Java 2 Network Security

Marco Pistoia, Duane F. Reller
Deepak Gupta, Milind Nagnur, Ashok K. Ramani

International Technical Support Organization

http://www.redbooks.ibm.com

S5G24-2109-01

SG24-2109-01

International Technical Support Organization

Java 2 Network Security

Marco Pistoia, Duane F. Reller
Deepak Gupta, Milind Nagnur, Ashok K. Ramani

Foreward by Li Gong
Distinguished Engineer and Chief Java Security Architect
Sun Microsystems, Inc.

June 1999

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix F, “Special Notices” on page 659.

Second Edition (June 1999)
This edition applies to Java 2 SDK, Standard Edition, V 1.2.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678

P.O. Box 12195

Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997 1999. All rights reserved.
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Foreword

As the person who led the JavaSoft team that developed the Java security
technology discussed in this book, it is extremely gratifying to see people
spend their precious time writing about our technology and products. Every
engineer’'s dream is to have his or her technology deployed and used by
thousands of others, and this book is a great help to Java developers who
write security-aware applications.

Security is a difficult subject to write about. On the one hand, security is in
people’s daily consciousness so that it appears easy to get across (to the
reader) some of the basic concepts. On the other hand, security applied to
computer and networking is often subtle and unexpected. Security also is
pervasive in that it touches all aspects of the computing technology, including
hardware, software, operating system, software libraries, communication
software, networking infrastructure, application software, user interface, and
management software. In order to understand security in any situation, one
has to understand the entire system under consideration as well as each
individual component so that one can identity their strengths and weaknesses
and design the appropriate solutions.

Java security is one of the more recent additions to the family of security
technologies. Ever since Sun Microsystems announced Java technology in
the spring of 1995, there has been strong and growing interest (in industry,
research laboratories, and academia) around the security of the Java platform
as well as new security issues raised by the deployment of Java technology.

Such close attention being paid to security is almost unprecedented in that
new computing technologies normally ignore security considerations when
they emerge initially. Most of them remain unsecured forever. In the few cases
where efforts are made to secure them later, the efforts are typically not very
successful because retrofitting security is usually very difficult, if possible at
all, and often causes backward compatibility problems.

Therefore, it is extremely fortunate that the Java technology had security as a
primary design goal from the very beginning. (Hats off to the original Java
development team. | joined JavaSoft only in 1996.) Although the initial
security model was very simplistic, it enabled later improvements in the
security architecture.

The Java language is a general-purpose object-oriented programming
language and is specifically designed to be platform independent so that
application developers can write a program once and then run it securely

© Copyright IBM Corp. 1999 3

4

everywhere on the Internet. To achieve this platform independence, a Java
program is compiled to a bytecode instruction set and binary format defined
in the Java Virtual Machine Specification. The Java platform consists of the
Java language and its associated tools (such as compilers), together with the
Java Virtual Machine (JVM) and its associated libraries that define a rich set
of application programming interfaces (APIs).

Security for the Java platform has multiple layers. First of all, the Java
language is strongly typed and does not include any unsafe constructs, such
as array accesses without index checking, because such unsafe constructs
may result in unspecified and unpredictable program behavior that can lead to
security compromises. Type safety is checked both at the time a piece of
bytecode is loaded into the JVM and throughout the lifetime of the bytecode
(that is, during run time) until it is no longer used and garbage collected.
Second, mechanisms (for example, class loaders) are in place to ensure a
sufficient degree of separation between multiple Java programs so that they
do not interfere with each other in undesirable ways.

Third, access to crucial system resources is mediated by the JVM. A security
manager is installed to deny all requests for unauthorized access. The access
control model, in the initial release of the Java Development Kit (JDK 1.0),
was to grant full access to local code (that is, trust such code and let it do
anything it wants) and to grant very restricted access to code loaded over the
network because such code (often referred to as applets) may not be trusted.
JDK 1.1 introduced a notion of trusted applets and granted full access to
these applets. The latest release, JDK 1.2 (also called Java 2), incorporates a
new security architecture that supports policy-driven, fine-grained, flexible,
and extensible access control. (For design rationales of this architecture, as
well as difficulties and subtleties we encountered during JDK 1.2
development, please refer to my book Inside Java 2 Platform Security.)

