the getNextAvailableNodeKey() method is by
default a root NodeKey. However, this method changes the bKey and cKey values to that
of the aKey in the NodeKey of the desired parent root node.After these changes, the
invocation of the addNode() method will have the correct childNodeKey argument for
a child of a root node.

Children of Root Nodes Are Also Global

Notice that the next-to-last argument of the addNode() method call
(nodeKeyKeyPrefix) is set to NO_NODEKEY_KEY_PREFIX.As discussed previously, this
means that the newly added node will be available to all HTTP sessions using the
ForestHashtable.

11.6.6 Adding a Node to a Nonroot Node
Here is the source code for the method that can add a node to any nonroot node:

protected BonNode addChildNodeToNonRootNode(String childNodeName, String
childNodeAttributes, String childNodeContent, NodeKey nonRootNodeKey, String
nodeKeyHashtableName, String sessionId) {
NodeKey childNodeKey = getNextAvailableNodeKey();
// when no keys are equal, its a root grandchild or deeper
childNodeKey.bKey = nonRootNodeKey.aKey;
childNodeKey.cKey = nonRootNodeKey.bKey;

11 1089-9 CH11 6/26/01 7:36 AM Page 410

41111.7 Deleting ForestHashtable Nodes

// Assume multiple keys per nodeKey allowed in “nodeNameHashtable”
nodeKeyHashtable
int nodeKeyKeyPrefix = SESSION_ID_AND_CREATION_TIME;
// unless node name to be added is in the “list”.
if(uniqueNodeKeyKeyList.trim().length() > 0) {
if(uniqueNodeKeyKeyList.indexOf(childNodeName) > -1) {
nodeKeyKeyPrefix = SESSION_ID;

}
}
return addNode(childNodeName, childNodeAttributes, childNodeContent,

childNodeKey, nonRootNodeKey, nodeKeyHashtableName, nodeKeyKeyPrefix, sessionId);
}

Setting the Keys to Add the Node

This method is very similar to the addChildNodeToRootNode() method discussed pre-
viously.The first of two differences is that the new node’s NodeKey has its bKey and
cKey values set to the aKey and bKey values of the NodeKey of its parent node.
Remember, when no two of its “triple keys” have matching values, a node is three or
more levels deep in the data hierarchy—that is, it is a child of a nonroot node.

Session-Visible Children of Nonroot Nodes

The second difference is that the nodeKeyKeyPrefix argument value in the addNode()
method invocation is set to SESSION_ID_AND_CREATION_TIME or SESSION_ID.These val-
ues mean that, if the nodeKeyHashtableName argument value used when the
addChildNodeToNonRootNode() method is invoked is set to nodeKeyHashtable, then the
newly added node will “belong” to the HTTP session that is making the node addi-
tion.

Note that, in the current version of ForestHashtable, this means that the
nodeKeyHashtable can be used for global nodes only when these are root nodes, or
children of root nodes. It may be a good idea to change that by passing the
nodeKeyKeyPrefix argument to the addChildNodeToNonRootNode() method.

Sharing Session Nodes Between Users

Note also that the connection between an HTTP session and a node relates only to
the use of the nodeKeyHashtable as a fast node-access mechanism.You can still arrange
to “share” nodes between different HTTP sessions (users) by keeping their NodeKey
values in another location that is available to all sessions, or passing the NodeKey from
one session to another.

11.7 Deleting ForestHashtable Nodes
Have you wondered what happens to nodes in a data tree whose visibility is tied to an
HTTP session when that session ceases to exist? Such nodes would never normally be
accessed again, so they must be either be deleted from the tree or associated with
another HTTP session that is tied to the same user (for example).The lifetime of a

11 1089-9 CH11 6/26/01 7:36 AM Page 411

412 Chapter 11 XML Data Storage Class: ForestHashtable

session is of a variable length of time and depends upon both some settings in the
server environment and some client factors.

Here is the source code for the doDeleteNode() method of ForestHashtable.This
is the lower-level private method that actually does the work of deleting the node.
Notice that changing this method is part of the future scenario of ForestHashtable; it
might become a data storage class with a persistent data store.

private boolean doDeleteNode(NodeKey keyOfNodeToDelete) {
if (this.containsKey(keyOfNodeToDelete)) {

this.remove(keyOfNodeToDelete);
return true;

}
else {

return false;
}

}

Another planned optimization is to implement the code that uses the deleted flag in
the NodeKey class to carry out virtual node deletion with a background system thread
that scavenges older dead nodes.That would mean that the doDeleteNode would sim-
ply mark nodes as deleted and could be implemented with different XML data storage
solutions at a later date. Some limited undo facilities could also be implemented using
this scheme.

11.7.1 doDeleteNodeRecursive()
The doDeleteNodeRecursive() method of ForestHashtable uses an enumeration of
that class as a Hashtable, finds a node to delete using its NodeKey, and calls itself for
each child of that node. It then removes the node from the ForestHashtable as a
Hashtable.This recursion effectively deletes the first node and all its descendants.

private boolean doDeleteNodeRecursive(NodeKey keyOfNodeToDelete) {
String parentAKey = keyOfNodeToDelete.aKey;
NodeKey nodeKey = new NodeKey();
BonNode bonNode = null;
Enumeration enumeration = this.elements();
if(!(enumeration.hasMoreElements())) {

return false; // no elements to delete
}
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
nodeKey = bonNode.nodeKey;
if(nodeKey.bKey.equals(parentAKey)) { // found a child

doDeleteNodeRecursive(nodeKey);
}

}
//bonNode = this.getBonNode(keyOfNodeToDelete);
this.remove(keyOfNodeToDelete);
return true;

}

11 1089-9 CH11 6/26/01 7:36 AM Page 412

41311.7 Deleting ForestHashtable Nodes

11.7.2 getBonNode()
The getBonNode() method of ForestHashtable is a simple utility method to get a
BonNode element in the ForestHashtable, given its key, which is a NodeKey. Here is the
code:

public BonNode getBonNode(NodeKey nodeKey) {
if(nodeKey == null) {

return null;
}
if(this.containsKey(nodeKey)) {

return (BonNode)this.get(nodeKey);
}
else {
return null;

}
}

The doDeleteNodeRecursive() method can be changed to invoke the getBonNode
method before removing a node by its key from the ForestHashtable. If that change
is made, then the getBonNode() method can be overridden to provide some kind of
event that is caused by node deletion.That can often be useful, but a price will be paid
for it, so the invocation of this method appears commented out in the
doDeleteNodeRecursive source code shown before.

However, perhaps a better alternative is to create some kind of preDelete() or
beforeDelete() method in the nodes that can do any required cleanup and perhaps
return a Boolean allowing or disallowing the delete.

11.7.3 deleteNode()
You have seen how the optionally recursive node deletion works. Now let’s look at
the public method by which a user application deletes a BonNode from a
ForestHashtable. Here is the source code for its deleteNode() method:

public boolean deleteNode(NodeKey keyOfNodeToDelete, boolean leafOnly) {
if(this.containsKey(keyOfNodeToDelete)) {

if(leafOnly) {
if(hasAtLeastOneChild(keyOfNodeToDelete)) {

return false;// was not a leaf node, so not deleted
}

}
return doDeleteNodeRecursive(keyOfNodeToDelete);

}
else {

return false; // no such node
}

}

You can see how easy node access is when you have the NodeKey. Of course, this does
not require the three keys in the NodeKey, as discussed at the beginning of this chapter.

11 1089-9 CH11 6/26/01 7:36 AM Page 413

414 Chapter 11 XML Data Storage Class: ForestHashtable

But it is rather nice to have one key encoding both order in a table and hierarchy in a
tree at the same time. It would be more expensive to keep these two potentially inde-
pendent factors in separate objects.

11.7.4 Deleting Descendants or Only Leaf Nodes
If leafOnly is true, then the BonNode is not deleted if it has (one or more) child
nodes.This would allow you, for example, to not delete a folder that still had files or
folders in it, in a typical computer file system.

On the other hand, if leafOnly is false, then the BonNode and all of its descendants
are deleted.This allows you to prune branches off a data tree by deleting the node at
the base of the branch to delete.

11.7.5 hasAtLeastOneChild()
Now let’s display the Java source code for the hasAtLeastOneChild() method of
ForestHashtable. It is used by the deleteNode() method to determine whether a
BonNode is a leaf node when the leafOnly argument of the hasAtLeastOneChild()
method is set to a value of true. Feel free to use this public method for other
purposes.

public boolean hasAtLeastOneChild(NodeKey parentNodeKey) {
BonNode bonNode = null;
String parentAKey = parentNodeKey.aKey;
Enumeration enumeration = this.elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
if(bonNode.nodeKey.bKey.equals(parentAKey)) {

return true;
}

}
return false;

}

In a ForestHashtable, children have a nodeKey.bKey equal to the parent’s
nodeKey.aKey.Therefore, when the enumeration of the ForestHashtable contents
finds a single node that passes that test, it can return a value of true for the
hasAtLeastOneChild() method.

11.8 Editing ForestHashtable Nodes
Changing a BonNode can be done with a delete() method plus an add() method, of
course. More convenient is the editBonNode() method. It finds a BonNode using its
NodeKey and then replaces any or all of the nodeName, nodeAttributes, and
nodeContent items that are passed in as arguments.

11 1089-9 CH11 6/26/01 7:36 AM Page 414

41511.9 Getting ForestHashtable as XML

11.8.1 editBonNode()
public NodeKey editBonNode(NodeKey nodeKey, String newNodeName, String
newNodeAttributes, String newNodeContent) {

NodeKey retval = null;
synchronized(this) {

BonNode bonNode = getBonNode(nodeKey);
if(bonNode != null) {

boolean putNew = false;
if(newNodeName != null) {

bonNode.nodeName = newNodeName;
putNew = true;

}
if(newNodeAttributes != null) {

bonNode.nodeAttributes = newNodeAttributes;
putNew = true;

}
if(newNodeContent != null) {

bonNode.nodeContent = newNodeContent;
putNew = true;

}
if(putNew) {

try {
doDeleteNode(nodeKey);

}
catch(Exception ee) {

logFH.logWrite(“editBonNode() exception deleting node!:”
➥+ ee.getMessage());

}
try {

retval = (NodeKey)this.put(nodeKey, bonNode);
}
catch(Exception ee) {

logFH.logWrite(“editBonNode() exception putting node!:”
+ ee.getMessage());

}
}
else {

logFH.logWrite(“editBonNode() no edits to make!”);
}

}
else {

logFH.logWrite(“editBonNode() no bonNode.with this nodeKey!”);
}

}
return retval;

}

The editBonNode() method is used in the BonForumEngine servlet for two purposes.
One is to get content into nodes that have been loaded from XML documents by the
LoadXMLSubTreeIntoForestHashtable() method.The other is to add an itemKey

11 1089-9 CH11 6/26/01 7:36 AM Page 415

416 Chapter 11 XML Data Storage Class: ForestHashtable

attribute to a chat element.We will also try using it to allow a chat host to change the
rating of a guest in a chat.

Warning
The BonNodes in a ForestHashtable are insufficiently protected from editing at this point. Of

course, for one user to get the session ID of another to edit the other’s nodes is hard to do without it

being planned that way. But the global nodes (root and its children) are editable by any user now. That is

hardly a situation that should be tolerated in a real Web application.

11.9 Getting ForestHashtable as XML
The primary purpose of the ForestHashtable class is to contain XML data to experi-
ment with Web application-dependent node-access optimizations. It obviously is con-
venient to get the content of a ForestHashtable instance as an XML document, to
allow compatibility with other XML tools in the software development arsenal. Such
convenience is supplied by methods of ForestHashtable.

In this section we discuss the getXMLTree() public method and the various lower-
level, private methods that make it possible. However, we first look at the source code
for the getXmlNode() method:

public String getXmlNode(NodeKey nodeKey) {
String xml = “”;
BonNode bonNode = getBonNode(nodeKey);
String name = bonNode.nodeName;
String attributes = bonNode.nodeAttributes;
String content = bonNode.nodeContent;
if (attributes != null && attributes.trim().length() > 0) {
xml = xml + “<” + name + “ “ + attributes;

}
else {
xml = xml + “<” + name;

}
if (content != null && content.trim().length() > 0) {
xml = xml + “>” + content + “<\\” + name + “>”;

}
else {
xml = xml + “\\>”;

}
return xml;

}

As you can see, the getXmlNode() simply unwraps the name, attributes, and content of
a BonNode instance and puts it into the tagged XML format in a string object.All this
method needs is the NodeKey associated with a BonNode in the ForestHashtable, and it
will return a valid XML element as a string. Of course, in the future it will need to
deal with other types of XML nodes.

11 1089-9 CH11 6/26/01 7:36 AM Page 416

41711.9 Getting ForestHashtable as XML

Also note that it could be a good idea to check that the key used in the
ForestHashtable as a Hashtable (the nodeKey argument) is the same as the key that is
stored in the node’s nodeKey member itself (bonNode.nodeKey). Such a test has been
omitted for speed.

11.9.1 getXMLTrees()
The getXMLTrees() method of the ForestHashtable returns a string containing all the
trees in the ForestHashtable. Depending on the application and its state, that can be a
large string object, so it should not be used casually. In future versions of the class,
more selectivity is to be desired in extracting XML subsets of the entire content,
including perhaps XPATH functionality.

This method assumes that ForestHashtable includes zero or more well-formed
XML subtrees—more specifically, that it contains zero or more elements each either a
leaf node or the root of a well-formed tree of elements.The method reads this content
as a forest tree and provides the opening and the closing tags to format the contents as
valid XML, although without the opening XML programming instruction node.

public String getXMLTree() {
BonNode bonNode;
String xml = “”;
long elementCount;
String nameRootNode = “”;
String nameChildOfRootNode = “”;
String name = “”;
String attributes = “”;
String content = “”;
elementCount = unFlagAllFlaggedElements();
Enumeration enumerationRN = this.elements();
lastRootNodeFound = false;
while (!lastRootNodeFound) {

bonNode = getNextRootNode(enumerationRN);
if (bonNode == null) {
lastRootNodeFound = true;
break;

}
name = bonNode.nodeName;
nameRootNode = name;
attributes = bonNode.nodeAttributes;
content = bonNode.nodeContent;
// OUTPUT A ROOTNODE
if (attributes != null && attributes.trim().length() > 0) {

xml = xml + “<” + name + “ “ + attributes;
}
else {

xml = xml + “<” + name;
}
if (content != null && content.trim().length() > 0) {

xml = xml + “>” + content;
}

11 1089-9 CH11 6/26/01 7:36 AM Page 417

418 Chapter 11 XML Data Storage Class: ForestHashtable

else {
xml = xml + “>”;

}
Enumeration enumerationCRN = this.elements();
lastChildOfRootNodeFound = false;
while (!lastChildOfRootNodeFound) {

bonNode = getNextChildOfRootNode(enumerationCRN);
if (bonNode == null) {

lastChildOfRootNodeFound = true;
break;

}
name = bonNode.nodeName;
nameChildOfRootNode = name;
attributes = bonNode.nodeAttributes;
content = bonNode.nodeContent;
// OUTPUT A CHILD OF A ROOTNODE
if (attributes != null && attributes.trim().length() > 0) {

xml = xml + “<” + name + “ “ + attributes;
}
else {

xml = xml + “<” + name;
}
if (content != null && content.trim().length() > 0) {

xml = xml + “>” + content;
}
else {

xml = xml + “>”;
}

xml = getNextChildOfNonRootNodeRecursively(xml, bonNode.nodeKey);
xml = xml + “</” + nameChildOfRootNode + “>”;

}
xml = xml + “</” + nameRootNode + “>”;

}
elementCount = unFlagAllFlaggedElements();
return xml;

}

In accordance with the node classification that the class design used for optimization,
the getXMLTrees() method uses different methods to get the root nodes, their chil-
dren, and then recursively the other descendants of the roots.The methods that are
used to retrieve nodes of the three types (root node, child of a root node, and child of
a nonroot node) are each discussed later.

Using String Buffers
Note that we have used concatenation operations throughout this method (and, in fact, throughout the

bonForum project) because they are easier to visualize in the code listings. However, these should be

replaced by using a string buffer, which offers a big improvement in the speed and the memory usage of

the application. Using strings as we have previously creates many very large temporary strings and

buffers, and is thus expensive and inefficient.

11 1089-9 CH11 6/26/01 7:36 AM Page 418

41911.9 Getting ForestHashtable as XML

unFlagAllFlaggedElements()

When nodes have been selected for inclusion in the output returned by any of the
private methods that get nodes from a ForestHashtable, these “used” nodes are
flagged by setting their flagged member to true.Then further processing of the
Hashtable can simply skip used nodes rather than test them again.We thus need a way
to clear all the flagged flags, which is provided by the unFlagAllFlaggedElements()
method shown here:

protected long unFlagAllFlaggedElements() {
Enumeration enumerationALL;
BonNode bonNodeALL = null;
NodeKey nodeKeyALL = null;
long count = 0;
boolean foundNextRootNode;
foundNextRootNode = false;
enumerationALL = this.elements();
while(enumerationALL.hasMoreElements()) {

bonNodeALL = (BonNode)enumerationALL.nextElement();
nodeKeyALL = bonNodeALL.nodeKey;
if(nodeKeyALL != null) {

count++;
bonNodeALL.flagged = false;

}
}
return count;

}

Warning
Obviously, as the size of the ForestHashtable contents grows, there is a reduced efficiency to most of

its methods because of the frequent use of enumerations to iterate all the nodes in the contents. Again,

we reiterate that this software is for experimentation. Handling large numbers of data elements will be

addressed more fully when we reimplement this design using a commercial or open source database. We

envision our Hashtable methods as operating on cached subsets of a larger relational database. This

large intended grouping of Hashtables and caches with its triple keys IS a relational database, not a

pure XML database. We do not want to reinvent the wheel.

11.9.2 getNextRootNode()
The getNextRootNode() method of ForestHashtable requires as its only argument an
Enumeration object to be processed. It finds the first nonhidden root node, hides it,
and returns it.When it cannot find a root node using the Enumeration, it returns a null
value and sets a class flag called lastRootNodeFound.You should have enough informa-

11 1089-9 CH11 6/26/01 7:36 AM Page 419

420 Chapter 11 XML Data Storage Class: ForestHashtable

tion from reading the previous material here to be able to understand the source code
for the method, which is reproduced here:

protected BonNode getNextRootNode(Enumeration enumerationRN) {
BonNode bonNodeRN = null;
NodeKey nodeKeyRN = null;
boolean foundNextRootNode;
foundNextRootNode = false;
while(enumerationRN.hasMoreElements()) {

bonNodeRN = (BonNode)enumerationRN.nextElement();
nodeKeyRN = bonNodeRN.nodeKey;
// this is a test for a root node

if((!bonNodeRN.flagged) &&
(nodeKeyRN.aKey.equals(nodeKeyRN.bKey)) &&
(nodeKeyRN.bKey.equals(nodeKeyRN.cKey))) {

foundNextRootNode = true;
// hide this node, so we get it only once
bonNodeRN.flagged = true;
if(nodeKeyRN != null) {

currentRootNodeAKey = nodeKeyRN.aKey;
currentRootNodeBKey = nodeKeyRN.bKey;

}
break;

}
}

if (!foundNextRootNode) {
lastRootNodeFound = true;
bonNodeRN = null;

}
return bonNodeRN;

}

Note that several top-level class member variables keep track of the current triple-key
values of the last root node found.These variables allow the coordination of the vari-
ous methods that are used by the getXMLTrees() method. Some of the variables,
including the currentRootNodeCKey variable in the getNextRootNode() method, are
needed only for debugging.

11.9.3 getNextChildOfRootNode()
The getNextChildOfRootNode() method of ForestHashtable, like the
getNextRootNode method, requires as its only argument an Enumeration object to be
processed. It finds the first nonhidden child of a root node, hides it, and returns it.
When it cannot find a node that is a child of a root node using the Enumeration, it
returns a null value and sets a class flag called lastChildOfRootNodeFound.You should
have enough information from reading the material here to be able to understand the
source code for the method, which is reproduced here:

protected BonNode getNextChildOfRootNode(Enumeration enumerationCRN) {
BonNode bonNodeCRN = null;

11 1089-9 CH11 6/26/01 7:36 AM Page 420

42111.9 Getting ForestHashtable as XML

NodeKey nodeKeyCRN = null;
boolean foundNextChildOfRootNode;
foundNextChildOfRootNode = false;
while(enumerationCRN.hasMoreElements()) {

bonNodeCRN = (BonNode)enumerationCRN.nextElement();
nodeKeyCRN = bonNodeCRN.nodeKey;
// this is a test for child of current root node
if((!bonNodeCRN.flagged) &&
(nodeKeyCRN.aKey != nodeKeyCRN.bKey) &&
(nodeKeyCRN.bKey = = currentRootNodeAKey) &&
(nodeKeyCRN.cKey = = currentRootNodeBKey)) {

foundNextChildOfRootNode = true;
// hide this node, so we get it only once
bonNodeCRN.flagged = true;
if(nodeKeyCRN != null) {

currentChildOfRootNodeAKey = nodeKeyCRN.aKey;
currentChildOfRootNodeBKey = nodeKeyCRN.bKey;

}
break;

}
}
if (!foundNextChildOfRootNode) {

lastChildOfRootNodeFound = true;
bonNodeCRN = null;

}
return bonNodeCRN;

}

Again, note that several top-level class variables keep track of the current triple-key
values of the last child of a root node found.These variables allow the coordination of
the various methods that are used by the getXMLTrees() method. Some of the vari-
ables, including the currentChildOfRootNodeCKey variable of the
getNextChildOfRootNode() method, are needed only for debugging.

11.9.4 getNextChildOfNonRootNodeRecursively()
The getNextChildOfNonRootNodeRecursively() method of ForestHashtable invokes
the getNextChildOfNonRootNode() to get the next nonhidden node that is at least a
grandchild of a root node.Then it invokes itself recursively.The result, after some addi-
tion of tags in XML format, is a string containing an XML subtree starting at the
node whose key it began with.

This method requires two arguments. One is the recursion variable that is the
string that accumulates the final XML subtree.When no more nodes that are descen-
dants of a nonroot node are found, the method sets a class flag called
lastChildOfNonRootNodeFound.You should have enough information from reading the
material here to be able to understand the source code for the method, which is
reproduced here:

protected String getNextChildOfNonRootNodeRecursively(String xml, NodeKey
nonRootNodeKey) {

11 1089-9 CH11 6/26/01 7:36 AM Page 421

422 Chapter 11 XML Data Storage Class: ForestHashtable

String nameChildOfNonRootNode;
String name;
String attributes;
String content;
boolean lastChildOfNonRootNodeFound;
BonNode bonNode = null;
nameChildOfNonRootNode = “”;
Enumeration enumerationCNRN = this.elements();
lastChildOfNonRootNodeFound = false;
while (!(lastChildOfNonRootNodeFound)) {

bonNode = getNextChildOfNonRootNode(enumerationCNRN, nonRootNodeKey);
if (bonNode == null) {

lastChildOfNonRootNodeFound = true;
break;

}
name = bonNode.nodeName;
nameChildOfNonRootNode = name;
attributes = bonNode.nodeAttributes;
content = bonNode.nodeContent;
// OUTPUT A CHILD OF A NON-ROOTNODE
if (attributes != null && attributes.trim().length() > 0) {

xml = xml + “<” + name + “ “ + attributes;
}
else {

xml = xml + “<” + name;
}
if (content != null && content.trim().length() > 0) {

xml = xml + “>” + content;
}
else {

xml = xml + “>”;
}

xml = getNextChildOfNonRootNodeRecursively(xml, bonNode.nodeKey);
xml = xml + “</” + nameChildOfNonRootNode + “>”;

}
return xml;

}

11.9.5 getNextChildOfNonRootNode()
The getNextChildOfNonRootNode() method of ForestHashtable, like the other node-
getting methods, requires as its first argument an Enumeration object to be processed.
Unlike those other node-getting methods, it also requires a second argument, which is
used as a recursion variable (see Section 11.9.4,
“getNextChildOfNonRootNodeRecursively()”).The method finds the first nonhidden
child of a nonroot node and then hides it and returns it.

This method also differs a bit from other similar methods in that it is called
recursively by another method.That method sets a class flag called

11 1089-9 CH11 6/26/01 7:36 AM Page 422

42311.9 Getting ForestHashtable as XML

lastChildOfNonRootNodeFound.You should have enough information from reading the
material here to be able to understand the source code for the method, which is
reproduced here:

protected BonNode getNextChildOfNonRootNode(Enumeration enumerationCNRN, NodeKey
nonRootNodeKey) {

BonNode bonNodeCNRN = null;
NodeKey nodeKeyCNRN = null;
boolean foundNextChildOfNonRootNode;
foundNextChildOfNonRootNode = false;
while(enumerationCNRN.hasMoreElements()) {

bonNodeCNRN = (BonNode)enumerationCNRN.nextElement();
nodeKeyCNRN = bonNodeCNRN.nodeKey;
// this is a compound test for child of current non-root node
String currentChildOfNonRootNodeAKey = nonRootNodeKey.aKey;
String currentChildOfNonRootNodeBKey = nonRootNodeKey.bKey;
String currentChildOfNonRootNodeCKey = nonRootNodeKey.cKey;
boolean isChildOfNonRootNode = false;
if(currentChildOfNonRootNodeAKey != null &&
➥currentChildOfNonRootNodeAKey.length() < 1) {

// node is grandchild of a root node
if((!bonNodeCNRN.flagged) && (nodeKeyCNRN.bKey ==
➥currentChildOfRootNodeAKey) && (nodeKeyCNRN.cKey ==
➥currentChildOfRootNodeBKey)) {

isChildOfNonRootNode = true;
}

}
else {

// node is great-grandchild or greater of a root node
if((!bonNodeCNRN.flagged) && (nodeKeyCNRN.bKey ==
currentChildOfNonRootNodeAKey) ➥&& (nodeKeyCNRN.cKey ==
currentChildOfNonRootNodeBKey)) {

isChildOfNonRootNode = true;
}

}
if (isChildOfNonRootNode) {

foundNextChildOfNonRootNode = true;
// hide this node, so we get it only once:
bonNodeCNRN.flagged = true;
if(nodeKeyCNRN != null) {

currentChildOfNonRootNodeAKey = nodeKeyCNRN.aKey;
currentChildOfNonRootNodeBKey = nodeKeyCNRN.bKey;

}
break;

}
}
if (!foundNextChildOfNonRootNode) {
bonNodeCNRN = null;
}
return bonNodeCNRN;

}

11 1089-9 CH11 6/26/01 7:36 AM Page 423

424 Chapter 11 XML Data Storage Class: ForestHashtable

Again, note that several top-level class variables keep track of the current triple-key
values of the last child of a nonroot node found.These variables allow the coordina-
tion of the various methods that are used by the getXMLTrees() method. Some of
the variables, such as the currentChildOfNonRootNodeCKey variable of the
getNextChildOfNonRootNode() method, are needed only for debugging.

11.10 More Public ForestHashtable Methods
A few other public methods in ForestHashtable can be helpful with the handling of
nodes.We will present these methods in this section.

11.10.1 countChildren()
In a ForestHashtable, children have the value of nodeKey.bKey equal to the parent’s
nodeKey.aKey.That makes it easy to count the children of a node given its NodeKey.
Here is the source for the countChildren() method:

public long countChildren(NodeKey parentNodeKey) {
long counter = 0;
BonNode bonNode = null;
String parentAKey = parentNodeKey.aKey;
Enumeration enumeration = this.elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
if(bonNode.nodeKey.bKey.equals(parentAKey)) {

counter++;
}

}
return counter;

}

11.10.2 getChildNodeFromAttributeValue()
Again, because in a ForestHashtable children have a value of nodeKey.bKey equal to
the parent’s nodeKey.aKey, we can iterate the children of a node to find one child that
has a certain attribute value. For this project, we knew that there would be only one
child with the given attribute value, so the method we wrote gets only the first child
that satisfies the search criteria (value=name).The method can be easily changed to
return a list of nodes when needed.

public BonNode getChildNodeFromAttributeValue(NodeKey parentNodeKey, String
➥attributeName, String attributeValue) {

BonNode bonNode = new BonNode();
if(parentNodeKey != null && attributeName != null && attributeValue != null) {

String parentAKey = parentNodeKey.aKey;
Enumeration enumeration = this.elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();

11 1089-9 CH11 6/26/01 7:36 AM Page 424

42511.10 More Public ForestHashtable Methods

if(bonNode.nodeKey.bKey.equals(parentAKey)) {
// node is a child
if(attributeValue.equals(getAttributeValue(
bonNode.nodeAttributes, attributeName))) {

return bonNode;
}

}
}

}
return null;

}

The getChildNodeFromAttributeValue() method is used in the BonForumEngine
servlet to locate the session ID of the chat host from the chat guest’s HTTP session by
looking for one child of a subject element using an attribute value. Section 8.4.9,
“Passing Information between Sessions,” in Chapter 8, discusses how this is done.

11.10.3 attributeExists()
Sometimes it is convenient to test for the presence of an attribute with a given name
in a BonNode.You can use the following method, which takes the argument
allAttributes, which is compatible with the nodeAttributes member of a BonNode
object.This method is a bit rough and assumes that no spaces are allowed between an
attribute name and the following equals sign in a name=value pair. It would also be
fooled if the value of any attributes value included the name being sought followed by
an equals sign.

public boolean attributeExists(String allAttributes, String attributeName) {
if(allAttributes.indexOf(attributeName+”=\””) > -1) {

return true;
}
else {

return false;
}

}

11.10.4 getAttributeValue()
To get the value of a BonNode attribute, you can use getAttributeValue() method,
whose source is shown next.This method takes the argument allAttributes, which is
compatible with the nodeAttributes member of a BonNode object.

As in the case of the attributeExists() method discussed previously, this method
is a bit rough and assumes that no spaces are allowed between an attribute name and
the equals sign following it in a name=value pair.We also must ensure elsewhere that
no whitespace exists between the equals sign and the attributeValue.

We do allow escaped quotes characters within an attribute value.Adding that capa-
bility made the code somewhat complex, so it can probably be redesigned. It was

11 1089-9 CH11 6/26/01 7:36 AM Page 425

426 Chapter 11 XML Data Storage Class: ForestHashtable

tested for escaped quotes and also catches some errors such as no closing quotes in an
attribute value and an attributeName argument that cannot be found. But, as with all
the code in this book, use this at your own risk!

In the source code file ForestHashtable.java, we added some comments based on
one of the allAttributes argument values that we used to design and test the
method.That test argument was a string that included three attributes called type,
itemKey, and dateStamp, as shown here:

type=”tes\”ti\”ng” itemKey=”961755688708.961755643923.961755643913” dateStamp=”Fri
Jun 23 12:21:39 2000”

We used these arguments to help visualize the test argument as the code finds the
desired attribute value while checking for escaped quotes characters in the
allAttributes argument value.We also had to log many messages to a file to debug
and test this method. It might help you to look at the commented-out log messages in
the source code file as well, if you care to follow this code.

public String getAttributeValue(String allAttributes, String attributeName) {
String str1 = null;
int inx1 = allAttributes.indexOf(attributeName+”=\””);
if(inx1 > -1) { // found name

int inx2 = inx1 + (attributeName+”=\””).length();
// remove all up through name, equals and opening quote
str1 = allAttributes.substring(inx2);
String str2 = new String(str1);

boolean findingClosingQuote = true;
int inxAcc = 0;
while(findingClosingQuote) {
// find next quotation mark
int inx3 = str2.indexOf(“\””);
if(inx3 < 0) {

//ERROR no closing quotation mark after value
str1 = null;
break;

}
// find next escaped quotation mark (if any)
int inx4 = str2.indexOf(“\\\””);
if(inx4 > -1) {

// found an escaped quotation mark
if(inx3 == inx4 + 1) {

// same one again, accumulate index relative to beginning of attribute
value
inxAcc += inx3 + 1;
// remove all up to and including escaped quote
str2 = str2.substring(inx3 + 1);
}
else {
if(inxAcc > 0) {

inx3 = inxAcc + ++inx3;
}

11 1089-9 CH11 6/26/01 7:36 AM Page 426

42711.11 Initializing the bonForumXML Database

str1 = str1.substring(0, inx3);
break; // success

}
}
else {

if(inxAcc > 0) {
inx3 = inxAcc + ++inx3;

}
str1 = str1.substring(0, inx3);
break; // success

}
}

}
else {

logFH.logWrite(“ERROR? attributeName not found!”);
}
return str1;

}

11.11 Initializing the bonForumXML Database
Here we display a shortened sample version of the initial XML data contents of the
bonForum project’s ForestHashtable, which is called bonForumXML.This XML docu-
ment is equivalent to the contents of the triple-key table contents and is produced by
the getXML() method in the ForestHashtable class.

To dump the data from the bonForumXML ForestHashtable into an XML file at any
stage of the Web application, see the instructions in Section 6.7,“Outputting the
bonForum Data as XML.”A complete bonForum data sample printed with the source
code also appears at the end of this book, as well as on the accompanying CD installa-
tion image.You should be able to view it by browsing the following file under the
\bonforum\installed folder on the CD, or under the TOMCAT_HOME folder if you
installed bonForum on your machine:

webapps\bonForum\docs\bonForumIdentityTransform.xml

As you can see, a root node called bonForum contains actors, actions, and things
nodes.At initialization, one child of actors, called system, is added.A bonForum’s
XML database also contains initially a list of links to other bonForum Web sites, plus a
complete subjects catalog (ours is just an incomplete sample for testing and is short-
ened here to save space).

You will notice that every element in the XML has one attribute called nodeKey,
which is set to the value of the nodeKey for that element in the ForestHashtable
(bonForumXML).When we output the contents of the bonForumXML, we put the value of
the NodeKeys in these NodeKey attributes.

<?xml version=”1.0”?>
<bonForum nodeKey=”963539545855.963539545855.963539545855”

11 1089-9 CH11 6/26/01 7:36 AM Page 427

428 Chapter 11 XML Data Storage Class: ForestHashtable

type=”prototype”>
<actors nodeKey=”963539545885.963539545855.963539545855” type=”READ_ONLY”>
<system nodeKey=”963539545895.963539545885.963539545855” type=”SYSTEM”>
</system>
</actors>
<things nodeKey=”963539545945.963539545855.963539545855” type=”READ_ONLY”>
<forums nodeKey=”965501558629.965501552059.965501551959”>
<forum nodeKey=”965501558669.965501558629.965501552059”>
<weblink nodeKey=”965501558689.965501558669.965501558629”>
http://www.websitename.de/bonForum
</weblink>
<name nodeKey=”965501558679.965501558669.965501558629”>
Germany
</name>
</forum>
<forum nodeKey=”965501558699.965501558629.965501552059”>
<name nodeKey=”965501558709.965501558699.965501558629”>
India</name>
<weblink nodeKey=”965501558719.965501558699.965501558629”>
http://www.websitename.in/bonForum
</weblink>
</forum>
</forums>
<subjects nodeKey=”963539548248.963539545945.963539545855”>
<Animals nodeKey=”963539548458.963539548248.963539545945”>
<Dog nodeKey=”963539548539.963539548458.963539548248”>
<Terrier nodeKey=”963539548559.963539548539.963539548458”>
<Fox nodeKey=”963539548569.963539548559.963539548539” />
</Terrier>
<LabradorRetriever nodeKey=”963539548549.963539548539.963539548458”
/>
</Dog>
<Bird nodeKey=”963539548468.963539548458.963539548248”>
<Hawk nodeKey=”963539548488.963539548468.963539548458”
/>
<Parrot nodeKey=”963539548478.963539548468.963539548458”
/>
<Chicken nodeKey=”963539548498.963539548468.963539548458”
/>
</Bird>
</Animals>
<Vehicles nodeKey=”963539548308.963539548248.963539545945”>
<Trucks nodeKey=”963539548428.963539548308.963539548248”>
<Mac nodeKey=”963539548438.963539548428.963539548308” />
</Trucks>
<Autos nodeKey=”963539548318.963539548308.963539548248”>
<Rover nodeKey=”963539548368.963539548318.963539548308”>
<LandRover nodeKey=”963539548378.963539548368.963539548318”
/>
</Rover>
<Subaru nodeKey=”963539548388.963539548318.963539548308”

11 1089-9 CH11 6/26/01 7:36 AM Page 428

42911.12 Runtime bonForumXML Database

/>
</Autos>
<Motorcycles nodeKey=”963539548398.963539548308.963539548248”>
<Honda nodeKey=”963539548418.963539548398.963539548308”
/>
<HarleyDavidson nodeKey=”963539548408.963539548398.963539548308”
/>
</Motorcycles>
</Vehicles>
</subjects>
</things>
<actions nodeKey=”963539545935.963539545855.963539545855” type=”READ_ONLY” />
</bonForum>

11.12 Runtime bonForumXML Database
Here we show one example of the contents of bonForumXML at runtime from one
imaginary simple instance.You can refer to this while reading this chapter to follow
the discussion. Note that we shortened the contents of the subjects and forums ele-
ments to save space.The nodeKeys differ from the previous example because this is a
different instance of the bonForum Web application.

To dump the data from the bonForumXML ForestHashtable into an XML file at any
state of the Web application, see the instructions in Section 6.7,“Outputting the
bonForum Data as XML.”A complete bonForum data sample printed with the source
code also appears at the end of this book, as well as on the accompanying CD installa-
tion image.You should be able to view it by browsing the following file under the
\bonforum\installed folder on the CD, or under the TOMCAT_HOME folder if you
installed bonForum on your machine:

webapps\bonForum\docs\bonForumIdentityTransform.xml
<?xml version=”1.0”?>
<bonForum nodeKey=”965501551959.965501551959.965501551959” type=”prototype”>
<actors nodeKey=”965501551999.965501551959.965501551959” type=”READ_ONLY”>
<guest nodeKey=”965506098557.965501551999.965501551959”>
<actorAge nodeKey=”965506098577.965506098557.965501551999”>
32
</actorAge>
<actorNickname nodeKey=”965506098567.965506098557.965501551999”>
wally
</actorNickname>
<actorRating nodeKey=”965506098587.965506098557.965501551999”>
5
</actorRating>
</guest>
<test nodeKey=”965501552039.965501551999.965501551959” type=”TEST” />
<host nodeKey=”965502388382.965501551999.965501551959”>
<actorNickname nodeKey=”965502388392.965502388382.965501551999”>
adam

11 1089-9 CH11 6/26/01 7:36 AM Page 429

430 Chapter 11 XML Data Storage Class: ForestHashtable

</actorNickname>
<actorAge nodeKey=”965502388402.965502388382.965501551999”>
123
</actorAge>
</host>
<system nodeKey=”965501552009.965501551999.965501551959” type=”SYSTEM”>
</system>
<host nodeKey=”965503119944.965501551999.965501551959”>
<actorNickname nodeKey=”965503119974.965503119944.965501551999”>
charlie
</actorNickname>
<actorAge nodeKey=”965503119984.965503119944.965501551999”>
99
</actorAge>
</host>
</actors>
<actions nodeKey=”965501552049.965501551959.965501551959” type=”READ_ONLY”
/>
<things nodeKey=”965501552059.965501551959.965501551959” type=”READ_ONLY”>
<forums nodeKey=”965501558629.965501552059.965501551959”>
<forum nodeKey=”965501558639.965501558629.965501552059”>
<name nodeKey=”965501558649.965501558639.965501558629”>
Mexico
</name>
<weblink nodeKey=”965501558659.965501558639.965501558629”>
http://www.websitename.mx/bonForum
</weblink>
</forum>
<forum nodeKey=”965501558729.965501558629.965501552059”>
<name nodeKey=”965501558739.965501558729.965501558629”>
United Kingdom
</name>
<weblink nodeKey=”965501558749.965501558729.965501558629”>
http://www.website.uk/bonForum
</weblink>
</forum>
</forums>
<subjects nodeKey=”965501558198.965501552059.965501551959”>
<Vehicles nodeKey=”965501558308.965501558198.965501552059”>
<Autos nodeKey=”965501558318.965501558308.965501558198”>
<BMW nodeKey=”965501558328.965501558318.965501558308” />
<Ford nodeKey=”965501558348.965501558318.965501558308”>
<Thunderbird nodeKey=”965501558359.965501558348.965501558318”
/>
</Ford>
</Autos>
<Trucks nodeKey=”965501558429.965501558308.965501558198”>
<Mac nodeKey=”965501558439.965501558429.965501558308” />
<Other nodeKey=”965501558449.965501558429.965501558308”>
<sessionID_v7iabpmzg1_992808272761
➥nodeKey=”965502388482.965501558449.965501558429” chatTopic=”my other truck is
a ferrari”

11 1089-9 CH11 6/26/01 7:36 AM Page 430

43111.13 More ForestHashtable Considerations

/>
</Other>
</Trucks>
</Vehicles>
<Animals nodeKey=”965501558459.965501558198.965501552059”>
<Fish nodeKey=”965501558509.965501558459.965501558198”>
<Piranha nodeKey=”965501558519.965501558509.965501558459”>
<sessionID_47iabpmz11_992808274711
➥nodeKey=”965503120084.965501558519.965501558509” chatTopic=”pet piranha
stories”
/>
</Piranha>
<Guppy nodeKey=”965501558529.965501558509.965501558459” />
</Fish>
</Animals>
<Health nodeKey=”965501558258.965501558198.965501552059”>
SPONSORED BY YOUR FRIENDLY CORPORATION
<Prevention nodeKey=”965501558268.965501558258.965501558198”>
<Headaches nodeKey=”965501558278.965501558268.965501558258”>
<Migraine nodeKey=”965501558298.965501558278.965501558268” foo=”this is foo!”
type=”TESTING THIS NOW”>
MORE STUFF CAN GO HERE
</Migraine>
</Headaches>
</Prevention>
</Health>
</subjects>
<message nodeKey=”965502489387.965501552059.965501551959”
itemKey=”965502388482.965501558449.965501558429” timeMillis=”965502489287”
dateStamp=”Saturday 05 09:08:09 2000”
hostKey=”965502388382.965501551999.965501551959”>
adam::this is dynamite!
</message>
<message nodeKey=”965503142126.965501552059.965501551959”
itemKey=”965503120084.965501558519.965501558509” timeMillis=”965503141685”
dateStamp=”Saturday 05 09:19:02 2000”
hostKey=”965503119944.965501551999.965501551959”>
charlie::Is anybody there?
</message>
<chat nodeKey=”965502388412.965501552059.965501551959” moderated=”yes”
itemKey=”965502388482.965501558449.965501558429”>
<hostKey nodeKey=”965502388432.965502388412.965501552059”>
965502388382.965501551999.965501551959
</hostKey>
<messageKey nodeKey=”965502489397.965502388412.965501552059”>
965502489387.965501552059.965501551959
</messageKey>
</chat>
<message nodeKey=”965506175077.965501552059.965501551959”
itemKey=”965503120084.965501558519.965501558509” timeMillis=”965506174967”
dateStamp=”Saturday 05 10:09:35 2000”
guestKey=”965506098557.965501551999.965501551959”>

11 1089-9 CH11 6/26/01 7:36 AM Page 431

432 Chapter 11 XML Data Storage Class: ForestHashtable

wally::Hey! I’m here charlie. Are you there?
</message>
<chat nodeKey=”965503120064.965501552059.965501551959” moderated=”no”
itemKey=”965503120084.965501558519.965501558509”>
<guestKey nodeKey=”965506098637.965503120064.965501552059”>
965506098557.965501551999.965501551959
</guestKey>
<messageKey nodeKey=”965503142136.965503120064.965501552059”>
965503142126.965501552059.965501551959
</messageKey>
<hostKey nodeKey=”965503120074.965503120064.965501552059”>
965503119944.965501551999.965501551959
</hostKey>
</chat>
</things>
</bonForum>

11.12.1 Chat Data in the XML Data Example
At the time the bonForum data was dumped to an XML file, two chats had been
started.The nicknames and ages of the two chat hosts are stored inside host elements
as children of the actors element. Only one guest has joined a chat, and that guest’s
nickname and age are stored in a guest element also as a child of the actors element.

Adam is the host of a topic with the subject Vehicles.Trucks.Other and the topic
“my other truck is a ferrari.”Adam is still awaiting his first guest, and only his own
single message appears in the chat. It could be displayed as follows:

[Saturday 05 09:08:09 2000] adam::this is dynamite!

Charlie is the host of a chat with the subject Animals.Fish.Piranhas and the topic “pet
piranha stories.” Charlie and his guest,Wally, have each entered one message to the
chat, which could be displayed as follows:

[Saturday 05 09:19:02 2000] charlie::Is anybody there?
[Saturday 05 10:09:35 2000] wally::I’m here, charlie.

11.13 More ForestHashtable Considerations
In this last part of this chapter, we will mention a few final things that are important
to the understanding and future development of the ForestHashtable class.

11.13.1 Some Important Data Characteristics
In the example of bonForum XML data content at runtime shown previously, you can
notice the following two characteristics of the way the chat data is kept in the
ForestHashtable:

11 1089-9 CH11 6/26/01 7:36 AM Page 432

43311.13 More ForestHashtable Considerations

1. The objects stored in a Hashtable have no order.Therefore, the order of sibling
elements in the XML document has no meaning. For human readability, if that
is needed, some XML elements could be sorted by modifying the XSLT style
sheet. Sorting could also be implemented by changing the underlying data struc-
ture to a SortedMap implementer, such as TreeMap, or by keeping an external
sorted index in the manner of an RDB.

2. The NodeKey values are referred to by other key attributes, to relate the informa-
tion in different elements together. For example, a chat element has a hostKey
child that contains the value of the chat’s host’s NodeKey.That is why we pre-
serve the NodeKey values in NodeKey” attributes within each element when the
XML is output from the ForestHashtable.

11.13.2 Setting ForestHashtable Capacity
By reading the API documentation on the java.util.Hashtable class, you can learn
about the issue of the capacity of a Hashtable object.The only way we have dealt
with this so far is to provide a constructor for the class that takes an argument called
capacity, which (surprise!) sets the capacity of a ForestHashtable.

The idea is that this capacity setting can be determined by the Web application,
perhaps by having it saved as a parameter in the Web app deployment descriptor
(web.xml) of the application. For the bonForum Web chat application example, we set
the capacity to 5000.This number was selected by estimating 200 bytes per node.
More testing is necessary to tune this factor, which is very important for the experi-
ence of using the Web application. Setting the capacity correctly can minimize the
inevitable rehashing time.

11.13.3 XPATH Modeling Planned
One premise behind the design of ForestHashtable is that is could be easier or faster
to manipulate a triple-valued key than to work with the (infinitely) long path expres-
sions that can be present in an XML data document.The hierarchy of nodes can be
modeled as a forest of trees by a table with a double- or triple-valued key.

A plan for the future is to see if we can create methods that fulfill all the XPATH
functionality solely by processing the keys in the table.

11.13.4 Self-Healing XML Documents
Another idea of ours is to create an XML document representation that would create,
by default, any “missing” set of nodes.These nodes that would be supplied form a
node path connection between a “disconnected” XML fragment and the “closest”
existing related node.

Why do that? Because that means you can put a tree-fragment into empty space in
the forest.Then you could either tell or ask the forest to “decide” which tree the frag-

11 1089-9 CH11 6/26/01 7:36 AM Page 433

434 Chapter 11 XML Data Storage Class: ForestHashtable

ment belongs in.This would cause the forest to “grow” any necessary branches to con-
nect the fragment with the tree, thus creating one new tree that can be expressed as a
valid XML document.

Two practical outcomes appear here. First, if the keys for the forest are globally
unique identifiers, you can throw together two or more forests of data, and they will
still function as a forest (that is, the keys will not clash).That would be great for mix-
ing data from laptops and servers, for example. Second, the self-sticking tree fragment
addition to the forest means that relations among combined data sets can be “patched”
by using default values, which preserves displayability and processability, in many cases.
It might even keep your browser from choking!

11.13.5 Improvement of Algorithms
Much of the code in this class, as in the bonForum project in general, is intentionally
written in a “dumb” style, leaving much room for optimization. Rather than trying to
get too smart and doing many things in one statement, we think that it is easier to
debug code that is spread out over smaller steps. Our motto is,“First get it working,
and then get it working right!”

moveNode()

Further optimization will include addition of new methods. One candidate, for exam-
ple, is a moveNode() method that would have the following signature:

moveNode(NodeKey KeyOfNodeToMove, NodeKey KeyOfNewParentNode, Boolean IfLeafOnly);

The moveNode() method would also have a leafOnly argument, as the deleteNode()
method does. If IfLeafOnly is true, then the node would not be moved if it has one
or more child nodes. If IfLeafOnly is false, then the node and all its descendants
would be moved.

Another argument called NewParentNode would tell the method the destination to
which it should move a node. If the NewParentNode is null, then the NodeToMove would
be made a root node in the forest.

11.13.6 Enforcing Uniqueness Among Nodes
In the addNode() method of ForestHashtable, uniqueness is enforced for
nodeNameHashtable entries.When we remove an “old” cached NodeKey from
the nodeNameHashtable, we cannot simultaneously remove the node in the
ForestHashtable because it may be in use in other thread.

However, we need to enforce unique sibling names in some situations—for exam-
ple within descendant levels of the Subjects subtree in the bonForum Web chat appli-
cation XML data.Also, at least in that application of the ForestHashtable, we would
like to somehow enforce unique chatTopic values and nickName values by using a
mechanism intrinsic to the ForestHashtable.This is left as a task for a future time.

11 1089-9 CH11 6/26/01 7:36 AM Page 434

43511.13 More ForestHashtable Considerations

11.13.7 Usability of the ForestHashtable Class
Without having tested the ForestHashtable experimental class sufficiently, it is not yet
possible to characterize its runtime performance versus the quantity of data and thread
loading. Certainly, processing will slow down at some point, but that depends on many
factors, including the hardware on which it is running.

ForestHashtable Is a Design Laboratory

The ForestHashtable class is primarily a design laboratory.We will be implementing
some of the ideas tried out there in a relational database system.You are invited to
bring your comments and participation to http://www.bonforum.org, our open source
site for the bonForum project on SourceForge.

11 1089-9 CH11 6/26/01 7:36 AM Page 435

11 1089-9 CH11 6/26/01 7:36 AM Page 436

Online Information Sources

12

THESE INTERNET LINKS ARE MOSTLY to XML, XSLT, Java servlet, and JSP informa-
tion. Some cover what was left out of this book, intentionally or otherwise. Some link
to topics that were discussed in this book.To keep current with all these technologies,
you might want to subscribe to some mailing list groups and search and surf the Web
frequently.This list does not pretend to be complete or fair—it simply offers some
starting points on the Internet. It also is available on the CD-ROM accompanying this
book and online at www.bonForum.org, where you can click on the links. Our apolo-
gies go out to all the developers who have been ignored—we promise that it was not
done intentionally!

12.1 Always Useful Sites
Web site for the bonForum Web application project
http://www.bonForum.org

A fun and smart way to search the Web
http://www.links2go.com/

A huge number of Java links from Cetus Links
http://www.cetus-links.org/oo_java.html

XML-based information retrieval
http://www.goxml.com

12 1089-9 CH12 6/26/01 7:37 AM Page 437

438 Chapter 12 Online Information Sources

A great multilingual text editor
http://www.textpad.com

The World Wide Web Consortium
http://www.w3c.org/

W3C recommendations
http://www.w3.org/TR/#Recommendations

Internet Engineering Task Force
http://www.ietf.org/

Mailing lists and archives
http://archives.java.sun.com/cgi-bin/wa

http://archives.java.sun.com/archives/index.html

Sun Java Forums
http://forum.java.sun.com/

12.2 Apache Software Foundation
Apache Software Foundation
http://www.apache.org/

Apache Conference
http://apachecon.com/

Apache mailing lists
http://xml.apache.org/mail.html

http://jakarta.apache.org/getinvolved/mail.html

News about Apache
http://slashdot.org/index.pl?section=apache

12.3 Big Corporations
IBM
http://www.ibm.com

IBM Alphaworks
http://www.alphaworks.ibm.com/

IBM DeveloperWorks
http://www.ibm.com/developer/

Microsoft
http://www.microsoft.com/

MSDN
http://msdn.microsoft.com/

Sun Microsystems
http://www.sun.com

12 1089-9 CH12 6/26/01 7:37 AM Page 438

43912.7 HTTP

Sun Developers
http://www.sun.com/developers/

12.4 CSS
Cascading Style Sheets information
http://www.w3.org/TR/REC-CSS2/

CSS and XSL overview
http://www.w3.org/Style/Activity

12.5 DOM Information
Recommendations
http://www.w3.org/TR/#Recommendations

DOM Scripting WebRing
http://nav.webring.org/hub?ring=domscript;list

XML via the Document Object Model
http://wdvl.com/Authoring/Languages/XML/DOM/Intro/

12.6 HTML
Recommendations
http://www.w3.org/TR/html401/

http://www.w3.org/TR/REC-html32

HTML reformulated as XML
http://www.w3.org/TR/xhtml1/

Web Developers Library links for HTML
http://wdvl.com/Authoring/HTML/

The HTML Guide
http://www.webfrontier.org/html/index.html

12.7 HTTP
Description of HTTP
http://www.ietf.org/rfc/rfc2068.txt

12 1089-9 CH12 6/26/01 7:37 AM Page 439

440 Chapter 12 Online Information Sources

12.8 Java

12.8.1 Java: Compilers and SDKs
Java 2 SDK, Standard Edition, download
http://java.sun.com/j2se/1.3/download-windows.html

12.8.2 Java: Books, Articles, and Magazines
Thinking in Java, free downloadable book
http://www.bruceeckel.com/TIJ2/index.html

Java Developer’s Journal
http://www.sys-con.com/java/newjava.cfm

JBuilder Developer’s Journal
http://www.sys-con.com/jbuilder/index.html

The Swing Connection
http://java.sun.com/products/jfc/tsc/articles/index.html

12.8.3 Java: Information
Sun BluePrints design guidelines for J2EE
http://java.sun.com/j2ee/blueprints/

Enterprise JavaBeans technology
http://java.sun.com/features/1999/12/ejb.html

Information on setting the class path
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/classpath.html

About three-tier distributed architecture at Java Report Online
http://www.javareport.com/html/features/archive/9804/reese.shtml

Tomcat servlet and JSP development with VisualAge for Java
http://www7.software.ibm.com/vad.nsf/data/document2389?OpenDocument

Java extensions FAQ
http://java.sun.com/products/jdk/1.2/docs/guide/extensions/ext_faq.html

Bridging Java and Active X with Java plug-in scripting
http://java.sun.com/products/plugin/1.2/docs/script.html

12.8.4 Java: Language
The Java Language Specification: Gosling
http://java.sun.com/docs/books/jls/html/index.html

http://java.sun.com/docs/books/jls/html/1.1Update.html

12 1089-9 CH12 6/26/01 7:37 AM Page 440

44112.9 JavaServer Pages

Code conventions for the Java Programming Language contents
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

12.8.5 Java: Resources
Bruce Eckel’s MindView, Inc., OOP resources
http://www.bruceeckel.com/

Java programming resources at Gamelan.com
http://www.gamelan.com/

12.8.6 Java:Tools
JavaBeans and BDK1.1
http://java.sun.com/products/javabeans/

Forte for Java, free Community Edition
http://www.sun.com/forte/ffj/ce/

ElixirIDE
http://elixirtech.com

Java Beanshell: interactive Java shell
http://www.beanshell.org

JPython
http://www.jpython.org/

IBM alphaWorks Bean Scripting Framework
http://www.alphaworks.ibm.com/tech/bsf

Java for Linux
http://blackdown.org/

12.8.7 Java:Tutorials
The Java Tutorial
http://java.sun.com/docs/books/tutorial/index.html

12.9 JavaServer Pages

12.9.1 JSP: Main Web Site
JavaServer Pages technology
http://java.sun.com/products/jsp/

12 1089-9 CH12 6/26/01 7:37 AM Page 441

442 Chapter 12 Online Information Sources

12.9.2 JSP: Specifications
JavaServer Pages (JSP) Specfication,Version 1.1
http://java.sun.com/products/jsp/download.html

12.9.3 JSP: Books
JavaServer Pages book
http://www.browsebooks.com/Fields/

Group writing a JSP book online
http://www.esperanto.org.nz/jspbook

http://www.aptura.com/technology/jspBook_Architectures.html

12.9.4 JSP: Companies
Information about commercial products supporting JSP
http://java.sun.com/products/jsp/industry.html

tarent GmbH
http://www.tarent.de

12.9.5 JSP: FAQ
Sun JSP FAQ
http://java.sun.com/products/jsp/faq.html

Good FAQ for JSP, maintained by Richard Vowles
http://www.esperanto.org.nz/jsp/jspfaq.html

12.9.6 JSP: Hosting
Free server space on the Internet, including Java servlet and JSP support
http://www.mycgiserver.com

12.9.7 JSP: Information
JSP syntax cards, tutorials, a technical FAQ, and various presentations
http://java.sun.com/products/jsp/technical.html

JavaServer Pages technology: white paper
http://java.sun.com/products/jsp/whitepaper.html

Chat about JavaServer Pages
http://developer.java.sun.com/developer/community/chat/JavaLive/2000/

jl0222.html

12 1089-9 CH12 6/26/01 7:37 AM Page 442

44312.10 Java Servlets

JSP versus ASP
http://java.sun.com/products/jsp/jsp-asp.html

Introduction to JavaServer Pages
http://www.builder.com/Programming/JSP/

12.9.8 JSP:Taglibs
Example
http://www.orionserver.com/examples/jsp/taglib/loop/index.html

12.9.9 JSP:Tutorials
JavaServer Pages tutorial
http://java.sun.com/products/jsp/docs.html

Servlet and JSP short courses
http://courses.coreservlets.com/Servlet-Courses.html

Basic JSP tutorial
http://java.sun.com/products/jsp/pdf/talks/WebLayer.pdf

IBM tutorial on JSP
http://www.software.ibm.com/developer/education/java/online-courses.html

12.10 Java Servlets

12.10.1 Servlets: Main Web Site
Servlet Web site at Sun
http://java.sun.com/products/servlet/

12.10.2 Servlets: Specifications
Servlet implementations and specifications
http://java.sun.com/products/servlet/download.html

Servlet API Javadoc online
http://java.sun.com/products/servlet/2.2/javadoc/index.html

12.10.3 Servlets: Books, Articles, and Magazines
Server-side Java magazine online
http://www.servletcentral.com

12 1089-9 CH12 6/26/01 7:37 AM Page 443

444 Chapter 12 Online Information Sources

12.10.4 Servlets: Companies
JRun developer Web Site
http://www.allaire.com/developer/jrunreferencedesk/

tarent GmbH
http://www.tarent.de

12.10.5 Servlets: Hosting
Free server space on the Internet, including Java servlet and JSP support
http://www.mycgiserver.com

Servlet hosting
http://www.wantjava.com/

http://www.coolservlets.com/hosts.html

http://www.servlets.net/index.html

12.10.6 Servlets: Information
Good overview of servlets
http://java.sun.com/docs/books/tutorial/servlets/overview/index.html

Information about servlets
http://www.javasoft.com/products/servlet/index.html

12.10.7 Servlets: Mailing Lists
Archives of SERVLET-INTEREST@JAVA.SUN.COM
http://archives.java.sun.com/archives/servlet-interest.html

12.10.8 Servlets: Resources
Jason Hunter’s Web site
http://www.servlets.com

Free, open source Java servlets
http://www.coolservlets.com

Servlets Taverne, with links to information in French
http://www.interpasnet.com/JSS/textes/xml.htm

Information on XML, Java, JDBC, and servlets by Nazmul Idris
http://developerlife.com/

12 1089-9 CH12 6/26/01 7:37 AM Page 444

44512.12 Open Source

12.10.9 Servlets:Tutorials
Servlets tutorial
http://java.sun.com/docs/books/tutorial/servlets/

12.11 Linux
Linux Open Source Magazine
http://www.linux.com/

Java Programming on Linux, the book
http://www.javalinux.net/

12.12 Open Source
Online book: Open Sources:Voices from the Open Source Revolution
http://www.oreilly.com/catalog/opensources/book/toc.html

Eric S. Raymond’s The Cathedral and the Bazaar
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/

SourceXchange
http://www.sourcexchange.com/

The Open Source Page
http://www.opensource.org/

The Techie-Hacker’s Case for Open Source
http://www.opensource.org/for-hackers.html#marketing

Ask Tim at O’Reilly
http://www.oreilly.com/ask_tim/index.html

ExoLab.org Open Source & Enterprise Java
http://www.exolab.org/

Free support for Open Source projects
http://sourceforge.net/docs/site/services.php

Licensing Open Source Software: Jason Hunter’s license
http://www.servlets.com/resources/com.oreilly.servlet/license.html

ClueTrain Manifesto
http://www.cluetrain.com

Mozilla
http://www.mozilla.org/

Open source version control software
http://www.sourcegear.com/CVS

Open XML
http://www.openxml.org/

12 1089-9 CH12 6/26/01 7:37 AM Page 445

446 Chapter 12 Online Information Sources

Open Source Enhydra Java-XML Application Server Home
http://www.enhydra.org/

Free XML software
http://www.garshol.priv.no/download/xmltools/

12.13 RDF
Resource description framework
http://www.w3.org/TR/REC-rdf-syntax/

12.14 Web Applications
Open Source Enhydra Java-XML Application Server Home
http://www.enhydra.org/

IBM white paper,“The Web Application Programming Model”
http://www.software.ibm.com/ebusiness/pm.html

XML:The Key to E-Business
http://www.washingtontechnology.com/news/14_10/tech_features/723-5.html

IBM white papers
http://www3.ibm.com/e-business/

12.15 Web Browsers
Microsoft Internet Explorer 5.5
http://www.microsoft.com/downloads/

MSDN Online Voices: Extreme XML
http://msdn.microsoft.com/voices/xml.asp

Information about IE5.5 XML
http://xmlhack.com/read.php?item=402

http://xmlhack.com/read.php?item=806

Mozilla (open source Netscape Web browser)
http://www.mozilla.org/

12.16 Web Servers
Apache Server
http://www.apache.org/httpd.html

Jigsaw Web Server (W3C)
http://www.w3.org/Jigsaw/

http://www.w3.org/Jigsaw/User/Introduction/wp.html

12 1089-9 CH12 6/26/01 7:37 AM Page 446

44712.17 XML

Jakarta Tomcat main Web site
http://jakarta.apache.org/

FAQ index for Tomcat
http://jakarta.apache.org/faq/faqindex.html

Latest Tomcat Users Guide
http://jakarta.apache.org/cvsweb/index.cgi/jakarta-tomcat/src/doc/

tomcat-ug.html

12.17 XML

12.17.1 XML: Specs and Recommendations
W3C recommendation
http://www.w3.org/TR/REC-xml

XML.com:The Annotated XML Specification
http://www.xml.com/xml/pub/axml/axmlintro.html

Specifications of all XML-related technologies
http://java.sun.com/xml/docs/tutorial/overview/2_specs.html

12.17.2 XML: Articles, Books, and Magazines
XML Developer’s Journal
http://www.sys-con.com/xml/index2.html

XML Books: Mastering XML from Sybex
http://www.extensibility.com/xml_resources/XML_books_mastering.htm

Writings of Benoit Marchal
http://www.pineapplesoft.com/site/focus/writings.html

Articles by Jon Bosak
http://www.ibiblio.org/bosak/

XML Developers Conference proceedings
http://metalab.unc.edu/bosak/conf/xmldev99/tauber/tauber.pdf

An Introduction to XML for Java Programmers
http://www.xmlmag.com/upload/free/features/xml/1999/01win99/pmwin99/

pmwin99.asp

Fatbrain.com: books about XML
http://www.fatbrain.com/

12 1089-9 CH12 6/26/01 7:37 AM Page 447

448 Chapter 12 Online Information Sources

12.17.3 XML: Companies
Bluestone Software, Inc.
http://www.bluestone.com

tarent GmbH
http://www.tarent.de

12.17.4 XML: Editors and Tools
Links and information for many XML editors
http://www.xmlsoftware.com/editors/

Free XML software
http://www.garshol.priv.no/download/xmltools/

XMLwriter
http://xmlwriter.net/

XMetal
http://www.softquad.com/

XML Spy
http://www.icon-is.com/

Xeena and visual XML tools from IBM
http://www.alphaworks.ibm.com/tech/

Visual XML
http://www.pierlou.com/visxml/index.html

12.17.5 XML: Examples
All Shakespeare works in XML
http://metalab.unc.edu/

An XML-based project for instant messaging
http://jabber.org/

XMLBinder and XSLServlet projects
http://downloads.dyomedea.com/java/examples/

12.17.6 XML: Information
Anything related to XML
http://tecfa.unige.ch/guides/xml/pointers.html

XML Global
http://www.xmlglobal.com

XML Search Engine People
http://www.goxml.com

12 1089-9 CH12 6/26/01 7:37 AM Page 448

44912.17 XML

Cafe con Leche XML news and resources
http://metalab.unc.edu/xml/

Extensible Markup Language (XML)
http://www.oasis-open.org/cover/xml.html

Chinese XML Now (English home page)
http://www.ascc.net/xml/en/utf-8/index.html

MSDN Online XML Developer Center
http://msdn.microsoft.com/xml/default.asp

XMLHack: great way to keep current on XML
http://xmlhack.com

Pineapplesoft Online Java, XML from Belgium (Benoit Marchal)
http://www.pineapplesoft.com/

IBM developerWorks XML Standards: Describing Data
http://www2.software.ibm.com/developer/standards.nsf/xml-describing-byname

XML APIs for databases
http://developer.java.sun.com/developer/technicalArticles/xml/api/

Activity in the XML world
http://www.xml.org/xmlorg_catalog.htm

XML in Spanish
http://www.ramon.org

XML, Java, JDBC, and servlets information
http://developerlife.com/

12.17.7 XML: Mailing Lists
Apache XML Project mailing lists
http://xml.apache.org/mail.html

XML-DEV for XML developers around the world:To subscribe to this list, send an
email message to majordomo@ic.ac.uk with “subscribe xml-dev your@email.address”
in the body.

XML-DEV archive
http://www.lists.ic.ac.uk/hypermail/xml-dev/

The xmlhack Daily News Digest
http://xmlhack.com/

12.17.8 XML: Microsoft
XML-related product downloads
http://msdn.microsoft.com/downloads/

12 1089-9 CH12 6/26/01 7:37 AM Page 449

450 Chapter 12 Online Information Sources

Information about MSXML
http://xmlhack.com/read.php?item=806

An XML manifesto
http://msdn.microsoft.com/workshop/xml/articles/xmlmanifesto.asp

MSDN Online XML Developer Center
http://msdn.microsoft.com/xml/default.asp

XML Magazine
http://www.xmlmag.com/

12.17.9 XML: Namespaces
W3C recommendation
http://www.w3.org/TR/REC-xml-names/

12.17.10 XML: Organizations
Oasis XML and SGML organization
http://www.oasis-open.org

XML.ORG:The XML Industry Portal, hosted by OASIS
http://www.xml.org/

Biztalk.org
http://www.biztalk.org/

12.17.11 XML: Parsers
Apache XML Project
http://xml.apache.org/

Open XML
http://www.openxml.org/

XML Parser for Java, another alphaWorks technology
http://www.alphaworks.ibm.com/tech/xml4j

XP
http://www.jclark.com/xml/xp/index.html

Expat
http://www.jclark.com/xml/expat.html

Python XML parser
http://www.python.org/topics/xml/

TclXML
http://www.zveno.com/zm.cgi/in-tclxml/

Fxp, a parser written in SML
http://www.informatik.uni-trier.de/~aberlea/Fxp/

12 1089-9 CH12 6/26/01 7:37 AM Page 450

45112.17 XML

12.17.12 XML: SAX API
Megginson Technologies, Ltd.
http://www.megginson.com/

SAX:The simple API for XML
http://www.megginson.com/SAX/Java/index.html

12.17.13 XML: SVG
W3C Scalable Vector Graphics (SVG)
http://www.w3.org/Graphics/SVG/

The SVG viewer applet demos
http://sis.cmis.csiro.au/svg/demo.html

12.17.14 XML:Tutorials
Very complete XML tutorial, based on JAXP
http://java.sun.com/xml/docs/tutorial/index.html

Tutorial on XML and Java
http://www.developer.com

Zvon tutorials
http://zvon.vscht.cz/ZvonHTML/Zvon/zvonTutorials_en.html

IBM developerWorks XML Education: online courses
http://www-4.ibm.com/software/developer/education/transforming-xml/

transforming-xml-to-html/index.html

Introduction to XML
http://www-4.ibm.com/software/developer/education/xmlintro/

XML and Java
http://www-4.ibm.com/software/developer/education/xmljava/

XML for Linux
http://www-4.ibm.com/software/developer/library/xml-for-linux1.html

The Foundation XML, XSL, X-Link
http://www.webreference.com/xml/column2/

Good online XML guide slanted toward Microsoft version of XML
http://xmlwriter.net/xml_guide/

12.17.15 XML: XHTML
HTML reformulated as XML
http://www.w3.org/TR/xhtml1/

12 1089-9 CH12 6/26/01 7:37 AM Page 451

452 Chapter 12 Online Information Sources

12.17.16 XML: XLINK
Proposed W3C recommendation
http://www.w3.org/TR/xlink/

Good description of XLINK and XPOINTER
http://www.xml.com/pub/2000/02/xtech/tutorials.html

12.17.17 XML: XPOINTER
Proposed W3C recommendation
http://www.w3.org/TR/xptr

12.18 XSL

12.18.1 XSL: Recommendations
W3C recommendations for XSL, XSLT, and XPATH
http://www.w3.org/TR/#Recommendations

Extensible Stylesheet Language (XSL)
http://www.w3.org/TR/xsl/

XML Path Language (XPath)
http://www.w3.org/TR/xpath

XSL Transformation (XSLT)
http://www.w3.org/TR/xslt

12.18.2 XSL: Articles, Books, and Magazines
XSL Transformations: book chapter
http://metalab.unc.edu/xml/books/bible/updates/14.html

XSL Programming for Teams
http://developer.iplanet.com/viewsource/marchal_xml2/marchal_xml2.html

Validate Data with Regular Expressions and XSL
http://www.inquiry.com/techtips/xml_pro/10min/10min1199/10min1199.asp

12.18.3 XSL: Information
Style sheets
http://www.w3.org/Style/Activity

XSL in developerWorks XML library
http://www-4.ibm.com/software/developer/library/hands-on-xsl/

12 1089-9 CH12 6/26/01 7:37 AM Page 452

45312.18 XSL

12.18.4 XSL: Mailing Lists
XSL-List: Send mail to majordomo@mulberrytech.com with “subscribe xsl-list” as the
body of your message, or visit http://www.mulberrytech.com/xsl/xsl-list/
index.html.

XSL-List archive indexed by thread
http://www.mulberrytech.com/xsl/xsl-list/archive/

12.18.5 XSL: Resources
Crane Softwrights, Ltd.
http://www.CraneSoftwrights.com/s/

XMLBinder and XSLServlet projects
http://downloads.dyomedea.com/java/examples/

Resources for XT
http://4xt.org/

XML- and XSLT-driven Web site
http://www.ctvsportsnet.com

12.18.6 XSL:Tools
Xalan overview
http://xml.apache.org/xalan/overview.html

SAXON processor
http://users.iclway.co.uk/mhkay/saxon/index.html

12.18.7 XSL:Tutorials
Zvon XSL tutorial
http://www.zvon.org/xxl/XSLTutorial/Books/Book1/index.html

XML online course
http://www-4.ibm.com/software/developer/education/transforming-xml/

transforming-xml-to-html/index.html

XPathTutorial-General-examples.html
http://zvon.vscht.cz/HTMLonly/XPathTutorial/General/examples.html

Online XSLT-XSL Tutorials at XSLINFO
http://xslinfo.com/tutorials/

12 1089-9 CH12 6/26/01 7:37 AM Page 453

12 1089-9 CH12 6/26/01 7:37 AM Page 454

CD-ROM Contents

A

THIS APPENDIX DISCUSSES WHAT YOU can find on the CD-ROM that comes with
this book.

At this time, all software developed by this book’s author on the CD-ROM has
been tested only with Windows NT 4.0 (Service Pack 5). Of course, much of the soft-
ware should be portable to other operating systems, because it is all written in Java,
JSP, HTML, XML, and so on, but no guarantees of any kind can be given. Please
check the Web site at http://www.bonforum.org for possible information about using
the software with operating systems other than Windows NT 4.0.That Web site also
lists known problems, fixes, and updates for the software featured in this book and
CD-ROM.

Please be aware that all the software files on this CD-ROM, whether created by
this book’s author or other parties, are licensed and have associated copyrights.You can
find the appropriate licenses and distribution files in Appendix B,“Some Copyrights
and Licenses.” Please use and distribute the software products on this CD-ROM only
in accordance with the provisions of their respective licenses!

