
SG24-2109-01

International Technical Support Organization

http://www.redbooks.ibm.com

Java 2 Network Security

Marco Pistoia, Duane F. Reller
Deepak Gupta, Milind Nagnur, Ashok K. Ramani

Java 2 Network Security

Marco Pistoia, Duane F. Reller
Deepak Gupta, Milind Nagnur, Ashok K. Ramani

Foreward by Li Gong
Distinguished Engineer and Chief Java Security Architect
Sun Microsystems, Inc.

June 1999

SG24-2109-01

International Technical Support Organization

© Copyright International Business Machines Corporation 1997 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Second Edition (June 1999)

This edition applies to Java 2 SDK, Standard Edition, V 1.2.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix F, “Special Notices” on page 659.

Take Note!

Foreword

As the person who led the JavaSoft team that developed the Java security
technology discussed in this book, it is extremely gratifying to see people
spend their precious time writing about our technology and products. Every
engineer’s dream is to have his or her technology deployed and used by
thousands of others, and this book is a great help to Java developers who
write security-aware applications.

Security is a difficult subject to write about. On the one hand, security is in
people’s daily consciousness so that it appears easy to get across (to the
reader) some of the basic concepts. On the other hand, security applied to
computer and networking is often subtle and unexpected. Security also is
pervasive in that it touches all aspects of the computing technology, including
hardware, software, operating system, software libraries, communication
software, networking infrastructure, application software, user interface, and
management software. In order to understand security in any situation, one
has to understand the entire system under consideration as well as each
individual component so that one can identity their strengths and weaknesses
and design the appropriate solutions.

Java security is one of the more recent additions to the family of security
technologies. Ever since Sun Microsystems announced Java technology in
the spring of 1995, there has been strong and growing interest (in industry,
research laboratories, and academia) around the security of the Java platform
as well as new security issues raised by the deployment of Java technology.

Such close attention being paid to security is almost unprecedented in that
new computing technologies normally ignore security considerations when
they emerge initially. Most of them remain unsecured forever. In the few cases
where efforts are made to secure them later, the efforts are typically not very
successful because retrofitting security is usually very difficult, if possible at
all, and often causes backward compatibility problems.

Therefore, it is extremely fortunate that the Java technology had security as a
primary design goal from the very beginning. (Hats off to the original Java
development team. I joined JavaSoft only in 1996.) Although the initial
security model was very simplistic, it enabled later improvements in the
security architecture.

The Java language is a general-purpose object-oriented programming
language and is specifically designed to be platform independent so that
application developers can write a program once and then run it securely
© Copyright IBM Corp. 1999 3

everywhere on the Internet. To achieve this platform independence, a Java
program is compiled to a bytecode instruction set and binary format defined
in the Java Virtual Machine Specification. The Java platform consists of the
Java language and its associated tools (such as compilers), together with the
Java Virtual Machine (JVM) and its associated libraries that define a rich set
of application programming interfaces (APIs).

Security for the Java platform has multiple layers. First of all, the Java
language is strongly typed and does not include any unsafe constructs, such
as array accesses without index checking, because such unsafe constructs
may result in unspecified and unpredictable program behavior that can lead to
security compromises. Type safety is checked both at the time a piece of
bytecode is loaded into the JVM and throughout the lifetime of the bytecode
(that is, during run time) until it is no longer used and garbage collected.
Second, mechanisms (for example, class loaders) are in place to ensure a
sufficient degree of separation between multiple Java programs so that they
do not interfere with each other in undesirable ways.

Third, access to crucial system resources is mediated by the JVM. A security
manager is installed to deny all requests for unauthorized access. The access
control model, in the initial release of the Java Development Kit (JDK 1.0),
was to grant full access to local code (that is, trust such code and let it do
anything it wants) and to grant very restricted access to code loaded over the
network because such code (often referred to as applets) may not be trusted.
JDK 1.1 introduced a notion of trusted applets and granted full access to
these applets. The latest release, JDK 1.2 (also called Java 2), incorporates a
new security architecture that supports policy-driven, fine-grained, flexible,
and extensible access control. (For design rationales of this architecture, as
well as difficulties and subtleties we encountered during JDK 1.2
development, please refer to my book Inside Java 2 Platform Security.)

On top of type safety and access control, there are the Java Cryptography
Architecture (implemented in JDK 1.2 and in the Java Cryptography
Extension 1.2), support for secure communication (the Java Secure Socket
Extension), and a framework for user-based authentication and access
control (the Java Authentication and Authorization Service). These
technologies are at various stages in the development and release cycle.
Finally, applications can provide their own specific security features and can
customize security features that are built into the Java platform.

Our colleagues at IBM, among other industrial partners, have been closely
involved with the recent development of Java security technology. They have
supported our efforts in many ways, and have provided excellent technical
suggestions. This latest book from IBM is a comprehensive guidebook that
4 Java 2 Network Security

provides the programmer/reader with well-organized details of the Java
security APIs and their usage. The book is also broad in its coverage of the
wider security context and related issues.

I am very excited to see such a good book being published on Java security. It
will contribute greatly toward making the Java platform the most popular
deployment environment for secure computing.

Li Gong
Distinguished Engineer and Chief Java Security Architect
Sun Microsystems
Cupertino, California

May 1999
 5

6 Java 2 Network Security

Contents

Foreword . 3

Preface . xvii
The Team That Wrote This Redbook . xvii
Comments Welcome . xix

Part 1. Introduction to Java and Security . 1

Chapter 1. An Overview of Java and Security . 3
1.1 Java Is Not Just a Language . 3
1.2 What Java Does . 3
1.3 Java Is Not an Island: Java as a Part of Security 5

1.3.1 Safety and Security . 7
1.3.2 Java as an Aid to Security . 8
1.3.3 Java as a Threat to Security . 9
1.3.4 Writing Secure Java . 10
1.3.5 Staying One Jump Ahead . 11
1.3.6 The Vigilant Web Site . 12

1.4 Understanding Java 2 Security . 12
1.4.1 An Example of Applet Security in Java 2 14
1.4.2 An Example of Application Security in Java 2 26

1.5 Summary . 33

Chapter 2. Attack and Defense . 35
2.1 Components of Java . 35

2.1.1 The Development Environment. 36
2.1.2 The Execution Environment . 44
2.1.3 Interfaces and Architectures . 50

2.2 Java 2 and Cryptography . 53
2.2.1 Cryptographic Tools in Brief . 54
2.2.2 Java Cryptography Architecture . 56
2.2.3 United States Export Rules for Encryption 57
2.2.4 Signed Code. 58
2.2.5 The Other Side of the Coin – Access Control 59

2.3 Attacking the World of Java . 59
2.3.1 Perils in the Life of Remote Code . 59
2.3.2 Vulnerabilities in Java Applications . 66

2.4 Summary . 68

Chapter 3. The New Java Security Model . 69
3.1 The Need for Java Security . 69
© Copyright IBM Corp. 1997 1999 vii

3.2 Evolution of the Java Security Model . 70
3.2.1 The JDK 1.0 Sandbox Security Model . 70
3.2.2 The Concept of Trusted Code in JDK 1.1 72
3.2.3 The Fine-Grained Access Control of Java 2 74
3.2.4 A Comparison of the Three Java Security Models 78

3.3 Java 2 Protection Domain and Permissions Model 80
3.4 New Class Search Path . 83

3.4.1 Boot Class Path . 84
3.4.2 Extensions Framework . 86
3.4.3 Application Class Path . 88
3.4.4 Class Search Paths in Summary . 89

3.5 Java 2 Class Loading Mechanism . 89
3.5.1 Run-Time Access Controls . 91

3.6 The Policy File . 93
3.6.1 The Default System-Wide Policy File . 96

3.7 Security Manager vs Access Controller . 98
3.8 Security Management with Java 2 . 98

3.8.1 Applying a Security Manager to Applets and Applications. 99
3.8.2 Applying a User-Defined Security Policy 99
3.8.3 Java Security Debugging . 100

3.9 Summary . 106

Part 2. Under the Hood . 107

Chapter 4. The Java Virtual Machine. 109
4.1 The Java Virtual Machine, Close Up. 109

4.1.1 The Class Loader . 110
4.1.2 The Class File Verifier . 112
4.1.3 The Heap . 112
4.1.4 The Class Area. 112
4.1.5 The Native Method Loader . 113
4.1.6 The Security Manager . 113
4.1.7 The Execution Engine. 113
4.1.8 Just-in-Time Compilers . 113

4.2 Summary . 115

Chapter 5. Class Files in Java 2 . 117
5.1 The Traditional Development Life Cycle . 117
5.2 The Java Development Life Cycle . 119
5.3 The Java 2 Class File Format . 124

5.3.1 Decompilation Attacks . 126
5.4 The Constant Pool . 129

5.4.1 Beating the Decompilation Threat . 134
viii Java 2 Network Security

5.5 Java Bytecode . 136
5.5.1 A Bytecode Example . 136

Chapter 6. The Class Loader and Class File Verifier 145
6.1 Class Loaders . 145

6.1.1 Loading Classes from Trusted Sources 146
6.1.2 Loading Classes from Untrusted Sources 147
6.1.3 Beyond What the JVM Provides . 148
6.1.4 The Class Loading Process . 150
6.1.5 Should You Build Your Own Class Loader 155

6.2 The Class File Verifier . 168
6.2.1 An Example of Class File Verification . 169
6.2.2 The Duties of the Class File Verifier . 175
6.2.3 The Four Passes of the Class File Verifier 176

6.3 The Bytecode Verifier in Detail . 180
6.3.1 The Data Flow Analyzer . 181

6.4 An Incompleteness Theorem for Bytecode Verifiers 183
6.5 Summary . 184

Chapter 7. The Java 2 SecurityManager . 187
7.1 What SecurityManager Does . 187
7.2 Operation of the Security Manager . 190

7.2.1 Interdependence of the Three JVM Security Elements 192
7.3 Attacking the Defenses of Java . 192

7.3.1 Types of Attack. 193
7.3.2 Malicious Applets . 195

7.4 Avoiding Security Hazards . 204
7.4.1 How to Test . 205

7.5 Examples of Security Manager Extensions . 206
7.5.1 First Example – Overriding checkWrite(). 206
7.5.2 Second Example – Overriding checkPermission(). 211
7.5.3 Third Example – Overriding checkRead() and checkWrite() . . . 218

7.6 Summary . 224

Chapter 8. Security Configuration Files in the Java 2 SDK 225
8.1 A Note on java.home and the JRE Installation Directory 225
8.2 Keystores . 230

8.2.1 The Certificates KeyStore File cacerts 233
8.3 The Security Properties File, java.security . 234
8.4 Security Policy Files . 242

8.4.1 keystore Entry . 242
8.4.2 grant Entries . 243

8.5 An Example of Security Settings in the Java 2 Platform 248
8.5.1 The Count Application Source Code . 248
 ix

8.5.2 A Sample Text File . 249
8.5.3 Compiling the Application . 249
8.5.4 Running the Application without a Security Manager 250
8.5.5 Running the Application with the Default Security Manager . . . 250
8.5.6 Policy File Modification . 250

8.6 File Read Access to Files in the Code Base URL Directory 252
8.7 Security Properties and Policy File Protection 252
8.8 How to Implement a Policy Server . 252

Chapter 9. Java 2 SDK Security Tools. 259
9.1 Key and Certificate Management Tool . 259

9.1.1 keytool Syntax . 259
9.1.2 Store and Private Key Password . 261
9.1.3 Commands and Options Associated with keytool 262
9.1.4 An Example of keytool Usage . 269

9.2 Java Archive Tool. 270
9.2.1 Options of the jar Command . 271
9.2.2 Running a JAR File. 274

9.3 JAR Signing and Verification Tool . 275
9.3.1 jarsigner Scenario . 280
9.3.2 Observations on the jarsigner Verification Process 284
9.3.3 Tampering with a Signed JAR File . 286

9.4 Policy File Creation and Management Tool 288
9.4.1 Observations on the Use of the Policy Tool 295

Chapter 10. Security APIs in Java 2 . 297
10.1 The Package java.security . 297

10.1.1 Principals . 297
10.1.2 Guard Interface and GuardedObject Class 298
10.1.3 Providers . 299
10.1.4 The Security Class . 301
10.1.5 Access Control APIs . 304
10.1.6 Key Management . 305
10.1.7 Message Digests and DIgital Signatures. 311
10.1.8 Secure Random Number Generation 316
10.1.9 The SignedObject Class . 316
10.1.10 Permission APIs . 317
10.1.11 Code Source . 318
10.1.12 Protection Domain . 321
10.1.13 Policy . 321
10.1.14 Secure Class Loader . 322
10.1.15 Algorithm Parameters . 322

10.2 The Package java.security.spec . 322
x Java 2 Network Security

10.3 The Package java.security.cert. 323
10.4 Package java.security.interfaces . 324
10.5 The Package java.security.acl . 324
10.6 Examples Using the Java 2 Security APIs 325

10.6.1 Signature and Signature Verification. 325
10.6.2 Using Keystores . 332

10.7 The Permission Classes . 339
10.7.1 How to Create New Permissions. 344
10.7.2 Working with Signed Permissions . 348

10.8 How to Write Privileged Code . 350
10.8.1 First Case – No Return Value, No Exception Thrown 351
10.8.2 Second Case – Return Value, No Exception Thrown 352
10.8.3 Third Case – Return Value, Exception Thrown 353
10.8.4 Accessing Local Variables . 353
10.8.5 An Example of Privileged Blocks Usage 354
10.8.6 General Recommendations on Using the Privileged Blocks . . 358

Chapter 11. The Java Plug-In . 359
11.1 Main Features of Java Plug-In . 360
11.2 What Does the Java Plug-In Do? . 364
11.3 Java Plug-In HTML Changes . 364

11.3.1 Changes Supported by Navigator . 364
11.3.2 Changes Supported by Internet Explorer 365
11.3.3 Changes Supported by Both Navigator and Internet Explorer . 366
11.3.4 All the Web Browsers . 367
11.3.5 Java Plug-in Software HTML Converter 369

11.4 Java Plug-In Control Panel . 370
11.4.1 The Basic Panel . 370
11.4.2 The Advanced Panel . 371
11.4.3 The Proxies Panel . 373

11.5 Java Plug-In Security Scenario. 374
11.5.1 First Step – Without Using the Java Plug-in 374
11.5.2 Second Step – Using the Java Plug-in 377

Chapter 12. Java Gets Out of Its Box . 385
12.1 JAR Files and Applet Signing . 385

12.1.1 Manifest File . 387
12.1.2 Signature File . 392
12.1.3 Signature Block File . 392

12.2 Signed Code Scenario in JDK 1.1 and Sun HotJava. 393
12.2.1 Creating the CA Key Database . 393
12.2.2 Creating the Server Key Database . 395
12.2.3 Creating and Signing a JAR File . 397
 xi

12.2.4 Running the Applet . 399
12.2.5 Creating the Client Key Database . 399

12.3 Signed Code Scenario in Java 2 SDK, Standard Edition, V1.2 400
12.3.1 Creating a Keystore for Certification Authorities 401
12.3.2 Creating the Server Certificate . 402
12.3.3 Creating and Signing a JAR file . 406
12.3.4 Granting the Permissions and Running the Applet 407

12.4 Signed Code Scenario in Netscape Communicator. 409
12.4.1 Using the netscape.security Package 410
12.4.2 Installing Keys and Certificates in Netscape Communicator . . 415
12.4.3 Signing JAR Files with Netscape Signing Tool 418

12.5 Signed Code Scenario in Microsoft Internet Explorer 437
12.5.1 First Example with Signed CAB Files 438
12.5.2 A More Complex Signed CAB File Example 450

12.6 The JAR Bug – Fixed In Java 2 SDK, Standard Edition, V1.2.1 . . . 461
12.6.1 The Solution in Java 2 SDK, Standard Edition, V1.2.1 470

12.7 Future Developments . 470

Part 3. Beyond the Island of Java – Surfing into the Unknown 473

Chapter 13. Cryptography in Java 2 . 475
13.1 Security Questions, Cryptographic Answers 475

13.1.1 Public Key Certificates . 478
13.2 The Java Cryptography Architecture Framework 480

13.2.1 JCE and United States Export Considerations 481
13.2.2 Relationship between Java 2 SDK, JCA and JCE APIs. 482

13.3 JCA Terms and Definitions . 483
13.3.1 The Provider Concept in the JCA . 485
13.3.2 Engine Classes . 487
13.3.3 Algorithms . 489

13.4 Java Cryptography Extension . 493
13.4.1 JCE – Packages and Their Contents 493
13.4.2 The Cipher Class . 495
13.4.3 The Cipher Stream Classes . 495
13.4.4 Secret Key Interfaces and Classes . 495
13.4.5 The KeyGenerator Class . 495
13.4.6 The KeyAgreement Class . 496
13.4.7 The SealedObject Class . 496

13.5 Java Cryptography in Practice . 496
13.5.1 First Scenario . 496
13.5.2 Second Scenario . 496

13.6 Asymmetric Encryption with the Java 2 SDK and JCE 1.2 497
13.6.1 Using Asymmetric Encryption . 497
xii Java 2 Network Security

13.7 How to Implement Your Own Provider . 497
13.7.1 Write the Service Implementation Code 498
13.7.2 Give the Provider a Name. 498
13.7.3 Write a Master Class . 498
13.7.4 Compile the Code . 498
13.7.5 Install and Configure the Provider. 498
13.7.6 Test if the Provider Is Ready . 498
13.7.7 Algorithm Aliases . 498
13.7.8 Dependencies on Other Algorithms . 499
13.7.9 Default Initializations . 499
13.7.10 A Sample Master Class . 499

Chapter 14. Enterprise Java . 501
14.1 Browser Add-On Applets . 501
14.2 Networked Architectures . 501

14.2.1 Applying the Java 2 Access Control Mechanisms 502
14.2.2 Two-Tier Architecture . 503
14.2.3 Three-Tier Architecture. 503
14.2.4 Network Security . 506

14.3 Secure Clients and Network Computers . 509
14.4 Server-Side Java . 510

14.4.1 The Cost of Server-Side Java . 511
14.5 Servlets . 512

14.5.1 Advantages of Servlets . 514
14.5.2 Servlets and CGI-BINs . 515
14.5.3 Java Servlet APIs . 516
14.5.4 Servlet Life Cycle . 518
14.5.5 IBM WebSphere Application Server . 520
14.5.6 A Sample Servlet . 522
14.5.7 The Current Servlet Security Model . 530

14.6 Distributed Object Architectures – RMI . 537
14.6.1 Stubs and Skeletons. 539
14.6.2 RMI Registry. 540
14.6.3 A Sample RMI Program . 542
14.6.4 The Security of RMI . 553

14.7 Enterprise JavaBeans . 554

Chapter 15. Java and Firewalls – In and Out of the Net 557
15.1 What Is a Firewall? . 557
15.2 What Does a Firewall Do? . 558

15.2.1 Inside a TCP/IP Packet. 558
15.2.2 How Can Programs Communicate through a Firewall? 561

15.3 Detailed Example of TCP/IP Protocol . 562
 xiii

15.3.1 DNS Flow (UDP Example) . 562
15.3.2 HTTP Flow (TCP Example). 564

15.4 Proxy Servers and SOCKS Gateways . 570
15.4.1 Proxy Servers . 570
15.4.2 What Is SOCKS? . 571
15.4.3 Using Proxy Servers or SOCKS Gateways 574

15.5 The Effect of Firewalls on Java. 575
15.5.1 Downloading an Applet Using HTTP . 575
15.5.2 Stopping Java Downloads with a Firewall 575
15.5.3 Java Network Connections through the Firewall 578

15.6 Java and Firewall Scenarios . 580
15.6.1 URL Connection . 582
15.6.2 Socket Connection . 590
15.6.3 Conclusions . 598

15.7 Remote Method Invocation . 599
15.8 Summary . 602

Chapter 16. Java and SSL . 603
16.1 What Is SSL? . 603
16.2 Using SSL from an Applet . 608

16.2.1 Using SSL URLs with Java . 609
16.3 Java and SSL with Sun Microsystems . 609

16.3.1 The javax.net Package . 610
16.3.2 The javax.net.ssl Package . 610
16.3.3 The javax.security.cert Package . 612

16.4 How to Use Java and SSL . 613
16.4.1 Skeleton Program without SSL . 614
16.4.2 Using SSL with the Sun Microsystems API 623

16.5 Java and SSL with IBM SSLite . 625
16.5.1 Extensions to the SSL Protocol . 627
16.5.2 SSLite Key Ring Management Tools. 627
16.5.3 SSL Server Authentication with IBM SSLite for Java. 631

16.6 Conclusions . 633
16.7 Summary . 634

Chapter 17. Epilogue . 635
17.1 Future Directions of Java . 635

17.1.1 Java 2 SDK – The Path Ahead . 635
17.1.2 Resource Consumption Management 636
17.1.3 Java Authentication and Authorization Service 636
17.1.4 Java RMI Security Extension . 637
17.1.5 Arbitrary Grouping of Permissions . 637
17.1.6 Object-Level Protection . 637
xiv Java 2 Network Security

17.1.7 Subdividing Protection Domains . 638
17.1.8 Running Applets with Signed Content 638
17.1.9 Java 2 Platform, Enterprise Edition. 639

17.2 Conclusion . 639

Appendix A. Getting Internal System Properties 641
A.1 Program GetAllProperties . 641
A.2 Program GetProperty . 644

Appendix B. Signature Formats . 647

Appendix C. X.509 Certificates . 649
C.1 X.509 Certificate Versions . 650

Appendix D. Sources of Information about Java Security 651
D.1 Companies . 651

D.1.1 JavaSoft . 651
D.1.2 Sun . 652
D.1.3 IBM . 652
D.1.4 Microsoft . 653
D.1.5 Reliable Software Technologies . 654
D.1.6 JavaWorld. 654
D.1.7 JCE Providers outside the United States . 654

D.2 Universities . 655
D.2.1 Princeton . 655
D.2.2 Yale . 655
D.2.3 Others. 656

Appendix E. What’s on the Diskette? . 657
E.1 How to Access the Diskette . 657
E.2 How to Get the Same Software Material from the Web 657

Appendix F. Special Notices . 659

Appendix G. Related Publications . 663
G.1 International Technical Support Organization Publications 663
G.2 Redbooks on CD-ROMs. 663
G.3 Other Publications . 663

How to Get ITSO Redbooks . 665
IBM Redbook Fax Order Form . 666
 xv

Glossary . 667

Index . 669

ITSO Redbook Evaluation . 679
xvi Java 2 Network Security

Preface

Java is fashionable, but is it reliable? Java is entertaining, but is it secure?
Java is useful, but is it safe?

The purpose of this book is to answer those questions, from the point of view
of people who want to use Java, but want to do so reliably, securely and
safely. That makes this book different from much recent writing on Java,
which focuses, perfectly legitimately, on how a Java system can be broken
into and how to avoid those dangers. On the contrary, this book focuses on
how Java can be made secure and how to exploit its strengths. The goal is to
provide practical help to the various groups involved in making a Java-based
application or Web site into an industrial-strength commercial proposition.

Various groups have different needs and different skills, which this book
meets in its different parts.

 • The first part is aimed at the intelligent non-specialist who oversees
system management or application development, or incorporates Java into
the security policy. Only a basic understanding of computers and a limited
exposure to Java is assumed, but all the themes of Java security are
introduced in a context that stresses over and over again how Java
security must be seen as an integral part of system security.

 • The second part goes into more detail on how Java security works, and is
aimed more at system and network administrators and programmers, who
need to know more of what is going on.

 • The third part looks at the broader context in which Java operates,
including some extensions to Java security and some aspects of its future.

This book explains the evolution of the Java security model, and then focuses
on the Java 2 security architecture and its revolutionary domains of
protection. It offers a very large number of examples to give you a better
understanding of the technology involved.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Raleigh Center.

The leader of this project was Marco Pistoia.

Marco Pistoia is a Network Security Specialist, working as a project leader at
the International Technical Support Organization, Raleigh Center. He writes
© Copyright IBM Corp. 1997 1999 xvii

extensively and teaches IBM classes worldwide on all areas of the e-business
Application Framework, WebSphere, Java and Internet security. Marco holds
a degree with honors in Pure Mathematics from the University of Rome and a
masters degree in Computer Science. Before joining the ITSO, he was a
System Engineer in IBM Italy. He received an Outstanding Technical
Achievement Award in 1996.

Duane F. Reller is a Senior Software Engineer in the System/390
Programming Laboratory in Endicott, New York, USA. He has 25 years of
experience in System/390 Hardware and Software development. He has
served in technical and management positions. He holds a Bachelor’s degree
in Electrical Technology and a Master of Science degree in Computer
Science from the State University of New York at Binghamton. His areas of
expertise include Hardware and Software System’s Architecture and
Management.

Deepak Gupta is a Senior Software Engineer in IBM, India. He has two and a
half years of experience in Internet technologies. He holds a degree in
Electronics and Communications from the University of Roorkee, India. His
areas of expertise include Internet security and Electronic Commerce.
Deepak was involved in IBM India's largest e-Commerce project and in India's
first secured e-Commerce site allowing Rupee-based transactions, for which
he was conferred the Employee of the Month Award. He has also given
several talks on Internet security and e-Commerce.

Milind Nagnur is a Senior Associate in the Operations and Systems Risk
Management (OSRM) group of Price Waterhouse Coopers in Mumbai, India. He
has a couple of years of exposure in Internet technologies, with emphasis on
security and control issues in real business applications. He holds a degree in
Mechanical Engineering from the Indian Institute of Technology in Bombay, India,
and an MBA from the Indian Institute of Management in Calcutta, India.

Ashok K. Ramani is a Senior Software Engineer in IBM India. He has two
and a half years of experience in Internet technologies. He holds a degree in
MSc.(Tech.) Information Systems from the Birla Institute of Technology and
Science, Pilani, India. His areas of expertise include Internet security and
Electronic Commerce. Ashok was involved in IBM India's largest e-Commerce
project and in India's first secure e-Commerce site allowing Rupee-based
transactions for which he was conferred the Employee of the Month Award.
He has won special recognition awards at IBM India for his contribution to
e-Commerce projects. He has also presented several talks on Internet
security and e-Commerce.

Thanks to the following people for their invaluable contributions to this project:
xviii Java 2 Network Security

Anthony J. Nadalin, Julianne Yarsa, Shirley Fox, Donna Smith Skibbie,
Bruce Rich
IBM Enterprise Security, Austin Center

Larry Koved
IBM, Thomas J. Watson Research, Hawthorne

Li Gong, Jan Luehe, Roland Schemers
Sun Microsystems, Inc.

Pat Donleycott, Jorge Ferrari, Martin Murhammer, Gail Christensen,
Margaret Ticknor, Shawn Walsh, Linda Robinson, Tate Renner
IBM, International Technical Support Organization, Raleigh Center

Rob Macgregor, Dave Durbin, John Owlett, Andrew Yeomans
Authors of the first edition

Pete Lawther, Simon Phipps
Contributors to the first edition

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 679
to the fax number shown on the form.

 • Use the online evaluation form found at http://www.redbooks.ibm.com/

 • Send your comments in an internet note to redbook@us.ibm.com
 xix

xx Java 2 Network Security

Part 1. Introduction to Java and Security
© Copyright IBM Corp. 1997 1999 1

2 Java 2 Network Security

Chapter 1. An Overview of Java and Security

The purpose of this chapter is not only to introduce the themes of the book to
those who will later read the more detailed chapters that follow, but also to act
as a brief overview for the intelligent non-specialist who does not need all the
details. This is because the focus of the book is on helping people to deploy
Java in a secure way. There are many people involved in that – managers,
administrators, developers, systems programmers, users – all of whom play a
part.

1.1 Java Is Not Just a Language

Most of the books on the subject deal with Java as a programming language.
As a programming language it has much to recommend it. Its syntax is very
like C, but with many of the features that hurt your brain removed. It is
strongly object-oriented, but it avoids the more obscure corners of the O-O
world.

For most programming languages the question of how secure is it? does not
arise. It’s the application that needs to implement security, not the language it
is written in. However, Java is many other things in addition to being a
programming language:

 • A set of object-oriented frameworks, primarily for graphical user interface
(GUI) building and networking

 • An operating system

 • A client/server management mechanism

 • A unifying force that cuts across operating system and network
boundaries

1.2 What Java Does

What Java does is to solve the problem of executable content. What’s that?
Well, the early sites on the World Wide Web were static: pictures and text.
That was revolutionary enough. The richness of the pages was a revelation to
anyone used to the traditional staid appearance of information downloaded
from a server; the hypertext links, which made cross-referencing easy, made
it a more useful information source than an encyclopedia; and the amount of
information available was staggering. But if you wanted a program to run, you
had to send a data file to the server where that program was – you filled in a
form on the screen, clicked the send button, and waited for the result.
© Copyright IBM Corp. 1997 1999 3

Some programs are better run on the client than on a server. So why couldn’t
part of the content of the Web pages be executable? Why couldn’t a page
comprise some text, some pictures, and some programs that run on the
client? There were two reasons:

1. It would be dangerous from a security point of view. There are enough
viruses on the Web anyway. With executable content, you might not even
realize that you were downloading potentially dangerous code.

2. The programs might not run on a particular operating system. One of the
joys of the Web was that you could choose whatever client system was
right for you and download pages running on a completely different
system.

But executable content, while potentially dangerous, is also extremely
valuable:

 • Executable content can make a Web page much more exciting. This is
what Java became well known for in its early days: dancing cartoon
characters, bouncing heads, ticker tapes, etc. You can’t do these if all the
programs must run on the server. Some of the early examples were
indeed just cute – they showed what the technology could do, not why it
was important – but appearance, excitement, and even cuteness are
important in attracting customers to a business site.

 • Many dialogues with a customer are unbearably slow if you have to
communicate with a Web server at each interaction. With executable
content, the dialogue – an insurance proposal, a request for a credit card,
a browse through a catalogue, or whatever – can be completed on the
client machine, and the resulting transaction sent across the Web.

Java makes executable content possible while solving the problems noted
above by having three components:

1. A Java Virtual Machine (JVM) designed to prevent any code from
tampering with the client system. The code runs in a protected space, and
has only limited and always strictly controlled access to the surrounding
system. This is to meet Requirement 1 above. The arena of activity for any
specific code is defined by the client by way of a security policy. Java 2
provides an implementation for such protected spaces by the use of
protected domains, security policy files and security managers which we
shall see in greater detail in the later parts of this book.

2. A set of bytecodes – JVM instructions – which are interpreted by the JVM.
You have to have these to prevent any code from jumping outside the
pre-determined area of operation, but they have a benefit of their own.
Since they are machine-independent, if you have a JVM for your
4 Java 2 Network Security

workstation, then you can run any applet from any server, satisfying
Requirement 2 above.

3. A high-level object-oriented language in which to write the classes that
make up the code. This is a language similar in many ways to C++ with
some functions (such as pointers) omitted because they could be used by
malicious code to escape from its area of operation pre-determined by the
client.

There is now a Java Development Kit (JDK) – comprising the JVM, compiler,
and basic classes – for most operating systems, and most Web browsers
contain a JVM, so executable content is now real.

A Java program that is loaded from the Web and is run on a Web browser
system is called an applet. A Java program that is loaded locally, rather than
from the Web, is called an application. In JDK 1.1, an application was not
constrained by the sandbox and could access the local machine, just like a
program written in any other language.

However, in Java 2, any piece of code, local or remote, is recognized by two
characteristics: the location of its origin (URL address) and the identities of
the entities signing the code. The user can define in his or her security policy,
exactly how much of which resource can be accessed by a code having a
particular URL source and signers. This is what is called fine-grained access
control.

Due to these security features, all you have to do is to write an application
once in Java. Then that application can be run anywhere that has a JVM in
compliance with the Java Compatibility Kit (JCK)1. This makes Java very
useful for people writing applications which will be used by a wide variety of
users – quite independently of whether they will ever be downloaded from the
Web.

1.3 Java Is Not an Island: Java as a Part of Security

Java security must be holistic, adequate and perpetual.

1. First, Java security must be holistic. An attacker who wishes you harm
(rather than one who wants to prove his own cleverness) will focus on the
weak links in the security, so the security of a system that uses Java must
be reviewed as a whole, following the flows of data and applications, and
considering the potential for attack or accident at each point. Specifically,

1 Sun Microsystems requires that code obtained by third parties by modifying the original source code of the JVM pass
the JCK. This is done to maintain compatibility among the Java platforms implemented by different vendors.
An Overview of Java and Security 5

if Java is being used to pass applets over a shared network like the
Internet, then you have to consider:

 • Private network protection, using a firewall and allied security policies

 • Private data protection, using encryption to shield data as it flows over
the public network

 • User authentication, using digital signatures, or protected passwords

2. Secondly, Java security must be adequate. It has to be strong enough for
the purpose in hand: Java must not be the weak link. But there is no need
to spend extra money to make it far and away the strongest link, unless
one of the two following circumstances occur:

 • Your potential attackers don’t just want to crack your system, they want
to crack your Java system.

 • Your users have a particular fear of Java, and you need to reassure
them (security has to match levels of threat and worry, as well as, levels
of potential loss).

3. Thirdly, Java security must be perpetual. This book will help you build a
secure Java system to face today’s perils of accident and attack. But those
perils will change. So you must review your Java security – as a part of
your overall security of course – regularly, to stay one jump ahead of
potential attackers.

How well does Java meet those needs? Three points:

1. Java architecture permits secure design

The Java 2 security architecture allows a user to predetermine the area of
activity for any code local or remote, and enforce strict control over access
of any code to system resources. This has been made possible by the use
of the concepts of protection domains, user defined security policies and
security managers (which are described in great detail in Chapter 3, “The
New Java Security Model” on page 69).

2. Java implementations respond to error reports

The attack applets we describe later were all reported by applet hunters.
They come not from incidents of loss on the Internet, but from laboratory
studies of how Java can be used and abused. The applet hunters have
been as responsible as they are clever, and have alerted the Java
implementors to the problems before telling the public. So normally you
will hear of an implementation loophole at the same time as hearing of the
fix. Thus any risk of using Java gets gradually less as loopholes are
closed.
6 Java 2 Network Security

3. Nothing in Java should permit complacency

Installers and users of Java must be as willing to respond as the
implementors. That is, users must recognize that loopholes will be found
and must be closed without delay.

In summary, provided that you have an implementation that is free of known
errors, and that you install, maintain and review Java carefully, you can reach
levels of security which are appropriate for any business purpose.

1.3.1 Safety and Security
To enthusiastic object-oriented programmers, it is the Java language that is
important. It contains a number of important differences from C++ which
reduce the chance of writing a rogue program by accident, as well as making
it more difficult to write a rogue program by design.

But, from a security point of view, it is the Java Virtual Machine that matters.
The business benefits of Java are the security and portability of the JVM, and
these come from the bytecodes, not from the Java source language.

So, we shall be more concerned with bytecode programs, which are different
from Java source programs. All valid Java source programs can be compiled
to bytecode programs, but there are bytecode programs that have no
corresponding Java source. And, of course, it is possible to generate Java
bytecode programs from other high-level languages. The first other language
was NetREXX, a variant of the REXX language, and others have followed.

This difference between high-level and bytecode is both bad and good:

 • It is bad because people can circumvent the design features of the Java
language. This was designed to produce well-behaved bytecode
programs, a design that has limited security strength if an attacker can
write directly in bytecode.

 • It is good because you can foil the decompilers. These take bytecode and
generate Java source code – source code which is very readable because
of the large amount of information a Java class file contains. To prevent
people from decompiling your valuable copyright code, you can modify the
compiled class file so that there is no decompiled version. We discuss this
in detail in 5.4.1, “Beating the Decompilation Threat” on page 134. So the
good features of the high-level Java language should be seen as safety
features, not as security features.
An Overview of Java and Security 7

1.3.2 Java as an Aid to Security
Sometimes, discussions of Java and security focus only on the perils of Java,
as though there was only a downside to using it, from a security point of view
anyway. But this is not the whole story. Java can be a great help to the
security of a system, and can strengthen weak links, primarily because code
distribution is a risky process.

Many applications need code running on the client in cooperation with code
running on the server – for example, graphical front ends, or dialers to
connect to the telephone network – and this code has to be installed there
somehow. The distribution of this code is often a weak link in an online
system, and it is usually much easier to attack this than to waste time trying to
decrypt messages flowing over the Internet. What is the danger? If this code
can be tampered with, then, for example, a dialer number can be changed so
that the client dials the attacker’s site rather than the proper server. The client
will never realize this because the attacker, acting as a man-in-the-middle
(MIM)2, forwards all traffic between client and server, reading it as it goes. Or
a virus can be introduced, or a host of other horrible possibilities.

The options for code distribution are:

 • To send a physical diskette or CD-ROM to the client

 • To have the client download the code over an existing network

 • To use Java

The safest of the three is Java. It isn’t always suitable – the client must
already have a network connection that is fast enough for the purpose – but it
is by far the easiest to update with a new release, it is less easily intercepted
than a physical distribution and, unlike a normal download, it is checked on
arrival. Moreover, it can be signed and verified for appropriate signatures.

The checking and signing of Java code is central to Java security and very
much more will be said about them in Part 2, “Under the Hood” on page 107.
In this introductory chapter, it is enough to describe briefly the three
components of applet checking:

1. The class loader is responsible for bringing together all of the different
parts of the program so that it can be executed.

2 A network entity that intercepts data flowing between two machines is commonly known as a sniffer. A sniffer could
have a more active role than just copying frames off the wire. In fact a more dangerous attack could be accomplished if the
sniffer is able to acts as a man-in-the-middle, a machine that actively inserts itself in the data flows between two
legitimate systems in order to compromise the data flowing between them. To the client, the MIM masquerades as the
server and to the server the MIM masquerades as the client.
8 Java 2 Network Security

2. The class file verifier (which includes the bytecode verifier) checks that the
program obeys the rules of the Java Virtual Machine (but note that this
does not necessarily mean that it obeys the rules of the Java language).

3. The security manager imposes local restrictions on the things that the
program is allowed to do. It is perfectly possible to customize this to allow
code limited access to carefully controlled resources. This could mean
allowing no access to the local file system, and network access only to the
location from which the code, or its Web page, came.

You may wish, for example, to print something from an applet. You are
unlikely to want your security manager to allow anyone to do that, but you
might allow access to especially trustworthy people. So you download the
applet; discover that it is located at a trustworthy URL address and encrypted
with someone’s private key; check the accompanying public key certificate to
make sure it is valid, and identify someone especially trustworthy; decrypt the
applet with that public key, and then allow it the necessary access.

One important thing that distinguishes Java from other forms of executable
content is that it has both the web of trust that signatures bring and the three
security components to validate the downloaded code. These precautions are
taken, not because Java users are less trustful than others, but because even
the most trusted of code suppliers sometimes make mistakes, or can have
their systems compromised. Without the validation, a web of trust can
become a web of corruption if any one trusted site is successfully cracked.

1.3.3 Java as a Threat to Security
So, in the absence of implementation errors, either on the part of the browser
vendors or on the part of computer operators, administrators and systems
programmers, Java should be safe. The browser vendors have a good
reputation for responding to reports of flaws in their implementations, and one
of the key purposes of this book is to help you avoid any slips in your
installation.

If something does go wrong, then the most severe threat you face is system
modification, the result of what are sometimes called attack applets. This is
worse than someone’s being able to read data from your system, because
you have no idea what has been left behind. There could be a virus on your
computer, or on any computer to which you are connected. Alternatively,
some of your business data could have been modified so that it is no longer
valid.

This is exactly the sort of thing that Java is intended to prevent, and its
defenses against attack applets are strong. They are equally strong against
An Overview of Java and Security 9

the next, still severe, threat of privacy invasion, in which read access rather
than update access is gained. This does not leave you having to reinstall all
your software and reassemble all your business data, but the loss can be
serious enough. In addition to the exposure of business data, if your private
key is compromised, then it can be used to sign electronic payments in your
name.

Because Java has the strongest security for executable content, it has been
seen as a challenge by security specialists, who find both the intellectual
challenge exciting and want to help close any loopholes in Java
implementations. Up to the date of writing, all the reported attack applets
were developed by such specialists, not by malicious or criminal attackers.

There are another couple of, much less severe, threats against which Java
does not have strong defenses. The very essence of Java is that a program
from a server will come down and run on your client with little, if any,
intervention from you. What if the program is not one you want to run... If it is
stealing your cycles?

The most extreme form of cycle stealing is a denial of service attack. The
applet can use so much of the client’s machine time that it cannot perform its
normal function. This is the Java equivalent of flooding a company with mail
or with telephone calls; like those nuisances it cannot readily be prevented –
all you can do is find out who is responsible and take action after the event.

Less extreme examples of cycle stealing are the irksome, nuisance, applets.
These run unhelpful programs intended to show how clever the author is and
embarrass the owner of the client machine. They can even pretend to be you
(psyche stealing?), for example by sending e-mail that appears to come from
you.

1.3.4 Writing Secure Java
Valuable Java code is likely to need to communicate with the server it came
from, and to do so securely. All sensitive communication over the Internet
needs proper cryptographic protection. From JDK 1.1 onwards, Java provides
general purpose APIs for cryptographic functions, collectively known as the
Java Cryptography Architecture (JCA) and Java Cryptography Extension
(JCE). Java 2 significantly extends the Java Cryptography Architecture. The
set of the Java core classes (which are the Java classes shipped with the
Java platform3) can be divided into two subsets:

 • Security related core classes

 • Other core classes
3 In this book, the Java 2 Platform, Standard Edition, V1.2 (J2SE) is often referred to as Java platform or Java 2 platform.
10 Java 2 Network Security

The Security related core classes in Java 2 can be further subdivided as:

 • Access control and permissions related core classes

 • Cryptography related core classes

Of these, only the cryptography related core classes form a part of the JCA.
In addition to these, all classes in JCE 1.2 form part of the JCA.

Some cryptographic functions are seen as being dangerous in the wrong
hands. No government wants to provide organized crime, or terrorist groups,
with a cheap effective way of communicating that the police cannot decrypt.
Exactly how to prevent this is not so clear, so there are many different export
and import rules for cryptographic products. The cryptographic interfaces are
divided into two parts, JCA and JCE, which reflect the divide between
exportable and unexportable cryptography. We discuss this in more detail in
Chapter 13, “Cryptography in Java 2” on page 475.

1.3.5 Staying One Jump Ahead
To get ahead, the owners of a client or a Web site need to develop an overall
security policy of which Java is a part, and implement it with care. They need
to use the latest information on what is known about Java security. This is
bound to change; realistically, Java is so young that it cannot be otherwise.

So how do they find the very latest information? Two key sources are the
CERT Coordination Center, which is on the Web at http://www.cert.org/ and
Sun Microsystems’s list of frequently asked questions about applet security at
http://java.javasoft.com/sfaq. This gets you ahead. Staying ahead means that
the security policy should include regular checks of these sites, and regular
reviews of which are the right sites to check.4

Another part of staying ahead involves balancing security with stability. If an
implementation error is discovered in the browser you use, and you see on
the Web sites a description of the problem together with news of a new beta
version of the browser to fix the problem, do you change to the new beta at
once? Systems managers are traditionally very cautious about beta code:
they want to see a lot of testing before they put it live on their production
systems. This caution is one of the most important causes of the very high
availability levels of modern systems, so systems managers are not about to
change.

Traditionally, a change to include new function is forced to wait until it passes
thorough testing, while a security change may be allowed through with less

4 See also the list of the Java security Web sites in Appendix D, “Sources of Information about Java Security” on page
651.
An Overview of Java and Security 11

testing. It’s a business decision, and it’s worth including guidance in the
security policy. The only way in which Java is different from all other areas of
security, where similar business decisions must be made, is that news of a
loophole can be spread worldwide extremely quickly, so the presumption
should be that security fixes must go on quickly.

1.3.6 The Vigilant Web Site
The cure for abuse is proper use, not non-use. Executable content has such a
great value to computer systems and to computer business that we need to
do it properly, not to ban it.

Proper use of Java involves vigilance on everybody’s part, including:

 • Vigilance on the part of the systems administrators who need to be sure
that they can trust their sources

 • Vigilance on the part of the network administrators who need to protect
against network attacks such as the MIM attack

 • Vigilance on the part of applet developers who need to be sure that the
tools they are using do not corrupt their class files: their workstations may
not be production machines, but they must be properly protected

There is something of an irony in remarks one sometimes hears about how
Java should be turned off, made by people who are happy to download a
code patch or a driver from a Web site. It is similar to those who are deeply
concerned about sending their credit card information over the Web, but
would willingly hand a credit card to a waiter in a restaurant.

If Java is used with vigilance, then its unique combination of web of trust and
code validation makes it more secure than forms of executable content which
depend on the web of trust alone. And, of course, dramatically more secure
than downloading natively executable code from the Web.

1.4 Understanding Java 2 Security

As we already said in 1.1, “Java Is Not Just a Language” on page 3, in most
programming languages it is the application that needs to implement security,
not the language itself. This is not true in Java. Since its inception, Java has
demonstrated that it was built for the net. For this reason, although Java is not
just for applets any more, it looks immediately clear that, unlike other
programming languages and systems, security mechanisms must be an
integral part of Java.
12 Java 2 Network Security

The history of Java security has been parallel to the main releases of Java:
JDK 1.0, JDK 1.1 and Java 2 SDK, Standard Edition, V1.25:

1. The JDK 1.0 security model was very strict. Local code was granted
access to all the system resources, while a remote applet was always
considered untrusted, and could be used almost only for cosmetic
functions, like the decoration of a Web page.

2. JDK 1.1 still considered local code as completely trusted, with full access
to all of the system resources. However, JDK 1.1 also offered Java
developers the possibility to apply a digital signature to the code they
wrote. By looking at the digital signature, the user on a client machine
could decide whether a particular remote code was to be considered
trusted or not. If untrusted, that remote code would run in a restricted
environment. If trusted, that code would be considered as a local code,
with full access to all of the system resources. The JDK 1.1 security model
was more attractive, but still presented several limitations. For example,
remote code with a trusted signature was granted full access to all the
system resources, as well as local code. So, even when you wanted to
grant a signed remote code, say, only read access to a particular file in a
particular directory of your system, you had to grant it full read access to
all your files and all your directories. Moreover, that code was
automatically granted the permission to write on your system, install other
code, open a socket, and a lot of other things. This happened without your
intervention or your awareness.

3. The Java 2 security model implements fine-grained access control. You
can now classify the Java code that is to run on your system basing your
judgement on the URL location where that code resides and/or the owners
of the code itself. The owners of the code are identified through their
digital signatures. Multiple signatures for a single piece of code are
allowed in Java 2. Possibilities are now endless. You can say that a piece
of code coming from a particular location and/or signed by particular
signers can only read that file and write in that directory. Other code
coming from another location and/or signed by other entities can open
only a specific socket, while still other code can be classified to have full
access. Moreover, in Java 2, even local code can be subjected to security
restrictions.

In this section we will demonstrate to you that Java is not a threat to security,
provided that your Java system is configured in the correct way. On the
contrary, the security features that are part of the Java programming
language itself can really improve the overall security of your system.

5 In this book, Java 2 SDK, Standard Edition, V1.2 (J2SDK) is sometimes referred to as Java 2 SDK.
An Overview of Java and Security 13

We will show you two simple examples, and we will explain to you the main
concepts that are involved. However, we will not go through all the details,
because this will be done in other sections of the book.

1.4.1 An Example of Applet Security in Java 2
In 1.3.2, “Java as an Aid to Security” on page 8, we introduced an interesting
scenario, where the user on the client machine may wish to print something
from an applet, but does not want the security manager to allow anyone to do
that. On the contrary, the user might grant this right only to especially
trustworthy entities. So this is the sequence of the operations:

1. An applet packaged in a signed Java Archive (JAR) file is downloaded.

2. The Java Runtime Environment (JRE)6 detects that it has come from a
trustworthy URL location and is signed with the private key of a particular
entity7.

3. The JRE then verifies that the entity that signed the JAR file is the entity
that owns the accompanying public key certificate and that the contents of
the JAR file have not been tampered with.

4. Finally, the JRE verifies that the entity that signed the JAR file has a
matching certificate in the keystore database. This ensures that the entity
is trustworthy.

1.4.1.1 The Java Code
Let’s consider the following piece of code:

Figure 1. (Part 1 of 2). GetPrintJob.java Applet Source Code

6 In this book, Java 2 Runtime Environment, Standard Edition, V1.2 (J2RE) is often referred to as Java Runtime
Environment (JRE) 1.2.
7 In Java 2, signatures by multiple entities can be applied on the same JAR file.

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class GetPrintJob extends Applet implements ActionListener
{
 boolean p = true;

 public GetPrintJob()
 {
 super();
 Button b = new Button("getPrintJob");
14 Java 2 Network Security

Figure 2. (Part 2 of 2). GetPrintJob.java Applet Source Code

This is the code of an applet that, once downloaded on your system, does
nothing but displays a button. If you push the button, the applet attempts to
get a PrintJob object, which results in initiating a print operation on the
toolkit’s platform.

In JDK 1.0, this operation would not have been allowed to a remote applet, by
default considered untrusted. In JDK 1.1, the remote applet should have been
signed and the signature considered as trusted. However, once granted the
permission to access your system resources, that applet could do everything
a local code would be allowed to do, not only print to a printer. The
fine-grained access control implemented by the Java 2 security model gives
you the possibility to grant only the permission to print (since this is the only
permission this applet requires) and only to the code you trust.

The applet above can be invoked by a very simple HTML page, such as the
following one:

 add(b, BorderLayout.CENTER);
 b.addActionListener(this);
 }

 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 Toolkit.getDefaultToolkit().getPrintJob(null, "PrintJob", null);
 }

 catch(Exception e)
 {
 System.out.println("There was an exception, "+ e.toString());
 p=false;
 }
 if (p)
 System.out.println("No exception. Test is successful.");
 }

 public void paint(Graphics g)
 {
 new GetPrintJob();
 }
}

An Overview of Java and Security 15

Figure 3. GetPrintJob.html File Invoking the GetPrintJob Applet

The applet source code shown in Figure 1 on page 14 and Figure 2 on page
15 can be compiled by issuing the command:

javac GetPrintJob.java

which translates Java source code into Java bytecode. The resulting file
produced by the Java compiler javac is GetPrintJob.class.

1.4.1.2 Running the Applet without the Necessary Permission
After saving GetPrintJob.class and GetPrintJob.html in the public directory of
a Web server, having host name wtr05218.itso.ral.ibm.com, we try to access
the HTML file from a client machine using the Java 2 Applet Viewer. The
Applet Viewer is a development tool shipped with the SDK. The applet can be
invoked from a remote machine running Java 2 by entering the following
command:

appletviewer http://wtr05218.itso.ral.ibm.com/GetPrintJob.html

The Applet Viewer window with a getPrintJob button is immediately displayed:

<HTML>

 <HEAD>
 <TITLE>GetPrintJob Applet</TITLE>
 </HEAD>

 <BODY>

 <H3>GetPrintJob Applet</H3>

 <APPLET Code="GetPrintJob" Width=250 Height=50>
 </APPLET>

 </BODY>
</HTML>
16 Java 2 Network Security

Figure 4. GetPrintJob Applet Running

However, upon clicking on the getPrintJob button, no print operation on the
toolkit’s platform will be initiated and you will see a security exception being
displayed on the Command Prompt window from which you launched the
Applet Viewer:

There was an exception, java.security.AccessControlException: access denied
(java.lang.RuntimePermission queuePrintJob)

The same exception will be displayed every time the button is clicked.

The reason for this exception is that the applet has not been granted any
permissions before being downloaded, so it has to run in a restricted
environment. When its button is pressed and the applet attempts to initiate a
print operation on the toolkit’s platform, a security exception is thrown
because the applet is attempting to run out of its restricted environment.

In a JDK 1.1 environment, we would solve this problem by signing the applet
code on the Web server, and recognizing the signer as trusted on the client.
However, this would grant the applet all permissions, not only the specific
permission that the applet needs to print. In a Java 2 environment the
situation is different, since you can limit the permissions the code gets to only
what the code claims it needs. In this case the only security-related operation
the applet needs to perform is to initiate a print operation on the toolkit’s
platform. Since the applet resides in the public HTML directory of the Web
server wtr05218.itso.ral.ibm.com, we will grant this permission to all the code
coming from that location. To further limit the security exposure of our
system, we want the remote applet to be signed by a trusted entity, and we
will limit the permission by also looking at the digital signature, so that
another applet coming from the same location will not be granted the same
permission unless signed by the same trusted entity. The sequence of
operations to get this is explained in the following sections.
An Overview of Java and Security 17

1.4.1.3 Packing the Applet Class in a JAR File
First of all, we sign the code of the GetPrintJob applet on the server machine.
To do this, the applet file must be packed in the JAR format, through the
command:

jar cvf GetPrintJob.jar GetPrintJob.class

The command above must be launched on the same directory where the file
GetPrintJob.class resides and it automatically creates the JAR file
GetPrintJob.jar, which includes a compressed version of the original class
file. If you examine the contents of GetPrintJob.jar (on Windows systems this
can be done even with the WinZip utility), you will see that it contains also a
file called MANIFEST.MF. This is a text file containing general information
about the files that have been packed in the JAR file. The file MANIFEST.MF
is often called the manifest file.

1.4.1.4 Creating a Keystore and a Signer’s Key Pair
We also need to generate a key pair (a public key and associated private
key). With Java 2, this can be done using the Java 2 keytool command line
utility with the option -genkey, which generates a key pair and wraps the public
key into an X.509 V1 self-signed certificate. The details are shown in the
following session screen:

The process we have just described creates a public and private key pair and
associates the public key with the certificate of the signer, whose alias by
default is mykey. The private key and the certificate are stored in a flat
keystore file called .keystore, located in the user home directory. A keystore is
a database of private keys and their associate X.509 certificate chains

C:\>keytool -genkey
Enter keystore password: Paolina
What is your first and last name?
 [Unknown]: Marco Pistoia
What is the name of your organizational unit?
 [Unknown]: ITSO
What is the name of your organization?
 [Unknown]: IBM Corporation
What is the name of your City or Locality?
 [Unknown]: Cary
What is the name of your State or Province?
 [Unknown]: North Carolina
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Marco Pistoia, OU=ITSO, O=IBM Corporation, L=Cary, ST=North Carolina, C=US> correct?
 [no]: yes

Enter key password for <mykey>
 (RETURN if same as keystore password): Centonze
18 Java 2 Network Security

authenticating the corresponding public keys. The public information in the
default implementation of a keystore file is stored unencrypted; however, a
keystore password is necessary for the user to verify in the future that the
keystore file has not been tampered with. The private key is
password-protected.

1.4.1.5 Signing the Code
Once the keystore has been generated, and a certificate has been created for
the signer, the JAR file can be signed using the private key of the signer. This
is done by launching the Java 2 command line tool jarsigner against the JAR
file, as shown in the following session:

The jarsigner utility temporarily opens the JAR file, adds the information
related to the signature, and packs the JAR file again. At the end of this
process, you will see in the D:\WWW\HTML directory that the GetPrintJob.jar
file has changed and its size has become larger. Notice that a signed JAR file
in Java 2 still has the .jar extension. The jarsigner utility does not add a .sig
extension to the .jar extension of the JAR file, as it happened with the JDK 1.1
javakey command line tool.

At this point, the HTML file invoking the applet must be modified to point to
the JAR file GetPrintJob.jar. We open the file GetPrintJob.html, shown in
Figure 3 on page 16, and we modify the <APPLET> tag in the following way:

<APPLET Archive="GetPrintJob.jar" Code="GetPrintJob" Width=250 Height=50>

Then we save the resulting file as GetPrintJobJAR.html.

1.4.1.6 Exporting the Signer’s Certificate on the Server
Notice that, on the client machine, the signer of the code must be considered
a trusted entity. For this reason, on the server machine, we export the signer’s
certificate into a file, called marcoCer.cer. This is done using again the
keytool command with the -export option, as shown in the following session:

D:\WWW\HTML>jarsigner GetPrintJob.jar mykey
Enter Passphrase for keystore: Paolina
Enter key password for mykey: Centonze

D:\WWW\HTML>
An Overview of Java and Security 19

1.4.1.7 Importing the Signer’s Certificate on the Client
The file marcoCer.cer must be copied on the client machine and then
imported into the local keystore as a trusted certificate. Of course, a local
keystore must have been previously created. The -import option of the
keytool command is used to import a certificate. The following session shows
that we import the certificate giving to the owner of the certificate the alias
marcokey.

The keytool option in this case asks only for the password of the local
keystore. Since the private key was never exported out of the server machine,
it is not even imported in the client machine, and no password is required to
protect the private key. As you can see from the screen above, the keytool
command shows the particulars of the certificate to be imported, and then,
before actually importing it, it asks for further confirmation that the certificate
is to be considered trusted.

1.4.1.8 Modifying the Security Policy on the Client System
Now the Java security system needs to be informed that code signed by the
signer marcokey and residing in the HTML public directory of the Web server
wtr05218.itso.ral.ibm.com must be granted permission to initiate a print
operation on the toolkit’s platform. The security policy of the Java system is
configured in a text file called a policy file. By default, after a typical

C:\WINNT\Profiles\pistoia.000>keytool -export -alias mykey -file marcoCer.cer
Enter keystore password: Paolina
Certificate stored in file <marcoCer.cer>

C:\WINNT\Profiles\pistoia.000>

C:\WINNT\Profiles\pistoia.000>keytool -import -alias marcokey -file marcoCer.cer

Enter keystore password: np3101r
Owner: CN=Marco Pistoia, OU=ITSO, O=IBM Corporation, L=Cary, ST=North Carolina,
C=US
Issuer: CN=Marco Pistoia, OU=ITSO, O=IBM Corporation, L=Cary, ST=North Carolina,
 C=US
Serial number: 36f3206e
Valid from: Fri Mar 19 23:13:34 EST 1999 until: Fri Jun 18 00:13:34 EDT 1999
Certificate fingerprints:
 MD5: 60:CA:F2:D1:4E:C1:D1:AD:B7:37:68:2B:A5:9C:33:64
 SHA1: FC:CB:F5:30:75:0A:21:6E:F6:21:9C:17:C3:FD:A3:53:A4:E3:45:5C
Trust this certificate? [no]: yes
Certificate was added to keystore

C:\WINNT\Profiles\pistoia.000>
20 Java 2 Network Security

installation of the Java 2 SDK, Standard Edition, V1.2.x, the policy file that
affects the Applet Viewer security comes in the directory
drive:\jdk1.2.x\jre\lib\security (in our system, drive is D) and is called
java.policy. Rather than manually editing this file, with the risks of generating
security exposures by doing syntax mistakes, it is convenient to use a new
utility available with the Java 2 platform, the Policy Tool, that is launched from
the command line by entering the command policytool.

When the Policy Tool window is brought up, you have to select the policy file
you want to configure (this can be done by clicking on Open from the File
menu) and the keystore where the signer’s certificates reside (click on
Change KeyStore from the Edit menu). The following figure shows the Policy
Tool window we used on the client machine:

Figure 5. Opening the java.policy File with the Policy Tool on the Client Machine

What we need to do now is to grant permission to initiate a print operation on
the toolkit's platform to all the code signed by marcokey and residing in the
URL http://wtr05218.itso.ral.ibm.com/. To do this, we click on Add Policy
Entry and the Policy Entry panel is displayed. Here we type
http://wtr05218.itso.ral.ibm.com/* in the CodeBase field and marcokey in the
SignedBy field, as shown next:
An Overview of Java and Security 21

Figure 6. Policy Entry Panel

The wildcard character * is necessary when JAR files in the specified
directory need to receive the privileges. Without that character, only class
files would receive the specified permissions.

This way we are granting particular security privileges to all the JAR files
stored in the public HTML directory of the Web server
wtr05218.itso.ral.ibm.com and signed by marcokey.

Then we click on Add Permission, and the permission dialog appears:
22 Java 2 Network Security

Figure 7. Permission Dialog

The specific permission we need in this case is a RuntimePermission, and
the target is queuePrintJob. After selecting these items from the Permission
and Target Name menus, the Permission dialog appears as follows:

Figure 8. Selecting the Appropriate Values in the Permission Dialog Panel Fields

After pressing OK, we see that the Policy Entry panel has registered the new
permission:
An Overview of Java and Security 23

Figure 9. New Permission Registered in the Policy Entry Dialog

Then we click on Done, and in the Policy Tool window we see that the new
policy entry has been registered:
24 Java 2 Network Security

Figure 10. New Policy Entry Registered in the Policy Tool Window

Before closing the Policy Tool, it is necessary to save this configuration, by
selecting the Save item from the File menu. Upon opening with a text editor
the java.policy file in the directory D:\jdk1.2.x\jre\lib\security, we would see
that the following entry has been generated:

1.4.1.9 Running the Applet with the Necessary Permission
At this point, we can run the GetPrintJob signed applet by entering the
following command on the command line:

appletviewer http://wtr05218.itso.ral.ibm.com/GetPrintJobJAR.html

An Applet Viewer window very similar to the one shown in Figure 4 on page
17 is brought up. However, this time the applet is signed and the combination
of the signer and the URL where the applet resides have been granted the
permission to initiate a print operation on the toolkit’s platform. For this
reason, when the getPrintJob button is pressed, the following Print window
will be displayed:

grant signedBy "marcokey", codeBase "http://wtr05218.itso.ral.ibm.com/*" {
 permission java.lang.RuntimePermission "queuePrintJob";
};
An Overview of Java and Security 25

Figure 11. Print Window Opened by the GetPrintJob Applet

No security exceptions are thrown this time. According to the Java code
shown in Figure 1 on page 14 and Figure 2 on page 15, the Command
Prompt window registers the following message:

No exception. Test is successful.

However, if the same applet had attempted to read or write a file from the
local file system, or open a socket connection, a security exception would
have been thrown, because such permissions were not granted to this code.

1.4.2 An Example of Application Security in Java 2
The example of remote code downloading described in 1.4.1, “An Example of
Applet Security in Java 2” on page 14 can give you an idea of the reason why
the new Java security model adds a security layer to the basic security of your
system. Moreover, as you can see, no particular programming efforts are
required to use it, since security is part of Java.

Another example that we want to show you in this chapter relates to Java
application security. As we have discussed in Point 1 and Point 2 on page 13,
in previous versions of Java, the security model granted full permissions to all
26 Java 2 Network Security

the local code. In other words, a Java application launched from the
command line was not subjected to any security restrictions. In Java 2, even
applications can be subjected to the security policy of the local system.

A practical use of this restriction would be if you receive the bytecode of a
Java application on a diskette or CD-ROM in the mail, or you get it from a
remote site through the FTP protocol, and then you want to run it on your
system. As far as you know, this application only has to initiate a print
operation on the toolkit’s platform, since this is what the application developer
claims. However, you cannot be completely sure, since you did not have the
opportunity to read the source code of the application. So it is possible that
the application you are going to run on your system has some hidden agenda,
and while it opens a pretty Print screen as the one shown in Figure 11 on
page 26, it also attempts to read a file from your local file system, open a
socket connection to a remote machine and send the contents of that file to a
remote host. The file could contain sensitive information that you are not
willing to share with other people. The application could write files on your
system, install software you do not want, throw in a virus, or perform other
terrible operations. For this reason, you do not want this application to be
granted full permissions on your system.

The new Java security model offers you a way to limit the freedom of a Java
local application installed on your system. The exact limits on the
application’s freedom depend as usual on the location of the application on
your file system and/or the digital signatures that have been applied on the
code.

1.4.2.1 The Java Code
Let’s consider the following Java code, obtained by transforming the
GetPrintJob applet, shown in Figure 1 on page 14 and Figure 2 on page 15,
in the GetPrintJob Java application:

Figure 12. (Part 1 of 2). GetPrintJob.java Application Source Code

import java.awt.*;
import java.awt.event.*;

class GetPrintJob extends Frame implements ActionListener
{
 boolean p = true;

 GetPrintJob()
 {
An Overview of Java and Security 27

Figure 13. (Part 2 of 2). GetPrintJob.java Application Source Code

What this application does is similar to what we have seen with the applet,
except that it runs locally. Once run, it displays a button, and each time you
press the button, it attempts to get a PrintJob object, which results in initiating
a print operation on the toolkit’s platform. This operation would have been
allowed in JDK 1.0 and 1.1, since local applications were granted full access
permissions on the underlying operating system.

In Java 2, according to the new security model, a security manager is not
automatically installed when an application is running. In other words, an
application has by default full access to resources, as was always the case in

 super("Toolkit.getPrintJob() test case");
 setSize(300, 100);
 setLocation(200, 200);
 Button b = new Button("getPrintJob");
 add(b, BorderLayout.CENTER);
 b.addActionListener(this);

 show();
 }

 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 Toolkit.getDefaultToolkit().getPrintJob(null, "PrintJob", null);
 }

 catch(Exception e)
 {
 System.out.println("There was an exception, "+ e.toString());
 p=false;
 }
 if (p)
 System.out.println("No exception. Test is successful.");
 }

 public static void main(String[] args)
 {
 new GetPrintJob();
 }
}

28 Java 2 Network Security

JDK 1.0 and 1.1. However, by specifying a special parameter on the
command line, -Djava.security.manager, you can invoke a security manager,
and in this case the application would be subjected to the same security
restrictions as a remote applet that has been downloaded on your system.

The Java source code shown above is compiled and transformed in Java
bytecode through the Java compiler javac:

javac GetPrintJob.java

1.4.2.2 Running the Application without a Security Manager
The file produced after launching the above javac command is
GetPrintJob.class and the application can be launched by entering:

java GetPrintJob

from the same directory where GetPrintJob.class resides. After launching the
command above, the following graphical button is displayed:

Figure 14. getPrintJob Button Displayed by the GetPrintJob Application

On pressing the getPrintJob button, you see that the application works
correctly: a Print window similar to the one shown in Figure 11 on page 26 is
brought up, and the Command Prompt window from which you launched the
application displays the following message:

No exception. Test is successful.

The reason for this is that a local application is by default not subjected to any
restrictions, and is allowed full access to system resources. A security
manager is not automatically installed when an application is running.

1.4.2.3 Running the Application without the Necessary Permission
To apply the same security policy to an application found on the local file
system as to downloaded applets, you can invoke the interpreter with the new
-Djava.security.manager command line argument.

To execute the GetPrintJob application with the default security manager,
type the following:
An Overview of Java and Security 29

java -Djava.security.manager GetPrintJob

The application window this time displays a Warning yellow bar on the
bottom, to remind you that the application is running under a security
manager:

Figure 15. Executing the GetPrintJob Application with the Default Security Manager

However, on clicking on the getPrintJob button, you would see that the
application does not work as expected: the Print window is not brought up
and the Command Prompt window from which you launched the application
registers the following security exception:

There was an exception, java.security.AccessControlException: access denied
(java.lang.RuntimePermission queuePrintJob)

The reason for this message is that the application is now running under the
default security manager of the Java platform, and the security manager
detects that the application does not have the proper permissions. This is a
new feature implemented in the Java 2 security model, which was not
implemented in the previous versions of Java, where local applications were
automatically granted full permissions without the possibility to restrict their
access to the system resources.

In order to run correctly, this application needs the permission to initiate a
print operation on the toolkit’s platform. The following sections show the steps
to do this.

1.4.2.4 Packing the Application Class in a JAR File
First of all, the application class file GetPrintJob.class must be packed in a
JAR file, called for instance GetPrintJob.jar. This could be done as explained
in 1.4.1.3, “Packing the Applet Class in a JAR File” on page 18, by entering
the command:

jar cvf GetPrintJob.jar GetPrintJob.class

However, the command above is not enough to produce a JAR file that could
be run using the java command. In fact, when the java command runs against
30 Java 2 Network Security

a JAR file, it needs to know the main class file contained in the JAR file itself.
To do this, we create a text file called for example MainClass.txt, which
contains the following line:

Main-Class: GetPrintJob

It is important that, when you edit this file, you hit Enter at the end of the line,
so that an invisible end-of-line character is added at the end of this line and
an empty new line is created.

After this, you can create the JAR file GetPrintJob.jar by using the jar
command. However, this time, you should use the m option of the jar
command and specify the file MainClass.txt on the command line, as follows:

jar cvfm GetPrintJob.jar MainClass.txt GetPrintJob.class

The m option forces the jar command to take into account the contents of the
file MainClass.txt while producing the manifest file. So this time the file
MANIFEST.MF of the GetPrintJob.jar file will contain the line:

Main-Class: GetPrintJob

This way the java command will know that GetPrintJob.class is the main Java
class file that has to be run.

1.4.2.5 Code Signing
As we have explained, restricting access to local code makes particular
sense in all the cases where we have received the bytecode of an application
from a not completely trusted source and we have to run it on our system. In
this example, we assume that the application has been written, compiled and
signed on a machine called wtr05218.itso.ral.ibm.com, and then it has to run
on a different machine, say wtr05366.itso.ral.ibm.com.

To sign the JAR file on wtr05218, we assume that we have already created
the keystore file .keystore in the user home directory and that this file
contains a key pair for the signer (see 1.4.1.4, “Creating a Keystore and a
Signer’s Key Pair” on page 18).

The signature on the JAR file is applied through the jarsigner command line
tool, as explained in 1.4.1.5, “Signing the Code” on page 19.

The signer’s certificate must be exported to a file on the machine wtr05218
(see 1.4.1.6, “Exporting the Signer’s Certificate on the Server” on page 19),
the file must be transferred to the machine wtr05366, for example using a
diskette or via FTP, and then the certificate must be imported in the local
An Overview of Java and Security 31

keystore as a trusted certificate (see 1.4.1.7, “Importing the Signer’s
Certificate on the Client” on page 20).

1.4.2.6 Modifying the Security Policy
After saving the GetPrintJob.jar signed JAR file in the local directory
D:\itso\ch01 of the machine wtr05366, the Java security system running on
this machine must be informed that all the code signed by the signer
marcokey and residing in the local directory D:\itso\ch01 must be granted
permission to initiate a print operation on the toolkit's platform. If you do not
modify the policy file properly, you will not be able to run the application
correctly with the default security manager, because a security exception
would be thrown.

The policy file configuration can be performed in a way very similar to the one
we have shown in 1.4.1.8, “Modifying the Security Policy on the Client
System” on page 20. The main difference now is that the system policy file
that by default applies to Java applications, which is still called java.policy, is
located in the directory drive:\Program Files\JavaSoft\JRE\1.2\lib\security.
The Policy Tool can be used to modify this policy file:

Figure 16. Policy Tool Window

This entry is automatically registered in the policy file after the Policy Tool
configuration:
32 Java 2 Network Security

1.4.2.7 Running the Application with the Necessary Permission
The java command can be launched against a JAR file, provided that the -jar
option is specified. After granting the code signed by marcokey and residing
in the local directory D:\itso\ch01 permission to perform a print operation on
the toolkit’s platform, we launch the command:

javac -Djava.security.manager -jar GetPrintJob.jar

A button is shown similar to the one in Figure 15 on page 30. This time, the
print operation can be performed. In fact, as soon as we click on the
getPrintJob button, the Print window is brought up (see Figure 11 on page
26) and the Command Prompt window from which we launched the
GetPrintJob application registers the following message:

No exception. Test is successful.

However, if the same application had attempted to read or write a file from the
local file system, open a socket connection or perform another sensitive
operation, a security exception would have been thrown, because such
permissions were not granted to this code.

1.5 Summary

In this first chapter we have explained some basic concepts of Java and
security and introduced the new Java 2 security model. We have also shown
some basic examples to give you a better understanding of how Java can add
a further security layer to the underlying operating system, without requiring
particular programming efforts.

Although, in this first chapter, we did not explain all the details about the
operations we performed and the underlying Java security architecture, you
can rest assured that in the next chapters all these concepts will be explained
in great detail.

grant signedBy "marcokey", codeBase "file:/D:/itso/ch01/*" {
 permission java.lang.RuntimePermission "queuePrintJob";
};
An Overview of Java and Security 33

34 Java 2 Network Security

Chapter 2. Attack and Defense

Many claims have been made for the security of Java. An underlying fact
supporting such claims is that security was designed-in at an early stage in
the development of the language. Saying that Java has strong security is like
challenging the world to find the holes in it, which is exactly what has
happened. Some very clever (and very devious) people have been applying
their brain-power to the problem of breaking down the Java defenses.

In this chapter we give a high-level view of Java’s built-in security features
and then summarize the different ways in which it can be attacked.

2.1 Components of Java

For the reasons we have explained in 1.1, “Java Is Not Just a Language” on
page 3, it is not surprising that Java has become so widely accepted, so
quickly. Before we look at the security issues, let us review some Java
fundamentals.

There are a number of different components to Java:

1. Development environment

The Java 2 SDK contains the tools and executable code needed to
compile and test Java programs. However, unlike a normal language, the
Java 2 SDK includes object frameworks for creating graphical user
interfaces, for networking and for complex I/O. Normally, in other
programming languages, these things are provided as additions, either by
the operating system or by another software package. Of course,
fully-featured development environments do exist for Java, but the core
language includes a lot of what they would normally have to provide.

2. Execution environment

Java’s execution environment is neither that of a compiled language nor an
interpreted language. Instead it is a hybrid, implemented by the Java
Virtual Machine (JVM). Java is often said to be platform-independent, but
first the JVM must be ported to each platform to provide the environment it
needs. The JVM implementation is responsible for all of the built-in
security of Java, so it is important that it is done properly.

The JVM is a subset of the Java Runtime Environment (JRE). JRE is the
Java platform on which you can run, test and ship your own applications. It
consists of the JVM, the Java platform core classes, and supporting files.
It contains no development tools: no compiler, debugger, or other tools.
© Copyright IBM Corp. 1997 1999 35

3. Interfaces and architectures

Java applications live in the real world. This means that they must be able
to interact with non-Java applications. Some of these interactions are very
simple (such as the way that a Java applet is invoked in a Web page).
Others are the subject of more complex architectural definitions, such as
the JDBC interface for relational database support. The mechanism for
adding encryption to Java security, the Java Cryptography Architecture
(JCA), falls into this latter category.

We will examine these components in the next three sections.

2.1.1 The Development Environment
Once you have installed the Java 2 SDK, you can start creating Java source
code and compiling it. Java is like any other high-level programming
language, in that you write the source code in an English-like form. The
source code then has to be converted into a form that the machine can
understand before it can be executed. To perform this conversion for a normal
language, the code is usually either compiled (converted once and stored as
machine code) or interpreted (converted and executed at run time).

Java combines these two approaches. The source code has to be compiled
with a Java compiler, such as javac, before it can be used. This is a
conventional compilation. However, the output that javac produces is not
machine-specific code, but instead is bytecode, a system-independent
format. We will take a closer look at how bytecode is constructed in 5.5, “Java
Bytecode” on page 136.

In order to execute, the compiled code has to be processed by an interpreter,
which is part of the Java execution environment known as the JVM. The JVM
is a run-time platform, providing a number of built-in system services, such as
thread support, memory management and I/O, in addition to the interpreter.

2.1.1.1 Class Consciousness
Java is an object-oriented language, meaning that a program is composed of
a number of object classes, each containing data and methods. One result of
this is that, although a program may consist of just a single class, when you
have compiled it into bytecode, only a small proportion of the code that gets
executed is likely to be in the resulting class file. The rest of the function will
be in other classes that the main program references. The JVM uses dynamic
linking to load these classes as they are needed. As an example, consider the
simple applet contained in the following Java source file:
36 Java 2 Network Security

Figure 17. PointlessButton.java

If the PointlessButton.java file was placed, say, in the C:\itso\ch02 directory,
then the following Java source file, Button.java, should be placed in the
C:\itso\ch02\jamjar\examples directory:

Figure 18. (Part 1 of 2). Button.java

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import jamjar.examples.Button;

public class PointlessButton extends java.applet.Applet
 implements java.awt.event.ActionListener
{
 Button donowt = new Button("Do Nothing");
 int count = 0;

/**
 * The button was clicked.
 */
 public void actionPerformed(java.awt.event.ActionEvent e)
 {
 donowt.setLabel("Did Nothing " + ++count + " time" + (count == 1 ? "" : "s"));
 }

 public void init()
 {
 setLayout(new BorderLayout());
 this.add("Center", donowt);
 donowt.addActionListener(this);
 }
}

package jamjar.examples;

import java.awt.Color;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

/**
 * This class was generated by a SmartGuide.
 */
Attack and Defense 37

Figure 19. (Part 2 of 2). Button.java

The first listing, PointlessButton.java (see Figure 17 on page 37) is an applet
that simply places a button on the Web page. Instead of using the standard
AWT Button class, it uses a class of our own, also called Button (see Figure
18 on page 37 and Figure 19 on page 38), but available in a locally-written
package. This works like a normal button, except that it changes color when

public class Button extends java.awt.Button implements MouseListener
{

/**
 * @param title java.lang.String
 */
 public Button(String title)
 {
 super(title);
 addMouseListener(this);
 setBackground(Color.white);
 }

/**
 * Set the color of the button to red when the mouse enters
 */
 public void mouseEntered(MouseEvent m)
{
 setBackground(Color.yellow);
 }

/**
 * Reset the color of the button to white when the mouse exits
 */
 public void mouseExited(MouseEvent m)
 {
 setBackground(Color.white);
 }

/**
 * Three do nothing methods.
 * Needed to implement the MouseListener interface
 */
 public void mouseClicked(MouseEvent e) {}
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
}

38 Java 2 Network Security

you move the mouse pointer over it and registers how many times you clicked
on it.

From the directory C:\itso\ch02, you should compile these files, by issuing the
following command:

javac PointlessButton.java

Next, we show you the listing of an HTML file that includes two copies of the
PointlessButton applet in the Web page:

Figure 20. PointlessButton.html

The HTML file above is saved in the same directory where the Java class file
PointlessButton.class resides.

You can load the PointlessButton.html file in your Web browser by pointing
your browser to the URL where the HTML file resides. Figure 21 on page 40
shows the two copies of the applet running in the Web page:

<HTML>
 <HEAD>
 <TITLE>Pointless Button</TITLE>
 </HEAD>

 <BODY>
 <CENTER><H2>Pointless Button</H2>
 <HR>

 <APPLET Code="PointlessButton.class" Width=200 Height=50>
 <H4>This area contains a Java applet, but your browser is not Java-enabled</H4>
 </APPLET>

 <APPLET Code="PointlessButton.class" Width=200 Height=50>
 <H4>This area contains a Java applet, but your browser is not Java-enabled</H4>
 </APPLET>
 </BODY>
</HTML>
Attack and Defense 39

Figure 21. Running the pointlessButton Applet

The total size of the bytecode for this example is only 2 KB. However, the two
classes cause a lot of other code to be dynamically installed, either as a
result of inheritance (defined by the extends keyword in the class definition) or
by instantiation (when a class creates an instance of another class with the
new keyword). Figure 22 on page 41 shows the hierarchy of classes that could
potentially be loaded to run our simple applet. Notice that this is a simplified
view, because it does not consider classes that may be invoked by classes
above the lowest level of the hierarchy:
40 Java 2 Network Security

Figure 22. Classes Loaded for the PointlessButton Applet

This diagram illustrates a number of things about Java classes:

1. The classes are arranged in packages, which are collections of related
classes. The language defines a large number of these, which have to be
implemented by every JVM implementation. You can add your own class
packages by defining new classes that inherit from one of the basic
classes. In our example, all but two of the classes are provided as
standard. Normally, Java class loaders impose a direct relationship
between a package name and the location of the directory in which it
expects to find the class files for the package. So, in our example, the
classes contained in the jamjar.examples package will be found in
directory ${codeBase}/jamjar/examples (codeBase is the base directory
on the server from which the applet is loaded, specified in the <APPLET>
tag).1

1 In fact we are guilty of using an improper name construction here. If your package will be used together with packages
from other sources, you should follow the naming standard laid down in the Java Language Specification, Gosling, Joy
and Steele. In our case this would lead to a package name something like com.ibm.jamjar.examples. If you want to know
more about the Java language specification, refer to http://java.sun.com/docs/books/jls/.

Object
 java.lang

 java.util

 java.awt

 java.awt.event

String

Container

Panel

 java.applet Applet

Component

Button

AWTEvent

ActionEvent InputEvent

MouseEvent

Component

EventObject

 jamjar.examples

ButtonPointlessButton

Uses

Extends

Package
Boundary
Attack and Defense 41

2. Classes are defined as extending existing classes. This means that they
can inherit the properties (variables and methods) of the higher (or super)
class. They can also selectively override the properties of the super class.
They also add new properties of their own.

3. Java identifies classes using the fully-qualified class name, that is, the
combination of the package name and the class name. This allows you to
have duplicated class names, such as our two Button classes. If two
classes in different packages do have duplicate names, the programmer
must take care to use the right one. Two things that help with this are:

 • Importing classes by name, instead of importing the whole package

 • Placing the desired classes at the start of the class path

2.1.1.2 Access to Classes, Fields and Methods
Java provides mechanisms for limiting access to classes, fields and methods.

A class or interface may be declared public, in which case it may be
accessed, using a qualified name, by any Java code that can access the
package in which it is declared. A class or interface that is not declared public
may be accessed only from the package in which it is declared.

A field, method, or constructor of a class may be declared using at most one
of the public, private, or protected keywords:

 • A public member may be accessed by any Java code.

 • A private member may be accessed only from within the class that
contains its declaration.

 • A protected member of an object may be accessed only by the code
responsible for the implementation of that object. To be precise, a
protected member may be accessed from anywhere in the package in
which it is declared and, in addition, it may be accessed from within any
declaration of a subclass of the class type that contains its declaration.

 • A member that is not declared public, protected, or private is said to have
default access and may be accessed from, and only from, anywhere in the
package in which it is declared.

Notice that every field or method of an interface must be public. Every
member of a public interface is implicitly public, whether or not the keyword
public appears in its declaration. If an interface is not public, then every one
of its fields and methods must be explicitly declared public.
42 Java 2 Network Security

There are security implications when using these keywords to limit access to
classes, fields and methods. We will see them in 7.4, “Avoiding Security
Hazards” on page 204.

2.1.1.3 Visual Application Builders and Java Beans
Java is unusual in the breadth of function that its built-in class frameworks
provide; however, for a project of any complexity you are likely to employ
graphical tools, such as a visual application builder (VAB) to link together
predefined components, thereby reducing the code you have to write to the
core logic of the application. Examples of VABs include IBM VisualAge for
Java, Lotus BeanMachine, NetObjects BeanBuilder and Sun Microsystems’
JavaBeans Development Kit (BDK).

A component in this context is a package of Java classes that perform a given
function. The JavaBeans definition describes a standard for components,
known as beans. Basically a bean is a package of code containing both
development and run-time components that:

 • Allows a builder tool to analyze how it works (introspection)

 • Allows a builder tool to customize its appearance and behavior

 • Supports events, a simple communication metaphor than can be used to
connect beans

 • Supports properties, or settable attributes, used both when developing an
application and programmatically when the application is running

 • Supports persistence, so that a bean can be customized in an application
builder and then have its customized state saved away and reloaded later

 • Provides interfaces to other component architectures, such as ActiveX and
LiveConnect

From this list you can infer that, although a bean is mostly made up of Java
classes, it can also include other files, containing persistent information and
other resources such as graphical elements, etc. These elements are all
packed (or pickled) together in a Java Archive (JAR) file.

From a security viewpoint, VABs and beans do not affect the underlying
strengths and weaknesses of Java. However, they may add more uncertainty,
in that your application now includes sizeable chunks of code that you did not
directly write. Their ability to provide interfaces to other component
architectures may also cause problems, as we discuss in 2.1.3, “Interfaces
and Architectures” on page 50.
Attack and Defense 43

2.1.1.4 Java 2 SDK Security Tools
The Java 2 development environment also contains a set of tools for
managing the security features of the new Java platform:

 • The Policy Tool creates and modifies the external policy configuration files
that define your installation's security policy.

 • The jar command line utility is used to create Java archives.

 • The keytool utility creates key pairs and self-signed X.509 V1 certificates,
and manages keystores. Keys and certificates are used to digitally sign
your applications and applets. A keystore is a protected database that
holds keys and certificates.

 • The jarsigner command line tool signs JAR files, and verifies the
signature(s) of signed JAR files. It accesses the keystore when it needs to
find a key to sign a JAR file.

Notice that keytool and jarsigner replace javakey, which in Java Development
Kit (JDK) 1.1 was the command line tool used to apply a digital signature to a
JAR file.

We already saw a brief introduction on how to use the new security tools in
1.4, “Understanding Java 2 Security” on page 12. We will read more about
these tools in detail in Chapter 9, “Java 2 SDK Security Tools” on page 259.

2.1.2 The Execution Environment
We have said that the JVM operates on the stream of bytecode as an
interpreter. This means that it processes bytecode while the program is
running and converts it to real machine code that it executes on the fly. You
can think of a computer program as being like a railroad track, with the train
representing the execution point at any given time. In the case of an
interpreted program it is as if this train has a machine mounted on it, which
builds the track immediately in front of the train and tears it up behind. It’s no
way to run a railroad.

Fortunately, in the case of Java, the JVM is not interpreting high-level
language instructions, but bytecode. This is really machine code, written for
the JVM instruction set, so the interpreter has much less analysis to do,
resulting in execution times that are very fast. The JVM often uses just-in-time
(JIT) compiler techniques to allow programs to execute faster, for example, by
translating bytecode into optimized local code once and subsequently running
it directly. Advances in JIT technology are making Java run faster all the time.
IBM is one of many organizations exploring the technology.
44 Java 2 Network Security

Before the JVM can start this interpretation process, it has to do a number of
things to set up the environment in which the program will run. This is the
point at which the built-in security of Java is implemented. There are three
parts to the process:

1. The first component of code checking is the class loader. This separates
the classes it loads to avoid attack. Java built-in classes, specified in the
boot class path (also known as system class path or JVM class path), are
separated from extension classes, specified in the extension class path,
and from other application classes, specified in the user or application
class path variable. An extension is a group of Java packages that
implement an API extending the Java platform, such as JavaServlet,
Java3D, JavaManagement, etc. The search order is Java built-in classes
first, extension classes and then application classes last. So, if, by
accident or design, any application code contains a class of the same
name as a built-in or extension class, the built-in or extension class will not
be overwritten by the application code.

2. The second component is the class file verifier. This runs when the code is
loaded, and confirms that the bytecode program is legal Java code and
obeys the rules of the language. It is a multipass process which begins by
making sure that the syntax is valid, checks for stack overflow or
underflow, and runs a theorem prover that looks to see that access and
type restrictions are observed.

3. The third component is the security manager, which checks sensitive
accesses at run time. This is the component that enforces the security
policy defined for the system and will not allow Java code illicit access to
the file system, or to the network, or to the run-time operating system.

The Execution process can be summarized as shown in the following figure:
Attack and Defense 45

Figure 23. Execution Process

2.1.2.1 The Class Loader
Before the JVM can run a Java program, it needs to locate and load the
classes which comprise that program into memory.

In a traditional execution environment, this service is provided by the
operating system which loads code from the file system in a platform-specific
way. The operating system has access to all of the low level I/O functions and
has a set of locations on the file system that it searches for programs or
shared code libraries. Depending on the operating system, this can be a list
of directories to look in using environment variables, such as Path and
CLASSPATH.

In the JRE things can get a little more complicated by the fact that not all
class files are loaded from the same type of location and may not be under
the local operating system’s control to ensure integrity. The class loading
mechanism plays a critical role in Java security since the class loader is
responsible for locating and fetching the class files, consulting the security
policy, and defining the class object with the appropriate permissions.

So how do classes get loaded? We answer this question taking as an
example the PointlessButton applet, whose code is shown in Figure 17 on
page 37. When the browser finds the <APPLET> tag in the HTML page (see
Figure 20 on page 39), it starts the JVM which, in turn, invokes the applet
class loader. This is, itself, a Java class which contains the code for fetching
the bytecode of the applet and presenting it to the JVM in an executable form.
The bytecode includes a list of referenced classes and the JVM works
through the list, checks to see if the class is already loaded and attempts to
load it if not. It first tries to load from the local disk, using a platform-specific

Enforce Restrictions
and Fine Grained

Access Control

Class
Loader

Load
Classes

Class
File

Verifier

Check Class
Files for
Integrity

Security
Manager

Packages &
Classes from

System classpath
Extension classpath
Application classpath
46 Java 2 Network Security

function provided by the browser. In our example, this is the way that all of the
core Java classes are loaded. If the class name is not found on the local disk,
the JVM again tries to retrieve the class by searching for it in the extension
class path. If this also fails, the JVM tries to retrieve the class from the Web
server, as in the case of the jamjar.examples.Button class (see Figure 18 on
page 37 and Figure 19 on page 38).

2.1.2.2 Where Class Loaders Come From
The class loader is just another Java class, albeit one with a very specific
function. An application can declare any number of class loaders, each of
which could be targeted at specific class types. The same is not true of an
applet. The security manager prevents an applet from creating its own class
loader. Clearly, if an applet can somehow circumvent this limitation, it can
subvert the class loading process and potentially take over the whole browser
machine.

The JVM keeps track of which class loader was responsible for loading any
particular class. It also keeps classes loaded by different applets separate
from each other.

You can create a specific class loader for your own application, if you wish to
do so. Java 2 has simplified the development process by creating a subclass
of ClassLoader, called SecureClassLoader. The distinguishing feature of
SecureClassLoader is that it associates a sandbox for each class that it
loads, which determines what accesses and rights the class can exercise in
the client system. We will explain more details on this in 3.5, “Java 2 Class
Loading Mechanism” on page 89 and 6.1, “Class Loaders” on page 145.

2.1.2.3 The Class File Verifier
At first sight, the job of the class file verifier may appear to be redundant.
After all, isn’t bytecode only generated by the Java compiler? So, if it is not
correctly formatted and valid, surely the compiler needs to be fixed, rather
than having to go through the overhead of checking each time a program is
run.

Java divides the world into two parts, since it considers the Java core classes
shipped as part of the JVM and installed on the local system as trusted, and
therefore not subject to verification prior to execution. Sometimes other
classes on the local disk are considered trusted as well – detailed
implementation varies between vendors. Everything else is untrusted and
therefore must be checked by the class file verifier. As we have seen, these
are also the classes that the applet class loader is responsible for fetching.
Attack and Defense 47

The class loading process in the example of the PointlessButton applet is
illustrated in the next figure:

Figure 24. Where the Class File Verifier Fits

You can already see that, for an applet, the class loader and the class file
verifier need to operate as a team, if they are to succeed in their task of
making sure that only valid, safe code is executed.

From a security point of view the accuracy of the job done by the class file
verifier is critical. There are a large number of possible bytecode programs,
and the class file verifier has the job of determining the subset of them that
are safe to run, by testing against a set of rules. There is a further subset of
these verifiable programs: programs that are the result of compiling a legal
Java program. Figure 25 on page 49 illustrates this. The rules in the class file
verifier should aim to make the verifiable set as near as possible to the set of
Java programs. This limits the scope for an attacker to create bytecode that
subverts the safety features in Java and the protection of the security
manager.

JVM
Attempts

Class Load

�

�
Class File

Verifier

Built-In Loader
for Local, Trusted

Classes

Applet Class Loader
Gets Classes from

URLs
48 Java 2 Network Security

Figure 25. Decisions the Class File Verifier Has to Make

We will look in detail at how the class file verifier works in 6.2, “The Class File
Verifier” on page 168.

2.1.2.4 The Security Manager
The third component involved in loading and running a Java program is the
security manager. This is similar to the class loader in that it is a Java class
(java.lang.SecurityManager) that any application can extend for its own
purpose.

The verified code is further subjected to run-time restrictions. The security
manager is responsible for enforcing these restrictions. Any flaw in the coding
of the security manager, or any failure by the core classes to invoke it, could
compromise the ability to run untrusted code securely.

Prior to Java 2, SecurityManager was an abstract class and a concrete
implementation had to be provided by the application manufacturer as part of
the application. Although any application could implement SecurityManager,
it was most commonly found when executing an applet, that is, within a Web
browser. The security manager built into your browser was wholly responsible
for enforcing the sandbox restrictions: the set of rules that controlled what
things an applet was allowed to do on your browser machine.

In Java 2, SecurityManager has been modified: now it is not abstract, and can
be instantiated or subclassed. The manufacturer now has an alternative. He
can choose to use the policy-based security manager implementation

"Java" bytecode programs

Verifiable bytecode programs

All bytecode programs

Bytecode programs
that are valid, but
cannot be verified
Attack and Defense 49

provided with the Java 2 platform and supply policy information to be added
to the policy database. The manufacturer can still provide his own security
manager, if he so chooses, adding to or replacing function supplied by the
Java 2 SecurityManager. More details on this can be found in 3.5.1,
“Run-Time Access Controls” on page 91 and in Chapter 7, “The Java 2
SecurityManager” on page 187.

2.1.3 Interfaces and Architectures
We have discussed two parts of the world of Java, the development
environment and the execution environment. The third part is where the world
of Java meets the rest of the world, that is, the capabilities it provides for
extending Java functions and integrating with applications of other types. The
simplest example is the way that a Java applet is created and integrated into
a Web page by writing the program as a subclass of the Applet class and then
specifying the class name in an <APPLET> HTML tag. In return, Java provides
classes such as URL and a number of methods for accessing a Web server.

2.1.3.1 Don’t Go Native! Seek Purity!
Another simple way to extend Java is by the use of native methods. These are
sections of code written in some other, less exciting, language which provides
access to native system interfaces. For example, imagine an organization
with a helpdesk application which provides a C API for creating new problem
records. You may well want to use this so that your new Java application can
perform self-diagnosis and automatically report any faults it finds. One way to
do so is to create a native method to interpret between Java and the helpdesk
application’s API. This provides simple extensibility, but at the cost of
portability and flexibility, because:

 • The native method has to be compiled for a specific system platform.

 • It must be pre-installed and cannot be installed dynamically like a Java
applet.

The Java purist will deprecate this kind of application. In fact, although the
quest for 100% Pure Java2 sounds like an academic exercise, there are a
number of real-world advantages to only using well-defined, architected
interfaces, not the least of which is that the security aspects have presumably
already been considered.

2.1.3.2 Some of the Roads to Purity
As projects using Java have matured from being interesting exercises in
technology into mission-critical applications, so the need has arisen for more
complex interactions with the outside world. The Java applet gives a very

2 See http://www.javasoft.com/100percent/.
50 Java 2 Network Security

effective way to deliver client function without having to install and maintain
code on every client. However, the application you create this way still needs
access to data and function contained in existing legacy systems.

With JDK 1.1, JavaSoft introduced a number of new interfaces and
architectures for this kind of integration, which have been enhanced on the
Java 2 platform. The objective is to enable applications to be written in 100%
Pure Java, while still delivering the links to the outside world that real
requirements demand.

Some of the more notable interfaces of this kind are:

 • JavaBeans

As we discussed above, the JavaBeans technology not only provides
easier application development, but also provides integration with other
distributed object architectures. From a security point of view this
capability opens a back door which an attacker could exploit. The Java
security manager provides strict and granular controls over what a Java
program may do. But these controls are dependent on the integrity of the
JVM and in particular the trusted classes it provides. A Java applet might
not be able to meddle with the trusted classes directly, but a Bean can
provide linkage to a different type of executable content, with less stringent
controls. This could be used to corrupt the JVM trusted classes, thereby
allowing an attack applet to take over.

 • Remote Method Invocation

Remote Method Invocation (RMI) allows a Java class running on one
system to execute the methods of another class on a second system. This
kind of remote function call processing allows you to create powerful
distributed applications with a minimal overhead. For example, an applet
running on a browser system could invoke a server-side function without
having to execute a CGI program or provide its own sockets-based
protocol.

Legacy seems to be the current word-of-the-month to describe any
computer system that does not fit the brave new architecture under
discussion. It is an unfortunate choice, in that it implies a system that is
outdated or inadequate. You may have a state-of-the-art relational
database that is critical to the running of your business, but to the
Web-based application that depends on the data it contains, it is still a
legacy system.

Legacy Systems
Attack and Defense 51

The security concerns for RMI are, in general, similar to the CGI case. For
example, consider a Java application that accesses a database of
personal information, consisting of a server-side application
communicating with a client applet. When writing the application, the
programmers will naturally assume that the only code involved is what
they write. However, the Java code that initiates the connection does not
have to be their friendly applet, it could be the work of a cracker. The
server application must be very careful to check the validity of any
requests it gets and not rely on client-side validation.

RMI has several new enhancements on the Java 2 platform. Remote
object activation introduces support for persistent references to remote
objects and automatic object activation by using these references. Custom
socket factories allow a remote object to specify the protocol that RMI will
use for remote calls to that object. RMI over a secure transport – such as
Secure Sockets Layer (SSL) – can be supported using custom socket
factories. Minor API enhancements allow unexporting a remote object,
obtaining the stub for an object implementation, and exporting an object
on a specific port. We will read more about RMI in 14.6, “Distributed
Object Architectures – RMI” on page 537 and 15.7, “Remote Method
Invocation” on page 599.

 • Object Request Brokers

RMI provides a way to remotely execute Java code. However, for many
years the O-O world has been trying to achieve a more generic form of
remote execution. That is, a facility that allows a program to access the
properties and methods of a remote object, regardless of the language in
which it is implemented or the platform on which it runs. The facility that
provides the ability to find and operate on remote objects is called object
request broker (ORB). One of the most widely-accepted standards for
ORBs is the Common Object Request Broker Architecture (CORBA), and
packages are becoming available that provide a CORBA-compatible
interface for Java. Figure 26 on page 53 illustrates the relationship
between a Java application or applet and a remote object. Clearly, in an
implementation of this kind the Java program relies on the security of the
request brokers. It is the responsibility of the ORB and the inter-ORB
communications to authenticate the endpoints and apply access control.
The official standard for inter-ORB communications is the Internet
Inter-ORB Protocol (IIOP).
52 Java 2 Network Security

Figure 26. Interacting with an ORB

 • JDBC

JDBC ought to stand for Java Database Connectivity, but actually it is a
name in its own right. JDBC is an API for executing SQL statements from
Java. Most relational databases implement the Open Database
Connectivity (ODBC) API, originated by Microsoft. JBDC thoughtfully
includes an ODBC bridge, thereby giving it instant usefulness. From a
security point of view, there are some concerns. You should beware of
giving access to more data than you intended. For example, imagine an
applet which invokes JDBC on the Web server to extract information from
a database. It is important that the server application is written to allow
only the SQL requests expected from the applet, and not the more
revealing requests that an attacker could make.

2.2 Java 2 and Cryptography

The interfaces that we have briefly described in 2.1.3, “Interfaces and
Architectures” on page 50, illustrate a big issue in Java. In the real world we
need to extend the security model to allow more powerful applications and
interfaces.

The security model needs to answer questions such as the following:

 • Where did this piece of Java code come from?

 • What type of things should the code be allowed to do?

 • If someone appears to be using an applet I provide, how can I find out who
they are?

IIOP

Local Host

Java VM

Java Application
or Applet

Remote Host

Other Object
Implementation

ORB ORB
Attack and Defense 53

 • How can I protect the confidentiality of the data my Java application is
handling?

The answers to questions of this kind lie in cryptography. The Java 2 platform
significantly enhances the Java Cryptography Architecture (JCA), that was
introduced in JDK 1.1 to define the way that cryptographic tools are made
available to Java code.

From a security point of view, the set of security core classes shipped with the
Java 2 SDK, Standard Edition, V1.2.x can be divided into two subsets:

 • Access control and permissions related core classes

 • Cryptography related core classes

In the Java 2 platform, the JCA framework is formed by the cryptography
related core classes shipped with the Java 2 SDK, Standard Edition, V1.2.
Support for encryption is provided by an extension package, called Java
Cryptography Extension (JCE) 1.2. Details on cryptography can be found in
Chapter 13, “Cryptography in Java 2” on page 475.

2.2.1 Cryptographic Tools in Brief
The derivation of the word cryptography is from Greek and means literally
secret writing. Modern cryptography is still involved in keeping data secret,
but the ability to authenticate a user (and hence apply some kind of access
control) is even more important.

Although there are many cryptographic techniques and protocols, they mostly
fall into one of three categories:

2.2.1.1 Bulk Encryption
This is the modern equivalent of secret writing. A bulk encryption algorithm
uses a key to scramble (or encrypt) data for transmission or storage. It can
then only be unscrambled (or decrypted) using the same key. Bulk encryption
is so called because it is effective for securing large chunks of data. Some
common algorithms are Data Encryption Standard (DES), Data Encryption
Algorithm (DEA) and RC4. This is also called the symmetric encryption.

2.2.1.2 Public Key Encryption
This is also a technique for securing data but instead of using a single key for
encryption and decryption, it uses two related keys, called public key and
private key, which together form what is known as a key pair. As the word
suggests, public keys are made available to everyone, but each entity that
holds a key pair should keep the private key as secret. If data is encrypted
54 Java 2 Network Security

using one of the keys, it can only be decrypted using the other, and vice
versa.

Public key encryption is a form of asymmetric encryption, because the key
that is used to encrypt is different from the key used to decrypt. With this
technology, the sender in a secure communication can use the receiver’s
public key to encrypt the data, because at that point in time only the receiver
can decrypt the data, by using its own private key.

Notice that the public and the private keys are bound by a well known
mathematical relationship, so that having one of the two keys it would be
theoretically possible to obtain the other one. However, especially when the
size of the building block of the keys is very long (for instance, 512 bits), the
computational effort required makes the probability of breaking a key very
small.

Compared to bulk encryption, public key encryption is more secure, because
it does not require the transmission of a shared key that both the parties must
hold. However, public key encryption is computationally expensive and is
therefore not suited to large amounts of data. For this reason the most
common solution, implemented for example in the SSL protocol, is for the two
parties (sender and receiver) to use public key encryption to agree on and
share a common key. After the common key has been shared using
asymmetric encryption, so that only the two parties really know it, then bulk
encryption is used. Notice that a common key is shared only for the time of a
single connection. After a secure connection is closed, a new connection
requires that the two parties agree on a new shared key.

The most commonly-used algorithm for public key encryption is the Rivest,
Shamir and Adleman (RSA) system.

2.2.1.3 Hashing
A secure hash is an algorithm that takes a stream of data and creates a
fixed-length digest of it. This digest is a fingerprint for the data. A digest has
two main properties:

1. If even one single bit of data is changed, then the message digest
changes as well. Notice, however, there is a very remote probability that
two different arbitrary messages can have the same fingerprint.

2. Even if someone was able to intercept transmitted data and its fingerprint,
that person would not be practically able to modify the original data so that
the resulting data has the same digest as the original one.
Attack and Defense 55

Hashing functions are often found in the context of digital signatures. This is a
method for authenticating the source of a message, formed by encrypting a
hash of the source data. Public key encryption is used to create the signature,
so it effectively ties the signed data to the owner of the key pair that created
the signature.

2.2.2 Java Cryptography Architecture
JCA is described as a provider architecture. The primary principal in the
design of the JCA has been to separate the cryptographic concepts from their
algorithmic implementations. It is designed to allow different vendors to
provide their own implementation of the cryptographic tools and other
administrative functions. This makes a very flexible framework which will
cater for future requirements and allow vendor independence.

The architecture defines a series of classes, called engine classes, that are
representations of general cryptographic functions. So, for example, there are
several different standards for digital signatures, which differ in their detailed
implementation but which, at a high level, are very similar. For this reason, a
single engine class, java.security.Signature, has been created that represents
all of the variations in a digital signature. The actual implementation of the
different signature algorithms is done by a provider class which may be
offered by a number of vendors.

Figure 27. Provider and Engine Classes

Engine Classes

Signature

KeyPair

MessageDigest

Other...

Provider Three

Provider Two

Provider One

Algorithm A

Algorithm B

Algorithm C

User Code

Provider Classes
56 Java 2 Network Security

The provider architecture has the virtue of offering a standard interface to the
programmer who wants to use a cryptographic function, while at the same
time having the flexibility to handle different underlying standards and
protocols. The providers may be added either statically or dynamically.

Support for the management of keys and access control lists was not in the
initial release of JDK 1.1, but has been provided in Java 2 SDK, Standard
Edition, V1.2. Currently, Sun Microsystems’ version of the JRE comes
standard with a default provider, named SUN. Other Java Runtime
Environments (JREs) may not necessarily supply the SUN provider. The SUN
provider includes an implementation of the following algorithms:

 • Digital Signature Algorithm (DSA)

 • SHA3-1 and MD54 message digest algorithms

 • SHA1PRNG pseudo-random number generation algorithm

Moreover, the SUN provider implements a DSA key factory, a certificate
factory for X.509 certificates and certificate revocation list (CRLs), and a
keystore implementation for the proprietary keystore type named Java
Keystore (JKS).

2.2.3 United States Export Rules for Encryption
Unfortunately, only a subset of the cryptographic possibilities are
implemented in Java 2 SDK, Standard Edition, V1.2. It includes all of the
engine classes needed for digital signatures, plus a provider package, but
nothing for bulk or public key encryption. The reason for this is the restrictions
placed by the United States government on the export of cryptographic
technology.

The National Security Agency (NSA) is responsible for monitoring
communications between the United States and the rest of the world, aiming
to intercept such things as the messages of unfriendly governments and
organized crime. Clearly, it is not a good thing for such people to have access
to unbreakable encryption, so the United States government sets limits on the
strength of cipher that a United States company can export for commercial
purposes.

3 Secure Hash Algorithm (SHA) is a government-standardized algorithm that is used to construct a message
authentication code that detects attempts to modify data while in transit.
4 MD5 is the standard name for the RSA-MD5 Message Digest algorithm.
Attack and Defense 57

This applies to any software that can be used for general purpose encryption.
So, the SUN provider package that comes with Java 2 SDK, Standard Edition,
V1.2 can include the full-strength RSA public key algorithm, but it can only be
used as part of a digital signature process and not for general encryption.

Finally, in 1996, the United States government relaxed the export rules. The
promise is that any strength of encryption may be exported, so long as it
provides a technique for key recovery, that is, a way for the NSA to retrieve
the encryption key if they need to break the code.

The JavaSoft response to the current restrictions was to define two, related,
packages for cryptography in Java. The exportable part of JCA is the one that
contains the tools for signatures and is implemented in Java 2 SDK, Standard
Edition, V1.2. The not-for-export part is the Java Cryptography Extension
(JCE) 1.2, which includes the general purpose encryption capabilities. JCE
1.2 is a standard extension to the Java 2 platform. It supplements the
cryptographic services defined in the Java 2 SDK by adding support for
ciphers, key agreement, and message authentication codes (MACs). The
eventual aim is to develop a full strength, exportable cryptographic toolkit.

The default provider that comes with JCE 1.2 is called SunJCE. We will see
more details about JCE in 13.4, “Java Cryptography Extension” on page 493.

2.2.4 Signed Code
Using JCA, it is possible for a Java application or applet to create its own
digital signatures. Now you can write more sophisticated programs, because
the Java 2 security implementation allows you to let an applet do something
that the sandbox permissions normally would forbid. In this case, the
browser’s user needs to be convinced that the applet is from a trustworthy
source and belongs to a trusted entity.

 Cipher strength is controlled by the size of the key used in the encryption
algorithm. Current export rules limit the key size for bulk encryption to 40
bits, which can now be cracked in a matter of hours with quite modest
computing facilities. Each extra bit doubles the key space, so a key size of
64 bits is 16 million times tougher than 40 bits. A similar rule applies to
public key encryption, where an export-quality 512-bit modulus is
inadequate, but a 1024-bit modulus is expected to remain effective for the
next ten years, at least for commercial use.

Cipher Strength
58 Java 2 Network Security

The signature on an applet links the code to the programmer or administrator
who created or packaged it. However, the user has to be able to check that
the signature is valid. The signer enables this by providing a public key
certificate.

2.2.5 The Other Side of the Coin – Access Control
When you receive an applet that has been digitally signed, you know where it
comes from and who is the owner of the code, and you can make a judgment
of whether or not it is trustworthy. Next, you want to exercise some access
control.

For example, consider an applet that wants to use your hard disk to store
some configuration information. You probably have no objection to it doing so,
but that does not mean that you are happy for it to overwrite any file on the
system. This is the difference between a binary trust model (I trust you, do
what you like or I don’t trust you, don’t do anything) and a fine-grained trust
model (Tell me what you want to do and I’ll decide whether I trust you or not).

The security model implemented in JDK 1.1 was binary, while Java 2 offers
the implementation of a fine-grained trust model, as we have already
introduced in 1.4, “Understanding Java 2 Security” on page 12.

2.3 Attacking the World of Java

In general, security considerations have a low priority early in the software
lifecycle. This makes Java very unusual, in that security has been an
important consideration from the very beginning. No doubt, this is because
the environment to which the infant language has been exposed in its
formative years is a cruel and unforgiving one: the Internet. In this section we
take a cracker’s-eye view. What opportunities do we have to abuse a remote
Java code, to make it do our dastardly deeds for us?

2.3.1 Perils in the Life of Remote Code
The remote Java code that runs in your Web browser has had an unusually
long and interesting life history. Along the way it has passed through a
number of phases, each of which is in some way vulnerable to attack. Figure
28 on page 60 illustrates the points of peril in the life of an applet:
Attack and Defense 59

Figure 28. Perils in the Life of an Applet

Let us look at the points of vulnerability in some detail:

Source Creation

Java
Virtual

Machine

�

Java
Source

Byte-
code

�

�

Byte-
code

�

�

�

60 Java 2 Network Security

1. You may think that all of the programmers you know are angels, but there
is no way to tell if really there is a devil inside. In the case of remote Java
code, you are another step away from the person who wrote the code. So,
when you buy a software product from a well-known company, you can be
fairly sure that the contents of the shrink-wrap will not do you any harm
(but even this is not 100% true, as we will see in the story of the JAR bug,
described in 12.6, “The JAR Bug – Fixed In Java 2 SDK, Standard Edition,
V1.2.1” on page 461). When you receive any code from the Internet you
have to be wary of where it really comes from. In the case of a Java applet,
the risk is in some ways worse, because you may not even be conscious
that you have received the program at all. We will show some examples of
the kind of things that a hostile applet can do in 7.3.2, “Malicious Applets”
on page 195.

2. The Java compiler, javac, takes source code and compiles it into class files
(in bytecode format) that can be executed by the JVM. It is quite common
for a developer to have multiple versions of javac on his or her computer.
For example, the Java 2 SDK for various system platforms is available for
download from the JavaSoft Web site http://www.javasoft.com and other
computer manufacturers. The Java compiler javac is also provided as part
of many application development tools. Very often, a developer will have a
current and one or more beta versions installed. It is also very common
that developers have old versions installed too, especially when they are
programming for platforms (such as Web browsers or Web servers) that
have not picked up the current version of Java yet.

Normally you expect that the bytecode generated by a compiler would
reflect the source code you feed in. However, a compiler can easily be
hacked so that it adds its own, nefarious, functions. Even worse, a
compiler could produce bytecode output that cannot be a translation of
normal Java source code. This would be a way to introduce code to exploit
some frailty of the Java code verification process, for example.

Although a hacked compiler is the most obvious example of a
compromised programming tool, the same concern also applies to other
parts of the programmer’s arsenal, such as editors, development toolkits
and pre-built components.
Attack and Defense 61

3. If an attacker can get update access to the class files, those files can be
replaced by malicious code, which could then attack the system in harmful
or annoying ways, for example, by modifying business data or by
displaying rude messages. One obvious point of attack is where the class
files are stored on the Web server. If an attacker can get update access to
the directory they are in, they can be corrupted. Java class files should
therefore be protected in much the same way as CGI programs, for
example. Some basic principles for protection are:

 • Don’t allow update permissions for the user ID that the Web server
runs under. Many successful attacks on Web servers rely on finding
holes in the logic or implementation of CGI programs and tricking them
into executing arbitrary commands.

 • Make sure that the server has been properly hardened to reduce the
risk of someone gaining access beyond the normal Web connection.
You should remove unwanted network services and user IDs, enforce
password restrictions and limit access using firewall controls. You
should also make sure that you have the fixes for the latest security
advisories installed.

4. One side-effect of Java’s portability is that a webmaster can get remote
code from any number of different sources. The code could just generate
some entertaining animation or cool dialogs. Alternatively it could be a
fully-fledged application, containing thousands of lines of source code.

Any code you import in this way should be treated with suspicion. This
raises a moral question: how responsible should you feel if your Web site
somehow damages a client connecting to it, even if you are not ultimately
responsible for the content that caused the damage? Most reasonable
people will agree that there is a duty of care which should be balanced
against your desire to build the world’s most dynamic and attractive Web
site. Indeed it would be a good idea to check whether your agreements
with others mean that you have a formal legal duty of care. You do not
want a thoughtlessly included applet to result in your being sued.

Naturally, you want to be at the leading edge of development, using the
latest and greatest tools for your Java development. However, this
enthusiasm needs to be moderated by some caution. You must make
sure that the tools you use come from a reputable source. You should
also report any odd behavior to the manufacturer. It is probably only a
bug, but it could be the manifestation of a hacker’s work.

Can Applet Developers Trust Their Tools?
62 Java 2 Network Security

5. The next journey in the life of an applet is when it is loaded into the
browser’s JVM across the network from the server. Although it could,
potentially, be intercepted in mid-flight and modified, a much more likely
form of attack would involve some type of spoofing. What this means is
that the attacker fools the browser into thinking that it is connecting to
rocksolid.reliable.org, when really the applet is coming from
nogood.badguys.com. The most sophisticated form of spoofing is the Web
spoof, where the attacker acts as a filter for all of the traffic between the
browser and anywhere else, passing most requests straight through, but
intercepting particular requests and modifying them or replacing them with
something more sinister (see Figure 29 on page 64). Note that it does not

So, you are the administrator of a Web site and you want to include
some applet code from somewhere else. You want to be sure that the
applet is safe, but how can you check it?

For simple applets you should try to get the code in source form, so that
you can inspect it and compile it yourself. This means that you need to
understand the Java language. Your job already requires you to have a
superhuman knowledge of computer systems and the Web; adding Java
to your knowledge base must be a trivial matter for a person of such
skill.

In fact the problem is not so great as it first appears. It is much easier to
read a computer program and understand what it is doing than to write it
in the first place. In 7.3.2, “Malicious Applets” on page 195, we will
discuss some of the things that you should watch for.

Applets that are only provided in compiled form are more of a problem.
Very often they are too large to do a practical visual check and anyway,
if they are commercially-produced, the writer is unlikely to want to share
his coding tricks with the world at large. You can, of course, check the
external behavior, but that gives no clue to what browser holes it may be
probing or background threads it may be spinning. There are tools like
javap and Mocha which allow you to at least get an idea of what an
applet is doing.

JDK 1.1 introduced signed applets which allow you to check who the
real originator of an applet is and know that it has not been altered on its
way to you. You still have to make a judgment of who to trust, but at
least you are basing the judgment on sound data. With Java 2, the
fine-grained access control mechanism helps you decide what
resources should be accessed by whom and to what extent.

Why Webmasters Should Check Their Sources
Attack and Defense 63

have to be this way around. It is equally possible for a Web spoof to screen
everything going to and from a server, rather than a client system.

Figure 29. A Web Spoof

Spoofing is not just a problem for Java applets, of course. Any Web
content can be attacked in this way. With Java this gives the attacker an
opportunity to execute a malicious applet or try to exploit security holes in
the browser environment. However, compared to the risk of downloading
and installing a conventional program in this kind of environment, the risk
is small. In fact, signed applets and servlets (see 14.5.7, “The Current
Servlet Security Model” on page 530) can again help with this problem. An
attacker may be able to substitute subversive class files to attack the
browser, but it is much more difficult to forge the class signature.

URL A

URL B

URL C

The Web

URL A

URL B

URL C

The Web

Unsuspecting User

;

Disk
64 Java 2 Network Security

6. Finally the applet arrives at the browser. Here, class files are loaded and
verified and the JVM goes to work. If the installation is working as
designed, the worst peril that can befall you as a user is that the applet
may annoy you or eat excessive system resources (see 7.3.2, “Malicious
Applets” on page 195). There are two other possible sources of security
vulnerability:

 • The JVM, if there are bugs in its implementation

 • The browser itself, if a hacked version has been installed unknowingly

Of these two, the first is more likely. There have been a number of
well-publicized security breaches found in the JVM components. The best
description of how these operate can be found in Java Security – Hostile
Applets, Holes, and Antidotes, by Felten and McGraw. The best way to
protect yourself is to make sure you are aware of the latest breaches and
install the fixes as they arrive.

The possibility of installing a browser that has been tampered with is a real
one, although there are considerable practical hurdles for an attacker to
overcome in creating such a thing. If you do as we recommend above and
install the latest fixes, you will inevitably be running a downloaded version
of the browser. There is some small risk that this could be a hacked
version, but no examples of this have yet been detected.

If you are a network administrator responsible for a site in which
browsers or servers live, how do you protect your network environment
from an attacker that spoofs as a legitimate address? The first thing is to
ensure that your systems and firewalls do not accept any of the common
methods that can induce them to believe that a network node is really
somewhere else. The Internet Control Message Protocol (ICMP)
redirect and Internet Protocol (IP) source route functions are good
examples.

You may also consider that you do not want any of the browsers in your
site to be able to run applets from outside the firewall. A number of
firewall implementations now provide screening for Java in general or for
specific classes.

Refer to Chapter 15., “Java and Firewalls – In and Out of the Net” on
page 557 for more details on firewalls and the relationship between Java
and firewalls.

Why Network Administrators Should Guard against Spoofing
Attack and Defense 65

2.3.2 Vulnerabilities in Java Applications
A Java applet is an obvious vehicle to mount an attack from, because it could
install itself uninvited and probe for weaknesses. A Java application, on the
other hand, is a much less obvious threat. There are many ways in which
such an application could be implemented, for example:

 • On a Web server using CGI to interface with Web pages or applets

 • As a stand-alone application on a server, interfacing with client code using
socket connections

 • As a stand-alone application on a server, using remote object request
services (like RMI or CORBA) for communication

To a cracker, the fact that the application is written in Java rather than any
other language is not really important. The strategies that he or she would
use to search for vulnerabilities are the same. For example:

 • Many successful attacks rely on driving the application with data that it is
not equipped to handle. In particular, if the application uses a command
line interface, it should be very careful to screen out escape sequences
that an attacker could use to execute arbitrary commands.

 • Applications frequently have to give themselves temporary higher
privileges to use system functions or get special access (such as user IDs

The big question that all browser users ask about Java is this: "Should I
allow it to run or not?" In the final analysis, this is a personal decision.
As we have described, there is some peril in allowing Java applets to
run in your system, unless you can be sure of where they have come
from and who is the owner of the code. The Java 2 security model is a
great help in this sense, because it allows you to grant specific
permissions only to specific code. However, you may decide that the
risk of having Java running on your system is too high to take.

If you take this view, you should also review your other Web usage. If
you download any executable program from the Web it is potentially far
more dangerous to the health of your system than any Java applet.

Notice that many companies and software producers are writing
applications that use Java applets for their client component. These are
usually designed for intranet, rather than Internet use, so the likelihood
of attack is presumably much lower.

Should a Web User Switch Java Off?
66 Java 2 Network Security

for database control). If an attacker can crash the application at this critical
point, or link to it from another running program, he or she can use the
special privileges illegally.

As we said earlier, vulnerabilities of this kind apply to applications written in
Java the same as any other application programming environment. However,
Java does include safety features that make it harder for an attacker to find a
flaw. These safety features work at two levels:

 • Java source

The Java language uses strong type constraints to prevent the
programmer from accessing data in an inconsistent way. You can cast
objects from one type to another, but only if the two classes are related by
inheritance; that is, one must be a superclass of the other. This does not
operate symmetrically, which means you can always cast from a subclass
to its superclass, but not always vice versa. Referring again to Figure 22
on page 41, you could access an instance of the Button class as an
Object, but you could not access a Button as a Panel.

Furthermore, Java prevents you from having direct access to program
memory. In C it is common to use a pointer to locate a variable in memory
and then to manipulate the pointer to process the data in it. This is a
frequent source of coding errors, due to the pointer becoming corrupted or
iterating beyond the end of the data. Java allows a variable to be accessed
only through the methods of the object that contains it, thereby removing
this class of error.

 • Bytecode

The JVM is type-aware. In other words, most of the primitive machine
instructions are associated with a particular type. This means that the JVM
also applies the type constraints that the compiler imposes on the Java
source. In fact, this job is split between the class file verifier, which
handles everything that can be statically checked, and the JVM, which
deals with run-time exceptions. Contrast this with other languages, in
which the compiler produces microprocessor machine code. In this case
the program is just handled as a sequence of bytes, with no concept of the
data types that are being represented.

The JVM is also, at a basic level, strongly compartmentalized, mirroring
the object orientation of the Java source. This means that each method in
the code has its own execution stack and only has access to the memory
of the class instance for which it was invoked.
Attack and Defense 67

2.4 Summary

In this chapter of the book we gave you an overview of the Java security
architecture. You should now have a general idea of the Java development
environment, the execution process and the relationship between Java and
cryptography.

We also described the most common attacks to Java and the vulnerabilities in
Java applications. We underlined how the final decision to permit Java on
your client is up to you. However, the fine-grained security model
implemented in the Java 2 platform greatly helps system and network
administrators selectively manage security permissions to Java code
downloaded and run on your system. Java 2 adds a further security layer to
the security of the underlying system where your applications are to run.
68 Java 2 Network Security

Chapter 3. The New Java Security Model

This chapter describes the history of Java security, showing how Java
security evolved from very basic and strict rules to powerful and flexible
capabilities. Java has changed its security architecture according to its three
main releases. For this reason, we show a technical comparison between the
Java security model in JDK 1.0, JDK 1.1 and Java 2.