On top of type safety and access control, there are the Java Cryptography
Architecture (implemented in JDK 1.2 and in the Java Cryptography
Extension 1.2), support for secure communication (the Java Secure Socket
Extension), and a framework for user-based authentication and access
control (the Java Authentication and Authorization Service). These
technologies are at various stages in the development and release cycle.
Finally, applications can provide their own specific security features and can
customize security features that are built into the Java platform.

Our colleagues at IBM, among other industrial partners, have been closely
involved with the recent development of Java security technology. They have
supported our efforts in many ways, and have provided excellent technical
suggestions. This latest book from IBM is a comprehensive guidebook that

Java 2 Network Security

provides the programmer/reader with well-organized details of the Java
security APIs and their usage. The book is also broad in its coverage of the
wider security context and related issues.

| am very excited to see such a good book being published on Java security. It
will contribute greatly toward making the Java platform the most popular
deployment environment for secure computing.

Li Gong

Distinguished Engineer and Chief Java Security Architect
Sun Microsystems

Cupertino, California

May 1999

6 Java 2 Network Security

Contents

Foreword 3
Preface. XVii
The Team That Wrote This Redbook. XVii
Comments Welcome XiX
Part 1. Introduction to Javaand SeCUrity e, 1
Chapter 1. An Overview of Java and Security 3
1.1 Javals NotJusta languageu e, 3
1.2 What Java DoesS.ot 3
1.3 Java ls Not an Island: Java as a Part of Security 5
1.3.1 Safetyand Security 7
1.3.2 Javaasan Aidto Security 8
1.3.3 Javaasa Threatto Security. 9
1.3.4 Writing Secure Javattt 10
1.3.5 StayingOneJump Ahead. 11
1.3.6 The VigilantWeb Site. 12
1.4 Understanding Java 2 Security. 12
1.4.1 An Example of Applet SecurityinJava2 14
1.4.2 An Example of Application SecurityinJava2............... 26
1.5 SUMMaArY .. . 33
Chapter 2. Attack and Defense 35
2.1 Componentsofdavaiiiiii 35
2.1.1 The Development Environment. 36
2.1.2 The Execution Environment, 44
2.1.3 Interfaces and Architectures. 50
2.2 Java 2 and Cryptography e 53
2.2.1 Cryptographic ToolsinBrief............ 54
2.2.2 Java Cryptography Architecture 56
2.2.3 United States Export Rules for Encryption 57
2.2.4 Signed Code. 58
2.2.5 The Other Side of the Coin — Access Control 59
2.3 Attackingthe WorldofJava 59
2.3.1 Perilsinthe Lifeof RemoteCode 59
2.3.2 Vulnerabilities in Java Applications. 66
2.4 SUMMAIY . .ttt e e e e 68
Chapter 3. The New Java Security Model 69
3.1 The Need for Java Security 69