Chapter 12,“Online Information Sources,” is in the root folder of the CD-ROM
so that you can load it into your Web browser. Please take advantage of its many Web
links to find information related to the topics covered in this book.We especially rec-
ommend the links related to the Open Source software movement.

There are five folders in the root of the CD-ROM.The following text describes
their contents in a general way, without listing all the subfolders or their contents in
detail.

13 1089-9 XA 6/26/01 8:12 AM Page 455

456 Appendix A CD-ROM Contents

\Sun
The Sun folder contains the distributable Java Runtime Environment (JRE) installa-
tion files. It also contains the Java 2 SDK and the Forte for Java Community Edtion.
In order to use and modify the Web applications featured in this book, you need the
Sun Java SDK. Information about obtaining and installing the Java SDK is given in the
first two chapters of this book, as well as at http://java.sun.org, from where you
may download the SDK.

\Apache
The Apache folder and its subfolders contain three open source product releases from
the Apache Software Foundation, which are fully discussed in the book and are used
by the bonForum Web application (discussed in a moment).These products include
the Jakarta Tomcat Server (release 3.2.1), the Xerces XML parser for Java (release
1.3.0), and the Xalan XSLT processor for Java (release 2.0.1). Note that these releases
are the latest ones now tested with the software for this book.

You will also find on the CD-ROM some later releases of these three products—
the latest that were available when this CD-ROM was produced.These have not been
tested with the book or with the bonForum project software! We will post informa-
tion about using these, and later releases that become available, at the bonForum open
source project Web site at http://www.bonforum.org.

In addition, the CD-ROM contains other open source products released by Apache
Software Foundation projects, which should interest readers of this book.These other
products (Cocoon, ant, xang, and jakarta-taglibs) are not discussed in this book.You
can find further information about them on the Apache Software Foundation Web site
at http://www.apache.org.

\bonForum
The bonForum folder contains files related to the bonForum open source Web appli-
cation project, which is thoroughly discussed in this book. It is a prototype for a Web
chat application that is intended to test design concepts for Web applications of various
types. In its present state, it is not intended for public deployment on the Internet as a
chat application! None of the necessary security provisions for it are provided for in
the design and implementation of the bonForum Web application, because its intent is
purely and solely instructional and experimental.

Unless covered by another license, all the software (in both binary and source form)
found in the bonForum folder and its subfolders has been released by the author
under an open source license called the “bonForum license.”A copy of it is included
on the CD-ROM and appears in Appendix B. Distribution and use of the bonForum
Web application software is covered by that license, so please read it if you use or dis-
tribute the software.

The bonForum project files are supplied in three forms, which are described next.

13 1089-9 XA 6/26/01 7:38 AM Page 456

457\bonForum

\bonForum\webapp\bonForum.war
This is a ready-to-install Jakarta Tomcat webapp (bonForum.war).You can copy this
zipped archive file into a Tomcat webapps folder and restart Tomcat to install the chat
application project. Chapter 5,“bonForum Chat Application: Use and Design,” gives
you the details.

\bonForum\source\bonForum\
Projects_bonForum_001107_0503.zip
Note that the date and time at the end of this name may vary.This is a zipped archive
of all the source code for the chat application, ready to add to the ElixirIDE projects
folder, or wherever you want to use it.The pathnames of the zipped files all begin
with “bonForum.”

You are encouraged to experiment with it, fix it, hack it, and generally do whatever
is consistent with the included copyrights, disclaimers, notices, and warnings.This is
tutorial software without warranties of any kind.A few parts of the source are based
on demonstration code that is supplied with various Apache Software Foundation pro-
jects (Xalan, Xerces, and Tomcat).We have included their license information in the
source files involved and in Appendix B.You should check these to see if and how
they apply to any code you derive from us or them.

Note
Any changes you make to files here must first be copied to the Tomcat webapps bonForum hierarchy

before you see any change to the application. That includes HTML, JSP, XSL, class, image, and other files

used by bonForum.

If you are not using an IDE, you can use the batch file provided. It will compile the
Java files into the same folders where they are kept.The resulting class files must be
used to overwrite the class files in the Tomcat application folders before the changes
will appear in bonForum. Note that the BonForumRobot.class file is in two locations
in the Tomcat webapps bonForum hierarchy.

Note
It is best not to copy the zipped file to your TOMCAT_HOME\webapps folder and unzip it there. If you

want the source there, it is better to unzip into a temp folder and then move the bonForum\src folder

hierarchy where you want it. Any zip file in TOMCAT_HOME\webapps will create a webapp when Tomcat

starts up. Also, depending on your configuration of Tomcat, files might end up being browseable that

should not be.

13 1089-9 XA 6/26/01 7:38 AM Page 457

458 Appendix A CD-ROM Contents

\bonForum\installed\
This folder has copies of two directory subtrees taken from the author’s development
machine. More details about these appear in the following sections.

\bonForum\installed\webapps\bonForum

This contains the bonForum Web application as installed in
TOMCAT_HOME\webapps.You should be able to see from these files how the files
in the source tree and webapp tree are related. Note that a few files appear in two
locations in the webapp but only once in the source.This is true of the gif image files
and of BonForumRobot.class. If you change these on your machine, be sure you
change both copies.

\bonForum\installed\source\bonForum

This contains the complete source code hierarchy as it was installed in the
C:Elixir\Projects folder on the author’s machine. It was zipped to create the
source code archive provided separately as something like bonForum_O_S1.zip.You
can copy this to a projects folder for your IDE, if you want. Note that the source was
also copied into an src folder under WEB-INF folder in the bonForum WAR file
(discussed earlier).

\tools
The tools folder contains trial versions of three products from Elixir Technologies.This
book discusses only ElixirIDE, but the other products (ElixirCASE and ElixirReport)
look interesting and have been included for you to try. Chapter 2,“An Environment
for Java Software Development,” discusses the use of ElixirIDE, a Java Integrated
Development Environment.You may use it to compile the Web application project
example (bonForum) upon which this book is based.Alternatively, you may use your
own familiar tools or the Java SDK command-line environment.Also in the tools
folder are some plug-in modules that can be used with ElixirIDE. See its manual for
details.

Also in the tools folder is a trial version of the TextPad editor, which I have found
to be very useful for development. I usually put all the JSP files in one workspace and
open that with one instance of TextPad. I put all the Java files in another workspace
and open that in another instance of TextPad.A third instance and workspace makes all
other project files (XSL, HTML, etc.) available.The “Find in Files” command in the
Search menu is particularly useful.

E-Book
The E-Book folder contains this book in PDF format.This is copyrighted material
and permission is required for commercial use and reproduction.

13 1089-9 XA 6/26/01 7:38 AM Page 458

Some Copyrights and Licenses

B

THIS APPENDIX CONTAINS COPYRIGHT and license information for some of the vari-
ous software products that have been discussed in this book and used in bonForum.

BonForum License
BonForum Software License, version 1.0.

Copyright  2000, 2001 Westy Rockwell.All rights reserved.
Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, these
conditions, and the following disclaimer and note(s).

2. Redistributions in binary form must reproduce the above copyright notice, these
conditions, and the following disclaimer and note(s) in the documentation
and/or other materials with the distribution.

3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment:

“This product includes software developed by Westy Rockwell
(http://www.bonForum.org/).”

Alternately, this acknowledgment may appear in the software itself, if and wher-
ever such third-party acknowledgments normally appear.

14 1089-9 XB 6/26/01 7:39 AM Page 459

460 Appendix B Some Copyrights and Licenses

4. The names “bonForum,”“BonForum,”“BonForumEngine,” and
“BonForumRobot” must not be used to endorse or promote products derived
from this software without prior written permission. Permission info is at
http://www.bonForum.org/.

5. Products derived from this software may not be called by the names listed in
item 4, nor may these names appear in their names without written permission.
Permission info is at http://www.bonForum.org/.

DISCLAIMER:THIS SOFTWARE IS PROVIDED “AS IS,”AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE,ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHORS OR CONTRIBUTORS TO THIS SOFTWARE, NOR
ITS PUBLISHERS IN WHATEVER FORM, BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION), HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

NOTE:This software is provided for tutorial use! It is part of bonForum, a Web
chat application that is fully discussed in a book by Westy Rockwell called XML,
XSLT, Java, and JSP:A Case Study in Developing a Web Application,” published by
New Riders Publishing (http://www.newriders.com/).This book is published in
German as “XML, XSLT, Java, und JSP: Eine Professionelle Webapplikation
Programmieren” by Galileo Press (http://galileo-press.de/). For further informa-
tion, please visit http://www.bonforum.de/.

Apache Xerces License
The Apache Software License, version 1.1.

Copyright 1999 The Apache Software Foundation.All rights reserved.
Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment:

14 1089-9 XB 6/26/01 7:39 AM Page 460

461Apache Xalan License

“This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).”

Alternately, this acknowledgment may appear in the software itself, if and wher-
ever such third-party acknowledgments normally appear.

4. The names “Xerces” and “Apache Software Foundation” must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called “Apache,” nor may
“Apache” appear in their name, without prior written permission of the Apache
Software Foundation.

THIS SOFTWARE IS PROVIDED “AS IS,”AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE,ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION), HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation and was originally based on software copy-
right  1999, International Business Machines, Inc., http://www.apache.org. For
more information on the Apache Software Foundation, please see
http://www.apache.org/.

Apache Xalan License
The Apache Software License, version 1.1.

Copyright  1999 The Apache Software Foundation.All rights reserved.
Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the following disclaimer in the documentation and/or
other materials provided with the distribution.

14 1089-9 XB 6/26/01 7:39 AM Page 461

462 Appendix B Some Copyrights and Licenses

3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment:“This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/).”
Alternately, this acknowledgment may appear in the software itself, if and wher-
ever such third-party acknowledgments normally appear.

4. The names “Xalan” and “Apache Software Foundation” must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called “Apache,” nor may
“Apache” appear in their name, without prior written permission of the Apache
Software Foundation.

THIS SOFTWARE IS PROVIDED “AS IS,”AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE,ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION), HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation and was originally based on software copy-
right  1999, Lotus Development Corporation, http://www.lotus.com. For more
information on the Apache Software Foundation, please see http://www.apache.org/.

Jakarta Tomcat License
The Apache Software License, version 1.1.

Copyright  1999 The Apache Software Foundation.All rights reserved.
Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the following disclaimer in the documentation and/or
other materials provided with the distribution.

14 1089-9 XB 6/26/01 7:39 AM Page 462

463Jakarta Tomcat License

3. The end-user documentation included with the redistribution, if any, must
include the following acknowledgment:“This product includes software devel-
oped by the Apache Software Foundation (http://www.apache.org/).”
Alternately, this acknowledgment may appear in the software itself, if and wher-
ever such third-party acknowledgments normally appear.

4. The names “The Jakarta Project,”“Tomcat,” and “Apache Software Foundation”
must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact
apache@apache.org.

5. Products derived from this software may not be called “Apache,” nor may
“Apache” appear in their names without prior written permission of the Apache
Group.

THIS SOFTWARE IS PROVIDED “AS IS,”AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE,ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION), HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see http://www.apache.org/.

14 1089-9 XB 6/26/01 7:39 AM Page 463

14 1089-9 XB 6/26/01 7:39 AM Page 464

Source Code for bonForum Web
Application

C

C.1 Filename:TOMCAT_HOME\webapps\
bonForum\WEB-INF\web.xml

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java.sun.com/j2ee/dtds/web-app_2.2.dtd”>

<web-app>
<display-name>

bonForum
</display-name>
<context-param>

<param-name>
Webmaster

</param-name>
<param-value>

email@bonforum.org
</param-value>

</context-param>
<!— Logging output can be none, all, std, file —>
<context-param>

<param-name>
Logging

</param-name>
<param-value>

15 1089-9 XC 6/26/01 7:40 AM Page 465

466 Appendix C Source Code for bonForum Web Application

all
</param-value>

</context-param>
<servlet>

<servlet-name>
BonForumEngine

</servlet-name>
<servlet-class>

de.tarent.forum.BonForumEngine
</servlet-class>
<init-param>

<param-name>
bonfoo47

</param-name>
<param-value>

bonbar47
</param-value>

</init-param>
</servlet>
<servlet>

<servlet-name>
snoop

</servlet-name>
<servlet-class>

SnoopServlet
</servlet-class>
<init-param>

<param-name>
bonFooSnoop

</param-name>
<param-value>

bonBarSnoop
</param-value>

</init-param>
</servlet>
<servlet>
<servlet-name>

servletToJsp
</servlet-name>
<servlet-class>

servletToJsp
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>
BonForumEngine

</servlet-name>
<url-pattern>

*.tfe
</url-pattern>

</servlet-mapping>

15 1089-9 XC 6/26/01 7:40 AM Page 466

467C.1 Filename: TOMCAT_HOME\webapps\bonForum\WEB-INF\web.xml

<servlet-mapping>
<servlet-name>

BonForumEngine
</servlet-name>
<url-pattern>

/BonForumEngine
</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>
snoop

</servlet-name>
<url-pattern>

/snoop
</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>
snoop

</servlet-name>
<url-pattern>

*.snp
</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>
servletToJsp

</servlet-name>
<url-pattern>

/servletToJsp
</url-pattern>

</servlet-mapping>

<taglib>
<taglib-uri>
http://www.bonForum.org/taglib/bonForum-taglib
</taglib-uri>
<taglib-location>

/WEB-INF/jsp/bonForum-taglib.tld
</taglib-location>

</taglib>
<session-config>

<session-timeout> -1 </session-timeout>
</session-config>

<!— Define the context-relative URL(s) to be protected —>
<!— If you list http methods, only those methods are protected —>
<!— Anyone with one of the listed roles may access this area —>
<!—
<security-constraint>
<web-resource-collection>

15 1089-9 XC 6/26/01 7:40 AM Page 467

468 Appendix C Source Code for bonForum Web Application

<web-resource-name>Protected Area</web-resource-name>
<url-pattern>/jsp/security/protected/*</url-pattern>

<http-method>DELETE</http-method>
<http-method>GET</http-method>
<http-method>POST</http-method>

<http-method>PUT</http-method>
</web-resource-collection>
<auth-constraint>

<role-name>tomcat</role-name>
<role-name>role1</role-name>
</auth-constraint>

</security-constraint>
—>
<!— Default login configuration uses BASIC authentication —>
<!—
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Example Basic Authentication Area</realm-name>

</login-config>
—>
<!— If you want to experiment with form-based logins, comment

out the <login-config> element above and replace it with
this one. Note that we are currently using a nonstandard
authentication method, because the code to support form
based login is incomplete and only lightly tested. —>

<!—
<login-config>
<auth-method>EXPERIMENTAL_FORM</auth-method>
<realm-name>Example Form-Based Authentication Area</realm-name>
<form-login-config>
<form-login-page>/jsp/security/login/login.jsp</form-login-page>
<form-error-page>/jsp/security/login/error.jsp</form-error-page>

</form-login-config>
</login-config>
—>

</web-app>

C.2 Filename:TOMCAT_HOME\webapps\
bonForum\WEB-INF\jsp\bonForum-taglib.tld

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!DOCTYPE taglib

PUBLIC “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN”
“http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd”>

<!— Tag library descriptor for bonForum —>
<!— as described in the book: —>
<!— XML, XSLT, Java and JSP - A Case Study in Developing a Web Application —>
<!— by Westy Rockwell —>

15 1089-9 XC 6/26/01 7:40 AM Page 468

469C.2 Filename: TOMCAT_HOME\webapps\bonForum\WEB-INF\jsp\bonForum-taglib.tld

<!— For further information visit www.bonForum.org—>
<taglib>
<!— after this the default space is
“http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd”

—>
<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>forumTags</shortname>
<!—
<urn></urn>
—>
<info>
Tag library for bonForum

</info>
<!— outputDebugInfo tag —>
<tag>
<name>outputDebugInfo</name>
<tagclass>de.tarent.forum.OutputDebugInfoTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>
Outputs request header and parameter values.
Outputs attributes values for all scopes.
Attribute type=”init” turns tags on for entire session,

if a request parameter exists called
“output_debug_info” that is equal to “yes”.
Afterwards, a tag but no attribute
is required to output debug info on page.

Attribute type=”init” turns tags off,
if no request parameter exists called
“output_debug_info” that is equal to “yes”.

Attribute force=”yes” turns that tag on only.
</info>
<attribute>
<name>type</name>
<required>false</required>

</attribute>
<attribute>
<name>force</name>
<required>false</required>

</attribute>
</tag>
<!— outputChatMessages tag —>
<tag>
<name>outputChatMessages</name>
<tagclass>de.tarent.forum.OutputChatMessagesTag</tagclass>
<teiclass>de.tarent.forum.BonForumTagExtraInfo</teiclass>
<bodycontent>JSP</bodycontent>
<info>
Outputs chatMessages from subTree of XML tree or forest.
Attributes are reserved for future use selecting messages.

</info>

15 1089-9 XC 6/26/01 7:40 AM Page 469

470 Appendix C Source Code for bonForum Web Application

<attribute>
<name>command</name>
<required>true</required>

</attribute>
<attribute>
<name>attr1</name>
<required>false</required>

</attribute>
<attribute>
<name>attr2</name>
<required>false</required>

</attribute>
<attribute>
<name>attr3</name>
<required>false</required>

</attribute>
</tag>
<!— outputPathNames tag —>
<tag>
<name>outputPathNames</name>
<tagclass>de.tarent.forum.OutputPathNamesTag</tagclass>
<teiclass>de.tarent.forum.BonForumTagExtraInfo</teiclass>
<bodycontent>JSP</bodycontent>
<info>
Outputs pathNames from subTree of XML tree or forest
(Note: ignores chatItem nodes in bonForum forests.)

</info>
<attribute>
<name>docName</name>
<required>true</required>

</attribute>
<attribute>
<name>pathToSubTreeRootNode</name>
<required>true</required>

</attribute>
<attribute>
<name>ancestorReplacer</name>
<required>true</required>

</attribute>
<attribute>
<name>nodeSeparator</name>
<required>true</required>

</attribute>
</tag>
<!— transform tag —>
<tag>
<name>transform</name>
<tagclass>de.tarent.forum.TransformTag</tagclass>
<teiclass>de.tarent.forum.BonForumTagExtraInfo</teiclass>
<bodycontent>JSP</bodycontent>
<info>

15 1089-9 XC 6/26/01 7:40 AM Page 470

471C.2 Filename: TOMCAT_HOME\webapps\bonForum\WEB-INF\jsp\bonForum-taglib.tld

XSLT processing (type) applies inXSL to inXML.
If inXML = “bonForumXML” transforms entire forum content.
If inXML = “bonBufferXML” transforms buffer content.
Else inXML is a URL for an XML document.
If outDoc is URL produces XML file.
If outDoc = “print” calls out.println with the output.
If outDoc = “printNormalized” does same, normalizes first.
If outDoc = “output” puts output in “output” page variable.
If outDoc = “outputNormalized” does same, normalizes first.
Transform uses one stylesheet parameter called “param1”,
which it looks for in a session attribute of the same name.

</info>
<attribute>
<name>type</name>
<required>true</required>

</attribute>
<attribute>
<name>inXML</name>
<required>true</required>

</attribute>
<attribute>
<name>inXSL</name>
<required>true</required>

</attribute>
<attribute>
<name>outDoc</name>
<required>true</required>

</attribute>
</tag>
<!— noCacheHeader tag —>
<tag>
<name>noCacheHeader</name>
<tagclass>de.tarent.forum.NoCacheHeaderTag</tagclass>
<info>
Sets headers in the response object to prevent
a browser from keeping jsp content in cache.
This tag contains no attributes, body, or end tag.
The four headers set are: Cache-Control: no-cache,
Pragma: no-cache, max-age: 0, Expires: 0.
Returns SKIP_BODY always. Since JDK1.3.
This tag must be placed before any output is
sent to the web browser, or an
IllegalStateException will occur.
Used by permission of its author, Perry Tew

</info>
</tag>

</taglib>

15 1089-9 XC 6/26/01 7:40 AM Page 471

472 Appendix C Source Code for bonForum Web Application

C.3 Filename:TOMCAT_HOME\webapps\
bonForum\index.html

<html>
<head>
<title>bonForum</title>
</head>
<body bgcolor=cyan>
<table border=”0” rows=”6” width=”100%”>
<tr>
<td align=”center”><H1><img border=”0”
src=”images/bonForumLogo.gif” alt=”Enter bonForum”></H1></td>
</tr>
<tr><td align=”center”>

Enter an open source project
from www.bonforum.org
described by the book:

</td></tr>
<tr><td align=”center”>

<I>XML, XSLT, Java and JSP - A Case Study in Developing a Web Application</I>

</td></tr>
<tr><td align=”center”>

by
Westy Rockwell

</td></tr>
<tr><td align=”center”>

<I>XML, XSLT, Java und JSP - Professionelle Web-Applikationen entwickeln</I>

</td></tr>
<tr><td align=”center”>

German translation by
Manfred Weltecke

</td></tr>
</table>
<table border=”0” width=”100%”>
<tr>
<td align=”center”>

15 1089-9 XC 6/26/01 7:40 AM Page 472

473C.4 Filename: TOMCAT_HOME\webapps\bonForum\docs\subjects.xml

<img src=”images/tarent.gif” alt=”tarent GmbH”
width=”50” height=”35” border=”1”>
<img src=”images/galileo_logo_anim2.gif”
alt=”Galileo Press” width=”50” height=”35” border=”0”>
New Riders
 <img src=”images/sflogo.png” alt=”SourceForge
Logo”
width=88 height=31 border=”0”>
<img src=”images/tomcat-power.gif” alt=”Tomcat
Logo” width=”50” height=”35” border=”0”>
</td>
</tr>
</table>
</body>
</html>

C.4 Filename:TOMCAT_HOME\webapps\
bonForum\docs\subjects.xml

<?xml version =”1.0”?>
<subjects>

<Health>
Element_content_test_string_1

<Prevention>
<Headaches>

<Migraine type=”Test_Attribute” foo=”This is foo!”>
Element_content_test_string_2
</Migraine>

</Headaches>
</Prevention>

</Health>
<Vehicles>

<Autos>
<BMW />
<Fiat />
<Ford>

<Thunderbird/>
</Ford>
<Rover>

<LandRover/>
</Rover>
<Subaru />

</Autos>
<Motorcycles>

<HarleyDavidson/>
<Honda />

</Motorcycles>
<Trucks>

<Mac />

15 1089-9 XC 6/26/01 7:40 AM Page 473

474 Appendix C Source Code for bonForum Web Application

<Other />
</Trucks>

</Vehicles>
<Animals>

<Bird>
<Parrot />
<Hawk />
<Chicken />

</Bird>
<Fish>

<Piranha />
<Guppy />

</Fish>
<Dog>

<LabradorRetriever />
<Terrier>

<Fox>
</Fox>

</Terrier>
</Dog>

</Animals>
</subjects>

C.5 Filename:TOMCAT_HOME\webapps\
bonForum\docs\bonChatItems.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>
<xsl:output method=”xml” omit-xml-declaration=”yes” indent=”no”/>
<xsl:param name=”param1” select=”’000000000000.000000000000.000000000000’”/>
<xsl:template match=”/”>

<select size=”9” name=”chatItem”>
<xsl:apply-templates select=”/bonForum/things/subjects/descendant::*[

@chatTopic]”/>
</select>

</xsl:template>
<xsl:template match=”text()”>
</xsl:template>
<xsl:template match=”*”>
<xsl:variable name=”option-value”>

<xsl:for-each select=”ancestor::*”>
<xsl:choose>

<xsl:when test=”name()=’bonForum’”>
</xsl:when>
<xsl:when test=”name()=’things’”>
</xsl:when>
<xsl:when test=”name()=’subjects’”>
</xsl:when>
<xsl:otherwise>

15 1089-9 XC 6/26/01 7:40 AM Page 474

475C.6 Filename: TOMCAT_HOME\webapps\bonForum\docs\bonChatItemsTEST.html

<xsl:value-of select=”name()”/>
<xsl:if test=”child::node()”>
<xsl:text>_</xsl:text>
</xsl:if>

</xsl:otherwise>
</xsl:choose>

</xsl:for-each>
<xsl:choose>

<xsl:when test=”self::node()[@chatTopic]”>
<xsl:text>[</xsl:text>

<xsl:value-of select=”@chatTopic”/>
<xsl:text>]</xsl:text>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select=”name()”/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<xsl:variable name=”subject”>

<xsl:value-of select=” substring-before(string($option-value), string(
"["))”/>
</xsl:variable>
<xsl:variable name=”topic”>

<xsl:value-of select=” substring-before(substring-after(string($option-
value), string("[")), string("]"))”/>
</xsl:variable>
<option>

<xsl:attribute name=”value”>
<xsl:value-of select=”$option-value”/>

</xsl:attribute>
<xsl:value-of select=”translate($subject, string("_"), string(

" "))”/>
<xsl:text> —> </xsl:text>
<xsl:value-of select=”$topic”/>

</option>
</xsl:template>
</xsl:stylesheet>

C.6 Filename:TOMCAT_HOME\webapps\
bonForum\docs\bonChatItemsTEST.html

<select name=”chatItem” size=”9”><option value=”Vehicles_Autos_Subaru_[Four Wheel
Drive Tips]”>Vehicles Autos Subaru —> Four Wheel Drive Tips</option><option
value=”Animals_Bird_Hawk_[Medieval Falconry]”>Animals Bird Hawk —> Medieval
Falconry</option></select>

15 1089-9 XC 6/26/01 7:40 AM Page 475

476 Appendix C Source Code for bonForum Web Application

C.7 Filename:TOMCAT_HOME\webapps\
bonForum\docs\bonChatGuests.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>
<xsl:output method=”xml” omit-xml-declaration=”yes” indent=”no”/>
<xsl:param name=”param1” select=”’error in param1’”/>
<xsl:template match=”/”>

<!— for debugging, can display the xsl parameter like this: —>
<!— <p><xsl:value-of select=”$param1”/></p> —>

Guests in your chat:

<select size=”6” name=”chatGuest”>
<xsl:apply-templates select=”/bonForum/things/*”/>
</select>

</xsl:template>
<xsl:template match=”text()”>
</xsl:template>
<xsl:template match=”chat[@itemKey=$param1]”>

<xsl:for-each select=”*”>
<xsl:if test=”name()=’guestKey’”>

<xsl:variable name=”guestKey-value”>
<xsl:value-of select=”.”/>

</xsl:variable>
<xsl:for-each select=”/bonForum/actors/guest”>

<xsl:variable name=”guest-value”>
<xsl:value-of select=”@nodeKey”/>

</xsl:variable>
<xsl:if test=”$guest-value=$guestKey-value”>

<option>
<xsl:value-of select=”actorNickname”/>
<xsl:text> age:</xsl:text>
<xsl:value-of select=”actorAge”/>
<xsl:text> rating:</xsl:text>
<xsl:value-of select=”actorRating”/>
</option>

</xsl:if>
</xsl:for-each>

</xsl:if>
</xsl:for-each>

</xsl:template>
<xsl:template match=”*”>
</xsl:template>
</xsl:stylesheet>

15 1089-9 XC 6/26/01 7:40 AM Page 476

477Current C Head at Bottom of Page

C.8 Filename:TOMCAT_HOME\webapps\
bonForum\docs\forums.xml

<?xml version =”1.0”?>
<forums>
<forum>
<name>Galileo Press</name>
<weblink>http://www.galileocomputing.de</weblink>
</forum>
<forum>
<name>New Riders Publishing</name>
<weblink>http://www.newriders.com</weblink>
</forum>
<forum>
<name>tarent</name>
<weblink>http://www.tarent.de</weblink>
</forum>
</forums>

C.9 Filename:TOMCAT_HOME\webapps\
bonForum\docs\bonForumLinks.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>
<xsl:output method=”xml” omit-xml-declaration=”yes” indent=”no”/>
<xsl:param name=”param1” select=”’000000000000.000000000000.000000000000’”/>
<xsl:template match=”/”>

<table width=”100%” name=”bonForums”>
<tr><A><xsl:attribute

name=”href”>http://www.bonForum.org/</xsl:attribute>bonForum.org</tr><tr><xsl:
text> </xsl:text></tr>

<xsl:apply-templates select=”/bonForum/things/forums//*”/>
</table>

</xsl:template>
<xsl:template match=”text()”>
</xsl:template>
<xsl:template match=”forum”>
<tr>
<A>
<xsl:attribute name=”href”><xsl:value-of select=”weblink”/></xsl:attribute>
<xsl:value-of select=”name”/>

</tr>
</xsl:template>
<xsl:template match=”*”>
</xsl:template>
</xsl:stylesheet>

15 1089-9 XC 6/26/01 7:40 AM Page 477

478 Appendix C Source Code for bonForum Web Application

C.10 Filename:TOMCAT_HOME\webapps\
bonForum\docs\bonForumLinksTEST.html

<table name=”bonForums” width=”100%”><tr>bonForum.org</tr><tr> </tr><tr>Galileo Press</tr><tr>New Riders Publishing</tr><tr>tarent</tr></table>

C.11 Filename:TOMCAT_HOME\webapps\
bonForum\docs\identity.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0” version=”1.0”>
<xsl:output method=”xml” indent=”no”/>
<xsl:template match=”@*|node()”>
<xsl:copy>
<xsl:apply-templates select=”@*|node()”/>

</xsl:copy>
</xsl:template>
</xsl:stylesheet>

C.12 Filename:TOMCAT_HOME\webapps\
bonForum\docs\bonForumIdentityTransform.
xml

<?xml version=”1.0” encoding=”UTF-8”?>
<bonForum nodeKey=”989940500081.989940500081.989940500081”
type=”prototype”><things nodeKey=”989940500211.989940500081.989940500081”
type=”READ_ONLY”><chat nodeKey=”989940725325.989940500211.989940500081”
moderated=”yes” itemKey=”989940725365.989940501233.989940501213”><messageKey
nodeKey=”989941076119.989940725325.989940500211”>989941076109.989940500211.9899405
00081</messageKey><guestKey
nodeKey=”989940808505.989940725325.989940500211”>989940808445.989940500151.9899405
00081</guestKey><messageKey
nodeKey=”989940892075.989940725325.989940500211”>989940892065.989940500211.9899405
00081</messageKey><messageKey
nodeKey=”989940940595.989940725325.989940500211”>989940940585.989940500211.9899405
00081</messageKey><hostKey
nodeKey=”989940725355.989940725325.989940500211”>989940725275.989940500151.9899405
00081</hostKey><messageKey
nodeKey=”989940792722.989940725325.989940500211”>989940792712.989940500211.9899405
00081</messageKey></chat><message nodeKey=”989940892065.989940500211.989940500081”
itemKey=”989940725365.989940501233.989940501213” timeMillis=”989940891714”
dateStamp=”mar may 15 05:34:52 2001”
guestKey=”989940808445.989940500151.989940500081”>Eve::I am! But mostly in the

15 1089-9 XC 6/26/01 7:40 AM Page 478

479C.12 Filename: TOMCAT_HOME\webapps\bonForum\docs\bonForumIdentityTransform.xml

use of hawks as symbols in medieval paintings.</message><subjects
nodeKey=”989940500912.989940500211.989940500081”><Vehicles
nodeKey=”989940501022.989940500912.989940500211”><Motorcycles
nodeKey=”989940501133.989940501022.989940500912”><Honda
nodeKey=”989940501153.989940501133.989940501022”/><HarleyDavidson
nodeKey=”989940501143.989940501133.989940501022”/></Motorcycles><Trucks
nodeKey=”989940501173.989940501022.989940500912”><Mac
nodeKey=”989940501183.989940501173.989940501022”/><Other
nodeKey=”989940501193.989940501173.989940501022”/></Trucks><Autos
nodeKey=”989940501033.989940501022.989940500912”><Ford
nodeKey=”989940501063.989940501033.989940501022”><Thunderbird
nodeKey=”989940501073.989940501063.989940501033”/></Ford><Subaru
nodeKey=”989940501123.989940501033.989940501022”/><BMW
nodeKey=”989940501043.989940501033.989940501022”/><Fiat
nodeKey=”989940501053.989940501033.989940501022”/><Rover
nodeKey=”989940501083.989940501033.989940501022”><LandRover
nodeKey=”989940501113.989940501083.989940501033”/></Rover></Autos></Vehicles><Health
nodeKey=”989940500962.989940500912.989940500211”>Element_content_test_string_1<Pre
vention nodeKey=”989940500972.989940500962.989940500912”><Headaches
nodeKey=”989940500982.989940500972.989940500962”><Migraine
nodeKey=”989940501012.989940500982.989940500972” foo=”This is foo!”
type=”Test_Attribute”>Element_content_test_string_2</Migraine></Headaches></Preven
tion></Health><Animals nodeKey=”989940501203.989940500912.989940500211”><Fish
nodeKey=”989940501263.989940501203.989940500912”><Piranha
nodeKey=”989940501273.989940501263.989940501203”/><Guppy
nodeKey=”989940501283.989940501263.989940501203”/></Fish><Bird
nodeKey=”989940501213.989940501203.989940500912”><Chicken
nodeKey=”989940501243.989940501213.989940501203”/><Hawk
nodeKey=”989940501233.989940501213.989940501203”><sessionID_8g4vezxgi1_98994072532
5 nodeKey=”989940725365.989940501233.989940501213” chatTopic=”Medieval
Falconry”/></Hawk><Parrot
nodeKey=”989940501223.989940501213.989940501203”/></Bird><Dog
nodeKey=”989940501293.989940501203.989940500912”><Terrier
nodeKey=”989940501313.989940501293.989940501203”><Fox
nodeKey=”989940501323.989940501313.989940501293”/></Terrier><LabradorRetriever
nodeKey=”989940501303.989940501293.989940501203”/></Dog></Animals></subjects><mess
age nodeKey=”989940940585.989940500211.989940500081”
itemKey=”989940725365.989940501233.989940501213” timeMillis=”989940940544”
dateStamp=”mar may 15 05:35:40 2001”
hostKey=”989940725275.989940500151.989940500081”>Adam::That’s interesting, Eve.
Tell me more.</message><forums
nodeKey=”989940501483.989940500211.989940500081”><forum
nodeKey=”989940501523.989940501483.989940500211”><weblink
nodeKey=”989940501543.989940501523.989940501483”>http://www.newriders.com</weblink
><name nodeKey=”989940501533.989940501523.989940501483”>New Riders
Publishing</name></forum><forum
nodeKey=”989940501493.989940501483.989940500211”><name
nodeKey=”989940501503.989940501493.989940501483”>Galileo Press</name><weblink
nodeKey=”989940501513.989940501493.989940501483”>http://www.galileocomputing.de</w
eblink></forum><forum nodeKey=”989940501553.989940501483.989940500211”><weblink
nodeKey=”989940501573.989940501553.989940501483”>http://www.tarent.de</weblink><name

15 1089-9 XC 6/26/01 7:40 AM Page 479

480 Appendix C Source Code for bonForum Web Application

nodeKey=”989940501563.989940501553.989940501483”>tarent</name></forum></forums><me
ssage nodeKey=”989940792712.989940500211.989940500081”
itemKey=”989940725365.989940501233.989940501213” timeMillis=”989940792391”
dateStamp=”mar may 15 05:33:12 2001”
hostKey=”989940725275.989940500151.989940500081”>Adam::Hello! Is anyone interested
in Medieval Falconry besides me?</message><message
nodeKey=”989941076109.989940500211.989940500081”
itemKey=”989940725365.989940501233.989940501213” timeMillis=”989941076069”
dateStamp=”mar may 15 05:37:56 2001”
guestKey=”989940808445.989940500151.989940500081”>Eve::Sure, but first I have to
let the cat out. I’ll be right back.</message></things><actions
nodeKey=”989940500201.989940500081.989940500081” type=”READ_ONLY”/><actors
nodeKey=”989940500151.989940500081.989940500081” type=”READ_ONLY”><system
nodeKey=”989940500161.989940500151.989940500081” type=”SYSTEM”><system2
nodeKey=”989940500171.989940500161.989940500151” type=”SYSTEM”><test
nodeKey=”989940500181.989940500171.989940500161”
type=”TEST”/></system2></system><host
nodeKey=”989940725275.989940500151.989940500081”><actorNickname
nodeKey=”989940725285.989940725275.989940500151”>Adam</actorNickname><actorRating
nodeKey=”989940725305.989940725275.989940500151”>5</actorRating><actorAge
nodeKey=”989940725295.989940725275.989940500151”>123</actorAge></host><test
nodeKey=”989940500191.989940500151.989940500081” type=”TEST”/><guest
nodeKey=”989940808445.989940500151.989940500081”><actorNickname
nodeKey=”989940808475.989940808445.989940500151”>Eve</actorNickname><actorAge
nodeKey=”989940808485.989940808445.989940500151”>121</actorAge><actorRating
nodeKey=”989940808495.989940808445.989940500151”>5</actorRating></guest></actors><
/bonForum>

C.13 Filename:TOMCAT_HOME\webapps\
bonForum\docs\xalanTest.bat

rem java -classpath “c:\xalan_1_2_2\xerces.jar;c:\xalan_1_2_2\xalan.jar”
org.apache.xalan.xslt.Process -IN bonForumIdentityTransform.xml -XSL
bonChatItems.xsl -OUT bonChatItemsTEST.html
rem bonChatGuests.xsl cannot be tested from command line as it requires a runtime
parameter
rem java -classpath “c:\xalan_1_2_2\xerces.jar;c:\xalan_1_2_2\xalan.jar”
org.apache.xalan.xslt.Process -IN bonForumIdentityTransform.xml -XSL
bonChatGuests.xsl -OUT bonChatGuestsTEST.html
rem java -classpath “c:\xalan_1_2_2\xerces.jar;c:\xalan_1_2_2\xalan.jar”
org.apache.xalan.xslt.Process -IN bonForumIdentityTransform.xml -XSL
bonForumLinks.xsl -OUT bonForumLinksTEST.html
java -classpath “c:\jakarta-tomcat\lib\xalanj1compat.jar;c:\jakarta-
tomcat\lib\xerces.jar;c:\jakarta-tomcat\lib\xalan.jar”
org.apache.xalan.xslt.Process -IN bonForumIdentityTransform.xml -XSL
bonChatItems.xsl -OUT bonChatItemsTEST.html
rem bonChatGuests.xsl cannot be tested from command line as it requires a runtime

15 1089-9 XC 6/26/01 7:40 AM Page 480

481C.14 Filename: Projects\bonForum\src\bonMakeIt.bat

parameter
rem java -classpath “c:\jakarta-tomcat\lib\xalanj1compat.jar;c:\jakarta-
tomcat\lib\xerces.jar;c:\jakarta-tomcat\lib\xalan.jar”
org.apache.xalan.xslt.Process -IN bonForumIdentityTransform.xml -XSL
bonChatGuests.xsl -OUT bonChatGuestsTEST.html
java -classpath “c:\jakarta-tomcat\lib\xalanj1compat.jar;c:\jakarta-
tomcat\lib\xerces.jar;c:\jakarta-tomcat\lib\xalan.jar”
org.apache.xalan.xslt.Process -IN bonForumIdentityTransform.xml -XSL
bonForumLinks.xsl -OUT bonForumLinksTEST.html

C.14 Filename: Projects\bonForum\src\
bonMakeIt.bat

rem path c:\jdk1.3\bin;%PATH%
rem set JAVA_HOME=c:\jdk1.3
rem set JAVAC=c:\jdk1.3\bin\rem javac.exe
javac de/tarent/forum/BonForumUtils.java -d ../classes
javac de/tarent/forum/BonLogger.java -d ../classes
javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
de/tarent/forum/BonForumTagExtraInfo.java -d ../classes
javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
de/tarent/forum/OutputPathNamesTag.java -d ../classes
javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
de/tarent/forum/OutputChatMessagesTag.java -d ../classes
javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
de/tarent/forum/OutputDebugInfoTag.java -d ../classes
javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
de/tarent/forum/NoCacheHeaderTag.java -d ../classes
javac -classpath “.;c:\xalan-j_1_2_2\xalan.jar;c:\xalan-
j_1_2_2\xerces.jar;c:\jakarta-tomcat\lib\servlet.jar;”
de/tarent/forum/Xalan1Transformer.java -d ../classes
javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;c:\xalan-
j_2_0_1\bin\xalan.jar;c:\xalan-j_2_0_1\bin\xerces.jar;”
de/tarent/forum/Xalan2Transformer.java -d ../classes
javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;c:\xalan-
j_2_0_1\bin\xalanj1compat.jar;c:\xalan-j_2_0_1\bin\xalan.jar;c:\xalan-
j_2_0_1\bin\xerces.jar;” de/tarent/forum/TransformTag.java -d ../classes
javac de/tarent/forum/NodeKey.java -d ../classes
javac de/tarent/forum/BonNode.java -d ../classes
javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
de/tarent/forum/ForestHashtable.java -d ../classes
javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
de/tarent/forum/BonForumStore.java -d ../classes
javac -classpath “.;c:\jakarta-tomcat\lib\servlet.jar;”
de/tarent/forum/BonForumEngine.java -d ../classes
javac BonForumRobot.java -d ../classes
copy ..\classes\BonForumRobot.class ..\..\jsp\forum\applet
copy ..\classes\BonForumRobot$RefreshThread.class ..\..\jsp\forum\applet
rem CLASS FILES MUST BE IN bonForum WEBAPP CLASS FOLDERS FOR USE!

15 1089-9 XC 6/26/01 7:40 AM Page 481

482 Appendix C Source Code for bonForum Web Application

C.15 Filename: Projects\bonForum\src\
BonForumRobot.java

/*<Imports>*/
import java.io.*;
import java.net.*;
import java.util.*;
import java.applet.*;
import java.awt.Font;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Component; // temp
/*</Imports>*/
/** BonForumRobot repeatedly invokes showDocument method of applet.
* It can be used from a frame display to request a different frameset.
* It can also be used to continually refresh one frame from another.
* The applet parameters are:
* target, document, increment, limit, message and refresh.
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class BonForumRobot extends Applet {

URL codeBase = null;
String document = “”;
String target = “”;
String messageLineOne = “”;
String messageLineTwo = “”;
String message = “”;
boolean refresh = false;
boolean continueRunning = true;
int increment = 0;
int limit = 0;
int counter = 0;
Font font = new Font(“TimesRoman”, Font.ITALIC,24);
public void init() {

System.out.println(“init()”);
// get other plugin parameters
target = getParameter(“target”, “_self”);
document = getParameter(“document”, “”);
increment = getParameter(“increment”, 20000);
limit = getParameter(“limit”, 10000);
message = getParameter(“message”, “BonForumRobot applet”);
refresh = getParameter(“refresh”, false);
// see these debugging messages on the Java Console
codeBase = this.getCodeBase();
System.out.println(“documentBase:” + this.getDocumentBase().toString());
System.out.println(“codeBase:” + codeBase.toString());

15 1089-9 XC 6/26/01 7:40 AM Page 482

483C.15 Filename: Projects\bonForum\src\BonForumRobot.java

System.out.println(“refresh:” + this.refresh);
System.out.println(“target:” + this.target);
System.out.println(“document:” + this.document);
System.out.println(“increment:” + this.increment);
System.out.println(“limit:” + this.limit);
System.out.println(“message:” + this.message);
// forces application global error displays not to be in a frame:
if(document.indexOf(“forum_error”) > -1) {

if(!target.equals(“_top”)) {
target = “_top”;
System.out.println(“changed to forum_error target:” +

this.target);
}

}
}
public void start() {

// kick off thread to do the dirty work
setBackground(Color.cyan);
System.out.println(“start()”);
if (refresh) {

RefreshThread thread = new
RefreshThread(Long.toString(System.currentTimeMillis()), codeBase);

thread.start();
}

}
public void stopRunning() {

stop();
}
public void stop() {

System.out.println(“stop()”);
continueRunning = false;

}
public void paint(Graphics graphics) {

graphics.setFont(font);
graphics.setColor(Color.black);
if(message.equalsIgnoreCase(“debug”)) {

graphics.drawString(messageLineOne,10,20);
graphics.drawString(messageLineTwo,10,40);
graphics.drawString(target,10,60);
graphics.drawString(document,10,80);
graphics.drawString(new Boolean(refresh).toString(), 10, 100);
graphics.drawString(Integer.toString(increment), 10, 120);
graphics.drawString(Integer.toString(limit), 10, 140);

}
else {

graphics.drawString(messageLineOne,10,20);
graphics.drawString(messageLineTwo,10,40);

}

15 1089-9 XC 6/26/01 7:40 AM Page 483

484 Appendix C Source Code for bonForum Web Application

}
private String getParameter(String name, String defaultValue){
String retval = getParameter(name);

if (retval == null || retval.trim() == “”){
retval = defaultValue;

}
return retval;

}
private int getParameter(String name, int defaultValue){
int retval = defaultValue;

String tmp = getParameter(name);
if (tmp != null && tmp.trim() != “”){

try {
retval = Integer.parseInt(tmp);

} catch (NumberFormatException nfe) {
// don’t do anything.
// it’s still assigned to the defaultValue!

}
}
return retval;

}
private boolean getParameter(String name, boolean defaultValue){

boolean retval = defaultValue;
String tmp = getParameter(name);
if (tmp != null){

if (tmp.equalsIgnoreCase(“true”)) retval = true;
if (tmp.equals(“1”)) retval = true;
if (tmp.equalsIgnoreCase(“false”)) retval = false;
if (tmp.equals(“0”)) retval = false;

}
return retval;

}
public class RefreshThread extends Thread {

private URL codeBase;
public RefreshThread(String s, URL cb){

super(s);
codeBase = cb;

}
public void run() {

String uncachedDocument = “”;
String errorDocument = codeBase.toString() + “../forum_error.jsp”;
messageLineOne = “”;
messageLineTwo = “”;
// These are two behaviors that depend on the “target” parameter:
//
// 1. target = “_top”
//
// This means we are using the applet to break out of a frameset on

the browser.
//
// 2. target <> “_top”

15 1089-9 XC 6/26/01 7:40 AM Page 484

485C.15 Filename: Projects\bonForum\src\BonForumRobot.java

//
// This means we are using the applet to periodically refresh a

document within a frame
//

//
// The code below here makes this applet repeat an action

(showDocument)
// roughly every increment seconds, with a maximum controlled by

the limit parameter.
// However, note that if target is “_top” no repetition of

showDocument occurs.
counter = 1;

while (continueRunning) {
// put it to sleep for “increment” milliseconds
messageLineOne = “”;
getAppletContext().showStatus(“bonForumRobot”);
repaint();
try { sleep(3*(increment/4)); } catch (InterruptedException e)

{continue;}
// put it back to sleep for a “yellow light”
messageLineOne = “refreshing...”;
repaint();
try { sleep(increment/4); } catch (InterruptedException e)

{continue;}
// are all iterations done?
if(counter > limit) {

System.out.println(“counter:” + counter + “ over limit:”
+ limit);

stopRunning();
continue;

}
// no, do it
counter++;
String millis = Long.toString(System.currentTimeMillis());
// LATER: we will somehow refresh content only if stale
if((document.indexOf(“forum_error”) > -1)

|| (document.indexOf(“forum_login”) > -1)
|| (document.indexOf(“visitor_joins_chat”) > -1)
|| (document.indexOf(“visitor_starts_chat”) > -1)
|| (document.indexOf(“guest_executes_chat”) > -1)
|| (document.indexOf(“guest_exits_chat”) > -1)
|| (document.indexOf(“guest_executes_command”) > -1)
|| (document.indexOf(“guest_exits_command”) > -1)
|| (document.indexOf(“host_executes_chat”) > -1)
|| (document.indexOf(“host_exits_chat”) > -1)
|| (document.indexOf(“host_executes_command”) > -1)
|| (document.indexOf(“host_exits_command”) > -1)) {
//
// We fixup the filename as a unique filename to prevent

browser from
// retrieving the last result for a jsp uri request from

15 1089-9 XC 6/26/01 7:40 AM Page 485

486 Appendix C Source Code for bonForum Web Application

its cache.
//
// For example,
//

“http://localhost:8080/bonForum/jsp/forum/visitor_joins_chat.jsp#entry47”
// will become something like this:
//

“http://localhost:8080/bonForum/jsp/forum/visitor_joins_chat.jsp#entry47.962066767
851.tfe”

//
// The “millis” value added will create a unique

filename, so the browser will fetch the jsp
//
// The “.tfe” at the end of the uncached URL will map to

the BonForumEngine servlet.
//
// One drawback is that although the browser will look

for none of these unique names in the cache,
// it will nevertheless cache them, and cache them, and

cache them! Filling the cache with them!
//
uncachedDocument = document + millis + “.tfe”;
System.out.println(“Created name for uncachedDocument:” +

uncachedDocument);
}
else {

// NOTE: applet code must be in subfolder (e.g.,
“applet”) of folder with forum_login.jsp

// so this creates something like
“http://freedom:8080/bonForum/jsp/forum/forum_login.jsp”

uncachedDocument = errorDocument + millis + “.tfe”;
System.out.println(“Document not in list, using an error

document:” + uncachedDocument);
target = “_top”;
message = “Unknown destination, new login required!”;

}
if(target.equals(“_top”)) {

stopRunning(); // after this loop
getAppletContext().showStatus(message);

}
messageLineOne = “loading...”;
messageLineTwo = message;
repaint();
try {

getAppletContext().showDocument(new
URL(uncachedDocument), target);

} catch(MalformedURLException ee) {
System.out.println(“MalformedURLException:” +

ee.getMessage());
System.out.println(“MalformedURLException,

uncachedDocument:” + uncachedDocument);

15 1089-9 XC 6/26/01 7:40 AM Page 486

487C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

document = “”; // force errorDocument next time
}
messageLineTwo = “”;

}
}
} //End of Inner Class

}

C.16 Filename: Projects\bonForum\src\de\
tarent\forum\BonForumEngine.java

package de.tarent.forum;
/*<Imports>*/
import java.io.*;
import java.util.Hashtable;
import javax.servlet.*;
import javax.servlet.http.*;
/*</Imports>*/
/** BonForumEngine is the central servlet of bonForum web application.
* At present, it implements a chat. Its purpose is experimentation.
* It is described fully in the book:
* <i>XML, XSLT, Java and JSP - A Case Study in Developing a Web Application</i>,
* by Westy Rockwell, published by New
Riders.
* Translation to German published by Galileo Press.
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class BonForumEngine extends HttpServlet {

// holds and gives access to the data for the forum
private static BonForumStore bonForumStore = new BonForumStore();
// ensures nicknames are unique
private static Hashtable nicknameRegistry = new Hashtable();
// logs debugging information
private static BonLogger logBFE = null;
// controls logger output
private static String logging = null;
// false until logger ready
private static boolean loggingInitialized = false;
/** Initializes a BonForumEngine instance.
* Also sets its logging value from application init param.
* Also creates its logger if not done before.
*
*/
public void init() throws ServletException {

System.err.println(“ENTERING BonForumEngine init”);
if(!loggingInitialized) {

15 1089-9 XC 6/26/01 7:40 AM Page 487

488 Appendix C Source Code for bonForum Web Application

System.err.println(“BonForumEngine init loggingInitialized:” +
loggingInitialized);

logging = getServletContext().getInitParameter(“Logging”);
System.err.println(“BonForumEngine init logging:” + logging);
if(logging != null) {

logBFE = new BonLogger(“BonForumEngineLog.txt”, logging);
System.err.println(“BonForumEngine init logBFE:” + logBFE);
loggingInitialized = true;
System.err.println(“BonForumEngine init loggingInitialized:” +

loggingInitialized);
getBonForumStore().setLogging(logging);
System.err.println(“BonForumEngine init

getBonForumStore().setLogging(logging)”);
}

}
System.err.println(“LEAVING BonForumEngine init”);

}
/** Gets the BonForumStore from this BonForumEngine.
*
* @return BonForumStore
*/
public BonForumStore getBonForumStore() {

return bonForumStore;
}
private void log(String sessionId, String where, String what) {

if(logging != null) {
logBFE.logWrite(System.currentTimeMillis(), sessionId, where,

what);
}

}
/** Processes requests in context of web application rules.
* Called from BonForumEngine service method.
* Customizes the HttpServlet based engine as a web application
* (a chat in this case).
*
* @param request HttpServletRequest argument from service method
* @param response HttpServletResponse argument from service

method
* @param session HttpSession current
* @param bonForumCommand String routes request to next destination
* @return String bonForumCommand parameter, maybe changed by this method,

maybe not.
*
* @throws IOException
*/
protected String processRequest(HttpServletRequest request,

HttpServletResponse response,
HttpSession session,
String bonForumCommand)
throws IOException {

BonNode chatNode = null;

15 1089-9 XC 6/26/01 7:40 AM Page 488

489C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

Object obj = null;
String actorNickname = “”;
String actorAge = “”;
String xalanVersion = “”;
String sessionMaxInactiveMinutes = “”;
String actorRatingType = “”;
String chatModerated = “”;
String chatTopic = “”;
String chatSubject = “”;
String chatItem = “”;
String chatGuest = “”;
String chatMessage = “”;
String chatMessagesNavigator = “”;
String chatMessagesPageSize = “”;
String nameAndAttributes = “”;
String content = “”;
String forestHashtableName = “”;
String chatNodeKeyKey = “”;
request.setAttribute(“serviceStatus”, “InProcessRequestMethod”);

String sessionId = session.getId();
// using sessionId for now, later it will be
// replaced with userId, when user manager is implemented.
bonForumStore.initialize(sessionId);
// See if bonForumStore instance is bound to this ServletContext
// If not, bind bonForumStore so it can be found elsewhere in web app
// Then, you can use code like the following from other classes, to
// have access to the methods of the bonForumStore:
//
// BonForumStore bonForumStore =
// (bonForumStore)application.getAttribute(“bonForumStore”);
//
// Or, from a JSP page:
//
// if (pageContext.getServletContext().getAttribute(“bonForumStore”)

!= null) {
// BonForumStore bFS =
//

(bonForumStore)(pageContext.getServletContext().getAttribute(
// “bonForumStore”));
// }
//
// Of course, to use properties, it is simpler to do this:
//
// <jsp:useBean id=”bonForumStore”
// class=”de.tarent.forum.BonForumStore”

// scope=”application”/>
//
Object temp = getServletContext().getAttribute(“bonForumStore”);
if (temp == null) {

getServletContext().setAttribute(“bonForumStore”,
getBonForumStore());

15 1089-9 XC 6/26/01 7:40 AM Page 489

490 Appendix C Source Code for bonForum Web Application

}
// bonForumCommand selects the next state of the application
// Its value will be used to create a JSP filename.
// If it has no value here, construct one from bonCommand
// request parameter, or else, from other request parameters.
bonForumCommand = normalize(bonForumCommand).trim();
if(bonForumCommand.length() < 1) {

// As a second alternative the engine uses
// the bonCommand request parameter
// to tell where to forward the request
String bonCommand =

normalize((String)request.getParameter(“bonCommand”)).trim();
if(bonCommand.length() > 0) {

bonForumCommand = bonCommand;
}
else {

// As a third alternative, the engine can use any combination
// of one to three other parameters (actor, action, thing)
// to construct the bonForumCommand described above
String actorStatus =

normalize((String)request.getParameter(“actorStatus”)).trim();
String actionStatus =

normalize((String)request.getParameter(“actionStatus”)).trim();
String thingStatus =

normalize((String)request.getParameter(“thingStatus”)).trim();
if((actorStatus.length() > 0) ||

(actionStatus.length() > 0) ||
(thingStatus.length() > 0)) {
bonForumCommand = actorStatus + “_” + actionStatus + “_”

+ thingStatus;
// later, trim off leading and trailing underscore chars,

if any
}
else {

bonForumCommand = “forum_error”;
request.setAttribute(“serviceStatus”,

“ForwardToErrorPage”);
log(sessionId, “err”, “No bonForumCommand! Forwarding To

Error Page!”);
}

}
}
// used for debugging only:
session.setAttribute(“bonForumCommand”, bonForumCommand);
//
// NOTES: ADDING ELEMENTS to bonForumXML ForestHashtable using

BonForumStore
//
// The BonForumStore.add() method automatically finds parent nodeKey

three ways:
//

15 1089-9 XC 6/26/01 7:40 AM Page 490

491C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

// 1. If the parent is one of the intrinsic system elements then that
// element’s name (“bonForum”, “”actors”, “actions”, “things”, “system”,

etc.)
// is the key in the nodeNameHashtable for the parent nodeKey.
//
// 2. If the parent is not one of the intrinsic system elements
// (for example, a “message” element inside the “things” element)
// then the key in the nodeKeyHashtable is made up of the following:
// <sessionId> + “_” + <nodeKey.aKey> + “:” <elementName>.
// (for example: “54w5d31sq1_985472754824:message”)
// NOTE: there is also an option to leave out the nodeKey.aKey portion

of
// the key, for a selected list of node names (see ForestHashtable,

property
// UniqueNodeKeyKeyList. That reduces the size requirements of the
// nodeKeyHashtable (for example, by not storing all the message nodeKey

keys).
//
// 3. If the parent is one of certain elements that are loaded into
// the bonForumXML (like the “subjects” subtree loaded with the
// loadForumXML command, for example), then the nodeKey is in the
// corresponding hashtable for that upload.
// (For example, subjects elements are in the pathNameHashtable with
// a key made from the path from root to the node whose nodeKey is

saved.
// An example of a subject key is

“bonForum.things.subjects.Vehicles.Motorcycles”)
// NOTE: EACH add() method call also returns an object
// that can be cast to a NodeKey
//
// 1) YOU CAN USE THESE TO RE-CREATE THE nodeKeyHashtable nodeKey key.
//
// 2) YOU CAN ALSO USE THESE TO RECALL ELEMENTS BY NodeKey.
//
// With the cast returned object, you can keep a reference to any
// nodeKey around. For the message element just added, we could keep
// its nodeKey as follows:
//
// NodeKey messageNodeKey = (NodeKey)obj;
//
// Then, using the aKey member of the NodeKey, together with the

sessionId
// and the name of the node, you can recreate the key for the NodeKey in

the
// nodeKeyHashTable, and use it to add children to the node. For an

example,
// see below how we add hostKey to chat. That example uses two different
// cast returned objects, one to get the hostNodeKey as a String,
// the other to get the chatNodeKeyKey for adding a node (hostKey) with

that
// String as content to the chat node. That same hostKey value will be

15 1089-9 XC 6/26/01 7:40 AM Page 491

492 Appendix C Source Code for bonForum Web Application

used
// to stamp all messages from that host to that chat.
//
// We also use the NodeKey cast return object to get access to its

contents
//
// Notice, however, that the add() method involves extra overhead in the
// example just cited, where hostKey is added to chat, and elsewhere.
// The add() method in BonForumStore wraps the addChildNodeToNonRootNode
// method in ForestHashtable, which can be used instead, if parent

nodeKey
// is known. Having just one method adding nodes does have advantages

though.
// PROCESSING OF MANY FORUM COMMANDS IS NEXT
// This extra bonForum variable is available on most JSP form,
// It can be used later for setting options for bonForumCommand, or

whatever.
String actorReturning =

normalize((String)request.getParameter(“actorReturning”));
if(actorReturning.trim().length() > 0) {

session.setAttribute(“actorReturning”, actorReturning);
}
else {

session.setAttribute(“actorReturning”, “”);
}
// Incoming request parameters are used as “bonForum variables”
// (including actor data, GUI settings, chat messages, etc.).
// The parameter values are processed and/or set in attributes.
// Most are set in session attributes, but at least two in application

attributes.
// They can also be added to the bonForumXML “database” (chat messages

are, for example)
// These if clauses are roughly prioritized by frequency of access,
// and grouped by application state, (except for “_executes_chat”

commands)
if(bonForumCommand.indexOf(“host_executes_chat_controls”) > -1 ||

bonForumCommand.indexOf(“guest_executes_chat_controls”) > -1) {
//handle chatMessagesNavigator
chatMessagesNavigator =

normalize((String)request.getParameter(“chatMessagesNavigator”));
if(chatMessagesNavigator.trim().length() > 0) {

session.setAttribute(“chatMessagesNavigator”,
chatMessagesNavigator);

}
// handle chatMessage
// If we have a message save it as child of things,
// and the messageKey to the chat element.
chatMessage =

normalize((String)request.getParameter(“chatMessage”));
if(chatMessage.trim().length() > 0) {

// add message child to things element

15 1089-9 XC 6/26/01 7:40 AM Page 492

493C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

// get itemKey from session Attribute
String itemKey =

normalize((String)session.getAttribute(“itemKey”));
if(itemKey.trim().length() < 1) {

itemKey = “”;
log(sessionId, “err”, “processRequest() ERROR: session

has no itemKey!”);
}
// NOTE: make sure attribute name=value items are separated by

a space
// and that there are no spaces next to the “=” between

name and value
// You can have quotes inside the value string, but only

using \” to escape them
// to optimize speed, attributes ordered by frequency of

access using getAttributeValue()
nameAndAttributes = “message”;
nameAndAttributes = nameAndAttributes + “ itemKey=\”” +

itemKey + “\””;
// date and time stamp for message
nameAndAttributes = nameAndAttributes + “ timeMillis=\”” +

BonForumUtils.timeMillis() + “\””;
nameAndAttributes = nameAndAttributes + “ dateStamp=\”” +

BonForumUtils.getLastDate() + “\””;
// Try to get hostKey from session Attribute
// If it is not there get guestKey instead
// LATER: add systemKey to this also!
String actorKeyValue =

normalize((String)session.getAttribute(“hostKey”));
if(actorKeyValue.trim().length() < 1) {

actorKeyValue =
normalize((String)session.getAttribute(“guestKey”));

if(actorKeyValue.trim().length() < 1) {
log(sessionId, “err”, “no hostKey or guestKey for

message!!!!!!!!!!”);
actorKeyValue = “”;

}
else {

nameAndAttributes = nameAndAttributes + “
guestKey=\”” + actorKeyValue + “\””;

}
}
else {

nameAndAttributes = nameAndAttributes + “ hostKey=\”” +
actorKeyValue + “\””;

}

chatNodeKeyKey =
normalize((String)session.getAttribute(“chatNodeKeyKey”));

/* THESE ARE DEBUGGING TESTS
// test value with escaped quote (xml error)

15 1089-9 XC 6/26/01 7:40 AM Page 493

494 Appendix C Source Code for bonForum Web Application

nameAndAttributes = nameAndAttributes + “
type=\”te\\\”st\\\”ing\””;

// test unclosed quotes in value (xml error)
nameAndAttributes = nameAndAttributes + “ test1=\”” + “hello

test1!”;
*/
// if no actor key or no chatNodeKeyKey just silently omits

message
if(!actorKeyValue.equals(“”) && !chatNodeKeyKey.equals(“”)) {

// who said what in message
content =

normalize((String)session.getAttribute(“actorNickname”));
content += “::” + chatMessage;
// add message element as child of “things” in

bonForumXML, a ForestHashtable
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, “things”,

nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId);
NodeKey messageNodeKey = (NodeKey)obj;
// get messageKey as String
//String messageKey = messageNodeKey.aKey + “.” +

messageNodeKey.bKey + “.” + messageNodeKey.cKey;
String messageKey = messageNodeKey.toString();
// add messageKey to chat
nameAndAttributes = “messageKey”;
//content = messageKey;
content = messageKey;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, chatNodeKeyKey,

nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId);
session.setAttribute(“messageKey”, messageKey);

}
}// end of chat message processing

}
else if(bonForumCommand.equals(“host_executes_chat”)) {

boolean haveSubject = true;
boolean haveTopic = true;
boolean actorIsHostInChat = false;
boolean actorIsGuestInChat = false;
boolean chatExistsForSubjectAndTopic = false;
boolean actorRestartingCurrentChat = false;
// get chat topic chosen by host
chatTopic =

normalize((String)session.getAttribute(“chatTopic”)).trim();
// if no topic, prevent chat start
if(chatTopic.length() < 1) {

log(sessionId, “err”, “ERROR: SESSION HAS NO chatTopic,
forwarding back to get it!”);

haveTopic = false;
}
else if(chatTopic.equalsIgnoreCase(“NONE”)) {

15 1089-9 XC 6/26/01 7:40 AM Page 494

495C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

log(sessionId, “err”, “ERROR: SESSION HAS chatTopic=NONE,
forwarding back to get it!”);

haveTopic = false;
}
// get chat Subject chosen by host
chatSubject =

normalize((String)session.getAttribute(“chatSubject”)).trim();
// if no subject, prevent chat start
if(chatSubject.length() < 1) {

log(sessionId, “err”, “ERROR: SESSION HAS NO chatSubject,
forwarding back to get it!”);

haveSubject = false;
}
else if(chatSubject.equalsIgnoreCase(“NONE”)) {

log(sessionId, “err”, “ERROR: SESSION HAS chatSubject=NONE,
forwarding back to get it!”);

haveSubject = false;
}
// Note: here we must synchronize two things:
// 1. the check to see subject+topic is taken
// 2. the addition of new chats.
// If we do not do that, two threads with same subject+topic
// can go through here very close together, and this can happen:
// - The first checked subject+topic and is about to add chat, but

hasn’t.
// - The second checks it subject+topic and finds it clear to use.
// - The first adds its chat with the same subject+topic.
// - The second adds its chat with the same subject+topic
// Problems! Using subject+topic to find chat again can only find

one!
//
// The first thread (thus session) that enters the synchronized

block
// gets a lock on bonForumStore object.
// The synchronized block is then closed to all other threads.
// Automatically blocked by Java, they must wait until they can
// get the lock on the bonForumStore object before they can enter.
// Thus the synchronization functions as a FIFO for the threads.
//
// this almost works, needs something else synchronized?
//synchronized(bonForumStore.bonForumXML) {
synchronized(bonForumStore) {
// If subject and topic are ok, see if that chat exists.
// If so, check for two things:
// 1. Is it the current chat for session and actor is trying to

restart it,
// 2. Is it a chat the actor is already in either as host or as

guest.
// (The third alternative is that it is a new chat to start.)
if(haveSubject && haveTopic) {

// see if subject+topic combination exists as a chat

15 1089-9 XC 6/26/01 7:40 AM Page 495

496 Appendix C Source Code for bonForum Web Application

String fakeChatItem = chatSubject + “_[“ + chatTopic + “]”;
// replace all ‘.’ with ‘_’ which is separator in chatItem
// ‘.’ is separator in pathNameHashtable
fakeChatItem = fakeChatItem.replace(‘.’, ‘_’);
String foundChatNodeKeyKey =

getBonForumStore().getBonForumChatNodeKeyKey(fakeChatItem);
if((foundChatNodeKeyKey != null) &&

(foundChatNodeKeyKey.length() > 0)) {
// a chat exists with chosen subject and topic
chatExistsForSubjectAndTopic = true;
// see if actor wants to restart current chat for session
// (that information may come in useful later for user

messages, preferences
String newChatSubject =

normalize((String)session.getAttribute(“newChatSubject”));
String newChatTopic =

normalize((String)session.getAttribute(“newChatTopic”));
if(!newChatTopic.equals(“yes”) &&

!newChatSubject.equals(“yes”)) {
// actor trying to re-start current chat for this

session
// see if current chat for session exists
chatNodeKeyKey =

normalize((String)session.getAttribute(“chatNodeKeyKey”));
if(chatNodeKeyKey.trim().length() > 0) {

// session has a chat
// see if it is the right one for subject and

topic
if(chatNodeKeyKey.equals(foundChatNodeKeyKey)) {

actorRestartingCurrentChat = true;
}
else {

//CHAT GONE! WILL RESTART ONE FOR SUBJECT &
TOPIC

chatExistsForSubjectAndTopic = false;
actorRestartingCurrentChat = false;

}
}

}
// see if actor is a host in chat found with requested

subject and topic
String actorKeyValue =

normalize((String)session.getAttribute(“hostKey”));
if(actorKeyValue.trim().length() > 0) {

actorIsHostInChat =
getBonForumStore().isHostInChat(actorKeyValue, foundChatNodeKeyKey);

}
if(!actorIsHostInChat) {

// if not, see if actor is a guest in current chat
actorKeyValue =

normalize((String)session.getAttribute(“guestKey”));

15 1089-9 XC 6/26/01 7:40 AM Page 496

497C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

if(actorKeyValue.trim().length() > 0) {
actorIsGuestInChat =

getBonForumStore().isGuestInChat(actorKeyValue, foundChatNodeKeyKey);
}

}
}
// If actor will rejoin existing chat,
// route actor there using a bonForumCommand,
// which determines next JSP destination.
// when engine forwards request.
boolean actorWillRejoinChat = false;
if(chatExistsForSubjectAndTopic) {

// cannot start chat, it exists already
haveTopic = false;
// Here later implement a user preference, using session

attributes.
// Choices can be offered for behavior of “visitor starts

chat” when chat exists
// 1. always warn user and ask again for new subject

and/or new topic
// 2 if actor was in it, always join with previous

status, else warn and ask again
// 3. if actor was in it, always join as guest, else warn

and ask again
// All these choices can be modified re

actorRestartingCurrentChat value
// For now, we implement choice #2
if(actorIsHostInChat) {
bonForumCommand = “host_executes_chat”;

actorWillRejoinChat = true;
else if(actorIsGuestInChat) {

bonForumCommand = “guest_executes_chat”;
actorWillRejoinChat = true;

}
else {

// cannot start existing chat
// set attribute for using on

visitor_starts_chat.jsp
// to trigger user message that chat exists:
session.setAttribute(

“chatSubjectAndTopicTaken”, fakeChatItem);
chatTopic = “”;
session.setAttribute(

“chatTopic”, “”);
session.setAttribute(

“newChatTopic”, “no”);
bonForumCommand = “visitor_starts_chat”;

}
}
// If actor will rejoin existing chat,
// need to set session attributes that

15 1089-9 XC 6/26/01 7:40 AM Page 497

498 Appendix C Source Code for bonForum Web Application

// are usually set when actor starts new chat.
//
if(actorWillRejoinChat) {

// nodeNameHashtable key for the chat node key is needed
for:

// 1. adding messages to chat later.
// 2. seeing if a chat is the current chat
session.setAttribute(“chatNodeKeyKey”,

foundChatNodeKeyKey);
// host session doesn’t need this,
// but if rejoining chat as guest, might?
session.setAttribute(“chatItem”, fakeChatItem);
// set the itemKey for this chat into a session attribute
// item key is added as a message attribute later
// it is needed for finding messages (temporarily)
// and for any guest session to find chat
String foundChatItemKey =

getBonForumStore().getBonForumChatItemNodeKey(fakeChatItem).toString();
session.setAttribute(“itemKey”, foundChatItemKey);

}
}
if(haveSubject && haveTopic) {

// actor starts chat
// Each actorNickname is unique in bonForum,
// Only one host node is allowed per actorNickname
actorNickname =

normalize((String)session.getAttribute(“actorNickname”));
// Try getting key to a host node
// for current actor’s nickname
NodeKey hostNicknameNodeKey =

getBonForumStore().getActorNicknameNodeKey(actorNickname, “host”);
NodeKey hostNodeKey = null;
if(hostNicknameNodeKey != null) {

BonNode hostNicknameNode =
getBonForumStore().getBonForumXML().getBonNode(hostNicknameNodeKey);

hostNodeKey = hostNicknameNode.parentNodeKey;
}
if(hostNodeKey == null) {

// If a host node key does not exist,
// then current actor is not yet a host,
// so add a new host node,
// with actorNickname,
// actorAge and
// actorRating children,
// to the “actors” root-child node
// of bonForumXML
nameAndAttributes = “host”;
content = “”;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, “actors”,

nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId);

15 1089-9 XC 6/26/01 7:40 AM Page 498

499C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

hostNodeKey = (NodeKey)obj;
String creationTimeMillis = hostNodeKey.aKey;
String hostNodeKeyKey = sessionId + “_” +

creationTimeMillis + “:host”;
// Make nodeNameHashtable key
// for the hostNodeKeyKey
// available to session.
// It gives quick access to last host nodeKey for session
session.setAttribute(“hostNodeKeyKey”, hostNodeKeyKey);
nameAndAttributes = “actorNickname”;
content = actorNickname;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, hostNodeKeyKey,

nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId);
//NOTICE: the commented-out line here is more efficient

than the above line.
// and does not require the hostNodeKeyKey to be

reconstructed!
// However, we may want the hostNodeKeyKey in a session

attribute for later?
// Also, if we use this next statement, then we are using

two ways to add
// data to the XML. It may be better if all adding goes

throught the
// wrapper method? Still trying to decide. Performance

difference may decide this?
// There are other similar lines that could be faster.
// They are in host handling, but not in message or guest

handling.