Moreover this chapter introduces all the main concepts related to the Java
security architecture. The same concepts will be studied in detail in the rest of
the book.

3.1 The Need for Java Security

From its inception, Java has shown that it was designed for the net. Java
brought about, for the first time on a large scale, the concept of dynamic
loading of code from a source outside the system. Though this is very
powerful, and adds several features to the system using it, it is also a grave
security threat. There are several risks associated with loading and running
remote code. The remote code could steal memory, or CPU time; it could
throw in a virus; it could read files on a local system and transmit them to
another machine, etc. It is clear, then, that unlike other programming
languages and systems, security mechanisms must be an integral part of
Java.

Moreover, Java is not just for applets any more. Developers now use Java to
build stand-alone, enterprise-class applications to enable disparate clients,
such as workstations, PCs or Java-based network computers to access
legacy databases and share applications across the network.

Java was designed to offer the following basic security measures:

 • Language design features, such as legal type conversions only, no pointer
arithmetic and bounds checking on arrays, provide strong memory
protection.

 • A sandbox mechanism controls what a Java program is permitted to do.

 • Encryption and digital signatures are used by code owners to attach their
certificate to Java classes. In this way, the end user can ascertain who the
owner of the code is and whether the class file was altered after having
been signed by the owner's certificate.

Java security builds upon three fundamental aspects of the Java Runtime
Environment (JRE):
© Copyright IBM Corp. 1997 1999 69

1. Class loader

The class loader (see 2.1.2.1, “The Class Loader” on page 46 and 2.1.2.2,
“Where Class Loaders Come From” on page 47) determines how and
when Java programs can load codes, and ensures that system-level
components within the run-time environment are not replaced.

2. Class file verifier

The class file verifier (see 2.1.2.3, “The Class File Verifier” on page 47)
ensures proper formatting of downloaded code. It verifies that the
bytecode does not violate the type safety restrictions of the Java Virtual
Machine (JVM), that internal stacks cannot over/underflow, and that the
bytecode instructions will have correctly typed parameters.

3. Security manager

The security manager (see 2.1.2.4, “The Security Manager” on page 49)
performs run-time access controls on attempts to perform file I/O, network
I/O, create a new class loader, manipulate threads and thread groups,
start processes on the underlying operating system, terminate the JVM,
load non-Java libraries (native code) into the JVM, perform certain types
of windowing system operations and load certain types of classes into the
JVM. For example, the Java applet sandbox, which severely constrains
downloaded, untrusted applets to a limited set of functions that are
considered to be relatively safe, is a function of the security manager.

Java security functionalities, even if built and designed in the language itself,
have been changing their features over time, and their evolution has been
dependent on the major Java language releases that have been developed
until now: JDK 1.0, JDK 1.1 and Java 2 SDK, Standard Edition, V1.2.

3.2 Evolution of the Java Security Model

The Java programming language is one of the fastest-growing technologies in
use on the Internet today. The principal reason why Java has scored over
other languages is the promise that an application written once in Java can be
run from any machine that has a JVM. From the early stages of Java
development, it was realized that this feature poses the greatest challenge to
Java security because code distribution is risky.

3.2.1 The JDK 1.0 Sandbox Security Model
The entire focus of the initial security model provided by Version 1.0 of the
Java platform (known as the sandbox model) was to treat code downloaded
from a remote location as untrusworthy and provide a restricted environment
70 Java 2 Network Security

(the sandbox) to limit the resources that could be accessed by the alien code.
At the same time local code was considered trustworthy and was allowed full
access to all the system resources, as illustrated in the figure below:

Figure 30. JDK 1.0 Sandbox Security Model

This was achieved by using the three components discussed in 3.1, “The
Need for Java Security” on page 69, namely the class loader, the class file
verifier and the security manager. However with the actions of the remote
code constrained to a bare minimum, the Write Once, Run Anywhere benefit
of Java could not be fully exploited.

Remote applets, though a powerful concept, were shackled by having to run
inside a sandbox, and by not being able to perform several operations. They
could not read local files and could not write to the disk. They had absolutely
no access to the system resources. Moreover they could establish a network
connection only with their servicing Web server. This heavily restricted the
use of remote applets for all but cosmetic functions to decorate a Web page.

Remote Code

Local Code

JVM
Sandbox

Resources
The New Java Security Model 71

3.2.2 The Concept of Trusted Code in JDK 1.1
The next phase of evolution of Java security was based on an effort to
increase the breathing space for remote code at the client location without
compromising the safety of the client. The security architecture in JDK 1.1
introduced the concept of signed remote code. Remote codes, signed by a
trusted entity, were permitted access to several of the system resources that
were off limits for those remote programs without a trusted signature on them,
as shown in the following figure:

Figure 31. Trusted and Untrusted Code in JDK 1.1

A remote code (a remote applet or servlet, for example) with an appropriate
digital signature was treated with the same respect as local code, and so it
could be considered trusted. An appropriate digital signature was one that
was recognized as trusted by the client.

On the other hand, unsigned remote code or remote code signed with a
digital signature not recognized as trusted by the client, was still confined to
the sandbox.

Remote CodeLocal Code

JVM
Sandbox

Resources

Signed and
trusted by
the client

Unsigned/Signed
and not trusted
by the client
72 Java 2 Network Security

Though this opened up interesting possibilities, the system was still rather
crude, with all local Java applications enjoying full access to the system
resources and all remotely loaded code running inside a sandbox, unless
signed by a trusted entity.

3.2.2.1 The jar and javakey Tools
Starting with JDK 1.1, the Java platform has offered the jar command line
tool to pack and deliver remote codes together with their signatures, if any, in
the Java Archive (JAR) format. The JAR file format (which we introduced in
1.4.1.3, “Packing the Applet Class in a JAR File” on page 18) is based on the
ZIP file format and is used for aggregating and compressing many files into
one. Although the jar utility can be used as a general archiving tool, the
primary motivation for its development was so that Java applets and their
requisite components (class files, images, sounds, etc.) could be downloaded
to a browser in a single HTTP transaction, rather than opening a new
connection for each piece. This greatly improves the speed with which an
applet can be loaded onto a Web page and begin functioning. The JAR
format, like a ZIP format, also supports compression, which reduces the size
of the file and improves download time still further. Additionally, a JAR file
may be digitally signed by the applet authors to authenticate the origin of the
code.

The JAR format is cross-platform, handles audio and image files as well as
class files and is backward-compatible with existing applet code. JAR
consists of a ZIP archive, as defined by PKWARE, containing a manifest file
and potentially signature files (see http://www.pkware.com). The jar tool is
basically a Java application that combines multiple files into a single JAR file.

JDK 1.1 offered the javakey tool to sign JAR files.

3.2.2.2 JDK 1.1 Security API
The Java security API was built around the java.security package and its
subpackages java.security.acl and java.security.interfaces. The first release
for Java security, available in JDK 1.1, included primarily cryptography
functions, which could be incorporated into Java-based applications. The
cryptography framework in the Java security API was designed so that a new
algorithm could be added later on without much difficulty and could be used in
the same fashion as existing algorithms. For example, even if Digital
Signature Algorithm (DSA) was the only built-in algorithm in this release, it
was possible to use software from providers to help generate RSA signatures
and key pairs for encryption.
The New Java Security Model 73

The first release of Java security in JDK 1.1 included APIs for digital
signatures, message digests, key management and access control lists
(ACLs). APIs for data encryption and other functionalities, together with their
implementations, were released separately in the Java Cryptography
Extension (JCE) 1.1 as an add-on package to JDK, in accordance with United
States export control regulations (see 2.2.3, “United States Export Rules for
Encryption” on page 57). The JCE APIs included block and stream cipher,
symmetric and asymmetric encryption and support for multiple modes of
operation and multiple encryption.

3.2.3 The Fine-Grained Access Control of Java 2
An obvious handicap with the JDK 1.1 security architecture was no easy way
of achieving fine-grained access control, with all local code enjoying
unrestricted access to all the system resources and all remote code
subjected to sandbox constraints unless signed in a way recognizable to the
client as trusted. By fine-grained access control, we mean the ability to grant
specific permissions to a particular piece of code about accessing specific
resources of the client (say read and write permission on file x, but only read
permissions on file y and no permissions on file z) depending on the signers
of the code and/or the URL location from which the code was loaded. Thus,
existence of a fine-grained access control would allow a user to specify
access permissions on a case-by-case basis rather than a rigid classification
of local code being fully trusted and remote code being untrusted and
restricted to a sandbox, unless signed in a way recognizable to the client as
fully trusted.

The new security architecture developed in Java 2 allows easy fine tuning of
the access controls. The concept of signed code can now be extended to
local code as well. With the new security model, all code, whether remotely
downloaded or local, signed or unsigned, will have access to system
resources based on what is defined in a policy file. This allows the client to
explicitly specify the permissions to be granted to different signatories of code
and different sources. This way the end user can download, install and run
applications from the Web by granting them permissions for only those
actions that are necessary. This will eliminate codes that have a hidden
agenda, such as letting you play a nice game while sending your credit card
information or your password file to a particular server at the same time.

Consider for example the following scenario, based on the JDK 1.1 security
model. You download a little tic-tac-toe program from the Web. It is signed by
an entity you trust, and you are sure that it will not crash your system. For this
reason, you accept to run it. Nonetheless, this code reads your address book,
and sends all the e-mail addresses you have to the database of the nearest
74 Java 2 Network Security

junk mailer. Though not very malicious, this is something we all would like to
avoid. This is a very likely situation, since more and more software is just
being brought off the net, and this trend is likely to continue for a long time.
This might lead to fly-by-night software vendors, some of whom might come
up with very innovative software, but some of whom you cannot really trust.
With JDK 1.1, you do not have an option to restrict access to code to do only
certain things. You either install the software, or you make do without it.

However, if you are running Java 2-enabled software, you can instruct the
JVM, through modifications in a policy file, that code loaded from a particular
URL (local or remote) and/or signed by a particular entity is restricted to
specific local resources. For example, you may specify in the policy file that
the code in question may read files in one particular directory and can do
nothing else – cannot open sockets, cannot write or delete any files, etc. This
is the fine-grained control mechanism offered by Java 2. For more on this, see
1.4, “Understanding Java 2 Security” on page 12.

In versions of Java prior to Java 2, the JVM resource access was enforced by
the sandbox security model, which was a function of the security manager.
Extensions were usually limited to features implemented by the platform
providers such as Web browsers and Web servers. When using Java 2, you
can have full control over what each of your programs and applications is
permitted to do – this was never possible until now. Similarly, you can now
define the exact things an applet coming from a particular URL can do, or
what any programs (applets, applications, servlets) signed by one or more
particular entities can do. Further, in multi-user systems, the system
administrator can define a default system policy, and each of the users of the
system can have their own policy, which is combined with the system default.

Java programs now have the ability to define access restrictions on sensitive
resources without having to write a new security manager or modify the
underlying platform. For example, applets downloaded into a Java 2-enabled
Web browser and servlets downloaded into a Java 2-enabled Web server can
add resource access controls to a JVM without having to modify the
underlying browser or server implementation. These new concepts of
permission and policy enable the Java 2 platform to offer fine-grained, highly
configurable, flexible, and extensible access control.

The Java 2 security model has been depicted in Figure 32 on page 76. As
seen in the figure, a predetermined security policy of the client decides the
security domains within which a specific piece of local or remote code can
reside:
The New Java Security Model 75

Figure 32. Fine-Grained Access Control Mechanism in Java 2 SDK

3.2.3.1 Lexical Scoping of Privilege Modifications
A new security feature implemented for the first time in Java 2 is the lexical
scoping of privilege modification, which is a technique enforcing the least
privileged mode. Using this technique, it is possible to enable only the
execution of the piece of code that needs the privilege. All the sensitive code
could therefore be added at one place and defined as privileged, by calling
the doPrivileged() method, belonging to the java.security.AccessController
class. The doPrivileged() method is discussed in 3.5.1, “Run-Time Access
Controls” on page 91. But to get an idea in advance, basically, through the
use of this method, Java 2 provides a facility to mark Java code as being
privileged and temporarily grant it some permissions that it normally would

Local or remote code
(signed or unsigned)

Domain A

JVM

Sandbox

Resources

Domain C

Domain B

Security
Policy
76 Java 2 Network Security

not enjoy by itself by virtue of its location of origin and the identity of its
signers.

3.2.3.2 Java 2 Security Tools
Java 2 provides four powerful security tools for ensuring confidentiality,
integrity, authenticity of data and adequate control on access to various
system and non-system resources. These are jar, keytool, jarsigner and
Policy Tool.

The jar function is similar in Java 2 to what it was in JDK 1.1 (see 3.2.2.1,
“The jar and javakey Tools” on page 73). JAR files acquire specific
significance, since the old javakey, and its newer version jarsigner, can sign
only JAR files.

The keytool command line utility creates key pairs – pairs of public and
private keys – imports and exports X.509 V1, V2 and V3 certificates (see
Appendix C, “X.509 Certificates” on page 649), generates self-signed X.509
V1 certificates and manages keystores. A keystore is a protected database
that holds private keys as well as public keys and certificates. In the default
implementation, a keystore is protected using a password and each private
key stored in the keystore is protected with a possibly different password. The
private keys are used to digitally sign applications and applets whereas public
keys are used to verify signed data, and certificates are used to verify
whether a public key indeed belongs to the person it is supposed to belong.

The jarsigner command line tool signs JAR files and verifies the signature(s)
of signed JAR files. It accesses the keystore when it needs to find:

 • A private key when signing a JAR file

 • A public key when verifying a signature

 • A certificate when verifying a public key

In the Java 2 platform, the keytool and jarsigner command line utilities
replace the JDK 1.1 tool javakey. The javakey tool had several shortcomings,
the most significant of them being the fact that both the public and private
keys were stored in the same, unprotected location (often called an identity
database). This allowed anyone with access to the identity database to
determine all keys that were stored in the file. In contrast, private keys are
now password protected in the keystore.

The Policy Tool utility, which is launched through the policytool command,
creates and modifies the external policy configuration files that define the
client’s security policy.
The New Java Security Model 77

All of these tools are discussed in detail later in this book (see Chapter 9,
“Java 2 SDK Security Tools” on page 259).

3.2.3.3 Java 2 Security API
In Java 2 two new subpackages have been added to the java.security
package, and they are java.security.cert and java.security.spec. These
packages offer more features to deal with X.509 certificates and to create
certificate revocation lists (CRLs) and certificate signing requests (CSRs). In
particular, java.security.Certificate, that in JDK 1.1 was an interface of
abstract methods for managing an identity certificate, is completely
deprecated in Java 2, which offers the entire package java.security.cert to
handle certificates. Moreover, the package java.security.cert adds X.509 V3
support to certificates.

Java 2 also provides an additional certificate interface: the X509Extension
interface in the java.security.cert package. This is an interface for X.509
extensions. The extensions defined for X.509 V3 certificates and V2 CRLs
provide methods for associating additional attributes with users or public
keys, for managing the certification hierarchy, and for managing CRL
distribution.

3.2.4 A Comparison of the Three Java Security Models
Table 1 on page 79 shows a comparison of the three Java security models
based on seven parameters, which are:

 • Resource access to local unsigned code

This refers to the options provided by the security architecture to a client
to determine access to local resources for local unsigned code.

 • Resource access to local signed code

This refers to the options provided by the security architecture to a client
to determine access to local resources for local signed code.

 • Resource access to remote unsigned code

This refers to the options provided by the security architecture to a client
to determine access to local resources for remote unsigned code.

 • Resource access to remote signed code

This refers to the options provided by the security architecture to a client
to determine access to local resources for remote signed code.

 • Lexical scoping of privilege modification

This refers to the availability of the option in the security architecture to
temporarily grant more privileges to a specific piece of code in an
78 Java 2 Network Security

execution thread, which are additional to the privileges the code would
have enjoyed by itself. This facility is available only with Java 2 and
achieved with the help of the doPrivileged() method introduced in 3.2.3.1,
“Lexical Scoping of Privilege Modifications” on page 76. This method
actually internally modifies the way the run-time stack (for an execution
thread) is checked for permissions.

 • Cryptographic services for data confidentiality/integrity

This refers to the availability of cryptographic services for data
confidentiality and integrity. Such services became available only with JDK
1.1.

 • Digital signature services for code signing

This refers to the facility of digital signature services for signing code.
Such services became available only with JDK 1.1.

Table 1. Evolution of the Java Security Model

This comparison shows the increasing flexibility and functionality provided by
the evolving Java security model in determining a security policy.

JDK 1.0 JDK 1.1 Java 2 SDK

Local unsigned code
resource access

Unconstrained Unconstrained Policy based

Local signed code
resource access

Not available Unconstrained if trusted Policy based

Constrained by the Java
sandbox if untrusted

Remote unsigned code
resource access

Constrained by the Java
sandbox

Constrained by the Java
sandbox

Policy based

Remote signed code
resource access

Not available Unconstrained if trusted Policy based

Constrained by the Java
sandbox if untrusted

Lexical scoping of
privilege modification

Not available Not available Stack annotation based
with doPrivileged()

Cryptographic
services for data
confidentiality/integrity

Not available Java Cryptography
Extension 1.1

Java Cryptography
Extension 1.2

Digital signature
services for code
signing

Not available Java Cryptography
Architecture DSA
signature

Java Cryptography
Architecture DSA
signature
The New Java Security Model 79

3.3 Java 2 Protection Domain and Permissions Model

This section explains the concepts of protection domain, code source and
security policy file which are the foundations of the new security model.

A protection domain can be scoped by a set of objects that are currently
directly accessible by a principal, where a principal is an entity in the
computer system to which permissions are granted. A principal can access
objects in the protection domain by virtue of the permissions it enjoys over
the objects in the protection domain. These permissions are specified
explicitly in a security policy file, which is a text file that can be edited
manually or through the Policy Tool. The Java 2 security architecture allows
the combination of a system security policy, defined by the system
administrator, with one or more user-defined security policies. A default
system policy file comes with the installation of the Java 2 SDK (see 3.6, “The
Policy File” on page 93).

Notice that, even if an arbitrary number of policy files can be specified, there
is only one policy (meaning, one set of protection domains) in effect for the
JVM at any given time. That policy might be the result of processing the
information from many policy files. The default policy implementation, via the
java.security.Policy class, has a public refresh() method that can be used to
re-init the policy, eventually re-reading the policy file(s). However, there is no
automatic policy change: refresh() must be called explicitly.

Using this security model, it is possible to grant specific access permissions
to specific code whether local or remote. Local or remote code is now
identified by its code source. The code source for a code is a combination of
the URL location from which the code is loaded and the entity or entities that
signed the code originating from that location. The code source is
represented by the java.security.CodeSource class. The location from which
the code is loaded is passed as an argument to the constructor of the
CodeSource class in the form of a java.net.URL object. The identity of the
signer(s) is passed as the second argument to the constructor of the
CodeSource object in the form of a set of java.security.cert.Certificate
objects. These certificates are for the public keys corresponding to the private
keys that signed the code. The constructor of the CodeSource class therefore
looks like the following line:

public CodeSource(URL url, Certificate[] certs)

The location from which the code is loaded is referred to as the code base in
the policy file, as we have seen in the examples of 1.4, “Understanding Java 2
Security” on page 12. In the Java 2 security model, a policy file serves as a
80 Java 2 Network Security

rule book, which lists what permission(s) can be granted to what type of code,
depending on the location of origin of the code and the signer(s) for the code.

A policy file consists of a number of grant entries. The syntax of the grant
entry is as follows:

Figure 33. The Syntax of a grant Entry in a Policy File

This syntax will be discussed in 3.6, “The Policy File” on page 93. For now, it
should be noticed that, in the grant entry, signers will be replaced by the
name of the entity or entities that have signed the code and URL will be
replaced by the URL address of the location from where the code has
originated. If the list of signers is omitted, code signed by any signers will be
granted the specified permissions. If the code base is omitted, code coming
from any location will be granted the specified permissions. In addition to this,
a policy file can specify the URL location of the keystore.

Notice that, even if the default policy implementation is file-based, application
developers can implement their own Policy subclass, providing an
implementation of the abstract methods in the java.security.Policy class.
There could be multiple instances of the Policy class, even if only one is in
effect at any time. The currently installed Policy object can be obtained by
calling the static getPolicy() method in the Policy class. Codes with
permission to reset the policy can change the currently installed Policy object
by calling the static setPolicy() method in the Policy class.

A protection domain is identified as an association of a code source and the
permissions granted to that code source. A code source is composed of a
URL (code’s origination location) and optional signer(s). The permissions
granted to a code source are specified in the policy file(s). When a
non-system (non-trusted) class is loaded, it is mapped to a protection domain
based upon its code source – where it was loaded from and any signers it
may have. The grant entries in the policy file describe the permissions
granted to a particular code source. Notice that classes that have the same
permissions but are from different code sources belong to different protection
domains.

grant [signedBy signers][, codeBase URL] {
permission permission_class [target][, action][, signedBy signers];
[permission ...]
};
The New Java Security Model 81

Protection domains generally fall into two categories: system domain and
application domains. We can think of the system domain as a single
collection of all system code, which is not subjected to any policy restrictions
and is granted all permissions. An application domain is specific to an
application or applet and can include the domains of extensions as well, since
even the standard extensions are subjected to the security policy specified in
the policy file. The default java.policy file grants all extensions full access
permissions to all system resources (java.security.AllPermission), provided
the extension classes are stored as JAR files in the extensions directory
${java.home}\lib\ext or its subdirectories. On Windows systems, the default
extensions directory is usually C:\Program Files\JavaSoft\JRE\1.2\lib\ext (see
Figure 335 on page 642 and Figure 336 on page 643).

Notice that a thread of execution (which is often, but not necessarily, tied to a
single Java thread, which in turn is not necessarily tied to the thread concept
of the underlying operating system) may occur completely within a single
protection domain or may involve an application domain and also the system
domain. All protected resources, such as the file system, the networking
facility, the screen and the keyboard, are accessible only via the system
domains, as shown in the following figure:

Figure 34. Domain Composition of a Java Application Environment

APPLN
1

APPLN
2

APPLN
3

System
Domain

File I/O Printer AWT Net I/O
82 Java 2 Network Security

Each class file loaded into the JVM via a class loader is assigned to one and
only one protection domain, as determined by the code source of the class.
However, multiple classes may be assigned to the same protection domain,
depending on the code source itself. In addition, a single protection domain
may include one or more permissions, and the same permission can be part
of different protection domains.

The Java application environment maintains a mapping from code (classes
and instances) to their protection domains and then to their permissions as
shown in the following figure:

Figure 35. Mapping in the Java Application Environment

3.4 New Class Search Path

With JDK 1.1, the default class path value included the path where the Java
system classes (compressed in the ZIP file classes.zip) resided, along with
the current working directory, for instance:

CLASSPATH=.;C:\jdk1.1.7\classes;C:\jdk1.1.7\lib\classes.zip

Note that the default class path also included a path to a classes folder on the
same directory level as lib. You could put your own class files (no JAR or ZIP
files) in this classes folder that you had to create, and the Java executables
would be able to find them with the default class path.

Either the -classpath and -cp flags of the java command line tool, or the
CLASSPATH environment variable could be used to add a new library

Many - ManyMany - One

Classes Domains Permissions
The New Java Security Model 83

location to the class path, to expand upon the core set of class libraries
provided by the JDK:

 • If the CLASSPATH environment variable was set, the effective class path
would still contain the classes.zip file (as in the default setting), but with
the newly assigned value in place of the current working directory. So,
when defining the CLASSPATH system environment variable, if you
wanted the current working directory to be part of the class path, you had
to explicitly specify it as part of the value of CLASSPATH.

 • If, on the other hand, the -classpath or the equivalent -cp option was used,
the value of this option specified on the command line had to contain both
the original classes.zip reference, and the new application classes, for
example:

java -classpath C:\jdk1.1.7\lib\classes.zip;\app\classes Application

The reason for this was that this option was used to override the search
path for system classes.

This discrepancy between the two means of setting the class path caused a
great deal of confusion, along with outright errors. Often, the explicitly
specified version of classes.zip did not match the version of the java
command being used.

This source of confusion has been eliminated in the Java 2 platform. The
-classpath command line option now has the same functionality as the
CLASSPATH environment variable. However, the single search path once
specified by the class path has been broken down into three distinct areas
which will be discussed in the following sections.

3.4.1 Boot Class Path
With the Java 2 platform, the system classes no longer reside in a ZIP file.
They are now stored in JAR files: the run-time classes are found in the file
rt.jar, while the SDK-supported tool classes are found in the tools.jar file. Both
these files come with the default installation of the Java 2 SDK. Also, the
system class files are no longer specified by either the CLASSPATH system
environment variable or the -classpath command line option. Instead, the
location of the system class files is specified automatically by the run-time
environment as the value of the sun.boot.class.path variable, and takes the
name of boot class path. Notice that the terms JVM class path and system
class path are equivalent to boot class path. In beta releases of Java 2 SDK,
Standard Edition, V1.2, the system class path was referred to by the value of
a variable java.sys.class.path, which was replaced by sun.boot.class.path
when Java 2 was officially released.
84 Java 2 Network Security

After the default installation of the Java 2 SDK on a Windows system, the
boot class path is automatically configured to include the two files rt.jar and
i18n.jar (both found in the directory lib under ${java.home}1) and the entire
directory classes, which does not exist by default, but can be created by the
user under the directory ${java.home}2.

This default can be changed with the -bootclasspath compile time flag and the
-Xbootclasspath run-time flag. For example, if temp.jar is a JAR file containing
a different version of the system class files, the two following commands will
use temp.jar to overwrite the default system class files:

javac -bootclasspath D:\temporary\temp.jar HelloWorld.java
java -Xbootclasspath:D:\temporary\temp.jar HelloWorld

Let’s consider the following example. We have a simple program
HelloWorld.java. We try to run it using the command:

java -Xbootclasspath:D:\temporary HelloWorld

We launch this command from the directory D:, which contains neither the
HelloWorld class file, nor the rt.jar file. The directory D:\temporary contains
the file HelloWorld.class, but does not contain the rt.jar file. In this case the
JVM tries to find all the run-time classes in the directory D:\temporary only,
but doesn’t find them there. Hence we get an exception:

Can’t find class java.lang.NoClassDefFoundError. (Wrong Class Path?)

This is a good response, because the JVM has detected that we might have
made a mistake in specifying the system class path.

We now type the following command, again from the D: directory:

java -Xbootclasspath:D:\temporary;D:\jdk1.2\jre\lib\rt.jar HelloWorld

In this case, the HelloWorld program gets executed successfully.

This demonstrates that, in order to execute the program, the JVM is looking
for mainly two things: the rt.jar file, containing the classes necessary for the
JVM to execute any program, and the application class file being executed.
After launching the above command line argument, the JVM finds the
HelloWorld application class file in D:\temporary first (since it searches for
classes in the order of the paths specified after -Xbootclasspath keyword in
the command line) and then finds the rt.jar file in the D:\jdk1.2\jre\lib directory.

1 For developing and testing reasons, a copy of rt.jar and i18n.jar is also found in the directory where the development
environment is installed (for example, on Windows systems, C:\jdk1.2.x\jre\lib).
2 ${java.home} translates into the directory where the JRE is installed. On Windows systems, by default, this directory is
C:\Program Files\JavaSoft\JRE\1.2 (see A.2, “Program GetProperty” on page 644).
The New Java Security Model 85

Next, we try to run the command:

java -Xbootclasspath:D:\temporary;d:\jdk1.2\jre\lib HelloWorld

This time we again get the error message:

Can’t find class java.lang.NoClassDefFoundError. (Wrong Class Path?)

This is because the -Xbootclasspath option requires that the full path for the
rt.jar file be given, including the name of the file rt.jar; just the name of the
directory containing the rt.jar file is not sufficient. On the other hand, the
application class is found either from the current working directory or any of
the directories specified after the -Xbootclasspath keyword.

It is therefore important to remember, when using the -Xbootclasspath flag, to
also include the default rt.jar file. With the Java 2 platform, the only classes
trusted by the run-time are those on the boot class path. Thus, by explicitly
adding something to the system class path, it becomes trusted. With JDK 1.1,
anything loaded locally through the class path became trusted.

Two other JAR files are shipped with the Java 2 platform in the same directory
as rt.jar:

 • i18n.jar, which provides internationalization support classes and, as we
already said, is part of the default boot class path

 • jaws.jar, which provides capabilities such as JavaScript integration with
Netscape's JSObject, along with JSException classes, and browser
plug-in interoperability

3.4.2 Extensions Framework
Extensions are packages of classes written in the Java programming
language (and any associated native code) that application developers can

The -bootclasspath option is used to cross-compile against a specified set
of boot classes. The Java 2 SDK javac command would by default compile
against its own Java 2 bootstrap classes, and we may tell javac to compile
against JDK 1.1 bootstrap classes instead, if needed at times. We do this
with the -bootclasspath compile flag. Failing to do this allows compilation
against a 1.2 API that might not be present on a 1.1 JVM and would fail at
run time. The following command displays the use of the Java 2 SDK javac
command to compile code that will run on a 1.1 JVM:

javac -target 1.1 -bootclasspath D:\jdk1.1.7\lib\classes.zip OldCode.java

The Compile-Time Flag
86 Java 2 Network Security

use to extend the functionality of the core part of the Java platform. Standard
extensions are, for example, JavaServlet, Java3D and JavaManagement. The
extension framework allows the JVM to use the extension classes in much the
same way as the system classes.

The size of the core part of the Java platform has been growing steadily since
the release of JDK 1.0. The first Java platform had eight core packages, in
JDK 1.1 there were twenty-two packages, and in Java 2 there are over fifty!
The extensions framework provides a standard means to add functionality to
the Java platform for use when needed, without having to increase the size of
the core API.

While the CLASSPATH system environment variable or -classpath command
line option can still be used to add non-system libraries, this process, too, has
been greatly simplified with Java 2 SDK, Standard Edition, V1.2. Simply place
a JAR file in the extensions directory ${java.home}${/}lib${/}ext3, and the
library is added. JAR files placed in the extensions directory are called
installed extensions.

An entry in the default system policy file shipped with the Java 2 SDK is
devoted to the extensions directory and its subdirectories, as shown in the
following screen:

This means that all the classes placed in JAR files in the extensions directory
and its subdirectories are automatically granted all permissions, irrespective
of eventual signers.

Classes not contained in a JAR file can be added simply by placing them in
the classes directory found under the JRE installation directory, ${java.home}.
Note, however, that this directory does not exist by default, so it must be
created by the user. However, as we have mentioned in 3.4.1, “Boot Class
Path” on page 84, the classes directory is automatically considered part of
the boot class path, while the ext directory is subjected to the security policy.

The locations of installed extensions can be overridden at compile time by
using the -extdirs flag of the javac command, followed by a sequence of
directories separated by semicolons (;).

3 ${/} is the file separator variable. Its value is translated into the forward slash / on UNIX systems, and the back slash \
on Windows systems. Its use grants policy file portability across the platforms. More details about this are found in 3.6,
“The Policy File” on page 93.

grant codeBase "file:${java.home}/lib/ext/-" {
 permission java.security.AllPermission;
};
The New Java Security Model 87

Notice that any native libraries that are installed with an extension are stored
in the directory ${java.home}${/}bin.

The new extensions framework also supports downloadable extensions. To
use a library within an applet, the library file can be specified in a special
Class-Path: line in the manifest file MANIFEST.MF of the applet’s JAR file (we
already introduced the manifest file of a JAR file in 1.4.1.3, “Packing the
Applet Class in a JAR File” on page 18). This is a handy alternative to either
storing everything in one very large JAR file, or specifying multiple JAR files
within the <APPLET> tag of the HTML page (both of which can still be done).
Below is a sample Class-Path: manifest file entry, which shows how to add
two JAR files to the normal class path as extensions:

Class-Path: milind.jar app/deepak.jar

Once the extension is found, it is downloaded and placed into a namespace in
memory. Some differences between installed and downloaded extensions
are:

 • The classes in an installed extension are shared by all code in the same
JVM. Classes for downloaded extensions are private to the session of the
application or applet that uses the downloaded extension.

 • An extension becomes an installed extension if the location of its JAR file
is ${java.home}${/}lib${/}ext. The location of the JAR files that serve as
downloaded extensions is irrelevant. A downloaded extension is an
extension because it is referenced from the Class-Path: in the header of
another JAR file's manifest.

 • Only applets and applications bundled in a JAR file can make use of
downloaded extensions. Applets and applications not bundled in a JAR file
do not have a manifest from which to reference downloaded extensions.
This limitation does not exist for installed extensions, which are shared by
all code in the same JVM.

 • Downloaded extensions are purely temporary. Also, they cannot use native
code, and must be signed or loaded from a trusted source to gain
permissions to perform system-level actions. These limitations do not exist
for installed extensions, which may be permanently installed in the
extensions directory and are granted all permissions by default.

3.4.3 Application Class Path
The property java.class.path is used by an application to specify the
application’s search path of URLs for loading application classes and
resources. The CLASSPATH environment variable specifies the default value
of the property java.class.path. If the CLASSPATH is not set, then the default
88 Java 2 Network Security

value for java.class.path is set to the current directory. The option -classpath
of the java command is now shorthand for setting the java.class.path
property. Formerly, this option was used in JDK 1.0 and 1.1 to override the
search path for the system classes, but in the new java command, there is no
longer a need to set the system class path, and if you want to override the
search path for the system classes, you have to use the command line option
-Xbootclasspath.

The value of the variable java.class.path is called application class path or
user class path.

3.4.4 Class Search Paths in Summary
In summary, three basic search paths are used to find classes in the Java 2
platform:4

1. The first location searched is the boot class path. This can be set using
the -Xbootclasspath option. Its value can be examined by calling:

System.getProperty("sun.boot.class.path")

2. The second location searched is the extensions directory, which by default
is ${java.home}${/}lib${/}ext. The extensions directory can be examined by
calling:

System.getProperty("java.ext.dirs")

3. The third and final location searched is the application class path, set by
either the -classpath option or the CLASSPATH system environment
variable. The value of the application class path can be examined by
calling:

System.getProperty("java.class.path")

As with the user class path, boot class path entries are separated by
semicolons (;) and can be directories, JAR archives, or ZIP archives.

In the case of a sealed JAR file (see 12.1.1, “Manifest File” on page 387 and
12.6, “The JAR Bug – Fixed In Java 2 SDK, Standard Edition, V1.2.1” on
page 461), the search is limited to the JAR file only.

3.5 Java 2 Class Loading Mechanism

The class loading mechanism plays a critical role in Java security since the
class loader is responsible for locating and fetching the class files, consulting

4 The properties sun.boot.class.path, java.ext.dirs and java.class.path, mentioned in the list, can only be examined from a
trusted program. See Appendix A, “Getting Internal System Properties” on page 641 for more details.
The New Java Security Model 89

the security policy, and defining the appropriate permissions associated with
the class object.

In JDK 1.1, local code and correctly signed remote code were generally
trusted to have full access to all vital system resources, such as the file
system itself, while unsigned remote code was not trusted and could access
only limited resources. A security manager was responsible for determining
which resource accesses were allowed. For this reason each application,
such as a Web browser or a Web server, had to write its own subclasses of
SecurityManager and ClassLoader.

Java 2 has simplified the development process:

 • As discussed in 2.1.2.4, “The Security Manager” on page 49,
SecurityManager is no longer an abstract class and can be instantiated or
subclassed. Most of its methods now make calls to methods in class
AccessController, which provides the access control functions in Java 2.
This greatly simplifies the writing of new SecurityManager subclasses.

 • A new powerful subclass of ClassLoader has been created in Java 2. It is
called SecureClassLoader and is found in the package java.security (see
2.1.2.2, “Where Class Loaders Come From” on page 47). The
distinguishing feature of a SecureClassLoader is that it associates a
protection domain with each class that it loads. SecureClassLoader has a
protected constructor, so its real use is to provide the basis for the
development of other class loaders. When creating a custom class loader,
one can subclass from the SecureClassLoader class or its subclasses,
depending on the particular need.

To automatically invoke the security subsystem, a Java application is started
from the command line of a native operating system with some additional
command line arguments. We have shown one example of how applications
can be subjected to security restrictions in Java 2 by specifying additional
command line arguments (see 1.4.2, “An Example of Application Security in
Java 2” on page 26). More details are discussed in 3.8.1, “Applying a Security
Manager to Applets and Applications” on page 99.

When a Java code starts executing, the Java run time creates an instance of
SecureClassLoader, which in turn is used to locate and load the class file of
the code. A subclass of the security manager is created and installed in the
Java run time. The main() method, in the case of an application, is then called
with the command line arguments; the init() method is called in the case of an
applet or a servlet.
90 Java 2 Network Security

SecureClassLoader is used to safely and correctly load classes into the Java
run time. How does the SecureClassLoader ensure secure loading of
classes?

1. First, SecureClassLoader searches for classes in the correct order. The
correct order starts with the most trusted classes. Therefore, when the
JVM needs a class, SecureClassLoader first looks for files referenced by
the class path of the JVM, or the boot class path. This ensures that
classes within the core Java API will not be superseded by classes loaded
from the network or any other location.

2. If not found in the JVM class path, the locations of the installed extensions
are searched.

3. Finally, the locations defined by the application class path are searched.

Once the class file has been loaded into the JVM, SecureClassLoader
assigns the appropriate protection domain to the class file. The following list
explains how SecureClassLoader does this:

1. When SecureClassLoader loads a class into the JVM, it also creates the
code source for the class from the code base URL and any digital
certificate(s) used to sign the code.

2. The code source is then used to locate the protection domain for the class.
The protection domain contains the Permission objects that have been
granted to the class. The information contained in the protection domain
and the permissions granted to the code source are used in determining
access control during run time.

3. Once a Java program starts to run, SecureClassLoader assists the JVM in
loading other classes required to run the program. These classes are also
assigned the appropriate protection domains based on their code source.

Notice that another new class, java.net.URLClassLoader, extends
SecureClassLoader to provide a general purpose class loader to load class
files from a list of local class file directories or HTTP-based URLs.

3.5.1 Run-Time Access Controls
At various points during a Java program’s execution, access to protected
resources is requested. This includes network I/O attempts, local file I/O,
attempts to create a new ClassLoader or access to a program-defined
resource. To verify whether the running program is allowed to perform the
operation, the library routine makes a call to the method
SecurityManager.checkPermission(). This method takes a Permission object
argument and determines whether or not it is granted to the current thread.
The New Java Security Model 91

Each thread in the JVM contains a number of stack frames. Simply stated,
these frames contain the method instance variables for each method called in
the current thread. The method checkPermission() walks back through the
current thread’s stack frames, getting the protection domain for each of the
classes on the thread’s stack. As each protection domain in the thread stack
is located, the permission to check is compared to the Permission objects
contained in the protection domain. For each stack frame, if the checked
permission matches one of the Permission objects in the protection domain,
testing of the permissions continues with the protection domain of the next
stack frame (class) on the stack.

This testing repeats until the end of the stack is reached. That is, all of the
classes in the thread have the permission to perform the operation. Thus, the
access control check succeeds, typically meaning that the requested
operation is able to proceed. If the checked permission is not granted to all
classes on the stack (there is no appropriate Permission object in all of the
class’s ProtectionDomain objects), then a SecurityException is thrown, and
access to the resource is denied.

A wrinkle in the above scenario is when a class has a set of permissions, and
does not care who its callers may be. For example, a Java bean may be
installed on a desktop computer needing to read files from the local disk
drive. The ProtectionDomain of the bean’s class has permission to read these
local files. However, the program loaded from a Web server that calls the
bean has a ProtectionDomain that does not have local file read permission.
Normally, if the bean were called by the program loaded from the Web server,
the bean would be denied access to the files on the local disk drive because
the program from the Web server does not have a local file read permission.
However, if the bean calls AccessController.doPrivileged(), an annotation is
made on the thread's stack frame indicating that when the checkPermission()
method searches for ProtectionDomains, the search stops at this stack frame.
The bean may make any number of method calls, but when the
checkPermission() method is called on another permission object, the search
back through the stack frames to find ProtectionDomain objects stops at this
stack frame.

Based on the above scenario, the ProtectionDomain objects for the bean will
be checked, but the ProtectionDomain objects for the program from the Web
server are not checked since the search stopped at the stack frame for the
bean. Therefore, the file read operation will succeed.

A subtle aspect of the above doPrivileged() operation is that programs
creating new threads would lose protection domain information when a new
thread is created. That is, each new thread creates a new run-time stack. The
92 Java 2 Network Security

classes on the stack of the parent thread are not present in the new thread.
Important protection domain information is no longer available when a
checkPermission() operation is performed, giving new threads more
permissions than the threads that created them. This would give new threads
more permissions than the threads that created them. To correct this
apparent loss of security information, the ProtectionDomain objects of the
parent thread are attached to (inherited by) a child thread when it is created.
So, unless a doPrivileged() operation is performed in the child thread, the
parent thread’s ProtectionDomain objects are also checked during a
checkPermission() operation.

3.6 The Policy File

As described in 3.5.1, “Run-Time Access Controls” on page 91,
checkPermission() verifies that the protection domain of every class on the
thread stack includes permission to perform the requested operation. Multiple
policy files can define the overall policy; these policy files must be specified in
the Java security properties file, java.security, by default located in the
directory ${java.home}${/}lib${/}security. The default is to have a single
system-wide policy file, and a user-defined policy file in the user's home
directory.

A policy file contains a list of entries or directives. It may contain first of all a
keystore entry and then must contain one or more grant entries. The keystore
directive in the policy file is the URL to the keystore file. It is required if one of
the grant entries in the policy file specifies signers whose certificate is stored
in a keystore different from the default one. The keystore entry in the policy
file can be an absolute URL or can be relative to the location of the policy file
itself.

Let's talk now about the grant directives (see Figure 33 on page 81). In Java
2, you will notice several Permission classes. All these have the same
ancestor, java.security.Permission. This is an abstract class, and is
subclassed to represent specific accesses. The specific accesses are usually
a part of the package where they are most likely to be used – for instance, the
permission FilePermission is a part of the java.io package, thus making it
java.io.FilePermission, and the SocketPermission class is part of the java.net
package, so that you will find java.net.SocketPermission. Most of the
permissions can be instantiated by giving two parameters, the first being the
target, such as the name of the file, or the socket number, and the second
being the permitted action, like read, write, open, listen. In most cases, a set
of actions can be specified together as a comma-separated, composite string.
The New Java Security Model 93

Notice, however, that not all of the Permission classes defined in the Java 2
platform have applicable actions yet and the second argument to the
constructor would be null. The only system Permission classes that do have
actions are FilePermission (read, write, execute, delete), PropertyPermission
(read, write) and SocketPermission (resolve, accept, connect, listen).

A special permission class exists called java.security.AllPermission. This is a
permission that implies all permissions. It is introduced to simplify the work to
system administrators who might need to perform multiple tasks that require
all or numerous permissions. Of course much caution is needed when
granting this permission. In fact, the AllPermission class represents the
permission to perform any operation. For this reason, this permission is
usually given only to classes within the Java API and to classes in Java
standard extensions, because granting this type of permission is potentially
dangerous.

The permission policy that you set up is in a policy file. Each permission that
you wish to grant must be a statement containing two parts: a code source
and a list of permissions:

 • The code source is also comprised of two parts:

1. Code base URL

The code base URL indicates where the classes originate from. This
field is obtained by the keyword codeBase followed by a quoted string
indicating the URL, for example:

codeBase "http://www.redbooks.ibm.com"

This field is optional. If omitted, the associated permissions are granted
to code from any source.

2. Digital certificate(s) used to sign the classes

This field is obtained by the keyword signedBy followed by a quoted
string indicating the name assigned to a digital certificate used to sign
the classes. A comma-separated list of multiple signers is allowed. So,
for example, correct entries could be:

signedBy "Marco"

or

signedBy "Duane,Marco"

This field is optional. If omitted, the associated permissions are granted
to a signed or unsigned code. Also note that if there are multiple
signers, the code must be signed by all of the signers in the list to be
granted the permissions.
94 Java 2 Network Security

 • Each permission of the list is comprised of five parts:

1. The keyword permission

This field is required.

2. The fully qualified name of the Permission class

This field is also required, and includes the package name, for
example:

java.util.PropertyPermission

3. A quoted string naming the target of the Permission class

For example, "java.version" could be the target for a
PropertyPermission, while "D:\\Works\\Stats.txt" could be the target
for a FilePermission. The only Permission class that this target field is
not applicable to is the special java.security.AllPermission.

4. A quoted string naming the actions requested

As we said, a set of actions can be specified together as a
comma-separated composite string. For example, "read" or
"read,write,delete,execute" could be actions for a FilePermission, and
"resolve,accept" or "listen" could be the actions for a
SocketPermission. Action fields are not applicable to all Permission
classes, but only to FilePermission, PropertyPermission and
SocketPermission.

5. Digital certificate used to sign the Permission class

This field is obtained by the keyword signedBy followed by a quoted
string indicating the name assigned to a digital certificate used to sign
the Permission class. As we will see in 8.4.2, “grant Entries” on page
243, multiple signers are not allowed in this case.

This field is optional. It may be necessary to prevent spoofing when the
Permission class is not resident in the Java run time but is loaded from
over the network.

Note that the syntax of the grant entries must be followed exactly; the
omission of even a single comma results in rejection of the code by the JVM.
An inadvertent mistake editing the policy file may cause unexpected changes
in the Java security policy which, in turn, may compromise the security of the
whole system. In future versions of Java, the default policy file may be
encrypted, or may be stored in a format other than a flat file, which will make
manual editing of the policy impractical. Today, the Policy Tool utility prevents
errors likely in manual editing of the default text policy files. In the future, the
Policy Tool will be essential in updating non-text policy data stored.
The New Java Security Model 95

This is also a good point to discuss the ${/} file path separator we have been
using. In a policy file, the strings for a file path must be written in a platform
specific format. Strings are processed by java.io.StreamTokenizer, which
considers a back slash (\) as an escape string. Therefore, in a policy file on a
Windows system, we find two back slashes (\\) required to indicate one
single back slash (for example, C:\\milind\\file1 instead of C:\milind\file1).
However, if the property policy.expandProperties in the java.security
properties file is set to true, one can write portable policy files. The ${/}
symbol can be used, which is automatically converted to an appropriate
format, depending on the platform. For example, C:${/}milind${/}file1 is
converted to C:/milind/file1 on UNIX systems and C:\milind\file1 on
Windows systems.

3.6.1 The Default System-Wide Policy File
This is the default system-wide policy file, java.policy, that comes with the
Java 2 SDK installation in the directory ${java.home}${/}lib${/}security:

Figure 36. (Part 1 of 2). The Default System Policy File

grant codeBase "file:${java.home}/lib/ext/-" {
 permission java.security.AllPermission;
};

// default permissions granted to all domains

grant {
 // Allows any thread to stop itself using the java.lang.Thread.stop()
 // method that takes no argument.
 // Note that this permission is granted by default only to remain
 // backwards compatible.
 // It is strongly recommended that you either remove this permission
 // from this policy file or further restrict it to code sources
 // that you specify, because Thread.stop() is potentially unsafe.
 // See "http://java.sun.com/notes" for more information.
 permission java.lang.RuntimePermission "stopThread";

 // allows anyone to listen on un-privileged ports
 permission java.net.SocketPermission "localhost:1024-", "listen";

 // "standard" properies that can be read by anyone

 permission java.util.PropertyPermission "java.version", "read";
 permission java.util.PropertyPermission "java.vendor", "read";
 permission java.util.PropertyPermission "java.vendor.url", "read";
96 Java 2 Network Security

Figure 37. (Part 2 of 2). The Default System Policy File

As already noted (see 1.4.1.8, “Modifying the Security Policy on the Client
System” on page 20), a copy of this file is also installed in the SDK home
directory (on Windows systems, it comes by default in C:\jdk1.2.x\lib\security)
for use with development tools, such as Applet Viewer.

As you can see from the default policy file shown above, in the first grant
statement the code base is "file:${java.home}/lib/ext/-" and no signers are
specified. This means that all the JAR files that are loaded from the Java
extensions directory and its subdirectories will be granted all permissions.
The second grant statement does not specify any code base or signer. This
statement lists the standard permissions to be granted to all classes. All the
non-system classes will have read access to the system properties listed.
They will also be able to listen on a socket with a port number 1024 or greater
(which implies that the class will be able to create a server socket on an
unprivileged port).

Notice that any thread is allowed to stop itself using the
java.lang.Thread.stop() method. As the comments in the policy file state,
Thread.stop() is potentially unsafe. For this reason, you should remove this
permission from this policy file or further restrict it to code sources that you
specify.

 permission java.util.PropertyPermission "java.class.version", "read";
 permission java.util.PropertyPermission "os.name", "read";
 permission java.util.PropertyPermission "os.version", "read";
 permission java.util.PropertyPermission "os.arch", "read";
 permission java.util.PropertyPermission "file.separator", "read";
 permission java.util.PropertyPermission "path.separator", "read";
 permission java.util.PropertyPermission "line.separator", "read";

 permission java.util.PropertyPermission "java.specification.version", "read";
 permission java.util.PropertyPermission "java.specification.vendor", "read";
 permission java.util.PropertyPermission "java.specification.name", "read";

 permission java.util.PropertyPermission "java.vm.specification.version", "read";
 permission java.util.PropertyPermission "java.vm.specification.vendor", "read";
 permission java.util.PropertyPermission "java.vm.specification.name", "read";
 permission java.util.PropertyPermission "java.vm.version", "read";
 permission java.util.PropertyPermission "java.vm.vendor", "read";
 permission java.util.PropertyPermission "java.vm.name", "read";
};
The New Java Security Model 97

3.7 Security Manager vs Access Controller

The access controller has been introduced in the Java 2 platform. Before the
access controller existed, the security manager had to rely on its internal
logic to determine the security policy needed to be in effect, and any change
in the security policy meant changing the security manager itself.

Prior to Java 2, implementing customized security policies was possible with
the security manager alone, but it took a great deal of effort. Starting with
Java 2, the security manager can defer access control decisions to the
access controller. Determining security policies is much more flexible now
since the policy to be enforced by the security manager can be specified in a
file. The access controller provides a simple procedure for giving specific
permissions to specific code. The Java API still calls the methods of the
security manager to enforce system security, but most of these methods call
the access controller.

One of the reasons we still have both the security manager and the access
controller is for backward compatibility. The security manager was the
primary interface to the system security for Java programs prior to Java 2.
The large body of Java programs built upon JDK 1.0 and 1.1 dictates that the
security manager not be changed but supplemented by the access controller,
which provides a simple method for implementing fine-grained access
control.

Another role played by the access controller is allowing a program to
determine that access to a resource must require explicit permissions. For
instance, consider an online attendance marking system where each
employee has to update his attendance record every day in the company’s
attendance database. Here, each employee should have access only to his
records and not to records of others. While global access to the database
might be controlled by the security manager (for instance if it is necessary to
open a socket connection to access the database), access to a particular
record is controlled by the access controller. Thus, a program can quite
simply use the same security framework to specify access to general
resources of the operating system as well as any specific resources of the
program.

3.8 Security Management with Java 2

In this section we show you how to apply the security features of Java 2 to
applets and applications running on your system.
98 Java 2 Network Security

3.8.1 Applying a Security Manager to Applets and Applications
The security manager is invoked by all the Java system code to perform
access control checks based on the security policy currently in effect. A
security manager (an implementation of the class SecurityManager) is
typically installed when an applet is running (the Applet Viewer and most of
the browsers install a security manager). A security manager is, however, not
automatically installed when an application is running. To apply the same
security policy to an application as is implemented by the security manager
for an applet, there are two options available:

1. While running the application, the java command line option
-Djava.security.manager should be provided. For instance, the JVM would
invoke the security manager to apply the security policy to the application
HelloWorld with the following command:

java -Djava.security.manager HelloWorld

An example of this was shown in 1.4.2, “An Example of Application
Security in Java 2” on page 26, where we also demonstrated the
differences that can be generated when running an application under the
security manager and without it.

Notice that the command line option -Djava.security.manager is a new flag
introduced with Java 2 SDK, Standard Edition, V1.2. An application did not
run under a security manager in JDK 1.0 or 1.1, since local code was
considered trusted by default.

A variant of the option above allows the user to specify a customized
security manager, say the class MySecurityManager. In this case the
syntax is the following:

java -Djava.security.manager=MySecurityManager HelloWorld

The default built-in security manager can be invoked by any of the
following commands which are equivalent:

java -Djava.security.manager HelloWorld
java -Djava.security.manager="" HelloWorld
java -Djava.security.manager=default HelloWorld

2. The application itself can call the setSecurityManager() method in the
java.lang.System class. Examples of how to use the setSecurityManager()
method are shown in 7.5, “Examples of Security Manager Extensions” on
page 206.

3.8.2 Applying a User-Defined Security Policy
It is also possible to apply a user-defined security policy file in addition to or
different from the security policy files specified in the security properties file
The New Java Security Model 99

java.security. This can be done by using the -Djava.security.policy command
line argument. A command like:

java -Djava.security.manager -Djava.security.policy=MyPolicy HelloWorld

means that the security policy file MyPolicy will be used in addition to all the
policy files specified in the security properties file. A command like:

java -Djava.security.manager -Djava.security.policy==MyPolicy HelloWorld

means that only the security policy file MyPolicy will be used and all others
will be ignored.

Notice that the java command line option -Djava.security.policy allows you
to specify the URL of MyPolicy, so that even remote policy files can be passed
on to the command line.

3.8.3 Java Security Debugging
Security access can be monitored by setting the java.security.debug system
property. A list of all debugging options can be viewed by typing:

java -Djava.security.debug=help

The following screen shows the results of typing the command above:

We want to show now a concrete example of security debugging. Consider
the following Java application:

all turn on all debugging
access print all checkPermission results
jar jar verification
policy loading and granting
scl permissions SecureClassLoader assigns

The following can be used with access:

stack include stack trace
domain dumps all domains in context
failure before throwing exception, dump stack
 and domain that didn’t have permission
100 Java 2 Network Security

Figure 38. SomeProperties.java

The program above can be compiled by simply issuing the command:

javac SomeProperties.java

You can then run the Java class SomeProperties by launching:

java SomeProperties

The output produced is shown in the following screen:

The program SomeProperties displays the value of the properties
sun.boot.class.path and user.home. It also attempts to print the value of the
property java.sys.class.path, which was the variable used with beta versions
of Java 2 SDK, Standard Edition, V1.2 to indicate the system class path. That
variable was then deprecated in the GA version of Java 2 SDK, Standard
Edition, V1.2, and replaced by sun.boot.class.path. Hence, the value of
java.sys.class.path is displayed as null in the output screen above.

Notice that the program above will not work with the option
-Djava.security.manager; it will throw an AccessControlException, unless it is
granted in one of the current policy files the permission to read system
properties. This can be done by adding the following lines to one of the policy
files currently in use:

class SomeProperties
{
 public static void main(String args[])
 {
 System.out.println("This program lists a few system properties");
 String S = System.getProperty("sun.boot.class.path");
 System.out.println("sun.boot.class.path = " + S);
 String S1 = System.getProperty("java.sys.class.path");
 System.out.println("java.sys.class.path = " + S1);
 String S2 = System.getProperty("user.home");
 System.out.println("user.home = " + S2);
 }
}

This program lists a few system properties
sun.boot.class.path = D:\Program Files\JavaSoft\JRE\1.2\lib\rt.jar;D:\Program
Files\JavaSoft\JRE\1.2\lib\i18m.jar;D:\Program Files\JavaSoft\JRE\1.2\classes
java.sys.class.path = null
user.home = C:\WINNT\Profiles\pistoia
The New Java Security Model 101

where file:/D:/itso/ch03/ is the URL of the directory where
SomeProperties.class is installed.

Notice that permission to read the system property java.sys.class.path must
be granted although this system property does not exist, because the system
attempts to read it anyway; otherwise, an AccessControlException will be
thrown, as shown:

The following command, launched from the directory D:\itso\ch03 where the
SomeProperties class file resides, shows how it is possible to perform full
security debugging:

java -Djava.security.debug=all SomeProperties > Output.txt 2> SecurityDebug.txt

Launching this command will cause two text files to be created: Output.txt,
which will contain the normal output of the program as shown above, and
SecurityDebug.txt, which is the file containing all the security debugging
information. We show the contents of SecurityDebug.txt in the two following
figures:

Figure 39. (Part 1 of 3). Security Debug Information

grant codeBase "file:D:/itso/ch03/" {
 permission java.util.PropertyPermission "sun.boot.class.path", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.util.PropertyPermission "java.sys.class.path", "read";
};

java.security.AccessControlException: access denied (java.util.PropertyPermission
java.sys.class.path read)
 at java.security.AccessControlContext.checkPermission(Compiled Code)
 at java.security.AccessController.checkPermission(AccessController.java:403)
 at java.lang.SecurityManager.checkPermission(SecurityManager.java:549)
 at java.lang.SecurityManager.checkPropertyAccess(SecurityManager.java:1222)
 at java.lang.System.getProperty(System.java:507)
 at SomeProperties.main(SomeProperties.java:8)

scl: getPermissions (file:/D:/itso/ch03/ <no certificates>)
policy: reading file:D:/Program Files/JavaSoft/JRE/1.2/lib/security/java.policy
policy: Adding policy entry:
policy: signedBy null
policy: codeBase file:D:/Program Files/JavaSoft/JRE/1.2/lib/ext/-
policy:
policy: (java.security.AllPermission <all permissions> <all actions>)
policy:
policy: Adding policy entry:
policy: signedBy null
102 Java 2 Network Security

Figure 40. (Part 2 of 3). Security Debug Information

policy: codeBase null
policy:
policy: (java.lang.RuntimePermission stopThread)
policy: (java.net.SocketPermission localhost:1024- listen,resolve)
policy: (java.util.PropertyPermission java.version read)
policy: (java.util.PropertyPermission java.vendor read)
policy: (java.util.PropertyPermission java.vendor.url read)
policy: (java.util.PropertyPermission java.class.version read)
policy: (java.util.PropertyPermission os.name read)
policy: (java.util.PropertyPermission os.version read)
policy: (java.util.PropertyPermission os.arch read)
policy: (java.util.PropertyPermission file.separator read)
policy: (java.util.PropertyPermission path.separator read)
policy: (java.util.PropertyPermission line.separator read)
policy: (java.util.PropertyPermission java.specification.version read)
policy: (java.util.PropertyPermission java.specification.vendor read)
policy: (java.util.PropertyPermission java.specification.name read)
policy: (java.util.PropertyPermission java.vm.specification.version read)
policy: (java.util.PropertyPermission java.vm.specification.vendor read)
policy: (java.util.PropertyPermission java.vm.specification.name read)
policy: (java.util.PropertyPermission java.vm.version read)
policy: (java.util.PropertyPermission java.vm.vendor read)
policy: (java.util.PropertyPermission java.vm.name read)
policy:
policy: reading file:C:/WINNT/Profiles/pistoia.000/.java.policy
policy: error parsing file:C:/WINNT/Profiles/pistoia.000/.java.policy
policy: java.io.FileNotFoundException: C:\WINNT\Profiles\pistoia.000\.java.policy (The system cannot
 find the file specified)
java.io.FileNotFoundException: C:\WINNT\Profiles\pistoia.000\.java.policy (The system cannot find the
 file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:68)
 at sun.security.provider.PolicyFile.getInputStream(PolicyFile.java:544)
 at sun.security.provider.PolicyFile.init(PolicyFile.java:508)
 at sun.security.provider.PolicyFile.initPolicyFile(PolicyFile.java:352)
 at sun.security.provider.PolicyFile.access$0(PolicyFile.java:285)
 at sun.security.provider.PolicyFile$1.run(PolicyFile.java:225)
 at java.security.AccessController.doPrivileged(Native Method)
 at sun.security.provider.PolicyFile.init(PolicyFile.java:223)
 at sun.security.provider.PolicyFile.getPermissions(PolicyFile.java:791)
 at sun.security.provider.PolicyPermissions.init(PolicyFile.java:1082)
 at sun.security.provider.PolicyPermissions.toString(PolicyFile.java:1101)
 at java.lang.String.valueOf(String.java:1911)
 at java.lang.StringBuffer.append(StringBuffer.java:365)
 at java.security.SecureClassLoader.getProtectionDomain(SecureClassLoader.java:148)
 at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:101)
 at java.net.URLClassLoader.defineClass(URLClassLoader.java:248)
 at java.net.URLClassLoader.access$1(URLClassLoader.java:216)
 at java.net.URLClassLoader$1.run(URLClassLoader.java:197)
 at java.security.AccessController.doPrivileged(Native Method)
 at java.net.URLClassLoader.findClass(URLClassLoader.java:191)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:280)
 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:275)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:237)
policy: evaluate((file:/D:/itso/ch03/ <no certificates>))
policy: granting (java.lang.RuntimePermission stopThread)
policy: granting (java.net.SocketPermission localhost:1024- listen,resolve)
policy: granting (java.util.PropertyPermission java.version read)
The New Java Security Model 103

Figure 41. (Part 3 of 3). Security Debug Information

As you can see, due to the -Djava.security.debug=all option given during the
run-time command, an entire step-by-step security debug history is produced.
This output would be printed on the screen if we had not redirected it to the
SecurityDebug.txt file.

The output shown in the two figures above is produced with a security policy
determined only by the default system-wide policy file, the same shown in
Figure 36 on page 96 and Figure 37 on page 97.

policy: granting (java.util.PropertyPermission java.vendor read)
policy: granting (java.util.PropertyPermission java.vendor.url read)
policy: granting (java.util.PropertyPermission java.class.version read)
policy: granting (java.util.PropertyPermission os.name read)
policy: granting (java.util.PropertyPermission os.version read)
policy: granting (java.util.PropertyPermission os.arch read)
policy: granting (java.util.PropertyPermission file.separator read)
policy: granting (java.util.PropertyPermission path.separator read)
policy: granting (java.util.PropertyPermission line.separator read)
policy: granting (java.util.PropertyPermission java.specification.version read)
policy: granting (java.util.PropertyPermission java.specification.vendor read)
policy: granting (java.util.PropertyPermission java.specification.name read)
policy: granting (java.util.PropertyPermission java.vm.specification.version read)
policy: granting (java.util.PropertyPermission java.vm.specification.vendor read)
policy: granting (java.util.PropertyPermission java.vm.specification.name read)
policy: granting (java.util.PropertyPermission java.vm.version read)
policy: granting (java.util.PropertyPermission java.vm.vendor read)
policy: granting (java.util.PropertyPermission java.vm.name read)
scl: java.security.Permissions@f939d51d (
 (java.io.FilePermission \D:\SG24-2109-01\itso\ch03\- read)
 (java.net.SocketPermission localhost:1024- listen,resolve)
 (java.util.PropertyPermission java.specification.name read)
 (java.util.PropertyPermission java.version read)
 (java.util.PropertyPermission java.specification.version read)
 (java.util.PropertyPermission java.vm.vendor read)
 (java.util.PropertyPermission java.vm.specification.version read)
 (java.util.PropertyPermission os.arch read)
 (java.util.PropertyPermission java.vendor.url read)
 (java.util.PropertyPermission line.separator read)
 (java.util.PropertyPermission os.name read)
 (java.util.PropertyPermission java.vendor read)
 (java.util.PropertyPermission java.vm.specification.vendor read)
 (java.util.PropertyPermission java.specification.vendor read)
 (java.util.PropertyPermission java.vm.name read)
 (java.util.PropertyPermission java.vm.specification.name read)
 (java.util.PropertyPermission java.class.version read)
 (java.util.PropertyPermission os.version read)
 (java.util.PropertyPermission java.vm.version read)
 (java.util.PropertyPermission path.separator read)
 (java.util.PropertyPermission file.separator read)
 (java.lang.RuntimePermission stopThread)
 (java.lang.RuntimePermission exitVM)
)

scl:
104 Java 2 Network Security

The first step the system performs when running a program is to load classes.
The sequence of loading classes was seen in 3.5, “Java 2 Class Loading
Mechanism” on page 89. The classes in the system class path are first
loaded without checking for their protection domains since these classes are
shipped with the JVM and are supposed to be trusted. Next, in the sequence
of class loading, are the classes in the extensions directories, specified by the
java.ext.dirs system variable. Finally the classes specified by the value of
java.class.path, which gives the application class path, are loaded.

These classes have to be assigned to their protection domains. Hence the
getPermissions() method of SecureClassLoader is invoked. The argument
passed to the getPermissions() method is the code source of the
SomeProperties class.

In general, the getPermissions() method returns an object of type
PermissionCollection, which is a list of all the permissions given to the code
source supplied as argument to getPermissions(). To get the
PermissionCollection object, the security policy files that specify the
permissions to be granted to a given code source are examined. The security
properties file used in this example is the same default properties file
java.security that comes with the installation of the Java 2 SDK. The locations
of the policy files in the preference order it gives are:

policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy

The policy file located at file:${java.home}/lib/security/java.policy is accessed
first. Then the policy file specified at file:${user.home}/.java.policy is
accessed. The second file, .java.policy, is a user-defined policy file, which can
be written by the user to specify more information on permissions. Note that it
is not installed by default; rather, users must create it explicitly.

In this case, the file has not been explicitly created. Therefore in the debug
history, we see that the file ${user.home}/.java.policy is not found during
run-time. Once the security policy file has been found, the permissions
granted for different code sources are evaluated. The protection domain for
the classes in the extensions directories and application class path are
assigned, then the final set of permissions for those classes are listed.

The program is executed successfully because the classes in the application
class path (which is the current directory D:\itso\ch03) have the permissions
to access all the resources required to execute the program.
The New Java Security Model 105

3.9 Summary

This first part of the book has been a tour through the many aspects of Java
security. You should now have a good high-level understanding of the issues
involved and the mechanisms that are at work. In the next section we look
under the covers, at the detailed operation of the JVM and the security
classes.
106 Java 2 Network Security

Part 2. Under the Hood
© Copyright IBM Corp. 1997 1999 107

108 Java 2 Network Security

Chapter 4. The Java Virtual Machine

This part of the book is aimed primarily at people who wish to understand the
inner workings of the Java 2 security model.

Understanding how the various components of the Java Virtual Machine
(JVM) cooperate to provide a secure execution environment will enable you to
understand how to administer your own security policy using the new features
of Java 2 and to know when you should consider implementing your own
extensions to provide a more tailored security policy.

4.1 The Java Virtual Machine, Close Up

Later chapters examine in detail the key components of the JVM involved in
providing a secure environment. In this chapter we identify and introduce
those components.

The following figure shows a simplified representation of the JVM:

Figure 42. Components of the JVM

Security
Manager

Execution
Engine

JIT
Heap

Class
Area

Operating System

Native
Method

AreaNative Method Loader

Class File
Verifier

Primordial Class Loader

Network

Untrusted Classes

Trusted Classes

Native Methods

ClassLoader
Instance

Native Code

Java Code
© Copyright IBM Corp. 1997 1999 109

The JVM components that play a role in the security framework are the class
loader, class file verifier and security manager.

4.1.1 The Class Loader
Before the JVM can run a Java program, it needs to locate and load the
classes which comprise that program into memory. In a traditional execution
environment, this service is provided by the operating system which loads
code from the file system in a platform-specific way.

The operating system has access to all of the low level I/O functions and has
a set of locations on the file system which it searches for programs or shared
code libraries. Depending on the operating system, this can be a list of
directories to look in using environment variables, such as Path and
CLASSPATH, or a LINKLIST, which is included in each executable that
specifies where to find components.

In the Java run-time environment things are more complicated by the fact that
not all class files are loaded from the same type of location and may not be
under the local operating system’s control to ensure integrity. However, in
general, classes can be divided into two categories, trusted and untrusted.

 • Trusted Classes

Trusted classes are class files that the JVM can assume are well behaved
and safe. By making this assumption, the JVM can execute these classes
more quickly because the verification and authorization steps can be
skipped.

On the Java 2 platform, where increased security is one of the main goals,
the classes that are considered trusted have been restricted even further
than in previous releases. By default, Java 2 considers only the Java
Runtime Environment (JRE) classes to be fully trusted. These are the
classes found in the boot class path. All others are subject to verification
and permission checking. These are the classes that form the JVM’s base
functionality. They are shipped with the JVM implementation and are
defined in the Java specification.

In reality, Java 2 uses an internal list of directories (boot class path) to look
in for these classes. We will look more at this in 6.1.1, “Loading Classes
from Trusted Sources” on page 146.

In previous releases, this list was the CLASSPATH environment variable
and all classes found in this path setting were considered trusted and
treated the same as the JRE core classes, unless, of course, an
application explicitly changed this policy with its own SecurityManager
implementation.
110 Java 2 Network Security

 • Untrusted Classes

With Java 2, all local files outside the boot class path are not automatically
treated as trusted, neither are files loaded from a network source such as
a remote Web server. This simply means these class files will be verified
by the class file verifier upon loading and the code will be subjected to the
security policy. The permission structure is quite granular in Java 2 (see
3.2.3, “The Fine-Grained Access Control of Java 2” on page 74). There
are, in effect, levels, or more precisely groups, of trust (or untrust). This
grouping is the foundation for protection domains (see 3.3, “Java 2
Protection Domain and Permissions Model” on page 80).

For instance, Java 2 supports a new extension class framework. This
framework allows the group of classes in the extensions directory (see
3.4.2, “Extensions Framework” on page 86 and 6.1.2, “Loading Classes
from Untrusted Sources” on page 147) to be treated as extensions to the
JVM core classes. These classes are subjected to verification and the
security policy, but the default policy is AllPermission, as shown below in
the lines extracted from the java.policy file that comes with the installation
of the Java 2 SDK, Standard Edition, V1.2:

With many possible sources for class files and the different checks required,
different mechanisms are required to locate and load classes.

The ClassLoader class, in the package java.lang, is an abstract class and
until Java 2 there was not a concrete implementation of a ClassLoader
shipped with the JDK.

Prior to Java 2, application writers, such as Web browser manufacturers,
were required to implement any class loading requirements beyond those the
JVM’s internal class loader would provide. This internal loader would have
loaded classes from the local file system from locations specified by the
CLASSPATH system environment variable.

Beginning with Java 2, the internal loader is restricted to handling only the
JVM’s core and extension classes. A new class, SecureClassLoader, in the
package java.security, extends ClassLoader to provide function to build the
protection domains for a class. Another new class, java.net.URLClassLoader,
extends SecureClassLoader to provide a general purpose class loader to
load class files from a list of local file directories or HTTP-based URLs.

grant codeBase "file:${java.home}/lib/ext/-" {
 permission java.security.AllPermission;
};
The Java Virtual Machine 111

Application developers using Java 2 still have a great deal of flexibility in
implementing their class loading and security requirements, but can now also
take advantage of a lot of function and a robust and flexible security model
built into the JDK.

4.1.2 The Class File Verifier
Some of the class files loaded by the JVM will come from untrusted sources.
These files need to be checked prior to execution to ensure that they do not
threaten the integrity of the JVM. The class file verifier is invoked by the class
loader to perform a series of tests on class files which are regarded as
potentially unsafe.

These tests check all aspects of a class file from its size and structure down
to its run-time characteristics. Only when these tests have been passed is the
file made available for use.

4.1.3 The Heap
The heap is an area of memory used by the JVM to store Java objects during
the execution of a program. Precisely how objects are stored on the heap is
implementation specific and this adds another level of security since it means
that a hacker can have no idea of how the JVM represents objects in memory.
This in turn makes it far more difficult to mount an attack that depends on
accessing memory directly.

One of the interesting features of the JVM design is that as objects are no
longer needed, they are automatically marked for garbage collection and at
some point the memory they occupied is freed up and made available for
reuse.

4.1.4 The Class Area
The class area is where the JVM stores class-specific information such as
static methods and static fields. When a class is loaded and has been
verified, the JVM creates an entry in the class area for that class.

Often the class area is simply a part of the heap. In this case classes may
also be garbage collected once they are no longer used. Alternatively, if the
JVM implementation places the class area in a separate part of memory, it
will require additional logic on the part of the JVM implementer to clean up
classes which are not being used.

When a just-in-time (JIT) compiler is present, the native code generated for
class methods is also stored in the class area.
112 Java 2 Network Security

4.1.5 The Native Method Loader
Many of the core Java classes, such as those classes representing GUI
elements or networking features, require native-code implementations to
access the underlying operating system functions. These native methods are
composed of a Java wrapper – which specifies the method signature – and a
native-code implementation – often a DLL or shared library.

The native method loader is responsible for locating and loading these shared
libraries into the JVM. Note that it is not possible for the JVM to perform any
validation or verification of native code.

Once native code has been loaded, it is stored in the native method area for
speedy access when required.

4.1.6 The Security Manager
Even when untrusted code has been verified, it is still subject to run-time
restrictions. The security manager is responsible for enforcing these
restrictions. It is the security manager component, of a Web browser’s JVM
for instance, that prevents applets from reading or writing to the file system,
accessing the network in an unsafe way, making inquiries about the run-time
environment, printing and so on.

Prior to Java 2, in an application such as a Web browser, the security
manager was provided by the application manufacturer as part of the
application.

In Java 2, the manufacturer now has an alternative. He can choose to use the
policy based SecurityManager implementation provided with the JDK and
supply policy information to be added to the policy database. The
manufacturer can still provide his own security manager, if he so chooses,
adding to or replacing function supplied by the JDK’s SecurityManager.

4.1.7 The Execution Engine
The execution engine is the heart of the JVM. It is the virtual processor which
executes bytecode. Memory management, thread management and calls to
native methods are also performed by the execution engine.

4.1.8 Just-in-Time Compilers
Since Java bytecodes are interpreted at run time in the execution engine,
Java programs generally execute more slowly than the equivalent native
platform code. This performance overhead occurs because each bytecode
The Java Virtual Machine 113

instruction must be translated into one or more native instructions each time it
is encountered.

The performance of Java is still significantly better than that of other
interpreted languages because the bytecode instructions were designed to
be very low level – the simplest instructions have a one-to-one correlation
with native machine code instructions.

Nevertheless, Sun saw that there would be a need to improve the execution
performance of Java and to do so in a way which did not compromise the
Write Once, Run Anywhere goal and did not undermine the security of the
JVM.

Since all bytecode instructions are ultimately translated to native machine
code by the JVM interpreter, the principal ways of speeding performance
involve making this translation as quick as possible and performing it as few
times as possible.

The security and portability of Java is dependent on the bytecode and class
file format. This is what enables code to be run on any JVM and to be
rigorously tested to ensure that it is safe prior to execution. Translating
bytecode into native machine code and producing an executable file as
happens with other programming languages would compromise the security
and portability of Java. Thus, any translation must occur after a class file has
been loaded and verified.

Two options present themselves:

1. Translate the whole class file into native code as soon as it is loaded and
verified.

2. Translate the class file on a method-by-method basis as needed.

The first option seems quite attractive but it is possible that many of the
methods in a class file will never be executed. Time to translate these
methods is therefore wasted. The second option was the one selected by
Sun. In this case, the first time a method is called, it is translated into native
code, which is then stored in the class area. The class specification is
updated so that future calls to the method run the native code rather than the
original bytecode.

This meets our requirement that bytecode should be translated as few times
as is necessary – once when the code is executed and not at all in the case of
code which is not executed.
114 Java 2 Network Security

The process of translating the bytecode to native code on the fly is known as
JIT compilation and performed by the JIT compiler. Sun provided a
specification for how and when JIT compilers should execute and vendors
were left to implement their own JIT compilers as they chose.

JIT-compiled code executes much more quickly than regular bytecode –
between 10 to 50 times faster – without impacting portability or security.

4.2 Summary

You now have a good idea of how the various components of the JVM work
together. The next chapters examine the principle elements of the Java
security architecture – the class file structure, the class loader, the bytecode
verifier and the security manager – in greater detail.
The Java Virtual Machine 115

116 Java 2 Network Security

Chapter 5. Class Files in Java 2

In this chapter we explore a number of topics:

 • The relationship between Java class files and conventional object and
executable files

 • The threat presented by the class file format

 • How bytecodes aid security

In addition, we show you:

 • A description of the contents of a Java class file

 • A description of the ways to reduce the threat of decompilation

5.1 The Traditional Development Life Cycle

As you have seen earlier, Java is a compiled language. That is, source code
is written in a high-level language and then converted through a process of
compilation to a machine-level language, the Java bytecode, which then runs
on the Java Virtual Machine (JVM). Before we look more closely at Java
bytecode, we will quickly review the differences between high- and low-level
languages, the compilation process and run-time behavior of a more
traditional environment.

Program files are recognized in different ways depending on the operating
environment. On most desktop operating systems, program files are
recognized first by the file extension (such as exe or com) and secondly by
the file format itself. Executable files contain information in a header which
informs the operating system that this file is a program and has certain
requirements in order to run. These requirements include such things as the
address at which the program should be loaded, other supporting files which
will be required and so on.

When the operating system attempts to run a program file, it loads the file and
ensures that the header is legitimate, that is, that it describes a real program.
The header also indicates where the starting point of the program itself is.
The program is stored in the program file as machine code instructions.
These instructions are numeric values which are read and interpreted by the
processor as it executes. Having validated the header, the operating system
starts executing the code at the indicated starting point.

From the above description, it should be clear that anyone with a good
understanding of the header format and of the machine code for a particular
© Copyright IBM Corp. 1997 1999 117

operating system could construct a program file using little more than an
editor capable of producing binary files.

Of course this is not how programs are produced. The closest that anyone
gets to this is writing assembler code. Assembler language programming is
very low-level. Its statements, after macro expansion, usually translate into
one or at most two machine language instructions. The assembler source
code is then fed through an assembler which converts the (almost) human
readable code into machine code, generates the appropriate header and
finally outputs an executable file.

Most programs, however, are written in a high-level language such as C, C++,
COBOL and so forth. It is the task of the compiler to translate high-level
instructions into low-level machine code in the most optimal way. The
resultant machine code output is generally very efficient, although –
depending on the compiler – it may be possible to write more efficiently in
assembler language. Because different compilers manage the translation and
optimization process in different ways, they will produce different output for
the same source code. In general it is true to say that the higher level the
source language, the more scope there is for variation in the resultant
executable file since there will be more possible translations of each
high-level statement into low-level machine code.

During the compilation process, high-level features such as variable and
function names are replaced by references to addresses in memory and by
machine code instructions, which cause the appropriate address to be
accessed (in the case of variables) or jumped to (in the case of functions).

In the case of both assembler language and high-level language
programming, the output of the assembler or compilation phase is generally
not immediately executable. Instead, an intermediate file (known as an object
module or object file1) is produced. One object file is produced for each
source file compiled, regardless of the content or structure of the source
code. These object modules are then combined using a tool called a linker
which is responsible for producing the final executable file (or shared library).
The linker ensures that references to a function or variable in one object
module from another object module are correctly resolved.

1 An unfortunate nomenclature and nothing at all to do with object-oriented programming. If the source file is the subject
of the compilation process then the resultant file must be the object.
118 Java 2 Network Security

Figure 43. Program Compilation and Linking

In summary then:

 • An object file contains the machine code which is the actual program plus
some additional information describing any dependencies on other object
files.

 • An executable file is a collection of object files with all inter-file
dependencies resolved, together with some header information which
identifies the file as executable.

5.2 The Java Development Life Cycle

Moving back to the world of Java, we see that it is a high-level programming
language and that bytecode is the low-level machine language of the JVM.
Java is an object-oriented language; that is, it deals primarily with objects and
their interrelationships. Objects are best thought of in this context as a
collection of data (fields, in Java parlance) and the functions (methods) which
operate on that data. Objects are created at run time based on templates
(classes) defined by the programmer.

A Java source file may contain definitions for one or more classes. During
compilation each of these classes results in the generation of a single class
file. In some respects, the class file is the Java equivalent of an object module
rather than an executable program file; that is, it contains compiled machine
code, but may also contain references to methods and fields which exist in
other classes and hence in other class files.

Class files are the last stage of the development process in Java. There is no
separate link phase. Linking is performed at run time by the JVM. If a
reference is found within one class file to another, then the JVM loads the
referenced class file and resolves the references as needed.

The astute reader will deduce that this demand loading and linking requires
the class file to contain information about other class files, methods and fields

Compile Link
Source File Object File Program File
Class Files in Java 2 119

which it references, and in particular, the names of these files, fields and
methods. This is in fact the case as we shall see in 5.3, “The Java 2 Class
File Format” on page 124.

Even more astute readers may be pondering some of the following questions.

 • Is it possible to compile Java source code to some machine language
other than that of the JVM?

 • Is it possible to compile some other high-level language to bytecode for
the JVM?

 • Is there such a thing as an assembler for Java?

 • What is the relationship between the Java language and bytecode?

The simple answer to the first three questions is yes.

It is possible with the appropriate compiler (generally referred to as a native
code compiler) to translate Java source code to any other low-level machine
code, although this rather defeats the Write Once, Run Anywhere proposition
for Java programs, since the resultant executable program will only run on the
platform for which it has been compiled.

It is also possible to compile other high-level languages into Java bytecode,
possibly via an interim step in which the source code is translated into Java
source code which is in turn compiled. Bytecode compilers already exist for
Ada, COBOL, BASIC and NetREXX (a dialect of the popular REXX
programming language).

Finally, Jasmin is a freely available Java assembler which allows serious
geeks to write Java code at a level one step removed from bytecode. Java
Grinder2 is a another freely available Java assembler and disassembler and
is very simple to use. Let’s consider the following Java code:

Figure 44. (Part 1 of 2). Count.java

2 Java Grinder can be downloaded from http://www-personal.umich.edu/~mcafee/java/.

import java.io.*;

public class Count
{
 public static void main(String[] args) throws Exception
 {
 int count=0;
 if (args.length >= 1)
120 Java 2 Network Security

Figure 45. (Part 2 of 2). Count.java

We compile this code using the Java compiler:

javac Count.java

This command produces the Count.class file. This is a simple Java program
that counts the number of characters in a file. The file name is given as an
argument on the command line. If the Count program is able to count the
characters in the file, it prints the number of characters counted, and if not, it
prints the exception. We run this program against this sample text file, called
itso.txt:

Figure 46. itso.txt

Both the Count.class and itso.txt files are stored in the same directory, say
D:\itso\ch05, and we launch the command:

java Count itso.txt

 {
 FileInputStream fis = new FileInputStream(args[0]);
 try
 {
 while (fis.read() != -1)
 count++;
 System.out.println("Hi! We counted " + count + " chars.");
 } // try{} block ends
 catch (Exception e)
 {
 System.out.println("No characters counted");
 System.out.println("Exception caught" + e.toString());
 } // catch(){} block ends
 } // if block ends
 else
 System.err.println("Usage: Count file_name");
 } // main() method ends
} // class Count ends

Marco Pistoia
Duane Reller
Deepak Gupta
Milind Nagnur
Ashok Ramani
Class Files in Java 2 121

This is the output we receive:

Hi! We counted 70 chars

On disassembling the class file with the freely available software Java
Grinder, we get an output file, which is shown in the following figures:

Figure 47. (Part 1 of 2). Disassembled Count.class File

public class Count extends Object {
 public void <init>() {
 maxstack 1
 aload_0
 invokespecial void Object.<init>()
 return
 }
 public static void main(String[]) throws Exception {
 maxstack 4
 iconst_0
 istore_1
 aload_0
 arraylength
 iconst_1
 if_icmplt label4
 new FileInputStream
 dup
 aload_0
 iconst_0
 aaload
 invokespecial void FileInputStream.<init>(String)
 astore_2
 try // catch1
 goto label2
label1: iinc 1 1
label2: aload_2
 invokevirtual int FileInputStream.read()
 iconst_m1
 if_icmpne label1
 getstatic PrintStream System.out
 new StringBuffer
 dup
 ldc "Hi! We counted "
 invokespecial void StringBuffer.<init>(String)
 iload_1
 invokevirtual StringBuffer StringBuffer.append(int)
 ldc " chars."
122 Java 2 Network Security

Figure 48. (Part 2 of 2). Disassembled Count.class File

On assembling it again, we get the same functioning as the original class file.

Notice that even if someone changes your code by simply changing the
message:

Hi! We counted count chars

to something undesirable like:

Hi! Guess what else I did to this program

the result can be disturbing. It is possible to manipulate it even further and
add statements that can vary from serious things like reading files from your
system to merely annoying things like throwing up continuous messages.
Class files are most vulnerable when they are in transit along the information
superhighway. There are ways to help prevent or at least detect this
tampering. The Java 2 SDK provides tools for sealing classes in JAR files, as

 invokevirtual StringBuffer StringBuffer.append(String)
 invokevirtual String StringBuffer.toString()
 invokevirtual void PrintStream.println(String)
catch1: catch Exception:label3
 goto label5
label3: astore_3
 getstatic PrintStream System.out
 ldc "No characters counted"
 invokevirtual void PrintStream.println(String)
 getstatic PrintStream System.out
 new StringBuffer
 dup
 ldc "Exception caught"
 invokespecial void StringBuffer.<init>(String)
 aload_3
 invokevirtual String Throwable.toString()
 invokevirtual StringBuffer StringBuffer.append(String)
 invokevirtual String StringBuffer.toString()
 invokevirtual void PrintStream.println(String)
 goto label5
label4: getstatic PrintStream System.err
 ldc "Usage: Count file_name"
 invokevirtual void PrintStream.println(String)
label5: return
 }
}

Class Files in Java 2 123

we will see in 12.1.1, “Manifest File” on page 387 and 12.6, “The JAR Bug –
Fixed In Java 2 SDK, Standard Edition, V1.2.1” on page 461.

The following figure gives a pictorial model of how different languages, such
as COBOL, C++, NetREXX and Java, are compiled in different ways, as we
discussed in 5.1, “The Traditional Development Life Cycle” on page 117:

Figure 49. Compiler Models

5.3 The Java 2 Class File Format

The class file contains a lot more information than its cousin, the executable
file. Of course, it still contains the same type of information: program
requirements, an identifier indicating that this is a program and executable
code (bytecode, in this case). However, it also contains some very rich
information about the original source code.

Java
Virtual

Machine

Object
Module

Class
File

Object
Module

Object
Module

Class
File

Class
File

Executable
File

C++
Source

Java
Source

COBOL
Source

NetREXX
Source

Native Compiler

Bytecode
Compiler

Load
Link

Native
 Compiler

Bytecode
Compiler

Bytecode
Compiler

Native Compiler

Link

Lin
k

Load

Loa
d

124 Java 2 Network Security

The high level structure of a class file is shown in the following table:

Table 2. Class File Contents

Much here is as we would expect. There is information to identify the file as a
Java class file, as well as the JVM on which it was compiled to run. In
addition, there is information describing the dependencies of this class in
terms of classes, interfaces3, fields, and methods. There is much more
information than this however, buried within the constant pool (see 5.4, “The
Constant Pool” on page 129): information which includes variable and method
names within both this class file and those on which it depends.

Let’s explain in more detail the fields listed in Table 2:

Field Description

Magic number Four bytes identifying this file as a Java class file. Always set to 0xCAFEBABE

JVM minor version The minor version number of the JVM on which this class file is intended to run

JVM major version The major version number of the JVM on which this class file is intended to run

Constant pool count Number of entries in Constant Pool Table

Constant pool See 5.4, “The Constant Pool” on page 129

Access flags Mask of modifiers used with class and interface declaration

Class name The name of this class

Super class name The name of the superclass in the Java class hierarchy

Interfaces count Number of direct super interfaces

Interfaces Description of the interfaces implemented for this class

Fields count Number of structures in the fields table

Fields Description of the class variables defined for this class

Methods count Number of structures in the methods table

Methods Description of the methods declared by this class

Attributes count Number of attributes in the attributes table

Attributes Attributes associated with the class file

3 Each Java class has only a single superclass, and it inherits variables and methods from that superclass and all its
superclasses. This limitation makes the relationship between classes easy to understand and design, but it can also be
restrictive. To solve this problem, Java introduces the concept of interfaces, which collect method names (not
implementations) into one place, and then allow you to add those methods as a group to the various classes that need
them.
Class Files in Java 2 125

 • The magic number is a hexadecimal number identifying the class format
and is always 0xCAFEBABE4.

 • The values of minor version and major version are the minor and major
versions of the compiler that produced this class.

 • The constant pool is a table of variable length structures representing
various string constants, class names, field names, and other constants
that are referred to.

 • The access flag is a mask of modifiers used with the class and interface
declarations (for example, ACC_PUBLIC for public class or interface,
ACC_FINAL for a final class etc. – see 2.1.1.2, “Access to Classes, Fields
and Methods” on page 42).

 • The interfaces field is an array of entries describing the interfaces
implemented by the class.

 • The fields field is an array of entries describing the class variables
declared by this class or interface. It does not include those inherited.

 • The methods field is an array of entries describing the methods declared
by this class or interface.

 • The only attribute defined for the attributes table is SourceFile, which
indicates the name of the source file from which the class was created.

In addition to managing dynamic linking, the JVM must also ensure that class
files contain only legal bytecode and do not attempt to subvert the run-time
environment, and to do this, still more information is required in the class.
More details of how this works are in Chapter 6, “The Class Loader and Class
File Verifier” on page 145.

The main thing to understand at this point is that the inclusion of all of this
information makes the job of a hacker much simpler in many ways. We
discuss this in the next section.

5.3.1 Decompilation Attacks
One of the areas seldom discussed when considering security
implications of deploying Java is that of securing Java assets. Often
considerable effort is put into developing software and the resultant
intellectual property can be very valuable to a company.

Hackers are a clever (although potentially misguided) bunch and there are
many reasons why they might want to get inside your code. Here are a
few:

4 Just out of curiosity, 0xCAFEBABE corresponds to the decimal number 3405691582.
126 Java 2 Network Security

 • To steal a valuable algorithm for use in their own code

 • To understand how a security function works to enable them to bypass it

 • To extract confidential information (such as hard-coded passwords and
keys)

 • To enable them to alter the code so that it behaves in a malicious way
(such as installing Trojan horses or viruses)

 • To demonstrate their prowess

 • For their entertainment (much as other people might solve crosswords)

The chief tool in the arsenal of the hacker in these cases is the decompiler. A
decompiler, as its name suggests, undoes the work performed by a compiler.
That is, it takes an executable file and attempts to re-create the original
source code.

Advances in compiler technology now make it effectively impossible to go
from machine code to a high-level language such as C. Modern compilers
remove all variable and function names, move code about to optimize its
execution profile and, as was discussed previously, there are many possible
ways to translate a high-level statement into a low-level machine code
representation. For a decompiler, to produce the original source code is
impossible without a lot of additional information which simply is not shipped
in an executable file.

It is, however, very easy to recover an assembler language version of the
program. On the other hand, the amount of effort required to actually
understand what such a program does makes it far less worthwhile to the
hacker to do.5 So, it is fair to say that it is impossible to completely protect any
program from tampering.

When the Java Development Kit (JDK) 1.0.2 was shipped, a decompiler
named Mocha was quickly available which performed excellently. It was able
to recover Java source code from a class file. It was so successful that at
least one person used it as a way of formatting his source code! In fact the
only information lost in the compilation process (and unrecoverable using
Mocha) are the comments. However, if meaningful variable names are used
in the code (such as accountNumber, or password), then it is readily possible to
understand the function of the code, even without the comments.

5 Nevertheless, it is done. Much pirated software is distributed in a cracked format, that is, with software protection
disabled or removed.
Class Files in Java 2 127

Already, there are decompilers available, like SourceAgain6, which can
decompile Java codes including those programs written with the Java 2 SDK
using new APIs.

Here is what a test decompiler returned for the same Count.class file we used
in 5.2, “The Java Development Life Cycle” on page 119 (the originating
source code Count.java was shown in Figure 44 on page 120 and Figure 45
on page 121):

Figure 50. Decompiled Count.class

You can see that the code has been successfully decompiled. Only small
things like the name of the variables are changed.

There can be some advantages of having a decompiler:

1. Recovery of lost source code (by accident or otherwise)

6 See http://www.ahpah.com/product.html.

import java.io.FileInputStream;
import java.io.PrintStream;
public class Count
{
 public static void main(String[] as) throws Exception
 {
 int i = 0;
 if (as.length >= 1)
 {
 FileInputStream fileinputstream1 = new FileInputStream (as[0]);
 try
 {
 while (fileinputstream1.read() != -1)
 ++i;
 System.out.println ("Hi! We counted " + i + " chars.");
 }
 catch(Exception exception1)
 {
 System.out.println("No characters counted");
 System.out.println("Exception caught" + exception1.toString());
 }
 }
 else
 System.err.println("Usage: Count file_name");
 }
}

128 Java 2 Network Security

2. Migration of applications to a new hardware platform

3. Translation of code written in obsolete languages not supported by
compiler tools nowadays

4. Determination of the existence of viruses or malicious code in the program

5. Recovery of someone else’s source code (to determine an algorithm for
example)

As long as you are decompiling your own code with your own decompiler or a
freely available one, you are safe. But once you decompile someone else’s
code, there may be legal and moral issues. Many programs are protected by
copyright laws and license agreements.

5.4 The Constant Pool

We said earlier that the constant pool contains a great deal of information. In
fact it contains an interesting mixture of items. The constant pool combines
the function of a symbol table for linking purposes as well as a repository for
constant values and string literals present in the source code. It may be
considered as an array of heterogeneous data types which are referenced by
index number from other sections of the class file such as the Field and
Method sections. In addition, many Java bytecode instructions take as
arguments numbers which are in turn used as indexes into the constant pool.

If you can read Java source code, it is a good idea to have a decompiler
available, to check the function of Java class files that you receive,
particularly if they come from an unknown origin.

The only problem with this is that you are stepping into a legal and moral
mine field. Decompilers are downloadable from a number of sources and
also are in some commercial Java development packages. However there
have been strong attempts to prevent them being available in this way,
because it allows unscrupulous people to steal the source code of
proprietary products.

The authorsí view is that, until verifiable Java is more generally available,
there is a place for the decompiler as a tool for checking what is really
going on inside a class file.

Should You Have a Decompiler in Your Toolkit?
Class Files in Java 2 129

The following table shows the types of entries in the constant pool, as defined
by the current JVM:

Table 3. Constant Pool Entry Types

As an example of a constant pool, let’s take a look at the PointlessButton
example we met in Appendix 2.1.1.1, “Class Consciousness” on page 36 (the
source code PointlessButton.java is shown in Figure 17 on page 37). The

Type names Used for... Contains...

UTF8 String in UTF8 formata

a. A shorthand for writing Unicode strings.

An array of bytes making up the
string

Integer A constant 32-bit signed integer value The numeric value of the integer

Long A constant 64-bit signed integer value The numeric value of the long

Float A constant 32-bit floating point value The numeric value of the float

Double A constant 64-bit double precision
floating point value

The numeric value of the double

String A Java string literal Reference to the UTF8
representation of the string

ClassRef Symbolic reference to a class Reference to a UTF8 representation
of the class name

FieldRef Symbolic reference to a field Reference to a ClassRef for the class
in which the field occurs and a
NameAndType for this field

MethodRef Symbolic reference to a method Reference to a ClassRef for the class
in which the method occurs and a
NameAndType for this method

InterfaceMethodRef Symbolic reference to an interface
method

Reference to a ClassRef for the
interface in which the field occurs
and a NameAndType for this method

NameAndType Shorthand representation of a field or
method signature and name

Reference to a UTF8 representation
of the name and another to the
signatureb

b. The signature of a field is simply its type. The signature of a method is both its return type and the types of any
parameters which it takes. Method signatures are represented by a pair of parentheses with the parameter types enclosed
and separated by semicolons. The parentheses are followed by the return type of the method. See Appendix B, “Signature
Formats” on page 647, for a full description of Java type representations.
130 Java 2 Network Security

following table shows a dump of the constant pool for the PointlessButton
class:

Table 4. Constant Pool Example

The full table has 83 entries, not bad for such a simple program. Looking at
this data you can see that there is a wealth of information here.

As an example of how a method is represented, let’s look at entry number 56.
This is a MethodRef entry and as such it has two further references to track
down:

Index Type Value

1 UTF8 bytes = "PointlessButton"

2 Class name = (1) "PointlessButton"

3 UTF8 bytes = "java/applet/Applet"

4 Class name = (3) "java/applet/Applet"

13 NameAndType name = (8) "donowt", type = (7) "Ljamjar/examples/Button;"

14 FieldRef class = (2) "PointlessButton", name and type = (13) "donowt",
"Ljamjar/examples/Button;"

17 UTF8 bytes = "Did Nothing "

18 String value = (17) "Did Nothing "

24 MethodRef class = (20) "java/lang/String", name and type = (23) "valueOf",
"(Ljava/lang/Object;)Ljava/lang/String;"

25 UTF8 bytes = "<init>"

33 NameAndType name = (31) "append", type = (32) "(I)Ljava/lang/StringBuffer;"

34 MethodRef class = (16) "java/lang/StringBuffer", name and type = (33)
"append", "(I)Ljava/lang/StringBuffer;"

52 MethodRef class = (49) "java/awt/Button", name and type = (51) "setLabel",
"(Ljava/lang/String;)V"

53 UTF8 bytes = "Code"

54 UTF8f bytes = "()V"

55 NameAndType name = (25) "<init>", type = (54) "()V"

56 MethodRef class = (4) "java/applet/Applet", name and type = (55) "<init>",
"()V"value = (37) " times"
Class Files in Java 2 131

1. The first is the Class entry (4), which in turn references a UTF8 entry (3)
for the class name: java.applet.Applet.

2. The second is the NameAndType entry, which identifies the method name
and the type of the method. The NameAndType entry (55) references a
UTF8 entry (25) for the method name <init>, and another UTF8 entry (54)
for the type ()V.

The name used here is a little special: <init> is not a valid name in itself,
but it is used by the JVM to represent a constructor for a class. The type
entry ()V indicates a method which takes no parameters (empty
parentheses) and returns no value (V following the parentheses indicates a
return type of void - Java’s term for no value). These details are explained
in Appendix B, “Signature Formats” on page 647.

From this little jaunt through the constant pool we see that the
PointlessButton class calls the java.applet.Applet default constructor.
Following a similar process, we can identify all of the other fields and
methods utilized in this class. Furthermore, by finding where entry number 56
is referenced in the bytecode, we can build a clear picture of what this code
does.

This is precisely what the javap utility, shipped with the Java 2 SDK, does. By
examining the constant pool and other parts of the class file structure, it is
able to produce a high-level picture of the class file. Here’s the output of javap
when run against PointlessButton.class with the command:

javap PointlessButton

As we already knew, PointlessButton extends java.applet.Applet and as such
it must call the Applet constructor – the method reference we saw by tracing
through the constant pool.

If this were all that javap did, then it would still be a useful tool for examining
class files for which we didn’t have the source code in an attempt to reuse
them or work out what they were doing. But it is not all. By using additional

Compiled from PointlessButton.java
public class PointlessButton extends java.applet.Applet implements
java.awt.event.ActionListener {
 jamjar.examples.Button donowt;
 int count;
 public PointlessButton();
 public void actionPerformed(java.awt.event.ActionEvent);
 public void init();
}

132 Java 2 Network Security

option switches it is possible to get richer information, including even the
disassembled bytecode. The following is the result of running javap with the
-c (disassemble the code) and -private (show all classes and members)
options enabled:

Figure 51. (Part 1 of 2). Output of the javap Command with Options -c and -p

Compiled from PointlessButton.java
public class PointlessButton extends java.applet.Applet implements java.awt.event.ActionListener {
 jamjar.examples.Button donowt;
 int count;
 public PointlessButton();
 public void actionPerformed(java.awt.event.ActionEvent);
 public void init();
}

Method PointlessButton()
 0 aload_0
 1 invokespecial #15 <Method java.applet.Applet()>
 4 aload_0
 5 new #8 <Class jamjar.examples.Button>
 8 dup
 9 ldc #5 <String "Do Nothing">
 11 invokespecial #17 <Method jamjar.examples.Button(java.lang.String)>
 14 putfield #24 <Field jamjar.examples.Button donowt>
 17 aload_0
 18 iconst_0
 19 putfield #23 <Field int count>
 22 return

Method void actionPerformed(java.awt.event.ActionEvent)
 0 aload_0
 1 getfield #24 <Field jamjar.examples.Button donowt>
 4 new #14 <Class java.lang.StringBuffer>
 7 dup
 8 ldc #4 <String "Did Nothing ">
 10 invokespecial #18 <Method java.lang.StringBuffer(java.lang.String)>
 13 aload_0
 14 dup
 15 getfield #23 <Field int count>
 18 iconst_1
 19 iadd
 20 dup_x1
 21 putfield #23 <Field int count>
 24 invokevirtual #21 <Method java.lang.StringBuffer append(int)>
 27 ldc #2 <String " time">
 29 invokevirtual #22 <Method java.lang.StringBuffer append(java.lang.String)>
 32 aload_0
 33 getfield #23 <Field int count>
 36 iconst_1
 37 if_icmpne 45
 40 ldc #1 <String "">
 42 goto 47
 45 ldc #6 <String "s">
 47 invokevirtual #22 <Method java.lang.StringBuffer append(java.lang.String)>
 50 invokevirtual #27 <Method java.lang.String toString()>
 53 invokevirtual #25 <Method void setLabel(java.lang.String)>
 56 return
Class Files in Java 2 133

Figure 52. (Part 2 of 2). Output of the javap Command with Options -c and -p

Here we have the complete code for all of the methods albeit in a language
that we could define as Java assembler. By appropriate use of a binary editor
it would be a relatively simple matter for a hacker to subvert the function of
this code. For example, simply changing the value of the string Did Nothing in
the constant pool, we could cause the button to print a rude message when
pressed. This is a trivial example but hopefully illustrates the vulnerability of
class files.

5.4.1 Beating the Decompilation Threat
The very real threat of decompilation is not going to go away. Decompilers
work by recognizing patterns in the generated bytecode which can be
translated back into Java source code statements. The field and method
names required to make this source code more readable are readily available
in the constant pool as we have seen.

To date, there have been two main approaches to thwarting would-be
decompilers: code obfuscation and bytecode hosing7:

1. The principle of obscuring (or obfuscating) source code to make it more
difficult to read is not new. In the UNIX world – where incompatibilities
between platforms and implementations make it necessary to distribute
many applications in source format – shrouding is common. This is the
process of replacing variable names with meaningless symbols, removing
comments and white space and generally leaving as little human readable
content in the source code without impacting its compilability. The end
result of obfuscation is that although a class file will decompile into valid

7 For the benefit of non-US readers, if something is hosed, it is seriously damaged, in this case deliberately.

Method void init()

 0 aload_0
 1 new #10 <Class java.awt.BorderLayout>
 4 dup
 5 invokespecial #16 <Method java.awt.BorderLayout()>
 8 invokevirtual #26 <Method void setLayout(java.awt.LayoutManager)>
 11 aload_0
 12 ldc #3 <String "Center">
 14 aload_0
 15 getfield #24 <Field jamjar.examples.Button donowt>
 18 invokevirtual #19 <Method java.awt.Component add(java.lang.String, java.awt.Component)>
 21 pop
 22 aload_0
 23 getfield #24 <Field jamjar.examples.Button donowt>
 26 aload_0
 27 invokevirtual #20 <Method void addActionListener(java.awt.event.ActionListener)>
 30 return
134 Java 2 Network Security

Java, that valid Java will not be very readable by humans. Note that
although obfuscation certainly makes decompilation more difficult and the
Java file not readable, it might not protect your code against a determined
adversary. You can think of copyrighting your code, although it is not an
ideal solution, but it is better than nothing.

After the release of Mocha, the author released Crema, a further appalling
coffee pun, which was designed to thwart Mocha. It did this by replacing
names in the constant pool with illegal Java variable names and reserved
words (such as if and class). This had no affect on the JVM, which merely
used the names as tags to resolve references without attributing any
meaning to them. Nor did it actually prevent decompilation. It did however
mean that the decompiled code was more difficult to read and understand
and also would not recompile as the Java compiler would object to the
illegal names.

2. Bytecode hosing is more subtle and is aimed at preventing the decompiler
from recognizing patterns within the bytecode from which it could recover
valid source. It does this by breaking up recognizable patterns of
bytecodes with do-nothing instruction sequences (such as the NOP code
or a PUSH followed by a POP). A good example of a bytecode hoser is
HoseMocha.

Of course, this approach can be defeated, since once a hacker has
established what types of do-nothing sequences are being generated by a
bytecode hoser, he or she can modify the behavior of the decompiler to
ignore such sequences. Furthermore, attempts to decompile hosed
bytecode will generally result in broadly readable code interspersed with
unintelligible passages rather than completely unreadable code.

In addition to this, bytecode hosers present a more insidious problem to
Java users. As we have already seen in Appendix 2.1.2, “The Execution
Environment” on page 44, the principal method of optimizing Java
performance is in the JVM and in particular through the use of just-in-time
(JIT) compilation. And how do JIT compilers work? Yes, you guessed it,
they recognize patterns in the generated bytecode that can be optimized
into native code. Breaking up these patterns through the use of a bytecode
hoser can seriously impact the performance of JIT compilers.

For this reason, it is safe to assume that Java compilers will not follow the
same evolutionary path as their native compiler cousins in terms of
generating wildly differing output for the same source code since this too
would thwart JIT compilers.

This is a well understood dilemma in security circles: the trade off between
security and performance/price/ease-of-use.
Class Files in Java 2 135

The only safe course of action is to assume that all Java code will at some
point be decompiled.

For developers this means ensuring that no sensitive information, like
passwords or cryptographic keys, is distributed in the class file either
algorithmically or as hard-coded values. This can be accomplished by
building client/server type applications with a Java presentation layer which
can be run anywhere and a secured server side where sensitive information
or algorithms can be stored. This may also involve extending the development
and testing process to ensure that distributed Java code is safe.

Also note that if a hacker is able to decompile your program, he can look for
weaknesses in its security. This will help him in attacking your system more
efficiently. Browser JVMs may become targets of such attacks.

Finally you may decide that the existing method of protecting distributed
code, that of legal sanction under copyright laws, is sufficient to deal with any
serious threat to Java-based intellectual property. However, in a networked
environment, these assumptions cannot be made so lightly.

5.5 Java Bytecode

In the next chapter we look at how the Java class loader and class file verifier
provide a level of security against rogue class files. This section prepares us
for that chapter by looking more closely at bytecode.

5.5.1 A Bytecode Example
Though you may not realize it, you have already seen an example of bytecode
or at least its human readable format. The output generated by the javap
command when we ran it with the -c flag (see Figure 51 on page 133 and
Figure 52 on page 134) contained a disassembly of each of the methods in
the class file.

Let’s consider now the actionPerformed() method of the PointlessButton
class:

We compile the PointlessButton.java file with the Java compiler javac and
subsequently disassemble the class file with the command:

public void actionPerformed(java.awt.event.ActionEvent e)
{
 donowt.setLabel("Did Nothing " + ++count + " time" + (count == 1 ? "" : "s"));
}

136 Java 2 Network Security

javap -c -private PointlessButton

In this process, the actionPerformed() method generates the code snippet in
the following figure:

Figure 53. Disassembled actionPerformed() Method

Notice the #n references in the bytecode such as instruction 45:

45 ldc #6 <String "s">

The #6 reference here refers to entry number 6 in the constant pool, while the
text after the #6 reference is a comment for the benefit of the reader showing
that entry #36 in the constant pool is a String with value s.

The next thing that you should notice about this code is that even at this level,
there are still references made to methods and fields. From this you may infer

Method void actionPerformed(java.awt.event.ActionEvent)
 0 aload_0
 1 getfield #24 <Field jamjar.examples.Button donowt>
 4 new #14 <Class java.lang.StringBuffer>
 7 dup
 8 ldc #4 <String "Did Nothing ">
 10 invokespecial #18 <Method java.lang.StringBuffer(java.lang.String)>
 13 aload_0
 14 dup
 15 getfield #23 <Field int count>
 18 iconst_1
 19 iadd
 20 dup_x1
 21 putfield #23 <Field int count>
 24 invokevirtual #21 <Method java.lang.StringBuffer append(int)>
 27 ldc #2 <String " time">
 29 invokevirtual #22 <Method java.lang.StringBuffer append(java.lang.String)>
 32 aload_0
 33 getfield #23 <Field int count>
 36 iconst_1
 37 if_icmpne 45
 40 ldc #1 <String "">
 42 goto 47
 45 ldc #6 <String "s">
 47 invokevirtual #22 <Method java.lang.StringBuffer append(java.lang.String)>
 50 invokevirtual #27 <Method java.lang.String toString()>
 53 invokevirtual #25 <Method void setLabel(java.lang.String)>
 56 return
Class Files in Java 2 137

that Java is object-oriented even at the bytecode level and you would be
correct.

We are not going to analyze all of this code, there are other books which
serve to teach bytecode. Instead we will compare this code fragment with
80x86 equivalent code and draw some conclusions about the measures that
exist within bytecode itself to protect the JVM against subversion.

Let’s look at the following fragment:

The following table explains what each of these instructions does:

Table 5. Bytecode Byte-by-Byte

Instruction Effect Stack after instruction

aload_0 Push a copy of local variable 0 onto the stack.
This variable is equivalent to the this keyword in
Java source code; it holds a reference to the current
object. In this case, that object is an instance of
PointlessButton.

this (PointlessButton)
[end of stack]

dup Duplicates the item on the top of the stack. this (PointlessButton)
this (PointlessButton)
[end of stack]

getfield #23 Pops the top item from the stack.
Checks that it is a PointlessButton reference.
Gets the count field with type I (integer) from it.
Pushes the count field onto the stack.

this.count (int)
this (PointlessButton)
[end of stack]

iconst_1 Pushes the integer constant 1 onto the stack. 1 (int)
this.count (int)
this (PointlessButton)
[end of stack]

iadd Pops the top two values from the stack.
Adds them.
Pushes the result (as an integer).

this.count + 1 (int)
this (PointlessButton)
[end of stack]

 13 aload_0
 14 dup
 15 getfield #23 <Field int count>
 18 iconst_1
 19 iadd
 20 dup_x1
 21 putfield #23 <Field int count>
138 Java 2 Network Security

The net of this sequence of operations is to have incremented the count field
of the current object by one and left a copy of it on the stack (for use in the
next instruction which prints the count).

The equivalent 80x86 code looks like this:

There are a few differences here which we will examine in turn:

 • Stack-based architecture vs register-based architecture

The JVM has a stack-based architecture. This means that its instructions
deal with pushing values onto, popping values from, and manipulating
values on a stack.

The 80x86 processor range from Intel are register-based. They have a
number of temporary storage areas (registers) some of which are general
purpose, others of which have a particular function.

The advantage of making the JVM stack-based is that it is easier to
implement a stack-based architecture using registers than vice versa.
Thus, porting the JVM to Intel platforms is easy compared with porting a
register-based virtual machine to a stack-based hardware platform.

In addition, there are benefits in a stack-based architecture when it comes
to establishing what code actually does – more of this in the next chapter.

 • Object-oriented vs non-object-oriented

As we have already mentioned, the Java bytecode is object-oriented. This
makes for safer code since the JVM checks at run time that the type of
fields being accessed or methods invoked for an object are genuinely
applicable to that object.

dup_x1 Duplicates the value on top of the stack and inserts
it under the second item from the top.

this.count + 1 (int)
this (PointlessButton)
this.count + 1 (int)
[end of stack]

putfield #23 Store the value on top of the stack in the
PointlessButton.count field of the object second
from the top of the stack.

this.count + 1 (int)
[end of stack]

Instruction Effect Stack after instruction

MOV BX, thisPointlessButton ; Set BX to the base address of this button
MOV SI, count_field ; Set SI to the offset of the count in button class
MOV CX, [BX + SI] ; Get the count field in register CX
INC CX ; increment the CX register
MOV [BX + SI], CX ; Store the result in BX+SI (the count field)
Class Files in Java 2 139

In the 80x86 code snippet, we have variable names to make it clearer what
the code is doing, but there are no checks to make sure that the value
loaded into the base register really is a pointer to an object of type
PointlessButton and that the offset loaded into SI represents the count
field of that object.

There is no object-level information at all stored in 80x86 machine code,
regardless of the high-level language from which it was compiled!

This is so important we will restate it: even if you write programs in Java,
once you compile them to 80x86 machine code, all object information is
lost and with it a degree of security, since the run-time engine cannot test
for the validity of method and/or field accesses.

 • Type Safety

While on the subject of type information, a difference to notice is the
inclusion of type information in JVM bytecode instructions. The instruction
iadd, for example, pops the top two values from the stack, adds them and
pushes the return value. The i prefix indicates that the instruction
operates on and returns an integer value. The JVM will actually check that
the stack contains two integers when the iadd instruction is to be
executed. In fact this check is performed by the bytecode verifier, prior to
run-time execution.

Contrast this with the 80x86 instructions, which contain no type
information. In this case, it is possible that the data loaded into the CX
register for incrementing is an integer. However, it is also possible that it is
part of a telephone number, an address, or anything different. There are
simply no checks performed on data type. This is fine if you can trust your
compiler and there is no likelihood of programs being attacked en route to
their execution environment. As we have seen, however, in a networked
environment, these assumptions cannot be made so lightly.

Not all bytecodes are typed; with a maximum of 256 distinct bytecode
values, there are simply not enough to go around. Where a bytecode
instruction is typed, the type on which it can operate is indicated by the
140 Java 2 Network Security

prefix of the instruction. Table 6 lists the type prefixes and Table 7 shows
the bytecodes in detail:

Table 6. Type Prefixes for Bytecode

Table 7. Bytecode Table

Prefix Bytecode type

i Integer

f Floating point

l Long

d Double precision floating point

b Byte

s Short

c Character

a Object reference

Bytecode int long float double byte char short object
ref

Function

?2c X Convert value of type ? to
character.

?2d X X X Convert value of type ? to double.

?2i X X X Convert value of type ? to integer.

?2f X X X Convert value of type ? to float.

?2l X X X Convert value of type ? to long.

?2s X Convert value of type ? to short.

?add X X X X Add two values of type ?.

?aload X X X X X X X X Push an element of type ? from an
array onto the stack.

?and X X Perform logical AND on two values
of type ?.

?astore X X X X X X X X Pop a type ? from the stack and
store in an array of type ?.

?cmp X Compare two long values. If they’re
equal push 0, if the first is greater
push 1, else push -1.
Class Files in Java 2 141

There are a few seeming anomalies about this table. For example, the ?cmp
and ?newarray instructions are typed and yet only apply to a single type (long

?cmpg X X Compare two IEEE values of type
? from the stack. If they’re equal
push 0, if the first is greater push 1
if the second is greater push -1. If
either is not-a-number (NaN) push
1.

?cmpl X X Compare two IEEE values of type
? from the stack. If they’re equal
push 0, if the first is greater push 1
if the second is greater push -1. If
either is NaN push 1.

?const X X X X X Push constant value n of type ?
onto the stack.

?div X X X X Perform a division using two values
of type ? and store the quotient.

?inc X Increment the top of the stack
(possibly by a negative value).

?ipush X X Push sign extender byte or short
value onto stack.

?load X X X X Push a value of type ? from a local
variable.

?mul X X X X Perform multiplication of two
values of type ?.

?neg X X X X Negate a value of type ?.

?newarray X Create a new array of object
references.

?or X X Perform logical OR on two values
of type ?.

?rem X X X X Perform a division using two values
of type ? and store the remainder.

?return X X X X X Return a value of type ? to the
invoking method.

?shl X X Perform arithmetic shift left on type
?.

?shr X X Perform arithmetic shift right on
type ?.

?store X X X X X Pop a value of type ? and store in
a local variable.

?sub X X X X Perform a subtraction using two
values of type ?.

Bytecode int long float double byte char short object
ref

Function
142 Java 2 Network Security

in the case of ?cmp and object references in the case of ?newarray).
Interestingly enough there is no equivalent of the ?cmp instruction for integers.
These oddities can be explained away in terms of future expansions to the
instruction set. However there are other peculiarities which are not as easily
explained.

Consider the fact that there are no typed arithmetic instructions for byte or
short values. This, coupled with the lack of support for short and byte values
in the constant pool, might lead you to believe that the underlying support in
the JVM for these types is less than full. You would be right.

The JVM’s processor stack is 32 bits wide. Values which are longer (doubles
or longs) or shorter (bytes or shorts) than this are treated specially within the
JVM. Double and long values occupy two spaces each on the stack and thus
require special instructions to deal with them. Bytes and shorts on the other
hand are treated as integers within the JVM for arithmetic and logical
operations. If you are dealing with pure Java source code then this is not a
problem as the Java compiler will take care of generating the appropriate
instructions on your behalf. If you start to work with bytecode which has not
been generated from the Java compiler then things become a little different
and it is quite possible that variables of byte or short types may end up
containing values larger than their maximum permissible ones.

This is a symptom of one of the general difficulties with the JVM. There is no
one-to-one relationship between Java source code and bytecode.

On the one hand, the lack of a tight binding between the source language and
bytecode enables cross-compilation from other source languages, as we
discussed previously. On the other hand it does mean that there has to be a
lot more work performed to ensure that the bytecode being executed is safe.
There is some concern that the lack of a rigid relationship between the Java
language and Java bytecode may be the source of some as yet undiscovered
nastiness which could emerge to overthrow the entire Java security model.
The next chapter looks at some of the measures which have been taken to
prevent this type of nastiness.
Class Files in Java 2 143

144 Java 2 Network Security

Chapter 6. The Class Loader and Class File Verifier

In this chapter we explore two topics:

1. How class files are located and loaded by the class loader

2. How the class file verifier ensures that class files are legal prior to
execution

The following discussion assumes a Java Virtual Machine (JVM) that is
running with a security manager. This is the wrong book to be running without
one.

6.1 Class Loaders

Class loaders are the gatekeepers of the JVM, controlling what bytecode may
be loaded and what should be rejected. As such they have a number of
responsibilities:

1. To separate name spaces, thus preventing intentional and unintentional
code corruption and limiting name clash problems to class files from one
source.

2. To protect the boundaries of the core Java class packages (trusted
classes) by refusing to load classes into these restricted packages.

3. Starting in Java 2, establish the protection domain (set of permissions) for
a loaded class. This is the basis for run-time authorization checking for
access to resources.

4. To enforce a search order that will prevent core and local classes from
being replaced by classes from less trusted sources.

The class loader has another, useful, side effect. By controlling how the JVM
loads code, all platform-specific file I/O is channelled through one part of the
JVM, thus making porting the JVM to different platforms a much simpler task.

Let’s look a little more closely at these responsibilities and why they are
necessary.

First, Java code can be loaded from a number of different sources. Some of
the more common sources are:

 • The trusted core classes that ship with the JVM (java.lang.*, java.applet.*
etc.)

 • Any installed JVM extensions
© Copyright IBM Corp. 1997 1999 145

 • Classes stored in the local file system (usually found using the
CLASSPATH system environment variable)

 • Classes retrieved from external sources such as from a Web server

Clearly, we would not want to overwrite a trusted JVM class with an identically
named class from a Web server since this would undermine the entire Java
security model. For instance, the SecurityManager class is responsible for a
large part of the JVM run-time security and is a trusted local class; consider
what would happen to security if the SecurityManager could be replaced by a
class loaded from a remote site. The class loader must therefore ensure that
trusted local classes are loaded in preference to remote classes where a
name clash occurs.

Secondly, where classes are loaded from Web servers, it is possible that
there could be a deliberate or unintentional collision of names (although the
Sun Java naming conventions exist to prevent unintentional name collisions).
If two versions of a class exist and are used by different applets from different
Web sites, then the JVM, through the auspices of the class loader, must
ensure that the two classes can coexist without any possibility of confusion
occurring.

The class loader must protect the boundaries of the trusted class packages.
The core Java class libraries that ship with the JVM reside in a series of
packages. Within the Java programming language, it is possible to give
special access privileges to classes that reside in the same package; thus, a
class which is part of the java.lang package, for instance, has access to
methods and fields within other classes in the java.lang package which are
not accessible to classes outside of this package.

If it were possible for a programmer to add his or her own classes to the
java.lang package, then those classes would also have privileged access to
the core classes. This would be an exposure of the JVM and consequently
must not be allowed. The class loader must therefore ensure that classes
cannot be dynamically added to the various core language packages.

The JVM may have many class loaders operating at any point in time, each of
which is responsible for locating and loading classes from different sources.

6.1.1 Loading Classes from Trusted Sources
There is one class loader, the primordial class loader, which is a built-in part
of the JVM; that is, its code is written in the same language the JVM is written
in (typically C) and is an integral part of the JVM. It is also known as the
internal, or null, or default class loader. The primordial class loader is the root
146 Java 2 Network Security

of the class loader delegation hierarchy (see 6.1.4.2, “How the Design Is
Implemented” on page 152 for details on delegation) and is responsible for
loading the trusted classes of the Java run time.

Classes loaded by the primordial class loader are regarded as special insofar
as they are not subject to verification prior to execution; that is, they are
assumed to be well formed, safe Java classes. In the Java Development Kit
(JDK) 1.1, these are the JVM core classes plus any classes which can be
found using the CLASSPATH system environment variable. Obviously, if
would-be attackers could somehow introduce a malicious class into the
CLASSPATH of a JVM they could cause serious damage1.

In Java 2, this exposure is minimized by removing the core class path
information from the CLASSPATH environment variable and subjecting all but
the core classes to verification and the security policy. It is also possible to
subject the core classes to verification using the -verify option of the java
command or the -J-verify option of the appletviewer command, for example.
Of course, this does not affect that part of the JVM implemented in the native
language.

The core classes in Java 2 are located by using a JVM internal property,
sun.boot.class.path. The value of this property is called the boot class path
and is formed internally from install information or can be specified by the
java command option -Xbootclasspath, which becomes -J-Xbootclasspath for
the appletviewer command (see 3.4.1, “Boot Class Path” on page 84).