© Copyright IBM Corp. 1997 1999 Vii

3.2 Evolution of the Java Security Model 70

3.2.1 The JDK 1.0 Sandbox Security Model 70
3.2.2 The Concept of Trusted Code inJDK 1.1 72
3.2.3 The Fine-Grained Access ControlofJava2 74
3.2.4 A Comparison of the Three Java Security Models 78
3.3 Java 2 Protection Domain and Permissions Model 80
3.4 NewClassSearchPath 83
3.4.1 BootClassPath 84
3.4.2 Extensions Framework i 86
3.4.3 ApplicationClassPath 88
3.4.4 Class Search Pathsin Summary 89
3.5 Java 2 Class Loading Mechanism 89
3.5.1 Run-Time Access Controls. 91
3.6 The Policy File 93
3.6.1 The Default System-Wide Policy File 96
3.7 Security Manager vs Access Controller 98
3.8 Security ManagementwithJava 2 98
3.8.1 Applying a Security Manager to Applets and Applications. 99
3.8.2 Applying a User-Defined Security Policy. 99
3.8.3 Java Security Debugging 100
3.9 SUMMaANY . .. 106
Part 2. Underthe HoOd. 107
Chapter 4. The Java Virtual Machine. 109
4.1 The Java Virtual Machine, Close Up. 109
4.1.1 TheClassLoader. 110
4.1.2 The Class File Verifier 112
4.1.3 The Heapo 112
4.1.4 The Class Area. . . . oo it e e e e 112
4.1.5 The Native Method Loader. 113
4.1.6 The Security Manager 113
4.1.7 The Execution Engine. 113
4.1.8 Just-in-Time Compilers. 113
4.2 SUMMAIY . .t e e e 115
Chapter 5. Class FilesinJava2 117
5.1 The Traditional Development Life Cycle 117
5.2 The Java Development LifeCycle 119
5.3 TheJdava2 Class File Format. 124
5.3.1 Decompilation Attacks 126
5.4 The Constant Pool i 129
5.4.1 Beating the Decompilation Threat. 134

viii Java 2 Network Security

5.5 Java Bytecode 136

5.5.1 ABytecode Example 136
Chapter 6. The Class Loader and Class File Verifier 145
6.1 Class Loaders 145

6.1.1 Loading Classes from Trusted Sources 146

6.1.2 Loading Classes from Untrusted Sources. 147

6.1.3 Beyond Whatthe JVM Provides 148

6.1.4 The Class Loading Process 150

6.1.5 Should You Build Your Own Class Loader 155
6.2 The Class File Verifier i 168

6.2.1 An Example of Class File Verification. 169

6.2.2 The Duties of the Class File Verifier 175

6.2.3 The Four Passes of the Class File Verifier. 176
6.3 The Bytecode VerifierinDetail 180

6.3.1 The Data Flow Analyzer........... 181
6.4 An Incompleteness Theorem for Bytecode Verifiers. 183
6.5 Summary 184
Chapter 7. The Java 2 SecurityManager 187
7.1 What SecurityManager DOESt 187
7.2 Operation of the Security Manager. 190

7.2.1 Interdependence of the Three JVM Security Elements 192
7.3 Attacking the DefensesofJava 192

7.3.1 Typesof Attack. 193

7.3.2 Malicious Applets 195
7.4 Avoiding Security Hazards 204

7.41 Howto Test e e e e 205
7.5 Examples of Security Manager Extensions. 206

7.5.1 First Example — Overriding checkWrite(). 206

7.5.2 Second Example — Overriding checkPermission(). 211

7.5.3 Third Example — Overriding checkRead() and checkWrite() . .. 218
7.6 SUMMANY . ..ot e e e e e e e e 224
Chapter 8. Security Configuration Files in the Java2 SDK 225
8.1 A Note on java.home and the JRE Installation Directory. 225
8.2 KeyStores.o 230

8.2.1 The Certificates KeyStore Filecacerts 233
8.3 The Security Properties File, java.security 234
8.4 Security Policy Files. 242

8.4.1 keystore ENtry 242

8.4.2 grant Entries. 243
8.5 An Example of Security Settings in the Java 2 Platform 248