//bonForumStore.getBonForumXML().addChildNodeToNonRootNode(“actorNickname”, “”,
content, hostNodeKey, “nodeNameHashtable”, sessionId);

nameAndAttributes = “actorAge”;
content = normalize((String)session.getAttribute(

“actorAge”));
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, hostNodeKeyKey,

nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId);
nameAndAttributes = “actorRating”;
content = normalize((String)session.getAttribute(

“actorRating”));
if(content.length() < 1) {

content = “5”;
}
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, hostNodeKeyKey,

nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId);
}
// Add a chat node to the “things”
// root-child node of bonForumXML,
// with a chatModerated attribute,

15 1089-9 XC 6/26/01 7:40 AM Page 499

500 Appendix C Source Code for bonForum Web Application

// and no text content.
chatModerated = normalize((String)session.getAttribute(

“chatModerated”));
if (chatModerated.equalsIgnoreCase(“yes”)) {

nameAndAttributes = “chat moderated=\”yes\””;
}
else {

nameAndAttributes = “chat moderated=\”no\””;
}
content = “”;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, “things”,

nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId);
NodeKey chatNodeKey = (NodeKey)obj;
// Add a hostKey to the new chat node,
// its text content is the key to the host node
String creationTimeMillis = chatNodeKey.aKey;
chatNodeKeyKey = sessionId + “_” + creationTimeMillis +

“:chat”;
nameAndAttributes = “hostKey”;
content = hostNodeKey.toString();
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, chatNodeKeyKey,

nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId);
// Make the hostKey available to this session.
// It is later used for these things:
// 1. finding out if an actor is a host in a chat
// 2. branding messages with a host as sender
session.setAttribute(“hostKey”, content);
// Make nodeNameHashtable key
// for the chat node key
// available to session.
// It is useful later for these things:
// 1. adding messages to chat
// 2. finding the chat node
// (to add nodes or attributes)
// 3. determining if a chat is the current chat
session.setAttribute(“chatNodeKeyKey”, chatNodeKeyKey);
// Add a “chatItem” child
// to the selected chat subject element.
// That selected element is
// the chat subject category
// in bonForumXML.
// The name of the new child is “sessionID_” +
// the sessionId of
// the visitor starting the chat +
// the time the chat node was created in millis.
// The time suffix allows more than one chat
// to exist per session.
// Also add an attribute called chatTopic,
// with the (escaped) chatTopic

15 1089-9 XC 6/26/01 7:40 AM Page 500

501C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

// input by the visitor.
// The sessionId (recoverable from
// the name of the new child) can
// be used later to quickly find the chat nodeKey.
// That is useful for example
// when a visitor joins a chat
// Note: when adding the sessionId
// element, its parent is found
// using the pathNameHashtable.
// The parent nodeKey is there
// with a key which is its pathName

// (and equal to chatSubject)
nameAndAttributes = “sessionID_”;
nameAndAttributes += sessionId;
nameAndAttributes += “_”;
nameAndAttributes += creationTimeMillis;
nameAndAttributes += “ chatTopic=\””;
nameAndAttributes += chatTopic;
nameAndAttributes += “\””;
content = “”;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, chatSubject,

nameAndAttributes, content, forestHashtableName, “pathNameHashtable”, sessionId);
NodeKey itemNodeKey = (NodeKey)obj;
// set itemKey to itemNodeKey as a string
String itemKey = itemNodeKey.toString();
// Add the key to the chatItem element (itemKey)
// to the chat element as an attribute
// The itemKey connects a chat
// to its subject, topic and messages!
String attributeName = “itemKey”;
String attributeValue = itemKey;
NodeKey nk = bonForumStore.addChatNodeAttribute(

chatNodeKeyKey, attributeName, attributeValue);
// Make the itemKey available to the session
session.setAttribute(“itemKey”, itemKey);

}
if((!chatExistsForSubjectAndTopic) && (!haveSubject ||

!haveTopic)) {
// missing information, must return to get it
// LATER: set attribute to trigger message to user
bonForumCommand = “visitor_starts_chat”;

}
} // end of synchronized block!

}// end of host_executes_chat processing
else if (bonForumCommand.equals(“guest_executes_chat”)) {

// assume visitor will join chat
boolean haveChatItem = true;
boolean chatExistsForSubjectAndTopic = false;
// get chat Subject/Topic pair chosen by guest
chatItem =

15 1089-9 XC 6/26/01 7:40 AM Page 501

502 Appendix C Source Code for bonForum Web Application

normalize((String)session.getAttribute(“chatItem”)).trim();
if(chatItem.length() < 1) {

haveChatItem = false;
log(sessionId, “err”,
“processRequest() ERROR: session has no chatItem, going

back for it!”);
}
if(chatItem.equalsIgnoreCase(“NONE”)) {

haveChatItem = false;
log(sessionId, “err”,
“processRequest() ERROR: session has chatItem=NONE, going

back for it!”);
}
// For a guest to join a chat, we need to get sessionId of HOST
// that started that chat! To find chat for that visitor to

join,
// we will need the key to its nodeKey in the nodeNameHashtable.
// We call that key the chatNodeKeyKey, and can use it to add
// elements, etc. directly to the chat. Note that we CANNOT just
// make a new “<sessionId>_<creationTimeMillis>:chat” key

string,
// because the chat was created by the host’s sessionId and we
// have only the guest’s sessionId now! So we get the right
// chatNodeKeyKey for the chat, which is
// <hostSessionId>_<creationTimeMillis>:chat
// directly from the nodeName of the chosen chatItem element

which
// was saved when the chat was started. This way there is no

need
// to iterate the chats looking for the one with the right

itemKey.
// Instead, we will be able to use:
// chatNodeKeyKey =

session.getAttribute(“chatNodeKeyKey”);
//
// NOTE: chatItem must be the path to sessionId child element of
// subject element. That must be generated from a more

meaningful
// chat selection list presented to user. We use XSLT to

generate
// that more meaningful chat selection list.
// NOTE: we must disallow ‘>[‘ in subject node names for this to

work!
// NOTE: For now, separator in incoming chat subject path is

wired as ‘_’
// e.g. Animals_Fish_Piranha_[first aid for fish breeders]
// NOTE: the creationTimeMillis portion of the nodeNameHashtable

keys
// allows hosts and guests to be in more than one chat,
// and allows actors to host and guest multiple chats.
// NOTE: there is also an option to leave out the nodeKey.aKey

15 1089-9 XC 6/26/01 7:40 AM Page 502

503C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

portion of
// the key, for a selected list of node names (see

ForestHashtable, property
// UniqueNodeKeyKeyList. That reduces the size requirements of

the
// nodeKeyHashtable (for example, by not storing all the message

nodeKey keys).
// It can also be used for security, for example, to insure that

there is
// only one host node per session, etc.
// As in the case of “visitor starts chat”
// (see the note before synchronize block above),
// we synchronize here two things:
// 1. the check for existence of chat for subject+topic

(chatItem)
// 2. the joining of a chat by visitor
// - We assume that the chat for chatItem exists, since it was

picked
// from a list generated by the webapp from existing chats.
// - When chat deletion is implemented,
// (and even now, because chats expire with their session),
// we need to guard against adding part of the elements, etc.
// required for joining a chat, and then not being able to

complete all
// the additions required. If synchronization turns out to

affect
// performance too much, we could make a background task to

clean up
// such debris?
// almost works, needs something else synchronized?
//synchronized(bonForumStore.bonForumXML) {
synchronized(bonForumStore) {
if(haveChatItem) {

boolean actorIsHostInChat = false;
boolean actorIsGuestInChat = false;
boolean actorWillRejoinChat = false;
// See if chatItem (i.e., subject+topic) exists already as

a chat:
chatNodeKeyKey =

getBonForumStore().getBonForumChatNodeKeyKey(chatItem);
if((chatNodeKeyKey != null) && (chatNodeKeyKey.length() >

0)) {
// Being able to find a chatNodeKeyKey from chatItem
// means that a chat exists with chosen subject and

topic.
chatExistsForSubjectAndTopic = true;
// see if actor is a host in chat found
String actorKeyValue =

normalize((String)session.getAttribute(“hostKey”));
if(actorKeyValue.trim().length() > 0) {

actorIsHostInChat =

15 1089-9 XC 6/26/01 7:40 AM Page 503

504 Appendix C Source Code for bonForum Web Application

getBonForumStore().isHostInChat(actorKeyValue, chatNodeKeyKey);
}
if(!actorIsHostInChat) {

// if not, see if actor is a guest in chat
found

actorKeyValue =
normalize((String)session.getAttribute(“guestKey”));

if(actorKeyValue.trim().length() > 0) {
actorIsGuestInChat =

getBonForumStore().isGuestInChat(actorKeyValue, chatNodeKeyKey);
}

}
}
// see if visitor will rejoin chat
// because already a host or guest,
// or will join chat becoming a new guest
if(chatExistsForSubjectAndTopic) {

// set the chatNodeKeyKey for this chat into a
session attribute

session.setAttribute(“chatNodeKeyKey”,
chatNodeKeyKey);

// if visitor already in chat as host or guest, will
re-join it.

if(actorIsHostInChat) {
bonForumCommand = “host_executes_chat”;
actorWillRejoinChat = true;
haveChatItem = false;

}
else if(actorIsGuestInChat) {

//bonForumCommand = “guest_executes_chat”;
actorWillRejoinChat = true;
haveChatItem = false;

}
else {

// visitor not in chat yet, so will join as
guest

//bonForumCommand = “guest_executes_chat”;
}

}
// set session attributes for message handling
if(actorWillRejoinChat) {

// not needed, hasn’t changed?
// session.setAttribute(“chatItem”, chatItem);
// set the itemKey for this chat into a session

attribute
// it is needed for finding messages (temporarily)
// and for any guest session to find it
String foundChatItemKey =

getBonForumStore().getBonForumChatItemNodeKey(chatItem).toString();
session.setAttribute(“itemKey”, foundChatItemKey);

}

15 1089-9 XC 6/26/01 7:40 AM Page 504

505C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

}
// check chat node OK before doing anything else

chatNode =
bonForumStore.getBonForumChatNode(chatNodeKeyKey);

if(chatNode == null) {
haveChatItem = false;
bonForumCommand = “forum_error”;
request.setAttribute(“serviceStatus”,

“ForwardToErrorPage”);
log(sessionId, “err”,
“ERROR! No chatNode in guest_executes_chat handler!

Forwarding To Error Page!”);
}

}
// actor joins chat
if(haveChatItem) {

// actorNickname is unique in bonForum,
// Allow only one guest node per actorNickname
// Get the guest nickname from session
actorNickname =

normalize((String)session.getAttribute(“actorNickname”));
// Get guest nickname key
NodeKey guestNicknameNodeKey =

getBonForumStore().getActorNicknameNodeKey(actorNickname, “guest”);
NodeKey guestNodeKey = null;
// If got key, get guest nickname node,
// use its parent key to get guest node key
if(guestNicknameNodeKey != null) {
BonNode guestNicknameNode =

getBonForumStore().getBonForumXML().getBonNode(guestNicknameNodeKey);
guestNodeKey = guestNicknameNode.parentNodeKey;

}
// If guest node key does not exist,
// neither does guest, so add guest node,
// with its nickname, age and rating children
// to the “actors” rootchild node of database.
if(guestNodeKey == null) {

//add guest node to actors
nameAndAttributes = “guest”;
content = “”;
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”, “actors”,

nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId);
guestNodeKey = (NodeKey)obj;
// add actorNickname to guest
// the aKey in the NodeKey is a timeMillis value

from node addition
// It is used also in the nodeKeyHashtable key

values
String creationTimeMillis = guestNodeKey.aKey;
String guestNodeKeyKey = sessionId + “_” +

15 1089-9 XC 6/26/01 7:40 AM Page 505

506 Appendix C Source Code for bonForum Web Application

creationTimeMillis + “:guest”;
// Make nodeNameHashtable key
// for the guestNodeKey
// available to session.
// It gives quick access to last guest nodeKey for

session
session.setAttribute(“guestNodeKeyKey”,

guestNodeKeyKey);
// add actorNickname to guest
nameAndAttributes = “actorNickname”;
content =

normalize((String)session.getAttribute(“actorNickname”));
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”,

guestNodeKeyKey, nameAndAttributes, content, forestHashtableName,
“nodeNameHashtable”, sessionId);

// see the NOTICE above, in comment when adding
actorNickname to host

// add actorAge to guest
nameAndAttributes = “actorAge”;
content =

normalize((String)session.getAttribute(“actorAge”));
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”,

guestNodeKeyKey, nameAndAttributes, content, forestHashtableName,
“nodeNameHashtable”, sessionId);

// add actorRating to guest
nameAndAttributes = “actorRating”;
content =

normalize((String)session.getAttribute(“actorRating”));
if(content.length() < 1) {

content = “5”;
}
forestHashtableName = “bonForumXML”;
obj = bonForumStore.add(“bonAddElement”,

guestNodeKeyKey, nameAndAttributes, content, forestHashtableName,
“nodeNameHashtable”, sessionId);

}
// add guestKey to chat, that is how guest joins chat.
nameAndAttributes = “guestKey”;
content = guestNodeKey.toString();
forestHashtableName = “bonForumXML”;
//chatNodeKeyKey =

normalize((String)session.getAttribute(“chatNodeKeyKey”));
obj = bonForumStore.add(“bonAddElement”, chatNodeKeyKey,

nameAndAttributes, content, forestHashtableName, “nodeNameHashtable”, sessionId);
// set the guestKey for this chat into a session attribute
session.setAttribute(“guestKey”, guestNodeKey.toString());
// set the itemKey for this chat into a session attribute

for the guest’s session
String chatItemKey =

15 1089-9 XC 6/26/01 7:40 AM Page 506

507C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

bonForumStore.getBonForumAttributeValue(chatNode, “itemKey”);
session.setAttribute(“itemKey”, chatItemKey);
//LATER: here add status attribute to guest

} // end if haveChatItem (#3)
if((!chatExistsForSubjectAndTopic) && (!haveChatItem)) {

// missing information, must return to get it
// LATER: set attribute to trigger message to user
bonForumCommand = “visitor_joins_chat”;

}
} // end of synchronized block!

}// end of guest_executes_chat processing
else if(bonForumCommand.indexOf(“visitor_starts_chat”) > -1) {

//if(bonForumCommand.equals(“visitor_starts_chat”)) {
// not used yet

//}
//else
if(bonForumCommand.indexOf(“visitor_starts_chat_frame”) > -1) {

//chat subject
chatSubject =

normalize((String)request.getParameter(“chatSubject”));
// strip off some leftmost nodes, there during development

only
if(chatSubject.indexOf(“bonForum.”) == 0) {

chatSubject =
chatSubject.substring(“bonForum.”.length());

}
if(chatSubject.indexOf(“things.”) == 0) {

chatSubject =
chatSubject.substring(“things.”.length());

}
if(chatSubject.indexOf(“subjects.”) == 0) {

chatSubject =
chatSubject.substring(“subjects.”.length());

}
if(chatSubject.trim().length() > 0) {

if(chatSubject.equals(normalize((String)session.getAttribute(“chatSubject”)))) {
session.setAttribute(“newChatSubject”, “no”);

}
else {

session.setAttribute(“newChatSubject”, “yes”);
session.setAttribute(“chatSubject”,

chatSubject);
}

}
}
//else

if(bonForumCommand.indexOf(“visitor_starts_chat_controls”) > -1) {
//}
//else if(bonForumCommand.indexOf(“visitor_starts_chat_robot”) >

-1) {

15 1089-9 XC 6/26/01 7:40 AM Page 507

508 Appendix C Source Code for bonForum Web Application

//}
else if(bonForumCommand.indexOf(“visitor_starts_chat_ready”) > -

1) {
//chat moderated flag
chatModerated =

normalize((String)request.getParameter(“chatModerated”));
if(chatModerated.trim().length() > 0) {

session.setAttribute(“chatModerated”,
chatModerated);

}
//chat topic
chatTopic =

normalize((String)request.getParameter(“chatTopic”));
if(chatTopic.trim().length() > 0) {

if(chatTopic.equals(

normalize((String)session.getAttribute(“chatTopic”)))) {
session.setAttribute(“newChatTopic”, “no”);

}
else {

session.setAttribute(“newChatTopic”, “yes”);
session.setAttribute(“chatTopic”, chatTopic);

}
}

}
// else {
// NOTE: test which ones?
// NOTE: change this so it checks indexOf not equals,
// then looks for equals(xxxxx_ready, etc.)
// e.g., _ready here will make sure subject and topic have

values
// and if not, will change bonForumCommand to send user
// back to visitor_starts_chat
// ALSO: use constants not strings here?
// NOTE: also, move the processing of request parameters into
// these blocks as methods, so more than one block can
// share them (e.g., nickname).
//
// NOTE: Then move chat processing code out to new class

BonForumChat.java
// }

}// end of visitor_starts_chat processing
else if(bonForumCommand.indexOf(“visitor_joins_chat”) > -1) {

//if(bonForumCommand.equals(“visitor_joins_chat”)) {
// not used yet

//}
//else
if(bonForumCommand.indexOf(“visitor_joins_chat_frame”) > -1) {

//chat moderated flag
chatModerated =

normalize((String)request.getParameter(“chatModerated”));

15 1089-9 XC 6/26/01 7:40 AM Page 508

509C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

if(chatModerated.trim().length() > 0) {
session.setAttribute(“chatModerated”,

chatModerated);
}
//chat item
chatItem =

normalize((String)request.getParameter(“chatItem”));
// strip off some leftmost nodes, there during development

only
if(chatItem.indexOf(“bonForum.”) == 0) {

chatItem = chatItem.substring(“bonForum.”.length());
}
if(chatItem.indexOf(“things.”) == 0) {

chatItem = chatItem.substring(“things.”.length());
}
if(chatItem.indexOf(“subjects.”) == 0) {

chatItem = chatItem.substring(“subjects.”.length());
}
if(chatItem.trim().length() > 0) {

session.setAttribute(“chatItem”, chatItem);
}
//take chatItem apart to get subject and topic from guest

session
//we cannot get it from session attribute, because that

was saved by a host
if(chatItem.trim().length() > 0) {

// e.g. animals_fish_piranha_[first aid for fish
breeders]

int inxTopic = chatItem.indexOf(“[“);
// temp kludge until xsl to remove the ‘_’ char

before ‘[‘ is found!
int adjust = 1;
int inxTopic2 = chatItem.indexOf(“_[“);
if(inxTopic2 == inxTopic - 1) {

inxTopic = inxTopic2;
++adjust;

}
chatSubject = chatItem.substring(0, inxTopic);
// replace all ‘_’ with ‘.’ which is separator in

pathNameHashtable
chatSubject = chatSubject.replace(‘_’, ‘.’);
inxTopic += adjust;
chatTopic = chatItem.substring(inxTopic,

chatItem.length() - 1);
session.setAttribute(“chatSubject”, chatSubject);
session.setAttribute(“chatTopic”, chatTopic);

}
}
//else if(bonForumCommand.indexOf(“visitor_joins_chat_controls”)

> -1) {
//}

15 1089-9 XC 6/26/01 7:40 AM Page 509

510 Appendix C Source Code for bonForum Web Application

//else if(bonForumCommand.indexOf(“visitor_joins_chat_robot”) >
-1) {

//}
//else if(bonForumCommand.indexOf(“visitor_joins_chat_ready”) >

-1) {
//}

}
else if(bonForumCommand.indexOf(“guest_executes_command”) > -1) {

//if(bonForumCommand.equals(“guest_executes_command”)) {
// not used yet

//}
//else
if(bonForumCommand.indexOf(“guest_executes_command_controls”) >

-1) {
//chatMessagesPageSize
chatMessagesPageSize =

normalize((String)request.getParameter(“chatMessagesPageSize”));
if(chatMessagesPageSize.trim().length() > 0) {

session.setAttribute(“chatMessagesPageSize”,
chatMessagesPageSize);

}
}

}
else if(bonForumCommand.indexOf(“host_executes_command”) > -1) {

//if(bonForumCommand.equals(“host_executes_command”)) {
// not used yet

//}
//else
if(bonForumCommand.indexOf(“host_executes_command_controls”) > -

1) {
//chatMessagesPageSize
chatMessagesPageSize =

normalize((String)request.getParameter(“chatMessagesPageSize”));
if(chatMessagesPageSize.trim().length() > 0) {

session.setAttribute(“chatMessagesPageSize”,
chatMessagesPageSize);

}
}
else if(bonForumCommand.indexOf(“host_executes_command_frame”) >

-1) {
//chat guest
chatGuest =

normalize((String)request.getParameter(“chatGuest”));
if(chatGuest.trim().length() > 0) {

session.setAttribute(“chatGuest”, chatGuest);
}

}
}
else if(bonForumCommand.indexOf(“visitor_executes_choice”) > -1) {

//actor nickname is handled in service() method,
//actor age

15 1089-9 XC 6/26/01 7:40 AM Page 510

511C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

actorAge = normalize((String)request.getParameter(“actorAge”));
if(actorAge.trim().length() > 0) {

session.setAttribute(“actorAge”, actorAge);
}

}
else if(bonForumCommand.indexOf(“system_sets_timeout”) > -1) {

//sessionMaxInactiveMinutes “-1” or “ddddddddd” (set in
application attribute!)

sessionMaxInactiveMinutes =
normalize((String)request.getParameter(“sessionMaxInactiveMinutes”));

if(sessionMaxInactiveMinutes.trim().length() > 0) {

getServletContext().setAttribute(“sessionMaxInactiveMinutes”,
sessionMaxInactiveMinutes);

}
}
else if(bonForumCommand.indexOf(“system_executes_command”) > -1) {

//xalanVersion “Xalan-Java 1” or “Xalan-Java 2” (set in
application attribute!)

xalanVersion =
normalize((String)request.getParameter(“xalanVersion”));

if(xalanVersion.trim().length() > 0) {
getServletContext().setAttribute(“xalanVersion”,

xalanVersion);
}
//actorRatingType will set differenct options for actor rating

(not yet implemented)
actorRatingType =

normalize((String)request.getParameter(“actorRatingType”));
if(actorRatingType.trim().length() > 0) {

session.setAttribute(“actorRatingType”, actorRatingType);
}

}
else if(bonForumCommand.indexOf(“forum_entry”) > -1) {

// not used yet
}
else {
// processRequest does not special process bonForumCommand
}// end of bonForumCommand processing
// ************YOU can add new commands here*********
// announce success, unless other result was announced in method

if(request.getAttribute(“serviceStatus”).equals(“InProcessRequestMethod”)) {
request.setAttribute(“serviceStatus”,

“ForwardAfterRequestProcessed”);
}
return bonForumCommand;

}// end of processRequest()
/** Classifies and forwards chat requests, and optionally invokes their

processing,
* while managing security and sessions.

15 1089-9 XC 6/26/01 7:40 AM Page 511

512 Appendix C Source Code for bonForum Web Application

* (See chapter “Java Servlet and Java Bean - BonForumEngine and
BonForumStore”

* in the book: XML, XSLT, Java and JSP - A Case Study in Developing a Web
Application).

*
* @param request HttpServletRequest
* @param response HttpServletResponse
* @throws IOException
*/
public void service(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException {

HttpSession session = null;
String sessionId = “0000000000”;
String serviceStatus = “CheckForServicing”;
String bonForumCommand = “”;
// Some request URI’s are servlet-mapped to this servlet
// and others are posted directly to this servlet.
String requestUri = request.getRequestURI();
//log(sessionId, “out”, “requestUri: “ + requestUri);
// A bonCommand parameter asks for a destination JSP
String bonCommand = normalize(

(String)request.getParameter(“bonCommand”)).trim();
if((requestUri.indexOf(“BonForumEngine”) > -1)) {

// Get forwarding destination from request parameter
if(bonCommand.length() > 0) {

bonForumCommand = bonCommand;
if(bonCommand.indexOf(“forum_entry”) > -1) {

// request came from first page (forum_login.jsp).
serviceStatus = “CheckInAtEntrance”;

}
else if(bonCommand.indexOf(“UserMustLogin”) > -1) {

// request is for drastic recovery of webapp
serviceStatus = “UserMustLogin”;

}
else if(bonCommand.indexOf(“system_executes_command”) > -

1) {
// request is for access to system administration
// (Later add password security on system nickname,
// for now, there is no security at all.)
// Get the session, creating it if none exists:
session = request.getSession();
session.setAttribute(“actorNickname”, “system”);
serviceStatus = “SystemCommands”;

}
else {

// these are normal requests from jsp forms:
serviceStatus = “ProcessRequest”;

}
}
else {

15 1089-9 XC 6/26/01 7:40 AM Page 512

513C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

// these requests need bonForumCommand value
// set by processing before forwarding.
// e.g., by specific actor, action, thing parameters
serviceStatus = “ProcessRequest”;

}
}
else {

// these requests are here due to servlet-mapping
serviceStatus = “DecodeServletMappedURI”;

}
// route some error handling request destinations
// through the method without any processing:
if(requestUri.indexOf(“forum_login”) > -1) {

serviceStatus = “ForwardToLoginPage”;
}
else if(requestUri.indexOf(“forum_error”) > -1) {

serviceStatus = “ForwardToErrorPage”;
}
else if(requestUri.indexOf(“UserMustLogin”) > -1) {

serviceStatus = “UserMustLogin”;
}
// handle non-error requests here:
if(serviceStatus.equals(“CheckInAtEntrance”)) {

// Is request for forum_entry from forum_login.
// Get the session, creating it if none there.
session = request.getSession();
// Get the session identification
sessionId = session.getId();
// TEMP, Remove later (see “LATER” below)
// We sidestep the issue of user management for now!
// That means a chat lasts only as long as the session that

created it!
// So, make sessions last a long time for now, by
// Specifying the time, in seconds, between client requests
// before the servlet container will invalidate this session.
// A negative time indicates the session should never timeout.
// look for max chat inactivity interval in application

attribute:
String sessMax =

normalize((String)getServletContext().getAttribute(
“sessionMaxInactiveMinutes”));

if(sessMax.trim().length() < 1) {
// if not found, look for it in web.xml
sessMax = getServletContext().getInitParameter(

“sessionMaxInactiveMinutes”);
if(sessMax == null) {

sessMax = “-1”;
}

}
int minutes = -1;
try {

15 1089-9 XC 6/26/01 7:40 AM Page 513

514 Appendix C Source Code for bonForum Web Application

minutes = Integer.parseInt(sessMax);
}
catch (NumberFormatException nFE) {

log(sessionId, “err”,
“ERROR! service(), cannot parse maxInactiveInterval app

attr as int: “ + sessMax);
minutes = -1;

}
session.setMaxInactiveInterval(minutes); // default to forever
//session.setMaxInactiveInterval(30); // chats last 30

secs, for testing
//session.setMaxInactiveInterval(24*60*60); // chats last a day
//session.setMaxInactiveInterval(-1); // chats last until

tomcat shutdown
serviceStatus = “ProcessRequest”;

}
else if (!serviceStatus.equals(“ForwardToLoginPage”) &&

!serviceStatus.equals(“ForwardToErrorPage”) &&
!serviceStatus.equals(“UserMustLogin”)) {

// Request is not for forum_entry page from forum_login,
// and not a robot applet request for forum_login.jsp,
// and not a request for forum_error.jsp,
// and not a request for robot applet to request login
//
// serviceStatus is ProcessRequest,
// or is DecodeServletMappedURI,
// or is SystemCommands!
// See if we have an existing session, but don’t create one if

not
session = request.getSession(false);
// Prevent new session from entering except from entrance page.
// Also send expired sessions to beginning (with new session).
if(session == null) {

log(sessionId, “err”, “Not entering, but session is null.
UserMustLogin”);

serviceStatus = “UserMustLogin”;
}
else {

// request came with a session
sessionId = session.getId();
// validate session for each request.
// 1. valid sessions: enable further processing.
// 2. stale sessions: give new session and update session-

related data,
// (Note: #2 is not implemented yet, so stale session must

re-login.)
//See if requested session is still valid (testing this)
String requestedSessionId =

request.getRequestedSessionId();
if(request.isRequestedSessionIdValid()) {

//requestedSessionId is valid

15 1089-9 XC 6/26/01 7:40 AM Page 514

515C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

}
else {

// LATER: May add code here to update
nodeNameHashtable contents

// by replacing old sessionId with
currrent (or new) sessionId?

// For now, just forward requests for
wrong sessions

// to the web application entrance.
log(sessionId, “err”,

“request.getRequestedSessionId() NOT VALID, UserMustLogin:” + requestedSessionId);
serviceStatus = “UserMustLogin”;

}
// make sure user has a valid, unique nickname:
String actorNickname;
// clear any previous unavailable names
session.setAttribute(“actorNicknameNotAvailable”, “”);
boolean isForumEntry = false;
// Only web-app state that allows nickname input
// is forum_entry. Check for its bonCommnand here:
if(bonCommand.indexOf(“visitor_executes_choice”) > -1) {

isForumEntry = true;
// get user’s nickname choice (“system” not allowed)

actorNickname = normalize(

(String)request.getParameter(“actorNickname”)).trim();
String aN = normalize(

(String)session.getAttribute(“actorNickname”)).trim();
if(actorNickname.equals(“system”) &&

!(aN.equals(“system”))) {
actorNickname = “”;

}
}
else {

// get pre-existing nickname
actorNickname = normalize(

(String)session.getAttribute(“actorNickname”)).trim();
}
if(actorNickname.length() > 0) {

if(actorNickname.equals(“system”)) {
nicknameRegistry.put(actorNickname,

sessionId);
}
//check for nickname in registry
if(nicknameRegistry.containsKey(actorNickname)) {

if(!(nicknameRegistry.get(

actorNickname).equals(sessionId))) {
// nickname is registered for another

15 1089-9 XC 6/26/01 7:40 AM Page 515

516 Appendix C Source Code for bonForum Web Application

session!
if(isForumEntry) {

// send user back for another one:
serviceStatus =

“ForwardWithoutServicing”;
bonForumCommand = “forum_entry”;
// set attribute for using on

forum_entry.jsp
// to trigger user message that

name is taken:
session.setAttribute(

“actorNicknameNotAvailable”,
actorNickname);

// nickname choice is not unique,
disallow it:

actorNickname = “”;
log(sessionId, “err”,

“actorNickname rejected as
duplicate:” +

actorNickname);
}
else {

// pre-existing nickname registered
for another session!

// is this reachable? missed
session expired?

// if so, maybe later here we can
keep user,

// but switch data to new session?
serviceStatus = “UserMustLogin”;
log(sessionId, “ERR”, “Pre-existing

nickname registered for another session! UserMustLogin:” + actorNickname);
}

} // else existing nickname is OK
}
else {

// nickname not in registry
if(isForumEntry) {

// add new nickname, unique and
available

nicknameRegistry.put(actorNickname,
sessionId);

session.setAttribute(“actorNickname”,
actorNickname);

log(sessionId, “out”, “New nickname
added to registry:” + actorNickname);

}
else {

// pre-existing nickname is no longer in
registry

serviceStatus = “UserMustLogin”;

15 1089-9 XC 6/26/01 7:40 AM Page 516

517C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

log(sessionId, “err”, “Pre-existing
nickname is no longer in registry! UserMustLogin:” + actorNickname);

}
}

}
else {

// nickname missing in request or session!
if(isForumEntry) {

// user entered empty string
// send user back for another try:
serviceStatus = “ForwardWithoutServicing”;
bonForumCommand = “forum_entry”;
log(sessionId, “err”, “New nickname is missing

in request!! ForwardWithoutServicing to forum_entry “);
}
else {

// nickname is needed!
serviceStatus = “UserMustLogin”;
log(sessionId, “err”, “Expected nickname is

missing in session!! UserMustLogin”);
}

}
}

}
if(serviceStatus.equals(“DecodeServletMappedURI”)) {

// Requests that are not addressed to this BonForumEngine
// come to its service method due to a servlet-mapping
// in the web-app deployment descriptor (web.xml) file.
// It maps the file extension, “.tfe”, to this servlet.
// Some JSP in the web-app forward their requests
// to a BonForumRobot applet in another JSP. That applet
// uses its showDocument method to send a (different)
// request for a URL with a file extension of “.tfe”.
// That indirect requesting is done for one of two
// reasons, as follows:
// 1. to continually request a JSP that displays its
// output in a different frame than one the robot is in.
// Doing that provides a frequent refresh of its content.
//
// 2. to request a JSP that sets up a different frameset
// than the one containing the frame the robot is in.
// This indirect requesting prevents the new frameset
// from displaying within a frame of the old frameset.
// There are also other servlet-mapped requests that
// are handled here. All “frame-filling” JSP files
// have “.tfe” added. Also, all “jsp:forward” filenames
// have “.tfe” added. One can also request any resource
// “through” the BonForumEngine, and this block of code,
// by suffixing “.tfe” to the resource name and then
// dispatching a request.
// In this next code section, this servlet tries to

15 1089-9 XC 6/26/01 7:40 AM Page 517

518 Appendix C Source Code for bonForum Web Application

// find any of this web application’s JSP filenames
// embedded in the URL that the robot applet requested.
// If it finds one, it will forward the current request
// and response to that JSP. If serviceStatus equals
// “ForwardWithoutServicing”, which is its default,
// the forwarding happens without the processRequest
// method being called.
// Some pages do need processRequest called, so for these,
// serviceStatus is set to “ProcessRequest”. These are
// host_executes_chat and guest_executes_chat. Each has
// a related processing block in the processRequest method,
// with much application related code there.
// Note: you can set serviceStatus to “ProcessRequest”
// for any request URL here, in order to send it through
// the processRequest method before the request is
// forwaded. But you must also add new code to process
// that request in the processRequest method. We suggest
// you put the code there inside a new and similar if
// statement as the ones used for host_executes_chat and
// guest_executes_chat.
// Note: For easier expansion, most JSP in webapp are here,
// even if not now being requested via a servlet-mapping.
// Arrange these if blocks in the order of their access

frequency.
serviceStatus = “ForwardWithoutServicing”;
if(requestUri.indexOf(“actor_leaves_frameset”) > -1) {

if(requestUri.indexOf(“actor_leaves_frameset_robot”) > -1)
{

bonForumCommand = “actor_leaves_frameset_robot”;
}
else {

bonForumCommand = “forum_error”;
serviceStatus = “ForwardToErrorPage”;

}
}
else if(requestUri.indexOf(“guest_executes_chat”) > -1) {

if(requestUri.indexOf(“guest_executes_chat_frame”) > -1) {
bonForumCommand = “guest_executes_chat_frame”;

}
else if(requestUri.indexOf(“guest_executes_chat_controls”)

> -1) {
bonForumCommand = “guest_executes_chat_controls”;

}
else if(requestUri.indexOf(“guest_executes_chat_robot”) >

-1) {
bonForumCommand = “guest_executes_chat_robot”;

}
else if(requestUri.indexOf(“guest_executes_chat_ready”) >

-1) {
bonForumCommand = “guest_executes_chat_ready”;

}

15 1089-9 XC 6/26/01 7:40 AM Page 518

519C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

else if(requestUri.indexOf(“guest_executes_chat_console”)
> -1) {

bonForumCommand = “guest_executes_chat_console”;
}
else {

bonForumCommand = “guest_executes_chat”;
serviceStatus = “ProcessRequest”;

}
}
else if(requestUri.indexOf(“host_executes_chat”) > -1) {

if(requestUri.indexOf(“host_executes_chat_frame”) > -1) {
bonForumCommand = “host_executes_chat_frame”;

}
else if(requestUri.indexOf(“host_executes_chat_controls”)

> -1) {
bonForumCommand = “host_executes_chat_controls”;

}
else if(requestUri.indexOf(“host_executes_chat_robot”) > -

1) {
bonForumCommand = “host_executes_chat_robot”;

}
else if(requestUri.indexOf(“host_executes_chat_ready”) > -

1) {
bonForumCommand = “host_executes_chat_ready”;

}
else if(requestUri.indexOf(“host_executes_chat_console”) >

-1) {
bonForumCommand = “host_executes_chat_console”;

}
else {

bonForumCommand = “host_executes_chat”;
serviceStatus = “ProcessRequest”;

}
}
else if(requestUri.indexOf(“visitor_joins_chat”) > -1) {

if(requestUri.indexOf(“visitor_joins_chat_frame”) > -1) {
bonForumCommand = “visitor_joins_chat_frame”;

}
else if(requestUri.indexOf(“visitor_joins_chat_controls”)

> -1) {
bonForumCommand = “visitor_joins_chat_controls”;

}
else if(requestUri.indexOf(“visitor_joins_chat_robot”) > -

1) {
bonForumCommand = “visitor_joins_chat_robot”;

}
else if(requestUri.indexOf(“visitor_joins_chat_ready”) > -

1) {
bonForumCommand = “visitor_joins_chat_ready”;

}
else {

15 1089-9 XC 6/26/01 7:40 AM Page 519

520 Appendix C Source Code for bonForum Web Application

bonForumCommand = “visitor_joins_chat”;
}

}
else if(requestUri.indexOf(“visitor_starts_chat”) > -1) {

if(requestUri.indexOf(“visitor_starts_chat_frame”) > -1) {
bonForumCommand = “visitor_starts_chat_frame”;

}
else if(requestUri.indexOf(“visitor_starts_chat_controls”)

> -1) {
bonForumCommand = “visitor_starts_chat_controls”;

}
else if(requestUri.indexOf(“visitor_starts_chat_robot”) >

-1) {
bonForumCommand = “visitor_starts_chat_robot”;

}
else if(requestUri.indexOf(“visitor_starts_chat_ready”) >

-1) {
bonForumCommand = “visitor_starts_chat_ready”;

}
else {

bonForumCommand = “visitor_starts_chat”;
}

}
else if(requestUri.indexOf(“host_executes_command”) > -1) {

if(requestUri.indexOf(“host_executes_command_frame”) > -1)
{

bonForumCommand = “host_executes_command_frame”;
}
else

if(requestUri.indexOf(“host_executes_command_controls”) > -1) {
bonForumCommand = “host_executes_command_controls”;

}
else if(requestUri.indexOf(“host_executes_command_robot”)

> -1) {
bonForumCommand = “host_executes_command_robot”;

}
else if(requestUri.indexOf(“host_executes_command_ready”)

> -1) {
bonForumCommand = “host_executes_command_ready”;

}
else {

bonForumCommand = “host_executes_command”;
}

}
else if(requestUri.indexOf(“guest_executes_command”) > -1) {

if(requestUri.indexOf(“guest_executes_command_frame”) > -
1) {

bonForumCommand = “guest_executes_command_frame”;
}
else

if(requestUri.indexOf(“guest_executes_command_controls”) > -1) {

15 1089-9 XC 6/26/01 7:40 AM Page 520

521C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

bonForumCommand = “guest_executes_command_controls”;
}
else if(requestUri.indexOf(“guest_executes_command_robot”)

> -1) {
bonForumCommand = “guest_executes_command_robot”;

}
else if(requestUri.indexOf(“guest_executes_command_ready”)

> -1) {
bonForumCommand = “guest_executes_command_ready”;

}
else {

bonForumCommand = “guest_executes_command”;
}

}
else if(requestUri.indexOf(“host_exits_”) > -1) {

if(requestUri.indexOf(“host_exits_chat”) > -1) {
bonForumCommand = “host_exits_chat”;

}
else if(requestUri.indexOf(“host_exits_command”) > -1) {

bonForumCommand = “host_exits_command”;
}
else {

bonForumCommand = “host_exits_forum”;
}

}
else if(requestUri.indexOf(“guest_exits_”) > -1) {

if(requestUri.indexOf(“guest_exits_chat”) > -1) {
bonForumCommand = “guest_exits_chat”;

}
else if(requestUri.indexOf(“guest_exits_command”) > -1) {

bonForumCommand = “guest_exits_command”;
}
else {

bonForumCommand = “guest_exits_forum”;
}

}
else if(requestUri.indexOf(“visitor_executes_choice”) > -1) {

bonForumCommand = “visitor_executes_choice”;
}
else {

bonForumCommand = “forum_error”;
serviceStatus = “ForwardToErrorPage”;

}
}
// Now process each request,
// unless only to be forwarded,
// or user being sent to login or error page.
// Also, allow system parameters to set attributes, etc.
if(serviceStatus.equals(“ProcessRequest”) ||

serviceStatus.equals(“SystemCommands”)) {
try {

15 1089-9 XC 6/26/01 7:40 AM Page 521

522 Appendix C Source Code for bonForum Web Application

request.setAttribute(“serviceStatus”, serviceStatus);
bonForumCommand = processRequest(request, response,

session, bonForumCommand);
serviceStatus =

(String)request.getAttribute(“serviceStatus”);
// The processRequest() method should “return” a
// serviceStatus request attribute which has been
// set to “ForwardAfterRequestProcessed”, or to
// another value that will forward the request below.

}
catch(Exception ee) {

// handle this better.
log(sessionId, “err”, “Caught Exception calling

processRequest()!”);
log(sessionId, “err”, ee.getMessage());
ee.printStackTrace();

}
}
// Now see if we will need to forward to an error page
// because request processing failed.
// These are the possible successful outcomes:
// 1. all processing is done for this request
// 2. request was only sent to engine to be forwarded
if(!(serviceStatus.equals(“ForwardWithoutServicing”) ||

serviceStatus.equals(“ForwardAfterRequestProcessed”))) {
// unsuccesful outcome!
if(serviceStatus.equals(“ForwardToLoginPage”)) {

// request was already sent to start over,
// using a UserMustLogin serviceStatus, and
// now the robot is requesting login page:
bonForumCommand = “forum_login”;

}
else if(serviceStatus.equals(“ForwardToErrorPage”)) {

// request is for error page
// it was routed around all processing, etc.
bonForumCommand = “forum_error”;

}
else if(serviceStatus.equals(“SystemCommands”)) {

// request is for system only page
// enforce only one main page here:
bonForumCommand = “system_executes_command”;

}
else {

// catch unknown serviceStatus errors:
serviceStatus = “UserMustLogin”;

}
// drastic recovery time:
if(serviceStatus.equals(“UserMustLogin”)) {

// Send user to start the web application over again!
// 1. request is not for forum_entry, has no session
// 2. request sessionId is not for current session

15 1089-9 XC 6/26/01 7:40 AM Page 522

523C.16 Filename: Projects\bonForum\src\de\tarent\forum\BonForumEngine.java

// 3 existing nickname is for wrong session
// 4 existing nickname is not in registry
// 5. existing nickname not found in session attribute
// These conditions will arise until we
// add a user manager and persistent data store
// because of session expiration, and server restarts.
// After these new features, the conditions still
// need to be handled as error states, although
// some will no longer occur normally.
// For now, we deal with conditions 2 thru 5
// by getting rid of the current request’s session,
// as well as its attributes, etc.
// (That makes orphan nicknames, a problem for later fix)
log(sessionId, “err”, “Forcing Login!:” + sessionId);
if(session != null) {

log(sessionId, “err”, “Invalidating session:” +
session.getId());

try {
session.invalidate();

}
catch(java.lang.IllegalStateException ex) {

log(sessionId, “err”, “IllegalStateException
invalidating session!”);

ex.printStackTrace();
}

}
// Need a session to send applet its parameters
// so we get a new one here:
session = request.getSession(); // creates new session
sessionId = session.getId();
log(sessionId, “out”, “NEW LOGIN sessionId:”+sessionId);
// Here, we use the BonForumRobot applet,
// running in client, to request the login page,
// because if the unsuccessful request originated
// from HTML inside a frame, using the robot
// prevents forum_login.jsp from displaying its
// output in that frame.
bonForumCommand = “forum_login_robot”;
session.setAttribute(“target”, “_top”);
session.setAttribute(“document”, request.getScheme() +

“://” +

request.getServerName() + “:” +

request.getServerPort() +

“/bonForum/jsp/forum/forum_login.jsp”);
session.setAttribute(“refresh”, “true”);
session.setAttribute(“increment”, “100”);
session.setAttribute(“limit”, “1”);
session.setAttribute(“message”, “Please enter bonForum!”);

15 1089-9 XC 6/26/01 7:40 AM Page 523

524 Appendix C Source Code for bonForum Web Application

}
}
// identify our servlet to the next page or servlet
request.setAttribute (“servletName”, “BonForumEngine”);
// The forwarding destination filename
// (without jsp extension) is the value of
// bonForumCommand, which was set in one of three ways:
// 1. from an incoming bonCommand request parameter,
// if the Request URI was BonForumEngine.
// 2. from a JSP filename embedded in a request URI,
// when that was not BonForumEngine.
// 3. inside processRequest(), e.g., from other request
// parameters. That can alter values set as in #1.
// ready for takeoff
getServletConfig().getServletContext().getRequestDispatcher(

“/jsp/forum/”+bonForumCommand+”.jsp”).forward(
request, response);

}
/* Code below here is based on Apache Software Foundation samples
(see notice at file beginning)
*/

/** Normalizes the given string, replacing chars with entities.
* (less than, greater than, ampersand, double quote, return and linefeed).
* Note: this replaces null string with empty string.
*
* @param s String
* @return normalized string (not null)
*/
protected static String normalize(String s) {

StringBuffer str = new StringBuffer();
str.append(“”);

int len = (s != null) ? s.length() : 0;
for (int i = 0; i < len; i++) {

char ch = s.charAt(i);
switch (ch) {

case ‘<’: {
str.append(“<”);
break;

}
case ‘>’: {

str.append(“>”);
break;

}
case ‘&’: {

str.append(“&”);
break;

}
case ‘“‘: {

str.append(“"”);
break;

}

15 1089-9 XC 6/26/01 7:40 AM Page 524

525C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

case ‘\r’:
case ‘\n’: {

str.append(“&#”);
str.append(Integer.toString(ch));
str.append(‘;’);
break;

}
default: {

str.append(ch);
}

}
}

return str.toString();
}

}// end class BonForumEngine

C.17 Filename: Projects\bonForum\src\de\
tarent\forum\BonForumStore.java

package de.tarent.forum;
/*<Imports>*/
import java.io.*;
import java.util.Collections;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Enumeration;
import java.util.TreeMap;
import java.util.Hashtable;
//import javax.servlet.*;
import javax.servlet.http.*;
import org.w3c.dom.Attr;
import org.w3c.dom.Document;
//import org.w3c.dom.Element;
//import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
//import org.apache.xerces.readers.MIME2Java;
import org.apache.xerces.dom.*;
import org.apache.xerces.parsers.*;
/*</Imports>*/
/** BonForumStore is the central bean of the bonForum web application.
* It wraps the XML database used by the chat controlled by BonForumEngine.
* It provides methods that can be used by JSP pages and custom tag classes.
* It is described fully in the book:
* <i>XML, XSLT, Java and JSP - A Case Study in Developing a Web Application</i>,
* by Westy Rockwell, published by
* New Riders.
* Translation to German published by
* Galileo Press.

15 1089-9 XC 6/26/01 7:40 AM Page 525

526 Appendix C Source Code for bonForum Web Application

* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class BonForumStore {

// these cache important nodeKey instances, for fast access:
private NodeKey rootNodeKey;
private NodeKey actorsNodeKey;
private NodeKey actionsNodeKey;
private NodeKey thingsNodeKey;
private NodeKey bufferRootNodeKey;
private NodeKey bufferActorsNodeKey;
private NodeKey bufferActionsNodeKey;
private NodeKey bufferThingsNodeKey;
private String hitTimeMillis;
private String initDate;
// holds forum data, in proprietary, rudimentary XML format
private static ForestHashtable bonForumXML;
// buffers transformations and I/O of forum data
private static ForestHashtable bonBufferXML;
// logs debugging information
private static BonLogger logBFS = null;
// controls logger output
private static String logging = null;
// false until logger ready
private static boolean loggingInitialized = false;
// for logging output
private static String sessionId = “0000000000”;

/** Creates a BonForumStore.
*/
public BonForumStore() {

super();
bonForumXML = new ForestHashtable(5000);
bonBufferXML = new ForestHashtable();

}
private void log(String sessionId, String where, String what) {

if(logging != null) {
logBFS.logWrite(System.currentTimeMillis(), sessionId, where,

what);
}

}
/** Gets logging setting.
*
* @return String logging
*/
public String getLogging() {

return logging;
}

/** Sets logging setting.
*
* @param newLogging String setting for logger logtype

15 1089-9 XC 6/26/01 7:40 AM Page 526

527C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

(“none”,”all”,”std”,”file”)
*/
public void setLogging(String newLogging) {

logging = newLogging;
if(!loggingInitialized) {

System.err.println(“BonForumStore init loggingInitialized:” +
loggingInitialized);

System.err.println(“BonForumStore init logging:” + logging);
if(logging != null) {

logBFS = new BonLogger(“BonForumStoreLog.txt”, logging);
System.err.println(“BonForumStore init logBFS:” + logBFS);

logBFS.setLogging(newLogging);
loggingInitialized = true;
System.err.println(“BonForumStore init

loggingInitialized:” + loggingInitialized);
}

}
getBonForumXML().setLogging(newLogging);
bonBufferXML.setLogging(newLogging);

}
/** Gets bonForumXML, the forum datastore.
*
* @return ForestHashtable bonForumXML (static)
*/
protected ForestHashtable getBonForumXML() {

return bonForumXML;
}

/** Gets bonBufferXML, a buffer for the forum datastore.
*
* @return ForestHashtable bonBufferXML (static)
*/
protected ForestHashtable getBonBufferXML() {

return bonBufferXML;
}

/** Gets nodeKey of root element (in “bonForumXML” ForestHashtable member).
*
* which is “bonForum” root element global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*
* @return NodeKey for the global “bonForum” element
*/
protected NodeKey getRootNodeKey() {

return rootNodeKey;
}

/** Gets nodeKey of “actors” element (in “bonForumXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*

15 1089-9 XC 6/26/01 7:40 AM Page 527

528 Appendix C Source Code for bonForum Web Application

* @return NodeKey for the global “actors” element
*/
protected NodeKey getActorsNodeKey() {

return actorsNodeKey;
}

/** Gets nodeKey of “actions” element (in “bonForumXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*
* @return NodeKey for the global “actions” element
*/
protected NodeKey getActionsNodeKey() {

return actionsNodeKey;
}

/** Gets nodeKey of “things” element (in “bonForumXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*
* @return NodeKey for the global “things” element
*/
protected NodeKey getThingsNodeKey() {

return thingsNodeKey;
}

/** Sets nodeKey of root element (in “bonForumXML” ForestHashtable member).
*
* which is “bonForum” root element global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*/
protected void setRootNodeKey(NodeKey value) {

rootNodeKey = value;
}

/** Sets nodeKey of “actors” element (in “bonForumXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*/
protected void setActorsNodeKey(NodeKey value) {

actorsNodeKey = value;
}

/** Sets nodeKey of “actions” element (in “bonForumXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*/
protected void setActionsNodeKey(NodeKey value) {

15 1089-9 XC 6/26/01 7:40 AM Page 528

529C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

actionsNodeKey = value;
}

/** Sets nodeKey of “things” element (in “bonForumXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*/
protected void setThingsNodeKey(NodeKey value) {

thingsNodeKey = value;
}

/** Gets nodeKey of root element (in “bonBufferXML” ForestHashtable member).
*
* which is “bonForum” root element global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*
* @return NodeKey for the global “bonForum” element
*/
protected NodeKey getBufferRootNodeKey() {

return bufferRootNodeKey;
}

/** Gets nodeKey of “actors” element (in “bonBufferXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*
* @return NodeKey for the global “actors” element
*/
protected NodeKey getBufferActorsNodeKey() {

return bufferActorsNodeKey;
}

/** Gets nodeKey of “actions” element (in “bonBufferXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*
* @return NodeKey for the global “actions” element
*/
protected NodeKey getBufferActionsNodeKey() {

return bufferActionsNodeKey;
}

/** Gets nodeKey of “things” element (in “bonBufferXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*
* @return NodeKey for the global “things” element
*/

15 1089-9 XC 6/26/01 7:40 AM Page 529

530 Appendix C Source Code for bonForum Web Application

protected NodeKey getBufferThingsNodeKey() {
return bufferThingsNodeKey;

}
/** Sets nodeKey of root element (in “bonBufferXML” ForestHashtable member).
*
* which is “bonForum” root element global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*/
protected void setBufferRootNodeKey(NodeKey value) {

bufferRootNodeKey = value;
}

/** Sets nodeKey of “actors” element (in “bonBufferXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*/
protected void setBufferActorsNodeKey(NodeKey value) {

bufferActorsNodeKey = value;
}

/** Sets nodeKey of “actions” element (in “bonBufferXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*/
protected void setBufferActionsNodeKey(NodeKey value) {

bufferActionsNodeKey = value;
}

/** Sets nodeKey of “things” element (in “bonBufferXML” ForestHashtable
member).

*
* which is child of “bonForum” root and global to all HTTP Sessions.
* (This property caches the key for faster node retrieval).
*/
protected void setBufferThingsNodeKey(NodeKey value) {

bufferThingsNodeKey = value;
}

/** Gets hitTimeMillis, time of last user initialization.
*
* @return String hitTimeMillis
*/
public String getHitTimeMillis() {

return hitTimeMillis;
}

/** Sets hitTimeMillis.
*
* @return void
*/
public void setHitTimeMillis(String newHitTimeMillis) {

if(newHitTimeMillis == null) {

15 1089-9 XC 6/26/01 7:40 AM Page 530

531C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

hitTimeMillis = BonForumUtils.timeMillis();
}
else {

hitTimeMillis = newHitTimeMillis;
}

}
/** Gets initDate, date of XML data initialization.
*
* @return String formatted date and time
*/
public String getInitDate() {

return initDate;
}

/** Sets initDate.
*
* @return void
*/
protected void setInitDate(String newInitDate) {

if(newInitDate == null) {
initDate = BonForumUtils.getLastDate();;

}
else {

initDate = newInitDate;
}

}
/** initializes BonForumStore.
*
* @return void
*/
protected void initialize(String initSessionId) {

// Later: replace session attribute use with local user manager ala
session mgr

setHitTimeMillis(null);
sessionId = initSessionId;
// Initialize new “database” or get the old one back
initializeXML(sessionId);
// Initialize a “database” buffer
//bonForumStore.initializeBuffer(sessionId);

}
/** Loads XML from URI into “bonForumXML” ForestHashtable member.
*
*
* @param pathToSubTreeRootNode String
* @param xmlUri String
* @param nodeKeyHashtableName String
* @param sessionId String
*/
protected void loadForumXMLFromURI(String pathToSubTreeRootNode, String

parentNodeInDestination, String xmlUri, String nodeKeyHashtableName, String
sessionId) {

pathToSubTreeRootNode = pathToSubTreeRootNode.trim();

15 1089-9 XC 6/26/01 7:40 AM Page 531

532 Appendix C Source Code for bonForum Web Application

if(pathToSubTreeRootNode == null || pathToSubTreeRootNode.length() <
1) {

pathToSubTreeRootNode = “”;
}
parentNodeInDestination = parentNodeInDestination.trim();
if(parentNodeInDestination == null || parentNodeInDestination.length()

< 1) {
parentNodeInDestination = “things”;

}
// parse document
try {

DOMParser parser = new DOMParser();
parser.parse(xmlUri);
Document document = parser.getDocument();
try {

loadForumXML(pathToSubTreeRootNode,
parentNodeInDestination, document, “pathNameHashtable”, sessionId);

}
catch(Exception ee) {

log(sessionId, “err”, “caught exception trying to load
into bonForumXML: “+ xmlUri);

}
}
catch(Exception ex) {

log(sessionId, “err”, “caught exception trying to parse: “ +
xmlUri);

}
}

/** Loads XML from URI into “bonBufferXML” ForestHashtable member.
*
*
* @param pathToSubTreeRootNode String
* @param xmlUri String
* @param nodeKeyHashtableName String
* @param sessionId String
*/
protected void loadBufferXMLFromURI(String pathToSubTreeRootNode, String

parentNodeInDestination, String xmlUri, String nodeKeyHashtableName, String
sessionId) {

pathToSubTreeRootNode = pathToSubTreeRootNode.trim();
if(pathToSubTreeRootNode == null || pathToSubTreeRootNode.length() <

1) {
pathToSubTreeRootNode = “”;

}
parentNodeInDestination = parentNodeInDestination.trim();
if(parentNodeInDestination == null || parentNodeInDestination.length()

< 1) {
parentNodeInDestination = “things”;

}
// parse document
try {

15 1089-9 XC 6/26/01 7:40 AM Page 532

533C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

DOMParser parser = new DOMParser();
parser.parse(xmlUri);
Document document = parser.getDocument();
try {

loadBufferXML(pathToSubTreeRootNode,
parentNodeInDestination, document, “pathNameHashtable”, sessionId);

}
catch(Exception ee) {

log(sessionId, “err”, “caught exception trying to load
into bonBufferXML: “+ xmlUri);

}
}
catch(Exception ex) {

log(sessionId, “err”, “caught exception trying to parse: “ +
xmlUri);

}
}

/** Loads XML from DOM node into “bonForumXML” ForestHashtable member.
*
*
* @param pathToSubTreeRootNode String
* @param parentNodeInDestination String
* @param node Node
* @param nodeKeyHashtableName String
* @param sessionId String
*/
protected void loadForumXML(String pathToSubTreeRootNode, String

parentNodeInDestination, Node node, String nodeKeyHashtableName, String sessionId)
{

Object parentNodeKey = null;
String nodeKeyPathName = “”;
boolean foundParentNodeKey = true; // assume success
if(parentNodeInDestination.equals(“actors”)) {

parentNodeKey = (Object)getActorsNodeKey();
}
else if(parentNodeInDestination.equals(“actions”)) {

parentNodeKey = (Object)getActionsNodeKey();
}
else if(parentNodeInDestination.equals(“things”)) {

parentNodeKey = (Object)getThingsNodeKey();
}
else {

if
(getBonForumXML().getNodeNameHashtable().containsKey(parentNodeInDestination)) {

parentNodeKey =
getBonForumXML().getNodeNameHashtable().get(parentNodeInDestination);

}
else {

foundParentNodeKey = false;
}

}

15 1089-9 XC 6/26/01 7:40 AM Page 533

534 Appendix C Source Code for bonForum Web Application

if(parentNodeKey != null && foundParentNodeKey) {
try {

// needs test and finishing, especially
pathToSubTreeRootNode argument

loadXMLSubTreeIntoForestHashtable(node, parentNodeKey,
bonForumXML, nodeKeyPathName, nodeKeyHashtableName, sessionId);

}
catch(Exception ee) {

log(sessionId, “err”, “loadForumXML() caught Exception
invoking loadXMLSubTreeIntoForestHashtable()”);

}
}

}
/** Loads XML from DOM node into the bonBufferXML ForestHashtable.
*

*
* @param pathToSubTreeRootNode String
* @param parentNodeInDestination String
* @param node Node
* @param nodeKeyHashtableName String
* @param sessionId String
*/
protected void loadBufferXML(String pathToSubTreeRootNode, String

parentNodeInDestination, Node node, String nodeKeyHashtableName, String sessionId)
{

Object parentNodeKey = null;
String nodeKeyPathName = “”;
boolean foundParentNodeKey = true; // assume success
if(parentNodeInDestination.equals(“actors”)) {

parentNodeKey = (Object)getBufferActorsNodeKey();
}
else if(parentNodeInDestination.equals(“actions”)) {

parentNodeKey = (Object)getBufferActionsNodeKey();
}
else if(parentNodeInDestination.equals(“things”)) {

parentNodeKey = (Object)getBufferThingsNodeKey();
}
else {

if
(bonBufferXML.getNodeNameHashtable().containsKey(parentNodeInDestination)) {

parentNodeKey =
bonBufferXML.getNodeNameHashtable().get(parentNodeInDestination);

}
else {

foundParentNodeKey = false;
}

}
if(parentNodeKey != null && foundParentNodeKey) {

try {
// needs test and finishing, especially

pathToSubTreeRootNode argument

15 1089-9 XC 6/26/01 7:40 AM Page 534

535C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

loadXMLSubTreeIntoForestHashtable(node, parentNodeKey,
bonBufferXML, nodeKeyPathName, nodeKeyHashtableName, sessionId);

}
catch(Exception ee) {

log(sessionId, “err”, “loadBufferXML() caught Exception
invoking loadXMLSubTreeIntoForestHashtable()”);

}
}

}
/** Loads the specified node, recursively, into a ForestHashtable.
* NOTE: only loads element nodes with attributes, and any text node

children.
*
* @param node Node
* @param parentNodeKey Object
* @param forestHashtable ForestHashtable
* @param nodeKeyPathName String
* @param nodeKeyHashtableName String
* @param sessionId String

*/
protected void loadXMLSubTreeIntoForestHashtable(Node node, Object

parentNodeKey, ForestHashtable forestHashtable, String nodeKeyPathName, String
nodeKeyHashtableName, String sessionId) {

String nodeName = “”;
String nodeAttributes = “”;
String nodeContent = “”;
Object nextParentNodeKey = parentNodeKey;
String pathName = “”;
if (node == null) {
return;
}
// the ForestHashtable instance must exist for this method to work

int type = node.getNodeType();
switch(type) {

// process document node
case Node.DOCUMENT_NODE: {

loadXMLSubTreeIntoForestHashtable(((Document)node).getDocumentElement(),
parentNodeKey, forestHashtable, nodeKeyPathName, nodeKeyHashtableName, sessionId);

break;
}

// process element with attributes, and also get text nodes for content
case Node.ELEMENT_NODE: {

nodeName = node.getNodeName();
// LATER: here can wait for element named by

pathToSubTreeRootNode, ignoring ancestors
Attr attrs[] =

BonForumUtils.sortAttributes(node.getAttributes());
nodeAttributes = “”;
for (int i = 0; i < attrs.length; i++) {

Attr attr = attrs[i];

15 1089-9 XC 6/26/01 7:40 AM Page 535

536 Appendix C Source Code for bonForum Web Application

nodeAttributes += (“ “);
nodeAttributes += (attr.getNodeName());
nodeAttributes += (“=\””);
nodeAttributes += (normalize(attr.getNodeValue()));
nodeAttributes += (“\””);

}
// adds node and gets its nodeKey
BonNode bonNode;
bonNode = forestHashtable.addChildNodeToNonRootNode(nodeName,

nodeAttributes, nodeContent, (NodeKey)parentNodeKey, nodeKeyHashtableName,
sessionId);

nextParentNodeKey =
(Object)forestHashtable.nodeKeyFromBonNode(bonNode);

// optionally save nodeKey in a hashtable to use for fast
lookups, pathname sorting, etc.

if(nodeKeyHashtableName != null && nodeKeyHashtableName != “”) {
if(nodeKeyHashtableName.equals(“pathNameHashtable”)) {

// here optionally save nodeKey with a pathName key
// only save descendants of bonForum.things.subjects
if (nodeKeyPathName.equals(“”)) {

if((!(nodeName.equals(“bonForum”))) &&
(!(nodeName.equals(“things”))) &&
(!(nodeName.equals(“subjects”)))) {
nodeKeyPathName = nodeName;
}

}
else {

// build the pathName by concatenating node
just added

nodeKeyPathName = nodeKeyPathName + “.” +
nodeName;

}
if(!nodeKeyPathName.equals(“”)) {

forestHashtable.getPathNameHashtable().put(nodeKeyPathName, nextParentNodeKey);
}

}
else {

// later we can add other types of hashtables here
}

}
// here we get text nodes for our content, and recursively visit

element descendants
// we are ignoring ENTITY_REFERENCE_NODE, CDATA_SECTION_NODE,

PROCESSING_INSTRUCTION_NODE
NodeList children = node.getChildNodes();
if (children != null) {
int len = children.getLength();

for (int i = 0; i < len; i++) {
// get text if any, else recursively visit element

children

15 1089-9 XC 6/26/01 7:40 AM Page 536

537C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

int nodeType = children.item(i).getNodeType();
if(nodeType == Node.TEXT_NODE) {

nodeContent += “ “ +
normalize(children.item(i).getNodeValue().trim());

}
else if(nodeType == Node.ELEMENT_NODE) {

// recursion to visit all subnodes
loadXMLSubTreeIntoForestHashtable(children.item(i),

nextParentNodeKey, forestHashtable, nodeKeyPathName, nodeKeyHashtableName,
sessionId);

}
}

}
// edit the node to add content from text node
nodeContent = nodeContent.trim();
if(nodeContent.length() > 0) {

NodeKey nk =
getBonForumXML().editBonNode((NodeKey)(nextParentNodeKey), null, null,
nodeContent);

}
break;
} // end case Node.ELEMENT_NODE
} // end switch

}
/** Adds a node to “bonForumXML” ForestHashtable member.
*
* @param command = “bonAddElement” (others could follow)
* @param parentNodeKeyKey String
* @param nameAndAttributes String
* @param content String
* @param forestHashtableName String
* @param nodeKeyHashtableName String
* @param sessionId String
* @return Object that can be cast to a NodeKey
*/
protected Object add(String command, String parentNodeKeyKey, String

nameAndAttributes, String content, String forestHashtableName, String
nodeKeyHashtableName, String sessionId) {

BonNode bonNode = new BonNode();
NodeKey nonRootNodeKey = new NodeKey();

nonRootNodeKey = (NodeKey)addNode(bonNode, nonRootNodeKey,
command, parentNodeKeyKey, nameAndAttributes, content, forestHashtableName,
nodeKeyHashtableName, sessionId);

return (Object)(nonRootNodeKey);
}
/** Adds a node to “bonBufferXML” ForestHashtable member.
*
* @param command = “bonAddElement” (others could follow)
* @param parentNodeKeyKey String
* @param nameAndAttributes String
* @param content String

15 1089-9 XC 6/26/01 7:40 AM Page 537

538 Appendix C Source Code for bonForum Web Application

* @param forestHashtableName String
* @param nodeKeyHashtableName String
* @param sessionId String
* @return Object that can be cast to a NodeKey
*/
protected Object addToBuffer(String command, String parentNodeKeyKey, String

nameAndAttributes, String content, String forestHashtableName, String
nodeKeyHashtableName, String sessionId) {

BonNode bonNode = new BonNode();
NodeKey nonRootNodeKey = new NodeKey();

nonRootNodeKey = (NodeKey)addNode(bonNode, nonRootNodeKey,
command, parentNodeKeyKey, nameAndAttributes, content, forestHashtableName,
nodeKeyHashtableName, sessionId);

return (Object)(nonRootNodeKey);
}
/** Adds a node to “bonForumXML”, or “bonBufferXML”, or other

ForestHashtable.
*
* @param bonNode BonNode
* @param nonRootNodeKey NodeKey
* @param command String =”bonAddElement”

(others could follow)
* @param parentNodeKeyKey String
* @param nameAndAttributes String
* @param content String
* @param forestHashtableName String
* @param nodeKeyHashtableName String
* @param sessionId String
* @return Object that can be cast to a NodeKey
*/
protected Object addNode(BonNode bonNode, NodeKey nonRootNodeKey, String

command, String parentNodeKeyKey, String nameAndAttributes, String content, String
forestHashtableName, String nodeKeyHashtableName, String sessionId) {

boolean fast = false;
ForestHashtable forestHashtable;
if(forestHashtableName.equals(“bonForumXML”)) {

forestHashtable = bonForumXML;
if (parentNodeKeyKey.equals(“actors”)) {

nonRootNodeKey = getActorsNodeKey();
fast = true;

}
else if (parentNodeKeyKey.equals(“actions”)) {

nonRootNodeKey = getActionsNodeKey();
fast = true;

}
else if (parentNodeKeyKey.equals(“things”)) {

nonRootNodeKey = getThingsNodeKey();
fast = true;

}
}
else if(forestHashtableName.equals(“bonBufferXML”)) {

15 1089-9 XC 6/26/01 7:40 AM Page 538

539C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

forestHashtable = bonBufferXML;
if (parentNodeKeyKey.equals(“actors”)) {

nonRootNodeKey = getBufferActorsNodeKey();
fast = true;

}
else if (parentNodeKeyKey.equals(“actions”)) {

nonRootNodeKey = getBufferActionsNodeKey();
fast = true;

}
else if (parentNodeKeyKey.equals(“things”)) {

nonRootNodeKey = getBufferThingsNodeKey();
fast = true;

}
}
else {

forestHashtable = null;
}
if (command.equals(“bonAddElement”)) {

try {
if(!fast) { // not a “fast” parent nodeKey

//
// There are two possibilities (more later):
//
// 1. The parentNodeKey is saved in

nodeNameHashtable.
// The parentNodeKeyKey format has one of two

formats:
//
// The first format is:
//

sessionID_creationTimeMillis:parentElementName
// (e.g.,

“To1012mC7576871324604071At:985400336097:chat”)
//
// The second format is:
// sessionID:parentElementName
// (e.g.,

“To1012mC7576871324604071At:messageKey”)
//
// 2. The parentNodeKey is saved in

pathNameHashtable.
// The parentNodeKeyKey used is the pathName to

the
// subject node (e.g.,

“Vehicles.Motorcycles.Triumph”).
//
// If the parentNodeKeyKey is not “actors”,

“actions”, “things”,
// then the parentNodeKeyKey is a key into a

Hashtable
// with the name nodeKeyHashtableName

15 1089-9 XC 6/26/01 7:40 AM Page 539

540 Appendix C Source Code for bonForum Web Application

//
if(nodeKeyHashtableName.equals(“pathNameHashtable”))

{

if(forestHashtable.getPathNameHashtable().containsKey(parentNodeKeyKey)) {
nonRootNodeKey =

(NodeKey)forestHashtable.getPathNameHashtable().get(parentNodeKeyKey);
}
else {

log(sessionId, “err”, “add() DID NOT FIND
parentNodeKeyKey IN pathNameHashtable: “ + parentNodeKeyKey);

}
}
// The key should be in <sessionId:nodeName> format
// we could later check the incoming sessionId

prefix is valid
// using isRequestedSessionIdValid(prefix)
else if

(nodeKeyHashtableName.equals(“nodeNameHashtable”)) {
String temp = “” +

forestHashtable.getNodeNameHashtable().size();
if

(forestHashtable.getNodeNameHashtable().containsKey(parentNodeKeyKey)) {
nonRootNodeKey =

(NodeKey)forestHashtable.getNodeNameHashtable().get(parentNodeKeyKey);
}
else {

log(sessionId, “err”, “add() DID NOT
FIND parentNodeKeyKey IN nodeNameHashtable: “ + parentNodeKeyKey);

}
}
else {

log(sessionId, “err”, “UNRECOGNIZED
nodeKeyHashtableName in add(): “ + parentNodeKeyKey);

}
}
try {

if(nonRootNodeKey != null) {
if(nonRootNodeKey.aKey != null &&

nonRootNodeKey.aKey.length() > 0) {
String name = “”;
String attributes = “”;
if(nameAndAttributes == null) {

nameAndAttributes = “”;
}
int inx =

nameAndAttributes.trim().indexOf(‘ ‘);
if (inx > -1) { // space between name and

attributes
name =

nameAndAttributes.substring(0, inx);

15 1089-9 XC 6/26/01 7:40 AM Page 540

541C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

attributes =
nameAndAttributes.substring(inx).trim();

}
else {

name = nameAndAttributes;
}
bonNode =

forestHashtable.addChildNodeToNonRootNode(name, attributes, content,
nonRootNodeKey, nodeKeyHashtableName, sessionId);

}
}

}
catch (Exception ex) {

log(sessionId, “err”, “addChildNodeToNonRootNode()
caused exception in add()”);

}
}
catch (Exception ee) {

log(sessionId, “err”, “Exception in add()”);
}

}
return (Object)(bonNode.nodeKey);

}
/** Removes a (session-dependent) node from “bonForumXML” ForestHashtable

member.
* @param command String = “bonRemoveElement” (others later)
* @param nodeKeyKey String
* @param leafOnly String if uppercased is “TRUE” nodes with

children not removed
* @param forestHashtableName String

*/
protected void remove(String command, String nodeKeyKey, String leafOnly,

String forestHashtableName) {
removeNode (command, nodeKeyKey, leafOnly, forestHashtableName);

}
/** Removes a (session-dependent) node from “bonBufferXML” ForestHashtable

member.
* @param command String = “bonRemoveElement” (others later)
* @param nodeKeyKey String
* @param leafOnly String if uppercased is “TRUE” nodes with

children not removed
* @param forestHashtableName String
*/
protected void removeFromBuffer(String command, String nodeKeyKey, String

leafOnly, String forestHashtableName) {
removeNode (command, nodeKeyKey, leafOnly, forestHashtableName);

}
/** Removes a node from a ForestHashtable.
* (for now: only non-global nodes removed)
* @param command String = “bonRemoveElement” (others later)
* @param nodeKeyKey String

15 1089-9 XC 6/26/01 7:40 AM Page 541

542 Appendix C Source Code for bonForum Web Application

* @param leafOnly String if uppercased is “TRUE” nodes with
children not removed

* @param forestHashtableName String
*/
protected void removeNode (String command, String nodeKeyKey, String

leafOnly, String forestHashtableName) {
NodeKey nonRootNodeKey = new NodeKey();
boolean fast = false;
// For now: just a choice between existing ForestHashtable instances
ForestHashtable forestHashtable = null;
if(forestHashtableName.equals(“bonForumXML”)) {

forestHashtable = bonForumXML;
if (nodeKeyKey.equals(“actors”)) {

nonRootNodeKey = getActorsNodeKey();
fast = true;

}
else if (nodeKeyKey.equals(“actions”)) {

nonRootNodeKey = getActionsNodeKey();
fast = true;

}
else if (nodeKeyKey.equals(“things”)) {

nonRootNodeKey = getThingsNodeKey();
fast = true;

}
}
else if(forestHashtableName.equals(“bonBufferXML”)) {

if (nodeKeyKey.equals(“actors”)) {
nonRootNodeKey = getBufferActorsNodeKey();
fast = true;

}
else if (nodeKeyKey.equals(“actions”)) {

nonRootNodeKey = getBufferActionsNodeKey();
fast = true;

}
else if (nodeKeyKey.equals(“things”)) {

nonRootNodeKey = getBufferThingsNodeKey();
fast = true;

}
}
NodeKey nodeKey = new NodeKey();
if (command.equals(“bonRemoveElement”)) {

try {
if(!fast) {

// does not have a “fast” global parent nodeKey
// For now, only non-fast nodes can be removed!
//
// Each NodeKey instance is saved in

nodeNameHashtable.
// “fast” nodes have a nodeKeyKey of
// “actors”, “actions”, or “things”,
// “non-fast” nodes hava a nodeKeyKey

15 1089-9 XC 6/26/01 7:40 AM Page 542

543C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

// (a key into the nodeNameHashtable)
// with a key format that is either:
// sessionId_creationTimeInMillis:nodeName
// or, optionally:
// sessionId:nodeName
// We could later check the incoming sessionId

prefix
// is valid using isRequestedSessionIdValid(prefix)
if

(forestHashtable.getNodeNameHashtable().containsKey(nodeKeyKey)) {
nodeKey =

(NodeKey)forestHashtable.getNodeNameHashtable().get(nodeKeyKey);
}

}
try {

if(nodeKey.aKey != null && nodeKey.aKey.length() >
0) {

boolean deleteLeafOnly = false;
if(leafOnly.equalsIgnoreCase(“TRUE”)) {

deleteLeafOnly = true;
}
forestHashtable.deleteNode((NodeKey)nodeKey,

deleteLeafOnly);
}

}
catch (Exception ex) {

log(sessionId, “err”, “deleteNode() caused exception
in remove()”);

}
}
catch (Exception ee) {

log(sessionId, “err”, “Exception in remove()”);
}

}
}
/** Gets the NodeKey for a pathName in a pathNameHashtable.
* (The NodeKey for each element in the “subjects” subtree
* is also in a pathNameHashtable, with a pathName key).
*
* @param pathName String
* @param pathNameHashtable PathNameHashtable
* @return NodeKey for the pathName
*/
protected NodeKey subjectNodeKeyFromPathName(String pathName,

PathNameHashtable pathNameHashtable) {
return (NodeKey)pathNameHashtable.get(pathName);

}
/** Returns the BonNode for a subject from a ForestHashtable.
* (The subject pathName is a key value for a NodeKey in a

PathNameHashtable).
*

15 1089-9 XC 6/26/01 7:40 AM Page 543

544 Appendix C Source Code for bonForum Web Application

* @param pathName String
* @param pathNameHashtable PathNameHashtable
* @param forestHashtable ForestHashtable
* @return NodeKey for the pathName
*/
protected BonNode subjectBonNodeFromPathName(String pathName,

PathNameHashtable pathNameHashtable, ForestHashtable forestHashtable) {
NodeKey nodeKey = subjectNodeKeyFromPathName(pathName,

pathNameHashtable);
if(forestHashtable.getNodeNameHashtable().contains(nodeKey)) {

return (BonNode)forestHashtable.get(nodeKey);
}
else {

return(null);
}

}
/** Returns the pathName to a NodeKey in a ForestHashtable.
*
* @param nodeKey NodeKey
* @param forestHashtable ForestHashtable
* @return The pathName for the nodeKey as a String
*/
public String pathNameFromNodeKey(NodeKey nodeKey, ForestHashtable

forestHashtable)
{

String temp = “”;
BonNode bonNode;
NodeKey parentNodeKey;
try {

bonNode = forestHashtable.getBonNode(nodeKey);
temp = bonNode.nodeName;
parentNodeKey = bonNode.parentNodeKey;
boolean done = false;
while (!done) {

if(bonNode.parentNodeKey.aKey.equals(“”)) {
done = true;
break;

}
else {

bonNode = forestHashtable.getBonNode(parentNodeKey);
temp = bonNode.nodeName + “.” + temp;
parentNodeKey = bonNode.parentNodeKey;

}
}

}
catch(Exception ee) {

log(sessionId, “err”, “Exception caught in
pathNameFromNodeKey()”);

}
return temp;

}

15 1089-9 XC 6/26/01 7:40 AM Page 544

545C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

/** Returns the pathKey to a NodeKey in a ForestHashtable.
* A pathKey is made up of the combined nodeKeys of all the nodes from the

root
* to the nodeKey argument.
* Each nodeKey is a triple-valued key used by a ForestHashtable.
* An Example of a pathKey is:
* 238493049323-384930493039-584954059453.463748293847-564738473623-

827347382374
* The nodeKeys is a pathKey are separated by a period, ‘.’, and the
* AKey, BKey and CKey in each nodeKey are separated by a dash, ‘-’.
*
* @param nodeKey NodeKey
* @param forestHashtable ForestHashtable
* @return The pathKey for the nodeKey as a String
*/
public String pathKeyFromNodeKey(NodeKey nodeKey, ForestHashtable

forestHashtable) {
String temp = “”;
BonNode bonNode;
NodeKey parentNodeKey;
try {

bonNode = forestHashtable.getBonNode(nodeKey);
temp = bonNode.nodeKey.aKey + “-” + bonNode.nodeKey.bKey + “-” +

bonNode.nodeKey.cKey;
parentNodeKey = bonNode.parentNodeKey;
boolean done = false;
while (!done) {

bonNode = forestHashtable.getBonNode(parentNodeKey);
temp = bonNode.nodeKey.aKey + “-” + bonNode.nodeKey.bKey +

“-” + bonNode.nodeKey.cKey + “.” + temp;
if(bonNode.parentNodeKey.aKey.equals(“”)) {

done = true;
break;

}
else {

parentNodeKey = bonNode.parentNodeKey;
}

}
}
catch(Exception ee) {

log(sessionId, “err”, “Exception caught in
pathKeyFromNodeKey()”);

}
return temp;

}
/** Outputs pathNames and nodeKeys from a bonForumXML subTree as a TreeMap.
* (except for chatItems!).
* The TreeMap can be used as a sorted list of the paths to all the nodes.
*
* NOTE: if you need method to output chatItem elements,
* You can add an option arg to do that!