6.1.2 Loading Classes from Untrusted Sources
Along with bounding the scope of implicitly trusted classes to just the Java
core classes, Java 2 removed the responsibility for the loading of local user
classes from the primordial loader. Now, at JVM startup, the application class
path information is copied from the CLASSPATH environment variable into
the JVM internal property java.class.path and this is used to start an instance
of java.net.URLClassLoader, a new class loader class extending the new
class java.lang.SecureClassLoader (described in 6.1.3, “Beyond What the
JVM Provides” on page 148). This instance is given a list of file-based URLs
generated from CLASSPATH, which it will use to locate and load local user
classes. This class loader instance will also verify the class file and set up the
associated protection domain. The value of java.class.path can also be set on
the command line using the option -classpath (or -cp). This will override the
CLASSPATH environment setting.

1 This was the basis of one of the attacks discovered by the Secure Internet Programming team at Princeton University.
Their attack, Slash and Burn, is described more fully in Java Security, Hostile Applets, Holes and Antidotes, Gary
McGraw and Ed Felten.
The Class Loader and Class File Verifier 147

From a trust viewpoint, logically in between the fully trusted core classes (no
policy file permission entries required) and the completely untrusted
application classes (explicit policy file permissions required) are classes of
the new extension class framework (see 3.4.2, “Extensions Framework” on
page 86). This framework allows for the installation of Java archive files in a
specific extensions directory pointed to by the JVM internal property
java.ext.dirs. The default setting for java.ext.dirs is ${java.home}/lib/ext and
can be set using the -Djava.ext.dirs=somevalue command line option. A
Java class called ExtClassLoader is responsible for loading installed
extensions. ExtClassLoader is an inner class of the sun.misc.Launcher class.
ExtClassLoader is also know as extensions class loader.

These classes are in the search order after core classes, but before
application classes. They are subjected to verification and policy, but the
default policy is AllPermissions (see 4.1.1, “The Class Loader” on page 110).

6.1.3 Beyond What the JVM Provides
Application writers (including JVM implementers) are at liberty to build more
class loaders to handle the loading of classes from different sources such as
the Internet, an intranet, local storage or perhaps even from ROM in an
embedded system. These class loaders are not a part of the JVM; rather,
they are part of an application running on top of the JVM.

In JDK 1.1, application implementers were required to implement any class
loading requirements beyond what the primordial loader would provide by
extending the java.lang.ClassLoader abstract class. The most obvious
example of this is in the context of a Web browser which must load classes
from an HTTP server. The browser’s class loader that does this is generally
known as the applet class loader and is itself a Java class which knows how
to request and load other Java class files from a Web server across a TCP/IP
network. The JDK’s Applet Viewer includes a reference implementation called
AppletClassLoader, which is shipped with the JDK in the sun.applet package
and has been the basis for most browsers’ class loaders.

Starting with Java 2, the Java run time includes an implementation of
ClassLoader called SecureClassLoader. SecureClassLoader implements the
basic security related requirements of class loading. It handles checking with
the security manager, calling the class file verifier, linking of the class and
setting up the protection domain. Its constructor is protected.
SecureClassLoader is meant to be the basis for the development of other
class loaders. To extend this, there is also a general purpose loader included
in the SDK, called URLClassLoader, in the java.net package, which is a
subclass of SecureClassLoader. URLClassLoader adds the ability to find and
148 Java 2 Network Security

load class files from a list of file and HTTP-based URLs. URLClassLoader
should meet most of the requirements an application may have for loading
class files. And if not, developers should now develop their own loaders by
subclassing one of these two classes, instead of the ClassLoader abstract
class, to benefit from the function and security built into SecureClassLoader.

It should be clear that there can be many types of class loaders within a Java
environment at any one time. In addition, there may be many instances of a
particular type of class loader operating at once.

To summarize:

 • There will always be one and only one primordial class loader. It is part of
the JVM, like the execution engine.

 • There will be one instance of the URLClassLoader which was created at
JVM initialization. This instance is responsible for loading user classes
from the local file system specified in the java.class.path property, which is
set from the CLASSPATH environment variable.

 • In a Web browser environment, there will be at least one additional class
loader, which is responsible for loading the applet classes.

 • There will be zero or more additional class loader types. These should
extend one of the class loader classes: URLClassLoader,
SecureClassLoader, or least desirably the ClassLoader abstract class.
There are, of course, other choices.

 • For each additional ClassLoader type, there will be zero or more instances
of that type created as Java objects.

Let’s look at this last point more closely.

Why would we want to have multiple instances of the same class loader
running at any one time?

To answer this question we need to examine what class loaders do with a
class once it has been loaded.

Every class present in the JVM has been loaded by one and only one class
loader. For any given class, the JVM remembers which class loader was
responsible for loading it. If that class subsequently requires other classes to
be loaded, the JVM uses the same class loader to load those classes.

This gives rise to the concept of a name space, the set of all classes which
have been loaded by a particular instance of a class loader. Within this name
space, duplicate class names are prohibited. More importantly, there is no
The Class Loader and Class File Verifier 149

cross name space visibility of classes; a class in one name space (loaded by
a particular class loader instance) cannot access a class in another name
space (loaded by a different class loader instance).

Returning to the question Why would we want to have multiple instances of
the same class loader running at any one time?, consider the case of the
applet class loader. It is responsible for loading classes from a Web server
across the Internet or intranets. On most networks (and certainly the Internet)
there are many Web servers from which classes could be loaded and there is
nothing to prevent two webmasters from having different classes on their sites
with the same name.

Since a given instance of a class loader cannot load multiple classes with the
same name, if we didn’t have multiple instances of the applet class loader, we
would very quickly run into problems when loading classes from multiple
sites. Moreover, it is essential for the security of the JVM to separate classes
from different sites so that they cannot inadvertently or deliberately cross
reference each other. This is achieved by having classes from separate Web
sites loaded into separate name spaces, which in turn is managed by having
different instances of the applet class loader for each site from which applets
are loaded.

6.1.4 The Class Loading Process
We now look at the class loading process. First, we will look at it from a
design viewpoint. Second, we show how the design is implemented in Java 2
class loaders and how it should be implemented by an application needing to
develop a class loader in Java 2. Keep in mind, we are assuming a security
manager.

6.1.4.1 What Is Supposed to Happen
In this section, we look at some of the design aspects of the class loading
architecture in Java 2. In other words, we describe what is supposed to
happen from the viewpoint of the Java architects.

1. When a class is referenced, the JVM execution environment invokes the
instance of the class loader associated with the requesting program to
locate and load the referenced class.

2. The class loader first checks to see if the requested class has been
previously loaded by itself.

 • If so, the loader checks with the security manager to see if the program
has permission to access the requested class.

 • If it does not have permission, a security exception is generated.
150 Java 2 Network Security

 • If the program has permission, the loader returns a reference to the
existing class object.

 • If not already loaded, the class loader checks with the security
manager to see if this program has permission to create the requested
class.

 • If it does not, a security exception is generated.

 • If the program has permission, the loader first tries to find the
requested class in the core Java API followed by any JVM
extensions. The difference between the core and extension classes
is that the extension classes are subject to verification and the
security policy in effect. This step prevents the JVM’s core and
extension classes from being replaced by classes from another
location. If the class is found, the class is loaded into the class area
and a reference to the class object is returned. The core and
extension classes should be loaded using the JVM’s built-in class
loader, the primordial class loader.

3. If we have come to this point without finding the requested class, this
means that the requested class has not been found in a trusted location.
Therefore, the class loader will load the class as an array of bytes to be
verified by the class file verifier before constructing a class object. The
loader will look through the application class path before going to the
network to locate the class. The application class path is found in the JVM
internal property java.class.path, which is set from the CLASSPATH
environment variable, or the -classpath (or -cp) argument of the java
command.

4. The class file verifier is responsible for making sure that class files contain
only legal Java bytecodes and that they behave properly (for example,
they do not attempt to underflow or overflow the stack, forge illegal
pointers to memory or in any other way subvert the JVM). Details of this
are in 6.2, “The Class File Verifier” on page 168. If verification fails, a
security exception is generated.

5. If the bytecodes pass verification, a class object is created and a
protection domain is associated with the class for subsequent resource
authorization checking. The class is then linked by resolving any
references to other classes within it. This may result in additional calls to
the class loader to locate and load other classes.

6. Next, static initialization of the class is performed; that is, static variables
are defined and static initializers are run.

7. Finally, the class is available to be executed.
The Class Loader and Class File Verifier 151

6.1.4.2 How the Design Is Implemented
Every class loader, being just another Java class itself, is loaded by a class
loader, with one exception, the primordial class loader. This forms a run-time
parent-child hierarchical relationship between class loader objects with the
primordial class loader at the root. This relationship is the basis for the
delegation model, which is the recommended implementation model for all
class loaders starting with Java 2. That is, every class loader upon entry
should immediately invoke (delegate the request to) the class loader which
loaded it, its parent class loader. This will cause a call back all the way to the
JVM’s internal loader which will stop this apparent foolishness and attempt to
load the class from the bootstrap class path or the extension class path. Only
if all ancestors fail should the child try to locate and load the class.

To illustrate how this works, consider the PointlessButton applet (see Figure
17 on page 37). As a reminder, PointlessButton uses a second class,
jamjar.examples.Button, which represents a push button on the browser
display. Pushing the button results in nothing happening except a display is
updated to inform you how many times nothing has happened to date.

In this example, we will work on a Web browser, called
MyFavoriteWebBrowser. MyFavoriteWebBrowser just happens to implement
a Java 2 style class loader, which extends URLClassLoader and is called
Java2StyleAppletClassLoader. When MyFavoriteWebBrowser encounters the
PointlessButton applet in a Web page the following sequence of events
occurs:

1. MyFavoriteWebBrowser finds the <APPLET> tag in the Web page and
determines that it needs to load PointlessButton.class. It creates an
instance of MyFavoriteWebBrowser’s Java2StyleAppletClassLoader, with
the URL of the Web page, and invokes its findClass() method with the
class name from the <APPLET> tag.

2. Java2StyleAppletClassLoader first delegates this request to its parent. As
it turns out, the parent in this case is an instance of URLClassLoader. This
is because the JVM for Java 2 creates an instance of URLClassLoader
during JVM startup. In fact the JVM’s internal loader no longer handles
user class files. This instance of URLClassLoader loads the initial class
file in a user program and any subsequent user classes found using the
CLASSPATH environment variable. This instance of URLClassLoader has
as its list of URLs the directories and files specified in the CLASSPATH
variable. Of course, URLClassLoader will first ask its parent to handle the
request, which is the primordial class loader.
152 Java 2 Network Security

3. The primordial class loader, which only knows about the core classes, fails
to locate PointlessButton and returns control to the child that called it, in
this case, the JVM-created instance of URLClassLoader.

4. This instance of URLClassLoader attempts to find PointlessButton in the
application class path, specified by the java.class.path property. For this
example, PointlessButton does not exist on the local system, so
URLClassLoader returns to Java2StyleClassLoader failing to find a
PointlessButton class.

5. Java2StyleClassLoader now knows it must find and load the requested
class itself. Since Java2StyleClassLoader extends URLClassLoader and
uses as much of the URLClassLoader function as possible, we are at this
point really executing the same findClass() logic as was just executed in
the JVM created URLClassLoader, except the list of places to look is
different. The URL list is not from the CLASSPATH, it is the URL of the
Web page. So, the loader connects to the Web site specified by the URL
using the HTTP protocol and downloads the PointlessButton class. The
last thing findClass() does is to call defineClass() which runs the class file
through the verifier, links it and sets up the protection domain for the class.

This is a good time to bring up an observation. The locations the
primordial class loader will search are specified by the JVM internal
property values sun.boot.class.path and java.ext.dirs. The boot class
path identified in property sun.boot.class.path on our test system
(determined using the System.getProperty() method), has the value:

drive:\Program Files\JavaSoft\JRE\1.2\lib\rt.jar;
drive:\Program Files\JavaSoft\JRE\1.2\lib\i18n.jar;
drive:\Program Files\JavaSoft\JRE\1.2\classes

This tells us a couple of things. First, the core APIs are contained in two
JAR files, rt.jar and i18n.jar. But, what is the last entry? This does not
exist by default. There is no file or directory with this name. However, it
would appear that if we create a directory with this name, the JVM
would look in it for class files and, would consider them core classes.
Indeed, this is the case. This is very powerful, but one should take care
in granting the ability to create directories or files within the Java
run-time directory structure, especially creating a directory named
classes and the ability to place files in it.

We also found that only class files are recognized in this classes
directory. Other files, such as JAR files, are ignored.

An Observation on the sun.boot.class.path Property
The Class Loader and Class File Verifier 153

6. The JVM begins executing the PointlessButton applet.

7. PointlessButton needs to create an instance of jamjar.examples.Button, a
class which currently has not been loaded. PointlessButton requests the
JVM to load the class.

8. The JVM locates the instance of Java2StyleAppletClassLoader which
loaded PointlessButton and invokes it to load jamjar.examples.Button.

9. The same steps that were described above for locating and loading
PointlessButton are now executed looking for jamjar.examples.Button and
the jamjar.examples.Button is executed.

10.jamjar.examples.Button creates a java.lang.String object for the title of the
button. The String class has not yet been loaded, so again the JVM is
requested to load the class.

11.The class loader which loaded both PointlessButton and
jamjar.examples.Button (the same instance of Java2StyleClassLoader we
are now getting tired of hearing about) is now invoked to load the
java.lang.String class.

12.Java2StyleAppletClassLoader again delegates the request, only this time
the primordial class loader is able to locate and load the class since it is
part of the trusted classes package. Since the primordial class loader was
successful, both URLClassLoader and Java2StyleAppletClassLoader
have nothing to do but return the reference to the String class created by
the primordial class loader.

There are a few interesting points to note here:

 • In this example, Java2StyleClassLoader really offered no additional
function beyond what URLClassLoader provides except to give us a
meaningful name to use during the discussion and to provide a place
holder for future potential changes to the browser’s loading needs without
affecting the browser’s mainline code. So, for this example, the browser
could have just created an instance of URLClassLoader.

 • At Step 3 on page 153, if we had been using a regular java.awt.Button
class then the primordial class loader would have been able to find the
class in the trusted packages and the search would have stopped.

 • There are actually many references to the java.lang.String class in the
code. However, only the first reference results in the class being loaded
from disk. Subsequent requests to the class loader will result in it returning
the class already loaded. Since it is the primordial class loader which
loads the String class, if there are multiple applets on a single page, only
the first one to request a String class will result in the primordial class
loader loading the class from disk.
154 Java 2 Network Security

Note also the order in which the applet class loader Java2StyleClassLoader
searches for classes. An applet class loader could decide not to follow the
delegation model and search the Web server from which it loaded the applet
first for any subsequent classes and this would cut out some calls to the
primordial class loader. This would be incredibly bad practice for two reasons:

 • Most of the class load requests for an applet will be for trusted classes
from the SDK packages, so searching the Web server for each of the
classes encountered would be very expensive and wasteful in terms of
network traffic.

 • More importantly, if classes were sought on the Web server before being
sought in the trusted package, it would allow subversion of built-in types,
enabling malicious programmers to substitute their own implementations
of core, trusted classes such as the SecurityManager or even the applet
class loader itself.

For this reason, even prior to Java 2, all commercially available browsers
have applet class loaders which implement the following search strategy2:

1. Ask the primordial class loader to load the class from the trusted
packages.

2. If this fails, request the class from the Web server from which the original
class was loaded.

3. If this fails, report the class as not locatable by throwing a ClassNotFound
exception.

This search strategy is effectively the same as the delegation model
advocated in Java 2 and ensures that classes are loaded from the most
trusted source in which they are available. Java 2 makes implementing this
strategy much easier through the delegation model and the functions now
provided by URLClassLoader and SecureClassLoader.

6.1.5 Should You Build Your Own Class Loader
The ability to create additional class loaders is a very powerful feature of Java
and places a heavy responsibility on the class loader implementer. This
becomes particularly apparent when you realize that user-written class
loaders have the choice of following the delegation model or not. They get
first choice on whether to load a class or not. They can even take priority over
the primordial class loader. This enables a user-written class loader to
replace any of the system classes, including the SecurityManager. In other
words, since the class loader is Cerberus to the JVM’s Hades, you had better

2 This is common practice but note that it is not enforced by the JVM architecture. Class loader writers are at liberty to
implement any search strategy they choose for locating classes.
The Class Loader and Class File Verifier 155

be sure that when you replace it, you don’t inadvertently install a lap dog in its
place.

We have already stated that a class loader which has loaded a particular
class is invoked to load any dependent classes. We also know that a class
loader generally has responsibility for loading classes from one particular
source such as Web servers.

What if the class first loaded requires access to a class from the trusted core
classes such as java.lang.String? This class needs to be loaded from the
local core class package, not from across a network. It would be possible to
write code to handle this within the application’s class loader but it is
unnecessary. We already have a class loader in the shape of the primordial
class loader which knows how to load classes from the trusted packages.

With the Java 2 enhancements to security and class loading, there is much
less reason to implement your own class loader.

URLClassLoader can load classes from a list of file-based and HTTP-based
URLs. It knows how to process class files, Java Archive (JAR) files and
signed JAR files. It handles setting up the protection domains and handles
the questions for the security manager during class loading.

If you are on a 1.1 system, the JDK includes the class RMIClassLoader,
which is still available in the Java 2 platform. Its methods are static, so they
can be called directly to load individual unsigned class files from a single URL
and define a class from the loaded file. Its name is misleading, since it is
much more general purpose than its name implies and can be used to just
load class files. It can support HTTP, Internet Inter-ORB Protocol (IIOP) and
other protocols.

If, after all this, you still have reason to build your own class loader, such as
one that performs class access auditing, or work across a network protocol
other than HTTP, you can still benefit from subclassing one of the provided
classes. For instance, if you are not using HTTP, but everything else is the
same, implement your own XYZClassLoader based on SecureClassLoader
and model it after URLClassLoader.

The next two sections show application class loaders. They both demonstrate
how to extend the class loading functions of the SDK by simply adding the
logic to record in a file all classes it is asked to load:

1. The first is a class loader written JDK 1.1 style, although it also runs on
Java 2 SDK, Standard Edition, V1.2.x; It extends the abstract class
ClassLoader and implements all steps in the class loading process.
156 Java 2 Network Security

2. The second is Java 2 style, extending URLClassLoader. This requires
much less work on our part and provides the protection domain for the
class allowing for run-time authorization checking by the security
manager.

6.1.5.1 Program AuditClassLoader (JDK 1.1 Style)
AuditClassLoader (shown in Figure 54 on page 157 through Figure 58 on
page 161) is an implementation of a class loader based on the abstract class
ClassLoader. It first puts an entry in a log file, auditclasses.log, and then
locates and loads a class file. It then defines and resolves a class from the
class file. It is pretty much what a JDK 1.1 application developer had to do to
implement a class loader. It works fine in Java 2, but does not follow the
delegation hierarchy. It assumes all core class names start with java. and
calls the primordial class loader (via the findSystemClass() method) for these;
otherwise, it loads all classes itself using the java.class.path (which if you
will remember is set from CLASSPATH) to locate the class file. It does check
to see if the class is already loaded. It does not have an access control
scheme.

Figure 54. (Part 1 of 5). AuditClassLoader.java

/**
 * AuditClassLoader
 * Extends ClassLoader to record loading of classes
 *
 */
import java.util.*;
import java.util.zip.*;
import java.io.*;
import java.net.*;

public class AuditClassLoader extends ClassLoader
{
 private Hashtable loadedClasses = new Hashtable();
 private Hashtable resolvedClasses = new Hashtable();
 private Socket sock;
 private DataOutputStream auditlog;

 /**
 * constructor.
 */
 public AuditClassLoader()
 {
 super();
The Class Loader and Class File Verifier 157

Figure 55. (Part 2 of 5). AuditClassLoader.java

 try
 {
 auditlog = new DataOutputStream(new FileOutputStream("auditclasses.log"));
 auditlog.writeBytes("Audit Started:\n");
 }
 catch (IOException e)
 {
 System.err.println("Audit file not opened properly\n" + e.toString());
 }
 }

 /**
 * @return byte[]
 * @param name java.lang.String
 * @exception java.io.IOException The exception description.
 */
 private byte[] getClassFile(String className) throws java.io.IOException
 {
 InputStream is;
 byte classBytes[];

 is = locateClass(className);

 classBytes = new byte[is.available()];
 is.read(classBytes);

 return classBytes;
 }

 /**
 * The method which actually loads a class file
 * The loadClass method is invoked to load a new class.
 * The steps which it must carry out are:
 * - Check to see if the class requested has already been loaded.
 * - Check to see if the class is a "system" class.
 * - Retrieve the bytes for the class
 * - Resolve the class if instructed
 * - Return the class to the caller.
 *
 * @param java.lang.String name The fully qualified name of the class to load
 * @param boolean resolve If true then the class is resolved
 */
 public Class loadClass(String name, boolean resolve) throws ClassNotFoundException
158 Java 2 Network Security

Figure 56. (Part 3 of 5). AuditClassLoader.java

 {
 Class theClass = null;

 try
 {
 /*
 * Write the name of the class being loaded to the log file
 */
 auditlog.writeBytes("loading class: " + name + "\n");

 /*
 * Only attempt to load the class if it’s not in the cache
 */
 if(!loadedClasses.containsKey(name))
 {

 /*
 * If the class is a system class, invoke the primordial class loader
 */
 if (name.startsWith("java."))
 {
 theClass = findSystemClass(name);
 }
 else
 {
 /*
 * Otherwise, get the class as a bytearray and define it
 */
 byte[] classBytes = getClassFile(name);
 theClass = defineClass(name, classBytes, 0, classBytes.length);
 }
 }

 /*
 * Store the class in the local cache
 */
 if (theClass != null) loadedClasses.put(name, theClass);
 }
 catch(IOException ioe)
 {
 throw new ClassNotFoundException();
 }
 catch(ClassFormatError cfe)
The Class Loader and Class File Verifier 159

Figure 57. (Part 4 of 5). AuditClassLoader.java

 {
 throw new ClassNotFoundException();
 }

 /*
 * Resolve the class if it’s
 * a) not resolved
 * b) the resolve flag is set
 */
 if (resolve && !resolvedClasses.containsKey(name))
 {
 resolveClass((Class) loadedClasses.get(name));
 resolvedClasses.put(name, "true");
 }

 return (Class) loadedClasses.get(name);
 }

 /**
 * A utility method used to locate a class file from it’s name
 * this method searches the class path, including ZIP archives
 * @param className the fully qualified class name
 * @return an InputStream for the class file
 */
 private InputStream locateClass(String className) throws IOException
 {
 String fileName = className.replace(’.’, File.separatorChar) + ".class";
 String searchPath = System.getProperty("java.class.path").toUpperCase();
 String classPathEntry;

 while (searchPath != "")
 {
 int scIndex = searchPath.indexOf(File.pathSeparatorChar);
 if (scIndex == -1)
 {
 classPathEntry = searchPath;
 searchPath = "";
 }
 else
 {
 classPathEntry = searchPath.substring(0, scIndex);
 searchPath = searchPath.substring(scIndex + 1);
 }
160 Java 2 Network Security

Figure 58. (Part 5 of 5). AuditClassLoader.java

TestAuditClassLoader (see Figure 59 on page 161 and Figure 60 on page
162) is a program that can be used to invoke AuditClassLoader. It takes as a
single parameter the name of a class, so the correct way to launch it is:

java TestAuditClassLoader ClassName

It creates an instance of AuditClassLoader and asks it to load the class name
it received as a parameter. It then checks to see if the class is abstract. If it is,
it asks the class to print information about itself. If it is not abstract, it creates
a new instance of the class and asks the instance to print information about
itself.

Figure 59. (Part 1 of 2). TestAuditClassLoader.java

 if (classPathEntry.endsWith(".ZIP"))
 {
 ZipFile zf;
 ZipEntry ze;
 zf = new ZipFile(classPathEntry);
 ze = zf.getEntry(fileName);
 if (ze != null)
 return zf.getInputStream(ze);
 }
 else
 {
 String fullName = classPathEntry + File.separatorChar + fileName;
 File f = new File(fullName);
 if (f.exists()) return new FileInputStream(fullName);
 }
 }
 throw new IOException(className + " not found");
 }
}

/**
 * Test AuditClassLoader
 * Expects a class name as input
 *
 */
import java.lang.reflect.Modifier;

public class TestAuditClassLoader
The Class Loader and Class File Verifier 161

Figure 60. (Part 2 of 2). TestAuditClassLoader.java

We show now the results of running TestAuditClassLoader, first against a
concrete class and second, against an abstract class.

On running TestAuditClassLoader against a concrete class, for example the
GetPrintJob applet class obtained from the code in Figure 1 on page 14 and
Figure 2 on page 15, the output produced is:

 • On the console:

 • In the auditclasses.log file:

{

 /**
 * main entrypoint - starts the application
 * @param args java.lang.String[]
 */
 public static void main(java.lang.String[] args) throws Exception
 {
 if (args.length != 0)
 {
 AuditClassLoader loader = new AuditClassLoader();
 Class myself = loader.loadClass(args[0], true);
 int mods = myself.getModifiers();
 if (!Modifier.isAbstract(mods))
 {
 Object o = myself.newInstance();
 System.out.println("New instance created:");
 System.out.println(o);
 }
 else
 {
 System.out.println("Abstract class loaded:");
 System.out.println(myself);
 }
 }
 }
}

New instance created:
GetPrintJob[panel0,0,0,0x0,invalid,layout=java.awt.FlowLayout]
162 Java 2 Network Security

Upon running TestAuditClassLoader against an abstract class, for example
java.util.TimeZone, we would see the following:

 • On the console:

 • In the auditclasses.log file:

6.1.5.2 Program Audit2ClassLoader (Java 2 Style)
Audit2ClassLoader (shown in Figure 61 on page 163 through Figure 63 on
page 165) is based on the Java 2 URLClassLoader, which extends the new
SecureClassLoader class. It extends URLClassLoader by overriding the
loadClass() method. It simply records class load requests in a file hard-coded
as auditclasses.log and then asks its parent to load the class. By using all of
URLClassLoader’s function, Audit2ClassLoader is very short. But, it offers a
more elegant implementation than AuditClassLoader because it implements
the delegation model and associates a protection domain with the class.

Figure 61. (Part 1 of 3). Audit2ClassLoader.java

Audit Started:
loading class: GetPrintJob
loading class: java.applet.Applet
loading class: java.awt.event.ActionListener
loading class: java.lang.Throwable
loading class: java.lang.Exception
loading class: java.awt.Button
loading class: java.awt.Container

Abstract class loaded:
class java.util.TimeZone

Audit Started:
loading class: java.util.TimeZone

/**
 * Audit2ClassLoader
 * Extends java.net.URLClassLoader to record the loading
 * of classes
 *
 */

import java.io.*;
import java.net.*;
The Class Loader and Class File Verifier 163

Figure 62. (Part 2 of 3). Audit2ClassLoader.java

import java.lang.*;

public class Audit2ClassLoader extends URLClassLoader
{
 private DataOutputStream auditlog;

 /**
 * Audit2ClassLoader constructor
 * Calls URLClassLoader’s constructor and
 * opens a file for recording class load messages
 *
 */
 public Audit2ClassLoader(URL[] urls)
 {
 super(urls);
 try
 {
 auditlog = new DataOutputStream(new FileOutputStream("auditclasses.log"));
 auditlog.writeBytes("Audit Started:\n");
 }
 catch (IOException e)
 {
 System.err.println("Audit file not opened properly\n" + e.toString());
 }
 }

 /**
 * The method which actually loads a class file
 * The findClass method is invoked to load a new class.
 * The steps which it must carry out are:
 * - Write message to log file.
 * - Call parent findClass method to load, verify, resolve and
 * set up protection domains.
 *
 * @param java.lang.String name The fully qualified name of the class to load
 */
 public Class loadClass(String name) throws ClassNotFoundException
 {
 try
 {
 auditlog.writeBytes("loading class: " + name + "\n");
 }
 catch (IOException ioe)
164 Java 2 Network Security

Figure 63. (Part 3 of 3). Audit2ClassLoader.java

Figure 64 on page 166 shows TestAudit2ClassLoader, a program which can
be used to try out Audit2ClassLoader. The significant difference here from
TestAuditClassLoader is that Audit2ClassLoader requires a list of URLs to be
passed to its constructor. This is really a requirement of URLClassLoader.
This limits the scope of where Audit2ClassLoader will look for user class files.
In this test case, it will only look in the current directory. Note the creation of
the URL using file:./. The / character is very important. It says this is a
directory; otherwise, it is assumed the URL points to a file. However, files in
java.class.path (application class path) and sun.boot.class.path (core
classes) will be found and loaded during delegation by the appropriate class
loader instance. In this example the result is the same as our JDK 1.1 style
class loader (AuditClassLoader) except that AuditClassLoader has two tiers,
system classes (a class starting with java.) and all others (found via
CLASSPATH), whereas AuditClass2Loader uses delegation (not a naming
convention) and has three tiers, as follows:

 • AuditClass2Loader will handle the files not found by delegation and will
only look in the URL list passed on to its constructor. In our example, using
TestClass2Loader, this is just the current directory.

 • The URLClassLoader instance created at JVM startup will handle the
classes not found by the primordial loader and that it can find via
java.class.path

 • The primordial loader will find all core classes found using
sun.boot.class.path, which can be more than just java., as in
AuditClassLoader.

 {
 System.err.println("Could not write to audit file\n" + ioe.toString());
 }

 try
 {
 return super.loadClass(name);
 }
 catch (Exception e)
 {
 throw new ClassNotFoundException(name);
 }
 }
}

The Class Loader and Class File Verifier 165

Figure 64. TestAudit2ClassLoader.java

Here are the results of running TestAudit2ClassLoader using the same
classes as we used for trying out TestAuditClassloader.

On running TestAudit2ClassLoader against the concrete class GetPrintJob
(see again Figure 1 on page 14 and Figure 2 on page 15), the results are:

/**
 * Test Audit2ClassLoader
 * Expects a class name as input.
 *
 */
import java.net.*;
import java.lang.reflect.Modifier;

public class TestAudit2ClassLoader
{
 /**
 * main entrypoint - starts the application
 * @param args java.lang.String[]
 */
 public static void main(java.lang.String[] args) throws Exception
 {
 if (args.length != 0)
 {
 URL dirs[] = new URL[1];
 dirs[0] = new URL("file:./");
 Audit2ClassLoader loader = new Audit2ClassLoader(dirs);
 Class myself = loader.loadClass(args[0]);
 int mods = myself.getModifiers();
 if (!Modifier.isAbstract(mods))
 {
 Object o = myself.newInstance();
 System.out.println("New instance created:");
 System.out.println(o);
 }
 else
 {
 System.out.println("Abstract class loaded:");
 System.out.println(myself);
 }
 }
 }
}

166 Java 2 Network Security

 • On the console:

 • In the auditclasses.log file:

On running TestAudit2ClassLoader against an abstract class, such as
java.util.TimeZone, the output would be:

 • On the console:

 • In the auditclasses.log file:

6.1.5.3 In Summary
Obviously, Audit2ClassLoader is much simpler to implement and adds access
control using Java 2’s new security mechanism. There is, however, a small
price we paid for this. We saw that TestAuditClassLoader recorded a
message in the log file for the class being loaded and for each class loaded
during the resolve step, that is for each class the subject class referenced.
This is not true for TestAudit2ClassLoader. In fact we saw that in this case
there is only a message for the class requested. This is because
Audit2ClassLoader asks its parent to do all the real work by delegating the
request. The parent, URLCLassLoader, happily handles the resolve step for
Audit2ClassLoader. We could do a little more of the work in
Audit2ClassLoader and handle this, if it were necessary.

New instance created:
GetPrintJob[panel0,0,0,0x0,invalid,layout=java.awt.FlowLayout]

Audit Started:
loading class: GetPrintJob

Abstract class loaded:
class java.util.TimeZone

Audit Started:
loading class: java.util.TimeZone
The Class Loader and Class File Verifier 167

6.2 The Class File Verifier3

Once a class has been located and loaded by a class loader (other than the
primordial class loader), it still has another hurdle to cross before being
available for execution within the JVM. At this point we can be reasonably
sure that the class file in question cannot supplant any of the core classes,
cannot inveigle its way into the trusted packages and cannot interfere with
other safe classes already loaded.

We cannot, however, be sure that the class itself is safe. There is still the
safety net of the SecurityManager which will prevent the class from accessing
protected resources such as network and local hard disk, but that in itself is
not enough. The class might contain illegal bytecode, forge pointers to
protected memory, overflow or underflow the program stack, or in some other
way corrupt the integrity of the JVM.

As we have said in earlier chapters, a well behaved Java compiler produces
well behaved Java classes and we would be quite happy to run these within
the JVM since the Java language itself and the compiler enforce a high
degree of safety. Unfortunately we cannot guarantee that everyone is using a
well behaved Java compiler. Nasty devious hacker types may be using
homemade compilers to produce code designed to crash the JVM or worse,
subvert the security thereof. In fact, as we saw in Chapter 5, “Class Files in
Java 2” on page 117, we cannot even be sure that the source language was
Java in the first place!

In addition to this there is the problem of release-to-release binary
compatibility. Let’s say that you have built an applet which uses a class called
TaxCalculator from a third party. You have constructed your applet with great
care and have purchased and installed the TaxCalculator class on the server
with your applet code.

At this point you are certain that the methods you call in TaxCalculator are
present and valid but what happens if/when you upgrade TaxCalculator? Of
course you should make sure that the API exposed by TaxCalculator hasn’t
changed and that your class will still work, but what if you forget? In practice it
is quite possible that TaxCalculator has changed between versions and
methods or fields which were previously accessible have become
inaccessible, been removed or changed type from dynamic to static fields. In
this case, when your applet is downloaded to a browser and it tries to make
method calls or access fields within TaxCalculator those calls may fail.

3 Important note – The class file verifier is sometimes referred to as the bytecode verifier, but as we show in this section,
running the bytecode verifier is only one part of the class file verification process.
168 Java 2 Network Security

This is because the binary code compatibility between the classes has been
broken between releases. These problems exist with all forms of binary
distributable libraries. On most systems this results in at best a system
message and the application refusing to run; at worst the entire operating
system could crash. The JVM has to perform at least as well as other
systems in these circumstances and preferably better.

For all of the above reasons, an extra stage of checking is required before
executing Java code and this is where the class file verifier comes in.

After loading an untrusted class via a ClassLoader instance, the class file is
handed over to the class file verifier which attempts to ensure that the class is
fit to be run. The class file verifier is itself a part of the Java Virtual Machine
and as such cannot be removed or overridden without replacing the JVM
itself.

6.2.1 An Example of Class File Verification
As a very simple example to show the affects of class file verification and to
see when classes are subjected to verification, we wrote a Java class,
TestVerify.java, which adds two integers initialized to the values 3 and 4 and
displays the answer 7.

Figure 65. (Part 1 of 2). TestVerify.java

/**
 * TestVerify.java
 * Used to create an invalid class file to
 * test when verification occurs
 */

import java.awt.*;
import java.applet.*;

public class TestVerify extends Applet
{
 public static void main(String[] args)
 {
 System.out.println("3 + 4 = " + add());
 }

 static int add()
 {
 int a,b,c;
 a = 3;
The Class Loader and Class File Verifier 169

Figure 66. (Part 2 of 2). TestVerify.java

 • The class above can be launched as a Java application, through the
command:

java TestVerify

This is the output produced:

3 + 4 = 7

 • Or, TestVerify can be launched as a Java applet using Applet Viewer or a
Java-enabled Web browser. The following is the code of TestVerify.html, a
simple HTML page that invokes the TestVerify applet:

Figure 67. TestVerify.html

Below, in Figure 68 on page 171, is the output of the command:

appletviewer TestVerify.html

 b = 4; // use hex editor to change to "a = 4" in class file
 return (a+b);
 }

 public void paint(Graphics g)
 {
 g.drawString("3 + 4 = " + add(), 10, 20);
 }
}

<HTML>

 <HEAD>
 <TITLE>TestVerify Applet</TITLE>
 </HEAD>

 <BODY>

 <H3>TestVerify Applet</H3>

 <APPLET Code="TestVerify" Width=250 Height=50>
 </APPLET>

 </BODY>
</HTML>
170 Java 2 Network Security

Figure 68. TestVerify Class Running as an Applet

TestVerify was used to determine when verification of classes occurs. In the
TestVerify.class file, the initialization of variable b in method add() was
modified using a hexadecimal editor to re-initialize variable a, so that variable
b is never initialized.

Below, in Figure 69 on page 171 and Figure 70 on page 172, is the output of
the command:

javap -c TestVerify

Figure 69. (Part 1 of 2). Disassembling TestVerify.class Using javap

Compiled from TestVerify.java
public class TestVerify extends java.applet.Applet {
 public TestVerify();
 static int add();
 public static void main(java.lang.String[]);
 public void paint(java.awt.Graphics);
}

Method TestVerify()
 0 aload_0
 1 invokespecial #9 <Method java.applet.Applet()>
 4 return

Method int add()
 0 iconst_3
 1 istore_0
 2 iconst_4
 3 istore_1
 4 iload_0
 5 iload_1
 6 iadd
 7 ireturn
The Class Loader and Class File Verifier 171

Figure 70. (Part 2 of 2). Disassembling TestVerify.class Using javap

If you look at method add(), instruction 3, you will see an istore_1 instruction.
This is the initialization of variable b and has the bytecode 3C. As you can see
in Figure 71 on page 173, we changed this via a hexadecimal editor to 3B, the
bytecode for istore_0, which is the same as instruction 1 and re-initializes
variable a, thereby eliminating the initialization of variable b.

Method void main(java.lang.String[])
 0 getstatic #14 <Field java.io.PrintStream out>
 3 new #7 <Class java.lang.StringBuffer>
 6 dup
 7 ldc #2 <String "3 + 4 == ">
 9 invokespecial #10 <Method java.lang.StringBuffer(java.lang.String)>
 12 invokestatic #11 <Method int add()>
 15 invokevirtual #12 <Method java.lang.StringBuffer append(int)>
 18 invokevirtual #16 <Method java.lang.String toString()>
 21 invokevirtual #15 <Method void println(java.lang.String)>
 24 return

Method void paint(java.awt.Graphics)
 0 aload_1
 1 new #7 <Class java.lang.StringBuffer>
 4 dup
 5 ldc #1 <String "3 + 4 = ">
 7 invokespecial #10 <Method java.lang.StringBuffer(java.lang.String)>
 10 invokestatic #11 <Method int add()>
 13 invokevirtual #12 <Method java.lang.StringBuffer append(int)>
 16 invokevirtual #16 <Method java.lang.String toString()>
 19 bipush 10
 21 bipush 20
 23 invokevirtual #13 <Method void drawString(java.lang.String, int, int)>
 26 return
172 Java 2 Network Security

Figure 71. Edit of TestVerify.class with istore_1 Instruction Changed to istore_0

We then ran the modified class file in a JDK 1.1.6 system as an application
and as an applet:

 • As a local application, a user class can only be found by searching the
CLASSPATH system environment variable. Since the current directory is
always front appended to CLASSPATH, a program runs as a trusted class
and, therefore, is not subject to verification. The modified version of our
program ran and produced the following erroneous results:

3 + 4 = 26246588

 • Using the JDK 1.1.6 Applet Viewer, which forces all user classes to be
verified, produced the following results:

As you can see, the file failed verification and was not allowed to run.

We then tried this on our Java 2 system. Since now, in Java 2, the primordial
class loader loads only the core classes using the property

java.lang.VerifyError
 at java.lang.ClassLoader.resolveClass(ClassLoader.java:237)
 at sun.applet.AppletClassLoader.loadCode(AppletClassLoader.java:299)
 at sun.applet.AppletClassLoader.loadCode(AppletClassLoader.java:375)
 at sun.applet.AppletPanel.createApplet(AppletPanel.java:456)
 at sun.applet.AppletPanel.runLoader(AppletPanel.java:392)
 at sun.applet.AppletPanel.run(Compiled Code)
 at java.lang.Thread.run(Thread.java:466)
The Class Loader and Class File Verifier 173

sun.boot.class.path, this class always fails verification and does not run, with
one exception. We will talk about this in a moment.

 • When run as an application, it produced the following output:

 • When run as an applet, the output produced is the following:

As you can see, the code we have shown fails as an application and as an
applet in a normal mode of operation.

However, we just said there was an exception. If you will remember, in the
Box “An Observation on the sun.boot.class.path Property” on page 153, we
showed that there was a non-existent directory called classes in the
java.home directory which, if created, provided a place to put classes to be
considered core. Well, we placed the TestVerify class in this directory (after
creating it) and ran the class as an application and as an applet. As
suspected it ran without being verified in both cases. Here are the results:

 • As an application:

3 + 4 = 26284364

 • As an applet using Applet Viewer:

Figure 72. TestVerify Running as an Applet from ${java.home}${/}classes Directory

Exception in thread "main" java.lang.VerifyError: (class: TestVerify,
method: add signature: ()I) Accessing value from uninitialized register 1

java.lang.VerifyError: (class: TestVerify, method: add signature: ()I)
Accessing value from uninitialized register 1
 at java.lang.Class.newInstance0(Native Method)
 at java.lang.Class.newInstance(Class.java:239)
 at sun.applet.AppletPanel.createApplet(AppletPanel.java:532)
 at sun.applet.AppletPanel.runLoader(AppletPanel.java:468)
 at sun.applet.AppletPanel.run(Compiled Code)
 at java.lang.Thread.run(Thread.java:479)
174 Java 2 Network Security

One last thing to note: the results when TestVerify was not verified are
different each time. This is because the memory for integer b was never
initialized and the add operation just added 3 to whatever value happened to
be left from some previous usage of that memory location.

6.2.2 The Duties of the Class File Verifier
Before discussing what the class file actually does, we look at the possible
ways in which a class file might be unsafe. By understanding a threat, we can
understand better how the Java architecture guards against it.

The following are some of the things that a class file could do which could
compromise the integrity of the JVM:

 • Forge illegal pointers

If a Java class can obtain a reference to an object of one type and treat it
as an object of a different type then it effectively circumvents the access
modifiers (private, protected, etc.) on the fields of that object. This type of
attack is known as a class confusion attack since it relies on confusing the
JVM about the class of an object.

 • Contain illegal bytecode instructions

The JVM’s execution engine is responsible for running the bytecode of a
program in the same way as a conventional processor runs machine code.

When a conventional processor encounters an illegal instruction in a
program, there is nothing that it can do other than stop execution. You may
have seen this in Windows systems, where the operating system can at
least identify that an illegal instruction has been found and display a
message.

Similarly, if the execution engine finds a bytecode instruction that it cannot
execute, it is forced to stop executing. In a well written execution engine
this would not be good, but in a poorly written version it is possible that the
entire JVM, or the Web browser in which it is embedded or even the
underlying operating system might be halted. This is obviously
unacceptable.

 • Contain illegal parameters for bytecode instructions

Passing too many or too few parameters to a bytecode instruction, or
passing parameters of the wrong type, can lead to class confusion or
errors in executing the instruction.

 • Overflow or underflow the program stack

If a class file could underflow the stack (by attempting to pop more values
from it than it had placed on it) or overflow the stack (by placing values on
The Class Loader and Class File Verifier 175

it that it did not remove) then it could at best cause the JVM to execute an
instruction with illegal parameters or at worst crash the JVM by exhausting
its memory.

 • Perform illegal casting operations

Attempting to convert from one data type to another – for example, from an
integer to a floating point or from a String to an Object – is known as
casting. Some types of casting can result in a loss of precision (such as
converting a floating point number to an integer) or are simply illegal (such
as converting a String to a DataInputStream).

The legality of other types of casts is less clear; for example, all Strings
are Objects (since the String class is derived from the Object class) but
not all Objects are Strings. Trying to cast from an Object to a String is legal
only if the Object is originally a String or a String derivative. Allowing
illegal casts to be performed will result in class confusion and thus must
be prevented.

 • Attempt to access classes, fields or methods illegally

As discussed above, a class file may attempt to access a nonexistent
class. Even if the class does exist, it may attempt to make reference to
methods or fields within the class which either do not exist or to which it
has no access rights. This may be part of a deliberate hacking attempt or
as a result of a break in release-to-release binary compatibility.

By tagging each object with its type, the JVM could check for illegal casts. By
checking the size of the stack before and after each method call, stack
overflows and underflows can be caught. The JVM could also test the stack
before each bytecode is executed and thus avoid illegal or wrongly numbered
parameters.

In fact, all of these tests could be made at run time but the performance
impact would be significant. Any work that the class file verifier can do in
advance of run time to reduce the performance burden is welcome. With
some idea of the magnitude of the task before the class file verifier, we now
look at how it meets this challenge.

6.2.3 The Four Passes of the Class File Verifier
Before we go into any detail on how the class file verifier works it is important
to note that the Java specification requires the JVM to behave in a particular
way when it encounters certain problems with class files, which is usually to
throw an error and refuse to use the class.
176 Java 2 Network Security

The precise implementation varies from one vendor to the next and is not
specified. Thus some vendors may make all checks prior to making a class
file available; others may defer some or all checks until run time. The process
described below is the way in which Sun’s HotJava Web browser works; it has
been adopted by most JVM writers, not least because it saves the effort of
reinventing a complex process.

The class file verifier makes four passes over the newly loaded class file,
each pass examining it in closer detail. Should any of the passes find fault
with the code then the class file is rejected. For reasons which we explain
below, not all of these tests are performed prior to executing the code. The
first three passes are performed prior to execution and only if the code
passes the tests here will it be made available for use.

The fourth pass, really a series of ad hoc tests, is performed at execution
time, once the code has already started to run.

6.2.3.1 Pass 1 – File Integrity Check
The first and simplest pass checks the structure of the class file. It ensures
that the file has the appropriate signature (first four bytes are 0xCAFEBABE) and
that each of the structures within the file is of the appropriate length. It
checks that the class file itself is neither too long nor too short and that the
constant pool contains only valid entries. Of course class files may have
varying lengths but each of the structures (such as the constant pool) has its
length included as part of the file specification.

If a file is too long or too short, the class file verifier throws an error and
refuses to make the class available for use.

6.2.3.2 Pass 2 – Class Integrity Check
The second pass performs all other checking which is possible without
examining the actual bytecode instructions themselves. Specifically, it
ensures that:

 • The class has a superclass (unless this class is Object).

 • The superclass is not a final class, and this class does not attempt to
override a final method in its superclass.

 • Constant pool entries are well formed, and all method and field references
have legal names and signatures.

Note that in this pass, no check is made as to whether fields, methods or
classes actually exist, merely that their names and signatures are legal
according to the language specification.
The Class Loader and Class File Verifier 177

6.2.3.3 Pass 3 – Bytecode Integrity Check
This is the pass in which the bytecode verifier runs and is the most complex
pass of the class file verifier. The individual bytecodes are examined to
determine how the code will actually behave at run time. This includes
data-flow analysis, stack checking and static type checking for method
arguments and bytecode operands.

It is the bytecode verifier which is responsible for checking that the bytecodes
have the correct number and type of operands, that datatypes are not
accessed illegally, that the stack is not over or underflowed and that methods
are called with the appropriate parameter types.

The precise details of how the bytecode verifier operates may be found in 6.3,
“The Bytecode Verifier in Detail” on page 180. For now, it is important to state
two points:

1. The bytecode verifier analyzes the code in a class file statically. It attempts
to reconstruct the behavior of the code at run time, but does not actually
run the code.

2. Some very important work has been done, which demonstrates that it is
impossible for static analysis of code to identify all of the problems which
may occur at run time. We include this proof in 6.4, “An Incompleteness
Theorem for Bytecode Verifiers” on page 183.

To restate this in simple terms, any class file falls into one of three categories:

 • Run-time behavior is demonstrably safe.

 • Run-time behavior is demonstrably unsafe.

 • Run-time behavior is neither demonstrably safe nor demonstrably unsafe.

Clearly the bytecode verifier should accept those class files in the first
category and reject those in the second category. The problem arises with
class files in the third category.

These class files may or may not contain code that will cause a problem at
run time, but it is impossible from static analysis of the code to determine
which.

The more complex the bytecode verifier becomes, the more it can reduce the
number of cases which fall into the third category but no matter how complex
the verifier, it can never completely eliminate the third category and for this
reason there will always be bytecode programs which pass verification, but
which may contain illegal code.
178 Java 2 Network Security

This means that simply having the bytecode verifier is not enough to prevent
run-time errors in the JVM and that the JVM must perform some run-time
checking of the executable code.

Lest you begin panicking at this stage you should comfort yourself with the
thought that the level of verification performed by the JVM prior to executing
bytecode is significantly higher than that performed by traditional run-time
environments for native code (that is, none at all).

6.2.3.4 Pass 4 – Run-Time Integrity Check
As we have hinted, the JVM must make a trade-off between security and
efficiency. For that reason, the bytecode verifier does not exhaustively check
for the existence of fields and classes in pass 3. If it did, then the JVM would
need to load all classes required by an applet or application prior to running it.
This would result in a very heavy overhead which is not strictly required.

We will examine the following case with three classes, MyClass,
MyOtherClass and SubclassOfMyClass, which is derived from MyClass.
MyOtherClass has two public methods:

 • methodReturningMyClass(), which returns an instance of MyClass

 • methodReturningSubclassOfMyClass(), which returns an instance of
SubclassOfMyClass.

Against this background, consider the following code snippet:

In 6.2.3.3, “Pass 3 – Bytecode Integrity Check” on page 178, the class file
verifier has ascertained that the method methodReturningMyClass() is listed
in the constant pool as a method of MyOtherClass which is public (and
therefore reachable from this code).

It also checks that the return type of methodReturningMyClass() is MyClass.
Having made this check and assuming that the classes and methods in
question do exist, the assignment statement in the second line of code is
perfectly legal. The bytecode verifier does not in fact need to load and check
the class MyClass at this point.

Now consider this similar code:

MyOtherClass x = new MyOtherClass();
MyClass y = x.methodReturningMyClass();
The Class Loader and Class File Verifier 179

In this case, the return type of the method call does not return an object of the
same class as y, but the assignment is still legal since the method returns a
subclass of MyClass. This is not, however, obvious from the code alone: the
verifier would need to load the class file for the return type
SubclassOfMyClass and check that it is indeed a subclass of MyClass.

Loading this class involves a possible network access and running the class
file verifier for the class and it may well be that these lines of code are never
executed in the normal course of the program’s execution in which case
loading and checking the subclass would be a waste of time.

For that reason, class files are only loaded when they are required, that is
when a method call is executed or a field in an object of that class is modified.
This is determined at run time and so that is when the fourth pass of the
verifier is executed.

6.3 The Bytecode Verifier in Detail

The first stage of the bytecode verifier process is the identifying of bytecode
instructions and their arguments. This operation is completed in two passes.
The first pass locates the start of each instruction and stores it in a table.
Having found the start of each instruction, the verifier makes a second pass,
parsing the instructions. This involves building a structure for each
instruction, storing the instruction and its arguments. These arguments are
checked for validity at this point. Specifically:

 • All arguments to flow-control instructions must cause branches to the start
of a valid instruction.

 • All references to local variables must be legal. That is, an instruction may
not attempt to read or write to a local variable beyond those that a method
declares.

 • All references to the constant pool must be to an entry of the appropriate
type.

 • All opcodes must have the correct number of arguments.

 • Each exception handler must have start and end points at the beginning of
valid instructions with the start point before the end point. In addition, the
offset of the exception handler must be the start of a valid instruction.

MyOtherClass x = new MyOtherClass();
MyClass y = x.methodReturningSubclassOfMyClass();
180 Java 2 Network Security

6.3.1 The Data Flow Analyzer
Having established that the bytecodes are syntactically correct, the bytecode
verifier now has the task of analyzing the run-time behavior of the code
(within the limitations examined in 6.4, “An Incompleteness Theorem for
Bytecode Verifiers” on page 183).

To perform this analysis, the bytecode verifier has to keep track of two pieces
of information for each instruction:

 • The status of the stack prior to executing that instruction in the form of the
number and type of items on the stack.

 • The contents of local variables prior to executing that instruction. Only the
type of each local variable is tracked. The value is ignored.

Where types are concerned, the analyzer does not need to distinguish
between the various normal integer types (byte, short, char) since, as we
discuss in 5.5, “Java Bytecode” on page 136, they all have the same internal
representation.

The first stage is the initialization of the data flow analyzer:

 • Each instruction is marked as unvisited. That is, the data flow analyzer has
not yet examined that instruction.

 • For the first instruction, the stack is marked as empty and the local
variables corresponding to the method’s arguments are initialized with the
appropriate types.

 • All other local variables declared as used by the method are marked as
containing illegal values.

 • The changed bit of the first instruction is set, indicating that the analyzer
should examine this instruction.

Finally, the data flow analyzer runs, looping through the following steps:

1. Find a virtual machine instruction whose changed bit is set.

2. If no instruction remains whose changed bit is set, the method has
successfully been verified; otherwise turn off the changed bit of the
instruction found and proceed to Step 3.

3. Emulate the effect of this instruction on the stack and local variables:

 • If the instruction uses values from the stack, ensure that there are
sufficient elements on the stack and that the element(s) on the top of
the stack are of the appropriate type.
The Class Loader and Class File Verifier 181

 • If the instruction pushes values onto the stack, ensure that there is
sufficient room on the stack for the new element(s) and update the
stack status to reflect the pushed values.

 • If the instruction reads a local variable, ensure that the specified
variable contains a value of the appropriate type.

 • If the instruction writes a value to a local variable, change the type of
that variable to reflect that change.

4. Determine the set of all possible instructions which could be executed
next. These are:

 • The next instruction in sequence, if the current instruction is not an
unconditional goto, a return, or a throw.

 • The target instruction of a conditional or unconditional branch.

 • The first instruction of all exception handlers for this instruction.

5. For each of the possible following instructions, merge the stack and local
variables as they exist after executing the current instruction with the state
prior to executing the following instruction. In the exception-handler case,
change the stack so that it contains a single object of the exception type
indicated by the exception handler information. Merging proceeds as
follows:

 • If the stacks are of different sizes then this is an error. Stop!

 • If the stacks contain exactly the same types, then they are already
merged.

 • If the stacks are identical other than having differently typed object
references at corresponding places on the stacks then the merged
stack will have this object reference replaced by an instance of the first
common superclass or common superinterface of the two types. Such
a reference type always exists because the type Object is a supertype
of all class and interface types.

 • If this is the first time the successor instruction has been visited, set up
the stack and local variable values using those calculated in Step 2 and
set the changed bit for the successor instruction. If the instruction has
been seen before, merge the stack and local variable values calculated
in Step 2 and Step 3 into the values already there; set the changed bit
if there is any modification.

6. Go to Step 1.
182 Java 2 Network Security

If the dataflow analyzer runs on the method without reporting any failures,
then the method has been successfully verified by Pass 3 of the class file
verifier (see 6.2.3.1, “Pass 1 – File Integrity Check” on page 177).

6.4 An Incompleteness Theorem for Bytecode Verifiers

The bytecode verifier is a key component of Java security. Practical bytecode
verifiers divide bytecode programs into three classes:

1. Those that will not cause problems when they run

2. Those that will cause problems when they run

3. Those where the verifier is not certain.

You can improve a bytecode verifier by reducing its area of uncertainty. Can
you eliminate uncertainty completely? Can you build a complete bytecode
verifier that determines whether a program is safe or not before it runs?

The answer is no, you cannot. It is mathematically impossible. This short
section shows why.4

To demonstrate this, we focus on one aspect of bytecode verification,
stack-underflow checking. This involves determining whether a bytecode
program will underflow the stack, by removing more items from it than were
ever placed on it. Then we use the argument known as reductio ad absurdum.
We assume that there is a complete stack-underflow checker and show that
this assumption leads to a contradiction. This means that the assumption
must have been false – a complete stack-underflow checker is impossible.
Since a complete bytecode verifier must contain a complete stack-underflow
checker, a complete bytecode verifier is impossible too.

Suppose then that there is such a thing as a complete stack-underflow
checker. We write a method in standard Java bytecode which takes as its
argument the name of a class file and returns:

 • The value true if the specified class file does not underflow the stack

 • The value false if it does

We call this method doesNotUnderflow().5

4 The problem has been deliberately stated in terms that mathematicians may recognize as being similar to the halting
problem. The proof, a diagonalization argument, follows the flow of Christopher Strachey’s halting-problem proof
(Computer Journal 1967).
5 We have here used Church’s Thesis, which states that a programming language (such as the Java bytecode language)
which can code a Turing machine can code any computable function.
The Class Loader and Class File Verifier 183

We now consider the bytecode program Snarl, whose main method contains
the following code lines:

The pop() method – which removes the top element from the stack – may not
be pure Java, but can certainly be written in bytecode. The bytecode program
Snarl is compiled into the class file Snarl.class.6

What happens if we give Snarl itself as a parameter? The first thing it does is
to invoke the method doesNotUnderflow on Snarl.class:

 • If doesNotUnderflow(Snarl.class) is true, then Snarl immediately
underflows the stack.

 • If doesNotUnderflow(Snarl.class) is false, then Snarl exits safely, without
underflowing the stack.

This contradiction means that there could never have been a method
doesNotUnderflow() which worked for all class files. The quest for a way of
determining statically that a class would behave itself at run time was
doomed. Complete checking for stack underflow must be done at run time if it
is to be done at all.

This result can be generalized and applied to any aspect of bytecode
verification where you try to determine statically something that happens at
run time. So all bytecode verifiers are incomplete. This does not, of course,
mean that they are not useful – they contribute significantly to Java security –
nor that they cannot be improved. It does mean, however, that some checking
has to be left until run time.

6.5 Summary

You have now seen the types of checking which take place before a class file
from an untrusted source can be loaded and run inside the JVM and the
improvements in this area Java 2 offers.

6 Snarl is a pretty nasty piece of programming, and most practical bytecode verifiers would reject it out of hand. The
reason for this is that while true pop (); is disastrous if executed and has no practical purpose; a good rule of thumb is to
leave it out. But there's nothing invalid about Snarl – if we really have finite bytecode for the method doesNotUnderflow(),
then we can readily construct the bytecode for Snarl – and doesNotUnderflow(), being complete, has no need for rules of
thumb.

if doesNotUnderflow(classFile)
 while true pop(); // thus underflowing Snarl’s stack
else
 {} // exiting gracefully
184 Java 2 Network Security

Once it is running, code from untrusted sources is subject to further checking
at the hands of the security manager which we have mentioned briefly here.
Chapter 7, “The Java 2 SecurityManager” on page 187 describes how the
security manager works and looks at ways in which it is possible to reduce
the burden placed on the class loader and class file verifier by extending the
range of classes which the JVM regards as trusted.
The Class Loader and Class File Verifier 185

186 Java 2 Network Security

Chapter 7. The Java 2 SecurityManager

As we said in 1.3.3, “Java as a Threat to Security” on page 9, we can imagine
four levels of attack to which a Java environment can be subjected:

1. System modification, in which a program gets read/write access and
makes some changes to the system

2. Privacy invasion, in which a program gets read access and steals
restricted information from your system

3. Denial of service, in which a program uses system resources without
being invited

4. Impersonation, in which a program masquerades as the real user of the
system

The Java security manager enforces restrictions based on policy statements
that are designed to prevent the first two of these and, with Java 2, to some
extent the last. In this chapter we look at what the security manager does,
and how it does it.

Along the way, we will look at some of the loopholes (now closed) in which
security has been circumvented in previous releases of the Java
Development Kit (JDK). Finally we briefly consider the tricks that an applet
can use to perform the nuisance attacks – denial of service and
impersonation.

7.1 What SecurityManager Does

Beginning with Java 2, the class java.lang.SecurityManager is no longer
abstract and its implementation supports the new policy driven security
model.

Before Java 2, SecurityManager was an abstract class that application
developers, such as Web browser manufacturers, extended to implement a
set of access controls. These controls placed applets in the so-called
sandbox. Although the class was abstract, it did implement a set of methods
with names starting with check, for example checkWrite() and
checkConnect(). The intent was for the application developer to override
these methods with something that answered the question Is the applet
allowed to do this? either by quietly returning to the caller (an implicit Yes) or
by throwing a security exception (an emphatic No). As shipped, each method
did have a default behavior in case the application did not override the
method. Each method simply said no by throwing a security exception.
© Copyright IBM Corp. 1997 1999 187

With Java 2, SecurityManager is a fully functional resource level access
control facility. Application developers need only call one method,
checkPermission(), which takes a permission object as a parameter. For
compatibility, the other check methods are still available, but now answer the
question using the new permission and policy file model by turning the
request into a permission and calling checkPermission(). All of the check
methods can still be overridden, if necessary.

Table 8 summarizes the checks, the default policy (based on the java.policy
file that comes with the installation of Java 2 SDK, Standard Edition, V1.2.x)
and the permission type which is passed to checkPermission() by each check
method. This is also the permission type to pass to checkPermission() when
you call it directly.

Note that, if running an applet using the Java 2 SDK, Standard Edition, V1.2.x
Applet Viewer, Applet Viewer will add socket permissions to connect, accept,
and resolve to the local host and the host the applet is loaded from, including
the host name of the local system, if loaded locally.

Table 8. Security Manager Controls

Area of
Control

Check Method "Is program allowed
to..."

Permission Type Passed to
checkPermission()

Network
connections

checkAccept() ... accept a socket
connection?

java.net.SocketPermission
"host:port", "accept";

checkConnect() ... request a socket
connection?

java.net.SocketPermission
"host", "resolve";

java.net.SocketPermission
"host:port", "connect";

checkListen() ... listen for
connection?

java.net.SocketPermission
"localhost:1024-", "listen";

java.net.SocketPermission
"localhost:port", "listen";

checkMulticast() ... use multicast? java.net.SocketPermission
maddr.getHostAddress(),
"accept,connect";

checkSetFactory() ... set socket factory? java.lang.RuntimePermission
"setFactory"

Threads checkAccess() ... modify thread
arguments?

java.lang.RuntimePermission
"modifyThread";

java.lang.RuntimePermission
"modifyThreadGroup";
188 Java 2 Network Security

File system checkDelete() ... delete a specified
file?

java.io.FilePermission "file",
"delete";

checkRead() ... read from a
specified file?

java.lang.RuntimePermission
"readFileDescriptor";

java.io.FilePermission "file",
"read";

checkWrite() ... write to a specified
file?

java.lang.RuntimePermission
"writeFileDescriptor";

java.io.FilePermission
"file","write";

Operating
system

checkExec() ... execute a system
command?

java.io.FilePermission
"command", "execute";

checkPrintJobAccess() ... create a print job? java.lang.RuntimePermission
"queuePrintJob";

checkSystemClipboardAccess() ... access the system
clipboard?

java.awt.AWTPermission
"accessClipboard";

checkLink() ... link to a system
library?

java.lang.RuntimePermission
"loadLibrary.lib";

checkTopLevelWindow() ... display a window
without also
displaying a banner
warning that the
window was created
by an applet?

java.awt.AWTPermission
"showWindowWithoutWarningBanner"
;

JVM control checkExit() ... kill the JVM? java.lang.RuntimePermission
"exitVM";

checkPropertyAccess() ... access specified
system properties?

java.lang.PropertyPermission
"key", "read,write";

checkPropertiesAccess() ... access system
properties?

java.lang.PropertyPermission "*",
"read,write";

checkAwtEventQueueAccess() ... access the AWT
event queue?

java.awt.AWTPermission
"accessEventQueue";

checkCreateClassLoader() ... create a new class
loader?

java.RuntimePermission
"createClassLoader";

Packages
and classes

checkPackageAccess() ... access a specified
Java class package?

java.lang.RuntimePermission
"accessClassInPackage.package";

Area of
Control

Check Method "Is program allowed
to..."

Permission Type Passed to
checkPermission()
The Java 2 SecurityManager 189

7.2 Operation of the Security Manager

Although any Java program, applet, servlet, bean or application, can extend
java.lang.SecurityManager, the JVM will allow only one security manager to
be active at a time. To make a security manager active you have to call the
static system method java.System.setSecurityManager() or set the property
java.security.manager as an option on the java command. The command line
option -Djava.security.manager will make the Java 2 SDK, Standard Edition,
V1.2.x default security manager (java.lang.SecurityManager) active. The
option -Djava.security.manager=MySecurityManager will load and make
MySecurityManager.class the active security manager.

Once a security manager is active, by either method above, it cannot be
replaced unless the program has the authority to do the two following things:

1. Create an instance of SecurityManager.

2. Set a security manager instance as active.

In order for an application stored in the local directory D:\itso\ch07 to replace
the active security manager, this is what you should set in the current policy
file:

In fact, if there is a security manager already installed:

1. Invoking a new security manager constructor first calls the
SecurityManager’s checkPermission() method with the
RuntimePermission createSecurityManager permission to ensure the
calling thread has permission to create a new security manager. This may
result in throwing a SecurityException.

checkPackageDefinition() ... define a specified
Java class package?

java.lang.RuntimePermission
"defineClassInPackage.package";

checkMemberAccess() ... access declared
members of a class?

java.lang.RuntimePermission
"accessDeclaredMembers";

Security
functions

checkSecurityAccess() ... execute a specified
security function?

java.security.SecurityPermiss
ion "action";

Area of
Control

Check Method "Is program allowed
to..."

Permission Type Passed to
checkPermission()

grant codeBase "file:/D:/itso/ch07" {
 permission java.lang.RuntimePermission "createSecurityManager";
 permission java.lang.RuntimePermission "setSecurityManager";
};
190 Java 2 Network Security

2. Invoking the java.lang.System.setSecurityManager() method first calls the
security manager’s checkPermission() method with a RuntimePermission
setSecurityManager permission to ensure it is permitted to replace the
existing security manager. This may result in throwing a
SecurityException.

The installed security manager is only really active on request; it does not
check anything unless it is called by other system functions. Figure 73
illustrates the flow for a specific restricted operation, establishing a network
connection. The calling code creates a new Socket class, using one of the
constructor methods it provides. This method invokes the checkConnect()
method of the local SecurityManager subclass instance.

Figure 73. Secuirty Manager Operation

The security manager has a very simple question to answer: Is this program
allowed to perform the subject operation? In Figure 73, can your.own.program
connect to host:port? In order to answer this question, the security manager

Return...

Or...

SecurityManager

checkPermission
java.net.SocketPermission

(host:port, "connect")

java.net.Socket

checkConnect(host, port)

Trusted name space

your.own.program

Socket(host, port)

Untrusted name space

Security
Exception
The Java 2 SecurityManager 191

checks that each class in the stack has a permission entry to connect to
host:port.

7.2.1 Interdependence of the Three JVM Security Elements
Although the three elements of JVM security – class loader, class file verifier
and security manager – each have unique functions, they are interdependent.
The security manager relies on the class loader to keep untrusted classes
and local classes in separate name spaces and protection domains and to
prevent the local trusted classes from being overwritten (for example, by a
Socket class that failed to invoke the checkConnect() method).

Conversely, the class loader relies on the security manager to prevent an
applet from loading its own class loader, which could flag untrusted code as
trusted. And everything relies on the class file verifier to make sure that class
confusion is avoided and that class protection directives are honored.

The bottom line is this: if an attacker can breach one of the three defenses,
the security of the whole system is usually compromised.

7.3 Attacking the Defenses of Java

We have now seen how the different parts of the Java defense act together to
create a secure environment in which programs can run. If everything is
working correctly, you should be safe from programs that try to attack your
system or use your system to mount attacks on other systems, in theory...

In practice, a number of holes were found in previous releases of the
implementation of the Java defense, and a variety of attack applets were
demonstrated that exploited them. Luckily for all of us, most of these holes
were discovered by researchers in a lab environment and quickly plugged.

Although the security framework is much more robust in Java 2, we should
not expect it to be without holes. The JVM is a large piece of code and,
inevitably, there will be bugs in it. Some of the attacks have exploited bugs,
but most of them rely on finding ambiguities: using JVM facilities in a way that
the original writers did not envision. The new security model is much more
rigorous and much less prone to ambiguities and has benefited from the
experience of earlier releases. However, attack techniques do not stand still,
so you should regularly monitor the JavaSoft Web site at
http://www.javasoft.com to find out if security bugs have been discovered and
download the latest release of the SDK containing the necessary fixes.
192 Java 2 Network Security

7.3.1 Types of Attack
Although we do not describe any attacks in detail, it is worth summarizing
some of the techniques that have been successfully used by hackers or
researchers in previous releases:

 • Infiltrating local classes

Prior to Java 2, David Hopwood, once a student at Oxford and then a
Netscape employee, discovered an implementation bug in a vendor
implementation of the JVM that allowed an applet to load a class from any
directory on the browser system. This bug was quickly fixed. But, there will
always be opportunities for the industrious cracker to exploit.

Downloading code packages from the Internet has become a part of
everyday life for many people. Any of those packages could have been
modified to plant a Trojan horse class file along with their legitimate
payload. Of course, this is not just a Java problem, but more like a new
form of computer virus. One solution lies in signed content, so that you
know that the package you download has not been tampered with.

Fully trusted classes are those that the JVM assumes and depends upon
being correct and well behaved. Prior to Java 2, any class pointed to by
the CLASSPATH environment variable was considered trusted. Therefore,
changing the trusted class set could be accomplished simply by changing
the value of CLASSPATH. In Java 2, the fully trusted classes are limited to
those on the boot class path, which is internally specified in the JVM by
the sun.boot.class.path property; all other classes are subject to
verification and security policy. Protecting the trusted classes in Java 2 is a
matter of limiting access to the directories and files on the boot class path.

 • Type confusion

Java goes to great lengths to ensure that objects of a particular type are
dealt with consistently. We see this both in the compiler and later in the
third pass of the class file verifier (see 6.2.3.3, “Pass 3 – Bytecode
Integrity Check” on page 178).

It is crucial that the class of an object and level of access it allows (as
specified by the private, protected or public keywords) are preserved. In
the JVM, objects are referenced by entries in the constant pool. As shown
in 5.4, “The Constant Pool” on page 129, each entry includes the type of
the referenced object.

If, somehow, an attacker can create an object reference that is not of the
type it claims to be, there is a possibility of breaking down the protection.
Several examples have shown ways to achieve type confusion, by taking
advantage of various implementation flaws, such as:
The Java 2 SecurityManager 193

 • A bug that allowed a class loader to be created but avoided calling the
ClassLoader constructor that normally invokes
checkCreateClassLoader() (see Table 8 on page 188)

 • Flaws in JVM access checking which allowed a method or object
defined as private in one class to be accessed by another class as
public

 • A bug in the JVM that failed to distinguish between two classes with the
same name but loaded by different class loaders

These bugs were discovered in vendor implementations of the JVM.

 • Network loopholes

The first security-related JVM flaw to get worldwide attention was a failure
to check the source IP address of an applet rigorously enough. This was
exploited by abusing the Domain Name System (DNS), a network service
responsible for resolving names to addresses and vice versa, to fool the
security manager into allowing the applet to connect to a host that would
normally have been invisible to the server from which the applet was
loaded. In this way the attacker could access a system that would normally
be safe behind a firewall.

 • JavaScript backdoors

There was a series of JavaScript exploits that allowed a script to persist
after the Web page it was invoked from had been exited. This was used to
track the user’s Web accesses. The flaw was fixed, but then reappeared
when Netscape introduced LiveConnect, which allows a JavaScript script
to create Java objects and invoke Java methods. Both languages have
strict limitations on what they are allowed to do, but the limitations are
different limitations. By combining them you effectively get a union of the
two protection schemes.

If application developers use the fully functional security manager in Java 2
as a base for their work, the number and variations of security
implementations, and therefore possibilities for error, will be greatly reduced.

Flaws and the security exposures they might create are inevitable. However,
Java receives a great deal of attention by a wide audience. An encouraging
thing about this is that most of the flaws found to date were identified by
researchers in the field attempting to find and close all holes. Fixes were
provided rapidly by Sun and application vendors. All of this experience has
influenced the evolution of the Java Security Architecture now available in
Java 2.
194 Java 2 Network Security

7.3.2 Malicious Applets
So far we have talked about system modification and privacy invasion (see
Point 1 and Point 2 on page 187). What about the last two categories of
exposure – the things that are allowed by the framework (see 3 and 4 on page
187), but which can still be annoying or damaging?

Setting the rules for a program’s environment is always a question of striking
a balance. The program needs some system and/or network resources;
otherwise, it will not be useful at all. On the other hand, it must not be allowed
to have free reign over the system, especially if this program has been
downloaded from a remote site.

We have said that there are two types of malicious programs, denial of
service and impersonation. There is also another type of malice that is not
Java-specific. This is based on deception, that is, to try to trick the user into
entering information that they would not normally give away. This sort of thing
is not specific to Java, in fact there are much easier ways to do the same
thing using scripting languages or simple HTML forms, so we won’t consider
them further here.1

7.3.2.1 Cycle Stealing
Denial of service attacks have, for a long time, been a scourge of the Internet.
Normally you think of them taking down a server or even a whole site. A
denial of service applet is unusual in that it normally only affects a single
system or user.

Denial of service implies that the user can no longer use the system. Cycle
stealing is much more subtle; by this we mean any program that consumes
resources, whether computer or human, without the user’s permission. The
most extreme form of these are denial of service programs, but the most
insidious ones may not be detected by their victim at all.

There are obvious denial of service attacks. For example a program could try
to create an infinite number of windows, or it could sit in a tight loop, using up
CPU cycles. These are very annoying and they can have a real impact, for
example if the user has to reboot the machine to recover. However, if they are
tied to a particular Web page, the user will quickly realize where the problem
is coming from and simply not go there. A program that is not so easily traced
back to its source is more effective.

The key to this kind of program lies in persistent, background, threads. Every
implementation of the Java Virtual Machine (JVM) supports threads, and the
language makes it very easy to use them. Normally, when you leave a Web

1 The Hostile Applets home page is at http://www.rstcorp.com/hostile-applets/index.html.
The Java 2 SecurityManager 195

page in a browser containing an applet, the applet will stop any threads it
created. However, there is nothing to assist the applet in this task nor to
enforce that this is done. Indeed, if the applet fails (intentionally or
unintentionally) to explicitly stop any threads it created, they will continue to
run until they end on their own or the application (the Web browser for
instance) ends.

Program AppletThread, shown in Figure 74 on page 196 and Figure 75 on
page 197, demonstrates this. It starts a thread which prints out a message
every 5 seconds that proclaims it is still alive and for how long it has been
alive and gives its thread identification information.

Figure 74. (Part 1 of 2). AppletThread.java

import java.util.Calendar;
import java.text.SimpleDateFormat;
import java.util.Date;

public class AppletThread extends Applet implements Runnable
{
 public void start()
 {
 Thread aThread = new Thread(this);
 aThread.start();
 System.out.println("Applet start.");
 }

 public void run()
 {
 int i = 1;
 System.out.println("Thread started, id: " + Thread.currentThread().toString());
 while (true)
 {
 try
 {
 Thread.sleep(5000);
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }

SimpleDateFormat formatter = new SimpleDateFormat("HH:mm:ss");
Date currentTime = new Date();
String AppletTime = formatter.format(currentTime);
196 Java 2 Network Security

Figure 75. (Part 2 of 2). AppletThread.java

The following HTML file, called AppletThread.html, simply invokes the
AppletThread applet and displays the results on a Web page:

Figure 76. AppletThread.html

Another applet, AppletClock (see Figure 77 on page 198), is used to help
demonstrate the malicious functionality of AppletThread. AppletClock merely
posts the time it started on the browser’s window.

This way, when we switch pages in the browser, we can see if the time
messages from AppletThread are time stamped after we have left the
AppletThread page and gone on to AppletClock’s page, thereby showing the
thread is still around and running, instead of stopped.

 System.out.println(Thread.currentThread().toString() + ": Alive at " +
 AppletTime + " for " + 5*i + " seconds.");
 i++;
 }
 }

 public void paint(Graphics g)
 {
 g.drawString("Applet with a thread running, see console for messages", 10, 30);
 }
}

<HTML>

 <BODY>
 <APPLET Code="AppletThread" Width=400 Height=60>
 </APPLET>
 </BODY>

</HTML>
The Java 2 SecurityManager 197

Figure 77. AppletClock.java

The following lines of code belong to the HTML file AppletClock.html
necessary to invoke the AppletClock applet:

Figure 78. AppletClock.html

/**
 * Applet to post its birth time on browser window
 * It is used to help demonstrate a point about threads
 */

import java.awt.*;
import java.applet.*;
import java.util.Calendar;
import java.text.SimpleDateFormat;
import java.util.Date;

public class AppletClock extends Applet
{
 String AppletStartTime;
 public void start()
 {
 SimpleDateFormat formatter = new SimpleDateFormat("HH:mm:ss");
 Date currentTime = new Date();
 AppletStartTime = formatter.format(currentTime);
 }

 public void paint(Graphics g)
 {
 g.drawString("Applet Started at " + AppletStartTime, 10, 30);
 }
}

<HTML>

 <BODY>
 <APPLET Code="AppletClock" Width=400 Height=60>
 </APPLET>
 </BODY>

</HTML>
198 Java 2 Network Security

Because we wanted to travel from one page to another, we used Netscape
Communicator Version 4.5 as the browser environment instead of the Java 2
SDK Applet Viewer. In each of the following figures you will see the Netscape
Navigator browser window, the Netscape browser’s Java console window and
the Windows NT Task Manager’s performance window.

In Figure 79, we see that AppletThread has started and has spawned a
thread which has printed out its identification and is happily pronouncing its
well-being every 5 seconds. This is our starting point and we take note of the
number of threads in the system and the memory and CPU usage information
on the Task Manager display.

Figure 79. AppletThread after Just Starting

Now that we have set the stage, let’s see what happens when we leave this
page and travel on to another. Figure 80 on page 200 shows the results of
going to the Web page hosting the AppletClock applet and staying there for a
The Java 2 SecurityManager 199

short period of time. AppletClock started at 17:02:30. We can also see that
the thread that AppletThread spawned is still running happily along at
17:03:03 and has been alive now for 65 seconds. Notice that the thread count
has increased (albeit by 1) and that the memory usage has increased as well.

Figure 80. AppletClock Invoked for the First Time

At this point, we can already see the effect of applets not properly cleaning up
after themselves. But, let’s carry this out just a little bit further to point out a
couple more interesting affects.

Next, we press the Back button to return to the AppletThread.html page.
When the browser returns to the AppletThread page it re-runs the applet’s
start() method. This causes AppletThread to spawn a second thread. Figure
81 on page 201 shows that the original thread and a new thread are now both
running happily along. You can see that the new thread, having ID
200 Java 2 Network Security

3,5,applet-AppletThread.class, is much younger, only 10 seconds old, while
the one with ID 2,5,applet-AppletThread.class is 80 seconds old. This time
the Task Manager doesn’t show an increase in threads, but the memory and
CPU usage have increased. The thread count stays the same because the
main thread for AppletClock stopped, and AppletThread started the new one.

Figure 81. Upon Using the Back Button to Return to the AppletThread Page

The last thing we do for this exercise is to press the Forward and Back
buttons several more times to toggle between AppletThread and AppletClock
to better illustrate the affect. Figure 82 on page 202 shows the results: seven
threads are now running in the background and the memory, CPU usage and
thread count have increased significantly. Imagine the effect of surfing the
Internet for an hour if all of the applets you encountered behaved this way.
Not only could your system’s performance degrade, but there is a potential for
more serious misuse of your system’s resources and even unauthorized
gathering of information from your system.
The Java 2 SecurityManager 201

Figure 82. AppletClock after Several Iterations of the Back and Forward Buttons

Alternatively, we can also press the Reload button, while possibly holding the
Shift key, in order to force the browser to retrieve a new copy of the Web
contents. Doing an experiment like this, we were able to generate 50 threads,
with consequent increase of CPU and memory usage.

Another thing to say is that, with a simple modification, the AppletThread
applet could be transformed into an invisible applet. It would be enough to
remove from its code the line:

g.drawString("Applet with a thread running, see console for messages", 10, 30);

The result would be that the applet runs on your system and generates
multiple threads, and you could be totally unaware of this.
202 Java 2 Network Security

Another modification of the AppletThread applet could make the applet not
only reside in memory even when another Web page is displayed, but it could
even generate additional threads by itself, without the need to reload the page
hosting it. However, we did not want to show how to write such a malicious
applet in this book. The applet we have described here is fairly benign. What
has really happened here is that the attacker has obtained free use of
machine cycles on your system. What sort of thing might he or she want to do
with them?

One example might be to do brute force cipher cracking. A feature of any
good symmetric key encryption algorithm is a uniform key space. That is, if
you want to crack the code, there is no mathematical shortcut to finding the
key, you just have to try all possible keys until you find one that works. Several
recent encryption challenges have been solved by using spare cycles on a
large number of computers working as a loosely-coupled complex, each
being delegated a range of keys to try, under the direction of a central
coordinator.

This sort of effort depends on the cooperation and goodwill of a lot of people
who donate machine time and access. But, if we replaced the AppletThread
URL in the above example with, for example, getNextKeyRange, it would be
possible to do the same thing without having to ask anybody. A number of
other applets along the same lines have been demonstrated, such as applets
that kill the threads of other applets executing concurrently.

7.3.2.2 Impersonation
Internet e-mail is based on the Simple Mail Transfer Protocol (SMTP). Mail
messages are passed from one SMTP gateway to another using sessions on
TCP/IP port 25. Abusing these connections to send bogus e-mail is an
established nuisance of the Internet. A hacker can create mail messages that
appear to come from someone else, which can be used to embarrass or
annoy the receiver of the mail and the apparent sender.

Mail that has been forged in this way is not impossible to tell from the real
thing, however. The SMTP gateways keep track of the original IP address, so
you can trace the message back, if not to a person, at least to a machine
(unless the originator was also using a spoofed IP address).

A Java applet allows this kind of errant behavior to go one stage further. Until
Java 2, there was nothing to prevent an applet from connecting to port 25 and
appearing to be a mail client. However, the only system it could connect to
was the one that it was originally loaded from, because of the sandbox
restrictions. So, if an attacker had control over a Web page, he or she could
cause an applet to be sent to a client machine, which connected back to the
The Java 2 SecurityManager 203

server and sent e-mail to the target of the attack. When the recipient checks
the IP address, it belongs to a complete stranger, who has no idea that
anything has happened.

Java 2 enforces and refines the security model and now we can restrict
access by individual resource, including the port number.

7.4 Avoiding Security Hazards

An attack in Java is likely to come through the front door, meaning through
public methods on your applet’s class and public static methods on any public
class (see 2.1.1.2, “Access to Classes, Fields and Methods” on page 42).
Therefore, to reduce security risks in your Java applet, all public methods
should be examined and classified as follows:

1. The method is declared public but does not need to be, so it could be
changed to private, protected or default access.

2. The method is absolutely safe or, in other words, it does not use directly or
indirectly any extra-sandbox privileges and does not reveal private data.

3. The method is reasonably safe in that it uses extra-sandbox privileges in a
limited fashion, constrained so as to be, in practice, safe.

4. The method allows malicious use directly.

After classifying your applet’s public methods, you may be able to take
specific measures to close security holes they may introduce.

You can use the javap command line utility from the Java 2 SDK, with the
option -public, to generate a list of all public methods on your applet's class.
An example is shown in the following session screen:

This example is generated by running the javap command against the
PointlessButton class, whose code is shown in Figure 17 on page 37.

D:\itso\ch02>javap -public PointlessButton
Compiled from PointlessButton.java
public class PointlessButton extends java.applet.Applet implements java.awt.event.ActionListener {
 public PointlessButton();
 public void actionPerformed(java.awt.event.ActionEvent);
 public void init();
}

D:\itso\ch02>
204 Java 2 Network Security

Most applets have too many public methods. Potential security holes can be
plugged by simply changing the methods to private, protected or default
access, whenever possible.

In Java bean development, the BeanInfo interface is used to list all the
methods that your bean advertises to a builder, and so these methods must
be public. You may be able to reduce your security exposure by constraining
access to the remaining, non-advertised methods.

Next, identify the public methods that run in the sandbox and only call
methods that also run in the sandbox. These may be considered absolutely
safe if these additional conditions are met:

 • The method does not return sensitive data, such as the user's name, the
machine’s IP address or any other personal information.

 • The method does not return an object, unless all of the object’s public
methods are also absolutely safe.

 • The method does not trust its input parameters in security-sensitive
contexts, since the input may come from untrusted sources.

Methods that have been deemed absolutely safe require no further treatment.
For the remaining public methods, you will need to estimate the overall
security risk of allowing unrestricted access to them by untrusted users. A
security guideline could be the following: a method is reasonably safe if it
uses extra-sandbox permissions, but it can do nothing malicious, regardless
of the state of the applet as configured through input parameters to that
method, or via other public methods.

Once the reasonably safe methods have been addressed, evaluate the
remaining potentially dangerous methods. Do not make calls to enable
privileges in these methods; instead, require that the method’s caller do the
enabling. Any method that could be used maliciously in a rather transparent
manner should be treated in this way. For example, as we have already
discussed, a setFileName() method that takes the name of a file and saves to
it is dangerous and falls in this category.

7.4.1 How to Test
In the process of making these changes, you must ensure that the applet’s
functionality has not been broken. You should verify the following:

 • In a trusted environment, all functionality should work from the user
interface with no security exceptions.
The Java 2 SecurityManager 205

 • In an untrusted environment, all methods assessed as absolutely safe
should work.

 • In a trusted environment, all methods assessed as absolutely or
reasonably safe should work.

 • In a trusted environment, all methods, including the dangerous ones,
should work when called from another trusted applet on the page.

You also need to define exactly what, if anything, your applet does in an
untrusted environment. Once you have a functionality definition, then you will
need to verify that your applet can provide this functionality and handle user
requests for functionality that cannot be done in the sandbox.

The first step is to verify that all attempts to acquire a guarded resource are
done in a try{} block, with a security exception being caught and handled.
The rest is user interface work, targeted at how well you communicate to the
user, through the user interface, what functionality is available in an untrusted
environment.

7.5 Examples of Security Manager Extensions

The Java 2 permission structure allows for granting a code source (code from
some source) the right to perform some action (such as read, write, connect,
etc.) on a resource (file, port, etc.). The structure is very flexible and most
applications will find that the new security manager will give them all the
function they need. However, there will be cases where an application
developer will want to extend or limit the default security manager’s
capabilities. Several examples come to mind:

 • You may want to prevent access to a file even if someone explicitly gives
that permission by entering a grant statement in a policy file.

 • You may want to keep track of requests for access to certain resources.

 • You may want to prompt users with a special password before accessing
files in the local file system.

 • If this is a multi-user system, such as a server, you may want to extend the
security model to incorporate the concept of a user by adding
principal-based access control.

7.5.1 First Example – Overriding checkWrite()
For our first example, we will take an easy task and continue with our theme
from 6.1.5, “Should You Build Your Own Class Loader” on page 155, by
implementing a simple audit log of permission requests to write to files.
206 Java 2 Network Security

Our example creates a log file during construction of the security manager
and overrides the checkWrite() method. Whenever a checkWrite() is received,
it will log (in file writerequests.log) that a check is being made for write access
to a file and the file’s name, and then will call the parent SecurityManager’s
checkWrite() method. Figure 83 on page 207 and Figure 84 on page 208
show MySecurityManager.java, which implements this extension to the
SecurityManager class.

Figure 83. (Part 1 of 2). MySecurityManager.java

/**
 * MySecurityManager.java
 * Extends SecurityManager
 * Simple extension to log write permission requests
 */

import java.io.*;
import java.net.*;
import java.lang.*;
import java.security.Permission;
import java.security.AccessController;

public class MySecurityManager extends SecurityManager
{
 private DataOutputStream auditlog;

 public MySecurityManager()
 {
 super(); /* initilize using parent constructor */

 try
 {
 auditlog = new DataOutputStream(new FileOutputStream("writerequests.log"));
 auditlog.writeBytes("Write Requests Log Started:\n");
 }
 catch (IOException e)
 {
 System.err.println("Write requests log file not opened properly\n" +
 e.toString());
 }

 System.out.println("MySecurityManager constructed");
 }

 public void checkWrite(String f)
The Java 2 SecurityManager 207

Figure 84. (Part 2 of 2). MySecurityManager.java

In Figure 85 on page 208 and Figure 86 on page 209 is TestSM.java. This
program sets MySecurityManager as the current security manager and asks
it whether it has write permission to a file name passed to it on the command
line. You can actually pass it any number of file names to check.

Figure 85. (Part 1 of 2). TestSM.java

 {
 try
 {
 auditlog.writeBytes("Write Request file: " + f + "\n");
 }
 catch(IOException ioe)
 {
 System.err.println("Could not write to log file\n" + ioe.toString());
 }

 super.checkWrite(f); /* Go do real checkWrite */
 }
}

/**
 * Test MySecurityManager
 */

import java.io.*;
import java.security.*;

public class TestSM
{
 /**
 * main entrypoint - starts the application
 * @param args java.lang.String[]
 */
 public static void main(java.lang.String[] args)
 {
 if (args.length > 0)
 {
 System.setSecurityManager(new MySecurityManager());

 for (int i = 0; i < args.length; i++)
 {
208 Java 2 Network Security

Figure 86. (Part 2 of 2). TestSM.java

Before we can run this test case, we have to consider the permissions
required for it. The TestSM application creates a security manager instance
and then sets it as the active security manager by using the method
java.lang.System.setSecurityManager(). Alternatively, we could have set a
security manager by the command line option -Djava.security.manager. In any
case, supposing that D:\itso\ch07 is the directory where the file TestSM.class
is stored, the following statements must exist in either a user policy file or the
system policy file:

On the other hand, it makes sense for a security manager to be completely
trusted, and not subjected to security checks. For this reason, the class file
MySecurityManager.class should be stored in a separate directory and its
code be granted AllPermission. The most correct way to do this is probably to
store MySecurityManager in the classes directory under ${java.home}. This
directory does not exist by default, but once you create it, each class file that
is stored in that directory becomes part of the boot class path (see 3.4.1,
“Boot Class Path” on page 84, Figure 335 on page 642 and Figure 336 on
page 643); thus it is completely trusted.

 try
 {
 System.getSecurityManager().checkWrite(args[i]);
 }
 catch(SecurityException se)
 {
 System.out.println("Write request for: " + args[i] +
 " denied. Message:");
 System.out.println(se.toString());
 break;
 }

 System.out.println("Write request for: " + args[i] + " permitted");
 }
 }
 }
}

grant codeBase "file:/D:/itso/ch07/" {
 permission java.lang.RuntimePermission "createSecurityManager";
 permission java.lang.RuntimePermission "setSecurityManager";
};
The Java 2 SecurityManager 209

Next, we need to decide on a couple of tests. Since we are just checking
permissions, the files do not actually have to exist, but the permissions must.
So the previous statements are not enough. In fact, the JVM, by default, gives
our applications permission to read files in the current directory, not to write
them, so we should set appropriate write permissions even if the files that we
pass to TestSM on the command line are in the same directory.

The following screen shows our user policy file, which by default is called
.java.policy and is specified by the policy.url.2 property. This property is set in
the java.security file, found in the ${java.home}/lib/security directory. You can
see that classes found in our working directory D:\itso\ch07 have permission
to create and set a security manager and to write the file testFile1, stored in
the same directory:

We are now ready to run the test case. We run the program as follows:

java TestSM testFile1 testFile2

Write access to testFile1 should be permitted and write access to testFile2
should be denied. The results of this are shown next:

 • The output on the console:

 • The resultant contents of the writerequests.log file:

With this example complete you should have a good idea what it takes to add
function to the SecurityManager provided with Java 2 without losing the
function provided by SecurityManager. We have also shown how to catch a
security exception and handle it in a proper way.

grant codeBase "file:/D:/itso/ch07/" {
 permission java.lang.RuntimePermission "createSecurityManager";
 permission java.lang.RuntimePermission "setSecurityManager";
 permission java.io.FilePermission "D:${/}itso${/}ch07${/}testFile1", "write";
};

MySecurityManager constructed
Write request for: testFile1 permitted
Write request for: testFile2 denied. Message:
java.security.AccessControlException: access denied (java.io.FilePermission testFile2 write)

Write Requests Log Started:
Write Request file: testFile1
Write Request file: testFile2
210 Java 2 Network Security

7.5.2 Second Example – Overriding checkPermission()
We want to show you now the use of the new checkPermission() method
which takes a Permission object as an argument. However, if you test this
example on Java 2 SDK, Standard Edition, V1.2 and V1.2.1, you will run into
a problem, which prevents you from completing the test successfully. On
these two platforms, overriding SecurityManager.checkPermission() causes
the JVM to overflow its stack when calling System.setSecurityManager(), or
during JVM initialization if the option -Djava.security.manager is used. This
does not occur if you choose to override one of the other check methods (see
7.5.1, “First Example – Overriding checkWrite()” on page 206). We reported
this problem and a fix was implemented in the maintenance release Java 2
SDK, Standard Edition, JDK V1.2.2. So, if you have a need to extend
SecurityManager and wish to override checkPermission(), you must run with
a minimum of Java 2, Standard Edition, V1.2.2.

In Figure 87 on page 211 through Figure 90 on page 213 are the
SecurityManager extension, CPSecurityManager.java and the test program,
TestCheckPerm.java respectively. They show you how to create a permission
from the file name argument and how to call checkPermission().

Figure 87. (Part 1 of 2). CPSecurityManager.java

/**
 * CPSecurityManager.java
 * Extends SecurityManager
 * Simple extension to log write permission requests
 */

import java.io.*;
import java.net.*;
import java.lang.*;
import java.security.Permission;
import java.security.AccessController;

public class CPSecurityManager extends SecurityManager
{
 private DataOutputStream auditlog;

 public CPSecurityManager()
 {
 super(); /* initilize using parent constructor */

 try
 {
The Java 2 SecurityManager 211

Figure 88. (Part 2 of 2). CPSecurityManager.java

Figure 89. (Part 1 of 2). TestCheckPerm.java

 auditlog = new DataOutputStream(new FileOutputStream("CPwriterequests.log"));
 auditlog.writeBytes("Write Requests Log Started:\n");
 }
 catch (IOException e)
 {
 System.err.println("Write requests log file not opened properly\n" +
e.toString());
 }

 System.out.println("CPSecurityManager constructed");
 }

 public void checkPermission(Permission perm)
 {
 String s = perm.getActions();
 if (s.indexOf("write") != -1)
 {
 try
 {
 auditlog.writeBytes("Request: " + perm.toString() + "\n");
 }
 catch (IOException ioe)
 {
 System.err.println("Could not write to log file\n" + ioe.toString());
 }
 }

 super.checkPermission(perm); /* Go do real checkPermission */
 }
}

/**
 * Test CPSecurityManager
 */

import java.io.*;
import java.security.*;

public class TestCheckPerm
{

212 Java 2 Network Security

Figure 90. (Part 2 of 2). TestCheckPerm.java

7.5.2.1 The Bug and the Fix
In order to understand why this program caused the Java 2 JVM to overflow,
we must show the lines of code of the method
java.lang.System.setSecurityManager(), as reported in the src.jar file after
installing Java 2 SDK, Standard Edition, V1.2 and V1.2.1:

 /**
 * main entrypoint - starts the application
 * @param args java.lang.String[]
 */
 public static void main(java.lang.String[] args)
 {
 if (args.length > 0)
 {
 FilePermission fp;
 System.setSecurityManager(new CPSecurityManager());
 for (int i = 0; i < args.length; i++)
 {
 fp = new FilePermission(args[i], "write");

 try
 {
 System.getSecurityManager().checkPermission(fp);
 }
 catch (SecurityException se)
 {
 System.out.println("Write request for: " + args[i] + " denied. Message:");
 System.out.println(se.toString());
 break;
 }
 System.out.println("Write request for: " + args[i] + " permitted");
 }
 }
 }
}

The Java 2 SecurityManager 213

Figure 91. setSecurityManager() in Java 2 Standard Edition SDK V1.2 and V1.2.1

What this method does is the following:

 • If there is a security manager already installed, setSecurityManager() first
calls the security manager's checkPermission() method with a
RuntimePermission("setSecurityManager") permission, to ensure it is
permitted to replace the existing security manager. This may result in
throwing a SecurityException.

 • Otherwise, the argument is established as the current security manager. If
the argument is null and no security manager has been established, then
no action is taken and the method simply returns.

Essentially, the problem that causes the JVM to overflow in the 1.2 and 1.2.1
platforms is that when the JVM first tries to initialize the policy, it generates
security checks to be invoked, which causes the JVM to try to initialize the
policy, which causes security checks to be invoked... This way a loop is
generated. The program could still be launched by entering the following
command:

javac TestCheckPerm fileTest1 fileTest2

However, a severe problem would occur and the following error window would
be displayed instantly:

public static synchronized void setSecurityManager(SecurityManager s)
{
 if (security != null)
 {
 // ask the currently installed security manager if we can replace it.
 security.checkPermission(new RuntimePermission("setSecurityManager"));
 }

 security = s;
 InetAddressCachePolicy.setIfNotSet(InetAddressCachePolicy.FOREVER);
}

214 Java 2 Network Security

Figure 92. JVM Overflow Error Message

The loop does not occur if there is only system code on the stack, but when
you set a security manager, which is not on system code, you run into the
looping problem.

As we said, this bug has been fixed in the
java.lang.System.setSecurityManager() implementation of the maintenance
release Java 2 SDK, Standard Edition, V1.2.22, as shown in the following
figure:

Figure 93. (Part 1 of 2). setSecurityManager() in Java 2 SDK, Standard Edition, V1.2.2
2 Java 2 SDK, Standard Edition, V1.2.2 was not yet released when this book went to print. So you should consider that
this understanding is based on a not-yet-released level of the Java 2 SDK.

public static synchronized void setSecurityManager(final SecurityManager s)
{
 if (security != null)
 {
 // ask the currently installed security manager if we can replace it.
 security.checkPermission(new RuntimePermission("setSecurityManager"));
 }

 if (s.getClass().getClassLoader() != null)
 {
 // New security manager class is not on bootstrap classpath.
 // Cause policy to get initialized before we install the new
 // security manager, in order to prevent infinite loops when
 // trying to initialize the policy (which usually involves
 // accessing some security and/or system properties, which in turn
 // calls the installed security manager’s checkPermission() method
 // which will loop infinitely if there is a non-system class
 // (in this case: the new security manager class) on the stack).
 AccessController.doPrivileged(new PrivilegedAction()
 {
 public Object run()
 {
The Java 2 SecurityManager 215

Figure 94. (Part 2 of 2). setSecurityManager() in Java 2 SDK, Standard Edition, V1.2.2

This fix essentially forces the policy to get initialized when we call:

s.getClass().getProtectionDomain().implies(new AllPermission());

This time, the initialization is done in a privileged block, and completes
without further looping.

7.5.2.2 Installing and Running the Program
Assuming that D:\itso\ch07 is the directory where the file
TestCheckPerm.class is stored, the following statements must exist in either a
user policy file or the system policy file:

On the other hand, as we mentioned in 7.5.1, “First Example – Overriding
checkWrite()” on page 206, it makes sense for a security manager to be
completely trusted, and not subjected to security checks. For this reason, the
class file CPSecurityManager.class should be stored in a separate directory
and its code be granted AllPermission. We have already said that the most
correct way to do this is probably to store CPSecurityManager in the classes
directory under ${java.home}. This directory does not exist by default, but
once you create it, each class file that is stored in that directory becomes part
of the boot class path (see 3.4.1, “Boot Class Path” on page 84, Figure 335
on page 642 and Figure 336 on page 643), thus it is completely trusted.

Next, we want to implement a couple of tests, very similar to what we did
when overriding the checkWrite() method. Since we are just checking
permissions, the files do not actually have to exist, but the permissions must.

 s.getClass().getProtectionDomain().implies(new AllPermission());
 return null;
 }
 });
 }

 security = s;
 InetAddressCachePolicy.setIfNotSet(InetAddressCachePolicy.FOREVER);
}

grant codeBase "file:/D:/itso/ch07/" {
 permission java.lang.RuntimePermission "createSecurityManager";
 permission java.lang.RuntimePermission "setSecurityManager";
};
216 Java 2 Network Security

So the previous statements are not enough and we have to set appropriate
write permissions. The same user policy file .java.policy shown in 7.5.1, “First
Example – Overriding checkWrite()” on page 206 can still be applied, without
any modification:

You can see that classes found in our working directory, D:\itso\ch07, have
permission to create and set a security manager and to write the file
testFile1:

You can see that classes found in our working directory D:\itso\ch07 have
permission to create and set a security manager and to write the file
testFile1, stored in the same directory.

We are now ready to run the test case. We run the program as follows:

java TestCheckPerm testFile1 testFile2

Write access to testFile1 should be permitted and write access to testFile2
should be denied. The results of this are shown next and they confirm what
we expected:

 • The output on the console:

 • The resultant contents of the CPwriterequests.log file:

With this example you should now have a good idea of how to override the
checkPermission() method of the default security manager.

rant codeBase "file:/D:/itso/ch07/" {
 permission java.lang.RuntimePermission "createSecurityManager";
 permission java.lang.RuntimePermission "setSecurityManager";
 permission java.io.FilePermission "D:${/}itso${/}ch07${/}testFile1", "write";
};

CPSecurityManager constructed
Write request for: testFile1 permitted
Write request for: testFile2 denied. Message:
java.security.AccessControlException: access denied (java.io.FilePermission testFile2 write)

Write Requests Log Started:
Request: (java.io.FilePermission testFile1 write)
Request: (java.io.FilePermission testFile2 write)
The Java 2 SecurityManager 217

7.5.3 Third Example – Overriding checkRead() and checkWrite()
In this example we show you how to implement a security manager which
asks the user for a password whenever a simple file read or write is
attempted. This security manager overrides the default one provided by the
Java 2 SDK APIs, java.lang.SecurityManager. Here is the code:

Figure 95. (Part 1 of 2). RWSecurityManager.java

import java.io.*;

public class RWSecurityManager extends SecurityManager
{
 private String rpasswd; // We have a private read password
 private String wpasswd; // We have a private write password

 public RWSecurityManager(String rpwd, String wpwd)
 {
 super();

 // The class using this security manager will give the read password
 this.rpasswd = rpwd;

 // The class using this security manager will give the write password
 this.wpasswd = wpwd;
 }

 public void checkRead(FileDescriptor filedescriptor)
 {
 }

 public void checkRead(String filename)
 {
 String pwdgiven;

 // Ask if the user has the required password
 System.out.println("What’s the secret password for reading the file?");
 try
 {
 pwdgiven = new BufferedReader(new InputStreamReader(System.in)).readLine();
 if (pwdgiven.equals(rpasswd))
 System.out.println("Granted permission to read files");
 else
 throw new SecurityException("You do not have access to read the file!");
 }
 catch (IOException e)
218 Java 2 Network Security

Figure 96. (Part 2 of 2). RWSecurityManager.java

 {
 throw new SecurityException("You do not have access to read the file!");
 }

 // Uncomment the line below if you want to call
 // SecurityManager.checkRead() at this time

 // super.checkRead(filename);
 }

 public void checkRead(String filename, Object executionContext)
 {
 }

 public void checkWrite(FileDescriptor filedescriptor)
 {
 }

 public void checkWrite(String filename)
 {
 String pwdgiven;

 // Ask if the user has the required password
 System.out.println("What’s the secret password for writing the file?");
 try
 {
 pwdgiven = new BufferedReader(new InputStreamReader(System.in)).readLine();
 if (pwdgiven.equals(wpasswd))
 System.out.println("Granted the permission to write to files");
 else
 throw new SecurityException("You do not have access to write to a file!");
 }
 catch (IOException e)
 {
 throw new SecurityException("You do not have access to write to a file!");
 }

 // Uncomment the line below if you want to call
 // SecurityManager.checkWrite() at this time

 // super.checkWrite(filename);
 }
}

The Java 2 SecurityManager 219

The code above implements a security manager, called RWSecurityManager,
that overrides the checkRead() and checkWrite() methods of
java.lang.SecurityManager. What the code really does is easy to understand
by reading the comments embedded in the code.

Next, we write the code of the application that uses this security manager. We
create a class called TestRWSecMgr, which invokes RWSecurityManager
passing two String arguments to it, corresponding to the fields rpasswd
(password for reading files on the system) and wpasswd (password for writing
to files on the system). Whenever an application tries to read any file, the
checkRead() method of the RWSecurityManager class is called. Hence this
asks the user for the password and checks the user input against the read
password supplied by the application. The same happens for writing, the only
difference being that in this case the checkWrite() method is called.

The full code for the TestRWSecMgr application is shown in the following
figure:

Figure 97. (Part 1 of 2). TestRWScrMgr.java

import java.io.*;

public class TestRWSecMgr
{
 public static void main(String[] args) throws Exception
 {
 int count=0;
 if (args.length != 2)
 System.out.println("Usage: java TestSecMgr FILENAME OUTPUTFILENAME");
 else
 {
 try
 {
 System.setSecurityManager(new RWSecurityManager("redbook", "ibm"));
 }
 catch (SecurityException e)
 {
 System.err.println("SecurityManager could not be set!");
 }

 try
 {
 //Reading from a file
 FileInputStream fis = new FileInputStream(args[0]);
 while (fis.read() != -1)
220 Java 2 Network Security

Figure 98. (Part 2 of 2). TestRWScrMgr.java

As you can see, this application sets the security manager to
RWSecurityManager. This is done by calling the method
setSecurityManager() for the class java.lang.System, which we discussed in
7.5.2, “Second Example – Overriding checkPermission()” on page 211:

System.setSecurityManager(new RWSecurityManager("redbook","ibm"));

Notice that the passwords passed to the security manager are redbook for
reading and ibm for writing.

The class RWSecurityManager can be compiled with the command:

javac RWSecurityManager.java

This command is supposed to be launched from the same directory where
RWSecurityManager.java resides. As we discussed in 7.5.2, “Second
Example – Overriding checkPermission()” on page 211, it makes sense for a
security manager class to be trusted by the Java system. The proper location
for a security manager is the classes directory under the directory
${java.home}. As we have already explained, this directory does not exist by
default. It must be explicitly created by the user. Once created, all the class
files that are stored in that directory automatically become part of the boot
class path. For this reason, we copy RWSecurityManager.class to the classes
directory.

 count++;
 fis.close();

 //Writing to a file
 DataOutputStream fos = new DataOutputStream(new FileOutputStream(args[1]));
 fos.flush();
 fos.writeBytes("Hi! We counted ");
 fos.writeBytes(new Integer(count).toString());
 fos.writeBytes(" chars.");
 fos.close();
 }
 catch (Exception e)
 {
 System.err.println("Exception caught: " + e);
 }
 }
 }
}

The Java 2 SecurityManager 221

When we compile TestRWSecMgr.java, we need to specify where
RWSecurityManager.class is, because this class must be found at compile
time. The proper way to compile TestRWSecMgr.java is through the following
command, launched from the same directory where TestRWSecMgr.java
resides:

javac -classpath .;"D:\\Program Files\\JavaSoft\\JRE\\1.2\\classes" TestRWSecMgr.java

Now, if you run this program specifying the -Djava.security.manager command
line option, you will see that the TestRWSecMgr application is not allowed to
set or create a security manager. The default security manager, which is
called first, does not give this application the permission to set and create a
different security manager. It is therefore necessary to modify the current
security policy configuration, adding the following lines to one of the current
policy files:

We assume here that the TestRWSecMgr class is located in the directory
F:\itso\ch07.

Then we run the program and we see that it works as expected, as shown in
the following session screen:

The parameters passed on the command line are the Java source code of the
TestRWSecMgr class, TestRWSecMgr.java, and a file called results.txt that is
automatically created by the application in the same directory. In this file, the
application writes the number of characters it counts in the
TestRWSecMgr.java file. On opening results.txt with a normal text editor, we
find the following contents:

Hi! We counted 1206 chars.

grant codeBase "file:/F:/itso/ch07/" {
 permission java.lang.RuntimePermission "setSecurityManager";
 permission java.lang.RuntimePermission "createSecurityManager";
};

F:\itso\ch07>java -Djava.security.manager TestRWSecMgr TestRWSecMgr.java results.txt
What’s the secret password for reading the file?
redbook
Granted permission to read files
What’s the secret password for writing the file?
ibm
Granted the permission to write to files

F:\itso\ch07>
222 Java 2 Network Security

Notice that it has not been necessary to grant the code source of the
TestRWSecMgr class the permission to read and write files. This is because
we have completely overridden the methods checkRead() and checkWrite() of
the superclass java.lang.SecurityManager, which in turn would have called
checkPermission() in AccessController. Our security manager bases its policy
decision on a password. If you want to keep the behavior of SecurityManager,
which requires specific read and write permissions enabled through the policy
file, you have to call super.checkRead() and super.checkWrite(). The code in
Figure 95 on page 218 and Figure 96 on page 219 shows the calls to these
two methods commented out. Just uncomment those lines if you want to
enable the default security manager functions. At that point, you will need to
modify one of the current policy files of your system in order to have the
application work correctly. What you should add to it is the following:

This example illustrates how to implement a security manager that does more
than a simple access logging, as the others seen in 7.5.1, “First Example –
Overriding checkWrite()” on page 206 and 7.5.2, “Second Example –
Overriding checkPermission()” on page 211. In fact this shows how to
overwrite the default security manager and base the access verification on
passwords. We have also seen how it is possible to combine the
password-based control to the policy-based access control of the default
security manager.

We also want to bring your attention to the fact that the two passwords are
hardcoded in the TestRWSecMgr class file. This could be a security risk, as
we underlined in 5.3.1, “Decompilation Attacks” on page 126. The passwords
we used would appear in the clear after decompiling the program or even
after opening the class file with a hexadecimal editor or a simple text editor.
The purpose of this example, once again, was to demonstrate how to use the
Java 2 APIs to implement a customized security manager. However, for
serious applications, we recommend that you build a client/server type
application with a Java presentation layer that can be run anywhere and a
secured server side where sensitive information can be stored.

grant codeBase "file:/F:/itso/ch07/" {
 permission java.lang.RuntimePermission "setSecurityManager";
 permission java.lang.RuntimePermission "createSecurityManager";
 permission java.io.FilePermission "<<ALL FILES>>", "read, write";
};
The Java 2 SecurityManager 223

7.6 Summary

The security manager is a class that allows applications to implement a
security policy. It allows an application to determine, before performing a
possibly unsafe or sensitive operation, what the operation is and whether it is
being attempted in a security context that allows the operation to be
performed. The application can allow or disallow the operation.

In this chapter, we explained the unique role that the security manager plays
in Java 2. You should now have a clear idea of the main functions of the
security manager and its relationship with the class loader and class file
verifier.

This chapter has also demonstrated a security attack that can affect your
system when browsing the Internet: an invisible applet can install itself on
your system, generate a number of new threads, and steal CPU cycles and
memory.

Finally, we demonstrated how to write simple extensions of the default Java 2
security manager java.lang.SecurityManager. Those examples are useful
especially when you want to add new functions to the default security
manager, such as logging or password protection, without losing the basic
features of the security manager that comes with the Java 2 platform.
224 Java 2 Network Security

Chapter 8. Security Configuration Files in the Java 2 SDK

The security aspects of Java have changed drastically from the Java
Development Kit (JDK) 1.1 to Java 2 SDK, Standard Edition, V1.2. In this
section, we show you how you can configure Java 2 security on your system.

After the installation of the Java 2 SDK, you will see two files located in the
directory ${java.home}${/}lib${/}security: the security file, java.security, and
the policy file, java.policy. These are the primary security configuration files of
the Java Virtual Machine (JVM) running on your system, and they are used to
define security properties and manage access permissions. After the
installation, you can modify or rewrite these default files.

Notice that a copy of these files is also installed in the Java 2 SDK
development security directory (by default, on Windows systems,
C:\jdk1.2.x\jre\lib\security), for use only with the development tools, such as
the Applet Viewer and the Java compiler javac.

8.1 A Note on java.home and the JRE Installation Directory

An interesting thing to note is that when you install the Java 2 SDK, Standard
Edition, V1.2.x, you have the option to install the Java Runtime Environment
(JRE) 1.2.x as one of its components, as shown in the following figure:
© Copyright IBM Corp. 1997 1999 225

Figure 99. Installing the Java Runtime Environment and Java Plug-in

If you install the Java 2 SDK while the JRE box is checked, you will have in
fact two JREs on your system: one is installed with the SDK and the other is a
separate JRE. You can uncheck the option to install the JRE at the very
beginning of the install process but later you cannot do that.

On Windows systems, Java 2 SDK, Standard Edition, V1.2.x installs by
default in the C:\jdk1.2.x directory and JRE in the directory
C:\Program Files\JavaSoft\JRE\1.2. If you keep the default settings, you will
find two pairs of the security configuration files: one in the directory
C:\jdk1.2.x\jre\lib\security and the other in the directory
C:\Program Files\JavaSoft\JRE\1.2\lib\security. The configuration files which
are effective are in the second directory. In this case, the value of the variable
java.home is C:\Program Files\JavaSoft\JRE\1.2, as demonstrated in
Appendix A, “Getting Internal System Properties” on page 641.

However, if you uncheck the option to install the JRE at the beginning, you get
only one set of security configuration files. The value of the variable
java.home in this case is C:\jdk1.2.x\jre and the configuration files are located
in C:\jdk1.2.x\jre\lib\security. Interestingly, if you do not uncheck the option at
226 Java 2 Network Security

the beginning, and later on, during the JRE installation, you change the
installation directory of the JRE to C:\jdk1.2.x\jre, then the previous files are
overwritten. In such a case the installation routine does not install the JRE
again and the value of java.home is C:\jdk1.2.x\jre, which is the JRE
development directory.

The value of java.home takes effect for all the Java programs you run on your
system, including the applets you run in a Web browser that make use of the
Java Plug-in (see Chapter 11., “The Java Plug-In” on page 359); the system
uses the value of that variable to search for system libraries and configuration
files. However, for all the development tools, such as the Java compiler and
the Applet Viewer, the system always considers java.home as C:\jdk1.2.x\jre,
irrespective of whether JRE is installed again or not. This is because test
tools are used for development only. So, in this way, Java helps you separate
the development environment from the run-time environment. This is
demonstrated by the following applet:

Figure 100. PropertyApplet.java

This applet is compiled through the command:

javac PropertyApplet.java

We invoke it from within the following HTML page:

import java.applet.*;
import java.awt.Graphics;

public class PropertyApplet extends Applet
{
 public void paint(Graphics g)
 {
 try
 {
 String s1 = System.getProperty("java.home");
 String s2 = System.getProperty("user.home");
 g.drawString("java.home has the following value: " + s1, 20, 20);
 g.drawString("user.home has the following value: " + s2, 20, 40);
 }
 catch (Exception e)
 {
 System.out.println("Exception caught" + e.toString());
 }
 }
}

Security Configuration Files in the Java 2 SDK 227

Figure 101. PropertyApplet.html

Next, we invoke this HTML page with the Java 2 SDK Applet Viewer:

appletviewer PropertyApplet.html

In order for the command above to work without throwing any exception, it is
necessary to grant the Java class PropertyApplet, residing in the directory
D:\itso\ch08, the permission to read the Java system properties java.home
and user.home. This is done by adding the following lines to one of the
current policy files, as we will see in 8.4, “Security Policy Files” on page 242:

The appletviewer command brings up the following Applet Viewer window:

<HTML>
 <HEAD>
 <TITLE>PropertyApplet Applet</TITLE>
 </HEAD>

 <BODY>
 <CENTER><h2>PropertyApplet Applet</h2>
 <HR>

 <APPLET Code="PropertyApplet.class" Width=400 Height=50>
 <H4>This area contains a Java applet, but your browser is not Java-enabled</H4>
 </APPLET>

 </BODY>
</HTML>

grant codeBase "file:/D:/itso/ch08/" {
 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "user.home", "read";
};
228 Java 2 Network Security

Figure 102. PropertyApplet Running

This demonstrates that for a development tool, such as the Applet Viewer, the
java.home directory changes to become the JRE development directory, while
another system property, such as user.home, still has the same value.

Notice that, whenever you have two JRE environments installed on your
machine, you need to be very careful and must know where your library and
configuration files are being picked up from. For example when you compile a
Java program using the command:

javac MyClass.java

then the core Java classes and the extensions are picked up from the JRE
development directory (typically C:\jdk1.2.x\jre) and its subdirectories.
However, when you run the program with:

java MyClass

then they are picked up from the separate JRE run-time directory (typically
C:\Program Files\JavaSoft\JRE\1.2) and its subdirectories. The same holds
true for the security and policy files, which are the security configuration files.

When the JRE is installed, a copy of the java executable file (java.exe on
Windows systems) is also put in a location that is on the operating system’s
default system Path. For example, on a Windows NT system, it is typically put
in C:\WINNT\system32. Hence, when you install the Java 2 SDK, you will be
able to run the java command without setting the Path variable. However, to
run the javac command, you will have to include the appropriate path to the
javac executable file (javac.exe on Windows systems) in the Path variable. All
SDK development tools, including the javac compiler, are installed in the
same directory, typically C:\jdk1.2.x\bin, on Windows systems.
Security Configuration Files in the Java 2 SDK 229

In the rest of this section we describe the two security configuration files of
the Java system. However, before examining them, we first need to introduce
the concept of a keystore.

8.2 Keystores

A keystore is a database of private keys and their associated certificates or
certificate chains, which authenticate the corresponding public keys.

The default keystore implementation, provided by Sun Microsystems, is a flat
file, utilizing a proprietary keystore type or format, named Java Keystore
(JKS). This format protects the integrity of the entire keystore with a keystore
password. A hash value of the entire keystore is used to protect the keystore
from alteration. Each private key in the keystore is also protected with a
separate password (though this password may be identical to the keystore
password). In different keystore implementations that can make use of

You are probably wondering how the system can know the value of the
java.home property. If you install Java 2 SDK, Standard Edition, V1.2 on
AIX and you run the program GetProperty shown in A.2, “Program
GetProperty” on page 644 to find out the value of java.home, you see the
following output:

property value is: J1.2/bin/..

This means that to define java.home, Java finds the directory where the
Java executable files are and then goes one level up: that is the java home
directory. This, at least, seems to happen on AIX. We repeat the same
experiment on Windows NT.

If we move all the Java executables to the D:\itso\bin directory, java.home
becomes D:\itso, as the following output demonstrates:

java.home property value is: D:\itso

If we put them in D:\ all programs return an error as there is no directory
one level up from the root directory.

Note that in order to verify the java.home directory when moving the
executables, the Path variable must be manually set to include the new
directory where the executables are and the boot class path must be
specified on the command line using the -Xbootclasspath option.

How Does the System Know the Value of java.home?
230 Java 2 Network Security

encryption, such as the keystore implementation that comes with JCE 1.2
(see Point 2 on page 492), private keys can be stored encrypted using one of
the encryption algorithms provided.

Notice that a KeyStore class is provided in the package java.security. It
supplies methods to access and modify the information in the keystores (see
10.1.6, “Key Management” on page 305).

On a Windows NT system, the keystore is created by default with the keytool
command as the file .keystore in the directory ${user.home}. It is possible to
change both the implementation and the location of the keystore that comes
by default with the Java 2 SDK installation, but the system must be aware of
what implementation and location have been selected:

 • The implementation of the keystore is specified, as we are going to see, in
the security properties file, defined by the value of the property named
keystore.type.

 • The location of the keystore is specified in the policy file, defined by the
keystore URL entry.

If you so desire, you can create a new keystore implementation. You might
want to do so to, say, store keys and certificates in a database. Then you
need to refer to your own keystore implementation in the security properties
file and to the location of the keystore in the policy file.

In a keystore you can store your own certificates or certificates of CAs and
trusted entities. As we have said, Java 2 provides the keytool command line
utility for storing your private keys and viewing or listing public information
about a certificate in a JKS keystore. Since a keystore is password-protected,
you need to enter a password to access the private information stored in the
keystore. Each private key may also be protected by a separate password
which also needs to be provided by the user.

Notice that public information can be accessed without the password.
However, in that case, as the keytool utility is unable to verify the integrity of
the keystore, a warning message is displayed on the screen, as shown here:

***************** WARNING WARNING WARNING *****************
* The integrity of the information stored in your keystore *
* has NOT been verified! In order to verify its integrity, *
* you must provide your keystore password. *
***************** WARNING WARNING WARNING *****************
Security Configuration Files in the Java 2 SDK 231

You will notice that if you register the public information of a certificate as
trusted and then try to run an applet signed by that certificate, the JVM
automatically retrieves the public key from the keystore, without your
intervention and without asking for the keystore password. The reason for this
is that all public information, such as public key and certificate, is stored
unencrypted in the keystore, and only the private key is stored
password-encrypted, so that it is protected from unauthorized users. The
keystore password is used for an integrity check only, so you are prompted to
verify that the keystore has not been tampered with.

A demonstration of this can be obtained in the following way. When you open
the keystore with a text editor, amidst all the junk, you can see the value of a
certificate you know existed in the keystore in plain text:

Figure 103. On Opening a Keystore with a Text Editor

Notice also that all keys or certificates stored in the keystore are identified by
aliases.

Users can have as many keystores as they wish. Users can create additional
keystores if they want to:

1. Generate a public-private key pair for themselves.

first and last name

start date end date

state
keyname

city

country

organization unit

organization
232 Java 2 Network Security

2. Sign a code with their private key and export their certificates to send to
others for verification along with the signed code.

3. Import others’ certificates to verify signatures.

4. Create a certificate request to be signed by a certification authority (CA).

All these activities are facilitated by the keytool command line utility. Notice
that each different keystore can be protected with a different password.

8.2.1 The Certificates KeyStore File cacerts
The cacerts file is a system-wide keystore for storing trusted CA certificates.
It is implemented in the JKS format, is located in the
${java.home}${/}lib${/}security directory and can be manipulated with the
keytool command line utility.