8.5.1 The Count Application Source Code. 248

8.5.2 ASample TextFile. 249

8.5.3 Compiling the Application. 249
8.5.4 Running the Application without a Security Manager 250
8.5.5 Running the Application with the Default Security Manager . .. 250
8.5.6 Policy File Modification............................... 250
8.6 File Read Access to Files in the Code Base URL Directory 252
8.7 Security Properties and Policy File Protection 252
8.8 How to Implement a Policy Server 252
Chapter 9. Java 2 SDK Security Tools. 259
9.1 Key and Certificate Management Tool 259
9.1.1 keytool Syntax 259
9.1.2 Store and Private Key Password 261
9.1.3 Commands and Options Associated with keytool 262
9.1.4 An Example of keytoolUsage. 269
9.2 Java Archive TOOI. 270
9.2.1 Options of thejarCommand. 271
9.2.2 RunningaJARFile. 274
9.3 JAR Signing and Verification Tool 275
9.3.1 jarsigner SCenario 280
9.3.2 Observations on the jarsigner Verification Process. 284
9.3.3 Tampering with a Signed JAR File 286
9.4 Policy File Creation and Management Tool 288
9.4.1 Observations on the Use of the Policy Tool 295
Chapter 10. Security APIsinJava2 297
10.1 The Package java.security 297
10.1.1 Principals 297
10.1.2 Guard Interface and GuardedObjectClass. 298
10.1.3 Providers 299
10.1.4 The Security Classot 301
10.1.5 Access Control APIS. 304
10.1.6 Key Management i 305
10.1.7 Message Digests and Dlgital Signatures. 311
10.1.8 Secure Random Number Generation 316
10.1.9 The SignedObjectClass. 316
10.1.10 Permission APIS 317
10.1.11 COde SOUICE . . .ttt e e e e 318
10.1.12 Protection Domain 321
10.1.13 POliCY . o oot 321
10.1.14 Secure Class Loader 322
10.1.15 Algorithm Parameters. 322
10.2 The Package java.Security.Spec.y 322

X Java 2 Network Security

10.3 The Package java.security.cert. 323

10.4 Package java.security.interfaces 324
10.5 The Package java.security.acl 324
10.6 Examples Using the Java 2 Security APIs 325
10.6.1 Signature and Signature Verification. 325
10.6.2 Using Keystoresottt 332
10.7 The Permission Classes.t 339
10.7.1 How to Create New Permissions. 344
10.7.2 Working with Signed Permissions. 348
10.8 How to Write Privileged Code. 350
10.8.1 First Case — No Return Value, No Exception Thrown 351
10.8.2 Second Case — Return Value, No Exception Thrown 352
10.8.3 Third Case — Return Value, Exception Thrown 353
10.8.4 Accessing Local Variables 353
10.8.5 An Example of Privileged Blocks Usage 354
10.8.6 General Recommendations on Using the Privileged Blocks . . 358
Chapter 11. The JavaPlug-In. 359
11.1 Main Features of Java Plug-In 360
11.2 What Does the Java Plug-InDo? 364
11.3 Java Plug-InHTML Changes 364
11.3.1 Changes Supported by Navigator. 364
11.3.2 Changes Supported by Internet Explorer 365
11.3.3 Changes Supported by Both Navigator and Internet Explorer . 366
11.3.4 Allthe Web Browsers 367
11.3.5 Java Plug-in Software HTML Converter 369
11.4 Java Plug-In Control Panel., 370
11.4.1 The BasicPanel 370
11.4.2 The Advanced Panel oo .. 371
11.4.3 The Proxies Panel 373
11.5 Java Plug-In Security Scenario. 374
11.5.1 First Step — Without Using the Java Plug-in 374
11.5.2 Second Step — Using the Java Plug-in 377
Chapter 12. Java Gets Outof tSBOX 385
12.1 JAR Filesand Applet Signing i 385
12.1.1 ManifestFile. 387
12.1.2 Signature File 392
12.1.3 Signature Block File 392
12.2 Signed Code Scenario in JDK 1.1 and Sun HotJava. 393
12.2.1 Creating the CAKey Database........................ 393
12.2.2 Creating the Server Key Database 395
12.2.3 Creating and Signinga JARFile. 397