15 1089-9 XC 6/26/01 7:40 AM Page 545

546 Appendix C Source Code for bonForum Web Application

* (chatItem elements have names that are equal to:
* “sessionID_” + chatCreatorHostSessionId +

chatNodeCreationTimeInMillis),
*
* @param command String (unused, available argument)
* @param pathToSubTreeRootNode String
* @param option1 String (reserved argument)
* @param option2 String (reserved argument)
* @return TreeMap
*/
protected TreeMap outputForumPathNames(String command, String

pathToSubTreeRootNode, String option1, String option2) {
// the command argument can later be used to provide tag-visible sub-

types of this method
if(!command.equals(“bonForumXML”)) {

if(command.equals(“bonBufferXML”)) {
return outputBufferPathNames(command,

pathToSubTreeRootNode, option1, option2);
}
else {

TreeMap errorTreeMap = new TreeMap();
errorTreeMap.put(“0”, “::::::::::::error in

command::::::::::::::”);
return errorTreeMap; // later this error causes

exception?
}

}
log(sessionId, “err”, “Hello, outputForumPathNames!”);
BonNode bonNode = null;
NodeKey nodeKey = new NodeKey();
TreeMap outputTreeMap = new TreeMap();
Enumeration enumeration = getBonForumXML().elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
nodeKey = bonNode.nodeKey;
// LATER: pass option2 to pathNameFromNodeKey to replace all but

last nodeName with nbsp, for example
// LATER: pass option3 to pathNameFromNodeKey as the separator
String pathName = pathNameFromNodeKey(nodeKey, bonForumXML);
// ASSUMPTION: if element has chatTopic attribute it is

chatItem,
// and we want to suppress these in users display of forum

pathNames (e.g., chat subjects)
if (pathToSubTreeRootNode != null &&

pathToSubTreeRootNode.length() > 0) {
if(bonNode.nodeAttributes.indexOf(“chatTopic=\””) < 0) {

if(pathName.indexOf(pathToSubTreeRootNode) == 0) {
// strip off leftmost nodes
pathName =

pathName.substring(pathToSubTreeRootNode.length());
// strip off period separator

15 1089-9 XC 6/26/01 7:40 AM Page 546

547C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

if(pathName.indexOf(“.”) == 0) {
pathName = pathName.substring(1);

}
if(pathName.length() > 0) {

outputTreeMap.put(pathName,
nodeKey.aKey);

}
}

}
}
else {

if(pathName.length() > 0) {
outputTreeMap.put(pathName, nodeKey.aKey);

}
}

}
if(outputTreeMap.size()<1) {

outputTreeMap.put(“.”, “0”); // these are empty output return
values

}
log(sessionId, “err”, “Goodbye, outputForumPathNames!”);
return outputTreeMap;

}
/** Outputs pathNames and nodeKeys from a bonBufferXML subTree as a TreeMap.
* The TreeMap can be used as a sorted list of the paths to all the nodes.
*
* @param command String (reserved argument, available from

ChoiceTag)
* @param pathToSubTreeRootNode String
* @param option1 String (reserved argument, available from

ChoiceTag)
* @param option2 String (reserved argument, available from

ChoiceTag)
* @return TreeMap
*/
protected TreeMap outputBufferPathNames(String command, String

pathToSubTreeRootNode, String option1, String option2) {
// the command argument can later be used to provide tag-visible sub-

types of this method
BonNode bonNode = null;
NodeKey nodeKey = new NodeKey();
TreeMap outputTreeMap = new TreeMap();
Enumeration enumeration = bonBufferXML.elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
nodeKey = bonNode.nodeKey;
// LATER: pass option2 to pathNameFromNodeKey to replace all but

last nodeName with nbsp, for example
// LATER: pass option3 to pathNameFromNodeKey as the separator
String pathName = pathNameFromNodeKey(nodeKey, bonBufferXML);
// LATER: add pathToSubTreeRootNode processing here (see

15 1089-9 XC 6/26/01 7:40 AM Page 547

548 Appendix C Source Code for bonForum Web Application

outputForumPathNames)
outputTreeMap.put(pathName, nodeKey.aKey);

}
if(outputTreeMap.size()<1) {

outputTreeMap.put(“.”, “0”); // these are empty output return
values

}
return outputTreeMap;

}
/** Outputs the messages in the session’s current chat from bonForumXML as a

TreeMap.
* The TreeMap can be used as a sorted list of the messages for that

session’s chat.
*
* @param command String (reserved argument, available from

ChoiceTag)
* @param option1 String (reserved argument, available from

ChoiceTag)
* @param option2 String (reserved argument, available from

ChoiceTag)
* @param option3 String (reserved argument, available from

ChoiceTag)
* @param session HttpSession (e.g.,

pageContext.getSession())
* @return TreeMap
*/
protected TreeMap outputForumChatMessages(String command, String option1,

String option2, String option3, HttpSession session) {
// the command argument can later be used to provide tag-visible sub-

types of this method
// the optionN arguments are available, also from ChoiceTag as attrN
if(!command.equals(“bonForumXML”)) {

if(command.equals(“bonBufferXML”)) {
return outputBufferChatMessages(command, option1, option2,

option3, session);
}
else {

TreeMap errorTreeMap = new TreeMap();
errorTreeMap.put(“0”, “::::::::::::error in

command::::::::::::::”);
return errorTreeMap; // later this error causes

exception?
}

}
String messageTimeMillis = “”;
BonNode bonNode = null;
TreeMap outputTreeMap = new TreeMap();
TreeMap tempTreeMap = new TreeMap(Collections.reverseOrder());
Enumeration enumeration = getBonForumXML().elements();
// get this session’s itemKey (chat subject category) from session

Attribute

15 1089-9 XC 6/26/01 7:40 AM Page 548

549C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

String itemKey = normalize((String)session.getAttribute(“itemKey”));
if(itemKey.trim().length() < 1) {

log(sessionId, “err”, “outputForumChatMessages() ERROR: session
has no itemKey!”);

}
else {

// get all messages that have this chat’s itemKey
while(enumeration.hasMoreElements()) {

// get bonNode and its name, attributes and content
bonNode = (BonNode)enumeration.nextElement();
String name = bonNode.nodeName;
String attributes = bonNode.nodeAttributes;
String content = bonNode.nodeContent;
// if the bonNode is a message
if(name.equals(“message”)) {

/* THESE WERE DEBUGGING TESTS FOR getAttributeValue
// test value with escaped double quote in it (xml

error!)
String testStr =

getBonForumXML().getAttributeValue(attributes, “type”);
//log(sessionId, “”, “outputForumChatMessages(),

testStr: “ + testStr);
// test attribute value not there (programming

error)
testStr =

getBonForumXML().getAttributeValue(attributes, “notThere”);
//log(sessionId, “”, “outputForumChatMessages(),

testStr: “ + testStr);
// test value without closing double quote (xml

error)
testStr =

getBonForumXML().getAttributeValue(attributes, “test1”);
//log(sessionId, “”, “outputForumChatMessages(),

testStr: “ + testStr);
*/
// get itemKey attribute value
String messageItemKey =

getBonForumXML().getAttributeValue(attributes, “itemKey”);
if(messageItemKey == null) {

// error, handle later
log(sessionId, “err”,

“outputForumChatMessages(), ERROR! NO ItemKey found in message attributes!”);
continue;

}
// if its this session’s itemKey, it is also this

session’s chat
if(messageItemKey.equals(itemKey)) {

// get message timeMillis attribute value
messageTimeMillis =

getBonForumXML().getAttributeValue(attributes, “timeMillis”);
if(messageTimeMillis == null) {

15 1089-9 XC 6/26/01 7:40 AM Page 549

550 Appendix C Source Code for bonForum Web Application

// error, handle later
log(sessionId, “err”,

“outputForumChatMessages(), ERROR! NO timeMillis found in message attributes!”);
continue;

}
}
else {

continue;
}
// assume content is “<normalized actorNickname>:: “

followed by chatMessage
// put content in TreeMap with timeMillis as key
tempTreeMap.put(messageTimeMillis, content);

} // end if
} // end while

} // end else
// keep track of last message by its time
session.setAttribute(“lastMessageTimeMillis”, messageTimeMillis);
// should we make sure here that currentTimeMillis is > largest

messageTimeMillis?
// the TreeMap chatHistoryTreeMap now contains the sorted chat lines
// ready to be put into the “output” choiceTag attribute,
// in a manner analogous to that use in the “bonOutputTable” choiceTag

command.
// Here we get a sorted subset of the messages according to session

attributes.
// This allows user to set size of output and page through messages
// messages array gets sorted message times in reverse order
String[] messages = (String[]) tempTreeMap.keySet().toArray(new

String[0]);
// keep track of how many there were at this output time
int numberOfMessages = messages.length;
String quantity =

(String)session.getAttribute(“chatMessagesPageSize”);
if (quantity == null) {

log(sessionId, “err”, “outputForumChatMessages(), quantity ==
null”);

quantity = “10”; // initialize
}
int numberPerPage = -1;
try {

numberPerPage = Integer.parseInt(quantity);
}
catch (NumberFormatException nFE) {

log(sessionId, “err”, “outputForumChatMessages(), cannot parse
quantity requested as int: “ + quantity);

numberPerPage = 10;
}
if(numberPerPage > numberOfMessages) {

numberPerPage = numberOfMessages;
}

15 1089-9 XC 6/26/01 7:40 AM Page 550

551C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

int numberOfPages = 0;
try {

numberOfPages = (numberOfMessages / numberPerPage);
if((numberOfMessages % numberPerPage) != 0) {

++numberOfPages;
}

}
catch(Exception ee) {

numberOfPages = 0;
}
session.setAttribute(“chatNumberOfPages”,

Integer.toString(numberOfPages));
String pagesFromEnd = (String)session.getAttribute(“pagesFromEnd”);
int pagesToSkip = -1;
try {

pagesToSkip = Integer.parseInt(pagesFromEnd);
}
catch (NumberFormatException nFE) {

log(sessionId, “err”, “outputForumChatMessages(), cannot parse
session attribute pagesFromEnd: “ + pagesFromEnd);

pagesToSkip = -1;
}
if(pagesToSkip >= numberOfPages) {

pagesToSkip = numberOfPages - 1;
}
int pageNumber = numberOfPages - pagesToSkip;
if(pageNumber > numberOfPages) {

pageNumber = numberOfPages;
}
session.setAttribute(“chatPageNumber”, Integer.toString(pageNumber));
String navigation;
try {

navigation =
(String)session.getAttribute(“chatMessagesNavigator”);

if(!navigation.equals(“same”) && !navigation.equals(“first”) &&
!navigation.equals(“previous”) && !navigation.equals(“next”) &&
!navigation.equals(“last”)) {

navigation = “last”;
}

}
catch(Exception ee) {

log(sessionId, “err”, “outputForumChatMessages(), no session
attribute chatMessagesNavigator, using \”last\””);

navigation = “last”;
session.setAttribute(“chatMessagesNavigator”, “last”);

}
// We have reversed the sort order of messages in tempTreeMap,
// therefore these navigation cases will seem to be backwards!
// Also, it means that if there are more than one page of messages,
// then the first page of messages may be less than full,
// while the last will stay full. (This is more convenient, since the

15 1089-9 XC 6/26/01 7:40 AM Page 551

552 Appendix C Source Code for bonForum Web Application

usual
// case is to display the last page after each refresh, and this
// way the user sees more messages most of the time. Later we could
// implement scrolling by the message instead of by the page.)
if(navigation.equalsIgnoreCase(“previous”)) {

++pagesToSkip;
if(pagesToSkip >= numberOfPages) {

pagesToSkip = numberOfPages - 1;
}
session.setAttribute(“chatMessagesNavigator”, “same”);

}
else if(navigation.equalsIgnoreCase(“next”)) {

—pagesToSkip;
if(pagesToSkip < 0) {

pagesToSkip = 0;
}
session.setAttribute(“chatMessagesNavigator”, “same”);

}
else if(navigation.equalsIgnoreCase(“last”)) {

pagesToSkip = 0;
}
else if(navigation.equalsIgnoreCase(“first”)) {

pagesToSkip = numberOfPages - 1;
}
// If we are not showing last page of messages, we do not want list to

refresh
// because messages coming into chat from other guests or host will

scroll
// the messages. That is ok only when user is looking at last message

in
// display. Otherwise, it is confusing and irritating!
// So, let’s control the robot applet’s refresh action here:
String noScrolling = “same;first;previous;next”;
if(noScrolling.indexOf(navigation) > -1) {

session.setAttribute(“refresh”, “false”);
}
else {

session.setAttribute(“refresh”, “true”);
}
session.setAttribute(“pagesFromEnd”, Integer.toString(pagesToSkip));
int numberToSkip = numberPerPage * pagesToSkip;
if(navigation.equalsIgnoreCase(“same”)) {

String lastNumOfMessages =
normalize((String)session.getAttribute(“numberOfMessages”));

try {
int lastNumberOfMessages =

Integer.parseInt(lastNumOfMessages);
int numberOfNewMessages = numberOfMessages -

lastNumberOfMessages;
numberToSkip += numberOfNewMessages;

}

15 1089-9 XC 6/26/01 7:40 AM Page 552

553C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

catch(Exception ee) {
}

}
if(numberToSkip > numberOfMessages) {

numberToSkip = numberOfMessages;
}
session.setAttribute(“numberOfMessages”,

Integer.toString(numberOfMessages));
int ii;
for(ii = 0; ii < numberToSkip; ++ii);
if((numberOfMessages - numberToSkip) < numberPerPage) {

numberPerPage = numberOfMessages - numberToSkip;
}
int jj;
for(jj = ii; jj < ii + numberPerPage; ++jj) {

outputTreeMap.put(messages[jj], tempTreeMap.get(messages[jj]));
}
String lastMNO = Integer.toString(jj-1);
session.setAttribute(“lastMessageNumberOutput”, lastMNO);
if(outputTreeMap.size()<1) {

outputTreeMap.put(“0”, “::::::::::::empty
chat:::::::::::::::::::”);

}
return outputTreeMap;

}
/** Outputs the messages in the session’s current chat from bonBufferXML as

a TreeMap.
* The TreeMap can be used as a sorted list of the messages for that

session’s chat.
*
* @param command String (reserved argument, available from

ChoiceTag)
* @param option1 String (reserved argument, available from

ChoiceTag)
* @param option2 String (reserved argument, available from

ChoiceTag)
* @param option3 String (reserved argument, available from

ChoiceTag)
* @param session HttpSession (e.g.,

pageContext.getSession())
* @return TreeMap
*/
protected TreeMap outputBufferChatMessages(String command, String option1,

String option2, String option3, HttpSession session) {
// the command argument can later be used to provide tag-visible sub-

types of this method
// the optionN arguments are available, also from ChoiceTag as attrN
String messageTimeMillis = “”;
BonNode bonNode = null;
TreeMap outputTreeMap = new TreeMap();
TreeMap tempTreeMap = new TreeMap(Collections.reverseOrder());

15 1089-9 XC 6/26/01 7:40 AM Page 553

554 Appendix C Source Code for bonForum Web Application

Enumeration enumeration = bonBufferXML.elements();
// get this session’s itemKey (chat subject category) from session

Attribute
String itemKey = normalize((String)session.getAttribute(“itemKey”));
if(itemKey.trim().length() < 1) {

log(sessionId, “err”, “outputBufferChatMessages() ERROR: session
has no itemKey!”);

}
else {

// get all messages that have this chat’s itemKey
while(enumeration.hasMoreElements()) {

// get bonNode and its name, attributes and content
bonNode = (BonNode)enumeration.nextElement();
String name = bonNode.nodeName;
String attributes = bonNode.nodeAttributes;
String content = bonNode.nodeContent;
// if the bonNode is a message
if(name.equals(“message”)) {

/* THESE WERE DEBUGGING TESTS FOR getAttributeValue
// test value with escaped double quote in it (xml

error!)
String testStr =

bonBufferXML.getAttributeValue(attributes, “type”);
//log(sessionId, “”, “outputBufferChatMessages(),

testStr: “ + testStr);
// test attribute value not there (programming

error)
testStr = bonBufferXML.getAttributeValue(attributes,

“notThere”);
//log(sessionId, “”, “outputBufferChatMessages(),

testStr: “ + testStr);
// test value without closing double quote (xml

error)
testStr = bonBufferXML.getAttributeValue(attributes,

“test1”);
//log(sessionId, “”, “outputBufferChatMessages(),

testStr: “ + testStr);
*/
// get itemKey attribute value
String messageItemKey =

bonBufferXML.getAttributeValue(attributes, “itemKey”);
if(messageItemKey == null) {

// error, handle later
log(sessionId, “err”,

“outputBufferChatMessages(), ERROR! NO ItemKey found in message attributes!”);
continue;

}
// if its this session’s itemKey, it is also this

session’s chat
if(messageItemKey.equals(itemKey)) {

// get message timeMillis attribute value

15 1089-9 XC 6/26/01 7:40 AM Page 554

555C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

messageTimeMillis =
bonBufferXML.getAttributeValue(attributes, “timeMillis”);

if(messageTimeMillis == null) {
// error, handle later
log(sessionId, “err”,

“outputBufferChatMessages(), ERROR! NO timeMillis found in message attributes!”);
continue;

}
}
else {

continue;
}
// assume content is “<normalized actorNickname>:: “

followed by chatMessage
// put content in TreeMap with timeMillis as key
tempTreeMap.put(messageTimeMillis, content);

} // end if
} // end while

} // end else
// keep track of last message by its time
session.setAttribute(“lastMessageTimeMillis”, messageTimeMillis);
// should we make sure here that currentTimeMillis is > largest

messageTimeMillis?
// the TreeMap chatHistoryTreeMap now contains the sorted chat lines
// ready to be put into the “output” choiceTag attribute,
// in a manner analogous to that use in the “bonOutputTable” choiceTag

command.
// Here we get a sorted subset of the messages according to session

attributes.
// This allows user to set size of output and page through messages
// messages array gets sorted message times in reverse order
String[] messages = (String[]) tempTreeMap.keySet().toArray(new

String[0]);
// keep track of how many there were at this output time
int numberOfMessages = messages.length;
String quantity =

(String)session.getAttribute(“chatMessagesPageSize”);
if (quantity == null) {

log(sessionId, “err”, “outputBufferChatMessages(), quantity ==
null”);

quantity = “10”; // initialize
}
int numberPerPage = -1;
try {

numberPerPage = Integer.parseInt(quantity);
}
catch (NumberFormatException nFE) {

log(sessionId, “err”, “outputBufferChatMessages(), cannot
parse quantity requested as int: “ + quantity);

numberPerPage = 10;
}

15 1089-9 XC 6/26/01 7:40 AM Page 555

556 Appendix C Source Code for bonForum Web Application

if(numberPerPage > numberOfMessages) {
numberPerPage = numberOfMessages;

}
int numberOfPages = 0;
try {

numberOfPages = (numberOfMessages / numberPerPage);
if((numberOfMessages % numberPerPage) != 0) {

++numberOfPages;
}

}
catch(Exception ee) {

numberOfPages = 0;
}
session.setAttribute(“chatNumberOfPages”,

Integer.toString(numberOfPages));
String pagesFromEnd = (String)session.getAttribute(“pagesFromEnd”);
if(pagesFromEnd.equals(“null”)) {

pagesFromEnd = “0”;
}
int pagesToSkip = -1;
try {

pagesToSkip = Integer.parseInt(pagesFromEnd);
}
catch (NumberFormatException nFE) {

log(sessionId, “err”, “outputBufferChatMessages(), cannot parse
session attribute pagesFromEnd: “ + pagesFromEnd);

pagesToSkip = -1;
}
if(pagesToSkip >= numberOfPages) {

pagesToSkip = numberOfPages - 1;
}
int pageNumber = numberOfPages - pagesToSkip;
if(pageNumber > numberOfPages) {

pageNumber = numberOfPages;
}
session.setAttribute(“chatPageNumber”, Integer.toString(pageNumber));
String navigation;
try {

navigation =
(String)session.getAttribute(“chatMessagesNavigator”);

if(!navigation.equals(“same”) && !navigation.equals(“first”) &&
!navigation.equals(“previous”) && !navigation.equals(“next”) &&
!navigation.equals(“last”)) {

navigation = “last”;
}

}
catch(Exception ee) {

log(sessionId, “err”, “outputBufferChatMessages(), exception
getting session attribute chatMessagesNavigator, using \”last\””);

navigation = “last”;
}

15 1089-9 XC 6/26/01 7:40 AM Page 556

557C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

// We have reversed the sort order of messages in tempTreeMap,
// therefore these navigation cases will seem to be backwards!
// Also, it means that if there are more than one page of messages,
// then the first page of messages may be less than full,
// while the last will stay full. (This is more convenient, since the

usual
// case is to display the last page after each refresh, and this
// way the user sees more messages most of the time. Later we could
// implement scrolling by the message instead of by the page.)
if(navigation.equalsIgnoreCase(“previous”)) {

++pagesToSkip;
if(pagesToSkip >= numberOfPages) {

pagesToSkip = numberOfPages - 1;
}
session.setAttribute(“chatMessagesNavigator”, “same”);

}
else if(navigation.equalsIgnoreCase(“next”)) {

—pagesToSkip;
if(pagesToSkip < 0) {

pagesToSkip = 0;
}
session.setAttribute(“chatMessagesNavigator”, “same”);

}
else if(navigation.equalsIgnoreCase(“last”)) {

pagesToSkip = 0;
}
else if(navigation.equalsIgnoreCase(“first”)) {

pagesToSkip = numberOfPages - 1;
}
session.setAttribute(“pagesFromEnd”, Integer.toString(pagesToSkip));
int numberToSkip = numberPerPage * pagesToSkip;
if(navigation.equalsIgnoreCase(“same”)) {

String lastNumOfMessages =
normalize((String)session.getAttribute(“numberOfMessages”));

try {
int lastNumberOfMessages =

Integer.parseInt(lastNumOfMessages);
int numberOfNewMessages = numberOfMessages -

lastNumberOfMessages;
numberToSkip += numberOfNewMessages;

}
catch(Exception ee) {
}

}
if(numberToSkip > numberOfMessages) {

numberToSkip = numberOfMessages;
}
session.setAttribute(“numberOfMessages”,

Integer.toString(numberOfMessages));
int ii;
for(ii = 0; ii < numberToSkip; ++ii);

15 1089-9 XC 6/26/01 7:40 AM Page 557

558 Appendix C Source Code for bonForum Web Application

if((numberOfMessages - numberToSkip) < numberPerPage) {
numberPerPage = numberOfMessages - numberToSkip;

}
int jj;
for(jj = ii; jj < ii + numberPerPage; ++jj) {

outputTreeMap.put(messages[jj], tempTreeMap.get(messages[jj]));
}
String lastMNO = Integer.toString(jj-1);
session.setAttribute(“lastMessageNumberOutput”, lastMNO);
if(outputTreeMap.size()<1) {

outputTreeMap.put(“0”, “::::::::::::empty
chat:::::::::::::::::::”);

}
return outputTreeMap;

}
/** allows using bonBufferXML from other classes including JSP code and JSP

tags.
* NOTE: This is experimental! Could it be problematic?
*
* @param sessionId String
*/
protected void initializeBuffer(String sessionId) {

initializeBonForum(“bonBufferXML”, sessionId);
}
/** allows using bonForumXML from other classes including JSP code and JSP

tags
* NOTE: This is experimental! Could it be problematic?
*
* @param sessionId String
*/
protected void initializeXML(String sessionId) {

initializeBonForum(“bonForumXML”, sessionId);
}
/** Initializes “bonForumXML” or “bonBufferXML” ForestHashtable member.
* (until more cases added).
* When initializing, bonForumXML either gets new default or existing one is

not changed.
* When initializing, bonBufferXML is cleared as are its nodeKey tables.
* The sessionId is required to add nodes to ForestHashtable (children of

non-root nodes)
*
* @param forestHashtableName String (“bonForumXML” or “bonBufferXML”, for

now)
* @param sessionId String
*/
protected void initializeBonForum(String forestHashtableName, String

sessionId) {
if(forestHashtableName.equals(“bonForumXML”)) {

if(getBonForumXML().size()<1) {
log(sessionId, “out”, “<<<INITIALIZING NEW

bonForumXML>>>”);

15 1089-9 XC 6/26/01 7:40 AM Page 558

559C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

// Here we create the minimal XML content for the bonForum
to boot up.

// We will do that in a ForestHashtable object:
bonForumXML.

// There is only one per BonForumStore bean instance
getBonForumXML().getNodeNameHashtable().clear();
//Element bonForum is the root node.
String rootNodeName = normalize(“bonForum”);
String rootNodeAttributes = “type = \”prototype\””; // do

not normalize yet, handle "
String rootNodeContent = normalize(“”);
BonNode rootNode =

getBonForumXML().addRootNode(rootNodeName, rootNodeAttributes, rootNodeContent,
“nodeNameHashtable”);

// This will give faster access to root
setRootNodeKey(rootNode.nodeKey);
// Then actors element is a child of the root node.
String childNodeName = normalize(“actors”);
String childNodeAttributes = “type = \”READ_ONLY\””;
String childNodeContent = normalize(“”);
BonNode nonRootNode =

getBonForumXML().addChildNodeToRootNode(childNodeName, childNodeAttributes,
childNodeContent, rootNode.nodeKey, “nodeNameHashtable”);

// This will give faster access to actors
setActorsNodeKey(nonRootNode.nodeKey);
// This is used to demonstrate adding element after the

first, to the same parent
NodeKey holdNodeKey = nonRootNode.nodeKey;
// Here we add the system actor, which is a child of a

non-root node.
childNodeName = normalize(“system”);
childNodeAttributes = “type = \”SYSTEM\””;
childNodeContent = normalize(“”);
nonRootNode =

getBonForumXML().addChildNodeToNonRootNode(childNodeName, childNodeAttributes,
childNodeContent, nonRootNode.nodeKey, “nodeNameHashtable”, sessionId);

// Here we add the system2 actor, which is a child of a
non-root node.

childNodeName = normalize(“system2”);
childNodeAttributes = “type = \”SYSTEM\””;
childNodeContent = normalize(“”);
nonRootNode =

getBonForumXML().addChildNodeToNonRootNode(childNodeName, childNodeAttributes,
childNodeContent, nonRootNode.nodeKey, “nodeNameHashtable”, sessionId);

// JUST TESTING NEXT LEVEL
// Here we add a test element, which is a child (and

grandchild) of a non-root node.
childNodeName = normalize(“test”);
childNodeAttributes = “type = \”TEST\””;
childNodeContent = normalize(“”);
nonRootNode =

15 1089-9 XC 6/26/01 7:40 AM Page 559

560 Appendix C Source Code for bonForum Web Application

getBonForumXML().addChildNodeToNonRootNode(childNodeName, childNodeAttributes,
childNodeContent, nonRootNode.nodeKey, “nodeNameHashtable”, sessionId);

// Here we add element using a saved nodeKey
nonRootNode =

getBonForumXML().addChildNodeToNonRootNode(childNodeName, childNodeAttributes,
childNodeContent, holdNodeKey, “nodeNameHashtable”, sessionId);

// Another child of the root node: actions
childNodeName = normalize(“actions”);
childNodeAttributes = “type = \”READ_ONLY\””;
childNodeContent = normalize(“”);
nonRootNode =

getBonForumXML().addChildNodeToRootNode(childNodeName, childNodeAttributes,
childNodeContent, rootNode.nodeKey, “nodeNameHashtable”);

// This will give faster access to actions
setActionsNodeKey(nonRootNode.nodeKey);
// Another child of the root node: things
childNodeName = normalize(“things”);
childNodeAttributes = “type = \”READ_ONLY\””;
childNodeContent = normalize(“”);
nonRootNode =

getBonForumXML().addChildNodeToRootNode(childNodeName, childNodeAttributes,
childNodeContent, rootNode.nodeKey, “nodeNameHashtable”);

// This will give faster access to things
setThingsNodeKey(nonRootNode.nodeKey);
// load the subjects sub-tree into the bonForumXML from a

file
log(sessionId, “out”, “loading subjects tree into

bonForumXML”);
String pathToSubTreeRootNode = “”; // later
String parentNodeInDestination = “things”;
String xmlUri =

“..\\webapps\\bonForum\\mldocs\\subjects.xml”;
// parse and load document
try {

DOMParser parser = new DOMParser();
parser.parse(xmlUri);
Document document = parser.getDocument();
// note: for now this command works only with

bonForumXML, it could work with bonBufferXML, etc.
try {

loadForumXML(pathToSubTreeRootNode,
parentNodeInDestination, document, “pathNameHashtable”, sessionId);

}
catch(Exception ee) {

log(sessionId, “err”, “exception loading
subjects.xml into bonForumXML:” +

ee.getMessage());
}

}
catch(Exception ex) {

log(sessionId, “err”, “exception parsing

15 1089-9 XC 6/26/01 7:40 AM Page 560

561C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

subjects.xml” +
ex.getMessage());

}
// load the forums sub-tree into the bonForumXML from a

file
log(sessionId, “out”, “loading forums tree into

bonForumXML”);
pathToSubTreeRootNode = “”; // later
parentNodeInDestination = “things”;
xmlUri = “..\\webapps\\bonForum\\mldocs\\forums.xml”;
// parse document
try {

DOMParser parser = new DOMParser();
parser.parse(xmlUri);
Document document = parser.getDocument();
// note: for now this command works only with

bonForumXML, it could work with bonBufferXML, etc.
try {

loadForumXML(pathToSubTreeRootNode,
parentNodeInDestination, document, “”, sessionId);

}
catch(Exception ee) {

log(sessionId, “err”, “caught exception trying
to load forums.xml into bonForumXML”);

}
}
catch(Exception ex) {

log(sessionId, “err”, “caught exception trying to
parse forums.xml”);

}
// Here we could load more stuff into the bonForum later.
// This debugging output dumps ForestHashtable contents.
//log(sessionId, “”, getBonForumXML().getXMLTrees());
// Announce success of bonForumXML initialization!
setInitDate(null);
log(sessionId, “out”, “NEW bonForumXML IS READY,

initDate:” + getInitDate());
}
else {

// This debugging output dumps ForestHashtable contents.
//log(sessionId, “”, getBonForumXML().getXMLTrees());
// Announce finding of existing bonForumXML

ForestHashtable instance!
//log(sessionId, “”, “FOUND EXISTING bonForumXML”);

}// end of initialize forum or get old forum
}
else if(forestHashtableName.equals(“bonBufferXML”)) {

// NOTE: ALL BonBufferXML code in the project is under
development and untested!

bonBufferXML.clear();
bonBufferXML.getNodeNameHashtable().clear();

15 1089-9 XC 6/26/01 7:40 AM Page 561

562 Appendix C Source Code for bonForum Web Application

bonBufferXML.getPathNameHashtable().clear();
if(bonBufferXML.size()<1) {

log(sessionId, “out”, “<<<INITIALIZING NEW
bonBufferXML>>>”);

// Here we create the minimal XML content for the
bonBuffer to boot up.

// We will do that in a ForestHashtable object:
bonBufferXML.

// There is only one per BonForumStore bean instance
// bonBufferXML.nodeNameHashtable.clear();
//Element bonForum is the root node.
String rootNodeName = normalize(“bonForum”);
String rootNodeAttributes = “type = \”buffer\””; // do

not normalize yet, handle "
String rootNodeContent = normalize(“”);
BonNode rootNode = bonBufferXML.addRootNode(rootNodeName,

rootNodeAttributes, rootNodeContent, “nodeNameHashtable”);
// This will give faster access to root
setBufferRootNodeKey(rootNode.nodeKey);
/* Maybe bonBufferXML should have nothing?
But it needs a root at least (see above).
Should it perhaps shadow the default bonForumXML?
The code to do so is here, commented out:
*/
/* Commented-out code begins here!
// Then actors element is a child of the root node.
String childNodeName = normalize(“actors”);
String childNodeAttributes = “type = \”READ_ONLY\””;
String childNodeContent = normalize(“”);
BonNode nonRootNode =

bonBufferXML.addChildNodeToRootNode(childNodeName, childNodeAttributes,
childNodeContent, rootNode.nodeKey, “nodeNameHashtable”);

// This will give faster access to actors
setBufferActorsNodeKey(nonRootNode.nodeKey);
// Here we add the system actor, which is a child of a

non-root node.
childNodeName = normalize(“system”);
childNodeAttributes = “type = \”SYSTEM\””;
childNodeContent = normalize(“”);
nonRootNode =

bonBufferXML.addChildNodeToNonRootNode(childNodeName, childNodeAttributes,
childNodeContent, nonRootNode.nodeKey, “nodeNameHashtable”, sessionId);

// Another child of the root node: actions
childNodeName = normalize(“actions”);
childNodeAttributes = “type = \”READ_ONLY\””;
childNodeContent = normalize(“”);
nonRootNode =

bonBufferXML.addChildNodeToRootNode(childNodeName, childNodeAttributes,
childNodeContent, rootNode.nodeKey, “nodeNameHashtable”);

// This will give faster access to actions
setActionsNodeKey(nonRootNode.nodeKey);

15 1089-9 XC 6/26/01 7:40 AM Page 562

563C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

// Another child of the root node: things
childNodeName = normalize(“things”);
childNodeAttributes = “type = \”READ_ONLY\””;
childNodeContent = normalize(“”);
nonRootNode =

bonBufferXML.addChildNodeToRootNode(childNodeName, childNodeAttributes,
childNodeContent, rootNode.nodeKey, “nodeNameHashtable”);

// This will give faster access to things
setThingsNodeKey(nonRootNode.nodeKey);
// load the subjects sub-tree into the bonBufferXML from a

file
String pathToSubTreeRootNode = “”; // later
String parentNodeInDestination = “things”;
String xmlUri =

“..\\webapps\\bonForum\\mldocs\\subjects.xml”;
// parse document
try {

DOMParser parser = new DOMParser();
parser.parse(xmlUri);
Document document = parser.getDocument();
try {

loadBufferXML(pathToSubTreeRootNode,
parentNodeInDestination, document, “pathNameHashtable”);

}
catch(Exception ee) {

log(sessionId, “err”, “caught exception trying
to load subjects.xml into bonBufferXML”);

}
}
catch(Exception ex) {

log(sessionId, “err”, “caught exception trying to
parse subjects.xml”);

}
// load the forums sub-tree into the bonBufferXML from a

file
pathToSubTreeRootNode = “”; // later
parentNodeInDestination = “things”;
xmlUri = “..\\webapps\\bonForum\\mldocs\\forums.xml”;
// parse document
try {

DOMParser parser = new DOMParser();
parser.parse(xmlUri);
Document document = parser.getDocument();
try {

loadBufferXML(pathToSubTreeRootNode,
parentNodeInDestination, document, “”);

}
catch(Exception ee) {

log(sessionId, “err”, “caught exception trying
to load Forums.xml into bonBufferXML”);

}

15 1089-9 XC 6/26/01 7:40 AM Page 563

564 Appendix C Source Code for bonForum Web Application

}
catch(Exception ex) {

log(sessionId, “err”, “caught exception trying to
parse forums.xml”);

}
// Here we could load more stuff into the bonBuffer later.
*/ //commented out section of code ends above
// This debugging output dumps ForestHashtable contents.
//log(sessionId, “”, bonBufferXML.getXMLTrees());
// Announce success of bonBufferXML initialization!
log(sessionId, “out”, “<<<NEW bonBufferXML IS READY>>>”);

}
}

}
/** Adds one attribute (name=value) to a chat node in bonForumXML

ForestHashtable.
*
* @param chatNodeKeyKey String (“<hostSessionId>:<creationTimeMillis>:chat”)
* @param attrName String
* @param attrValue String
*
* @return NodeKey of chat node affected, or null if key no good
*/
public NodeKey addChatNodeAttribute(String chatNodeKeyKey, String attrName,

String attrValue) {
NodeKey chatNodeKey = null;
if

(getBonForumXML().getNodeNameHashtable().containsKey(chatNodeKeyKey)) {
chatNodeKey =

(NodeKey)getBonForumXML().getNodeNameHashtable().get(chatNodeKeyKey);
}
else {

log(sessionId, “err”, “DID NOT FIND chat nodeKey IN
nodeNameHashtable: “ + chatNodeKeyKey);

return chatNodeKey;
}
BonNode chatNode = getBonForumXML().getBonNode(chatNodeKey);
String newChatAttributes = chatNode.nodeAttributes;
newChatAttributes = newChatAttributes + “ “ + attrName + “=\”” +

attrValue + “\””;
chatNodeKey = getBonForumXML().editBonNode(chatNodeKey, null,

newChatAttributes, null);
return chatNodeKey;

}
/** Returns the nodeNameHashtable key for a chat node nodeKey in bonForumXML.
* NOTE: we must disallow ‘>[‘ in subject node names for this to work!
* For now, separator in incoming chat subject path is wired as ‘_’.
* Example of chatItem: “animals_fish_piranha_[first aid for fish

breeders]”.
*

* @param chatItem String (“path_to_subject_[topic of chat]”)

15 1089-9 XC 6/26/01 7:40 AM Page 564

565C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

*
* @return String chatNodeKeyKey
*/
protected String getBonForumChatNodeKeyKey(String chatItem) {

String chatNodeKeyKey = “”;
BonNode chatItemNode = getChatItemNodeFromChatItem(chatItem);
if(chatItemNode != null) {

String chatSessionId = chatItemNode.nodeName.substring(10); //
10 is “sessionID_”.length()

//sessionID_To1012mC7576871324604071At_985400336097:chat
chatNodeKeyKey = chatSessionId + “:chat”;

}
return chatNodeKeyKey;

}
/** Returns a chatItem BonNode NodeKey from bonForumXML given a subject plus

topic string.
* NOTE: we must disallow ‘>[‘ in subject node names for this to work!
* For now, separator in incoming chat subject path is wired as ‘_’.
* Example of chatItem: “animals_fish_piranha_[first aid for fish

breeders]”.
*

* @param chatItem String (“path_to_subject_[topic of chat]”)
*
* @return NodeKey chatItemNode.nodeKey
*/
protected NodeKey getBonForumChatItemNodeKey(String chatItem) {

BonNode chatItemNode = getChatItemNodeFromChatItem(chatItem);
if(chatItemNode != null) {

return chatItemNode.nodeKey;
}
return null;

}
/** Returns a chatItem BonNode from bonForumXML given a chatItem.
* NOTE: we must disallow ‘>[‘ in subject node names for this to work!
* For now, separator in incoming chat subject path is wired as ‘_’.
* Example of chatItem: “animals_fish_piranha_[first aid for fish

breeders]”.
*

* @param chatItem String (“path_to_subject_[topic of chat]”)
*
* @return BonNode chatItemNode
*/
protected BonNode getChatItemNodeFromChatItem(String chatItem) {

int topicIndex = chatItem.indexOf(“[“);
// temp kludge until xsl to remove the ‘_’ char before ‘[‘ is found!
int adjuster = 1;
int topicIndex2 = chatItem.indexOf(“_[“);
if(topicIndex2 == topicIndex - 1) {

—topicIndex;
++adjuster;

}

15 1089-9 XC 6/26/01 7:40 AM Page 565

566 Appendix C Source Code for bonForum Web Application

String pathToSubjectNode = chatItem.substring(0, topicIndex);
// replace all ‘_’ with ‘.’ which is separator in pathNameHashtable
pathToSubjectNode = pathToSubjectNode.replace(‘_’, ‘.’);
topicIndex += adjuster;
String chatTopic = chatItem.substring(topicIndex);
// remove trailing ‘]’
chatTopic = chatTopic.substring(0, chatTopic.length() - 1);
//String chatSessionId = getChatSessionId(pathToSubject, chatTopic);
NodeKey chatSubjectNodeKey =

this.subjectNodeKeyFromPathName(pathToSubjectNode,
getBonForumXML().getPathNameHashtable());

if(chatSubjectNodeKey != null) {
BonNode chatItemNode =

getBonForumXML().getChildNodeFromAttributeValue(chatSubjectNodeKey, “chatTopic”,
chatTopic);

return chatItemNode;
}
return null;

}
/** Returns the chatNode from bonForumXML using a chatNodeKeyKey.
* A chatNodeKeyKey is the nodeNameHashtable key for a chatNode nodeKey.
*

* @param chatNodeKeyKey String (host_session_id + “:” + creationTimeMillis +
“:chat”)

*
* @return BonNode chatNode
*/
protected BonNode getBonForumChatNode(String chatNodeKeyKey) {

BonNode chatNode = null;
NodeKey chatNodeKey = null;
// chatNodeKeyKey = sessionId + “:” + creationTimeMillis + “:chat”;
// NOTE cannot be simply done with guest sessionId!
// It needs the *host* sessionId instead.
if

(getBonForumXML().getNodeNameHashtable().containsKey(chatNodeKeyKey)) {
chatNodeKey =

(NodeKey)getBonForumXML().getNodeNameHashtable().get(chatNodeKeyKey);
}
else {

log(sessionId, “err”, “DID NOT FIND chat nodeKey IN
nodeNameHashtable: “ + chatNodeKeyKey);

return chatNode;
}
chatNode = getBonForumXML().getBonNode(chatNodeKey);
return chatNode;

}
/** Returns the value of a BonNode attribute, given the BonNode and the

attribute name.
*

* @param bonNode BonNode
* @param attributeName String

15 1089-9 XC 6/26/01 7:40 AM Page 566

567C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

*
* @return String value of a BonNode attribute
*/
protected String getBonForumAttributeValue(BonNode bonNode, String

attributeName) {
String AttributeValue;
return AttributeValue =

normalize(getBonForumXML().getAttributeValue(bonNode.nodeAttributes,
attributeName));

}
/** Changes the rating of a actor in a chat.

* Note: actorNicknames are unique in bonForum.
* Uses session attribute chatGuest, or chatHost.
* Uses session attribute chatNodeKeyKey.
*
* @param amount String, amount to change (positive or negative integer as

string)
* @param session HttpSession (e.g., pageContext.getSession(), or session on

JSP)
* @return String rating after change
*/
public String changeChatActorRating(String amount, HttpSession session) {

try {
String chatNodeKeyKey =

(String)session.getAttribute(“chatNodeKeyKey”);
if(chatNodeKeyKey == null) {

return null; // no chat
}
// is actor host?
String chatActor = (String)session.getAttribute(“chatHost”);
ArrayList actorKeys = null;
if(chatActor == null) { // no, is actor guest?

chatActor = (String)session.getAttribute(“chatGuest”);
if(chatActor == null) {

return null; // not host, not guest!
}
// actor is guest, get list of guests in chat
actorKeys = getGuestKeysInChat(chatNodeKeyKey);

}
else { // actor is host, get list of hosts in chat

actorKeys = getHostKeysInChat(chatNodeKeyKey);
}
// chatActor strings contain actorNickname, age:actorAge and

rating:actorRating
// Here is an example:
// John Doe age:12 rating:5
// NOTE THIS DEPENDS ON XSL DOCUMENT RIGHT NOW!
// strip off the age and rating
int inx = chatActor.lastIndexOf(“age:”);
String actorNickname = chatActor.substring(0, inx).trim();
NodeKey actorNodeKey = getActorByNickname(actorKeys,

15 1089-9 XC 6/26/01 7:40 AM Page 567

568 Appendix C Source Code for bonForum Web Application

actorNickname);
NodeKey actorRatingNodeKey =

getActorRatingForActor(actorNodeKey);
return changeActorRating(actorRatingNodeKey, amount);

}
catch(Exception ee) {

return null; //TEMP
}

}
/** Changes integer-as-string content of actorRating, child of actor node.

* Note: actorRating nodes have no siblings.
*
* @param actorRatingNodeKey NodeKey
* @param amount String (negative or positive offset,

integer as string)
*
* @return String actorRating after increment
*/
protected String changeActorRating(NodeKey actorRatingNodeKey, String

amount) {
BonNode actorRatingNode =

getBonForumXML().getBonNode(actorRatingNodeKey);
int rating = Integer.parseInt(actorRatingNode.nodeContent);
int offset = Integer.parseInt(amount);
rating = rating + offset;
String nodeContent = Integer.toString(rating);
NodeKey aRNK = getBonForumXML().editBonNode(actorRatingNodeKey, null,

null, nodeContent);
if(aRNK != null) {

return nodeContent;
}
else {

return null;
}

}
/** Returns NodeKey of actorRating, a child node of actor, given the

actorNodeKey.
* Note: actorRating nodes have no siblings.

*
* @param actorNodeKey NodeKey
*
* @return NodeKey of actorRating BonNode, child of actor with given

actorNodeKey
*/
protected NodeKey getActorRatingForActor(NodeKey actorNodeKey) {

NodeKey nodeKey =
getBonForumXML().getChildNodeByNameAndContent(actorNodeKey, “actorRating”, null);

return nodeKey;
}

/** Returns NodeKey of actor BonNode, given an actorNickname.
* Note: actorNicknames are unique in bonForum.

15 1089-9 XC 6/26/01 7:40 AM Page 568

569C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

*
* @param actorKeys ArrayList
* @param actorNickname String
* @return NodeKey of actor BonNode with given actorNickname
*/
protected NodeKey getActorByNickname(ArrayList actorKeys, String

actorNickname) {
NodeKey nodeKey =

getBonForumXML().getNodeKeyByChildNameAndContent(actorKeys, “actorNickname”,
actorNickname);

return nodeKey;
}

/** Returns true if host is in a chat, given its nodeKey as a string, and a
chatNodeKeyKey.

* Note: hostKey element content values are unique in chat.
*
* @param hostNodeKeyValue String
* @param chatNodeKeyKey String
* @return boolean true if chat node for chatNodeKeyKey has hostKey child with

hostNodeKeyValue
*/
protected boolean isHostInChat(String hostNodeKeyValue, String

chatNodeKeyKey) {
ArrayList hostKeysInChat = getHostKeysInChat(chatNodeKeyKey);
Iterator hostIterator = hostKeysInChat.iterator();
while(hostIterator.hasNext()) {

if(hostNodeKeyValue.equals((String)hostIterator.next())) {
return true;

}
}
return false;

}
/** Returns true if guest is in a chat, given its nodeKey as a string, and a

chatNodeKeyKey.
* Note: guestKey element content values are unique in chat.

*
* @param guestNodeKeyValue String
* @param chatNodeKeyKey String
* @return boolean true if chat node for chatNodeKeyKey has guestKey child

with guestNodeKeyValue
*/
protected boolean isGuestInChat(String guestNodeKeyValue, String

chatNodeKeyKey) {
ArrayList guestKeysInChat = getGuestKeysInChat(chatNodeKeyKey);
Iterator guestIterator = guestKeysInChat.iterator();
while(guestIterator.hasNext()) {

if(guestNodeKeyValue.equals((String)guestIterator.next())) {
return true;

}
}
return false;

15 1089-9 XC 6/26/01 7:40 AM Page 569

570 Appendix C Source Code for bonForum Web Application

}
/** Returns array with contents of all guestKeys in a chat, given a

chatNodeKeyKey.
*

* @param chatNodeKeyKey String
* @return ArrayList of contents for all guestKey node children of chat node
*/
protected ArrayList getGuestKeysInChat(String chatNodeKeyKey) {

BonNode chatNode = getBonForumChatNode(chatNodeKeyKey);
return getBonForumXML().getChildNodeContentsFromName(chatNode.nodeKey,

“guestKey”);
}

/** Returns array with contents of all hostKeys in a chat, given a
chatNodeKeyKey.

*
* @param chatNodeKeyKey String
* @return ArrayList of contents for all hostKey node children of chat node
*/
protected ArrayList getHostKeysInChat(String chatNodeKeyKey) {

BonNode chatNode = getBonForumChatNode(chatNodeKeyKey);
return getBonForumXML().getChildNodeContentsFromName(chatNode.nodeKey,

“hostKey”);
}

/** Returns true if host is in a chat, given its chatNode.
* Note: hostKey element content values are unique in chat.

*
* @param hostNodeKeyValue String
* @param chatNode BonNode
* @return boolean true if chatNode has hostKey child with hostNodeKeyValue
*/
protected boolean isHostInChatNode(String hostNodeKeyValue, BonNode

chatNode) {
ArrayList hostKeysInChat = getHostKeysInChatNode(chatNode);
Iterator hostIterator = hostKeysInChat.iterator();
while(hostIterator.hasNext()) {

if(hostNodeKeyValue.equals((String)hostIterator.next())) {
return true;

}
}
return false;

}
/** Returns true if guest is in a chat, given its chatNode.

* Note: guestKey element content values are unique in chat.
*
* @param guestNodeKeyValue String
* @param chatNode BonNode
* @return boolean true if chatNode has guestKey child with guestNodeKeyValue
*/
protected boolean isGuestInChatNode(String guestNodeKeyValue, BonNode

chatNode) {
ArrayList guestKeysInChat = getGuestKeysInChatNode(chatNode);

15 1089-9 XC 6/26/01 7:40 AM Page 570

571C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

Iterator guestIterator = guestKeysInChat.iterator();
while(guestIterator.hasNext()) {

if(guestNodeKeyValue.equals((String)guestIterator.next())) {
return true;

}
}
return false;

}
/** Returns array with contents of all guestKeys in a chat, given a chatNode.

*
* @param chatNode BonNode
* @return ArrayList of contents for all guestKey node children of chat node
*/
protected ArrayList getGuestKeysInChatNode(BonNode chatNode) {

return getBonForumXML().getChildNodeContentsFromName(chatNode.nodeKey,
“guestKey”);

}
/** Returns array with contents of all hostKeys in a chat, given a chatNode.

*
* @param chatNode BonNode
* @return ArrayList of contents for all hostKey node children of chat node
*/
protected ArrayList getHostKeysInChatNode(BonNode chatNode) {

return getBonForumXML().getChildNodeContentsFromName(chatNode.nodeKey,
“hostKey”);

}
/** Returns true if there is a host actor with given actorNickname.

* Note: actorNicknames are unique in bonForum.
*
* @param nickname String to look for in hosts’ actorNickname contents

* @return boolean true if actors has host node with actorNickname matching
argument

*/
protected boolean isNicknameHost(String nickname) {

ArrayList hostNicknames = getActorNicknames(“host”);
if(hostNicknames.contains(nickname)) {

return true;
}
else {

return false;
}

}
/** Returns true if there is a guest actor with given actorNickname.

* Note: actorNicknames are unique in bonForum.
*
* @param nickname String to look for in guests’ actorNickname contents

* @return boolean true if actors has guest node with actorNickname matching
argument

*/
protected boolean isNicknameGuest(String nickname) {

ArrayList guestNicknames = getActorNicknames(“guest”);

15 1089-9 XC 6/26/01 7:40 AM Page 571

572 Appendix C Source Code for bonForum Web Application

if(guestNicknames.contains(nickname)) {
return true;

}
else {

return false;
}

}
/** Returns NodeKey of actor with given actorNickname.

* Note: actorNicknames are unique in bonForum.
*
* @param nickname String to look for in actors’ actorNickname

contents
* @param actorNodeName String , e.g., “host”, “guest”, “system”

* @return NodeKey of actor node with actorNickname matching argument, or
null

*/
protected NodeKey getActorNicknameNodeKey(String actorNickname, String

actorNodeName) {
NodeKey actorNicknameNodeKey = null;
ArrayList actorNodeKeys =

getBonForumXML().getChildNodeKeysFromName(getActorsNodeKey(),
actorNodeName);

Iterator iK= actorNodeKeys.iterator();
while(iK.hasNext()) {

String nC = “”;
NodeKey nodeKey =

getBonForumXML().getNodeKeyForString((String)iK.next());
NodeKey nicknameKey =

getBonForumXML().getChildNodeByNameAndContent(
nodeKey, “actorNickname”, null);

if(nicknameKey != null) {
nC = getBonForumXML().getBonNode(nicknameKey).nodeContent;
if(nC == null) {

nC = “”;
}
if(actorNickname.equals(nC)) {

return nicknameKey;
}

}
}
return null;

}
// LATER: factor out generic code and move to FH

/** Returns ArrayList with all actor actorNickname node contents.
* Note: actorNicknames are unique in bonForum.
*
* @param orNodeName String act, e.g., “host”, “guest”, “system”

* @return ArrayList of contents for all actorNickname node children of all
actorNodeName nodes

*/
protected ArrayList getActorNicknames(String actorNodeName) {

15 1089-9 XC 6/26/01 7:40 AM Page 572

573C.17 Filename: Projects\bonForum\src\de\tarent\forum\BonForumStore.java

ArrayList actorNicknames = null;
ArrayList actorNodeKeys =

getBonForumXML().getChildNodeKeysFromName(getActorsNodeKey(),
actorNodeName);

Iterator iK= actorNodeKeys.iterator();
while(iK.hasNext()) {

String nC = “”;
NodeKey nodeKey =

getBonForumXML().getNodeKeyForString((String)iK.next());
NodeKey nicknameKey =

getBonForumXML().getChildNodeByNameAndContent(
nodeKey, “actorNickname”, null);

if(nicknameKey != null) {
nC = getBonForumXML().getBonNode(nicknameKey).nodeContent;
if(nC == null) {

nC = “”;
}
actorNicknames.add(nC);

}
}
return actorNicknames;

}
/** Normalizes the given string, replacing chars with entities.
* (less than, greater than, ampersand, double quote, return and linefeed).
* NOTE: replaces null string with empty string.
*
* @param s String
* @return normalized string (not null)
*/
protected static String normalize(String s) {

StringBuffer str = new StringBuffer();
str.append(“”);

int len = (s != null) ? s.length() : 0;
for (int i = 0; i < len; i++) {

char ch = s.charAt(i);
switch (ch) {

case ‘<’: {
str.append(“<”);
break;

}
case ‘>’: {

str.append(“>”);
break;

}
case ‘&’: {

str.append(“&”);
break;

}
case ‘“‘: {

str.append(“"”);
break;

15 1089-9 XC 6/26/01 7:40 AM Page 573

574 Appendix C Source Code for bonForum Web Application

}
case ‘\r’:
case ‘\n’: {

str.append(“&#”);
str.append(Integer.toString(ch));
str.append(‘;’);
break;

}
default: {

str.append(ch);
}

}
}

return str.toString();
}

}// end class BonForumStore

C.18 Filename: Projects\bonForum\src\de\
tarent\forum\BonForumTagExtraInfo.java

package de.tarent.forum;
/*<Imports>*/
import javax.servlet.jsp.tagext.*;
/*</Imports>*/
/** BonForumTagExtraInfo creates page variables for bonForum JSP custom tags.
*
The only variable now is a string named <code>output</code>.
*
* @author Westy Rockwell
*/
public class BonForumTagExtraInfo extends TagExtraInfo {

public VariableInfo[] getVariableInfo(TagData data) {
return new VariableInfo[] {

new VariableInfo(“output”,
“String”,
true,
VariableInfo.NESTED),
// NESTED, AT_BEGIN or AT_END

};
}

}

C.19 Filename: Projects\bonForum\src\de\
tarent\forum\BonForumUtils.java

/*
* Note: This class is based in part on the source code for
* the DOMFilter and DOMWriter classes, which are samples

15 1089-9 XC 6/26/01 7:40 AM Page 574

575C.19 Filename: Projects\bonForum\src\de\tarent\forum\BonForumUtils.java

* provided with Apache Xerces. The license for that source
* code is either below (if this a file) or elsewhere in the
* book (if this is printed).
*
* Note: This class is based in part on the source code for
* the Clock2 applet, which is a sample provided with
* Jakarta Tomcat. The license for that source
* code is either below (if this a file) or elsewhere in the
* book (if this is printed).
*/

package de.tarent.forum;

/*<Imports>*/
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;
import java.util.Enumeration;
import org.w3c.dom.Attr;
import org.w3c.dom.NamedNodeMap;
import org.apache.xerces.readers.MIME2Java;
/*</Imports>*/

/** BonForumUtils has utility methods for the bonForum web application.
* <p>For further information visit the open source.
* BonForum Project on SourceForge.
* @author Westy Rockwell.
*/
public class BonForumUtils {

/* Code below here is based on Apache Software Foundation samples
* (see notice at file beginning)
*/

/** Normalizes the given string, replacing chars with entities.
* (less than, greater than, ampersand, double quote, return and linefeed).
* NOTE: this replaces null string with empty string.
*
* @param s String
* @return normalized string (not null)
*/
public static String normalize(String s) {

StringBuffer str = new StringBuffer();
str.append(“”);

int len = (s != null) ? s.length() : 0;
for (int i = 0; i < len; i++) {

char ch = s.charAt(i);
switch (ch) {

case ‘<’: {
str.append(“<”);
break;

}
case ‘>’: {

15 1089-9 XC 6/26/01 7:40 AM Page 575

576 Appendix C Source Code for bonForum Web Application

str.append(“>”);
break;

}
case ‘&’: {

str.append(“&”);
break;

}
case ‘“‘: {

str.append(“"”);
break;

}
case ‘\r’:
case ‘\n’: {

str.append(“&#”);
str.append(Integer.toString(ch));
str.append(‘;’);
break;

}
default: {

str.append(ch);
}

}
}

return str.toString();
}
/** Default Encoding.
* (taken from DOMFilter.java -
* see notice at file beginning).
*/
private static String PRINTWRITER_ENCODING = “UTF8”;
/** Encodings available in Java.
* (taken from DOMFilter.java -
* see notice at file beginning).
*/
private static String MIME2JAVA_ENCODINGS[] =

{ “Default”, “UTF-8”, “US-ASCII”, “ISO-8859-1”, “ISO-8859-2”, “ISO-8859-3”,
“ISO-8859-4”,

“ISO-8859-5”, “ISO-8859-6”, “ISO-8859-7”, “ISO-8859-8”, “ISO-8859-9”, “ISO-
2022-JP”,

“SHIFT_JIS”, “EUC-JP”,”GB2312”, “BIG5”, “EUC-KR”, “ISO-2022-KR”, “KOI8-R”,
“EBCDIC-CP-US”,

“EBCDIC-CP-CA”, “EBCDIC-CP-NL”, “EBCDIC-CP-DK”, “EBCDIC-CP-NO”, “EBCDIC-CP-
FI”, “EBCDIC-CP-SE”,

“EBCDIC-CP-IT”, “EBCDIC-CP-ES”, “EBCDIC-CP-GB”, “EBCDIC-CP-FR”, “EBCDIC-CP-
AR1”,

“EBCDIC-CP-HE”, “EBCDIC-CP-CH”, “EBCDIC-CP-ROECE”,”EBCDIC-CP-YU”,
“EBCDIC-CP-IS”, “EBCDIC-CP-AR2”, “UTF-16”

};
/** gets the default encoding.
* method taken from Apache licensed source -
* see license at end of source file).

15 1089-9 XC 6/26/01 7:40 AM Page 576

577C.19 Filename: Projects\bonForum\src\de\tarent\forum\BonForumUtils.java

*
* @return encoding as string
*/
public static String getWriterEncoding() {

return (PRINTWRITER_ENCODING);
}
/** sets the default encoding.
* method taken from Apache licensed source -
* see license at end of source file).
*
* @param encoding String
*/
public static void setWriterEncoding(String encoding) {
if(encoding.equalsIgnoreCase(“DEFAULT”))

PRINTWRITER_ENCODING = “UTF8”;
else if(encoding.equalsIgnoreCase(“UTF-16”))
PRINTWRITER_ENCODING = “Unicode”;
else if(encoding.equalsIgnoreCase(“8859_2”))

PRINTWRITER_ENCODING = “8859_2”;
else

PRINTWRITER_ENCODING = MIME2Java.convert(encoding);
}
/** returns true if encoding is valid for Java.
* (method taken from Apache licensed source -
* see license at end of source file).
*
* @param encoding String
* @return boolean
*/
public static boolean isValidJavaEncoding(String encoding) {

for (int i = 0; i < MIME2JAVA_ENCODINGS.length; i++)
if (encoding.equals(MIME2JAVA_ENCODINGS[i]))
return (true);

return (false);
}

/** Returns a sorted list of attributes.
* (method taken from Apache licensed source -
* see license at end of source file).
*
* @param attrs NamedNodeMap with attributes
* @return array of Attr with sorted attributes
*/
public static Attr[] sortAttributes(NamedNodeMap attrs) {

int len = (attrs != null) ? attrs.getLength() : 0;
Attr array[] = new Attr[len];
for (int i = 0; i < len; i++) {

array[i] = (Attr)attrs.item(i);
}
for (int i = 0; i < len - 1; i++) {

String name = array[i].getNodeName();
int index = i;

15 1089-9 XC 6/26/01 7:40 AM Page 577

578 Appendix C Source Code for bonForum Web Application

for (int j = i + 1; j < len; j++) {
String curName = array[j].getNodeName();

if (curName.compareTo(name) < 0) {
name = curName;
index = j;

}
}
if (index != i) {

Attr temp = array[i];
array[i] = array[index];
array[index] = temp;

}
}
return (array);

}
/** gets formatted current date for locale as a string.
* (method taken from Apache licensed source -
* see license at end of source file).
*
* @return String with formatted current date for locale
*/
public static String getLastDate() {
SimpleDateFormat formatter = new SimpleDateFormat (“EEE MMM dd hh:mm:ss

yyyy”, Locale.getDefault());
Date currentDate = new Date();
String lastdate = formatter.format(currentDate);
return(lastdate);

}
/** gets time in milliseconds as a string.
* (method taken from Apache licensed source -
* see license at end of source file).
*
* @return String with formatted current time in milliseconds
*/

public static String timeMillis() {
return Long.toString(System.currentTimeMillis());

}
}// end class BonForumUtils

C.20 Filename: Projects\bonForum\src\de\
tarent\forum\BonLogger.java

package de.tarent.forum;
/*<Imports>*/
import java.io.*;

15 1089-9 XC 6/26/01 7:40 AM Page 578

579C.20 Filename: Projects\bonForum\src\de\tarent\forum\BonLogger.java

import java.util.*;
/*</Imports>*/
/** BonLogger is a (rough) information logger.
* It is used by the bonForum web application.
* <p>For further information visit the open source.
* BonForum Project on SourceForge.
* @author Westy Rockwell.
*/
public class BonLogger {

private PrintWriter out = null;
private Properties properties = null;
private File tomcatHome = null;
private String logFile = “”;
private String logFilePath = “”;
private String logging = “none”;
BonLogger(String logFileName, String logType) {

properties = System.getProperties();
tomcatHome = new File(System.getProperty(“tomcat.home”));
logFilePath = tomcatHome.getPath() +

“/webapps/bonForum/WEB-INF/logs/”;
this.setLogFile(logFileName);
if(logType == null) {

logType = “none”;
}
this.setLogging(logType);

}
public void setLogging(String newLoggingValue) {

logging = newLoggingValue;
boolean found = false;
if(logging.equals(“all”) || logging.equals(“std”)) {

System.err.println(“BonForum Log File: “ + logFile);
found = true;

}
if(logging.equals(“all”) || logging.equals(“file”)) {

found = true;
if(out == null) {

try {
out = new PrintWriter(

new BufferedOutputStream(
new FileOutputStream(logFile)), true);

out.println(“BonForum Log File: “ + logFile);
properties.list(out);

}
catch(Exception ee) {

ee.printStackTrace ();
System.err.println(
“Exception in BonLogger:” + logFile +

“ newLoggingValue:” + newLoggingValue);
}

}
}

15 1089-9 XC 6/26/01 7:40 AM Page 579

580 Appendix C Source Code for bonForum Web Application

if(found == false && out != null) {
out.close();
//out = null;

}
}
public String getLogging() {

return logging;
}
public void setLogFile(String newLogFile) {

logFile = logFilePath + newLogFile;
}
public String getLogFile() {

return logFile;
}
public void logWrite(long timeMillis, String sessionId, String stdFile,

String info) {
if(logging.equals(“all”) || logging.equals(“std”)) {

if(stdFile.equals(“err”)) {
System.err.println(Long.toString(timeMillis) + “ “ +

sessionId + “::” + info);
}
else if(stdFile.equals(“out”)) {

System.out.println(Long.toString(timeMillis) + “ “ +
sessionId + “::” + info);

}
}
if(logging.equals(“all”) || logging.equals(“file”)) {

try {
out.println(Long.toString(timeMillis) + “ “ + sessionId +

“::” + info);
// out.close(); // finalize() not reliable!
}
catch(Exception e) {

//e.printStackTrace ();
System.err.println(“Exception in BonLogger logWrite!”);

}
}

}
}

C.21 Filename: Projects\bonForum\src\de\
tarent\forum\BonNode.java

package de.tarent.forum;
/*<Imports>*/
import java.io.*;

15 1089-9 XC 6/26/01 7:40 AM Page 580

581C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

/*</Imports>*/
/** BonNode implements an XML node in a ForestHashtable.
* <pre>
* public class BonNode {
* NodeKey nodeKey; // ForestHashtable key
* NodeKey parentNodeKey;
* boolean deleted; // flag as deleted, for quick deletes
* boolean flagged; // general purpose state flag
* String nodeName; // name of element
* String nodeAttributes; // attributes of element
* String nodeContent; // text between element opening and closing tags
* }
* </pre>
* <p>For further information visit the open source.
* BonForum Project on SourceForge.
* @author Westy Rockwell.
*/
public class BonNode {

NodeKey nodeKey; // ForestHashtable key
NodeKey parentNodeKey;
boolean deleted; // flag as deleted, for quick deletes
boolean flagged; // general purpose state flag
String nodeName; // name of element
String nodeAttributes; // attributes of element
String nodeContent; // text between element opening and closing tags

}

C.22 Filename: Projects\bonForum\src\de\
tarent\forum\ForestHashtable.java

package de.tarent.forum;
/*<Imports>*/
import java.io.*;
import java.util.Iterator;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.ArrayList;
import javax.servlet.http.*;
/*</Imports>*/
/** ForestHashtable instance caches an XML document for fast processing.
* Each element in a ForestHashtable can be cast to a BonNode, and each key to a
NodeKey.
* The function of a NodeKey is to map the elements to nodes in one or more trees.
* ForestHashtable design is based on triple-key database table design.
* It is only a simulation of a relational database design.
* which will be implemented with another database tool. Its purpose is
experimental.
* NOTE: until this class is further developed, it works only for element nodes,
* their attributes and text content. It provides only a subset of the full

15 1089-9 XC 6/26/01 7:40 AM Page 581

582 Appendix C Source Code for bonForum Web Application

* XML document specification.
* ForestHashtable is described fully in the book:
* <i>XML, XSLT, Java and JSP - A Case Study in Developing a Web Application</i>,
* by Westy Rockwell, published by
* New Riders.
* Translation to German published by
* Galileo Press.
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class ForestHashtable extends java.util.Hashtable {

private NodeNameHashtable nodeNameHashtable;
private PathNameHashtable pathNameHashtable;
private boolean lastRootNodeFound;
private boolean lastChildOfRootNodeFound;
// next one defined further down for recursion
// private boolean lastChildOfNonRootNodeFound;
private String currentRootNodeAKey;
private String currentRootNodeBKey;
private String currentRootNodeCKey; // for debug only
private String currentChildOfRootNodeAKey;
private String currentChildOfRootNodeBKey;
private String currentChildOfRootNodeCKey; // for debug only
// next 3 defined further down for recursion
// private String currentChildOfNonRootNodeAKey;
// private String currentChildOfNonRootNodeBKey;
// private String currentChildOfNonRootNodeCKey;
private static BonLogger logFH = null;
// Controls logger output.
private static String logging = null;
// False until logger ready.
private static boolean loggingInitialized = false;
// for logging output, when no sessionId available
private static String sessionId = “0000000000”;
private static final int NO_NODEKEY_KEY_PREFIX = 0;
private static final int SESSION_ID = 1;
private static final int SESSION_ID_AND_CREATION_TIME = 2;
private String uniqueNodeKeyKeyList = “message;messageKey”;

/** Sets uniqueNodeKeyKeyList of node names unique per session
* in nodeNameHashtable. Determines key prefix choice.
* Node names in list can have one key per session
* Node names not in list can have multiple keys per session
* This saves space by not storing keys for unused nodeKey entries.
* (Note: applies only adding children to non-root nodes.).