Currently, the cacerts file ships with five VeriSign root CA certificates. You can
view these certificates using the -list command associated with the keytool
utility:

keytool -list -keystore cacerts

The output of this command is shown in the following figure:

Figure 104. Default CA Certificates in the Java 2 Platform

Keystore type: jks
Keystore provider: SUN
Your keystore contains 5 entries:

verisignclass3ca, Mon Jun 29 13:05:51 EDT 1998, trustedCertEntry,
Certificate fingerprint (MD5):
78:2A:02:DF:DB:2E:14:D5:A7:5F:0A:DF:B6:8E:9C:5D
verisignclass1ca, Mon Jun 29 13:06:17 EDT 1998, trustedCertEntry,
Certificate fingerprint (MD5):
51:86:E8:1F:BC:B1:C3:71:B5:18:10:DB:5F:DC:F6:20
verisignserverca, Mon Jun 29 13:07:34 EDT 1998, trustedCertEntry,
Certificate fingerprint (MD5):
74:7B:82:03:43:F0:00:9E:6B:B3:EC:47:BF:85:A5:93
verisignclass4ca, Mon Jun 29 13:06:57 EDT 1998, trustedCertEntry,
Certificate fingerprint (MD5):
1B:D1:AD:17:8B:7F:22:13:24:F5:26:E2:5D:4E:B9:10
verisignclass2ca, Mon Jun 29 13:06:39 EDT 1998, trustedCertEntry,
Certificate fingerprint (MD5):
EC:40:7D:2B:76:52:67:05:2C:EA:F2:3A:4F:65:F0:D8
Security Configuration Files in the Java 2 SDK 233

On launching this command you will be asked for the password. However, a
password is not mandatory to display the contents of a keystore; if you do not
enter the right password, the output shown in the figure above is displayed
anyway, but you will be informed that the integrity of the information stored in
the keystore has not been verified. On the contrary, you will not be allowed to
import a new certificate in the keystore file if you do not enter the exact
password. By default, the initial password is changeit. As the name itself
suggests, it is recommended you change the default password, as this
keystore is very important for the simple reason that it contains the
certificates of the CAs that are considered trusted. A keystore password can
be changed using the -storepasswd command associated with the keytool
command line utility (see 9.1.3, “Commands and Options Associated with
keytool” on page 262).

Since CAs are entities that are trusted by users for signing and issuing
certificates to other entities, the cacerts file should be managed only by
system administrators. With the keytool utility, it is possible to add new CA
certificates or remove old CA certificates from the cacerts file. Utmost care
should be taken while importing any trusted certificate into the cacerts
keystore, as it should only contain certificates of the CAs that the system
administrators trust.

8.3 The Security Properties File, java.security

This is a configuration file in which you set the Java security properties for the
system. These security properties are used by classes in the java.security
package. The following figure shows the default properties file installed with
Java 2 SDK, Standard Edition, V1.2.1, except for the fact that the comments
that explain each entry have been removed here:

Figure 105. Default Security Properties File

security.provider.1=sun.security.provider.Sun
policy.provider=sun.security.provider.PolicyFile
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy
policy.expandProperties=true
policy.allowSystemProperty=true
policy.ignoreIdentityScope=false
keystore.type=jks
system.scope=sun.security.provider.IdentityDatabase
package.access=sun.
#package.definition=
234 Java 2 Network Security

As we have said, the directory where this file is installed is
${java.home}${/}lib${/}security, and a copy of it is found also in the JRE
development directory for use with the development tools.

The java.security file, amidst all the comments and explanations, contains
important directives, which are all of the form:

property_variable=value

Notice that by default the last entry is commented out.

In the following list we explain all the entries of the default security properties
file:

 • Security provider

The first entry specifies the cryptography package providers, their
locations, and their precedence orders. The term provider refers to a
package or set of packages that supply a concrete implementation of a
subset of the cryptography aspects of the Java Security API. A provider
may, for example, implement one or more digital signature algorithms or
message digest algorithms.

There must be at least one provider specification in java.security. If an
alternative provider has to be added, it must be specified in the security
properties file as:

security.provider.n=className

This adds the provider with the preference order n. The provider order is
1-based. If an implementation is supplied by multiple providers, the
implementation of the provider with the higher preference (that is, lower
serial number n) is chosen. This means that the JVM looks for the
implementation required in the first provider. If it is found, it stops and uses
that; otherwise, it looks in the next provider, and continues until it gets the
implementation.

className must specify the subclass of the java.security.Provider abstract
class whose constructor sets the values of various properties that are
required for the Java security API to look up the algorithms or other
facilities implemented by the provider.

The Provider class has methods for accessing the provider name, version
number, and other information about the implementations of the
algorithms for key generation, conversion and management facilities,
signature generation, and message digest generation.

Provider subclasses statically registered through the security properties
file are instantiated when the system is initialized. Providers may also be
Security Configuration Files in the Java 2 SDK 235

registered dynamically. To do so, you should call either the addProvider()
or insertProviderAt() static methods in the java.security.Security class.
However, such a configuration is not persistent and can only be done by
trusted programs. This may be done if only specific applications need a
particular provider. Note that by trusted programs we mean applications
that have been granted a specific SecurityPermission by the user. See 8.4,
“Security Policy Files” on page 242 and 10.7, “The Permission Classes” on
page 339 for more details.

The default provider that comes standard with the Java 2 SDK is called
SUN, and its Provider subclass, named Sun, appears in the
sun.security.provider package. The SUN provider offers:

 • An implementation of the Digital Signature Algorithm (DSA)

Signature algorithms are used to create a signature of a particular file
using the message digest and the private key of the signer.

 • An implementation of the MD5 and Secure Hash Algorithm (SHA)-1
message digest algorithms

Message digest algorithms are used to create the message digests of
files using the file itself and the constant chaining variable defined in
the digest algorithm.

 • A DSA key pair generator for generating a pair of public and private
keys suitable for the DSA algorithm

 • A DSA algorithm parameter generator

 • A DSA algorithm parameter manager

 • A DSA key factory providing bi-directional conversions between
opaque DSA private and public key objects and their underlying key
material

 • An implementation of the proprietary SHA1PRNG pseudo-random
number generation algorithm

 • A certificate factory for X.509 certificates and certificate revocation
Lists (CRLs)

 • The JKS keystore implementation for the proprietary keystore type

 • Policy provider

The second entry in the security policy file specifies the class to
instantiate as the system policy. This is the name of the class that will be
used as the Policy object, in order to determine which permissions are
available for code from various sources. The code source includes the
236 Java 2 Network Security

URL location of the code and the certificates of the entities that have
signed the code.

The default value defined for the policy provider is the class PolicyFile in
the package sun.security.provider. This class defines the default Java 2
SDK policy implementation, which uses static policy files to configure
security on the JVM.

 • Policy file URL location

If the Policy object instantiated is constructed from policy files, you can
specify in the security properties file an ordered list of URLs for the policy
files to load and utilize. The default is to have a system-wide policy file
having URL location file:/${java.home}/lib/security/java.policy and a
user-defined policy file in the user’s home directory, having URL location
file:${user.home}/.java.policy. To discover the value of java.home and
user.home on your system, you can use either of the two programs shown
in Appendix A, “Getting Internal System Properties” on page 641.

The policy order is 1-based. This means that the policy.url.1 file is read
first and the subsequent files later. Note that the precedence numbers
must be serial and continuous. In other words, if policy.url.1 and
policy.url.3, are present, but policy.url.2 is missing, then policy.url.3 is
ignored and only policy.url.1 is considered. So by default, when the
Policy class is initialized, the system policy is loaded first and the user
policy is added to it. If neither is present, a built-in policy is used, and this
is the original sandbox policy. However you can change this
implementation by editing the java.security file and modifying the policy
file URL location entries according to the following syntax:

policy.url.n=URL

where n is the precedence number of the policy file to be considered and
URL points to the path of the corresponding policy file.

For instance:

policy.url.3=file:/C:/itso/ibm/ibmpolicy

The fact that the location of a policy file is specified as a URL implies that
policy files do not need to be local, but can be retrieved from a remote
system through the HTTP protocol. This opens up interesting possibilities;
for example, system administrators can install a system-wide policy file on
a policy server and users can use it from their client machines, combining
it with a local user-defined policy file.

 • Property expansion

This entry specifies whether or not property expansion should be allowed
in policy files. The syntax for this entry is the following:
Security Configuration Files in the Java 2 SDK 237

policy.expandProperties=boolean

where boolean can be either true (the default) or false.

 • When this security property is set to true, all the system property
variables, such as ${java.home} or ${user.home} will be automatically
translated into their value each time they appear in a policy file. For
example, ${java.home} would be expanded to the value of the
java.home property (see Appendix A, “Getting Internal System
Properties” on page 641).

 • If this security property is set to false, property variables will not be
expanded in the policy files and must be explicitly hard coded. For
example, instead of ${java.home}, you will have to type the full path,
something similar to C:\Program Files\JavaSoft\JRE\1.2.

This security property, if set to true, makes policy files portable across
platforms. In fact, as we said when we spoke about the policy file URL
location, system administrators can install a system-wide policy file on a
policy server and users can retrieve it from client machines. The possibility
to expand system property variables in policy files makes it possible to use
the same policy file regardless of the operating system. For example if this
property is set to true, ${/} will be exploded to the appropriate file
separator used on the local operating system: a forward slash (/) on UNIX
systems and a backslash (\) on Windows systems. Even machines with
the same operating system could have differences limiting portability. For
example, on one Windows machine the JRE could have been installed in
the C drive, and on another machine on the D drive, making the value of
java.home C:\Program Files\JavaSoft\JRE\1.2 and
D:\Program Files\JavaSoft\JRE\1.2 respectively. Another example is given
by the system property user.home: two different users, even working on
the same machine, have different home directories, each one containing
different security entities, such as the keystores. The possibility to
translate ${user.home} into the actual value of the user home directory
makes policy files more general. Expanding the system properties in the
policy files solves this kind of problem and applies the concept of Write
Once, Run Anywhere, which is typical of Java.

On the other hand, if this property is set to false, you must specify the
system properties explicitly, which means that you will rarely be able to
port a policy file from one machine to another.

 • Extra policy

In the security property file, you can specify whether or not an extra policy
file can be passed on the java command line with the option:

-Djava.security.policy=policyFile
238 Java 2 Network Security

The syntax for this security property is as follows:

policy.allowSystemProperty=boolean

where boolean can be either true (the default) or false. If this security
property is set to true, users can specify an additional policy file on the
java command line for specific applications, as shown in the following
example:

java -Djava.security.manager -Djava.security.policy=ibmpolicy Count

This implies that besides the policy files mentioned in the security file, an
additional ibmpolicy file is used.

A double equal sign (==), instead of a single one (=), can be specified after
the -Djava.security.policy flag, as shown in the following example:

java -Djava.security.manager -Djava.security.policy==ibmpolicy Count

This implies that the policy file specified on the command line (in this
example, ibmpolicy) is the only policy file used for this application.

Since the same flags used for the java command apply also to the
appletviewer command, provided they are preceded by -J, this would be
the way to specify an additional policy file for use with the Applet Viewer:

appletviewer -J-Djava.security.policy=ibmpolicy Count.html

This example shows how to specify an exclusive extra policy file for use
with Applet Viewer:

appletviewer -J-Djava.security.policy==ibmpolicy Count.html

If this property is set to false or is commented out in the security
properties file, users will not be able to specify a policy file on the
command prompt using the option above, and only the policy files
mentioned in the properties file will be used. System administrators can
set it to false if they wish to strictly check all security permissions and do
not want users to set their own permissions thus overriding the
system-wide settings. However, setting this to true will grant more
flexibility as users can define their own policy files according to their
applications as and when required.

 • Identity scope

The security properties file allows you to set whether or not to look into the
identity scope for trusted identities when a JDK 1.1 signed Java Archive
(JAR) file is encountered. The security property to configure this is the
following:

policy.ignoreIdentityScope=boolean

where boolean can be either false (the default) or true.
Security Configuration Files in the Java 2 SDK 239

If this property is set to true, the identity scope is ignored and the Java 2
security policy is enforced. If it is set to false, the identity scope for trusted
identities is looked into and if identity is found and is trusted it is granted
AllPermission.

 • Keystore type

The security properties file allows you to specify the keystore type to use
in your Java security system. The syntax for this property is:

keystore.type=type

This property is by default set to jks, corresponding to the proprietary
keystore type, named JKS and created by Sun Microsystems. The
features of this keystore implementation are described in 8.2, “Keystores”
on page 230.

 • System identity scope

Each JVM has a system identity scope that manages a repository of keys,
certificates and trust levels. That repository is available to applications that
need it for authentication or signing purposes.

The class to instantiate as the system identity scope is set in the security
properties file java.security through the following property:

system.scope=className

A default identity scope class for a persistent database is supplied by the
provider named SUN. This class is sun.security.provider.IdentityDatabase
(a subclass of the IdentityScope class). An instance of this class is created
every time a Java program is run or an Applet Viewer is started.

By default, the value of this property is set to the class IdentityDatabase,
found in the package sun.security.provider.

 • Packages causing a security exception when passed to
checkPackageAccess()

In the security properties file, you are allowed to specify a
comma-separated list of packages that will cause a security exception to
be thrown when passed to SecurityManager.checkPackageAccess(),
unless the corresponding RuntimePermission has been granted. Instead
of full package names, you can specify a comma-separated list of strings,
and all packages that start with one of those strings will also cause a
security exception to be thrown.

The syntax for this entry is as follows:

package.access=string1,string2,...,stringN

By default, this entry is set to the string sun.
240 Java 2 Network Security

The checkPackageAccess() method takes as argument a String
representing a package name, and throws a security exception if the
calling thread is not allowed to access the package specified by the
argument. This method is used by the loadClass() method of class
loaders. If the package is restricted, then a call is made to
checkPermission() with the permission:

java.lang.RunTimePermission("accessClassInPackage.packageName")

If it does not have a permission, then the calling thread is not allowed to
access classes in that package and a security exception is thrown.

 • Packages causing a security exception when passed to
checkPackageDefinition()

In the security properties file, you are allowed to specify a
comma-separated list of packages that will cause a security exception to
be thrown when passed to SecurityManager.checkPackageDefinition(),
unless the corresponding RuntimePermission has been granted. Instead
of full package names, you can specify a comma-separated list of strings,
and all packages that start with one of those strings will also cause a
security exception to be thrown.

The syntax for this entry is as follows:

package.definition=string1,string2,...,stringN

The checkPackageDefinition() method takes as argument a String
representing a package name, and throws a security exception if the
calling thread is not allowed to define classes in the package specified by
the argument.

This method is used by the loadClass() method of class loaders. If the
package is restricted, then a call is made to checkPermission() with the
permission

java.lang.RunTimePermission("defineClassInPackage.packageName")

If it does not have a permission, then the calling thread is not allowed to
define classes in that package and a security exception is thrown.

However, by default the package.definition entry in the security property
files is not set to anything and is commented out:

#package.definition=

This means that, by default, no packages are restricted for definition.
Moreover, none of the class loaders supplied with the Java 2 SDK call
checkPackageDefinition().
Security Configuration Files in the Java 2 SDK 241

8.4 Security Policy Files

Security policy files are used to grant permissions to various Java codes
depending upon the code base and/or the digital signatures applied to the
code.

We introduced the policy files in 3.6, “The Policy File” on page 93, and in
3.6.1, “The Default System-Wide Policy File” on page 96, we described all the
entries that appear in the default system-wide policy file that comes with the
installation of the Java 2 SDK. In this section, we give more details about how
you can configure security on your system through the use of policy files.

As we explained in 8.3, “The Security Properties File, java.security” on page
234, multiple policy files can be simultaneously installed and take effect on
your system. Their URL locations and order numbers must be specified in the
security properties file java.security.

A policy file contains a list of entries. There may be a keystore entry and zero
or more grant entries. Each grant entry contains zero or more permission
entries, and can contain a signedBy entry and a codeBase entry.

8.4.1 keystore Entry
The keystore entry is necessary in the policy file if a signer is specified in any
of the grant entries. There can be only one keystore entry per policy file. If
there are multiple keystore entries, only the first one is considered and the
rest are ignored.

The keystore entry line can appear anywhere in the file and it looks like:

keystore "URL" "type"

where URL represents the URL location of the keystore, and type refers to
the type of the keystore.

The type specification is optional. If type is missing, the type is taken from
the keystore.type property of the Java security properties file (see 8.3, “The
Security Properties File, java.security” on page 234). As you remember, that

In policy files, case is unimportant for the identifiers (grant, keystore,
permission, signedBy and codeBase) but is significant for any string that is
passed in as a value.

Case in Policy Files
242 Java 2 Network Security

property is by default set to JKS, the proprietary keystore implementation
supplied by Sun Microsystems.

In general, a keystore type defines the storage and data format of the
keystore information, and the algorithms used to protect private keys in the
keystore and the integrity of the keystore itself.

The URL location of the keystore can be absolute or relative to the location of
the policy file in question. For example, let’s say that in the security properties
file java.security, the entry defining the policy file in question is:

policy.url.2=file:/C:/itso/ibm/ibmpolicy

If the keystore entry in this policy file is:

keystore ".keystore"

then the keystore URL location is considered relative to the location of the
policy file, and the keystore is loaded from file:/C:/itso/ibm/.keystore.

If the keystore entry in the policy file is:

keystore "file:/C:/.keystore"

then the URL is considered absolute and the keystore is loaded from
file:/C:/.keystore.

The fact that the keystore location can be specified as a URL allows you to
retrieve a keystore not only from the local file system, but also from a remote
location, using the HTTP protocol.

8.4.2 grant Entries
These entries are used to grant permissions to codes from various sources
and/or signed by various entities.

As shown in Figure 33 on page 81, the syntax for a grant entry is as follows:

grant [signedBy "signers"][, codeBase "URL"] {
permission permission_class ["target"][, "action_list"][, signedBy "signer"];
[permission permission_class ["target"][, "action_list"][, signedBy "signer"];
...
permission permission_class ["target"][, "action_list"][, signedBy "signer"];]
};
Security Configuration Files in the Java 2 SDK 243

The entry begins with the word grant, which can be followed by the signedBy
and codeBase name-value pairs. A list of zero or more permission entries
follows. A grant entry always terminates with a semicolon (;).

 • signedBy entry

The value followed by the signedBy keyword is a double-quoted string
containing names of one or more signers. Multiple signers are separated
by commas. A signer entity is indicated through the alias of its certificate
stored in the keystore. The permissions granted are for the code that has
been signed by the private key corresponding to the public key in the
certificate indicated by the alias.

When multiple signers are specified, the code must be signed by all of
them. This is because the relationship between multiple signers is a
logical AND, and not a logical OR. For an OR relationship, you need to
duplicate the same grant permission with different signers.

If this optional name-value pair is absent, then the permissions in the grant
entry are valid for code signed by anyone or code that is not signed.

 • codeBase entry

The URL value followed by the codeBase keyword is the originating location
of the code to which permissions are to be granted. The value of the
codeBase entry must be represented as a double-quoted string, formatted
as a URL. This means that it should always contain forward slashes (/)
even if the platform is a Windows system, since backslashes (\) are not
allowed in a URL. Absence of this optional name-value pair indicates that
the specified permissions are to be granted to all code, regardless of its
originating location.

Let’s see some examples of valid code bases:

 • To grant the permissions to all class files in a specific directory, the
codeBase entry must be similar to the following:

codeBase "file:/C:/ibm/itso/"

This is equivalent to:

codeBase "file:/C:/ibm/itso"

 • To grant the permissions to all the class files as well as JAR files in the
specified directory, a wildcard (*) is required at the end of the URL1:

codeBase "file:/C:/ibm/itso/*"
1 This is as per the documentation. However, this was not the case in Java 2 SDK, Standard Edition, V1.2. In fact, by
putting a wildcard (*) at the end of the URL, not only the JAR files were being excluded from the protection domain, but
the class files were also not given the permissions. In effect, the permissions were totally disregarded. The reason for this
bug is that some modifications were made to the method java.io.File.getCanonicalPath(), which on Win32 systems threw
an IOException when canonicalizing a file with a wildcard (*) in its name. This bug is fixed in V1.2.1.
244 Java 2 Network Security

 • To grant the permissions to only a particular JAR file, the codeBase entry
must be similar to the following:

codeBase "file:/C:/ibm/itso/redbook.jar"

The JAR file must be specifically mentioned in the codeBase URL.
However, this does not work for a class file.

 • To grant the permissions to all the class files as well as JAR files in the
specified directory and in all its subdirectories recursively, a minus sign
(-) is required at the end of the URL:

codeBase "file:/C:/ibm/itso/-"

 • permission entries

Each permission entry specifies a permission that is granted to a specific
code source.

A permission entry begins with the keyword permission, followed by the
fully qualified permission class name, such as java.io.FilePermission,
java.util.PropertyPermission, etc. (see 3.6, “The Policy File” on page 93).
The target field refers to the target of the permission if any, and is
represented as a double-quoted string, such as "java.home" for
PropertyPermission. A double-quoted list of one or more actions can
follow, such as "read" or "write" or "read,write" (multiple actions are
separated by commas). This refers to the actions that are allowed.

As we observed in 3.6, “The Policy File” on page 93, not all of the
Permission classes defined in the Java 2 platform have applicable actions
yet. The only system Permission classes that do have actions are
FilePermission (read, write, execute, delete), PropertyPermission (read,
write) and SocketPermission (resolve, accept, connect, listen).

A permission entry always terminates with a semicolon (;).

The last item in the permission statement is composed of the signedBy
keyword, followed by a double-quoted string indicating a signer. Each
signer entity is indicated by the corresponding alias in the keystore. A
signed permission is granted to the specified code source only if the
permission class itself is in JAR format and is signed by the private key
corresponding to the public key in the certificate referred to by the signer’s
alias. This is useful for permission classes that are not part of the Java
core API; these non-standard permission classes are often remotely
loaded, and signing by a trusted entity is one way to ensure code
authenticity.

When it comes to signing applets and applications, multiple signers are
allowed, and this means that the code must be signed by all of these and
not a subset. However, this is not true for Permission classes. The JAR file
Security Configuration Files in the Java 2 SDK 245

of a Permission class can be signed by a single entity. If multiple entities
apply their digital signatures to the JAR file of a Permission class, only the
first signature takes effect, and the others are disregarded.

Absence of the optional signedBy specification means that the permission
in question is granted to the specified code source regardless of any
digital signature applied to the permission class file.

Let’s look at some examples of syntactically correct grant entries:

 • The following grant entry allows all code (irrespective of the code base
and eventual signers) to read the property java.version from the system:

 • The following grant entry in a valid policy file would give JAR files signed
by IBM and residing in the directory D:\ibm or its subdirectories recursively
read and write file permissions to all the files in the system:

 • We modify the signedBy entry above by specifying a new signer, ITSO:

Now the JAR files in the local directory D:\ibm and signed only by IBM will
not have access. Only if signed by both IBM and ITSO they will be granted
permission.

 • Here is another interesting example for a grant entry:

Assuming that a system property user.myhome is not defined, the above
means that only JAR files present in the home directory of the user and
signed by the private key corresponding to the public key present in the

grant {
 permission java.util.PropertyPermission "java.version", "read";
};

grant signedBy "IBM", codeBase "file:/D:/ibm/-" {
 permission java.io.FilePermission "<<ALL FILES>>", "write,read";
};

grant signedBy "IBM, ITSO", codeBase "file:/D:/ibm/-" {
 permission java.io.FilePermission "<<ALL FILES>>", "write,read";
};

grant signedBy "itso" codeBase "file:/${user.home}/*" {
 permission java.io.FilePermission "${user.home}${/}*", "read,write";
 permission java.io.FilePermission "${user.myhome}${/}*", "read";
};
246 Java 2 Network Security

certificate referred to by the alias itso in the keystore are allowed to read
and write all files in the home directory of the user.

There are some points to note in this example:

1. ${user.home} is expanded to its value, which is the user’s home
directory, only if the security properties file, java.security, sets the
property policy.expandProperties to true (see 8.3, “The Security
Properties File, java.security” on page 234). Property expansion is
allowed in a policy file anywhere a double-quoted string is used.

2. ${/} or ${file.separator} indicates the file separator specific to the
platform. The value of this variable is the file separator used on the
system, but again, this requires that property expansion is allowed in
the java.security file. However, the file separator variable should not be
used in the codeBase entry as this requires a URL-formatted string as its
value, so only forward slashes (/) are allowed, and backslashes (\) are
forbidden, irrespective of the platform.

Other property variables, such as ${user.home}, can be used in the
codeBase statement, but if they include a file separator, this would
explode to a forward slash (/) and not to a backslash (\). This would
happen even on a Windows system, because the value for a codeBase
must be URL-formatted. So, even if the value of user.home is
something like C:\WINNT\Profiles\pistoia.000 (see Figure 335 on page
642 and Figure 336 on page 643), in a codeBase entry ${user.home}
would explode to C:/WINNT/Profiles/pistoia.000.

3. ${user.home}${/} is allowed in the permission entry, but ${user.${abcd}}
is not, even though ${abcd} might expand to home. In other words,
nested variables cannot be used. The reason for this limitation is that
the property parser does not recognize nested properties; it simply
looks for the first ${, and then keeps looking until it finds the first } and
tries to interpret the result. In this case, it would try to interpret
${user.${abcd} as a single property, but fails if there is no such
property.

4. If not using the file separator variable ${/}, on a Windows system a
single backslash (\) should be replaced by a double backslash (\\) every
time a file separator is written in a permission entry of a policy file. So,
for example, C:\WINNT\Profiles\pistoia.000 would be written as
C:\\WINNT\\Profiles\\pistoia.000. The double backslashes (\\) are
necessary to represent a single backslash (\) because in a policy file
the strings are processed by a tokenizer (java.io.StreamTokenizer),
which allows a single backslash (\) to be used as an escape character
(for example, \n indicates a new line). Thus, two backslashes (\\) are
required to indicate a single backslash (\). After the tokenizer has
Security Configuration Files in the Java 2 SDK 247

processed the above FilePermission target string, converting double
backslashes (\\) to single backslashes (\), the end result is the actual
path.

5. If a property cannot be expanded in a keystore entry, grant entry or
permission entry, that specific entry is totally ignored. So, assuming that
a system property user.myhome is not defined, the permission entry:

permission java.io.FilePermission "${user.myhome}${/}*", "read";

is completely disregarded.

8.5 An Example of Security Settings in the Java 2 Platform

Let’s see now an example of how a policy affects the functioning of a simple
application.

8.5.1 The Count Application Source Code
We consider again the simple Count application shown in Figure 44 on page
120 and Figure 45 on page 121. The purpose of this application is to count
the characters in a text file, whose name is passed on the command line. The
code Count.java is shown in the following figure:

Figure 106. (Part 1 of 2). Count.java

From the discussion above, it is clear that the Java 2 platform lacks the
concept of negative permission. That is, according to the Java 2 security
architecture, you cannot specifically deny a permission. Everything is
restricted by default, and you must grant specific permissions to specific
codes, as explained above.

The Concept of Negative Permission in Java 2

import java.io.*;

public class Count
{
 public static void main(String[] args) throws Exception
 {
 int count=0;
 if (args.length >= 1)
 {
 FileInputStream fis = new FileInputStream(args[0]);
248 Java 2 Network Security

Figure 107. (Part 2 of 2). Count.java

We save the Count.java file in the directory D:\itso\ch08.

8.5.2 A Sample Text File
Then we write a sample text file to use in our scenario. We consider the file
itso.txt, shown in Figure 46 on page 121. We save it in the directory
D:\itso\textFile. The contents of this file are shown again in the following
figure:

Figure 108. itso.txt

8.5.3 Compiling the Application
Then, we compile Count.java:

javac Count.java

This command creates a file called Count.class in the same directory,
D:\itso\ch08, as is the Java file Count.java.

 try
 {
 while (fis.read() != -1)
 count++;
 System.out.println("Hi! We counted " + count + " chars.");
 }
 catch (Exception e)
 {
 System.out.println("No characters counted");
 System.out.println("Exception caught" + e.toString());
 }
 }
 else
 System.err.println("Usage: Count file_name");
 }
}

Marco Pistoia
Duane Reller
Deepak Gupta
Milind Nagnur
Ashok Ramani
Security Configuration Files in the Java 2 SDK 249

8.5.4 Running the Application without a Security Manager
At this point, we can run Count against the text file itso.txt. This can be done
through the following command, launched from the directory D:\itso\ch08:

java Count D:\itso\textFile\itso.txt

Although the Count application attempts to read to a file in the local file
system, and no read permissions have been granted to its code source yet,
we get the output as expected, as all applications have by default full access
to all the system resources, unless a security manager is invoked:

Hi! We counted 70 chars.

8.5.5 Running the Application with the Default Security Manager
Now, let’s run this program with restricted permissions, by invoking the default
security manager, java.lang.SecurityManager. The command to do so is the
following:

java -Djava.security.manager Count D:\itso\textFile\itso.txt

The output is shown in the following screen:

As you can see, we got an AccessControlException. This is because we have
invoked the default security manager, and without the adequate permission
the Count application is by default denied read access to the local file system.

8.5.6 Policy File Modification
Now we want to demonstrate how an adequate modification to one of the
policy files in effect can modify the behavior of the Count application when
run under the default security manager.

Keeping the default java.security file, shown in Figure 105 on page 234, we
see that a user-defined policy file, called .java.policy and placed in the user
home directory, will be added and combined to the system-wide policy file. It
is recommended to modify the user-defined policy file, rather than the

Exception in thread "main" java.security.AccessControlException: access denied
(java.io.FilePermission D:\itso\textFile\itso.txt read)
 at java.security.AccessControlContext.checkPermission(Compiled Code)
 at java.security.AccessController.checkPermission(AccessController.java:403)
 at java.lang.SecurityManager.checkPermission(SecurityManager.java:549)
 at java.lang.SecurityManager.checkRead(SecurityManager.java:864)
 at java.io.FileInputStream.<init>(FileInputStream.java:65)
 at Count.main(Compiled Code)
250 Java 2 Network Security

system-wide one. The user-defined policy file does not exist by default, so we
create it with a text editor, and insert in it the following grant entry:

The grant entry above gives permission to all the class files stored in the local
directory D:\itso\ch08 to access the file D:\itso\textFile\itso.txt in read mode.

We can then run the program again and see that this time it works as
expected. The code is now able to read the input file.

In this example, we added the policy in the .java.policy user-defined policy
file. Another possibility would have been to create a new policy file, say,
newpolicy, stored for example in the same directory where the Count.class
file is. Then the Count application could have been run using the
-Djava.security.policy command line option, as shown:

java -Djava.security.manager -Djava.security.policy=newpolicy Count D:\itso\textFile\itso.txt

As we explained in 8.3, “The Security Properties File, java.security” on page
234, an extra policy can be passed on the command line with the option
-Djava.security.policy flag only if in the java.security file the
policy.allowSystemProperties entry is set to true.

Alternatively, if you are a system administrator, you can modify the
java.security file and specify the policy file newpolicy in addition to the
system-wide and user-defined policy files. The entries to do this in the
java.security file are:

policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy
policy.url.3=file:D:/itso/ch08/newpolicy

In this section we showed how to add a policy by manually editing a policy
file. Care should be taken when manually editing a policy file, since a mistake
in the syntax could compromise the policy of your system. We already saw in
other parts of this book that the Java 2 SDK provides a utility that helps you
create or modify a policy file through a graphical user interface (GUI), limiting
the possibilities of inadvertent syntax errors. This utility is called Policy Tool,
and we will see more details about it in 9.4, “Policy File Creation and
Management Tool” on page 288.

grant codeBase "file:/D:/itso/ch08/" {
 permission java.io.FilePermission "D:${/}itso{/}textFile${/}itso.txt", "read";
};
Security Configuration Files in the Java 2 SDK 251

8.6 File Read Access to Files in the Code Base URL Directory

Although the default security manager prevents untrusted code from having
read access to the system files, there is an exception to this rule: a class file
is automatically granted, by the default security manager, read access to all
files contained in the class’ directory and all its subdirectories recursively. So
a class file does not need explicit permission to read a file from the same URL
location directory it is in, or recursively from a subdirectory of that directory,
because this permission is automatically granted. Notice, however, that this
property is not valid for JAR files, which still require an explicit permission.

8.7 Security Properties and Policy File Protection

One thing to keep in mind is that the Java 2 SDK does not provide any
protection to the security properties file or to the policy files. They are stored
without any password protection and they are not encrypted. Moreover, by
default, they are not even protected by the operating system on which the
Java 2 SDK has been installed. So anyone having physical access to your
machine can tamper with these files. For this reason, it is important to
manually protect these files once the Java 2 SDK has been installed. Access
to the machine should be granted to authorized users only, and directory/file
protection should be activated, depending upon the underlying operating
system.

8.8 How to Implement a Policy Server

A policy server is a Web server machine that provides access to a
system-wide policy file for all the client machines connected to the same
network. As discussed in 8.3, “The Security Properties File, java.security” on
page 234, there are two features of the Java security implementation that
allow the creation of a policy server:

1. The fact that the java.security file can specify policy files using the HTTP
protocol makes it possible to configure the local system’s policy using a
policy file retrieved from a remote system.

2. The ability to expand system properties in policy files makes it possible to
use the same policy file on different operating systems.

This way system administrators can set up an environment where a
system-wide policy file is globally accessible on a policy server machine and
shared among all the clients in the network. Users can add their own policy
restrictions by editing local user-defined policy files or by dynamically adding
252 Java 2 Network Security

a policy from the command line, if this is allowed in the Java security
configuration in the java.security file.

In the next scenario, we describe a policy server running on a Windows NT
Server Version 4.0 machine, on which a Web server is installed. The
system-wide policy file, java.policy, is stored on this machine, in the directory
lib/security under the JRE development directory D:\jdk1.2.x\jre. As
discussed in 8.1, “A Note on java.home and the JRE Installation Directory” on
page 225, the Java security configuration files found in this directory affect all
the development tools, such as the Applet Viewer and the Java compiler
javac.

In order to make the system-wide policy file global and accessible from
remote machines, we add the following Pass statement to the HTTP
configuration file of the Web server:

Pass /security/* D:\jdk1.2\jre\lib\security*

Assuming that the host name of the policy server machine is
WTR05218.itso.ral.ibm.com, the above statement means that a user on a
remote machine who wants to access the system-wide policy file simply has
to access the URL http://WTR05218.itso.ral.ibm.com/security/java.policy.

In this scenario, two machines have the role of policy clients: one is another
Windows NT Server Version 4.0 machine, the other one is a RISC/6000
running AIX Version 4.3.2. This scenario is graphically shown in the following
figure:

Figure 109. Policy Server Multiplatform Scenario

Windows NT Policy Server

Windows NT Policy Client AIX Policy Client
Security Configuration Files in the Java 2 SDK 253

On both policy client machines, we modify the java.security file in the
lib${/}security directory under the JRE development directory so that the
policy file URL statements appear as follows:

In other words, we comment out the default entries, and we add a new entry,
which tells the system to retrieve the system-wide policy file from the remote
policy server WTR05218.

Next, we write the code for the following Java applet:

Figure 110. CountApp.java

We compile the Java applet file with the following command:

javac CountApp.java

policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy
policy.url.1=http://WTR05218.itso.ral.ibm.com/security/java.policy

import java.io.*;
import java.applet.*;
import java.awt.Graphics;

public class CountApp extends Applet
{
 public void paint(Graphics g)
 {
 int count=0;
 try
 {
 String s1 = System.getProperty("user.home");
 String s2 = System.getProperty("file.separator");
 FileInputStream fis = new FileInputStream(s1 + s2 + "itso.txt");
 while (fis.read() != -1)
 count++;
 g.drawString("File was accessed. We counted " + count + " chars.", 20, 20);
 }
 catch (Exception e)
 {
 System.out.println("No characters counted");
 System.out.println("Exception caught" + e.toString());
 }
 }
}

254 Java 2 Network Security

This command produces the applet class file CountApp.class.

As you can see, the code above is the applet-version of the Count
application, shown in Figure 106 on page 248 and Figure 107 on page 249.
This applet, which we save in the JRE development directory of the two policy
client machines, attempts to read the contents of the file itso.txt, shown in
Figure 108 on page 249. However, this time the location of the file is the user
home directory. The user home directory is different on the various platforms,
but rather than hard coding it in the applet code, we can make use of the Java
system properties user.home and file.separator to write an applet that is
really portable across the platforms.

Notice that the applet class file is physically saved in all the policy client
machines. We could have used the Web server running as the policy server
to distribute the applet via HTTP, but in this case the code base URL for the
applet would have been the URL of the Web server. Instead, we prefer in this
case to use the local JRE development directory as the code base to show
you an example of policy file portability.

In the system-wide policy file that appears under the JRE development
directory policy server machine, we add the following grant entry to the
default contents:

This means that we are granting all the class and JAR files stored in the Java
home directory and all its subdirectories permission to read the file itso.txt in
the user home directory. We are also granting the same code source
permission to read the system properties of user.home and file.separator.
Since this scenario is run using the Applet Viewer, ${java.home} is translated
into the JRE development directory, as demonstrated in Figure 102 on page
229. This is also the directory where the applet CountApp is stored.

In order to run, the applet needs to be invoked from within an HTML page.
This is the HTML page we wrote for it:

grant codeBase "file:/${java.home}/-" {
 permission java.io.FilePermission "${user.home}${/}itso.txt", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.util.PropertyPermission "file.separator", "read";
};
Security Configuration Files in the Java 2 SDK 255

Figure 111. CountApp.html

The program works as expected on all platforms. In fact, on running the
command:

appletviewer CountApp.html

the following Applet Viewer window is brought up:

Figure 112. CountApp Applet Running

This demonstrates that the policy file on the policy server can be accessed by
the policy clients and the policies defined in it are effective. This is possible
because the Java 2 platform enables the specification of the policy file
through the HTTP protocol. Also notice how we make use of the variables
${java.home}, ${user.home} and ${/}, so that the same file can be used on
UNIX as well as on Windows systems. As discussed in 8.3, “The Security
Properties File, java.security” on page 234, the value of

<HTML>
 <HEAD>
 <TITLE>CountApp Applet</TITLE>
 </HEAD>

 <BODY>
 <CENTER><H2>CountApp Applet</H2>
 <HR>

 <APPLET Code="CountApp.class" Width=300 Height=50>
 <H4>This area contains a Java applet, but your browser is not Java-enabled</H4>
 </APPLET>

 </BODY>
</HTML>
256 Java 2 Network Security

policy.expandProperties in the java.security file must be true on the client
machines to make this happen.
Security Configuration Files in the Java 2 SDK 257

258 Java 2 Network Security

Chapter 9. Java 2 SDK Security Tools

As we introduced in Chapter 3, “The New Java Security Model” on page 69,
the Java 2 SDK provides four security-related tools. These are:

1. The keytool command line utility for key and certificate management

2. The jar command line tool to compress and archive Java class files

3. The jarsigner command line tool to sign and verify Java Archive (JAR)
files

4. The GUI-based Policy Tool for creating and managing policy files

We now describe how to use these tools.

9.1 Key and Certificate Management Tool

The keytool command line utility is used to manage keystores. With this tool,
you can:

1. Create key pairs and self-signed certificates.

2. Export certificates to send to others along with the signed code.

3. Issue certificate signing requests (CSRs) to be sent to certification
authorities (CAs) for signing.

4. Import other peoples’ certificates to verify signatures.

5. Designate trusted certificates and also import trusted root CA certificates
in the CA keystore cacerts.

6. Manage your own keystores.

9.1.1 keytool Syntax
The basic format of the keytool is:

keytool command [option] ... [option]

To get help for this tool, just enter keytool on the command line, with or
without the -help flag. You will get an output similar to the following:
© Copyright IBM Corp. 1997 1999 259

Figure 113. (Part 1 of 2). keytool Commands and Options

keytool usage:

-certreq [-v] [-alias <alias>] [-sigalg <sigalg>]
 [-file <csr_file>] [-keypass <keypass>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <storetype>]

-delete [-v] -alias <alias>
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <storetype>]

-export [-v] [-rfc] [-alias <alias>] [-file <cert_file>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <storetype>]

-genkey [-v] [-alias <alias>] [-keyalg <keyalg>]
 [-keysize <keysize>] [-sigalg <sigalg>]
 [-dname <dname>] [-validity <valDays>]
 [-keypass <keypass>] [-keystore <keystore>]
 [-storepass <storepass>] [-storetype <storetype>]

-help

-identitydb [-v] [-file <idb_file>] [-keystore <keystore>]
 [-storepass <storepass>] [-storetype <storetype>]

-import [-v] [-noprompt] [-trustcacerts] [-alias <alias>]
 [-file <cert_file>] [-keypass <keypass>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <storetype>]

-keyclone [-v] [-alias <alias>] -dest <dest_alias>
 [-keypass <keypass>] [-new <new_keypass>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <storetype>]

-keypasswd [-v] [-alias <alias>]
 [-keypass <old_keypass>] [-new <new_keypass>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <storetype>]

-list [-v | -rfc] [-alias <alias>]
 [-keystore <keystore>] [-storepass <storepass>]
260 Java 2 Network Security

Figure 114. (Part 2 of 2). keytool Commands and Options

Figure 113 on page 260 and Figure 114 on page 261 show the possible
commands that can be entered with the keytool utility and the options that are
associated with those commands.

9.1.2 Store and Private Key Password
The default implementation of the keystore that comes with the Java 2 SDK
protects the keystore with a store password to verify integrity. A private key in
the keystore is stored encrypted and is protected with a private key password,
which should be different from the store password.

Most commands operating on a keystore require the store password. Some
commands require a private key password. Passwords can be specified on
the command line (in the -storepass and -keypass options, respectively).
However, we recommend you not put the password on the command prompt,
because it then becomes visible in the command history; anyone can see it
by examining the history, for example by using the arrow keys on the
command prompt of Windows systems (if doskey is installed) or the Esc-K
key sequence on AIX systems (if the Korn shell is running).

If you do not specify a required password option on a command line, you will
be prompted for it. When typing in a password at the password prompt, the
password is currently echoed; this means that it is displayed exactly as typed,
and not masked by a sequence of asterisks (*), so be careful not to type it in
front of anyone and remember to close the Command Prompt window as
soon as you are done with that specific keytool command. On Windows
systems, there is yet another reason for closing the Command Prompt
window; if you type the full keytool command from the same window again,

 [-storetype <storetype>]

-printcert [-v] [-file <cert_file>]

-selfcert [-v] [-alias <alias>] [-sigalg <sigalg>]
 [-dname <dname>] [-validity <valDays>]
 [-keypass <keypass>] [-keystore <keystore>]
 [-storepass <storepass>] [-storetype <storetype>]

-storepasswd [-v] [-new <new_storepass>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <storetype>]
Java 2 SDK Security Tools 261

you can still use the arrow keys from the keytool prompt to retrieve a
password previously typed in. So, anyone can know your store and private
key passwords if he gets access to your machine and your Command Prompt
window is still open where you accessed your keystore.

9.1.3 Commands and Options Associated with keytool
We now explain the meaning of the commands and options shown in Figure
113 on page 260 and Figure 114 on page 261.

In the keytool command line, command can be one of the following:

 • -certreq

This is used to generate a CSR using the PKCS#10 format. A CSR is
intended to be sent to a CA. The CA will authenticate the certificate
requestor (usually offline) and will return a certificate or certificate chain,
used to replace the existing certificate chain (which initially consists of a
self-signed certificate) in the keystore. The private key and X.500
distinguished name1 associated with the alias of the certificate are used to
create the PKCS#10 certificate request. In order to access the private key,
the appropriate password must be provided, since private keys are
protected in the keystore with a password. If -keypass is not provided at the
command line, and the key password is different from the password used
to protect the integrity of the keystore, the user is prompted for it.

sigalg specifies the algorithm that should be used to sign the CSR. The
CSR is stored in the file csr_file. If no file is given, the CSR is output to
standard output.

Use the -import command to import the response from the CA.

 • -delete

Deletes the entry identified by alias from the keystore. The user is
prompted for the alias, if no alias is provided at the command line.

 • -export

Reads (from the keystore) the certificate associated with alias, and stores
it in the file cert_file. If no file is given, the certificate is output to standard
output. By default, the certificate is output in binary encoding, but will be
output in the printable encoding Base 64 format2 if the -rfc option is
specified.

1 X.500 distinguished names are used to identify entities, such as those which are named by the subject and issuer
(signer) fields of X.509 certificates (see Appendix C, “X.509 Certificates” on page 649). The keytool utility supports the
following subparts: commonName, organizationUnit, organizationName, localityName, stateName, and country.
2 The Base 64 format is a commonly used Internet standard. You could encode binary data in Base 64 by rearranging the
bits of the data stream in such a way that only the 6 least significant bits are used in every byte. For more details, see the
Request for Comments (RFC) 1421 at http://info.internet.isi.edu/in-notes/rfc/files/rfc1421.txt.
262 Java 2 Network Security

If alias refers to a trusted certificate, that certificate is output. Otherwise,
alias refers to a key entry with an associated certificate chain. In that
case, the first certificate in the chain is returned. This certificate
authenticates the public key of the entity addressed by alias.

 • -genkey

Generates a key pair and wraps the public key in an X.509 V1 self-signed
certificate, which is stored as a single-element certificate chain. This
certificate chain and the private key are stored in a new keystore entry,
identified by alias.

keyalg specifies the algorithm to be used to generate the key pair, and
keysize specifies the size of each key to be generated. sigalg specifies the
algorithm that should be used to sign the self-signed certificate; this
algorithm must be compatible with keyalg. Finally, dname specifies the
X.500 distinguished name to be associated with alias, and is used as the
issuer and subject fields in the self-signed certificate. If no distinguished
name is provided at the command line, the user will be prompted for one.

keypass is a password used to protect the private key of the generated key
pair. If no password is provided, the user is prompted for it. If you press
Enter at the prompt, the key password is set to the same password as that
used for the keystore. keypass must be at least 6 characters long.

valDays is the number of days for which the certificate should be
considered valid.

 • -help

Lists all the commands and their options.

 • -identitydb

This command reads the Java Development Kit (JDK) 1.1.x-style identity
database from the file idb_file, and adds its entries to the keystore. If no
file is given, the identity database is read from standard input. If a keystore
does not exist, it is created. Only identity database entries that were
marked as trusted will be imported into the keystore. All other identities
will be ignored. For each trusted identity, a keystore entry will be created.
The identity's name is used as the alias for the keystore entry.

The private keys from trusted identities will all be encrypted under the
same password, storepass. This is the same password that is used to
protect the keystore's integrity. Users can later assign individual
passwords to those private keys by using the -keypasswd keytool command
option.

An identity in an identity database may hold more than one certificate,
each certifying the same public key. But a keystore key entry for a private
Java 2 SDK Security Tools 263

key has that private key and a single certificate chain (initially just a single
certificate), where the first certificate in the chain contains the public key
corresponding to the private key. When importing the information from an
identity, only the first certificate of the identity is stored in the keystore.
This is because an identity’s name in an identity database is used as the
alias for its corresponding keystore entry, and alias names are unique
within a keystore.

 • -import

This command reads the certificate or certificate chain (where the latter is
supplied in a PKCS#7 formatted reply) from the file cert_file, and stores it
in the keystore entry identified by alias. If no file is given, the certificate or
PKCS#7 reply is read from standard input. keytool can import X.509 V1,
V2, and V3 certificates, and PKCS#7 formatted certificate chains
consisting of certificates of that type. The data to be imported must be
provided either in binary encoding format, or in printable encoding Base
64 format. In the latter case, the encoding must be bounded at the
beginning by a string that starts with -----BEGIN, and bounded at the end
by a string that starts with -----END.

When importing a new trusted certificate, the alias you assign to it must
not yet exist in the keystore. Before adding the certificate to the keystore,
keytool tries to verify it by attempting to construct a chain of trust from that
certificate to a self-signed certificate (belonging to a root CA), using
trusted certificates that are already available in the keystore.

If the -trustcacerts option has been specified, additional certificates are
considered for the chain of trust, namely the certificates in the file named
cacerts that we introduced in 8.2.1, “The Certificates KeyStore File
cacerts” on page 233. The cacerts file represents a system-wide keystore
with CA certificates. System administrators can configure and manage
that file using keytool, specifying jks as the keystore type. The cacerts
keystore file ships with five VeriSign root CA certificates whose X.500
distinguished names are shown in Figure 104 on page 233.

If keytool fails to establish a trust path from the certificate to be imported
up to a self-signed certificate (either from the keystore or the cacerts file),
the certificate information is printed out, and the user is prompted to verify
it, for example, by comparing the displayed certificate fingerprints with the
fingerprints obtained from some other (trusted) source of information,
which might be the certificate owner. Be very careful to ensure the
certificate is valid prior to importing it as a trusted certificate! The user
then has the option of aborting the import operation. If the -noprompt option
is given, however, there will be no interaction with the user.
264 Java 2 Network Security

When importing a certificate reply, the certificate reply is validated using
trusted certificates from the keystore, and optionally using the certificates
configured in the cacerts keystore file (if the -trustcacerts option was
specified). If the reply is a single X.509 certificate, keytool attempts to
establish a trust chain, starting at the certificate reply and ending at a
self-signed certificate (belonging to a root CA). The certificate reply and
the hierarchy of certificates used to authenticate the certificate reply form
the new certificate chain of alias.

If the reply is a PKCS#7 formatted certificate chain, the chain is first
ordered (with the user certificate first and the self-signed root CA
certificate last), before keytool attempts to match the root CA certificate
provided in the reply with any of the trusted certificates in the keystore or
the cacerts keystore file (if the -trustcacerts option was specified). If no
match can be found, the information of the root CA certificate is printed
out, and the user is prompted to verify it, for example, again, by comparing
the displayed certificate fingerprints with the fingerprints obtained from
some other (trusted) source of information, which might be the root CA
itself. The user then has the option of aborting the import operation. If the
-noprompt option is given, however, there will be no interaction with the
user.

The new certificate chain of alias replaces the old certificate chain
associated with this entry. The old chain can only be replaced if a valid
keypass, the password used to protect the private key of the entry, is
supplied. If no password is provided, and the private key password is
different from the keystore password, the user is prompted for it.

 • -keyclone

This command creates a new keystore entry, which has the same private
key and certificate chain as the original entry. The original entry is
identified by alias (which defaults to mykey if not provided). The new
(destination) entry is identified by dest_alias. If no destination alias is
supplied at the command line, the user is prompted for it.

If the private key password is different from the keystore password, then
the entry will only be cloned if a valid keypass is supplied. This is the
password used to protect the private key associated with alias. If no key
password is supplied at the command line, and the private key password is
different from the keystore password, the user is prompted for it. The
private key in the cloned entry may be protected with a different password,
if desired. If no -new option is supplied at the command line, the user is
prompted for the new entry's password (and may choose to let it be the
same as for the cloned entry's private key).
Java 2 SDK Security Tools 265

This command can be used to establish multiple certificate chains
corresponding to a given key pair, or for backup purposes.

 • keypasswd

This password changes the password under which the private key
identified by alias is protected, from old_keypass to new_keypass.

If the -keypass option is not provided at the command line, and the private
key password is different from the keystore password, the user is
prompted for it. If the -new option is not provided at the command line, the
user is prompted for it.

 • -list

This command prints to standard output the contents of the keystore entry
identified by alias. If no alias is specified, the contents of the entire
keystore are printed.

This command by default prints the MD5 fingerprint of a certificate:

 • If the -v option is specified, the certificate is printed in human-readable
format, with additional information such as the owner, issuer, and serial
number, and looks similar to the following screen:

 • If the -rfc option is specified, certificate contents are printed using the
printable encoding Base 64 format. An example is shown in the
following screen:

Owner: CN=Marco Pistoia, OU=ITSO, O=IBM Corporation, L=Cary, ST=North Carolina,
C=US
Issuer: CN=Marco Pistoia, OU=ITSO, O=IBM Corporation, L=Cary, ST=North Carolina,
 C=US
Serial number: 371cdccd
Valid from: Tue Apr 20 16:00:13 EDT 1999 until: Mon Jul 19 16:00:13 EDT 1999
Certificate fingerprints:
 MD5: D2:FC:81:5B:EE:39:D1:79:01:AC:1F:90:59:E3:FF:5B
 SHA1: A2:1C:11:3B:E2:6F:A2:46:80:F5:B4:19:62:D9:C5:3C:19:91:34:93
266 Java 2 Network Security

Notice that you cannot specify both -v and -rfc.

 • -printcert

This command, which can be used independently of a keystore, reads the
certificate from the file cert_file, and prints its contents in a
human-readable format. If no file is given, the certificate is read from
standard input.

The certificate may be either binary encoded or in printable encoding
Base 64 format.

 • -selfcert

Generates an X.509 V1 self-signed certificate, using keystore information
including the private key and public key associated with alias. If dname is
supplied at the command line, it is used as the X.500 distinguished name
for both the issuer and subject of the certificate. Otherwise, the X.500
distinguished name associated with alias (at the bottom of its existing
certificate chain) is used.

The generated certificate is stored as a single-element certificate chain in
the keystore entry identified by alias, where it replaces the existing
certificate chain.

sigalg specifies the algorithm that should be used to sign the certificate.

In order to access the private key, the appropriate password must be
provided, since private keys are protected in the keystore with a password.
If keypass is not provided at the command line, and is different from the
password used to protect the integrity of the keystore, the user is
prompted for it.

-----BEGIN CERTIFICATE-----
MIIDITCCAt4CBDcc3M0wCwYHKoZIzjgEAwUAMHYxCzAJBgNVBAYTAlVTMRcwFQYDVQQIEw5Ob3J0
aCBDYXJvbGluYTENMAsGA1UEBxMEQ2FyeTEYMBYGA1UEChMPSUJNIENvcnBvcmF0aW9uMQ0wCwYD
VQQLEwRJVFNPMRYwFAYDVQQDEw1NYXJjbyBQaXN0b2lhMB4XDTk5MDQyMDIwMDAxM1oXDTk5MDcx
OTIwMDAxM1owdjELMAkGA1UEBhMCVVMxFzAVBgNVBAgTDk5vcnRoIENhcm9saW5hMQ0wCwYDVQQH
EwRDYXJ5MRgwFgYDVQQKEw9JQk0gQ29ycG9yYXRpb24xDTALBgNVBAsTBElUU08xFjAUBgNVBAMT
DU1hcmNvIFBpc3RvaWEwggG3MIIBLAYHKoZIzjgEATCCAR8CgYEA/X9TgR11EilS30qcLuzk5/YR
t1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow9subVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQ
IsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bTxR7DAjVUE1oWkTL2dfOuK2HXKu/yIgMZndFIAccCFQCX
YFCPFSMLzLKSuYKi64QL8Fgc9QKBgQD34aCF1ps93su8q1w2uFe5eZSvu/o66oL5V0wLPQeCZ1FZ
V4661FlP5nEHEIGAtEkWcSPoTCgWE7fPCTKMyKbhPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE1YvH7
YnoBJDvMpPG+qFGQiaiD3+Fa5Z8GkotmXoB7VSVkAUw7/s9JKgOBhAACgYBLonLwYk+FBPFgQq8b
CxLk1nsxfzy/W+PfIpo6EWNVxVj6FUDktBAGpx/ZElsgd3PMKaAPauqG3LXMFHmVLOyGtjPGGbFW
/n9A0JMC7OKZ3aJWKYow9rbIvYU5AqJnM0HJy1O0ZijZ0LgJzdJ0QQomgEN7zVN2CicSweN6+IfV
sTALBgcqhkjOOAQDBQADMAAwLQIVAIkqKqc+7f0r84DRqx9NMWZFMCJFAhQaDCKtP6V60ygtuG8W
ijdzP5qFag==
-----END CERTIFICATE-----
Java 2 SDK Security Tools 267

valDays is the number of days for which the certificate should be
considered valid.

 • -storepasswd

This command changes the password used to protect the integrity of the
keystore contents. The new password is new_storepass, which must be at
least 6 characters long.

The commands above that require the presence of a keystore create it if one
is not already present.

There are three options that are valid for all the above commands, except
-help and -printcert. One of these is the -storepass option, which we have
already commented on. The two others are:

 • -storetype

This specifies the type of keystore to be instantiated. The default keystore
type is the one that is specified as the value of the keystore.type property
in the security properties file. This value is returned by the static
getDefaultType() method in java.security.KeyStore.

 • -keystore

This option specifies the keystore location. It defaults to the file .keystore
in the user's home directory, as determined by the user.home system
property. The value of the user.home system property can be found by
using one of the two applications described in Appendix A, “Getting
Internal System Properties” on page 641.

Finally, the -v option can be used with all the commands above, except -help.
If it appears, it signifies verbose mode, and detailed certificate information will
be output.

Notice also that:

 • The -alias option refers to the alias of an entry present in the keystore. If
the alias is not present, the keystore throws the appropriate warning and
exits. On the other hand, the -genkey exits and an error message is seen
on the screen if the alias is already present.

 • The -validity option refers to the length of time a certificate is valid and
corresponds to the number of days the certified entity can rely on the
public value, if the associated private key has not been compromised. In
general, the validity period chosen depends on a number of factors, such
as the strength of the private key used to sign the certificate or the amount
one is willing to pay for a certificate. By default, if a validity value is not
explicitly specified, it is set to 90 days.
268 Java 2 Network Security

An interesting thing to note here is that the keytool allows the validity to be
set to 0 or even a negative number. This is because for testing purposes
any date is assumed to be valid.

 • The -file option refers to the file from which to import the certificate or
export the certificate to.

 • The -keysize option refers to the modulus length of the key to be
generated.

Some options have default values, shown in the following table:

Table 9. Default Values for keytool Options

The signature algorithm, specified with the -sigalg option, is derived from the
algorithm of the underlying private key; if the underlying private key is of type
DSA, the -sigalg option defaults to SHA1withDSA, and if the underlying private
key is of type RSA, -sigalg defaults to MD5withRSA.

9.1.4 An Example of keytool Usage
The session shown in the following figure is an example of how to use the
-genkey command associated with the keytool utility to generate a key pair
and wrap the public key in a self-signed certificate:

Figure 115. (Part 1 of 2). Usage of the -genkey Command Associated with the keytool Utility

Option Default Value

-alias mykey

-keyalg DSA

-keysize 1024

-validity 90

-keystore ${user.home}${/}.keystore

-file stdin if reading

stdout if writing

D:\itso>keytool -genkey -keystore deepakstore -alias TestKey
Enter keystore password: deepak
What is your first and last name?
 [Unknown]: Deepak Gupta
What is the name of your organizational unit?
 [Unknown]: ITSO
Java 2 SDK Security Tools 269

Figure 116. (Part 2 of 2). Usage of the -genkey Command Associated with the keytool Utility

Note that if you enter N when you are prompted to confirm the correctness of
the information you typed in, or enter a carriage return or type anything junk,
the tool will ask you for all the information again. You can simply press Enter
for all the correct information and change the one you want.

Several other examples in later sections will show how to use all the
commands and options associated with the keytool command line utility.

9.2 Java Archive Tool

One characteristic of the dynamic loading of class files is that a typical applet
may involve a number of small network transfers. It may also involve the
retrieval of other files, such as graphic images. Given the indifferent
performance of many World Wide Web (WWW) connections, this can be a
serious performance hit. JDK 1.1 provided relief for this by introducing the
JAR format for packing everything into a single file. A JAR file can be created
and managed by using the Java Archive command line tool jar. This utility,
also a part of the Java 2 SDK, allows for compression, which can further
improve performance. The compression is done based on the ZIP and the
ZLIB compression format3. This is also the only archive format (that we know
of) which is cross platform.

In addition to a number of files packed together and possibly compressed, a
JAR file can contain a special text file, called JAR manifest or simply
manifest, which is a description of each file contained in the JAR file itself.

3 More information on the ZLIB format can be seen on the site http://www.cdrom.com/pub/infozip/zlib/.

What is the name of your organization?
 [Unknown]: IBM
What is the name of your City or Locality?
 [Unknown]: Cary
What is the name of your State or Province?
 [Unknown]: NC
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=MyName, OU=MyOrgUnit, O=MyOrg, L=City, ST=State, C=IN> correct?
 [no]: Y
Enter key password for <TestKey>
 (RETURN if same as keystore password):

D:\itso>
270 Java 2 Network Security

The manifest file includes the name of each file and other information used to
identify particular classes or beans.

9.2.1 Options of the jar Command
We now describe more details about the jar command. If you know the UNIX
tar command, jar will be very familiar. In fact, these two commands have
almost the same syntax. The syntax for a jar command is:

jar {ctxu}[vfm0M] [jar-file] [manifest-file] [-C dir] files ...

Notice that at least one of the options ctxu must be specified.

The meaning of the available command flags is explained in the following
table:

Table 10. jar Command Options

If any file is a directory then it is processed recursively.

We now show, through some examples, how to use the jar command line
tool:

 • To archive two class files, say itso.class and javasec.class, and one text
file, say ibmreadme.txt, into an archive called ibmclasses.jar, enter:

jar cvf ibmclasses.jar itso.class javasec.class ibmreadme.txt

Notice that the options of the jar command can be preceded by a minus
sign or not, so the command above could have been typed as:

Flag Function

c Create a new JAR file

t List the table of contents for a JAR file

x Extract named (or all) files from a JAR file

u Update an existing JAR file

v Generate a verbose output on standard output

f Specify the JAR file name, else it is written to stdout

m Include manifest information from a specified manifest file

0 Store files in a JAR file without any compression

M Do not create a manifest file for the entries

C Change to the following directory and include the following file
Java 2 SDK Security Tools 271

jar -cvf ibmclasses.jar itso.class javasec.class ibmreadme.txt

 • To extract all these files from this archive, enter:

jar xvf ibmclasses.jar

 • To view the contents of the JAR file, the command is:

jar tvf ibmclasses.jar

 • To update the contents of the JAR file ibmclasses.jar with another file
called file.txt, enter:

jar uvf ibmclasses.jar file.txt

 • Note that if you do not specify the f option, jar writes the output to
standard output. For example, after entering:

jar cv test.txt

the following would be displayed on standard output:

Figure 117. Output of the jar Command Displayed on stdout

No JAR file is created in this case. However, if you redirect the output to a
file, say myJar.jar, then the command:

jar cv test.txt > myJar.jar

is equivalent to:

jar cvf myJar.jar test.txt

 • The v option is for verbose output on the screen. For example, when
creating the JAR file myJar.jar with the command:

jar cvf myJar.jar test.txt

the following information is displayed on standard output while the
command is executing:

If the v option is not specified, the command is executed without any user
acknowledgment.

added manifest
adding: test.txt (in=13) (out=15) (deflated -15%)
272 Java 2 Network Security

 • The 0 option is used when you do not wish to compress the single files that
are part of the JAR file. In other words, using this option, the files are
packed together, but they are not compressed.

Using this flag is a trade off between speed and download time.
Uncompressed JAR files will take a longer time to download over the
network. However, once downloaded, classes can be extracted from it
faster.

 • The command:

jar cvf ibm.jar ibm.class java\redbook.class

creates the JAR file ibm.jar including the two files ibm.class and
redbook.class, which are located in the java directory. Because the
directory tree is respected by the jar command, you would see the same
files and same directory structure when extracting the JAR file ibm.jar.

Instead of typing java\redbook.class, you could have used the -C option of
the jar command, and typed:

jar cvf ibm.jar ibm.class -C java redbook.class

The -C option is used to specify the directory where a file is located.
However, in this case the directory hierarchy is not maintained. Upon
extracting the JAR file ibm.jar, the two files ibm.class and redbook.class
are located in the same directory.

 • The wildcard character (*) is allowed in the syntax of the jar command
and can be used to archive all files in a directory. For example:

jar cvf myJarFile.jar *

 • The manifest uses the RFC822 ASCII format4, so it is easy to view and
process the manifest file contents. Using the m option of the jar command,
you can include manifest information from a specified existing file. For
example, if you want to produce a JAR file, say myJarFile.jar, from the
class file MyClass.class, but you want to provide your own manifest file, or
at least a subset of the information a manifest file should contain, then the
right command would be something like:

jar cvmf myManifestInfo myJarFile.jar MyClass.class

where MyManifestInfo is the file containing the manifest file information.
The jar tool takes the information from that file, and builds a manifest file.
Notice that the order with which you entered the information in the
manifest information file might be rearranged by the jar tool according to
specific syntax rules.

4 See http://info.internet.isi.edu:80/in-notes/rfc/files/rfc822.txt.
Java 2 SDK Security Tools 273

 • The -M option of the jar command is used to create a JAR file without the
manifest file. For example the command:

jar cvMf myJarFile.jar MyClass.class YourClass.class

would produce a JAR file, called myJarFile.jar, from the class files
MyClass and YourClass. However, this file would not contain the manifest
file. This way, the jar tool is only acting as a mere compressing tool and it
would be equivalent to other archiving and compressing tools such as
WinZip.

 • If both the m and M options are present, the m option is ignored and the
resulting JAR file will not have a manifest file.

We will give you more details about the m and M options and their usage in
12.1, “JAR Files and Applet Signing” on page 385.

9.2.2 Running a JAR File
Java class files inside JAR files can be run like uncompressed and unpacked
class files:

 • The applet files inside a JAR file can be used by an HTML file specifying
an <APPLET> tag with the Archive attribute. The syntax of that tag should be
something similar to the following:

<APPLET Code="itso.class" Archive="ibm.jar">

 • To run a class file in a JAR file on the command prompt, the -jar option of
the java command has to be used. The syntax is as shown next:

java -jar [-options] jar_file [args ...]

Note here that java looks at the manifest file for the Main-Class: parameter
and runs the class file specified by it. By default, when a JAR file is created,
this information is not added in the JAR manifest and there is no prompting by
the tool to ask for this class name. So, assuming that MyClass is the main
class of the program that has to be archived and compressed, these are the
steps you should follow:

1. Create a text file, called say, MyManifestInfo.txt, which only contains the
following:

In other words, this file should contain the line:

Main-Class: MyClass

Main-Class: MyClass
274 Java 2 Network Security

followed by an empty line. Notice that after the class name, you should
type Enter, in order to create an end-of-line character, or this file will be
ignored by the jar tool.

A point to note here is that the extension .class must not be specified in
this manifest information file.

2. From the directory where MyClass.class is, run the following command:

jar cvfm MyClass.jar META-INF\MyManifestInfo.txt MyClass.class

For detailed information about this process, refer to 12.1, “JAR Files and
Applet Signing” on page 385.

9.3 JAR Signing and Verification Tool

The JAR signing and verification tool offered by Java 2 SDK is called
jarsigner. This is a command line tool, used to sign JAR files and to verify
signatures and the integrity of signed JAR files. As we will see in 12.1, “JAR
Files and Applet Signing” on page 385, a signed JAR file includes a signature
file, with extension SF, and a signature block file, with extension DSA:

 • For each source file included in the JAR file, the SF file has three lines,
just as in the manifest file, listing the following:

1. The file name
2. The name of the digest algorithm used (SHA)
3. SHA digest value

In the manifest file, the Signature Hash Algorithm (SHA) digest value for
each source file is the digest of the binary data in the source file. In the SF
file, on the other hand, the digest value for a given source file is the hash
of the three lines in the manifest file for the source file. The signature file
also, by default, includes a header containing a hash of the whole manifest
file. This is an example of an SF file:

 • The SF file is signed and the signature is placed in the DSA file. The DSA
file also contains, encoded inside it, the certificate or certificate chain from
the keystore which authenticates the public key corresponding to the
private key used for signing.

Signature-Version: 1.0
SHA1-Digest-Manifest: i/yxbIQglNG2IVL/bL9Idh85TYM=
Created-By: 1.2.1 (Sun Microsystems Inc.)

Name: Count.class
SHA1-Digest: e3V355tfsF1jVzzkKy3cas3bazk=
Java 2 SDK Security Tools 275

Inside the JAR file, both the SF and DSA files are found in the directory
META-INF. This directory was previously created by the jar tool and already
contains the manifest file MANIFEST.MF.

The basic format for the jarsigner command for JAR file signing purposes is:

jarsigner [options] jar-file alias

If you want a JAR file to be signed by the private key of a particular entity,
alias should indicate the name with which the corresponding public key has
been aliased in the keystore. The tool might prompt for the password of the
keystore and the key, if any, and if not already provided as part of the options.

The syntax of the jarsigner command, when used for signature and integrity
verification purposes, is the following:

jarsigner -verify [options] jar-file

Quick help on this command can be obtained by entering jarsigner on the
command prompt, with or without the -help flag. The output of this is shown in
the next figure:

Figure 118. jarsigner Help on the Command Line

[-keystore <url>] keystore location

[-storepass <password>] password for keystore integrity

[-storetype <type>] keystore type

[-keypass <password>] password for private key (if different)

[-sigfile <file>] name of .SF/.DSA file

[-signedjar <file>] name of signed JAR file

[-verify] verify a signed JAR file

[-verbose] verbose output when signing/verifying

[-certs] display certificates when verbose and verifying

[-internalsf] include the .SF file inside the signature block

[-sectionsonly] don’t compute hash of entire manifest
276 Java 2 Network Security

We now explain the meaning of the options shown in Figure 118 on page 276:

 • -keystore

This option specifies the URL of the keystore location. This defaults to the
file .keystore in the user's home directory, as determined by the user.home
system property (see Appendix A, “Getting Internal System Properties” on
page 641).

A keystore is required when signing, so you must explicitly specify one if
the default keystore does not exist (or you want to use one other than the
default).

A keystore is not required when verifying, but if one is specified, or the
default exists, and the -verbose option was also specified, additional
information is output regarding whether or not any of the certificates used
to verify the JAR file are contained in that keystore.

Note that the -keystore argument can actually be a file name (and path)
specification rather than a URL, in which case it is treated the same as a
file: URL. That is,

-keystore D:\itso\myKeystore

is equivalent to:

-keystore file:/D:/itso/myKeystore

 • -storepass

This option specifies the password which is required to access the
keystore. This is only needed when signing (not verifying) a JAR file. In
that case, if a -storepass option is not provided at the command line, the
user is prompted for the password.

See 9.1.2, “Store and Private Key Password” on page 261 for
recommendations on providing passwords to command line utilities.

 • -storetype

This option specifies the type of keystore to be instantiated. The default
keystore type is the one that is specified as the value of the keystore.type
property in the java.security properties file. That value is also returned by
the static getDefaultType() method in java.security.KeyStore.

 • -keypass

This option specifies the password used to protect the private key of the
keystore entry addressed by the alias specified on the command line. The
password is required when using jarsigner to sign a JAR file. If no
password is provided on the command line, and the required password is
different from the store password, the user is prompted for it.
Java 2 SDK Security Tools 277

See 9.1.2, “Store and Private Key Password” on page 261 for
recommendations on providing passwords to command line utilities.

 • -sigfile

This option specifies the base file name to be used for the generated SF
and DSA files. For example, if file is mySign, the generated SF and DSA
files will be named MYSIGN.SF and MYSIGN.DSA, and will be placed in
the META-INF directory of the signed JAR file, where the manifest file also
resides.

The characters in file can be only letters, numbers, the underscore (_)
and hyphen (-) characters. However, note that all lowercase characters
will be converted to uppercase for the SF and DSA file names.

If no -sigfile option appears on the command line, the base file name for
the SF and DSA files will be the first 8 characters of the alias name
specified on the command line, all converted to uppercase. If the alias
name has fewer than 8 characters, the full alias name is used. If the alias
name contains any characters that are not legal in a signature file name,
each such character is converted to an underscore (_) character in forming
the file name.

As an example, the command:

jarsigner test.jar ibm

creates the files IBM.SF and IBM.DSA in the JAR file test.jar. By using the
-sigfile option, you can specify a different file name. So, the command:

jarsigner -sigfile itso test.jar IBM

creates the files ITSO.SF and ITSO.DSA in the JAR file test.jar.

 • -signedjar

This option specifies the name to be used for the signed JAR file. If no
name is specified on the command line, the name used is the same as the
input JAR file name; in other words, the unsigned JAR file is overwritten
with the signed JAR file.
278 Java 2 Network Security

 • -verify

If this option appears on the command line, the specified JAR file will be
verified, but not signed. If the verification is successful, the following
message will be displayed:

jar verified.

If you try to verify an unsigned JAR file, or a JAR file signed with an
unsupported algorithm (for example, RSA when you do not have an RSA
provider installed), the following is displayed:

jar is unsigned. (signatures missing or not parsable)

It is possible to verify JAR files signed using either jarsigner or the JDK
1.1 javakey tool, or both.

 • -verbose

If this appears on the command line, it indicates verbose mode, which
causes jarsigner to output extra information on the progress of the JAR
signing or verification.

 • -certs

If this option appears on the command line, along with the -verify and
-verbose options, the output includes certificate information for each signer
of the JAR file.

 • -internalsf

In the past, the DSA file generated when a JAR file was signed included a
complete encoded copy of the SF file also generated. This behavior has

In JDK 1.1, digital signatures were applied by using the javakey
command, whose functionality in the Java 2 SDK has been replaced
and enhanced by keytool and jarsigner. The javakey tool added a sig
extension to the jar extension of the JAR file to be signed. So, for
example, after signing test.jar with javakey, you would have found a file
called test.jar.sig.

In the Java 2 SDK this naming convention has been simplified, and
jarsigner does not add any extension to the jar extension of the JAR file.
By default, signing test.jar with jarsigner, produces another file that is
still called test.jar, and that contains also the digital signature
information. Therefore, this file overwrites the unsigned JAR file, unless
you use the -signedjar option to specify a different name for the signed
JAR file.

Signed JAR File Extension
Java 2 SDK Security Tools 279

been changed. To reduce the overall size of the output JAR file, the DSA
file by default does not contain a copy of the SF file. If -internalsf appears
on the command line, the old behavior is utilized.

This option is used mainly for testing; in practice, it should not be used,
since using it eliminates an optimization.

 • -sectionsonly

If this option appears on the command line, the SF file generated when a
JAR file is signed does not include a header containing a hash of the
whole manifest file. It contains only information and hashes related to
each source file included in the JAR file.

For example, without this option, the SF file looks like the following:

On the other hand, if the option -sectionsonly is specified, the SF file looks
like the following:

Notice that the SHA1-Digest-Manifest: header information is not included in
the file generated with the -sectionsonly option.

By default, this header is added as an optimization, so it is generally not
advisable to use the -sectiononly option.

9.3.1 jarsigner Scenario
Using jarsigner and keytool together you can send signed code or even data
to another person and he can verify the signature ensuring authenticity and
integrity. To illustrate this, consider an example where a sender Deepak

Signature-Version: 1.0
SHA1-Digest-Manifest: 6nvtQTd+0Cb9m0xIEQcg3lzjuUw=
Created-By: 1.2 (Sun Microsystems Inc.)

Name: itso.txt
SHA1-Digest: HZxJifZphtKVJLL75v060Hx7ZWE=

Name: redbook.class
SHA1-Digest: AzHPdtYGvpHDSvHd6YCpQ/ifZa4=

Signature-Version: 1.0
Created-By: 1.2 (Sun Microsystems Inc.)

Name: itso.txt
SHA1-Digest: HZxJifZphtKVJLL75v060Hx7ZWE=

Name: redbook.class
SHA1-Digest: AzHPdtYGvpHDSvHd6YCpQ/ifZa4=
280 Java 2 Network Security

creates a JAR file and a key pair with an associated certificate, signs the JAR
file, exports his certificate and sends the JAR file along with his certificate to
the receiver named Ashok. Ashok imports the certificate sent by Deepak into
his keystore and verify the signature on the JAR file.

The scenario above requires the following steps:

 • At the sender’s end:

1. Create a key pair and the associated self-signed certificate.

This is done using the -genkey command of the keytool utility, as shown
in the following session screen:

The keystore, deepakstore, is created only if it is not already present. A
public-private key pair and a self-signed certificate are generated and
associated with the alias deepak.

2. Sign the JAR file with the private key generated.

Assuming we have a JAR file called myjar.jar, this step is performed by
using the jarsigner utility, as illustrated in the following session screen:

D:\deepak>keytool -genkey -keystore deepakstore -alias deepak
Enter keystore password: deepak
What is your first and last name?
 [Unknown]: Deepak Gupta
What is the name of your organizational unit?
 [Unknown]: ITSO
What is the name of your organization?
 [Unknown]: IBM
What is the name of your City or Locality?
 [Unknown]: Raleigh
What is the name of your State or Province?
 [Unknown]: NC
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Deepak Gupta, OU=ITSO, O=IBM, L=Raleigh, ST=NC, C=US> correct?
 [no]: Y

Enter key password for <deepak>
 (RETURN if same as keystore password):

D:\deepak>

D:\deepak>jarsigner -keystore deepakstore myjar.jar deepak
Enter Passphrase for keystore: deepak

D:\deepak>
Java 2 SDK Security Tools 281

The jarsigner tool would have prompted us for the key password of the
deepak alias, if this password had been different from the keystore
password.

3. Export the self-signed certificate created to a file.

To do this, the -export option of the keytool utility is used. Assuming we
want to export the certificate to the file deepak.crt, this step is
illustrated in the following session screen:

4. Send the certificate along with the code.

The files deepak.crt and myjar.jar can be sent to the receiver, who can
use the contents in myjar.jar after verifying the signature.

 • At the receiver’s end:

1. Verify the received certificate and import it into the receiver’s keystore.

Assume that the receiver has a keystore called ashokstore with store
password ashokr. Then the import operation can be performed by using
the -import command associated with the keytool utility option, as
shown in the following session screen:

Note that the tool shows you the certificate information and asks
whether to trust the certificate or not.

Since the default for alias is mykey, when we import a certificate in a
local keystore it gets stored in the keystore with the alias mykey, if such
an alias does not exist already. If you wish to specify another alias you

D:\deepak>keytool -export -keystore deepakstore -file deepak.crt -alias deepak
Enter keystore password: deepak
Certificate stored in file <deepak.crt>

D:\deepak>

D:\ashok>keytool -import -file deepak.crt -keystore ashokstore
Enter keystore password: ashokr
Owner: CN=Deepak Gupta, OU=ITSO, O=IBM, L=Raleigh, ST=NC, C=US
Issuer: CN=Deepak Gupta, OU=ITSO, O=IBM, L=Raleigh, ST=NC, C=US
Serial number: 369e614d
Valid from: Thu Jan 14 16:27:41 EST 1999 until: Wed Apr 14 17:27:41 EDT 1999
Certificate fingerprints:
 MD5: C2:BE:02:C9:33:48:60:55:5E:6B:66:87:A9:E7:42:27
 SHA1: CA:15:8E:6B:28:A9:EB:6E:B9:B8:65:A3:68:77:5C:3F:33:11:10:2C
Trust this certificate? [no]: y
Certificate was added to keystore

D:\ashok>
282 Java 2 Network Security

should use the -alias option of the keytool utility. If you attempt to
import a certificate with an alias that already exists in the local
keystore, you will receive an error message and the operation will
abort:

keytool error: Certificate not imported, alias <mykey> already exists

It is very important that you verify the certificate fingerprints before
agreeing to trust it. Contact the person who sent the certificate, and
ask him to provide you with the certificate fingerprints, for example by
attaching them to an encrypted e-mail. The sender should use the
-printcert command associated with the keytool utility to display the
information related to his certificate:

Then, you should compare the two sets of fingerprints. Only if the
fingerprints are equal is it guaranteed that the certificate has not been
replaced in transit with somebody else’s (for example, an attacker’s)
certificate. If such an attack took place, and you did not check the
certificate before you imported it, you would end up trusting anything
the attacker has signed (for example, a JAR file with malicious class
files inside).

2. Verify the digital signature.

This is done by using the jarsigner command with the -verify option,
as shown in the following session screen:

Alternatively, to obtain further details, you can use the -verbose option:

D:\deepak>keytool -printcert -file deepak.crt
Owner: CN=Deepak Gupta, OU=ITSO, O=IBM, L=Raleigh, ST=NC, C=US
Issuer: CN=Deepak Gupta, OU=ITSO, O=IBM, L=Raleigh, ST=NC, C=US
Serial number: 369e614d
Valid from: Thu Jan 14 16:27:41 EST 1999 until: Wed Apr 14 17:27:41 EDT 1999
Certificate fingerprints:
 MD5: C2:BE:02:C9:33:48:60:55:5E:6B:66:87:A9:E7:42:27
 SHA1: CA:15:8E:6B:28:A9:EB:6E:B9:B8:65:A3:68:77:5C:3F:33:11:10:2C

D:\deepak

D:\ashok>jarsigner -verify -keystore ashokstore myjar.jar
jar verified.

D:\ashok>
Java 2 SDK Security Tools 283

This verifies the signature.

If the JAR file is not signed, the above verification command will throw
the message that we have already described:

jar is unsigned. (signatures missing or not parsable)

If the files in the JAR were modified, we would see an error message.
For example, if someone has exploded a signed JAR file, has modified
one of its files, and has rebuilt the JAR file, when we try to verify the
signature using jarsigner, we get the following error message:

jarsigner: java.lang.SecurityException: SHA1 digest error for
itso.class

where itso.class is the name of the modified file.

9.3.2 Observations on the jarsigner Verification Process
A successful JAR file verification occurs if the signatures are valid, and none
of the files that were in the JAR file when the signatures were generated have
been changed since then. JAR file verification through the jarsigner tool
involves the following steps:

1. Verify the signature of the SF file itself.

That is, the verification ensures that the signature stored in each DSA file
was in fact generated using the private key corresponding to the public key
whose certificate (or certificate chain) also appears in the DSA file. It also
ensures that the signature is a valid signature of the corresponding
signature SF file, and thus the SF file has not been tampered with.

2. Verify the digest listed in each entry in the SF file with each corresponding
section in the manifest.

D:\ashok>jarsigner -verify -verbose -keystore ashokstore myjar.jar

 188 Thu Jan 14 16:30:44 EST 1999 META-INF/DEEPAK.SF
 1004 Thu Jan 14 16:30:44 EST 1999 META-INF/DEEPAK.DSA
 0 Thu Jan 14 16:30:28 EST 1999 META-INF/
smk 6 Thu Jan 14 16:30:24 EST 1999 myownclass.class

 s = signature was verified
 m = entry is listed in manifest
 k = at least one certificate was found in keystore
 i = at least one certificate was found in identity scope

jar verified.

D:\ashok>
284 Java 2 Network Security

The SF file by default includes a header containing a hash of the entire
manifest file. When the header is present, then the verification can check
to see whether or not the hash in the header indeed matches the hash of
the manifest file.

 • If that is the case, verification proceeds to the next step.

 • If that is not the case, a less optimized verification is required, to
ensure that the hash in each source file information section in the SF
file equals the hash of its corresponding section in the manifest file.

One reason the hash of the manifest file that is stored in the SF file header
may not equal the hash of the current manifest file could be because one
or more files were added to the JAR file (using the jar tool) after the
signature (and thus the SF file) was generated. When the jar tool is used
to add files, the manifest file is changed (sections are added to it for the
new files), but the SF file is not. A verification is still considered successful
if none of the files that were in the JAR file when the signature was
generated have been changed since then, which is the case if the hashes
in the non-header sections of the SF file equal the hashes of the
corresponding sections in the manifest file.

3. Read each file in the JAR file that has an entry in the SF file. While
reading, compute the file's digest, and then compare the result with the
digest for this file in the manifest section.

The digests should be the same, or verification fails.

If any serious verification failures occur during the verification process, the
process is stopped and a security exception is thrown. It is caught and
displayed.

From the above description, you can see that jarsigner only verifies the
signature present on the JAR file and in fact does not verify if that signature
has been made by some trusted entity, whose certificate is present in the
user’s keystore. It only ensures that the files inside the JAR file have not been
modified since the signature was put on it.

For all practical purposes, this is actually as good as not verifying at all,
because if a person (a hacker that is) modifies the files inside the JAR file, he
or she can just as well remove the SF and DSA signature files and sign the
modified JAR file with his or her own keys. The JAR file will still be verified.
Therefore, note that when you see the message:

jar verified.
Java 2 SDK Security Tools 285

this only implies that the signature on the JAR file has been verified and not
that it has been signed by the entity whose certificate you just imported. So,
even if the receiver did not follow Step 1 on page 282, he would see the same
results when performing Step 2 on page 283. However, this does not mean
that the step of verifying the sender’s certificate and importing it into the local
keystore can be skipped. On the contrary, the receiver should perform both
the steps we have listed, and then, to verify that the JAR file came from the
person he trusts, run the JAR file under a protection domain with a signedBy
parameter pointing to the certificate just imported.

9.3.3 Tampering with a Signed JAR File
Let’s see now what happens when a signed JAR file has been tampered with
and we run the jarsigner command with the -verify option to verify the
signature.

In this scenario, we initially take two files, redbook.class and itso.txt. We run
the jar command to produce a JAR file, which we call test.jar, in the following
way:

jar cvf test.jar redbook.class itso.txt

Then we assume that two different signers, ibm and test, apply their digital
signatures:

jarsigner test.jar ibm
jarsigner test.jar test

At this point, the contents of the JAR file test.jar are:

 • redbook.class
 • itso.txt
 • META-INF\MANIFEST.MF
 • META-INF\IBM.SF
 • META-INF\IBM.DSA
 • META-INF\TEST.SF
 • META-INF\TEST.DSA

These are possible scenarios:

1. We change one of the content files, for example itso.txt.

This can be done by modifying the original itso.txt file (for example,
deleting a few characters from it and saving the new version with the same
name again) and updating the JAR file using the following command:

jar -uf test.jar itso.txt

Next, we run the following command:
286 Java 2 Network Security

jarsigner -verify test.jar

and we get the following exception:

jarsigner: java.lang.SecurityException: SHA1 digest error for itso.txt

2. We change the manifest file by modifying the SHA-1 digest of one of the
content files, for example the redbook.class file.

To do this, we have to explode the JAR file first:

At this point, the SHA-1 digest for the redbook.class file can be modified in
the manifest file with a text editor. After this, the new, tampered version of
the JAR file can be created as shown in the following session screen:

Notice the use of the M option for the jar command. As we said in 9.2.1,
“Options of the jar Command” on page 271, this option prevents jar from
creating a new manifest file. We use it because we are already passing the
manifest information META-INF\MANIFEST.MF on the command line.

We then attempt to verify the signature information:

jarsigner -verify test.jar

And as a result, we obtain an error message:

jarsigner: java.lang.SecurityException: invalid SHA1 signature file
digest for redbook.class

D:\>jar -xvf test.jar
extracted: META-INF/MANIFEST.MF
extracted: META-INF/IBM.SF
extracted: META-INF/IBM.DSA
extracted: META-INF/TEST.SF
extracted: META-INF/TEST.DSA
 created: META-INF/
extracted: redbook.class
extracted: itso.txt

D:\>

D:\>jar -cvfM test.jar META-INF/MANIFEST.MF META-INF/IBM.SF META-INF/IBM.DSA
META-INF/TEST.SF META-INF/TEST.DSA redbook.class itso.txt
adding: META-INF/MANIFEST.MF (in=196) (out=168) (deflated 14%)
adding: META-INF/IBM.SF (in=249) (out=200) (deflated 19%)
adding: META-INF/IBM.DSA (in=972) (out=737) (deflated 24%)
adding: META-INF/TEST.SF (in=249) (out=200) (deflated 19%)
adding: META-INF/TEST.DSA (in=971) (out=740) (deflated 23%)
adding: redbook.class (in=6) (out=8) (deflated -33%)
adding: itso.txt (in=70) (out=68) (deflated 2%)

D:\>
Java 2 SDK Security Tools 287

3. We change some other information in the manifest file, for example we add
the following line:

Main-Class: redbook

This can be done again as indicated in Step 2 on page 287. Interestingly
and as expected, if we try to verify the JAR file, it verifies:

jar verified.

4. We change the SF file by modifying the SHA-1 digest of one of the content
files, for example redbook.class.

This can be done again with a procedure similar to Step 2 on page 287.
The result of the verification test is the following:

jarsigner: java.lang.SecurityException: cannot verify signature block
file META-INF/TEST

5. We add another file, say ibm.class, to the JAR file.

This can be done using the jar command with options uf, as indicated in
Step 1 on page 286. This operation automatically updates the manifest file
as well, with information on the new file. We then try to verify the JAR file
and it verifies as expected:

jar verified.

6. Another point to note here is that jarsigner, while verifying, does not check
for the validity of the certificate. That is, it does not check if the certificate
with which the files were signed has expired or not.

 • We create a certificate with validity -1 (which for testing purposes is
allowed by the keytool utility, as explained in 9.1.3, “Commands and
Options Associated with keytool” on page 262). With this certificate, we
sign a JAR file and then attempt to verify the digital signature.

 • We sign a JAR file with a certificate that has already expired and then
attempt to verify the digital signature.

 • We sign a JAR file with an active certificate and then try to verify the
signature after the certificate has expired.

The JAR file verifies in all cases:

jar verified.

9.4 Policy File Creation and Management Tool

The Policy Tool is a GUI-based utility for creating and managing policy files.
288 Java 2 Network Security

You can open this tool by typing policytool on the command prompt.
According to the default security properties file java.security, the Policy Tool
expects to find a policy file called .java.policy in the user home directory. If the
.java.policy file in the user home directory exists, the tool will open it by
default as soon as you enter the policytool command. If it does not exist, you
will receive an error message similar to the following one:

Figure 119. Policy Tool Error

Just click OK in this case.

The following window shows what the Policy Tool looks like:
Java 2 SDK Security Tools 289

Figure 120. Policy Tool Initial Screen

The functions you can perform are:

1. Create a new policy file.

To do this, you simply have to add policy entries and then save the new
security policy configuration to a policy file, using the Save As option from
the File menu. If a policy file is already under construction, and you want
to start the creation of a new one, select New from the File menu.

2. Modify an existing policy file.

To do this, open the policy file using the Open item from the File menu and
make the modifications you want to the policy configurations.
290 Java 2 Network Security

Then, save the file by selecting Save from the File menu.

3. View the warning log.

The Policy Tool maintains a warning log where it registers all the warning
messages that have been displayed during a policy configuration session.
This log can be accessed by clicking on View Warning Log from the File
menu.

4. Exit the Policy Tool.

Just select Exit from the File menu.

The following modifications can be made to policy files:

1. Add a new policy entry.
2. Modify a policy entry.
3. Remove a policy entry.
4. Change the keystore.

All these can be done using the Edit menu option. For the first three, buttons
are also provided.

To add a new entry, click on the Add Policy Entry button and the following
Policy Entry dialog will be brought up:
Java 2 SDK Security Tools 291

Figure 121. Policy Entry Dialog

The same box is displayed by clicking on Edit Policy Entry after selecting a
policy entry that had been previously defined.

At this stage, you can specify a code source by entering a code base and a
comma-separated string of signers in the CodeBase and SignedBy fields
respectively. Then you can add, edit or remove permissions; specific buttons
are provided for these operations. For example, on clicking on Add
Permission, we get the following Permissions window:
292 Java 2 Network Security

Figure 122. Permissions Screen

Drop-down lists allow you to choose among the various options already
provided in the Java 2 security implementation. Notice that you can also type
in the text box provided in the Permissions window to specify non-standard
permissions (see 10.7.1, “How to Create New Permissions” on page 344).
However, if you add a permission that is not part of the Java core APIs, a
warning message appears when you press the OK button:

Figure 123. Warning Message with a Custom Permission

For editing permissions, the same window opens. You must select the
permission to be edited and then click on Edit Permission.

To remove a permission, select the permission and click Remove
Permission.

To change the keystore to which the policy configuration should apply, click
on Change KeyStore from the Edit menu. The following window opens:
Java 2 SDK Security Tools 293

Figure 124. Keystore Dialog Box

Here you can specify the URL location and type of the keystore you want to
use in this policy configuration. If you do not enter anything in the New
KeyStore Type field, the system will take the default keystore type from the
java.security file (see 8.3, “The Security Properties File, java.security” on
page 234).

Note that, if you change the keystore, the previous keystore is no longer valid,
since a policy file can only refer to a single keystore at a time. Hence, if you
had permissions with a signedBy name-value pair related to an alias in the
previous keystore, the Policy Tool may no longer be able to find that and will
register an error. The exact nature of the error is explained in the warning log:

Figure 125. Warning Log
294 Java 2 Network Security

Several scenarios in this book make use of the Policy Tool to configure the
security policy in the Java system. See for example 1.4.1.8, “Modifying the
Security Policy on the Client System” on page 20 and 1.4.2.6, “Modifying the
Security Policy” on page 32.

9.4.1 Observations on the Use of the Policy Tool
There are some things to consider when using the Policy Tool:

1. If you are modifying an existing policy file and try to exit the tool without
saving the updated configuration, the Policy Tool will prompt you with the
option to save it:

Figure 126. Option to Save an Updated Configuration

However, this is the case only if you make a change in the Permissions
panel (see Figure 122 on page 293) or if you modify the keystore (see
Figure 124 on page 294). If you modify the code base URL or the list of
signers in the Policy Entry dialog box (see Figure 121 on page 292), the
Policy Tool does not prompt you to save before exiting.

2. If you are creating a new policy file and exit the Policy Tool before saving
the new configuration, the tool simply exits regardless of the changes you
have made. It does not prompt you to save before closing.

Also, you cannot open the File menu and click on Save if the policy file is
new, in which case the Policy File text box is still empty. In place of
switching to the Save As option automatically, as most applications do,
this tool throws a java.io.FileNotFoundException in a pop-up window on
the screen:

Figure 127. FileNotFoundException Thrown by the Policy Tool
Java 2 SDK Security Tools 295

You must select Save As from the File menu and only then, on further
changes, can you select Save.
296 Java 2 Network Security

Chapter 10. Security APIs in Java 2

In addition to the features and the security tools discussed, Java 2 provides
several class packages that can be used for writing secure applications. The
package java.security, and its subpackages java.security.acl and
java.security.interfaces were provided in Java Development Kit (JDK) 1.1. The
Java 2 platform adds two new subpackages, java.security.cert and
java.security.spec, which provide more flexibility and functionality. These
packages together form the Java Cryptography Architecture (JCA), which
provides Java programs with cryptographic capabilities. Java also provides a
cryptographic package called javax.crypto and its two subpackages
javax.crypto.interfaces and javax.crypto.spec. However, these are sold and
distributed separately as part of the Java Cryptography Extension (JCE) 1.2,
due to the United States export regulations (see 2.2.3, “United States Export
Rules for Encryption” on page 57).

In this chapter we present the Java 2 security APIs. Several examples are
provided to demonstrate how to use the Java 2 security libraries to build
secure applications.

10.1 The Package java.security

This package contains classes and interfaces for the general security
framework. It includes classes that mainly cover security concepts such as
access control and permissions, keys, key pairs and keystores, message
digests, signatures, secure random generation, etc. Many classes and
interfaces in this package are abstract and provider-based. You can supply
your own implementations by using providers other than the defaults (see
10.1.3, “Providers” on page 299).

10.1.1 Principals
With respect to security, a principal represents an entity such as an individual
user or a company. To represent this concept, the java.security package
defines an interface called Principal. This interface is used to grant a
particular type of access to a resource. Notice that there is no implementation
for principals in Java 2 SDK, Standard Edition, V1.2.

A group of principals is represented by the Group interface, discussed in
10.5, “The Package java.security.acl” on page 324.
© Copyright IBM Corp. 1997 1999 297

10.1.2 Guard Interface and GuardedObject Class
The Guard interface is provided to create an object used to guard a protected
resource. The supplier of the resource can create an object representing the
resource, encapsulate it into a GuardedObject, and keep the resource inside
this GuardedObject. In creating the GuardedObject, the supplier also
specifies the Guard object. The consumer of the resource can access the
resource object only if the security checks inside the Guard object are
satisfied.

The relationship between the GuardedObject, the Object and the Guard can
be seen in the constructor of the GuardedObject class:

public GuardedObject(Object object, Guard guard)

The only method in the Guard interface is called checkGuard(). It takes an
Object as its argument and it performs security checks to determine whether
or not to allow access to that object.

The Permission class in java.security implements the Guard interface. For
example, suppose a system thread is asked to open a file D:\itso\redbook.lwp
for read access, but the system thread does not know who the requester is or
under what circumstances the request is being made. Therefore, the system
thread can use the GuardedObject class to delay the access control
checking, as follows:

FileInputStream fis = new FileInputStream("D:\\itso\\redbook.lwp");
FilePermission fperm = new FilePermission("D:\\itso\\redbook.lwp", "read");
GuardedObject guardFile = new GuardedObject(fis, fperm);

Now the system thread can pass the guardFile object to the consumer thread.
For that thread to obtain the file input stream, it must call:

FileInputStream finps = (FileInputStream) guardFile.getObject();

The getObject() method in turn invokes the checkGuard() method on the
Guard object fperm, and because fperm is a Permission, its checkGuard()
method is:

public void checkGuard(Object object) throws SecurityException
{
 SecurityManager sm = System.getSecurityManager();
 if (sm != null)
 sm.checkPermission(this);
}

298 Java 2 Network Security

This ensures that a proper access control check takes place within the
consumer context.

10.1.3 Providers
The java.security package also supplies a Provider class. The term
cryptographic service provider (provider for short) is used to refer to a
package or set of packages that supply a concrete implementation of a
subset of the cryptography aspects of the Java security API. The Provider
class is the interface to such a package or set of packages.

As we will see in 13.3.1, “The Provider Concept in the JCA” on page 485, for
each engine1 class in the API, a particular implementation is requested and
instantiated by calling a getInstance() method on the engine class, specifying
the name of the desired algorithm and, optionally, the name of the provider
whose implementation is desired. If no provider is specified, getInstance()
searches the registered providers for an implementation of the requested
cryptographic service associated with the named algorithm. In any Java
Virtual Machine (JVM), providers are installed in a given preference order
specified in the java.security file. That order is the order in which they are
searched when no specific provider is requested. If the implementation is
found in the first provider, it is used. If it is not found, it is searched for in the
second provider and so on. If it is not found in any provider, an exception is
raised. The getInstance() methods that include a Provider argument enable
developers to specify which provider they want an algorithm from. A program
can also obtain a list of all the installed Providers using the getProviders()
method in the Security class and choose one from the list.

Each provider class instance has a (currently case-sensitive) name, a version
number and a string description of the provider and its services. These three
pieces of information can be obtained by calling the methods getName(),
getVersion() and getInfo(), respectively.

10.1.3.1 Installing and Configuring Providers
Providers can be installed by first copying the package in the system and then
configuring the provider itself:

1. To install the provider classes, you can simply place the JAR file(s)
containing the classes anywhere on the user class path (see 3.4.3,
“Application Class Path” on page 88) or even on the boot class path (see
3.4.1, “Boot Class Path” on page 84). However, the best solution is to
supply the provider library as an installed or bundled extension, by placing

1 Engine is a term used to depict an abstract representation of a cryptographic service without a concrete
implementation.
Security APIs in Java 2 299

the JAR file(s) in the extensions directory, as explained in 3.4.2,
“Extensions Framework” on page 86.

For example, to install JCE 1.2 on your Java 2 SDK, Standard Edition,
V1.2 system, you can copy the JAR file jce1_2-do.jar in the extensions
directory. This directory is indicated as the value of the java.ext.dirs
system variable (see Appendix A, “Getting Internal System Properties” on
page 641).

Following these directions, you will be able to run all the programs that use
this particular provider. If you also need to develop and compile programs
using this provider, then the JAR file containing the provider classes must
be also copied in the extensions directory under the JRE development
directory (see 8.1, “A Note on java.home and the JRE Installation
Directory” on page 225).

2. Next, you need to configure the provider. For this you simply need to add it
to your list of approved providers.

 • This is done statically by adding the provider to the security provider list
in the java.security file (see 8.3, “The Security Properties File,
java.security” on page 234).

For example, to configure JCE 1.2 on your Java 2 SDK, Standard
Edition, V1.2 system, the security provider called SunJCE must be
provided together with the SUN provider in the java.security file, as
shown:

As we have mentioned, the order number with which the provider is
added to the list is very important, in that if an implementation is
supplied in multiple providers, the implementation of the provider with
the higher preference (corresponding to the lower order number) is
chosen by the JVM.

In the same way, a provider is removed by simply deleting the entry
corresponding to it in the java.security file.

 • Providers may also be registered dynamically. To do so, call either the
addProvider() or insertProviderAt() static method in the
java.security.Security class.

For example, to add the JCE 1.2 provider SunJCE dynamically, you can
use the following two lines of code:

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.crypto.provider.SunJCE
300 Java 2 Network Security

The addProvider() method adds a new provider at the end of the list of
the installed providers.

On the other hand, the insertProviderAt() method adds a new provider
at a specified position in the array of providers. If the given provider is
installed in the requested position, the provider that used to be at that
position, and all the providers with a position greater than that, are
shifted up one position, toward the end of the list of the installed
providers.

Both the methods return the preference position in which the provider
was added, or -1 if the provider was not added because it was already
installed.

If the preference position of a provider has to be changed, the provider
must be first removed, and then inserted in back at the new preference
position.

A provider can be removed by calling the removeProvider() method of
the java.security.Security class.

Notice that the dynamic provider registration is not persistent and can
only be done by trusted programs or, in other words, programs that
have been granted the necessary permissions:

 • To add a provider, or insert it in a specified position in the list, the
permission required is:

permission java.security.SecurityPermission "insertProvider.name"

 • To remove a provider, the permission required is:

permission java.security.SecurityPermission "removeProvider.name"

Note that the SunJCE provider relies on some of the algorithm
implementations supplied by the SUN provider, which is the default provider
of the Java 2 SDK platform. This means that when you install the SunJCE
provider, you need to make sure that the SUN provider is also installed. We
will see more details on this in Chapter 13, “Cryptography in Java 2” on page
475.

10.1.4 The Security Class
As we mentioned in 10.1.3, “Providers” on page 299, the package
java.security also provides a Security class to manage installed providers and

Provider sunJce = new com.sun.crypto.provider.SunJCE();
int pos = Security.addProvider(sunJce);
Security APIs in Java 2 301

security-related properties. It only contains static methods and is never
instantiated. Its methods fall into two categories:

1. Methods used to get the installed providers, and also to add, delete, and
insert providers

 • The method getProviders() can be used to get the list of all installed
providers. They are returned in a Provider array in the order of their
preference.

 • The method getProvider() returns the Provider object specified in the
argument.

 • The method addProvider() is used to add a provider to the end of the
list of installed providers, as shown in Step 2 on page 300. These
methods returns the preference position in which the provider was
added, or -1 if the provider was not added because it was already
installed.

 • The method insertProviderAt() is used to add a new provider at a
specified position. This method returns the actual preference position
in which the Provider was added, or -1 if the provider was not added
because it was already installed, as shown in Step 2 on page 300. You
cannot install a provider that is already installed. If you need to change
the preference order, you must first remove the provider and then insert
it in the specified position.

 • To remove a provider, use the removeProvider() method (see Step 2 on
page 300).

2. Methods used to get and set system-wide properties

The Security class also has methods to manage security properties. A
security property is accessible with the getProperty() method and can be
set with the setProperty() method. However, only trusted programs, or
programs with specific permissions, can use these methods.

The following program shows how to get the information about a provider:

Figure 128. (Part 1 of 2). ProviderInformation.java

import java.security.*;

class ProviderInformation
{
 public static void main(String[] args)
{
 String providername;
302 Java 2 Network Security

Figure 129. (Part 2 of 2). ProviderInformation.java

Compile this program with the command:

javac ProviderInformation.java

Then you can run it and pass it a provider name on the command line. By
default, the only security provider that comes with the installation of Java 2
SDK, Standard Edition, V1.2 is SUN, the provider supplied by Sun
Microsystems (see 8.3, “The Security Properties File, java.security” on page
234). By launching the command:

java ProviderInformation SUN

you would see the following output:

SUN (DSA key/parameter generation; DSA signing; SHA-1, MD5 digests;
SecureRandom; X.509 certificates; JKS keystore)

The information above shows the features of the SUN provider, listed in 8.3,
“The Security Properties File, java.security” on page 234.

Assuming that you have installed JCE 1.2 on your Java 2 SDK, Standard
Edition, V1.2 system, as indicated in Step 1 on page 299 and Step 2 on page

 try
 {
 providername = args[0];
 Provider myprov = Security.getProvider(providername);

 if (myprov != null)
 {
 String info = myprov.getInfo();
 System.out.println("\n\n" + info + "\n\n");
 }
 else
 System.out.println("No provider with the speicified name is installed");
 }
 catch (Exception e)
 {
 System.out.println("There was an exception. The exception was " +
 e.toString());
 }
 }
}

Security APIs in Java 2 303

300, you can invoke the above program and pass the SunJCE provider name
on the command line, as shown:

java ProviderInformation SunJCE

The output in this case is:

SunJCE Provider (implements DES, Triple DES, Blowfish, PBE, Diffie-Hellman,
HMAC-MD5, HMAC-SHA1)

The information above shows the features of the SunJCE provider, listed in
Point 2 on page 492.

10.1.5 Access Control APIs
The java.security package provides the AccessController class used to make
access control decisions based on the security policy in effect. It is also used
to mark code in the execution stack as privileged (see 3.2.3.1, “Lexical
Scoping of Privilege Modifications” on page 76), thus affecting subsequent
access determinations. Finally, this class is used to obtain a snapshot of the
current calling context, so that access control decisions from a different
context can be made with respect to the saved context.

A thread's security context is based upon the classes on its execution stack.
Each class is associated with a single protection domain which, in turn,
specifies the permissions granted to that class (see 3.3, “Java 2 Protection
Domain and Permissions Model” on page 80). So a security context can be
thought of as a stack of protection domains corresponding to the classes on
the stack. When an access control decision is made, this stack of protection
domains is examined; only if every protection domain possesses the
necessary permission does the access control check pass. If a protection
domain is examined that does not possess the necessary permission, an
AccessControlException is thrown.

Consider the following two lines of code:

This fragment of code checks whether the calling thread has permission to
read the given file. That is, each class on this thread's execution stack must
belong to a protection domain that includes the requested permission.

Assume that this thread creates a new thread. This new child thread has a
new stack with a new security context. If the parent's security context was not

FilePermission perm = new FilePermission("file", "read");
AccessController.checkPermission(perm);
304 Java 2 Network Security

retained, then security decisions made in the child thread would be based
solely on the child’s security context. This would enable less trusted code (in
the parent) to access protected resources by calling more trusted code (in the
child). To prevent this, Java ensures that a child thread automatically inherits
its parent’s security context. This inheritance continues down a
thread-creation hierarchy, so that whenever a resource access is attempted,
the security context of the executing thread, and those of all its ancestors,
must permit the access.

Typically, each class in a thread’s security context must possess the
requested permission in order for an access check to pass. However, this
top-to-bottom stack crawl can be short-circuited by using the
AccessController.doPrivileged() method to mark a class on the stack as
privileged. Once a privileged frame is encountered, no further protection
domains are examined. This means that code that would otherwise lack
permission to access a resource may do so if it calls (directly or indirectly)
code that possesses the permission and calls doPrivileged(). Note that if the
class that calls doPrivileged() does not possess the requested permission, an
AccessControlException is thrown as usual. The doPrivileged() method
enables trusted code to perform operations on behalf of callers that may or
may not have the necessary permission themselves.

An implementation of the PrivilegedAction interface is passed as an argument
to doPrivileged() to define the operation to be performed with privileges
enabled. This interface is used only for operations that do not throw checked
exceptions; operations that throw checked exceptions must be implemented
as a PrivilegedExceptionAction instead.

The AccessControlContext class in java.security is used to make access
control decisions based on the security context defined by an
AccessControlContext object. An AccessControlContext object is created by
calling AccessController.getContext(), which takes a snapshot of the current
calling context and places it in the AccessControlContext returned. The
AccessControlContext.checkPermission() method makes access control
decisions based upon the encapsulated context, rather than the context of the
current execution thread.

10.1.6 Key Management
The package java.security offers several interfaces and classes to provide
key generation and management.

 • The Key interface is the top-level interface for all cryptographic keys and
defines the functionality shared by all keys. All keys have three
characteristics:
Security APIs in Java 2 305

1. An algorithm

This is the key algorithm for that key. The key algorithm is usually an
encryption or asymmetric operation algorithm (such as DSA or RSA).
The name of the algorithm of a key is obtained using the getAlgorithm()
method.

2. An encoded form

This is an external encoded form for the key used when a standard
representation of the key is needed outside the JVM, as when
transmitting the key to some other party. The key is encoded according
to a standard format (such as X.509 or PKCS#8), and is returned using
the getEncoded() method.

3. A format

This is the name of the format of the encoded key. It is returned by the
getFormat() method.

 • PrivateKey and PublicKey are interfaces that extend the Key. These
interfaces contain no methods or constants. They merely serve to group
(and provide type safety for) all public and private key interfaces. The
specialized public and private key interfaces, such as the DSAPublicKey
and DSAPrivateKey interfaces in the java.security.interfaces package,
extend PublicKey and PrivateKey respectively.

 • The java.security package also contains classes to manage keys and key
pairs, such as the KeyFactory class, which is used to convert keys into key
specifications (and vice versa), and the KeyFactorySpi class, which is
used to define the Service Provider Interface (SPI) for the KeyFactory
class. As we will see in 10.2, “The Package java.security.spec” on page
322, a representation of key material is opaque if it does not give you any
direct access to the key material fields.

Key factories are bi-directional. This means that they allow you to build an
opaque key object from given key material (specification), or to retrieve the
underlying key material of a key object in a suitable format. A KeyFactory
object can be created using the static KeyFactory.getInstance() method.
From a key specification, you can generate the keys using the
generatePublic() and generatePrivate() methods. To get the key
specification from a KeyFactory, you can use the getKeySpec() method.

 • The KeyPair class is used to hold a public key and a private key. It
provides getPrivate() and getPublic() methods to get the private and the
public keys respectively.
306 Java 2 Network Security

 • The KeyPairGenerator class is used to generate key pairs, while the
KeyPairGeneratorSpi class is used to define the SPI for the
KeyPairGenerator class.

A KeyPairGenerator object can be created using the getInstance() static
method for the KeyPairGenerator class. A KeyPairGenerator object must
be initialized before it can generate keys. To do this, four methods are
provided, all of them called initialize(), but each having a different
signature. The four initialize() methods allow you to:

 • Generate a key pair in an algorithm-independent manner or in an
algorithm-specific manner.

 • Provide a specific source of randomness or use the SecureRandom
implementation of the highest-priority installed provider as the source
of randomness.

When you initialize a key pair in an algorithm-independent manner, you
specify the key size. If you initialize in an algorithm-specific way, you
supply the AlgorithmParameterSpec to the generator.

In the algorithm-independent case, it is up to the provider to determine the
algorithm-specific parameters to be associated with each of the keys. The
provider may use pre-computed parameter values, or may generate new
values. For example:

In the algorithm-specific case, the user supplies the parameters to
initialize a key pair:

 • The KeyStore class is used to represent an in-memory collection of keys
and certificates, while the KeyStoreSpi class defines the SPI for the
KeyStore class. You can generate a KeyStore object using the static
getInstance() method. To load a KeyStore object from an InputStream, the
load() method is provided. The store() method can be used to store the
keystore to an OutputStream.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA");
SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");
random.setSeed(userSeed);
keyGen.initialize(1024, random);

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA");
DSAParameterSpec dsaSpec = new DSAParameterSpec(p, q, g);
SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");
random.setSeed(userSeed);
keyGen.initialize(dsaSpec, random);
Security APIs in Java 2 307

The KeyStore class provides methods to get and set keys and certificates
from the keystore. For instance, aliases() lists all the alias names in the
keystore, deleteEntry() deletes the entry identified by a specific alias from
the keystore, and getKey() gets the key associated with a given alias from
the keystore.

10.1.6.1 An Example of Keystore Management
The following program loads a KeyStore object, gets a key with alias marco
from it and stores it into another KeyStore object. In other words, this code
performs exactly the same function as the -export and -import commands
associated with the keytool utility (see 9.1, “Key and Certificate Management
Tool” on page 259).

The code comments explain the operations in detail:

Figure 130. (Part 1 of 2). KeyStoreManagement.java

class KeyStoreManagement
{
 public static void main(String[] args)
 {
 try
 {
 // create the Keystore object
 KeyStore ks = KeyStore.getInstance("JKS", "SUN");
 String keypass = "marcop";
 char[] pwd = new char[6];
 for (int i = 0; i < pwd.length; i++)
 pwd[i] = keypass.charAt(i);

 // load the keystore from the system
 FileInputStream fisk = new
 FileInputStream("D:\\itso\\ch10\\keystore1\\marcostore");
 ks.load(fisk, pwd);

 // get the certificate from the keystore with alias marco
 // similar to keytool -export
 X509Certificate certs = (X509Certificate)ks.getCertificate("marco");

 // Storing the same certificate in other keystore.
 // create the keystore object
 KeyStore itsostore = KeyStore.getInstance("JKS", "SUN");
 FileInputStream fisk1 = new
 FileInputStream("D:\\itso\\ch10\\keystore2\\marcostore");
308 Java 2 Network Security

Figure 131. (Part 2 of 2). KeyStoreManagement.java

This program is compiled by running the following command:

javac KeyStoreManagement.java

Since our purpose here is to show how to use the Java security API to
manage keystores, for simplicity, we have assumed the following:

1. Both keystores are called marcostore although they are located in two
different directories: D:\itso\ch10\keystore1 and D:\itso\ch10\keystore2.
These file names are hardcoded.

2. All passwords are set to marcop, and this password is hardcoded.

3. Both keystores have been created using the keytool utility.

4. In the keystore D:\itso\ch10\keystore1\marcostore, the key pair and the
certificate wrapping the public key are associated with an alias called
marco.

5. In the keystore D:\itso\ch10\keystore2\marcostore, the key pair and the
certificate wrapping the public key are associated with an alias called
mykey.

 // load the keystore
 itsostore.load(fisk1, pwd);

 // insert the certificate in the keystore
 // similar to keytool -import
 itsostore.setCertificateEntry("marco", certs);

 // And finally store the keystore
 FileOutputStream outputstore = new
 FileOutputStream("D:\\itso\\ch10\\keystore2\\marcostore");
 itsostore.store(outputstore, pwd);
 }
 catch (Exception e)
 {
 System.out.println("There was an exception. The exception was " +
 e.toString());
 }
 }
}

Security APIs in Java 2 309

Therefore, before launching the KeyStoreManagement program, the keystore
D:\itso\ch10\keystore2\marcokeystore contains only one keystore entry, that
related to the alias mykey, as shown in the following session screen:

Then we launch the KeyStoreManagement program through the following
command:

java KeyStoreManagement

At this point, the program loads the marcostore keystore from the directory
D:\itso\ch10\keystore1, gets the certificate associated with the alias marco,
inserts this certificate into the marcostore destination keystore in the
directory D:\itso\ch10\keystore2 and stores the destination keystore.

Note that the keystore APIs require the keystore password to be passed to
the specific APIs accessing the keystore and the key password to the specific
APIs accessing the private key. However, security holes may be created if the
program is not coded with caution. For example, in the above example, the
password has been hardcoded in the program. As explained in 5.3.1,
“Decompilation Attacks” on page 126, the password could be easily

D:\itso\ch10\keystore2>keytool -list -keystore marcostore
Enter keystore password: marcop

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry:

mykey, Sat Apr 24 01:16:51 EDT 1999, keyEntry,
Certificate fingerprint (MD5): 26:33:61:BA:0E:39:CC:38:30:5E:74:76:55:A9:D7:92

D:\itso\ch10\keystore2>

D:\itso\ch10\keystore2>keytool -list -keystore marcostore
Enter keystore password: marcop

Keystore type: jks
Keystore provider: SUN

Your keystore contains 2 entries:

mykey, Sat Apr 24 01:16:51 EDT 1999, keyEntry,
Certificate fingerprint (MD5): 26:33:61:BA:0E:39:CC:38:30:5E:74:76:55:A9:D7:92
marco, Sat Apr 24 01:42:05 EDT 1999, trustedCertEntry,
Certificate fingerprint (MD5): 6E:66:0C:C5:24:F5:36:1F:27:EE:10:4C:9B:E3:7D:B7

D:\itso\ch10\keystore2>
310 Java 2 Network Security

recovered from class files. Therefore, in real life, you should take these
parameters as input from the user. Our purpose here was to demonstrate how
to use the Java security APIs to manage keystores, and for this reason we
have kept things simple.

10.1.7 Message Digests and DIgital Signatures
The package java.security provides APIs for message digests and digital
signatures:

 • The MessageDigest class provides applications with the functionality of
the message digest algorithms, such as MD5 and SHA1, while the
MessageDigestSpi class defines SPIs for the MessageDigest class.

 • The Signature class provides applications with the functionality of the
signature algorithms, such as SHA-1/DSA, MD2/RSA, MD5/RSA or
SHA-1/RSA, while the SignatureSpi class defines SPIs for the Signature
class.

In both the MessageDigest and the Signature class you can generate an
object using a getInstance() method. You must supply the algorithm or the
algorithm and the provider. Notice that:

 • A MessageDigest object starts out initialized.

 • A Signature object must be initialized by a private key using initSign() if it
is for signing, and by a public key using initVerify() if it is for verification.

Both the classes MessageDigest and Signature provide an update() method
that you can use to update MessageDigest objects and Signature objects with
the data to be digested or signed/verified respectively. Lastly you can digest
the data using the digest() method of the MessageDigest class and you can
sign or verify the data using the sign() or verify() method in the Signature
class respectively.

The package java.security also offers DigestInputStream and
DigestOutputStream classes for reading and writing to I/O.

10.1.7.1 An Example of Message Digest Generation
The following example creates a message digest of the file
D:\itso\textFile\itso.txt and stores it in the file D:\itso\textFile\itsodigest.txt.
What the program really does is explained in the comments embedded in the
code.
Security APIs in Java 2 311

Figure 132. (Part 1 of 2). MessageDigestGeneration.java

import java.security.*;
import java.io.*;

class MessageDigestGeneration
{
 public static void main(String[] args)
 {
 try
 {
 // generate a Message Digest objects
 MessageDigest classMD = MessageDigest.getInstance("SHA1");

 // get the file to be digested
 File inputTextFile = new File("D:\\itso\\textFile\\itso.txt");
 FileInputStream cfis = new FileInputStream(inputTextFile);
 BufferedInputStream cbis = new BufferedInputStream(cfis);
 byte[] cbuff = new byte[1024];

 while (cbis.available() != 0)
 {
 int len = cbis.read(cbuff);

 // update the digest with the data to be digested
 classMD.update(cbuff, 0, len);
 }

 cbis.close();
 cfis.close();

 // finally calculate the digest
 byte[] classdigest = classMD.digest();

 // write the digest information to a file
 File outputTextFile = new File("D:\\itso\\textFile\\itsodigest.txt");
 FileOutputStream cfos = new FileOutputStream(outputTextFile);
 BufferedOutputStream cbos = new BufferedOutputStream(cfos);
 cbos.write(classdigest);
 cbos.close();
 cfos.close();
 }
 catch(Exception e)
 {
 System.out.println("There was en exception. The exception was " +
312 Java 2 Network Security

Figure 133. (Part 2 of 2). MessageDigestGeneration.java

This Java file is compiled to a class file by launching the following command:

javac MessageDigestGeneration.java

The contents of the file itso.txt are shown in Figure 108 on page 249. We run
the MessageDigestGeneration program by launching the command:

java MessageDigestGeneration

and then we see that a new file, called itsodigest.txt, is created in the same
directory D:\itso\textFile where itso.txt is. This file contains the digest
information of itso.txt, and its contents can be displayed with a normal text
editor:

Figure 134. Digest Information Displayed with a Text Editor

10.1.7.2 An Example of Signature Generation
The following example creates a signature of the file D:\itso\textFile\itso.txt
and stores it in the file D:\itso\textFile\itsosignature.txt. Again, what this
program really does is explained in the comments embedded in the code.

Figure 135. (Part 1 of 3). SignatureGeneration.java

 e.toString());
 }
 }
}

import java.security.*;
import java.io.*;

class SignatureGeneration
{

Security APIs in Java 2 313

Figure 136. (Part 2 of 3). SignatureGeneration.java

 public static void main(String[] args)
 {
 try
 {
 // generate the KeyPair
 KeyPairGenerator KPG = KeyPairGenerator.getInstance("DSA");
 SecureRandom r = new SecureRandom();
 KPG.initialize(1024, r);
 KeyPair KP = KPG.genKeyPair();

 // get the private key to sign the data
 PrivateKey priv = KP.getPrivate();
 System.out.println("Algorithm is " + priv.getAlgorithm() + "\n");

 // generate the signature object
 Signature dsasig = Signature.getInstance("SHA1withDSA", "SUN");

 // initialize the signature object for signing with the private key
 dsasig.initSign(priv);

 // get the file to be signed
 File inputTextFile = new File("D:\\itso\\textFile\\itso.txt");
 FileInputStream fis = new FileInputStream(inputTextFile);
 BufferedInputStream bis = new BufferedInputStream(fis);
 byte[] buff = new byte[1024];
 int len;

 while (bis.available() != 0)
 {
 len=bis.read(buff);

 // update the signature object with the data to be signed
 dsasig.update(buff, 0, len);
 }
 bis.close();
 fis.close();

 // sign the data and create the signature
 byte[] realsignature = dsasig.sign();

 // write the digital signature to a file
 File outputTextFile = new File("D:\\itso\\textFile\\itsosignature.txt");
 FileOutputStream cfos = new FileOutputStream(outputTextFile);
314 Java 2 Network Security

Figure 137. (Part 3 of 3). SignatureGeneration.java

This Java file is compiled to a class file by launching the following command:

javac SignatureGeneration.java

The contents of the file itso.txt are shown in Figure 108 on page 249. We run
the SignatureGeneration program by launching the command:

java SignatureGeneration

The following message is displayed on the command line:

Algorithm is DSA

and then we see that a new file, called itsosignature.txt, is created in the
same directory D:\itso\textFile where itso.txt is. This file contains the
signature of itso.txt, and its contents can be displayed with a normal text
editor:

Figure 138. Signature Displayed with a Text Editor

 BufferedOutputStream cbos = new BufferedOutputStream(cfos);

 cbos.write(realsignature);
 cbos.close();
 cfos.close();
 }
 catch(Exception e)
 {
 System.out.println("There was en exception. The exception was " +
 e.toString());
 }
 }
}

Security APIs in Java 2 315

10.1.8 Secure Random Number Generation
In the code of the SignatureGeneration class, shown in Figure 135 on page
313 through Figure 137 on page 315, the class java.security.SecureRandom
is used. This class provides a cryptographically strong Pseudo-Random
Number Generator (PRNG). The package java.security also offers the class
SecureRandomSpi, which defines the SPI for SecureRandom.