Xi

12.2.4 Runningthe Applet. 399

12.2.5 Creating the Client Key Database. 399
12.3 Signed Code Scenario in Java 2 SDK, Standard Edition, V1.2 400
12.3.1 Creating a Keystore for Certification Authorities 401
12.3.2 Creating the Server Certificate 402
12.3.3 Creating and Signinga JARfile 406
12.3.4 Granting the Permissions and Running the Applet 407
12.4 Signed Code Scenario in Netscape Communicator. 409
12.4.1 Using the netscape.security Package 410
12.4.2 Installing Keys and Certificates in Netscape Communicator . . 415
12.4.3 Signing JAR Files with Netscape Signing Tool 418
12.5 Signed Code Scenario in Microsoft Internet Explorer 437
12.5.1 First Example with Signed CAB Files 438
12.5.2 A More Complex Signed CAB File Example 450
12.6 The JAR Bug - Fixed In Java 2 SDK, Standard Edition, V1.2.1 ... 461
12.6.1 The Solution in Java 2 SDK, Standard Edition, V1.2.1 470
12.7 Future Developments. 470
Part 3. Beyond the Island of Java — Surfing into the Unknown 473
Chapter 13. CryptographyinJava2, 475
13.1 Security Questions, Cryptographic Answers. 475
13.1.1 Public Key Certificates 478
13.2 The Java Cryptography Architecture Framework 480
13.2.1 JCE and United States Export Considerations 481
13.2.2 Relationship between Java 2 SDK, JCA and JCE APIs. 482
13.3 JCA Terms and Definitions. 483
13.3.1 The Provider Conceptinthe JCA 485
13.3.2 Engine ClasSesottt 487
13.3.3 Algorithms 489
13.4 Java Cryptography Extension. 493
13.4.1 JCE - Packages and Their Contents 493
13.4.2 The CipherClass i 495
13.4.3 The Cipher Stream Classesc.ciuiun... 495
13.4.4 Secret Key Interfacesand Classes. 495
13.4.5 The KeyGeneratorClass, 495
13.4.6 The KeyAgreementClass. 496
13.4.7 The SealedObjectClass. 496
13.5 Java Cryptography in Practice 496
13.5.1 First Scenario. 496
13.5.2 Second SCeNAriot 496
13.6 Asymmetric Encryption with the Java 2 SDKand JCE 1.2 497
13.6.1 Using Asymmetric Encryption. 497

Xii Java 2 Network Security

13.7 How to Implement Your Own Provider 497

13.7.1 Write the Service Implementation Code 498
13.7.2 Give the ProvideraName. 498
13.7.3 WriteaMasterClass 498
13.7.4 Compilethe Code. i 498
13.7.5 Install and Configure the Provider. 498
13.7.6 Testifthe ProviderIsReady 498
13.7.7 Algorithm Aliases 498
13.7.8 Dependencies on Other Algorithms 499
13.7.9 Default Initializations 499
13.7.10 ASample MasterClass 499
Chapter 14. Enterprise Javat 501
14.1 Browser Add-On Applets 501
14.2 Networked Architectures i 501
14.2.1 Applying the Java 2 Access Control Mechanisms.......... 502
14.2.2 Two-Tier Architecture 503
14.2.3 Three-Tier Architecture. 503
14.2.4 Network Security 506
14.3 Secure Clients and Network Computers. 509
14.4 Server-Side Javat 510
14.4.1 The Cost of Server-Side Java. 511
145 Servlets 512
14.5.1 Advantagesof Servlets. 514
14.5.2 Servletsand CGI-BINS i 515
14.5.3 JavaServlet APIs 516
1454 ServletLifeCycle 518
14.5.5 IBM WebSphere Application Server 520
14.5.6 ASample Servlet 522
14.5.7 The Current Servlet Security Model 530
14.6 Distributed Object Architectures—RMI. 537
14.6.1 Stubs and Skeletons. 539
14.6.2 RMIReQIStrY.o 540
14.6.3 A Sample RMI Program 542
14.6.4 The Security of RMI 553
14.7 Enterprise JavaBeans 554
Chapter 15. Java and Firewalls — In and Out of the Net 557
15.1 WhatlsaFirewall?. 557
15.2 What Does a Firewall DO? 558
15.2.1 Inside a TCP/IP Packet. 558
15.2.2 How Can Programs Communicate through a Firewall?. 561
15.3 Detailed Example of TCP/IP Protocol 562