*
*/
protected void setUniqueNodeKeyKeyList(String newUniqueNodeKeyKeyList) {

uniqueNodeKeyKeyList = newUniqueNodeKeyKeyList;
}

/** Gets uniqueNodeKeyKeyList setting.

15 1089-9 XC 6/26/01 7:40 AM Page 582

583C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

* (see set method for details)
*
* @return String uniqueNodeKeyKeyList
*/
public String getUniqueNodeKeyKeyList() {

return uniqueNodeKeyKeyList;
}

/** Creates a ForestHashtable with the default capacity.
*/
public ForestHashtable() {

super();
nodeNameHashtable = new NodeNameHashtable();
pathNameHashtable = new PathNameHashtable();

}
/** Creates a ForestHashtable of a given capacity.
*
* @param capacity initialCapacity of parent java.util.Hashtable
*/
public ForestHashtable(int capacity) {

super(capacity);
nodeNameHashtable = new NodeNameHashtable();
pathNameHashtable = new PathNameHashtable();

}
private void log(String sessionId, String where, String what) {

if(logging != null) {
logFH.logWrite(System.currentTimeMillis(), sessionId, where,

what);
}

}
/** Gets logging setting.
*
* @return String logging
*/
public String getLogging() {

return logging;
}

/** Sets logging setting.
*
* @param String setting for logger logtype (“none”,”all”,”std”,”file”)
*/
protected void setLogging(String newLogging) {

logging = newLogging;
synchronized(this) {

if(!loggingInitialized) {
System.err.println(“ForestHashtable init

loggingInitialized:” + loggingInitialized);
System.err.println(“ForestHashtable init logging:” +

logging);
if(logging != null) {

logFH = new BonLogger(“ForestHashtableLog.txt”,
logging);

15 1089-9 XC 6/26/01 7:40 AM Page 583

584 Appendix C Source Code for bonForum Web Application

System.err.println(“ForestHashtable init logFH:” +
logFH);

logFH.setLogging(newLogging);
loggingInitialized = true;
System.err.println(“ForestHashtable init

loggingInitialized:” + loggingInitialized);
}

}
}

}
/** Gets nodeNameHashtable.
* @return NodeNameHashtable nodeNameHashtable
*/
protected NodeNameHashtable getNodeNameHashtable() {

return nodeNameHashtable;
}

/** Gets pathNameHashtable.
* @return PathNameHashtable pathNameHashtable
*/
protected PathNameHashtable getPathNameHashtable() {

return pathNameHashtable;
}

/** Returns nodeKey from a BonNode, as an object.
*
* @param bonNode node whose key is returned
* @return nodeKey of BonNode cast to an Object
*/
protected Object nodeKeyFromBonNode(BonNode bonNode) {

return (Object)bonNode.nodeKey;
}

/** Provides a useable NodeKey with a unique default root key value.
*
* @return NodeKey instance with unique aKey, initialized as a root node key
* (to use for non-root nodes, change bKey and

cKey values)
*/
private NodeKey getNextAvailableNodeKey() {

long temp = 0;
long lastCurrentTimeMillis = System.currentTimeMillis();
NodeKey nodeKey = new NodeKey();
while (temp <= lastCurrentTimeMillis) {

temp = System.currentTimeMillis();
}
nodeKey.aKey = Long.toString(temp);
// initialize other keys to first,
// that makes node a root node by default
nodeKey.bKey = nodeKey.aKey;
nodeKey.cKey = nodeKey.aKey;
return nodeKey;

}
/** Deletes a BonNode given its nodeKey value.

15 1089-9 XC 6/26/01 7:40 AM Page 584

585C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

*
* @param keyOfNodeToDelete nodeKey of BonNode to delete
* @return boolean true if deleted, false otherwise
*/
private boolean doDeleteNode(NodeKey keyOfNodeToDelete) {

// LATER: this will just mark node as deleted,
// and a separate thread will scavenge deleted nodes.
if (this.containsKey(keyOfNodeToDelete)) {

this.remove(keyOfNodeToDelete);
return true;

}
else {

return false;
}

}
/** Deletes a BonNode and its descendant nodes, given a nodeKey value.
*
* @param keyOfNodeToDelete nodeKey of BonNode to delete
* @return boolean true if at least one node was deleted, false

otherwise
*/
private boolean doDeleteNodeRecursive(NodeKey keyOfNodeToDelete) {

// LATER: this will just mark node as deleted,
// and a separate thread will scavenge deleted nodes.
String parentAKey = keyOfNodeToDelete.aKey;
NodeKey nodeKey = new NodeKey();
BonNode bonNode = null;
Enumeration enumeration = this.elements();
if(!(enumeration.hasMoreElements())) {

return false; // no elements to delete
}
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
nodeKey = bonNode.nodeKey;
if(nodeKey.bKey.equals(parentAKey)) { // found a child

doDeleteNodeRecursive(nodeKey);
}

}
bonNode = this.getBonNode(keyOfNodeToDelete);
this.remove(keyOfNodeToDelete);
return true;

}
/** Returns true if a BonNode has child nodes.
*
* @param parentNodeKey the node being tested for children
* @return boolean true if at least one node was deleted, false

otherwise
*/
protected boolean hasAtLeastOneChild(NodeKey parentNodeKey) {

// in a ForestHashtable, children have nodeKey.bKey equal to the
parent’s nodeKey.aKey

15 1089-9 XC 6/26/01 7:40 AM Page 585

586 Appendix C Source Code for bonForum Web Application

BonNode bonNode = null;
String parentAKey = parentNodeKey.aKey;
Enumeration enumeration = this.elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
if(bonNode.nodeKey.bKey.equals(parentAKey)) {

return true;
}

}
return false;

}
/** Deletes a BonNode and possibly its descendant nodes, given a nodeKey

value.
*
* @param keyOfNodeToDelete nodeKey of BonNode to delete
* @param leafOnly boolean true to delete only if node has no children
* false to delete node and any descendant nodes
* @return boolean true if at least one node was deleted, false otherwise
*/
public boolean deleteNode(NodeKey keyOfNodeToDelete, boolean leafOnly) {

// NodeKey is a three-valued key (ABCTable key).
// if leafOnly is True, then Node not deleted if it has one or more

child nodes.
// if leafOnly is False, then Node and all its descendants are

deleted!
synchronized(this) {

if(this.containsKey(keyOfNodeToDelete)) {
if(leafOnly) {

if(hasAtLeastOneChild(keyOfNodeToDelete)) {
return false; // was not a leaf node, so

not deleted
}

}
// delete and report success or failure
return doDeleteNodeRecursive(keyOfNodeToDelete);

}
else {

return false; // no such node
}

}
}

/** Adds a BonNode (and optionally its nodeKey to another hashtable for fast
lookups).

* To add nodes, user only calls addRootNode, addChildNodeToRootNode or
addChildNodeToNonRootNode.

* If nodeKeyHashtableName is “nodeNameHashtable” then these nodeKeyKeyPrefix
values are possible:

*
* NO_NODEKEY_KEY_PREFIX makes added node global, visible to all

HTTP Sessions,
* SESSION_ID makes node UNIQUE for nodeName in session, and visible

15 1089-9 XC 6/26/01 7:40 AM Page 586

587C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

only to current session
* SESSION_ID_AND_CREATION_TIME allows multiple nodes with nodeName,

and visible only to current session
*
*

* Note: more values of nodeKeyKeyPrefix will be defined in later versions!
*
* @param nodeName String naming this node
* @param nodeAttributes String containing all attributes concatenated

(name=value name=value ...)
* @param nodeContent String containing text content of node
* @param nodeKey NodeKey uniquely identifying and

positioning node to be added in hierarchy
* @param parentNodeKey NodeKey for parent of node to be added
* @param nodeKeyHashtableName String naming hashtable in which to

cache key of added node
* @param nodeKeyKeyPrefix int = NO_NODEKEY_KEY_PREFIX makes added

node global, visible to all HTTP Sessions,
* = SESSION_ID makes

node UNIQUE for nodeName in session, and visible only to current session
* =

SESSION_ID_AND_CREATION_TIME allows multiple nodes with nodeName, and visible only
to current session

* @param sessionId String, ID of HTTP session calling the
method

* @return BonNode that was added
*/
private BonNode addNode(String nodeName, String nodeAttributes, String

nodeContent, NodeKey nodeKey, NodeKey parentNodeKey, String nodeKeyHashtableName,
int nodeKeyKeyPrefix, String sessionId) {

BonNode node = new BonNode();
node.deleted = false;
node.flagged = false;
node.nodeName = nodeName;
if(nodeAttributes != null && nodeAttributes.length() > 0) {

node.nodeAttributes = “nodeKey=\””+ nodeKey + “\” “ +
nodeAttributes;

}
else {

node.nodeAttributes = “nodeKey=\””+ nodeKey + “\””;
}
node.nodeContent = nodeContent;
node.nodeKey = nodeKey;
node.parentNodeKey = parentNodeKey;
// put in this ForestHashtable
// also optionally put nodeKey in nodeNameHashtable
// but not if it is a subject element, etc.
if(nodeKeyHashtableName.equals(“nodeNameHashtable”)) {

// Hashtable is synchronized, but we need to sync two together
here:

String nodeKeyKey = null;

15 1089-9 XC 6/26/01 7:40 AM Page 587

588 Appendix C Source Code for bonForum Web Application

synchronized(this) {
try {

this.put(nodeKey, node);
}
catch(Exception ee) {

log(sessionId, “err”, “EXCEPTION in addNode():” +
ee.getMessage());

ee.printStackTrace();
}
if(nodeKeyKeyPrefix == SESSION_ID) {

// allows only one key per session
// use this option to reduce size of table
// by not storing key to nodeKeys not needed
// (examples: message keys, messageKey keys).
nodeKeyKey = sessionId + “:” + nodeName;

}
else if(nodeKeyKeyPrefix == SESSION_ID_AND_CREATION_TIME)

{
// the nodeKey.aKey acts as a timestamp
// allowing multiple keys per session in

nodeNameHashtable
// use to find multiple nodes with same name for one

session
// (example: chat keys, guest keys, host keys)
nodeKeyKey = sessionId + “_” + nodeKey.aKey +”:” +

nodeName;
}
else if(nodeKeyKeyPrefix == NO_NODEKEY_KEY_PREFIX) {

// use no prefix for elements global to all sessions
nodeKeyKey = nodeName;

}
else {

nodeKeyKey = nodeName; // unknown arg value, could
complain

}
// else ifs and/or else can add other prefixes here.
// Note: it replaces older entries, if any
this.nodeNameHashtable.put(nodeKeyKey, nodeKey);

}
}
// else ifs here can add other hashtables later
else {

// Hashtable is synchronized, so if you change ancestor class
for this,

// be sure to sync addition to this here also.
this.put(nodeKey, node);

}
return node;

}
/** Adds a BonNode as a root node. (Names should be unique among siblings, if

nodeKeyHashtable is used)

15 1089-9 XC 6/26/01 7:40 AM Page 588

589C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

*
* @param rootNodeName String naming this node
* @param rootNodeAttributes String containing all attributes

concatenated (name=value name=value ...)
* @param rootNodeContent String containing text content of

node
* @param nodeKeyHashtableName String naming hashtable in which to cache

key of added node
* @return BonNode that was added
*/
protected BonNode addRootNode(String rootNodeName, String

rootNodeAttributes, String rootNodeContent, String nodeKeyHashtableName) {
// Node is an object that points to everything mapped to that node in the

tree.
// In a table that holds objects, just stick Node in table.
// OTW, you can extract info and write to fields in table.

NodeKey nodeKey = getNextAvailableNodeKey(); // initially, nodeKey =
An.An.An;

// When all three keys are equal, the row is a root node!
// An empty parent node key means no parent, because it is a root node.

NodeKey emptyParentNodeKey = new NodeKey();
return addNode(rootNodeName, rootNodeAttributes, rootNodeContent,

nodeKey, emptyParentNodeKey, nodeKeyHashtableName, NO_NODEKEY_KEY_PREFIX, “”);
}

/** Adds a BonNode as a child of a root node.(Names should be unique among
siblings, if nodeKeyHashtable is used)

*
* @param childNodeName String naming this node
* @param childNodeAttributes String containing all attributes

concatenated (name=value name=value ...)
* @param childNodeContent String containing text content of

node
* @param childNodeKey NodeKey uniquely identifying a root

node
* @param nodeKeyHashtableName String naming hashtable in which

to cache key of added node
* @return BonNode that was added
*/
protected BonNode addChildNodeToRootNode(String childNodeName, String

childNodeAttributes, String childNodeContent, NodeKey rootNodeKey, String
nodeKeyHashtableName) {

NodeKey childNodeKey = getNextAvailableNodeKey(); // initially,
NodeKey = An.An.An;

childNodeKey.bKey = rootNodeKey.aKey;
childNodeKey.cKey = rootNodeKey.bKey;
// when the second and third key are equal, it is child of a root
return addNode(childNodeName, childNodeAttributes, childNodeContent,

childNodeKey, rootNodeKey, nodeKeyHashtableName, NO_NODEKEY_KEY_PREFIX, “”);
}

/** Adds a BonNode as a child of a non-root node (and optionally its nodeKey
to another hashtable for fast lookups).

15 1089-9 XC 6/26/01 7:40 AM Page 589

590 Appendix C Source Code for bonForum Web Application

* If “nodeNameHashtable” nodeKeyHashtable is used, sessionId must be passed
in to create session-related key for nodeKey.

* (for now, caller is responsible for that!)
*
* @param childNodeName String naming this node
* @param childNodeAttributes String containing all attributes

concatenated (name=value name=value ...)
* @param childNodeContent String containing text content of

node
* @param nonRootNodeKey NodeKey uniquely identifying a non-

root node
* @param nodeKeyHashtableName String naming hashtable in which to

cache key of added node
* @param sessionId String id of callers session, if

nodeKeyHashtable is used.
* @return BonNode that was added
*/
protected BonNode addChildNodeToNonRootNode(String childNodeName, String

childNodeAttributes, String childNodeContent, NodeKey nonRootNodeKey, String
nodeKeyHashtableName, String sessionId) {

NodeKey childNodeKey = getNextAvailableNodeKey();
// when no keys are equal, its a root grandchild or deeper
childNodeKey.bKey = nonRootNodeKey.aKey;
childNodeKey.cKey = nonRootNodeKey.bKey;
// Assume multiple keys per nodeKey allowed in “nodeNameHashtable”

nodeKeyHashtable
int nodeKeyKeyPrefix = SESSION_ID_AND_CREATION_TIME;
// unless node name to be added is in the “list”.
if(uniqueNodeKeyKeyList.trim().length() > 0) {

if(uniqueNodeKeyKeyList.indexOf(childNodeName) > -1) {
nodeKeyKeyPrefix = SESSION_ID;

}
}
return addNode(childNodeName, childNodeAttributes, childNodeContent,

childNodeKey, nonRootNodeKey, nodeKeyHashtableName, nodeKeyKeyPrefix, sessionId);
}

/** Counts the children of a BonNode.
*
* @param parentNodeKey NodeKey of node whose children will be

counted
* @return long number of child nodes
*/
public long countChildren(NodeKey parentNodeKey) {

// in a ForestHashtable, children have nodeKey.bKey equal to the
parent’s nodeKey.aKey

long counter = 0;
BonNode bonNode = null;
String parentAKey = parentNodeKey.aKey;
Enumeration enumeration = this.elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();

15 1089-9 XC 6/26/01 7:40 AM Page 590

591C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

if(bonNode.nodeKey.bKey.equals(parentAKey)) {
counter++;

}
}
return counter;

}
/** Gets from NodeKey ArrayList the first one whose BonNode has a child with

given content.
*
* @param nodeKeys ArrayList of NodeKeys to will be checked
* @param childContent String content of child node to look for
* @return NodeKey of first BonNode with child node that has childContent as

content, or null
*/
protected NodeKey getNodeKeyByChildNameAndContent(ArrayList nodeKeys, String

childName, String childContent) {
Iterator iK= nodeKeys.iterator();
while(iK.hasNext()) {

NodeKey nodeKey = getNodeKeyForString((String)iK.next());
NodeKey childNodeKey = getChildNodeByNameAndContent(nodeKey,

childName, childContent);
if(childNodeKey != null) {

return nodeKey; // of parent whose child has content
}

}
return null;

}
/** Gets a new NodeKey whose toString() method returns a given String.
* Note: If argument string is empty or null method returns an empty

NodeKey.
*
* @param nodeKeyString String
* @return NodeKey for the given nodeKeyString
*/

protected NodeKey getNodeKeyForString(String nodeKeyString) {
//log(sessionId, “”, “getNodeKeyForString() nodeKeyString” +

nodeKeyString);
NodeKey nodeKey = new NodeKey();
int inx;
if((nodeKeyString == null) || (nodeKeyString.equals(“”))) {

return nodeKey;
}
String keyString = nodeKeyString;
// 984576125127.984576061235.984576061225
// 1 2 3
// 01234567890123456789012345678901234567
inx = keyString.indexOf(“.”);
if(inx > -1) {

nodeKey.aKey = keyString.substring(0, inx);
keyString = keyString.substring(inx + 1);
inx = keyString.indexOf(“.”);

15 1089-9 XC 6/26/01 7:40 AM Page 591

592 Appendix C Source Code for bonForum Web Application

if(inx > -1) {
nodeKey.bKey = keyString.substring(0, inx);
String cKey = keyString.substring(inx + 1);
if(cKey.length() > 0) {

nodeKey.cKey = cKey;
}

}
}
if(nodeKey.toString().equals(nodeKeyString)) {

return nodeKey;
}
return null;

}
/** Gets ArrayList with contents of all child nodes with given name.
*
* @param parentNodeKey NodeKey of node whose children will be checked
* @param nodeName String name of child nodes to look for
* @return ArrayList of content of all child nodes with the given name
*/
protected ArrayList getChildNodeContentsFromName(NodeKey parentNodeKey,

String nodeName) {
// In a ForestHashtable, children have nodeKey.bKey equal to the

parent’s nodeKey.aKey
BonNode bonNode = new BonNode();
ArrayList nodeContents = new ArrayList();
if(parentNodeKey != null && nodeName != null) {

String parentAKey = parentNodeKey.aKey;
Enumeration enumeration = this.elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
if(bonNode.nodeKey.bKey.equals(parentAKey)) { // it is

child node
if(nodeName.equals(bonNode.nodeName)) {

nodeContents.add(bonNode.nodeContent.toString());
}

}
}
return nodeContents;

}
return null;

}
/** Gets ArrayList with keys of all child nodes with given name.
*
* @param parentNodeKey NodeKey of node whose children will be checked
* @param nodeName String name of child nodes to look for
* @return ArrayList of NodeKeys of child nodes with the given name
*/
protected ArrayList getChildNodeKeysFromName(NodeKey parentNodeKey, String

nodeName) {
// In a ForestHashtable, children have nodeKey.bKey equal to the

15 1089-9 XC 6/26/01 7:40 AM Page 592

593C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

parent’s nodeKey.aKey
BonNode bonNode = new BonNode();
ArrayList nodeKeys = new ArrayList();
if(parentNodeKey != null && nodeName != null) {

String parentAKey = parentNodeKey.aKey;
Enumeration enumeration = this.elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
if(bonNode.nodeKey.bKey.equals(parentAKey)) { // it is

child node
if(nodeName.equals(bonNode.nodeName)) {

nodeKeys.add(bonNode.nodeKey.toString());
}

}
}
return nodeKeys;

}
return null;

}
/** Gets first child node with given name and/or content.
* <pre>
* If nodeName is null, match by content only.
* If nodeContent is null, match by name only.
* If both null, or no match, or no children, returns null.
* </pre>
* @param parentNodeKey NodeKey of node whose children will be checked
* @param nodeName String child name to look for
* @param nodeContent String child content to look for
* @return NodeKey for first (only!) child with the given name and/or

content
*/
protected NodeKey getChildNodeByNameAndContent(NodeKey parentNodeKey, String

nodeName, String nodeContent) {
// NOTE: only gets nodekey of first child with name and/or content

sought!
// It is used when argument value(s) must be unique among

sibling nodes.
// It can be easily changed to return a list of nodes instead,

when needed.
// In a ForestHashtable, children have nodeKey.bKey
// equal to the parent’s nodeKey.aKey
BonNode bonNode = new BonNode();
if(parentNodeKey != null && (nodeContent != null || nodeName != null))

{
String parentAKey = parentNodeKey.aKey;
Enumeration enumeration = this.elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
if(bonNode.nodeKey.bKey.equals(parentAKey)) { // it is

child node
if(nodeName != null && nodeContent != null) { //

15 1089-9 XC 6/26/01 7:40 AM Page 593

594 Appendix C Source Code for bonForum Web Application

match name and content
if(nodeName.equals(bonNode.nodeName)) {

if(nodeContent.equals(bonNode.nodeContent)) {
return bonNode.nodeKey;

}
}

}
else if(nodeName != null) { // match name only

if(nodeName.equals(bonNode.nodeName)) {
return bonNode.nodeKey;

}
}
else if(nodeContent != null) { // match content only

if(nodeContent.equals(bonNode.nodeContent)) {
return bonNode.nodeKey;

}
}

}
}

}
return null;

}
/** Gets first child node with given attribute name and value pair.
*
* @param parentNodeKey NodeKey of node whose children will be checked
* @param attributeName String name of attribute to look for
* @param attributeValue String value of named attribute to look for
* @return BonNode first child node (only!) with the given attribute name and

value
*/
protected BonNode getChildNodeFromAttributeValue(NodeKey parentNodeKey,

String attributeName, String attributeValue) {
// NOTE: only gets first child with value=name sought!
// It is used when attribute value must be unique among sibling

nodes.
// It can be easily changed to return a list of nodes instead,

when needed.
// In a ForestHashtable, children have nodeKey.bKey equal
// to the parent’s nodeKey.aKey
BonNode bonNode = new BonNode();
if(parentNodeKey != null && attributeName != null && attributeValue !=

null) {
String parentAKey = parentNodeKey.aKey;
Enumeration enumeration = this.elements();
while(enumeration.hasMoreElements()) {

bonNode = (BonNode)enumeration.nextElement();
if(bonNode.nodeKey.bKey.equals(parentAKey)) { // it is

child node

if(attributeValue.equals(getAttributeValue(bonNode.nodeAttributes,

15 1089-9 XC 6/26/01 7:40 AM Page 594

595C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

attributeName))) {
return bonNode;

}
}

}
}
return null;

}
/** Finds out if a given attribute exists in a nodeAttributes string.
*
* @param allAttributes String with format used in BonNode

nodeAttributes member
* (No spaces allowed between attributeName

and equals sign
* nor between equal sign and

attributeValue.)
* @param attributeName String naming attribute to look for in
* <value>allAttributes</value>
* @return boolean true if given attribute exists, false otherwise
*/

public boolean attributeExists(String allAttributes, String attributeName) {
if(allAttributes.indexOf(attributeName+”=\””) > -1) { // found name

return true;
}
else {

return false;
}

}
/** Gets the value assigned to a given attribute in a nodeAttributes string.
*
* @param allAttributes String with format used in BonNode nodeAttributes

member
* (No spaces allowed between attributeName

and equals sign
* nor between equal sign and

attributeValue.).
* @param attributeName String naming attribute in

<value>allAttributes</value>
* whose value is returned
* @return null if value has no closing quote or if attributeName not

found,
* else value as string.
*/

protected String getAttributeValue(String allAttributes, String
attributeName) {

String str1 = null;
// type=”tes\”ti\”ng” itemKey=”961755688708.961755643923.961755643913”

dateStamp=”Fri Jun 23 12:21:39 2000”
int inx1 = allAttributes.indexOf(attributeName+”=\””);
if(inx1 > -1) { // found name

int inx2 = inx1 + (attributeName+”=\””).length();

15 1089-9 XC 6/26/01 7:40 AM Page 595

596 Appendix C Source Code for bonForum Web Application

str1 = allAttributes.substring(inx2); // remove all up through
name, equals and opening quote

String str2 = new String(str1);
// tes\”ti\”ng” itemKey=”961755688708.961755643923.961755643913”

dateStamp=”Fri Jun 23 12:21:39 2000”
boolean findingClosingQuote = true;
int inxAcc = 0;
while(findingClosingQuote) {

int inx3 = str2.indexOf(“\””); // find next quotation mark
if(inx3 < 0) {

str1 = null;
break;

}
// find next escaped quotation mark (if any)
int inx4 = str2.indexOf(“\\\””);
if(inx4 > -1) { // found one

// te\”st\”ing” goal=”961772451582”
// |
// inx3
// |
// inx4
if(inx3 == inx4 + 1) { // same one again

// accumulate an index relative to
// beginning of attribute value
inxAcc += inx3 + 1;
// remove all up to and including escaped

quote
str2 = str2.substring(inx3 + 1);
// ti\”ng”

itemKey=”961755688708.961755643923.961755643913” dateStamp=”Fri Jun 23 12:21:39
2000”

// ng”
itemKey=”961755688708.961755643923.961755643913” dateStamp=”Fri Jun 23 12:21:39
2000”

}
else {

// 961772451582” type=”te\”st\”ing”
// | |
// inx3 inx4
if(inxAcc > 0) {

inx3 = inxAcc + ++inx3;
}
str1 = str1.substring(0, inx3);
break; // success

}
}
else {

if(inxAcc > 0) {
// ng”

itemKey=”961755688708.961755643923.961755643913” dateStamp=”Fri Jun 23 12:21:39
2000”

15 1089-9 XC 6/26/01 7:40 AM Page 596

597C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

// ^
inx3 = inxAcc + ++inx3;

}
str1 = str1.substring(0, inx3);
break; // success

}
}

}
else {

log(sessionId, “err”, “ERROR in getAttributeValue()?
attributeName not found!?”);

}
return str1;

}
/** Gets a BonNode given its nodeKey.
*
* @param nodeKey key of node to return
* @return BonNode for the given key, or null if node non-existent
* or <value>nodeKey</value> null
*/

protected BonNode getBonNode(NodeKey nodeKey) {
if(nodeKey == null) {

return null;
}
if(this.containsKey(nodeKey)) {

return (BonNode)this.get(nodeKey);
}
else {

return null;
}

}
/** Allows editing name, attributes and/or content of a BonNode given its

nodeKey.
* Can use this for cross-HttpSession node edits, so later may have to

prevent that?
* If no BonNode exists for nodeKey, silently does nothing.
* If all String arguments are null, silently does nothing.
*
* @param nodeKey NodeKey of node to edit
* @param newNodeName String name of node after editing

(unless null)
* @param newNodeAttributes String attributes of node after
* editing (unless null)
* @param newNodeContent String content of node after editing

(unless null)
* @return NodeKey of BonNode edited, or null if no such node or
* <value>nodeKey</value> null
*/

protected NodeKey editBonNode(NodeKey nodeKey, String newNodeName, String
newNodeAttributes, String newNodeContent) {

NodeKey retval = null;

15 1089-9 XC 6/26/01 7:40 AM Page 597

598 Appendix C Source Code for bonForum Web Application

synchronized(this) {
BonNode bonNode = getBonNode(nodeKey);
if(bonNode != null) {

boolean putNew = false;
if(newNodeName != null) {

bonNode.nodeName = newNodeName;
putNew = true;

}
if(newNodeAttributes != null) {

bonNode.nodeAttributes = newNodeAttributes;
putNew = true;

}
if(newNodeContent != null) {

bonNode.nodeContent = newNodeContent;
putNew = true;

}
if(putNew) {

try {
doDeleteNode(nodeKey);

}
catch(Exception ee) {

log(sessionId, “err”, “editBonNode() EXCEPTION
deleting node!:” + ee.getMessage());

}
try {

retval = (NodeKey)this.put(nodeKey, bonNode);
}
catch(Exception ee) {

log(sessionId, “err”, “editBonNode() EXCEPTION
putting node!:” + ee.getMessage());

}
} // else silently do nothing

} // else silently do nothing
}
return retval;

}
/** Gets BonNode as an XML element in a string.
*
* @param nodeKey NodeKey of node to edit
* @return String containing an XML element, or empty if no such node
*/

protected String getXmlNode(NodeKey nodeKey) {
String xml = “”;
BonNode bonNode = getBonNode(nodeKey);
if(bonNode != null) {

String name = bonNode.nodeName;
String attributes = bonNode.nodeAttributes;
String content = bonNode.nodeContent;
if (attributes != null && attributes.trim().length() > 0) {

xml = xml + “<” + name + “ “ + attributes;
}

15 1089-9 XC 6/26/01 7:40 AM Page 598

599C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

else {
xml = xml + “<” + name;

}
if (content != null && content.trim().length() > 0) {

xml = xml + “>” + content + “<\\” + name + “>”;
}
else {

xml = xml + “\\>”;
}

}
return xml;

}
/** Helps with debugging only, applying <value>getXMLNode</value> to

all elements.
*
* @return String containing entire ForestHashtable as XML elements
*/

protected String getContent() {
Enumeration ee = this.elements();
String outString = “”;
while(ee.hasMoreElements()) {

BonNode bonNode = (BonNode)ee.nextElement();
NodeKey nodeKey = bonNode.nodeKey;
outString = outString + this.getXmlNode(nodeKey);

}
return outString;

}
/** Returns a String containing all the trees in the ForestHashtable.
* <pre>
* NOTES: Depending on the application and its current state,
* that can be a large String object!

* More selectivity will be added later
* for extracting XML subsets from the entire content.
* This method assumes ForestHashtable includes
* zero or more well-formed XML SubTrees, or,
* more specifically, zero or more elements each
* either a leaf node, or else the root of a
* well-formed tree of elements.
* </pre>
* @return String containing all the trees in the ForestHashtable.

*/
protected String getXMLTrees() {

BonNode bonNode;
String xml = “”;
long elementCount;
String nameRootNode = “”;
String nameChildOfRootNode = “”;
String name = “”;
String attributes = “”;
String content = “”;
synchronized(this) {

15 1089-9 XC 6/26/01 7:40 AM Page 599

600 Appendix C Source Code for bonForum Web Application

elementCount = unFlagAllFlaggedElements(); // unhide all hidden
elements

Enumeration enumerationRN = this.elements();
lastRootNodeFound = false;
while (!lastRootNodeFound) {

bonNode = getNextRootNode(enumerationRN);
if (bonNode == null) {

lastRootNodeFound = true;
break;

}
name = bonNode.nodeName;
nameRootNode = name;
attributes = bonNode.nodeAttributes;
content = bonNode.nodeContent;
// OUTPUT A ROOTNODE
if (attributes != null && attributes.trim().length() > 0)

{
xml = xml + “<” + name + “ “ + attributes;

}
else {

xml = xml + “<” + name;
}
if (content != null && content.trim().length() > 0) {

xml = xml + “>” + content;
}
else {

xml = xml + “>”;
}
Enumeration enumerationCRN = this.elements();
lastChildOfRootNodeFound = false;
while (!lastChildOfRootNodeFound) {

bonNode = getNextChildOfRootNode(enumerationCRN);
if (bonNode == null) {

lastChildOfRootNodeFound = true;
break;

}
name = bonNode.nodeName;
nameChildOfRootNode = name;
attributes = bonNode.nodeAttributes;
content = bonNode.nodeContent;
// OUTPUT A CHILD OF A ROOTNODE
if (attributes != null && attributes.trim().length()

> 0) {
xml = xml + “<” + name + “ “ + attributes;

}
else {

xml = xml + “<” + name;
}
if (content != null && content.trim().length() > 0)

{
xml = xml + “>” + content;

15 1089-9 XC 6/26/01 7:40 AM Page 600

601C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

}
else {

xml = xml + “>”;
}
xml = getNextChildOfNonRootNodeRecursively(xml,

bonNode.nodeKey);
xml = xml + “</” + nameChildOfRootNode + “>”;

}
xml = xml + “</” + nameRootNode + “>”;

}
elementCount = unFlagAllFlaggedElements(); // unhide all hidden

elements
}
return xml;

}
/** Makes <value>flagged</value> member false for all BonNodes.
*
* @return long count of all BonNodes

*/
private long unFlagAllFlaggedElements() {

Enumeration enumerationALL;
BonNode bonNodeALL = null;
NodeKey nodeKeyALL = null;
long count = 0;
boolean foundNextRootNode;
foundNextRootNode = false;
enumerationALL = this.elements();
while(enumerationALL.hasMoreElements()) {

bonNodeALL = (BonNode)enumerationALL.nextElement();
nodeKeyALL = bonNodeALL.nodeKey;
if(nodeKeyALL != null) {

count++;
bonNodeALL.flagged = false; // unhide each node, so we

can find it
}

}
return count;

}
/** Gets next root node in an enumeration of BonNode instances.
* Sets its <value>flagged</value> member true so it will not be found

again.
* Keeps its nodeKey.aKey in <value>currentRootNodeAKey</value>,
* Keeps its nodeKey.bKey in <value>currentRootNodeBKey</value>,
* Keeps its nodeKey.cKey in <value>currentRootNodeCKey</value>.
*
* @param enumerationRN Enumeration of nodes
* @return BonNode next root node in <value>enumerationRN</value> or null

*/
protected BonNode getNextRootNode(Enumeration enumerationRN) {

// NOTE: This process is an extremely inefficient simulation for
database model!

15 1089-9 XC 6/26/01 7:40 AM Page 601

602 Appendix C Source Code for bonForum Web Application

BonNode bonNodeRN = null;
NodeKey nodeKeyRN = null;
boolean foundNextRootNode;
foundNextRootNode = false;
while(enumerationRN.hasMoreElements()) {

bonNodeRN = (BonNode)enumerationRN.nextElement();
nodeKeyRN = bonNodeRN.nodeKey;
// this is a test for a root node
if((!bonNodeRN.flagged)

&&(nodeKeyRN.aKey.equals(nodeKeyRN.bKey)) &&
(nodeKeyRN.bKey.equals(nodeKeyRN.cKey))) {

foundNextRootNode = true;
bonNodeRN.flagged = true; // hide this node, so we get it

only once
if(nodeKeyRN != null) {

currentRootNodeAKey = nodeKeyRN.aKey;
currentRootNodeBKey = nodeKeyRN.bKey;
currentRootNodeCKey = nodeKeyRN.cKey; // not needed,

just for debugging
}
break;

}
}
if (!foundNextRootNode) {

lastRootNodeFound = true;
bonNodeRN = null;

}
return bonNodeRN;

}
/** Gets next child-of-root node in an enumeration of BonNode instances.
* Sets its <value>flagged</value> member true so it will not be found

again,
* Keeps its nodeKey.aKey in <value>currentChildOfRootNodeAKey</value>,
* Keeps its nodeKey.bKey in <value>currentChildOfRootNodeBKey</value>,
* Keeps its nodeKey.cKey in <value>currentChildOfRootNodeCKey</value>.
*
* @param enumerationCRN Enumeration of nodes
* @return BonNode next child-of-root node in <value>enumerationCRN</value>

or null
*/
protected BonNode getNextChildOfRootNode(Enumeration enumerationCRN) {

// NOTE: This process is an extremely inefficient simulation for
database model!

BonNode bonNodeCRN = null;
NodeKey nodeKeyCRN = null;
boolean foundNextChildOfRootNode;
foundNextChildOfRootNode = false;
while(enumerationCRN.hasMoreElements()) {

bonNodeCRN = (BonNode)enumerationCRN.nextElement();
nodeKeyCRN = bonNodeCRN.nodeKey;
// this is a test for child of current root node

15 1089-9 XC 6/26/01 7:40 AM Page 602

603C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

if((!bonNodeCRN.flagged) && (nodeKeyCRN.aKey != nodeKeyCRN.bKey)
&& (nodeKeyCRN.bKey == currentRootNodeAKey) && (nodeKeyCRN.cKey ==
currentRootNodeBKey)) {

foundNextChildOfRootNode = true;
bonNodeCRN.flagged = true; // hide this node, so we get

it only once
if(nodeKeyCRN != null) {

currentChildOfRootNodeAKey = nodeKeyCRN.aKey;
currentChildOfRootNodeBKey = nodeKeyCRN.bKey;
currentChildOfRootNodeCKey = nodeKeyCRN.cKey; // for

debug only
}
break;

}
}
if (!foundNextChildOfRootNode) {

lastChildOfRootNodeFound = true;
bonNodeCRN = null;

}
return bonNodeCRN;

}
/** Gets all descendants of a non-root node as one XML string.
* Applies <value>getNextChildOfNonRootNode</value> recursively.
*
* @param xml String that accumulates resulting

elements expressed in XML
* @param nonRootNodeKey NodeKey of non-root node whose descendants are

to be found
* @return String that accumulated resulting elements expressed in XML

*/
protected String getNextChildOfNonRootNodeRecursively(String xml, NodeKey

nonRootNodeKey) {
String nameChildOfNonRootNode;
String name;
String attributes;
String content;
boolean lastChildOfNonRootNodeFound;
BonNode bonNode;
nameChildOfNonRootNode = “”;
bonNode = null;
Enumeration enumerationCNRN = this.elements();
lastChildOfNonRootNodeFound = false;
while (!(lastChildOfNonRootNodeFound)) {

bonNode = getNextChildOfNonRootNode(enumerationCNRN,
nonRootNodeKey);

if (bonNode == null) {
lastChildOfNonRootNodeFound = true;
break;

}
name = bonNode.nodeName;
nameChildOfNonRootNode = name;

15 1089-9 XC 6/26/01 7:40 AM Page 603

604 Appendix C Source Code for bonForum Web Application

//log(sessionId, “”, “Child of NonRoot: “ + name);
attributes = bonNode.nodeAttributes;
content = bonNode.nodeContent;
// OUTPUT A CHILD OF A NON-ROOTNODE
if (attributes != null && attributes.trim().length() > 0) {

xml = xml + “<” + name + “ “ + attributes;
}
else {

xml = xml + “<” + name;
}
if (content != null && content.trim().length() > 0) {

xml = xml + “>” + content;
}
else {

xml = xml + “>”;
}
xml = getNextChildOfNonRootNodeRecursively(xml,

bonNode.nodeKey);
xml = xml + “</” + nameChildOfNonRootNode + “>”;

}
return xml;

}
/** Gets next child-of-non-root node in an enumeration of BonNode instances.
* Sets its <value>flagged</value> member true so it will not be found

again.
*
* @param enumerationCNRN Enumeration of nodes
* @param nonRootNodeKey NodeKey of non-root node whose descendants are

to be found
* @return BonNode next child-of-non-root node in
* <value>enumerationCNRN</value> or null

*/
protected BonNode getNextChildOfNonRootNode(Enumeration enumerationCNRN,

NodeKey nonRootNodeKey) {
// NOTE: This process is an extremely inefficient simulation for

database model!
BonNode bonNodeCNRN = null;
NodeKey nodeKeyCNRN = null;
boolean foundNextChildOfNonRootNode;
foundNextChildOfNonRootNode = false;
while(enumerationCNRN.hasMoreElements()) {

bonNodeCNRN = (BonNode)enumerationCNRN.nextElement();
nodeKeyCNRN = bonNodeCNRN.nodeKey;
// this is a compound test for child of current non-root node
String currentChildOfNonRootNodeAKey = nonRootNodeKey.aKey;
String currentChildOfNonRootNodeBKey = nonRootNodeKey.bKey;
String currentChildOfNonRootNodeCKey = nonRootNodeKey.cKey;
boolean isChildOfNonRootNode;
isChildOfNonRootNode = false;
if(currentChildOfNonRootNodeAKey != null &&

currentChildOfNonRootNodeAKey.length() < 1) { // then this is grandchild of a

15 1089-9 XC 6/26/01 7:40 AM Page 604

605C.22 Filename: Projects\bonForum\src\de\tarent\forum\ForestHashtable.java

root node
if((!bonNodeCNRN.flagged) && (nodeKeyCNRN.bKey ==

currentChildOfRootNodeAKey) && (nodeKeyCNRN.cKey == currentChildOfRootNodeBKey)) {
isChildOfNonRootNode = true;

}
}
else { // then this is great-grandchild or greater of a root

node
if((!bonNodeCNRN.flagged) && (nodeKeyCNRN.bKey ==

currentChildOfNonRootNodeAKey) && (nodeKeyCNRN.cKey ==
currentChildOfNonRootNodeBKey)) {

isChildOfNonRootNode = true;
}

}
if (isChildOfNonRootNode) {

foundNextChildOfNonRootNode = true;
bonNodeCNRN.flagged = true; // hide this node, so we get

it only once
if(nodeKeyCNRN != null) {

currentChildOfNonRootNodeAKey = nodeKeyCNRN.aKey;
currentChildOfNonRootNodeBKey = nodeKeyCNRN.bKey;
// not needed, just for debugging
currentChildOfNonRootNodeCKey = nodeKeyCNRN.cKey;

}
break;

}
}
if (!foundNextChildOfNonRootNode) {

bonNodeCNRN = null;
}
return bonNodeCNRN;

}
}
/** NodeNameHashtable only wraps java.util.Hashtable for access from JSP Custom
tag.
* @author Westy Rockwell (wrockwell@tarent.de)
* @version 0.2
*/

class NodeNameHashtable extends java.util.Hashtable {
// wrapped just for access from a tag

}

/** PathNameHashtable only wraps java.util.Hashtable for access from JSP Custom
tag.
* @author Westy Rockwell (wrockwell@tarent.de)
* @version 0.2
*/

class PathNameHashtable extends java.util.Hashtable {
// wrapped just for access from a tag

}

15 1089-9 XC 6/26/01 7:40 AM Page 605

606 Appendix C Source Code for bonForum Web Application

C.23 Filename: Projects\bonForum\src\de\
tarent\forum\NodeKey.java

package de.tarent.forum;
/*<Imports>*/
import java.io.*;
/*</Imports>*/
/** NodeKey implements a three-part key in a ForestHashtable.
* <pre>
* String aKey;
* String bKey;
* String cKey;
* /<pre>
* Note that in new NodeKey, no null xKey parts exist,
* but any xKey can be set to null later.
* Note also that toString returns:
* <pre>
* a | a.b | a.b.c | .b | .b.c | a..c | ..c
* (where a, b, c can be null in toString return value,
* but no trailing dots are allowed).
* /<pre>
* That allows using NodeKey for a.b.c and a.b type keys,
* while still allowing partially filled keys to be used.
*
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class NodeKey{

String aKey;
String bKey;
String cKey;
/** Constructs a NodeKey.
* Sets aKey, bKey, cKey to empty strings.
*
*/
public NodeKey() {

this.aKey = “”;
this.bKey = “”;
this.cKey = “”;

}
/** Converts a NodeKey to a String.
* See doc comments for NodeKey class for details.
*
*/
public String toString() {

String key = this.aKey + “.” + this.bKey + “.” + this.cKey;
if(key.equals(“..”)) {

return(“”);
}

15 1089-9 XC 6/26/01 7:40 AM Page 606

607C.24 Filename: Projects\bonForum\src\de\tarent\forum\OutputChatMessages.java

while(key.lastIndexOf(“.”) == key.length() - 1) {
key = key.substring(0, key.length() - 1);

}
return key;

}
}

C.24 Filename: Projects\bonForum\src\de\
tarent\forum\OutputChatMessages.java

package de.tarent.forum;
/*<Imports>*/
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
/*</Imports>*/
/** Outputs chat messages from a bonForum XML Document or ForestHashtable.
* It has four attributes as follows:<p>
*
* command String (“bonForumXML” or “bonBufferXML”, more to follow)
* attr1 String (reserved argument, available)
* attr2 String (reserved argument, available)
* attr3 String (reserved argument, available)
*
* <p>
* Here are some notes about its use:
*
* puts results into “option” scripting variable
* XML doc not yet implemented! Use forum or buffer only.
* attrN will later select chat messages by actor, date, etc.
*
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class OutputChatMessagesTag

extends BodyTagSupport
{

TreeMap outputTable = null;
Iterator iterator = null;
private static BonForumStore bonForumStore = null;
private static boolean loggingInitialized = false;
private static BonLogger logOCMT = null;
private static String logging = null;
private String command = “”;
private String attr1 = “”;
private String attr2 = “”;
private String attr3 = “”;
private void log(String where, String what) {

15 1089-9 XC 6/26/01 7:40 AM Page 607

608 Appendix C Source Code for bonForum Web Application

if(logging != null) {
logOCMT.logWrite(System.currentTimeMillis(), pageContext.getSession(

).getId(), where, what);
}

}
/** locates the BonForumStore instance for application
*/
private void findBonForumStore() {

if(bonForumStore == null) {
if (pageContext.getServletContext().getAttribute(“bonForumStore”)

!= null) {
bonForumStore = (BonForumStore)(pageContext.getServletContext(

).getAttribute(“bonForumStore”));
}
else {

log(“err”, “ERROR? OutputChatMessagesTag DID NOT GET
bonForumStore.”);

log(“err”, “pageContext.getSession().getId():” +
pageContext.getSession().getId());

}
}

}
/** Sets value of the <code>command</code> attribute; also initializes

logging.
*
* @param value string to which <code>command</code> attribute is

set
*/

public void setCommand(String value) {
if(!loggingInitialized) {

logging = pageContext.getServletContext().getInitParameter(“Logging”
);

logOCMT = new BonLogger(“OutputChatMessagesTagLog.txt”, logging);
loggingInitialized = true;
System.err.println(“OutputChatMessagesTag init logging:” + logging);

}
if (value.equals(null)) {

value = “bonForumXML”;
}
command = value;

}
/** Sets value of the <code>attr1</code> attribute.

*
* @param value string to which <code>attr1</code> attribute is set
*/

public void setAttr1(String value) {
if(value.equals(null)) {

value = “”;
}
attr1 = value;

}

15 1089-9 XC 6/26/01 7:40 AM Page 608

609C.24 Filename: Projects\bonForum\src\de\tarent\forum\OutputChatMessages.java

/** Sets value of the <code>attr2</code> attribute.
*

* @param value string to which <code>attr2</code> attribute is set
*/

public void setAttr2(String value) {
if(value.equals(null)) {

value = “”;
}
attr2 = value;

}
/** Sets value of the <code>attr3</code> attribute.

*
* @param value string to which <code>attr3</code> attribute is set
*/

public void setAttr3(String value) {
if(value.equals(null)) {

value = “”;
}
attr3 = value;

}
/** Makes sure the body of the tag is evaluated.

*
* @returns EVAL_BODY_TAG constant that causes tag body to be

evaluated
* @throws JspException
*/

public int doStartTag() throws JspException {
return EVAL_BODY_TAG;

}
/** Initial tag body evaluation.
* @throws JspException
*/

public void doInitBody() throws JspException, JspTagException {
findBonForumStore();
if(bonForumStore != null) {

try {
outputTable = new TreeMap(bonForumStore.outputForumChatMessages(

command, attr1, attr2, attr3, pageContext.getSession()));
if (outputTable != null) {

iterator = outputTable.values().iterator();
if(iterator.hasNext()) {

pageContext.setAttribute(“output”, (String
)iterator.next());

}
}

} catch (Exception ex) {
log(“err”, “caught Exception in OutputChatMessagesTag

doInitBody”);
throw new JspTagException(“caught Exception in

OutputChatMessagesTag doInitBody”);
}

15 1089-9 XC 6/26/01 7:40 AM Page 609

610 Appendix C Source Code for bonForum Web Application

}
}
/** Iterates outputTable into “output” page attribute until done.

*
* @returns EVAL_BODY_TAG constant that causes tag body to be

evaluated
* @returns SKIP_BODY constant that causes tag body to NOT be

evaluated (again)
* @throws JspException
*/

public int doAfterBody() throws JspException, JspTagException {
if(bonForumStore != null && outputTable != null && iterator != null) {

try {
if(iterator.hasNext()) {

pageContext.setAttribute(“output”, (String)iterator.next()
);

return EVAL_BODY_TAG;
} else {

bodyContent.writeOut(bodyContent.getEnclosingWriter());
return SKIP_BODY;

}
} catch (java.io.IOException ex) {

log(“err”, “caught IOException in OutputChatMessagesTag
doAfterBody”);

throw new JspTagException(“caught IOException in
OutputChatMessagesTag doAfterBody”);

}
}
else {

log(“err”, “ERROR: OutputChatMessagesTag doAfterBody no store | no
table | no iterator”);

return SKIP_BODY;
}

}
}

C.24 Filename:
Projects\bonForum\src\de\tarent\forum\Outp
utDebugInfoTag.java

package de.tarent.forum;
/*<Imports>*/
import java.util.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
/*</Imports>*/
/** OutputDebugInfoTag is JSP tag class to dump

15 1089-9 XC 6/26/01 7:40 AM Page 610

611C.24 Filename: Projects\bonForum\src\de\tarent\forum\OutputChatMessages.java

* debugging info into HTML output.
* It has two attributes named “type” and “force”.
* Usage:<p>
* <pre>
* <bon:outputDebugInfo type=”init”/>
* <bon:outputDebugInfo type=”init” force=”yes”/>
* <bon:outputDebugInfo force=”yes”/>
* <bon:outputDebugInfo/>
* </pre><p>
* The type attribute is not required except as follows:<p>
*
* type=”init”type=”init” turns tags “on” for entire session,
* if a request parameter exists called “output_debug_info”
* that is equal to “yes”. Afterwards, a tag but no attribute
* is required to output debug info on page.
* type=”init” turns tags “off”, if no request parameter
* exists named “output_debug_info” that is equal to “yes”.
* force=”yes” turns that tag on only (can use on same page
* that sends request parameter output_debug_info=”yes”, or
* anywhere to use tag without tags being “on”.)
* not force=”yes” tags must be “on” for that tag to dump.
*
* <p>
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class OutputDebugInfoTag extends BodyTagSupport
{

private static BonLogger logODI = null;
private static boolean loggingInitialized = false;
private static String logging = null;
private String type=””;
private String force=””;
private void log(String where, String what) {

if(logging != null) {
logODI.logWrite(System.currentTimeMillis(), pageContext.getSession(

).getId(), where, what);
}

}
/** Sets value of the <code>type</code> attribute.
* Currently, only “init” is available, turns tags on for session
* if request parameter output_debug_info=”yes”, off otherwise.
* First time called, sets up logger, using webapp context init param
*
* @param value string to which <code>type</code> attribute is set
*/

public void setType(String value) {
if(!loggingInitialized) {

logging = pageContext.getServletContext().getInitParameter(“Logging”);
logODI = new BonLogger(“OutputDebugInfoTagLog.txt”, logging);

15 1089-9 XC 6/26/01 7:40 AM Page 611

612 Appendix C Source Code for bonForum Web Application

loggingInitialized = true;
System.err.println(“OutputDebugInfoTag init logging:” + logging);

}
if (value.equals(null)) {

value = “”;
}
type = value;

}
/** Sets value of the <code>force</code> attribute.
* Currently, only “yes” is available, outputs on page now
*
* @param value string to which <code>force</code> attribute is set
*/

public void setForce(String value) {
if (value.equals(null)) {

value = “”;
}
force = value;

}
/** Sets “output_debug_info” request parameter value to session attribute
* of the same name, to switch the tag output on and off.
* Also, forces tag body evaluation to happen
*

* @returns EVAL_BODY_TAG constant that causes tag body to be evaluated
*/

public int doStartTag() throws JspException {
if(type.equals(“init”)) {

if(pageContext.getRequest().getParameter(
“output_debug_info”) != null) {

if(((String)(pageContext.getRequest().getParameter(
“output_debug_info”))).equals(“yes”)

) {
pageContext.setAttribute(

“output_debug_info”, “yes”, 4);
// 4 is application scope

}
}
else {

pageContext.setAttribute(
“output_debug_info”, “no”, 4);

}
}
if(force.equals(“yes”)) {

return EVAL_BODY_TAG;
}
if(pageContext.getAttribute(

“output_debug_info”, 4) != null) {
if(((String)(pageContext.getAttribute(

“output_debug_info”, 4))).equals(“yes”)) {
return EVAL_BODY_TAG;

}

15 1089-9 XC 6/26/01 7:40 AM Page 612

613C.24 Filename: Projects\bonForum\src\de\tarent\forum\OutputChatMessages.java

}
return SKIP_BODY;

}
/** Outputs values of headers, parameters, attributes, etc. and ends tag

processing.
*

* @returns SKIP_BODY constant that causes tag body to NOT be
evaluated (again)

*/
public int doAfterBody() throws JspException, JspTagException {

try {
HttpServletRequest req =

(HttpServletRequest)pageContext.getRequest();
bodyContent.println(“<H4>Request Headers: </H4>”);
Enumeration eh = req.getHeaderNames();
while (eh.hasMoreElements()) {

String name = (String)eh.nextElement();
String value = (String)req.getHeader(name);
bodyContent.println(“\t” + normalize(name) + “ = “ +

normalize(value) + “”);
}
bodyContent.println(“<H4>Request Parameters: </H4>”);
Enumeration ep = req.getParameterNames();
while(ep.hasMoreElements()) {

String name = (String)ep.nextElement();
String value = (String)req.getParameter(name);
bodyContent.println(“\t” + normalize(name) + “ = “ +

normalize(value) + “”);
}
bodyContent.println(“<H4>Application Initialization Parameters:

</H4>”);
Enumeration eip =

pageContext.getServletContext().getInitParameterNames();
while(eip.hasMoreElements()) {

String name = (String)eip.nextElement();
String value =

(String)pageContext.getServletContext().getInitParameter(name);
bodyContent.println(“\t” + normalize(name) + “ = “ +

normalize(value) + “”);
}
int scope;
String title = null;
for(scope = 4; scope >= 1; scope—) {

switch(scope) {
case 1:

title = “Page Attributes:”;
break;

case 2:
title = “Request Attributes:”;
break;

15 1089-9 XC 6/26/01 7:40 AM Page 613

614 Appendix C Source Code for bonForum Web Application

case 3:
title = “Session Attributes:”;
break;

case 4:
title = “Application Attributes:”;
break;

}
bodyContent.println(“<H4>” + title + “</H4>”);
Enumeration ea = pageContext.getAttributeNamesInScope(scope);

while(ea.hasMoreElements()) {
String name = (String)ea.nextElement();
String value =

(String)pageContext.getAttribute(
name, scope).toString();

bodyContent.println(
“\t” + normalize(name) + “ = “ +
normalize(value) + “”);

}
}
bodyContent.writeOut(bodyContent.getEnclosingWriter());
return SKIP_BODY;

}
catch(java.io.IOException ex) {

log(“err”, “OutputDebugInfoTag doInitBody caught IOException”);
throw new JspTagException(“OutputDebugInfoTag doInitBody caught

IOException”);
}

}
/* Code below here is based on Apache Software Foundation samples
*/

/** Normalizes the given string, replacing chars with entities.
* (less than, greater than, ampersand, double quote, return and linefeed).
* NOTE: replaces null string with empty string.
*
* @param s String
* @return normalized string (not null)
*/

protected String normalize(String s) {
StringBuffer str = new StringBuffer();
str.append(“”);
int len = (s != null) ? s.length() : 0;
for (int i = 0; i < len; i++) {

char ch = s.charAt(i);
switch (ch) {

case ‘<’: {
str.append(“<”);
break;

}
case ‘>’: {

str.append(“>”);
break;

15 1089-9 XC 6/26/01 7:40 AM Page 614

615C.25 Filename: Projects\bonForum\src\de\tarent\forum\OutputPathNamesTag.java

}
case ‘&’: {

str.append(“&”);
break;

}
case ‘“‘: {

str.append(“"”);
break;

}
case ‘\r’:
case ‘\n’: {

str.append(“&#”);
str.append(Integer.toString(ch));
str.append(‘;’);
break;

}
default: {

str.append(ch);
}

}
}
return str.toString();

}
}

C.25 Filename: Projects\bonForum\src\de\
tarent\forum\OutputPathNamesTag.java

package de.tarent.forum;
/*<Imports>*/
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
/*</Imports>*/
/** Outputs pathNames from subTree of an XML tree or forest (except chatItems!).

* It has four attributes as follows: <p>
*
* docName is XML doc or ForestHashtable name (“bonForumXML” or
“bonBufferXML”).
* pathToSubTreeRootNode selects starting node in XML or forest
(“bonForum.things.subjects”).
* ancestorReplacer [future] replaces all but last nodeName (*, nbsp, tab,
etc. in string).
* nodeSeparator [future] is separator char between node names (defaults
to “_”).
*
* <p>The following notes apply to its use:
*

15 1089-9 XC 6/26/01 7:40 AM Page 615

616 Appendix C Source Code for bonForum Web Application

* XML doc not yet implemented! Use forum or buffer only.
* chatItem nodes in bonForumXML are ignored and not output!
*
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class OutputPathNamesTag extends BodyTagSupport
{

TreeMap outputTable = null;
Iterator iterator = null;
private static BonForumStore bonForumStore = null;
private static BonLogger logOPNT = null;
private static boolean loggingInitialized = false;
private static String logging = null;
private String docName = “”;
private String pathToSubTreeRootNode = “”;
private String ancestorReplacer = “”;
private String nodeSeparator = “”;
private void log(String where, String what) {

if(logging != null) {
logOPNT.logWrite(System.currentTimeMillis(), pageContext.getSession(

).getId(), where, what);
}

}
/** locates the BonForumStore instance for application
*/
private void findBonForumStore() {

if(bonForumStore == null) {
if (pageContext.getServletContext().getAttribute(“bonForumStore”)

!= null) {
bonForumStore = (BonForumStore)(pageContext.getServletContext(

).getAttribute(“bonForumStore”));
}
else {

log(“err”, “ERROR? OutputPathNamesTag DID NOT GET
bonForumStore.”);

log(“err”, “pageContext.getSession().getId():” +
pageContext.getSession().getId());

}
}

}
/** Sets value of the <code>docName</code> attribute; also initializes

logging.
*
* @param value string to which <code>docName</code> attribute is

set
*/

public void setDocName(String value) {
if(!loggingInitialized) {

logging = pageContext.getServletContext().getInitParameter(“Logging”

15 1089-9 XC 6/26/01 7:40 AM Page 616

617C.25 Filename: Projects\bonForum\src\de\tarent\forum\OutputPathNamesTag.java

);
logOPNT = new BonLogger(“OutputPathNamesTagLog.txt”, logging);
loggingInitialized = true;
System.err.println(“OutputPathNamesTag init logging:” + logging);

}
if (value.equals(null)) {

value = “bonForumXML”;
}
docName = value;

}
/** Sets value of the <code>pathToSubTreeRootNode</code> attribute.

*
* @param value string to which <code>pathToSubTreeRootNode</code>

attribute is set
*/

public void setPathToSubTreeRootNode(String value) {
if(value.equals(null)) {

value = “”;
}
pathToSubTreeRootNode = value;

}
/** Sets value of the <code>ancestorReplacer</code> attribute.

*
* @param value string to which <code>ancestorReplacer</code>

attribute is set
*/

public void setAncestorReplacer(String value) {
if(value.equals(null)) {

value = “”;
}
ancestorReplacer = value;

}
/** Sets value of the <code>nodeSeparator</code> attribute.

*
* @param value string to which <code>nodeSeparator</code> attribute

is set
*/

public void setNodeSeparator(String value) {
if(value.equals(null)){

value = “”;
}
nodeSeparator = value;

}
/** Makes sure the body of the tag is evaluated.

*
* @returns EVAL_BODY_TAG constant that causes tag body to be

evaluated
*/

public int doStartTag() throws JspException {
return EVAL_BODY_TAG;

}

15 1089-9 XC 6/26/01 7:40 AM Page 617

618 Appendix C Source Code for bonForum Web Application

/** Gets bonforumStore, and outputTable with pathnames;
* gets iterator.and outputs first pathname.
*/

public void doInitBody() throws JspException, JspTagException {
findBonForumStore();
if(bonForumStore != null) {

try {
outputTable = new TreeMap(bonForumStore.outputForumPathNames(

docName, pathToSubTreeRootNode, ancestorReplacer, nodeSeparator));
if (outputTable != null) {

// note that values iterator gives nodeKey.aKey for nodes, may
be useful to locate them

iterator = outputTable.keySet().iterator();
if(iterator.hasNext()) {

pageContext.setAttribute(“output”, (String
)iterator.next());

// The rest of the Elements are set to output in
doAfterBody

}
}

} catch (Exception ex) {
log(“err”, “caught Exception in OutputPathNamesTag doInitBody”

);
throw new JspTagException(“caught Exception in OutputPathNamesTag

doInitBody”);
}

}
}
/** Iterates outputTable into “output” page attribute until done.

*
* @returns EVAL_BODY_TAG constant that causes tag body to be

evaluated
* @returns SKIP_BODY constant that causes tag body to NOT be

evaluated (again)
*/

public int doAfterBody() throws JspException, JspTagException {
if(bonForumStore != null && outputTable != null && iterator != null) {

try {
if(iterator.hasNext()) {

pageContext.setAttribute(“output”, (String)iterator.next()
);

return EVAL_BODY_TAG;
} else {

bodyContent.writeOut(bodyContent.getEnclosingWriter());
return SKIP_BODY;

}
} catch (java.io.IOException ex) {

log(“err”, “caught IOException in OutputPathNamesTag
doAfterBody”);

throw new JspTagException(“caught IOException in
OutputPathNamesTag doAfterBody”);

15 1089-9 XC 6/26/01 7:40 AM Page 618

619C.26 Filename: Projects\bonForum\src\de\tarent\forum\TransformTag.java

}
}
else {

//log(“”, “ERROR: OutputPathNamesTag doAfterBody no store | no table
| no iterator”);

return SKIP_BODY;
}

}
}

C.26 Filename: Projects\bonForum\src\de\
tarent\forum\TransformTag.java

/*
* Note: This class is based in part on the source code
* provided with Jakarta Tomcat. The license for that source
* code is either below (if this a file) or elsewhere in the
* book (if this is printed in one).
*/

package de.tarent.forum;
/*<Imports>*/
import java.text.*;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
/*</Imports>*/
/** TransformTag is a JSP custom tag class for XSLT processing.
* It has four attributes named “type”, “inXML”, “inXSL” and “outDoc”.
* Use it as follows:<p>
* <code>
* <bon:transform type="..." inDoc="..."
styleSheet="..." outDoc="..." />
* </code><p>
*
* The type attribute select the XSLT processor, and currently can
* have three values: “Xalan Java 1”, “Xalan Java 2”, or “xalanVersion”.
* If type is “xalanVersion”, the tag object looks for an application
* attribute of the same name and uses its value to select processor.
* The inXML attribute can be a URI for an XML input source to XSLT.
* Otherwise, it can be “bonForumXML” or “bonBufferXML” to use XML content
* of the bonForum database object (currently a ForestHashtable).
* The inXSL attribute can be a URI for an XML input source to XSLT.
* Otherwise it (will?) can be a string containing a valid XSL stylesheet.
* The outDoc attribute can be the URI of the file to write the output
* of the XSLT process to. Otherwise, it can currently be set to either
* “output” or “outputNormalized”, in which case the output of the XSLT
* process is put in a page attribute named “output”, optionally normalized.

15 1089-9 XC 6/26/01 7:40 AM Page 619

620 Appendix C Source Code for bonForum Web Application

*
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class TransformTag extends BodyTagSupport
{

private static BonForumStore bonForumStore;
private static BonLogger logTT = null;
private static boolean loggingInitialized = false;
private static String logging = null;
private String type = “”;
private String inXML = “”;
private String inXSL = “”;
private String outDoc = “”;
private void log(String where, String what) {

if(logging != null) {
logTT.logWrite(System.currentTimeMillis(),

pageContext.getSession().getId(), where, what);
}

}
/** Locates the BonForumStore instance for application.
*/
private void findBonForumStore() {

if(bonForumStore == null) {
if

(pageContext.getServletContext().getAttribute(“bonForumStore”) != null) {
bonForumStore =

(BonForumStore)(pageContext.getServletContext().getAttribute(“bonForumStore”));
}
else {

log(“err”, “TransformTag DID NOT GET bonForumStore.
Session ID:” + pageContext.getSession().getId());

// not a problem, as long as input is available to XSLT
// from file or string instead.

}
}

}
/** Sets value of the <code>type</code> attribute to select an XSLT

processor.
* Currently, three values: “Xalan Java 1”, “Xalan Java 2”, or

“xalanVersion”.
* If type is “xalanVersion”, the tag object looks for an application
* attribute of the same name and uses its value to select processor.
*
* @param value String “Xalan-Java 1”. “Xalan-Java 2” or

“xalanVersion”.
*/

public void setType(String value) {
if(!loggingInitialized) {

logging = pageContext.getServletContext().getInitParameter(

15 1089-9 XC 6/26/01 7:40 AM Page 620

621C.26 Filename: Projects\bonForum\src\de\tarent\forum\TransformTag.java

“Logging”);
logTT = new BonLogger(“TransformTagLog.txt”, logging);
loggingInitialized = true;

}
if(value.indexOf(“xalanVersion”) > -1) {

try {
value = (String)pageContext.getAttribute(

“xalanVersion”, 4).toString(); // 4 is application scope
}
catch(java.lang.NullPointerException ex) {

value = “Xalan-Java 1”;
}

}
if(value.equals(null)) {

value = “Xalan-Java 1”;
}
type = value;

}
/** Sets <code>inXML</code> attribute value; determines input to XSLT

processing.
* If inXML is “bonForumXML”, will use contents of bonForum XML database.
* If inXML is “bonBufferXML”, will use contents of XML buffer.
* Otherwise, XSLT will assume inXML is a URI to an XML document.
*

* @param value string to which <code>inXML</code> attribute is set.
*/
public void setInXML(String value) {

inXML = value;
}

/** Sets <code>inXSL</code> attribute value; determines stylesheet to XSLT
processing.

* The inXSL attribute can be a URI, or a complete XSL stylesheet in a
string.

*
* @param value string to which <code>inXSL</code> attribute is set.
*/
public void setInXSL(String value) {

inXSL = value;
}
/** Sets value of the <code>outDoc</code> attribute, determines output of

XSLT processing.
* If outDoc is “output”, result of XSLT process is put in “output” page

attribute.
* If outDoc is “outputNormalized”, same as “output” but result is

normalized.
* If outDoc is “print”, result of XSLT process is output in JSP out.
* If outDoc is “printNormalized”, same as “print” but result is

normalized.
* OTW, XSLTResultTarget from a URI value.
*

* @param value string to which <code>outDoc</code> attribute is set

15 1089-9 XC 6/26/01 7:40 AM Page 621

622 Appendix C Source Code for bonForum Web Application

*/
public void setOutDoc(String value) {

outDoc = value;
}

/** makes sure the body of the tag is evaluated
*

* @returns EVAL_BODY_TAG constant that causes tag body to be
evaluated.

*/
public int doStartTag() throws JspException {

return EVAL_BODY_TAG;
}
/** Apply XSLT transformation to XML with XSL stylesheet,
* input XML is from database or file, XSL is string or file,
* output document to browser, “output” page attribute, or file.
*/

public void doInitBody() throws JspException {
if ((inXML != null) && (inXSL != null) && (outDoc != null)) {

if(inXML.equals(“bonForumXML”)) {
findBonForumStore();
if(bonForumStore != null) {

synchronized(bonForumStore) {
inXML = “<?xml version=\”1.0\” encoding=\”UTF-

8\”?>” + bonForumStore.getBonForumXML().getXMLTrees();
}

}
}
else if(inXML.equals(“bonBufferXML”)) {

findBonForumStore();
if(bonForumStore != null) {

synchronized(bonForumStore) {
inXML = “<?xml version=\”1.0\” encoding=\”UTF-

8\”?>” + bonForumStore. getBonBufferXML ().getXMLTrees();
}

}
}
String param1 = (String)pageContext.getSession(

).getAttribute(“param1”);
if(param1 == null || param1.trim().length() < 1) {

param1 = “ “;
}
if(type.equals(“Xalan-Java 1”)) {

try {
synchronized(bonForumStore) {

Xalan1Transformer transformer = new
Xalan1Transformer();

if(outDoc.equals(“print”)) {
bodyContent.println(

transformer.transform(inXML, inXSL, outDoc, param1));
}
else if(outDoc.equals(“printNormalized”)) {

15 1089-9 XC 6/26/01 7:40 AM Page 622

623C.26 Filename: Projects\bonForum\src\de\tarent\forum\TransformTag.java

bodyContent.println(normalize(
transformer.transform(inXML, inXSL, outDoc, param1)));

}
else if(outDoc.equals(“output”)) {

pageContext.setAttribute(“output”,
transformer.transform(inXML, inXSL, outDoc, param1));

}
else if(outDoc.equals(“outputNormalized”))

{
pageContext.setAttribute(“output”,

normalize(transformer.transform(inXML, inXSL, outDoc, param1)));
}
else {

transformer.transform(inXML, inXSL,
outDoc, param1);

}
}

}
catch (Exception ex) {

String mess = “Exception in TransformTag,
Xalan1Transformer process failed! \n” + ex.getMessage();

log(“err”, mess);
throw new JspException(mess);

}
}
else if (type.equals(“Xalan-Java 2”)) {

try {
synchronized(bonForumStore) {

Xalan2Transformer transformer = new
Xalan2Transformer();

if(outDoc.equals(“print”)) {
bodyContent.println(

transformer.transform(inXML, inXSL, outDoc, param1));
}
else if(outDoc.equals(“printNormalized”))

{
bodyContent.println(normalize(

transformer.transform(inXML, inXSL, outDoc, param1)));
}
else if(outDoc.equals(“output”)) {

pageContext.setAttribute(“output”,
transformer.transform(inXML, inXSL, outDoc, param1));

}
else if(outDoc.equals(“outputNormalized”))

{
pageContext.setAttribute(“output”,

normalize(transformer.transform(inXML, inXSL, outDoc, param1)));
}
else {

transformer.transform(inXML, inXSL,
outDoc, param1);

15 1089-9 XC 6/26/01 7:40 AM Page 623

624 Appendix C Source Code for bonForum Web Application

}
}

}
catch (Exception ex) {

String mess = “Exception in TransformTag,
Xalan2Transformer process failed! \n” + ex.getMessage();

log(“err”, mess);
throw new JspException(mess);

}
}
else {

log(“err”, “Unsupported XSLT transformer type arg in
TransformTag!”);

}
}
else {

log(“err”, “Error: null arg(s) in TransformTag!”);
}

}
/** Puts XSLT results out to JSP, and ends processing.
*

* @returns EVAL_BODY_TAG constant that causes tag body to be
evaluated.

* @returns SKIP_BODY constant that causes tag body to NOT be
evaluated (again).