Let’s consider the following instruction:

SecureRandom r = new SecureRandom();

This obtains a SecureRandom object containing the implementation from the
highest-priority installed security provider (SUN, in our case) that has a
SecureRandom implementation. You will remember that the list of providers is
in the java.security file (see 8.3, “The Security Properties File, java.security”
on page 234).

Another way to instantiate a SecureRandom object is via the static method
getInstance(), supplying the algorithm and optionally the provider
implementing that algorithm:

SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");

10.1.9 The SignedObject Class
SignedObject is a class for the purpose of creating authentic run-time objects
whose integrity cannot be compromised without being detected. More
specifically, a SignedObject contains another serializable object and its
signature.

The signed object is a deep copy (in serialized form) of an original object.
Once the copy is made, further manipulation of the original object has no side
effect on the copy.

A typical usage for signing is the following:

A typical usage for verification is the following:

Signature signingEngine = Signature.getInstance(algorithm, provider);
SignedObject so = new SignedObject(myobject, signingKey, signingEngine);
316 Java 2 Network Security

Potential applications of SignedObject include:

 • It can be used internally to any Java run time as an unforgeable
authorization token – one that can be passed around without the fear that
the token can be maliciously modified without being detected.

 • It can be used to sign and serialize data/object for storage outside the
Java run time (for example, storing critical access control data on disk).

 • Nested SignedObject objects can be used to construct a logical sequence
of signatures, resembling a chain of authorization and delegation.

10.1.10 Permission APIs
The permission classes represent access to the system resources. The
java.security package provides the abstract class Permission, which is
subclassed to represent specific accesses. Several subclasses of this class
are available in the Java core API. You can define your own specific
permission classes by subclassing this class or by using available subclasses
like java.security.BasicPermission.

Although each permission class subclasses, directly or indirectly, the
Permission class in the package java.security, specific accesses are
represented by permission classes that are generally part of the package
where they are most likely to be used. For example, the permission class
FilePermission is part of the java.io package, and SocketPermission class
belongs to the package java.net.

Permissions may have a target and an optional list of actions. For example,
the target for FilePermission can be the file D:\itso\textFile\itso.txt and the
actions can be read and write. We have discussed the use of permissions and
their associated targets and actions when managing policy files (see 3.6,
“The Policy File” on page 93 and 8.4.2, “grant Entries” on page 243).

Besides the Permission class, the built-in permission classes found in the
java.security package are AllPermission, BasicPermission,

Signature verificationEngine = Signature.getInstance(algorithm, provider);
if (so.verify(publickey, verificationEngine))
 try
 {
 Object myobj = so.getObject();
 }
 catch (ClassNotFoundException e)
 {
 };
Security APIs in Java 2 317

SecurityPermission and UnresolvedPermission. Associated with the
Permission class, there are also the abstract class
java.security.PermissionCollection and final class java.security.Permissions
class. The former represents a collection of homogeneous permissions, such
as a set of file permissions. The latter is for a collection of heterogeneous
Permission objects.

When implementing a subclass of the Permission class, it is crucial to
implement the abstract method implies(). Here a implies b means that giving
an application permission a automatically grants it permission b too. For
example, giving some code permission AllPermission implies giving all the
rest of the permissions. Of course, much caution is needed when granting
this permission.

In 10.7, “The Permission Classes” on page 339 we will:

 • Study all the permission classes that are part of the Java core API

 • See which permission classes require a target or a list of actions to be
specified

 • Explain how to implement custom permissions

10.1.11 Code Source
The CodeSource class extends the HTML concept of code base to
encapsulate not only the URL location of the code, but also the certificates
containing the public keys that should be used to verify signed code
originating from that location. The code base is represented as a
java.net.URL object and the list of signers as an array of
java.security.cert.Certificate objects. This is the constructor for the
CodeSource class:

CodeSource(URL url, Certificate[] certs)

The URL location is then extracted using the getLocation() method and the
certificates with the getCertificates() method.

The CodeSource class also provides an implies() method which returns
whether or not the CodeSouce specified as argument is implied by this
CodeSource. For example, say that we have two CodeSource objects,
codeSource1 and codeSource2, with the following features:

 • codeSurce1 specifies file:/D:/- as the code base URL and has certificates
corresponding to the signers marco and deepak.

 • codeSource2 specifies file:/D:/itso/- as the code base URL and has
certificates corresponding to the signers marco, duane and deepak.
318 Java 2 Network Security

Then codeSource2 is implied by codeSource1, but not vice versa.

The example we have just described is implemented through the
CodeSourceTest class, whose code is shown in the following figure. Notice
that what the code below exactly does is explained in the comments
embedded in the code itself.

Figure 139. (Part 1 of 2). CodeSourceTest.java

import java.security.*;
import java.security.cert.*;
import java.net.*;
import java.io.*;

class CodeSourceTest
{
 public static void main(String[] args)
 {
 try
 {
 // create code base URLs
 URL codeBase1 = new URL("file:/D:/-");
 URL codeBase2 = new URL("file:/D:/itso/-");

 // create the Keystore object
 KeyStore ks = KeyStore.getInstance("JKS", "SUN");
 String keypass = "javakeys";
 char[] pwd = new char[8];
 for (int i = 0; i < pwd.length; i++)
 pwd[i] = keypass.charAt(i);

 // load the keystore from the system
 FileInputStream fisk = new
 FileInputStream("D:\\itso\\ch10\\keystore\\localstore");
 ks.load(fisk, pwd);

 // get the certificates from the keystore with aliases marco, deepak and duane
 // similar to keytool -export
 X509Certificate marco = (X509Certificate)ks.getCertificate("marco");
 X509Certificate deepak = (X509Certificate)ks.getCertificate("deepak");
 X509Certificate duane = (X509Certificate)ks.getCertificate("duane");

 // create certificate arrays
 X509Certificate[] signers1 = {marco, deepak};
 X509Certificate[] signers2 = {marco, deepak, duane};
Security APIs in Java 2 319

Figure 140. (Part 2 of 2). CodeSourceTest.java

The code shown in the figure above assumes that a JKS keystore file, called
localstore, will be stored in the directory D:\itso\ch10\keystore\localstore. The
X.509 certificates for the aliases marco, deepak and duane must be stored in
this keystore. The keystore password is assumed to be javakeys and for
simplicity it is hardcoded in the example above. However, in general, it is
recommended that passwords not be hardcoded, since a simple
decompilation attack could expose them (see 5.3.1, “Decompilation Attacks”
on page 126).

Compile the CodeSourceTest class with the command:

javac CodeSourceTest.java

Then run it by entering:

java CodeSourceTest

This message will be displayed on the Command Prompt window:

codeSource1 implies codeSource2

This confirms what we said about the implies() method for the CodeSource
class.

 // create code sources
 CodeSource codeSource1 = new CodeSource(codeBase1, signers1);
 CodeSource codeSource2 = new CodeSource(codeBase2, signers2);

 // display the answer
 if (codeSource1.implies(codeSource2))
 System.out.println("codeSource1 implies codeSource2");
 else
 System.out.println("codeSource1 does not imply codeSource2");
 }

 catch(Exception e)
 {
 System.out.println("There was an exception: " + e.toString());
 }
 }
}

320 Java 2 Network Security

10.1.12 Protection Domain
This ProtectionDomain class is used to represent a unit of protection within a
Java application environment. The arguments for its constructors are a
CodeSource object and a PermissionCollection object representing the set of
permissions granted to the CodeSource object itself:

ProtectionDomain(CodeSource codesource, PermissionCollection permissions)

Notice that:

 • Classes that have the same permissions but are from different code
sources belong to different protection domains.

 • Each class belongs to one and only one protection domain, depending on
its code source and the permissions granted to the code source.

 • All the classes in the same code source belong to the same protection
domain.

The method getCodeSource() returns the code source of the domain and the
method getPermissions() returns the permissions of the domain. Moreover,
given a particular Permission object, a method implies() is provided to check
and see if a specific ProtectionDomain implies the permission expressed in
the Permission object.

10.1.13 Policy
The package java.security provides an abstract class called Policy for
representing the system security policy for a Java application environment.
The purpose of this class is to specify which permissions are available for
code from various sources. The security policy is represented by a Policy
subclass providing an implementation of the abstract methods in this Policy
class.

There is only one Policy object in effect at any given time. It is consulted by a
ProtectionDomain when it initializes its set of permissions.

The source of the policy information used to construct the Policy object
depends upon the Policy implementation. The policy configuration may be
stored, for example, as a flat ASCII file (like the default policy implemented by
Sun), as a serialized binary file of the Policy class, or as a database.

The currently installed Policy object can be obtained by calling the getPolicy()
static method, and it can be changed by a call to the setPolicy() static
method. However, only code with permission to reset the Policy can call
setPolicy(). The refresh() method causes the Policy object to refresh/reload
its current configuration. This is implementation dependent. For example, if
Security APIs in Java 2 321

the Policy object stores its policy in configuration files, calling refresh() will
cause it to re-read the configuration policy files.

The getPermissions() method takes a CodeSource object as argument,
evaluates the global policy and returns a Permissions object specifying the
set of permissions allowed for code from the specified CodeSource.

10.1.14 Secure Class Loader
The java.security package offers the SecureCLassLoader class, which
extends java.lang.ClassLoader. SecureClassLoader provides additional
support for defining classes with an associated code source and permissions
which are retrieved by the system policy by default.

10.1.15 Algorithm Parameters
The AlgorithmParameters class is an engine class that provides an opaque
representation of cryptographic parameters. An opaque representation of
cryptographic parameters is one in which you have no direct access to the
parameter fields; you can only get the name of the algorithm associated with
the parameter set and some kind of encoding for the parameter set itself. This
is in contrast to a transparent representation of cryptographic parameters, in
which you can access each value individually, through one of the get methods
defined in the corresponding specification class. However, you can call the
AlgorithmParameters.getParameterSpec() method to convert an
AlgorithmParameters object to a transparent specification.

The package java.security also provides the AlgorithmParameterGenerator
and AlgorithmParameterGeneratorSpi classes:

 • The AlgorithmParameterGenerator class is used to generate a set of
parameters to be used with a certain algorithm. Parameter generators are
constructed using the getInstance() factory methods2.

 • The AlgorithmParameterGeneratorSpi class defines the SPI for the
AlgorithmParameterGenerator class.

10.2 The Package java.security.spec

This package contains classes and interfaces for key specifications and
algorithm parameter specifications. Key specifications are transparent
representations of the key material that constitutes a key. A transparent
representation of key material means that you can access each key material
value individually, through one of the get methods defined in the

2 Factory methods are static methods that return instances of a given class.
322 Java 2 Network Security

corresponding specification class. For example, DSAPrivateKeySpec, which
is a specification class for keys using the DSA algorithm, defines getX(),
getP(), getQ() and getG() methods to access the private key x, and the DSA
algorithm parameters used to calculate the key: the prime p, the sub-prime q
and the base g. This is contrasted with an opaque representation of key
material (as defined by the Key interface discussed in 10.1.6, “Key
Management” on page 305), in which you have no direct access to the key
material fields.

This package contains key specifications for DSA public and private keys,
RSA public and private keys, PKCS#8 private keys in DER-encoded format,
and X.509 public and private keys in DER-encoded format. It also provides an
algorithm parameter specification class DSAParameterSpec, which specifies
the set of parameters used with the DSA algorithm.

The interfaces provided are AlgorithmParameterSpec and KeySpec:

 • The AlgorithmParameterSpec interface is a specification of cryptographic
parameters. It groups all parameter specifications. All parameter
specifications, such as the DSAParameterSpec class provided in the same
package, must implement it.

 • The KeySpec interface is a specification of the key material that
constitutes a cryptographic key. This interface also groups all key
specifications. All key specifications must implement this interface.

Neither of these interfaces contain any methods or constants.

10.3 The Package java.security.cert

This package provides classes to manage and handle digital certificates and
certificate revocation lists (CRLs), and provides separate classes for
managing X.509 certificates and X.509 CRLs.

 • The abstract Certificate class can be used to manage different types of
identity certificates, while the abstract X509Certificate class, which
extends Certificate and implements the X509Extension interface, is
specifically for X.509 certificates.

 • The CRL class is an abstraction of CRLs, which have different formats but
important common uses. For example, all CRLs share the functionality of
listing revoked certificates, and can be queried on whether or not they list
a given certificate. Specialized CRL types can be defined by subclassing
this abstract class. An example is the X509CRL class, which extends CRL
and implements the X509Extension interface. An X509CRLEntry class is
provided for a revoked certificate entry in an X.509 CRL.
Security APIs in Java 2 323

 • The java.security.cert package also provides a CertificateFactory class to
generate certificates and CRL objects from their encodings, and a
CertificateFactorySpi class to define the SPI for the CertificateFactory
class. CertificateFactory objects can be instantiated using the
getInstance() method. Then, the generateCertificate() and generateCRL()
methods can be used to create a certificate and a CRL object,
respectively.

An example of Java code importing and using the java.security.cert package
is provided by the class CodeSourceTest, whose code is shown in Figure 139
on page 319 and Figure 140 on page 320.

10.4 Package java.security.interfaces

This package contains only interfaces, which are used for generating DSA
and RSA keys. The RSA key generation interfaces are as defined in the RSA
Laboratory Technical Note PKCS#1, while those for DSA are as defined in the
NIST FIPS 186 (see 2.2.2, “Java Cryptography Architecture” on page 56).

The DSAKey, DSAPrivateKey and DSAPublicKey interfaces provide the
standard interfaces to DSA keys. The package also provides a
DSAKeyPairGenerator interface for generating DSA key pairs and a
DSAParams interface for generating a DSA-specific set of key parameters,
which define a DSA key family.

The RSAPublicKey and RSAPrivateKey interfaces are for RSA keys. The
package also contains a class named RSAPrivateCrtKey, which is the
interface to an RSA private key, as defined in the PKCS#1 standard, using the
Chinese Remainder Theorem (CRT) information values.

10.5 The Package java.security.acl

This package offers a set of interfaces to manage access control lists
(ACLs).3 An access control list is a data structure used to guard access to
resources. These are the interfaces provided:

 • The Acl interface represents an ACL.

 • The AclEntry interface represents an entry in an ACL.

 • The Group interface represents a group of principals. This interface
extends the Principal interface in the java.security package (see 10.1.1,
“Principals” on page 297).

3 JavaSoft states that the java.security.acl APIs have been superseded by classes in the java.security package.
324 Java 2 Network Security

 • The Owner interface is used to manage owners of ACLs or ACL
configurations.

 • The Permission interface is used to represent a permission, such as that
used to grant a particular type of access to a resource.

10.6 Examples Using the Java 2 Security APIs

We have shown several examples of code that makes use of the Java 2
security APIs. This section provides other interesting examples.

10.6.1 Signature and Signature Verification
In this section we demonstrate how to use the Java 2 APIs to sign a
document and then verify the signature. First we write a program,
SignFile.java, in which we create a key pair, use this to sign a document and
store the signature and the public key in two separate files:

Figure 141. (Part 1 of 2). SignFile.java

import java.io.*;
import java.security.*;

class SignFile
{
 public static void main(String arg[])
 {
 if (arg.length != 3)
 System.out.println("Usage: java signFile DATAFILE SIGNATUREFILE
 PUBLICKEYFILE");
 else
 try
 {
 // We create the keypair - Key strength can be 1024 inside the United States
 KeyPairGenerator KPG = KeyPairGenerator.getInstance("DSA", "SUN");
 SecureRandom r = new SecureRandom();
 KPG.initialize(1024, r);
 KeyPair KP = KPG.generateKeyPair();

 // We get the generated keys
 PrivateKey priv = KP.getPrivate();
 PublicKey publ = KP.getPublic();

 // We intialize the signature
 Signature dsasig = Signature.getInstance("SHA1withDSA", "SUN");
Security APIs in Java 2 325

Figure 142. (Part 2 of 2). SignFile.java

The comments embedded in the code explain what the code does. A detailed
explanation follows:

 dsasig.initSign(priv);

 // We get the file to be signed
 FileInputStream fis = new FileInputStream(arg[0]);
 BufferedInputStream bis = new BufferedInputStream(fis);
 byte[] buff = new byte[1024];
 int len;

 // We call the update() method of Signature class ->
 // Updates the data to be signed
 while (bis.available() != 0)
 {
 len=bis.read(buff);
 dsasig.update(buff, 0, len);
 }

 // We close the buffered input stream and the file input stream
 bis.close();
 fis.close();

 // We get the signature
 byte[] realsignature = dsasig.sign();

 // We write the signature to a file
 FileOutputStream fos = new FileOutputStream(arg[1]);
 fos.write(realsignature);
 fos.close();

 // We write the public key to a file
 byte[] pkey = publ.getEncoded();
 FileOutputStream keyfos = new FileOutputStream(arg[2]);
 keyfos.write(pkey);
 keyfos.close();
 }
 catch (Exception e)
 {
 System.out.println("Caught Exception: " + e);
 }
 }
}

326 Java 2 Network Security

In this program, we get a key pair generator to generate keys for the DSA
signature algorithm. The KeyPairGenerator class is used to generate pairs of
public and private keys. Key pair generators are constructed using one of the
two getInstance() factory methods provided in the KeyPairGenerator class. A
key pair generator for a particular algorithm creates a public/private key pair
that can be used with this algorithm. It also associates algorithm-specific
parameters with each of the generated keys. We generate a
KeyPairGenerator object by implementing the DSA algorithm provided by the
SUN provider of Sun Microsystems:

KeyPairGenerator KPG = KeyPairGenerator.getInstance("DSA", "SUN");

Then we initialize the KeyPairGenerator with a random number. The source of
randomness is an instance of the SecureRandom class. This class provides a
cryptographically strong PRNG. To get an instance of this class, you can use
the getInstance() method specifying the PRNG algorithm and the provider
that supplies it:

SecureRandom r = SecureRandom.getInstance("SHA1PRNG", "SUN");

Another option, which is the option selected for this example, is to call the
SecureRandom constructor directly:

SecureRandom r = new SecureRandom();

This obtains a SecureRandom object containing the implementation from the
highest-priority installed provider (SUN, in our case) that has a
SecureRandom implementation. The list of providers is available in the
java.security file (see 8.3, “The Security Properties File, java.security” on
page 234).

We can now create the key pair using the generateKeyPair() method. The key
size is set to 1024:

KPG.initialize(1024, r);
KeyPair KP = KPG.generateKeyPair();

The private and the public keys can be retrieved using the getPrivateKey()
and the getPublicKey() methods of the KeyPair class respectively:

PrivateKey priv = KP.getPrivate();
PublicKey publ = KP.getPublic();

The Signature object is generated using the getInstance() factory method of
the Signature class. We need to provide the signing algorithm and the
provider name. Then we associate the private key to be used for signing
using the initSign() method:
Security APIs in Java 2 327

Signature dsasig = Signature.getInstance("SHA1withDSA", "SUN");
dsasig.initSign(priv);

Next we get the file to be signed. The signature can be generated using the
sign() method after all the data has been updated.

In fact, once generated, a Signature object has three phases. For signing
data, it must be initialized using the initSign() method as done above. Then, it
must be updated with the data to be signed using the update() method:

dsasig.update(buff, 0, len);

The final phase is to actually sign the data using the sign() method:

byte[] realsignature = dsasig.sign();

Signature verification consists of similar phases. The initializing is done with
the public key rather than the private key. The update is done by the data to
be verified rather than the data to be signed. Lastly, the sign() method is
replaced by the verify() method.

The final step is to save the signature generated and the public key to two
files. We need to get the public key in its encoded format before writing it to
the file. This can be done using the getEncoded() method provided in the Key
interface:

byte[] pkey = publ.getEncoded();

Notice that the names of the three files used in this program should be
passed by the user on the command line. They are:

1. Input file to be signed
2. File where the signature will be written
3. File where the public key will be written

This program is compiled with the following command:

javac SignFile.java

It is executed by using the Java interpreter java and passing the names of the
three files on the command line. For instance:

java SignFile itso.txt sign pub

Notice that it is not necessary that the sign signature file and the pub public
key file exist. The program creates them automatically. These are their
contents after the execution of the SignFile class:
328 Java 2 Network Security

Figure 143. sign Signature File

Figure 144. pub Public Key File

The contents of the file itso.txt are shown in Figure 108 on page 249.

At this point, the three files can be sent to the receiver who will execute the
following program to verify the signature:

Figure 145. (Part 1 of 3). VerifyFile.java

import java.io.*;
import java.security.*;
import java.security.spec.*;

class VerifyFile
{
 public static void main(String args[])
Security APIs in Java 2 329

Figure 146. (Part 2 of 3). VerifyFile.java

 {
 if (args.length != 3)
 System.out.println("Usage: java VerifyFile DATAFILE SIGNATUREFILE
 PUBLICKEYFILE");
 else
 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 FileInputStream sfis = new FileInputStream(args[1]);
 FileInputStream pfis = new FileInputStream(args[2]);

 //Get the public key of the sender
 byte[] encKey = new byte[pfis.available()];
 pfis.read(encKey);
 pfis.close();
 X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(encKey);
 KeyFactory KeyFac = KeyFactory.getInstance("DSA", "SUN");
 PublicKey pubkey = KeyFac.generatePublic(pubKeySpec);

 // Get the signature on the file - This will be verified
 byte[] sigToVerify = new byte[sfis.available()];
 sfis.read(sigToVerify);
 sfis.close();

 // Initialize the signature
 // update() method used to update the data to be verified
 Signature dsasig = Signature.getInstance("SHA1withDSA", "SUN");
 dsasig.initVerify(pubkey);
 BufferedInputStream buf = new BufferedInputStream(fis);
 byte[] buff = new byte[1024];
 int len;
 while(buf.available() != 0)
 {
 len = buf.read(buff);
 dsasig.update(buff, 0, len);
 }
 buf.close();
 fis.close();

 // Verify the signature
 boolean verifies = dsasig.verify(sigToVerify);
 if (verifies)
 System.out.println("Verified: The signature on the file is correct.");
330 Java 2 Network Security

Figure 147. (Part 3 of 3). VerifyFile.java

The comments embedded in the code explain what the code does. A detailed
explanation follows.

First, notice that we must import the encoded public key bytes from the file
containing the public key and convert them to a PublicKey. Hence, we read
the key bytes, instantiate the DSA publickey using the KeyFactory class, and
generate the key from it:

byte[] encKey = new byte[pfis.available()];
pfis.read(encKey);
pfis.close();
X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(encKey);
KeyFactory KeyFac = KeyFactory.getInstance("DSA", "SUN");
PublicKey pubkey = KeyFac.generatePublic(pubKeySpec);

The X509EncodedKeySpec class represents the DER encoding of a public or
private key, according to the format specified in the X.509 standard. The
public key can be created from it using the KeyFactory class. This class is
used to convert keys (opaque cryptographic keys of type Key) into key
specifications (transparent representations of the underlying key material),
and vice versa. We specify the key algorithm (DSA) and the provider (SUN)
and use the generatePublic() method to generate the public key.

The rest of the program is similar to SignFile. The only difference is that the
signature is initialized with this public key in place of the private key, and the
sign() method is replaced by the verify() method.

The program is compiled by simply entering:

javac VerifyFile.java

 else
 System.out.println("Warning: The signature on the file has been tampered
 with.");
 }

 catch (Exception e)
 {
 System.out.println("Caught Exception: " + e);
 }
 }
}

Security APIs in Java 2 331

To run it, the user should specify three files on the command line:

1. Input file on which a signature has been applied
2. File where the signature has been written
3. File where the public key has been written

Notice that this time all three files must exist in advance. We run this program
passing to it the file itso.txt as the file on which the signature was applied (see
Figure 108 on page 249), and the signature and public key files generated by
SignFile. This way, we are simulating a scenario in which a sender generates
a signature and then sends the original file to a receiver along with the
signature and the public key.

Run the program by entering:

java VerifyFile itso.txt sign pub

The output is as expected:

1. If none of the three files has been altered after the signature was applied,
the program displays the following:

Verified: The signature on the file is correct.

2. If you change the contents of any of the three files, the program displays
the following message:

Warning: The signature on the file has been tampered with.

3. If you modify the signature file, so that it no longer respects the signature
format, this is the message displayed:

Caught Exception: java.security.SignatureException:
invalid encoding for signature

This example demonstrates how you can successfully use the Java 2 APIs to
send documents with proof of data integrity and authenticity.

10.6.2 Using Keystores
In the SignFile.java program, if you wish to load the keys from a keystore
rather than generating them, you can use the following program:

Figure 148. (Part 1 of 3). SignFileKS.java

import java.io.*;
import java.security.*;
import java.security.cert.*;
332 Java 2 Network Security

Figure 149. (Part 2 of 3). SignFileKS.java

class SignFileKS
{
 public static void main(String arg[])
 {
 if (arg.length != 5)
 System.out.println("Usage: java signFileKS DATAFILE SIGNFILE CERTFILE ALIAS
 KEYSTOREPWD");
 else
 try
 {
 // Access the default keystore in the user home directory
 String s1 = System.getProperty("user.home");
 String s2 = System.getProperty("file.separator");
 FileInputStream fisk = new FileInputStream(s1 + s2 + ".keystore");
 KeyStore ks = KeyStore.getInstance("JKS", "SUN");

 // Access the private key and the certificate of the signer alias
 String keypass = arg[4];
 char[] pwd = new char[keypass.length()];
 keypass.getChars(0, keypass.length(), pwd, 0);
 ks.load(fisk, pwd);
 String alias = arg[3];
 PrivateKey priv = (PrivateKey)ks.getKey(alias, pwd);
 X509Certificate certs = (X509Certificate)ks.getCertificate(alias);

 // Intialize the signature
 Signature dsasig = Signature.getInstance("SHA1withDSA", "SUN");
 dsasig.initSign(priv);

 // Get the file to be signed
 FileInputStream fis = new FileInputStream(arg[0]);
 BufferedInputStream bis=new BufferedInputStream(fis);
 byte[] buff = new byte[1024];
 int len;

 // update() method of Signature class -> Updates the data to be signed
 while (bis.available() != 0)
 {
 len=bis.read(buff);
 dsasig.update(buff, 0, len);
 }

 // Close the buffered input stream and the file input stream
Security APIs in Java 2 333

Figure 150. (Part 3 of 3). SignFileKS.java

The comments embedded in the code explain what the code really does. You
can see that this program is very similar to SignFile. The only difference here
is that, in place of generating keys, we load an existing keystore and use keys
already created and present in it. The program is configured to retrieve the
keystore from the user home directory. System variables are used to grant
code portability across the platforms.

You can generate a keystore by using the -genkey option of the keytool
command line utility.

This program also gets the certificate associated with the alias passed by the
user on the command line and saves it into a file so that it can be sent to the
receiver for verification.

We generate the KeyStore object using the getInstance() factory method for
the KeyStore class. The implementation we use is JKS and the provider is
SUN, which is the default provider supplied by Sun Microsystems:

String s1 = System.getProperty("user.home");

 bis.close();
 fis.close();

 // Get the signature
 byte[] realsignature = dsasig.sign();

 // Write the signature to a file
 FileOutputStream fos = new FileOutputStream(arg[1]);
 fos.write(realsignature);
 fos.close();

 // Write the certificate to a file
 byte[] cert = certs.getEncoded();
 FileOutputStream certfos = new FileOutputStream(arg[2]);
 certfos.write(cert);
 certfos.close();
 }
 catch (Exception e)
 {
 System.out.println("Caught Exception: " + e);
 }
 }
}

334 Java 2 Network Security

String s2 = System.getProperty("file.separator");
FileInputStream fisk = new FileInputStream(s1 + s2 + ".keystore");
KeyStore ks = KeyStore.getInstance("JKS", "SUN");

When you run this sample, ensure that you have generated a keystore called
.keystore on your user home directory. This file name and location are the
default for the keystore creation performed by the -genkey command of the
keytool utility.

Next we load the keystore using the load() method, and we supply the
keystore password, which is also required as a command line argument:

ks.load(fisk, pwd);

Finally, we get the private key (with the getKey() method) and the certificate
(with the getCertificate() method) associated with the intended alias.

PrivateKey priv = (PrivateKey)ks.getKey(alias, pwd);
X509Certificate certs = (X509Certificate)ks.getCertificate(alias);

This program is compiled with the command:

javac SignFileKS.java

Notice that five pieces of information should be provided by the user on the
command line. They are:

1. Input file to be signed
2. File where the signature will be written
3. File where the certificate will be written
4. Alias associated with the entity signing the file
5. Keystore password

The program is executed by using the Java interpreter java and passing this
information on the command line. For instance:

java SignFileKS itso.txt signKS certKS marco javakeys

Notice that it is not necessary that the signature file or the file to which the
certificate is exported exist. The program creates them automatically. These
are the contents after the execution of the SignFile class:
Security APIs in Java 2 335

Figure 151. signKS Signature File

Figure 152. certKS Certificate File

The contents of the file itso.txt are shown in Figure 108 on page 249.
336 Java 2 Network Security

At this point, the three files can be sent to the receiver who will execute the
following program to verify the signature:

Figure 153. (Part 1 of 2). VerifyFileKS.java

import java.io.*;
import java.security.*;
import java.security.spec.*;
import java.security.cert.*;

class VerifyFileKS
{
 public static void main(String args[])
 {
 if (args.length != 3)
 System.out.println("Usage: java VerifyFileKS DATAFILE SIGNFILE CERTFILE");
 else
 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 FileInputStream sfis = new FileInputStream(args[1]);
 InputStream cfis = new FileInputStream(args[2]);

 // Get the certificate from the file
 CertificateFactory mycf = CertificateFactory.getInstance("X.509");
 X509Certificate cert = (X509Certificate) mycf.generateCertificate(cfis);
 cfis.close();

 // Get the public key from the certificate
 PublicKey pubkey = cert.getPublicKey();

 // Get the signature on the file - This will be verified
 byte[] sigToVerify = new byte[sfis.available()];
 sfis.read(sigToVerify);
 sfis.close();

 // Initialize the signature
 // update() method used to update the data to be verified
 Signature dsasig = Signature.getInstance("SHA1withDSA","SUN");
 dsasig.initVerify(pubkey);
 BufferedInputStream buf = new BufferedInputStream(fis);
 byte[] buff = new byte[1024];
 int len;
 while (buf.available() != 0)
 {
Security APIs in Java 2 337

Figure 154. (Part 2 of 2). VerifyFileKS.java

The comments embedded in the code explain what the code does. A detailed
explanation follows.

The difference between this program and VerifyFile is only in the way they
generate the public key object. In the VerifyFile.java code, we retrieve the
public key from a file. Here, in the VerifyFileKS.java code, we simply take it
from the certificate provided; we generate an X509Certificate object using the
certificate received and use its getPublicKey() method to get the public key.

CertificateFactory mycf = CertificateFactory.getInstance("X.509");
X509Certificate cert = (X509Certificate)mycf.generateCertificate(cfis);
cfis.close();
PublicKey pubkey = cert.getPublicKey();

The program above is compiled with the command:

javac VerifyFileKS.java

To run it, the user should specify on the command line the names of the
following files:

1. Input file on which a signature has been applied
2. File where the signature has been written

 len = buf.read(buff);
 dsasig.update(buff, 0, len);
 }
 buf.close();
 fis.close();

 // Verify the signature
 boolean verifies = dsasig.verify(sigToVerify);
 if (verifies)
 System.out.println("Tested: The signature on the file is correct.");
 else
 System.out.println("Warning: The signature on the file has been tampered
 with.");
 }
 catch (Exception e)
 {
 System.out.println("Caught Exception: " + e);
 }
 }
}

338 Java 2 Network Security

3. File where the certificate has been exported

Notice that all three files must exist in advance. We run this program passing
to it the file itso.txt as the file on which the signature was applied (see Figure
108 on page 249), and the signature and certificate files generated by
SignFileKS. This way, we are simulating a scenario in which a sender
generates a signature and then sends the original file to a receiver along with
the signature and the public key.

We run the program by entering:

java VerifyFileKS itso.txt signKS certKS

The output is as expected:

1. If none of the three files has been altered after the signature was applied,
the program displays the following:

Verified: The signature on the file is correct.

2. If you change the contents of any of the three files, the program displays
the following message:

Warning: The signature on the file has been tampered with.

3. If you modify the signature file, so that it no longer respects the signature
format, this is the message displayed:

Caught Exception: java.security.SignatureException:
invalid encoding for signature

This example demonstrates how you can successfully integrate the Java 2
APIs with local security structures, such as keystores, to send documents
with proof of data integrity and authenticity.

10.7 The Permission Classes

As we discussed in 10.1.10, “Permission APIs” on page 317, the permission
classes represent access to the System resources. The built-in permissions
classes are:

 • java.security.Permission

This is an abstract class, which is the ancestor of all permissions; it
defines the essential functionality required for all permissions. An
important abstract method that must be implemented by each subclass is
the implies() method to compare Permissions. Basically, permission p1
implies permission p2 means that if one is granted permission p1, one is
Security APIs in Java 2 339

also granted permission p2. Thus, this is not an equality test, but rather
more of a subset test.

The built-in permission classes that subclass Permission directly are
AllPermission, FilePermission, SocketPermission, UnresolvedPermission
and BasicPermission.

 • java.security.AllPermission

This is a class that implies all permissions, including any new permissions
that may be defined later on.

As we cautioned earlier, granting AllPermission should be done with
extreme care, as it implies all other permissions. In other words, it grants
code the ability to run with security disabled. This permission should be
used only during testing, or in extremely rare cases where an application
or applet is completely trusted and adding the necessary permissions to
the policy is prohibitively cumbersome.

 • java.io.FilePermission

This class represents access to a file or directory. A FilePermission
consists of a path name and a set of actions valid for that path name.

The path name indicates the file or directory subject to the specified
actions. Notice that:

 • A path name that ends in /* (where / is the file separator character)
indicates all the files and directories contained in that directory.

 • A path name that ends with /- indicates (recursively) all files and
subdirectories contained in that directory.

 • A path name consisting of the special token <<ALL FILES>> matches any
file or directory.

The actions to be granted are passed to the constructor in a string
containing a list of one or more comma-separated keywords. The possible
keywords are read (for read permission), write (for write permission),
execute (for execute permission), and delete (for delete permission).

Be careful when granting FilePermission. Think about the implications of
granting read and especially write access to various files and directories.
The <<ALL FILES>> path name token with write action is especially
dangerous. This grants permission to write to the entire file system, and
one thing this effectively allows is replacement of the system binaries,
including the JVM run-time environment.

Note that the code will always have permission to read files from its
originating URL location, and all subdirectories of that location; it does not
340 Java 2 Network Security

need explicit permissions to do so (see 8.6, “File Read Access to Files in
the Code Base URL Directory” on page 252).

 • java.net.SocketPermission

This class represents access to a network via sockets. A
SocketPermission consists of a host specification and a set of actions
specifying ways to connect to that host. The possible ways to connect to
the host are accept, connect, listen and resolve.

Granting code permission to accept or make connections to remote hosts
may be dangerous because malevolent code can then more easily transfer
and share confidential data among parties who may not otherwise have
access to the data.

 • java.security.UnresolvedPermission

This class is used to hold permissions that were unresolved when the
policy was initialized. An unresolved permission is one whose actual
Permission class does not yet exist at the time the policy is initialized.

Whenever a policy is initialized or refreshed, Permission objects of
appropriate classes are created for all permissions allowed by the policy.
However, some permission classes may not yet exist during policy
initialization. For example, a referenced permission class may be in a JAR
file that will later be loaded. For each such class, an
UnresolvedPermission is instantiated. Thus, an UnresolvedPermission is
essentially a placeholder containing information about the permission.
Later, when code calls AccessController.checkPermission() on a
permission of a type that was previously unresolved, but whose class has
since been loaded, previously unresolved permissions of that type are
resolved. That is, for each such UnresolvedPermission, a new object of the
appropriate class type is instantiated, based on the information in the
UnresolvedPermission. This new object replaces the
UnresolvedPermission, which is removed.

 • java.security.BasicPermission

This is a fully implemented abstract class. It extends the Permission class
and can be used as the base class for other permissions that want to
follow the same naming convention as BasicPermission. The name for a
BasicPermission is the name of the given permission (for example, exitVM,
setFactory, queuePrintJob, etc.).

BasicPermission is commonly used as the base class for named
permissions (ones that contain a name but no actions list; you either have
the named permission or you don’t.) Subclasses may implement actions
on top of BasicPermission, if desired. The built-in permission classes that
Security APIs in Java 2 341

subclass Permission through BasicPermission are AWTPermission,
NetPermission, PropertyPermission, ReflectPermission,
RuntimePermission, SecurityPermission and SerializablePermission.

 • java.io.AWTPermission

This class is for Abstract Windowing Toolkit (AWT) permissions. An
AWTPermission contains a target name, but no actions list; you either
have the named permission or you don’t.

The target name is the name of the AWT permission. The possible
AWTPermission target names are: accessClipboard, accessEventQueue,
listenToAllAWTEvents, showWindowWithoutWarningBanner and
readDisplayPixels.

 • java.net.NetPermission

This class is for various network permissions. A NetPermission contains a
target name, but no actions list; you either have the named permission or
you don’t.

The target name is the name of the network permission. The possible
NetPermission target names are requestPasswordAuthentication,
setDefaultAuthenticator and specifyStreamHandler.

 • java.util.PropertyPermission

This class is for property permissions. A property permission consists of a
name and a set of actions.

The name is the name of the property (java.home, os.name, etc.). The
actions to be granted are passed to the constructor in a string containing a
list of zero or more comma-separated keywords. The possible keywords
are read (for read permission) and write (for write permission).

Care should be taken before granting code permission to access certain
system properties. For example, granting permission to access the
java.home system property gives potentially malevolent code sensitive
information about the system environment (the Java installation directory).
Also, granting permission to access the user.name and user.home system
properties gives potentially malevolent code sensitive information about
the user environment (the user’s account name and home directory).

 • java.lang.reflect.ReflectPermission

This is the permission class for reflective operations. A ReflectPermission
is a named permission and has no actions. The only name currently
defined is suppressAccessChecks, which allows suppressing the standard
Java language access checks – for public, default (package) access,
342 Java 2 Network Security

protected, and private members – performed by reflected objects at their
point of use.

 • java.lang.RuntimePermission

This class is for run-time permissions. A RuntimePermission contains a
target name, but no actions list; you either have the named permission or
you don’t. The target name is the name of the run-time permission, for
example setSecurityManager, createSecurityManager (see 7.5, “Examples of
Security Manager Extensions” on page 206) and queuePrintJob (see
1.4.1.8, “Modifying the Security Policy on the Client System” on page 20
1.4.2.6, “Modifying the Security Policy” on page 32).

 • java.security.SecurityPermission

This class is for security permissions. A SecurityPermission contains a
target name, but no actions list; you either have the named permission or
you don’t. The target name is the name of a security configuration
parameter.

Currently the SecurityPermission object is used to guard access to the
Policy, Security, Provider, Signer, and Identity objects.

 • java.io.SerializablePermission

This class is for serializable permissions. A SerializablePermission
contains a target name, but no actions list; you either have the named
permission or you don’t.

The target name is the name of the serializable permission. Two are the
possible SerializablePermission target names:
enableSubclassImplementation and enableSubstitution.

The Java 2 platform also offers two other permission classes that do not
subclass java.security.Permission. These are PermissionCollection and
Permissions, and they also are found in the java.security package:

 • java.security.PermissionCollection

The PermissionCollection class is an abstract class that can be used to
hold a homogenous collection of permissions. Each instance will hold
permissions of the same kind.

 • java.security.Permissions

The Permissions class generally holds a heterogeneous collection of
permissions, organized into PermissionCollection objects. Thus, this class
represents a collection of PermissionCollections.
Security APIs in Java 2 343

10.7.1 How to Create New Permissions
Custom permissions can be created when the built-in permissions in the Java
2 core APIs are not sufficient to meet the needs of a specific program. In such
cases, we can create a new class that extends, directly or indirectly, the
java.security.Permission class. Care should be taken when implementing this
permission’s implies() method.

This new class must then be included in the application package. When the
application's resource management code makes an access control decision,
it calls the AccessController.checkPermission() static method passing a new
Permission object as parameter.

The default SecurityManager class’ checkPermission() method invokes
AccessController.checkPermission(). Therefore, if our program uses the
default SecurityManager class, we can use the
SecurityManager.checkPermission() method instead of
AccessController.checkPermission(). In other words, we can use:

sm.checkPermission(p)

where sm is the SecurityManager object, as shown below:

Code should always invoke a permission check by calling the security
manager’s checkPermission() method. Note that, with this mechanism, you
can create a new Permission class without needing to add a new method to
the security manager. In the previous versions of Java, in order to enable
checking of a new type of access, you had to add a new method to the
security manager.

We now see an example of how to implement our own permission class. In
the main program, we check for our custom permission and then try to read
the file D:\itso\textFile\itso.txt, whose contents are shown in Figure 108 on
page 249. We then execute the program with a Policy file that contains
permission entries for MyPermission and FilePermission.

First, we code the Java source files MyPermission.java (that implements
MyPermission, extended from the BasicPermission class) and
PermissionTest.java (that contains the main() method). The following figure
shows the code for the class MyPermission:

sm = System.getSecurityManager();
if (sm != null)
 sm.checkPermission(new MyPermission("target","action_list"));
344 Java 2 Network Security

Figure 155. MyPermission.java

This Java file is compiled to the class file MyPermission.class with the
following command:

javac MyPermission.class

When creating a new Permission class we extend java.security.Permission or
java.security.BasicPermission. The difference is that java.security.Permission
defines more complex permissions that require targets and actions, like a file
name and the actions to execute on that file, for example read or write. The
java.security.BasicPermission is much simpler in that we just need to define
the target. This is why BasicPermission is known as the base class for named
permissions, which are the permissions that contain a name but no actions
list. Subclasses may implement actions on top of BasicPermission, if desired.
Another advantage of the BasicPermission class is that, in extending
Permission, it provides an implementation for the Permission.implies()
abstract method.

As you can see in Figure 155, MyPermission extends BasicPermission. Note
that we have called the parent class’s constructor using a call to the super()
method in both our permission class constructors. It is mandatory that both
the constructors be defined. If we defined only one constructor, we would get
an access control exception.

After calling the constructor of the super class, we insert a call to the
System.out.println() method to log the call to the constructor. This way we can

import java.security.*;

public class MyPermission extends BasicPermission
{
 public MyPermission(String name)
 {
 super(name);
 System.out.println("Constructor MyPermission(String name) called");
 }
 public MyPermission(String name, String actions)
 {
 super(name);
 System.out.println("Constructor MyPermission(String name, String actions)
 called");
 }
}

Security APIs in Java 2 345

verify that both the constructors are being called. The println() statement
must be introduced after the super() call, because the call to super(), if
present, should be the first line in the constructor. The interesting thing here
is that, when this program is run, it executes the println() statement in both
the constructors even though we used only one of the constructors to
instantiate the object MyPermission. We require the second constructor for
use by the Policy object to instantiate new Permission objects. The source
code of the PermissionTest class shows the instantiation of a MyPermission
object:

Figure 156. PermissionTest.java

This code is compiled to the class PermissionTest.class through the
command:

import java.io.*;
import java.security.*;

public class PermissionTest
{
 public static void main(String args[])
 {
 try
 {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null)
 sm.checkPermission(new MyPermission("PermissionTest"));

 File inputFile = new File("D:\\itso\\textFile\\itso.txt");
 FileInputStream fis = new FileInputStream(inputFile);
 InputStreamReader isr = new InputStreamReader(fis);
 BufferedReader br = new BufferedReader(isr);

 String lineRead;
 while ((lineRead = br.readLine()) != null)
 System.out.println(lineRead);
 }

 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
}

346 Java 2 Network Security

javac PermissionTest.java

We define the main() method in the PermissionTest.java file. We also get the
SecurityManager, and if the SecurityManager is not null, we check for our
custom permission. The default implementation of the SecurityManager calls
the AccessController.checkPermission() method. Note that the
checkPermission() method accepts a single permission argument and always
performs security checks within the current execution context. The
checkPermission() method determines if the calling thread has permission to
perform the requested operation, based on the security policy currently in
effect. This method quietly returns if the access request is permitted, or
throws a suitable AccessControlException otherwise.

We assume that both the class files PermissionTest.class and
MyPermission.class are stored in the directory D:\itso\ch10. If they were
stored in two different directories, the -classpath option of the java command
could be used when running PermissionTest, in order for the application class
path to include both the directories where these files are.

As you can see in Figure 156 on page 346, the PermissionTest class attempts
to read the file itso.txt, stored in D:\itso\textFile.

At this point, we can run PermissionTest without invoking a security manager.
The command to do this is simply:

java PermissionTest

This command produces the following output:

This output confirms that, without a security manager, the program works
even if no special permissions have been granted. Notice that none of the two
constructors for the class MyPermission have been called. The reason for this
is that MyPermission would be instantiated only if the current security
manager is not null.

Now we want to run PermissionTest with the default security manager. The
command to do this is:

java -Djava.security.manager PermissionTest

Marco Pistoia
Duane Reller
Deepak Gupta
Milind Nagnur
Ashok Ramani
Security APIs in Java 2 347

The default security manager requires that a FilePermission be granted to the
code source of PermissionTest, so that read access to the file itso.txt is
allowed. It also requires that MyPermission be granted to PermissionTest.
Without these permissions, the system would throw an
AccessControlException. For this reason, we add the following permissions in
the user-defined policy file, which by default is ${user.home}${/}.java.policy4:

Now, upon running PermissionTest with the default security manager, the
program works as expected and displays the following output:

This also demonstrates that, when invoking the default security manager,
both the constructors for the class MyPermission are called.

10.7.2 Working with Signed Permissions
In this section we repeat the example shown in 10.7.1, “How to Create New
Permissions” on page 344, but we also demonstrate Java’s capability to
recognize a digital signature applied to a permission class file. As discussed
in 8.4.2, “grant Entries” on page 243, the ability to digitally sign permission
class files is useful for non-standard permissions that are remotely loaded.
The digital signature of a trusted entity ensures that a class has not been
replaced by an imposter class.

Let’s consider the following modification to the user-defined policy file:

4 To find out the value of the system properties, such as user.home and /, refer to Appendix A, “Getting Internal System
Properties” on page 641. Notice that / is a shortcut for file.separator (see Figure 335 on page 642 and Figure 336 on page
643).

grant codeBase "file:/D:/itso/ch10/" {
 permission java.io.FilePermission "D:\\itso\\textFile\\itso.txt", "read";
 permission MyPermission "PermissionTest";
};

Constructor MyPermission(String name) called
Constructor MyPermission(String name, String actions) called
Marco Pistoia
Duane Reller
Deepak Gupta
Milind Nagnur
Ashok Ramani
348 Java 2 Network Security

The rest is the same as in 10.7.1, “How to Create New Permissions” on page
344. Again, we run the PermissionTest class under the default security
manager:

java -Djava.security.manager PermissionTest

However, this time, an exception is thrown on the command line and the
program exits without completing:

The reason for this error is that this time the policy now in effect requires that
the permission class MyPermission be signed by the trusted entity marco.

Consider a new scenario. The first part of the scenario is similar to the
process described in 9.3.1, “jarsigner Scenario” on page 280. You may refer
to that section for details.

On a remote machine, the code for MyPermission is written and compiled as
indicated in 10.7.1, “How to Create New Permissions” on page 344. The class
file MyPermission.class is then put into a JAR file, say MyPermission.jar:

jar cvf MyPermission.jar MyPermission.class

A signer, whose alias is marco, applies his digital signature on the JAR file
MyPermission.jar. To do this, a key pair for marco must have been defined in
a keystore residing in the remote machine, and the public key must have been
wrapped in a certificate. This can be done by using the -genkey command
associated with the keytool utility (see 9.3.1, “jarsigner Scenario” on page
280).

The signature is applied to the JAR file on the remote machine by entering
the following command:

keystore ".keystore";

grant codeBase "file:/D:/itso/ch10/" {
 permission java.io.FilePermission "D:\\itso\\textFile\\itso.txt", "read";
 permission MyPermission "PermissionTest", signedBy "marco";
};

Constructor MyPermission(String name) called
java.security.AccessControlException: access denied (MyPermission PermissionTest)
 at java.security.AccessControlContext.checkPermission(Compiled Code)
 at java.security.AccessController.checkPermission(Compiled Code)
 at java.lang.SecurityManager.checkPermission(Compiled Code)
 at PermissionTest.main(Compiled Code)
Security APIs in Java 2 349

jarsigner MyPermission.jar marco

The signer on the remote machine then sends the signed JAR file
MyPermission.jar to the client machine where PermissionTest is to be run.
The signer also sends his digital certificate exported to a file.

On the local machine, the receiver verifies the received certificate and
imports it into a local keystore. As recommended in 9.3.1, “jarsigner
Scenario” on page 280, the receiver should verify the certificate fingerprints
before accepting to trust it. The receiver should also verify the digital
signature on the JAR file MyPermission.jar. This can be done by using the
jarsigner command with the -verify option.

At this point, the receiver installs the signed JAR file MyPermission.jar in the
local file system, for example in the same directory where the
PermissionTest.class file is. However, this time it is necessary to add
MyPermission.jar to the application class path, in order for the Java run-time
to find it. The full command to run the PermissionTest program this time is:

java -classpath .;MyPermission.jar -Djava.security.manager PermissionTest

This time, the test runs to completion because the class MyPermission is
signed correctly and the PermissionTest code has the required permissions.

10.8 How to Write Privileged Code

In 10.1.5, “Access Control APIs” on page 304, we explained why in Java 2,
whenever a resource access is attempted, each class in the execution stack
is checked for permission for that resource access. The security policy would
be ineffective if code with no permissions was able to invoke code with more
permissions and access system resources that it should not access by virtue
of its own protection domain. If any caller in a thread execution stack does not
have permission to the requested resource, the
AccessController.checkPermission() method throws an
AccessControlException.

However, the Java 2 security architecture permits an exception to this rule. If
some code on the thread is granted the requested permission and is marked
as privileged, then none of the previous callers are checked for the
permission. To mark a code as privileged, it is necessary to make a call to the
AccessController.doPrivileged() method5. A piece of trusted code that is

5 In beta versions of Java 2 SDK, Standard Edition, V1.2, the AccessController class did not define a doPrivileged()
method for marking a code segment as privileged. Instead, it implemented two methods, beginPrivileged() and
endPrivileged(), that encapsulated the privileged code. These two methods were deprecated in the final release and
replaced by the doPrivileged() method.
350 Java 2 Network Security

marked as privileged is enabled to temporarily grant other codes in the thread
stack permissions that otherwise would not have been granted by virtue of
their protection domains.

In this section we examine how to make use of the doPrivileged() method.

10.8.1 First Case – No Return Value, No Exception Thrown
If you do not need to return a value from within the privileged block, and if the
privileged block is not supposed to throw any exceptions, your call to
doPrivileged() will look like the following:

We can also separate the privileged code, calling doPrivileged() without using
an anonymous inner class, as shown next:

somemethod()
{
 // some normal code here...

 AccessController.doPrivileged(new PrivilegedAction()
 {
 public Object run()
 {
 // privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return
 }
 });

 // some normal code here...
}

class MyPrivilegedAction implements PrivilegedAction
{
 public Object run()
 {
 // privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return
 }
}

somemethod()
{
 // some normal code here...

 AccessController.doPrivileged(new MyPrivilegedAction());

 // some normal code here...
}

Security APIs in Java 2 351

As you can see, in order to write privileged code you must use the
PrivilegedAction interface from the package java.security. This interface has a
single method, named run(), which returns an Object. Once implemented, the
run() method contains the code that needs the privilege.

The AccessController.doPrivileged() method takes an object of type
PrivilegedAction as an argument and invokes its run() method in privileged
mode.

In the above skeleton, when the call to doPrivileged() is made, an instance of
the PrivilegedAction implementation is passed to it. In general, the
doPrivileged() method calls the run() method from the PrivilegedAction
implementation after enabling privileges, and returns the run() method’s
return value as the doPrivileged() return value. In this particular case, the
return value is ignored as there is nothing to return.

10.8.2 Second Case – Return Value, No Exception Thrown
In this case we assume that the privileged block does need to return a value,
but no exceptions are supposed to be thrown.

If a return value is required, we can write the code in the following way:

For this case, the same considerations apply as in 10.8.1, “First Case – No
Return Value, No Exception Thrown” on page 351; the doPrivileged() method
calls the run() method from the PrivilegedAction implementation after
enabling privileges, and returns the run() method's return value as the
doPrivileged() return value. The only difference is that in this case the return
value is not null. For example, in the skeleton above, the return value is a
String object. Note that we must cast the value returned by doPrivileged() to
convert it to a String object.

somemethod()
{
 // some normal code here...

 String user = (String) AccessController.doPrivileged(new PrivilegedAction()
 {
 public Object run()
 {
 // privileged code goes here, for example:
 return System.getProperty("user.name");
 }
 });

 // some normal code here...
}

352 Java 2 Network Security

10.8.3 Third Case – Return Value, Exception Thrown
The last case to consider is if the sensitive action performed in the run()
method could throw a checked exception. A checked exception is one of
those exceptions listed in the throws clause of a method. In this case, you
must use the PrivilegedExceptionAction interface instead of the
PrivilegedAction interface and you must also catch a
PrivilegedActionException in the try{}catch(){} block, as shown in the
following example:

Notice that the getException() method for PrivilegedActionException returns
an Exception object. Therefore, you must cast this Exception object to the
specific exception to be thrown, as only checked exceptions (those in the
throws clause of the method) will be wrapped in a PrivilegedActionException.
In effect, PrivilegedActionException is a wrapper for an exception thrown by a
privileged action. In this example, the exception that needs to be thrown is a
FileNotFoundException.

10.8.4 Accessing Local Variables
If you are using an anonymous inner class, any local variables you access
must be final. For example:

somemethod() throws FileNotFoundException
{
 // some normal code here...

 try
 {
 FileInputStream fis = (FileInputStream) AccessController.doPrivileged(new PrivilegedExceptionAction
 {
 public Object run() throws FileNotFoundException
 {
 // privileged code goes here, for example:
 return new FileInputStream("someFile");
 }
 });
 }
 catch(PrivilegedActionException e)
 {
 throw (FileNotFoundException) e.getException();
 }

 // some normal code here...
}

Security APIs in Java 2 353

The variable lib used must be declared final if it is to be used inside the
privileged block. For those cases in which a variable cannot be declared final
(because it gets modified, for example) a final variable can be set to the
non-final variable’s value and then used immediately within the privileged
block. For example:

10.8.5 An Example of Privileged Blocks Usage
Let’s see an example of how to use privileged blocks.

somemethod()
{
 // some normal code here...

 final String lib = "awt";
 AccessController.doPrivileged(new PrivilegedAction()
 {
 public Object run()
 {
 // privileged code goes here, for example:
 System.loadLibrary(lib);
 return null;
 }
 });

 // some normal code here...
}

somemethod()
{
 // some normal code here...

 String lib;

 // We can’t make lib final because it gets set multiple times
 // So, we create a final String that we can use inside of the run() method
 final String fLib = lib;
 AccessController.doPrivileged(new PrivilegedAction()
 {
 public Object run()
 {
 // privileged code goes here, for example:
 System.loadLibrary(flib);
 return null;
 }
 });

 // some normal code here...
}

354 Java 2 Network Security

We modify the sample program Count (see Figure 106 on page 248 and
Figure 107 on page 249) so that the sensitive action it performs is
encapsulated within a privileged block. This new program is called CountFile,
and its function is to count the characters of a file and print them to standard
output. The file we give it as input is itso.txt (see Figure 108 on page 249),
stored in the directory D:\itso\textFile. This file name is hardcoded in the Java
file, but it would be very easy to modify the code of the program so that the
user is prompted to enter the file name on the command line.

Figure 157. (Part 1 of 2). CountFile.java

import java.io.*;
import java.security.*;

class MyPrivilegedExceptionAction implements PrivilegedExceptionAction
{
 public Object run() throws FileNotFoundException
 {
 FileInputStream fis = new FileInputStream("D:\\itso\\textFile\\itso.txt");

 try
 {
 int count = 0;
 while (fis.read() != -1)
 count++;
 System.out.println("Hi! We counted " + count + " chars.");
 }
 catch (Exception e)
 {
 System.out.println("Exception " + e);
 }
 return null;
 }
}

public class CountFile
{
 public CountFile() throws FileNotFoundException
 {
 try
 {
 AccessController.doPrivileged(new MyPrivilegedExceptionAction());
 }
 catch (PrivilegedActionException e)
 {
Security APIs in Java 2 355

Figure 158. (Part 2 of 2). CountFile.java

Next we create a class file in a separate directory D:\itso\newdir which just
instantiates the CountFile class. The name of this class file is
CountFileCaller.class, and its code is shown in the following figure:

Figure 159. CountFileCaller.java

We compile CountFile.java in the directory D:\itso\ch10 and
CountFileCaller.java in the directory D:\itso\newdir. These are the commands
we issue, respectively:

javac CountFile.java
javac -classpath .;D:\itso\ch10 CountFileCaller.java

CountFileCaller invokes CountFile, but the two files are not in the same
directory. Hence it is necessary to specify the local directory and the path to
CountFile in the application class path.

Notice also that compiling CountFile.java produces two class files:
CountFile.class and MyPrivilegedExceptionAction.

 throw (FileNotFoundException) e.getException();
 }
 }
}

public class CountFileCaller
{
 public static void main(String[] args)
 {
 try
 {
 System.out.println("Instantiating CountFile...");
 CountFile cf = new CountFile();
 }
 catch(Exception e)
 {
 System.out.println("" + e.toString());
 e.printStackTrace();
 }
 }
}

356 Java 2 Network Security

CountFileCaller indirectly attempts to read the file D:\itso\textFile\itso.txt. To
do so, it would need a special FilePermission. However, we are going to
demonstrate to you that only the CountFile class needs the specified read
permission. Since CountFile invokes the doPrivileged() method,
CountFileCaller is enabled to access the file itso.txt in read mode as well.

The read permission to CountFile is granted by adding the following lines to
one of the current policy files:

Then, from the directory D:\itso\newdir, we run CountFileCaller. Of course, we
invoke the default security manager, through the option
-Djava.security.manager. Without this option, the program would work
regardless of permissions and privileges, because it is local, and it would not
make sense to use privileged blocks. However, it is also necessary to specify
an application class path on the command line, because the file CountFile,
which is invoked by the CountFileCaller class, is located on a different
directory. So the full command to launch this application is:

java -classpath D:\itso\ch10 -Djava.security.manager CountFileCaller

The results are as expected:

Instantiating CountFile...
Hi! We counted 70 chars.

This demonstrates that the CountFileCaller class has been temporarily
granted the read permission it would not have had by virtue of its own
protection domain.

If the doPrivileged() method in the CountFile class had not been called, when
the CountFile class tried to access the itso.txt file, the security manager
would have checked that CountFile as well as the calling class
CountFileCaller had the permission to read the file and would have thrown an
exception. This can easily be verified by replacing the call to CountFile with a
call to Count (see Figure 106 on page 248 and Figure 107 on page 249) in
the code of CountFileCaller. Count does not make use of the doPrivileged()
method.

However, since the CountFile class calls the doPrivileged() method, the
security manager only checks if CountFile has permission to read the file, and
the permission checking stops at this point in the thread stack. Whether or not

grant codeBase "file:/D:/itso/ch10/" {
 permission java.io.FilePermission "D:${/}itso${/}textFile${/}itso.txt", "read";
};
Security APIs in Java 2 357

the CountFileCaller class is granted read permission to the file itso.txt does
not matter when CountFile calls doPrivileged().

Notice if the above permission to the CountFile class is removed from the
policy file, CountFile itself would not be able to read the file and consequently
CountFileCaller would be denied the read access. The output in this case
would be as shown:

10.8.6 General Recommendations on Using the Privileged Blocks
Be very careful in your use of the privileged construct, and remember to make
the privileged code segment as small as possible.

Also note that the call to doPrivileged() should be made in the code that has
direct need to enable its privileges. Do not be tempted to write a utility class
that itself calls doPrivileged() as that could create security holes.

Instantiating CountFile...
java.security.AccessControlException: access denied (java.io.FilePermission
D:\itso\textFile\itso.txt read)
java.security.AccessControlException: access denied (java.io.FilePermission
D:\itso\textFile\itso.txt read)
 at java.security.AccessControlContext.checkPermission(Compiled Code)
 at java.security.AccessController.checkPermission(Compiled Code)
 at java.lang.SecurityManager.checkPermission(Compiled Code)
 at java.lang.SecurityManager.checkRead(SecurityManager.java:864)
 at java.io.FileInputStream.<init>(FileInputStream.java:65)
 at MyPrivilegedExceptionAction.run(Compiled Code)
 at java.security.AccessController.doPrivileged(Native Method)
 at CountFile.<init>(CountFile.java:30)
 at CountFileCaller.main(CountFileCaller.java:8)
358 Java 2 Network Security

Chapter 11. The Java Plug-In

The Java Plug-in enables developers and users to direct Java applets or
JavaBeans components on their Web pages to use the Sun’s Java Runtime
Environment (JRE) in place of the browser’s default Java Virtual Machine
(JVM). This software can be downloaded for free from the Java Soft Web site
http://www.javasoft.com, and it comes also with the installation of JRE 1.2.x
and Java 2 SDK, Standard Edition, V1.2.x.

The Java Plug-in can be used with the following browsers:

 • Netscape Navigator 3.0 or higher on Windows 95, Windows 98, Windows
NT and Solaris

 • Microsoft Internet Explorer 3.02 or higher on Windows 95, Windows 98
and Windows NT

Sun Java 2 SDK, Netscape Communicator and Microsoft Internet Explorer
follow different methods for distributing signed Java code over the Web:

 • If the applet is to run on Netscape's JVM implementation, then the code
should be put in a Java Archive (JAR) file, signed using a VeriSign
Certificate for Object Signing.

The signature format for Netscape is RSA, and the message digest
algorithm used is Secure Hash Algorithm (SHA)-1.

 • If the applet is to run in a pure Sun Java 2 SDK environment, the code
must be put in a JAR file as well, but it is signed using a self-signed
certificate created by the keytool utility. The signature format in this case
would be Digital Signature Algorithm (DSA) and not RSA, unless you add
the providers to support RSA.

The message digest algorithms supported on this platform by default are
SHA-1 and MD5.

 • If the applet is to run on Microsoft Internet Explorer, the code is put in a
CAB file for Internet Explorer and is signed using a VeriSign Certificate for
Authenticode. Note that this certificate is different from the one used with
Netscape.

The signature format in this case is RSA, while the message digest
algorithm used on this platform is MD5.

These differences generate several problems for applet developers who want
to write code that is portable across the platforms. Developers must sign and
package their code in three different ways. They often have to deploy three
© Copyright IBM Corp. 1997 1999 359

different versions of any page hosting a trusted (or even untrusted) Java
applet.

Moreover, each platform has its own way of determining policies and
permissions:

 • Sun Java 2 SDK uses keystore files for storing users’ private keys and
certificates (see 8.2, “Keystores” on page 230). Certificates of certification
authorities (CAs) are located in a file called cacerts (see 8.2.1, “The
Certificates KeyStore File cacerts” on page 233).

 • Netscape Navigator uses a cert7.db certificate database file and a
certificate server.

 • Microsoft Internet Explorer uses Microsoft system and user stores.

All of these implementations are incompatible with each other. Signatures
applied by one cannot be verified by another. Hence, developers must also
support three different types of certificate databases and security policy
configurations.

The Java Plug-in solves these problems by allowing the codes signed with the
Java 2 method to be used with Netscape Communicator and Microsoft
Internet Explorer. This implies that you can implement your signed code only
using the Java 2 SDK methods and distribute your code to everyone.

This has some disadvantages:

 • It supports the Java 2 SDK methods only. The signature algorithm must be
DSA. Internet Explorer and Communicator use the RSA algorithm to
produce signatures, and this is stronger than the DSA algorithm used by
the Java 2 SDK.

 • Netscape Communicator and Microsoft Internet Explorer certificate and
key databases are not supported. A user will have to configure a Java 2
SDK certificate and key database.

However, these appear as minor problems compared to the benefits in
portability and ease of implementation when using the Java Plug-in. Overall,
the Java Plug-in is a very useful tool, which enables you to use the same
signed applet on the three major platforms: Navigator, Internet Explorer and
Java 2 SDK.

11.1 Main Features of Java Plug-In

The Java Plug-in delivers several key capabilities to people using Internet
Explorer and Navigator:
360 Java 2 Network Security

1. It provides the full Java 2 SDK, Standard Edition, V1.2 support to the
applets running on Netscape and Internet Explorer. It allows developers to
use the features of the Java 2 SDK, such as JavaBeans enhancements,
security, graphical support, etc. For example, the Java Plug-in allows Java
2 SDK signed classes to be loaded into the browser and be subject to the
Java 2 security model. This is important, because historically, after
JavaSoft’s publication of a new version of Java, browser vendors have
taken several months to incorporate the changes in their browsers’ JVM
platforms. The result was that many applet developers had to continue to
code programs in an old-style fashion that was compatible with the
browsers’ old JVM platforms.

2. It provides an architecture that makes it easy for new Java features and
functionality to be incorporated. With the Java Plug-in, as soon as
JavaSoft produces a new version of the Java 2 SDK with new features, the
new capabilities become immediately available on the browser systems.

3. It provides free public download and easy installation. When browsers
encounter a Web page that specifies that the Java Plug-in is required, if
the Plug-in is not yet installed the browser will immediately prompt the
user to download and install it from the Web site
http://java.sun.com/products/jdk/1.2/jre/download-windows.html, as shown
in the next figure:

Figure 160. Plug-in Not Loaded Message

On clicking the Get the Plug-in button, a download page is opened in a
new window. Once the Java Plug-in is downloaded and installed, any time
a Web site requires the Java Plug-in, this window will not appear and the
Java Plug-in will start immediately.
The Java Plug-In 361

Similarly, on opening a Web page requiring the Java Plug-in with Internet
Explorer, the user will be asked whether to download an ActiveX control
that is digitally signed by Sun Microsystems, Inc. and verifiable by the
associated VeriSign Class 3 certificate:

Figure 161. Internet Explorer Security Warning for Java Plug-in

You can view the details on Sun Microsystems by clicking on the button
More Info. If you click on Yes, this means that you accept to download the
code and install it. The following window appears:
362 Java 2 Network Security

Figure 162. Java Plug-in Install Screen by Internet Explorer

If the user clicks on Install, Internet Explorer will quickly download a small
ActiveX control from Sun’s Web site. This will handle downloading the
main Java Plug-in ActiveX control and Sun’s JRE. It will then download the
files automatically and install them. Once the Java Plug-in is downloaded,
any time a Web site requires the Java Plug-in, none of these windows will
appear and the Java Plug-in will start immediately.

4. To use the Java Plug-in, Web pages need to be modified a little, as
explained in 11.3, “Java Plug-In HTML Changes” on page 364. The Java
Plug-in HTML Converter is a new tool available for this purpose; it is quite
easy to use and helps you do the changes automatically, as we will see in
11.3.5, “Java Plug-in Software HTML Converter” on page 369.
The Java Plug-In 363

11.2 What Does the Java Plug-In Do?

The Java Plug-in enables Web page authors to specify Sun’s JRE in place of
the default browser JRE for a given Web page. However, it does not replace
or modify the browser's underlying JVM. This allows the developers to
execute the Java 2 based applets with full support for all the features of Java
2.

In Netscape Navigator, the Java Plug-in runs its JRE inside the browser
making use of Netscape’s plug-in architecture. A Web page must use the
<EMBED> tag in place of the <APPLET> tag to indicate that the applet should run
with the Java Plug-in.

In Microsoft Internet Explorer, the Java Plug-in runs inside the browser
through the browser’s extension mechanisms using Microsoft’s COM/ActiveX
technology. A Web page must use the <OBJECT> tag in place of the <APPLET> tag
to indicate that the applet should run with the Java Plug-in.

11.3 Java Plug-In HTML Changes

To make the browsers run the Java Plug-in, some Web page changes are
required. Normally we use an HTML <APPLET> tag in the following form:

An <APPLET> tag specifies the information about the applet, while the <PARAM>
tags between the <APPLET> and </APPLET> tag pair store the applet information.

The <APPLET> tag is inadequate to use Java Plug-in, because it would force the
browser itself to render the applet, and the browser would not use the Java
Plug-in to do this. For this reason, new tags are necessary. We must use the
<OBJECT> or the <EMBED> tag – the former being for Internet Explorer and the
latter for Netscape Navigator – in place of the <APPLET> tag.

11.3.1 Changes Supported by Navigator
As stated, when the Java Plug-in must be used on Netscape Navigator, the
<APPLET> tag must replaced by the <EMBED> tag in order for the browser to
recognize that the Java Plug-in is required.

For example, let’s say that the HTML code using the <APPLET> tag is:

<APPLET Code="XYZApp.class" Codebase="html/" Align="baseline"
 Width="200" Height="200">
 <PARAM Name="redbook" Value="JavaSecurity">
</APPLET>
364 Java 2 Network Security

Figure 163. HTML Code Using the <APPLET> Tag

Then the corresponding code using the <EMBED> tag will be:

Figure 164. HTML Code Using the <EMBED> Tag

As you can see, the parameters remain essentially the same. However they
all are now defined inside the <EMBED> tag itself.

Note that there are new attributes inside the <EMBED> tag:

 • The Type attribute defines the type of application (applet or bean).

 • The Pluginspage attribute points to the Java Plug-in download page on the
JavaSoft Web site. The value of the Pluginspage attribute is used when
the Java Plug-in is not installed on a particular system.

The <PARAM> tags that were inside the <APPLET> tag are also put inside the new
<EMBED> tag.

11.3.2 Changes Supported by Internet Explorer
The <APPLET> tag is replaced by the <OBJECT> tag in Microsoft Internet Explorer,
in order for the browser to recognize that the Java Plug-in is required.

Let’s consider again an <APPLET> tag shown in Figure 163. Then the
corresponding <OBJECT> tag will be:

<APPLET Code="IBM.class" Codebase="html/" Width="200" Height="200">
 <PARAM Name="redbook" Value="JavaSecurity">
 No Java 2 support for APPLET
</APPLET>

<EMBED Type="application/x-java-applet;version=1.2" Width="200" Height="200"
 Code="IBM.class" Codebase="html/" redbook="JavaSecurity"
 Pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
 <NOEMBED>
 No Java 2 support for APPLET
 </NOEMBED>
</EMBED>
The Java Plug-In 365

Figure 165. HTML Code Using the <OBJECT> Tag

The Classid attribute indicates the class identifier of the Java Plug-in and
should be the same in every HTML page. The Codebase attribute inside the
<OBJECT> tag points to the Java Plug-in download page. The Codebase
parameter of the <APPLET> tag is now provided inside the <PARAM> tags. In
addition, all the parameters that were initially inside the <APPLET> tag are now
defined in the <PARAM> tags.

Note that if the original <APPLET> tag already has attributes like Type,
Codebase, Code, Object or Archive in the <PARAM> tags, mapping it to the
<OBJECT> tag will cause problems, because duplicate parameter names will
occur. To avoid this, Java Plug-in also supports another set of param names,
as follows:

Table 11. Parameter Names When Using the <OBJECT> Tag

11.3.3 Changes Supported by Both Navigator and Internet Explorer
Most pages on the Web are meant to be launched by both browsers Netscape
Navigator and Microsoft Internet Explorer. In that case, you want your HTML
code to be compatible with both platforms. This is possible, as shown by the
following HTML code:

Original Parameter Names New Parameter Names

Type java_type

Codebase java_codebase

Code java_code

Object java_object

Archive java_archive

<OBJECT Classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" Width="200" Height="200"
Codebase="http://java.sun.com/products/plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0">
 <PARAM Name="Code" Value="IBM.class">
 <PARAM Name="Codebase" Value="html/">
 <PARAM Name="Type" Value="application/x-java-applet;version=1.2">
 <PARAM Name="redbook" Value="JavSecurity">
 No Java 2 support for APPLET
</OBJECT>
366 Java 2 Network Security

Figure 166. HTML Code Supported by Both Navigator and Internet Explorer

Notice that the <COMMENT> tag is a special HTML tag understood only by
Internet Explorer. Whatever is encapsulated between the <COMMENT> and
</COMMENT> tag pair is considered as a comment by Internet Explorer and
therefore ignored. On the other hand, Navigator does not understand the
<OBJECT> and <COMMENT> tags. So effectively both browsers are able to read the
information they need.

11.3.4 All the Web Browsers
If a different browser loads this page, the Java Plug-in should not be
activated, because it would not be supported. Therefore, we need to put
some checks in the HTML code, as shown next:

Figure 167. (Part 1 of 2). HTML Code Supported by All the Web Browsers

<OBJECT Classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" Width="200" Height="200"
Codebase="http://java.sun.com/products/plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0">
 <PARAM Name="Code" Value="IBM.class">
 <PARAM Name="Codebase" Value="html/">
 <PARAM Name="Type" Value="application/x-java-applet;version=1.2">
 <PARAM Name="redbook" Value="JavaSecurity">
 <COMMENT>
 <EMBED Type="application/x-java-applet;version=1.2" width="200" height="200"
 code="IBM.class"
 Codebase="html/" redbook="JavaSecurity"
 Pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
 <NOEMBED>
 </COMMENT>
 No Java 2 support for APPLET
 </NOEMBED>
 </EMBED>
</OBJECT>

<!-- The following code to be specified at the beginning of the <BODY> tag. -->
<SCRIPT LANGUAGE="JavaScript"><!--
 var _info = navigator.userAgent; var _ns = false;
 var _ie = (_info.indexOf("MSIE") > 0 && _info.indexOf("Win") > 0
 && _info.indexOf("Windows 3.1") < 0);
//--></SCRIPT>
<COMMENT><SCRIPT LANGUAGE="JavaScript1.1"><!--
 var _ns = (navigator.appName.indexOf("Netscape") >= 0
 && ((_info.indexOf("Win") > 0 && _info.indexOf("Win16") < 0
 && java.lang.System.getProperty("os.version").indexOf("3.5") < 0)
 || _info.indexOf("Sun") > 0));
The Java Plug-In 367

Figure 168. (Part 2 of 2). HTML Code Supported by All the Web Browsers

The initial section is provided at the beginning of the <BODY> HTML tag. It is
used to determine the browser type and the client platform. This operation is
performed by using JavaScript. Based on the browser and the platform, only
one among the <EMBED>, <OBJECT> and <APPLET> tags is considered:

 • Netscape Navigator will consider only the <EMBED> tag.

 • Microsoft Internet Explorer will consider only the <OBJECT> tag.

 • Any other browser will consider only the <APPLET> tag.

//--></SCRIPT></COMMENT>

<!-- The following code should be repeated for each APPLET tag -->
<SCRIPT LANGUAGE="JavaScript"><!--
 if (_ie == true) document.writeln(’
<OBJECT
 Classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" Width="200" Height="200"

Codebase="http://java.sun.com/products/plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0">
 <NOEMBED><XMP>’);
 else if (_ns == true) document.writeln(’
<EMBED Type="application/x-java-applet;version=1.2" Width="200" Height="200"
Code="IBM.class" Codebase="html/" redbook="JavaSecurity"
Pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
<NOEMBED><XMP>’);
//--></SCRIPT>
<APPLET code="IBM.class" codebase="html/" Width="200" Height="200">
</XMP>
 <PARAM Name="java_code" Value="IBM.class">
 <PARAM Name="java_codebase" Value="html/">
 <PARAM Name="java_type" Value="application/x-java-applet;version=1.2">
 <PARAM Name="redbook" Value="JavaSecurity">
 No Java 2 support for APPLET
</APPLET></NOEMBED></EMBED>
</OBJECT>

<!--
 <APPLET Code="IBM.class" Codebase="html/" Width="200" Height="200">
 <PARAM Name="redbook" Value="JavaSecurity">
 No Java 2 support for APPLET
 </APPLET>
-->
368 Java 2 Network Security

11.3.5 Java Plug-in Software HTML Converter
The Java Plug-in Software HTML Converter is a free tool that can be
downloaded from the JavaSoft Web site http://www.javasoft.com. It is used to
convert traditional HTML files to HTML files that incorporate the use of the
Java Plug-in. This tool is first downloaded as a ZIP file, which must then be
extracted. You run it with the command:

java HTMLConverter

This opens a GUI-based tool which can be used to convert HTML files. This is
what the original screen looks like:

Figure 169. Java Plug-in Software HTML Converter

This tool gives you the option of changing a particular file or an entire
directory (including its subdirectories). It also has four templates to change
for Netscape Navigator, Microsoft Internet Explorer, both of them or for all
browsers, as explained in the previous sections. You also have an option to
use your own templates.

The converter backs up your original file in the directory you specify so that
you can revert back to your original copy. It also keeps a log of the operations
in a log file.
The Java Plug-In 369

11.4 Java Plug-In Control Panel

The Java Plug-in Control Panel enables you to change the default settings
used by the Java Plug-in at startup. All applets running inside an instance of
the Java Plug-in will use these settings. On a Windows system, the icon for
the Java Plug-in Control Panel is by default created in the Start menu when it
is installed.

Once you launch the Java Plug-in Control Panel, you will see three tabs in the
Control Panel labeled Basic, Advanced and Proxies. You can use them to
enter different panels, and configure the Java Plug-in. Once you have made
all the changes, you can save your settings by clicking on the Apply button.
The Reset button restores the original settings.

11.4.1 The Basic Panel
The Basic panel is brought up by default and it is shown in the following
figure:

Figure 170. Basic Panel

The Basic panel has the following settings:
370 Java 2 Network Security

 • Enable Java Plug-in

This enables the Java Plug-in to run applets and JavaBeans components.
If this box is unchecked, the Java Plug-in will not be activated during any
browser session and it will not be allowed to run any applets or beans. In
that case, when a page that requires the Java Plug-in is loaded, a
message appears saying:

Java is not enabled

 • Show Java Console

When this option is selected, the Java Plug-in Java Console is
automatically brought up each time the Java Plug-in is activated. The Java
Console is a very useful tool, especially for debugging purposes, because
it displays the information sent to System.out and System.err.

Notice that the Java Plug-in Java Console is different from the browser
Java console, because the browser Java Console is associated with the
browser JVM, while the Java Plug-in Java Console is associated with the
JVM used by the Java Plug-in.

 • Cache JARs in memory

This option is used to cache and reuse applet JAR files that have
previously been loaded, in order to ensure an efficient use of memory. You
should leave this option unchecked if you are debugging an applet or are
always interested in loading the latest applet classes.

 • Network Access

This sets the network access you want to grant your running applets. For
example, you can restrict network access so the applet cannot make any
network calls, you can restrict the access only to the host that served the
applet itself or you can grant an applet unrestricted access to the network.
This last option would be a security exposure.

 • Java Run Time Parameters

You can override the Java Plug-in default startup parameters by specifying
custom options. The syntax is the same as the parameters to the java
command line invocation, with some restrictions. For example, the
-Xbootclasspath option is not supported (as it is a non-standard option of
the java command), but you can use the -cp option to alter the class path
(see 3.4, “New Class Search Path” on page 83).

11.4.2 The Advanced Panel
The Advanced panel has the following appearance:
The Java Plug-In 371

Figure 171. Advanced Panel

It offers several configuration options:

 • Java Plug-in Default

This is a list box which lists all the JREs installed; you can force the Java
Plug-in to run with any of them by choosing it here. By default, the Java
Plug-in has JRE 1.2.x selected. This is the first option in the list box. There
is also an option Other... , in which you can specify JVMs not detected by
the Java Plug-in. In this case, the Path text box is enabled and you must
specify the Path to the JRE you want the Plug-in to use.

 • Enable Just In Time Compiler

This option is available for the Win32 platform only. It enables the
just-in-time (JIT) compiler. If you select this option, a path must also be
specified; as you can see in Figure 171 on page 372, the default JIT path
is symcjit. The JIT compiler must be located in the bin directory for the
JRE selected in the Java Plug-in Default list box.

 • Enable Debug

This option is available on Internet Explorer only. It enables debugging if
Internet Explorer is being used. The debug port must be specified in the
372 Java 2 Network Security

Debug Port text box; the default is port 2502. When you run the debugger
inside Internet Explorer, a window will pop up with the debugger password.

11.4.3 The Proxies Panel
The Proxies panel has the following appearance:

Figure 172. Proxies Panel

This panel has the following settings:

 • Use browser settings

If this box is checked, the Java Plug-in uses the browser proxy settings.
You can override the default settings by unchecking this check box, then
completing the proxy information beneath the check box. You can enter
the proxy address and port for each of the supported protocols1.

Certain situations, such as mobile users connecting to the company
through a modem, require a direct connection to the intranet environment.
Proxies should not be used in these cases. Both Internet Explorer and
Navigator support direct connection in the browser. Java Plug-in

1 Currently, the Java Plug-in only supports HTTP, FTP, Gopher and SOCKS V4 protocols through the proxy server and
does not support SSL.
The Java Plug-In 373

recognizes and supports direct connection when you choose it in the
browser.

 • Same proxy server for all protocols

If you want to override the proxy settings of the browser and use the same
address and port for all the protocols, then enter the address and port
once and check this box.

11.5 Java Plug-In Security Scenario

Java Plug-in supports the security model of the JRE configured in the
Advanced panel (see Figure 171 on page 372). In particular, it supports the
Java 2 security model when the version of the JRE selected is 1.2 or later. In
this case, we can use the policy and security file to monitor permissions. The
applets are downloaded into the Java Plug-in and run under the security
manager.

11.5.1 First Step – Without Using the Java Plug-in
Let’s consider the following HTML file, called plugin.html:

Figure 173. plugin.html – Basic Version

Before running this HTML file, we need to provide the App.class file, which is
required by the <APPLET> tag. We write the App.java code, shown in Figure 174
on page 375. The class file it defines attempts to access a file in read mode.
The file in question is itso.txt, stored in the directory D:\itso\textFile (see
Figure 108 on page 249). If this access is successful, it prints the following
message on the browser screen:

<HTML>
 <HEAD>
 <TITLE>Testing for Java Plug-in</TITLE>
 </HEAD>

 <BODY>
 OK, Hereís the applet that should run.

 <APPLET Code="App.class" WIDTH=150 HEIGHT=25></APPLET>

 And was it successful?

 </BODY>
</HTML>
374 Java 2 Network Security

File was accessed

Otherwise, an error message is printed on the browser’s Java Console. The
code for the App applet is shown in the following figure:

Figure 174. App.java

This code is compiled by launching the command:

javac App.java

We store the HTML file and the associated applet class file in the home
directory of a test Web server machine, and then invoke the HTML file from a
client machine running Netscape Navigator. The output is as expected: the
applet is not allowed to access the file and the successful message is not
displayed:

import java.io.*;
import java.applet.*;
import java.awt.Graphics;

public class App extends Applet
{
 public void paint(Graphics g)
 {
 try
 {
 FileInputStream fis = new FileInputStream("D:\\itso\\textFile\\itso.txt");
 g.drawString("File was accessed", 10,10);
 }
 catch (Exception e)
 {
 System.out.println("Exception caught: " + e.toString());
 }
 }
}

The Java Plug-In 375

Figure 175. Netscape Navigator Output Screen

It is possible to understand the reason for this failure by opening the Java
Console, which registers a netscape.security.AppletSecurityException:
376 Java 2 Network Security

Figure 176. AppletSecurityException on the Java Console

What happens here is that we have tried to run this applet on the JVM 1.1.5
provided by Netscape Communicator V4.5. In the Java Development Kit
(JDK) 1.1 security model, a remote applet is not allowed to read files in the
local file system, hence an AppletSecurityException is thrown.

11.5.2 Second Step – Using the Java Plug-in
Next, we modify the HTML file plugin.html to enable the Java Plug-in, as
shown:

Figure 177. (Part 1 of 2). plugin.html – Java Plug-in Version

<HTML>
 <HEAD>
 <TITLE>Testing for Java Plug-in</TITLE>
 </HEAD>
The Java Plug-In 377

Figure 178. (Part 2 of 2). plugin.html – Java Plug-in Version

If we load this Web page in the Netscape Navigator browser, the results we
get are still the same: the applet is not allowed to access the file and the Java
Console registers an exception. However, there are some differences. This
time the applet is running in the JRE 1.2 invoked by the Java Plug-in, and the
reason why the applet is not allowed to access the file is because we have not
granted it the necessary permission. This is demonstrated also by the
exception registered on the Java Console:

Figure 179. AccessControlException on the Java Plug-in Console

 <BODY>
 OK, Here’s the applet that should run.

 <EMBED Type="application/x-java-applet;version=1.2" java_code = "App.class"
 Width = 150 Height = 25
 pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
 <NOEMBED>
 </NOEMBED>
 </EMBED>

 <!--
 <APPLET CODE = "App.class" WIDTH = 150 HEIGHT = 25 >
 </APPLET>
 -->

 And was it successful?

 </BODY>
</HTML>
378 Java 2 Network Security

Since we selected the Show Java Console check box in the Basic panel of
the Java Plug-in Control Panel (see 11.4.1, “The Basic Panel” on page 370),
the Java Console brought up this time is the one associated with the JRE
used by the Java Plug-in. In this case, the Plug-in is running with JRE 1.2.1,
and the Netscape Navigator Java Console is not activated. The Java Plug-in
Java Console displays a security exception of a different nature: it is a
java.security.AccessControlException.

The Netscape Communicator and Microsoft Internet Explorer JVM
implementations offer a dynamic permission prompting, as we will see in
12.4, “Signed Code Scenario in Netscape Communicator” on page 409 and
12.5, “Signed Code Scenario in Microsoft Internet Explorer” on page 437. On
the contrary, as we have just seen, the Java Plug-in does not offer any
dynamic permission prompting. Therefore, on this platform, if the policy is not
set up correctly, the applet will fail.

Notice that in the Java 2 security model an applet is not necessarily
prevented from accessing a file in the local file system; its permissions
depend upon the policy in effect at a given time. For this reason, we add the
following entry to the user-defined policy file:

Then, we open the HTML file again, and we can see that the applet is allowed
to access the file indicated:

Figure 180. Accessing the Local File with the Right Permission

grant codeBase "http://www.test.com/" {
 permission java.io.FilePermission "D:${/}itso${/}textFile${/}itso.txt", "read";
};
The Java Plug-In 379

This confirms that the Java Plug-in supports the Java 2 security model,
allowing you to incorporate the advanced Java 2 security in applets and
JavaBeans components that will be distributed across the net.

11.5.2.1 Java Plug-in and Code Signed with jarsigner
A similar test can be run successfully using JAR files. In this case, you must
specify the JAR file name in the <EMBED> and <APPLET> tags of the HTML file,
using the java_archive attribute for the <EMBED> tag and the Archive attribute
for the <APPLET> tag. For example, after running the jar utility against the
App.class file, we produce a JAR file called App.jar. Then it is necessary to
add the following:

 • java_archive="App.jar" in the <EMBED> tag

 • Archive="App.jar" in the <APPLET> tag

Next, we sign the App.jar file with the private key of a signer marco, using the
jarsigner utility. The certificate for this entity is stored in the keystore
.keystore, located in the user’s home directory. Finally, the policy file must
contain the following:

After loading the HTML file in the Netscape Navigator browser, we can see
that the applet is allowed to access the file.

11.5.2.2 Java Plug-In and Code Signed with javakey
The Java Plug-in is compatible with the Java 2 security model as long as the
version of the JRE selected in the Advanced configuration panel (see Figure
171 on page 372) is 1.2 or later. As we mentioned in 8.3, “The Security
Properties File, java.security” on page 234, the Java 2 platform is backward
compatible with signatures applied with the old JDK 1.1 javakey tool. For this
reason, the Java Plug-in must be compatible as well. This is what we
demonstrate now.

We want to sign the applet JAR file using the javakey tool shipped with JDK
1.1.7B and then run it in a Java 2 system using the Java Plug-in. We install
JDK 1.1.7B on a separate machine and proceed with the following steps:

1. We create a trusted signer called duke, as shown in the following session
screen:

keystore ".keystore";
grant signedBy "marco", codeBase "http://www.test.com/" {
 permission java.io.FilePermission "D:${/}itso${/}textFile${/}itso.txt", "read";
};
380 Java 2 Network Security

2. We generate a DSA key pair of strength 1024 for duke, as shown in the
following session screen:

3. Next we create a certificate directive file for duke, called dukeCertDirFile,
whose contents are shown in the following screen:

4. Using the certificate directive file above, we can create a certificate for
duke, as shown in the following screen:

5. We verify the results so far using the -ld and -dc options of the javakey
command, as shown in the following session screen:

D:\deepak\deepak\plugin>javakey -cs duke true
Created identity [Signer]duke[identitydb.obj][trusted]

D:\deepak\deepak\plugin>

D:\deepak\deepak\plugin>javakey -gk duke DSA 1024
Generated DSA keys for duke (strength: 1024).

D:\deepak\deepak\plugin>

issuer.name=duke
subject.name=duke
subject.real.name=Duke Duke
subject.org.unit=ITSO
subject.org=IBM
subject.country=US
start.date=1 Jan 1999
end.date=31 Jan 1999
serial.number=1
out.file=duke.cer

D:\deepak\deepak\plugin>javakey -gc dukeCertDirFile
Generated certificate from directive file dukeCertDirFile.

D:\deepak\deepak\plugin>
The Java Plug-In 381

6. Next we create the JAR file App.jar from the class file App.class. To do
this, we apply the jar utility, as shown in the following session screen:

7. To sign the App JAR file, we first have to prepare a signature directive file,
which we call dirfile and whose contents are shown in the following screen:

D:\deepak\deepak\plugin>javakey -ld

Scope: sun.security.IdentityDatabase, source file: C:\\identitydb.obj

[Signer]duke[identitydb.obj][trusted]
 public and private keys initialized
 certificates:
 certificate 1 for : CN=Duke Duke, OU=ITSO, O=IBM, C=US
 from : CN=Duke Duke, OU=ITSO, O=IBM, C=US

 No further information available.

D:\deepak\deepak\plugin>javakey -dc duke.cer
[
 X.509v1 certificate,
 Subject is CN=Duke Duke, OU=ITSO, O=IBM, C=US
 Key: Sun DSA Public Key
parameters:
p: fd7f53811d75122952df4a9c2eece4e7f611b7523cef4400c31e3f80b6512669455d402251fb5
93d8d58fabfc5f5ba30f6cb9b556cd7813b801d346ff26660b76b9950a5a49f9fe8047b1022c24fb
ba9d7feb7c61bf83b57e7c6a8a6150f04fb83f6d3c51ec3023554135a169132f675f3ae2b61d72ae
ff22203199dd14801c7
q: 9760508f15230bccb292b982a2eb840bf0581cf5
g: f7e1a085d69b3ddecbbcab5c36b857b97994afbbfa3aea82f9574c0b3d0782675159578ebad45
94fe67107108180b449167123e84c281613b7cf09328cc8a6e13c167a8b547c8d28e0a3ae1e2bb3a
675916ea37f0bfa213562f1fb627a01243bcca4f1bea8519089a883dfe15ae59f06928b665e807b5
52564014c3bfecf492a

y: 5f552e40c064cca092099c5ca89460d9a06a8458d315243f1e8be5e9d745d6c7345dc45694a4c
bc666563b84d4238f8cc47f5dde308fed7486e915e5bfabdb3066317ddb9c039b8f1bc183f1c078f
274ad18f1956284b5d30552deaa0c921b89f2ee8a11ccd8c91dfc403a2383d09a050373e24a3c450
452d476eb57993918d2
 Validity <Fri Jan 01 00:00:00 EST 1999> until <Sun Jan 31 00:00:00 EST 1999>
 Issuer is CN=Duke Duke, OU=ITSO, O=IBM, C=US
 Issuer signature used [SHA1withDSA]
 Serial number = 01
]

D:\deepak\deepak\plugin>

D:\deepak\deepak\plugin>jar -cvf App.jar App.class
adding: App.class (in=944) (out=593) (deflated 37%)

D:\deepak\deepak\plugin>
382 Java 2 Network Security

8. Then, using the JDK 1.1 javakey utility, we apply the signature to App.jar,
as shown in the following screen:

After this process, we load the plugin.html HTML file (shown in Figure 177
on page 377 and Figure 178 on page 378) in the Netscape Navigator
browser. As expected, the Java Plug-in is activated and the applet is
loaded, but the permission to access the itso.txt file in the local file system
is denied to the applet, and the browser window appears as in Figure 175
on page 376. This is because we have not yet imported the identity
database into the Java 2 keystore, which we do in the next step.

9. We import the identity database generated with the older JDK 1.1.7B into
the Java 2 keystore .keystore being used in the user-defined policy file, as
shown in the following session screen:

10.We verify the results with the -list command associated with the keytool
utility, as shown in the following screen:

signer=duke
cert=1
chain=0
signature.file=Duke
out.file=App.jar

D:\deepak\deepak\plugin>javakey -gs dirfile AppU.jar
Adding entry: META-INF/MANIFEST.MF
Creating entry: META-INF/DUKE.SF
Creating entry: META-INF/DUKE.DSA
Adding entry: App.class
Signed JAR file AppU.jar using directive file dirfile.

D:\deepak\deepak\plugin>

D:\deepak\work>keytool -identitydb -file identitydb.obj
Enter keystore password: javakeys
Creating keystore entry for <duke> ...

D:\deepak\work>
The Java Plug-In 383

11.We add the following in the user-defined policy file:

Now, when we run the HTML file, the applet is able to access the file on the
local file system successfully.

The above example demonstrates how applets signed with the JDK 1.1
javakey tool can be integrated in the Java 2 platform and subjected to the
Java 2 security model. In particular, this demonstration has been done using
the Java Plug-in environment.

D:\deepak\work>keytool -list
Enter keystore password: javakeys

Keystore type: jks
Keystore provider: SUN

Your keystore contains 2 entries:

marco, Mon Jan 25 19:18:46 EST 1999, keyEntry,
Certificate fingerprint (MD5): CD:B2:98:F3:9B:8B:32:55:2A:CE:6B:14:1B:0D:D7:AD
duke, Tue Jan 26 13:36:57 EST 1999, keyEntry,
Certificate fingerprint (MD5): 17:82:9D:31:6C:8E:06:2A:F6:BF:49:E0:7A:E2:8B:AA

keystore ".keystore";
grant signedBy "duke", codeBase "http://www.test.com/" {
 permission java.io.FilePermission "D:${/}itso${/}textFile${/}itso.txt", "read";
};
384 Java 2 Network Security

Chapter 12. Java Gets Out of Its Box

We have seen in previous chapters that the Java Development Kit (JDK) 1.1
applet sandbox is a very safe place where all untrusted applets can run.
However, one person’s safe can be another person’s boring or useless.
Creating effective client/server applications using Java often requires us to
give the applet some freedom from the confines of the sandbox.

The Java 2 access control security model is built around the concept of a
protection domain. The applet sandbox was a protection domain with very
tight controls. By contrast the Java application environment was a protection
domain with no controls at all, other than those imposed by the underlying
operating system. What we really need is a protection domain lying
somewhere between the two, one that provides certain well-defined
permissions that can be changed depending upon the needs at the time.

That was provided for the first time in JDK 1.1, where remotely loaded applets
were granted full permissions, provided that code was signed and the
signature was considered trusted. As we have discussed, JDK 1.1 offered
signed applets as a way to escape from the sandbox restrictions. Java 2 SDK,
Standard Edition, V1.2 has enhanced the security model provided by the
previous release, and now permissions granted to local or remote, signed or
unsigned code are all policy-based. In this sense, the Java 2 security model
provides fine-grained access control.

What about Web browser security? There are different philosophies in the
way that signed Java Archive (JAR) files are used to elicit extra permissions
from the client. In the Sun case, the browser is configured in advance to allow
a signed applet to do certain things that are normally forbidden by the
security manager. In the Netscape case, the applet must request the
permissions it wants, using a special API. Microsoft has taken yet another
approach, not using JAR files at all.

In this chapter we look at examples of the different implementations.

12.1 JAR Files and Applet Signing

In 9.2, “Java Archive Tool” on page 270, we introduced the JAR file format
and showed all the details related to the jar command line utility, which was
shipped for the first time with JDK 1.1 to create and manage JAR files. In this
section we describe the details of the JAR format.
© Copyright IBM Corp. 1997 1999 385

First of all, let’s consider the command below, which creates an archive for
the PointlessButton applet (see Figure 17 on page 37):

jar cvf pbutton.jar PointlessButton.class jamjar\examples\Button.class

Figure 181 shows the format of the pbutton.jar file that the command above
creates:

Figure 181. The pbutton Archive

The files that make up the payload of the JAR are packed into a copy of the
original directory structure. The MANIFEST.MF file, also known as the
manifest file, contains details of the payload of the JAR. The manifest file is
created under a directory META-INF. This is what the manifest looks like in
this case:

Figure 182. Manifest File Created by the jar cvf Command

JAR files can be digitally signed. A digital signature on a JAR file guarantees
the sender’s identity to the receiver, but it also vouches for the integrity of the
JAR file itself – that is, the JAR file was not altered after signing. JAR signing
allows you to generate digital signatures for any of the files in the archive. In
fact, files can be signed by more than one signer. So, for example, an applet

pbutton.jar

META-INF

MANIFEST.MF

PointlessButton.class

jamjar

examples

Button.class

JAR Payload

Manifest-Version: 1.0
Created-By: 1.2 (Sun Microsystems Inc.)
386 Java 2 Network Security

could be signed by the developer who created it and then also signed by the
IT department of the company that uses it. When the user loads the applet,
he or she not only knows that the applet comes from a trustworthy source, but
also knows that it has been approved for corporate use.

As we can see in Figure 181 on page 386, the manifest file is created by the
jar command in the META-INF directory. However, when you sign a file in a
JAR archive with the Java 2 SDK jarsigner tool, two new files are added to
the META-INF directory; we will call them the signature file and signature
block file.

Let’s discuss in detail these files one by one.

12.1.1 Manifest File
A manifest file, MANIFEST.MF, is created by default in the META-INF
directory whenever a new JAR file is created. According to the specifications
(see http://java.sun.com/products/jdk/1.2/docs/guide/jar/manifest.html), the
manifest file must include as a minimum the following line:

Manifest Version: 1.0

Figure 182 on page 386 shows the sample manifest file created by using the
jar command with the option cvf. However, you have the possibility to include
your own manifest information from a specified text file.

A customized manifest file can be manually edited, but this is a risky
operation, because you must be sure that you respect the syntax. Another
option you have is to let the jar tool create a default manifest file while
compressing the files. Then you should extract the JAR file, modify the
manifest, customizing it according to your needs, and then compress the JAR
file again including the manifest file you modified. This operation also requires
editing the manifest file, but at least you can use part of the manifest
information produced by default by the jar tool. A customized manifest can be
packed with a JAR file by using the M or m option provided with the jar utility:

 • The M option does not create the manifest file at all. So the command:

jar cvfM jarFile file1 file2 ... fileN

compresses all the files in a single JAR file, without adding any manifest
information file. This can be useful if you wish to include your own manifest
file. In this case, in fact, you can use the M option and your predefined
manifest file will appear as one of the regular files that must be
compressed, as shown:

jar cvfM jarFile file1 file2 ... fileN META-INF\MANIFEST.MF
Java Gets Out of Its Box 387

where META-INF\MANIFEST.MF is the manifest file you previously created.
Remember that there can be only one manifest file in the archive. It must
be called MANIFEST.MF and it is required to be in the directory META-INF,
otherwise it will not be recognized as the manifest file during signing,
updating, verifying, etc. and will be treated as a normal file in the JAR. The
names META-INF and MANIFEST.MF should be generated as uppercase,
but they will be recognized in any case. Also, if you manually edited the
manifest file, be sure you respect the syntax.

 • The m option is probably the most useful one. It can be applied as follows:

jar cvfm jarFile manifestInput file1 file2 ... fileN

or:

jar cvmf manifestInput jarFile file1 file2 ... fileN

Using the m option, a new manifest file is created taking the information
contained in an existing manifest input text file, specified on the command
prompt.

Note the order of the files to be specified on the command prompt. If the
option f is specified before m, then jarFile must come before
manifestInput; otherwise the order will have to be manifestInput
jarFile. The files to be compressed, file1 file2 ... fileN , are
always specified last.

Another important thing to notice is that, with the m option, the file you pass
on the command line as the manifest file does not need to be called
MANIFEST.MF and does not need to reside in the directory META-INF.
The jar utility will create a file called MANIFEST.MF and will place it in a
directory called META-INF, as you can see by extracting the resulting JAR
file.

There are several reasons why you might want to create a JAR file with a
specific manifest. These reasons depend on what role you want your JAR file
to play. If you're interested only in the ZIP-like features of JAR files, such as
compression and archiving, you do not have to worry about the manifest file.
The manifest doesn't really play any role in those situations. However, for
other purposes, you will need to change the default manifest file. For
example, you can add special-purpose name-value attribute headers to the
manifest file that are not contained in the default manifest. Examples of such
headers would be those for vendor information, package sealing, downloaded
extensions, and headers to make JAR-bundled applications executable.

For applications bundled in a JAR file, you have to add the following line to
your manifest file:
388 Java 2 Network Security

Main-Class: ClassName

An example of this can be found in 1.4.2.4, “Packing the Application Class in
a JAR File” on page 30.

For downloaded extensions, which are JAR files referenced by other JAR files
(see 3.4.2, “Extensions Framework” on page 86), you need to add the
following line to your manifest file:

Class-Path: extensionJarName

A package within a JAR file can be optionally sealed, which means that all
classes defined in that package must be archived in the same JAR file.
Package sealing is a new feature introduced for the first time with Java 2
SDK, Standard Edition, V1.2. You might want to seal a package, for example,
to ensure version consistency among the classes in your software or as a
security measure. To seal a package, you need to add a Name header for the
package, followed by a Sealed header, similar to this:

The Name header’s value is the package's relative path name. Note that it
ends with a forward slash (/) to distinguish it from a file name. Any headers
following a Name header, without any intervening blank lines, apply to the file
or package specified in the Name header. In the above example, because the
Sealed header occurs after the Name header, with no blank lines between,
the Sealed header will be interpreted as applying (only) to the package
myCompany/myPackage/.

Another new feature introduced only with Java 2 SDK, Standard Edition, V1.2
is package versioning. The package versioning specification defines several
manifest headers to hold versioning information. One set of such headers can
be assigned to each package. The versioning headers should appear directly
beneath the Name header for the package. This example shows all the
versioning headers:

Name: myCompany/myPackage/
Sealed: true

Name: java/util/
Specification-Title: "Java Utility Classes"
Specification-Version: "1.2"
Specification-Vendor: "Sun Microsystems, Inc.".
Implementation-Title: "java.util"
Implementation-Version: "build57"
Implementation-Vendor: "Sun Microsystems, Inc."
Java Gets Out of Its Box 389

Header information, such as vendor information, package sealing,
downloaded extensions, and headers to make JAR-bundled applications
executable, is not inserted in the default manifest file created by the jar utility.
Therefore you must provide those headers in a manifest input file and then
use the m option, or in alternative you have to edit a manifest file with the
information you need and include it in the JAR file using the M option, to
prevent jar from creating the default manifest.

Notice that the default manifest has the Created-By and Manifest-Version
information (see Figure 182 on page 386). If you use the m option and either
or both of these two pieces of information are also present in the manifest
input file you pass on the command line, the same values will be present in
the new manifest file, although the order of the entries might be rearranged.

For example if your manifest input file is:

then the manifest file created is:

As you can see, the jar utility has rearranged the order of the entries in the
manifest file.

On the other hand, if your original manifest file contained only the line:

Main-Class: GetProps

then the manifest file that is created is:

So, in this case, the jar utility has provided the missing manifest information.

Also, note that the manifest file entries must have the syntax:

Name: value

Manifest-Version: 1.0
Created-By: DEEPAK GUPTA
Main-Class: GetProps

Manifest-Version: 1.0
Main-Class: GetProps
Created-By: DEEPAK GUPTA

Manifest-Version: 1.0
Main-Class: GetProps
Created-By: 1.2 (Sun Microsystems Inc.)
390 Java 2 Network Security

When the jar utility encounters incorrect syntax, the following error is
returned in the Command Prompt window:

As we said also in Step 1 on page 274, the last line of the manifest input file
must be empty. That is, there should be a new line character at the end of the
file. If this is missing, the jar utility simply ignores the manifest file. Therefore,
when you are manually editing the manifest file, make sure to press the Enter
key after the last line.

When a manifest file is signed, the digest values of the files in the JAR are
added to the manifest file. Note that this behavior is different from what
happened with the JDK 1.1 jar utility, which always computed the digests,
regardless of whether or not the JAR file was signed. In other words, in JDK
1.1, the digests were calculated and added to the manifest file when the JAR
file was created. In Java 2 SDK, Standard Edition, V1.2, this operation is
done only when the JAR file is signed for the first time. This is to speed up the
creation of unsigned JAR files, for which you do not need any digests.

The following lines are present in the manifest of a signed JAR file:

So after a JAR file is signed, the manifest should look like the following:

The digest values recorded in the manifest are calculated from the contents
of the payload files they refer to. They are used to validate the payload files
when they are verified.

java.io.IOException: invalid header field
 at java.util.jar.Attributes.read(Compiled Code)
 at java.util.jar.Manifest.read(Compiled Code)
 at java.util.jar.Manifest.<init>(Manifest.java:55)
 at sun.tools.jar.Main.run(Main.java:87)
 at sun.tools.jar.Main.main(Main.java:760)

Name: dirpath/whatever.class
Algorithm-Digest: base-64_representation_of_digest

Manifest-Version: 1.0
Created-By: 1.2 (Sun Microsystems Inc.)

Name: PointlessButton.class
SHA1-Digest: Sj15dptWhrZhiIFRNU27WRY1brc=

Name: jamjar/examples/Button.class
SHA1-Digest: Fo6pYkn6ZR17eessxEiN7fK5xpE=
Java Gets Out of Its Box 391

Notice that by default only the SHA-1 digest is present.

12.1.2 Signature File
A signature file is automatically generated and placed in the META-INF
directory each time a JAR file is signed. This file looks very similar to the
manifest file shown above, except that the digests in it are calculated from the
manifest file entries, not from the actual contents of the payload files.

The name of this file is signerID.SF, where signerID is an arbitrary name for
the creator of the signature. If the JAR has been signed by more than one
signer, each signer will generate a separate SF file. The signature file looks
like the following:

The SHA1-Digest-Manifest header gives the digest of the complete manifest
file. The SHA1-Digest header for the different file entries in the SF file give
the digests of the entries of the respective files in the manifest file. By default,
the digest is calculated using the SHA-1 algorithm.

12.1.3 Signature Block File
In addition to the signature file, a signature block file is automatically placed
in the META-INF directory each time a JAR file is signed. Unlike the manifest
file or the signature file, which are ASCII files, signature block files are binary,
so they are not human-readable.

The signature block file is in PKCS#7 format1. It contains two elements
essential for verification:

1. The digital signature for the JAR file, generated with the signer’s private
key

2. The certificate containing the signer’s public key, to be used by anyone
wanting to verify the signed JAR file

1 Public Key Cryptography Standards (PKCS) is a set of rules for encoding various cryptographic structures. PKCS#7
defines a general-purpose signature format, including the signed digest, the certificate of the signer and the certification
authority (CA) certificates that support it.

Signature-Version: 1.0
SHA1-Digest-Manifest: 3jdG5UfTfZHcBQxGCBWSnCRb0p4=
Created-By: 1.2 (Sun Microsystems Inc.)

Name: jamjar/examples/Button.class
SHA1-Digest: WuhnnW3v9MiVHl0zlT8qnwFDY0o=

Name: PointlessButton.class
SHA1-Digest: L1S9Bcrbn4ZGAOflam1Cwn9qDFw=
392 Java 2 Network Security

Signature block file names typically will have a .DSA extension indicating that
they were created by the default Digital Signature Algorithm (DSA). Other file
name extensions are possible if keys associated with some other standard
algorithm are used for signing. For example, .RSA is the extension if the
signature is obtained from an algorithm that uses RSA encryption, and .PGP
is the extension with a Pretty Good Privacy (PGP) signature.

12.2 Signed Code Scenario in JDK 1.1 and Sun HotJava

In this section we show how to use the commands to create three key
databases:

1. A certificate authority database
2. A database for a Web server
3. A database for a Web client

We then use these keys to sign a JAR file containing an applet that attempts
to read a file on the browser system.

12.2.1 Creating the CA Key Database
The certificate authority is a principal in its own key database, with a
self-signed certificate. We create it as follows:

1. The first thing to do is to create a new key database. The key database is
created implicitly when you add the first principal to it:

This creates the key database identitydb.obj in your home directory.

2. Next, generate a key pair for the CA principal. We choose to use a
1024-bit key:

This can take a while to do. We ran it on a 75 MHz 486 machine and the
command ran for 2 minutes and 40 seconds (the time is related to the key
size).

D:\work\sun_signed_jar>javakey -cs "JamJar CA" true
Created identity [Signer]JamJar CA[identitydb.obj][trusted]

D:\work\sun_signed_jar>

D:\work\sun_signed_jar>javakey -gk "JamJar CA" DSA 1024
Generated DSA keys for JamJar CA (strength: 1024).

D:\work\sun_signed_jar>
Java Gets Out of Its Box 393

3. We use the list option of javakey to check the results so far:

4. The key pair allows the CA to sign certificates, but we also need to
generate a certificate for the CA itself, so that others can accept the CA’s
signatures. The first thing to do is to create a certificate information file,
containing the distinguished name information for the CA and the
certificate issuer. In this case, the certificate is self-signed, so the issuer
and the subject are the same:

We save this file as certinfo.jamjar.

5. Finally we can generate the CA’s certificate:

D:\work\sun_signed_jar>javakey -ld
Scope: sun.security.IdentityDatabase, source file: C:\users\default\identitydb.obj
[Signer]JamJar CA[identitydb.obj][trusted]
 public and private keys initialized
 certificates:
 No further information available.

D:\work\sun_signed_jar>

issuer.name=JamJar CA
issuer.cert=1
subject.name=JamJar CA
subject.real.name=Project JamJar Certificate Authority
subject.org.unit=ISL
subject.org=IBM
subject.country=UK
start.date=12 Sep 1997
end.date=12 Sep 1998
serial.number=1
out.file=cert.jamjar

D:\work\sun_signed_jar>javakey -gc certinfo.jamjar
Generated certificate from directive file certinfo.jamjar.
D:\work\sun_signed_jar>javakey -ld
Scope: sun.security.IdentityDatabase, source file: C:\users\default\identitydb.o
bj
[Signer]JamJar CA[identitydb.obj][trusted]
 public and private keys initialized
 certificates:
 certificate 1 for : CN=Project JamJar Certificate Authority, OU=ISL,O=IBM, C=UK
 from : CN=Project JamJar Certificate Authority, OU=ISL,O=IBM, C=UK
 No further information available.

D:\work\sun_signed_jar>
394 Java 2 Network Security

12.2.2 Creating the Server Key Database
Now we want to create a key database for our server:

1. If we use javakey to create the principal for the server, it will add it to the
CA database. So first we must choose to use a different key database, by
setting the identity.database directive in the main security properties file,
${java.home}\lib\security\java.security, where ${java.home} in this case is
the directory where JDK 1.1 was installed. We add the following line:

identity.database=D:/work/sun_signed_jar/serverdb.obj

2. The server has to know about the CA that signed its own certificate, so
first we add the CA principal to the key database and import the CA
certificate:

Notice that in this case the list command shows a key database with no
keys in it, just a public key certificate. This is slightly misleading, because
the certificate contains the public key; the display should really say that
there are no key pairs.

3. We create the principal and generate a key pair for our server:

4. Next we want to use the CA key pair to sign the server’s public key. First
we export the public key to a file:

D:\work\sun_signed_jar>javakey -cs "JamJar CA" true
Created identity [Signer]JamJar CA[D:/work/sun_signed_jar/serverdb.obj][trusted]

D:\work\sun_signed_jar>javakey -ic "JamJar CA" cert.jamjar
Imported certificate from cert.jamjar for JamJar CA.

D:\work\sun_signed_jar>javakey -ld
Scope: sun.security.IdentityDatabase, source file: D:/work/sun_signed_jar/serverdb.obj
Signer]JamJar CA[D:/work/sun_signed_jar/serverdb.obj][trusted]
 no keys
 certificates:
 certificate 1 for : CN=Project JamJar Certificate Authority, OU=ISL,O=IBM, C=UK
 from : CN=Project JamJar Certificate Authority, OU=ISL,O=IBM, C=UK

D:\work\sun_signed_jar>

D:\work\sun_signed_jar>javakey -cs "Robusta"
Created identity [Signer]Robusta[D:/work/sun_signed_jar/serverdb.obj][not trusted]
D:\work\sun_signed_jar>javakey -gk "Robusta" DSA 512
Generated DSA keys for Robusta (strength: 512).

D:\work\sun_signed_jar>
Java Gets Out of Its Box 395

5. We need to import this key into the CA’s key database. To do this we
comment out the identity.database entry that we added to java.security
(see Step 1 on page 395), create the server’s principal in the CA database
and import the public key:

6. Now we can sign the server’s certificate. The process is the same as for
the CA certificate. First we create the certificate information file:

7. Then we sign the certificate:

8. To use the certificate, we have to import it into the server’s key database,
which means that we first have to find out the number assigned to the
certificate in the CA database and export the certificate to a file:

D:\work\sun_signed_jar>javakey -ek Robusta pubkey.robusta
Public key exported to pubkey.robusta.

D:\work\sun_signed_jar>

D:\work\sun_signed_jar>javakey -cs "Robusta"
Created identity [Signer]Robusta[D:/work/sun_signed_jar/serverdb.obj][not trusted]
D:\work\sun_signed_jar>javakey -ik Robusta pubkey.robusta
Set public key from pubkey.robusta for Robusta.

D:\work\sun_signed_jar>

issuer.name=JamJar CA
issuer.cert=1
subject.name=Robusta
subject.real.name=All Java is secure but signed Java is Robusta
subject.org.unit=ISL
subject.org=IBM
subject.country=UK
start.date=12 Sep 1997
end.date=12 Sep 1998
serial.number=2
out.file=cert.robusta

D:\work\sun_signed_jar>javakey -gc certinfo.robusta
Generated certificate from directive file certinfo.robusta.

D:\work\sun_signed_jar>
396 Java 2 Network Security

9. Finally, we switch the active key database back to the server, by restoring
the identity.database entry in java.security (see Step 5 on page 394). Then
import the certificate:

12.2.3 Creating and Signing a JAR File
To illustrate the use of the key databases we have a simple Java applet that
attempts to perform an action normally prohibited by the sandbox; it reads a
local file and displays the contents on screen. We need to package this in a
JAR archive and then sign it.

1. We create the jar file and display its contents using the jar command:

D:\work\sun_signed_jar>javakey -li Robusta
Identity: Robusta
[Signer]Robusta[identitydb.obj][not trusted]
 no keys
 certificates:
 certificate 1 for : CN=All Java is secure but signed Java is Robusta
OU=ISL, O=IBM, C=UK
 from : CN=Project JamJar Certificate Authority, OU=ISL,O=IBM, C=UK
D:\work\sun_signed_jar>javakey -ec Robusta 1 cert.robusta
Certificate 1 exported to cert.robusta.

D:\work\sun_signed_jar>

D:\work\sun_signed_jar>javakey -ic Robusta cert.robusta
Imported certificate from cert.robusta for Robusta.

D:\work\sun_signed_jar>javakey -ld

Scope: sun.security.IdentityDatabase, source file: D:/work/sun_signed_jar/serverdb.obj
[Signer]JamJar CA[D:/work/sun_signed_jar/serverdb.obj][trusted]
 no keys
 certificates:
 certificate 1 for : CN=Project JamJar Certificate Authority, OU=ISL,O=IBM, C=UK
 from : CN=Project JamJar Certificate Authority, OU=ISL,O=IBM, C=UK
 No further information available.
[Signer]Robusta[D:/work/sun_signed_jar/serverdb.obj][not trusted]
 public and private keys initialized
 certificates:
 certificate 1 for : CN=All Java is secure but signed Java is Robusta OU=ISL, O=IBM, C=UK
 from : CN=Project JamJar Certificate Authority, OU=ISL,O=IBM, C=UK

D:\work\sun_signed_jar>
Java Gets Out of Its Box 397

2. We have to tell javakey which key pair to use for the signature (in fact, the
key database only has one key pair in it, but javakey does not know that).
To do this we create a signature directive file, as follows:

The signature.file directive does not define a real file, but the file name
part of the signer and signature files that are placed in the META-INF
directory of the JAR.

3. Now we can sign the JAR:

Notice the conflicting use of forward slash (/) and back slash (\) in the
metadata files. In theory a JAR should use forward slashes only, but this
mixed use does not seem to cause a problem.

4. The result of performing the signature is a file named jam.jar.sig. Now we
can put that on the Web server and reference it in a Web page using the
<APPLET> tag:

D:\work\sun_signed_jar>jar -cvf jam.jar GetFile.class
adding: GetFile.class (in=2239) (out=1201) (deflated 46%)
D:\work\sun_signed_jar>jar -tf jam.jar
META-INF/MANIFEST.MF
GetFile.class

D:\work\sun_signed_jar>

signer=Robusta
cert=1
chain=0
signature.file=ROBUSTA

D:\work\sun_signed_jar>javakey -gs sign_directive.robusta jam.jar
Adding entry: META-INF/MANIFEST.MF
Creating entry: META-INF\ROBUSTA.SF
Creating entry: META-INF\ROBUSTA.DSA
Adding entry: GetFile.class
Signed JAR file jam.jar using directive file sign_directive.robusta.

D:\work\sun_signed_jar>

<APPLET CODE=GetFile.class archive=jam.jar.sig WIDTH=600 HEIGHT=600>
 <PARAM NAME=FileToTry VALUE="c:\thingy">
</APPLET>
398 Java 2 Network Security

12.2.4 Running the Applet
We can finally try to load the HTML page that invokes a Web browser (or, for
testing purposes, the JDK 1.1 Applet Viewer). However, when we do so we
get the same error as if it was a normal applet running under the sandbox
restrictions:

You can see that the checkRead() method of the applet security manager is
throwing an exception. Why is this? The reason is that the client does not
have the certificate that it needs to decrypt the JAR’s signature, and hence
establish trust in the signer.

12.2.5 Creating the Client Key Database
According to the signature hierarchy the client should only need the JamJar
CA certificate to authenticate the server, because JamJar CA signed the
server’s certificate. However, this did not work as expected for JDK 1.1. We
found we had to add the server certificate to the client’s key database, as
follows:

1. We set the key database to a new one for the client, by changing the
identity.database directive in the java.security file:

identity.database=d:\work\sun_signed_jar\clientdb.obj

2. Then we create the entry for the server and import the certificate:

3. Now, at last, the applet runs as we want it to:

sun.applet.AppletSecurityException: checkread
 at sun.applet.AppletSecurity.checkRead(AppletSecurity.java:384)
 at sun.applet.AppletSecurity.checkRead(AppletSecurity.java:346)
 at java.io.FileInputStream.<init>(FileInputStream.java:58)
 at GetFile.init(GetFile.java:15)
 at sun.applet.AppletPanel.run(AppletPanel.java:287)
 at java.lang.Thread.run(Thread.java:474)

D:\work\sun_signed_jar>javakey -cs "Robusta" true
Created identity [Signer]Robusta[D:/work/sun_signed_jar/clientdb.obj][trusted]
D:\work\sun_signed_jar>javakey -ic "Robusta" cert.robusta
Imported certificate from cert.robusta for Robusta.

D:\work\sun_signed_jar>
Java Gets Out of Its Box 399

Figure 183. Running the Signed Applet

The Applet Viewer gives full access to any signed applet, which is acceptable
because it is a test tool. A real browser should provide more control over
access. HotJava, for example, allows you to set a range of different trust
levels:

 • Untrusted

This is like the normal sandbox environment, except that it is even more
restricted because the applet cannot make any network connections.

 • High Security

This is similar to the sandbox, with the addition of the ability for an applet
to listen on network ports above 1024.

 • Medium Security

Prompts the user whenever the applet tries to do something that is
normally not allowed, so that the user can permit or deny it.

 • Low Security

Allows the applet to do anything, without prompting the user.

12.3 Signed Code Scenario in Java 2 SDK, Standard Edition, V1.2

JDK 1.1 provided the javakey and jar commands for managing databases of
public keys and for creating, signing and manipulating JAR archives (this
process is described in 11.5.2.2, “Java Plug-In and Code Signed with
javakey” on page 380).