Xiii

15.3.1 DNS Flow (UDP Example) 562

15.3.2 HTTP Flow (TCP Example). 564
15.4 Proxy Servers and SOCKS Gateways 570
15.4.1 Proxy SerVEerIS. . . .ot e e e 570
15.4.2 Whatls SOCKS? i e 571
15.4.3 Using Proxy Servers or SOCKS Gateways. 574
15.5 The Effect of FirewallsonJava. 575
15.5.1 Downloading an Applet Using HTTP. 575
15.5.2 Stopping Java Downloads with a Firewall 575
15.5.3 Java Network Connections through the Firewall 578
15.6 Java and Firewall Scenarios. i 580
15.6.1 URL Connectiont 582
15.6.2 SocketConnection 590
15.6.3 Conclusions 598
15.7 Remote Method Invocation. 599
15.8 Summary 602
Chapter 16. Javaand SSL 603
16.1 What Is SSL?ot 603
16.2 Using SSL froman Applet 608
16.2.1 Using SSL URLswithJava. 609
16.3 Java and SSL with Sun Microsystems 609
16.3.1 Thejavax.netPackage........ 610
16.3.2 The javax.net.sslPackage 610
16.3.3 The javax.security.certPackage....................... 612
16.4 HowtoUseJdavaand SSL 613
16.4.1 Skeleton Program without SSL. 614
16.4.2 Using SSL with the Sun Microsystems APIl. 623
16.5 Javaand SSLwithIBM SSLite............. 625
16.5.1 Extensions to the SSL Protocol 627
16.5.2 SSLite Key Ring Management Tools. 627
16.5.3 SSL Server Authentication with IBM SSLite for Java. 631
16.6 CONCIUSIONS . . . o 633
16.7 SUMMAIY . . .o e e 634
Chapter 17. Epilogue 635
17.1 Future Directionsof Java 635
17.1.1 Java2 SDK—-The PathAhead 635
17.1.2 Resource Consumption Management. 636
17.1.3 Java Authentication and Authorization Service 636
17.1.4 Java RMI Security Extension 637
17.1.5 Arbitrary Grouping of Permissions 637
17.1.6 Object-Level Protection 637

Xiv Java 2 Network Security

17.1.7 Subdividing Protection Domains. 638

17.1.8 Running Applets with Signed Content. 638
17.1.9 Java 2 Platform, Enterprise Edition. 639
17.2 CONCIUSION . . . o o 639
Appendix A. Getting Internal System Properties 641
A.1 Program GetAllProperties.t 641
A.2 Program GetProperty 644
Appendix B. Signature Formats i, 647
Appendix C. X.509 Certificates 649
C.1 X.509 Certificate VEISIONSt 650
Appendix D. Sources of Information about Java Security 651
D.1 COMPANIES . . oottt e et e e e 651
D.1.1 JavaSoft e 651
D.l.2 SUN. .. 652
D.1.3 IBM .. 652
D.1.4 MICrosoft. e 653
D.1.5 Reliable Software Technologies. 654
D.1.6 JavaWorld. 654
D.1.7 JCE Providers outside the United States 654
D.2 Universitieso 655
D.2.1 PrinCetONot e 655
D.2.2 Yale .o 655
D.2.3 Others. . .o e e e 656
Appendix E. What's on the Diskette? 657
E.1 Howto Accessthe Diskette 657
E.2 How to Get the Same Software Material fromthe Web 657
Appendix F. Special Notices 659
Appendix G. Related Publications 663
G.1 International Technical Support Organization Publications 663
G.2 Redbooks on CD-ROMS. e 663
G.3 Other Publications e 663
How to Get ITSO Redbooks i, 665
IBM Redbook Fax Order Form. 666

XV

XVi

Java 2 Network Security

Preface

Java is fashionable, but is it reliable? Java is entertaining, but is it secure?
Java is useful, but is it safe?