*/
public int doAfterBody() throws JspException {

try {
bodyContent.writeOut(bodyContent.getEnclosingWriter());
return SKIP_BODY;

}
catch (Exception ex) {

String mess = “TransformTag doAfterBody caught Exception!” +
ex.getMessage();

log(“err”, mess);
throw new JspException(mess);

}
}
/* Code below here is based on Apache Software Foundation samples.
*/

/** Normalizes the given string, replacing chars with entities.
* (less than, greater than, ampersand, double quote, return and linefeed).
* NOTE: replaces null string with empty string.
*
* @param s String
* @return normalized string (not null)
*/
protected String normalize(String s) {

StringBuffer str = new StringBuffer();
str.append(“”);
int len = (s != null) ? s.length() : 0;

15 1089-9 XC 6/26/01 7:40 AM Page 624

625C.27 Filename: Projects\bonForum\src\de\tarent\forum\Xalan1Transformer.java

for (int i = 0; i < len; i++) {
char ch = s.charAt(i);
switch (ch) {

case ‘<’: {
str.append(“<”);
break;

}
case ‘>’: {

str.append(“>”);
break;

}
case ‘&’: {

str.append(“&”);
break;

}
case ‘“‘: {

str.append(“"”);
break;

}
case ‘\r’:
case ‘\n’: {

str.append(“&#”);
str.append(Integer.toString(ch));
str.append(‘;’);
break;

}
default: {

str.append(ch);
}

}
}
return str.toString();

}
}

C.27 Filename: Projects\bonForum\src\de\
tarent\forum\Xalan1Transformer.java

/*
* Note: This class is based on example source code
* provided with Apache Xalan-Java 1. The license for that source
* code is either below (if this a file) or elsewhere in the

15 1089-9 XC 6/26/01 7:40 AM Page 625

626 Appendix C Source Code for bonForum Web Application

* book (if this is printed in one).
*/

package de.tarent.forum;
/*<Imports>*/
import java.text.*;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import org.w3c.dom.*;
import org.xml.sax.*;
import org.apache.xerces.dom.*;
import org.apache.xerces.parsers.*;
import org.apache.xalan.xslt.*;
/*</Imports>*/
/** Xalan1Transformer is a class for XSLT processing using Xalan-Java 1.
*
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class Xalan1Transformer {

/** XSLT of inXML to outDoc using inXSL stylesheet, with Xalan-Java 1.
*
* @param inXML String: URL, or if begins as "<?xml", is XML

in a string.
* @param inXSL String: URL, or XML string that contains

"<xsl:stylesheet".
* @param outDoc String: "print", "printNormalized",
* "output", "outputNormalized", or URL
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public String transform(String inXML, String inXSL, String outDoc, String

param1)
throws org.xml.sax.SAXException, Exception {

XSLTProcessor processor = null;
XSLTInputSource inputXML = null;
XSLTInputSource inputXSL = null;
XSLTResultTarget outputDoc = null;
StringWriter stringWriter = null;
try {

processor =
org.apache.xalan.xslt.XSLTProcessorFactory.getProcessor();

}
catch (org.xml.sax.SAXException ex) {

System.err.println(“SAXException in Xalan1Transformer, cannot
create processor!”);

throw ex;

15 1089-9 XC 6/26/01 7:40 AM Page 626

627C.27 Filename: Projects\bonForum\src\de\tarent\forum\Xalan1Transformer.java

}
try {

// Set a param named “param1”, that the stylesheet can obtain.
processor.setStylesheetParam(“param1”,

processor.createXString(param1));
}
catch (Exception ex) {

System.err.println(“SAXException in Xalan1Transformer, cannot
set param1!”);

throw ex;
}
try {

if(inXML.indexOf(“<?xml”) == 0) {
inputXML = new XSLTInputSource(new StringReader(inXML));
//System.out.println(“StringReader to inputXML”);

}
else {

inputXML = new XSLTInputSource(inXML);
}
if(inXSL.indexOf(“<?xml”) == 0) {

if(inXSL.indexOf(“<xsl:stylesheet”) > -1) {
inputXSL = new XSLTInputSource(new

StringReader(inXSL));
}

}
else {

inputXSL = new XSLTInputSource(inXSL);
}
if(outDoc.indexOf(“output”) == 0 || outDoc.indexOf(“print”) ==

0) {
stringWriter = new StringWriter();
outputDoc = new XSLTResultTarget(stringWriter);

}
else {

outputDoc = new XSLTResultTarget(outDoc);
}

}
catch (Exception ex) {

System.err.println(“Exception in Xalan1Transformer, processor
prep failed!”);

throw ex;
}
try {

//processor.reset();
processor.process(inputXML, inputXSL, outputDoc);
if(outDoc.indexOf(“output”) == 0 || outDoc.indexOf(“print”) ==

0) {
return outputDoc.getCharacterStream().toString();

}
else {

return null;

15 1089-9 XC 6/26/01 7:40 AM Page 627

628 Appendix C Source Code for bonForum Web Application

}
}
catch (org.xml.sax.SAXException ex) {

System.err.println(“SAXException in Xalan1Transformer,
processing failed!”);

throw ex;
}

}
}

C.28 Filename: Projects\bonForum\src\de\
tarent\forum\Xalan2Transformer.java

/*
* Note: This class is based on example source code
* provided with Apache Xalan-Java 2. The license for that source
* code is either below (if this a file) or elsewhere in the
* book (if this is printed in one).
*/

package de.tarent.forum;
/*<Imports>*/
import java.text.*;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
// Imported TraX classes
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerConfigurationException;
/*</Imports>*/
/** Xalan1Transformer is class for XSLT processing using Xalan-Java 2.
*
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public class Xalan2Transformer {

/** XSLT of inXML to outDoc using inXSL stylesheet, with Xalan-Java 2.
*
* @param inXML String: URL, or if begins as "<?xml", is XML

in a string.
* @param inXSL String: URL, or XML string that contains

"<xsl:stylesheet".
* @param outDoc String: "print", "printNormalized",

15 1089-9 XC 6/26/01 7:40 AM Page 628

629C.28 Filename: Projects\bonForum\src\de\tarent\forum\Xalan2Transformer.java

* "output", "outputNormalized", or URL
* <p>For further information visit the open source
* BonForum Project on SourceForge
* @author Westy Rockwell
*/
public String transform(String inXML, String inXSL, String outDoc, String

param1)
throws TransformerException,

TransformerConfigurationException,
FileNotFoundException,
IOException {

String output = “”;
try {

TransformerFactory factory = TransformerFactory.newInstance();
Transformer transformer = null;
if(inXSL.indexOf(“<?xml”) == 0) {

if(inXSL.indexOf(“<xsl:stylesheet”) > -1) {
transformer = factory.newTransformer(

new
StreamSource(new StringReader(inXSL)));

transformer.setParameter(“param1”, param1);
}
System.err.println(“ERROR: Xalan2Transformer No stylesheet

for inputXSL, thus no transformer!”);
}
else {

transformer = factory.newTransformer(new
StreamSource(inXSL));

transformer.setParameter(“param1”, param1);
}
StreamSource inputXML = null;
if(inXML.indexOf(“<?xml”) == 0) {

inputXML = new StreamSource(new StringReader(inXML));
}
else {

inputXML = new StreamSource(inXML);
}
StreamResult outputDoc = null;
if(outDoc.indexOf(“output”) == 0 || outDoc.indexOf(“print”) ==

0) {
outputDoc = new StreamResult(new StringWriter());

}
else {

outputDoc = new StreamResult(new
FileOutputStream(outDoc));

}
transformer.transform(inputXML, outputDoc);
if(outDoc.indexOf(“output”) == 0 || outDoc.indexOf(“print”) ==

0) {
return outputDoc.getWriter().toString();

}

15 1089-9 XC 6/26/01 7:40 AM Page 629

630 Appendix C Source Code for bonForum Web Application

else {
return null;

}
}
catch (TransformerConfigurationException ex) {

System.err.println(“Xalan2Transformer transform caught
TransformerConfigurationException”);

throw ex;
}
catch (TransformerException ex) {

System.err.println(“Xalan2Transformer transform caught
TransformerException”);

throw ex;
}
catch (FileNotFoundException ex) {

System.err.println(“Xalan2Transformer transform caught
FileNotFoundException”);

throw ex;
}
catch (IOException ex) {

System.err.println(“Xalan2Transformer transform caught
IOException”);

throw ex;
}

}
}

C.29 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\actor_leaves_frameset_
robot.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>
<%
String target = (String)request.getAttribute(“target”);

15 1089-9 XC 6/26/01 7:40 AM Page 630

631C.30 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\bonForum.jsp

String document = (String)request.getAttribute(“document”);
String refresh = (String)request.getAttribute(“refresh”);
String increment = (String)request.getAttribute(“increment”);
String limit = (String)request.getAttribute(“limit”);
String message = (String)request.getAttribute(“message”);
%>
<%— message “debug” shows some info —%>
<jsp:plugin type=”applet” code=”BonForumRobot.class”

codebase=”/bonForum/jsp/forum/applet”
jreversion=”1.3.0” width=”0” height=”0” >

<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
<jsp:param name=”document” value=”<%=document%>”/>
<jsp:param name=”refresh” value=”<%=refresh%>”/>
<jsp:param name=”increment” value=”<%=increment%>”/>
<jsp:param name=”limit” value=”<%=limit%>”/>
<jsp:param name=”message” value=”<%=message%>”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED
not supported by browser.
</jsp:fallback>

</jsp:plugin>
</body>

</html>

C.30 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\bonForum.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page import=”java.io.*” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>
<p>
Here are some links related to this bonForum.

15 1089-9 XC 6/26/01 7:40 AM Page 631

632 Appendix C Source Code for bonForum Web Application

Other bonForum sites can be listed here too!
</p>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<%—
Here we list links as created by the XSLT
Output can create a table, a list, or whatever is possible!
—%>
<p>
<bon:transform type=”xalanVersion”
inXML=

“bonForumXML”
inXSL=

“..\\webapps\\bonForum\\mldocs\\bonForumLinks.xsl”
outDoc=

“output”>
<%=output%>

</bon:transform>
</p>
<%—
Note that we here use actorStatus, actionStatus and
thingStatus instead of bonCommand to control the next
state of the web application. That is just to test this
alternate destination control mechanism.
—%>
<p>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”actorStatus”

value=”visitor”></input>
<input type=”hidden” name=”actionStatus”

value=”executes”></input>
<input type=”hidden” name=”thingStatus”

value=”choice”></input>
<input type=”submit” value=”Back to last bonForum!”

name=”submit”></input>
</p>
</form>
<table border=”0” rows=”1” width=”100%”>
<tr>
<td align=”center”>

<img border=”0” src=”/bonForum/images/bonForumLogo.gif”
alt=”BonForum open source license” width=”50” height=”50”>

</td>
</tr>
</table>

<bon:outputDebugInfo/>

15 1089-9 XC 6/26/01 7:40 AM Page 632

633C.31 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\forum_entry.jsp

<h5>

<%@ include file=”../../mldocs/bonForumBottom.html” %>
</body>

</html>

C.31 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\forum_entry.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page import=”java.io.*” %>
<%@ page errorPage=”forum_error.jsp” %>
<%
String actorNickname = “”;
try {

actorNickname =
(String)session.getAttribute(“actorNickname”);

if(actorNickname == null) {
actorNickname = “”;

}
}
catch(java.lang.NullPointerException ex) {

actorNickname = “”;
}
%>
<%
String actorNicknameNotAvailable = “”;
try {

actorNicknameNotAvailable =
(String)session.getAttribute(“actorNicknameNotAvailable”);

if(!actorNicknameNotAvailable.equals(“”)) {
actorNicknameNotAvailable =
“Please try another nickname. “ +
actorNicknameNotAvailable +
“ is not available! “ ;

}
if(actorNicknameNotAvailable == null) {

actorNicknameNotAvailable = “”;
}

}
catch(java.lang.NullPointerException ex) {

actorNicknameNotAvailable = “”;
}
%>
<html>

<head>
<meta http-equiv=”Content-Type”

15 1089-9 XC 6/26/01 7:40 AM Page 633

634 Appendix C Source Code for bonForum Web Application

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>
<form name=”forum_entry” method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<table border=0 cellspacing=0 cellpadding=0

rows=4 cols=1 width=100% bgcolor=#00FFFF>
<tr>
<label for=”actorNickname”>Nickname: </label>
<input type=”text” name=”actorNickname”

value=<%=actorNickname%> ></input>
</tr>
<tr>
<label for=”actorAge”>Your age: </label>
<input type=”text” name=”actorAge”></input>
</tr>

<%—
<tr>
<label for=”actorAgeGroup”>How old are you?

 </label>
<input type=”radio” name=”actorAgeGroup”

value=”0-12”>0 to 12 </input>
<input type=”radio” name=”actorAgeGroup”

value=”13-17”>13 to 17 </input>
<input type=”radio” name=”actorAgeGroup”

value=”18-129+”>21 to 129</input>
</tr>

—%>
<tr>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”visitor_executes_choice”></input>
<input type=”submit” value=”continue” name=”submit”></input>
</tr>
<tr>

<%= actorNicknameNotAvailable %>

</tr>
</table>
</form>

15 1089-9 XC 6/26/01 7:40 AM Page 634

635C.32 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\forum_error.jsp

<bon:outputDebugInfo/>

</h5>

<%@ include file=”../../mldocs/bonForumSplash.html” %>
</body>

</html>

C.32 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\forum_error.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page isErrorPage=”true” %>
<%@ page import=”javax.servlet.http.*” %>
<html>
<head>

<meta http-equiv=”Content-Type”
content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”lime”>

<h3> Error! Please enter bonForum again!
</h3>
<h2>
<%

String errorMessage1 = “Error1”;
String errorMessage2 = “Error2”;
try {

%>
<jsp:useBean id=”bonForumUtils”

class=”de.tarent.forum.BonForumUtils”
scope=”application”/>

<p>
Message: <%=bonForumUtils.normalize(exception.getMessage())%>
</p>
<%

}
catch(java.lang.NullPointerException ex) {

String requestedSessionId = request.getRequestedSessionId();
if(request.isRequestedSessionIdValid()) {

errorMessage1 = requestedSessionId + “ is valid session.”;
}
else {

15 1089-9 XC 6/26/01 7:40 AM Page 635

636 Appendix C Source Code for bonForum Web Application

errorMessage1 = requestedSessionId + “ is NOT valid
session.”;

}
HttpSession maybeSession = request.getSession(false);
if(maybeSession == null) {

errorMessage2 = “Session is null.”;
}
else {

errorMessage2 = “Session not null.”;
}

%>
<%= errorMessage1 %>

<%= errorMessage2 %>

<%
}

%>
</h2>
<h3>
Try re-entering bonForum. If the error
keeps happening, you can copy this browser page
and visit the BonForum Project
website on SourceForge:

www.bonforum.org
. Check the bug tracker there. You may find
some info there, or if this problem is a new one,
you can report it there, and paste this page into
your bug report!
</h3>
<h2>

bonForum re-login

</h2>
<form name=”forum_error” method=”POST”
action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”actorReturning”

value=”no”></input>
<input type=”hidden” name=”bonCommand”

value=”forum_error”></input>
<p>
<input type=”submit” value=”bonForum re-entry”

name=”submit”></input>
</p>
<label for=”debug”>debug</label>
<input type=”checkbox” id=”debug”

name=”output_debug_info” value=”yes”></input>
</form>

<%
try {

exception.printStackTrace();

15 1089-9 XC 6/26/01 7:40 AM Page 636

637C.33 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\forum_error_robot.jsp

}
catch(Throwable ex) {
}
%>

<bon:outputDebugInfo force=”yes”/>

</body>
</html>

C.33 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\forum_error_robot.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>
<%
String target = (String)session.getAttribute(“target”);
String document = (String)session.getAttribute(“document”);
String refresh = (String)session.getAttribute(“refresh”);
String increment = (String)session.getAttribute(“increment”);
String limit = (String)session.getAttribute(“limit”);
String message = (String)session.getAttribute(“message”);
%>
<%— using message “debug” shows some info —%>
<jsp:plugin type=”applet” code=”BonForumRobot.class”

codebase=”/bonForum/jsp/forum/applet”
jreversion=”1.3.0” width=”0” height=”0” >

<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
<jsp:param name=”document” value=”<%=document%>”/>
<jsp:param name=”refresh” value=”<%=refresh%>”/>
<jsp:param name=”increment” value=”<%=increment%>”/>
<jsp:param name=”limit” value=”<%=limit%>”/>
<jsp:param name=”message” value=”<%=message%>”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED

15 1089-9 XC 6/26/01 7:40 AM Page 637

638 Appendix C Source Code for bonForum Web Application

not supported by browser.
</jsp:fallback>

</jsp:plugin>
</body>

</html>

C.33 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\forum_login.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ page import=”java.io.*” %>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>
<head>

<meta http-equiv=”Content-Type”
content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<table border=”0” rows=”3” width=”100%”>
<tr>
<td align=”center”>

<img border=”0” src=”/bonForum/images/bonForumLogo.gif”
alt=”View BonForum License”>

</td>
</tr>
<tr>
<td align=”center”>
<form name=”forum_login_enter” method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<table border=0 cellspacing=0 cellpadding=0

rows=3 cols=1 width=100% bgcolor=#00FFFF>
<tr>
<td align=”center”>
<input type=”hidden” name=”actorReturning”

value=”no”></input>
<input type=”hidden” name=”bonCommand”

value=”forum_entry”></input>
<input type=”submit” value=”Enter bonForum”

15 1089-9 XC 6/26/01 7:40 AM Page 638

639C.33 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\forum_login.jsp

name=”submit”></input>
</td>
</tr>
</table>

</form>
</td>
</tr>
<tr>
<td align=”left”>
<form name=”forum_login_system” method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<table rows=1 cols=1 width=100% bgcolor=#00FFFF>
<tr>
<td align=”center”>

<input type=”hidden” name=”actorReturning”
value=”no”></input>

<input type=”hidden” name=”bonCommand”
value=”system_executes_command”></input>

<p>
<input type=”submit” value=”System Commands”

name=”submit”></input></p>
</td>
</tr>
</table>

</form>
</td>
</tr>
</table>

<bon:outputDebugInfo/>
<%—
<bon:outputDebugInfo force=”yes”/>
—%>

<%@ include file=”../../mldocs/bonForumSplash.html” %>
</body>
</html>

C.34 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\forum_login_robot.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>

15 1089-9 XC 6/26/01 7:40 AM Page 639

640 Appendix C Source Code for bonForum Web Application

<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>
<%
String target = (String)session.getAttribute(“target”);
String document = (String)session.getAttribute(“document”);
String refresh = (String)session.getAttribute(“refresh”);
String increment = (String)session.getAttribute(“increment”);
String limit = (String)session.getAttribute(“limit”);
String message = (String)session.getAttribute(“message”);
%>
<%— using message “debug” shows some info —%>
<jsp:plugin type=”applet” code=”BonForumRobot.class”

codebase=”/bonForum/jsp/forum/applet”
jreversion=”1.3.0” width=”0” height=”0” >

<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
<jsp:param name=”document” value=”<%=document%>”/>
<jsp:param name=”refresh” value=”<%=refresh%>”/>
<jsp:param name=”increment” value=”<%=increment%>”/>
<jsp:param name=”limit” value=”<%=limit%>”/>
<jsp:param name=”message” value=”<%=message%>”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED

not supported by browser.
</jsp:fallback>

</jsp:plugin>
</body>

</html>

C.35 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\quest_executes_chat.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>

15 1089-9 XC 6/26/01 7:40 AM Page 640

641C.36 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\guest_executes_chat_console.jsp

<%@ page errorPage=”forum_error.jsp” %>
<%
session.setAttribute(“target”, “display”);
session.setAttribute(“document”, request.getScheme() + “://” +

request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/guest_executes_chat_frame.jsp”);

session.setAttribute(“refresh”, “true”);
session.setAttribute(“increment”, “5000”);
session.setAttribute(“limit”, “5000”);
session.setAttribute(“message”, “refreshing...”);
%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<noframes>/bonForum/noframe/html.index</noframes>
<frameset rows=”55%, 45%”>
<frame src=”/bonForum/jsp/forum/guest_executes_chat_frame.jsp.tfe”

name=”display”/>
<frameset cols=”77%, 23%”>
<frame src=”/bonForum/jsp/forum/guest_executes_chat_controls.jsp.tfe”

name=”controls”/>
<frame src=”/bonForum/jsp/forum/guest_executes_chat_robot.jsp.tfe”

name=”robot”/>
</frameset>
</frameset>
</html>

C.36 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_executes_chat_
console.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

15 1089-9 XC 6/26/01 7:40 AM Page 641

642 Appendix C Source Code for bonForum Web Application

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>
<%— go via robot to leave frameset —%>
<%
request.setAttribute(“target”, “_top”);
request.setAttribute(“document”, request.getScheme() + “://” +

request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/guest_executes_command.jsp”);

request.setAttribute(“refresh”, “true”);
request.setAttribute(“increment”, “100”);
request.setAttribute(“limit”, “1”);
request.setAttribute(“message”, “guest command console loading!”);

%>
<jsp:forward page=”actor_leaves_frameset_robot.jsp.tfe”/>

</body>

</html>

C.37 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_executes_chat_
controls.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%— greet guest by nickname: —%>
<%

String actorNickname =
((String)session.getAttribute(“actorNickname”));

if(actorNickname == null ||
actorNickname.trim().length() < 1) {
actorNickname = “<unknown visitor>”;

}
String chatWelcomeMessage = “” +

actorNickname + “! Please make a choice:”;
%>
<%—
Here we indicate to user if first or latest
messages will be displayed. Note that previous
and next are one-shot actions so are left alone
—%>

15 1089-9 XC 6/26/01 7:40 AM Page 642

643C.37 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\guest_executes_chat_controls.jsp

<%
String chatNavigatorFirst = “first”;
String chatNavigatorPrevious = “previous”;
String chatNavigatorNext = “next”;
String chatNavigatorLast = “latest”;
String chatMessagesNavigator = “”;
try {

chatMessagesNavigator =
(String)session.getAttribute(“chatMessagesNavigator”);

if(!(chatMessagesNavigator.equals(“first”)) &&
!(chatMessagesNavigator.equals(“previous”)) &&
!(chatMessagesNavigator.equals(“next”))) {
chatMessagesNavigator = “last”;

}
if(chatMessagesNavigator.equals(“first”)) {

chatNavigatorFirst = “FIRST”;
}
else if(chatMessagesNavigator.equals(“previous”)) {

chatNavigatorPrevious = “previous”;
}
else if(chatMessagesNavigator.equals(“next”)) {

chatNavigatorNext = “next”;
}
else {

chatNavigatorLast = “LATEST”;
}

}
catch (Exception ee) {

chatMessagesNavigator = “last”;
}

%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>

<table border=0 cellspacing=0 cellpadding=0
rows=4 cols=1 width=100% bgcolor=#00FFFF>

<tr>
<%= chatWelcomeMessage %>
</tr>
<form method=”POST” action=”/bonForum/servlet/BonForumEngine”>

15 1089-9 XC 6/26/01 7:40 AM Page 643

644 Appendix C Source Code for bonForum Web Application

<tr width=100%>
<table border=0 cellspacing=0 cellpadding=0

rows=1 cols=1 width=100% bgcolor=#00FFFF>
<tr>
<label for=”chatMessage”>chat message</label>

<input type=”text” name=”chatMessage” size=50></input>

</tr>
</table>

</tr>
<tr width=100%>

<table border=0 cellspacing=0 cellpadding=0
rows=4 cols=1 width=100% bgcolor=#00FFFF>

<tr>
<label for=”bonCommand”>send this message</label>
<input type=”radio” name=”bonCommand”

value=”guest_executes_chat_controls”
CHECKED></input>

</tr>
<tr>
<label for=”bonCommand”>exit this chat</label>
<input type=”radio” name=”bonCommand”

value=”guest_executes_chat_ready”></input>
</tr>
<tr>
<label for=”bonCommand”>execute guest command</label>
<input type=”radio” name=”bonCommand”

value=”guest_executes_chat_console”></input>
</tr>
<tr>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”submit” value=”Do it!”

name=”submit”></input>
</tr>
</table>

</tr>
</form>
<tr width=10%>

<table border=0 cellspacing=0 cellpadding=0
rows=1 cols=4 width=10% bgcolor=#00FFFF>

<%— here we display navigator buttons to
page through chat messages —%>

<label for=”chatMessagesNavigator”>page messages</label>
<td width=10%>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator”

value=”first”></input>
<input type=”hidden” name=”actorReturning”

15 1089-9 XC 6/26/01 7:40 AM Page 644

645C.37 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\guest_executes_chat_controls.jsp

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”guest_executes_chat_controls”></input>
<input type=”submit” value=<%=chatNavigatorFirst%>

name=”submit”></input>
</form>
</td>
<td width=10%>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator”

value=”previous”></input>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”guest_executes_chat_controls”></input>
<input type=”submit”

value=<%=chatNavigatorPrevious%>
name=”submit”></input>

</form>
</td>
<td width=10%>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator”

value=”next”></input>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”guest_executes_chat_controls”></input>
<input type=”submit”

value=<%=chatNavigatorNext%>
name=”submit”></input>

</form>
</td>
<td width=10%>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator”

value=”last”></input>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”guest_executes_chat_controls”></input>
<input type=”submit”

value=<%=chatNavigatorLast%> name=”submit”></input>
</form>
</td>
</table>

</tr>
</table>

15 1089-9 XC 6/26/01 7:40 AM Page 645

646 Appendix C Source Code for bonForum Web Application

<bon:outputDebugInfo/>

</h5>

<%@ include file=”../../mldocs/bonForumBottom.html” %>
</body>

</html>

C.38 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_executes_chat_
frame.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%— here we get the chat subject and

topic settings for later display —%>
<%
String chatSubject = (String)session.getAttribute(“chatSubject”);
String chatSubjectMessage = “”;
if(chatSubject != null && chatSubject.trim().length() > 0) {

chatSubjectMessage = “category: “ + chatSubject;
}
String chatTopic = (String)session.getAttribute(“chatTopic”);
String chatTopicMessage = “”;
if(chatTopic != null && chatTopic.trim().length() > 0) {

chatTopicMessage = “topic: “ + chatTopic;
}
%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>
<table border=0 cellspacing=0 cellpadding=0

rows=4 cols=1 width=100% bgcolor=#00FFFF>
<tr>

15 1089-9 XC 6/26/01 7:40 AM Page 646

647C.38 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\guest_executes_chat_frame.jsp

<%=chatSubjectMessage%>
</tr>
<tr>
<%=chatTopicMessage%>
</tr>
<%— here we get the number of lines per page

for the chat messages display —%>
<%
String chatMessagesPageSize =

(String)session.getAttribute(“chatMessagesPageSize”);
int size = 10;
try {

size = Integer.parseInt(chatMessagesPageSize);
}
catch (NumberFormatException nFE) {

chatMessagesPageSize = “10”;
}
if(size > 99) {

chatMessagesPageSize = “99”;
}
else if(size < 1) {

chatMessagesPageSize = “1”;
}
session.setAttribute(“chatMessagesPageSize”,

chatMessagesPageSize);
%>
<%— Here we list the messages in this chat —%>
<tr>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<select size=”<%= chatMessagesPageSize %>”

name=”chatMessages”>

<bon:outputChatMessages command=”bonForumXML”>

<option><%= output %></option>
</bon:outputChatMessages>

</select>
</form>
</tr>
<%— here we get the page number and

number of pages for later display —%>
<%

(String)session.getAttribute(“chatPageNumber”);
String chatNumberOfPages =

(String)session.getAttribute(“chatNumberOfPages”);
%>
<tr>
page: <%= chatPageNumber %>

 of <%= chatNumberOfPages %>
</tr>

15 1089-9 XC 6/26/01 7:40 AM Page 647

648 Appendix C Source Code for bonForum Web Application

</table>
<%— for debugging, we can display variables —%>
<%— chatMessagesPageSize:<%= chatMessagesPageSize %>

size:<%= size %>
—%>

<bon:outputDebugInfo/>

</h5>

</body>

</html>

C.39 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_executes_chat_
ready.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>
<%— go via robot to leave frameset —%>
<%
request.setAttribute(“target”, “_top”);
request.setAttribute(“document”,

request.getScheme() + “://” +
request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/guest_exits_chat.jsp”);

request.setAttribute(“refresh”, “true”);
request.setAttribute(“increment”, “100”);
request.setAttribute(“limit”, “1”);
request.setAttribute(“message”, “guest exiting chat!”);
%>
<jsp:forward page=”actor_leaves_frameset_robot.jsp.tfe”/>
</body>

</html>

15 1089-9 XC 6/26/01 7:40 AM Page 648

649C.40 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\guest_executes_chat_robot.jsp

C.40 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_executes_chat_
robot.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%
String target = (String)session.getAttribute(“target”);
String document = (String)session.getAttribute(“document”);
String refresh = (String)session.getAttribute(“refresh”);
String increment = (String)session.getAttribute(“increment”);
String limit = (String)session.getAttribute(“limit”);
String message = (String)session.getAttribute(“message”);
%>
<%— message “debug” shows some info —%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<table>
<tr>
<img border=”0” src=”/bonForum/images/bonForumLogo.gif”

alt=”bonForum” width=”112” height=”112”>
</tr>
<tr>
<jsp:plugin type=”applet” code=”BonForumRobot.class”

codebase=”/bonForum/jsp/forum/applet”
jreversion=”1.3.0” width=”400” height=”160” >

<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
<jsp:param name=”document” value=”<%=document%>”/>
<jsp:param name=”refresh” value=”<%=refresh%>”/>
<jsp:param name=”increment” value=”<%=increment%>”/>
<jsp:param name=”limit” value=”<%=limit%>”/>
<jsp:param name=”message” value=”<%=message%>”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED

not supported by browser.
</jsp:fallback>

</jsp:plugin>

15 1089-9 XC 6/26/01 7:40 AM Page 649

650 Appendix C Source Code for bonForum Web Application

</tr>
</table>

<bon:outputDebugInfo/>

</body>

</html>

C.41 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_executes_
command.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%
session.setAttribute(“target”, “display”);
session.setAttribute(“document”, request.getScheme() + “://” +

request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/guest_executes_command_frame.jsp”);

session.setAttribute(“refresh”, “false”);
session.setAttribute(“increment”, “15000”);
session.setAttribute(“limit”, “5000”);
session.setAttribute(“message”, “hello”);
%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<noframes>/bonForum/noframe/html.index</noframes>
<frameset rows=”59%, 41%”>
<frame src=”/bonForum/jsp/forum/guest_executes_command_frame.jsp.tfe”

name=”display”/>
<frameset cols=”77%, 23%”>
<frame src=”/bonForum/jsp/forum/guest_executes_command_controls.jsp.tfe”

name=”controls”/>
<frame src=”/bonForum/jsp/forum/guest_executes_command_robot.jsp.tfe”

name=”robot”/>
</frameset>

15 1089-9 XC 6/26/01 7:40 AM Page 650

651C.42 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\guest_executes_command_controls.jsp

</frameset>
</html>

C.42 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_executes_
command_controls.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%— here we get the number of lines per page

for the chat messages display —%>
<%
String chatMessagesPageSize =

(String)session.getAttribute(“chatMessagesPageSize”);
int size = 10;
try {

size = Integer.parseInt(chatMessagesPageSize);
}
catch (NumberFormatException nFE) {

chatMessagesPageSize = “10”;
}
if(size > 99) {

chatMessagesPageSize = “99”;
}
else if(size < 1) {

chatMessagesPageSize = “1”;
}
session.setAttribute(“chatMessagesPageSize”, chatMessagesPageSize);
%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>
<%— later, add commands and options for guests here! —%>

<table border=0 cellspacing=0 cellpadding=0
rows=2 cols=1 width=100% bgcolor=#00FFFF>

15 1089-9 XC 6/26/01 7:40 AM Page 651

652 Appendix C Source Code for bonForum Web Application

<tr>
<table border=0 cellspacing=0 cellpadding=0

rows=1 cols=1 width=”100%” bgcolor=#00FFFF>
<tr>
<p>
Guest commands!
</p>
</tr>
</table>

</tr>
<tr>

<table border=0 cellspacing=0 cellpadding=0
rows=4 cols=1 width=”100%” bgcolor=#00FFFF>

<form method=”POST”
action=”/bonForum/servlet/BonForumEngine”>

<tr>
<label for=”bonCommand”>exit guest commands</label>
<input type=”radio” name=”bonCommand”

value=”guest_executes_command_ready” CHECKED></input>
</tr>
<tr>
<input type=”submit” value=”Do it!” name=”submit”></input>
</tr>
</form>
<tr>
</tr>
<tr>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<label for=”chatMessagesPageSize”>show </label>
<input type=”text” name=”chatMessagesPageSize”

maxlength=”2” size=”2”
value=”<%= chatMessagesPageSize %>”></input>

<input type=”hidden” name=”bonCommand”
value=”guest_executes_command_controls”></input>

<label for=”submit”>messages per page</label>
<input type=”submit” value=”set” name=”submit”></input>
</form>
</tr>
</table>

</tr>
</table>

<bon:outputDebugInfo/>

</h5>

<%@ include file=”../../mldocs/bonForumBottom.html” %>
</body>

15 1089-9 XC 6/26/01 7:40 AM Page 652

653C.43 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\guest_executes_command_frame.jsp

</html>

C.43 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_executes_
command_frame.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>
<%— later add more according to

guest commands developed later —%>
<p>Check for new open source releases of bonForum!</p>
<p>Mailing lists, discussion forums, bug reports,

project news and more,
are all hosted by SourceForge.</p>

<p>
www.bonforum.org

</p>

<bon:outputDebugInfo/>

</h5>

</body>

</html>

C.44 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_executes_
command_ready.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”

15 1089-9 XC 6/26/01 7:40 AM Page 653

654 Appendix C Source Code for bonForum Web Application

prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>
<%— go via robot to leave frameset —%>
<%
request.setAttribute(“target”, “_top”);
request.setAttribute(“document”,

request.getScheme() + “://” +
request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/guest_exits_command.jsp”);

request.setAttribute(“refresh”, “true”);
request.setAttribute(“increment”, “100”);
request.setAttribute(“limit”, “1”);
request.setAttribute(“message”,

“Guest exiting command mode!”);
%>
<jsp:forward page=”actor_leaves_frameset_robot.jsp.tfe”/>
</body>

</html>

C.45 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_executes_
command_robot.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%
String target = (String)session.getAttribute(“target”);
String document = (String)session.getAttribute(“document”);
String refresh = (String)session.getAttribute(“refresh”);
String increment = (String)session.getAttribute(“increment”);
String limit = (String)session.getAttribute(“limit”);
String message = (String)session.getAttribute(“message”);
%>
<%— message “debug” shows some info —%>

15 1089-9 XC 6/26/01 7:40 AM Page 654

655C.45 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\guest_executes_command_robot.jsp

<html>
<head>

<meta http-equiv=”Content-Type”
content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<table>
<tr>
<img border=”0” src=”/bonForum/images/bonForumLogo.gif”

alt=”bonForum” width=”112” height=”112”>
</tr>
<tr>
<jsp:plugin type=”applet” code=”BonForumRobot.class”

codebase=”/bonForum/jsp/forum/applet”
jreversion=”1.3.0” width=”400” height=”160” >

<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
<jsp:param name=”document” value=”<%=document%>”/>
<jsp:param name=”refresh” value=”<%=refresh%>”/>
<jsp:param name=”increment” value=”<%=increment%>”/>
<jsp:param name=”limit” value=”<%=limit%>”/>
<jsp:param name=”message” value=”<%=message%>”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED
not supported by browser.

</jsp:fallback>
</jsp:plugin>
</tr>
</table>

<bon:outputDebugInfo/>

</body>

</html>

C.46 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_exits_chat.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>

15 1089-9 XC 6/26/01 7:40 AM Page 655

656 Appendix C Source Code for bonForum Web Application

<%— here we can force actor
to select from available chats

—%>
<%—

session.setAttribute(“chatItem”, “NONE”);
—%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body>
<jsp:forward page=”visitor_executes_choice.jsp.tfe”/>
</body>

</html>

C.47 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\guest_exits_command.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body>
<jsp:forward page=”guest_executes_chat.jsp.tfe”/>
</body>

</html>

C.48 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_decreases_rating.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>

15 1089-9 XC 6/26/01 7:40 AM Page 656

657C.49 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\host_executes_chat.jsp

<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<jsp:useBean id=”bonForumStore”

class=”de.tarent.forum.BonForumStore”
scope=”application”/>

<html>
<head>

<meta http-equiv=”Content-Type”
content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body>
<%—
Here decrement the rating of the chosen chatGuest
Later: will add code to remove guest from chat
if rating is below some threshold, nominally 0
—%>
<%
bonForumStore.changeChatActorRating(“-1”, session);
%>
<jsp:forward page=”host_executes_command_controls.jsp.tfe”/>
</body>

</html>

C.49 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_executes_chat.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%
session.setAttribute(“target”, “display”);
session.setAttribute(“document”, request.getScheme() + “://” +

request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/host_executes_chat_frame.jsp”);

session.setAttribute(“refresh”, “true”);
session.setAttribute(“increment”, “5000”);
session.setAttribute(“limit”, “5000”);
session.setAttribute(“message”, “refreshing...”);
%>

<html>
<head>

15 1089-9 XC 6/26/01 7:40 AM Page 657

658 Appendix C Source Code for bonForum Web Application

<meta http-equiv=”Content-Type”
content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<noframes>/bonForum/noframe/html.index</noframes>
<frameset rows=”55%, 45%”>
<frame src=”/bonForum/jsp/forum/host_executes_chat_frame.jsp.tfe”

name=”display”/>
<frameset cols=”77%, 23%”>
<frame src=”/bonForum/jsp/forum/host_executes_chat_controls.jsp.tfe”

name=”controls”/>
<frame src=”/bonForum/jsp/forum/host_executes_chat_robot.jsp.tfe”

name=”robot”/>
<%—TESTING TEMP TEMP
<frame src=”/bonForum/jsp/forum/actor_refreshes_frame_robot.jsp.tfe”

name=”robot”/>
—%>
</frameset>
</frameset>
</html>

C.50 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_executes_chat_
console.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>
<%— go via robot to leave frameset —%>
<%
request.setAttribute(“target”, “_top”);
request.setAttribute(“document”,

15 1089-9 XC 6/26/01 7:40 AM Page 658

659C.51 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\host_executes_chat_controls.jsp

request.getScheme() + “://” +
request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/host_executes_command.jsp”);

request.setAttribute(“refresh”, “true”);
request.setAttribute(“increment”, “100”);
request.setAttribute(“limit”, “1”);
request.setAttribute(“message”,

“host command console loading!”);
%>
<jsp:forward page=”actor_leaves_frameset_robot.jsp.tfe”/>

</body>

</html>

C.51 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_executes_chat_
controls.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp.tfe” %>
<%— greet guest by nickname: —%>
<%

String actorNickname =
((String)session.getAttribute(“actorNickname”));

if(actorNickname == null ||
actorNickname.trim().length() < 1) {

actorNickname = “<unknown visitor>”;
}
String chatWelcomeMessage = “” + actorNickname +

“! Please make a choice:”;
%>
<%—
Here we indicate to user if first
or latest messages will be displayed.
Note that previous and next are one-shot
actions so those are left alone.
—%>
<%

String chatNavigatorFirst = “first”;
String chatNavigatorPrevious = “previous”;
String chatNavigatorNext = “next”;
String chatNavigatorLast = “latest”;
String chatMessagesNavigator = “”;
try {

chatMessagesNavigator =

15 1089-9 XC 6/26/01 7:40 AM Page 659

660 Appendix C Source Code for bonForum Web Application

(String)session.getAttribute(
“chatMessagesNavigator”);

if(!(chatMessagesNavigator.equals(“first”)) &&
!(chatMessagesNavigator.equals(“previous”)) &&
!(chatMessagesNavigator.equals(“next”))) {
chatMessagesNavigator = “last”;

}
if(chatMessagesNavigator.equals(“first”)) {

chatNavigatorFirst = “FIRST”;
}
else if(chatMessagesNavigator.equals(“previous”)) {

chatNavigatorPrevious = “previous”;
}
else if(chatMessagesNavigator.equals(“next”)) {

chatNavigatorNext = “next”;
}
else {

chatNavigatorLast = “LATEST”;
}

}
catch (Exception ee) {

chatMessagesNavigator = “last”;
}

%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>

<table border=”0” cellspacing=”0” cellpadding=”0”
rows=”4” cols=”1” width=”100%” bgcolor=”#00FFFF”>

<tr>
<%= chatWelcomeMessage %>
</tr>
<form method=”POST” action=”/bonForum/servlet/BonForumEngine”>
<tr width=100%>

<table border=”0” cellspacing=”0” cellpadding=”0”
rows=”1” cols=”1” width=”100%” bgcolor=”#00FFFF”>

<tr>
<label for=”chatMessage”>chat message</label>

<input type=”text” name=”chatMessage” size=50></input>

15 1089-9 XC 6/26/01 7:40 AM Page 660

661C.51 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\host_executes_chat_controls.jsp

</tr>
</table>

</tr>
<tr width=100%>

<table border=”0” cellspacing=”0” cellpadding=”0”
rows=”4” cols=”1” width=”100%” bgcolor=”#00FFFF”>

<tr>
<label for=”bonCommand”>send this message</label>
<input type=”radio” name=”bonCommand”

value=”host_executes_chat_controls” CHECKED></input>
</tr>
<tr>
<label for=”bonCommand”>exit this chat</label>
<input type=”radio” name=”bonCommand”

value=”host_executes_chat_ready”></input>
</tr>
<tr>
<label for=”bonCommand”>execute host command</label>
<input type=”radio” name=”bonCommand”

value=”host_executes_chat_console”></input>
</tr>
<tr>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”submit” value=”Do it!”

name=”submit”></input>
</tr>
</table>

</tr>
</form>
<tr width=100%>

<table border=”0” cellspacing=”0” cellpadding=”0”
rows=”1” cols=”5” width=”10%” bgcolor=”#00FFFF”>

<%—here we display navigator buttons
to page through chat messages —%>

<label for=”chatMessagesNavigator”>page messages</label>
<td width=10%>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator”

value=”first”></input>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”host_executes_chat_controls”></input>
<input type=”submit” value=<%=chatNavigatorFirst%>

name=”submit”></input>
</form>
</td>
<td width=10%>

15 1089-9 XC 6/26/01 7:40 AM Page 661

662 Appendix C Source Code for bonForum Web Application

<form method=”POST”
action=”/bonForum/servlet/BonForumEngine”>

<input type=”hidden” name=”chatMessagesNavigator”
value=”previous”></input>

<input type=”hidden” name=”actorReturning”
value=”yes”></input>

<input type=”hidden” name=”bonCommand”
value=”host_executes_chat_controls”></input>

<input type=”submit”
value=<%=chatNavigatorPrevious%>
name=”submit”></input>

</form>
</td>
<td width=10%>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator”

value=”next”></input>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”host_executes_chat_controls”></input>
<input type=”submit” value=<%=chatNavigatorNext%>

name=”submit”></input>
</form>
</td>
<td width=10%>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”chatMessagesNavigator”

value=”last”></input>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”host_executes_chat_controls”></input>
<input type=”submit” value=<%=chatNavigatorLast%>

name=”submit”></input>
</form>
</td>
</table>

</tr>
</table>

<bon:outputDebugInfo/>

</h5>

<%@ include file=”../../mldocs/bonForumBottom.html” %>
</body>

</html>

15 1089-9 XC 6/26/01 7:40 AM Page 662

663C.52 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\host_executes_chat_frame.jsp

C.52 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_executes_chat_
frame.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%—
The messages refresh problem - part I.
Try to use the robot applet without adding
the time value suffix to each showDocument
argument. You will then need to prevent
caching of the output of this page, in order
to get refreshing of the dynamic messages display.
Problem is, if you put the following “no cache”
headers here as shown, and not on the “frameset” JSP,
(host_executes_chat.jsp), they will not prevent caching
of the output of this JSP (host_executes_chat_frame.jsp).
However, if you put the headers on the “frameset” JSP,
they will prevent caching - of both the display frame
and the “frameset” JSP. Now, when the robot applet
refreshes the display frame, that will also refresh
the entire frameset and all the frames in it,
which is not pretty at all!
response.setHeader(“Cache-Control”, “no-cache”);
response.setHeader(“Pragma”, “no-cache”);
response.setDateHeader(“max-age”, 0);
response.setDateHeader(“Expires”, 0);
—%>
<%—
The messages refresh problem - part II.
If you put a Refresh header here as follows,
you will get refresh without using the robot
applet at all! However, at least on IE5.X,
there is an unpleasant flashing of the message
display. The flashing is much less with the applet
context showDocument method, so we used it instead
of this:
response.setIntHeader(“Refresh”, 5);
—%>
<%— here we get the chat subject and

topic settings for later display —%>
<%
String chatSubject = (String)session.getAttribute(“chatSubject”);
String chatSubjectMessage = “”;
if(chatSubject != null && chatSubject.trim().length() > 0) {

chatSubjectMessage = “category: “ + chatSubject;
}
String chatTopic = (String)session.getAttribute(“chatTopic”);

15 1089-9 XC 6/26/01 7:40 AM Page 663

664 Appendix C Source Code for bonForum Web Application

String chatTopicMessage = “”;
if(chatTopic != null && chatTopic.trim().length() > 0) {

chatTopicMessage = “topic: “ + chatTopic;
}
%>
<html>

<head>
content=”text/html;

action=”/bonForum/servlet/BonForumEngine”>
<tr>
<label for=”bonCommand”>increment rating of guest</label>
<input type=”radio” name=”bonCommand”

value=”host_increases_rating”></input>
</tr>
<tr>
<label for=”bonCommand”>decrement rating of guest</label>
<input type=”radio” name=”bonCommand”

value=”host_decreases_rating”></input>
</tr>
<tr>
<label for=”bonCommand”>exit host commands</label>
<input type=”radio” name=”bonCommand”

value=”host_executes_command_ready” CHECKED></input>
</tr>
<tr>
<input type=”submit” value=”Do it!”

name=”submit”></input>
</tr>
</form>
<tr>

</tr>
<tr>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<label for=”chatMessagesPageSize”>show </label>
<input type=”text” name=”chatMessagesPageSize”

maxlength=”2” size=”2”
value=”<%= chatMessagesPageSize %>”></input>

<input type=”hidden” name=”bonCommand”
value=”host_executes_command_controls”></input>

<label for=”submit”>messages per page</label>
<input type=”submit” value=”set”

name=”submit”></input>
</form>
</tr>
</table>

</tr>
</table>

15 1089-9 XC 6/26/01 7:40 AM Page 664

665C.57 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\host_executes_command_frame.jsp

<bon:outputDebugInfo/>

</h5>

<%@ include file=”../../mldocs/bonForumBottom.html” %>
</body>

</html>

C.57 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_executes_
command_frame.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page import=”java.io.*” %>
<%@ page errorPage=”forum_error.jsp” %>
<%—
First we get the chatItem nodeKey value
and put it in the stylesheet parameter.
It is needed by the XSLT done by transform tag.
—%>
<%
String itemKey = (String)session.getAttribute(“itemKey”);
if(itemKey == null || itemKey.trim().length() < 1) {

itemKey = “000000000000.000000000000.000000000000”;
}
session.setAttribute(“param1”, itemKey);
%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>
<%— TESTING TEMP

<%=itemKey%>
—%>
<table border=0 cellspacing=0 cellpadding=0

15 1089-9 XC 6/26/01 7:40 AM Page 665

666 Appendix C Source Code for bonForum Web Application

rows=2 cols=1 width=100% bgcolor=#00FFFF>
<tr>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<%— Here we list the guests and hosts in the chat

in select boxes created by the XSLT.
—%>
<p>
<bon:transform type=”xalanVersion”

inXML=”bonForumXML”
inXSL=

“..\\webapps\\bonForum\\mldocs\\bonChatGuests.xsl”
outDoc=”output”>
<%=output%>

</bon:transform>
</p>
<p>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”host_executes_command_frame”></input>
<input type=”submit” value=”choose selected chat guest”

name=”submit”></input>
</p>
</form>
</tr>
<tr>
<%—
Here we get the currently chosen option.
After posting the form, the BonForumEngine servlet
forwards us back to this same page, updating
the display with the last selected chatGuest.
—%>
<%
String chatGuest = (String)session.getAttribute(“chatGuest”);
String chatGuestMessage = “Chosen guest: <none>”;
if(chatGuest != null && chatGuest.trim().length() > 0) {

int inx = chatGuest.lastIndexOf(“age:”);
if(inx > 0) {

chatGuest = chatGuest.substring(0, inx);
}
chatGuestMessage = “Chosen guest: “ + chatGuest;

}
%>
<%—
here we display the currently chosen guest
—%>
<p>
<%=chatGuestMessage%>
</p>
</tr>

15 1089-9 XC 6/26/01 7:40 AM Page 666

667C.58 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\host_executes_command_ready.jsp

<bon:outputDebugInfo/>

</h5>

</body>

</html>

C.58 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_executes_com-
mand_ready.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>
<%— go via robot to leave frameset —%>
<%
request.setAttribute(“target”, “_top”);
request.setAttribute(“document”,

request.getScheme() + “://” +
request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/host_exits_command.jsp”);

request.setAttribute(“refresh”, “true”);
request.setAttribute(“increment”, “100”);
request.setAttribute(“limit”, “1”);
request.setAttribute(“message”,

“Host exiting command mode!”);
%>
<jsp:forward page=”actor_leaves_frameset_robot.jsp.tfe”/>

</body>
</html>

15 1089-9 XC 6/26/01 7:40 AM Page 667

668 Appendix C Source Code for bonForum Web Application

C.59 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_executes_
command_robot.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%
String target = (String)session.getAttribute(“target”);
String document = (String)session.getAttribute(“document”);
String refresh = (String)session.getAttribute(“refresh”);
String increment = (String)session.getAttribute(“increment”);
String limit = (String)session.getAttribute(“limit”);
String message = (String)session.getAttribute(“message”);
%>
<%— message “debug” shows some info —%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<table>
<tr>
<img border=”0” src=”/bonForum/images/bonForumLogo.gif”

alt=”bonForum” width=”112” height=”112”>
</tr>
<tr>
<jsp:plugin type=”applet” code=”BonForumRobot.class”

codebase=”/bonForum/jsp/forum/applet”
jreversion=”1.3.0” width=”400” height=”160” >

<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
<jsp:param name=”document” value=”<%=document%>”/>
<jsp:param name=”refresh” value=”<%=refresh%>”/>
<jsp:param name=”increment” value=”<%=increment%>”/>
<jsp:param name=”limit” value=”<%=limit%>”/>
<jsp:param name=”message” value=”<%=message%>”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED

not supported by browser.
</jsp:fallback>

</jsp:plugin>
</tr>

15 1089-9 XC 6/26/01 7:40 AM Page 668

669C.60 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\host_exits_chat.jsp

</table>

<bon:outputDebugInfo/>

</body>

</html>

C.60 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_exits_chat.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%— here we can force actor

to select new subject and topic
for new chat

—%>
<%—

session.setAttribute(“chatSubject”, “NONE”);
session.setAttribute(“chatTopic”, “NONE”);

—%>
<%—
here we force engine to check

for new subject and topic for new chat
—%>
<%
session.setAttribute(“newChatSubject”, “no”);
session.setAttribute(“newChatTopic”, “no”);
%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body>
<jsp:forward page=”visitor_executes_choice.jsp.tfe”/>
</body>

</html>

15 1089-9 XC 6/26/01 7:40 AM Page 669

670 Appendix C Source Code for bonForum Web Application

C.61 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_exits_command.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body>
<jsp:forward page=”host_executes_chat.jsp.tfe”/>
</body>

</html>

C.62 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\host_increases_rating.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<jsp:useBean id=”bonForumStore”

class=”de.tarent.forum.BonForumStore”
scope=”application”/>

<html>
<head>

<meta http-equiv=”Content-Type”
content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body>
<%—
Here increment the rating of the chosen chatGuest
Later: will add code to promote guest to host of chat
if rating is above some threshold, nominally 10
—%>
<%
bonForumStore.changeChatActorRating(“1”, session);

15 1089-9 XC 6/26/01 7:40 AM Page 670

671C.63 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\license.jsp

%>
<jsp:forward page=”host_executes_command_controls.jsp.tfe”/>

</body>
</html>

C.63 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\license.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum License
</title>

</head>
<body bgcolor=”#00FFFF”>

<table border=”0” rows=”1” width=”100%”>
<tr>
<td align=”center”>

<img border=”0” src=”/bonForum/images/bonForumLogo.gif”
alt=”bonForum” width=”50” height=”50”>

</td>
</tr>
</table>
<pre>
BonForum Software License, version 1.1
Copyright (c) 2000, 2001 Westy Rockwell All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided the following conditions are met.
1. Redistributions of source code must retain the above copyright

notice, these conditions, and the following disclaimer and note(s).
2. Redistributions in binary form must reproduce the above copyright

notice, these conditions, and the following disclaimer and note(s)
in the documentation and/or other materials with the distribution.

3. The end-user documentation included with the redistribution, if
any, must include the following acknowlegement:

“This product includes software developed by
Westy Rockwell (http://www.bonForum.org/).”

Alternately, this acknowlegement may appear in the software itself,

15 1089-9 XC 6/26/01 7:40 AM Page 671

672 Appendix C Source Code for bonForum Web Application

if and wherever such third-party acknowlegements normally appear.
4. The names “bonForum”, “BonForum”, “BonForumEngine”, “BonForumRobot”,

“BonForumStore” must not be used to endorse or promote products
derived from this software without prior written permission.
Permission info is at http://www.bonForum.org/.

5. Products derived from this software may not be called by the names
listed in item 4, nor may these names appear in their names without
written permission. Permission info is at http://www.bonForum.org/.

DISCLAIMER: THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS TO
THIS SOFTWARE, NOR ITS PUBLISHERS IN WHATEVER FORM, BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY,OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
NOTE: This software is part of bonForum, a web chat application
fully discussed in a book by Westy Rockwell, with the title:
“XML, XSLT, Java and JSP - A Case Study in Developing a Web Application”,
published by New Riders. (http://www.newriders.com).
The book is published in German translation as
“XML, XSLT, Java und JSP - Professionelle Web-Applikationen entwickeln”
by Galileo Press (http://galileocomputing.de/).
For further information, please visit: http://www.bonforum.org/.
</pre>
<table border=”0” rows=”1” width=”100%”>
<tr>
<td align=”center”>

<img border=”0” src=”/bonForum/images/bonForumLogo.gif”
alt=”bonForum” width=”50” height=”50”>

</td>
</tr>
</table>

</body>
</html>

C.64 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\system_dumps_xml.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page import=”java.io.*” %>

15 1089-9 XC 6/26/01 7:40 AM Page 672

673C.64 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\system_dumps_xml.jsp

<%@ page errorPage=”forum_error.jsp” %>
<%—
For testing only, this JSP makes a dump of all
bonForumXML data as an XML file, and to browser.
This will later be done only by a “system” actor command.
This file also contains many commented-out examples
showing how to use and test the bonForum transform JSP custom tag,
with various combinations of input and output options.
First, we find out which version of Xalan to use:
—%>
<%
String xalanVersion = “”;
try {
xalanVersion = (String)

pageContext.getAttribute(“xalanVersion”, 4);
if(xalanVersion == null) {

xalanVersion = “”;
}

}
catch(java.lang.NullPointerException ex) {

xalanVersion = “”;
}
if(xalanVersion.equals(“”)) {

xalanVersion = “Xalan-Java 1”;
pageContext.setAttribute(“xalanVersion”, “Xalan-Java 1”, 4);

}
%>
<%—
Here, we get access to normalize method:
—%>
<jsp:useBean id=”bonForumUtils”

class=”de.tarent.forum.BonForumUtils”
scope=”application”/>

<html>
<head>

<meta http-equiv=”Content-Type”
content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#FFFF00”>
<table border=”0” rows=”1” width=”100%”>
<tr>
<td align=”center”>
<form name=”system_dumps_xml” method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”actorReturning”

value=”no”></input>

15 1089-9 XC 6/26/01 7:40 AM Page 673

674 Appendix C Source Code for bonForum Web Application

<input type=”hidden” name=”bonCommand”
value=”system_executes_command”></input>

<p>
<input type=”submit” value=”Return” name=”submit”></input>

</p>
</form>
</td>
</tr>
</table>

<p>
This JSP demonstrates the bonForum “transform” custom tag

It does XSLT processing of XML data with XSL stylesheets.
The input XML data can come from the bonForumXML database,
from a file, or from a string custom tag attribute.
The input XSL data can come from a file or
a string custom tag attribute.
The XSLT output can be to a file (XML, HTML, etc.),
to the JSP output stream (browser), or to a page attribute.
</p>
<p>
(The JSP source contains other commented-out examples showing
how to use input and output options not shown below.)
</p>
The examples below are now using <%=xalanVersion%>.
<HR/>
<p> EXAMPLE 1: XSLT of bonForumXML with identity.xsl</p>
<HR/>
<p>The JSP custom action:</p>
<small>
<%=bonForumUtils.normalize(“<bon:transform “)%>

<%=bonForumUtils.normalize(“type=\”xalanVersion\” “)%>

<%=bonForumUtils.normalize(“inXML=\”bonForumXML\” “)%>

<%=bonForumUtils.normalize(
“inXSL=\”..\\webapps\\bonForum\\mldocs\\identity.xsl\” “)%>

<%=bonForumUtils.normalize(
“outDoc=\”..\\webapps\\bonForum\\mldocs\\bonForumIdentityTransform.xml\”/>”)%><BR/
>
</small>
<p>Output is in the file: \bonForum\mldocs\bonForumIdentityTransform.xml

<bon:transform
type=”xalanVersion”
inXML=”bonForumXML”
inXSL=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\bonForumIdentityTransform.xml”/>
<HR/>
<p>The JSP custom action:</p>
<small>
<%=bonForumUtils.normalize(“<bon:transform”)%>

<%=bonForumUtils.normalize(“type=\”xalanVersion\” “)%>

<%=bonForumUtils.normalize(“inXML=\”bonForumXML\” “)%>

<%=bonForumUtils.normalize(“inXSL=\”..\\webapps\\bonForum\\mldocs\\identity.xsl\”

15 1089-9 XC 6/26/01 7:40 AM Page 674

675C.64 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\system_dumps_xml.jsp

“)%>

<%=bonForumUtils.normalize(“outDoc=\”printNormalized\”/>”)%>

</small>
<p>Output is here (normalized):</p>
<bon:transform
type=”xalanVersion”
inXML=”bonForumXML”
inXSL=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”printNormalized”/>
<HR/>
<HR/>
<p> EXAMPLE 2: XSLT of XML in a file, with default2.xsl</p>
<HR/>
<p>The JSP custom action:</p>
<small>
<%=bonForumUtils.normalize(“<bon:transform”)%>

<%=bonForumUtils.normalize(“type=\”xalanVersion\” “)%>

<%=bonForumUtils.normalize(“inXML=\”..\\webapps\\bonForum\\mldocs\\bonForumIdentit
yTransform.xml\” “)%>

<%=bonForumUtils.normalize(“inXSL=\”..\\webapps\\bonForum\\mldocs\\default2.xsl\”
“)%>

<%=bonForumUtils.normalize(“outDoc=\”..\\webapps\\bonForum\\mldocs\\bonForumTestTr
ansform.html\”/>”)%>

</small>
<p>Output is in the file: \bonForum\mldocs\bonForumTestTransform.html</p>
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\bonForumIdentityTransform.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\default2.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\bonForumTestTransform.html”/>
<HR/>
<HR/>
<p> EXAMPLE 3: XSLT of XML in a string attribute, with identity.xsl</p>
<HR/>
<p>The JSP custom action:</p>
<small>
<%=bonForumUtils.normalize(“<bon:transform”)%>

<%=bonForumUtils.normalize(“type=\”xalanVersion\” “)%>

<%=bonForumUtils.normalize(“inXML=\”<?xml version=\”1.0\” encoding=\”UTF-8\”?>
“)%>

<%=bonForumUtils.normalize(“ <hello> Hello, World!
<goodbye>Goodbye!</goodbye></hello>\” “)%>

<%=bonForumUtils.normalize(“inXSL=\”..\\webapps\\bonForum\\mldocs\\identity.xsl\”
“)%>

<%=bonForumUtils.normalize(“outDoc=\”print\”/>”)%>

</small>
<p>Output here (not normalized):</p>
<bon:transform
type=”xalanVersion”
inXML=”<?xml version=\”1.0\” encoding=\”UTF-8\”?>

<hello> Hello, World! <goodbye>Goodbye!</goodbye></hello>”

15 1089-9 XC 6/26/01 7:40 AM Page 675

676 Appendix C Source Code for bonForum Web Application

inXSL=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”print”/>
<HR/>
<p>The JSP custom action:</p>
<small>
<%=bonForumUtils.normalize(“<bon:transform”)%>

<%=bonForumUtils.normalize(“type=\”xalanVersion\” “)%>

<%=bonForumUtils.normalize(“inXML=\”<?xml version=\”1.0\” encoding=\”UTF-8\”?>
“)%>

<%=bonForumUtils.normalize(“ <hello> Hello, World!
<goodbye>Goodbye!</goodbye></hello>\” “)%>

<%=bonForumUtils.normalize(“inXSL=\”..\\webapps\\bonForum\\mldocs\\identity.xsl\”
“)%>

<%=bonForumUtils.normalize(“outDoc=\”printNormalized\”/>”)%>

</small>
<p>Output here (normalized):</p>
<bon:transform
type=”xalanVersion”
inXML=”<?xml version=\”1.0\” encoding=\”UTF-8\”?>

<hello> Hello, World! <goodbye>Goodbye!</goodbye></hello>”
inXSL=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”printNormalized”/>
<HR/>
<HR/>
<p> EXAMPLE 4: XSLT of XML in a string attribute, with XSL in a string
attribute</p>
<HR/>
<p>The JSP custom action:</p>
<small>
<%=bonForumUtils.normalize(“<bon:transform”)%>

<%=bonForumUtils.normalize(“type=\”xalanVersion\” “)%>

<%=bonForumUtils.normalize(“inXML=\”<?xml version=\”1.0\” encoding=\”UTF-8\”?>
“)%>

<%=bonForumUtils.normalize(“<hello> Hello, World!
<goodbye>Goodbye!</goodbye></hello>\” “)%>

<%=bonForumUtils.normalize(“inXSL=\”<?xml version=\”1.0\”?>”)%>

<%=bonForumUtils.normalize(“<xsl:stylesheet
xmlns:xsl=\”http://www.w3.org/1999/XSL/Transform\” version=\”1.0\”>”)%>

<%=bonForumUtils.normalize(“<xsl:output method=\”xml\” omit-xml-
declaration=\”yes\” indent=\”no\”/>”)%>

<%=bonForumUtils.normalize(“<xsl:param name=\”param1\” select=\”’ ‘\”/> “)%>

<%=bonForumUtils.normalize(“<xsl:template match=\”/\”>”)%>

<%=bonForumUtils.normalize(“ <xsl:apply-templates
select=\”/hello/*\”/>”)%>

<%=bonForumUtils.normalize(“</xsl:template>”)%>

<%=bonForumUtils.normalize(“<xsl:template match=\”goodbye\”>”)%>

<%=bonForumUtils.normalize(“<xsl:value-of select=\”.\”/>”)%>

<%=bonForumUtils.normalize(“</xsl:template>”)%>

<%=bonForumUtils.normalize(“</xsl:stylesheet>”)%>

<%=bonForumUtils.normalize(“\” “)%>

<%=bonForumUtils.normalize(“outDoc=\”print\”/>”)%>

15 1089-9 XC 6/26/01 7:40 AM Page 676

677C.64 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\system_dumps_xml.jsp

</small>
<p>Output here:</p>
<bon:transform type=”xalanVersion”
inXML=”<?xml version=\”1.0\” encoding=\”UTF-8\”?>
<hello> Hello, World! <goodbye>Goodbye!</goodbye></hello>”
inXSL=”<?xml version=\”1.0\”?>
<xsl:stylesheet xmlns:xsl=\”http://www.w3.org/1999/XSL/Transform\”
version=\”1.0\”>
<xsl:output method=\”xml\” omit-xml-declaration=\”yes\” indent=\”no\”/>
<xsl:param name=\”param1\” select=\”’ ‘\”/>
<xsl:template match=\”/\”>

<xsl:apply-templates select=\”/hello/*\”/>
</xsl:template>
<xsl:template match=\”goodbye\”>

<xsl:value-of select=\”.\”/>
</xsl:template>
</xsl:stylesheet>”
outDoc=”print”/>
<HR/>
<%—
More examples using XML from a file
(file is the output of previous XSLT of bonForumXML)
—%>
<%—
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\bonForumIdentityTransform.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\bonForumTestTransform.xml”/>
<HR/>
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\bonForumIdentityTransform.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\default2.xsl”
outDoc=”print” />
<HR/>
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\bonForumIdentityTransform.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”printNormalized” />
<HR/>
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\bonForumIdentityTransform.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\default2.xsl”
outDoc=”output” >
<HR/><%= output %><HR/>
</bon:transform>
<bon:transform

15 1089-9 XC 6/26/01 7:40 AM Page 677

678 Appendix C Source Code for bonForum Web Application

type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\bonForumIdentityTransform.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”outputNormalized” >
<HR/><%= output %><HR/>
</bon:transform>
—%>
<%—
These examples also use XML from a file
(an example file from Xalan-Java 2)
—%>
<%—
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\birds.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\default2.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\birds.html” >
</bon:transform>
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\birds.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\default2.xsl”
outDoc=”print” >
</bon:transform>
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\birds.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\default2.xsl”
outDoc=”printNormalized” >
</bon:transform>
bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\birds.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\birds.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\birdsView.html” >
</bon:transform>
<HR/>
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\birds.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\birds.xsl”
outDoc=”print” >
</bon:transform>
<HR/>
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\birds.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\birds.xsl”
outDoc=”printNormalized” >
</bon:transform>
—%>

15 1089-9 XC 6/26/01 7:40 AM Page 678

679C.64 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\system_dumps_xml.jsp

<%—
More examples using bonForumXML database,
with a stylesheet from the web application
—%>
<%—
<HR/>
<bon:transform
type=”xalanVersion”
inXML=”bonForumXML”
inXSL=”..\\webapps\\bonForum\\mldocs\\bonForumLinks.xsl”
outDoc=”print”>
</bon:transform>
<HR/>
<bon:transform
type=”xalanVersion”
inXML=”bonForumXML”
inXSL=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”printNormalized”>
</bon:transform>
<HR/>
<HR/>
<bon:transform
type=”xalanVersion”
inXML=”bonForumXML”
inXSL=”..\\webapps\\bonForum\\mldocs\\bonForumLinks.xsl”
outDoc=”output”>
<%=output%>
</bon:transform>
<HR/>
<bon:transform
type=”xalanVersion”
inXML=”bonForumXML”
inXSL=”..\\webapps\\bonForum\\mldocs\\identity.xsl”
outDoc=”outputNormalized”>
<%=output%>
</bon:transform>
<HR/>
<bon:transform
type=”xalanVersion”
inXML=”bonForumXML”
inXSL=”..\\webapps\\bonForum\\mldocs\\bonForumLinks.xsl”
outDoc=”output”>
<%=output%>
</bon:transform>
<H1>The output scripting variable outside of any custom tag:</H1>
<%=output%>
—%>
<%—
These examples output to files, and then
include the file in the JSP output stream
—%>

15 1089-9 XC 6/26/01 7:40 AM Page 679

680 Appendix C Source Code for bonForum Web Application

<%—
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\testing.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\default2.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\bonForumView.html” >
</bon:transform>
<bon:transform
type=”xalanVersion”
inXML=”..\\webapps\\bonForum\\mldocs\\testing.xml”
inXSL=”..\\webapps\\bonForum\\mldocs\\default2.xsl”
outDoc=”..\\webapps\\bonForum\\mldocs\\bonForumView.xml” >
</bon:transform>
<%@ include file=”../../mldocs/bonForumView.html”%>
<jsp:include page=”../../mldocs/bonForumView.xml” flush=”true” />
—%>

<bon:outputDebugInfo/>

</body>
</html>

C.65 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\system_executes_
command.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%— TESTING
<jsp:forward page=”forum_error.jsp.tfe”/>
—%>
<%— TESTING errorPage:
<%= 47/0 %>
—%>
<%— greet forum actor by nickname) —%>
<%
String actorNickname =

((String)session.getAttribute(“actorNickname”));
if(actorNickname == null ||

actorNickname.trim().length() < 1) {
actorNickname = “<unknown visitor>”;

}
String chatWelcomeMessage =

“Hello, “ + actorNickname + “! Execute commands:”;
%>
<html>

15 1089-9 XC 6/26/01 7:40 AM Page 680

681C.65 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\system_executes_command.jsp

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>
</head>
<body bgcolor=”#FFFF00”>

<h5>
<table border=”0” cellspacing=”0” cellpadding=”0”

rows=”4” cols=”1” width=”100%” bgcolor=”#00FFFF”>
<tr>
<%= chatWelcomeMessage %>
</tr>
<tr>

</tr>
<tr>
<form name=”system_executes_command” method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<table border=”0” cellspacing=”0” cellpadding=”0”

rows=”3” cols=”1” width=”100%” bgcolor=”#00FFFF”>
<tr>
<label for=”dump”>set max chat session inactivity</label>
<input id=”dump” type=”radio” name=”bonCommand”

value=”system_sets_timeout”></input>
</tr>
<tr>
<label for=”dump”>output bonForum XML data</label>
<input id=”dump” type=”radio” name=”bonCommand”

value=”system_dumps_xml”></input>
</tr>
<tr>
<label for=”exit”>exit system commands</label>
<input id=”exit” type=”radio” name=”bonCommand”

value=”UserMustLogin” CHECKED></input>
</tr>
<tr>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”submit” value=”do it!”

name=”submit”></input>
</tr>
</table>
</form>
</tr>
<tr>

15 1089-9 XC 6/26/01 7:40 AM Page 681

682 Appendix C Source Code for bonForum Web Application

<form method=”POST”
action=”/bonForum/servlet/BonForumEngine”>
<table border=”0” cellspacing=”0” cellpadding=”0”

rows=”3” cols=”1” width=”100%” bgcolor=”#00FFFF”>
<tr>
<label for=”debug”>enable debugging information:</label>
<%
String debug = “no”;
try {

debug = (String)
request.getParameter(“output_debug_info”);
if(debug == null) {

debug = “no”;
}

}
catch(java.lang.NullPointerException ex) {

debug = “no”;
}
if(debug.equals(“yes”)) {
%>
<input type=”checkbox” id=”debug”

name=”output_debug_info” value=”yes” CHECKED></input>
<%
}
else {
%>
<input type=”checkbox” id=”debug”

name=”output_debug_info” value=”yes”></input>
<%
}
%>
</tr>
<tr>
<label for=”xalanVersion”>XSLT processor version: </label>
<%
String xalanVersion = “Xalan-Java 1”;
try {
xalanVersion = (String)

pageContext.getAttribute(“xalanVersion”, 4);
if(xalanVersion == null) {

xalanVersion = “Xalan-Java 1”;
}
}
catch(java.lang.NullPointerException ex) {

xalanVersion = “Xalan-Java 1”;
}
if(xalanVersion.equals(“Xalan-Java 1”)) {
%>
<input id=”xalan1” type=”radio” name=”xalanVersion”

value=”Xalan-Java 1” CHECKED>Xalan-Java 1 </input>
<input id=”xalan2” type=”radio” name=”xalanVersion”

15 1089-9 XC 6/26/01 7:40 AM Page 682

683C.65 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\system_executes_command.jsp

value=”Xalan-Java 2”>Xalan-Java 2 </input>
<%
}
else {
%>
<input id=”xalan1” type=”radio” name=”xalanVersion”

value=”Xalan-Java 1”>Xalan-Java 1 </input>
<input id=”xalan2” type=”radio” name=”xalanVersion”

value=”Xalan-Java 2” CHECKED>Xalan-Java 2 </input>
<%
}
%>
</tr>
<tr>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”system_executes_command”></input>
<input type=”submit” value=”set it!”

name=”submit”></input>
</tr>
</table>
</form>
</tr>
</table>

<bon:outputDebugInfo type=”init”/>

<%— Examples of using a bean from JSP, discussed in chapter 8 of book
(you can put these outside of comment block to try them out):

—%>
<%—

<jsp:useBean id=”bonForumStore”
class=”de.tarent.forum.BonForumStore”
scope=”application”/>

<p>
hitTimeMillis: <jsp:getProperty name=”bonForumStore”

property=”hitTimeMillis”/>

initDate: <jsp:getProperty name=”bonForumStore”

property=”initDate”/>

reset hitTimeMillis! <jsp:setProperty name=”bonForumStore”

property=”hitTimeMillis” value=”HELLO!”/>

</p>
<p>
hitTimeMillis: <%=bonForumStore.getHitTimeMillis()%>

initDate: <%=bonForumStore.getInitDate()%>

</p>
<p>
reset hitTimeMillis! <% bonForumStore.setHitTimeMillis(“GOODBYE!”); %>

</p>
<% de.tarent.forum.BonForumStore bFS = (de.tarent.forum.BonForumStore)