Java 2 SDK, Standard Edition, V1.2 provides the keytool, jar and jarsigner
tools to manage key databases and for creating, signing, verifying, updating
and manipulating JAR files.
400 Java 2 Network Security

12.3.1 Creating a Keystore for Certification Authorities
By default, Java 2 SDK, Standard Edition, V1.2 comes with a keystore file,
called cacerts, which contains five VeriSign root certification authority (CA)
certificates (see 8.2.1, “The Certificates KeyStore File cacerts” on page 233).
Here, we create a new CA keystore called CAStore. We will work in the D:\CA
directory for the CA.

1. We create the CAStore keystore and the keys for it. This process, which
automatically creates a self-signed certificate, is shown in the following
session screen:

2. We export the certificate to the file CAcert.crt:

3. We print the certificate to standard output to view its contents:

D:\CA>keytool -genkey -alias CAkey -keystore CAStore
Enter keystore password: CertAuth
What is your first and last name?
 [Unknown]: ITSO Certificate Authority
What is the name of your organizational unit?
 [Unknown]: ITSO
What is the name of your organization?
 [Unknown]: IBM
What is the name of your City or Locality?
 [Unknown]: Cary
What is the name of your State or Province?
 [Unknown]: NC
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=ITSO Certificate Authority, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US> correct? [no]: Y
Enter key password for <CAkey>
 (RETURN if same as keystore password): ibmitsojava

D:\CA>

D:\CA>keytool -export -keystore CAStore -alias CAkey -file CAcert.crt
Enter keystore password: CertAuth
Certificate stored in file <CAcert.crt>

D:\CA>
Java Gets Out of Its Box 401

12.3.2 Creating the Server Certificate
We work in the D:\server directory for the tasks related to creating the server
certificate. We create the server certificate as follows:

1. We create the server key pair:

2. We export the certificate to the file Servercert.crt:

3. We print the certificate to standard output to view its contents:

D:\CA>keytool -printcert -file CAcert.crt
Owner: CN=ITSO Certificate Authority, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US
Issuer: CN=ITSO Certificate Authority, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US
Serial number: 36aa4592
Valid from: Sat Jan 23 16:56:34 EST 1999 until: Fri Apr 23 17:56:34 EDT 1999
Certificate fingerprints:
 MD5: 24:0A:0E:3D:AC:20:7F:97:A1:31:95:25:95:F5:84:8F
 SHA1: 7E:74:32:0B:20:9C:45:74:BD:3B:88:AB:CE:C7:DD:CB:BF:70:D0:C5

D:\CA>

D:\server>keytool -genkey -alias Serverkey -keystore ServerStore
Enter keystore password: Server
What is your first and last name?
 [Unknown]: Java security Redbook
What is the name of your organizational unit?
 [Unknown]: ITSO
What is the name of your organization?
 [Unknown]: IBM
What is the name of your City or Locality?
 [Unknown]: Cary
What is the name of your State or Province?
 [Unknown]: NC
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Java security Redbook, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US> correct?
 [no]: Y
Enter key password for <Serverkey>
 (RETURN if same as keystore password): ibmitsojava

D:\server>

D:\server>keytool -export -keystore ServerStore -alias Serverkey -file Servercert.crt
Enter keystore password: Server
Certificate stored in file <Servercert.crt>

D:\server>
402 Java 2 Network Security

4. Next, we need to sign this server certificate using the CA private key.

This is rather complex. Although in JDK 1.1 we could use the javakey tool
to sign a certificate with a CA signer, in Java 2 SDK, Standard Edition,
V1.2, only self-signed certificates can be created using the tools provided.
In future versions of the Java 2 SDK this limitation will probably be
removed. However, the Java 2 APIs enable us to apply a digital signature
on a certificate request by writing an appropriate Java application, as
shown in the following figures:

Figure 184. (Part 1 of 2). Sign.java

D:\server>keytool -printcert -file Servercert.crt
Owner: CN=Java security Redbook, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US
Issuer: CN=Java security Redbook, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US
Serial number: 36aa4730
Valid from: Sat Jan 23 17:03:28 EST 1999 until: Fri Apr 23 18:03:28 EDT 1999
Certificate fingerprints:
 MD5: D0:34:8B:6F:A6:C1:A0:0C:4C:6A:20:F8:EE:CB:B2:40
 SHA1: BD:F9:E8:98:DB:93:50:5A:68:D7:7F:B5:0B:19:3E:38:5F:A6:83:BB

D:\server>

import java.io.*;
import java.security.*;
import sun.security.x509.*;
import sun.security.util.*;

class Sign
{
 public static void main(String arg[])
 {
 try
 {
 FileInputStream fisk = new FileInputStream("D:\\CA\\CAStore");
 KeyStore ks = KeyStore.getInstance("JKS", "SUN");
 String storepass = "CertAuth";
 char[] pwd = new char[storepass.length()];
 for (int i = 0; i < pwd.length; i++)
 pwd[i] = storepass.charAt(i);

 String keypass = "ibmitsojava";
 char[] kpwd = new char[keypass.length()];
 for (int i = 0; i < kpwd.length; i++)
 kpwd[i] = keypass.charAt(i);
Java Gets Out of Its Box 403

Figure 185. (Part 2 of 2). Sign.java

In this application, in particular, we have made use of the sun.security
APIs, which allow you to sign a server certificate with a CA certificate.

The classes that JavaSoft includes with the Java 2 SDK fall into at least
two packages: java.* and sun.*. Only classes in java.* packages are a
standard part of the Java platform and will be supported into the future.
JavaSoft states that:2

 • API outside of java.* can change at any time without notice, and so
cannot be counted on either across platforms (Sun, Microsoft,
Netscape, Apple, etc.) or across Java versions.

 • Programs that contain direct calls to the sun.* API are not 100% Pure
Java. In other words a Java program that directly calls any API in sun.*
packages is not guaranteed to work on all Java-compatible platforms.
In fact, such a program is not guaranteed to work even in future
versions on the same platform.

2 General information on the sun.* packages can be found at http://java.sun.com/products/jdk/faq/faq-sun-packages.html.

 ks.load(fisk, pwd);
 PrivateKey priv = (PrivateKey)ks.getKey("CAKey", kpwd);
 X509Cert certs = new X509Cert();
 certs.decode(new FileInputStream("D:\\CA\\CAcert.crt"));
 AlgorithmId SHAalg = new AlgorithmId(AlgorithmId.DSA_oid);
 X500Signer CA = certs.getSigner(SHAalg, priv);

 FileInputStream bis = new FileInputStream("D:\\server\\Servercert.crt");
 X509Cert srvrCert = new X509Cert();
 srvrCert.decode(bis);

 BigInt i = srvrCert.getSerialNumber();
 byte[] signedcert = srvrCert.encodeAndSign(i, CA);

 FileOutputStream certfos = new FileOutputStream("D:\\server\\signedcert.crt");
 certfos.write(signedcert);
 certfos.close();
 }
 catch (Exception e)
 {
 System.out.println("Exception: " + e);
 }
 }
}

404 Java 2 Network Security

For these reasons, there is no documentation available for the sun.*
classes.3 Therefore, if you want to use the Sign program shown in Figure
184 on page 403 and Figure 185 on page 404, do it at your own risk.

The program above is compiled by issuing:

javac Sign.java

Then, it can be launched by entering:

java Sign

The program outputs the signed certificate to the file signedcert.crt, in the
directory D:\server.

5. We print the CA-signed certificate to standard output to check out its
contents:

Notice the difference between this output and the one obtained in Step 3
on page 402, where the issuer and the owner of the certificate were the
same entity, because the certificate was self-signed. In this case, instead,
the owner of the certificate is still the server, but the issuer is the CA.

6. Next, we try to import this certificate back to our server keystore:

Oops! We get an error because the keystore does not recognize the entity
who has signed the certificate as trusted. So we first have to import the
CA’s certificate as a trusted root4:

3 Nonetheless, we found the documentation we needed to implement the Sign class at
http://jserv.javasoft.com/products/java-server/documentation/webserver1.0.2/apidoc/Package-sun.security.x509.html.
4 A trusted root is the certificate of a widely-accepted CA.

D:\server>keytool -printcert -file signedcert.crt
Owner: CN=Java security Redbook, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US
Issuer: CN=ITSO Certificate Authority, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US
Serial number: 36aa4730
Valid from: Sat Jan 23 17:03:28 EST 1999 until: Fri Apr 23 18:03:28 EDT 1999
Certificate fingerprints:
 MD5: D0:34:8B:6F:A6:C1:A0:0C:4C:6A:20:F8:EE:CB:B2:40
 SHA1: BD:F9:E8:98:DB:93:50:5A:68:D7:7F:B5:0B:19:3E:38:5F:A6:83:BB

D:\server>

D:\server>keytool -import -file signedcert.crt -alias Serverkey -keystore ServerStore
Enter keystore password: Server
Enter key password for <Serverkey>: ibmitsojava
keytool error: Failed to establish chain from reply

D:\server>
Java Gets Out of Its Box 405

Then we try importing the CA-signed server certificate again:

And this operation finally succeeds.

Notice that the system recognizes when a server certificate is signed with
the private key of a trusted CA. In fact, upon importing the CA-signed
server certificate, we have not been prompted with the question:

Trust this certificate? [no]:

12.3.3 Creating and Signing a JAR file
Now we create a JAR file signed by the server. We will use the CountApp
applet that we implemented in 8.8, “How to Implement a Policy Server” on
page 252. We save the class file CountApp.class and the HTML file
CountApp.html invoking the applet (see Figure 111 on page 256) in the
directory D:\server.

1. We create a JAR file CountApp.jar from the class file CountApp.class:

2. We sign the CountApp.jar file with the server’s private key:

D:\server>keytool -import -trustcacerts -file D:\CA\CAcert.crt -alias CA -keystore ServerStore
Enter keystore password: Server
Owner: CN=ITSO Certificate Authority, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US
Issuer: CN=ITSO Certificate Authority, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US
Serial number: 36aa4592
Valid from: Sat Jan 23 16:56:34 EST 1999 until: Fri Apr 23 17:56:34 EDT 1999
Certificate fingerprints:
 MD5: 24:0A:0E:3D:AC:20:7F:97:A1:31:95:25:95:F5:84:8F
 SHA1: 7E:74:32:0B:20:9C:45:74:BD:3B:88:AB:CE:C7:DD:CB:BF:70:D0:C5
Trust this certificate? [no]: Y
Certificate was added to keystore

D:\server>

D:\server>keytool -import -file signedcert.crt -alias Serverkey -keystore ServerStore
Enter keystore password: Server
Enter key password for <Serverkey>: ibmitsojava
Certificate reply was installed in keystore

D:\server>

D:\server>jar cvf CountApp.jar CountApp.class
added manifest
adding: CountApp.class (in=948) (out=595) (deflated 37%)

D:\server>
406 Java 2 Network Security

3. Assuming that we have a client keystore in the directory D:\client, we
import the CA’s certificate into the client’s keystore as a trusted CA with
alias CA:

According to the signature hierarchy, even if the JAR file has been signed
with the server’s private key, the client should only need the CA certificate
to authenticate the server, because the CA signed the server’s certificate.
For this reason, we do not import the server’s certificate into the client’s
keystore.

12.3.4 Granting the Permissions and Running the Applet
If you go back to 8.8, “How to Implement a Policy Server” on page 252, you
will see that the CountApp applet needs the following permissions in order to
run correctly:

permission java.io.FilePermission "${user.home}${/}itso.txt", "read";
permission java.util.PropertyPermission "user.home", "read";
permission java.util.PropertyPermission "file.separator", "read";

The same permissions must be granted to the code source of the
CountApp.jar file, or it will throw an AccessControlException when we launch
it.

1. We add the following entries to one of the current policy files:

D:\server>jarsigner -keystore ServerStore CountApp.jar Serverkey
Enter Passphrase for keystore: Server
Enter key password for Serverkey: ibmitsojava

D:\server>

D:\client>keytool -import -trustcacerts -keystore ClientStore -file D:\CA\CAcert.crt -alias CA
Enter keystore password: Client
Owner: CN=ITSO Certificate Authority, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US
Issuer: CN=ITSO Certificate Authority, OU=ITSO, O=IBM, L=Cary, ST=NC, C=US
Serial number: 36aa4592
Valid from: Sat Jan 23 16:56:34 EST 1999 until: Fri Apr 23 17:56:34 EDT 1999
Certificate fingerprints:
 MD5: 24:0A:0E:3D:AC:20:7F:97:A1:31:95:25:95:F5:84:8F
 SHA1: 7E:74:32:0B:20:9C:45:74:BD:3B:88:AB:CE:C7:DD:CB:BF:70:D0:C5
Trust this certificate? [no]: Y
Certificate was added to keystore

D:\client>
Java Gets Out of Its Box 407

As we said in Step 3 on page 407, the client should not grant any
particular permissions to the server, although it was the server that signed
the JAR file. In fact, the client does not even have the server certificate in
the keystore. The client only has the CA certificate registered as a trusted
root, and this should be enough because the CA signed the server’s
certificate. This is the reason for the entry

signedBy "CA"

in the policy file above.

2. At the time of writing this book, the signature hierarchy did not work as
expected for Java 2 SDK, Standard Edition, V1.2.1. In fact we found that it
was necessary to add the server’s certificate to the client’s keystore, as
follows:5

The screen above shows that the server is added with alias server.

Also, the entry in the policy file must explicitly indicate that the signer is
server:

3. Only at this point, after the server’s certificate is also imported in the
client’s keystore and the server signer is given the right permissions, the
applet is able to run without any exceptions.

5 Notice that this is not a bug, but the way the signature hierarchy has been implemented in the Java 2 platform.

keystore "file:/D:/client/ClientStore";

grant signedBy "CA", codeBase "file:/D:/server/-" {
 permission java.io.FilePermission "${user.home}${/}itso.txt", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.util.PropertyPermission "file.separator", "read";
};

D:\client>keytool -import -keystore ClientStore -file D:\server\signedcert.crt -alias server
Enter keystore password: Client
Certificate was added to keystore

D:\client>

keystore "file:/D:/client/ClientStore";

grant signedBy "server", codeBase "file:/D:/server/-" {
 permission java.io.FilePermission "${user.home}${/}itso.txt", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.util.PropertyPermission "file.separator", "read";
};
408 Java 2 Network Security

12.4 Signed Code Scenario in Netscape Communicator

While JavaSoft was working on developing the security model for the Java 2
platform, the major browser manufacturers were also wrestling with ways to
relax the access control applied to signed applets.

Netscape has embraced the JAR format and the opportunities that signing
offers. In fact, they are using the format for other types of Web content, such
as JavaScript programs, plug-ins and Web pages. However, at the time of
writing, you could not simply use a Netscape Communicator V4.5 browser to
access a JAR file that was signed using the jarsigner or the old javakey
command.

There are two reasons for this:

1. Netscape browsers require that the CA that signs a JAR file be predefined
as a trusted root. The self-signed certificates used by jarsigner and
javakey cannot be loaded into the browser.

2. The trust model implemented by HotJava works on an exception basis; the
applet tries to do something that is forbidden, which causes a prompt to
ask the user if it is acceptable. Netscape has implemented a more
sophisticated model, in which the applet code requests the permissions it
needs and in which it can control the period for which each permission is
active.

In other words, the programmer decides in advance what permissions are
needed, instead of trying to use the permissions and relying on the browser
to handle the exception. Although this may seem like a small distinction, it
does allow a more natural style of application. For example, if an applet
attempts several privileged actions, the user can be prompted to allow access
to all of them at once, instead of being repeatedly interrupted each time one
of them is encountered in the code.

The ability to turn permissions on and off within the code is also important,
because it reduces the exposure to an attack where another applet invokes
the trusted applet’s methods, thereby using the JAR signature improperly.

The Netscape access control request mechanism is implemented as a Java
class package named netscape.security.6 We illustrate the security model
with an example of an applet that requests permission to read system
properties and also to read a file on the browser disk. There are three parts to
the setup:

1. Writing the applet to use the netscape.security extensions
6 The Netscape JVM implementation does not provide the package java.security.
Java Gets Out of Its Box 409

2. Installing and configuring the key pairs and certificates

3. Signing the JAR and running the applet

12.4.1 Using the netscape.security Package
The Netscape security mechanism is based on privilege targets. These are
definitions of operations that the applet may want to perform. Control over
whether they should or should not be permitted lies with a new security
function, the privilege manager. This places indicators on the JVM stack to
show what privileges the applet has been allowed. The Netscape version of
the security manager then refers to the indicators when performing its
authorization checking.

The netscape.security package includes a large number of predefined
privilege targets and also allows the programmer to register new targets. You
will find the netscape.security package in the JAR file java40.jar, located in
the directory
C:\Program Files\Netscape\Communicator\Program\java\classes (provided
you followed the default installation of Netscape Communicator V4.5) or in a
similar tree inside the directory where you installed Netscape. The applet we
are going to show you requests access to two of the standard targets:

 • Read access to system properties

 • Read access to a local file

This applet is called GetFileNS. We split its source code in two parts, so that
it is easier to comment on what the applet does. The first part of the applet
code, containing the import statements, the class declaration and the init()
method, is shown in Figure 186 on page 410 and Figure 189 on page 414:

Figure 186. (Part 1 of 4). GetFileNS.java

import java.awt.*;
import java.io.*;
import netscape.security.*;

public class GetFileNS extends java.applet.Applet implements Runnable
{
 String filename;
 Thread t;
 TextArea ta = new TextArea("", 10, 50);
 public boolean granted = false;
 PrivilegeManager privMgr;
 protected Principal lilOlMe;
410 Java 2 Network Security

Figure 187. (Part 2 of 4). GetFileNS.java

The following are some comments on this first part of the applet code:

 public void init()
 {
 filename = getParameter("FileToTry");
 add(ta);

 // Find out what operating system we are on
 try
 {
 PrivilegeManager.enablePrivilege("UniversalPropertyRead");
 String osName = System.getProperty("os.name");
 ta.appendText("\nI see you are running " + osName);
 PrivilegeManager.revertPrivilege("UniversalPropertyRead");
 }
 catch (netscape.security.ForbiddenTargetException e)
 {
 ta.appendText("\nPermission to read system properties denied by user.");
 }

 // Request permission to read a specific file
 lilOlMe = PrivilegeManager.getMyPrincipals()[0];
 privMgr = PrivilegeManager.getPrivilegeManager();

 try
 {
 Target freadTgt = Target.findTarget("FileRead");
 privMgr.enablePrivilege(freadTgt , lilOlMe, (Object) filename);
 granted = true ;
 }
 catch(ForbiddenTargetException e)
 {
 ta.appendText("\nUser won’t let me read " + filename);
 }

 // Start the thread running
 if (t == null)
 {
 t = new Thread(this);
 t.start();
 }
 }
Java Gets Out of Its Box 411

 • Requesting the permissions to read system properties

Here we request permission to read system properties:

PrivilegeManager.enablePrivilege("UniversalPropertyRead");

The enablePrivilege() method causes a dialog box to pop up asking for
permission. If the user refuses, it throws an exception. Otherwise the
applet goes on to read the property, which in this case is the type of
operating system on which the browser is running.

 • Reverting the privilege

Note that we revert the privilege immediately:

PrivilegeManager.revertPrivilege("UniversalPropertyRead");

This minimizes the time during which the applet is open to abuse.

 • Requesting permission to read a specific file

The second example is more complex:

In this case the privilege is not universal (view any system property) but
specific (read file X). We therefore cannot just refer to the privilege target
by name, but have to pass a netscape.security.Target object to
enablePrivilege(). This could be a target that we created ourselves, or, as
in this case, a target provided by the package. The file name is passed to
enablePrivilege(). This version of the method also requires details of the
applet signer, contained in a Principal object.

Now you are probably wondering why we requested access to read the local
file but then did not do so. In fact we are going to need the file access later in
the applet, in another thread.

Figure 188 on page 413 and Figure 189 on page 414 show the second half of
the applet code, in which the FileRead privilege is used. This illustrates an
oddity of the mechanism: the privilege manager grants privileges for the life of

lilOlMe = PrivilegeManager.getMyPrincipals()[0];
privMgr = PrivilegeManager.getPrivilegeManager();

try
{
 Target freadTgt = Target.findTarget("FileRead");
 privMgr.enablePrivilege(freadTgt , lilOlMe, (Object) filename);
 granted = true ;
}
catch(ForbiddenTargetException e)
{
 ta.appendText("\nUser won’t let me read " + filename);
}

412 Java 2 Network Security

the applet, but the indicators are placed on the program stack, which is
unique to each method and the methods it invokes. This means that you have
to re-issue the enablePrivilege() request from the method where the privilege
is actually exercised. However, as the privilege manager has kept track of
what permissions have been granted, it will not ask the user again.

Figure 188. (Part 3 of 4). GetFileNS.java

 public void run()
 {
 // Did we get the permission we wanted?
 if (granted == true)
 {
 try
 {
 Target freadTgt = Target.findTarget("FileRead");
 privMgr.enablePrivilege(freadTgt , lilOlMe, (Object) filename);
 ta.appendText("\nThis is the content of file " + filename + ":\n"
 readTheFile(filename).toString());
 }
 catch(ForbiddenTargetException e)
 {
 ta.appendText("\nShould never reach here...");
 }
 }
 }

 private StringBuffer readTheFile(String filename)
 {
 DataInputStream dis;
 String line;
 StringBuffer buf = new StringBuffer();
 FileInputStream theFile;

 try
 {
 theFile = new FileInputStream(filename);
 try
 {
 dis = new DataInputStream(new BufferedInputStream(theFile));
 while ((line = dis.readLine()) != null)
 {
 buf.append(line + "\n");
 }
 }
Java Gets Out of Its Box 413

Figure 189. (Part 4 of 4). GetFileNS.java

Now we can make some comments on the second part of the applet:

 • Requesting the FileRead privilege again

Here is where we request again the privilege to read a specific file. As you
can see, this time, we actually read the file:

 • The method that reads the data

The method readTheFile() is the one that reads the data. It is a
general-purpose function, so we do not request privileges within it. If we
did, an attack applet could invoke it using inter-applet communication and
get privileges without a signature. It is also private, which protects the
run() method from a similar attack.

When you start to ease the restrictions in your browser you have to be aware
that you may be opening yourself to attack. The applet itself is signed by

 }
 }
 catch (IOException e)
 {
 System.out.println("IO Error:" + e.getMessage());
 }
 }
 catch (FileNotFoundException e)
 {
 System.out.println("File not found: " + filename);
 }

 return (buf);
 }
}

try
{
 Target freadTgt = Target.findTarget("FileRead");
 privMgr.enablePrivilege(freadTgt , lilOlMe, (Object) filename);
 ta.appendText("\nThis is the content of file " + filename + ":\n" +
 readTheFile(filename).toString());
}
catch(ForbiddenTargetException e)
{
 ta.appendText("\nShould never reach here...");
}

414 Java 2 Network Security

someone you trust, based on the signature in the certificate, so it should not
do anything dangerous directly. However, as we mentioned in the example
above, another applet could get a free ride on the signature by using
inter-applet communications to invoke methods that have had privileges
granted to them. Such an attack can be launched only from an applet within
the same context (that is, contained within the same document). This
highlights an important point about signed applets: the signature implies a
trustworthy programmer, not a trustworthy site.

12.4.1.1 Compiling the Applet Code
The full code of the GetFileNS applet can be obtained by concatenating the
code shown in Figure 186 on page 410 through Figure 189 on page 414.

Before compiling an applet that imports the netscape.security package, you
will need to copy the JAR file java40.jar in the extensions directory under the
JRE development directory (see 8.1, “A Note on java.home and the JRE
Installation Directory” on page 225). This way the Java compiler javac will be
able to find the classes you imported. After doing this, the GetFileNS applet
code can be compiled by entering:

javac GetFileNS.java

This command generates the class file GetFileNS.class.

12.4.2 Installing Keys and Certificates in Netscape Communicator
Now that we have written the code that will request and use special
privileges, we need to install it in a signed JAR. But before we can generate a
signature, we need a key pair and a certificate.

 The GetFileNS applet illustrates a number of techniques for reducing the
risk of a second applet abusing your privileges. In summary the techniques
are:

 • Enable privileges for as short a time as possible.

 • Place privileged accesses within private or protected methods.

 • When creating general-purpose methods – like readTheFile() in the
example – enable privileges in the calling code, not the method itself.

Further discussion can be found at
http://developer.netscape.com/library/documentation/signedobj/capabilities.

How to Use Privileges with Care
Java Gets Out of Its Box 415

Public key signatures rely on a web of trust. That is, anyone receiving a
signed message needs to have the certificates of CAs that establish the
trustworthiness of the signer. This does not only apply to signed Java, of
course. One of the most widespread uses of digital signatures is in the
Secure Sockets Layer (SSL), a general-purpose protocol for encrypting Web
data and authenticating the server and client (see Chapter 16, “Java and
SSL” on page 603).

To get around the problem of establishing the web of trust needed by SSL, the
browser manufacturers provide key databases containing trusted roots as
part of the browser installation. This allows a browser to accept any signature
that is supported by a certificate from one of the known CAs. But signed Java
poses other problems:

1. If you are creating a signed JAR for general use, you can purchase a
certificate from one of the well-known CAs. But if you are creating a local,
intranet application with a limited web of trust, you need a way for the
signer and the browser to install the local CA certificate as a trusted root.

2. As the signer of the code, you need the facility to generate a key pair and
then acquire a certificate for your own public key and install it into your
own key database.

Netscape has developed mechanisms to solve both of these problems. They
are based on messages with special MIME types that trigger key
management functions in the browser. The MIME types are:

 • application/x-x509-ca-cert

This message delivers a new CA certificate. When it is received, the
browser pops up a dialog in which the user can check the details of the
certificate before installing it as a trusted root (see Figure 191 on page
418).

 • application/x-x509-user-cert

This message delivers a new personal certificate. This does not make
sense unless the browser has previously generated a key pair and
provided distinguished name information to place in the certificate.
Netscape uses a special HTML tag, <KEYGEN>, which causes the browser to
generate the key pair. Figure 190 on page 417 shows how this works.
416 Java 2 Network Security

Figure 190. Requesting a Certificate – The <KEYGEN> Tag Mechanism

In our example we used the Netscape Certificate Server product to generate
and install a new CA key and a personal key for code signing. Any suitable
key management software could be used, as long as it supports the special
MIME types and <KEYGEN> tag. The IBM Registry product has this capability.

In order to use the key pair for signing JAR files, it must be a X.509 V3
certificate with a special attribute set to indicate that it is suitable for code
signing.

Browser

Certificate Server

Later...

3) User fills in details
 and submits form

4) Browser generates
 key pair

1) HTTP GET for "request certificate" URL

2) Form prompts for distinguished name details and
 includes <KEYGEN> tag

5) Form data and certificate request POSTed to
 server

6) HTTP GET for "receive certificate" URL

7) x-x509-user-cert response message invokes
 certificate install process in browser
Java Gets Out of Its Box 417

Figure 191. Receiving a New CA Certificate

12.4.3 Signing JAR Files with Netscape Signing Tool
Now everything is in place to store the applet in a JAR and to sign it.
Netscape provides a command line utility called Netscape Signing Tool7,
which makes this operation easy to do and compatible with the standards
used by Netscape.

Netscape Signing Tool replaces the older Netscape tools, Zigbert and JAR
Packager, which are no longer supported. Netscape Signing Tool can be
launched from the command prompt by entering the signtool command. This
command has several options, and now we show you how to use it on a
concrete example.

First of all, we create a signing certificate for ourselves using Netscape
Signing Tool.

7 Netscape Signing Tool can be downloaded from http://developer.netscape.com/software/signedobj/index.html.
Documentation on this tool is available at http://developer.netscape.com/docs/manuals/signedobj/signtool/index.htm.
418 Java 2 Network Security

Before running this utility, it is necessary to set a password with which
Communicator will protect your private key. The window to set this password
can be accessed by clicking on the Netscape Security lock icon and selecting
Passwords in the Security Info page. This will bring up a window where you
will be prompted for entering the password twice, as shown in the following
figure:

Figure 192. Setting up Your Communicator Password

A few precautions should be taken about the Netscape certificate database
files cert7.db and key3.db. These are database files used by Netscape to
store trusted certificates and user certificates respectively. They are located
in the directory
C:\Program Files\Netscape\Users\user_name, provided you followed the
default installation of Netscape Communicator. Chances exist that these two
files may get corrupted during the use of Netscape Signing Tool. Therefore,
we recommend that you back them up before running the signtool command.
Also note that you should close all the Netscape windows before launching
Netscape Signing Tool, as there might be interactions with the database files
and, again, they could get corrupted.

The signtool command has an option -G, which creates an object signing
certificate with a specified alias. In our case, the alias we use is
Java Gets Out of Its Box 419

PistoiaSignCert. When running this command, you also have to use the -d
option, to specify the directory where the Netscape database files are
located. An example of the full command is shown in the following session
screen:

If you wish to check the results of this command, you can list the object
signing certificates installed on your Netscape Communicator system by
using the -l option of the signtool command, as shown next:

Another possibility is for you to use the -L option, and see the certificates of
all the CAs installed on your Netscape Communicator system. In particular,

F:\itso\ch12>signtool -G "PistoiaSignCert" -d "D:\\Program Files\\Netscape\\Users\\pistoia"
using certificate directory: D:\\Program Files\\Netscape\\Users\\pistoia

WARNING: Performing this operation while Communicator is running could cause
corruption of your security databases. If Communicator is currently running,
you should exit Communicator before continuing this operation. Enter
"y" to continue, or anything else to abort: y

Enter certificate information. All fields are optional. Acceptable
characters are numbers, letters, spaces, and apostrophes.
certificate common name: Marco Pistoia
organization: IBM Corporation
organization unit: ITSO
state or province: NC
country (must be exactly 2 characters): US
username: pistoia
email address: pistoia@us.ibm.com
Enter Password or Pin for "Communicator Certificate DB":
generated public/private key pair
certificate request generated
certificate has been signed
certificate "PistoiaSignCert" added to database
Exported certificate to x509.raw and x509.cacert.

F:\itso\ch12>dir

F:\itso\ch12>signtool -l -d "D:\\Program Files\\Netscape\\Users\\pistoia"
using certificate directory: D:\\Program Files\\Netscape\\Users\\pistoia

Object signing certificates

PistoiaSignCert
 Issued by: PistoiaSignCert (Marco Pistoia)
 Expires: Thu Aug 05, 1999

For a list including CA’s, use "signtool -L"

F:\itso\ch12>
420 Java 2 Network Security

all the certificates that can be used to sign objects will be marked with an
asterisk (*). In our example, only the certificate with alias PistoiaSignCert,
which we have just created, is enabled to sign objects. This is shown in the
following session screen:

Netscape Communicator immediately reflects the presence of the new object
signing certificate that has been added. This can be verified in the following
way:

1. Open Netscape Communicator, and click on the Security lock icon on the
tool bar. In the Certificates menu of the Security Info page, click on Yours.

F:\itso\ch12>signtool -L -d "D:\\Program Files\\Netscape\\Users\\pistoia"
using certificate directory: D:\\Program Files\\Netscape\\Users\\pistoia

S Certificates
- ------------
 Thawte Personal Premium CA
 Verisign/RSA Commercial CA
 TC TrustCenter, Germany, Class 2 CA
 BelSign Secure Server CA
 American Express Global CA
 Equifax Premium CA
 TC TrustCenter, Germany, Class 3 CA
 Thawte Personal Freemail CA
 Thawte Server CA
 VeriSign Class 3 Primary CA
 VeriSign Class 4 Primary CA
 GTE CyberTrust Root 5
 GTE CyberTrust Japan Root CA
 GlobalSign Class 1 CA
 GlobalSign Partners CA
 TC TrustCenter, Germany, Class 0 CA
 TC TrustCenter, Germany, Class 4 CA
 Verisign/RSA Secure Server CA
 VeriSign Class 1 Primary CA
 GTE CyberTrust Root CA
 GTE CyberTrust Root 4
 Thawte Personal Basic CA
 American Express CA
 BelSign Object Publishing CA
 VeriSign Class 2 Primary CA
 GTE CyberTrust Root 2
 TC TrustCenter, Germany, Class 1 CA
 Thawte Premium Server CA
* PistoiaSignCert
 Equifax Secure CA
 GTE CyberTrust Global Root
 GTE CyberTrust Root 3
 GTE CyberTrust Japan Secure Server CA
- ------------
Certificates that can be used to sign objects have *’s to their left.

F:\itso\ch12>
Java Gets Out of Its Box 421

The certificate you have just created will appear as one of your personal
certificates, as shown in Figure 193:

Figure 193. User Certificates on Netscape Communicator after Using Netscape Signing Tool

You can use this certificate to identify yourself to other entities and also to
decrypt information that is sent to you.

2. Highlight the certificate you have just created, as shown in Figure 193, and
then click on View. All the details about the certificate will be displayed,
and you will see that they reflect what you entered with the Netscape
Signing Tool:
422 Java 2 Network Security

Figure 194. User’s Certificate Generated by the Netscape Signing Tool

Click OK in the window above.

3. In the Certificates menu of the Security Info page, this time click on
Signers. The certificate you have just created will appear as one of the CA
certificates installed, as shown in the following figure:
Java Gets Out of Its Box 423

Figure 195. Trusted Roots on Netscape Communicator after Using Netscape Signing Tool

4. Highlight the CA certificate you have just created, as shown in Figure 195,
and then click on Edit. All the details about the certificate will be
displayed, and you will see that they reflect what you entered with the
Netscape Signing Tool:
424 Java 2 Network Security

Figure 196. Signer’s Certificate Generated with Netscape Signing Tool

The next step is to produce a signed JAR file from the class file
GetFileNS.class, produced in 12.4.1.1, “Compiling the Applet Code” on page
415. In Java 2 SDK, Standard Edition, V1.2, we use the jar tool to produce
the JAR file, and the jarsigner utility to sign it. On the Netscape
Communicator platform, you can do this with one single command line by
using Netscape Signing Tool.

Netscape Signing Tool works with directory trees. So we need to create a
specific directory where we put the class file we want to package and sign.
Our working directory in this scenario is F:\itso\ch12. We create a
subdirectory called NSsign under our working directory. In NSsign, we copy
the class file GetFileNS.class. The path to the directory NSsign must be
specified on the signtool command line.

In addition, we will have to use:

 • The -d flag to specify the location of the Netscape certificate database
files (in our case, D:\Program Files\Netscape\Users\pistoia)

 • The -k flag to specify the alias of the signer whose key we want the JAR
file to be signed by (in this example, PistoiaSignCert)
Java Gets Out of Its Box 425

 • The -Z flag to specify the name of the signed JAR file (in this example, we
choose to use the name GetFileNS_sign.jar).

The following session screen shows what the full command and its output
look like:

As you can see, the command above has created a directory META-INF
under NSsign and then, in META-INF, has generated the manifest file
manifest.mf (see 12.1.1, “Manifest File” on page 387), the signature block file
zigbert.rsa (see 12.1.3, “Signature Block File” on page 392) and the signature
file zigbert.sf (see 12.1.2, “Signature File” on page 392). Then all these files,
plus the class file GetFileNS.class, have become part of the
GetFileNS_sign.jar JAR archive, which is stored in the working directory
F:\itso\ch12.

It is interesting to look at the three files generated by the command above:

1. The contents of the manifest.mf file are shown in the following screen:

2. The following figure shows the signature block file opened with a text
editor:

F:\itso\ch12>signtool -d "D:\\Program Files\\Netscape\\Users\\pistoia" -k PistoiaSignCert
-Z GetFileNS_sign.jar NSsign
using certificate directory: D:\\Program Files\\Netscape\\Users\\pistoia
Generating NSsign/META-INF/manifest.mf file..
--> GetFileNS.class
adding NSsign/GetFileNS.class to GetFileNS_sign.jar...(deflated 46%)
Generating zigbert.sf file..
Enter Password or Pin for "Communicator Certificate DB":
adding NSsign/META-INF/manifest.mf to GetFileNS_sign.jar...(deflated 14%)
adding NSsign/META-INF/zigbert.sf to GetFileNS_sign.jar...(deflated 27%)
adding NSsign/META-INF/zigbert.rsa to GetFileNS_sign.jar...(deflated 43%)
tree "NSsign" signed successfully

F:\itso\ch12>

Manifest-Version: 1.0
Created-By: Signtool (signtool 1.1)
Comments: PLEASE DO NOT EDIT THIS FILE. YOU WILL BREAK IT.

Name: GetFileNS.class
Digest-Algorithms: MD5 SHA1
MD5-Digest: 63pNwecdstHKXrJzZDq2Qw==
SHA1-Digest: nXl/EjnqRYoqB/uuS3NpQnLrqrA=
426 Java 2 Network Security

Figure 197. zigbert.rsa Signature Block File

3. These are the contents of the signature file zigbert.sf:
Java Gets Out of Its Box 427

At this point, you might want to use the -v option of the signtool command.
This option displays the contents of an archive and verifies the cryptographic
integrity of the digital signatures it contains and the files with which they are
associated. This includes checking that the certificate for the issuer of the
object-signing certificate is listed in the certificate database, that the CA’s
digital signature on the object-signing certificate is valid and that the relevant
certificates have not expired. The following session screen shows the
verification of our signed JAR file:

The final step is to access the signed applet from the Netscape
Communicator Web browser. We copy the signed JAR file GetFileNS_sign.jar
in the home directory of a Web server machine, and in the same directory we
save the following HTML file, called GetFileNS.html, from which the applet is
invoked:

Figure 198. (Part 1 of 2). GetFileNS.html

Signature-Version: 1.0
Created-By: Signtool (signtool 1.1)
Comments: PLEASE DO NOT EDIT THIS FILE. YOU WILL BREAK IT.
Digest-Algorithms: MD5 SHA1
MD5-Digest: eJVyFB+9CfJ/Nq3pbjx13w==
SHA1-Digest: Xk/TCdWyhWx4oLwUWUqYZneXn6A=

Name: GetFileNS.class
Digest-Algorithms: MD5 SHA1
MD5-Digest: pCKJNzo9Shf2aigBJZR/yA==
SHA1-Digest: bFHtqrC297IrCiSZpsz2ttCjpE0=

F:\\itso\ch12>signtool -v GetFileNS_sign.jar -d "D:\\Program Files\\Netscape\\Users\\pistoia"
using certificate directory: D:\\Program Files\\Netscape\\Users\\pistoia
archive "GetFileNS_sign.jar" has passed crypto verification.

 status path
 ------------ -------------------
 verified GetFileNS.class

F:\itso\ch12>

<HTML>

 <HEAD>
 <TITLE>GetFileNS Applet</TITLE>
 </HEAD>
428 Java 2 Network Security

Figure 199. (Part 2 of 2). GetFileNS.html

As you can see, the HTML file sets the value for the variable FileToTry to the
file name F:\itso\textFile\secret.txt. This file is stored in the local file system of
the Web browser machine, and is the file that the applet attempts to read. Its
contents are shown in the following figure:

Figure 200. secret.txt

Finally, we can access the HTML page GetFileNS.html from the Netscape
Communicator Web browser machine where we have previously generated
and installed the certificate. When we point the Web browser to the URL of
the GetFileNS.html file, the browser recognizes the presence of the <APPLET>
tag and immediately activates Java. At that point, the following window is
brought up:

 <BODY>

 <H3>GetFileNS Applet</H3>

 <APPLET Archive="GetFileNS_sign.jar" Code="GetFileNS.class" Width=500 Height=500>
 <PARAM Name="FileToTry" Value="F:\itso\textFile\secret.txt">
 </APPLET>

 </BODY>
</HTML>

My Credit Card number is
1234 5678 9012
This information is secret.
Only trusted entities should read it.
Java Gets Out of Its Box 429

Figure 201. Java Security Warning – Low Risk

As you can see, Netscape Communicator informs us that the applet is
attempting to execute a sensitive action, which is marked as a low-risk
access. If we want to know something more about the additional privilege
requested by the applet, we can click on Details, and the following window
will be displayed:
430 Java 2 Network Security

Figure 202. Low Risk Access – Target Details

Now we know that the applet is trying to read private information related to
the computer environment, such as the user name or the current directory. In
reality, if we go back and read the source code for the GetFileNS applet,
shown in Figure 186 on page 410 through Figure 189 on page 414, we see
that the information the applet attempts to read first is the operating system
name of the Web browser machine.

We click on Close on the above window and then, before granting the
additional privilege to the applet, we click on Certificate in the Java Security
window shown in Figure 201 on page 430, to find out something more about
the entity that signed the applet. The following Certificate window is
displayed:
Java Gets Out of Its Box 431

Figure 203. Certificate Information Window

We decide to trust this entity, so we click on Close in the window above, and
then we press Grant in the Java Security window, shown in Figure 201 on
page 430.

However, this is not enough to allow the applet to run on Netscape
Communicator. In fact, according to the source code of the applet, there is
another sensitive action that the applet attempts to do now: to read a specific
file from the local file system of the Web browser machine. For this reason, a
new Java Security warning window is brought up:
432 Java 2 Network Security

Figure 204. Java Security Warning – High Risk

As you can see, Netscape Communicator informs us about the specific action
the applet is attempting to do and we can also know which file the applet will
read if we grant it the additional privilege it requests. This time the sensitive
action is classified as a high-risk access. In fact Netscape Communicator
categorizes privileges by the damage they could do to your system. We can
click on Details to know something more about a high-risk access:
Java Gets Out of Its Box 433

Figure 205. High-Rsk Access – Target Details

The applet has already asked permission to read one of the system
properties: the operating system name of the Web browser machine.
That information can be considered private, but sharing it with an
entity on the network is not really a security exposure. This is the
reason why that action was classified as a low-risk access. Things are
different now; reading a file from the local file system can be
dangerous. The applet can communicate that information back to the
Web server machine, and sensitive data could get into the wrong
hands. However, we trust the entity that signed the applet, and after
closing the above window, we click on Grant in the Java Security
warning window shown in Figure 204 on page 433. Notice that
clicking on Certificate would show the same certificate information
seen in Figure 203 on page 432.

At this point, the applet can access the system property information
and can read the file secret.txt from our local file system. These are
the results displayed in the HTML page:
434 Java 2 Network Security

Figure 206. GetFileNS Applet Running on Netscape Communicator

The additional privileges we have granted to the code signer are valid only for
the current session of the Web browser. If we had wanted to grant the same
privileges on a permanent basis, we should have selected the Remember
this decision check box in Figure 201 on page 430 and Figure 204 on page
433. If we had wanted to deny the same permissions, we should have
pressed the Deny button, and in that case, clicking Remember this decision
would have denied those permissions persistently.

These configuration settings can be edited very easily, and you can modify a
decision you made. To do this, you should click on the Security lock icon in
the Netscape Communicator tool bar, and then, in the menu on the left, you
should select Java/JavaScript. A list of all the signers to which additional
privileges have been granted will appear, as shown in the following figure:
Java Gets Out of Its Box 435

Figure 207. Java/JavaScript Security Configuration Window

Here, you can select the particular signer to which you have granted
additional privileges, and then you can view the certificate, remove it from the
list or edit the privileges you have granted to it. Clicking on Edit Privileges,
you can review the privileges you have granted and modify them, if you wish
to do so:
436 Java 2 Network Security

Figure 208. Editing Privileges

As you can see, the particular privileges we granted apply only to the current
session of Netscape Communicator. You can use this window to remove any
of the privileges you granted before.

12.5 Signed Code Scenario in Microsoft Internet Explorer

Externally, the most distinctive thing about the Microsoft approach is that it
uses cabinets (particular files with extension .cab, also known as CAB files)
to contain the applets and other data, instead of JAR files. This is not to say
that Internet Explorer will not handle JAR archives, but it does not deal with
signed JAR files in any special way.

CABs are also used for packaging the installation images of other Microsoft
software. And, just as Netscape is using signed JAR files to deliver many
types of Web content, CAB files are used by Microsoft to install ActiveX
controls and other platform-specific code.

The Internet Explorer security model is built around security zones. These are
groupings of applet sources, based on URLs. By default, four zones are
defined:
Java Gets Out of Its Box 437

 • Intranet

This security zone contains Web sites that are within the local, secure
network or are only accessed via SSL connections. Sites in this category
may be defined by URL or by other attribute, for example, sites that are not
reached through a proxy server.

 • Trusted sites

A list of sites that are trustworthy, but which don’t quite give the same level
of reassurance that the intranet sites do.

 • Internet

The great mass of Web sites.

 • Restricted sites

Sites that you have reason to believe are actually dangerous.

Each of these zones has a security level associated with it of low, medium,
high or custom. These apply to all sorts of Web elements, such as ActiveX
controls, cookies, and user IDs as well as Java. The first three are related to a
very specific set of permissions. The high security level is equivalent to the
sandbox restrictions. The medium level adds the ability for an applet to use a
scratchpad directory on the browser disk for storing and retrieving persistent
data. The low level allows an applet unrestricted access. The custom level
allows you (or an administrator) to set specific controls for different types of
Web content.

Of course, a protection scheme based solely on URLs and IP addresses
would be very risky. To be effective, the security model requires Java code to
be delivered in signed CABs. Functionally, a signed CAB is like a signed JAR
with one, important, exception: in addition to identifying the originator of the
code, the signature on a CAB also defines the permissions that the code is
requesting. These permissions are defined when the CAB file itself is being
signed. You have to mention whether you are requesting high, medium, or low
permissions. Note that an applet signed with low permission value is
requesting for all permissions. So we should be careful when we grant such
an applet the privileges it requires.

12.5.1 First Example with Signed CAB Files
The best way to understand how to use CAB files is to illustrate it with an
example. To develop this example, we make use of the Microsoft Software
Development Kit (SDK) for Java V3.28. By default, this product gets installed
in the directory C:\Program Files\Microsoft SDK for Java 3.2. To simplify the

8 The Microsoft SDK for Java can be downloaded from http://www.microsoft.com/java/download.htm.
438 Java 2 Network Security

use of this product, it is important to set the Path system environment variable
to include the directory Bin under the installation directory.

Here we use the App applet that we developed in 11.5, “Java Plug-In Security
Scenario” on page 374. The App applet uses basic Java I/O stream classes
and will therefore normally fail with a security exception. We show you here
how that applet can receive additional privileges and run on Microsoft Internet
Explorer.

The applet class file must be put into a signed CAB file. This operation
involves three steps.

12.5.1.1 Step 1 – Creating a Signing Certificate
The Microsoft SDK for Java provides a command line tool, makecert, for
generating a software developer certificate. An example of how to use it is
shown in the following session screen:

The command above generates a key pair called deepakkey and places it in
the Windows registry under
HKEY_Current_User/Software/Microsoft/Cryptography/UserKeys. It also
creates a certificate request file, using the public key and the distinguished
name information from the command.

Normally, the next step would be to send this to a CA for authentication and
signing.9 However, in our case we are only signing the applet for test
purposes, so we can use another tool from the SDK, cert2spc, to convert the
certificate request file into a test certificate:

12.5.1.2 Step 2 – Creating and Signing the CAB File
CAB files are potentially much more complex than JAR archives, but for our
purposes we can create a simple CAB using the cabarc tool:

9 Internet Explorer defines just one root CA, the Microsoft Authenticode Root CA, for software signing, but there is a
technique to update the list, using ActiveX controls.

D:\deepak\IE>makecert -sk deepakkey -n "CN=Deepak Gupta" Deepak.cert
Succeeded

D:\deepak\IE>

D:\deepak\IE>cert2spc Deepak.cert Deepak.crt
Succeeded

D:\deepak\IE>
Java Gets Out of Its Box 439

This creates a CAB file called App.cab with just one file, our applet, in it. To
sign this as a Java archive we use the signcode tool, again from Microsoft
SDK for Java. At this point we must decide what level of security the applet
will ask for – low, medium or high. Since this applet is going to read a file from
the local file system, which can be a sensitive operation, we sign it specifying
a low level of security for now:

This means that this applet will request a lot of additional privileges, some of
which may not really be needed. We will see in 12.5.1.4, “Permission INI
Files” on page 446 how to limit the requests of additional privileges based on
what is really necessary.

When the applet is downloaded to an Internet Explorer Web browser
machine, it will pop up a message box, informing the user that the applet has
requested all permissions.

12.5.1.3 Step 3 – Using the CAB File in a Web Page
The format for coding an <APPLET> tag using a CAB file is different from the
JAR version. This is the tag for our example:

For the rest, the Web page will be very similar to the one shown in Figure 173
on page 374.

D:\deepak\IE>cabarc N App.cab App.class

Microsoft (R) Cabinet Tool - Version 1.00.602.2 (08/14/97)
Copyright (c) Microsoft Corp 1994-1997. All rights reserved.

Creating new cabinet ’App.cab’ with compression ’MSZIP’:
 -- adding App.class

Completed successfully

D:\deepak\IE>

D:\deepak\IE>signcode -j JavaSign.dll -jp low -spc Deepak.crt -k deepakkey App.cab
Warning: This file is signed, but not timestamped.
Succeeded

D:\deepak\IE>

<APPLET CODE=App.class WIDTH=100 HEIGHT=20>
 <PARAM NAME="cabbase" VALUE="App.cab">
</APPLET>
440 Java 2 Network Security

When we first select the URL for the HTML page from Internet Explorer, the
following pop-up dialog appears:

Figure 209. Security Warning – Full Permissions

Why does this appear? The reason is that Internet Explorer is warning the
user that the signer Deepak Gupta may not be trustworthy, because it does
not own a valid software developer’s certificate. Note here that the browser is
informing the user that the applet is requesting full permissions. Throwing
caution to the winds, we click on Yes and the applet runs as intended:
Java Gets Out of Its Box 441

Figure 210. Applet Running on Internet Explorer

If we had signed with medium permissions, the Security Warning window
would have been like the following one:
442 Java 2 Network Security

Figure 211. Security Warning – Medium Permissions

And for a high-permission signed CAB file, the Security Warning window
would be:
Java Gets Out of Its Box 443

Figure 212. Security Warning – High Permissions

The difference is only in what permissions the applet is requesting. You can
click on these permissions and see the details, and then decide on whether
you wish to grant them or not.
444 Java 2 Network Security

Figure 213. Permission Details

You will see a different set of permissions for applets signed with a high or
medium permission request. Depending upon what your applet tries to do on
the client machine, you should sign accordingly. You can also view the
certificate of the signer by clicking on the distinguished name of the signer.
Java Gets Out of Its Box 445

Figure 214. Certificate Information

Notice that, in this example, although the applet needed only a
FilePermission, we signed it with a low security tag, granting it full
permissions. This was done for ease of explanation only.

12.5.1.4 Permission INI Files
Microsoft SDK for Java also provides the ability to sign only with the particular
permissions requested, using a permission INI file, which is a textual security
configuration file. In this case, the signing command is the following:
446 Java 2 Network Security

Notice that our input INI file is named App.ini. Here is what it looks like:

Figure 215. App.ini

As you can see, the INI file technique allows us to select only the specific
permission the applet really needs: in this case, read permission to the file
D:\deepak\itso.txt. The security warning appears in the following figure:

D:\deepak\IE>signcode -j JavaSign.dll -jp App.ini -spc Deepak.crt -k deepakkey App.cab
Warning: This file is signed, but not timestamped.
Succeeded

D:\deepak\IE>

[com.ms.security.permissions.FileIOPermission]
IncludeRead=;D:\\deepak\\itso.txt
ExcludeRead=
IncludeWrite=
ExcludeWrite=
IncludeDelete=
ExcludeDelete=
ReadFileURLCodebase=false
Java Gets Out of Its Box 447

Figure 216. Warning from IE for Only Specified Permission

Clicking the highlighted permission, the user can view details about the applet
request: the applet is attempting to read the file D:\deepak\itso.txt.
448 Java 2 Network Security

Figure 217. Permissions Requested by the Applet

If we grant this permission and then run the applet, we get the same window
as the one shown in Figure 210 on page 442.

The syntax of the INI file can be very complicated, and does not allow
mistakes. You can also use the GUI-based Permission INI File Editor to edit
an INI file. It is simpler than manually editing an INI file and you do not need
to worry about the syntax. Figure 218 on page 450 shows the Permission INI
File Editor window:
Java Gets Out of Its Box 449

Figure 218. Permission INI File Editor Window

This tool, which is launched from the command line with the PIniEdit
command, allows you to choose the permission type and the access type you
want the applet to request, and the tool itself will create the file for you.

12.5.2 A More Complex Signed CAB File Example
In addition to creating a method for delivering signed applets and requesting
permissions, Microsoft has also produced classes that allow an applet to
store and recover data from a limited disk cache on the browser. The
rationale behind this is that for many developers the really irksome restriction
imposed by the sandbox is the inability to store local configuration and state
information. The data caching function is in a class package called
com.ms.io.clientstorage.

12.5.2.1 The Applet Source Code
The code in Figure 219 on page 451 and Figure 220 on page 452 is an
example of an applet, GetFileMS, that uses the package to write information
into a file and then read it:
450 Java 2 Network Security

Figure 219. (Part 1 of 2). GetFileMS.java

import java.awt.*;
import java.io.*;
import java.util.* ;
import com.ms.io.clientstorage.*;

public class GetFileMS extends java.applet.Applet implements Runnable
{
 Thread t;
 TextArea ta = new TextArea("", 10, 50);
 public boolean granted = false;

 public void init()
 {
 add(ta);

 // Start the thread running
 if (t == null)
 {
 t = new Thread(this);
 t.start();
 }
 }

 public void yikes(Exception e, String msg)
 {
 ta.appendText(msg + ": " + e.toString());
 System.exit(1);
 }

 public void run() {
 String line;
 ClientStore harrods;

 try
 {
 harrods = ClientStorageManager.getStore();
 PrintWriter pw = new PrintWriter(harrods.openWritable("preserve.log",
 ClientStore.OPEN_FL_APPEND));
 pw.println("JamJar was here! " + new Date().toString());
 pw.close() ;
 }
 catch (IOException e)
 {
Java Gets Out of Its Box 451

Figure 220. (Part 2 of 2). GetFileMS.java

Let’s now look more closely at the operations the applet performs:

 • Import the com.ms.io.clientstorage package

This is done with the following line of code:

import com.ms.io.clientstorage;

 • Get access to the client store

This is obtained by calling the getStore() method for the
ClientStorageManager class:

harrods = ClientStorageManager.getStore();

 • Open a file in the client store and update it

This operation is obtained with the following instruction:

PrintWriter pw = new PrintWriter(harrods.openWritable("preserve.log",
 ClientStore.OPEN_FL_APPEND));

Notice that the store is persistent, so we can read it later, but the maximum
size of the store allocated to a given code signer is fixed, so the applet cannot
fill the hard disk.

 yikes(e, "Could not create or update our file");
 }

 try
 {
 harrods = ClientStorageManager.getStore();
 BufferedReader br = new BufferedReader(new
 InputStreamReader(harrods.openReadable("preserve.log")));
 ta.appendText("This is the contents of clientstore file preserve.log:\n");
 while ((line = br.readLine()) != null)
 {
 ta.appendText(line + "\n");
 }
 br.close() ;
 }
 catch (IOException e)
 {
 yikes(e, "Could not read our file");
 }
 }
}

452 Java 2 Network Security

12.5.2.2 Compiling the Applet
Compiling the GetFileMS applet is not different from compiling every other
Java program. You simply have to enter:

javac GetFileMS.java

However, this applet imports the package com.ms.io.clientstorage, which is
not part of the standard Java 2 SDK libraries. For this reason, the command
above generates an error unless you, before compiling, copy a JAR file
containing that package into the extensions directory under the JRE
development directory (see 8.1, “A Note on java.home and the JRE
Installation Directory” on page 225).

After the default installation of Microsoft Internet Explorer V5, we found a ZIP
file, Ff7h75v3.zip, located in the directory C:\WINNT\Java\Packages. This file
contained the package needed by our applet. In previous installations of
Internet Explorer, another ZIP file contained that package. It was called
classes.zip, and came into the directory C:\WINNT\Java\Classes. Whatever
version of Internet Explorer you have installed on your system, you should
take the corresponding ZIP file and copy it in the extensions directory under
the JRE development directory. Notice that the installed extensions must be
JAR files. However, it is not necessary to extract the ZIP file and then use the
jar utility to produce a JAR file. In fact, since the JAR format is based on the
ZIP format, a JAR file is obtained by simply changing the extension of the
Microsoft Java library file from .zip to .jar, and the system will recognize the
class files inside it without any problems.

12.5.2.3 Placing the Applet Class File in a Signed CAB file
The procedure to place a Java class file in a signed CAB file has already
been explained in 12.5.1, “First Example with Signed CAB Files” on page
438. We list here the operations involved and the related session screens:

1. We create a key pair, marcokey, and a certificate request file, Marco.cert,
with X.500 distinguished name Marco Pistoia:

2. We convert the certificate request file into a test certificate, stored in the
file Marco.crt:

D:\itso\ch12>makecert -sk marcokey -n "CN=Marco Pistoia" Marco.cert
Succeeded

D:\itso\ch12>
Java Gets Out of Its Box 453

3. We create a CAB file, GetFileMS.cab, containing the class file
GetFileMS.class:

4. We sign the CAB file with the private key of the signer Marco Pistoia, and
we assign level of security medium:

Next, we save the signed CAB file in an accessible directory of a Web server
machine.

12.5.2.4 Accessing the Applet with Microsoft Internet Explorer
The signed CAB file GetFileMS.cab can be accessed from the Internet
provided it is invoked by an HTML page. GetFileMS.html is a simple HTML file
that invokes the applet:

Figure 221. (Part 1 of 2). GetFileMS.html

D:\itso\ch12>cert2spc Marco.cert Marco.crt
Succeeded

D:\itso\ch12>

D:\itso\ch12>cabarc N GetFileMS.cab GetFileMS.class

Microsoft (R) Cabinet Tool - Version 1.00.602.2 (08/14/97)
Copyright (c) Microsoft Corp 1994-1997. All rights reserved.

Creating new cabinet ’GetFileMS.cab’ with compression ’MSZIP’:
 -- adding GetFileMS.class

Completed successfully

D:\itso\ch12>

D:\itso\ch12>signcode -j JavaSign.dll -jp medium -spc Marco.crt -k marcokey GetFileMS.cab
Warning: This file is signed, but not timestamped.
Succeeded

D:\itso\ch12>

<HTML>

 <HEAD>
 <TITLE>GetFileMS Applet</TITLE>
 </HEAD>
454 Java 2 Network Security

Figure 222. (Part 2 of 2). GetFileMS.html

If you compare Figure 222 with Figure 199 on page 429, you will notice that
the <APPLET> tag has a different syntax when it is targeted to Microsoft Internet
Explorer.

When the user invokes the HTML page and the applet gets loaded, it
requests many permissions that, in fact, it does not need:

 <BODY>

 <H3>GetFileMS Applet</H3>

 <APPLET Code="GetFileMS.class" Width=500 Height=500>
 <PARAM Name="cabbase" Value="GetFileMS.cab">
 </APPLET>

 </BODY>
</HTML>
Java Gets Out of Its Box 455

Figure 223. Medium Level of Security for the GetFileMS Applet

This is because we specified a security level of medium in the signcode
command (see Step 4 on page 454). It would be friendlier to ask for only the
permissions needed.

The way to do this is to create a permission INI file (see 12.5.1.4, “Permission
INI Files” on page 446). This file must specify the requested permissions.
Once we build an appropriate INI file, we pass it to the signcode command.
The INI file for this applet, JamJar.ini, is shown in the following figure:

Figure 224. (Part 1 of 2). JamJar.ini

[com.ms.security.permissions.UIPermission]
Version=2
ClipboardAccess=false
456 Java 2 Network Security

Figure 225. (Part 2 of 2). JamJar.ini

As you can see, the JamJar.ini permission INI file does not look very simple.
However, it is not necessary to edit it manually. As we said in 12.5.1.4,
“Permission INI Files” on page 446, it is possible to use the Permission INI
File Editor tool that comes with Microsoft SDK for Java. The permission INI
file above is generated by saving to a file JamJar.ini the security configuration
represented in the following figure:

TopLevelWindows=true
NoWarningBanners=false
FileDialogs=false
EventQueueAccess=false

[com.ms.security.permissions.ClientStoragePermission]
Version=2
Limit=1048576
RoamingFiles=false
GlobalExempt=false

[com.ms.security.permissions.ThreadPermission]
Version=2
AllThreadGroups=false
AllThreads=false
Java Gets Out of Its Box 457

Figure 226. Permission INI File Editor for JamJar.ini

As you can see, we just select a limit of 1024 kilobytes for the client store, so
that, as we said, an applet cannot fill the hard disk, and also we give the
applet the permission to create top level windows. These two permissions are
the lower set of privileges that the GetFileMS applet requires, as you can
easily verify by excluding either of them and noticing that the applet is no
longer allowed to run correctly.

Once the JamJar.ini file has been generated, it must be passed on the
command line of the signcode command when the GetFileMS applet class is
signed:

This way, we have demonstrated how the applet developer can sign an applet
CAB file targeted to an Internet Explorer platform using a customized security

D:\itso\ch12>signcode -j JavaSign.dll -jp JamJar.ini -spc Marco.crt -k marcokey GetFileMS.cab
Warning: This file is signed, but not timestamped.
Succeeded

D:\itso\ch12>
458 Java 2 Network Security

classification, without necessarily using the strict categorization of high,
medium and low security.

Now, when the applet gets loaded in the HTML page, a Security Warning
window is still displayed, asking the user to grant additional privileges to the
applet:

Figure 227. Security Warning – Privileges Requested by the GetFileMS Applet

However, this time, the privileges being requested are exactly the privileges
necessary. This is clear if we click on the privilege list, and we explode the
permission tree in the window that is brought up:
Java Gets Out of Its Box 459

Figure 228. Permissions Being Requested

The user on the browser machine can now make a decision. The signer of the
applet is not a trusted entity, because it is not recognized by any certification
authority. However, the privileges the applet is requesting are limited, and the
risk of compromising the system is limited. It is true that the applet will read
and write on the hard disk of the browser machine, but it will be allowed to
use only a specific area of the disk.

Figure 229 on page 461 shows what the user will see if he or she decides to
grant the applet the privileges it requests:
460 Java 2 Network Security

Figure 229. GetFileMS Applet Running on Internet Explorer

As you can see, the client store has permanently registered all the times the
applet has been granted the permissions to run on the system. This
information is displayed in the text area of the HTML page.

12.6 The JAR Bug – Fixed In Java 2 SDK, Standard Edition, V1.2.1

In 12.1, “JAR Files and Applet Signing” on page 385, we have illustrated the
JAR format and the modifications a JAR file passes through when it is signed.
Applying a digital signature to a JAR file automatically generates digest
values for each of the files that are part of the archive. These digest values
are stored in the manifest file. Therefore the manifest file of a signed JAR file
contains much more information than the manifest file of an unsigned JAR
file. Moreover, when a JAR file is signed, a signature file is also generated,
containing a digest for each entry of the manifest file, plus a digest of the
manifest file itself. A signed JAR file contains also a signature block file,
which stores the digital signature of the JAR file, along with the digital
certificate of the signing entity.
Java Gets Out of Its Box 461

JAR signing should be a method to guarantee the sender’s identity to the
receiver, and also the integrity of the JAR file itself. In other words we expect
to be able to verify whether or not a signed JAR file has been altered since
signing.

Unfortunately, an implementation bug has recently been discovered that
makes it possible to modify the contents of a JAR file without generating any
exception. This means that anyone could alter the contents of a JAR file, but
the signature on the JAR file would still be from the original signer, and the
JVM would not able to detect that the JAR file has been tampered with.
Ideally, it is desirable that the hash values of the files contained in the JAR file
are dynamically checked whenever a file from the JAR is to be used.

Actually, it is very simple to modify one of the files that are part of the JAR
payload without affecting either the manifest file or the signature and
signature block files. In fact, a JAR file has its own content format based on
the industry-standard ZIP file format, and you could use the jar tool itself (or
a graphical tool like WinZip) to extract a JAR file, modify or remove one of the
files of the JAR payload, and package the file again, producing a new JAR file
with the same name as the previous one.

The implementation bug has demonstrated that if you open a signed JAR file
with WinZip and delete some files, you will still be able to use the corrupted
JAR file in a Web browser, at least until a class that was deleted is needed.
Another malicious attack consists of replacing a Java class file in a signed
JAR file – again using WinZip. The applet still works, but its functionality of
course has changed.

In Java 2 SDK, Standard Edition, V1.2, the concept of a sealed package
inside a JAR file has been introduced to fix this problem (see 12.1.1,
“Manifest File” on page 387), but this also has not been enough. If a package
is sealed, all classes defined in that package must originate from the same
JAR file; otherwise, a SecurityException is thrown. A sealed JAR specifies
that all packages defined by that JAR file are sealed, unless overridden
specifically for a package.

For example, suppose that a JAR file contains a couple of packages:
xyz/mypackage/package_1/ and xyz/mypackage/package_2/. If we want to
seal xyz/mypackage/package_1/ but not xyz/mypackage/package_2/, our
archive-level sealed header will look like the following:
462 Java 2 Network Security

On the other hand, if we want to seal the entire JAR file, we specify:

This seals all the packages inside the JAR file, which is equivalent to saying
that the JAR file itself has been sealed. Sealing of a package ensures that all
the classes defined in the package must originate from the same JAR file.

However, this concept does not solve the problem for which it has been
introduced. In fact, since the JAR file itself is not in the signature context, a
change in the JAR file does not invalidate the signature. An attacker therefore
can put his malicious class in a signed JAR file which can call any
package-scope classes and methods of the trusted classes. There has to be
some mechanism to check if an alien class has been added to a package
contained in a signed and sealed JAR file.

Let’s consider the following scenario, obtained by modifying the example
described in 12.4, “Signed Code Scenario in Netscape Communicator” on
page 409. First, we create a very simple class called NormalClass:

Figure 230. NormalClass.java – Original Version

This class has a static method, giveString(), which simply returns the string:

Manifest-Version: 1.0

Name: xyz/mypackage/package_1/
Sealed: true

Name: xyz/mypackage/package_2/
Sealed: false.

Manifest-Version: 1.0
Sealed = true

import java.awt.Graphics;

public class NormalClass
{
 public static String giveString()
 {
 return "Thank you for your visit";
 }
}

Java Gets Out of Its Box 463

Thank you for your visit

Then, we rename the Java applet file GetFileNS.java (shown in Figure 186 on
page 410 through Figure 189 on page 414) as GetFileNS2.java. In the new
file, we change the run() method of the GetFileNS class as shown in the
following figure:

Figure 231. run() method in GetFileNS2.java

As you can see, the only difference here is that we have added the line:

ta.appendText(NormalClass.giveString());

This line calls the giveString() method for the class NormalClass and displays
in the applet text box the string returned by it.

Next we compile the two Java files NormalClass.java and GetFileNS2.java:

javac NormalClass.java
javac GetFileNS2.java

We obtain the two class files NormalClass.class and GetFileNS2.class. From
these two files, we generate a signed JAR file, by using Netscape Signing
Tool, as explained in 12.4.3, “Signing JAR Files with Netscape Signing Tool”
on page 418. We call this JAR file GetFileNS2_sign.jar, and we put it in the

public void run()
 {
 // Did we get the permission we wanted?
 if (granted == true)
 {
 try
 {
 Target freadTgt = Target.findTarget("FileRead");
 privMgr.enablePrivilege(freadTgt , lilOlMe, (Object) filename);
 ta.appendText("\nThis is the content of file " + filename + ":\n" +
 readTheFile(filename).toString());
 ta.appendText(NormalClass.giveString());
 }
 catch(ForbiddenTargetException e)
 {
 ta.appendText("\nShould never reach here...");
 }
 }
 }
464 Java 2 Network Security

home directory of a Web server. Then we invoke it using the following HTML
file:

Figure 232. GetFileNS2.html

The result is as expected; the applet displays an additional string in its text
area, as shown in the following figure:

<HTML>

 <HEAD>
 <TITLE>GetFileNS2 Applet</TITLE>
 </HEAD>

 <BODY>

 <H3>GetFileNS2 Applet</H3>

 <APPLET Archive="GetFileNS2_sign.jar" Code="GetFileNS2.class" Width=500
Height=500>
 <PARAM Name="FileToTry" Value="F:\itso\textFile\secret.txt">
 </APPLET>

 </BODY>
</HTML>
Java Gets Out of Its Box 465

Figure 233. GetFileNS2 Applet on Netscape Communicator

Of course, before displaying this window, the Web browser prompted us to
accept or deny granting this applet the additional privileges it requests, as
shown in Figure 201 on page 430 and Figure 204 on page 433, and we
granted the requested privileges. The classes in the package are allowed to
access outside the Java sandbox. For more information on this process, refer
to 12.4, “Signed Code Scenario in Netscape Communicator” on page 409.

Now, if someone sets a man-in-the-middle attack, so that one of the original
classes in the official package is replaced by a modified class, then Netscape
Communicator will load the modified class, regardless of the signature
applied.

To show you how simply this attack can be performed, we copy the JAR file
GetFileNS2_sign.jar in a directory D:\BUG, and here we extract it using
WinZip. Then we modify the original version of the Java file NormalClass. A
man-in-the-middle attack could be obtained with a decompiler, which would
give the attacker the source code of the NormalClass, or with a hexadecimal
editor, which would allow an attacker to edit the class file directly. This is how
we modify the source code of the class NormalClass:
466 Java 2 Network Security

Figure 234. NormalClass.java – Corrupted Version

As you can see, the message printed on the text area has been modified (it
could have been something even worse than that). We compile this class
again, and we re-create the JAR file keeping the same manifest and signature
information as before. This can be done by issuing the following command
from the directory D:\BUG, where the JAR file had been extracted:

jar cvfM GetFileNS2_sign.jar *

Notice that the M option prevents the jar tool from creating a new manifest file,
while the asterisk (*) forces the jar command to compress all the files in the
local directory and in all the subdirectories recursively, and in this case, the
only subdirectory generated by extracting the JAR file is META-INF.

After this, the JAR file is saved again in the Web server machine, and when a
client machine accesses the HTML page GetFileNS2.html, this is what the
Web browser shows:

import java.awt.Graphics;

public class NormalClass
{
 public static String giveString()
 {
 return "Ah ah! You didn’t expect me, did you?";
 }
}

Java Gets Out of Its Box 467

Figure 235. Corrupted Version of the GetFileNS Applet

Of course, this applet is not really a security threat; what this applet does is
not dangerous for the integrity of the system. However, we would have
expected that, if any class in a signed JAR file is changed, the entire JAR file
would be treated as corrupted. Instead, if someone changes the content of a
JAR file by replacing a class file, as we did, the user downloading the JAR file
does not even get a warning message from the browser.

The situation is not so terrible, though. In fact it turns out that each class file
that has been changed or replaced will be treated as unsigned, while
unchanged classes continue to be treated as signed. The reason why the
Web browser has permitted NormalClass to execute is because that class
does not try to access outside the sandbox. If a modified class tries to access
outside the sandbox, then the browser security manager would prevent that
class from executing, because each class, once altered, is treated as
unsigned.

Let’s demonstrate this last statement. The class GetFileNS2 attempts to
access outside the sandbox. So, if we corrupt the signed JAR file modifying
GetFileNS2 instead of NormalClass, we should see an exception; the
468 Java 2 Network Security

browser security manager should prevent the class from gaining the
additional privileges it requests. Indeed, this is exactly what happens.

We proceed as in the previous example, but this time, after extracting the
signed JAR file, we modify the run() method of GetFileNS2.java, adding the
following line of code to it:

ta.appendText("\nThis line is new");

Then we recompile the Java file and run the jar tool with the M option, as
explained previously. The corrupted JAR file is finally copied to the Web
server home directory, and when the Netscape Communicator client machine,
with the proper certificate installed, accesses the HTML file that invokes the
applet, this is the result that the user sees:

Figure 236. Forbidden Access for the Corrupted Applet Class

Even though this could seem acceptable from a protection point of view,
because the security manager is not bypassed, it is unacceptable from an
integrity point of view, because JAR signing is no longer a guarantee that you
are using what the developer originally wrote.
Java Gets Out of Its Box 469

12.6.1 The Solution in Java 2 SDK, Standard Edition, V1.2.1
The root of the vulnerability for the package join attack (the process of adding
a malicious class to a package, thereby allowing it access to package-scope
classes and methods of trusted classes) was identified in the absence of a
same package – same principal check during class loading. The same
package – same principal rule ensures that the class loader does not load
trusted and untrusted classes into a single package, by verifying that all
classes in a package have the same principal. A principal for a class refers to
the identity of the signer(s) in case of signed code (see 10.1.1, “Principals” on
page 297). An attempt to add a class to a package by an attacker would result
in the principal for that class being different from the principal of the rest of
the classes in the package and would therefore throw an exception with the
new class loader available in Java 2 SDK, Standard Edition, V1.2.1.

The ClassLoader class now maintains a hashtable package2certs that maps
packages to certificates. While loading any package, the class loader adds an
entry in the hashtable that contains the name of the package and the set of
certificates of signers that signed the first class contained in the package. For
loading subsequent classes in the package, the class loader checks whether
the principal for the class is the same as that found in the hashtable entry for
that package. If not, an exception is thrown.

The bug shown in this section can be recreated with all the JVMs that still use
a ClassLoader version prior to Java 2. SDK, Standard Edition, V1.2.1. We
recreated it on Netscape Communicator, whose JVM level has not been
ported to 1.2 yet. This bug cannot be recreated on the Java 2 SDK, Standard
Edition, V1.2.1 Applet Viewer; a security exception is thrown to standard
output.

12.7 Future Developments

In this chapter we have seen examples of three different approaches to the
use of digital signatures for authenticating applet code and relaxing the
constraints of the sandbox. The Java 2 SDK uses basic security tools (we
have also shown the old approach used in JDK 1.1, since it still applies on all
the systems that use the JDK 1.1 security architecture). The Netscape and
Microsoft approaches are, as you would expect, strongly browser-centric.
They both seek to reduce the impact of cryptography on the end user, not
only for Java but also for other active Web content.
470 Java 2 Network Security

The following table summarizes the differences between the three
approaches.

Table 12. Comparison of JavaSoft, Netscape and Microsoft Signed Applet Support

Clearly, there are some basic incompatibilities between the different
mechanisms. This is not to say that the development of competing extensions
to the security framework is a bad thing; just that there should be a base level
of function at which they should all interoperate.

It may be that by the time you read this book, the differences described above
will have been resolved by the vendors and a common base will have
emerged. IBM is already looking at this problem and is working on a solution.
One thing that is clear from the discussion is that any solution cannot simply
concentrate on the mechanics of code-signing and requests for privileges.
The problems of the end user are equally important. Solutions must answer
such questions as how to tell the user, in a clear way, the permissions an
applet requires, and how to install and maintain certificates for signers and
CAs.

Function Java 2 SDK Netscape Communicator Microsoft Internet Explorer

Delivery
mechanism

Java 2-signed JAR files Netscape-signed JAR files Microsoft-signed CAB files

Signing Command-line tools shipped
with the Java 2 SDK

Command-line downloadable
toolkit

Command-line downloadable
toolkit

Signature
Verification
Algorithm

DSA/SHA1 RSA/SHA1 RSA/MD5

Certificate
handling

Uses keystores to handle keys
and certificates

Uses the standard key and
certificate management
capabilities of Netscape
Communicator

Uses command-line tools for
signer key creation and
certificate requests – Standard
key and certificate
management capabilities of
Internet Explorer for client side

Request for
privileges

By exception – Applet attempts
privileged action and an
exception is thrown if it is not
permitted

Programmer defines the
privileges required by calling
PrivilegeManager methods

Code signer defines the
privileges required as part of
CAB signature

Configuration
of
permissions
granted

Policy configuration file maps
code origin (URL plus signer) to
privileges

User prompted the first time
privileges are requested –
Granted permissions can be
perpetual or per session

Basic security zone preset by
user – More complex
permission scheme can be
defined by administrator
Java Gets Out of Its Box 471

472 Java 2 Network Security

Part 3. Beyond the Island of Java – Surfing into the Unknown
© Copyright IBM Corp. 1997 1999 473

474 Java 2 Network Security

Chapter 13. Cryptography in Java 2

Note: Because of government restrictions on encryption, the Java programs
in this chapter that use encryption are not included in the software copy of
this book. These encryption programs may be found in the hardcopy versions
of this book published by IBM and Prentice Hall PTR.

From Java Development Kit (JDK) 1.1 onwards, Java provides general
purpose APIs for cryptographic functions, collectively known as the Java
Cryptography Architecture (JCA) and Java Cryptography Extension (JCE).
Signed applets, discussed in Chapter 12, “Java Gets Out of Its Box” on page
385, are one specialized use of the JCA capabilities. JDK 1.1 introduced the
provider architecture that allows for multiple and interoperable cryptography
implementations. The Java 2 platform significantly extends the JCA. The
certificate management infrastructure has been augmented to support X.509
V3 certificates.

In this chapter we describe the sort of problems for which cryptography can
provide solutions and then look in more detail at JCA and JCE. Notice that
the general concepts of Java 2 and cryptography have already been
introduced in 2.2, “Java 2 and Cryptography” on page 53. Moreover, Chapter
10, “Security APIs in Java 2” on page 297, contains several examples that
demonstrate how the Java security APIs can be used to implement
cryptographic services, such as keystore management (see 10.1.6, “Key
Management” on page 305 and 10.6.2, “Using Keystores” on page 332),
message digests and digital signatures (see 10.1.7, “Message Digests and
DIgital Signatures” on page 311), and signature verification (see 10.6.1,
“Signature and Signature Verification” on page 325). Additional examples and
scenarios are provided in this chapter to give you a better understanding of
the technology involved.

13.1 Security Questions, Cryptographic Answers

We want to create secure applications, but secure means different things,
depending on what the application does and the environment in which it
operates. In each case we need to understand what the requirements are,
based on the following categories:

 • Authentication

How sure does the client need to be that the server really is who it claims
to be? And does the server need to identify the client, or can the client
remain anonymous? Normally, authentication is based on either
© Copyright IBM Corp. 1997 1999 475

something you know (such as a password), or something you have (such
as an encryption key or card).

A developing form of authentication is based on something you are,
including biometric measurements such as retinal scans or voice
recognition.

 • Access control

Having found out who is at the other end of the session, the next step is to
decide whether they are allowed to do what they want to do.

 • Data integrity

You want to be sure that data has not been altered between what was sent
and what was received. This is especially true if the application crosses an
non-secure network, such as the Internet, where a man-in-the-middle
attack may be easily mounted.

 • Confidentiality

If any of the data that you are sending is sensitive, you do not want an
attacker to be able to read it in transit. To prevent this, it needs to be
encrypted.

 • Non-repudiation

An important security measure that the user or the application
environment can require is a non-repudiation service. The goal of a
non-repudiation service is to prove that a particular transaction took place.
A non-repudiation service establishes accountability of information about
a particular event or action to its originating entity.

If we measure applet sandbox security against these requirements we find
that the only one it helps us with is access control. The control is very strict: if
the security manager cannot authenticate the owner of the applet, it will allow
it to only do safe things.

We have a trio of tools to answer the questions that these requirements pose,
namely:

 • Symmetric key encryption
 • Public key encryption
 • Hashing/digital signatures

Encryption is the process of taking data, called cleartext, and a cryptographic
key, and producing ciphertext, which is encrypted data, or data meaningless
to anybody who does not know the key. A cryptographic key is actually a
mathematical function which operates on the data. If the original data is
476 Java 2 Network Security

represented by x, and the cryptographic key by the function f, then the
encrypted data is nothing but f(x).

Decryption is the inverse of encryption; it is the process of taking ciphertext
and a cryptographic key, and producing the original cleartext. The
cryptographic key which is used for decryption is a mathematical function
which, when operated on f(x), gives x back. This means that, if the encrypting
key is function f, the corresponding decrypting key is function f-1.

Notice that:

 • f is equal to f-1 in the case of symmetric keys.

 • f is not equal to f-1 in the case of asymmetric keys.

Symmetric key, or bulk, encryption provides confidentiality, by making sure
that a message can be read only if the recipient has the same key as the
sender. But how to share the key in a secure manner? A common answer is to
use public key, or asymmetric, encryption. This is too inefficient for general
encryption of the whole data stream, but it is ideal for encrypting a small item,
such as a bulk encryption key. The sender uses the receiver’s public key to
encrypt it, knowing that only the owner of the private half of the key pair, that
is to say the receiver, will be able to decrypt it. Having secretly shared the
bulk encryption key in this way, they can then use it to encrypt the real data
that they want to keep private.

Digital signatures also use public key encryption, but the other way around.
The following figure illustrates how they work:

Figure 237. Creating a Digital Signature

Variable length (000s of bytes)

Fixed length
(128 or 160 bits)

Key Pair

Private key

Public key

Digital Signature

Data to be sent

Hashing Algorithm

Message Digest

Encrypt
Cryptography in Java 2 477

The sender generates a digest from the data and then encrypts it with its
private key. It then sends the result, together with the public key, along with
the data. The receiver uses the sender’s public key to decrypt the signature
and then performs the same hashing function on the data. If the digest
obtained matches the result of the decryption, the receiver knows:

1. That the data has not been changed in transit (data integrity)

2. That it really was sent by the owner of the key pair (authentication)

13.1.1 Public Key Certificates
Whenever public key encryption is used, the owner of the key pair has to
make the public key available to the session partner. But how can the session
partner be sure of where the key really came from? The answer lies in public
key certificates. Instead of sending a naked key, the owner sends a
certificate, which is a message containing:

 • The public key

 • Detailed information about the owner of the key. This is known as the
distinguished name. It is a formatted string that contains the name,
address, network information and other information about the entity that
owns the key pair (see Appendix C, “X.509 Certificates” on page 649).

 • The expiration date of the certificate

 • Optionally, additional application-specific data

Typically, the whole message is digitally signed by a trusted third party. This is
an organization that is trusted by both sender and receiver, and it is usually
known as a certificate authority (CA). The resulting certificate electronically
ties the real identity of the user to the public key.

The following scenario explains why digital certificates are needed. We saw in
10.6.1, “Signature and Signature Verification” on page 325 and 10.6.2, “Using
Keystores” on page 332 an example where the sender of data, say Duane,
generates a key pair, signs the data to be sent with the private key portion of
the key pair, and sends the public key, along with the signed data, to the
receiver, say Marco. Marco would use Duane’s public key to verify that the
signer of the data was indeed Duane.

Unfortunately, it is quite likely that somebody, say Ashok, has intercepted the
signed data as well as the public key while in transit from Duane to Marco.
Ashok can modify the data, sign the corrupted data with his own private key,
replace Duane’s signature with his own signature and replace Duane’s public
key with his own public key. When the signed data reaches Marco, Ashok’s
478 Java 2 Network Security

signature would get verified as that of Duane’s with the help of Ashok’s public
key.

This explains the need for some means to ensure the receiver of signed data
that the public key arriving with the signed data indeed belongs to a particular
signer. Certificates were introduced to satisfy this need. An identity certificate
is a binding of a principal to a public key which is vouched for by another
principal. A principal represents an entity such as an individual user, a group,
or a corporation (see 10.1.1, “Principals” on page 297). A public key
certificate is a digitally signed statement from one entity, saying that the
public key (and some other information) of another entity has some specific
value.

Consider in the above example that there is another party, say Milind, whom
Marco trusts. Marco already has Milind’s public key which he has obtained
directly from Milind (hence Marco is confident that this public key indeed
belongs to Milind). Marco will therefore be comfortable with anything signed
by Milind. In fact Marco holds Milind’s public key, and can verify that the digital
signature was really applied by Milind.

What Duane does is to send a request to Milind to verify that the public key
that accompanies data signed by Duane indeed belongs to Duane. Milind
writes a certificate vouching for the fact that the public key accompanying the
data indeed belongs to Duane, signs the certificate and sends the signed
data along with the public key and certificate to Duane. After this, Duane
sends the data, the signature he applied, his public key as well as the
certificate issued by Milind to Marco. Seeing the certificate, Marco can be
assured that the sender of the data was indeed Duane.

The international standard for public key certificates is called X.509. This has
evolved over time and the latest version is V3 (see again Appendix C, “X.509
Certificates” on page 649). The most significant enhancement in X.509 V3 is
the ability to add other, arbitrary, data in addition to the basic identity fields of
the distinguished name. This is useful when constructing certificates for
specific purposes (for example, a certificate could include a bank account
number, or credit card information).

13.1.1.1 Certificate Hierarchies
In the scenario described in 13.1.1, “Public Key Certificates” on page 478, the
principal Milind acts as a CA. In real-life situations, there are chains of CAs,
where each successive CA verifies and vouches for the public key of the next
identity in the chain.
Cryptography in Java 2 479

In this case, a public key certificate embodies a chain of trust. Consider the
situation shown in Figure 238 on page 480. A system has received a request
containing a chain of certificates, each of which is signed by the next higher
CA in the chain. The system also has a collection of root certificates from
CAs that it views as trusted. It can match the top of the chain in the request
with one of these root certificates, say Ham’s. If the chain of signatures is
intact, the receiver can infer that Nimrod is trustworthy and has inherited its
trustworthiness from Ham.

Figure 238. Certificate Hierarchy

Note that one of the implications of a certificate chain is that the certificate at
the top of the chain is self-signed.

13.2 The Java Cryptography Architecture Framework

The JCA is a framework for accessing and developing cryptographic
functionality for the Java platform. It encompasses the parts of the Java 2
security API related to cryptography. The JCA was designed around the
following two principles:

 • Implementation independence and interoperability

 • Implementation independence is achieved using a provider-based
architecture. As we said in 10.1.3, “Providers” on page 299, the term
cryptographic service provider (provider for short) refers to a package

Trusted Root Certificates Received Certificate Chain

Shem’s Certificate

This is to certify
that Shem is a
trusted CA

6KHP

Ham’s Certificate

This is to certify
that Ham is a
trusted CA

+DP

Japhet’s Certificate

This is to certify
that Japhet is a
trusted CA

-DSKHW

Ham’s Certificate

This is to certify
that Ham is a
trusted CA

+DP

Cush’s Certificate

This is to certify
that Cush is a
trusted CA

+DP

Nimrod’s Certificate

This is to certify
that you can trust
anything signed
by Nimrod

&XVK
480 Java 2 Network Security

or a set of packages that supply a concrete implementation of a subset
of the cryptography aspects of the Java security API. In other words,
these packages must implement one or more cryptography services,
such as digital signature algorithms, message digest algorithms, and
key conversion services. Providers may be updated transparently to the
application, for example when faster or more secure versions are
available.

 • Implementation interoperability means that various implementations
can work with each other, use each other's keys, or verify each other's
signatures. This would mean, for example, that for the same
algorithms, a key generated by one provider would be usable by
another, and a signature generated by one provider would be verifiable
by another.

 • Algorithm independence and extensibility

 • Algorithm independence is achieved by defining types of cryptographic
services, and defining classes that provide the functionality of these
cryptographic services. These classes are called engine classes, and
examples are the MessageDigest, Signature, and KeyFactory classes.

 • Algorithm extensibility means that new algorithms that fit in one of the
supported engine classes can easily be added.

13.2.1 JCE and United States Export Considerations
As we discussed in 2.2.3, “United States Export Rules for Encryption” on
page 57, the security-related classes shipped with the Java 2 SDK only
provide for the message digest and digital signature part of the cryptographic
spectrum. This allows us to perform reliable authentication which, in turn, can
be used as a basis for implementing access controls that relax the sandbox
restrictions. However, it does not provide the general purpose encryption
needed to send confidential data.

This function is provided by the JCE, which is an extension to the
cryptography-related classes shipped with the Java 2 SDK. The JCE package
uses the same structure of the JCA, being composed of engine classes that
expose the algorithms in a generic way. The JCE provides engine classes for
symmetric key encryption and for generating and manipulating the secret
keys that such algorithms require.

The primary principle in the design of the JCA has been to separate the
cryptographic concepts from their algorithmic implementations. Before we
explain how JCA achieves this separation, it is worthwhile to review the types
Cryptography in Java 2 481

of classes supplied by the Java 2 SDK, the APIs that are part of the JCA and
the API extensions supplied by the JCE.

13.2.2 Relationship between Java 2 SDK, JCA and JCE APIs
The Java 2 SDK APIs consist of the core classes that are shipped with the
Java Virtual Machine (JVM), as we have seen in previous chapters of the
book. The set of core classes in the Java 2 platform can be divided into two
subsets:

 • Security-related core classes
 • Other core classes

The security-related core classes can be further subdivided as:

 • Access control and permission related core classes
 • cryptography-related core classes

Of these, only the cryptography-related core classes are part of the JCA
APIs. The JCE extends the JCA API to include APIs for encryption, key
exchange, and message authentication code (MAC). Together, the JCE and
the cryptography aspects of the Java 2 SDK provide a complete,
platform-independent cryptography API. The JCE is released separately as
an extension to the Java 2 SDK, in accordance with United States export
control regulations. The following figure offers a graphical representation of
the relationship between the Java 2 SDK APIs, the JCA APIs and the
extension APIs provided by JCE:

Figure 239. Java 2 SDK, JCA and JCE APIs

Referring to the above figure we can see that we have three circles that
overlap each other. The circles graphically represent sets A, B and C
respectively:

A B C
A = Java 2 SDK APIs
B = Java 2 SDK security-related APIs
C = Java 2 cryptography-related APIs
482 Java 2 Network Security

 • A represents the APIs supported by the Java 2 SDK, Standard Edition,
V1.2.

 • B, which is a subset of A, represents the security-related core classes in
the Java 2 SDK.

 • C represents the cryptography-related classes in the Java 2 platform.

The diagram above shows that:

 • The intersection represents all the cryptography classes that come
with the standard installation of the Java 2 SDK.

 • The difference represents the cryptography extension APIs
that come with the JCE.

 • The difference represents the access control and permission
classes that are shipped with the Java 2 SDK.

Having understood how the Java 2 SDK, JCA and JCE APIs are related, we
now define some basic terms that are commonly used in cryptography.

13.3 JCA Terms and Definitions

In order to become familiar with the JCA, a few terms need to be explained.
These terms are engine, algorithm and provider.

1. Engine is the term used to depict an abstract representation of a
cryptographic service that does not have a concrete implementation. A
cryptographic service is always associated with a particular algorithm or
type, and it can have one of the following functions:

 • To provide cryptographic operations (like those for digital signatures or
message digests)

 • To generate or supply the cryptographic material (keys or parameters)
required for cryptographic operations

 • To generate data objects (keystores or certificates) that encapsulate
cryptographic keys (which can be used in a cryptographic operation) in
a secure fashion

Message digests and signatures are examples of engines. The JCA
encompasses the cryptography-related classes of the Java 2 security
package, including the engine classes. Users of the JCA API request and
utilize instances of the engine classes to carry out corresponding
operations.

2. An algorithm can be looked upon as an implementation of an engine. For
instance, the MD5 algorithm is one of the implementations of the message

B C∩

C B C∩()–

B B C∩()–
Cryptography in Java 2 483

digest engine. The internal implementation of the MD5 algorithm can differ
depending on the source that provides the MD5 algorithm class.

3. A provider does not know the actual implementation of the cryptographic
algorithms. However, a provider knows which algorithm class can provide
a particular algorithmic implementation. Each set of algorithm classes
from a particular source is managed by an instance of the
java.security.Provider class. Installed providers are listed in the
java.security properties file present in the ${java.home}${/}lib${/}security
directory (see 8.1, “A Note on java.home and the JRE Installation
Directory” on page 225 and 8.3, “The Security Properties File,
java.security” on page 234). The only default provider entry found in this
file is:

security.provider.1=sun.security.provider.Sun

The provider that comes as a part of JCE 1.2 is SunJCE, and it is
implemented by the class com.sun.crypto.provider.SunJCE. Several
providers can be installed in the system, together with a preference order
number.

The provider architecture of JCA aims to allow algorithm independence.
The provider infrastructure permits implementations of various classes in
the security package to be found at runtime, without any changes to the
code. Representing all functions of a given type by a generic engine class
masks the idiosyncrasies of the algorithm behind standardized Java class
behavior. Vendor independence is supported in the same way, by allowing
any number of vendors to register their own implementations of the
algorithms.

An engine class defines API methods that allow applications to access the
specific type of cryptographic service it provides. The actual
implementations (from one or more providers) are those for specific
algorithms. The MessageDigest engine class, for example, provides
access to the functionality of a message digest algorithm.

From the brief discussion above, one can see that cryptographic solutions
require a whole collection of tools and functions, which include not only the
encryption algorithms themselves, but functions for message digests,
certificate management and key generation. And of course, life would be too
simple if there were only one way to do each of these functions. So, for
example, there are two different message digest algorithms in common use:
the MD5 algorithm from RSA and the United States government-standardized
Secure Hash Algorithm (SHA) (see 2.2.2, “Java Cryptography Architecture”
on page 56).
484 Java 2 Network Security

13.3.1 The Provider Concept in the JCA
The JCA offers the Provider class in the java.security package to define the
concept of provider. This is an abstract class, which must be subclassed by
specific provider classes. The constructor of a provider class sets the values
of various properties that are required for the Java security API to look up the
algorithms or other facilities implemented by the provider.

The Provider class has methods for accessing the provider name, version
number, and other information about the implementations of the algorithms
for key generation, conversion and management facilities, signature
generation, and message digest generation.

If an application needs an implementation of the message digest algorithm
MD5, it will typically create an instance of the message digest engine and
pass the string MD5 as the argument to the getInstance() method:

MessageDigest m = MessageDigest.getInstance("MD5");

Internally, the getInstance() method asks the java.security.Security class to
supply the required object. Since no specific provider has been specified, the
Security class in turn asks all the providers in the sequence they are listed in
the java.security file, until a provider implementing the requested algorithm is
found. The default entry in the java.security file is:

security.provider.1=sun.security.provider.Sun

The class sun.security.provider.Sun implements SUN, the default provider
shipped by Sun Microsystems with the Java 2 SDK, Standard Edition, V1.2.
As you can see, by default, the SUN provider is installed with precedence
number 1. A provider manages the individual algorithm classes. In this case,
the SUN provider will receive the request first since it is listed as the first
provider in the java.security file. The SUN provider replies to the Security
class that the requested algorithm class is sun.security.provider.MD5. If the
SUN provider had not had an implementation for the message digest
algorithm MD5, or if it were not listed as the first provider, the Security class
would have asked the second provider in the list, and so on, until a provider
with the requested implementation was found, if any. The
java.security.Security class passes this reply to the getInstance() method of
the MessageDigest class. The object m can now be created by the
getInstance() method using the MD5 algorithmic implementation provided by
the sun.security.provider.MD5 class.

Notice that if the Security class cannot find any implementation of the
message digest algorithm MD5, it throws a NoSuchAlgorithmException.
Cryptography in Java 2 485

When an array of bytes, say inputData, is to be hashed into a digest using the
MD5 algorithm, the update() method for the object m will be used. To find out
the digest value, the digest() method for the object m will be used:

m.update(inputData);
byte[] digest = m.digest();

This way we have demonstrated how the provider architecture allows for
vendor and algorithm independence. The same procedure is adopted with
any other cryptographic service, such as digital signature and key pair
generation. The following figure shows how vendor and algorithm
independence is achieved when a particular Java application requests the
implementation of a key pair generation algorithm:

Figure 240. Vendor and Algorithm Independence

13.3.1.1 Managing Providers
It is important to note that the order in which the providers are listed in the
java.security file is the order in which the java.security.Security class asks the
providers for a requested service, unless a particular provider is specified.

Registered providers:

1. Bob
2. Alice

Provider Bob

KeyPairGenerator Y

MessageDigest A

Signature S

Provider Alice

KeyPairGenerator Y

KeyPairGenerator X

Signature S

Engine Classes

KeyPairGenerator

MessageDigest

Signature

getInstance(X)

Your Java code

I need a key
pair of type X...
486 Java 2 Network Security

The first available algorithmic class that satisfies the requirements of the
application and is supplied by one of the providers listed in the java.security
file is accepted.

Each JVM installation has one or more provider packages installed. Providers
may be added and removed statically or dynamically. In order to statically add
or remove a provider, you have to edit the java.security file and respectively
add or remove the security provider entry. To do the same operations
dynamically, you have to call the addProvider() or insertProviderAt() methods
for the java.security.Security class if you want to add a provider; otherwise, if
your purpose is to remove a provider, you should use the removeProvider()
method instead. This process is described in detail in 10.1.3, “Providers” on
page 299, and you can refer to that section also to see what permissions are
needed for a Java program running under the default security manager to add
and remove providers dynamically.

The JCA also offers a set of APIs that allow users to query which providers
are installed and what services they support. A couple of methods in the suite
of provider management methods with the Security class can be used to
obtain information on currently installed providers:

 • The getProvider() method returns the provider with the name specified in
the argument or null if the specified provider is not found.

 • The getProviders() method returns an array of the currently installed
security providers.

13.3.2 Engine Classes
The provider architecture of JCA has been designed to allow algorithm and
vendor independence, as we have shown in 13.3.1, “The Provider Concept in
the JCA” on page 485. This way implementations of various classes in the
security package can be found at run-time, without any changes to the code.
For this reason, abstract representations of cryptographic services are
offered by generic engine classes.

The engine classes shown in the following table are defined in the Java 2
SDK core APIs as part of the JCA framework:

Table 13. Engine Classes in Java 2 SDK, Standard Edition, V1.2

Java 2 SDK engine class Function

java.security.MessageDigest Used to calculate the message digest (hash) of specified data

java.security.Signature Used to sign data and verify digital signatures
Cryptography in Java 2 487

The following list shows the engine classes defined in JCE 1.2:

Table 14. Engine Classes in JCE 1.2

The above engine classes can be instantiated by using the getInstance()
static method. If you pass this method a single argument, it must be the name
of the algorithm to be used. In this case, the getInstance() method will ask the
Security class to find the first provider in the preference list offering an
implementation of that method, as discussed in 13.3.1, “The Provider
Concept in the JCA” on page 485. Otherwise, you can force this decision and
specify two arguments; in this case, along with the algorithm, you will
explicitly pass in the provider.

An engine class provides the methods to enable applications to access the
specific cryptographic service it provides, independent of the particular type
of cryptographic algorithm. The MessageDigest engine class, for example,
provides access to the functionality for all message digesting algorithms. The

java.security.KeyPairGenerator Used to generate a pair of public and private keys suitable for a specified
algorithm

java.security.KeyFactory Used to convert opaque cryptographic keys of type Key into key
specifications (transparent representations of the underlying key
material), and vice versa

java.security.certificate.CertificateFactory Used to create public key certificates and certificate revocation lists
(CRLs)

java.security.KeyStore Used to create and manage a keystore (see 8.2, “Keystores” on page
230)

java.security.AlgorithmParameters Used to manage the parameters for a particular algorithm, including
parameter encoding and decoding

java.security.AlgorithmParameterGenerator Used to generate a set of parameters suitable for a specified algorithm

java.security.SecureRandom Used to generate random or pseudo-random numbers

JCE 1.2 engine class Function

javax.crypto.Cipher Provides the functionality of a cryptographic cipher for encryption and
decryption

javax.crypto.KeyAgreement Provides the functionality of a key agreement (or key exchange) protocol

javax.crypto.KeyGenerator Provides the functionality of a (symmetric) key generator

javax.crypto.Mac Provides the functionality of a MAC algorithm

javax.crypto.SecretKeyFactory Represents a factory for secret keys

Java 2 SDK engine class Function
488 Java 2 Network Security

application interfaces supplied by an engine class are implemented in terms
of a service provider interface (SPI). That is, for each engine class, there is a
corresponding abstract SPI class, which defines the methods that
cryptographic service providers must implement. The name of each SPI class
is the same as that of the corresponding engine class, followed by Spi. For
example, the SPI class corresponding to the Signature engine class is the
SignatureSpi class. Each SPI class is abstract.

To supply the implementation of a particular type of service, for a specific
algorithm, a provider must subclass the corresponding SPI class and supply
implementations for all the abstract methods. By convention, the abstract
methods in the SPI class all begin with engine. For example, the SignatureSpi
class defines abstract methods like engineInitVerify() and engineInitSign().
An instance of an engine class, the API object, encapsulates (as a private
field) an instance of the corresponding SPI class, the SPI object. All API
methods of an API object are declared final, and their implementations invoke
the corresponding SPI methods of the encapsulated SPI object. For instance,
while writing an implementation of a specific type of signature algorithm,
when the initVerify() method of the Signature class is called, it calls the
engineinitVerify() method of the SignatureSpi class.

An instance of an engine class (and of its corresponding SPI class) is created
by a call to the getInstance() factory method of the engine class itself. Notice
that a factory method is always static.

13.3.3 Algorithms
The following program lists all the providers installed on your Java 2 SDK
system, and shows for each of them the name, version number and general
information on the cryptographic services supported and the algorithms
implemented:

Figure 241. (Part 1 of 2). GetProviderInfo.java

import java.security.*;
import java.util.*;

class GetProviderInfo
{
 public static void main(String[] args)
 {
 System.out.println("Providers installed on your system:");
 System.out.println("-----------------------------------");
 Provider[] providerList = Security.getProviders();
Cryptography in Java 2 489

Figure 242. (Part 2 of 2). GetProviderInfo.java

As you can see, the GetProviderInfo Java program uses the getProviders()
method for the java.security.Security class, and builds an array of Provider
objects with all the providers installed on the system. Then, for each provider,
it invokes the methods getName(), getVersion() and getInfo() of the Provider
class to get the provider’s name, version number and general information
respectively.

This Java application is compiled with the command:

javac GetProviderInfo.java

To launch it, just enter the command:

java GetProviderInfo

On a system where the provider SUN is installed with precedence number 1
and the provider SunJCE is installed with precedence number 2, the output of
the command above is:

 for (int i = 0; i < providerList.length; i++)
 {
 System.out.println("[" + (i + 1) + "] - Provider name: " +
 providerList[i].getName());
 System.out.println("Provider version number: " +
 providerList[i].getVersion());
 System.out.println("Provider information:\n" + providerList[i].getInfo());
 System.out.println("-----------------------------------");
 }
 }
}

Providers installed on your system:

[1] - Provider name: SUN
Provider version number: 1.2
Provider information:
SUN (DSA key/parameter generation; DSA signing; SHA-1, MD5 digests; SecureRandom; X.509 certificates;
JKS keystore)

[2] - Provider name: SunJCE
Provider version number: 1.2
Provider information:
SunJCE Provider (implements DES, Triple DES, Blowfish, PBE, Diffie-Hellman, HMAC-MD5, HMAC-SHA1)

490 Java 2 Network Security

You can discover some more information by adding the following lines of code
to the for cycle of the GetProviderInfo.java program:

These additional lines of code make use of the fact that the Provider class
extends java.util.Properties, so it inherits the propertyNames() method, which
returns an Enumeration object. The while cycle goes through all the
properties of the Provider objects installed on the system, and prints a list of
the keys and values, from which you can understand the cryptographic
services supported by the providers installed on your system and the
algorithms implemented. If SUN and SunJCE are the two providers installed
on your system, the output is composed of a large number of lines, and we
recommend that you redirect it to a file. Reading the file generated, you can
verify that:

1. The SUN provider offers:

 • An implementation of the Digital Signature Algorithm (DSA), described
in NIST FIPS1 186

 • An implementation of the MD5 (RFC2 1321) and SHA-1 (NIST FIPS
180-1) message digest algorithms (see 2.2.2, “Java Cryptography
Architecture” on page 56).

 • A DSA key pair generator for generating a pair of public and private
keys suitable for the DSA algorithm

 • A DSA algorithm parameter generator

 • A DSA algorithm parameter manager

 • A DSA key factory providing bidirectional conversions between opaque
DSA private and public key objects and their underlying key material

 • An implementation of the proprietary SHA1PRNG pseudo-random
number generation algorithm, following the recommendations in the
IEEE P1363 standard

1 Federal Information Processing Standards (FIPS) algorithm conformance certification by the National Institute of
Standards and Technology (NIST).
2 A list of all the Requests for Comments (RFCs) can be found at http://info.internet.isi.edu/in-notes/rfc/files/.

Enumeration properties = providerList[i].propertyNames();
while (properties.hasMoreElements())
{
 String key, value;
 key = (String)properties.nextElement();
 value = providerList[i].getProperty(key);
 System.out.println("Key: " + key + " - Value: " + value);
}

Cryptography in Java 2 491

 • A certificate factory for X.509 certificates and certificate revocation lists
(CRLs)

 • A keystore implementation for the proprietary keystore type named
Java Keystore (JKS)

2. The SunJCE provider offers:

 • An implementation of the Data Encryption Standard (DES) (FIPS PUB3
46-1), Triple DES4, and Blowfish5 encryption algorithms in the
Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher
Feedback (CFB), Output Feedback (OFB), and Propagating Cipher
Block Chaining (PCBC) modes

 • Key generators for generating keys suitable for the DES, Triple DES,
Blowfish, HMAC-MD5, and HMAC-SHA1 algorithms

 • An implementation of the MD5 with DES-CBC password-based
encryption (PBE)6 algorithm defined in PKCS#5

 • Secret-key factories providing bidirectional conversions between
opaque DES, Triple DES and PBE key objects and transparent
representations of their underlying key material

 • An implementation of the Diffie-Hellman (DH) key agreement7
algorithm between two or more parties

 • A Diffie-Hellman key pair generator for generating a pair of public and
private values suitable for the Diffie-Hellman algorithm

 • A Diffie-Hellman algorithm parameter generator

 • A Diffie-Hellman key factory providing bidirectional conversions
between opaque Diffie-Hellman key objects and transparent
representations of their underlying key material

 • Algorithm parameter managers for Diffie-Hellman, DES, Triple DES,
Blowfish, and PBE parameters

 • An implementation of the HMAC-MD5 and HMAC-SHA1 keyed-hashing
algorithms defined in RFC 2104

3 Federal Information Processing Standards (FIPS) Publication (PUB).
4 Triple DES is the particular block cipher that is the United States Data Encryption Standard (DES), performed three
times, with two or three different keys.
5 Blowfish is a symmetric block cipher. It takes a variable-length key, from 32 bits to 448 bits, making it ideal for both
domestic and exportable use. Blowfish was designed in 1993 by Bruce Schneier as a fast, free alternative to existing
encryption algorithms. Since then it has been analyzed considerably, and it is slowly gaining acceptance as a strong
encryption algorithm. Blowfish is unpatented and license-free, and is available free for all uses.
6 PBE derives an encryption key from a password. In order to make the task of getting from password to key very
time-consuming for an attacker, most PBE implementations will mix in a random number, known as a salt, to create the
key.
7 Key agreement is a protocol by which two or more parties can establish the same cryptographic keys, without having to
exchange any secret information.
492 Java 2 Network Security

 • An implementation of the padding8 scheme described in PKCS#5

 • A keystore implementation for the proprietary keystore type named
Java Cryptography Extension Keystore (JCEKS)

13.4 Java Cryptography Extension

JCE has been provided as an extension to the Java platform. JCE 1.2
provides a framework and implementations for encryption, key generation,
key agreement, and MAC to supplement the interfaces and implementations
of message digests and digital signatures provided by Java 2 SDK, Standard
Edition, V1.2.

The provider architecture of the JCA aims to allow algorithm independence.
The design principles behind JCE also share the same philosophy of
implementation and algorithm independence by the use of the provider
architecture. In addition to making it possible to use newer algorithms for
generating keys, JCE also introduces some very new interfaces and classes
that facilitate the implementation of these concepts.

JCE provides for symmetric bulk key encryption through the use of secret
keys – the same key is shared by the sender and receiver to encrypt as well
as to decrypt data. Associated concepts of MAC and key agreements support
symmetric bulk encryption and symmetric stream encryption.

13.4.1 JCE – Packages and Their Contents
The SunJCE provider consists of the main package javax.crypto and its two
subpackages javax.crypto.spec and javax.crypto.interfaces.

The javax.crypto package forms the main body of the JCE 1.2 class structure.
The package primarily consists of classes which represent the new concepts

8 Before encrypting, the length of plaintext packets must be a multiple of the cipher block size. If necessary, packets are
expanded to become that length; this operation is known as padding.
Cryptography in Java 2 493

of ciphers, key agreements, and message authentication codes and their SPI
classes.

Table 15. The javax.crypto Package

The javax.crypto.spec package consists of various key specification and
algorithm parameter specification classes.

Table 16. The javax.crypto.spec Package

Interfaces Classes Exceptions

SecretKey Cipher
CipherInputStream
CipherOutputStream
CipherSpi
KeyAgreement
KeyAgreementSpi
KeyGenerator
KeyGeneratorSpi
Mac
MacSpi
NullCipher
SealedObject
SecretKeyFactory
SecretKeyFactorySpi

BadPaddingException
IllegalBlockSizeException
NoSuchPaddingException
ShortBufferException

Interfaces Classes Exceptions

DESedeKeySpec
DESKeySpec
DHGenParameterSpec
DHParameterSpec
DHPrivateKeySpec
DHPublicKeySpec
IvParameterSpec
PBEKeySpec
PBEParameterSpec
RC2ParameterSpec
RC5ParameterSpec
SecretKeySpec
494 Java 2 Network Security

The javax.crypto.interfaces package consists of the DHKey interface and a
couple of its subinterfaces – DHPrivateKey and DHPublicKey. These are the
interfaces for the keys based on the Diffie-Hellman algorithms.

Table 17. The javax.crypto.interfaces Package

13.4.2 The Cipher Class
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.4.3 The Cipher Stream Classes
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.4.3.1 Encrypting and Decrypting Using the JCE 1.2 APIs
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.4.4 Secret Key Interfaces and Classes
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.4.5 The KeyGenerator Class
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

Interfaces Classes Exceptions

DHKey
DHPrivateKey
DHPublicKey
Cryptography in Java 2 495

13.4.6 The KeyAgreement Class
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.4.7 The SealedObject Class
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.5 Java Cryptography in Practice

Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.5.1 First Scenario
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.5.1.1 Bob’s Program
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.5.1.2 Alice’s Program
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.5.2 Second Scenario
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
496 Java 2 Network Security

copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.5.2.1 Bob’s Program
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.5.2.2 Alice’s Program
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.5.2.3 Executing the Programs
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.6 Asymmetric Encryption with the Java 2 SDK and JCE 1.2

Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.6.1 Using Asymmetric Encryption
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.7 How to Implement Your Own Provider

Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.
Cryptography in Java 2 497

13.7.1 Write the Service Implementation Code
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.7.2 Give the Provider a Name
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.7.3 Write a Master Class
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.7.4 Compile the Code
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.7.5 Install and Configure the Provider
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.7.6 Test if the Provider Is Ready
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.7.7 Algorithm Aliases
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
498 Java 2 Network Security

copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.7.8 Dependencies on Other Algorithms
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.7.9 Default Initializations
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

13.7.10 A Sample Master Class
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.
Cryptography in Java 2 499

500 Java 2 Network Security

Chapter 14. Enterprise Java

The first two parts of this book have described the security issues in running
Java programs on a single workstation, usually your PC. But that is only one
application area for Java. Java can also be used on a Web server, or any
other networked server, in a full-scale client/server approach. In the
introduction we stated that security must be holistic, as attackers will
concentrate on the weakest links. This applies even more forcefully when
many computer systems are connected through a network, as there are more
possible points to attack.

This chapter describes a number of different architectural approaches,
illustrated with real examples that are in use today. We will consider the
security implications of these approaches.

Firewalls are often touted as a defense against network attacks. Chapter 15,
“Java and Firewalls – In and Out of the Net” on page 557 describes how
firewalls work, and what the implications are, to both simple users of Web
browsers and to Java application designers.

Cryptography is another valuable tool used to provide integrity, confidentiality
and authentication between distributed systems. Chapter 13, “Cryptography
in Java 2” on page 475 examines the uses of cryptography to provide security
to real-world applications.

14.1 Browser Add-On Applets

Perhaps the simplest use of a Java application is the browser add-on applet
to extend the facilities provided by a Web browser. It may be used to enhance
the user interface by adding extra interactivity such as context-sensitive help
or local search functions. Or it may be used to handle additional data types
such as compressed astronomical images or packed database records.
These examples depend directly upon the Java security architecture already
described, where the security manager and sandbox prevent undesirable
access. Because they read data only from the server, if at all, there are no
other security issues.

14.2 Networked Architectures

The next level of complexity is seen in network-aware applets, which perform
more network operations than simply reading data. Terminal emulators fall
into this category. These applets provide the functions of a
© Copyright IBM Corp. 1997 1999 501

non-programmable terminal or visual display unit (VDU), connected via a
local area network (LAN) to a host system, where the applications are run. An
example is IBM Host On-Demand, which emulates a 3270 mainframe display
session, communicating with a mainframe over TCP/IP. A graphical
representation of IBM Host On-Demand is shown in the next figure:

Figure 243. Host On-Demand

When run as applets, such programs are subject to the restrictions on the
Java security manager: by default, they may only open a network connection
back to the system from which they were downloaded. However, terminal
emulation programs usually wish to communicate with many different host
systems, not just one. If the host is a large mainframe, crucial to business, its
owners may be reluctant to install the TCP/IP software, preferring to remain
with systems network architecture (SNA) LANs. On other host systems, it
might not be desirable to install, configure, run and maintain a Web server
just to download the Java emulator applet, and this approach would still
restrict access to that single host.

14.2.1 Applying the Java 2 Access Control Mechanisms
The Java 2 security architecture solves the problem described above. Now, it
is still true that downloaded applets are restricted to connect back only to the
system from which they are downloaded, but this is only the default
configuration. Using the fine-grained access control mechanisms of Java 2, it
is now possible to modify this default restriction, and you can specify the
details of every socket connection that a particular code source can
implement. Notice that this operation is very easy in the Java 2 security
model. With the default policy implementation, you simply have to edit the

Browser
3270
Terminal
Emulator

Client

Applet Download

2-Way Communications

S/390 Web Server

HTTP
Server

TN3270
Server

Application
502 Java 2 Network Security

policy file and add the permissions you want. In previous versions of Java, it
was necessary to alter the security manager.

14.2.2 Two-Tier Architecture
Another possibility is to run the Java emulator as a stand-alone application,
thereby relaxing the restrictions on which hosts the emulator may connect.
This is the classic two-tier client/server application architecture. The security
issues are very similar to running any other executable program, namely that
it is wise to use trusted sources of supply only. Java has some safety and
security advantages over other binary programs such as EXE files, and
digitally signed applets can provide a cryptographic guarantee that the code
author is who he says he is.

14.2.3 Three-Tier Architecture
Another solution is to run gateway software on the Web server that holds the
Java applet. The applet will communicate over TCP/IP with the gateway
software, which can then pass through the messages to the ultimate
destination. In the case of 3270 terminal emulation, IBM’s Communications
Server, which runs on several operating systems, can provide the TCP/IP
connection to the Java emulator, and can connect to hosts over both TCP/IP
and SNA. This is a three-tier client/server application. A graphical
representation of this architecture is shown in the following figure:

Figure 244. Three-Tier Example

Another approach is to use Web server Common Gateway Interface (CGI)
programs1 to provide the middle tier. The IBM CICS Internet Gateway takes
this approach. To the application server, it emulates the functions of a 3270

1 Often termed CGI-BIN programs after the directory name where they are conventionally stored.

Browser
3270
Terminal
Emulator

Applet Download

2-Way Communications

SNA

Application

S/390 Mainframe

HTTP
Server

Communications
Server

Gateway ServerHTTP

TN3270
Enterprise Java 503

terminal, but downstream it generates HTML code, which is displayed in the
Web browser window. This solution is graphically represented in the following
figure:

Figure 245. CICS Internet Gateway Example

This avoids using Java altogether in the client. It doesn’t provide as much
flexibility as the display is restricted to what can be done in HTML, but it may
be a simpler solution to the problem.

The gateway server approach can also be used to provide extended facilities
to Java applets. The IBM CICS Gateway for Java is a good example of this; it
allows a Java applet to access transaction processing capabilities of CICS
servers running on a variety of server platforms. This provides a class library
package to access CICS functions. The class library itself does not perform
the bulk of the functions; instead, it transmits the request to the gateway
server, and returns the server’s response to the applet. The gateway server is
a small program that receives the requests and calls the real CICS client
library, which communicates with the CICS system itself. It would be common
to run the CICS transaction processing engine on its own system, separate
from the Web server, as shown in the following figure:

Browser
CICS

Server

CGI

HTTP
Server

CICS
Internet
Gateway

CICS
Client

CPI

HTTP
(GET/POST)

3270
Display in
Web Page
504 Java 2 Network Security

Figure 246. CICS Gateway for Java Example

The security analysis for this type of system is more complex. We wish to
ensure the security of the gateway system as well as the systems with which
it connects, especially if the server is on the public Internet, where any
malicious hacker may attempt to access it. Intranet systems should already
have some defenses in place to restrict access to company personnel, but
security is still of concern, especially where sensitive data is at risk.

The normal approach is to provide a number of barriers that must be
overcome before data access is granted. Often the first barrier is the
company firewall system (see Chapter 15, “Java and Firewalls – In and Out of
the Net” on page 557 for more on firewalls). Firewalls can check that requests
are coming from, and going to, apparently valid addresses; some firewalls will
check the data content of selected protocols, but there are limits to what can
be checked. There have been several embarrassingly public demonstrations
of Web servers whose content has been replaced by derogatory pages,
despite firewalls being in place. Often these hackers have succeeded
because valid HTTP URL requests to the Web server allowed software to be
run on the server which had an accidental security hole in it, such as allowing
any data file to be read or written, or even executing arbitrary binary code
supplied as part of the URL.

Therefore, it is necessary to secure the Web server against as many potential
hazards as possible, and also to try to ensure that when (not if) it is
compromised, the attacker still does not have access to critical data.

Browser

HTTP Download

CICS classes
downloaded
with applet

Applet

Java Socket
Connection

HTTP
Server

CICS
Gateway for

Java

CICS
Client

CICS
Server

EPI/ECI Interface over
TCP/IP, APPC or NetBIOS
Enterprise Java 505

Hardening Web servers against attack has been the subject of several books,
such as Practical UNIX and Internet Security by Simson Garfinkel and Gene
Spafford, so only a brief checklist will be given here:

1. Disable all network services that do not need to be present; if possible
only allow HTTP and the gateway protocol.

2. Check the Web server configuration files to allow access only to the
required set of pages.

3. Delete any CGI-BIN and other executable programs that are not required;
if they are not present, they cannot be run!

4. Restrict the privileges of the Web server program, if possible. UNIX allows
it to be run as a normal user, with few access rights.

These guidelines also apply to any gateway software being run. Try to ensure
it does not provide access to more facilities than needed. In particular, do not
depend on the client to validate any requests, but assume that a hacker might
have constructed a modified client which can generate any possible request.
For example, for a 3270 gateway, do not assume that the client will request
connection only to a limited set of hosts, but configure the gateway so that
those are the only hosts that can be connected to, and that no other host
names can be made visible. For database access and transaction processing,
make sure the gateway allows no more than the set of permitted requests.

14.2.4 Network Security
The classic three-tier architecture pictures can hide other attack routes. The
diagrams shown in Figure 244 on page 503, Figure 245 on page 504 and
Figure 246 on page 505 imply that there are separate connections between
the client and the Web server/gateway, and the gateway and the end server.
However, the real network may not be configured that way. For simplicity or
cost, there might be only a single network interface on the Web server, as
shown in the following figure:
506 Java 2 Network Security

Figure 247. Web Server with One Network Interface

In this case, the third-tier server is on the same network, and can potentially
be accessed directly from the firewall. Perhaps the firewall is configured
correctly, and will prevent direct access to the end server.

But will this be true tomorrow, after additional services have been added? For
very little extra cost, the networks can be physically separated by providing
two network interfaces in the Web server.2 This solution is represented in the
following diagram:

Figure 248. Separating the Third Tier

2 Make sure the cables are well labeled; there have been cases of firewalls being bypassed when someone tripped over
the cables, and plugged them back the wrong way.

Browser
Applet

 Firewall

Physical Network Configuration

Internet

Browser
Applet

 Firewall

Physical Network Configuration

Internet
Enterprise Java 507

Or, a second firewall system can be used. This configuration has the benefit
that even if the Web server is compromised, the second firewall still restricts
access to the rest of the network. It is more expensive to provide such a
demilitarized zone (DMZ), but if you already require such a configuration to
provide safe Internet connection, there is no extra cost. The cost of a second
firewall is likely to be less than the value of the data it protects, so you need to
do your own value calculations. A DMZ network environment is graphically
represented in the following figure:

Figure 249. DMZ Network Environment

One additional security barrier to consider using is the type of network itself.
You could link the gateway and end server using SNA protocols, or by a small
custom-built program communicating over a dedicated serial link. These
effectively use the network connection as another firewall; if TCP/IP cannot
travel over it, many hacking techniques are simply not possible. Don’t forget,
though, that if the Web server is totally compromised, the hacker has all your
communications software at his disposal, if he can discover it, so you still
should guard the third-tier server.

This approach is graphically represented in the following diagram:

Browser
Applet

 Firewall Firewall
508 Java 2 Network Security

Figure 250. Protection Using Mixed Connection Protocols

14.3 Secure Clients and Network Computers

If you have great concern about what damage an applet may cause on your
client, whether by malicious design or by a programming accident, you may
wish to consider the network computer (NC) approach. Many types of NCs
are now available on the market, with varying feature sets. Some are little
different from ordinary personal computers, though they may have sealed
cases to prevent expansion. Some may be intended for domestic use, and
connect to a television set and a telephone line, for home Web browsing.

The type we are considering here are the diskless clients, such as the IBM
Network Station (NS). This is a small book-sized processor unit, without any
local disk, which connects to a LAN. It has a display, keyboard and mouse.
When switched on, it downloads its kernel software from a server on the LAN,
and then downloads applications such as a Web browser and terminal
emulator. These allow it to run applications on one or more remote servers.
The IBM NS can also download and run Java programs locally, in fact Java is
the only published API for running local programs.