The purpose of this book is to answer those questions, from the point of view
of people who want to use Java, but want to do so reliably, securely and
safely. That makes this book different from much recent writing on Java,
which focuses, perfectly legitimately, on how a Java system can be broken
into and how to avoid those dangers. On the contrary, this book focuses on
how Java can be made secure and how to exploit its strengths. The goal is to
provide practical help to the various groups involved in making a Java-based
application or Web site into an industrial-strength commercial proposition.

Various groups have different needs and different skills, which this book
meets in its different parts.

« The first part is aimed at the intelligent non-specialist who oversees
system management or application development, or incorporates Java into
the security policy. Only a basic understanding of computers and a limited
exposure to Java is assumed, but all the themes of Java security are
introduced in a context that stresses over and over again how Java
security must be seen as an integral part of system security.

* The second part goes into more detail on how Java security works, and is
aimed more at system and network administrators and programmers, who
need to know more of what is going on.

e The third part looks at the broader context in which Java operates,
including some extensions to Java security and some aspects of its future.

This book explains the evolution of the Java security model, and then focuses
on the Java 2 security architecture and its revolutionary domains of
protection. It offers a very large number of examples to give you a better
understanding of the technology involved.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Raleigh Center.

The leader of this project was Marco Pistoia.

Marco Pistoia is a Network Security Specialist, working as a project leader at
the International Technical Support Organization, Raleigh Center. He writes

© Copyright IBM Corp. 1997 1999 XVii

XViii

extensively and teaches IBM classes worldwide on all areas of the e-business
Application Framework, WebSphere, Java and Internet security. Marco holds
a degree with honors in Pure Mathematics from the University of Rome and a
masters degree in Computer Science. Before joining the ITSO, he was a
System Engineer in IBM Italy. He received an Outstanding Technical
Achievement Award in 1996.

Duane F. Reller is a Senior Software Engineer in the System/390
Programming Laboratory in Endicott, New York, USA. He has 25 years of
experience in System/390 Hardware and Software development. He has
served in technical and management positions. He holds a Bachelor’s degree
in Electrical Technology and a Master of Science degree in Computer
Science from the State University of New York at Binghamton. His areas of
expertise include Hardware and Software System’s Architecture and
Management.

Deepak Gupta is a Senior Software Engineer in IBM, India. He has two and a
half years of experience in Internet technologies. He holds a degree in
Electronics and Communications from the University of Roorkee, India. His
areas of expertise include Internet security and Electronic Commerce.
Deepak was involved in IBM India's largest e-Commerce project and in India's
first secured e-Commerce site allowing Rupee-based transactions, for which
he was conferred the Employee of the Month Award. He has also given
several talks on Internet security and e-Commerce.

Milind Nagnur is a Senior Associate in the Operations and Systems Risk
Management (OSRM) group of Price Waterhouse Coopers in Mumbai, India. He
has a couple of years of exposure in Internet technologies, with emphasis on
security and control issues in real business applications. He holds a degree in
Mechanical Engineering from the Indian Institute of Technology in Bombay, India,
and an MBA from the Indian Institute of Management in Calcutta, India.

Ashok K. Ramani is a Senior Software Engineer in IBM India. He has two
and a half years of experience in Internet technologies. He holds a degree in
MSc.(Tech.) Information Systems from the Birla Institute of Technology and
Science, Pilani, India. His areas of expertise include Internet security and
Electronic Commerce. Ashok was involved in IBM India's largest e-Commerce
project and in India's first secure e-Commerce site allowing Rupee-based
transactions for which he was conferred the Employee of the Month Award.
He has won special recognition awards at IBM India for his contribution to
e-Commerce projects. He has also presented several talks on Internet
security and e-Commerce.

Thanks to the following people for their invaluable contributions to this project:

Java 2 Network Security

Anthony J. Nadalin, Julianne Yarsa, Shirley Fox, Donna Smith Skibbie,
Bruce Rich
IBM Enterprise Security, Austin Center

Larry Koved
IBM, Thomas J. Watson Research, Hawthorne

Li Gong, Jan Luehe, Roland Schemers
Sun Microsystems, Inc.