15 1089-9 XC 6/26/01 7:40 AM Page 683

684 Appendix C Source Code for bonForum Web Application

pageContext.getAttribute(“bonForumStore”, 4);
%>
<p>
hitTimeMillis: <%= bFS.getHitTimeMillis()%>

initDate: <%= bFS.getInitDate()%>

</p>

<% bFS = (de.tarent.forum.BonForumStore)
pageContext.getServletContext().getAttribute(“bonForumStore”);
bFS.setHitTimeMillis(null);

%>
<p>
reset hitTimeMillis!

hitTimeMillis: <%= bFS.getHitTimeMillis()%>

initDate: <%= bFS.getInitDate()%>

</p>
<% bFS = (de.tarent.forum.BonForumStore)

application.getAttribute(“bonForumStore”);
%>
<p>
hitTimeMillis: <%= bFS.getHitTimeMillis()%>

initDate: <%= bFS.getInitDate()%>

</p>

—%>
</h5>

</body>

</html>

C.66 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\system_sets_timeout.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page import=”java.io.*” %>
<%@ page errorPage=”forum_error.jsp” %>
<%—
This sets max inactivity timeout interval
for bonforum chat sessions
—%>
<html>
<head>

<meta http-equiv=”Content-Type”
content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

15 1089-9 XC 6/26/01 7:40 AM Page 684

685C.66 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\system_sets_timeout.jsp

</head>
<body bgcolor=”#FFFF00”>
<table border=”0” rows=”2” width=”100%”>
<tr>
<td align=”left”>
<form name=”system_dumps_xml” method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<input type=”hidden” name=”actorReturning”

value=”no”></input>
<input type=”hidden” name=”bonCommand”

value=”system_executes_command”></input>
<p>
<input type=”submit” value=”Return” name=”submit”></input>
</p>

</form>
</td>
</tr>
<tr>
<td align=”left”>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<%
String sessionMaxInactiveMinutes = “”;
try {
sessionMaxInactiveMinutes = (String)

pageContext.getAttribute(“sessionMaxInactiveMinutes”, 4);
if(sessionMaxInactiveMinutes == null) {

sessionMaxInactiveMinutes = “-1”;
}

}
catch(java.lang.NullPointerException ex) {

sessionMaxInactiveMinutes = “-1”;
}
if(sessionMaxInactiveMinutes.equals(“”)) {

sessionMaxInactiveMinutes = “-1”;
pageContext.setAttribute(“sessionMaxInactiveMinutes”, “-1”, 4);

}
%>
<h4>
This JSP can be used to test and experiment with session lifetimes.
A setting of -1 means sessions do not timeout on the server.
If you set another value, the sessions will timeout if browser
inactivity exceeds that number of minutes.
When a session times out, the user
will be sent back to first page of webapp,
and their nickname will remain unavailable until bonForum restart.
Later, a user manager feature will be added to authenticate
users and restore their nicknames and other data.
Note that applet activity alone does not prevent session timeout.
</h4>
<p>Current Maximum Chat Inactivity in Minutes: <%=sessionMaxInactiveMinutes%></p>

15 1089-9 XC 6/26/01 7:40 AM Page 685

686 Appendix C Source Code for bonForum Web Application

<input type=”text” id=”timeout”
name=”sessionMaxInactiveMinutes” value=”<%=sessionMaxInactiveMinutes%>”
size=”5” maxlength=”9”></input>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”system_sets_timeout”></input>
<input type=”submit” value=”set”

name=”submit”></input>
</form>
</td>
</tr>
</table>

<bon:outputDebugInfo/>

</body>
</html>

C.67 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_executes_choice.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%—
here we force engine to check

for new subject and topic for new chat
—%>
<%
session.setAttribute(“newChatSubject”, “no”);
session.setAttribute(“newChatTopic”, “no”);
%>
<%—
here we can force actor to select

from available chats
—%>
<%—
session.setAttribute(“chatItem”, “NONE”);
—%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum

15 1089-9 XC 6/26/01 7:40 AM Page 686

687C.67 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\visitor_executes_choice.jsp

</title>
</head>
<body bgcolor=”#00FFFF”>

<h5>
<%— greet forum actor by nickname) —%>
<%
String actorNickname =

((String)session.getAttribute(“actorNickname”));
if(actorNickname == null ||

actorNickname.trim().length() < 1) {
actorNickname = “<unknown visitor>”;

}
String chatWelcomeMessage =

“Hello, “ + actorNickname +
“! Please make a choice:”;

%>
<table border=0 cellspacing=0 cellpadding=0 rows=5 cols=1

width=”100%” bgcolor=#00FFFF>
<tr>
<%= chatWelcomeMessage %>
</tr>
<form name=”visitor_executes_choice” method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<tr>
<label for=”join”>join a chat</label>
<input type=”radio” id=”join” name=”bonCommand”

value=”visitor_joins_chat”></input>
</tr>
<tr>
<label for=”start”>start a chat</label>
<input type=”radio” id=”start” name=”bonCommand”

value=”visitor_starts_chat” CHECKED></input>
</tr>
<tr>
<label for=”exit”>exit this forum</label>
<input type=”radio” id=”exit” name=”bonCommand”

value=”bonForum”></input>
</tr>
<tr>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”submit” value=”do it!” name=”submit”></input>
</tr>
</form>
</table>

<bon:outputDebugInfo/>

</h5>

15 1089-9 XC 6/26/01 7:40 AM Page 687

688 Appendix C Source Code for bonForum Web Application

<%@ include file=”../../mldocs/bonForumSplash.html” %>
</body>

</html>

C.68 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_joins_chat.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%
session.setAttribute(“target”, “display”);
session.setAttribute(“document”,

request.getScheme() + “://” +
request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/visitor_joins_chat_frame.jsp”);

session.setAttribute(“refresh”, “true”);
session.setAttribute(“increment”, “30000”);
session.setAttribute(“limit”, “5000”);
session.setAttribute(“message”, “refreshing...”);
%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<noframes>/bonForum/noframe/html.index</noframes>
<frameset rows=”72%, 28%”>
<frame src=”/bonForum/jsp/forum/visitor_joins_chat_frame.jsp”

name=”display”/>
<frameset cols=”77%, 23%”>
<frame src=”/bonForum/jsp/forum/visitor_joins_chat_controls.jsp”

name=”controls”/>
<frame src=”/bonForum/jsp/forum/host_executes_chat_robot.jsp”

name=”robot”/>
<%— Note that all the bonForum states could share the same “refresh”

“_robot” JSP. For example, we tested the following one. But that
increases the interdependence of the frame contents in all states.
<frame src=”/bonForum/jsp/forum/actor_refreshes_frame_robot.jsp”
name=”robot”/>

—%>

15 1089-9 XC 6/26/01 7:40 AM Page 688

689C.69 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\visitor_joins_chat_controls.jsp

</frameset>
</frameset>

C.69 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_joins_chat_
controls.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%— get actor nickname into a greeting: —%>
<%
String actorNickname =

((String)session.getAttribute(“actorNickname”));
if(actorNickname == null ||

actorNickname.trim().length() < 1) {
actorNickname = “<unknown visitor>”;

}
String chatJoinMessage =

“Join a chat, “ + actorNickname +
“! First choose one from the list.”;

%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>
<%— a different frame lists the chats available —%>
<form method=”POST”
action=”/bonForum/servlet/BonForumEngine”>
<table border=0 cellspacing=0 cellpadding=0

rows=2 cols=1 width=100% bgcolor=#00FFFF>
<%— greet forum actor by nickname: —%>
<tr>
<%= chatJoinMessage %>
</tr>
<tr>
<input type=”hidden” name=”actorReturning”

15 1089-9 XC 6/26/01 7:40 AM Page 689

690 Appendix C Source Code for bonForum Web Application

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”visitor_joins_chat_ready”></input>
<input type=”submit” value=”join chat”

name=”submit”></input>
</tr>
</table>
</form>

<bon:outputDebugInfo/>

</h5>

<%@ include file=”../../mldocs/bonForumBottom.html” %>
</body>

</html>

C.70 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_joins_chat_frame.
jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page import=”java.io.*” %>
<%@ page errorPage=”forum_error.jsp” %>
<%—
Here we get the currently chosen option.
After posting the form, the BonForumEngine servlet
forwards us back to this same page, updating
the display with the last selected chatItem.
—%>
<%
String chatItem = (String)session.getAttribute(“chatItem”);
String chatItemMessage = “chat: <none>”;
if(chatItem != null && chatItem.trim().length() > 0) {
String subject = “”;
String topic = “”;
subject = chatItem.substring(0, chatItem.indexOf(‘[‘) - 1);
subject = subject.replace(‘_’, ‘ ‘);
topic = chatItem.substring(chatItem.indexOf(‘[‘) + 1,

chatItem.lastIndexOf(‘]’));
chatItemMessage = “chat: “ + subject + “ —> “ + topic;

}
%>
<%—
Here later we can get a flag to select subset of available chats
and passed it to the XSLT via an XSL parameter

15 1089-9 XC 6/26/01 7:40 AM Page 690

691C.70 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\visitor_joins_chat_frame.jsp

Since chat selection based on flag is not yet implemented,
and XSLT needs one parameter, we pass an empty string for now.
—%>
<%
session.setAttribute(“param1”, “”);
%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<table border=0 cellspacing=0 cellpadding=0

rows=3 cols=1 width=100% bgcolor=#00FFFF>
<%— Here we display the currently chosen chat —%>
<tr>
<%=chatItemMessage%>
</tr>
<%— here we list the available chats

in a select box created by the XSLT.
—%>
<tr>
<bon:transform type=”xalanVersion”

inXML=
“bonForumXML”

inXSL=
“..\\webapps\\bonForum\\mldocs\\bonChatItems.xsl”

outDoc=
“output”>

<%=output%>
</bon:transform>
</tr>
<%— LATER: chatModerated can filter the

list of available chats
<label for=”chatModerated”>Moderated chats only? </label>
<input type=”radio” name=”chatModerated”

value=”yes”>YES></input>
<input type=”radio” name=”chatModerated”

value=”no”>NO></input>
—%>
<tr>

15 1089-9 XC 6/26/01 7:40 AM Page 691

692 Appendix C Source Code for bonForum Web Application

<input type=”hidden” name=”actorReturning”
value=”yes”></input>

<input type=”hidden” name=”bonCommand”
value=”visitor_joins_chat_frame”></input>

<input type=”submit”
value=”choose the selected chat”
name=”submit”></input>

</tr>
</table>
</form>

<bon:outputDebugInfo/>

</h5>

</body>

</html>

C.71 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_joins_chat_
ready.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>
<%— go via robot to leave frameset —%>
<%—
Notice that this page uses request not session attributes
to send parameters to robot applet. It can do that since
the robot is acting as a “one-shot” and needs the attribute
data only one time. Also, all the pages that use the robot
to leave a frameset share the same robot.
—%>
<%—
here we prefix the scheme, host and port
of the web application server

15 1089-9 XC 6/26/01 7:40 AM Page 692

693C.72 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\visitor_joins_chat_robot.jsp

so the applet on the client can find it!
—%>
<%
request.setAttribute(“target”, “_top”);
request.setAttribute(“document”,

request.getScheme() + “://” +
request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/guest_executes_chat.jsp”);

request.setAttribute(“refresh”, “true”);
request.setAttribute(“increment”, “100”);
request.setAttribute(“limit”, “1”);
request.setAttribute(“message”, “Joining a chat!”);
%>
<%—These attributes become applet

parameters in robot page—%>

<jsp:forward page=”actor_leaves_frameset_robot.jsp.tfe”/>

</body>

</html>

C.72 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_joins_chat_
robot.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%
String target = (String)session.getAttribute(“target”);
String document = (String)session.getAttribute(“document”);
String refresh = (String)session.getAttribute(“refresh”);
String increment = (String)session.getAttribute(“increment”);
String limit = (String)session.getAttribute(“limit”);
String message = (String)session.getAttribute(“message”);
%>
<%— message “debug” shows some info —%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum

15 1089-9 XC 6/26/01 7:40 AM Page 693

694 Appendix C Source Code for bonForum Web Application

</title>
</head>
<body bgcolor=”#00FFFF”>

<table>
<tr>
<img border=”0” src=”/bonForum/images/bonForumLogo.gif”

alt=”bonForum” width=”112” height=”112”>
</tr>
<tr>
<jsp:plugin type=”applet” code=”BonForumRobot.class”

codebase=”/bonForum/jsp/forum/applet”
jreversion=”1.3.0” width=”400” height=”160” >

<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
<jsp:param name=”document” value=”<%=document%>”/>
<jsp:param name=”refresh” value=”<%=refresh%>”/>
<jsp:param name=”increment” value=”<%=increment%>”/>
<jsp:param name=”limit” value=”<%=limit%>”/>
<jsp:param name=”message” value=”<%=message%>”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED

not supported by browser.
</jsp:fallback>

</jsp:plugin>
</tr>
</table>

<bon:outputDebugInfo/>

</body>

</html>

C.73 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_starts_chat.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%— LATER: uncomment these six lines and

add a “robot” in a third frame below
to auto refresh chat subject list.
(See other examples elsewhere.)

<%
session.setAttribute(“target”, “display”);
session.setAttribute(“document”,

request.getScheme() + “://” +

15 1089-9 XC 6/26/01 7:40 AM Page 694

695C.74 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\visitor_starts_chat_controls.jsp

request.getServerName() + “:” +
request.getServerPort() +
“/bonForum/jsp/forum/visitor_starts_chat_frame.jsp”);

session.setAttribute(“refresh”, “true”);
session.setAttribute(“increment”, “5000”);
session.setAttribute(“limit”, “5000”);
session.setAttribute(“message”, “refreshing...”); %>
—%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<noframes>/bonForum/noframe/html.index</noframes>
<frameset rows=”65%, 35%”>
<frame src=”/bonForum/jsp/forum/visitor_starts_chat_frame.jsp.tfe”

name=”display”/>
<frame src=”/bonForum/jsp/forum/visitor_starts_chat_controls.jsp.tfe”

name=”controls”/>
</frameset>
</html>

C.74 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_starts_chat_
controls.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%— get actor nickname into a greeting: —%>
<%
String actorNickname =

((String)session.getAttribute(“actorNickname”));
if(actorNickname == null ||

actorNickname.trim().length() < 1) {
actorNickname = “<unknown visitor>”;

}
String chatStartMessage =

“Start a chat, “ + actorNickname +
“! First select a subject category from the list.”;

%>
<%— get chat description, if any,

15 1089-9 XC 6/26/01 7:40 AM Page 695

696 Appendix C Source Code for bonForum Web Application

displayed by input form element —%>
<% String chatTopic =

(String)session.getAttribute(“chatTopic”);
if(chatTopic == null || chatTopic.trim().length() < 1) {

chatTopic = “”;
}

%>
<%
String chatSubjectAndTopic = “”;
try {

chatSubjectAndTopic =
(String)session.getAttribute(
“chatSubjectAndTopicTaken”);

if(!chatSubjectAndTopic.equals(“”)) {
chatSubjectAndTopic =
chatSubjectAndTopic + “ is taken! “ ;

}
if(chatSubjectAndTopic == null) {

chatSubjectAndTopic = “”;
}

}
catch(java.lang.NullPointerException ex) {

chatSubjectAndTopic = “”;
}
%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>
<%— a different frame lists the subjects available—%>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<table border=0 cellspacing=0 cellpadding=0

rows=4 cols=1 width=50% bgcolor=#00FFFF>
<%— greet forum actor by nickname: —%>
<tr>
<%= chatStartMessage %>

<%= chatSubjectAndTopic %>

</tr>

15 1089-9 XC 6/26/01 7:40 AM Page 696

697C.75 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\visitor_starts_chat_frame.jsp

<tr>
<label for=”chatTopic”>

Then enter a description for your new chat:</label>
<input type=”text” value = “<%=chatTopic%>”

name=”chatTopic”></input>
</tr>
<tr>
<label for=”chatModerated”>Will you moderate this chat?
</label>
<input type=”radio” name=”chatModerated”

value=”yes”>YES</input>
<input type=”radio” name=”chatModerated”

value=”no” CHECKED>NO</input>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”visitor_starts_chat_ready”></input>
<input type=”submit” value=”start chat”

name=”submit”></input>
</tr>
</table>
</form>

<bon:outputDebugInfo/>

</h5>

<%@ include file=”../../mldocs/bonForumBottom.html” %>
</body>

</html>

C.75 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_starts_chat_
frame.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%— here we get the chat subject and

topic settings for later display —%>
<%
String chatSubject =

(String)session.getAttribute(“chatSubject”);
String chatSubjectMessage = “category: <none>”;
if(chatSubject != null && chatSubject.trim().length() > 0) {

chatSubjectMessage = “category: “ + chatSubject;
}

15 1089-9 XC 6/26/01 7:40 AM Page 697

698 Appendix C Source Code for bonForum Web Application

%>
<%
String chatTopic = (String)session.getAttribute(“chatTopic”);
String chatTopicMessage = “topic: <none>”;
if(chatTopic != null && chatTopic.trim().length() > 0) {

chatTopicMessage = “topic: “ + chatTopic;
}
%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<h5>
<%— here we list the chat categories available —%>
<form method=”POST”

action=”/bonForum/servlet/BonForumEngine”>
<table border=0 cellspacing=0 cellpadding=0

rows=4 cols=1 width=50% bgcolor=#00FFFF>
<tr>
<%=chatSubjectMessage%>
</tr>
<tr>
<%=chatTopicMessage%>
</tr>
<tr>
<select size=”12” name=”chatSubject”>
<bon:outputPathNames

docName=”bonForumXML”
pathToSubTreeRootNode=”bonForum.things.subjects”
ancestorReplacer=”COMPLETE_PATHS”
nodeSeparator=”/”>
<option><%= output %></option>

</bon:outputPathNames>
</select>
</tr>
<tr>
<input type=”hidden” name=”actorReturning”

value=”yes”></input>
<input type=”hidden” name=”bonCommand”

value=”visitor_starts_chat_frame”></input>
<input type=”submit” value=”choose selected chat subject”

name=”submit”></input>

15 1089-9 XC 6/26/01 7:40 AM Page 698

699C.76 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\visitor_starts_chat_ready.jsp

</tr>
</table>
</form>

<bon:outputDebugInfo/>

</h5>

</body>

</html>

C.76 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_starts_chat_
ready.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>
<%— go via robot to leave frameset —%>
<%—
Notice that this page uses request not session attributes
to send parameters to robot applet. It can do that since
the robot is acting as a “one-shot” and needs the attribute
data only one time. Also, all the pages that use the robot
to leave a frameset share the same robot.
—%>
<%—
here we prefix the scheme, host and port
of the web application server
so the applet on the client can find it!
—%>
<%
request.setAttribute(“target”, “_top”);
request.setAttribute(“document”,

request.getScheme() + “://” +
request.getServerName() + “:” +

15 1089-9 XC 6/26/01 7:40 AM Page 699

700 Appendix C Source Code for bonForum Web Application

request.getServerPort() +
“/bonForum/jsp/forum/host_executes_chat.jsp”);

request.setAttribute(“refresh”, “true”);
request.setAttribute(“increment”, “100”);
request.setAttribute(“limit”, “1”);
request.setAttribute(“message”, “Preparing new chat!”);
%>
<%—These attributes become applet

parameters in robot page—%>
<jsp:forward page=”actor_leaves_frameset_robot.jsp.tfe”/>

</body>

</html>

C.77 Filename:TOMCAT_HOME\webapps\
bonForum\jsp\forum\visitor_starts_chat_
robot.jsp

<!doctype html public “-//w3c//dtd html 4.0 transitional//en”>
<%@ taglib uri=”http://www.bonForum.org/taglib/bonForum-taglib”
prefix=”bon” %>
<%@ page errorPage=”forum_error.jsp” %>
<%
String target = (String)session.getAttribute(“target”);
String document = (String)session.getAttribute(“document”);
String refresh = (String)session.getAttribute(“refresh”);
String increment = (String)session.getAttribute(“increment”);
String limit = (String)session.getAttribute(“limit”);
String message = (String)session.getAttribute(“message”);
%>
<%— message “debug” shows some info —%>
<html>

<head>
<meta http-equiv=”Content-Type”

content=”text/html;
charset=x-user-defined”>

</meta>
<title>

bonForum
</title>

</head>
<body bgcolor=”#00FFFF”>

<table>
<tr>
<img border=”0” src=”/bonForum/images/bonForumLogo.gif”

alt=”bonForum” width=”112” height=”112”>

15 1089-9 XC 6/26/01 7:40 AM Page 700

701C.77 Filename: TOMCAT_HOME\webapps\bonForum\jsp\forum\visitor_starts_chat_robot.jsp

</tr>
<tr>
<jsp:plugin type=”applet” code=”BonForumRobot.class”

codebase=”/bonForum/jsp/forum/applet”
jreversion=”1.3.0” width=”400” height=”160” >

<jsp:params>
<jsp:param name=”target” value=”<%=target%>”/>
<jsp:param name=”document” value=”<%=document%>”/>
<jsp:param name=”refresh” value=”<%=refresh%>”/>
<jsp:param name=”increment” value=”<%=increment%>”/>
<jsp:param name=”limit” value=”<%=limit%>”/>
<jsp:param name=”message” value=”<%=message%>”/>
</jsp:params>
<jsp:fallback>Plugin tag OBJECT or EMBED

not supported by browser.
</jsp:fallback>

</jsp:plugin>
</tr>
</table>

<bon:outputDebugInfo/>

</body>

</html>

15 1089-9 XC 6/26/01 7:40 AM Page 701

15 1089-9 XC 6/26/01 7:40 AM Page 702

Sun Microsystems, Inc. Binary
Code License Agreement

D

READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED SUPPLE-
MENTAL LICENSE TERMS (COLLECTIVELY “AGREEMENT”) CAREFULLY
BEFORE OPENING THE SOFTWARE MEDIA PACKAGE. BY OPENING THE
SOFTWARE MEDIA PACKAGE,YOU AGREE TO THE TERMS OF THIS
AGREEMENT. IF YOU ARE ACCESSING THE SOFTWARE ELECTRONI-
CALLY, INDICATE YOUR ACCEPTANCE OF THESE TERMS BY SELECTING
THE “ACCEPT” BUTTON AT THE END OF THIS AGREEMENT. IF YOU DO
NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE UNUSED
SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR, IF THE
SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE “DECLINE”
BUTTON AT THE END OF THIS AGREEMENT.
1. LICENSE TO USE. Sun grants you a non-exclusive and non-transferable license
for the internal use only of the accompanying software and documentation and any
error corrections provided by Sun (collectively “Software”), by the number of users
and the class of computer hardware for which the corresponding fee has been paid.
2. RESTRICTIONS Software is confidential and copyrighted.Title to Software and
all associated intellectual property rights is retained by Sun and/or its licensors. Except
as specifically authorized in any Supplemental License Terms, you may not make
copies of Software, other than a single copy of Software for archival purposes. Unless
enforcement is prohibited by applicable law, you may not modify, decompile, or reverse
engineer Software.You acknowledge that Software is not designed, licensed or

16 1089-9 XD 6/26/01 7:42 AM Page 703

704 Appendix D Sun Microsystems, Inc. Binary Code License Agreement

intended for use in the design, construction, operation or maintenance of any nuclear
facility. Sun disclaims any express or implied warranty of fitness for such uses. No
right, title or interest in or to any trademark, service mark, logo or trade name of Sun
or its licensors is granted under this Agreement.
3. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90) days
from the date of purchase, as evidenced by a copy of the receipt, the media on which
Software is furnished (if any and if provided by Sun) will be free of defects in materials
and workmanship under normal use. Except for the foregoing, Software is provided
“AS IS”.Your exclusive remedy and Sun’s entire liability under this limited warranty
will be at Sun’s option to replace Software media or refund the fee paid for Software,
if any.
4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREE-
MENT, ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTA-
TIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE
EXTENT THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.
5. LIMITATION OF LIABILITY.TO THE EXTENT NOT PROHIBITED
BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE
FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR SPECIAL,
INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIA-
BILITY, ARISING OUT OF OR RELATED TO THE USE OF OR
INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. In no event will Sun’s liability
to you, whether in contract, tort (including negligence), or otherwise, exceed the
amount paid by you for Software under this Agreement.The foregoing limitations will
apply even if the above stated warranty fails of its essential purpose.
6.Termination.This Agreement is effective until terminated.You may terminate this
Agreement at any time by destroying all copies of Software.This Agreement will ter-
minate immediately without notice from Sun if you fail to comply with any provision
of this Agreement. Upon Termination, you must destroy all copies of Software.
7. Export Regulations.All Software and technical data delivered under this Agreement
are subject to US export control laws and may be subject to export or import regula-
tions in other countries.You agree to comply strictly with all such laws and regulations
and acknowledge that you have the responsibility to obtain such licenses to export,re-
export, or import as may be required after delivery to you.
8. U.S. Government Restricted Rights. If Software is being acquired by or on behalf
of the U.S. Government or by a U.S. Government prime contractor or subcontractor
(at any tier), then the Government’s rights in Software and accompanying documenta-
tion will be only as set forth in this Agreement; this is in accordance with 48 CFR

16 1089-9 XD 6/26/01 7:42 AM Page 704

705Sun Microsystems, Inc. Binary Code License Agreement

227.7201 through 227.7202-4 (for Department of Defense (DOD) acquisitions) and
with 48 CFR 2.101 and 12.212 (for non-DOD acquisitions).
9. Governing Law.Any action related to this Agreement will be governed by
California law and controlling U.S. federal law. No choice of law rules of any jurisdic-
tion will apply.
10. Severability. If any provision of this Agreement is held to be unenforceable, this
Agreement will remain in effect with the provision omitted, unless omission would
frustrate the intent of the parties, in which case this Agreement will immediately ter-
minate.
11. Integration.This Agreement is the entire agreement between you and Sun relating
to its subject matter. It supersedes all prior or contemporaneous oral or written com-
munications, proposals, representations and warranties and prevails over any conflicting
or additional terms of any quote, order, acknowledgment, or other communication
between the parties relating to its subject matter during the term of this Agreement.
No modification of this Agreement will be binding, unless in writing and signed by an
authorized representative of each party.
For inquiries please contact: Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto,
California 94303
JAVATM 2 SOFTWARE DEVELOPMENT KIT STANDARD EDITION VER-
SION 1.3 SUPPLEMENTAL LICENSE TERMS
These supplemental license terms (“Supplemental Terms”) add to or modify the terms
of the Binary Code License Agreement (collectively, the “Agreement”). Capitalized
terms not defined in these Supplemental Terms shall have the same meanings ascribed
to them in the Agreement.These Supplemental Terms shall supersede any inconsistent
or conflicting terms in the Agreement, or in any license contained within the
Software.
1. Internal Use and Development License Grant. Subject to the terms and conditions
of this Agreement, including, but not limited to, Section 2 (Redistributables) and
Section 4 (Java Technology Restrictions) of these Supplemental Terms, Sun grants you
a non-exclusive, non-transferable, limited license to reproduce the Software for inter-
nal use only for the sole purpose of development of your JavaTM applet and applica-
tion (“Program”), provided that you do not redistribute the Software in whole or in
part, either separately or included with any Program.
2. Redistributables. In addition to the license granted in Paragraph 1above, Sun grants
you a non-exclusive, non-transferable, limited license to reproduce and distribute, only
as part of your separate copy of JAVA(TM) 2 RUNTIME ENVIRONMENT STAN-
DARD EDITION VERSION 1.3 software, those files specifically identified as redis-
tributable in the JAVA(TM) 2 RUNTIME ENVIRONMENT STANDARD
EDITION VERSION 1.3 “README” file (the “Redistributables”) provided that: (a)
you distribute the Redistributables complete and unmodified (unless otherwise speci-
fied in the applicable README file), and only bundled as part of the JavaTM applets
and applications that you develop (the “Programs:); (b) you do not distribute addi-

16 1089-9 XD 6/26/01 7:42 AM Page 705

706 Appendix C Sun Microsystems, Inc. Binary Code License Agreement

tional software intended to supersede any component(s) of the Redistributables; (c)
you do not remove or alter any proprietary legends or notices contained in or on the
Redistributables; (d) you only distribute the Redistributables pursuant to a license
agreement that protects Sun’s interests consistent with the terms contained in the
Agreement, and (e) you agree to defend and indemnify Sun and its licensors from and
against any damages, costs, liabilities, settlement amounts and/or expenses (including
attorneys’ fees) incurred in connection with any claim, lawsuit or action by any third
party that arises or results from the use or distribution of any and all Programs and/or
Software.
3. Separate Distribution License Required.You understand and agree that you must
first obtain a separate license from Sun prior to reproducing or modifying any portion
of the Software other than as provided with respect to Redistributables in Paragraph 2
above.
4. Java Technology Restrictions.You may not modify the Java Platform Interface
(“JPI”, identified as classes contained within the “java” package or any subpackages of
the “java” package), by creating additional classes within the JPI or otherwise causing
the addition to or modification of the classes in the JPI. In the event that you create
an additional class and associated API(s) which (i) extends the functionality of a Java
environment, and (ii) is exposed to third party software developers for the purpose of
developing additional software which invokes such additional API, you must promptly
publish broadly an accurate specification for such API for free use by all developers.
You may not create, or authorize your licensees to create additional classes, interfaces,
or subpackages that are in any way identified as “java”,“javax”,“sun” or similar con-
vention as specified by Sun in any class file naming convention. Refer to the appropri-
ate version of the Java Runtime Environment binary code license (currently located at
http://www.java.sun.com/jdk/index.html) for the availability of runtime code which
may be distributed with Java applets and applications.
5.Trademarks and Logos.You acknowledge and agree as between you and Sun that
Sun owns the Java trademark and all Java-related trademarks, service marks, logos and
other brand designations including the Coffee Cup logo and Duke logo (“Java
Marks”), and you agree to comply with the Sun Trademark and Logo Usage
Requirements currently located at http://www.sun.com/policies/trademarks.Any use
you make of the Java Marks inures to Sun’s benefit.
6. Source Code. Software may contain source code that is provided solely for reference
purposes pursuant to the terms of this Agreement.
7.Termination. Sun may terminate this Agreement immediately should any Software
become, or in Sun’s opinion be likely to become, the subject of a claim of infringe-
ment of a patent, trade secret, copyright or other intellectual property right.
License Agreement: Forte for Java, release 2.0, Community
Edition for All Platforms
To obtain Forte for Java, release 2.0, Community Edition for All Platforms, you must
agree to the software license below.

16 1089-9 XD 6/26/01 7:42 AM Page 706

707Sun Microsystems, Inc. Binary Code License Agreement

Sun Microsystems Inc., Binary Code License Agreement
READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED SUPPLE-
MENTAL LICENSE TERMS (COLLECTIVELY “AGREEMENT”) CAREFULLY
BEFORE OPENING THE SOFTWARE MEDIA PACKAGE. BY OPENING THE
SOFTWARE MEDIA PACKAGE,YOU AGREE TO THE TERMS OF THIS
AGREEMENT. IF YOU ARE ACCESSING THE SOFTWARE ELECTRONI-
CALLY, INDICATE YOUR ACCEPTANCE OF THESE TERMS BY SELECTING
THE “ACCEPT” BUTTON AT THE END OF THIS AGREEMENT. IF YOU DO
NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE UNUSED
SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR, IF THE
SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE “DECLINE”
BUTTON AT THE END OF THIS AGREEMENT.
1. LICENSE TO USE. Sun grants you a non-exclusive and non-transferable license
for the internal use only of the accompanying software and documentation and any
error corrections provided by Sun (collectively “Software”), by the number of users
and the class of computer hardware for which the corresponding fee has been paid.
2. RESTRICTIONS. Software is confidential and copyrighted.Title to Software and
all associated intellectual property rights is retained by Sun and/or its licensors. Except
as specifically authorized in any Supplemental License Terms, you may not make
copies of Software, other than a single copy of Software for archival purposes. Unless
enforcement is prohibited by applicable law, you may not modify, decompile, or reverse
engineer Software.You acknowledge that Software is not designed, licensed or
intended for use in the design, construction, operation or maintenance of any nuclear
facility. Sun disclaims any express or implied warranty of fitness for such uses. No
right, title or interest in or to any trademark, service mark, logo or trade name of Sun
or its licensors is granted under this Agreement.
3. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90) days
from the date of purchase, as evidenced by a copy of the receipt, the media on which
Software is furnished (if any) will be free of defects in materials and workmanship
under normal use. Except for the foregoing, Software is provided “AS IS”.Your exclu-
sive remedy and Sun’s entire liability under this limited warranty will be at Sun’s
option to replace Software media or refund the fee paid for Software.
4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREE-
MENT,ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT
THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
5. LIMITATION OF LIABILITY.TO THE EXTENT NOT PROHIBITED BY
LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY
LOST REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT, CON-
SEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER

16 1089-9 XD 6/26/01 7:42 AM Page 707

708 Appendix C Sun Microsystems, Inc. Binary Code License Agreement

CAUSED REGARDLESS OF THE THEORY OF LIABILITY,ARISING OUT OF
OR RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN
IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In
no event will Sun’s liability to you, whether in contract, tort (including negligence), or
otherwise, exceed the amount paid by you for Software under this Agreement.The
foregoing limitations will apply even if the above stated warranty fails of its essential
purpose.
6.Termination.This Agreement is effective until terminated.You may terminate this
Agreement at any time by destroying all copies of Software.This Agreement will ter-
minate immediately without notice from Sun if you fail to comply with any provision
of this Agreement. Upon Termination, you must destroy all copies of Software.
7. Export Regulations.All Software and technical data delivered under this Agreement
are subject to US export control laws and may be subject to export or import regula-
tions in other countries.You agree to comply strictly with all such laws and regulations
and acknowledge that you have the responsibility to obtain such licenses to export, re-
export, or import as may be required after delivery to you.
8. U.S. Government Restricted Rights. If Software is being acquired by or on behalf
of the U.S. Government or by a U.S. Government prime contractor or subcontractor
(at any tier), then the Government’s rights in Software and accompanying documenta-
tion will be only as set forth in this Agreement; this is in accordance with 48 CFR
227.7201 through 227.7202-4 (for Department of Defense (DOD)acquisitions) and
with 48 CFR 2.101 and 12.212 (for non-DOD acquisitions).
9. Governing Law.Any action related to this Agreement will be governed by
California law and controlling U.S. federal law. No choice of law rules of any jurisdic-
tion will apply.
10. Severability. If any provision of this Agreement is held to be unenforceable, this
Agreement will remain in effect with the provision omitted, unless omission would
frustrate the intent of the parties, in which case this Agreement will immediately ter-
minate.
11. Integration.This Agreement is the entire agreement between you and Sun relating
to its subject matter. It supersedes all prior or contemporaneous oral or written com-
munications, proposals, representations and warranties and prevails over any conflicting
or additional terms of any quote, order, acknowledgment, or other communication
between the parties relating to its subject matter during the term of this Agreement.
No modification of this Agreement will be binding, unless in writing and signed by an
authorized representative of each party.
JAVA(TM) DEVELOPMENT TOOLS FORTE(TM) FOR JAVA(TM), RELEASE
2.0, COMMUNITY EDITION SUPPLEMENTAL LICENSE TERMS
These supplemental license terms (“Supplemental Terms”) add to or modify the terms
of the Binary Code License Agreement (collectively, the “Agreement”). Capitalized
terms not defined in these Supplemental Terms shall have the same meanings ascribed
to them in the Agreement.These Supplemental Terms shall supersede any inconsistent

16 1089-9 XD 6/26/01 7:42 AM Page 708

709Sun Microsystems, Inc. Binary Code License Agreement

or conflicting terms in the Agreement, or in any license contained within the
Software.
1. Software Internal Use and Development License Grant. Subject to the terms and
conditions of this Agreement, including, but not limited to Section 3 (Java(TM)
Technology Restrictions) of these Supplemental Terms, Sun grants you a non-exclu-
sive, non-transferable, limited license to reproduce internally and use internally the
binary form of the Software complete and unmodified for the sole purpose of design-
ing, developing and testing your [Java applets and] applications intended to run on the
Java platform (“Programs”).
2. License to Distribute Redistributables. In addition to the license granted in Section
1 (Redistributables Internal Use and Development License Grant) of these
Supplemental Terms, subject to the terms and conditions of this Agreement, including
but not limited to Section 3 (Java Technology Restrictions) of these Supplemental
Terms, Sun grants you a non-exclusive, non-transferable, limited license to reproduce
and distribute those files specifically identified as redistributable in the Software
“README” file (“Redistributables”) provided that: (i) you distribute the
Redistributables complete and unmodified (unless otherwise specified in the applicable
README file), and only bundled as part of your Programs, (ii) you do not distribute
additional software intended to supersede any component(s) of the Redistributables,
(iii) you do not remove or alter any proprietary legends or notices contained in or on
the Redistributables, (iv) for a particular version of the Java platform, any executable
output generated by a compiler that is contained in the Software must (a) only be
compiled from source code that conforms to the corresponding version of the OEM
Java Language Specification; (b) be in the class file format defined by the correspond-
ing version of the OEM Java Virtual Machine Specification; and (c) execute properly
on a reference runtime, as specified by Sun, associated with such version of the Java
platform, (v) you only distribute the Redistributables pursuant to a license agreement
that protects Sun’s interests consistent with the terms contained in the Agreement, and
(vi) you agree to defend and indemnify Sun and its licensors from and against any
damages, costs, liabilities, settlement amounts and/or expenses (including attorneys’
fees) incurred in connection with any claim, lawsuit or action by any third party that
arises or results from the use or distribution of any and all Programs and/or Software.
3. Java Technology Restrictions.You may not modify the Java Platform Interface
(“JPI”, identified as classes contained within the “java” package or any subpackages of
the “java” package), by creating additional classes within the JPI or otherwise causing
the addition to or modification of the classes in the JPI. In the event that you create
an additional class and associated API(s) which (i) extends the functionality of the Java
platform, and (ii) is exposed to third party software developers for the purpose of
developing additional software which invokes such additional API, you must promptly
publish broadly an accurate specification for such API for free use by all developers.
You may not create, or authorize your licensees to create, additional classes, interfaces,
or subpackages that are in any way identified as “java”,“javax”,“sun” or similar con-

16 1089-9 XD 6/26/01 7:42 AM Page 709

710 Appendix C Sun Microsystems, Inc. Binary Code License Agreement

vention as specified by Sun in any naming convention designation.
4. Java Runtime Availability. Refer to the appropriate version of the Java Runtime
Environment binary code license (currently located at
http://www.java.sun.com/jdk/index.html) for the availability of runtime code which
may be distributed with Java applets and applications.
5.Trademarks and Logos.You acknowledge and agree as between you and Sun that
Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE, STAROFFICE, STARPORTAL
and iPLANET trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, STAROF-
FICE, STARPORTAL and iPLANET-related trademarks, service marks, logos and
other brand designations (“Sun Marks”), and you agree to comply with the Sun
Trademark and Logo Usage Requirements currently located at
http://www.sun.com/policies/trademarks.Any use you make of the Sun Marks
inures to Sun’s benefit.
6. Source Code. Software may contain source code that is provided solely for reference
purposes pursuant to the terms of this Agreement. Source code may not be redistrib-
uted unless expressly provided for in this Agreement.
7.Termination for Infringement. Either party may terminate this Agreement immedi-
ately should any Software become, or in either party’s opinion be likely to become,
the subject of a claim of infringement of any intellectual property right.
For inquiries please contact: Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto,
California 94303
JavaTM Plug-in HTML Converter Version 1.3 Binary Code License
SUN MICROSYSTEMS, INC. (“SUN”) IS WILLING TO LICENSE THE JAVATM
PLUG-IN HTML CONVERTER AND THE ACCOMPANYING DOCUMEN-
TATION INCLUDING AUTHORIZED COPIES OF EACH (THE “SOFT-
WARE”) TO LICENSEE ONLY ON THE CONDITION THAT LICENSEE
ACCEPTS ALL OF THE TERMS IN THIS AGREEMENT. READ THE TERMS
OF THIS AGREEMENT AND ANY PROVIDED SUPPLEMENTAL LICENSE
TERMS (COLLECTIVELY “AGREEMENT”) CAREFULLY BEFORE OPEN-
ING THE SOFTWARE MEDIA PACKAGE. BY OPENING THE SOFTWARE
MEDIA PACKAGE,YOU AGREE TO THE TERMS OF THIS AGREEMENT. IF
YOU ARE ACCESSING THE SOFTWARE ELECTRONICALLY, INDICATE
YOUR ACCEPTANCE OF THESE TERMS BY SELECTING THE “ACCEPT”
BUTTON AT THE END OF THIS AGREEMENT. IF YOU DO NOT AGREE
TO ALL THESE TERMS, PROMPTLY RETURN THE UNUSED SOFTWARE
TO YOUR PLACE OF PURCHASE FOR A REFUND OR, IF THE SOFT-
WARE IS ACCESSED ELECTRONICALLY, SELECT THE “DECLINE” BUT-
TON AT THE END OF THIS AGREEMENT.
1. LICENSE GRANT
(A) License To Use. Licensee is granted a non-exclusive and non-transferable no fee
license to download, install and internally use the binary Software. Licensee may copy
the Software, provided that Licensee reproduces all copyright and other proprietary

16 1089-9 XD 6/26/01 7:42 AM Page 710

711Sun Microsystems, Inc. Binary Code License Agreement

notices that are on the original copy of the Software.
(B) License to Distribute. Licensee is granted a royalty-free right to reproduce and dis-
tribute the Software provided that Licensee: (i) distributes Software complete and
unmodified only as part of Licensee’s value-added applet or application (“Program”),
and for the sole purpose of allowing customers of Licensee to modify HTML pages to
access Sun’s JavaTM Plug-in technology; (ii) does not distribute additional software
intended to replace any component(s) of the Software; (iii) agrees to incorporate the
most current version of the Software that was available 180 days prior to each produc-
tion release of the Program; (iv) does not remove or alter any proprietary legends or
notices contained in the Software; (v) includes the provisions of Sections 1(C), 1(D), 5,
7, 8, 9 in Licensee’s license agreement for the Program; (vi) agrees to indemnify, hold
harmless, and defend Sun and its licensors from and against any claims or lawsuits,
including attorneys’ fees, that arise or result from the use or distribution of the
Program.
(C) Java Platform Interface. Licensee may not modify the Java Platform Interface
(“JPI”, identified as classes contained within the “java” package or any subpackage of
the “java” package), by creating additional classes within the JPI or otherwise causing
the addition to or modification of the classes in the JPI. In the event that Licensee cre-
ates any Java-related API and distributes such API to others for applet or application
development, Licensee must promptly publish broadly, an accurate specification for
such API for free use by all developers of Java-based software.
(D) License Restrictions.The Software is licensed to Licensee only under the terms of
this Agreement, and Sun reserves all rights not expressly granted to Licensee. Licensee
may not use, copy, modify, or transfer the Software, or any copy thereof, except as
expressly provided for in this Agreement. Except as otherwise provided by law for
purposes of decompilation of the Software solely for interoperability, Licensee may not
reverse engineer, disassemble, decompile, or translate the Software, or otherwise
attempt to derive the source code of the Software. Licensee may not rent, lease, loan,
sell, or distribute the Software, or any part of the Software. No right, title, or interest in
or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted
hereunder.
(E) Nuclear Applications Restriction. SOFTWARE IS NOT DESIGNED OR
INTENDED FOR USE IN THE DESIGN, CONSTRUCTION, OPERATION
OR MAINTENANCE OF ANY NUCLEAR FACILITY. SUN DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH USES.
LICENSEE REPRESENTS AND WARRANTS THAT IT WILL NOT USE THE
SOFTWARE FOR SUCH PURPOSES.
2. CONFIDENTIALITY.The Software is the confidential and proprietary informa-
tion of Sun and/or its licensors.The Software is protected by United States copyright
law and international treaty. Unauthorized reproduction or distribution is subject to
civil and criminal penalties. Licensee agrees to take adequate steps to protect the
Software from unauthorized disclosure or use.

16 1089-9 XD 6/26/01 7:42 AM Page 711

712 Appendix C Sun Microsystems, Inc. Binary Code License Agreement

3.TRADEMARKS AND LOGOS.This Agreement does not authorize Licensee to
use any Sun name, trademark, or logo. Licensee acknowledges that Sun owns the Java
trademark and all Java-related trademarks, logos and icons including the Coffee Cup
and Duke (“Java Marks”) and agrees to: (i) comply with the Java Trademark Guidelines
at http://java.sun.com/trademarks.html; (ii) not do anything harmful to or inconsis-
tent with Sun’s rights in the Java Marks; and (iii) assist Sun in protecting those rights,
including assigning to Sun any rights acquired by Licensee in any Java Mark.
4.TERM,TERMINATION AND SURVIVAL
(A) The Agreement shall automatically terminate 180 days after production release of
the next version of the Software by Sun.
(B) Licensee may terminate this Agreement at any time by destroying all copies of the
Software.
(C) This Agreement will immediately terminate without notice if Licensee fails to
comply with any obligation of this Agreement.
(D) Upon termination, Licensee must immediately cease use of and destroy the
Software or, upon request from Sun, return the Software to Sun. (E) The provisions set
forth in paragraphs 1 (D), 2, 5, 7, 8, 9, and 10 will survive termination or expiration of
this Agreement.
5. NO WARRANTY.THE SOFTWARE IS PROVIDED TO LICENSEE “AS IS”.
ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS,AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT,ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.
6. MAINTENANCE AND SUPPORT. Sun has no obligation to provide mainte-
nance or support for the Software under this Agreement.
7. LIMITATION OF DAMAGES.TO THE EXTENT NOT PROHIBITED BY
APPLICABLE LAW, SUN’S AGGREGATE LIABILITY TO LICENSEE OR TO
ANY THIRD PARTY FOR CLAIMS RELATING TO THIS AGREEMENT,
WHETHER FOR BREACH OR IN TORT,WILL BE LIMITED TO THE FEES
PAID BY LICENSEE FOR SOFTWARE WHICH IS THE SUBJECT MATTER
OF THE CLAIMS. IN NO EVENT WILL SUN BE LIABLE FOR ANY INDI-
RECT, PUNITIVE, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGE
IN CONNECTION WITH OR ARISING OUT OF THIS AGREEMENT
(INCLUDING LOSS OF BUSINESS, REVENUE, PROFITS, USE, DATA OR
OTHER ECONOMIC ADVANTAGE), HOWEVER IT ARISES,WHETHER
FOR BREACH OR IN TORT, EVEN IF SUN HAS BEEN PREVIOUSLY
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. LIABILITY FOR DAM-
AGES WILLBE LIMITED AND EXCLUDED, EVEN IF ANY EXCLUSIVE REM-
EDY PROVIDED FOR IN THIS AGREEMENT FAILS OF ITS ESSENTIAL
PURPOSE.

16 1089-9 XD 6/26/01 7:42 AM Page 712

713Sun Microsystems, Inc. Binary Code License Agreement

8. GOVERNMENT USER. Rights in Data: If procured by, or provided to, the U.S.
Government, use, duplication, or disclosure of technical data is subject to restrictions as
set forth in FAR 52.227-14(g)(2), Rights in Data-General (June 1987); and for com-
puter software and computer software documentation, FAR 52-227-19, Commercial
Computer Software-Restricted Rights (June 1987). However, if under DOD, use,
duplication, or disclosure of technical data is subject to DFARS 252.227-7015(b),
Technical Data-Commercial Items (June 1995); and for computer software and com-
puter software documentation, as specified in the license under which the computer
software was procured pursuant to DFARS 227.7202-3(a). Licensee shall not provide
Software nor technical data to any third party, including the U.S. Government, unless
such third party accepts the same restrictions. Licensee is responsible for ensuring that
proper notice is given to all such third parties and that the Software and technical data
are properly marked.
9. EXPORT LAW. Licensee acknowledges and agrees that this Software and/or tech-
nology is subject to the U.S. Export Administration Laws and Regulations. Diversion
of such Software and/or technology contrary to U.S. law is prohibited. Licensee agrees
that none of this Software and/or technology, nor any direct product therefrom, is
being or will be acquired for, shipped, transferred, or reexported, directly or indirectly,
to proscribed or embargoed countries or their nationals, nor be used for nuclear activ-
ities, chemical biological weapons, or missile projects unless authorized by the U.S.
Government. Proscribed countries are set forth in the U.S. Export Administration
Regulations. Countries subject to U.S. embargo are: Cuba, Iran, Iraq, Libya, North
Korea, Syria, and the Sudan.This list is subject to change without further notice from
Sun, and Licensee must comply with the list as it exists in fact. Licensee certifies that it
is not on the U.S. Department of Commerce’s Denied Persons List or affiliated lists or
on the U.S. Department of Treasury’s Specially Designated Nationals List. Licensee
agrees to comply strictly with all U.S. export laws and assumes sole responsibility for
obtaining licenses to export or re-export as may be required. Licensee is responsible
for complying with any applicable local laws and regulations, including but not limited
to, the export and import laws and regulations of other countries.
10. GOVERNING LAW, JURISDICTION AND VENUE.Any action related to this
Agreement shall be governed by California law and controlling U.S. federal law, and
choice of law rules of any jurisdiction shall not apply.The parties agree that any action
shall be brought in the United States District Court for the Northern District of
California or the California Superior Court for the County of Santa Clara, as applica-
ble, and the parties hereby submit exclusively to the personal jurisdiction and venue of
the United States District Court for the Northern District of California and the
California Superior Court of the County of Santa Clara.
11. NO ASSIGNMENT. Neither party may assign or otherwise transfer any of its
rights or obligations under this Agreement, without the prior written consent of the
other party, except that Sun may assign its right to payment and may assign this
Agreement to an affiliated company.

16 1089-9 XD 6/26/01 7:42 AM Page 713

714 Appendix C Sun Microsystems, Inc. Binary Code License Agreement

12. OFFICIAL LANGUAGE.The official text of this Agreement is in the English lan-
guage and any interpretation or construction of this Agreement will be based thereon.
In the event that this Agreement or any documents or notices related to it are trans-
lated into any other language, the English language version will control.
13. ENTIRE AGREEMENT.This Agreement is the entire agreement between you
and Sun relating to its subject matter. It supersedes all prior or contemporaneous oral
or written communications, proposals, representations and warranties and prevails over
any conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term of
this Agreement. No modification of this Agreement will be binding, unless in writing
and signed by an authorized representative of each party.
JavaTM Media Framework (JMF) 2.1.1 Binary Code License Agreement
READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED SUPPLE-
MENTAL LICENSE TERMS (COLLECTIVELY “AGREEMENT”) CAREFULLY
BEFORE OPENING THE SOFTWARE MEDIA PACKAGE. BY OPENING THE
SOFTWARE MEDIA PACKAGE,YOU AGREE TO THE TERMS OF THIS
AGREEMENT. IF YOU ARE ACCESSING THE SOFTWARE ELECTRONI-
CALLY, INDICATE YOUR ACCEPTANCE OF THESE TERMS BY SELECTING
THE “ACCEPT” BUTTON AT THE END OF THIS AGREEMENT. IF YOU DO
NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE UNUSED
SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR, IF THE
SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE “DECLINE”
BUTTON AT THE END OF THIS AGREEMENT.
1. License to Use. Sun Microsystems, Inc. (“Sun”) grants you a non-exclusive and
non-transferable license for the internal use only of the accompanying software and
documentation and any error corrections provided by Sun (collectively “Software”), by
the number of users and the class of computer hardware for which the corresponding
fee has been paid.
2. Restrictions. Software is confidential and copyrighted.Title to Software and all asso-
ciated intellectual property rights is retained by Sun and/or its licensors. Except as
specifically authorized in any Supplemental License Terms, you may not make copies
of Software, other than a single copy of Software for archival purposes. Unless enforce-
ment is prohibited by applicable law, you may not modify, decompile, or reverse engi-
neer Software.You acknowledge that Software is not designed or intended for use in
the design, construction, operation or maintenance of any nuclear facility. Sun dis-
claims any express or implied warranty of fitness for such uses. No right, title or inter-
est in or to any trademark, service mark, logo or trade name of Sun or its licensors is
granted under this Agreement.
3. Limited Warranty. Sun warrants to you that for a period of ninety (90) days from
the date of purchase, as evidenced by a copy of the receipt, the media on which
Software is furnished (if any) will be free of defects in materials and workmanship
under normal use. Except for the foregoing, Software is provided “AS IS”.Your exclu-

16 1089-9 XD 6/26/01 7:42 AM Page 714

715Sun Microsystems, Inc. Binary Code License Agreement

sive remedy and Sun’s entire liability under this limited warranty will be at Sun’s
option to replace Software media or refund the fee paid for Software.
4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREE-
MENT,ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT
THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
5. LIMITATION OF LIABILITY.TO THE EXTENT NOT PROHIBITED BY
LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY
LOST REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT, CON-
SEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED REGARDLESS OF THE THEORY OF LIABILITY,ARISING OUT OF
OR RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN
IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In
no event will Sun’s liability to you, whether in contract, tort (including negligence), or
otherwise, exceed the amount paid by you for Software under this Agreement.The
foregoing limitations will apply even if the above stated warranty fails of its essential
purpose.
6.Termination.This Agreement is effective until terminated.You may terminate this
Agreement at any time by destroying all copies of Software.This Agreement will ter-
minate immediately without notice from Sun if you fail to comply with any provision
of this Agreement. Upon termination, you must destroy all copies of Software.
7. Export Regulations.All Software and technical data delivered under this Agreement
are subject to US export control laws and may be subject to export or import regula-
tions in other countries.You agree to comply strictly with all such laws and regulations
and acknowledge that you have the responsibility to obtain such licenses to export, re-
export, or import as may be required after delivery to you.
8. U.S. Government Restricted Rights. If Software is being acquired by or on behalf
of the U.S.
Government or by a U.S. Government prime contractor or subcontractor (at any tier),
then the Government’s rights in Software and accompanying documentation will be
only as set forth in this Agreement; this is in accordance with 48 C.F.R. 227.7202-4
(for Department of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212
(for non-DOD acquisitions).
9. Governing Law.Any action related to this Agreement will be governed by
California law and controlling U.S. federal law. No choice of law rules of any jurisdic-
tion will apply.
10. Severability. If any provision of this Agreement is held to be unenforceable, this
Agreement will remain in effect with the provision omitted, unless omission would
frustrate the intent of the parties, in which case this Agreement will immediately ter-
minate.

16 1089-9 XD 6/26/01 7:42 AM Page 715

716 Appendix C Sun Microsystems, Inc. Binary Code License Agreement

11. Integration.This Agreement is the entire agreement between you and Sun relating
to its subject matter. It supersedes all prior or contemporaneous oral or written com-
munications, proposals, representations and warranties and prevails over any conflicting
or additional terms of any quote, order, acknowledgment, or other communication
between the parties relating to its subject matter during the term of this Agreement.
No modification of this Agreement will be binding, unless in writing and signed by an
authorized representative of each party.
JavaTM Media Framework (JMF) 2.1.1 Supplemental License Terms
These supplemental license terms (“Supplemental Terms”) add to or modify the terms
of the Binary Code License Agreement (collectively, the “Agreement”). Capitalized
terms not defined in these Supplemental Terms shall have the same meanings ascribed
to them in the Agreement.These Supplemental Terms shall supersede any inconsistent
or conflicting terms in the Agreement, or in any license contained within the
Software.
1. Software Internal Use and Development License Grant. Subject to the terms and
conditions of this Agreement, including, but not limited to Section 3 (Java_
Technology Restrictions) of these Supplemental Terms, Sun grants you a non-exclu-
sive, non-transferable, limited license to reproduce internally and use internally the
binary form of the Software, complete and unmodified, for the sole purpose of design-
ing, developing and testing your Java applets and applications (“Programs”).
2. License to Distribute Software. In addition to the license granted in Section 1
(Software Internal Use and Development License Grant) of these Supplemental Terms,
subject to the terms and conditions of this Agreement, including but not limited to,
Section 3 (Java_ Technology Restrictions) of these Supplemental Terms, Sun grants
you a non-exclusive, non-transferable, limited license to reproduce and distribute the
Software in binary code form only, provided that you:
i. distribute the Software complete and unmodified, except that you may omit those
files specifically identified as “optional” in the Software “README” file, which
include samples, documents, and bin files, or that are removable by using the Software
customizer tool provided, only as part of and for the sole purpose of running your
Program into which the Software is incorporated;
ii. do not distribute additional software intended to replace any components of the
Software;
iii. do not remove or alter any proprietary legends or notices contained in the
Software;
iv. only distribute the Software subject to a license agreement that protects Sun’s inter-
ests consistent with the terms contained in this Agreement; and
v. agree to defend and indemnify Sun and its licensors from and against any damages,
costs, liabilities, settlement amounts or expenses, including attorneys’ fees, incurred in
connection with any claim, lawsuit or action by any third party that arises or results
from the use or distribution of any and all Programs or Software.
3. Java_ Technology Restrictions.You may not modify the Java Platform Interface

16 1089-9 XD 6/26/01 7:42 AM Page 716

717Sun Microsystems, Inc. Binary Code License Agreement

(“JPI”, identified as classes contained within the “java” package or any subpackages of
the “java” package), by creating additional classes within the JPI or otherwise causing
the addition to or modification of the classes in the JPI. In the event that you create
an additional class and associated API’s, which:
i. extends the functionality of the Java platform, and
ii. is exposed to third party software developers for the purpose of developing addi-
tional software which invokes such additional API, you must promptly publish broadly
an accurate specification for such API for free use by all developers.You may not cre-
ate, or authorize your licensees to create additional classes, interfaces, packages or sub-
packages that are in any way identified as “java”,“javax”,“sun” or similar convention as
specified by Sun in any class file naming convention designation.
4. JavaTM Runtime Availability. Refer to the appropriate version of the Java_
Runtime Environment binary code license (currently located at
http://www.java.sun.com/jdk/index.html) for the availability of runtime code which
may be distributed with Java_ applets and applications.
5.Trademarks and Logos.You acknowledge and agree as between you and Sun that
Sun owns the SUN,
SOLARIS, JAVA, JINI, FORTE, STAROFFICE, STARPORTAL and iPLANET
trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, STAROFFICE, STAR-
PORTAL and iPLANET-related trademarks, service marks, logos and other brand des-
ignations (“Sun Marks”), and you agree to comply with the Sun Trademark and Logo
Usage Requirements currently located at http://www.sun.com/policies/trademarks.
Any use you make of the Sun Marks inures to Sun’s benefit.
6. Source Code. Software may contain source code that is provided solely for reference
purposes pursuant to the terms of this Agreement. Source code may not be redistrib-
uted unless expressly provided for in this Agreement.
7.Termination for Infringement. Either party may terminate this Agreement immedi-
ately should any Software become, or in either party’s opinion be likely to become,
the subject of a claim of infringement of any intellectual property right.

16 1089-9 XD 6/26/01 7:42 AM Page 717

16 1089-9 XD 6/26/01 7:42 AM Page 718

Index

A
abnormal outcomes, 215-217
access

beans, properties, 282-284
BonForumStore, 265-266
node, 409-410

accessing Tomcat Servers, 78-79
Actions, 87
Actor-Thing command, 132-133
actorKey attribute, 95
Actors, 87

guests, adding, 258
hosts, adding, 240-245
nicknames. See nicknames
status, 231

searching, 249
actor_leaves_frameset_robot.jsp file, 174-175
add() method, 271-273
addChatNodeAttribute() method, 277
adding

children, 408-409
nonroot nodes, 268

classes, projects, 29
elements, chat, 242-243
guest actors, 258
host actors, chat, 240-242
item markers, chat, 243-245
itemKeys, chat, 245
nodes, 410

ForestHashtable class, 404-409
root nodes, 267
Tomcat,Web applications, 49-53

addNode() method, 399, 405-406
addresses, IP, 79
addToBuffer() method, 273
alogorithms, optimizing, 434
Apache license, 62
Apache Server, applying Tomcat, 38-39
Apache Software Foundation, 35-36

Apache XML project, 61-62
Apache Xalan XSLTProcessor class, 128
Apache Xerces, DOMFilter, 127
Apache XML project, 61-62
API, JSP, 55-57

API Javadocs
Xalan, studying, 71
Xerces parsing XML, 65

applets
actor_leaves_frameset_robot.jsp file, 174-175
BonForumRobot, 120
BonForumRobot Java, 81
host_executes_chat.jsp file, 175
host_executes_chat_controls.jsp file, 176-179
host_executes_chat_frame.jsp file, 179-180
host_executes_chat_robot.jsp file, 181-183
non-applet versions of bonForum, 82
optimizing, 154
technology choices, 5

applications
Apache Software Foundation, 35-36
bonForum

executing, 80-81
frames, 82
installing, 77-80
JSP delays, 81
logs, 85
modifying, 83-84
plug-ins (Sun), 81
style sheets, 85
tables, 82
Tomcat Server availability, 78-79
troubleshooting, 82

BonForumEngine class, 190
BonForumEngine servlet

abnormal outcomes (service() method),
215-217

bonForumCommand (processRequest()
method), 222-223

chat JSPs (processRequest() method),
223-224

chat messages (processRequest() method),
259-260

chat variables (processRequest() method),
225-228

configuring serviceStatus/sessionID
(processRequest() method), 221

entering web applications (service()method),
205-206

forwarding HTTP requests (service()method),
217-219

17 1089-9 Index 6/26/01 8:17 AM Page 719

720 applications

troubleshooting Tomcat, 41-43
user input, 156
user output, 156
XML data storage, 124-125
XML representation, 104-106

XML
Actors,Actions, and Things, 87
cookies, 91-92
data flows, 98-102
formatting, 86
interfaces, 89
JSP, 90-93
lack of UML modeling tools, 88
omitting functionality, 96-97
simplifying, 94-96
tags (JSP), 94
tree diagrams, 90
user interaction, 88
XSLT in, 87

applying
ElixirIDE, 22
IDE, 22
IP addresses, 79
JSP, 92-94
multiple keys to tables, 391-394
Tomcat

Apache Server, 38-39
IIS (Internet Information Server), 38

triple-key values, 388
window command prompts, 20-22
Xalan-Java 2, 132
XSLT, 148

architecture, server-based Web applications,
9-10

attributeExists() method, 425
attributes

actorKey, 95
attributes, 159-160
BonNode class, 389
chatTopic, 147
itemKey, 147
nodeKey, 104
requests, 159
sessions, 157

chatSubject, 167-171
host_executes_chat.jsp file, 175
host_executes_chat_controls.jsp file, 176-179
host_executes_chat_frame.jsp file, 179-180
host_executes_chat_robot.jsp file, 181-183
JSP files, 187-188
vistor_executes_choice.jsp, 165-167

authorization,Tomcat, 164-165
automatic parent node location retrieval,

408-410

“guest executes chat” (processRequest()
method), 246-259

“host executes chat” (processRequest()
method), 229-245

initializing bonForumStore (processRequest()
method), 221-222

invoking processRequest()
(service() method), 214

nicknames (service() method), 208-210
normal requests in Web applications

(service() method), 206
processrequest() method, 219-221
requests for engine control

(service() method), 205
returning serviceStatus (processRequest()

method), 262
service() method, 193-204
servlet-mapped requests (service() method),

211-213
validating session objects (service() method),

207-208
Web application context, 191-192

Java
debugging, 32-33
executing, 30-31

selecting, 7
session-based application information,

134-135
Textpad editor, 84
Web, 58

adding Tomcat to, 49-53
Apache licenses, 37
browsers, 107
comparing Tomcat to Apache Server, 36-37
configuration files, 46-48
contexts, 46
databases, 114-116, 119-124
developing, 49
editing, 50
executing Tomcat, 39-41
files, 163
installing Tomcat, 37-39
interface prototypes, 161-162
JSP-based, 155-163
log files, 44
platform independence, 14
prototyping custom JSP tags, 126-128
restarting Tomcat, 51-53
reviewing technology choices, 6-7
scope, 58
selecting Tomcat, 36
servers, 108
servlet communication, 157-160
states, 108-113
tag libraries, 162
testing, 143

17 1089-9 Index 6/26/01 8:17 AM Page 720

721bonForum

availability,Tomcat Server, 78-79
avoiding parsing and searching, 135-137

B
backgrounds, deleting BonNode class, 390
bandwidth

optimizing, 396
prefetching grandchildren, 395

banning guests, 154
batch files

ElixirIDE, starting, 23
Java, compiling, 30-31

Bean Development Kit, 19
beans

BonForumStore, 263
jsp:useBean, 158
properties, accessing, 282-284

Beans (Java), 94
BeanShell, 24

Xalan, 72-73
Beer (Things element), 87
bonCommand, 165, 201-202

JSP, 116
values, 117-119

bonForum
Actors,Actions, and Things, 87
actor_leaves_frameset_robot.jsp, 174-175
chat elements, searching, 146
chats, viewing, 148-150
databases, initializing, 427, 429
default Web page, 164
ElixirIDE, compiling, 30
entry, 109
folder hierarchy, creating, 24-25
executing, 80-81
ForestHashtable class, 385-387

BonNode class, 388-390, 398-403
design, 391
getGrandChildrenOfNode() method, 395
hasNodeAGrandParent() method, 394
hierarchical data representation, 391
isNodeAChildOfRoot() method, 394
NodeKey class, 387-388, 398-403
objects, 386
tables using multiple keys, 391-394

forum_entry.jsp, 165
forum_login.jsp, 164-165
frames, 82, 143

JSP, 143-145
future of, 151-154
global bonNodes, 408
guests, starting chats, 110-111

host_executes_chat.jsp, 175
host_executes_chat_controls.jsp, 176-179
host_executes_chat_frame.jsp, 179-180
host_executes_chat_robot.jsp, 181-183
implementation, 103

BonForumEngine/BonForumStore, 129
browsers, 107
data as hierarchies, 106
databases, 114-116, 119-124
forwarding from servlets to JSPs, 129-130
JSP documents, 130-131
optimizing speed, 135-137
prototyping custom JSP tags, 126-128
servers, 108
session-based application information, 134-135
states, 108-113
style sheets, 134
synchronizing multiple threads, 137-138
XML data storage, 124-125
XML representation, 104-106
XSLT Transform, 131-133

installing, 77-78, 80
itemKey attribute, 147
JSP

delays, 81
files, 163
interface prototypes, 161-162
servlet communication, 157-160
tag libraries, 162
user input, 156
user output, 156
Web applications, 155-163

JSP documents, viewing, 163-187
JSP files, 187-188
links, 113
login, 109
logs, 85
messages

BonForumRobot, 142
filtering, 145
testing Web applications, 143
viewing, 140-141

modifying, 83-84
non-applet versions, 82
plug-ins, Java (Sun), 81
projects

adding classes, 29
configuring in ElixirIDE, 26-28
creatig in ElixirIDE, 25
default Elixir project settings, 28-29

scrollbar resets, 145
security, 97
style sheets, 85
subjects, viewing, 138-139
tables, 82

17 1089-9 Index 6/26/01 8:17 AM Page 721

722 bonForum

Tomcat server
availability, 78-79
testing, 79

troubleshooting, 82
URL, 109
users, normalizing input, 147
visitors, chats, 110
vistor_executes_choice.jsp, 165-167
vistor_joins_chat_frame.jsp, 184-186
vistor_starts_chat_controls.jsp, 171
vistor_starts_chat_frame.jsp, 167-171
vistor_starts_chat_ready.jsp, 171-173
XML

cookies, 91-92
data flows, 98-102
deleting, 97
interfaces, 89
JSP, 90-93
lack of UML modeling tools, 88
methods, 147
omitting functionality, 96-97
outputting as, 150-151
simplifying, 94-96
tags (JSP), 94
tree diagrams, 90
user interaction, 88
XSLT in, 87

bonForumCommand, 222-223
BonForumEngine

chat methods, invoking, 274-277
class, purpose of, 263-264
dependencies on, 403-404
servlet, 189

abnormal outcomes (service() method),
215-217

bonForumCommand (processRequest()
method), 222-223

chat JSPs (processRequest() method),
223-224

chat messages (processRequest(), 260-262
chat variables (processRequest() method),

225-228
class, 190
configuring serviceStatus/sessionID

(processRequest() method), 221
entering Web applications (service() method),

205-206
forwarding HTTP requests(service() method),

217-219
“guest executes chat”(processRequest()

method), 246-259
“host executes chat” (processRequest()

method), 229-245
initializing bonForumStore (processRequest()

method), 221-222

invoking processRequest()
(service() method), 214

nicknames (service() method), 208-210
normal requests in Web applications

(service() method), 206
processRequest() method, 219-221
requests for engine control

(service() method), 205
service() method, 193, 195-204
servlet-mapped requests (service() method),

211-213
validating session objects (service() method),

207-208
Web application context, 191-192

BonForumRobot applet, 81, 120
caches, 142

BonForumStore class, 129, 262
access, 265-266
beans, 263
constructor, 264
dumping from bonForumXML, 270
initializing, 221-222
initializing bonForumXML, 266-268
invoking chat methods, 274-277
JSP custom tags, 278-281
JSP scriptlets, 281-284
loading bonForumXML, 268-270
modifying XML elements, 271-274
properties, 264-265
properties (bonForumXML), 270
purpose of BonFormEngine class, 263-264

bonForumXML
databases, runtime, 429-432
dumping from, 270
initializing, 266-268
loading, 268-270
properties, 270

BonMakeIt.bat command file, 83
BonNode class, 388-390, 398-399, 401-403
bonNodes, global, 408
branding HTTP sessions, 402
browsable user interface. See BUI
browsers

bonForum chat, 107
Java, controlling, 100
JSP, sending XML, 99
Servlets, sending XML, 99
XML

mapping, 87
passing JSP, 99

BUI (browsable user interface), JSP-based
Web applications, 155-163

files, 163
prototypes, 161-162
servlet communication, 157-160

17 1089-9 Index 6/26/01 8:17 AM Page 722

723chat

tag libraries, 162
user input, 156
user output, 156

Buyer (Actors element), 87
Buys (Actions element), 87

C
caches

BonForumRobot, 142
chat subjects, 409
keys, ForestHashtable class, 398-404
nodeKeyHashtable object, 398-399

calling servlet methods, 126-127
capacity, configuring ForestHashtable, 433
Car (Things element), 87
changeChatActorRating method, 281-282
chat

actor status, 231
bonForum, 110-111

Actors,Actions, and Things, 87
cookies, 91-92
data flows (XML), 98-102
executing, 80-81
files, 163
frames, 82
installing, 77-78, 80
interface prototypes, 161-162
interfaces, 89
JSP, 90-93
JSP delays, 81
JSP-based Web applications, 155-163
lack of UML modeling tools, 88
logs, 85
modifying, 83-84
omitting XML functionality, 96-97
plug-ins (Sun), 81
servlet communication, 157-160
simplifying XML, 94-96
style sheets, 85
tables, 82
tag libraries, 162
tags (JSP), 94
Tomcat Server avaliability, 78-79
tree diagrams, 90
troubleshooting, 82
user input, 156
user interaction, 88
user output, 156
XSLT in XML applications, 87

BonForumEngine
abnormal outcomes (service() method),

215-217
bonForumCommand

(processRequest() method), 222-223

chat JSPs (processRequest() method),
223-224

chat variables (processRequest() method),
225-228

class, 190
configuring serviceStatus/sesisonID

(processRequest() method), 221
entering Web applications (service() method),

205-206
forwarding HTTP requests (service() method),

217-219
initializing BonForumStore (processRequest()

method), 221-222
invoking processRequest()

(service() method), 214
nicknames (service() method), 208-210
normal requests in Web applications (service()

method), 206
processRequest() method, 219-221
requests for engine (service() method), 205
service() method, 193, 195-204
servlet, 189
servlet-mapped requests (service() method),

211-213
validating session objects (service() method),

207-208
Web application context, 191-192

BonForumStore
access, 265-266
beans, 263
class, 262
constructor, 264
dumping from bonForumXML, 270
initializing bonForumXML, 266-268
invoking chat methods, 274-277
JSP custom tags, 278-281
JSP scriptlets, 281-284
loading bonForumXML, 268-270
modifying XML elements, 271-274
properties, 264-265
properties (bonForumXML), 270
purpose of BonForumEngine class, 263-264

caches, 409
elements, adding, 242-243
ForestHashtable class, 385-387

BonNode class, 388-390, 398-403
design, 391
getGrandChildrenOfNode() method, 395
hasNodeAGrandParent() method, 394
hierarchical data representation, 391
isNodeAChildOfRoot() method, 394
NodeKey class, 387-388, 398-403
objects, 386
tables using multiple keys, 391-394

frames, 143
JSP, 143-145

17 1089-9 Index 6/26/01 8:17 AM Page 723

724 chat

guests, 150
exiting, 111
starting, 114

host actors, adding, 240-242
hosts

exiting, 113
starting, 112-114

implementation, 103
BonForumEngine/BonForumStore, 129
browsers, 107
data as hierarchies, 106
databases, 114-116, 119-124
forwarding from servlets to JSPs, 129-130
JSP documents, 130-131
optimizing speed, 135-137
prototyping custom JSP tags, 126-128
servers, 108
session-based application information,