In a secure environment, this has some advantages. There is no local disk
storage at the NS, so there is little chance of permanent data corruption from
malicious or misbehaving software. Although Java programs are not the only
things that can run on the NS (it also supports terminal emulation, X-Windows
and remote Windows access) there is no capability for integration between
the different application types. This means that the Java security restrictions
cannot be easily bypassed. All disk storage is held on the servers, allowing a

Browser
Applet

 Firewall

Serial Connection

Physical Network Configuration

Internet
Enterprise Java 509

fully managed backup service to be provided. Software updates are
performed centrally, reducing administration workload.

For these reasons alone, network computers have a great potential for
providing universal access to applications and data, with Java as a key
technology. The main impetus behind the network computer is usually the
potential for large cost savings. But in the appropriate application areas, the
cost savings may be much less important than the other advantages listed
above.

14.4 Server-Side Java

We have described the use of Java at the client in these distributed
architectures, but what about using Java elsewhere? This can fulfill the goal
of Write Once, Run Anywhere. It can greatly simplify the work of software
developers, especially of distributed architectures. You could argue that the
majority of client systems will be PCs running some flavor of Microsoft
Windows, so that you can satisfy most people most of the time by only
developing a Windows version of your code. This is not true for servers; most
of the world’s crucial business data is kept on mainframe and UNIX servers. If
you develop the server side of your distributed application in Java, it can be
run on almost any of these servers, whether they run MVS, VM, OS/390,
Windows NT, OS/2, AS/400 or one of the many flavors of UNIX.

At the other end of the spectrum, the server-side Java might be running in
an intelligent peripheral device, such as a printer, modem rack, photocopier
or coffee vending machine. These applications are part of the Jini
connection technology, recently announced by Sun Microsystems. This
technology is based on a simple concept: devices should work together.
They should simply connect, with no drivers to find, no operating system
issues, no cables and connectors.

Jini technology provides simple mechanisms which enable devices to plug
together to form a community, put together without any planning,
installation, or human intervention. Each device provides services that
other devices in the community may use. These devices provide their own
interfaces, which ensures reliability and compatibility. Clearly there are
immense opportunities to reduce development costs, but there are also
clear security implications; imagine the effect of re-programming a rival
company’s vending machine if you managed to break the access codes!

Jini Technology
510 Java 2 Network Security

In many ways, Java is an ideal environment for server applications. The
multi-threaded environment is ideally suited for supporting simultaneous
requests to a server. Even the standard classes are simplified, as many
server programs are unlikely to need the java.awt windowing classes as well
as several others, which is where most cross-platform problems have arisen
to date.

As an example, the gateway component of the CICS Java gateway could be
written in Java, so it could be run on any Web server system without the need
for extensive cross-platform porting and testing.

14.4.1 The Cost of Server-Side Java
But what is the cost of this portability? In the case of server-side Java, when
Java is used as a program development language, the potential risk is
reduced execution performance. This is not always a problem; the next
section shows how Java can sometimes enhance server performance.

Performance is more important for a server than a client, as the server needs
to handle many simultaneous users. Just-in-time (JIT) compilers may help
somewhat, but the real solution is to use true Java compilers, at least until
processors executing Java bytecode become commonplace. But doesn’t this
defeat the Write Once, Run Anywhere approach? Not entirely, as vendors can
still supply system-independent code, which gets compiled once during the
installation process.

True compilers can take two different approaches:

1. The first is to treat Java as just another programming language, and
compile Java source into native object code for a given machine. This
would imply that software would need to be supplied in source form, which
would be less attractive to many developers, although it could be passed
through an obfuscating program (see 5.4.1, “Beating the Decompilation
Threat” on page 134), to remove meaningful identifiers.

2. The second approach, which is likely to be more promising, is to compile
Java bytecode, rather than source code, into native object code. This
allows the compiler to be run on all the wealth of Java bytecode that is
available, not just that supplied by server developers. And since Java
bytecode is closely related to source code under normal circumstances,
some Java true compilers may provide both options and accept source or
bytecode input.
Enterprise Java 511

14.5 Servlets

Java is not only used to develop stand-alone programs. In our Web-based
world, many of the servers run an HTTP Web server. The traditional approach
to add customized function to a Web server has been to write CGI programs.

These CGI programs are stand-alone programs that are called by the HTTP
server when it receives requests for specific pages. Rather than return static
HTML text, the HTTP server starts the CGI program, and passes to it the
user’s request, together with many details about the server environment. The
CGI program must handle the request, and return HTML text to the HTTP
server, which in turn returns it to the user. The following figure offers a
graphical representation of this process:

Figure 251. How CGI-BIN Programs Work

Starting the execution of any program, not just a CGI program, can be a
lengthy process. Memory needs to be allocated, the program code needs to
be read from disk into memory, references to dynamic libraries need to be
linked, standard input and output streams need to be created and connected,
and finally the program needs to do the processing required.

In a very simple HTTP Web server, multi-threading may not be implemented,
which means that no other HTTP requests could be served until the CGI
program returns, possibly after many seconds. Most modern HTTP servers
support multi-threading (on appropriate operating systems), so this is less of
an issue. However, there are still limits to the number of process threads that
can be created, and the individual threads still need to wait for the CGI
program to complete.

CGI programs are also the target of hackers; many of the successful attacks
on Web servers have been through poorly tested CGI programs, which may

HTTP Request

HTTP
Server

CGI
Program

Browser
CGI

HTMLHTML
512 Java 2 Network Security

fail to test the parameters passed to them, or may overflow input buffers when
passed data that is too long.

Other alternatives to CGI have been implemented, such as NSAPI from
Netscape, MSAPI from Microsoft, or ICAPI from IBM. These permit native
software routines to be directly called by the Web server, significantly
reducing the startup overhead. However, the add-on routines still need to be
compiled for each platform, and the different programming interfaces may not
be fully compatible, restricting the choice of Web server to a particular
manufacturer (although ICAPI, for example, has been designed to include the
NSAPI calls). Program testing is even more important, to prevent badly
written software from corrupting the Web server itself.

Java servlets can be employed to overcome these server-side issues. A
servlet is a platform-independent server-side software component written in
Java. Servlets run on a Web server machine inside a Java-enabled server,
that is, a server able to start the Java Virtual Machine (JVM) in order to
support the use of Java servlets.3 They dynamically extend the capabilities of
the server because they provide services over the Web using the
request-response paradigm.

Servlets were introduced to interactively view and modify data and to
generate dynamic Web content. From a high-level perspective, the process
flow would be:

1. The client sends a request to the server.

2. The server sends the request information to the servlet.

3. The servlet builds a response and passes it to the server. That response is
dynamically built and the contents of the response usually depend on the
client’s request.

4. The server sends the response back to the client.

Servlets look like ordinary Java programs which begin importing some
particular Java packages that belong to the Java Servlet API. Since servlets
are object bytecodes that can be dynamically loaded off the Internet, we
could say that servlets are to the server what applets are to the client. But,
since servlets run inside servers, they do not need a graphical user interface
(GUI). In this sense servlets are also called faceless objects.

3 Servlets were initially supported in the Java Web Server from JavaSoft. Since then, several other Java-based Web
servers have supported the standard Servlet API. A list of Java-enabled Web servers that support the Java Servlet API
can be found at http://java.sun.com/products/servlet/runners.html.
Enterprise Java 513

14.5.1 Advantages of Servlets
Java servlets offer many advantages:

 • A servlet can interact with other resources (files, databases, applets,
applications written in Java or in other languages) to construct the
response that will be sent back to the client and, if needed, to save
information about the request-response interaction.

 • With a servlet approach, the server can grant full access to local facilities,
such as databases, and trust that the servlet itself will control the amount
and precise nature of access that is effectively afforded to external users.

For example, the Java Servlet API provides all the methods to monitor and
verify the origin of all requests. Moreover, the servlet code is not passed to
the client, only the results that it produces are. If the code is not passed to
the client, it cannot be saved or disassembled, thereby protecting
proprietary algorithms built into the servlet.

 • Servlets can be client programs of other services, for example, when they
are used in distributed application systems.

 • It is possible to invoke servlets from a local or remote disk across the
network.

 • Servlets can be chained. This means that one servlet can call another
servlet, thus becoming its client. It can also call several servlets in
sequence.

 • Servlets can be dynamically called from within HTML pages, using the
special HTML <SERVLET> tag. This function is also known as servlet tag
technique.

 • The Java Servlet API is protocol-independent. It does not assume
anything about the protocol used to transmit it on the Internet. You can
write a servlet without having to consider what the transmission protocol
will be.

 • Like all Java programs, servlets can use all the capabilities of the
object-oriented Java language:

 • They can be rapidly developed.

 • Lack of pointers promote robust applications (unlike C).

 • A servlet service routine is only a thread and not an entire operating
system process. That is why a servlet can handle connections with
multiple clients, accepting requests and downloading responses back
to the multiple clients. This is a more efficient mechanism than using
CGI-BINs.
514 Java 2 Network Security

 • Servlets are portable. They run on a variety of servers without needing
to be rewritten.

 • Memory access violations are not possible, so faulty servlets will not
crash servers.

 • Finally, Java servlets must respect the security rules of the Java platform
where they run.

14.5.2 Servlets and CGI-BINs
From a high-level perspective servlets can perform the same functions as
CGI-BINs. However, there are some important differences:

 • CGI-BIN applications are difficult to develop since technical knowledge is
needed to work with parameter passing, and this is not a common skill.
They are not portable: a CGI-BIN application written for a specific platform
will only be able to run in that environment. Each CGI-BIN application is
part of a specific process that is activated by a client’s request and is
destroyed after the client has been served. This causes high startup,
memory and CPU costs and implies that multiple clients cannot be served
by the same process.

 • On the other hand, servlets offer all the advantages of Java programs;
they are portable and robust applications and they are easy to develop.
Servlets also allow you to generate dynamic portions of HTML pages
embedded in static HTML pages using the <SERVLET> tag. However, the
main advantage of servlets over CGI-BINs is that a servlet is activated by
the first client that sends it a request. Then it continues running in the
background, waiting for further requests and each request generates a
new thread, not an entire process. Multiple clients may be served
simultaneously inside the same process and typically the servlet process
is destroyed only when the Web server is shut down.

From a security perspective, it must be noted that:

 • CGI-BINs programs are typically written in C, C++ or Perl. This means that
they are subjected to the security limitations of the operating system only.
If further security restrictions need to be applied, these must be coded into
the program itself by the CGI-BIN programmer.

 • On the contrary, servlets are written in Java and run on a servlet engine
JVM. Hence, they are subjected to the security restrictions imposed by the
servlet security manager of the platform where they run.
Enterprise Java 515

14.5.3 Java Servlet APIs
Servlets use packages found in the Java Servlet API. When you write code
for a Java servlet, you must import at least one of the following two packages:

 • javax.servlet – for any type of servlet

 • javax.servlet.http – for servlets specific to the HTTP protocol

The following table summarizes the structure of the Java Servlet API V2.14:

Table 18. Java Servlet API

Servlets are usually created by extending from the HTTPServlet class, which
in turn extends GenericServlet, or from the GenericServlet class itself, which
implements the Servlet interface. Both the GenericServlet and the
HTTPServlet classes contain three methods that they inherit from the Servlet
interface: init(), service() and destroy(). These methods, used by the servlet
to communicate with the server, are called life cycle methods. You will work
with these three methods in a slightly different way, depending on whether
you are extending the GenericServlet class or the HttpServlet class.

The init() and the destroy() methods have the same properties for the
GenericServlet and the HTTPServlet classes, while the service() method
must be handled differently when it is based on the GenericServlet class or
on the HttpServlet class:

 • The init() method

The init() method is run only once when the server loads the servlet and
the servlet is started. It is guaranteed to finish before any service()
requests are accepted. The servlet can be activated when the server

4 Information on the latest Java Servlet API can be found at http://java.sun.com/products/servlet/.

javax.servlet javax.servlet.http

Interfaces RequestDispatcher
Servlet
ServletConfig
Servlet Context
Servlet Request
Servlet Response
SingleThreadModel

HttpServletRequest
HttpServletResponse
HttpSession
HttpSessionBindingListener
HttpSessionContext

Classes GenericServlet
ServletInputStream
ServletOutputStream

HttpServlet
HttpUtils
HttpSessionBindingEvent
Cookie

Exceptions ServletException
UnavailableException
516 Java 2 Network Security

starts or when the first client accesses the servlet. The biggest advantage
is that the init() method is called only once, regardless of how many clients
access the servlet.

The default init() method logs the servlet initialization and it is possible to
configure it in order to save other information. The default init() method
can usually be accepted as it is, without the need to override it, because it
is not abstract. Servlet developers may, if they want, provide their own
implementation of this method, overriding it and creating a custom init().

A custom init() is typically used to perform setup of servlet-wide resources
only once, rather than once per request. For example, you might want to
write a custom init() to load GIF images one time only, where the servlet
returns the images multiple times in response to multiple client requests to
the servlet. Further examples may be initializing sessions with other
network services or getting access to their persistent data (stored in a
database or in a file).

 • The destroy() method

The destroy() method is run only once when the server stops the servlet
and unloads it. Usually, servlets are unloaded when the server is shut
down. The default destroy() method also can be accepted as is, without
the need to override it, because it is not abstract. Servlet writers may, if
they wish, override the destroy() call, providing their own custom destroy()
method.

A custom destroy() method is often used to manage servlet-wide
resources. For example, the server might accumulate data when it is
running and you might want to save this data to a file when the servlet is
stopped.

 • The service() method

The service() method is the heart of the servlet. In fact, as we said, the
simplest possible servlet defines only the service() method. Unlike the
init() and destroy() methods, it is called for each client request, and not
only one time in the life cycle of the servlet.

The service() method must be handled differently when it is based on the
GenericServlet class or on the HttpServlet class:

 • If the servlet is based on the GenericServlet class, the service()
method is abstract, so you must override it. The service() method
obtains information about the client request, prepares the response
and returns this response to the client. You should also remember that
multiple clients might access the service() method at the same time, so
you should consider threads and synchronized code.
Enterprise Java 517

 • If the servlet is based on the HttpServlet class, the service() method is
not abstract. Therefore, you can accept it as it is.

It is through the service() method that the server and servlet can exchange
data. In fact, when the server invokes the servlet service() method, it also
passes two objects as parameters:

 • If the servlet is based on the GenericServlet class, the two objects are
instances of:

 • ServletRequest
 • ServletResponse

 • If the servlet is based on the HttpServlet class, the two objects are
instances of:

 • HttpServletRequest
 • HttpServletResponse

These objects encapsulate the data sent by the client, providing access to
parameters and allowing the servlets to report status, including errors if
they occurred. The server creates an instance for the request and
response objects and passes them to the servlet. Both these objects are
used by the server to exchange data with the servlet:

 • The servlet invokes methods from the request object in order to
discover information about the client environment, the server
environment and all the information provided by the client.

 • The servlet invokes methods for the response object to send the
response that it has already prepared back to the Web server, which
then sends it to the client.

14.5.4 Servlet Life Cycle
The servlet life cycle involves a series of interactions among the client, the
server and the servlet. This is shown in the following diagram:
518 Java 2 Network Security

Figure 252. Servlet Life Cycle

The steps are explained below:

1. The servlet is loaded. This operation is typically performed dynamically,
that is, when the first client accesses the servlet. In most servers, options
are provided to force the loading of the servlet when the server starts up.

2. The server creates an instance of the servlet.

3. The server calls the servlet init() method. This method is called only once
during the lifetime of the servlet.

4. A client request arrives at the server and the server creates a request
object (ServletRequest or HttpServletRequest).

5. The server creates a response object (ServletResponse or
HttpServletResponse).

6. The server invokes the servlet service() method.

7. The service() method takes the request object as one of its two
parameters.

8. The service() method takes the response object as the other parameter.

Request

1 13

Servlet Object

init()

service()

S E R V E R

Resources

2

3

4

5

6

7

8

9 10

11

12

Client

Request

Response
Enterprise Java 519

9. The service() method gets information about the request object and
processes the request accessing other resources, such as databases,
files, etc.

10.The service() method retrieves the necessary information from the
resources accessed.

11.The service() method uses methods of the response object.

12.The service() method passes the response back to the server.

13.The server passes the response back to the client.

For additional client requests, the server creates new request and response
objects, invokes the service() method of the servlet and passes the request
and response objects as parameters. This loop is repeated for every client
request, but, without the need to call the init() method every time. The servlet,
in general, is initialized only once.

When the server no longer needs the servlets (typically when the server is
shut down), the server invokes the servlet destroy() method.

14.5.5 IBM WebSphere Application Server
Before you can run a servlet on a server machine, a Java-enabled Web
server must be installed on it. The latest Web servers have settings during
their installation to optionally select or deselect the servlet support. If your
Web server is not Java enabled, search for the installation of the servlet
component on your Web server installation media, and you might be able to
selectively install this component alone. If your Web server does not have
support for Java, then you should consider installing a Java-enabled Web
server.

Alternatively, you might want to install a servlet engine over the Web server.
The Web server recognizes the servlet engine as one of its components, and
when a request arrives for executing a servlet, the Web server activates the
servlet engine, which starts the JVM (if not already started) and runs the
servlet.

A very powerful servlet engine comes with IBM WebSphere Application
Server5. IBM WebSphere Application Server lets you achieve your Write
Once, Run Anywhere goal for servlet development. The product consists of a
Java-based servlet engine that is independent of both your Web server and
its underlying operating system.

5 See http://www.software.ibm.com/webservers/appserv/.
520 Java 2 Network Security

WebSphere Application Server offers a choice of server plug-ins that are
compatible with the most popular server APIs. The supported Web servers
are:

 • IBM HTTP Server
 • Apache Server
 • Domino
 • Lotus Domino Go Webserver
 • Netscape Enterprise Server
 • Netscape FastTrack Server
 • Microsoft Internet Information Server

In addition to the servlet engine and plug-ins, WebSphere Application Server
provides:

 • Implementation of the JavaSoft Java Servlet API, plus extensions of and
additions to the API

 • Sample applications demonstrating the basic classes and the extensions

 • The IBM WebSphere Application Server Manager, a graphical interface
making it easy to:

 • Set options for loading local and remote servlets

 • Set initialization parameters

 • Manage servlets

 • Specify servlet aliases

 • Create servlet chains and filters

 • Administer and monitor Enterprise Java Services (EJS) components

 • Enable Lightweight Directory Access Protocol (LDAP) directory support

 • Log servlet messages

 • Enable JVM debugging

 • Monitor resources used by Application Server

 • Monitor loaded servlets, active servlet sessions, and JDBC
connections

 • Monitor errors, events, exceptions, and log output

 • Create dumps and data snapshots

 • Dynamically enable and disable tracing

 • A connection management feature that caches and reuses connections to
your JDBC-compliant databases
Enterprise Java 521

When a servlet needs a database connection, it can get one from the pool
of available connections, eliminating the overhead required to open a new
connection for each request.

 • Additional Java classes, coded to the JavaBeans specification, that allow
programmers to access JDBC-compliant databases

These data access beans provide enhanced function while hiding the
complexity of using relational databases. They can be used in a visual
manner in an integrated development environment.

 • Support for dynamic page content called JavaServer Pages (JSP)

JSP technology lets you produce dynamic Web pages with server-side
scripting. The result is to separate your presentation logic (for example,
the HTML code that defines your Web site structure and appearance) from
your business logic (for example, the Java code that accesses a database
for information to display on the Web site). For flexibility, JSP files can
include any combination of inline Java, <SERVLET> tags, National Center for
Supercomputing Applications (NCSA) tags, and JavaBeans.

 • Enterprise Java Services

This function is provided to run and manage applications coded to Sun's
Enterprise JavaBeans (EJB) specification (see 14.7, “Enterprise
JavaBeans” on page 554)

 • Enablement for LDAP supported directory services

 • Modules and a command line interface for integrating Application Server
and Apache Server into the Tivoli Management Environment 10 (TME 10)
for distributed monitoring and operations

14.5.6 A Sample Servlet
We have seen the structure and the life cycle of a servlet. We are now in a
position to write the code for an example servlet, which we call
MyRemoteRequest. This servlet is invoked from an HTML page with a form in
it. The user enters his or her name and country information. By clicking the
Submit button of the form, the servlet is invoked. The servlet displays some
information about the client and server, reads the contents of a file C:\info.txt
residing on the Web server, and displays this information back on the client
machine. The block diagram of the client/server interactions is shown in the
following figure:
522 Java 2 Network Security

Figure 253. MyRemoteRequest Servlet Block Diagram

The application flow is described in the following list:

1. The user on the client machine requests an HTML page containing a form.

2. The Web server sends the requested HTML page back to the client.

3. The user on the client machine fills out the form and submits it, causing
the Web server to invoke the servlet.

4. The servlet processes the client’s request and prepares a dynamic
response for the client.

5. The servlet sends the dynamic response to the server, which sends it back
to the client.

The source code for the servlet MyRemoteRequest is shown in Figure 254 on
page 523, Figure 255 on page 524 and Figure 256 on page 525.

Figure 254. (Part 1 of 3). MyRemoteRequest.java

Client

Web
Server

Servlet

4. Execute Servlet

2. Deliver HTML page

1. Request HTML page

3. Invoke servlet

5. Deliver response

/*
 * This is an example servlet that echoes to the browser the servlet
 * request information as well as information about the request
 * protocol, requester host name and address, and the receiving
 * server name and port number.
 * The servlet also displays the contents of the file on the Webserver, C:\info.txt
 */

import javax.servlet.*;
import java.io.*;
import java.util.*;

public class MyRemoteRequest extends GenericServlet
Enterprise Java 523

Figure 255. (Part 2 of 3). MyRemoteRequest.java

{
 public void service(ServletRequest req, ServletResponse res) throws IOException
 {
 ServletOutputStream os;
 Enumeration paramNames;
 String paramName, paramValue;

 // set the output content type to HTML
 res.setContentType("text/html");

 // get the output stream for the response
 os = res.getOutputStream();
 os.println("<CENTER><H2>MyRemoteRequest Servlet</H2></CENTER><HR>");

 // get and print request protocol and scheme information
 os.println("<P>Request protocol is " + req.getProtocol());
 os.println("
Request scheme is " + req.getScheme());

 // get and print requester information
 os.println("
Remote host is " + req.getRemoteHost());
 os.println("
Remote address is " + req.getRemoteAddr());

 // get and print receiver server information
 os.println("
Receiving server is " + req.getServerName() + " on port number "
 + req.getServerPort());

 // put the request parameters into an Enumeration of strings
 paramNames = req.getParameterNames();

 // loop through name Enumeration, get matching value, and print name/value pair
 os.println("<HR>
Request parameters are:");

 while(paramNames.hasMoreElements())
 {
 // get the next name from the Enumeration of parameters
 paramName = (String)paramNames.nextElement();

 // get the value of the parameter
 paramValue = (String)req.getParameter(paramName);

 // print the name/value pair to the browser */
 os.println("
name = " + paramName + "; value = " + paramValue);
 }
524 Java 2 Network Security

Figure 256. (Part 3 of 3). MyRemoteRequest.java

You can see that the servlet imports the package javax.servlet. There is no
main() in a servlet code. The only method that we implement in this servlet is
the service() method, which accepts a ServletRequest object req, and a
ServletResponse object res. What the servlet does should be clear by
reading the comments embedded in the code, but a more detailed
explanation follows.

The ServletOutputStream object os is created to write back to the client. The
os object is created from the response object, using the
res.getOutputStream(). The Enumeration object paramNames is needed to
temporarily store the parameter name/value pairs passed from the client to
the Web server in the request object, req.

 os.println("<HR>
Contents of file <I>info.txt</I> :");
 try
 {
 String fileName = "C:\\info.txt";
 BufferedReader brIn = new BufferedReader(new FileReader(fileName));
 String lineRead;
 while ((lineRead = brIn.readLine()) != null)
 {
 if (lineRead.length() >0)
 os.println("
" + lineRead);
 else
 os.print(lineRead);
 }
 }
 catch (Exception e)
 {
 os.println("
" + e.toString());
 PrintWriter pwOut = new PrintWriter(os);
 e.printStackTrace(pwOut);
 pwOut.flush();
 pwOut.close();
 }

 // close the output stream
 os.close();
 }
}

Enterprise Java 525

Usually, HTTP data is associated with a specific content type, which can be
any of text/data, text/html, image/gif, application/java-archive, etc. The
content type tells the browser what kind of data is being supplied to it by the
Web server and how to display the data. In our example servlet, we are
asking the Web browser to interpret the results of the execution of the
MyRemoteRequest servlet as an HTML output. Hence, we set the content
type as text/html.

We then obtain the ServletOutputStream os, and print the data to be seen on
the browser, all of them embedded in HTML tags. The ServletRequest class
has several get methods, such as req.getScheme() and
req.getRemoteHost(), which provide information regarding the request object,
req, and also the Web client and the server.

The while loop prints this information to the output stream. The
req.getParameterNames() method obtains the list of the name/value pairs
that were sent as part of the client request.

The next try{}catch(){} block reads the contents of a text file C:\info.txt and
prints it on the client browser. For simplicity, our info.txt file contains only one
line:

Tigers don’t cry!!

Any exception that is generated is again printed on the client’s browser using
the PrintWriter object.

The source code of the servlet we have presented must be compiled. In order
for this operation to succeed, the Java compiler javac must be able to find the
Java Servlet API. The Java Servlet Development Kit (JSDK)6, which is a
basic servlet development environment provided by Sun Microsystems,
comes with two JAR files, server.jar and servlet.jar. To compile the above
servlet on a Java 2 SDK platform, you should copy these two JAR files to the
extensions directory under the Java Runtime Environment (JRE)
development directory (see 8.1, “A Note on java.home and the JRE
Installation Directory” on page 225), and then issue the command:

javac MyRemoteRequest.java

Other servlet engines can come with an implementation of the JavaSoft Java
Servlet API, plus extensions of and additions to the API. If you are using a
different servlet engine, you should follow the directions provided with your
servlet engine product to configure the environment correctly before
compiling the servlet code and running the servlet.

6 You can download the JSDK from http://java.sun.com/products/servlet/.
526 Java 2 Network Security

The class file produced by the command above must be installed in a special
directory that the Web server recognizes as the directory where all the
servlets are installed. This is called the servlet directory, and its location also
depends on the specific servlet engine you are using.

The servlet above is invoked from within the <FORM> of a Web page, whose
code is shown in the HTML file in the following figure:

Figure 257. MyRemoteRequest.html

The following figure shows the Web browser window after the user on the
client machine has invoked the HTML page and has filled in the form fields:

<HTML>
 <HEAD>
 <TITLE>myForm servlet</TITLE>
 </HEAD>

 <BODY>
 <CENTER><H2><U>MyRemoteRequest Servlet - Input Form</U></H2></CENTER>
 <P>
 Hi! Fill in your Name and Country, and click on the Submit
 button.
 <P>

 <FORM Action="examples/servlet/MyRemoteRequest" Method="GET">
 Name : <INPUT Type=input Name="myName" Value="">

 Country : <INPUT Type=input Name="myCountry" Value="">
 <P>
 <INPUT Type="submit" Name="Submit" Value="submit">
 </FORM>
 </BODY>
</HTML>
Enterprise Java 527

Figure 258. MyRequest.html - Input Form

By clicking on the Submit button, the servlet is activated by the Web server. It
processes the input from the client and sends a dynamic response back to
the client machine. This response is then displayed by the Web browser, as
shown in the following figure:
528 Java 2 Network Security

Figure 259. MyRemoteRequest Servlet Output

Notice that the contents of the file info.txt are displayed as well.

We have successfully invoked a servlet on a Web server by sending a request
from a client. The same servlet can also be invoked by an HTML page
downloaded from a different Web server. This topology is shown in the
following diagram:
Enterprise Java 529

Figure 260. Servlet Invoked from an HTML Page on a Different Web Server

The scenario depicted above is similar to the one we have just described. The
only difference is that the HTML page containing the form from which the
servlet is invoked resides in Web server A, while the servlet resides in Web
server B. This page is downloaded from Web server A to the client machine.
When the user on the client machine clicks the Submit button, the input from
the client machine goes directly to Web server B, where the servlet resides.
The server processes the information received and sends the dynamic
response back to the client. As you can see, Web server A just serves the
HTML page and is quickly out of the picture.

14.5.7 The Current Servlet Security Model
So far, we have seen two ways in which a servlet can be invoked. Both of
these topologies are examples of a servlet that exists on the same system as
the Web server. Hence, there are no security restrictions, in terms of the
resources the servlet can access. The servlet described in 14.5.6, “A Sample
Servlet” on page 522, is allowed to read from the file C:\info.txt without any
restriction. Now, we want to examine the scenario where servlet code is

Client

 Web
Server A

 Web
Server B

Servlet

4. Execute Servlet

1. R
equest H

TML page

2. D
eliver H

TML page

3. Invoke Servlet
5. Deliver response
530 Java 2 Network Security

loaded onto Web server A from another remote Web server B, and then a
client sends a request to Web server A to execute the servlet. Note the
difference between invoking a servlet and loading a servlet:

 • When we talk about invoking a servlet, we mean that a client requests a
Web server to execute a servlet. The servlet is local to the Web server
machine, and there is no bytecode transfer across the network. The
execution of the servlet is performed in the Web server hosting the servlet,
and only the output goes back to the client machine. A scenario showing
the invocation of remote servlets is described in 14.5.6, “A Sample
Servlet” on page 522. It is important to emphasize that when a servlet is
remotely invoked, no code transfer is performed, because only the output
of the servlet is transferred across the network, not the servlet itself. For
this reason, this operation does not carry any security risks.

 • Loading a servlet means that Web server A calls and downloads the
bytecode of a remote servlet physically residing on a remote Web server
B, but this time the execution of the servlet is executed in the Web server
A. This operation carries security risks because it involves downloading
remote code across the network. A remote servlet could represent the
same risks as a remote applet: it could steal memory and CPU cycles,
introduce a virus, read private information from the local system (such as
the file C:\info.txt read by the local servlet in 14.5.6, “A Sample Servlet” on
page 522) and then communicate it to another machine in the network,
etc.

The remote loading of servlets is graphically represented in the following
diagram:

Figure 261. Remote Loading of Servlets

The steps involved are:

1. The client requests a Web page.

Client

Web
Server A

Web
Server B

Servlet

6. Execute Servlet

4. Load Servlet

5. Response

1. Request HTML page

2. Deliver HTML page

3. Invoke Servlet3. Invoke Servlet

7. Deliver Response

Servlet
Enterprise Java 531

2. Web server A responds to the client request and delivers the Web page.

3. The client submits a form that sends a specific request to Web server A.
This request asks the Web server to execute a servlet.

4. Web server A does not have the servlet, but loads it remotely from Web
server B.

5. Web server B transfers the bytecode of the servlet to Web server A.

6. The remotely loaded servlet runs on Web server A and processes a
response.

7. The servlet response is sent back to the client.

From the discussion above, it should be clear that Java servlets, like Java
applets, must run under a security manager. The servlet security manager
controls the resources that servlets can access, much the same way the
applet security manager controls the resources that applets can access and
the default security manager of the JVM controls the resources accessible by
applications.

The current servlet security model is still Java Development Kit (JDK)
1.1-based:

 • Local servlets are completely trusted and can access all the system
resources (for example, the servlet discussed in 14.5.6, “A Sample
Servlet” on page 522 was able to read a file from the local file system).

 • Remote servlets can be trusted or untrusted, depending on the digital
signature applied to their code:

 • If they are trusted, they can access all the system resources, like local
servlets.

 • If they are untrusted, they are constrained by the Java servlet sandbox.

Servlets that are loaded remotely from another server run inside the servlet
sandbox; this means that they cannot accomplish tasks like network or file
access. However, sometimes, it is necessary to trust these remotely loaded
servlets and to permit them to access system resources. This can be
achieved by signing the JAR file containing the servlet class.

The current servlet security model is represented in the following diagram:
532 Java 2 Network Security

Figure 262. Servlet Security Model

The reason why servlets still run under a JDK 1.1-based servlet security
model is only because Java 2 has only recently become available; servlet
engines and Java-enabled Web servers have not picked up the new
architecture and APIs yet. However, the Java 2 security model is applicable to
servlets as well, and as soon as servers are Java 2-enabled, it will be
possible to define the exact resources a particular servlet, local or remote,
can access, based on the code source of the servlet itself.

14.5.7.1 Enhanced JDK 1.1 Servlet Security Model
Some servlet engines already offer an enhancement of the traditional JDK
1.1 servlet security model, represented in Figure 262 on page 533. For
example, IBM WebSphere Application Server allows you to manage users,
groups and access control lists (ACLs). To do this it introduces the concept of
security realm. Realms are security domains, used to organize users, groups
and ACLs in a structured way to protect Web resources. Realms are also
used to authenticate a client and to decide which remote servlets to trust and
what kind of resource access remote servlets can gain.

WebSphere Application Server overwrites the JDK 1.1 servlet security model.
For example, a remote unsigned servlet is not necessarily untrusted in
WebSphere Application Server, and you can configure the security of the
servlet engine so that a remote unsigned servlet is granted specific
privileges, as shown in the following diagram:

Resources

JVM Sandbox

Trusted Remote
Servlet

Signed or
Unsigned Local

Servlet

Untrusted
Remote
Servlet
Enterprise Java 533

Figure 263. WebSphere Application Server Security Model - Unsigned Remote Servlet

WebSphere Application Server comes with a predefined user who is called
unsigned, belonging to a realm called servletMgrRealm. All the permissions
granted to unsigned are automatically granted to all the remote unsigned
servlets. So, for example, if the servlet MyRemoteRequest discussed in
14.5.6, “A Sample Servlet” on page 522, is remotely loaded and unsigned, it
can read the file C:\info.txt only if the user unsigned in the servletMgrRealm
has been granted permissions to load servlets and read files:

Resources

JVM

Sandbox

Option - 1

Remote Unsigned
Servlets
(with privileges)

Privileges

Option - 2

Remote Unsigned
Servlets
(default)
534 Java 2 Network Security

Figure 264. Granting Special Permissions to Unsigned Remote Servlets

In the screen above, if you select only Load servlet, an unsigned remote
servlet can only be loaded, but then has to run in the default servlet sandbox
and cannot have access to any of the system resources. If you select Read
files as well, then you are granting a remote unsigned servlet the permission
to read files – this permission would not be available in the default JDK 1.1
servlet sandbox. Notice that if Load servlet is not selected, an unsigned
remote servlet cannot even be loaded and so it would not even fall under the
default servlet sandbox.

In WebSphere Application Server, a signed remote servlet is not necessarily
completely trusted. You can specify the exact permissions that the signer is
granted, and all the servlets signed by that user will automatically be granted
those permissions.

Servlet signers in WebSphere Application Server are users in the
servletMgrRealm. You must first define a user in the servletMgrRealm, and
then grant it the necessary permissions. Servlet signers are defined by
Enterprise Java 535

registering the X.509 certificate of the signer in WebSphere Application
Server.

The following figure shows how to grant all the servlets signed by
Ashok_Signer the permission to be loaded and read files in the local file
system:

Figure 265. Granting Special Permissions to a Servlet Signer

This way, it is possible to have the servlets signed by signer A with a specific
set of permissions, servlets signed by signer B with another set, servlets
signed by signer C with yet another set of permissions, etc. There can be also
servlets signed by a signer D with permissions limited by the servlet sandbox.
This scenario is graphically represented in the following diagram:
536 Java 2 Network Security

Figure 266. Enhanced Servlet Security Model – Signed Servlet

As you can see, these enhancements permit a better selection of the
permissions that can be granted to signed and unsigned remote servlets.
However, this security model is still far from the Java 2 security architecture:

 • It does not include the concept of code base.

 • The number of permissions is limited.

 • You cannot specify the target and the actions of any permissions.

These limitations will be solved as soon as servlet engines incorporate the
Java 2 security model.

14.6 Distributed Object Architectures – RMI

CGI uses a transaction model: the client issues a transaction request and
then waits until the server returns the results. Distributed object architectures
are a more elegant approach. Effectively, the object space that an applet or
application is working with is extended to include objects on different
systems. Client-side Java and server-side Java can be combined to create a
full distributed architecture, where functions can be split between the client
and server to optimize processing and network loads.

Apart from getting object-oriented purists excited, distributed object
architectures have a number of advantages over more conventional

Resources

JVM

Sandbox

Servlets
Signed by A

, ,, ,,,

Servlets
Signed by B

Servlets
Signed by C

Servlets
Signed by D
Enterprise Java 537

transactional systems, including security advantages. For example, you can
design systems in which mission-critical objects may be kept safe behind a
firewall with access allowed only via method calls from clients. This is far
safer than shipping data out of the organization to multiple clients who may
simultaneously make changes.

To aid the creation of distributed architectures, Java provides a tool kit called
Remote Method Invocation (RMI). This extends the Java object model to the
network, by allowing objects in one JVM to invoke methods seamlessly on
objects in another, remote, JVM. The remote JVM can, in turn, invoke other
remote objects.

RMI support in Java 2 SDK, Standard Edition, V1.2 is provided by the
java.rmi package and its four subpackages java.rmi.activation, java.rmi.dgc,
java.rmi.registry and java.rmi.server.

Figure 267. Invoking a Method with RMI

With RMI, an object, B, residing on one machine (the server) may be
manipulated by another object, A, on a remote machine (the client). Object B
doesn’t really exist on the client, rather an alternative object is used as a kind
of stunt double. This stub- or proxy-object provides the same interface as the
real object B, but under the covers it uses the RMI services to pass method

Execute Method A
on Object B

Skeleton Object B

Invoke Method A
on Object B

Stub Object B

Distributed
Computing
Services

Distributed
Computing
Services
538 Java 2 Network Security

requests over the network to the real object B. Object A therefore doesn’t
need to know whether object B is local or remote.

If another object, C, needs to be passed between the client and the server –
for instance as a parameter for a method – RMI uses a technique called
object serialization to flatten the object, turning it into a stream of bytes.
These are sent to the RMI system on the remote machine, which rebuilds the
object C and passes it into the method call. Return values from methods are
handled in the same way.

A simple naming service, the RMI Registry, is provided to connect clients and
servers together using a URL-style of names, such as //host:port/name. A
client asks for the remote objects, and the remote server returns the stub
object to the client. Developers use the rmic compiler to generate the
matching stub and skeleton classes for a remote object.

This means it becomes possible to write distributed applications, with little
need to be aware of exactly where the software will be executed. A
RemoteException may be thrown on error conditions, but apart from that, the
program need not be aware that portions are executing remotely.

14.6.1 Stubs and Skeletons
We said that in RMI, an object residing on a server machine may be
manipulated by another object residing on a remote client machine. The
terms client and server here apply only for this single call, because in a later
transaction the machine that acted as the server can also act as a client and
request for a RMI from another machine, which would be the server for this
new interaction. When a client object wants to invoke a remote method, it
calls a Java method that is encapsulated in a surrogate object called the stub.
The stub resides on the same machine as the client. The stub then uses the
object serialization mechanism of Java to send data in a format suitable for
transporting the parameters and the method call to a process on the server.
The stub builds an information block that consists of:

 • An identifier of the remote object to be used

 • An operation number, describing the method to be called

 • The marshalled7 parameters

This information block is sent to the server. A skeleton object residing at the
server end receives this information block and takes the appropriate actions:

 • Unmarshalls the parameters sent by the stub
7 Marshalling is the mechanism of encoding the parameters into a format appropriate to transport objects across the
network.
Enterprise Java 539

 • Calls the appropriate method on the actual object residing on the server

 • Captures any exceptions generated due to the call on the server or any
return value to be sent back to the stub on the client

 • Sends a block in a marshalled form back to the client

Now, the stub receives the response from the skeleton, unmarshalls the
return value or the exceptions. The stub is also responsible for passing the
return value or the exception to the process that triggered the stub initially.

14.6.2 RMI Registry
How does the stub get a handle to the server skeleton object on the server
machine? This happens through the RMI registry. The RMI registry is a
simple server-side name server that allows remote clients to get a reference
to a remote object. It is typically used only to locate the first remote object to
which an RMI client needs to talk. Then that first object in turn, would provide
application-specific support for finding other objects. Once a remote object is
registered on the server, callers can look up the object by name, obtain a
remote object reference, and then remotely invoke methods on the object.

At the server end, the RMI server source code must bind the server object
with a reference to the object and a name (which is a unique string on the
RMI registry). This is an example of the code section to register a server
object with the RMI registry:

The above code registers the EmployeeImpl object emp1 with a registry
name ITSO. Notice that wtr05218 in this example is the host name of the
server machine.

At the client end, the client code gets a stub to access the server object using
the following code:

In Java 2 SDK, Standard Edition, V1.2, an additional stub protocol has
been introduced that eliminates the need for skeletons in environments that
involve the Java 2 SDK platform only. Instead, generic code is used to carry
out the duties performed by skeletons in JDK1.1.

Stubs and Skeletons in the Java 2 SDK

// Create a new EmployeeImpl object and register it with the RMI registry
EmployeeImpl emp1 = new EmployeeImpl("Ashok");
Naming.rebind("//wtr05218/ITSO", emp1);
540 Java 2 Network Security

In the above code fragment, you can see that RMI also uses a URL type
format (the url String object) to locate the server object entry in the RMI
registry, running at the server end.

Before you execute the server and client Java programs, you must start the
RMI registry at the server end. The RMI registry usually runs in background,
so the typical command to launch it is:

 • On Windows systems:

start rmiregistry

 • On UNIX systems:

rmiregistry &

This opens a new window and the RMI registry service is launched. The
command above does not produce any output. You can minimize this window.

The RMI registry listens on a default port of 1099. If you wish to run it on a
different port, you can start it by specifying the port number on the command
line; for example:

start rmiregistry 1969

If the registry is running on a port other than the default, you must specify the
port number in the name handed to the URL-based methods of the
java.rmi.Naming class when making calls to the registry. For example, if the
registry is running on port 1969, the call required to bind the EmployeeImpl
instance emp1 to the name ITSO would be:

String url = "//wtr05218/";
// Obtain Employee objects by looking up at the RMI registry on the server
Employee c1 = (Employee) Naming.lookup(url + "ITSO");

For security reasons, an application can bind or unbind only to a registry
running on the same host. This prevents a client from removing or
overwriting any of the entries in a server's remote registry. A lookup,
however, can be done from any host.

One Note on Security

// Create a new EmployeeImpl object and register it with the RMI registry
EmployeeImpl emp1 = new EmployeeImpl("Ashok");
Naming.rebind("//wtr05311:1969/ITSO", emp1);
Enterprise Java 541

14.6.3 A Sample RMI Program
In this section, we write an program to illustrate the RMI implementation in
Java. This example demonstrates how a downloaded applet on a client
browser makes an RMI call to retrieve a message. This message is then
displayed on the Web browser where the applet is running.

The following steps are needed:

1. Create the Java and HTML files used in this scenario – Employee.java,
EmployeeImpl.java, EmployeeServer.java, EmpApplet.java, Emp.html.

2. Compile the Java files using the Java compiler javac.

3. Generate stub and skeleton classes on the server by running the rmic
command.

4. Start the RMI registry on the server.

5. Run the EmployeeServer program on the server to register objects with
the registry.

6. Test the functioning of the RMI setup using the sample DispBindings
program.

7. Invoke the applet, that in turn invokes remote methods on the client.

We now explain the details of each step.

14.6.3.1 Creating the Java and HTML Files
In Java, a remote object is an instance of a class that implements a remote
interface. Your remote interface declares each of the methods that you would
like to call remotely. Hence, we provide the implementation details in an
interface, Employee, in the file Employee.java. Normally, the interface class
file is present on both the client and the server machine.

This is the source code for the Employee interface:

Figure 268. Employee.java

Notice that remote interfaces have the following characteristics:

import java.rmi.*;

public interface Employee extends Remote
{
 public String getEmpInfo() throws RemoteException;
}

542 Java 2 Network Security

 • The remote interface must be declared public. Otherwise, unless a client is
in the same package as the remote interface, the client will get an error
when attempting to load a remote object that implements the remote
interface.

 • The remote interface extends the java.rmi.Remote interface.

 • Each method must declare java.rmi.RemoteException (or a superclass of
RemoteException) in its throws clause, in addition to any
application-specific exceptions.

The method getEmpInfo() declared in the Employee interface is the remote
method that the client will be invoking.

Next, we code the EmployeeImpl class that implements the Employee
interface. A class that implements a remote interface must do the following:

 • Declare that it implements the remote interface.

 • Define the constructor for the remote object.

 • Provide implementations for the methods that can be invoked remotely.

The source code for the remote object implementation class EmployeeImpl is
shown in the following figure:

Figure 269. EmployeeImpl.java

import java.rmi.*;
import java.rmi.server.*;

public class EmployeeImpl extends UnicastRemoteObject implements
Employee
{
 private String empName;

 public EmployeeImpl(String Name) throws RemoteException
 {
 empName = Name;
 }

 public String getEmpInfo()
 {
 return "Hi! I am " + empName;
 }
}

Enterprise Java 543

As a convenience, the implementation class can extend a remote class, which
in this example is java.rmi.server.UnicastRemoteObject. By extending
UnicastRemoteObject, the EmployeeImpl class can be used to create a
remote object that:

 • Uses RMI's default sockets-based transport for communication.

 • Runs all the time.

Notice that the EmployeeImpl() constructor accepts a java.lang.String object,
which is what is returned as part of the message when the getEmpInfo()
method is called. The constructor must throw at least a
java.rmi.RemoteException.

The getEmplnfo() method is the one invoked remotely by the client.

We are now ready to code the EmployeeServer class. This program, when
executed, binds two Employee objects with the RMI registry. These are the
requirements for a server class:

 • Create and install a security manager.

 • Create one or more instances of a remote object.

 • Register at least one of the remote objects with the RMI remote object
registry.

The code for the EmployeeServer class is shown in the following figure:

Figure 270. (Part 1 of 2). EmployeeServer.java

import java.rmi.*;

public class EmployeeServer
{
 public static void main(String args[])
 {
 // The RMISecurityManager overrides java.lang.SecurityManager -
 // RMIClassLoader will not download any classes from remote locations
 // if no security manager has been set
 System.setSecurityManager(new RMISecurityManager());

 try
 {
 // Create new EmployeeImpl objects and register them with the RMI registry
 EmployeeImpl emp1 = new EmployeeImpl("Ashok");
 EmployeeImpl emp2 = new EmployeeImpl("Ascii");
544 Java 2 Network Security

Figure 271. (Part 2 of 2). EmployeeServer.java

The EmployeeServer program sets a new RMISecurityManager. A security
manager must be running so that the classes that get loaded do not perform
operations that they are not allowed to perform. You can use the
RMISecurityManager class, provided in the java.rmi package, or another
security manager you have implemented. If no security manager is specified,
no class loading by RMI clients or servers, is allowed.

In the try{}catch(){} block, the EmployeeServer instantiates two
EmployeeImpl objects, emp1 and emp2. The EmployeeImpl constructors
accept the names Ashok and Ascii respectively and store them. These
names, as you remember, are then retrieved by the
EmployeeImpl.getEmpInfo() method. The Naming.rebind() method binds the
emp1 and the emp2 objects to the RMI registry with the respective names
ITSO and Palaya. It is these names that the RMI client refers to (using the
Naming.lookup() method), when requesting a reference to the server objects.
If the binding is successful, the following message is displayed on the server:

Naming Rebind was successful

Notice that wtr05218 is the host name of the server machine.

We have completed the coding for the RMI server modules. We will now start
the coding for the client side, which uses the remote service. The client side
code includes the applet and the HTML file.

The applet code is shown in the following figure:

 // The Naming class provides methods for storing and obtaining
 // references to remote objects in the RMI registry.
 Naming.rebind("//wtr05218/ITSO", emp1);
 Naming.rebind("//wtr05218/Palaya", emp2);
 System.out.println("Naming Rebind was successful");
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Enterprise Java 545

Figure 272. EmpApplet.java

The EmpApplet gets the parameter name specified within the <APPLET> tag of
the HTML source. This parameter is stored in the param1 variable and
param1 is used to look up for the server object in the RMI registry. Once the
Employee object is obtained, the getEmpInfo() is called.

Notice that the Naming.lookup() method takes a URL-formatted
java.lang.String object. In this example, the applet constructs the URL string

import java.applet.Applet;
import java.awt.Graphics;
import java.rmi.*;

public class EmpApplet extends Applet
{
 // Data returned from the Remote Method Invocation
 String data = "NULL";

 // empObj refers to the remote object that implements the Employee interface
 Employee empObj = null;

 public void init()
 {
 try
 {
 String param1 = getParameter("emp");
 if (param1 == null)
 param1 = "Palaya";
 empObj = (Employee) Naming.lookup("//" + getCodeBase().getHost() + "/" +
 param1);
 data = empObj.getEmpInfo();
 }
 catch (Exception e)
 {
 System.out.println("EmpApplet exception: " + e.getMessage());
 e.printStackTrace();
 }
 }

 public void paint(Graphics g)
 {
 g.drawString(data, 25, 50);
 }
}

546 Java 2 Network Security

by using the getCodeBase() method in conjunction with the getHost() method.
The constructed URL-string that is passed as a parameter to the
Naming.lookup() method must include the server’s host name. Otherwise, the
applet’s lookup attempt will default to the client, and the applet security
manager will throw an exception since the applet cannot access the local
system, but is instead limited to communicating only with the applet’s host.

The HTML file that contains the <APPLET> tag is shown in the following figure:

Figure 273. Emp.html

14.6.3.2 Compiling the Java Source Files
We compile the Java source files using the javac command:

javac Employee.java
javac EmployeeImpl.java
javac EmployeeServer.java
javac EmpApplet.java

The commands above generate a class file for each Java file listed. The Java
compiler requires:

 • The Employee class file in order to compile EmployeeImpl.java and
EmpApplet.java

 • The EmployeeImpl class file in order to compile EmployeeServer.java

Therefore, it is important that the Java compiler javac finds the classes it
needs via the class path. This can be accomplished by running the above
commands in the same directory.

<HTML>
 <HEAD>
 <TITLE>RMI Employee Applet</TITLE>
 </HEAD>

 <BODY>
 <CENTER><H1>RMI Employee Applet</H1></CENTER>
 <H2>Data from <i>EmployeeServer</i></H2>
 <HR><P>
 <APPLET Code="EmpApplet.class" Width=500 Height=120>
 <PARAM Name="emp" Value="Palaya">
 </APPLET>
 </BODY>
</HTML>
Enterprise Java 547

We store all the class files generated by the commands above in the public
directory D:\WWW\HTML of the Web server machine wtr05218, where Java 2
SDK, Standard Edition, V1.2.1 is installed. The HTML file Emp.html (see
Figure 273 on page 547) is stored in the same directory as well. The Web
server machine, in this example, is also the RMI server.

14.6.3.3 Generating Stub and Skeleton Classes
The stub and skeleton classes are generated from the EmployeeImpl class by
running the rmic command:

rmic EmployeeImpl

As soon as you run the above command, you will find two new class files in
the same directory where EmployeeImpl is: EmployeeImpl_Stub.class and
EmployeeImpl_Skel.class.

The rmic command runs with the default -vcompat option, which creates stubs
and skeletons compatible with both JDK 1.1 and Java 2 SDK, Standard
Edition, V1.2 stub protocol versions. You will need to run the above command
if the platform where your RMI program will run is not completely based on
Java 2 SDK, Standard Edition, V1.2. For example, if the applet will run on a
browser that is not yet Java 2-enabled, and the server runs on Java 2 SDK,
Standard Edition, V1.2, your RMI environment is not completely Java
2-based.

In 14.6.1, “Stubs and Skeletons” on page 539, we stated that a client/server
environment completely based on Java 2 SDK, Standard Edition, V1.2 no
longer requires skeletons. In this case, you should run the rmic command with
the -v1.2 option:

rmic -v1.2 EmployeeImpl

This command creates only the stub class file EmployeeImpl_Stub.class. The
skeleton class file is not generated.

14.6.3.4 Starting the RMI Registry
The RMI registry process is started using the command discussed in 14.6.2,
“RMI Registry” on page 540. You can minimize the window where the
rmiregistry executable is running, and let it run in the background.

14.6.3.5 Running the Server
On the server, it is necessary to register the objects with the RMI registry. To
do this, the EmployeeServer program must be launched, and this is done with
the command:

java EmployeeServer
548 Java 2 Network Security

However, even if the command above is launched without invoking a security
manager, it throws an AccessControlException and complains that the code
does not have the following permission:

java.net.SocketPermission wtr05218:1099 connect,resolve

In reality, even if not explicitly specified on the command line, a security
manager is invoked when the EmployeeServer class is launched. In fact, if
you look back at the source code of EmployeeServer (see Figure 270 on page
544 and Figure 271 on page 545), you will see the following line of code:

System.setSecurityManager(new RMISecurityManager());

It is the EmployeeServer class itself that invokes the RMISecurityManager
class.

The RMISecurityManager complains about EmployeeServer’s attempt to
resolve and connect to the server wtr05218 on the default port 1099; hence,
an AccessControlException is thrown. This problem is solved by adding the
following grant entry in one of the policy files in effect on the server machine:

After granting the permission above, you can launch the EmployeeServer
program, which produces the following output:

Naming Rebind was successful

At this point, a simple test program can verify your RMI setup and see if the
RMI server program has registered the server objects correctly. We write a
program called DispBindingsList to do this. The source code is shown in the
following figure:

Figure 274. (Part 1 of 2). DispBindingList.java

grant codeBase "file:/D:/WWW/HTML/" {
 permission java.net.SocketPermission "wtr05218:1099", "connect, resolve";
};

import java.rmi.*;

public class DispBindingList
{
 public static void main(String args[])
 {
 // Set the RMI security manager
 System.setSecurityManager(new RMISecurityManager());
Enterprise Java 549

Figure 275. (Part 2 of 2). DispBindingList.java

The above program is compiled by entering the command:

javac DispBindingList.java

We save the class file generated by the command above in the RMI server
machine, and we launch it with the command:

java DispBindingList

Notice that the DispBindingList class also sets the RMISecurityManager as
the current security manager, and in order to run correctly it needs the same
permissions as EmployeeServer. Therefore, you should grant those
permissions to the code source of DispBindingList as well. A quick solution is
to save the DispBindingList class file in the same directory where
EmployeeServer.class is, and it will be granted the same permissions.

After these security settings are in place, the command above runs correctly
and produces the following output:

This output demonstrates that two server objects have been registered
correctly: Palaya and ITSO. Any RMI client requesting a remote method
invocation on this EmployeeServer can perform either of the following:

 System.out.println("Getting the Binding List");
 try
 {
 // Get the list of all bound objects using a Naming.list() method call
 String[] bindingList = Naming.list("");
 for (int i=0; i < bindingList.length; i++)
 System.out.println(bindingList[i]);
 }
 catch (Exception e)
 {
 System.out.println("Error: " + e);
 e.printStackTrace();
 }
 }
}

Getting the Binding List
rmi:/Palaya
rmi:/ITSO
550 Java 2 Network Security

Naming.lookup("//wtr05218/ITSO")
Naming.lookup("//wtr05218/Palaya")

to obtain the corresponding Employee object. The Employee object’s getInfo()
method would then return Ashok if the Naming.lookup() call specifies ITSO or
Ascii if the Naming.lookup() call specifies Palaya.

14.6.3.6 Invoking the Applet
If the rmic command was launched without any option (see 14.6.3.3,
“Generating Stub and Skeleton Classes” on page 548), the applet EmpApplet
works from any Web browser or Applet Viewer, as shown in the following
figure:

Figure 276. EmpApplet Output on a JDK 1.1-Based Web Browser

On the other hand, if the rmic command was launched with the -v1.2 option, a
skeleton object is not generated (see again 14.6.3.3, “Generating Stub and
Skeleton Classes” on page 548), and the RMI program works only on an
Enterprise Java 551

environment that is completely based on Java 2 SDK, Standard Edition, V1.2.
In this case, the applet runs correctly in a JDK 1.1-based Web browser only if
the Java plug-in is activated and is configured to use a Java 2 JRE (see
Chapter 11, “The Java Plug-In” on page 359). Another option is to use the
Java 2 SDK, Standard Edition, V1.2 Applet Viewer. This can be launched by
entering the following command:

appletviewer http://wtr05218/Emp.html

The output is shown in the following figure:

Figure 277. EmpApplet Output on the Java 2 SDK Applet Viewer

As you can see, the applet displays the message:

Hi! I am Ascii

If now, in the Emp.html file (see Figure 273 on page 547), we change the
value of the emp parameter from Palaya to ITSO, the output of the applet will
be different:

Hi! I am Ashok

This conforms to the following two lines of code of the EmployeeServer class:

Naming.rebind("ITSO", emp1);
Naming.rebind("Palaya", emp2);

These lines bind the Employee objects to the RMI registry with names ITSO
and Palaya respectively. Hence, in the applet, we use these names, ITSO and
Palaya, to get a handle to the Employee object with the Naming.lookup()
method. Once we have the Employee object, we display the string returned
by the getInfo() method. The returned string is either Ashok or Ascii,
depending on the value of the emp parameter in the Emp.html file.
552 Java 2 Network Security

14.6.4 The Security of RMI
RMI appears to be a straightforward way of creating a distributed application.
But there are a number of security issues8:

 • RMI has a simple approach to creating the connection between the client
and server. Objects are serialized and transmitted over the network. They
are not encrypted, so anyone on the network could read all the data being
transferred.

 • There is no authentication; a client just requests an object (stub), and the
server supplies it. Subsequent communication is assumed to be from the
same client.

 • There is no access control to the objects.

 • There are no security checks on the registry itself; it assumes any caller is
allowed to make requests.

 • Objects are not persistent; the references are only valid during the lifetime
of the process which created the remote object.

 • Stubs are assumed to be matched to skeletons; however, programs could
be constructed to simulate the RMI network calls, while allowing any data
to be placed in the requests.

 • Network and server errors will generate exceptions, so applications must
be prepared to handle these.

 • There is no version control between stubs and skeletons; thus, it is
possible for a client to use a down-level stub to access a more recent
skeleton, breaking release-to-release binary compatibility.

A security manager must be set before a remote class can be loaded. For
Java applets, the security manager is defined by the Web browser or the
Applet Viewer. For Java applications, the security manager can be defined on
the command line invocation with the -Djava.security.manager option, or it can
be defined programmatically within the application itself. There is a
java.rmi.RMISecurityManager class available that extends
java.lang.SecurityManager and makes extra checks when code tries to
access a class package. Specifically, the
RMISecurityManager.checkPackageAccess(pkg) method consults the
package.restrict.access.pkg property:

 • If the property is set to false, the check method returns quietly.

8 At the time of writing this book, the Java RMI Security Extension is a proposed standard extension to add security to
Java RMI (see 17.1.4, “Java RMI Security Extension” on page 637). Most of the problems listed here, such as lack of
authentication, will be solved by the Java RMI Security Extension.
Enterprise Java 553

 • If the property is set to true, the default SecurityManager's
checkPackageAccess() method is called.

If you require a different (more or less restrictive) security policy, you will need
to create your own security manager.

If the client and server are connected through one or more firewalls, there are
additional issues to be considered. These are covered in 15.7, “Remote
Method Invocation” on page 599.

We recommend you only use RMI in pure intranet configurations, or for
applications where it cannot usefully be attacked. An inter-company chat
system may be a reasonable use of RMI. Closely coupled internal systems
might use RMI, if the appropriate access controls are put in place by network
and firewall design. But the lack of authentication and access control in the
raw RMI must limit its wider use in secure applications.

If you need to create a secure distributed application, you should investigate
alternatives to RMI. The Common Object Request Broker Architecture
(CORBA) implementations available today provide heavier-weight remote
execution methods (see 2.1.3.2, “Some of the Roads to Purity” on page 50),
and other suppliers can provide alternatives to RMI.

14.7 Enterprise JavaBeans

As technology evolves, applications are becoming more and more complex.
Despite the advancements in both hardware and software, including the
emergence of object-oriented technology, it is not getting easier to create
applications. An alternative to reducing the logical complexity of applications
is to create reusable software components, that is, programs that respect a
predefined template and can be easily reused.

Software components must have the ability to be easily assemblable to create
applications with much greater efficiency. In other words, a software
component should interact with other software components and be able to
define useful interfaces that other components can take advantage of.

This brings us to JavaSoft’s JavaBeans technology. JavaBeans consists of an
architecture and platform-independent API for creating and using dynamic
Java software components, called Java beans. They can be connected to
existing code. The typical phrase associated with Java code is write once, run
anywhere. With the JavaBeans technology, now we can add: reuse
everywhere. For this reason, Java beans are useful in many different software
554 Java 2 Network Security

and hardware configurations. Also, the same piece of code can be used in
different applications.

The JavaBeans API specification defines a Java bean as follows: a Java bean
is a reusable software component that can be visually manipulated in builder
tools.

This definition consists of two totally independent parts:

1. A Java bean is a platform-independent software component

2. A Java bean knows about the tools that will manipulate it and is compatible
with those tools

A bean is defined as a software component that can be visually manipulated
in builder tools. Java technology is object-oriented and certainly enables you
to build reusable objects, but Java itself does not define any mechanism for
creating reusable Java objects that can interact with other objects
dynamically. JavaBeans, unlike plain Java, provides a framework by which
this communication can easily take place.

Besides the JavaBeans technology, JavaSoft has created Enterprise
JavaBeans9, a component architecture for the development and deployment
of object-oriented distributed enterprise-level applications. Applications
written using the EJB architecture are scalable, transactional, and multi-user
secure. These applications may be written once, and then deployed on any
server platform that supports the EJB specification. The EJB architecture
logically extends the JavaBeans component model to support server
components.

Enterprise application systems support high scalability by using a multi-tier,
distributed application architecture. A multi-tier application is an application
that has been partitioned into multiple application components. Multi-tier
applications provide a number of significant advantages over traditional
client/server architectures, including improvements in scalability,
performance, reliability, manageability, reusability, and flexibility.

The essential characteristic of an enterprise Java bean is its extreme
flexibility. In particular:

 • An enterprise bean’s instances are created and managed at run time by a
container.

 • An enterprise bean can be customized at deployment time by editing its
environment properties. This means that you can customize an enterprise

9 See http://www.javasoft.com/products/ejb/.
Enterprise Java 555

Java bean to suit the specific requirements of an application through a set
of external property values.

 • Various metadata, such as a transaction mode and security attributes, are
separated out from the enterprise bean class. This allows the metadata to
be manipulated using the container’s tools at design and deployment time.

 • Client access is mediated by the container and the EJB server on which
the enterprise Java bean is deployed.

This means that the EJB architecture makes it possible to shift most of the
burden of implementing security management from the enterprise Java bean
to the EJB container and server.

Currently, the EJB 1.0 model utilizes the Java security services supported in
JDK 1.1. Java platform security supports authentication and authorization
services to restrict access to secure objects and methods. EJB technology
automates the use of Java platform security so that enterprise beans do not
need to explicitly code Java security routines. The security rules for each
enterprise bean are defined declaratively in a set of AccessControlEntry
objects within the deployment descriptor object. An AccessControlEntry
object associates a method with a list of users that have rights to invoke the
method. The EJB container uses the AccessControlEntry to automatically
perform all security checking on behalf of the enterprise bean.

Support for security in the EJB architecture includes the existing Java
programming language security APIs defined in the core package
java.security.
556 Java 2 Network Security

Chapter 15. Java and Firewalls – In and Out of the Net

In this chapter, we consider how Java security can be affected when firewall
systems are used on the network.

In particular, we will see how different firewall implementations can affect the
proper working of an applet network connection through a firewall.

15.1 What Is a Firewall?

By firewall, we mean any computer system, network hardware or combination
of them that links two or more networks, and enforces some access control
policy between them. Thus one side of the network is protected from any
dangers in the other part of the network, analogous to the solid firewalls in
buildings, which prevent a fire from spreading from one part of the building to
another.

Figure 278. Firewall Representation

Until recent years, very few organizations thought seriously about the need
for firewalls, despite the efforts of firewall vendors. Some well-publicized
security breaches, when the contents of several public Web sites were
vandalized, proved to be an ideal marketing opportunity. Almost any type of
access control system was called a firewall. The National Computer Security
Association (NCSA) has subsequently created tests to enforce minimum
standards for a firewall, but that has not stopped some vendors from using the
term creatively.

Secure Network

 Firewall

Non-Secure Network
© Copyright IBM Corp. 1997 1999 557

To add to the confusion, sometimes a single hardware system is called a
firewall, while other times a complex collection of multiple routers and servers
implement the firewall function. But we need to be concerned only with the
policies enforced by the firewall, and what the effect is on the data traffic.

15.2 What Does a Firewall Do?

Firewalls can affect any type of network traffic, depending on their
configuration. The areas we are especially concerned with are the following:

1. The loading of Java applets from a server to a client

2. Network accesses by Java applets to a server

Firewalls may be present at the client network, the server network, or both. In
order to understand the implications, we must understand the basic functions
provided by a firewall.

Current literature on firewalls is filled with buzzwords used by specialists to
describe the different software techniques that can be used to create
firewalls. Techniques include packet filtering, application gateways, proxy
servers, dynamic filters, bastion hosts, demilitarized zones, and dual-homed
gateways. For the purpose of this book, we can ignore the details of the
software technologies, and simply concentrate on what a firewall does with
data packets flowing through it.

There are several other firewalls functions that have no real effect on Java
security; for example, logging, reporting and management functions are
available, and these may themselves be written in Java. As an example, the
IBM Firewall has a graphical user interface developed in Java.

The basic security functions of any firewall are to examine data packets sent
through the firewall, and to accept, reject or modify the packets according to
the security policy requirements. Most of today’s firewalls work with TCP/IP
data only, so it is worth seeing what is inside a TCP/IP data packet, in order to
understand the firewall’s actions.

15.2.1 Inside a TCP/IP Packet
All network traffic exchange is performed by sending blocks of data between
two connected systems. The blocks of data are encapsulated within a data
packet by adding header fields to control what happens to the data block en
route and when it reaches its final destination. Network architectures are
constructed of layers of function, each built on the services of the layer
beneath it. The most thorough layered architecture is the open systems
558 Java 2 Network Security

interconnection (OSI) model, whereas other architectures, such as TCP/IP,
use broader layer definitions. On the wire, these layers are translated into a
series of headers placed before the data being sent, as shown in the following
diagram:

Figure 279. Mapping the Layered Network Model to Packet Headers

The first part of the header, the Data Link/Physical header, is determined by
the type of network. Ethernet, token-ring, serial lines, FDDI, and so on, each
have their own headers, containing synchronization, start-of-packet
identifiers, access control, and physical addresses1 as required by the
network type. There may be fields to distinguish Internet Protocol (IP) packets
from other types of packets, such as NetBIOS or SNA. We need to consider
only IP packets here.

The next part of the header of IP packets is the standard IP header, which
specifies the originator (source) address and the intended recipient
(destination) address, together with fields to control how the packet is

1 Network devices require an adapter to physically attach to the LAN. This adapter must provide both physical and logical
capabilities for the device. The adapter contains a unique 48-bit address, assigned to it during the manufacturing process,
called Media Access Control (MAC). All the MAC addresses are assigned by the IEEE 802 committee. The IEEE
provides the vendor building adapters with a range of MAC addresses to use for assigning adapters their unique 48-bit
address so that no two adapters should ever have a duplicate address. Ethernet and token-ring require the MAC address
for both the origin and the destination adapters when communicating over a LAN. Besides the IP address, the MAC
address also must be known when sending data to a LAN-attached device.

OSI Model TCP/IP Model

Network Interface
Physical

Internet

Transport

Application

Physical

Data Link

Application

Presentation

Session

Transport

Network

Header Payload
Java and Firewalls – In and Out of the Net 559

forwarded through the Internet. There are two main types of IP headers: the
common IP V4 standard, and the new IPv6 standard, which is intended to
replace IPv4.

This is followed by the transport layer header, which controls what happens to
the packet when it reaches its destination. Almost all the user-level protocols
commonly referred to as TCP/IP use either a Transmission Control Protocol
(TCP) or a User Datagram Protocol (UDP) header at the transport layer.

Finally, application protocol headers and data are contained in the payload
portion of the packet, and are passed from the sending process to the
receiving process.

Each of these packet headers contain a number of data fields, which may be
examined by a firewall and used to decide whether to accept or reject the
data packet.

For current purposes, the most important data fields are:

 • Source IP address – a 32-bit address (IPv4) or a 128-bit address (IPv6)

 • Destination IP address – a 32-bit address (IPv4) or a 128-bit address
(IPv6)

 • Source port number – a 16-bit value

 • Destination port number – a 16-bit value

The source and destination IP addresses identify the machines at each end
of the connection, and are used by intermediate machines to route the packet
through the network. Strictly speaking, an IP address identifies a physical or
logical network interface on the machine, which allows a single machine to
have several IP addresses.

The source and destination port numbers are used by the TCP/IP networking
software at each end, to send the packets to the appropriate program running
on the machines. Standard port numbers are defined for the common network
services; for example, by default, an FTP server expects to receive TCP
requests addressed to port 21, and an HTTP Web server expects to receive
TCP requests to port 80.

However, non-standard ports may be used. It is quite possible to put a Web
server on port 21, and access it with a URL of http://server:21/. Because of
this possibility, some firewall systems will examine the inside details of the
protocol data, not just headers, to ensure that only valid data can flow
through.
560 Java 2 Network Security

As an elementary security precaution, port numbers less than 1024 are
privileged ports. On some systems, such as UNIX, programs are prevented
from listening to these ports, unless they have the appropriate privileges. On
less secure operating systems, a program can listen on any port, although it
may require extra code to be written. HTTP Web servers, in particular, are
often run on non-standard ports such as 8000 or 8080 to avoid using the
privileged standard port 80.

The non-privileged ports of 1024 and above can be used by any program;
when a connection is created, a free port number will be allocated to the
program. For example, a Web browser opening a connection to a Web server
might be allocated port 1044 to communicate with server port 80. But what
happens, you may ask, if a Web browser from another client also gets
allocated port 1044? The two connections are distinguished by looking at all
four values (source IP address, source port, destination IP address,
destination port), as this group of values is guaranteed to be unique by the
TCP standards.

15.2.2 How Can Programs Communicate through a Firewall?
Simple packet-filtering firewalls use the source and destination IP addresses
and ports to determine whether packets may pass through the firewall.
Packets going to a Web server on destination port 80, and the replies on
source port 80, may be permitted, while packets to other port numbers might
be rejected by the firewall. This may be allowed in one direction only and it
may be further restricted by only allowing packets to and from a particular
group of Web servers, as shown in the following figure:

Figure 280. Asymmetric Firewall Behavior

STOP

GO
Request for
HTTP Session
(tcp/80)

Responses

Requests

Request for
HTTP Session
(tcp/80)

Internet Firewall
Java and Firewalls – In and Out of the Net 561

There may be more than one firewall through which data needs to pass.
Users in a corporate network will often have a firewall between them and the
Internet in order to protect the entire corporate network. And at the other end
of the connection, the remote server will often have a firewall to protect it and
its networks.

These firewalls may enforce different rules on what types of data are allowed
to flow through, which can have consequences for Java (or any other)
programs. It is not uncommon to find Java-enabled Web pages that work over
a home Internet connection simply fail to run on a corporate network.

There are two problem areas:

1. Can the Java program be downloaded from a remote server?

2. Can the Java program create the network connections that it requires?

The HTTP protocol is normally used for downloading. In order to understand
the restrictions that firewalls put on HTTP, especially with regard to proxy
servers and SOCKS servers (discussed in 15.4, “Proxy Servers and SOCKS
Gateways” on page 570), we will describe this protocol in detail in the next
section.

15.3 Detailed Example of TCP/IP Protocol

Let us consider the simple case of a browser requesting a Web page using
HTTP. There are two steps to this:

1. First the browser must translate a host name (for example, www.ibm.com)
into its IP address (204.146.17.33 in this case). The normal way to do this
in the Internet is to use the Domain Name System (DNS).

2. In the second step, the browser sends the HTTP request and receives a
page of HTML in response.

15.3.1 DNS Flow (UDP Example)
DNS uses the UDP protocol at the transport layer, sending application data to
the DNS (udp/53) port of a name server. The packet header for UDP is shown
in the following figure:
562 Java 2 Network Security

Figure 281. IPv4 and UDP Headers

If the newer IPv6 is used, the header is simpler, but with 128-bit addresses,
instead of 32-bit.

The actual DNS request is a simple request and response sequence (see
Figure 282 on page 563 and Figure 283 on page 564).

Figure 282. Client Requests Name Resolution

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

VERS=4 HLEN Type of
Service

Total Length

Time to Live Protocol Header Checksum

Identification Fragment OffsetFlags

Source IP Address

Destination IP Address

IP Options (if any) ...Padding (if needed)

Source Port Destination Port

Length Checksum

Data Bytes (packet payload)

20
bytes

IP

UDP

8
bytes

Client
(Browser)

Server
(DNS Server)

Packet 1, length 57 bytes

IP
Source address 10.1.1.1 (client)
Destination address 10.1.1.5 (server)

UDP
Source port 1048 (dynamically assigned)
Destination port 53 (DNS well-known port)

Data
DNS question:
www.ibm.com, type=A, class=IN
Java and Firewalls – In and Out of the Net 563

Figure 283. DNS Name Resolution Response

15.3.2 HTTP Flow (TCP Example)
Now the client can request the URL of http://www.ibm.com/example1.html
because it knows that the real IP address of www.ibm.com is 204.146.17.33.
Requests such as this use TCP at the transport layer to carry the HTTP
application data. HTTP is a very simple protocol, where the client requests a
particular item of data from the server, and the server returns the item,
preceded by a short descriptive header.

TCP headers are similar to UDP but have more control fields to provide a
guaranteed2 delivery service:

2 In this context, guaranteed means that the data will be delivered, or an error will be eventually returned. With UDP, in
comparison, data may be discarded without warning.

Client
(Browser)

Server
(DNS Server)

Packet 2, length 73 bytes

IP
Source address 10.1.1.5
Destination address 10.1.1.1

UDP
Source port 53
Destination port 1048

Data
DNS question:
www.ibm.com, type=A, class=IN
DNS answers:
www.ibm.com internet
address 204.146.17.33
564 Java 2 Network Security

Figure 284. IPv4 and TCP Packet Headers

TCP using IPv6 is similar, with an IPv6 header followed by a TCP header.

The following data packets are sent:

 • Packets 1, 2 and 3 establish the TCP connection. The opening connection
sequence is sometimes called the three-way handshake.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

VERS=4 HLEN Type of
Service

Total Length

Time to Live Protocol Header Checksum

Identification Fragment OffsetFlags

Source IP Address

Destination IP Address

IP Options (if any) ...Padding (if needed)

Source Port Destination Port

Data Bytes (packet payload)

20
bytes

IP

Sequence Number

Checksum Urgent Pointer

TCP Options (if any) ...Padding (if needed)

Acknowledgment Number

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Data
Offset

Reserved
20

bytes

TCP
Java and Firewalls – In and Out of the Net 565

Figure 285. (Part 1 of 3). TCP Handshake

Figure 286. (Part 2 of 3). TCP Handshake

Figure 287. (Part 3 of 3). TCP Handshake

Server
(Web Server)

Packet 1, length 44 bytes

IP
Source address 10.1.1.1 (client)
Destination address 204.146.17.33 (server)

TCP

(None)Data

Source port 1044 (dynamically assigned)
Destination port 80 (HTTP well-known port)
Flags: SYN
Options: Set maximum segment size to
1452 bytes

Client
(Browser)

Server
(Web Server)

Packet 2, length 44 bytes

IP
Source address 204.146.17.33 (server)
Destination address 10.1.1.1 (client)

TCP

(None)Data

Source port 80
Destination port 1044
Flags: SYN+ACK
Options: Set maximum segment size to 1452
 bytes

Client
(Browser)

Packet 3, length 40 bytes

IP
Source address 10.1.1.1 (client)
Destination address 204.146.17.33 (server)

TCP

(None)Data

Source port 1044
Destination port 80
Flags: ACK

Server
(Web Server)

Client
(Browser)
566 Java 2 Network Security

 • Packet 4 contains the HTTP request from the browser; you can see the
GET request itself, together with other data being passed to the server.

Figure 288. HTTP Request from the Browser

 • Packet 5 contains the reply from the server, with the page data preceded
by page information. You can see this information by selecting Page
Source and Page Info from the View menu of a Web browser. Larger
replies would need to be sent in more than one packet, and the client
would periodically send TCP acknowledgment packets back to the server.
But only a single item of data is returned, so that the page data, images,
applets and other components are returned separately. Using JAR files,
several items can now be sent in a single TCP connection, which is more
efficient.

Packet 4, length 299 bytes

IP
Source address 10.1.1.1 (client)
Destination address 204.146.17.33 (server)

TCP

GET /example1.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/v3.01 (X11;I;AIX1)
Host: www.ibm.com
Accept: image/gif, image/x-xbitmap,
image/jpeg, image/pipeg, */*
<empty line>

Data

Source port 1044
Destination port 80
Flags: PUSH+ACK

Server
(Web Server)

Client
(Browser)
Java and Firewalls – In and Out of the Net 567

Figure 289. HTTP Response from the Server

 • Packets 6 and 7 close the connection from the server end, and packets 8
and 9 close it from the client.

Figure 290. (Part 1 of 4). Closing Connection Sequence

Server
(Web Server)

Packet 5, length 388 bytes

IP
Source address 204.146.17.33 (server)
Destination address 10.1.1.1 (client)

TCP

HTTP/1.1 200 Document follows
Server: IBM-ICS/4/2/1
Date: Mon, 22 Sep 1997 12:45:27 GMT
Connection: Keep-Alive
Accept-Ranges: bytes
Content-Type: text/html
Content-Length: 116
Last-Modified: Wed, 10 Jul 1996 14:59:23 GMT

<HTML>
<TITLE>Example 1</TITLE>
<H1>Example 1 - HTML only</H1>
Example 2>/A>
</HTML>

Data

Source port 80
Destination port 1044
Flags: PUSH+ACK

Client
(Browser)

Packet 6, length 40 bytes

IP
Source address 204.146.17.33 (server)
Destination address 10.1.1.1 (client)

TCP

(None)Data

Source port 80
Destination port 1044
Flags: FIN+ACK

Server
(Web Server)

Client
(Browser)
568 Java 2 Network Security

Figure 291. (Part 2 of 4). Closing Connection Sequence

Figure 292. (Part 3 of 4). Closing Connection Sequence

Figure 293. (Part 4 of 4). Closing Connection Sequence

Packet 7, length 40 bytes

IP
Source address 10.1.1.1 (client)
Destination address 204.146.17.33 (server)

TCP

(None)Data

Source port 1044
Destination port 80
Flags: ACK

Server
(Web Server)

Client
(Browser)

Packet 8, length 40 bytes

IP
Source address 10.1.1.1 (client)
Destination address 204.146.17.33 (server)

TCP

NoneData

Source port 1044
Destination port 80
Flags: FIN+ACK

Server
(Web Server)

Client
(Browser)

Packet 9, length 40 bytes

IP
Source address 204.146.17.33 (server)
Destination address 10.1.1.1 (client)

TCP

(None)Data

Source port 80
Destination port 1044
Flags: ACK

Server
(Web Server)

Client
(Browser)
Java and Firewalls – In and Out of the Net 569

Although at first sight this seems quite complicated, on closer inspection it
can be seen as simply sending a request (in readable ASCII text) and
receiving a reply, surrounded by packets to open and close the TCP
connection.

15.4 Proxy Servers and SOCKS Gateways

Proxy servers and SOCKS gateways are two common approaches used to
provide Internet access through corporate firewalls. The primary goal is to
allow people within the company network the ability to access the World Wide
Web (WWW), but prevent people from outside from accessing the company
internal networks.

15.4.1 Proxy Servers
A proxy server’s function is to receive a request from a Web browser, to
perform that request (possibly after authorization checks), and return the
results to the browser.

Figure 294. Where a Proxy Server Fits

Instead of sending the following request directly to server www.company.com
of:

GET /page.html

A browser will send a request to proxy.mycompany.com asking:

Internet

Secure Network

Proxy
HTTP

Proxy Server

HTTP
Web Server

 Firewall
570 Java 2 Network Security

GET http://www.company.com/page.html

Then, proxy.mycompany.com will contact www.company.com with the
request:

GET /page.html

There are several advantages to this indirect approach:

 • All external Web access can be forced to go through the proxy server,
creating a single control point. This is achieved by blocking all HTTP
protocol data, except for that from the proxy server itself.

 • All pages being transferred can be logged, together with the address of
the requesting machine.

 • Requests for certain sites can be restricted or banned.

 • The IP addresses or names of the internal systems never appear on the
Internet, just the address of the proxy server. So attackers cannot use the
addresses to gain information about your internal system names and
network structure.

 • The proxy can be configured as a caching proxy server, and will save local
copies of Web pages retrieved. Subsequent requests will return the
cached copies, thus providing faster access and reducing the load on the
connection to the Internet.

 • Web proxy servers usually support several protocols, including HTTP, FTP,
Gopher, HTTPS (HTTP with SSL3), and WAIS.

 • Proxy servers can themselves use the SOCKS protocol to provide
additional security. This does not affect the browser configuration.

The disadvantages are that browser configuration is more complex, the
added data transfers can add an extra delay to page access, and sometimes
proxies impose additional restrictions such as a time-out on the length of a
connection, preventing very large downloads.

15.4.2 What Is SOCKS?
The SOCKS protocol is mentioned several times in this section. It is a simple
but elegant way of allowing users within a corporate firewall to access almost
any TCP or UDP service outside the firewall, but without allowing outsiders to
get back inside.

3 For detailed information on the Secure Socket Layer (SSL) protocol, refer to Chapter 16, “Java and SSL” on page 603.
Java and Firewalls – In and Out of the Net 571

It works through a TCP protocol, SOCKS4, together with a SOCKS server
program running in the firewall system.

Figure 295. A SOCKS Connection

In basic terms, SOCKS is a means of encapsulating any TCP protocol within
the SOCKS protocol. On the client system, within the corporate network, the
data packets to be sent to an external system will be put inside a SOCKS
packet and sent to a SOCKS server. For example, a request for
http://server.company.com/page.html would, if sent directly, be contained in a
packet with the following characteristics:

If SOCKS were used, the packet sent would be (effectively):

When the SOCKS server receives this, it extracts the required destination
address, port and data and sends this packet; naturally, the source IP
address will be that of the SOCKS server itself. The firewall will have been
configured to allow these packets from the SOCKS server program, so they

4 SOCKS, incidentally, is a shortened version of socket secure. Socket is the term used for the data structures that
describe a TCP connection.

InternetSOCKS request:
http webserverX

SOCKS
Server

webserverX

Firewall

Destination address: server.company.com
Destination port: 80 (HTTP)
Data: "GET /page.html"

Destination address: socks_server.mycompany.com
Destination port: TCP 1080 (SOCKS)
Data: Destination address = server.company.com,
Destination port = TCP 80 (HTTP),
Data = "GET /page.html"
572 Java 2 Network Security

will not be blocked. Returning packets will be sent to the SOCKS server,
which will encapsulate them similarly, and pass on to the original client, which
in turn strips off the SOCKS encapsulation, giving the required data to the
application.5

The advantage of all this is that the firewall can be configured very simply to
allow any TCP/IP connection on any port, from the SOCKS server to the
non-secure Internet, trusting it to disallow any connections that are initiated
from the Internet.

Figure 296. SOCKS Flexibility

The disadvantage is that the client software must be modified to use SOCKS.
The original approach was to recompile the network client code with a new
SOCKS header file, which translated TCP system calls (connect,
getsockname, bind, accept, listen, select) into new names (Rconnect,
Rgetsockname, Rbind, Raccept, Rlisten, Rselect). When linked with the
libsocks library, these new names will access the SOCKS version, rather than
the standard system version. This, therefore, creates a new SOCKSified
version of the client software.

This approach is still used for clients running on UNIX. However, a new
approach has become available for OS/2 and Windows operating systems,
where the dynamically linked libraries that implement the TCP calls above are
replaced by a SOCKSified version, usually termed a SOCKSified TCP/IP
stack. This SOCKSified stack can then be used with any client code, without

5 This description is simplified; in reality, requests between the client and the SOCKS server are in a socket API format,
rather than the pure protocol data as shown above.

Internet

SOCKS request:
http webserverx

SOCKS
Server

Web Server

Firewall

SOCKS(HTTP)

SOCKS(FTP)

STOP

STOP

HTTP

FTP

FTP Server
Java and Firewalls – In and Out of the Net 573

the need to modify the client. It just requires the SOCKS configuration to be
specified, giving the address of the SOCKS server, and information on
whether to use SOCKS protocol or to make a direct connection.

The SOCKSified stack comes as standard with OS/2 Warp Version 4 (add-on
versions have been produced for OS/2 Warp Version 3), or can be purchased
for Windows 95, Windows 98 or Windows NT.

15.4.3 Using Proxy Servers or SOCKS Gateways
We have described three options of providing secure Internet access through
corporate firewalls:

1. Using a proxy server

2. Using a SOCKS gateway with a SOCKSified client application

3. Using a SOCKS gateway with a SOCKSified TCP/IP stack

Each of these options has its own advantages and disadvantages for the
company network security manager to evaluate for the company’s particular
environment. But what does the end user need to do to use these options?

Both Netscape Navigator and Microsoft Internet Explorer Web browsers have
built-in support for both proxy servers and for the SOCKS protocol. Options
are provided to select either a proxy server or a SOCKS server6. But
currently, support for SOCKS is limited to specifying the server name; all
page requests will be passed to that server, whether or not direct access is
possible (as in the case of internal Web servers).

The advantage in using the SOCKSified stack is that it provides better
support for deciding whether to use SOCKS or not, rather than sending all
requests to the SOCKS server (which may overload it), as well as supporting
other clients. This is controlled by a configuration file that specifies which
addresses are internal and can be handled directly, and which must go
through the SOCKS server. Of course, if you use a SOCKSified stack, you
should not enable SOCKS in the browser configuration. Then again, a
SOCKSified stack is not available for all platforms, so you may be forced to
use the browser’s SOCKS configuration.

The SOCKSified stack approach will also work with Java applets run from a
Web browser, as the normal java.net classes will use the underlying TCP
protocol stack, so this provides a simple way of running Java applets using a
SOCKS server through a firewall. But if a SOCKSified stack is not available,

6 Don’t select both, or requests will be sent via the SOCKS server to the proxy server, causing unnecessary network
traffic.
574 Java 2 Network Security

you will need to SOCKSify the library classes yourself if you have source
code, or look for a vendor who supports SOCKS.

15.5 The Effect of Firewalls on Java

Now we will consider the effect of firewalls on Java applets, first from the point
of view of loading them, then on the network connections that the applets
themselves may create.

15.5.1 Downloading an Applet Using HTTP
Java applets within a Web page are transferred using HTTP when the
browser fetches the class files referred to by the <APPLET> tag. So, if a Web
page contains the following tag, the browser would transfer the Web page
itself first, then the file example.class, then any class files referred to in
example.class.

Each HTTP transfer would be performed separately (unless HTTP 1.1 is
used).

Java Development Kit (JDK) 1.1 and Java 2 SDK, Standard Edition, V1.2,
allow a more efficient transfer, where all the classes are combined into a
compressed Java Archive (JAR) file. In this case the Web page contains a tag
of:

If there are problems finding example.jar, or if an older browser is used that
still runs a JDK 1.0 Java Virtual Machine (JVM), the archive option is ignored,
and the code option is used instead as in the previous example.

15.5.2 Stopping Java Downloads with a Firewall
But what effect do firewalls have on the downloading of Java class files? If the
security policy is to allow HTTP traffic to flow through the firewall, then Java
applets and JAR files will simply be treated like any other component of a
Web page, and transferred. On the other hand, if HTTP is prohibited, then it is

<APPLET Code="Example.class" Width=300 Height=300>
 <PARAM NAME=pname VALUE="example1">
</APPLET>

<APPLET Archive="example.jar" Code="Example.class" Width=300 Height=300>
</APPLET>
Java and Firewalls – In and Out of the Net 575

going to be very difficult to obtain the applet class files, unless there is
another way of getting them, such as using FTP. Quite frequently, Web
servers using non-standard TCP ports such as 81, 8000, 8080 may be
blocked by the firewall, so if you are running a Web server, stick to the
standard port 80 if you want as many people as possible to see your Web
pages and applets.

Now since Java is transferred using HTTP, the IP and TCP headers are
indistinguishable from any other element of a Web page. Simple packet
filtering based on IP addresses and port numbers will therefore not be able to
block just Java. If you require more selective filtering, you will need to go one
step beyond basic packet filtering and examine the packet payload: the HTTP
data itself. This can be done with a suitable Web proxy server or an HTTP
gateway that scans the data transferred.

If a Web proxy server is used, a common arrangement is to force all clients to
go through the proxy server (inside the firewall), by preventing all HTTP
access through the firewall, unless it came from the proxy server itself. If you
don’t have an arrangement like this, a user can bypass the checking by
connecting directly.

Figure 297. Forcing Connections through a Proxy

So what can we look for, inside the HTTP packet, to identify a Java class file?
In an ideal world, there would be a standard Multipurpose Internet Mail

Internet

Secure Network

Firewall

Proxy Server

HTTP

Web Server

Proxy
HTTP

HTTP

GO

STOP
576 Java 2 Network Security

Extensions (MIME) data type for Java classes, so that a Web browser might
request:

Accept: application/java, application/jar

and firewalls could quite easily check for these requests and the Web server
Content-Type: replies.

However, in practice servers respond with a variety of MIME types, such as:

application/octet-stream7

www/unknown
text/plain
multipart/x-zip8

application/zip

This means it is necessary to examine the actual data being transferred, to
see if it might be Java bytecode or JAR files. Bytecode files must start with
hexadecimal number 0xCAFEBABE in the first four bytes (see Table 2 on page
125). This string, called the magic number, will also be found in JAR files, but
as a JAR file may be compressed, a scanner must work harder to find the
signature. Commercial products are available that can perform this
inspection. They usually work as, or with, an HTTP proxy server, and check
all HTTP requests passing through.

Searching for the class file signature in this way is an effective way to stop
Java, but it indiscriminately prohibits good code and bad. On the other hand,
as we demonstrated in 6.4, “An Incompleteness Theorem for Bytecode
Verifiers” on page 183, it is mathematically impossible to build a complete
bytecode verifier that determines whether a program is safe or not before it
runs. Therefore, rather than stopping all Java programs, a more subtle
scanner could extend the principle to other types of signature. For example, it
would theoretically be possible to filter out any applet that overrode the stop()
method (see 7.3.2, “Malicious Applets” on page 195), by analyzing the
bytecode in detail.

Of course, in these restrictive environments, you would also want to filter out
any other types of executable content that are less secure than Java, such as
ActiveX, and maybe JavaScript, executable files, and so on. You would also
have to consider other protocols such as FTP, HTTP or FTP encapsulated in
SOCKS, and HTTP encapsulated in SSL (which adds the problem of
decoding the type of encrypted data).

7 This is valid for class files.
8 This is valid for JAR files.
Java and Firewalls – In and Out of the Net 577

We have been focusing on scanning for Java at a single point for the
enterprise: the firewall or proxy server. Recent developments by the browser
manufacturers and by systems management specialists, such as Tivoli
Systems, point to an alternative strategy. They have developed mechanisms
for installing and configuring browsers on multiple user systems from a single
point. This certainly offers cost savings: a single administrator can be
responsible for hundreds of workstations. However, as a security measure it
can only work if it is backed up by controls and monitors that prevent
individual users from overriding the official configuration.

The cleanest solution to the problem of selectively stopping Java is in the use
of signed applets. As certificates become used more frequently, it will be
possible to permit Java bytecode from sites where you trust the signer
(maybe your own company sites), and disallow other sites.

15.5.3 Java Network Connections through the Firewall
When a Java applet or application wishes to create its own network
connections through a firewall, it faces all the difficulties above, and also, for
applets, the default security manager restriction of only being able to contact
the server from which it was downloaded.

Leaving aside the question of how to block Java classes at the firewall, you
may be faced with the decision of whether you should allow Java (or any
other type of executable content) to travel through the firewall. If your site
has public Web servers, then you would expect that Java code is allowed to
be sent to the Internet. But you might wish to make restrictions on Java
code that can be received.

The most permissive policy is to allow Java to be received, and let users
employ their own defenses, or trust in the Java security model. More
restrictive policies might allow Java only from trusted Web sites, or not at
all. The question that you must ask is: what data is at risk if I allow this? We
have shown that, compared with other types of executable content, Java
applets are very safe, so if you choose to block applets you should also
prevent other downloads. For example, macro viruses contained in
word-processor files are a major problem, but few companies would
prevent employees from exchanging such files with customers and
suppliers.

Should You Allow Java through Your Firewall?
578 Java 2 Network Security

One of the major problems that people have encountered with applets and
firewalls is trying to get applets to communicate back to the server through a
firewall. There are basically two major approaches that an applet, from
behind a firewall, can adopt to retrieve data from a Web server outside the
firewall:

1. URL connection

This means using the URL classes from the java.net package to request
data from a Web server using HTTP. JDK 1.1 added a new class to this
package – HttpURLConnection – as a specialization of the
URLConnection class.

2. Socket connection

This involves the use of classes from the java.net package to create
socket connections to a dedicated server application.

In 15.6, “Java and Firewall Scenarios” on page 580, we will focus on these
two approaches to show you how a Java applet must be written and how the
client platform must be configured to allow URL connections and socket
connections through different firewall implementations.

The first of the two approaches – URL connection – is the easiest to
implement. It is also likely to be the most reliable, because the JVM passes
the URL request to the normal browser connection routines to process. This
means that, if a proxy is defined, the Java code will automatically use it.
However, URL connections suffer from the fact that the server side of the
connection has limited capability; it can only be a simple file retrieval, a
Common Gateway Interface (CGI) program, a servlet, or similar.

For the second approach – socket connection from the applet to the Web
server – the applet will need to choose a port number to connect to, but many
will not be allowed through firewall. Some types of applets have no real
choice as to port number. For example, IBM Host On-Demand is a Java
applet that is a 3270 terminal emulator, hence, needs to use the tn3270
protocol to telnet port 23. It is quite likely that this standard port would be
allowed through the firewall; otherwise, encapsulation of tn3270 inside the
SOCKS protocol may be the only answer.

Other applets need to make a connection to the server, but don't need any
special port. It may be that they can use a non-privileged server port of 1024
or greater, but often these, too, are blocked by simple packet filtering firewalls.
A flexible approach is to let the applet be configurable to allow direct
connections (if allowed), or to use the SOCKS protocol to pass through the
firewall.
Java and Firewalls – In and Out of the Net 579

Many HTTP proxy servers implement the connect method. This allows a
client to send an HTTP request to the proxy, which includes a header telling it
to connect to a specific port on the real target system. The connect method
was originally developed to allow SSL connections to be handled by a proxy
server, but it has since been extended to other applications. For example,
Lotus Notes servers can use it. The connect method operates in a very
similar way to SOCKS and you can implement Java applet connections with it
in much the same way as you would with SOCKS.

Another approach is to disguise the packets in another protocol, most likely
HTTP, as this will have been permitted through the firewall. This will allow a
two-way transfer of data between the applet and server, but will require a
special type of Web server. The server will need to act as a normal Web
server, to supply the Web pages and applets in the first place, but must be
able to communicate with the applets to process their disguised network
traffic.

Finally, we want to mention that applets can connect to servers in the network
using remote object access mechanisms, such as Remote Method Invocation
(RMI) or Common Object Request Broker Architecture (CORBA) (see 2.1.3.2,
“Some of the Roads to Purity” on page 50 and 14.6, “Distributed Object
Architectures – RMI” on page 537). We will see a practical implementation of
these approaches in the next section.

15.6 Java and Firewall Scenarios

In this section we show you how to execute the two approaches discussed in
15.5.3, “Java Network Connections through the Firewall” on page 578 in
different firewall environments. The environment setup we use is shown in the
following figure:
580 Java 2 Network Security

Figure 298. Scenario Environment Configuration

Refer to the table below for the technical details about this test environment:

Table 19. Firewall Client/Server Scenario Environment

This test environment is configured with the following products:

 • Lotus Domino Go Webserver 4.6.2.5 for Windows NT is installed on the
Web server machine

 • The firewall machine is installed with IBM eNetwork Firewall 3.2.2 for
Windows NT

 • On the Windows NT client machine, our tests are based on the most
common Java-enabled client platforms:

 • Netscape Navigator V4.5
 • Microsoft Internet Explorer V5
 • Java 2 SDK, Standard Edition, V1.2.1 Applet Viewer

Notice that the version of the JVM shipped with the Netscape Navigator V4.5
and Microsoft Internet Explorer V5 browsers is still 1.1, while the Java 2 SDK,
Standard Edition, V1.2.1 Applet Viewer conforms to the Java 2 security

Network Object Host Name Operating System Function IP Address

home home Windows NT Server 4.0 Web server 172.16.0.1

non-secure interface gateway Windows NT Server 4.0 Firewall non-secure interface 172.16.0.10

secure interface Firewall secure interface 192.168.10.1

admin admin Windows NT Server 4.0 Web browser 192.168.10.5

192.168.10.5

admin

Web Server

172.16.0.1

home

Firewall

192.168.10.1 172.16.0.10

tr0 tr1

Web Browser
Java and Firewalls – In and Out of the Net 581

model. This will allow us to compare the different permissions that applets
can require to implement a connection to their servicing Web server.

In the following section, we describe this process:

1. The client downloads an applet from the Web server.

2. The applet requests for data from the Web server, using a URL connection
or a socket connection.

3. The Web server replies back to the client.

We want to see the implications of this communication when the firewall
implements one of the following technologies:

 • IP filtering
 • HTTP proxy server
 • SOCKS server

15.6.1 URL Connection
We see now how an applet using the java.net.URLConnection class can
connect to its servicing Web server through a firewall. Before we move to a
firewall setup, let’s understand the working of the applet in a normal
client/server environment without any firewall setup. Figure 299 on page 582
and Figure 300 on page 583 show the code of the AppletConnection applet:

Figure 299. (Part 1 of 2). AppletConnection.java – Used for URL Connection

import java.awt.*;
import java.net.*;

public class AppletConnection extends java.applet.Applet
{
 int javaSize, classSize;

 public void init()
 {
 try
 {
 URL javaURL = new URL(getCodeBase(), getClass().getName() + ".java");
 System.out.println(javaURL);
 URL classURL = new URL(getCodeBase(), getClass().getName() + ".class");
 System.out.println(classURL);
 URLConnection javaURLConnection = javaURL.openConnection();
 URLConnection classURLConnection = classURL.openConnection();
 javaSize = javaURLConnection.getContentLength();
 classSize = classURLConnection.getContentLength();
582 Java 2 Network Security

Figure 300. (Part 2 of 2). AppletConnection.java – Used for URL Connection

We saved this file in the directory C:\itso\ch15 of the Web server machine. In
the same directory, we also save the class file of the applet,
AppletConnection.class, after compiling the source file by entering the
command:

javac AppletConnection.java

Let us now see what this applet does. After this applet is downloaded onto the
client’s Web browser, it establishes a URL connection with the Java file
containing its source code and another URL connection with the class file of
the applet itself. Once these two connections are established, the applet
displays the size of each file on the client’s browser.

Now, let us look at the source code to understand how it achieves its purpose.

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 public void paint(Graphics g)
 {
 Font myFont = new Font("SansSerif", 3, 15);
 g.setFont(myFont);
 g.setColor(Color.black);

 if (javaSize == -1)
 g.drawString("Could not find file : " + getClass().getName() + ".java", 30,
 50);
 else
 g.drawString(getClass().getName() + ".java is " + javaSize + " bytes long", 30,
 50);
 if (classSize == -1)
 g.drawString("Could not find file : " + getClass().getName() + ".class", 30,
 80);
 else
 g.drawString(getClass().getName() + ".class is " + classSize + " bytes long",
 30, 80);
 }
}

Java and Firewalls – In and Out of the Net 583

First of all, the applet imports two packages: java.awt and java.net. These
packages are imported so that the applet can use the classes in them:

1. java.awt is necessary for the applet to use the Graphics class in the
paint() method.

2. java.net is necessary for the applet to use the URL and URLConnection
classes in its init() method and to establish its connections to the Web
server that downloaded it.

The URL and URLConnection classes are used twice in the init() method. In
fact this applet tries to establish two URL connections with its servicing Web
server:

1. The first connection is with the file that stores the Java source code of the
applet itself. We create a URL object, named javaURL, that will be
initialized to http://ourWebServer/itso/ch15/AppletConnection.java.

2. The second connection is with the file that stores the Java class of the
applet. For this reason, we created a second URL object, named
classURL, that will be initialized to
http://ourWebServer/itso/ch15/AppletConnection.class.

Note that ourWebServer can be either the host name (home) or the IP
address (172.16.0.1) of the Web server servicing the applet, depending on
whether the client browser invokes the Web server through its host name or
through its IP address.

We then create two URLConnection objects, named javaURLConnection and
classURLConnection, and we invoke the getContentLength() method on
these objects to retrieve the size of each file. The exact number of bytes is
then displayed on the client’s browser through the paint() method. Notice that
the method getContentLength() returns the content length of the resource
that this connection’s URL references, or returns -1 if the content length is not
known. In our applet, the problem of an unknown content length could be
generated by the absence of the files in the directory C:\itso\ch15 where the
applet looks for the files through the two URL objects created. If the applet
does not find the files, the applet will display an error message on the client’s
browser.

The following figure shows the code for the HTML page through which the
applet is invoked:
584 Java 2 Network Security

Figure 301. AppURL.html – Used for URL Connection

We name this HTML file AppURL.html and we store it in the same directory
C:\itso\ch15 where we have also saved AppletConnection.java and
AppletConnection.class.

It is then necessary to add the following line in the Web server configuration
file C:\WINNT\httpd.cnf:

Pass /itso/* C:\itso*

This line is added so that we can load the HTML files under the directory
C:\itso or its subdirectories from a remote client by typing
http://ourWebServer/itso/directory_name/file_name.html in the URL
box of the Web browser. The Web server must be restarted after this
modification so that this change is reflected in the Web server’s configuration.

Before moving to a firewall environment we see how the applet works in a
normal client/server platform, without any firewall. The HTML page,
AppURL.html, is invoked using the URL
http://172.16.0.1/itso/ch15/AppURL.html from a browser on the Web server
machine, home, only. The applet displayed the length of the
AppletConnection.java and AppletConnection.class file as expected and the
result is shown in the following figure:

<HTML>
 <HEAD>
 <TITLE>Applet Connection using URL Class</TITLE>
 </HEAD>

 <BODY>
 <CENTER><H2>Applet Connection using URL Class</H2>
 <HR>

 <APPLET Code="AppletConnection.class" Width=500 Height=250>
 <H4>This area contains a Java applet, but your browser is not
Java-enabled.</H4>
 </APPLET>
 </BODY>
</HTML>
Java and Firewalls – In and Out of the Net 585

Figure 302. Applet AppletConnection as Viewed from the Client Browser

If you read the source code of the applet AppletConnection, you will see that
there are two calls to the System.out.println() method, and the two URL
objects javaURL and classURL are passed as parameters. Notice that the
println() method automatically converts an Object to a String, using the
toString() method. The output of the System.out.println() calls are displayed
in the Java Console of the client’s Web browser.

So far, everything works as expected. Now, we move to the purpose of this
section, which is to test the applet URL connection when the
AppletConnection applet is downloaded from the Web server to a client
situated in the secure network.
586 Java 2 Network Security

15.6.1.1 IP Filter for HTTP Firewall Configuration
If we configure the firewall to act as an IP filter for HTTP, we get the same
results as a normal client/server environment. The reason is that IP filters for
HTTP simply permit the HTTP protocol to flow between the client and the
server, allowing a TCP/IP connection between a TCP port greater than 1023
on the client and the default HTTP port 80 on the Web server. It is also
required that the connection between the client and the server starts from the
client side, because for security reasons the firewall will prevent every
connection starting from the non-secure network from taking place. The client
and the server can speak to each other directly through the filter, since the
firewall routes the traffic but does not act on behalf of the client.

The presence of the firewall between the secure and non-secure network
does not impact the URL connection established by the applet when the
firewall is configured as an IP filter: the URL connection is established
correctly on Applet Viewer and on the Netscape Communicator and Microsoft
Internet Explorer Web browsers.

15.6.1.2 HTTP Proxy Server Firewall Configuration
What if the firewall acts as an HTTP proxy server? Is the applet still allowed to
establish the URL connection to the Web server? The answer is yes, provided
that the client machine is configured correctly.

The client must be configured to send its HTTP requests to the HTTP proxy
server first. Then it is the proxy that forwards all the client’s requests to the
Web server, acting on behalf of the client. Web browsers can be configured to
do this through a network settings configuration page, where users have to
enter the IP address of the secure interface of the HTTP proxy server
(192.168.10.1, in our case) and the port used by the proxy to listen for clients’
requests (we keep the default port 8080). This needs to be done as all HTTP
requests cannot directly reach the Web server, unlike they do when the
firewall is simply an IP filter. In fact, clients’ requests will now have to be
routed through the HTTP proxy server, which by default listens for client
HTTP requests on port 8080. The proxy server then forwards each request to
the Web server, which by default is listening on port 80 for HTTP requests.

An applet implementing a URL connection executes without any problems in
this case also. Problems might occur in a firewalled network when no DNS
has been configured to translate host names to IP addresses for hosts
located in the non-secure network, or if the firewall has been configured to
disable DNS queries. This is a common situation, because DNS is often
configured to translate only host names of hosts behind the firewall. What
happens is, if you invoke the HTML page using the host name of the Web
Java and Firewalls – In and Out of the Net 587

server, the checkConnect() method in the browser security manager tries to
translate the host name to an IP address, to prevent spoofing attacks, but
behind the firewall the checkConnect() method fails if the DNS has not been
configured. An unexpected SecurityException is thrown and your Web
browser displays an error message.

This problem is not present if, when you point your browser to the HTML file,
you specify the IP address of the Web server, rather than its host name. In
fact, in this case, the getCodeBase() method, which we used in our applet
(see Figure 299 on page 582 and Figure 300 on page 583), returns the IP
address of the Web server, and no host name translation needs to be done by
the security manager. So the URLConnection is still able to access the Java
source code file and its corresponding class file.

If you still want to invoke the Web server through its host name and no DNS
has been configured to translate host names into IP addresses for hosts
located in the non-secure network, you can use the Netscape Navigator
browser and enable the following hidden property in the prefs.js configuration
file:

user_pref("security.lower_java_network_security_by_trusting_proxies", true);

With this preference enabled, if the DNS lookup performed by the Netscape
implementation of the security manager fails, then the host name of the Web
server is relied upon, rather than having a stricter DNS/IP address
equivalence. Notice, however, enabling the hidden preference above can
impact the security of the system, since it disables the DNS lookup performed
by the security manager to prevent spoofing attacks.

We have discussed how a Web browser must be configured to recognize the
presence of an HTTP proxy server to which it forwards the requests. What
about the Applet Viewer? If we type the following command:

appletviewer http://172.16.0.1/itso/ch15/AppURL.html

the applet does not execute as expected, because the URL connection fails.
This happens because we are trying to access the Web server using a
URLConnection object from behind an HTTP proxy server, but since we have
not specified that an HTTP proxy server is present in the network, the Applet
Viewer, which is unaware of the presence of the HTTP proxy server, still
attempts to perform a direct connection and fails. It is therefore necessary to
modify the command above. The exact appletviewer command to specify the
proxy server host name or IP address, and the port number to which the
proxy listens for clients’ requests is the following:
588 Java 2 Network Security

appletviewer -J-DproxyHost=192.168.10.1 -J-DproxyPort=8080
http://172.16.0.1/itso/ch15/AppURL.html

With this command, we get the same successful results as when we run the
applet in a Web browser properly configured. Notice that the -J flag of the
appletviewer command specifies that a java command line option follows. In
particular, proxyHost is used to specify the host name or the IP address of the
HTTP proxy server, while proxyPort specifies the port at which the HTTP
proxy server listens for client connections.

15.6.1.3 SOCKS Server Firewall Configuration
The situation is very similar when the firewall implements a SOCKS server:
the applet is able to connect its servicing Web server provided the client
platform is correctly configured to recognize the presence of the SOCKS
server in the network to which it forwards the requests.

Also in this case, the security manager of the browser performs a DNS
lookup, so the considerations about DNS made in 15.6.1.2, “HTTP Proxy
Server Firewall Configuration” on page 587 are relevant in this scenario as
well.

The situation with the Applet Viewer is slightly different. First of all, to
configure the Applet Viewer to contact a Web server in the Internet through a
specific SOCKS server, the command to enter must be similar to the
following:

appletviewer -J-DsocksProxyHost=192.168.10.1 -J-DsocksProxyPort=1080
http://172.16.0.1/itso/fire/AppURL.html

In the above command, socksProxyHost refers to the SOCKS server’s IP
address; socksProxyPort refers to the port number at which the SOCKS server
listens for client connections.

With the command above, the applet works without any restrictions on JDK
1.1. However, this is expected, because the JVM of the browsers that we use
is also at a 1.1 level. Interestingly, in the Java 2 SDK platform, the Applet
Viewer security manager prevents an applet from connecting to its servicing
Web server through a SOCKS server, and the above command works
correctly if the following is added to one of the current policy files:
Java and Firewalls – In and Out of the Net 589

Figure 303. grant Entry in the Policy File

Notice that 192.168.10.1 is the IP address of the secure interface of the
firewall. This value can be replaced by the host name.

15.6.2 Socket Connection
We see now how an applet using the java.net.SocketConnection class can
connect to its servicing Web server through a firewall. Before we move to a
firewall setup, we want to understand how the applet works in a normal
client/server scenario, without any firewall setup. This is the same thing we
did with the applet implementing the URLConnection in 15.6.1, “URL
Connection” on page 582.

The name of the applet we use here is AppConSock. The figure shows its
source code:

Figure 304. (Part 1 of 2). AppConSock.java – Used for Socket Connection

grant {
 permission java.net.SocketPermission "192.168.10.1", "resolve";
 permission java.lang.RuntimePermission "readFileDescriptor";
 permission java.lang.RuntimePermission "writeFileDescriptor";
};

import java.awt.*;
import java.net.*;
import java.io.*;

public class AppConSock extends java.applet.Applet
{
 String stringRead;
 StringBuffer displayString = new StringBuffer();

 // The port number the applet connects to for reading the data file
 int portNumber = 80;

 public void init()
 {
 try
 {
 // Open a Socket connection on port portNumber
 Socket s = new Socket(getCodeBase().getHost(),portNumber);
590 Java 2 Network Security

Figure 305. (Part 2 of 2). AppConSock.java – Used for Socket Connection

 // Assign BufferedReader and DataOutputStream to read and write to the socket
 // on Port 80
 BufferedReader dIn = new BufferedReader(new
 InputStreamReader(s.getInputStream()));
 DataOutputStream dOut = new DataOutputStream(s.getOutputStream());

 // Write bytes to the socket to get a data file
 dOut.writeBytes("GET /itso/ch15/data.txt \n\n");

 // Read bytes from the Socket
 int count = 0;
 while ((stringRead = dIn.readLine()) != null)
 {
 count += 1;
 if (count > 1)
 displayString.append(stringRead);
 }

 dIn.close();
 dOut.close();
 }

 catch(Exception e)
 {
 e.printStackTrace();
 displayString.append("Unable to create socket. No data read.");
 }
 }

 public void paint(Graphics g)
 {
 // Set Graphics parameters
 Font myFont = new Font("SansSerif", 3, 15);
 g.setFont(myFont);
 g.setColor(Color.black);

 // Display the string
 g.drawString("Connecting to " + getCodeBase().getHost() + " on Port number " +
 portNumber + " -> ", 30, 80);
 g.drawString(displayString.toString(), 30, 100);
 }
}

Java and Firewalls – In and Out of the Net 591

The file AppConSock.java is saved in the C:\itso\ch15\ directory of the Web
server machine. In the same directory, we also save the class file of the
applet, AppConSock.class, after compiling the source file by entering the
command:

javac AppSockConn.java

We have already defined the virtual HTTP mapping for this directory in the
httpd.cnf file of the Web server (see 15.6.1, “URL Connection” on page 582).

The AppConSock applet, once downloaded, attempts to retrieve data from a
file named C:\itso\ch15\data.txt, this also residing on the Web server. The
applet uses a socket connection to read the contents of this file.

The Web server listens for HTTP requests on the default port 80, which must
be the port to which Web browsers direct their requests and from which they
receive the responses back from the Web server. Similarly, the AppConSock
also opens a socket connection on port 80 of the Web Server. It then issues a
command:

GET /itso/ch15/data.txt

on that port, to which the Web server responds by retrieving the
C:\itso\ch15\data.txt file and sending it as a response to our AppConSock
applet.

Now, let’s look into the source code of the AppConSock applet. The file
imports java.awt for graphics, java.net for networking classes and java.io for
input and output classes. The input and output classes are needed for
reading and writing to the socket, and also reading the data from the file
data.txt on the Web server.

We first declare variables to store the string read and the port number (which
is 80 for the Web server). The init() method creates a stream socket and
connects it to the specified port number on the named host. Note here that,

As far as the physical file system on the Web server is concerned, the file
data.txt is in the C:\itso\ch15 directory. We have a mapping in our httpd.cnf
file for this C:\itso directory. This is the reason why we can access the file
data.txt using the URL http://172.16.0.1/itso/ch15/data.txt from a Web
browser on a client machine. Our AppConSock applet can also access this
file in a way similar to an HTTP request, by creating a socket on port 80 of
the Web server and issuing on port 80 the GET command above.

URL Mapping
592 Java 2 Network Security

when the HTML page that contains the applet is invoked, if the IP address of
the Web server is specified, then it is the IP address of the Web server that is
returned by the getCodeBaes().getHost() method of the applet. Otherwise, if
the host name is specified in the URL, then getCodeBase().getHost() returns
the host name.

If the applet is unable to create a socket on the Web server it throws an
exception. This exception can be due to various reasons, such as no route to
the Web server host (in this case we will see a NoRouteToHostException) or
any other network error. Once the socket is created, the input stream, dIn,
and output stream, dOut, are obtained. The applet then requests the data.txt
file by issuing a write operation on port 80:

GET /itso/fire/data.txt

The Web server, on receiving this request on port 80 from the applet,
retrieves the /itso/ch15/data.txt file and starts writing to port 80 again. The
applet can now start reading from the port using the handle to its socket’s
input stream dIn. The result of the read operation is then displayed on the
client’s browser.

If the socket was not created or if there was an exception, then the applet
displays the message:

Unable to create socket. No data read.

The file C:\itso\ch15\data.txt file contains only the following test line:

Hi! I am the data file for the Socket Connection Applet.

The HTML file, AppSock.html, that we use to invoke the AppConSock applet
is shown below:

Figure 306. (Part 1 of 2). AppSock.html – Used for Socket Connection

<HTML>
 <HEAD>
 <TITLE>Applet Connection using Socket Class</TITLE>
 </HEAD>

 <BODY>
 <CENTER><H2>Applet Connection using Socket Class</H2></CENTER>
 <HR>
 <APPLET Code="AppConSock.class" Width=500 Height=250>
 <H4>This area contains a Java applet, but your browser is not
 Java-enabled.</H4>
Java and Firewalls – In and Out of the Net 593

Figure 307. (Part 2 of 2). AppSock.html – Used for Socket Connection

The AppSock.html file also is saved in the directory C:\itso\ch15.

We show now how the AppSock applet works in a typical client/server
environment that does not make use of firewalls. From a client Web browser,
we invoke the URL http://172.16.0.1/itso/ch15/AppSock.html, and we can
verify that the applet works as expected, as shown in the following window:

Figure 308. AppConSock Applet as Viewed from the Client Browser

 </APPLET>
 </BODY>
</HTML>
594 Java 2 Network Security

Now, we move to the purpose of this section, which is to verify how the applet
socket connection works when the applet, AppConSock, is downloaded from
the Web server to a client situated in the secure network.

15.6.2.1 IP Filter for HTTP Firewall Configuration
When a firewall acts as an IP filter for HTTP, the HTTP communication is not
broken at the firewall level. The firewall simply forwards packets back and
forth between the secure and the non-secure network, verifying that the
communication is initiated by a particular client in the secure network on a
TCP port greater than 1023, that the destination is the HTTP port (by default,
80) on a specified Web server in the non-secure network, and that the TCP/IP
protocol is used. For the rest, client and server can speak directly, and the
firewall acts as a router for the communication flow.

For these reasons, an applet that attempts to connect to its originating Web
server by using a socket connection executes successfully, and we get the
same results as a normal client/server environment that does not use any
firewall protection (see Figure 308 on page 594). This would happen by using
the most common browsers (Netscape Navigator and Microsoft Internet
Explorer) as well as the Java 2 SDK, Standard Edition, V1.2.1 Applet Viewer,
which has to be launched with the following command:

appletviewer http://172.16.0.1/itso/ch15/AppSock.html

Notice that no particular proxy configuration is necessary in the browsers,
and also the appletviewer command must not be launched with any flag
specifying a proxy server or SOCKS gateway. The reason for this is that when
a firewall acts as an IP filter, the client in the secure network and the server in
the non-secure network can establish a direct connection.

However, if the AppConSock applet tried to open a socket connection on the
Web server on any port other than 80, then the connection would be refused
with a java.net.NoRouteToHostException being thrown to standard output.
This is what the user would see on the client machine:
Java and Firewalls – In and Out of the Net 595

Figure 309. The Firewall Denies the Communication on a Different Port

This would happen because the firewall is configured only to route traffic
directed to port 80 on the Web server.

15.6.2.2 HTTP Proxy Server Firewall Configuration
An applet trying to implement a connection to its servicing Web server via the
java.net.Socket class is not able to establish a successful connection if the
firewall is implementing an HTTP proxy server, and a
NoRouteToHostException is thrown to standard output. The problem for
HTTP proxy servers is that support for proxy is part of the protocol that you
are using over TCP/IP, such as HTTP, FTP, Gopher, etc. (in this case, HTTP).
It is therefore not possible to encapsulate the proxy-specific information at the
socket layer.
596 Java 2 Network Security

When your browser is configured to submit all its requests to an HTTP proxy
server, normal HTTP communication takes place successfully (for example,
the HTML page AppSock.html is effectively downloaded in the Web browser).
However, an applet trying to implement a socket connection fails for the
reasons we have just explained. This would happen also with the Applet
Viewer, launched with the same command line options as indicated in
15.6.1.2, “HTTP Proxy Server Firewall Configuration” on page 587.

15.6.2.3 SOCKS Server Firewall Configuration
The situation does not change also when the firewall is configured as a
SOCKS server. Even in this case, an applet is prevented from establishing a
socket connection with its servicing Web server, and a
NoRouteToHostException is thrown to standard output. This happens with a
Web browser, correctly configured to forward every request to a SOCKS
server, as well as with the AppletViewer, launched with the same command
line options as indicated in 15.6.1.3, “SOCKS Server Firewall Configuration”
on page 589.

The code for the most common browsers on the market (such as Netscape
Communicator and Microsoft Internet Explorer) is SOCKSified, so these
browsers do not rely on the underlying operating system to use the SOCKS
protocol. This is the reason why, even on a non-SOCKSified operating
system, you can configure a browser to use a SOCKS server.

However, the JVM does not use the SOCKS support of the browser, but
attempts to use either its own libraries or the underlying operating system
resources to route the socket connection requests. Now, with the way SOCKS
works, it is possible to put SOCKS support in the java.net.Socket code,
resulting in an encapsulating of the SOCKS protocol layer and allowing the
enforcement of the security policy without undue negative impact on
applications running behind the firewall. This has been done in JDK 1.0.29,
but unfortunately not in Netscape Navigator. The result is that an applet
attempting a socket connection through a SOCKS server will fail on Netscape
Navigator V4.5 and will succeed on Microsoft Internet Explorer V5. The only
way the applet can work on Netscape Navigator V4.5 is on a SOCKSified
operating system, as we will see in 15.6.2.4, “Socket Connections on a
SOCKSified Operating System” on page 598.

What happens on the Java 2 SDK Applet Viewer? An applet can perform a
socket connection through a SOCKS server, because the java.net.Socket
class supports the SOCKS protocol. However, it is necessary that one of the
policy files in effect grants the permissions listed in Figure 303 on page 590.

9 In fact, an applet attempting a socket connection through a SOCKS server works correctly on the JDK 1.1. Applet
Viewer.
Java and Firewalls – In and Out of the Net 597

15.6.2.4 Socket Connections on a SOCKSified Operating System
In the OS/2 operating system (at least Warp 4) the basic TCP/IP stack
already contains support for SOCKS. In other words, the TCP/IP stack is
SOCKSified. Therefore, on this operating system, you will be able to use the
class java.net.Socket even if your client machine is running Netscape
Navigator and is behind a SOCKS server.

So, if your platform is Netscape Navigator, and your purpose is to run applets
that need to implement a socket connection through a SOCKS server, the
solution is simple: the operating system of your client machine needs to be
SOCKSified. If the operating system of your client platform is not OS/2 Warp
4, but for example, Windows 95, Windows 98 or Windows NT, there are
several tools that are able to SOCKSify the TCP stack. One of these is
Hummingbird SOCKS Client, which you can download from
http://www.hummingbird.com. On a Windows NT system, once you download
and uncompress the ZIP file, you have to execute the INSTALL batch file,
which will autodetect which version of WinSock is running on your system,
and install for that version accordingly. Then you have to edit the
SOCKS.CNF file in the C:\WINNT|\system32 directory. On our platform (see
Table 19 on page 581), the only line that needs to be modified is the following:

SOCKD5 @=192.168.10.1 0.0.0.0 0.0.0.0

where 192.168.10.1 is the IP address of the secure interface on the firewall
machine.

With this configuration in place, you do not have to specify any other proxy or
SOCKS server settings in order to use the SOCKS protocol. In other words, a
browser does not need to be configured to forward its requests to a SOCKS
server, and the Applet Viewer does not require any special command line flag
to indicate the presence of a SOCKS server in the network. With a
SOCKSified operating system, an applet that implements a socket connection
to its servicing Web server will succeed.

15.6.3 Conclusions
The following table summarizes our conclusions with the three types of
firewall technologies we have described (IP filter for HTTP, HTTP proxy server
and SOCKS server) and the two Java classes we have used to permit the
598 Java 2 Network Security

network connection between the applet and the Web server
(java.net.URLConnection and java.net.Socket):

Table 20. Firewall Technologies and Java Classes for Network Connections

As you can see, the only case where we see a different behavior depending
on the Java platform level is when the firewall acts as a SOCKS server on a
non-SOCKSified operating system, and the applet implements a URL
connection, as discussed in 15.6.1.3, “SOCKS Server Firewall Configuration”
on page 589.

15.7 Remote Method Invocation

Java's RMI allows developers to distribute Java objects seamlessly across the
Internet. But RMI needs to be able to cross firewalls too.

The normal approach that RMI uses, in the absence of firewalls, is that the
client applet will attempt to open a direct network connection to the RMI port

IP filter for HTTP Proxy server SOCKS server

Non-SOCKSified
client

SOCKSified client

URL connection Connection
permitted

Connection
permitted

Connection
permitted on
Netscape Navigator
V4.5 and Microsoft
Internet Explorer V5

Connection
permitted

Special permissions
must be granted on
Java 2 SDK
Standard Edition
V1.2.1 Applet Viewer

Socket connection Connection
permitted

Connection denied Connection denied
on Netscape
Navigator V4.5

Connection
permitted

Connection
permitted on
Microsoft Internet
Explorer V5

Special permissions
must be granted on
Java 2 SDK
Standard Edition
V1.2.1 Applet Viewer
Java and Firewalls – In and Out of the Net 599

(default is port 1099) on the server. The client will send its request to the
server, and receive its reply, over this network connection.

The designers of RMI have made provisions for two firewall scenarios, both
using RMI calls embedded in HTTP requests, under the reasonable
assumption that HTTP will be allowed through the firewall (as the applet was
delivered that way). The RMI server itself will accept either type of request,
and format its reply accordingly. The client actually sends an HTTP POST
request, with the RMI call data sent as the body of the POST request, and the
server returns the result in the body of an HTTP response.

Figure 310. Proxy Configuration for RMI – First Scenario

In the first scenario, we assume that the proxy server is permitted by the
firewall to connect directly to the remote server’s RMI port (1099). The client
applet will make an HTTP POST request to http://rmi.server:1099/. This
passes across the Internet to the remote server, where it is found to be an
encapsulated RMI call. Therefore the reply is sent back as an HTML
response. In theory this method could also be used with a SOCKS server,
instead of a proxy server, if run by a SOCKS-enabled browser.

As well as assuming that the firewall on the client passes the RMI port, this
assumes that the remote firewall also accepts incoming requests directly to
the RMI port. But in some organizations, the firewall manager may be
reluctant to permit traffic to additional ports such as the RMI port. So an
alternative configuration is available, in case RMI data is blocked by either
firewall.

Internet

Secure Network

Proxy HTTP
(encapsulating RMI)

Proxy Server

RMI Server

 Firewall

HTTP (encapsulating RMI)

HTTP tcp/1099

applet
600 Java 2 Network Security

Figure 311. Proxy Configuration for RMI – Second Scenario

In the second scenario, the proxy server cannot use the RMI port directly, so
the remote Web server (which supplied the applet) has a CGI-BIN program
configured, to forward HTTP on the normal port (80) to the RMI server’s port
1099.10 This CGI-BIN program needs to be installed on the Web server. Once
installed, it invokes the Java interpreter on the server, to forward the request
to the appropriate RMI server port. It also copies the standard CGI
environment variables to Java properties.

So, the client code sends a POST request to
http://rmi.server/cgi-bin/java-rmi.cgi?forward=1099. The cgi-bin program,
java-rmi.cgi, is located in the Web server’s cgi-bin directory. The java-rmi.cgi
passes the request on to the RMI port specified in the ?forward parameter.
The reply will be passed back to the Web server, which adds the HTML
header line, and returns the response to the client. In principle, this would
allow the RMI server to reside on a different system from the remote Web
server, in a three-tier model.

10 An example CGI-BIN program, java-rmi.cgi, having this purpose, was shipped with the JDK 1.1. This CGI-BIN program
is not shipped with the Java 2 SDK, Standard Edition, V1.2.

Internet

Secure Network

Proxy HTTP
(encapsulating RMI)

Proxy Server

 Firewall

HTTP (encapsulating RMI)

HTTP

tcp/80applet

Web Server

 Firewall

RMI Server

Do you allow your proxy servers access to any TCP/IP port on the Internet?
If so, you may allow your internal users to access risky servers; if not, you
may prevent them from accessing useful services. You can scan the proxy
server log files for non-standard port accesses, to assess the balance of
risk.

What is Allowed through Your Firewall?
Java and Firewalls – In and Out of the Net 601

Fortunately, all the work above is performed automatically in the java.rmi
package, so the software developer need not be concerned about the
detailed mechanism. It is only necessary to configure the RMI server
correctly, and to ensure the client uses the automatic mechanism for
encapsulating RMI.

In the current version of RMI, the client stub code checks for the presence
(not value) of system properties proxyHost or http.proxyHost, in order to
decide whether to try using the HTTP encapsulation. If you are using a Web
browser and encapsulated RMI does not seem to work, try explicitly setting
these properties, as the browser may be using its own proxy HTTP, without
setting proxyHost.

All this automatic encapsulation is not free, of course. Encapsulated RMI calls
are at least an order of magnitude slower than direct requests, and proxy
servers may add extra delays to the process as they receive and forward
requests.

15.8 Summary

We have shown how firewalls provide added security to an organization’s
network, at the expense of some restrictions on what client users can do.
Firewalls use a variety of techniques to provide this security, including packet
filtering, proxy servers and SOCKS servers. We have described approaches
that can be used with these techniques to allow secure access through the
firewalls. We also coded and executed examples of URL connections and
socket connections from behind the firewall using proxy and SOCKS, or
applying IP filters. These examples showed that the firewalls can impose
certain restrictions in a client/server Java communication. A client server
application would work perfectly in a normal setup, but the same application
might not execute as expected in a firewall environment.

The Java classes that must be used and the type of firewall configurations
that must be implemented depend on the factors highlighted in this chapter.
602 Java 2 Network Security

Chapter 16. Java and SSL

Note: Because of government restrictions on encryption, the Java programs
in this chapter that use encryption are not included in the software copy of
this book. These encryption programs may be found in the hardcopy versions
of this book published by IBM and Prentice Hall PTR.

In Chapter 8, “Security Configuration Files in the Java 2 SDK” on page 225
and Chapter 13, “Cryptography in Java 2” on page 475, we discussed the
capabilities for invoking cryptographic functions from within Java code. We
also stepped through a simple transaction, to show the ways that
cryptography can be used in an application. But, as we concluded at the time,
most programmers and application designers would prefer ready-built
cryptographic protocols, rather than having to create them from the basic
elements of encryption and digital signatures. Secure Sockets Layer (SSL) is
the most widely used protocol for implementing cryptography in the Web. In
this chapter we look at how it can be invoked from within Java.

16.1 What Is SSL?

SSL is a standard protocol proposed by Netscape1 for implementing
cryptography and enabling secure transmission on the Web. The primary goal
of the SSL protocol is to provide privacy and reliability between two
communicating parties. As the name suggests, SSL provides a secure
alternative to the standard TCP/IP sockets protocol. In fact, SSL is not a
drop-in replacement because the application has to specify additional
cryptographic information. Nonetheless, it is not a large step for an
application that uses regular sockets to be converted to SSL. Although the
most common implementation of SSL is for HTTP, several other application
protocols have also been adapted.

SSL has two security aims:

1. To authenticate the server and the client using public key signatures and
digital certificates.2

2. To provide an encrypted connection for the client and server to exchange
messages securely.

The SSL connection is private and reliable. Encryption is used after an initial
handshake to define a secret key. Message integrity checks are maintained.

1 You can find the Internet draft of the SSL V3 specification at http://home.netscape.com/eng/ssl3/draft302.txt.
2 This is optional. SSL client authentication needs to take place only if a server explicitly requires it. As we will see in Step
3 on page 607, in some cases even the server authentication may be not required.
© Copyright IBM Corp. 1997 1999 603

Notice that in SSL, symmetric cryptography is used for data encryption, while
asymmetric or public key cryptography is used to authenticate the identities of
the communicating parties and encrypt the shared encryption key when an
SSL session is established. This way, the shared encryption key can be
exchanged in a secure manner, and client and server can be sure that only
they know the shared secret key. Also, you have the advantage that client and
server can encrypt and decrypt the communication flow with a single
encryption key, which is much faster than using asymmetric encryption.

In this way SSL is able to provide:

 • Privacy

The connection is made private by encrypting the data to be exchanged
between the client and the server. In other words, only they can decrypt it
and make sense of the data. This allows for secure transfer of private
information such as credit card numbers, passwords, secret contracts, etc.

 • Data integrity

The SSL connection is reliable. The message transport includes a
message integrity check based on a secure hash function. So there is
practically no possibility of data corruption without detection.

 • Authenticity

The client can authenticate the server and an authenticated server can
authenticate the client (optionally). This means that the information is
guaranteed to be exchanged only between the intended parties. The
authentication mechanism is based on the exchange of digital certificates.

 • Non-repudiation

Digital signatures and certificates together imply non-repudiation. This
establishes accountability of information about a particular event or action
to its originating entity, and the communications between the parties can
be proved later.

For more information about the points discussed above, refer to 13.1,
“Security Questions, Cryptographic Answers” on page 475.

SSL is comprised of two protocols: the record protocol and the handshake
protocol. The record protocol defines the way that messages passed between
the client and server are encapsulated. At any point in time it has a set of
parameters associated with it, known as a cipher suite, which defines the
cryptographic methods being used.
604 Java 2 Network Security

There are a number of cipher suites defined by the SSL standard, with names
that describe their content. For example, the cipher suite named
SSL_RSA_EXPORT_WITH_RC4_40_MD5 uses:

 • RSA public key encryption for key exchange with an export-strength
modulus (see 2.2.3, “United States Export Rules for Encryption” on page
57)

 • RC4 cipher for bulk data encryption, using a 40-bit (export strength) key

 • MD5 hashing to ensure data integrity

Note that a cipher suite determines:

 • The kind of key exchange algorithm used

 • The encryption algorithm used

 • The digest algorithm used

 • Whether the cipher strength is freely exportable outside the United States

The SSL protocol can use different digital signature algorithms for
authentication of communication parties. SSL provides various key exchange
mechanisms that allow for the sharing of secret keys used to encrypt the data
to be communicated. Furthermore, SSL can make use of a variety of
algorithms for encryption and hashing. These various cryptographic options
defined by SSL, and whether the cipher strength is exportable outside the
United States or not, are described by SSL cipher suites.

For example, cipher suite SSL_RSA_WITH_RC4_128_MD5 implies:

 • RSA (unlimited) key exchange mechanism

 • RC4-128-bit encryption algorithm

 • MD5 hash function

 • Not exportable

On the other hand, SSL_RSA_EXPORT_WITH_RC4_40_MD5 implies:

 • RSA (512-bit) key exchange mechanism

 • RC4-40-bit encryption algorithm

 • MD5 hash function

 • Exportable

When the SSL record protocol session is first established, it has a default
cipher suite of SSL_NULL_WITH_NULL_NULL (no encryption at all). This is
where the SSL handshake protocol comes in. It defines a series of messages
Java and SSL 605

in which the client and server negotiate the type of connection that they can
support, perform authentication, and generate a bulk encryption key. At the
end of the handshake they exchange ChangeCipherSpec messages, which
switches the current cipher suite of the record protocol to the one that they
negotiated. This process is graphically represented in the following diagram:

Figure 312. The SSL Handshake

In the case shown in the diagram, only the server is authenticated, so the
client does not need to provide a certificate. If client authentication was
required, the handshake would be a little longer. In that case the client also
sends its certificate or a no_certificate message to the server.

Unencrypted
record
protocol for
handshake

Encrypted
record
protocol for
data

ChangeCipherSpec

Generate
key

"Hello, I can use RSA_EXPORT_WITH_RC4_40_MD5 or
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA.

Hmm...I can do
full-strength

encryption, but this
is an export client. I

don’t do DES, so
that leaves only one

choice...

Hello, let’s use
RSA_EXPORT_WITH_RC4_40_MD5.
Here’s my certificate.

Random key material
encrypted with server
public key

Generate
key

Application Data
606 Java 2 Network Security

Let’s now see more details on how an SSL session is activated.

The major elements in an SSL connection are:

1. The cipher suites that are enabled

2. The compression methods that can be used (the compression algorithms
are used to compress the SSL data and should be lossless)

3. Digital certificates and private keys, used for authentication and
verification

4. Trusted signers (the repository of trusted signer certificates, used to verify
the other entities’ certificates)

5. Trusted sites (the repository of trusted site certificates)

To speed up connection establishment, the SSL protocol allows reuse of
cryptographic parameters of previously established communication sessions
between a client and a server. For this reason SSL also maintains a session
cache.

The steps involved in an SSL transaction before the communication of data
begins are described in the following list:

1. The client sends the server a Client Hello message. This contains a
request for a connection along with the client capabilities, like the version
of SSL, the cipher suites and the data compression methods it supports.

2. The server responds with a Server Hello message. This includes the
cipher suite and the compression method it has chosen for the connection
and the session ID for the connection. Normally, the server chooses the
strongest common cipher suite. If the server is unable to find a cipher suite
that both the client and server support, it sends a handshake failure
message and closes the connection.

3. The server sends its certificate if it is to be authenticated, and the client
verifies it. Optionally the client sends its certificate and the server verifies
it.

When a secure connection requiring SSL server authentication is being
established, the server sends a certificate chain3 to the client to prove its
identity. The SSL client will pursue the connection establishment to the
server only if it can authenticate the server, or, in other words, verify the
signature on the server's certificate. In order to verify that signature, the
SSL client needs to trust the server site itself, or at least one of the signers

3 The certification authority (CA) who signed a certificate might not be a known or trusted entity. Hence, for verification
purposes, the certificates of the CA, and of the CA that certified this CA, would be required (see 13.1.1.1, “Certificate
Hierarchies” on page 479). This is known as a certificate chain. You can see a demonstration of this at
http://www.thawte.com.
Java and SSL 607

in the certificate chain provided by the server. After verifying the server
certificate, the client uses the public key of the server in the next steps of
the SSL protocol. SSL client authentication follows the same procedure: if
an SSL server requires client authentication the client sends to the server
a certificate chain to prove its identity and the server has to verify it.

We discussed SSL cipher suites earlier in this section. Almost all the SSL
cipher suites, with the exception of some anonymous ones, require server
authentication and allow client authentication.

4. The client sends the ClientKeyExchange message. This is random key
material, and it is encrypted with the server’s public key. This material is
used to create the symmetric key to be used for this session, and the fact
that it is encrypted with the server’s public key is to allow a secure
transmission across the network. The server must verify that the same key
is not already in use with any other client. If this is the case, the server
asks the client for another random key.

5. When client and server agree on a common symmetric key for encrypting
the communication, the client sends a ChangeCipherSpec message
indicating the confirmation that it is ready to communicate. This message
is followed by a Finished message.

6. In response, the server sends its own ChangeCipherSpec message
indicating the confirmation that it is ready to communicate. This message
is followed by a Finished message.

Now, the client and the server can start communicating in secure mode.

16.2 Using SSL from an Applet

The advantage of a protocol such as SSL is that it removes the need for the
application developer to deal with the nuts and bolts of cryptography. There
are two ways in which Java can exploit this function: by using the SSL support
built into the browser, or by using an SSL class package.

To access SSL Web sites, you need to specify https in place of http in the
URL location, so that the browser is forced to use the HTTPS protocol. This
represents one of the most common APIs to SSL on the client side. It
layers the HTTP protocol over SSL. The default TCP port at which a Web
server listens for HTTP connections is 80 and for HTTPS it is 443. The
java.net.URL class supports, without any modification, the
https://host/object style URL.

HTTPS URLs
608 Java 2 Network Security

16.2.1 Using SSL URLs with Java
When a webmaster wants users of a site to enter an SSL connection, he or
she simply codes a hypertext link with a prefix of https in place of http. When
the user clicks on the link, the browser automatically starts the SSL
handshake, connecting to the default SSL port on the server. Any relative
URL within an SSL page is also retrieved using SSL. For example, an
<APPLET> tag could cause the applet bytecode to be encrypted as it passes
across the network. More importantly, the user knows that the applet comes
from a trustworthy site, because the authentication process in the SSL
handshake will have checked the certificate of the server. You will recall that
the signature on a JAR file shows only that the creator of the file can be
trusted, not the site from which it came (this was discussed in Chapter 12,
“Java Gets Out of Its Box” on page 385). By delivering a signed JAR file using
SSL, you can add the extra authentication without the Web site having to
re-sign the file.

If a Java applet wants to read data from or write data to the server, it can use
the URL classes from the java.net package. These allow the Java code to
specify the URL of a Web page or CGI program and to receive the output
from the URL in an I/O stream. If we change the assignment of the URL to
use an https prefix, the browser will automatically retrieve the data using
SSL.

16.3 Java and SSL with Sun Microsystems

Fetching data using the URL technique is a very simple approach, but it limits
the Java program capabilities, because client/server communications can
exploit only the capabilities offered by CGI (or another, similar, server
interface). Even if this is adequate for the function, it imposes some
performance overhead. A direct SSL socket connection between client and
server allows more sophisticated and responsive applets to be created. This
can be done by using a package that provides SSL function.

Currently, Sun Microsystems provides three packages: javax.net,
javax.net.ssl and javax.security.cert. Note that these three packages do not
come free with the Java 2 SDK, but are shipped as part of other products,
such as Java Server Toolkit (JST) and the HotJava browser. However, these
packages are not in their final version yet. Sun Microsystems is planning to
make a Java Secure Socket Extension (JSSE) API and reference
implementation available in the near future. The JSSE API, which is currently
in draft format, will contain the three packages above.
Java and SSL 609

In this section, we evaluate the Sun Microsystems SSL implementation in the
JST and we look at the three javax packages one by one.4 Notice that a
strong-cipher version of these packages is available for use in the United
States, while a weaker-cipher version is available to be exported outside the
United States.

16.3.1 The javax.net Package
This package is not specific to SSL and has two classes in it, namely
SocketFactory and ServerSocketFactory, which represent the basic socket
and server socket factories respectively:

 • SocketFactory class

This class creates sockets. It may be subclassed by other factories, which
create particular subclasses of sockets and thus provide a general
framework for the addition of public socket-level functionality.

 • ServerSocketFactory class

This class creates server sockets. It may be subclassed by other factories,
which create particular types of server sockets. This provides a general
framework for the addition of public socket-level functionality. It is the
server-side analog of a socket factory, and similarly provides a way to
capture a variety of policies related to the sockets being constructed. Like
socket factories, ServerSocketFactory instances have methods used to
create sockets. There is also an environment specific default server socket
factory; frameworks will often use their own customized factory.

16.3.2 The javax.net.ssl Package
The javax.net.ssl package is an SSL API, but it does not provide full access to
specialized features, sometimes needed by applications, such as the control
on what private keys get used.

There are five basic features in this API:

1. SSL sockets and SSL server sockets

2. SSL socket factories

3. SSL-specific session capabilities

4. A handshake completion event facility

5. SSL-specific exceptions

This package has six classes, four interfaces and five exceptions:

4 The API documentation for these packages can be found at http://java.sun.com/security/ssl/packages.html.
610 Java 2 Network Security

 • SSLSocket class

SSLSocket is an abstract class extended by sockets that support SSL or
IETF Transport Layer Security (TLS) protocols. Such sockets are normal
stream sockets (java.net.Socket), but they add a layer of security over the
underlying network transport protocol, such as TCP. Those security
features include integrity protection, confidentiality, authentication.

 • SSLServerSocket class

The server-side implementation of the SSLSocket class is
SSLServerSocket. This class is extended by server sockets that return
connections protected using the SSL protocol, and that extend the
SSLSocket class.

 • SSLSocketFactory class

Instances of this kind of socket factory return SSL sockets. An SSL
implementation may be established as the default factory.

 • SSLServerSocketFactory class

The server-side equivalent of the SSLSocketFactory class is
SSLServerSocketFactory. This class creates SSL server sockets.

 • SSLSession interface

This interface can be used to describe the current relationship between
the server and the client.

 • SSLSessionContext interface

An SSLSessionContext is a grouping of SSL sessions associated with a
single entity. For example, they could be associated with a server or client
who participates in many sessions concurrently. This interface provides
methods for retrieving an SSLSession based on its ID, and allows such
IDs to be listed.

 • SSLSessionBindingListener interface

This interface is implemented by objects that want to know when they are
being bound to or unbound from an SSLSession. When either event
occurs, it is communicated through an SSLSessionBindingEvent
identifying the session into which the object is being bound, or from which
the object is being unbound.

 • SSLSessionBindingEvent class

This event is communicated to an SSLSessionBindingListener whenever
such a listener is bound to or unbound from an SSLSession value. The
event’s source is the SSLSession to which the listener is being bound, or
from which the listener is being unbound.
Java and SSL 611

 • HandshakeCompletedListener interface

This interface is implemented by any class that wants to receive
notifications about the completion of an SSL protocol handshake on a
given SSL connection. When an SSL handshake completes, new security
parameters will have been defined. Those parameters always include the
security keys used to protect messages. They may also include
parameters associated with a new session such as authenticated peer
identity and a new SSL cipher suite.

 • HandshakeCompletedEvent class

This event indicates that an SSL handshake has completed on a given
SSL connection. All of the core information about that handshake’s result
is captured through an SSLSession object. As a convenience, this event
class provides direct access to some important session attributes. The
source of this event is the SSLSocket on which handshaking just
completed.

 • SSLException class

Indicates some kind of error detected by an SSL subsystem.

 • SSLHandshakeException class

Indicates that the client and server could not negotiate the desired level of
security. The connection is no longer usable.

 • SSLKeyException class

Reports a bad SSL key. Normally, this indicates misconfiguration of the
server or client SSL certificate and private key.

 • SSLPeerUnverifiedException class

Indicates that the peer’s identity has not been verified. You may request
the identity of the peer. When the peer is not able to identify itself (for
example, no certificate, or the particular cipher suite being used does not
support authentication, or no peer authentication was established during
SSL handshaking) this exception may be thrown.

 • SSLProtocolException class

Reports an error in the operation of the SSL protocol. Normally this
indicates a flaw in one of the protocol implementations.

16.3.3 The javax.security.cert Package
This package contains two classes and five exceptions, but it can be safely
replaced by the more powerful java.security.cert package shipped with the
Java 2 SDK.
612 Java 2 Network Security

 • Certificate class

This is an abstract class for managing a variety of identity certificates that
have different formats but important common uses. For example, different
types of certificates, such as X.509, Pretty Good Privacy (PGP) and
Simple Distributed Security Infrastructure (SDSI), share general certificate
functionality (like encoding and verifying) and some types of information
(like a public key).

X.509, PGP, and SDSI certificates can all be implemented by subclassing
the Certificate class, even though they contain different sets of
information, and they store and retrieve the information in different ways.

 • X509Certificate class

This is an abstract class for X.509 V1 certificates. This provides a
standard way to access all the Version 1 attributes of an X.509 certificate.
Attributes that are specific to X.509 V2 or V3 are not available through this
class, but you can make use of the classes provided by the
java.security.cert package of the Java 2 SDK.

 • CertificateEncodingException class

A certificate encoding exception is thrown whenever an error occurs while
attempting to encode a certificate.

 • CertificateException class

This exception indicates one of a variety of certificate problems.

 • CertificateExpiredException class

This kind of exception is thrown whenever the current date or the specified
date is after the notAfter date and time specified in the validity period of
the certificate.

 • CertificateNotYetValidException class

This kind of exception is thrown whenever the current date or the specified
date is before the notBefore date and time in the certificate validity period.

 • CertificateParsingException class

This exception is thrown whenever an invalid DER encoded certificate is
parsed or unsupported DER features are found in the certificate.

16.4 How to Use Java and SSL

In this section we show an example of a client/server communication Java
program, implemented in two different fashions:

1. Without SSL, using a typical Java socket connection
Java and SSL 613

2. Using the SSL protocol with the Sun Microsystems API

16.4.1 Skeleton Program without SSL
We write a simple two-way communication program that lets a server and a
client talk to each other and terminates the connection once either of them
presses Ctrl-Z or Ctrl-C. A Java class called CallReceive.java creates a
server when run directly and creates a client when called with an argument.
Upon compiling CallReceive.java, three classes are generated:
CallReceive.class, Client.class and Server.class. We will show you the single
classes that build up this code, and will explain what each class does. At the
end, if you want to rebuild the same code, you simply have to concatenate the
single pieces of code together.

16.4.1.1 The Main Class of the CallReceive Program
This is the code of the CallReceive class:

Figure 313. CallReceive.java – CallReceive Class

class CallReceive
{
 public static void main(String args[])
 {
 switch(args.length)
 {
 case 0:
 new Server();
 break;

 case 1:
 try
 {
 new Client(args[0]);
 }
 catch(Exception e)
 {
 }
 break;

 default:
 System.out.println("USAGE: java CallReceive [host]");
 }
 }
}

614 Java 2 Network Security

16.4.1.2 The Server Class
Next, we write the code for the Server class, which listens for clients at a
particular port. In this example, we used port 9335. You can pick up any other
port number, provided it is not already used by any other applications running
on your system.

Figure 314. (Part 1 of 3). CallReceive.java – Server Class

class Server implements Runnable
{
 ServerSocket s;
 Server()
 {
 try
 {
 System.out.println("Server starting...");
 s = new ServerSocket(9335);

 System.out.println("Server started on port 9335");
 System.out.println("Waiting for the client...");

 Socket c = s.accept();
 Thread child = new Thread(this, "IBM");
 child.start();

 System.out.println("Request from Client received...");

 OutputStream out = c.getOutputStream();
 InputStream in = c.getInputStream();

 boolean over = false;
 int b;
 while (!over)
 {
 /* display prompt */
 System.out.print("SERVER:");
 System.out.flush();

 /* Read keyboard input and write to client */
 while ((b = System.in.read()) != -1 && b != ’\n’ && b != 26)
 {
 out.write(b);
 }

 if (b == -1 || b == 26) // CLOSE request from server
Java and SSL 615

Figure 315. (Part 2 of 3). CallReceive.java – Server Class

 {
 over = true;
 System.out.println("<<SERVER closing connection>>");
 }
 else
 {
 out.write(’\n’);
 System.out.print("CLIENT:\n\t");

 /* Get response from client and display */
 while((b = in.read()) != -1 && b != ’\n’)
 {
 System.out.print((char) b);
 }

 System.out.print(’\n’);
 System.out.flush();
 if (b == -1 || b == 26) // CLOSE request from server
 {
 over = true;
 System.out.println("<<SERVER closing connection>>");
 }

 else
 {
 out.write(’\n’);
 System.out.print("CLIENT:\n\t");

 /* Get response from client and display */
 while ((b = in.read()) != -1 && b != ’\n’)
 {
 System.out.print((char) b);
 }

 System.out.print(’\n’);
 System.out.flush();

 if (b == -1) // Connection closed by client
 {
 over = true;
 System.out.println("<<CLIENT closed connection>>");
 }
 }
616 Java 2 Network Security

Figure 316. (Part 3 of 3). CallReceive.java – Server Class

The server waits for a client connection, and as soon as a client connects to
it, it starts a session with it. Other clients are not allowed to connect to the
same server, and if they try, they get the message

Sorry, busy in a session.

As you can see, this code makes use of simple I/O statements to allow
communication.

 out.flush();
 }
 in.close();
 out.close();
 c.close();
 s.close();
 }
 catch(IOException e)
 {
 }
 }

 public void run()
 {
 while (true)
 {
 try
 {
 Socket c = s.accept();
 DataOutputStream out = new DataOutputStream(c.getOutputStream());
 InputStream in = c.getInputStream();

 out.writeBytes("Sorry, busy in a session.");
 out.flush();
 c.close();
 }
 catch(IOException e)
 {
 break;
 }
 }
 }
}

Java and SSL 617

16.4.1.3 The Client Class
Finally, we show you the code to create the Client class to connect to the
server:

Figure 317. (Part 1 of 2). CallReceive.java – Client Class

class Client
{
 Client(String arg) throws Exception
 {
 int c;

 System.out.println("Requesting connection from " + arg + " on port 9335...");
 Socket s = new Socket(arg, 9335);
 System.out.println("Connected to Server");

 InputStream in = s.getInputStream();
 OutputStream out = s.getOutputStream();

 boolean over = false;
 while (!over)
 {
 /* Get message from server and display */
 System.out.print("SERVER:\n\t");

 while ((c = in.read()) != -1 && c != ’\n’)
 {
 System.out.print((char) c);
 }

 if (c == -1) // Connection closed by server
 {
 over = true;
 System.out.println("\n<<SERVER has closed connection>>");
 }
 else
 {
 System.out.print("\nCLIENT:");
 System.out.flush();

 /* Read keyboard input and write to server */
 while ((c = System.in.read()) != -1 && c != ’\n’ && c != 26)
 {
 out.write(c);
 }
618 Java 2 Network Security

Figure 318. (Part 2 of 2). CallReceive.java – Client Class

The client requests the server for a connection, and when it connects, the
communication can start. Again, the client code uses the same I/O
statements to implement the communication as the server code.

16.4.1.4 The import Statements for the CallReceive Program
In order to complete the program, you should not forget the import statements
that must be added at the beginning of the program:

Figure 319. CallReceive.java – import Statements

As you can see, the import statements do not invoke any of the SSL libraries
that we have discussed in 16.3, “Java and SSL with Sun Microsystems” on
page 609, because this code implements a basic client/server communication
without making use of the SSL protocol.

16.4.1.5 Compiling and Installing the CallReceive Program
The entire program can be obtained by concatenating the pieces of code that
we have shown here. The sequence should be:

 if (c == -1 || c == 26) // CLOSE request from CLIENT
 {
 over = true;
 System.out.println("<<CLIENT closing connection>>");
 }
 else
 {
 out.write(’\n’);
 }

 out.flush();
 }
 }
 out.close();
 in.close();
 s.close();
 }
}

import java.io.*;
import java.net.*;
Java and SSL 619

1. import statements code (Figure 319 on page 619)

2. Server class code (Figure 314 on page 615, Figure 315 on page 616 and
Figure 316 on page 617)

3. Client class code (Figure 317 on page 618 and Figure 318 on page 619)

4. CallReceive class code (Figure 313 on page 614)

The code obtained in this way should be saved as CallReceive.java and
compiled through the command:

javac CallReceive.java

This command will generate three class files in the directory where it is run:
CallReceive.class, Server.class and Client.class. These three class files
should then be copied to both the client and server machines, or at least they
should be saved in a file system shared by both of them.

16.4.1.6 Running the CallReceive Program
The program is launched on both the machines from the directory where you
copied the class files. If you enter:

java CallReceive

the machine where you type this command will automatically act as the
server in this scenario. Then, on the other machine, enter:

java CallReceive hostname

where hostname is the host name or IP address of the server. The second
machine will automatically act as the client.

Notice that it is possible to run this program on two different command
prompts of the same machine, virtually acting as a client and server at the
same time.

The following two figures show an example of client/server communication
implemented with the CallReceive program. Figure 320 on page 621 is
captured on the server, and Figure 321 on page 621 on the client. The three
classes are stored in a shared file system, so they are not even physically
copied on the local file systems of the two machines.
620 Java 2 Network Security

Figure 320. Server Side – without SSL

Figure 321. Client Side – without SSL

Notice that in this case the client/server communication is interrupted by the
server by pressing Ctrl-Z.

16.4.1.7 Security Implications with CallReceive
We want to demonstrate that this communication is non-secure. To do this,
we use Microsoft Systems Management Server (SMS) Network Monitor
Java and SSL 621

Version 4.00.349. This tool can capture and display incoming data being
communicated between two machines on the same LAN segment. The
following two figures show the TCP/IP frames captured on the server and
client machines respectively:

Figure 322. Network Monitor on the Server Side – without SSL

Figure 323. Network Monitor on the Client Side – without SSL
622 Java 2 Network Security

You can clearly see what is being transmitted between the client and the
server.

16.4.2 Using SSL with the Sun Microsystems API
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

16.4.2.1 The Main Class of the SunSSLCallReceive Program
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

16.4.2.2 The SunSSLServer Class
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

16.4.2.3 The SunSSLClient Class
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

16.4.2.4 The import Statements for the SunSSLCallReceive Program
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

16.4.2.5 Compiling and Installing the SunSSLCallReceive Program
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

16.4.2.6 Running the SunSSLCallReceive Program
Note: Because of government restrictions on encryption, the Java programs
in Chapter 13 and 16 that use encryption are not included in the software
Java and SSL 623

copy of this book. These encryption programs may be found in the hardcopy
versions of this book published by IBM and Prentice Hall PTR.

16.4.2.7 Security Implications with the SunSSLCallReceive Program
In this section we want to demonstrate that the communication between the
client and the server is secure when using SSL. To do this, we use once again
the Network Monitor tool (see 16.4.1.7, “Security Implications with
CallReceive” on page 621), with which we can verify that, if SSL is used, all
information is encrypted while being transmitted. The following two figures
are captured on the SSL server and client machines respectively:

Figure 324. Network Monitor at the Server Side – Using the Sun Microsystems SSL API
624 Java 2 Network Security

Figure 325. Network Monitor at the Client Side – Using the Sun Microsystems SSL API

All the frames contain similar unintelligible information. This confirms that no
sniffing can get to the data if this is sent over a sufficiently strong secured
channel using SSL.

16.5 Java and SSL with IBM SSLite

Another way for a Java program to implement a direct SSL socket connection
between the client and server is to use the IBM solution SSLite for Java,
which comes with the package com.ibm.sslite.

SSLite is an SSL V3.0 protocol implementation in Java, targeted especially
for applet support. The cryptographic functions used in SSLite are private to
the package and cannot be accessed directly by other applications.

IBM SSLite for Java is based on the Java socket API. It provides a set of
classes that mirror the java.net socket classes and behave like their java.net
equivalents. When creating an SSL socket, an already connected socket can
be supplied to be used for the connection. It can also be specified that closing
the SSL socket should not close the underlying socket. By these means a
number of SSL connections can be created and closed on the same socket.
Java and SSL 625

In the SSLite package the context information for the current SSL connection
(in other words, the cipher suite details) is maintained in a Java class named
SSLContext. The tricky part is setting up the SSLContext class in the first
place. It requires a key ring that is, conventionally, a file containing a
database of keys and certificates. An SSL client always needs a key ring,
even if client authentication is not in use, because it has to check the validity
of the certificate presented by the server. To perform the check, the client
needs the certificate for the CA that signed the server’s certificate.

The problem with reading a key ring from a file is that normally it is forbidden
by the applet security restrictions. One solution to this lies in signed applets,
but that can lead to further problems, due to the differences in implementation
that we discussed in Chapter 11, “The Java Plug-In” on page 359 and
Chapter 12, “Java Gets Out of Its Box” on page 385 (see Table 12 on page
471). The SSLite package provides an innovative alternative, by defining an
SSLightKeyRing interface. This means that a key ring can be sent imbedded
in the Java class files of the applet, thus avoiding the need for disk I/O. How
can the applet know that this key ring (and the CA certificates inside it) can be
trusted? The answer is to send the applet itself in an SSL URL. The chain of
trust from the point of view of the applet is the following:

1. This applet is downloaded from a host that is trusted, because the
certificate it sent when downloaded in a URL was signed by an
independent, trusted third party (the CA).

2. Therefore, the key ring that the applet includes can also be trusted.

3. Therefore, the CA key in the key ring can be trusted, and the applet can
use it to validate the server certificate when the applet starts a connection
with SSLite.

This is not a rigorous chain of trust, but even if the applet does not have
strong authentication for the server, it can still establish an encrypted
session. In other words, privacy of the data is guaranteed, even if
authentication of the server is based on doubtful logic.

SSLite also provides a class to manage the SSL session cache. This class
provides a method to specify the session cache size which in fact is the
maximum number of passive sessions (sessions without connections) that
can be maintained at the same time.

Notice that SSLite supports X.509 V3 certificates.
626 Java 2 Network Security

16.5.1 Extensions to the SSL Protocol
IBM SSLite for Java provides two proprietary extensions to the SSL protocol;
it defines compression methods and secret-based cipher suites:

 • SSLite provides two proprietary compression techniques based on the
java.util.zip package.

 • The secret-based cipher suites use secret keys on the client and server
sides. There are two key rings, which have to be maintained on the client
and server to use these cipher suites: namely secret and peer secret key
rings.

On the client side, the secret key ring must contain an ID/Secret pair. On
the server side, the same ID/Secret pair must be in the peer secret key
ring. During the connection establishment, the client sends to the server
its ID and uses the corresponding Secret to create the session master
secret. Based on the ID received, the server selects the Secret to create
its session master secret. The connection establishment succeeds only if
the client and server share a common secret. All the rest is according to
the SSL protocol.

The secret-based cipher suites can be used, for instance, to implement
password-based server access. In this case the server maintains the
ID/Secret pairs of potential users, where the Secret is derived from the
user ID and password. On the client side, the user must provide its ID and
password to create a connection to the server.

16.5.2 SSLite Key Ring Management Tools
SSLite also provides two tools for SSLite key ring management: the Key
Management Tool – a graphical user interface (GUI) utility also known as
keyman (com.ibm.sslite.tools.keyman) – and the command line tool keyrng
(com.ibm.sslite.tools.keyrng).

16.5.2.1 The SSLite Key Management Tool keyman
The keyman tool is a GUI utility for management of key ring classes and files.
After installing IBM SSLite for Java, the keyman tool can be launched by
selecting Key Management Tool from the SSLite for Java menu, as shown in
the following figure:
Java and SSL 627

Figure 326. Launching the keyman Tool

The keyman window is brought up:
628 Java 2 Network Security

Figure 327. Keyman GUI Tool Available with SSLite

16.5.2.2 The keyrng Command Line Utility
On the contrary, keyrng is a command line tool used for management key ring
classes, which are Java classes containing a String representation of a key
ring repository. This tool can be run from the command prompt. Here are
some usage examples that show the various options:

 • The following command adds the site certificate stored in the file crt1.cer
to KeyRing.class:

java com.ibm.sslite.tools.keyrng KeyRing add --site crt1.cer

If KeyRing.class does not exist, it is created by this command. The keyrng
utility generates a password-protected key ring, unless you do not enter
any password.

 • The following command adds the CA certificate stored in the file crt2.cer
to KeyRing.class:

java com.ibm.sslite.tools.keyrng KeyRing add --ca crt2.cer

 • The following command adds the site certificate stored in the file crt1.cer
and the CA certificate stored in the file crt2.cer to KeyRing.class:

java com.ibm.sslite.tools.keyrng KeyRing add --site crt1.cer --ca crt2.cer
Java and SSL 629

 • The following command adds the contents of the key ring class
AdditionalKeyRing.class to KeyRing.class:

java com.ibm.sslite.tools.keyrng KeyRing add --class AdditionalKeyRing

 • The following command establishes an SSL connection to the server
www.verisign.com, port 443, to retrieve the server's certificate chain:

java com.ibm.sslite.tools.keyrng KeyRing connect www.verisign.com

The certificates are displayed and can be added to the KeyRing.class.

 • The following command establishes an SSL connection to the server
litzner, port 8050, to retrieve the server's certificate chain:

java com.ibm.sslite.tools.keyrng KeyRing connect litzner:8050

The certificates are displayed and can be added to the KeyRing.class.

 • The following command can be used to change the password of the
KeyRing.class:

java com.ibm.sslite.tools.keyrng KeyRing password

 • The following command verifies and prints the contents of the
KeyRing.class:

java com.ibm.sslite.tools.keyrng KeyRing verify

This command prompts the user whether to delete the certificates it is
unable to verify.

 • The following command option is used to selectively delete key ring items
of the KeyRing.class:

java com.ibm.sslite.tools.keyrng KeyRing delete

IBM SSLite for Java ships a sample KeyRing class,
com.ibm.sslite.keyring.KeyRing. The session screen shown in the following
figure demonstrates how to use the verify option of the keyrng tool to see the
contents of the sample KeyRing class:

Figure 328. (Part 1 of 2). keyrng Session Screen

F:\itso\ch16>java com.ibm.sslite.tools.keyrng
com.ibm.sslite.keyring.KeyRing verify
Password for com.ibm.sslite.keyring.KeyRing.class: sslite
-------------------------- Key ring entry: 1 --------------------------

 Entry type: Private Certificate Chain

 Certificate: Yours
630 Java 2 Network Security

Figure 329. (Part 2 of 2). keyrng Session Screen

16.5.3 SSL Server Authentication with IBM SSLite for Java
SSL server authentication is more sophisticated with IBM SSLite for Java
than with the Sun Microsystems APIs. In fact, as soon as an attempt is made
to establish an SSL connection that requires server authentication, the
following Java Security warning message pops up on the SSL client machine:

Figure 330. SSL Server Authentication with IBM SSLite for Java

This warning message is displayed when the server certificate cannot be
verified based on the information contained in the client’s public key ring. We
opt to use the C:\WINNT\Profiles\Administrator\SiteCer.db certificate
repository to identify the server certificate and we click on Continue. The
following message is displayed:

 Key : RSA/512 bits
 Subject: Java Security, NCSD, IBM, US
 Issuer: Java Security, NCSD, IBM, US
 Valid from: Tue Mar 23 21:35:16 EST 1999
 Valid to: Wed Mar 22 21:35:16 EST 2000
Finger print: 83:4C:37:DD:76:5B:C7:E4:AD:AF:19:23:DD:F7:81:D2

F:\itso\ch16>
Java and SSL 631

Figure 331. Java Security Warning Message

We want to know more details about the server certificate before deciding to
accept it. For this reason, we click More Info. In this scenario, we are using
the KeyRing sample class shipped with IBM SSLite for Java. Therefore, the
details on the server certificate are the same as we got with the keyrng
command line utility (see Figure 328 on page 630 and Figure 329 on page
631), as follows:

Figure 332. Server Certificate Details
632 Java 2 Network Security

We click OK and then, in the Java Security window shown in Figure 331 on
page 632, we click Continue.

At this point, the user on the client system has the option to select whether to
accept the key ring for only this connection or forever. If the user selects to
trust it forever, a further warning message is displayed, as shown in the
following figure:

Figure 333. Accepting the Key Ring

16.6 Conclusions

The Sun Microsystems SSL API provides abstract classes to implement SSL.
IBM SSLite is more sophisticated. However, with IBM SSLite we have to set
up an SSLContext before we start communication at both ends even though
we do not want to use client authentication (or server authentication for
anonymous cipher suites).

SSLite has been targeted especially toward applet support. Concerns such
as the size of the package were central to SSLite development. SSLite also
Java and SSL 633

provides two key management tools. On the contrary, with the javax SSL APIs
found in the JST, there are currently three major problems:

1. Dependencies on the java.security package

2. No standard public key ring format

3. No management APIs

Dependencies on the java.security package create problems when working
on browser platforms that do not implement java.security, such as Netscape
Communicator and Microsoft Internet Explorer. Moreover, compatibility
problems are generated by the absence of a standard public key ring format
and management APIs. However, the javax SSL APIs in the JST are not in
their final version yet. The discussion presented in this chapter is based on an
evaluation version of those APIs, which are still under development. Some
changes will appear in the final version of the JSSE APIs.

16.7 Summary

The history of the World Wide Web is based on pragmatism. For example, no
one would argue that sending uncompressed ASCII text data on sessions that
are set up and torn down for every single transaction is efficient in any way.
However, this is what HTTP does, and it is very successful. The reason for its
success is that it is simple enough to allow many different systems to
interoperate without problems of differing syntax. The cost of simplicity is in
network overhead and a limited transaction model.

Using cryptography in Java offers a similar dilemma. It is possible to write
secure applications using a toolkit of basic functions. Such an application can
be very sophisticated, but it will also be complex. Alternatively, using SSL
URL connections offers a way to simplify the application, but at the cost of
application function. SSL Java packages, such as SSLite, provide a middle
way, retaining simplicity but allowing more flexible application design.
634 Java 2 Network Security

Chapter 17. Epilogue

This book has shown you how the Java security model has evolved from the
basic sandbox of JDK 1.0 to the fine-grained access control model of Java 2
SDK, Standard Edition, V1.2, passing through the binary security model of
JDK 1.1.

In this chapter, which represents the epilogue of this long adventure through
Java security, we describe the future security developments of this
fashionable and complex programming language, and summarize the reasons
why today Java can really help application developers, network
administrators, managers and common Internet users improve the security of
their platform.

17.1 Future Directions of Java

How is the Java security model going to change in the future? What is the
direction of its evolution?

In this section, we will answer these questions according to the information
that is publicly available on the JavaSoft Web site http://www.javasoft.com.

17.1.1 Java 2 SDK – The Path Ahead
We have seen how the integrity and trustworthiness of downloaded applets
can be determined, but can you be sure that the Java 2 SDK downloaded is
the correct software? At present, the answer to this question is no because
there is no provision for signed core classes, extension classes and native
DLLs, by which a user could verify the authenticity of the software received.
At some point, Java will have a solution to this problem of correctness of
software and insurance that it has not been tampered with, which is the
primary security requirement. In addition, signing the system classes would
give them a protection domain.

Also, it would be desirable that the policy files had some kind of protection,
such as encryption, and the Policy Tool were compatible with this new type of
protected storage. This would be an additional level of security, though not a
fool-proof measure, to protect against tampering with these files.

Another problem is that currently, the digital signature algorithm supported on
the Java 2 platform is DSA/SHA1 (see Chapter 11, “The Java Plug-In” on
page 359 and 12.7, “Future Developments” on page 470). The most popular
certification authorities (CAs) do not seem to be accepting this format
© Copyright IBM Corp. 1997 1999 635

because the de facto standard is RSA/MD5. Moreover, the Java Plug-in is
currently unable to verify applets that were signed using RSA. Therefore, to
use the cryptography capabilities of Java 2 in a real-life situation, you would
need to install the software of a provider that enables you to use the RSA
algorithm for public key encryption. These problems will be solved once the
Java 2 SDK and the Java Plug-in provide RSA signature support.

17.1.2 Resource Consumption Management
Java should develop mechanisms to guard against the denial of service type
of attack, where the attacker tries to consume as much of the CPU cycle time
as possible (by keeping the CPU busy in some silly activity), so that all other
requests to the CPU remain unattended. An example denial of service attack
is shown in 7.3.2.1, “Cycle Stealing” on page 195.

Resource consumption management is relatively easy to implement in some
cases, such as limiting the number of windows any application can pop up at
any one time. On the contrary, it can be quite hard to implement efficiently in
other cases, such as limiting memory, CPU or file system usage. The
JavaSoft security developers plan to coherently address such issues in the
future.

17.1.3 Java Authentication and Authorization Service
The Java 2 SDK provides a means to enforce access controls based on
where code came from and who signed it. The need for such access controls
derives from the distributed nature of the Java platform, where, for instance, a
remote applet may be downloaded over a public network and then run locally.

The Java 2 SDK, however, still lacks the means to enforce similar access
controls based on who runs the code. To provide this type of access control,
the security architecture of the Java 2 SDK requires additional support for
authentication (determining who's actually running the code), and requires
extensions to the existing authorization components to enforce new access
controls based on who was authenticated.

The Java Authentication and Authorization Service (JAAS)1 extends the
security architecture, providing mechanisms to authenticate subjects, execute
code on behalf of subjects, and grant permissions to subjects. The result is
that access control policies can be based on both what code is being
executed and who is executing that code.

1 See http://java.sun.com/security/jaas/.
636 Java 2 Network Security

17.1.4 Java RMI Security Extension
The Java Remote Method Invocation (RMI) Security Extension2 further
extends the Java 2 security architecture to distributed systems, providing
mechanisms to mutually authenticate client and server subjects during a
remote call, protect the communication from third parties, and execute code
in the server on behalf of the client’s subject.

The API for this extension is intentionally at a very high level; cryptographic
mechanisms and protocols are not exposed, so that code written to the API is
more portable. An underlying service provider interface (SPI) allows specific
mechanisms and protocols to be configured into the framework.

17.1.5 Arbitrary Grouping of Permissions
Sometimes it is convenient to group a number of permissions together and
use a shorthand name to refer to them. For example, if we would like to have
a permission called SuperPermission to include (and imply) both the
following:

FilePermission("-", read,write)
SocketPermission("*", "connect,accept")

technically we can use the class Permissions or a similar class to implement
this super permission. And such grouping can be arbitrarily complicated.

The more difficult issues are the following:

1. To understand what actual permissions one is granting when giving out
such a super permission, either a fixed and named permission class is
created to denote a statically specified group of permissions, or the
member permissions need to be spelled out in the policy file.

2. Processing the policy file (or, more in general, the policy) can become
more complicated, because the grouped permissions may need to be
expanded. Moreover, nesting of grouped permission increases complexity
even more.

17.1.6 Object-Level Protection
Given the object-oriented nature of the Java programming language, it is
conceivable that developers will benefit from a set of appropriate object-level
protection mechanisms that:

 • Goes beyond the natural protection provided by the Java programming
language

 • Supplements the thread-based access control mechanism
2 See http://java.sun.com/products/jdk/rmi/.
Epilogue 637

One such mechanism is SignedObject (see 10.1.9, “The SignedObject Class”
on page 316). Parallel to this primitive, JavaSoft provides SealedObject,
which uses encryption to hide the content of an object. Due to current United
States export control regulations on the use of encryption, the SealedObject
class is provided separately from the Java 2 SDK (see 13.4.7, “The
SealedObject Class” on page 496).

GuardedObject is a general way to enforce access control at a per
class/object per method level (see 10.1.2, “Guard Interface and
GuardedObject Class” on page 298). This method, however, should be used
only selectively, partly because this type of control can be difficult to
administer at a high level.

17.1.7 Subdividing Protection Domains
A potentially useful concept not currently implemented is that of subdomains.
A subdomain is one that is enclosed in another. A subdomain would not have
more permissions or privileges than the domain of which it is a subpart. A
subdomain could be created, for example, to selectively further limit what a
program can do.

Often a domain is thought of as supporting inheritance: a subdomain would
automatically inherit the parent domain’s security attributes, except in certain
cases where the parent further restricts the subdomain explicitly. Relaxing a
subdomain by right amplification is a possibility with the notion of trusted
code.

For convenience, we can think of the system domain as a single, big
collection of all system code. For better protection, though, system code
should be run in multiple system domains, where each domain protects a
particular type of resource and is given a special set of rights. For example, if
file system code and network system code run in separate domains, where
the former has no rights to the networking resources and the latter has no
rights to the file system resources, the risks and consequence of an error or
security flaw in one system domain is more likely to be confined within its
boundary.

17.1.8 Running Applets with Signed Content
The JAR and manifest specifications on code signing allow a very flexible
format. Classes within the same archive can be signed with different keys,
and a class can be unsigned, signed with one key, or signed with multiple
keys. Other resources within the archive, such as audio clips and graphic
images, can also be signed or unsigned, just like classes.
638 Java 2 Network Security

This flexibility brings about the issue of interpretation. The following questions
need to be answered, especially when keys are treated differently:

1. Should images and audios be required to be signed with the same key if
any class in the archive is signed?

2. If images and audios are signed with different keys, can they be placed in
the same Applet Viewer or Web browser page, or should they be sent to
different viewers for processing?

These questions are not easy to answer, and to be the most effective, require
consistency across platforms and products. The JavaSoft intermediate
approach is to provide a simple answer – all images and audio clips are
forwarded to be processed within the same applet class loader, whether they
are signed or not. This temporary solution will be improved once a consensus
is reached.

Moreover, if a digital signature cannot be verified because the bytecode
content of a class file does not match the signed hash value in the JAR, a
security exception is thrown, as the original intention of the JAR author is
clearly altered. Previously, there was a suggestion to run such code as
untrusted. This idea is undesirable because the applet class loader allows the
loading of code signed by multiple parties. This means that accepting a
partially modified JAR file would allow an untrusted piece of code to run
together with and access other code through the same classloader.

17.1.9 Java 2 Platform, Enterprise Edition
The Java 2 Platform, Enterprise Edition (J2EE) is the newest addition to the
Java platform family. The Java 2 Platform, Enterprise Edition, is a platform for
building n-tier Java-technology-based applications across the enterprise.

The J2EE, is a complete infrastructure for Enterprise JavaBeans (EJB)
technology (see 14.7, “Enterprise JavaBeans” on page 554). It is designed to
ensure that the write once, run anywhere principle applies to the server side
of enterprise computing just as the Java 2 Platform, Standard Edition (J2SE)
works on the client side. By providing a complete set of standard services
available to every enterprise bean, the J2EE provides a way for organizations
to develop and deploy applications as modular components that can be easily
reused, and that scale to the range of enterprise servers.

17.2 Conclusion

The authors believe that Java provides a powerful tool with which to create
secure computer systems. This security does not depend on the underlying
Epilogue 639

operating system; indeed, insecure PC operating systems will benefit, while
secure operating systems like MVS and UNIX will have their security
enhanced, using the same portable software as that on the PC. Java is
sufficiently secure to allow other software to be run safely, even if it came
from a dubious source.

This security depends on vigilance by the users, in ensuring that the software
that they must trust does not contain any loopholes, and is correctly
configured. Undoubtedly, Java implementation flaws will continue to emerge
and so continuing vigilance is needed.

The most publicized (and hence quickly fixed) flaws have appeared in the
Java Virtual Machine (JVM). We believe that the next generation of flaws will
appear in situations where Java is working together with other types of client
executable content. For example, it is now very common to find Web pages
that use a bewildering mixture of technologies – Java, JavaScript, ActiveX,
Macromedia Shockwave and other plug-ins, dynamic HTML, and so on. Each
of these works within its own zone of protection, which may overlap but are
not identical. The wily cracker can take advantage of this fact to bypass the
restrictions of one technology by exploiting another. Fixes for this type of
exploit will probably not appear so quickly, because each component may be
working correctly on its own terms.

Signed content (all types of content, not just Java) offers one solution to these
problems, by guaranteeing the integrity of its source. But there are dangers
here also. Cryptography is not a simple subject and it is important to mask
complexity from the end user. At the time of writing, the variety of different
approaches to signed content reflects the difficulty of doing this. We hope that
a consistent approach will soon emerge. One area that merits attention is the
question of how to warn the user that some component of a Web page wants
to perform some potentially dangerous function. The problem is that the user
becomes click-happy. When confronted by an endless sequence of dialog
boxes warning of one thing or another, it is too easy to just keep clicking OK.
We need a method that makes it clear that, for example, a request by a Java
applet to read environmental information is potentially an order of magnitude
less dangerous than allowing an ActiveX control to run.

Java 2, because of its unique design, offers many safety and security
advantages over alternative approaches. In this book we have illustrated this
fact and, we hope, given you some insight into how to create secure Java
applications, how to protect Java assets, and how to use Java securely.
640 Java 2 Network Security

Appendix A. Getting Internal System Properties

In this appendix, we show two simple programs that can be used to get
system properties.

A.1 Program GetAllProperties

The GetAllProperties program saves the values of all internal Java Virtual
Machine (JVM) properties to a text file named properties.lst in the current
directory. The following figure shows the code of this program:

Figure 334. GetAllProperties.java

Compile this program by entering:

/**
 * GetAllProperties.java
 */
import java.lang.*;
import java.util.*;
import java.io.*;
import java.security.*;

class GetAllProperties
{

 public static void main(String[] args)
 {
 Properties p;
 FileOutputStream f;

 try
 {
 p = System.getProperties();
 f = new FileOutputStream("properties.lst");
 p.store(f, "Java 2 properties");
 System.out.println("All done - Results are in file properties.lst");
 }
 catch(Exception e)
 {
 System.err.println("Caught exception " + e.toString());
 }
 }
}

© Copyright IBM Corp. 1997 1999 641

javac GetAllProperties.java

and run it with this command:

java GetAllProperties

It will produce the following output:

All done - Results are in file properties.lst

On opening the properties.lst text file with a text editor, you will be able to see
all the JVM internal properties. Example values are shown in the following
figure:

Figure 335. (Part 1 of 2). JVM Internal Properties in the Text File properties.lst

#Java 2 properties
#Wed Apr 14 13:09:02 EDT 1999
java.specification.name=Java\ Platform\ API\ Specification
awt.toolkit=sun.awt.windows.WToolkit
java.version=1.2.1
java.awt.graphicsenv=sun.awt.Win32GraphicsEnvironment
user.timezone=America/New_York
java.specification.version=1.2
java.vm.vendor=Sun\ Microsystems\ Inc.
java.vm.specification.version=1.0
user.home=C\:\\WINNT\\Profiles\\pistoia.000
os.arch=x86
java.awt.fonts=
java.vendor.url=http\://java.sun.com/
file.encoding.pkg=sun.io
user.region=US
java.home=D\:\\Program\ Files\\JavaSoft\\JRE\\1.2
java.class.path=.
line.separator=\r\n
java.ext.dirs=D\:\\Program\ Files\\JavaSoft\\JRE\\1.2\\lib\\ext
java.io.tmpdir=C\:\\TEMP\\
os.name=Windows\ NT
java.vendor=Sun\ Microsystems\ Inc.
java.awt.printerjob=sun.awt.windows.WPrinterJob
java.library.path=C\:\\WINNT\\SYSTEM32;.;C\:\\WINNT\\System32;C\:\\WINNT;
 C\:\\WINNT\\SYSTEM32;C\:\\WINNT;C\:\\MWW32\\BIN;C\:\\MWW32\\MODEM;
 D\:\\Program\ Files\\Personal\ Communications;
 D\:\\jdk1.2.1\\bin;d\:\\notes\\
java.vm.specification.vendor=Sun\ Microsystems\ Inc.
sun.io.unicode.encoding=UnicodeLittle
file.encoding=Cp1252
642 Java 2 Network Security

Figure 336. (Part 2 of 2). JVM Internal Properties in the Text File properties.lst

It is important to emphasize that the GetAllProperties application should be
run without the java flag -Djava.security.manager, or the following
AccessControlException will be thrown:

Caught exception java.security.AccessControlException: access denied
(java.util.PropertyPermission * read,write)

This exception is thrown because the default security manager denies access
to the system properties unless permission is explicitly granted in one of the
current policy files. Assuming that the GetAllProperties class resides in the
F:\itso\ax01 directory, the following lines added to the user’s policy file will
enable the program to read the system properties and write the results to the
properties.lst file in the same directory:

As you can see, GetAllProperties must be granted read and write access to
the Java system properties. This is because java.lang.System.getProperties()
calls the default SecurityManager.getPropertyAccess() method with no

java.specification.vendor=Sun\ Microsystems\ Inc.
user.name=pistoia
user.language=en
java.vendor.url.bug=http\://java.sun.com/cgi-bin/bugreport.cgi
java.vm.name=Classic\ VM
java.vm.specification.name=Java\ Virtual\ Machine\ Specification
java.class.version=46.0
sun.boot.library.path=D\:\\Program\ Files\\JavaSoft\\JRE\\1.2\\bin
os.version=4.0
java.vm.info=build\ JDK-1.2.1-A,\ native\ threads,\ symcjit
java.vm.version=1.2.1
java.compiler=symcjit
path.separator=;
user.dir=F\:\\SG24-2109-01\\itso\\ax01
file.separator=\\
sun.boot.class.path=D\:\\Program\ Files\\JavaSoft\\JRE\\1.2\\lib\\rt.jar;
 D\:\\Program\ Files\\JavaSoft\\JRE\\1.2\\lib\\i18n.jar;
 D\:\\Program\ Files\\JavaSoft\\JRE\\1.2\\classes

grant codeBase "file:/F:/itso/ax01/" {
 permission java.util.PropertyPermission "*", "read, write";
 permission java.io.FilePermission "properties.lst", "write";
};
Getting Internal System Properties 643

arguments. This in turn calls the checkPermission() method, passing in the
following permission argument:

java.util.PropertyPermission("*", "read,write")

When the default security manager is invoked, GetAllProperties also requires
write access to the file properties.lst.

A.2 Program GetProperty

If you need to know the value of a single system property, the program
GetProperty works well for you. The code for this program is shown in the
following figure:

Figure 337. GetProperty.java

/**
 * GetProperty.java
 */
import java.lang.*;
import java.security.*;

class GetProperty
{
 public static void main(String[] args)
 {
 String s;
 try
 {
 if (args.length > 0)
 {
 s = System.getProperty(args[0], "name " + args[0] + " not specified");
 System.out.println(args[0] + " property value is: " + s);
 }
 else
 {
 System.out.println("Property name required");
 }
 }
 catch(Exception e)
 {
 System.err.println("Caught exception " + e.toString());
 }
 }
}

644 Java 2 Network Security

GetProperty prints out the value of the JVM internal property represented by
the String argument passed to it on the command line. Compile it with the
following command:

javac GetProperty.java

It takes as a command line argument the name of the property whose value
you want to know. For example:

java GetProperty java.home

produces an output similar to the following:

java.home property value is: D:\Program Files\JavaSoft\JRE\1.2

Notice that in this case also the GetProperty program works correctly if no
security manager is invoked. If the default security manager is invoked with
the -Djava.security.manager flag, then the command above throws the
following exception:

Caught exception java.security.AccessControlException: access denied
(java.util.PropertyPermission java.home read)

In order to prevent the system from throwing this exception, and assuming
that the GetProperty class resides in the F:\itso\ax01 directory, the following
lines should be added to one of the current policy files:

Or, more generically, you can replace java.home with the wildcard (*) so that
the permission above applies to all the system properties:

You can notice that GetProperty needs only the following permission:

java.util.PropertyPermission "*", "read"

The reason this program requires only read permission is that
java.lang.System.getProperty() calls the default
SecurityManager.getPropertyAccess() method with a String argument

grant codeBase "file:/F:/itso/ax01/" {
 permission java.util.PropertyPermission "java.home", "read";
};

grant codeBase "file:/F:/itso/ax01/" {
 permission java.util.PropertyPermission "*", "read";
};
Getting Internal System Properties 645

representing the system property that must be read. This in turn calls the
checkPermission() method, passing in the following permission argument:

java.util.PropertyPermission("*", "read")

Note that this differs from the permission argument passed to the
checkPermission() method in the GetAllProperties example (see A.1,
“Program GetAllProperties” on page 641).
646 Java 2 Network Security

Appendix B. Signature Formats

Both fields and methods have signatures within the Java class file. They are a
shorthand to describe the type (of a field) and the return type and parameters
(of a method). Signatures are constructed using characters or strings to
represent the various data types.

The following table indicates how data types are represented by characters or
strings:

Table 21. Data Type Representations in Method Signatures

The signature of a field is simply the character or string representing its data
type.

The signature of a method consists of a pair of parentheses enclosing a list of
the characters or strings representing the data types of the parameters,
separated by semicolons. The parentheses are followed by the data type of
the return type of the method. The character V indicates that the method
returns no value (its return type is void). Otherwise, the descriptor indicates
the type of the return value.

Type Character or string used in signature

long J

byte B

character C

double D

float F

integer I

object reference Lclassnamea

a. The class name here is the full name of the class with slashes (/) in place of dots (.)

short S

boolean Z

array [datatype
© Copyright IBM Corp. 1997 1999 647

The following table shows some examples:

Table 22. Examples of Signatures

Notice that a class cannot declare two methods with the same signature, or a
compile-time error occurs.

Type Signature Description

char[] [C An array of character

String Ljava/lang/String A Java string

Object[][] [[java/lang/Object A two dimensional array of objects

void methodName() ()V A method taking no parameters and
returning no value

int methodName(String, int) ([Ljava/lang/String;I)I A method taking a String and an integer
value and returning an integer
648 Java 2 Network Security

Appendix C. X.509 Certificates

X.509 is one of the most common formats for signed certificates. It is largely
used by JavaSoft, VeriSign, IBM and many other companies for signing e-mail
messages, authenticating program code and certifying many other types of
data. In its simplest form, an X.509 certificate contains the following data:

1. Version of the certificate format1

2. Certificate serial number

3. Identifier of the signature algorithm2:

 • Algorithm ID
 • Parameters passed to the algorithm

4. Name of the signer of the certificate3

5. Period of validity4:

 • Begin date
 • End date

6. Name of the certified entity5

7. Public key of the certified identity6:

 • Algorithm ID
 • Parameters passed to the algorithm
 • Public key value

8. Signature7

All the data in a certificate is encoded using two related standards called
Abstract Syntax Notation (ASN.1) and Distinguished Encoding Rules (DER).

1 This identifies which version of the X.509 standard (V1, V2 or V3) applies to this certificate (see C.1, “X.509 Certificate
Versions” on page 650).
2 This identifies the algorithm used by the certification authority (CA) to sign the certificate.
3 The X.500 name of the entity that signed the certificate. This is normally a CA. Using this certificate implies trusting the
entity that signed this certificate. Note that in some cases, such as root or top-level CA certificates, the issuer signs its own
certificate.
4 Each certificate is valid only for a limited amount of time. This period is described by a start date and time and an end
date and time, and can be as short as a few seconds or almost as long as a century.
5 The X.500 name of the entity whose public key the certificate identifies. This field conforms to the X.500 standard, so it
is intended to be unique across the Internet. This is the distinguished name (DN) of the entity, for example: CN=Milind
Nagnur, OU=OSRM, O=Price Waterhouse C=IN. These refer to the subject's common name (CN), organizational
unit (OU), organization (O), and country (C).
6 This is the public key of the entity being named, together with an algorithm identifier that specifies which public key
cryptosystem this key belongs to and any associated key parameters.
7 Hash code of all the preceding fields, encoded with the signer's private key. Thus the signer guarantees that a given
entity has a particular public key.
© Copyright IBM Corp. 1997 1999 649

C.1 X.509 Certificate Versions

Several modifications have been made to the features and information
content of an X.509 certificate in each subsequent version:

1. X.509 V1 has been available since 1988, is widely deployed, and is the
most generic.

2. X.509 V2 introduced the concept of subject and issuer unique identifiers to
handle the possibility of reuse of subject and/or issuer names over time.

3. X.509 V3 is the most recent (1996) and supports the notion of extensions,
whereby anyone can define an extension and include it in the certificate.
Some common extensions in use today are:

 • KeyUsage, which limits the use of the keys to particular purposes such
as signing-only. The associated private key should only be used for
signing certificates and not for Secure Sockets Layer (SSL).

 • AlternativeNames, which allows other identities to also be associated
with this public key, for example DNS names, e-mail addresses, or IP
addresses.
650 Java 2 Network Security

Appendix D. Sources of Information about Java Security

This appendix contains information about Internet resources and interesting
Java security sites. It is in two parts: the first covers companies involved in
Java development, and the second contains sites that are maintained at
educational establishments or by individual experts within those
establishments.

This appendix lists some of our information sources and gives you the
opportunity to consult them for different views of Java security. These sources
can also help you stay abreast of new Java developments via the Web.

D.1 Companies

There are many companies that maintain Java security sites; it would be an
impossible task to list them all. For this reason we have decided to
concentrate on the few companies that are at the cutting edge of the Java
phenomenon.

D.1.1 JavaSoft

 • The main JavaSoft URL is:

http://www.javasoft.com

This is an excellent Web page and one to keep a regular check on,
because it has many links to various topics related to Java. Many of these
are not directly related to security, but have a bearing on it; for example,
new versions of the development kit and standardization activity.

 • There is also a page dedicated to security:

http://www.javasoft.com/security

This page contains links to downloads and documentation for the latest
JavaSoft Java security packages.

These documents are very well constructed and easy to follow; however,
they assume a high level of knowledge from the user. As an example of
this, there are manual pages for UNIX commands that are not easy to
understand if you are not a UNIX user.

This page also contains links to other pages which, in general, describe
various parts of Java specifications such as the Java cryptographic
architecture.

The JavaSoft security page also contains links to frequently asked
questions (FAQs), white papers, presentations and other articles. In
© Copyright IBM Corp. 1997 1999 651

particular, you may wish to refer to the JavaSoft archives. These archives
date back to November 1996 and contain a massive amount of information
about problems encountered in the development of the various Java tools.

 • One especially interesting link is the Java 2 security tutorial:

http://java.sun.com/docs/books/tutorial/security1.1/index.html

Reading this tutorial, you will learn the definitions of various cryptography
terms, and see an overview of the Java security API and its core classes.
You will then learn how to produce digital signatures for data, and how to
verify the authenticity of such signatures. The author of the tutorial is Mary
Dageforde.

 • Another link of particular interest is the following:

http://java.sun.com/products/jdk/1.2/docs/guide/security/index.html

This page is full of links to other pages, where you can learn about the
Java 2 security architecture, APIs and tools.

 • The Java Cryptography Extension (JCE) home page is:

http://java.sun.com/products/jce/

Here you will find information and a link to download the JCE. Note that
downloading cryptographic products is limited by the United States export
rules for encryption.

D.1.2 Sun

 • The Sun home page URL is:

http://www.sun.com

As the originator and primary force behind Java, you would expect it to
feature in many parts of the Sun site. So, for example, the Sun news
highlights include many Java-related developments.

 • The URL for the main page for specifically Java-related issues is:

http://www.sun.com/java

This page has links to many Java-related topics and it also leads you back
to the JavaSoft Web site.

D.1.3 IBM

 • The IBM home page URL is:

http://www.ibm.com

There are many Java-related links from this page.
652 Java 2 Network Security

 • The URL of the main page for Java information is:

http://www.ibm.com/java

This page also has a number of links to various pages.

 • The easiest way to approach the Java IBM Web page is to link to the site
index page:

http://www.ibm.com/Java/siteindex.html

This page lists all of the Java-related topics on this site in alphabetical
order.

 • The IBM alphaWorks Web page is very interesting:

http://www.alphaworks.ibm.com/

alphaWorks' mission is to provide early adopter developers direct access
to IBM's emerging alpha-code technologies. Many of these technologies
are developed in Java.

 • The IBM WebSphere Web page is:

http://www.software.ibm.com/webservers/

From this Web page, you can download trial copies of WebSphere
Application Server and WebSphere Studio. These two products allow you
to develop and run powerful server-side Java applications.

 • The IBM SecureWay Web page is:

http://www.ibm.com/secureway

This page contains a lot of security-related links.

D.1.4 Microsoft

 • The Microsoft home page URL is:

http://www.microsoft.com

Although late to join the Java fold, Microsoft now offers a range of products
for developing and running applications written in Java.

 • The URL of the main page for Java-related issues is:

http://www.microsoft.com/java

This page has links to many Java-related topics such as news, issues and
trends, technical information and the Microsoft SDK for Java. There are
also related topics, which change frequently, such as information about
bugs found in beta versions of products that can be downloaded from the
Microsoft site.
Sources of Information about Java Security 653

 • The URL for the main page about Java security is:

http://www.microsoft.com/java/security

This page at first appears to be for a user who knows very little or nothing
at all about Java security, but there are some very good links to more
technical information. We found that a more effective way to get the
required information from the Microsoft site was to use the internal search
function. Searching for Java security produced more than 50 hits, although
a number of them were for material that is available only to members of
the Microsoft Developers Network.

D.1.5 Reliable Software Technologies

RST performs research and consults in all aspects of the security, safety,
and testability of computer systems. They work closely with academics, in
particular the Princeton Safe Internet Programming team (see D.2.1,
“Princeton” on page 655). The RTS home page has the following URL:

http://www.rstcorp.com

D.1.6 JavaWorld

 • The JavaWorld home page URL is:

http://www.javaworld.com

This page also has a number of links to various pages.

 • An interesting link from the home page goes to the JavaWorld Book
Catalog Web page:

http://www.javaworld.com/javaworld/books/jw-books-security.html

Here you can find a link to the most recent Java security books and
publications.

D.1.7 JCE Providers outside the United States

The United States government has placed restrictions on the export of
cryptographic technology. The following are Web sites of JCE providers
outside the United States:

 • The Australian Business Access (ABA) JCE Web site is:

http://www.aba.net.au/solutions/crypto/jce.html

The ABA JCE is an implementation of the JCE API as defined by Sun
Microsystems, plus a provider of underlying cryptographic algorithms.

 • The Forge Cryptographic Provider Web site is:
654 Java 2 Network Security

http://www.forge.com.au/

The Forge Cryptographic Provider is a full-featured JCE 1.2-compliant
cryptographic provider. This product offers RSA key generation, an RSA
key factory and digital signatures using the RSA and MD5 algorithm. The
Forge Cryptographic Provider 1.1 also includes a digital signature for use
with SSL/TLS. The provider comes with complete source code and is
available as a free download.

 • The DSTC Java and Cryptography and Security Web site is:

http://security.dstc.edu.au/projects/java/release.html

The JCSI product is released by DTSC. It incorporates a JCE
implementation, an associated security provider, and a public key
infrastructure (PKI) library and tools. This software is free for
non-commercial use and can be downloaded in source form.

D.2 Universities

There are many universities that maintain Java sites and Java security sites;
it would be an impossible task to list them all. For this reason, we have
decided to concentrate on the universities whose pages we found most useful
and informative. There is also a brief list at the end of this section that
contains some other Java sites that you may find interesting.

D.2.1 Princeton

Princeton University is the leading center for Java security research. The
main Java security page is:

http://www.cs.princeton.edu/sip

This page contains information and links about Java security.

The purpose of this site is to study the security of widely used Internet
software, especially mobile code systems like Java, ActiveX, and JavaScript.
They try to understand how security breaks down, and to develop technology
to address the underlying causes of security problems.

This Web site has links to many publications about Java security.

D.2.2 Yale

 • A Java security site worth visiting at Yale is:

http://pantheon.yale.edu/~dff/java.html
Sources of Information about Java Security 655

This site is mainly a collection of links to other Java security sites.

 • Another interesting Yale site is the following:

http://daffy.cs.yale.edu/java/java_sec/java_sec.html

This site gives a good breakdown of Java security and some good
guidelines for security measures to take.

D.2.3 Others

The following pages are from other university sites that have some worthwhile
information and links:

 • A page of information put together by Patricia Evans (a graduate student
at the University of Victoria) is:

http://gulf.uvic.ca/~pevans/java.html

 • A list of Java security resources provided by Steven H. Samorodin of the
UC Davis Security lab can be found at the following URL:

http://seclab.cs.ucdavis.edu/~samorodi/java/javasec.html

 • An entry for Java security in the Gene Spafford of Purdue University’s
security hot list is found at the following Web site:

http://www.cs.purdue.edu/coast/hotlist/network/java.html

 • A page at the University of Utah, devoted to Java security is:

http://www.cs.utah.edu/~gback/javasec

It includes pointers to talk slides, and a few pointers to related Web sites.

 • A page on security flaws in Java implementations, maintained by a
research group at the University of Washington, is the following:

http://kimera.cs.washington.edu

They implement a new Java security architecture based on factored
components for security, performance, and scalability.

 • The University of Arizona has a Web page devoted to the Sumatra Project.
Here you can find an interesting link to Java Hall of Shame:

http://www.cs.arizona.edu/sumatra/hallofshame/

 • JAWS (Java Applets With Safety) is an Australian National University
project using theorem-proving technology to analyze safety and security
properties of Java Applets. The home page for JAWS is:

http://cs.anu.edu.au/people/Tony.Dekker/JAWS.HTML
656 Java 2 Network Security

Appendix E. What’s on the Diskette?

The diskette that accompanies this book contains the following:

 • The sample code

All of the samples contained in the book are on the diskette, both as
source Java and as compiled class files. Because of government
restrictions on encryption, the Java programs in Chapter 13 and 16 that
use encryption are not included on the diskette.

 • Some useful links

There is a table of HTML links to Java and security Web sites that we
found useful while creating the book.

E.1 How to Access the Diskette

To access the contents of the diskette, simply point your Web browser at file
index.html in the diskette root directory and follow the links you find there.

E.2 How to Get the Same Software Material from the Web

The same software material is available on the Internet from the IBM
redbooks Web server. Point your Web browser to
ftp://www.redbooks.ibm.com/redbooks/SG242109.

Alternatively, you can go to http://www.redbooks.ibm.com and select
Additional Redbook Material (or follow the current instructions provided,
since the Web pages change frequrently).
© Copyright IBM Corp. 1997 1999 657

658 Java 2 Network Security

Appendix F. Special Notices

This publication is intended to help Java users to exploit the strengths of Java
and make it more secure. The information in this publication is not intended
as the specification of any programming interfaces that are provided by Java
2 SDK, Standard Edition, V1.2. See the PUBLICATIONS section of the IBM
Programming Announcements for more information about what publications
are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
© Copyright IBM Corp. 1997 1999 659

guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Sun, Sun Microsystems, the Sun Logo, SunWorld, SunPlaza, Sun SITE, and
all Sun-based trademarks and logos, Java, Java 2, HotJava, JavaScript, the
Java Coffee Cup Logo, JavaWorld, and all Java-based trademarks and logos,

IBM 
AIX AS/400
VisualAge CICS
WebSphere eNetwork
SP IBM Registry
System/390 MQ
Network Station OS/2
OS/390 S/390
660 Java 2 Network Security

the Duke Logo, Jini and the Jini Logo, Solaris, Netra, Ultra, NFS, and The
Network Is The Computer are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries. (For a complete list
of Intel trademarks see www.intel.com/tradmarx.htm)

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Special Notices 661

662 Java 2 Network Security

Appendix G. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

G.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 665.

 • Internet Security in the Network Computing Framework, SG24-5220

 • Network Computing Framework Component Guide, SG24-2119

G.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

G.3 Other Publications

These publications are also relevant as further information sources:

 • Li Gong, Inside Java 2 Platform Security, Addison-Wesley

 • Mike Morgan, Using Java 1.2, Que

 • Scott Oaks, Java Security, O’Reilly

 • Jonathan Knudsen, Java Cryptography, O’Reilly

 • McGraw, Felten, Java Security, Wiley Computer Publishing

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037
© Copyright IBM Corp. 1997 1999 663

 • Elliotte Rusty Harold, Java Network Programming, O’Reilly

 • Kim Topley, Core Java Foundation Classes, Prentice Hall

 • Douglas R. Stinson, Cryptography Theory and Practice, CRC Press

 • Rita C. Summers, Secure Computing, McGraw-Hill

 • Gamma, Helm, Johnson, Vlissides, Design Patterns, Addison-Wesley
664 Java 2 Network Security

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
also access MyNews at http://w3.ibm.com for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1997 1999 665

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
666 Java 2 Network Security

Glossary

3270 Usually any of a family of block-mode
VDUs, including the IBM Model 3270

AWT Abstract Windows Toolkit, the Java
package for creating GUIs

CGI Common Gateway Interface, an
interface that allows server-side
executable code to be invoked as a
URL

CICS customer information control system

CERT Computer Emergency Response Team,
an organization that acts as a clearing
house of information about security
problems

CORBA The Common Object Request Broker
Architecture, a standard for
implementing a distributed object
architecture

DES Data Encryption Standard, a bulk
(symmetric key) encryption algorithm

DMZ Demilitarized zone, used here to
indicate the portion of a network
surrounded by firewalls

DNS Domain Name System

FTP File Transfer Protocol

GET An HTTP command which requests the
server to send data to the client

Gopher An information service providing linked
pages

HOD Host On-Demand, an IBM 3270
terminal emulator

HTML Hypertext markup language

HTTP HyperText Transfer Protocol

HTTPS HTTP encapsulated in SSL protocol

ICMP Internet Control Message Protocol

IIOP Internet Inter ORB Protocol, a
specification for the way that ORBs
communicate

IP Internet Protocol
© Copyright IBM Corp. 1997 1999
IPv4 Version 4 of Internet Protocol

IPv6 Version 6 of Internet Protocol

JCA Java Cryptography Architecture

JCE Java Cryptography Extension (the parts
of JCA that cannot be exported from
the United States)

JVM Java Virtual Machine

key pairA matching pair of public and private
keys, used for digital signatures and
public key encryption

LAN local area network, with typical
bandwidth greater than 4 Mbps

MD5 A message digest (secure hash)
algorithm from RSA Corp

MIME Multipurpose Internet Mail Extensions

NetBIOSLAN protocol generally used by PCs

ORB Object Request Broker, a program that
provides services to enable the use of
distributed objects

PC Personal Computer

POST An HTTP command that sends client
data to the server

RC4 A bulk (symmetric key) encryption
algorithm that allows variable key sizes

RMI Remote Method Invocation, a technique
to allow Java on one system to access
objects on another

RSA Rivest, Shamir and Adleman formed
the RSA corporation to market
cryptographic software and algorithms,
in particular the public key encryption
mechanism that also bears their initials

SHA Secure Hash Algorithm

SNA Systems Network Architecture

SOCKS A protocol used to encapsulate other
TCP protocols

SSL Secure Sockets Layer
 667

TCP/IP Often used as a generic term for the
suite of TCP, IP and related protocols

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

VDU visual display unit

WAIS Wide Area Information Service

WAN wide area network, with typical
bandwidth less than 4 Mbps

WWW World Wide Web, usually refers to
systems using HTTP
668 Java 2 Network Security

Index

Symbols
${/} 96, 247, 256
${file.separator} 247
${java.home} 85, 87, 255, 256
${user.home} 247, 256

Numerics
0xCAFEBABE 126, 177, 577
100% Pure Java 50, 404

A
Abstract Syntax Notation (ASN.1) 649
ACC_FINAL 126
ACC_PUBLIC 126
access control 54, 59, 476, 502

access control and permission APIs 482
access control APIs 304
access control list (ACL) 324

Acl interface 324
AclEntry interface 324

access controller 98
AccessControlContext class 305
AccessControlException 304
AccessController class 304, 344
checkConnect() method 588
checkCreateClassLoader() method 194
checked exception 353
checkPackageAccess() method 240
checkPackageDefinition() method 241
checkPermission() method 190, 211, 344
checkRead() method 218
checkWrite() method 206, 218
doPrivileged() method 92, 305, 350, 357
lexical scoping of privilege modification 76, 78,
216, 304, 350

privileged blocks usage 354, 358
privileged code 350
PrivilegedAction interface 305
PrivilegedActionException 353
PrivilegedExceptionAction interface 305,
353

access flag 126
ActiveX 577

ActiveX control 363, 438
Ada 120
© Copyright IBM Corp. 1997 1999
algorithm 306, 483, 489
AlgorithmParameterGenerator class 322
AlgorithmParameterGeneratorSpi class 322
AlgorithmParameters class 322
AlgorithmParameterSpec interface 323
NoSuchAlgorithmException 485

AllPermission class 317, 340
anonymous cipher suites 608
API object 489
applet security 14
Applet Viewer 16, 21, 99, 188, 597

appletviewer command 147, 589, 595
-J-DproxyHost flag 589
-J-DproxyPort flag 589
-J-DsocksProxyHost flag 589
-J-DsocksProxyPort flag 589

applets with signed content 638
application 5

application class path 45, 89
application domain 82
application security 26

architectures 36, 50
Archive attribute 274
asymmetric encryption 55, 477

Java 2 asymmetric encryption support 497
attack applets 9
attack types 59, 66, 193
attributes table 126
authentication 6, 475, 478
authenticity 604
AWTPermission class 342

B
Base 64 format 262, 264, 266
BASIC 120
BasicPermission class 317, 341, 345
binary trust model 59
Blowfish 492
boot class path 84, 110

-bootclasspath flag 85, 86
-Xbootclasspath flag 85

bulk encryption 54, 477
bytecode 4, 7, 36, 117, 136, 511

bytecode compilers 120
bytecode hosing 134
bytecode instructions 175
bytecode integrity check 178
669

bytecode verifier 178, 180, 183, 577

C
C 3, 67, 118, 127, 515
C++ 5, 7, 118, 124, 515
CA keystore 401
cacerts keystore file 233

cacerts default password 234
casting operations 176
CERT Coordination Center 11
cert7.db certificate database file 419
certificate

Certificate class 318, 323
certificate expiration date 478
certificate hierarchies 479
certificate revocation list (CRL) 78, 323, 492

CRL class 323
generateCRL() method 324
X509CRL class 323
X509CRLEntry class 323

certificate signing request (CSR) 78
certificate validity 268
CertificateFactory class 324
CertificateFactorySpi class 324
generateCertificate() method 324
public key certificate 9, 59, 478, 479
self-signed certificate 18, 480
server certificate 402

certification authority (CA) 360, 649
CA key database 393
CA private key 403

CGI-BIN programs 62, 503, 506, 515, 579, 601
Chinese Remainder Theorem (CRT) 324
CICS

CICS client 504
CICS server 504
IBM CICS Gateway for Java 504
IBM CICS Internet Gateway 503

cipher
Cipher Block Chaining (CBC) 492
Cipher class 495
Cipher Feedback (CFB) 492
cipher strength 58
cipher suites 604

anonymous cipher suites 608
SSL secret-based cipher suites 627

ciphertext 476
class area 112

class file format 124
class file verifier 9, 45, 47, 70, 110, 112, 168, 192

class integrity check 177
file integrity check 177
JVM security elements interdependence 192

class loader 8, 45, 46, 70, 110, 145, 192
class loading process 150
ClassLoader 47, 90, 111, 470
default class loader 146
delegation model 152, 163
ExtClassLoader 148
extension framework 86
extensions class loader 148
internal class loader 146
Java 2 class loading mechanism 89
JVM security elements interdependence 192
native method loader 113
null class loader 146
primordial class loader 146, 149, 153
RMIClassLoader 156
SecureClassLoader 90, 111, 147, 149, 322
URLClassLoader 147, 149

class path 45, 84
application class path 45, 89
boot class path 84, 110

-bootclasspath flag 85, 86
class search path 83
CLASSPATH 46, 84, 87, 110, 146, 147, 193
-classpath flag 83, 147, 151
-cp flag 83, 147, 151
-extdirs flag 87
extension class path 45
java.class.path 88, 149
java.ext.dirs 105, 153
JVM class path 45, 84
sun.boot.class.path 84, 153
system class path 45, 84
user class path 89
-Xbootclasspath flag 85

classes 42, 119
classes.zip file 84
client key database 399
client store 452
COBOL 118, 120, 124
code base 94, 318

code base URL directory 252
codeBase keyword 94, 242, 244

code obfuscation 134
code signing 31, 79
670 Java 2 Network Security

code source 80, 318
CodeSource class 318
getCodeSource() method 321

com.ms.io.clientstorage package 452
Common ORB Architecture (CORBA) 52, 554, 580
compilation process 118
component 43
confidentiality 476
connect method 580
constant pool 126, 129
core classes 145
CRL class 323
cryptography 53

cryptographic key 476
cryptographic service implementation 498
cryptographic service provider 299, 480
cryptographic services 79
Java 2 cryptography APIs 482
SSL public key cryptography 604
SSL symmetric cryptography 604

cycle stealing 195

D
data confidentiality 79
Data Encryption Algorithm (DEA) 54
Data Encryption Standard (DES) 54, 492
data flow analyzer 181
data integrity 79, 476, 478, 604
data protection 6
decompilers 7, 127, 134

decompilation attacks 126, 134
decryption 477
default access 42
default class loader 146
delegation model 152, 163
demilitarized zone (DMZ) 508
denial of service attacks 10, 187, 195, 636
development environment 35, 36
development life cycle 117, 119
Diffie-Hellman (DH) algorithm 492
digest() method 486
Digital Signature Algorithm (DSA) 57, 236, 359,
393, 491

DSAKey interface 324
DSAKeyPairGenerator interface 324
DSAParams interface 324
DSAPrivateKey interface 306, 324
DSAPrivateKeySpec class 323

DSAPublicKey interface 306, 324
digital signatures 6, 31, 56, 69, 79, 311, 325, 476
Distinguished Encoding Rules (DER) 649

DER encoding 331
distinguished name 478
distributed object architectures 537
Domain Name System (DNS) 562

DNS flow 562
DNS lookup 588, 589

doPrivileged() method 92, 305, 350, 357
downloaded extension 88
dynamic linking 36

E
Electronic Code Book (ECB) 492
encoded form 306
encryption 69, 476

asymmetric encryption 55, 477
Java 2 asymmetric encryption support 497

bulk encryption 54, 477
public key encryption 54, 58, 476
SSL encryption 603
symmetric key encryption 476
US export rules for encryption 57, 297, 481

engine 483
engine classes 56, 299, 487
getInstance() method 488

enterprise Java 501
Enterprise Java Services (EJS) 521
Enterprise JavaBeans (EJB) 522, 554
server-side Java 510

executable file 119
execution

execution engine 113
execution environment 35
execution process 44
execution thread 82

extensions 45, 145
downloaded extension 88
ExtClassLoader 148
-extdirs flag 87
extension class path 45
extension framework 86
extensions class loader 148
extensions directory 97
installed extension 87
JAR downloaded extensions 388
 671

F
fields 42, 119

field type 647
fields field 126
signature of a field 647

file read access 252
FilePermission class 340

final modifier 353
fine-grained access control 5, 74
fine-grained trust model 59
fingerprint 55
firewalls 6, 505, 557

Java and firewalls 575
Java downloads and firewalls 575
Java network connections through firewalls 578
RMI and firewalls 599

format 306

G
garbage collection 112
getEncoded() method 328
getException() method 353
getFormat() method 306
getKeySpec() method 306
getProperty() method 302
grant entry 81, 95, 242, 244, 251
Group interface 297, 324
Guard interface 298
GuardedObject class 298

H
hash 55, 476
heap 112
HMAC-MD5 492
HMAC-SHA1 492
HTTP flow 564
HTTP proxy servers 582, 587, 596
HTTPS protocol 608
HTTPS URL 608
HttpServletRequest 518
HttpServletResponse 518
HttpURLConnection 579

I
i18n.jar file 86
IBM Host On-Demand 502, 579
IBM Network Station (NS) 509

IBM SSLite 625
Key Management Tool keyman 627
keyrng tool 627

IBM VisualAge for Java 43
IBM WebSphere Application Server 520

IBM WebSphere Application Server ACLs 533
IBM WebSphere Application Server groups 533
IBM WebSphere Application Server realms 533
IBM WebSphere Application Server security
533
IBM WebSphere Application Server users 533
servletMgrRealm 534, 535

identity scope 239
system identity scope 240

illegal bytecode instructions 175
illegal casting operations 176
illegal parameters 175
illegal pointers 175
impersonation 203

impersonation attacks 187
infiltrating local classes 193
initSign() method 328
inner class 351
interfaces 36, 50

interfaces field 126
internal system properties 641
Internet Control Message Protocol (ICMP) 65
Internet Inter-ORB Protocol (IIOP) 52
Internet Protocol (IP) 65
introspection 43
IP filtering 582, 587, 595
IPv4 560
IPv6 560

J
Jasmin 120
Java 2 Platform, Enterprise Edition (J2EE) 639
Java 2 security

Java 2 security APIs 78, 297, 325, 482
Java 2 security architecture 6
Java 2 security model 13, 15, 30
Java 2 security tools 77

Java Archive (JAR) 14, 43, 73, 239, 359, 385
jar command 31, 44, 73, 77, 385, 397

jar command syntax 271
JAR downloaded extensions 388
JAR package sealing 388, 462
JAR Packager 418
672 Java 2 Network Security

JAR payload 386
JAR-bundled executable applications 388
jarsigner command 19, 44, 77, 280, 380, 387

jarsigner command syntax 275
jarsigner verification process 284, 286

manifest file 18, 31, 273, 387, 461
SF file 392
signature block file 275, 392, 461
signature file 275, 392, 461

Java assembler 120, 134
Java Authentication and Authorization Service
(JAAS) 636
Java Compatibility Kit (JCK) 5
Java Cryptography Architecture (JCA) 10, 36, 56,
297, 475

JCA algorithm extensibility 481
JCA algorithm independence 481, 484
JCA implementation independence 480
JCA implementation interoperability 481
SUN provider 57, 316, 327, 331, 485, 490

Java Cryptography Extension (JCE) 10, 54, 58, 74,
297, 475, 493

Java Cryptography Extension Keystore
(JCEKS) 493
javax.crypto package 493

javax.crypto.interfaces package 495
javax.crypto.spec package 494

JCE 1.2 APIs 495
SunJCE provider 58, 300, 484, 490, 493

Java defenses 35
Java Development Kit (JDK) 5, 127, 147

JDK 1.0 13, 15, 70
JDK 1.1 13, 15, 72, 83, 393

Java disassembler 120
Java Grinder 120
Java language 7

Java language design features 69
Java Plug-in 359

Java Plug-in Control Panel 370
Java Plug-in HTML changes 364
Java Plug-in Java Console 379
Java Plug-in Software HTML Converter 369
java_archive attribute 380

Java RMI Security Extension 637
Java Runtime Environment (JRE) 14, 35, 69, 110,
359

JRE development directory 229, 255
JRE installation directory 87, 225

Java Secure Socket Extension (JSSE) 609

Java security model 70
Java 2 security model 13, 15, 30

Java Server Toolkit (JST) 609
Java Servlet Development Kit (JSDK) 526
Java types 67
Java Virtual Machine (JVM) 4, 7, 35, 70, 109, 117,
145, 195, 299

JVM class path 45, 84
JVM security elements interdependence 192

java.home 225
java.security file 234
java.security package 297, 634

java.security.acl package 324
java.security.cert package 323
java.security.interfaces package 324
java.security.spec package 322

Java3D 45, 87
JavaBeans 43, 51, 522, 554

JavaBeans Development Kit (BDK) 43
javakey command 19, 44, 73, 77, 380, 394, 398
JavaManagement 45, 87
javap command 132, 204
JavaScript 577

JavaScript backdoors 194
JavaServer Pages (JSP) 522
jaws.jar file 86
JDBC 53, 521
Jini technology 510
just-in-time (JIT) compiler 112, 113, 511
just-in-time(JIT) compiler

(JIT) compilation 115

K
key agreement

KeyAgreement class 496
key material 306
key pair 18

key pair generation 486
KeyPairGenerator class 307, 327

KeyPair class 306
key ring

public key ring format 634
key specification 306
key3.db certificate database file 419
KeyGenerator class 495
keyman GUI tool 627
KeySpec interface 323
keystore 18, 230
 673

Java Cryptography Extension Keystore
(JCEKS) 493
Java Keystore (JKS) 230, 236, 492
KeyStore class 307
keystore entry 242
keystore management 308, 332, 401
keystore type 240
private key password 261
store password 261

keytool command 18, 19, 44, 77, 231, 259, 280,
349

keytool command syntax 262

L
Launcher class 148
legacy systems 51
lexical scoping of privilege modification 76, 78,
216, 304, 350

privileged blocks usage 354, 358
privileged code 350
PrivilegedAction interface 305
PrivilegedActionException 353
PrivilegedExceptionAction interface 305, 353

Lightweight Directory Access Protocol (LDAP) 521
LiveConnect 194
local signed code 78
local unsigned code 78
Lotus BeanMachine 43

M
magic number 126, 577
major version 126
malicious applets 195
manifest file 18, 31, 273, 387, 461
man-in-the-middle (MIM) 8, 12, 466
marshalling 539
MD5 57, 236, 266, 359, 485, 491
Media Access Control (MAC) address 559
message authentication code (MAC) 58, 482
message digests 311

message digest generation 311
MessageDigest class 311, 485, 488

methods 42, 119
method parameters 647
method return type 647
methods field 126
signature of a method 647

Microsoft Internet Explorer 359, 437, 574, 597,

634
cabinet (CAB) files 437

CAB permission definition 438
client store 452
com.ms.io.clientstorage package 452

Microsoft SDK for Java 438
cabarc command 439
cert2spc command 439
makecert command 439
Permission INI File Editor 449, 457
permission INI files 446
PIniEdit command 450
signcode command 440, 456

minor version 126

N
name space 149
National Center for Supercomputing Applications
(NCSA) 522
National Computer Security Association (NCSA)
557
native methods 50, 113

native method loader 113
NetObjects BeanBuilder 43
NetPermission class 342
NetREXX 7, 120, 124
Netscape Communicator 409, 634

cert7.db certificate database file 419
key3.db certificate database file 419
Netscape enablePrivilege() method 412
Netscape JVM implementation 409
Netscape key pair generation 416
Netscape Navigator 359, 574, 597
Netscape privilege targets 410
Netscape Signing Tool 418
netscape.security package 410

network computer (NC) 509
network loopholes 194
network protection 6
network security 506
networked architectures 501
non-object-oriented languages 139
non-repudiation 476, 604
nuisance applets 10
null class loader 146

O
object file 119
674 Java 2 Network Security

Object Request Broker (ORB) 52
object serialization 539
object-level protection 637
object-oriented languages 139
objects 119
opaque representation

opaque representation of cryptographic parame-
ters 322
opaque representation of key material 323

Open Database Connectivity (ODBC) 53
open systems interconnection (OSI) model 558
Output Feedback (OFB) 492
Owner interface 325

P
packages 41

package join attack 470
packet-filtering firewalls 561
Path variable 46
Perl 515
Permission class 317
permissions

custom permissions 344
grouping of permissions 637
negative permission 248
permission action 93, 95, 245, 317
permission APIs 339
Permission class 298, 317, 339

implies() method 321, 344
Permission interface 325
permission target 93, 95, 245, 317
PermissionCollection class 343
Permissions class 318, 343
permissions classes 317
permissions model 80
signed Permission classes 95, 245, 348

persistence 43
policy

extra policy 238
java.policy 96
Policy class 321
policy file 20, 74, 81, 93, 96, 242

grant entry 81, 95, 242, 244, 251
keystore entry 242
permission keyword 95, 245
policy file on the AIX platform 253
policy file on the Windows platform 253
policy file portability 255

policy file protection 252
policy file URL location 237
signedBy keyword 94, 242, 244
system-wide policy file 93, 96, 250
user-defined policy file 93, 99, 250

policy provider 236
policy server 252
Policy Tool 21, 44, 77, 288

Policy Tool troubleshooting 295
Policy Tool usage 289

security policy 32
Pretty Good Privacy (PGP) 393
primordial class loader 146, 149, 153
principal 297, 470, 479

Principal interface 297
privacy 604

privacy invasion 10
privacy invasion attacks 187

private key 54, 77
private modifier 42, 193
privileged code 350
privileged ports 561
PrivilegedAction interface 352
PrivilegedActionException 353
program stack overflow 175
program stack underflow 175
Propagating Cipher Block Chaining (PCBC) 492
properties file 234

properties file protection 252
property expansion 237
PropertyPermission class 342
protected modifier 42, 193
protection domain 80, 81, 163, 304, 321, 385

application domain 82
ProtectionDomain class 321
subdomains 638
system domain 82

provider 235, 299, 480, 484
addProvider() method 302, 487
getProvider() method 302, 487
getProviders() method 302, 487
insertProviderAt() method 300, 302, 487
policy provider 236
provider architecture 56
Provider class 299, 485
provider configuration 498
provider dynamic configuration 300
provider installation 299, 498
provider management 486
 675

provider master class 498, 499
provider name 498
provider static configuration 300
security provider 235
SUN provider 57, 316, 327, 331, 485, 490
SunJCE provider 58, 300, 484, 490, 493

proxy servers 570, 574, 582, 587
public key 54, 77

public key certificate 9, 59, 478, 479
public key encryption 54, 58, 476
public key ring format 634

public modifier 42, 193, 204

R
RC4 54
ReflectPermission class 342
register-based architecture 139
Remote Method Invocation (RMI) 51, 538, 580,
599

encapsulated RMI calls 602
Java RMI Security Extension 637
java.rmi package 538

java.rmi.activation package 538
java.rmi.server package 538

marshalling 539
proxy-object 538
RMI access control 553
RMI and firewalls 599
RMI authentication 553
RMI registry 540, 548
RMI security 553
RMI security manager 553
RMI server 540
rmic command 548
RMIClassLoader 156
rmiregistry command on UNIX systems 541
rmiregistry command on Windows systems 541
RMISecurityManager 550, 553
skeletons 548
stub-object 538
stubs 539, 548
unmarshalling 539

remote signed code 78
remote unsigned code 78
removeProvider() method 302, 487
resource consumer 298
resource consumption management 636
resource supplier 298

Restricted sites security zone 438
REXX 7, 120
Rivest, Shamir and Adleman (RSA) 55, 359

RSAPrivateCrtKey interface 324
RSAPrivateKey interface 324
RSAPublicKey interface 324

rt.jar file 85
run-time access controls 91
run-time integrity check 179
RuntimePermission class 343

S
same package – same principal 470
sandbox 5, 49, 69, 70

sandbox security model 70
sealed objects

SealedObject class 496, 638
secure hash 55
Secure Hash Algorithm (SHA) 57, 236, 359, 484,
491
secure random number generation 316
Secure Sockets Layer (SSL) 55, 416, 603, 650

anonymous cipher suites 608
Java and SSL 603
SSL asymmetric cryptography 604
SSL ChangeCipherSpec message 608
SSL class packages 609
SSL client authentication 603, 608
SSL Client Hello message 607
SSL ClientKeyExchange message 608
SSL compression methods 627
SSL encryption 603
SSL handshake failure message 607
SSL handshake protocol 604
SSL management APIs 634
SSL message integrity checks 603
SSL public key cryptography 604
SSL record protocol 604
SSL secret-based cipher suites 627
SSL server authentication 603, 607
SSL Server Hello message 607
SSL session cache 607
SSL symmetric cryptography 604
SSL_NULL_WITH_NULL_NULL 605
SSL_RSA_EXPORT_WITH_RC4_40_MD5
605
SSL_RSA_WITH_RC4_128_MD5 605
Sun Microsystems SSL APIs 609
676 Java 2 Network Security

SecureClassLoader 47, 90, 111, 147, 149, 322
SecureRandom class 316, 327
Security class 300, 301, 485, 488
security debugging 100
security hazards 204
security management 98
security manager 9, 45, 49, 70, 98, 99, 110, 113,
187, 192

-Djava.security.manager flag 99, 209, 211
JVM security elements interdependence 192
RMI security manager 553
RMISecurityManager 550, 553
security manager controls 188
security manager extensions 206
SecurityManager 49, 90, 99, 113, 146, 187,
190, 344
servlet security manager 532
setSecurityManager() method 99, 190, 209,
213

security zones 437
custom level security zone 438
high level security zone 438
Internet security zone 438
intranet security zone 438
low level security zone 438
medium level security zone 438
trusted sites security zone 438

SecurityPermission class 318, 343
SerializablePermission class 343
server key database 395
service provider interface (SPI) 489, 637
servlets 512

enhanced JDK 1.1 servlet security model 533
Java Servlet APIs 516
Java Servlet Development Kit (JSDK) 526
JavaServlet 45, 87, 513, 514
javax.servlet package 516

javax.servlet.http package 516
remote servlets 531
servlet chaining 514
servlet destroy() method 517
servlet init() method 516
servlet invocation 531
servlet life cycle 518
servlet life cycle methods 516
servlet loading 531
servlet sandbox 532
servlet security manager 532
servlet security model 530

servlet security rules 515
servlet service() method 517
servlet tag technique 514
servletMgrRealm 534, 535
ServletRequest 518
ServletResponse 518
signed remote servlet 535

setProperty() method 302
SHA1PRNG 57, 236, 491
shrouding 134
Signature Hash Algorithm (SHA) 275
signatures

sign() method 328
signature block file 275, 392, 461
Signature class 311, 327
signature file 275, 392, 461
signature formats 647
signature generation 313
signature hierarchy 399, 407, 408
signature verification 275, 325, 475

SignedObject class 316, 638
Simple Mail Transfer Protocol (SMTP) 203
skeletons 539, 548
sniffer 8
socket connection 27, 98, 579, 590
SocketPermission class 341
SOCKS protocol 571, 579

SOCKS servers 562, 570, 572, 574, 582, 589,
597
SOCKSified client 573, 597
SOCKSified TCP/IP stack 573, 598

SPI object 489
spoofing 63, 65, 95
SSL ChangeCipherSpec message 608
SSL_RSA_EXPORT_WITH_RC4_40_MD5 605
stack frames 92
stack-based architecture 139
StreamTokenizer 247
subdomains 638
Sun HotJava 393, 609

Sun HotJava trust model 400, 409
SUN provider 57, 316, 327, 331, 485, 490
sun.boot.class.path 84, 153
sun.security APIs 404
SunJCE provider 58, 300, 484, 490, 493
super class 42
symmetric key encryption 476
system class path 45, 84
system domain 82
 677

system modification attacks 187
system properties 641

T
tar command 271
telnet 579
three-tier architecture 503
Tivoli Management Environment 10 (TME 10) 522
tn3270 protocol 579
Transmission Control Protocol (TCP) header 560
transparent representation

transparent representation of cryptographic pa-
rameters 322
transparent representation of key material 322

Triple DES 492
trusted classes 110
trusted root 416
trusted sources 146
Turing machine 183
two-tier architecture 503
type confusion 193
type safety 140
type-awareness 67

U
unmarshalling 539
UnresolvedPermission class 318, 341
unsigned user 534
untrusted classes 111
untrusted sources 147
update() method 328, 486
URL class 318
URL connection 579, 582
URLClassLoader 147, 149
URLConnection 579, 582
US export rules for encryption 57, 297, 481
user class path 89
User Datagram Protocol (UDP) header 560

V
-verify flag 147
VeriSign certificates

VeriSign Certificate for Authenticode 359
VeriSign Certificate for Object Signing 359
VeriSign Class 3 certificate 362

visual application builder (VAB) 43

W
web of trust 9, 416
Web spoof 63

X
X.500 distinguished names 264, 267, 649
X.509 certificates 236, 263, 264, 267, 323, 536,
649

X509Certificate class 323
X509CRL class 323
X509CRLEntry class 323
X509Extension interface 323

-Xbootclasspath flag 147

Z
Zigbert 418
678 Java 2 Network Security

© Copyright IBM Corp. 1997 1999 679

ITSO Redbook Evaluation

Java 2 Network Security
SG24-2109-01

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com/
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.
SG24-2109-01

Java 2 N
etw

ork Security
S

G
24-2109-01

	Foreword
	Contents
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. An Overview of Java and Security
	1.1 Java Is Not Just a Language
	1.2 What Java Does
	1.3 Java Is Not an Island: Java as a Part of Security
	1.3.1 Safety and Security
	1.3.2 Java as an Aid to Security
	1.3.3 Java as a Threat to Security
	1.3.4 Writing Secure Java
	1.3.5 Staying One Jump Ahead
	1.3.6 The Vigilant Web Site

	1.4 Understanding Java 2 Security
	1.4.1 An Example of Applet Security in Java 2
	1.4.2 An Example of Application Security in Java 2

	1.5 Summary

	Chapter 2. Attack and Defense
	2.1 Components of Java
	2.1.1 The Development Environment
	2.1.2 The Execution Environment
	2.1.3 Interfaces and Architectures

	2.2 Java 2 and Cryptography
	2.2.1 Cryptographic Tools in Brief
	2.2.2 Java Cryptography Architecture
	2.2.3 United States Export Rules for Encryption
	2.2.4 Signed Code
	2.2.5 The Other Side of the Coin – Access Control

	2.3 Attacking the World of Java
	2.3.1 Perils in the Life of Remote Code
	2.3.2 Vulnerabilities in Java Applications

	2.4 Summary

	Chapter 3. The New Java Security Model
	3.1 The Need for Java Security
	3.2 Evolution of the Java Security Model
	3.2.1 The JDK 1.0 Sandbox Security Model
	3.2.2 The Concept of Trusted Code in JDK 1.1
	3.2.3 The Fine-Grained Access Control of Java 2
	3.2.4 A Comparison of the Three Java Security Models

	3.3 Java 2 Protection Domain and Permissions Model
	3.4 New Class Search Path
	3.4.1 Boot Class Path
	3.4.2 Extensions Framework
	3.4.3 Application Class Path
	3.4.4 Class Search Paths in Summary

	3.5 Java 2 Class Loading Mechanism
	3.5.1 Run-Time Access Controls

	3.6 The Policy File
	3.6.1 The Default System-Wide Policy File

	3.7 Security Manager vs Access Controller
	3.8 Security Management with Java 2
	3.8.1 Applying a Security Manager to Applets and Applications
	3.8.2 Applying a User-Defined Security Policy
	3.8.3 Java Security Debugging

	3.9 Summary

	Chapter 4. The Java Virtual Machine
	4.1 The Java Virtual Machine, Close Up
	4.1.1 The Class Loader
	4.1.2 The Class File Verifier
	4.1.3 The Heap
	4.1.4 The Class Area
	4.1.5 The Native Method Loader
	4.1.6 The Security Manager
	4.1.7 The Execution Engine
	4.1.8 Just-in-Time Compilers

	4.2 Summary

	Chapter 5. Class Files in Java 2
	5.1 The Traditional Development Life Cycle
	5.2 The Java Development Life Cycle
	5.3 The Java 2 Class File Format
	5.3.1 Decompilation Attacks

	5.4 The Constant Pool
	5.4.1 Beating the Decompilation Threat

	5.5 Java Bytecode
	5.5.1 A Bytecode Example

	Chapter 6. The Class Loader and Class File Verifier
	6.1 Class Loaders
	6.1.1 Loading Classes from Trusted Sources
	6.1.2 Loading Classes from Untrusted Sources
	6.1.3 Beyond What the JVM Provides
	6.1.4 The Class Loading Process
	6.1.5 Should You Build Your Own Class Loader

	6.2 The Class File Verifier
	6.2.1 An Example of Class File Verification
	6.2.2 The Duties of the Class File Verifier
	6.2.3 The Four Passes of the Class File Verifier

	6.3 The Bytecode Verifier in Detail
	6.3.1 The Data Flow Analyzer

	6.4 An Incompleteness Theorem for Bytecode Verifiers
	6.5 Summary

	Chapter 7. The Java 2 SecurityManager
	7.1 What SecurityManager Does
	7.2 Operation of the Security Manager
	7.2.1 Interdependence of the Three JVM Security Elements

	7.3 Attacking the Defenses of Java
	7.3.1 Types of Attack
	7.3.2 Malicious Applets

	7.4 Avoiding Security Hazards
	7.4.1 How to Test

	7.5 Examples of Security Manager Extensions
	7.5.1 First Example – Overriding checkWrite()
	7.5.2 Second Example – Overriding checkPermission()
	7.5.3 Third Example – Overriding checkRead() and checkWrite()

	7.6 Summary

	Chapter 8. Security Configuration Files in the Java 2 SDK
	8.1 A Note on java.home and the JRE Installation Directory
	8.2 Keystores
	8.2.1 The Certificates KeyStore File cacerts

	8.3 The Security Properties File, java.security
	8.4 Security Policy Files
	8.4.1 keystore Entry
	8.4.2 grant Entries

	8.5 An Example of Security Settings in the Java 2 Platform
	8.5.1 The Count Application Source Code
	8.5.2 A Sample Text File
	8.5.3 Compiling the Application
	8.5.4 Running the Application without a Security Manager
	8.5.5 Running the Application with the Default Security Manager
	8.5.6 Policy File Modification

	8.6 File Read Access to Files in the Code Base URL Directory
	8.7 Security Properties and Policy File Protection
	8.8 How to Implement a Policy Server

	Chapter 9. Java 2 SDK Security Tools
	9.1 Key and Certificate Management Tool
	9.1.1 keytool Syntax
	9.1.2 Store and Private Key Password
	9.1.3 Commands and Options Associated with keytool
	9.1.4 An Example of keytool Usage

	9.2 Java Archive Tool
	9.2.1 Options of the jar Command
	9.2.2 Running a JAR File

	9.3 JAR Signing and Verification Tool
	9.3.1 jarsigner Scenario
	9.3.2 Observations on the jarsigner Verification Process
	9.3.3 Tampering with a Signed JAR File

	9.4 Policy File Creation and Management Tool
	9.4.1 Observations on the Use of the Policy Tool

	Chapter 10. Security APIs in Java 2
	10.1 The Package java.security
	10.1.1 Principals
	10.1.2 Guard Interface and GuardedObject Class
	10.1.3 Providers
	10.1.4 The Security Class
	10.1.5 Access Control APIs
	10.1.6 Key Management
	10.1.7 Message Digests and DIgital Signatures
	10.1.8 Secure Random Number Generation
	10.1.9 The SignedObject Class
	10.1.10 Permission APIs
	10.1.11 Code Source
	10.1.12 Protection Domain
	10.1.13 Policy
	10.1.14 Secure Class Loader
	10.1.15 Algorithm Parameters

	10.2 The Package java.security.spec
	10.3 The Package java.security.cert
	10.4 Package java.security.interfaces
	10.5 The Package java.security.acl
	10.6 Examples Using the Java 2 Security APIs
	10.6.1 Signature and Signature Verification
	10.6.2 Using Keystores

	10.7 The Permission Classes
	10.7.1 How to Create New Permissions
	10.7.2 Working with Signed Permissions

	10.8 How to Write Privileged Code
	10.8.1 First Case – No Return Value, No Exception Thrown
	10.8.2 Second Case – Return Value, No Exception Thrown
	10.8.3 Third Case – Return Value, Exception Thrown
	10.8.4 Accessing Local Variables
	10.8.5 An Example of Privileged Blocks Usage
	10.8.6 General Recommendations on Using the Privileged Blocks

	Chapter 11. The Java Plug-In
	11.1 Main Features of Java Plug-In
	11.2 What Does the Java Plug-In Do?
	11.3 Java Plug-In HTML Changes
	11.3.1 Changes Supported by Navigator
	11.3.2 Changes Supported by Internet Explorer
	11.3.3 Changes Supported by Both Navigator and Internet Explorer
	11.3.4 All the Web Browsers
	11.3.5 Java Plug-in Software HTML Converter

	11.4 Java Plug-In Control Panel
	11.4.1 The Basic Panel
	11.4.2 The Advanced Panel
	11.4.3 The Proxies Panel

	11.5 Java Plug-In Security Scenario
	11.5.1 First Step – Without Using the Java Plug-in
	11.5.2 Second Step – Using the Java Plug-in

	Chapter 12. Java Gets Out of Its Box
	12.1 JAR Files and Applet Signing
	12.1.1 Manifest File
	12.1.2 Signature File
	12.1.3 Signature Block File

	12.2 Signed Code Scenario in JDK 1.1 and Sun HotJava
	12.2.1 Creating the CA Key Database
	12.2.2 Creating the Server Key Database
	12.2.3 Creating and Signing a JAR File
	12.2.4 Running the Applet
	12.2.5 Creating the Client Key Database

	12.3 Signed Code Scenario in Java 2 SDK, Standard Edition, V1.2
	12.3.1 Creating a Keystore for Certification Authorities
	12.3.2 Creating the Server Certificate
	12.3.3 Creating and Signing a JAR file
	12.3.4 Granting the Permissions and Running the Applet

	12.4 Signed Code Scenario in Netscape Communicator
	12.4.1 Using the netscape.security Package
	12.4.2 Installing Keys and Certificates in Netscape Communicator
	12.4.3 Signing JAR Files with Netscape Signing Tool

	12.5 Signed Code Scenario in Microsoft Internet Explorer
	12.5.1 First Example with Signed CAB Files
	12.5.2 A More Complex Signed CAB File Example

	12.6 The JAR Bug – Fixed In Java 2 SDK, Standard Edition, V1.2.1
	12.6.1 The Solution in Java 2 SDK, Standard Edition, V1.2.1

	12.7 Future Developments

	Chapter 13. Cryptography in Java 2
	13.1 Security Questions, Cryptographic Answers
	13.1.1 Public Key Certificates

	13.2 The Java Cryptography Architecture Framework
	13.2.1 JCE and United States Export Considerations
	13.2.2 Relationship between Java 2 SDK, JCA and JCE APIs

	13.3 JCA Terms and Definitions
	13.3.1 The Provider Concept in the JCA
	13.3.2 Engine Classes
	13.3.3 Algorithms

	13.4 Java Cryptography Extension
	13.4.1 JCE – Packages and Their Contents
	13.4.2 The Cipher Class
	13.4.3 The Cipher Stream Classes
	13.4.4 Secret Key Interfaces and Classes
	13.4.5 The KeyGenerator Class
	13.4.6 The KeyAgreement Class
	13.4.7 The SealedObject Class

	13.5 Java Cryptography in Practice
	13.5.1 First Scenario
	13.5.2 Second Scenario

	13.6 Asymmetric Encryption with the Java 2 SDK and JCE 1.2
	13.6.1 Using Asymmetric Encryption

	13.7 How to Implement Your Own Provider
	13.7.1 Write the Service Implementation Code
	13.7.2 Give the Provider a Name
	13.7.3 Write a Master Class
	13.7.4 Compile the Code
	13.7.5 Install and Configure the Provider
	13.7.6 Test if the Provider Is Ready
	13.7.7 Algorithm Aliases
	13.7.8 Dependencies on Other Algorithms
	13.7.9 Default Initializations
	13.7.10 A Sample Master Class

	Chapter 14. Enterprise Java
	14.1 Browser Add-On Applets
	14.2 Networked Architectures
	14.2.1 Applying the Java 2 Access Control Mechanisms
	14.2.2 Two-Tier Architecture
	14.2.3 Three-Tier Architecture
	14.2.4 Network Security

	14.3 Secure Clients and Network Computers
	14.4 Server-Side Java
	14.4.1 The Cost of Server-Side Java

	14.5 Servlets
	14.5.1 Advantages of Servlets
	14.5.2 Servlets and CGI-BINs
	14.5.3 Java Servlet APIs
	14.5.4 Servlet Life Cycle
	14.5.5 IBM WebSphere Application Server
	14.5.6 A Sample Servlet
	14.5.7 The Current Servlet Security Model

	14.6 Distributed Object Architectures – RMI
	14.6.1 Stubs and Skeletons
	14.6.2 RMI Registry
	14.6.3 A Sample RMI Program
	14.6.4 The Security of RMI

	14.7 Enterprise JavaBeans

	Chapter 15. Java and Firewalls – In and Out of the Net
	15.1 What Is a Firewall?
	15.2 What Does a Firewall Do?
	15.2.1 Inside a TCP/IP Packet
	15.2.2 How Can Programs Communicate through a Firewall?

	15.3 Detailed Example of TCP/IP Protocol
	15.3.1 DNS Flow (UDP Example)
	15.3.2 HTTP Flow (TCP Example)

	15.4 Proxy Servers and SOCKS Gateways
	15.4.1 Proxy Servers
	15.4.2 What Is SOCKS?
	15.4.3 Using Proxy Servers or SOCKS Gateways

	15.5 The Effect of Firewalls on Java
	15.5.1 Downloading an Applet Using HTTP
	15.5.2 Stopping Java Downloads with a Firewall
	15.5.3 Java Network Connections through the Firewall

	15.6 Java and Firewall Scenarios
	15.6.1 URL Connection
	15.6.2 Socket Connection
	15.6.3 Conclusions

	15.7 Remote Method Invocation
	15.8 Summary

	Chapter 16. Java and SSL
	16.1 What Is SSL?
	16.2 Using SSL from an Applet
	16.2.1 Using SSL URLs with Java

	16.3 Java and SSL with Sun Microsystems
	16.3.1 The javax.net Package
	16.3.2 The javax.net.ssl Package
	16.3.3 The javax.security.cert Package

	16.4 How to Use Java and SSL
	16.4.1 Skeleton Program without SSL
	16.4.2 Using SSL with the Sun Microsystems API

	16.5 Java and SSL with IBM SSLite
	16.5.1 Extensions to the SSL Protocol
	16.5.2 SSLite Key Ring Management Tools
	16.5.3 SSL Server Authentication with IBM SSLite for Java

	16.6 Conclusions
	16.7 Summary

	Chapter 17. Epilogue
	17.1 Future Directions of Java
	17.1.1 Java 2 SDK – The Path Ahead
	17.1.2 Resource Consumption Management
	17.1.3 Java Authentication and Authorization Service
	17.1.4 Java RMI Security Extension
	17.1.5 Arbitrary Grouping of Permissions
	17.1.6 Object-Level Protection
	17.1.7 Subdividing Protection Domains
	17.1.8 Running Applets with Signed Content
	17.1.9 Java 2 Platform, Enterprise Edition

	17.2 Conclusion

	Appendix A. Getting Internal System Properties
	A.1 Program GetAllProperties
	A.2 Program GetProperty

	Appendix B. Signature Formats
	Appendix C. X.509 Certificates
	C.1 X.509 Certificate Versions

	Appendix D. Sources of Information about Java Security
	D.1 Companies
	D.1.1 JavaSoft
	D.1.2 Sun
	D.1.3 IBM
	D.1.4 Microsoft
	D.1.5 Reliable Software Technologies
	D.1.6 JavaWorld
	D.1.7 JCE Providers outside the United States

	D.2 Universities
	D.2.1 Princeton
	D.2.2 Yale
	D.2.3 Others

	Appendix E. What’s on the Diskette?
	E.1 How to Access the Diskette
	E.2 How to Get the Same Software Material from the Web

	Appendix F. Special Notices
	Appendix G. Related Publications
	G.1 International Technical Support Organization Publications
	G.2 Redbooks on CD-ROMs
	G.3 Other Publications

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	Glossary
	Index
	ITSO Redbook Evaluation