134-135
states, 108-113
style sheets, 134
synchronizing multiple threads, 137-138
XML data storage, 124-125
XML representation, 104-106
XSLT Transform, 131-133

item markers, adding, 243-245
itemKey attribute, 147
itemKeys, adding, 245
joining, 254-259
JSP documents, viewing, 163-187
JSP files, 187-188
messages

BonForumRobot, 142
filtering, 145
refreshing, 141
testing Web applications, 143
viewing, 140-141, 153

passing information between, 251-254
pathNameHashtable object, 401-402
rejoining, 232, 249-250
scavenging old data, 97
scrollbar resets, 145
searching, 146
security, 97
session local data, 141
starting, 139, 235-240
subjects, 153

viewing, 138-139
topics, 153
users, normalizing input, 147
viewing, 148-150
XML, 432

methods, 147
outputting as, 150-151

chat element, 95
chatItem element, 106, 147, 247

chatTopic attribute, 147
CheckInAtEntrance, 202
children

adding, 408-409
nonroot nodes, adding, 268, 399
root nodes, 410

adding, 267
session-visible, 411

ChoiceTag, 128
classes

BonForumEngine, 190
BonForumStore, 262

access, 265-266
beans, 263
constructor, 264
dumping from bonForumXML, 270
initializing bonForumXML, 266-268
invoking chat methods, 274-277
JSP custom tags, 278-281
JSP scriptlets, 281-284
loading bonForumXML, 268-270
modifying XML elements, 271-274
properties, 264-265
properties (bonForumXML), 270
purpose of BonForumEngine class, 263-264

BonNode, 388-390, 398-403
de.tarent.ForestHashtable, 386
ForestHashtable, 125, 385-387

adding nodes, 404, 406-409
bandwidth, 396
BonNode class, 388-390, 398-403
caching keys, 398-404
configuring capacity, 433
data characteristics, 432
deleting nodes, 411, 413-414
design, 391
editing nodes, 414-415
future capabilities, 398
getGrandChildrenOfNode() method, 395
getting as XML, 416-422, 424
hasNodeAGrandParent() method, 394
hierarchical data representation, 391
isNodeAChildOfRoot() method, 394
linking list controls, 396
NodeKey class, 387-388, 398-403
nodes, 398
nonroot nodes, 410-411
objects, 386
prefetching grandchildren, 395
public methods, 424-427
root nodes, 410-411
tables in XML documents, 397
tables using multiple keys, 391-394
usability, 435

Hashtable, 386

17 1089-9 Index 6/26/01 8:17 AM Page 724

725configuring

hierarchy inspectors, 24
HTTPServlet, 99
java.util.Hashtable, 386
NodeKey, 387-388, 398-403
PageContext, 56-57
projects, adding, 29
ServletConfig, 57
ServletContext, 57
TransformTag, 128, 130

classesOutputChatMessagesTag, 128
classesXSLTProcessor, 128
classifying requests, 203-204

service() method, 199-201
CLASSPATH environment, configuring, 17
ClassRoot settings, 26
client-side processing, comparing to

server-side processing, 6
climbing up hierarchies, 396
code. See also tags

Java, scripting JSP, 132
JSP, 150-151
source, compiling, 83

command lines, using Xalan, 73
command-line XSLT development, 149-150
commands

Actor-Thing, 132-133
bonCommand, 165, 201-202
bonCommands, JSP, 116
guests, 153

exiting, 111
hosts, 153

executing, 112
exiting, 112

jsp:forward, 172
three-part, sending to servers, 92-93
Tomcat, 39-41

communication, servlets (JSP-based Web
applications), 157-160

comparisons
client-side processing/server-side processing, 6
Tomcat to Apache Server, 36-37

compatibility, XML and JSP, 74-75
compiling

bonForum, ElixirIDE, 30
IBM samples, 66-67
Java, 19

adding classes, 29
configuring bonForum projects, 26-28
creating bonForum folder hierarchy, 24-25
creating bonForum projects, 25
default Elixir project settings, 28-29
ElixirIDE, 22
IDE, 22
installing ElixirIDE-Lite, 22

plug-in extensions (ElixirIDE), 23-24
starting ElixirIDE, 23
window command prompts, 20-22

Java source code, 83
configuring

bonForum projects
adding classes, 29
default Elixir project settings, 28-29
ElixirIDE, 26-28

CLASSPATH environment, 17
ClassRoot, 26
debuggers, 28
ForestHashtable capacity, 433
HelpPath, 27
IDE, 83
Java 2 SDK, path, 17
JAVA HOME environment variable, 17
keys, 410
logs, 85
NodeKey, 404
Path, 27
servers, editing, 50
serviceStatus, 221

returning, 262
sessionID, 221
SourcePath, 27
timestamps, 388
Tomcat

adding to Web Applications, 49-53
developing Web Applications, 49
environments, 39
files/folders, 44
log files, 44
WAR files, 44-45
Web App folders, 44-45
Web Application contexts, 46
Web Application files, 46, 48

Web applications, 50
restarting, 51-53

WorkRoot, 26
XML

Actors,Actions, and Things, 87
cookies, 91-92
data flows, 98-102
interfaces, 89
JSP, 90-93
lack of UML modeling tools, 88
omitting functionality, 96-97
simplifying, 94-96
tags (JSP), 94
tree diagrams, 90
user interaction, 88
Web applications, 86
XSLT in, 87

17 1089-9 Index 6/26/01 8:17 AM Page 725

726 connections

connections
BonForumEngine class, 190
stateless Web pages,

host_executes_chat_frame.jsp file, 179-180
constructors, BonForumStore, 264
content, BonNode class, 389
context

initalization parameters, 192
PageContext class, 56-57
Web applications, 46

control
requests, 204
requests for engine control, 205

controlling Java, 100
cookies, JSP, 91-92
coordination, BonForumEngine class, 190
countChildren() method, 424
creating XML with JSP, 75
critical resources, 137-138
custom JSP tags, prototyping, 94, 126-128
custom tags

invoking, 278-281
JSP, XSLT, 132-133

D
data flows, XML, 98-102
data storage

ForestHashtable class, 385-387
BonNode class, 388-390, 398-403
design, 391
getGrandChildrenOfNode() method, 395
hasNodeAGrandParent() method, 394
hierarchical data representation, 391
isNodeAChildOfRoot() method, 394
NodeKey class, 387-388, 398-403
objects, 386
tables using mulitple keys, 391-394

persistant (XML), 97
databases

bonForum states, 114-116, 119-124
initializing, 427-429
Java, XML data storage, 124-125
runtime bonForumXML, 429-432
synchronization, 230
XML, synchronization, 247-248

de.tarent.ForestHashtable class, 386
debuggers, configuring, 28
debugging

Java, 32-33
servlets, 85

DecodeServletMappedURI, 203
decreasing ratings, hosts, 113-115

default.xsl style sheet, 151
defaults

Elixir project settings, 28-29
Web pages, 164

DejaNews, 4
delays, JSP, 81
deleteNode() method, 390, 413
deleting

backgrounds (BonNode class), 390
data, protecting from, 152
guests, 154
nodes, ForestHashtable class, 411, 413-414
XML, 97

dependencies, bonForumEngine, 403-404
deployment, descriptors, 191-192
descriptors, deployment, 191-192
design,Web applications

Actors,Actions, and Things, 87
cookies, 91-92
data flows, 98-102
interfaces, 89
JSP, 90-93
lack of UML modeling tools, 88
omitting functionality, 96-97
simplifying, 94-96
tags (JSP), 94
tree diagrams, 90
user interaction, 88
XML, 86
XSLT in XML, 87

development
Bean Development Kit, 19
Jakarta Tomcat, 13-14
Java development environments, 9
platforms,Windows NT 4.0, 8
reviewing choices, 8-14
server-based Web application architecture,

9-10
tools, Java 2 SDK, 19
Web applications, 49

adding Tomcat to, 49-53
reviewing choices, 6

XML, 10-11
Xalan/Xerces, 11-12

XSLT command-line, 149-150
diagrams, trees (XML), 90
distributed applications, BonForumEngine

class, 190
distribution files, unzipping Tomcat, 38
documentation

Java 2 SDK, 17
JSP, 55-57
Tomcat, Servlet API Javadoc, 53
Xalan, 70
Xerces, 64

17 1089-9 Index 6/26/01 8:17 AM Page 726

727entry, bonForum

documents
BonForumEngine, 129
index.html file, 164
JSP, viewing bonForum, 163-187
style sheets, modifying, 85
superdocuments, 106
XML. See also XML

Actors,Actions, and Things, 87
BonForumRobot, 142
browsers, 107
cookies, 91-92
data as hierarchies, 106
data flows, 98-102
data storage, 124-125
databases, 114-116, 119-124
design rules, 86
filtering messages, 145
forwarding from servlets to JSPs, 129-130
frames, 143-145
interfaces, 89
itemKey attribute, 147
JSP, 90-93
JSP documents, 130-131
lack of UML modeling tools, 88
messages, 140-141
methods, 147
normalizing user input, 147
omitting functionality, 96-97
optimizing speed, 135-137
prototyping custom JSP tags, 126-128
representation, 104-106
scrollbar resets, 145
searching chat elements, 146
servers, 108
session-based application information, 134-135
simplifying, 94-96
states, 108-113
style sheets, 134
synchronizing multiple threads, 137-138
tags (JSP), 94
testing Web applications, 143
tree diagrams, 90
troubleshooting, 433
user interaction, 88
viewing subjects, 138-139
XSLT in, 87
XSLT Transform, 131-133

doDeleteNodeRecursive() method, 412
DOM parsers, Xerces, 64
DOMFilter, 127
drilling down hierarchies, 396
dumping bonForumXML, 270
dynamic subject reloading, 154

E
edit() method, 274
editBonNode() method, 274, 415
editing

JSP files, 84
nodes, ForestHashtable class, 414-415
servers, 50
subjects, 154
Web applications, 50

editors,Textpad, 19
elements

Actors,Actions, and Things, 87
BonForumEngine servlet, 191
chat, 95

adding, 242-243
chatItem, 106
ForestHashtable class, 385-387

BonNode class, 388-390, 398-403
design, 391
getGrandChildrenOfNode() method, 395
hasNodeAGrandParent() method, 394
hierarchical data representation, 391
isNodeAChildOfRoot() method, 394
NodeKey class, 387-388, 398-403
objects, 386
tables using multiple keys, 391-394

FORM, 156
HTTP sessions, 410
identity, 95
jsp:plugin, 174
send, 96
session-unique, 136
start, 95
visitor, 95
XML

modifying, 271-274
rapid lookup, 269

ElixirIDE
bonForum projects

configuring, 26-28
creating, 25
default Elixir project settings, 28-29

bonForum.java, compiling, 30
features, 33
Java

debugging, 32-33
executing, 31

encoding, 153
enforcing uniqueness, nodes, 434
entering Web applications, 205-206
entry, bonForum, 109

17 1089-9 Index 6/26/01 8:17 AM Page 727

728 environments

environments
CLASSPATH, configuring, 17
IDE

applying, 22
ElixirIDE, 22
installing ElixirIDE-Lite, 22
plug-in extensions (ElixirIDE), 23-24
starting ElixirIDE, 23

Java 2 platform, 15
development tools, 19
documentation, 17
executing Internet Explorer 5.x, 18
installing SDK, 16-17
reviewing, 18
runtime, 17

Java 2 SDK, paths, 17
Java 2 SDK version 1.3, 9
JAVA HOME variable, configuring, 17
Tomcat, configuring, 39

errors. See also troubleshooting
creating sax parsers, 43
Explorer startup failures, 42
HTTP 400 file not found error, 42
HTTP 500 internal server errors, 41-42
tools.jar not found, 42

events, creating JSP, 90-91
Examples folder,Tomcat, 49
executing

bonForum, 80-82
commands

guests, 111
hosts, 112

Internet Explorer 5.x, Java 2 SDK, 18
Java, 30-31
Tomcat, 39-41

existing chats, rejoining, 232
exiting

chats
guests, 111
hosts, 113

commands
guests, 111
hosts, 112

expanding SDK source files, 28
Explorer, startup failures (Tomcat), 42-43
extensions, Elixir plug-ins, 23-24

F
features, ElixirIDE, 33
filenames

JSP, 117-119
Projects\bonForum\src\

BonForumRobot.java, 482-487

Projects\bonForum\src\bonMakeIt.bat, 481
Projects\bonForum\src\de\tarent\forum\

BonForumEngine.java, 487-515, 517-525
Projects\bonForum\src\de\tarent\forum\

BonForumStore.java, 525-574
Projects\bonForum\src\de\tarent\forum\

BonForumTagExtraInfo.java, 574
Projects\bonForum\src\de\tarent\forum\

BonForumUtils.java, 574-578
Projects\bonForum\src\de\tarent\forum\

BonLogger.java, 578-580
Projects\bonForum\src\de\tarent\forum\

BonNode.java, 580-581
Projects\bonForum\src\de\tarent\forum\

ForestHashtable.java, 581-605
Projects\bonForum\src\de\tarent\forum\

NodeKey.java, 606-607
Projects\bonForum\src\de\tarent\forum\

OutputChatMessages.java, 607-610
Projects\bonForum\src\de\tarent\forum\

OutputDebugInfoTag.java, 610-615
Projects\bonForum\src\de\tarent\forum\

OutputPathNamesTag.java, 615-619
Projects\bonForum\src\de\tarent\forum\

TransformTag.java, 619-625
Projects\bonForum\src\de\tarent\forum\

Xalan1Transformer.java, 625-628
Projects\bonForum\src\de\tarent\forum\

Xalan2Transformer.java, 628-630
TOMCAT_HOME\webapps\bonForum\

docs\bonChatGuests.xsl, 476
TOMCAT_HOME\webapps\bonForum\

docs\bonChatItems.xsl, 474-475
TOMCAT_HOME\webapps\bonForum\

docs\bonChatItemsTEST.html, 475
TOMCAT_HOME\webapps\bonForum\

docs\bonForumIdentityTransform.xml,
478-480

TOMCAT_HOME\webapps\bonForum\
docs\bonForumLinks.xsl, 477

TOMCAT_HOME\webapps\bonForum\
docs\bonForumLinksTEST.html, 478

TOMCAT_HOME\webapps\bonForum\
docs\forums.xml, 477

TOMCAT_HOME\webapps\bonForum\
docs\identity.xsl, 478

TOMCAT_HOME\webapps\bonForum\
docs\xalanTest.bat, 480-481

TOMCAT_HOME\webapps\bonForum\
index.html, 472-474

TOMCAT_HOME\webapps\bonForum\
jsp\forum\actor_leaves_frameset_robot.jsp,
630-631

TOMCAT_HOME\webapps\bonForum\
jsp\forum\bonForum.jsp, 631-633

17 1089-9 Index 6/26/01 8:17 AM Page 728

729filenames

TOMCAT_HOME\webapps\bonForum\
jsp\forum\forum_entry.jsp, 633-635

TOMCAT_HOME\webapps\bonForum\
jsp\forum\forum_error.jsp, 635-637

TOMCAT_HOME\webapps\bonForum\
jsp\forum\forum_error_robot.jsp, 637-638

TOMCAT_HOME\webapps\bonForum\
jsp\forum\forum_login.jsp, 638-639

TOMCAT_HOME\webapps\bonForum\
jsp\forum\forum_login_robot.jsp, 639-640

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_chat_console.jsp,
641-642

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_chat_controls.jsp,
642-646

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_chat_frame.jsp,
646-648

TOMCAT_HOME\webapps\
bonForum\jsp\forum\
guest_executes_chat_ready.jsp, 648

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_chat_robot.jsp,
649-650

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_command.jsp,
650-651

TOMCAT_HOME\webapps\
bonForum\jsp\forum\
guest_executes_command_controls.jsp,
651-652

TOMCAT_HOME\webapps\
bonForum\jsp\forum\
guest_executes_command_frame.jsp, 653

TOMCAT_HOME\webapps\
bonForum\jsp\forum\
guest_executes_command_ready.jsp,
653-654

TOMCAT_HOME\webapps\
bonForum\jsp\forum\
guest_executes_command_robot.jsp,
654-655

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_exits_chat.jsp, 655-656

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_exits_command.jsp, 656

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_decreases_rating.jsp,
656-657

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_executes_chat_console.jsp,
658-659

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_executes_chat_controls.jsp,
659-662

TOMCAT_HOME\webapps\
bonForum\jsp\
forum\host_executes_chat_frame.jsp, 663

TOMCAT_HOME\webapps\
bonForum\jsp\forum\
host_executes_command_controls.jsp,
664-665

TOMCAT_HOME\webapps\
bonForum\jsp\forum\
host_executes_command_frame.jsp, 665-666

TOMCAT_HOME\webapps\
bonForum\jsp\forum\
host_executes_command_ready.jsp, 667

TOMCAT_HOME\webapps\
bonForum\jsp\forum\
host_executes_command_robot.jsp, 668-669

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_exits_chat.jsp, 669

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_exits_command.jsp, 670

TOMCAT_HOME\webapps\
bonForum\jsp\forum\
host_increases_rating.jsp, 670-671

TOMCAT_HOME\webapps\bonForum\
jsp\forum\license.jsp, 671-672

TOMCAT_HOME\webapps\bonForum\
jsp\forum\quest_executes_chat.jsp, 640-641

TOMCAT_HOME\webapps\bonForum
\jsp\forum\system_dumps_xml.jsp, 672-680

TOMCAT_HOME\webapps\bonForum\
jsp\forum\system_executes_command.jsp,
680-684

TOMCAT_HOME\webapps\bonForum\
jsp\forum\system_sets_timeout.jsp, 684-686

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_executes_choice.jsp,
686-688

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_joins_chat.jsp, 688-689

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_joins_chat_controls.jsp,
689-690

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_joins_chat_frame.jsp,
690-692

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_joins_chat_ready.jsp,
692-693

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_joins_chat_robot.jsp,
693-694

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_starts_chat.jsp, 694-695

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_starts_chat_controls.jsp,
695-697

17 1089-9 Index 6/26/01 8:17 AM Page 729

730 filenames

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_starts_chat_frame.jsp,
697-699

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_starts_chat_ready.jsp,
699-700

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_starts_chat_robot.jsp,
700-701

TOMCAT_HOME\webapps\bonForum\
WEB-INF\jsp\bonForum-taglib.tld,
468-471

TOMCAT_HOME\webapps\bonForum\
WEB-INF\web.xml, 465-468

files
actor_leaves_frameset_robot.jsp, 174-175
batch

compiling Java, 30-31
starting ElixirIDE, 23

BonMakeIt.bat command, 83
BonNode.java, 388-390
distribution, unzipping Tomcat, 38
forum_entry.jsp, 165
forum_login.jsp, 164-165
host_executes_chat.jsp, 175
host_executes_chat_controls.jsp, 176-179
host_executes_chat_frame.jsp, 179-180
host_executes_chat_robot.jsp, 181-183
index.html, 164
Java

adding classes, 29
applying window command prompts, 20-22
compiling, 19
configuring bonForum porjects, 26-28
creating bonForum folder hierarchy, 24-25
creating bonForum porjects, 25
default Elixir project settings, 28-29
ElixirIDE, 22
IDE, 22
installing ElixirIDE-Lite, 22
plug-in extensions (ElixirIDE), 23-24
starting ElixirIDE, 23

JSP, 186-187
delays, 81
editing, 84

JSP-based Web applications, 163
logs

creating, 85
Tomcat, 44
troubleshooting, 85

NodeKey.java, 387-388, 398-403
readme, Java 2 SDK, 16
source, expanding SDK, 28
Tomcat, 44

WAR, 44-45
Tomcat configuration, 80

vistor_executes_choice.jsp, 165-167
vistor_joins_chat_frame.jsp, 184-186
vistor_starts_chat_controls.jsp, 171
vistor_starts_chat_frame.jsp, 167-171
vistor_starts_chat_ready.jsp, 171-173
WAR, 18
Web applications, configuring, 46-48
xalan.jar file, 69
xerces.jar file, 63

filling pathNameHashtable object, 402-403
filtering messages, 145
flagging visits, BonNode class, 390
flow, XML data flows, 98-102
folders

Examples,Tomcat, 49
Tomcat, 44

Web App, 44-45
ForestHashtable class, 125, 385-387

adding nodes, 404, 406-409
bandwidth, 396
BonNode class, 388-390, 398-403
caching keys, 398-399, 401-404
configuring capacity, 433
data characteristics, 432
deleting nodes, 411, 413-414
design, 391
editing nodes, 414-415
future capabilities, 398
getGrandChildrenOfNode() method, 395
getting as XML, 416-422, 424
hasNodeAGrandParent() method, 394
hierarchical data representation, 391
isNodeAChildOfRoot() method, 394
linking list controls, 396
NodeKey class, 387-388, 398-403
nodes, 398
nonroot nodes, 410-411
objects, 386
prefetching grandchildren, 395
public methods, 424-427
root nodes, 410-411
tables in XML documents, 397
tables using multiple keys, 391-394
usability, 435

ForestHashtable object, 107
forests, XML, 106
FORM element, 156
formatting

bonForum folder hiearchies, 24-25
logs, 85
NodeKey, 404
timestamps, 388
XML

Actors,Actions, and Things, 87
cookies, 91-92

17 1089-9 Index 6/26/01 8:17 AM Page 730

731hostnames applying instead of IP addresses

data flows, 98-102
interfaces, 89
JSP, 90-93
lack of UML modeling tools, 88
omitting functionality, 96-97
simplifying, 94-96
tags (JSP), 94
tree diagrams, 90
user interaction, 88
Web applications, 86
XSLT in, 87

forms
forum_entry.jsp, 165
HTML, sending XML, 98
vistor_starts_chat_controls.jsp, 171

forums
Java servlets, 54
JSP, 55

forum_entry.jsp file, 165
forum_login.jsp file, 164-165
forwarding

HTTP requests, 217-219
requests, 93
servlets, JSPs, 129-130

frames, 143
bonForum, 82
host_executes_chat_frame.jsp file, 179-180
JSP, 143-145
multipanel GUIs, generating, 98
visitor_starts_chat_controls.jsp, 171
visitor_starts_chat_frame.jsp, 167-171
visitor_starts_chat_ready.jsp, 171-173
vistor_joins_chat_frame.jsp file, 184-186

functionality, omitting XML, 96-97
future capabilities, ForestHashtable

class, 398
future of bonForum project, 151-154

G
generating multipanel GUIs, 98
GET operations, 93
getActorNicknameNodeKey() method,

276-277
getAttributeValue() method, 425-427
getBonForumAttributeValue() method, 277
getBonForumChatItemNodeKey()

method, 276
getBonForumChatNode() method, 277
getBonForumChatNodeKeyKey()

method, 275
getBonNode() method, 413
getChildNodeFromAttributeValue()

method, 424-425

getGrandChildrenOfNode() method, 395
getNextChildOfNonRootNode() method,

422, 424
getNextChildOfNonRootNode

Recursively() method, 421-422
getNextChildOfRootNode() method,

420-421
getNextRootNode() method, 419-420
getXMLForest() method, 390
getXMLTrees() method, 280-281, 417-418
global ForestHandletable root nodes, 407
goal of book, 1-3
grandchildren, prefetching, 395
guest executes chat, 246-259
guests

actors, adding, 258
banning, 154
bonForum, starting chats, 110-111
chats

exiting, 111
starting, 114
viewing, 150

commands, 153
executing, 111
exiting, 111

deleting, 154
hosts, priority over, 153
promoting, 154
rating, 150
viewinf, 154

GUI, generating multipanel, 98
guides,Tomcat, 38

H
hasAtLeastOneChild() method, 414
Hashtable class, 386
HashTable key, 401
hasNodeAGrandParent() method, 394
HelpPath settings, 27
hierarchical data representation,

ForestHashtable class, 391
hierarchies

bonForum chat data as, 106
climbing up, 396
creating bonForum folders, 24-25
drilling down, 396
inspectors, 24

host executes chat, 229-245
host joins chat statement, 95
host node, 95
hostnames applying instead of IP

addresses, 79

17 1089-9 Index 6/26/01 8:17 AM Page 731

732 hosts

hosts
actors, adding, 240-242
chats

exiting, 113
starting, 112-114

commands, 153
executing, 112
exiting, 112

priority over guests, 153
ratings

decreasing, 113, 115
increasing, 115

host_executes_chat.jsp file, 175
host_executes_chat_controls.jsp file, 176-179
host_executes_chat_frame.jsp file, 179-180
host_executes_chat_robot.jsp file, 181-183
House (Things element), 87
how to use book, 4
HTML

actor_leaves_frameset_robot.jsp, 174-175
forms, sending XML from, 98
frames, 143

JSP, 143-145
host_executes_chat.jsp file, 175
host_executes_chat_controls.jsp file, 176-179
host_executes_chat_frame.jsp file, 179-180
host_executes_chat_robot.jsp file, 181-183
viewing, 102
visitor_starts_chat_controls.jsp, 171
visitor_starts_chat_frame.jsp, 167-171
visitor_starts_chat_ready.jsp, 171-173
vistor_executes_choice.jsp, 167
vistor_joins_chat_frame.jsp file, 184-186
XML, mapping, 87

HTTP
BonForumEngine class, 190
requests, forwarding, 217-219
sessions

branding, 402
multiple elements, 410

HTTP 400 file not found error
(Tomcat), 42

HTTP 500 internal server error (Tomcat),
41-42

HttpJspPage, 56
HTTPRequest object, 99
HTTPRequest parameter, 98
HTTPServlet class, 99
HttpServletRequest object, 193
hyperlinks, bonForum, 113

I
IBM samples, compiling and running, 66-67
IDE (integrated development

environment), 19
applying, 22
configuring, 83
ElixirIDE, 22

compiling bonForum, 30
configuring bobForum projects, 26-28
creating bobForum projects, 25
debugging Java, 32-33
default Elixir project settings, 28-29
excuting Java, 31
features, 33
plug-in extensions, 23-24
starting, 23

ElixirIDE-Lite, installing, 22
identity element, 95
identity node, 95
IIS (Internet Information Server), 7

Tomcat, applying, 38
implementation, bonForum, 103

BonForumEngine/BonForumStore, 129
BonForumRobot, 142
browsers, 107
data as heirarchies, 106
databases, 114-116, 119-124
filtering messages, 145
forwarding from servlets to JSPs, 129-130
frames, 143-145
itemKey attribute, 147
JSP documents, 130-131
messages, 140-141
normalizing user input, 147
optimizing speed, 135-137
prototyping custom JSP tags, 126-128
scrollbar resets, 145
searching chat filters, 146
servers, 108
session-based application information,

134-135
states, 108-113
style sheets, 134
synchronizing multiple threads, 137-138
testing Web applications, 143
viewing subjects, 138-139
XML data storage, 124-125
XML methods, 147
XML representation, 104-106
XSLT Transform, 131-133

increasing
hosts, ratings, 113-115
JSP files, 187-188

independence platforms, 14

17 1089-9 Index 6/26/01 8:17 AM Page 732

733Java

initializing
BonForumStore, 221-222
bonForumXML, 266-268
context, parameters, 192
databases, 427, 429
servlets, parameters, 192

input
normlizing, 147
users, JSP-based Web applications, 156

InputSource, 133
inspectors, hierarchies, 24
installing

bonForum, 77-78, 80
Tomcat Server availability, 78-79
troubleshooting, 82

ElixirIDE-Lite, 22
Java 2 SDK, 16-17
Tomcat, 37-39
Tomcat Servers, verifying, 78
Xalan, 68-69

documentation, 70
matching Xalan and Xerces versions, 70
xalan.jar file, 69

Xerces, 62-63
documentation, 64
xerces.jar file, 63

integrated development environment.
See IDE

intention of book, 1-3
interaction, users (XML), 88
interfaces

BUI. See BUI, 155
HttpJspPage, 56
linking list controls, 396
multipanel GUIs, generating, 98
prefetching grandchildren, 395
XML, 89

internationalization, 153
Internet Explorer 5.x, executing Java 2

SDK, 18
Internet Information Server (IIS), 7
invoking

chat methods, 274-277
JSP custom tags, 278-281
JSP scriptlets, 281-284
processRequest(), 214

IP addresses, applying, 79
isGuestInChat() method, 275
isHostInChat() method, 275
isNodeAChildOfRoot() method, 394
itemKey attribute, 147
items

itemKeys, adding, 245
markers, adding, 243-245

Itools, development (Java 2 SDK), 19

J
Jakarta Project Web site, 36
Jakarta Tomcat, 13-14, 36

adding to Web applications, 49-53
Apache licenses, 37
comparing to Apache Server, 36-37
developing Web applications, 49
examples, 49
executing, 39-41
files/folders, 44
installing, 37-39
log files, 44
selecting, 36
troubleshooting, 41-43
WAR files, 44-45
Web App folders, 44-45
Web application configuration files, 46-48
Web application contexts, 46

Java
applets

actor_leaves_frameset_robot.jsp file, 174-175
host_executes_chat.jsp file, 175
host_executes_chat_controls.jsp file, 176-179
host_executes_chat_frame.jsp file, 179-180
host_executes_chat_robot.jsp file, 181-183

Beans, 94
code

scripting, 132
placing in XML, 75

compiling, 19
adding classes, 29
applying window comamnd prompts, 20-22
configuring bonForum projects, 26-28
creating bonForum folder hierarchy, 24-25
creating bonForum projects, 25
default Elixir project settings, 28-29
ElixirIDE, 22
IDE, 22
installing ElixirIDE-Lite, 22
plug-in extensions (ElixirIDE), 23-24
starting ElixirIDE, 23

controlling, 100
databases, XML data storage, 124-125
debugging, 32-33
executing, 30-31
ForestHashtable class, 385-387

BonNode class, 388-390, 398-403
design, 391
getGrandChildrenOfNode() method, 395
hasNodeAGrandParent() method, 394
hierarchical data representation, 391
isNodeAChildOfRoot() method, 394
NodeKey class, 387-388, 398-403
objects, 386
tables using multiple keys, 391-394

17 1089-9 Index 6/26/01 8:17 AM Page 733

734 Java

methods, 115
platform independence, 14
plug-ins, 81

BonForumRobot applet, 81
servlets, 53

adding to Web Applications, 49-53
Apache licenses, 37
comparing to Apache Server, 36-37
developing Web Applications, 49
examples (Tomcat), 49
executing Tomcat, 39-41
files/folders, 44
forums, 54
installing Tomcat, 37-39
log files, 44
resources, 54
selecting Tomcat, 36
sending XML to browsers, 99
Servlet API Javadoc, 53
specifications, 54
troubleshooting Tomcat, 41-43
tutorial, 54
WAR files, 44-45
Web App folders, 44-45
Web Application configuration files, 46-48
Web Application contexts, 46

source code, compiling, 83
Xalan-Java 2, 132

Java 2 platform, 15
SDK

development tools, 19
documentation, 17
executing Internet Explorer 5.x, 18
installing, 16-17
reviewing, 18
runtime environment, 17

Java 2 SDK, expanding source files, 28
Java 2 SDK version 1.3, 9
JAVA HOME environment variable,

configuring, 17
java.util.Hashtable class, 386
JavaServer pages, 120
joining chats, 254-259

bonForum, 110
JSP, 53

actor_leaves_frameset_robot.jsp file, 174-175
and XML, 74-75
bonCommnads, 116
BonForumEngine

abnormal outcomes (service() method),
215-217

bonForumCommand (processRequest()
method), 222-223

chat (processRequest() method), 223-224
chat messages (processRequest() method), 260

chat variables(processRequest() method),
225-228

class, 190
configuring serviceStatus/sessionID

(processRequest() method), 221
entering Web applications (service() method),

205-206
forwarding HTTP requests (service() method),

217-219
“guest executes chat” (processRequest()

method), 246-259
“host executes chat” (processRequest()

method), 229-245
initializing bonForumStore (processRequest()

method), 221-222
invoking processrequest()

(service() method), 214
nicknames (service() method), 208-210
normal requests in Web applications (service()

method), 206
processRequest() method, 219-221
requests for engine control

(service() method), 205
returning serviceStatus (processRequest()

method), 262
servelte-mapped requests (service() method),

211-213
service() method, 193, 195-204
validating session objects (service() method),

207-208
Web application context, 191-192

browsers, sending XML from, 99
code, 150-151
compatibility with XML, 74-75
cookies, viewing, 91-92
creating XML, 75
custom tags, 278-281

XSLT, 132-133
delays, 81
documents, 130-131

viewing bonForum, 163-187
filenames, 117-119
files, 186-187

bonForum, 187-188
editing, 84

forums, 55
forum_entry.jsp file, 165
forum_login.jsp file, 164-165
frames, 143-145

generating multipanel GUIs, 98
host_executes_chat.jsp file, 175
host_executes_chat_controls.jsp file, 176-179
host_executes_chat_frame.jsp file, 179-180
host_executes_chat_robot.jsp file, 181-183
HTML, vieiwng, 102
Jakarta Tomcat, 13-14

17 1089-9 Index 6/26/01 8:17 AM Page 734

735Megginson SAX, SAX parsers

mailing lists, 55
output, XSLT output, 148
overview, 1-3

how to use book, 4
resources, 4-5
technology choices, 5

packages, 55-57
requests, 119-124

forwarding, 93
resources, 54
robot, 120
scriptlets, 281-284
servlets, forwarding, 129-130
specifications, 55
states, 117
tag library, 128
tags, prototyping, 126-128
Tomcat

adding to Web applications, 49-53
Apache licenses, 37
comparing to Apache Server, 36-37
developing Web applications, 49
examples, 49
executing, 39-41
files/folders, 44
installing, 37-39
log files, 44
selecting, 36
troubleshooting, 41-43
WAR files, 44-45
Web App folders, 44-45
Web application configuration files, 46-48
Web application contexts, 46

troubleshooting, 84
tutorials, 55
vistor_executes_choice.jsp file, 165-167
vistor_joins_chat_frame.jsp file, 184-186
vistor_starts_chat_controls.jsp file, 171
vistor_starts_chat_frame.jsp file, 167-171
vistor_starts_chat_ready.jsp file, 171-173
Web applications, 155-163

files, 163
prototypes, 161-162
servlet communication, 157-160
tag libraries, 162
user input, 156
user output, 156

Web pages, sending XML to, 100
XML

applying, 92-93
creating events, 90-91
passing to browsers, 99
tags, 94

jsp:forward command, 172
jsp:plugin element, 174

jsp:useBean, 158
jspService method, 56, 99

K–L
keys

caching, 398-404
configuring, 410
HashTable, 401
ItemKeys, adding, 245
tables, applying mulitple keys, 391-394
triple-key values, applying, 388

languages
internationalization, 153
software, selecting, 7

leaf nodes, 106
libraries

JSP tags, 94, 128, 162
tags, vistor_joins_chat_frame.jsp file, 184-186

licenses, Apache, 37
linking list controls, 396
links, bonForum, 113
list controls, linking, 396
lists

guests, viewing, 150
vistor_starts_chat_controls.jsp, 171
vistor_starts_chat_frame.jsp, 167-171

loading bonForumXML, 268-270
loadXMLSubTreeIntoForestHashtable()

method, 270
local data, 141
locks, thread watchdogs, 154
log files,Tomcat, 44
login

bonForum, 109
forum_login.jsp, 164-165

logs, 85

M
mailing lists, JSP, 55
maintenance, logs, 85
manual,Tomcat, 38
mapping

pathNameHashtable object, 402
servlet-mapped requests, 211-213
servlets, 192
XML, XSLT, 87

markers, adding items, 243-245
matching Xalan and Xerces versions, 70
Megginson SAX, SAX parsers, 67

17 1089-9 Index 6/26/01 8:17 AM Page 735

736 messages

messages
chat, 259-262
filtering, 145
refreshing, 141
viewing, 128, 140-141, 148-150, 153

methods
add(), 271-273
addChatNodeAttribute(), 277
addNOde(), 399, 405-406
addToBuffer(), 273
attributeExists(), 425
changeChatActorRating, 281-282
chat, invoking, 274-277
countChildren(), 424
deleteNode(), 390, 413
doDeleteNodeRecursive(), 412
edit(), 274
editBonNode(), 274, 415
ForestHashtable class, 424-427
getActorNicknameNodeKey(), 276-277
getAttributeValue(), 425-427
getBonForumAttributeValue(), 277
getBonForumChatItemNodeKey(), 276
getBonForumChatNode(), 277
getBonForumChatNodeKeyKey(), 275
getChildNodeFromAttributeValue(), 424-425
getGrandChildrenOfNode(), 395
getNextChildOfNonRootNode(), 422, 424
getNextChildOfNonRootNode

Recursively(), 421-422
getNextChildOfRootNode(), 420-421
getNextRootNode(), 419-420
getXMLForest(), 390
getXMLTrees(), 280-281, 417-418
hasAtLeastOneChild(), 414
hasNodeAGrandParent(), 394
isGuestInChat(), 275
isHostInChat(), 275
isNodeAChildOfRoot(), 394
Java, 115
jspService, 56, 99
moveNode() method , 434
outputForumChatMessages, 140-141
outputForumChatMessages(), 279-280
outputForumPathNames(), 278-279
processRequest(), 219-221

bonForumCommand, 222-223
chat JSPs, 223-224
chat messages, 259-260
chat variables, 225-228
configuring serviceStatus/sessionID, 221
“guest executes chat”, 246-259
“host executes chat”, 229-245
initializing bonForumStore, 221-222
returning serviceStatus, 262

remove(), 273

removeFromBuffer(), 273-274
service, requests, 129
service(), 193, 195-204

entering Web applications, 205-206
nicknames, 208-210
normal requests in Web applications, 206
requests for engine control, 205
servlet-mapped requests, 211-213
validating session objects, 207-208

servlets, calling, 126-127
showDocument, 181
unDoNodeDeletion(), 390
unFlagAllFlaggedElements(), 419
XML, 147

modeling XPATH, 433
models, XML

Actors,Actions, and Things, 87
cookies, 91-92
data flows, 98-102
formatting Web applications, 86
interfaces, 89
JSP, 90-93
lack of UML modeling tools, 88
omitting functionality, 96-97
simplifying, 94-96
tags (JSP), 94
tree diagrams, 90
user interaction, 88
XSLT in, 87

modifying
bonForum, 83-84

logs, 85
style sheets, 85

XML, elements, 271-274
moveNode() method, 434
multiple elements, HTTP sessions, 410
multiple keys, tables, 391-394
multiple threads, synchronizing, 137-138

N
names, BonNode class, 389
newsgroups, 4
nicknames, 208-210
NodeKey, creating, 404
nodeKey attribute, 104
NodeKey class, 387-388, 398-403
nodeKeyHashtable object, 398-399
nodeNameHashtable object, 399
nodes, 398

access, 409-410
adding, 410
enforcing uniqueness, 434

17 1089-9 Index 6/26/01 8:17 AM Page 736

737projects, bonForum

ForestHashtable class
adding, 404, 406-409
deleting, 411, 413-414
editing, 414-415
nonroot, 410-411
root, 410-411

host, 95
identity, 95
leaf, 106
root, adding, 267
sharing, 411
vistor, 95

non-applet versions of bonForum, 82
nonroot nodes

children, adding, 268, 399
ForestHashtable class, 410-411

normal requests in Web applications, 206
normalizing user input, 147
notes, service() method, 197-199

O
objects

ForestHashtable, 107
ForestHashtable class, 386
HTTPRequest, 99
HttpServletRequest, 193
nodeKeyHashtable, 398-399
nodeNameHashtable, 399
pathNameHashtable, 401-403
session, validating, 207-208

omitting XML functionality, 96-97
onForumEngine, pathNameHashtable, 401
operating systems, selecting, 7
optimization

algorithms, 434
applets, 154
bandwidth, 396
ForestHashtable, 385-387

BonNode class, 388-390, 398-403
design, 391
getGrandChildrenOfNode() method, 395
hasNodeAGrandParent() method, 394
hierarchical data representation, 391
isNodeAChildOfRoot() method, 394
NodeKey class, 387-388, 398-399, 401-403
objects, 386
tables using multiple keys, 391-394

speed, 135-137
outcomes, abnormal, 215-217
output

users, JSP-based Web applications, 156
XML, bonForum data as, 150-151
XSLT, including on JSP output, 148

OutputChatMessagesTag class, 128
outputForumChatMessages() method,

140-141, 279-280
outputForumPathNames() method,

278-279
OutputPathNamesTag, 128
overview, 1-3

how to use book, 4
resources, 4-5
technology choices, 5

P
packages, JSP, 55-57
PageContext class, 56-57
pages, scope, 58
parameters

applets
actor_leaves_frameset_robot.jsp files, 174-175
host_executes_chat.jsp files, 175
host_executes_chat_controls.jsp files, 176-179

context, 192
HTTPRequest, 98
requests, 156

bonCommand, 165
servlets, 192

parentNodeKey, 389
parsing, avoiding, 135-137
passing data between JSP files, 187-188
passing information between chats, 251-254
Path settings, 27
pathNameHashtable object, 137, 401-403
paths, configuring Java 2 SDK, 17
persistent data storage, 97
Pizza (Things element), 87
platforms

independence, 14
Java 2, 15

development tools, 19
documentation, 17
executing Internet Explorer 5.x, 18
installing SDK, 16-17
reviewing, 18
runtime environment, 17

selecting, 7
Windows NT 4.0, 8

plug-ins
ElixirIDE, 23-24
Java, 81

projects, bonForum
adding classes, 29
creating in ElixirIDE, 25
configuring in ElixirIDE, 26-28
default Elixir project settings, 28-29

17 1089-9 Index 6/26/01 8:17 AM Page 737

738 POST operation

POST operation, 93
prefetching grandchildren, 395
processing client-side, comparing to

server-side processing, 6
processors, XSLT, 99
ProcessRequest, 203
processRequest() method,

BonForumEngine servlet, 219-221
bonForumCommand, 222-223
chat JSPs, 223-224
chat messages, 260-262
chat variables, 225-228
configuring serviceStatus/sessionID, 221
“guest executes chat,” 246-259
“host executes chat,” 229-245
initializing BonForumStore, 221-222
invoking, 214

Projects\bonForum\src\
BonForumRobot.java, 482-487

Projects\bonForum\src\bonMakeIt.bat, 481
Projects\bonForum\src\de\tarent\forum\

BonForumEngine.java, 487-515, 517-525
Projects\bonForum\src\de\tarent\forum\

BonForumStore.java, 525-574
Projects\bonForum\src\de\tarent\forum\

BonForumTagExtraInfo.java, 574
Projects\bonForum\src\de\tarent\forum\

BonForumUtils.java, 574-578
Projects\bonForum\src\de\tarent\forum\

BonLogger.java, 578-580
Projects\bonForum\src\de\tarent\forum\

BonNode.java, 580-581
Projects\bonForum\src\de\tarent\forum\

ForestHashtable.java, 581-605
Projects\bonForum\src\de\tarent\forum\

NodeKey.java, 606-607
Projects\bonForum\src\de\tarent\forum\

OutputChatMessages.java, 607-610
Projects\bonForum\src\de\tarent\forum\

OutputDebugInfoTag.java, 610-615
Projects\bonForum\src\de\tarent\forum\

OutputPathNamesTag.java, 615-619
Projects\bonForum\src\de\tarent\forum\

TransformTag.java, 619-625
Projects\bonForum\src\de\tarent\forum\

Xalan1Transformer.java, 625-628
Projects\bonForum\src\de\tarent\forum\

Xalan2Transformer.java, 628-630
promoting guests, 154
prompts, applying window command,

20-22

properties
beans, accessing, 282-284
BonForumStore, 264-265
bonForumXML, 270

protecting data from deletion, 152
prototypes, interfaces (JSP-based Web

applications), 161-162
prototyping custom JSP tags, 126-128
pseudocode listings, service() method,

194-197
public methods, ForestHashTable, 424-427
purpose of BonForumEngine class, 263-264

Q–R
qualification, beans (BonForumStore), 263

rapid lookup, XML elements, 269
ratings

guests, 150
hosts, 113-115

readme files, Java 2 SDK, 16
reducing JSP files, 187-188
refreshing messages, 141
rejoining

chats, 249-250
existing chats, 232

reloading dynamic subjects, 154
remove() method, 273
removeFromBuffer() method, 273-274
representation, XML, 104-106
requests

attributes, 159
BonForumEngine, class, 190
chat, 171-173
classification, 203-204
control, 204
engine control, 205
forwarding, 93
HTTP, forwarding, 217-219
JSP, 119-124

forwarding from servlets, 129-130
normal,Web applications, 206
parameters, 156

bonCommand, 165
scope, 58
security, 204
servelt-mapped, 211-213
service method, 129
service() method, classifying, 199-201
URLs, 200-201

resets, scrollbars, 145

17 1089-9 Index 6/26/01 8:17 AM Page 738

739servers

resources, 4-5
critical, 137-138
Java servlets, 54
JSP, 54
scope, 59

restarting Tomcat, 51-53
retrieval

automatic parent node location, 408-410
ForestHashTable as XML, 416-424

returning serviceStatus, 262
reuse

nodes, 409-410
reviewing

development choices, 8-14
Java 2 SDK, 18
technology choices, 6-7

revisions
JSP files, 84
servers, 50
Web applications, 50

robot applets
actor_leaves_frameset_robot.jsp file, 174-175
host_executes_chat_robot.jsp file, 181-183

robot JSP, 120
root nodes. See also nodes

adding, 267
ForestHashtable class, 410-411
global, 410

rules, designing XML, 86
running. See also execution

IBM samples, 66-67
runtime, Java 2 SDK, 17
runtime bonForumXML databases, 429-432

S
samples

of Xalan, 70-71
of Xerces, 65

saving project settings
configuration
projects
saving, 28

SAX parsers, 67
Megginson SAX, 67
Xerces, 64, 67

scavenging
chat data, 97
stale data, 152

scope, 58-59
scripting JSP, Java code, 132
scriptlets, invoking, 281-284
scrollbars, resets, 145

SDK, expanding source files, 28
searching

actor status, 249
avoiding, 135-137
chat elements, 146

security
requests, 204
XML, 97

selecting
chats, 148-150
platforms, 7
software languages, 7
subjects, 138-139
Tomcat, 36
tools, 7
Web servers, 7
Windows NT 4.0, 8

Seller (Actors element), 87
Sells (Actions element), 87
send element, 96
sending

three-part command, servers, 92-93
XML

from browsers to JSP, 99
from browsers to servlets, 99
HTML forms, 98
to Web pages, 100

server-based architecture,Web applications,
9-10

server-side processing, comparing to
client-side processing, 6

servers
Apache, applying Tomcat, 38-39
Apache Software Foundation, 35-36
bonForum chat, 108
editing, 50
IIS, applying Tomcat, 38
Tomcat, 36

adding to Web applications, 49-53
Apache licenses, 37
applying IP addresses, 79
availability, 78
comparing to Apache Server, 36-37
developing Web applications, 49
examples, 49
executing, 39-41
files/folders, 44
installing, 37-39
log files, 44
selecting, 36
testing, 79
troubleshooting, 41-43
verifying installation, 78
WAR files, 44-45
Web App folders, 44-45

17 1089-9 Index 6/26/01 8:17 AM Page 739

740 servers

Web application configuration files, 46-48
Web application contexts folders, 46

Web
Jakarta Tomcat, 13-14
selecting, 7

XML, mapping, 87
servets, mapping, 192
service status

CheckInAtEntrance, 202
DecodeServletMappedURI, 203
ProcessRequest, 203
SystemCommands, 203

service() method, BonForumEngine
servlet, 193, 195-204

abnormal outcomes, 215-217
entering Web applications, 205-206
forwarding HTTP requests, 217-219
invoking processRequest(), 214
nicknames, 208-210
normal requests in Web applications, 206
requests, 129
requests for engine control, 205
servlet-mapped requests, 211-213
validating session objects, 207-208

serviceStatus variable, 199-200
configuring, 221

ServletConfig class, 57
ServletContext class, 57
servlets

BonForumEngine, 189
abnormal outcomes (service() method),

215-217
bonForumCommand (processRequest()

method), 222-223
chat JSPs (processRequest() method),

223-224
chat messages (processRequest() method),

260-262
chat variables (processRequest() method),

225-228
class, 190
configuring serviceStatus/sessionID

(processRequest() method), 221
entering Web applications (service() method),

205-206
forwarding HTTP requests (service() method),

217-219
“guest executes chat” (processRequest()

method), 246-259
“host executes chat” (processRequest()

method), 229-245
initializing bonForumStore (processRequest()

method), 221-222
invoking processRequest()

(service() method), 214

nicknames (service() method), 208-210
normal requests in Web applications

(service() method), 206
processRequest() method, 219-221
requests for engine control

(service() method), 205
service() method, 193, 195-204
servlet-mapped requests (service() method),

211-213
validating session objects (service() method),

207-208
Web application context, 191-192

browsers, sending XML from, 99
communication, JSP-based Web applications,

157-160
debugging, 85
initalization parameters, 192
Jakarta Tomcat, 13-14
Java, 53-54
JSPs, forwarding, 129-130
methods, calling, 126-127
Tomcat

adding to Web applications, 49-53
Apache licenses, 37
comparing to Apache Server, 36-37
developing Web applications, 49
examples, 49
executing, 39-41
files/folders, 44
installing, 37-39
log files, 44
selecting, 36
troubleshooting, 41-43
WAR files, 44-45
Web App folders, 44-45
Web application configuration files, 46-48
Web application contexts, 46

Xalan XSLT, 132
session local data, chats, 141
session-based application information,

134-135
session-unique elements, 136
session-visible children, 411
sessionID, configuring, 221
sessions

attributes, 157, 159-160
chatSubject, 167-171
host_executes_chat.jsp file, 175
host_executes_chat_controls.jsp file, 176-179
host_executes_chat_frame.jsp file, 179-180
host_executes_chat_robot.jsp file, 181-183
JSP files, 187-188
vistor_executes_choice.jsp, 165-167

HTTP, multiple elements, 410
HTTP branding, 402

17 1089-9 Index 6/26/01 8:17 AM Page 740

741tasks, service() method

nodes, sharing, 411
objects, validating, 207-208
scope, 58
stale, tracking, 152

sharing nodes, 411
shells, BeanShell, 24
shortcuts, executing Tomcat, 39-41
showDocument method, 181
software, selecting, 7
source code

Java, compiling, 83
Xalan, studying, 71
Xerces parsing XML, 65-66

source files
Java

applying windw command prompts, 20-22
compiling, 19
creating bonForum folder hierarchy, 24-25
ElixirIDE, 22
IDE, 22
installing ElixirIDE-Lite, 22
plug-in extensins (ElixirIDE), 23-24
starting ElixirIDE, 23

SDK, expanding, 28
SourcePath settings, 27
specifications

Java servlets, 54
JSP, 55

speed, optimizing, 135-137
stale data, scavenging, 152
stale sessions, tracking, 152
standards, XML, 10-11
start element, 95
starting. See also execution

chats, 139, 235-240
bonForum, 110-111
guests, 114
hosts, 112-114

ElixirIDE, 23
startup, troubleshooting Tomcat, 42
stateless Web pages, connecting, 179-180
statements, 95
states

bonForum, bonCommand values, 117-119
bonForum chat, 108-113

databases, 114-116, 119-124
JSP, 117

filenames, 117-119
status, actor, 231

searching, 249
storage, ForestHashtable class, 385-387

BonNode class, 388-390, 398-403
design, 391
getGrandChildrenOfNode() method, 395

hasNodeAGrandParent() method, 394
hierarchical data representation, 391
isNodeAChildOfRoot() method, 394
NodeKey class, 387-388, 398-399, 401-403
objects, 386
tables using multiple keys, 391-394

storing XML data, 124-125
streams, XML, 150-151
strings, XML, 99
studying

API Javadocs
Xalan, 71
Xerces parsing XML, 65

source code
Xalan, 71
Xerces parsing XML, 65-66

style sheets, 134
default.xsl, 151
modifying, 85

subjects, 153
chat, 167-171, 229
dynamic reloading, 154
editing, 154
selecting, 138-139
viewing, 128, 138-139

subtrees, 106
Sun, plug-ins, 81
superdocuments, 106
synchronization

databases, 230
multiple threads, 137-138
threads, 229

XML database, 247-248
system actor functionality, 151
SystemCommands, 203

T
tables

bonForum, 82
multiple keys, 391-394
XML documents, 397

tags
JSP, 94

libraries, 128
prototyping, 126-128
XSLT, 132-133

JSP custom, invoking, 278-281
libraries

JSP-based Web applications, 162
vistor_joins_chat_frame.jsp file, 184-186

XSLT, 128
tasks, service() method, 194

17 1089-9 Index 6/26/01 8:17 AM Page 741

742 technologies

technologies
Xalan, 11-12
Xerces, 11-12

technology choices, 5
reviewing, 6-7

testing
Tomcat Servers, 79
Web applications, 143

Textpad editor, 19, 84
Things, 87
threads

lock watchdog, 154
synchronization, 229
synchronizing, 137-138

three-part commands, sending to servers,
92-93

timestamps, 388
Tomcat, 13-14, 36

adding to Web applications, 49-53
Apache licenses, 37
authorization, 164-165
comparing to Apache Server, 36-37
developing Web applications, 49
examples, 49
executing, 39-41
files/folders, 44
index.html, 164
installing, 37-39
JSP files, 163
log files, 44
restarting, 51-53
selecting, 36
Servlet API Javadoc, 53
troubleshooting, 41-43
user guide, 38
WAR files, 44-45
Web App folders, 44-45
Web application configuration files, 46-48
Web application contexts, 46

Tomcat Server
availability, 78
bonForum

executing, 80-81
frames, 82
installing, 80
JSP delays, 81
logs, 85
modifying, 83-84
plug-ins (Sun), 81
style sheets, 85
tables, 82
troubleshooting, 82

installing, verifying, 78
IP addresses, applying, 79
testing, 79

TOMCAT_HOME\webapps\bonForum\
docs\bonChatGuests.xsl, 476

TOMCAT_HOME\webapps\bonForum\
docs\bonChatItems.xsl, 474-475

TOMCAT_HOME\webapps\bonForum\
docs\bonChatItemsTEST.html, 475

TOMCAT_HOME\webapps\bonForum\
docs\bonForumIdentityTransform.xml,
478-480

TOMCAT_HOME\webapps\bonForum\
docs\bonForumLinks.xsl, 477

TOMCAT_HOME\webapps\bonForum\
docs\bonForumLinksTEST.html, 478

TOMCAT_HOME\webapps\bonForum\
docs\forums.xml, 477

TOMCAT_HOME\webapps\bonForum\
docs\identity.xsl, 478

TOMCAT_HOME\webapps\bonForum\
docs\xalanTest.bat, 480-481

TOMCAT_HOME\webapps\bonForum\
index.html, 472-474

TOMCAT_HOME\webapps\bonForum\
jsp\forum\actor_leaves_frameset_robot.jsp,
630-631

TOMCAT_HOME\webapps\bonForum\
jsp\forum\bonForum.jsp, 631-633

TOMCAT_HOME\webapps\bonForum\
jsp\forum\forum_entry.jsp, 633-635

TOMCAT_HOME\webapps\bonForum\
jsp\forum\forum_error.jsp, 635-637

TOMCAT_HOME\webapps\bonForum\
jsp\forum\forum_error_robot.jsp, 637-638

TOMCAT_HOME\webapps\bonForum\
jsp\forum\forum_login.jsp, 638-639

TOMCAT_HOME\webapps\bonForum\
jsp\forum\forum_login_robot.jsp, 639-640

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_chat_console.jsp,
641-642

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_chat_controls.jsp,
642-646

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_chat_frame.jsp,
646-648

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_chat_ready.jsp,
648

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_chat_robot.jsp,
649-650

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_command.jsp,
650-651

17 1089-9 Index 6/26/01 8:17 AM Page 742

743TransformTag class

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_command_
controls.jsp, 651-652

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_command_
frame.jsp, 653

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_command_
ready.jsp, 653-654

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_executes_command_
robot.jsp, 654-655

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_exits_chat.jsp, 655-656

TOMCAT_HOME\webapps\bonForum\
jsp\forum\guest_exits_command.jsp, 656

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_decreases_rating.jsp,
656-657

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_executes_chat.jsp, 657-658

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_executes_chat_console.jsp,
658-659

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_executes_chat_controls.jsp
, 659-662

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_executes_chat_frame.jsp,
663

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_executes_command_
controls.jsp, 664-665

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_executes_command_
frame.jsp, 665-666

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_executes_command_
ready.jsp, 667

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_executes_command_
robot.jsp, 668-669

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_exits_chat.jsp, 669

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_exits_command.jsp, 670

TOMCAT_HOME\webapps\bonForum\
jsp\forum\host_increases_rating.jsp,
670-671

TOMCAT_HOME\webapps\bonForum\
jsp\forum\license.jsp, 671-672

TOMCAT_HOME\webapps\bonForum\
jsp\forum\quest_executes_chat.jsp,
640-641

TOMCAT_HOME\webapps\bonForum\
jsp\forum\system_dumps_xml.jsp, 672-680

TOMCAT_HOME\webapps\bonForum\
jsp\forum\system_executes_command.jsp,
680-684

TOMCAT_HOME\webapps\bonForum\
jsp\forum\system_sets_timeout.jsp, 684-686

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_executes_choice.jsp,
686-688

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_joins_chat.jsp, 688-689

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_joins_chat_controls.jsp,
689-690

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_joins_chat_frame.jsp,
690-692

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_joins_chat_ready.jsp,
692-693

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_joins_chat_robot.jsp,
693-694

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_starts_chat.jsp, 694-695

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_starts_chat_controls.jsp,
695-697

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_starts_chat_frame.jsp,
697-699

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_starts_chat_ready.jsp,
699-700

TOMCAT_HOME\webapps\bonForum\
jsp\forum\visitor_starts_chat_robot.jsp,
700-701

TOMCAT_HOME\webapps\bonForum\
WEB-INF\jsp\bonForum-taglib.tld,
468-471

TOMCAT_HOME\webapps\bonForum\
WEB-INF\web.xml, 465-468

tools
selecting, 7
Textpad editor, 84
UML modeling, 88

tools.jar file not found (Tomcat), 42
topics, 153

chat, 171, 229
tracking stale sessions, 152
transformation, XSLT, 87
transforming XML using XSLT, Xalan, 70
TransformTag class, 128-130, 133

17 1089-9 Index 6/26/01 8:17 AM Page 743

744 tree diagrams, XML

tree diagrams, XML, 90
trees

ForestHashtable class, 391
XML, 106

triple-key values, applying, 388
troubleshooting, 151

bonForum, 82
JSP, 84
logs, 85
Tomcat, 41-43
XML, documents, 433

tutorials
Java servlets, 54
JSP, 55
Zvon XSL tutorial, 73

U-V
UML, modeling tools, 88
unDoNodeDeletion() method, 390
unFlagAllFlaggedElements() method, 419
uniqueness, enforcing (nodes), 434
unzipping Tomcat distribution files, 38
URLs

bonForum, 109
index.html, 164
requests, 200-201

usability, ForestHashtable class, 435
user guides,Tomcat, 38
users

bonForum
browsers, 107
servers, 108

children, adding, 399
input

JSP-based Web applications, 156
normaliziing, 147

interaction, XML, 88
interfaces. See interfaces
output, JSP-based Web applications, 156
subjects, ediitng, 154
XML, deleting, 97

utilities
textpad editor, 84
UML modeling, 88

validation, session objects, 207-208
values

bonCommand, 117-119
triple-key, applying, 388

variables
chat, 225-228
JAVA HOME environment, configuring, 17
serviceStatus, 199-200

verifying Tomcat Servers, installations, 78
versions, Java 2 SDK, 16
viewing

bonForum, JSP documents, 163-187
chat, 148-150
cookies, JSP, 91-92
guests, 154

chats, 150
HTML, 102
messages, 128, 140-141, 153
subjects, 128

visitor element, 95
visitor node, 95
visitors, bonForum, 110
visits, flagging BonNode class, 390
vistor starts chat statement, 95
vistor_executes_choice.jsp file, 165-167
vistor_joins_chat_frame.jsp file, 184-186
vistor_starts_chat_controls.jsp file, 171
vistor_starts_chat_frame.jsp file, 167-171
vistor_starts_chat_ready.jsp file, 171-173

W
W3C, XML standards, 10-11
WAR files, 18

Tomcat, 44-45
watchdogs, 154
Web

applications. See applications,Web
servers

Jakarta Tomcat, 13-14
selecting, 7

Tomcat Server
availability, 78-79
testing, 79

XML applications
Actors,Actions, and Things, 87
cookies, 91-92
data flows, 98-102
formatting, 86
interfaces, 89
JSP, 90-93
lack of UML modeling tools, 88
omitting functionality, 96-97
simplifying, 94-96
tags (JSP), 94
tree diagrams, 90
user interaction, 88
XSLT in, 87

Web App folders, 44-45
Web applications, reviewing choices, 6

17 1089-9 Index 6/26/01 8:17 AM Page 744

745XML

Web pages
connecting, 179-180
JSP, sending XML, 100

Web sites
Apache, 36
Elixir, 22
Jakarta Project, 36
Textpad editor, 84
W3C, 10

web.xml application deployment descriptor,
191-192

windows, applying command prompts,
20-22

Windows NT 4.0, 8
WorkRoot settings, 26

X – Y – Z
Xalan, 11-12

Apache licenses, 62
Beanshell, 72-73
installing, 68-69

documentation, 70
matching Xalan and Xerces versions, 70
xalan.jar file, 69

samples of, 70-71
servlets, 132
studying API Javadocs, 71
studying source code, 71
transforming XML using XSLT, 70
using from command lines, 73
versus XT and XP, 73

Xalan jar files, 69
Xalan Java 2.0.1, 62
Xalan XSLT processors, 62, 130-131
Xalan-Java 2, 132
Xerces, 11-12

Apache licenses, 62
documenting, 64
DOMFilter, 127
installing, 62-63
matching with Xalan versions, 70
parsing XML, 64

compiling and running IBM samples, 66-67
samples of, 65
studying API Javadocs, 65
studying source code, 65-66

samples of, 65
SAX parsers, 67
versus XT and XP, 73

Xerces JAR file, 63
Xerces Java Parser 2.0, 62
Xerces-J Java class, SAX parsers, 67

XML
bonForumXML

dumping from, 270
initializing, 266-268
loading, 268-270
properties, 270

chats
BonForumEngine/BonForumStore, 129
BonForumRobot, 142
browsers, 107
data as hierarchies, 106
data storage, 124-125
databases, 114-116, 119-124
filtering messages, 145
forwarding from servlets to JSPs, 129-130
frames, 143-145
itemKey attribute, 147
JSP documents, 130-131
messages, 140-141
methods, 147
normalizing user input, 147
optimizing speed, 135-137
prototyping custom JSP tags, 126-128
scrollbar resets, 145
searching, 146
servers, 108
session-based application information, 134-135
states, 108-113
style sheets, 134
synchronizing multiple threads, 137-138
testing Web applications, 143
viewing subjects, 138-139, 148-150
XSLT Transform, 131-133

compatibility with JSP, 74-75
created with JSP, 75
databases, synchronization, 247-248
deleting, 97
documents, troubleshooting, 433
elements

modifying, 271-274
rapid lookup, 269

ForestHashtable class, 385-387
adding nodes, 404-409
bandwidth, 396
BonNode class, 388-390, 398-403
caching keys, 398-399, 401-404
configuring capacity, 433
data characteristics, 432
deleting nodes, 411-414
design, 391
editing nodes, 414-415
future capabilities, 398
getGrandChildrenOfNode() method, 395
getting as, 416-424
hasNodeAGrandParent() method, 394
hierarchical data representation, 391

17 1089-9 Index 6/26/01 8:17 AM Page 745

746 XML

isNodeAChildOfRoot() method, 394
linking list controls, 396
NodeKey class, 387-388, 398-403
nodes, 398
nonroot nodes, 410-411
objects, 386
prefetching grandchildren, 395
public methods, 424-427
root nodes, 410-411
tables in XML documents, 397
tables using multiple keys, 391-394
usability, 435

forests, 106
HTML

sending from forms, 98
viewing, 102

Java, controlling, 100
and JSP, 74-75

passing to browsers, 99
sending from browsers, 99
sending to Web pages, 100

overview, 1-3
how to use book, 4
resources, 4-5
technology choices, 5

parsed by Xerces, 64
compiling and running IBM samples, 66-67
samples of, 65
studying API Javadocs, 65
studying source code, 65-66

placing Java code, 75
representation, 104-106
runtime bonForumXML databases, 429-432
security, 97
servlets, sending from browsers, 99
standards, 10-11
trees, 106

Web applications
Actors,Actions, and Things, 87
cookies, 91-92
data flows, 98-102
formatting, 86
interfaces, 89
JSP, 90-93
lack of UML modeling tools, 88
omitting functionality, 96-97
simplifying, 94-96
tags (JSP), 94
tree diagrams, 90
user interaction, 88
XSLT in, 87

Xalan, 11-12
Xalan transform XML using XSLT, 70
Xerces, 11-12

XP versus Xerces and Xalan, 73
XPATH modeling, 433
XSLT

chats, viewing, 148-150
command-line development, 149-150
JSP

custom tags, 132-133
passing to browsers, 99

output, including on JSP output, 148
overview, 1-3

how to use book, 4
resources, 4-5
technology choices, 5

tags, 128
Transform, 131-133
using to transfrom Xalan with Xalan, 70
XALAN processor, 130-131
XML Web applications, mapping, 87

XSLTProcessor class, 128
XT versus Xerces and Xalan, 73

Zvon XSL tutorial, 73

17 1089-9 Index 6/26/01 8:17 AM Page 746

V
O

I
C

E
S

T

H
A

T

M
A

T
T

E
R

H O W T O C O N T A C T U S

V I S I T O U R W E B S I T E

On our web site, you’ll find information about our other books, authors, tables of
contents, and book errata.You will also find information about book registration
and how to purchase our books, both domestically and internationally.

E M A I L U S

Contact us at: nrfeedback@newriders.com

• If you have comments or questions about this book
• To report errors that you have found in this book
• If you have a book proposal to submit or are interested in writing for New Riders
• If you are an expert in a computer topic or technology and are interested in being a

technical editor who reviews manuscripts for technical accuracy

Contact us at: nreducation@newriders.com

• If you are an instructor from an educational institution who wants to preview
New Riders books for classroom use. Email should include your name, title, school,
department, address, phone number, office days/hours, text in use, and enrollment,
along with your request for desk/examination copies and/or additional information.

Contact us at: nrmedia@newriders.com
• If you are a member of the media who is interested in reviewing copies of New

Riders books. Send your name, mailing address, and email address, along with the
name of the publication or web site you work for.

B U L K P U R C H A S E S / C O R P O R AT E S A L E S

If you are interested in buying 10 or more copies of a title or want to set up an
account for your company to purchase directly from the publisher at a substantial
discount, contact us at 800-382-3419 or email your contact information to
corpsales@pearsontechgroup.com.A sales representative will contact you with
more information.

W R I T E TO U S

New Riders Publishing
201 W. 103rd St.
Indianapolis, IN 46290-1097

C A L L / FA X U S

Toll-free (800) 571-5840
If outside U.S. (317) 581-3500
Ask for New Riders
FA X : (317) 581-4663

W W W . N E W R I D E R S . C O M

W W W . N E W R I D E R S . C O M

XML, XSLT, Java BM 6/26/01 8:19 AM Page 747

ISBN 0735710430
368 pages
US $45.00

ISBN 0735711127
400 pages
US $44.99

ISBN 073571052X
with CD-ROM
330 pages
US $39.99

ISBN 0735710201
1152 pages
US $49.99

ISBN 0735711178
300 pages
US $34.99

XML and SQL Server 2000

John Griffin

XML and SQL Server 2000
enables SQL developers to
understand and work with XML,
the preferred technology for
integrating eBusiness systems.
SQL Server 2000 has added sev-
eral new features that SQL
Server 7 never had that make
working with and generating
XML easier for the developer.
XML and SQL Server 2000 pro-
vides a comprehensive discussion
of SQL Server 2000's XML capa-
bilities.

ebXML:The New
Global Standard for Doing
Business on the Internet

Alan Kotok
David Webber

To create an e-commerce
initiative, managers need to
understand that XML is the
technology that will take them
there. Companies understand
that to achieve a successful
Internet presence their company
needs an e-commerce methodol-
ogy implemented. Many depart-
ment managers (the actual
people who design, build, and
execute the plan) don’t know
where to begin. ebXML will take
them there.

C++ XML

Fabio Arciniegas

The demand for robust solutions
is at an all-time high. Developers
and programmers are asking the
question, “How do I get the
power performance found with
C++ integrated into my web
applications?” Fabio Arciniegas
knows how. He has created the
best way to bring C++ to the
web. Through development with
XML and in this book, he shares
the secrets developers and
programmers worldwide are
searching for.

Inside XML

Steven Holzner

Inside XML is a foundation book
that covers both the Microsoft
and non-Microsoft approach to
XML programming. It covers in
detail the hot aspects of XML,
such as DTD’s vs. XML Schemas,
CSS, XSL, XSLT, XLinks,
XPointers, XHTML,
RDF, CDF, parsing XML in Perl
and Java, and much more.

Advanced Linux
Programming

CodeSourcery, LLC

An in-depth guide to
programming Linux from the
most recognized leaders in the
Open Source community, this
book is the ideal reference for
Linux programmers who are
reasonably skilled in the C
programming language and who
are in need of a book that covers
the Linux C library (glibc).

R E L A T E D N E W R I D E R S T I T L E S

Inside XSLT

Inside XSLT is designed to be a
companion guide to the highly
succesful Inside XML. This exam-
ple oriented book covers XML to
HTML, XML to Music, XML with
Java, style sheet creation and
usage, nodes and attributes, sort-
ing data, creating Xpath expres-
sions, using Xpath and XSLT
functions, namespaces, names
templates, name variables,
designing style sheets and using
XSLT processor API's, the 56
XSL formatting objects, the XSLT
DTD, and much much more.

ISBN 0735711364
640 pages
US $49.99

XML, XSLT, Java BM 6/26/01 8:19 AM Page 748

New Riders has partnered with

InformIT.com to bring technical

information to your desktop.

Drawing on New Riders authors

and reviewers to provide additional

information on topics you’re

interested in, InformIT.com has

free, in-depth information you

won’t find anywhere else.

As an InformIT partner, New Riders
has shared the wisdom and knowledge
of our authors with you online.
Visit InformIT.com to see what
you’re missing.

Solutions from experts you know and trust.

www.informit.com

www.informit.com � www.newriders.com

OPERATING SYSTEMS

WEB DEVELOPMENT

PROGRAMMING

NETWORKING

CERTIFICATION

AND MORE…

Expert Access.
Free Content.

� Master the skills you need,
when you need them

� Call on resources from
some of the best minds in
the industry

� Get answers when you need
them, using InformIT’s
comprehensive library or
live experts online

� Go above and beyond what
you find in New Riders
books, extending your
knowledge

XML, XSLT, Java BM 6/26/01 8:19 AM Page 749

Colophon
The image on the cover of this book, captured by photographer Ian Cartwright, is that of the
Ruins of Masada, situated on top of a twenty-three acre mesa ten miles south of Ein Gedi and a
couple miles off the west shore of the Dead Sea. While accounts of its origination vary, consensus
suggests it was first established by “Jonathan the High Priest” as a royal retreat during the second
century BC. It would later be occupied by Herod the Great who used it both as a retreat and
place to escape attack by either Cleopatra of Egypt, or the Jewish people.

Herod is said to have transformed this refuge into a luxurious fortress. His improvements included
two palaces, Roman style bathhouses, administrative buildings, villas, storehouses, a sophisticated
water system, and defensive structures. Historical accounts suggest that after Herod’s death in 4
BC, Masada fell under Roman occupation until about 66 AD at which time it came under attack
during a Jewish Revolt. It is believed the Zealots fought against Rome for three years at Masada
and ultimately chose mass suicide over surrender to the Romans.Today Masada is considered a
symbol of Jewish freedom and is frequently visited by Israeli school children who study its history
as part of their curriculum. It is one of Israel’s most popular tourist attractions.

This book was written and edited in Microsoft Word, and laid out in QuarkXPress.The font used
for the body text is Bembo and MCPdigital. It was printed on 50# Husky Offset Smooth paper at
R.R. Donnelley & Sons in Crawfordsville, Indiana. Prepress consisted of PostScript computer-to-
plate technology (filmless process).The cover was printed at Moore Langen Printing in Terre
Haute, Indiana, on Carolina, coated on one side.

XML, XSLT, Java BM 6/26/01 8:19 AM Page 750