Pat Donleycott, Jorge Ferrari, Martin Murhammer, Gail Christensen,
Margaret Ticknor, Shawn Walsh, Linda Robinson, Tate Renner
IBM, International Technical Support Organization, Raleigh Center

Rob Macgregor, Dave Durbin, John Owlett, Andrew Yeomans
Authors of the first edition

Pete Lawther, Simon Phipps
Contributors to the first edition

Comments Welcome
Your comments are important to us!
We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

¢ Fax the evaluation form found in “ITSO Redbook Evaluation” on page 679
to the fax number shown on the form.

¢ Use the online evaluation form found at htt p: // waw. r edbooks. i bm cond

¢ Send your comments in an internet note to redbook@s. i bm com

XiX

XX Java 2 Network Security

Part 1. Introduction to Java and Security

© Copyright IBM Corp. 1997 1999 1

2 Java 2 Network Security

Chapter 1. An Overview of Java and Security

The purpose of this chapter is not only to introduce the themes of the book to
those who will later read the more detailed chapters that follow, but also to act
as a brief overview for the intelligent non-specialist who does not need all the
details. This is because the focus of the book is on helping people to deploy
Java in a secure way. There are many people involved in that — managers,
administrators, developers, systems programmers, users — all of whom play a
part.

1.1 Java Is Not Just a Language

Most of the books on the subject deal with Java as a programming language.
As a programming language it has much to recommend it. Its syntax is very
like C, but with many of the features that hurt your brain removed. It is
strongly object-oriented, but it avoids the more obscure corners of the O-O
world.

For most programming languages the question of how secure is it? does not
arise. It's the application that needs to implement security, not the language it
is written in. However, Java is many other things in addition to being a
programming language:

¢ A set of object-oriented frameworks, primarily for graphical user interface
(GUI) building and networking

« An operating system
e A client/server management mechanism

< A unifying force that cuts across operating system and network
boundaries

1.2 What Java Does

What Java does is to solve the problem of executable content. What's that?
Well, the early sites on the World Wide Web were static: pictures and text.
That was revolutionary enough. The richness of the pages was a revelation to
anyone used to the traditional staid appearance of information downloaded
from a server; the hypertext links, which made cross-referencing easy, made
it a more useful information source than an encyclopedia; and the amount of
information available was staggering. But if you wanted a program to run, you
had to send a data file to the server where that program was — you filled in a
form on the screen, clicked the send button, and waited for the result.

© Copyright IBM Corp. 1997 1999 3

4

Some programs are better run on the client than on a server. So why couldn’t
part of the content of the Web pages be executable? Why couldn’t a page
comprise some text, some pictures, and some programs that run on the
client? There were two reasons:

1. It would be dangerous from a security point of view. There are enough
viruses on the Web anyway. With executable content, you might not even
realize that you were downloading potentially dangerous code.

2. The programs might not run on a particular operating system. One of the
joys of the Web was that you could choose whatever client system was
right for you and download pages running on a completely different
system.

But executable content, while potentially dangerous, is also extremely
valuable:

« Executable content can make a Web page much more exciting. This is
what Java became well known for in its early days: dancing cartoon
characters, bouncing heads, ticker tapes, etc. You can’t do these if all the
programs must run on the server. Some of the early examples were
indeed just cute — they showed what the technology could do, not why it
was important — but appearance, excitement, and even cuteness are
important in attracting customers to a business site.

« Many dialogues with a customer are unbearably slow if you have to
communicate with a Web server at each interaction. With executable
content, the dialogue — an insurance proposal, a request for a credit card,
a browse through a catalogue, or whatever — can be completed on the
client machine, and the resulting transaction sent across the Web.

Java makes executable content possible while solving the problems noted
above by having three components:

1. A Java Virtual Machine (JVM) designed to prevent any code from
tampering with the client system. The code runs in a protected space, and
has only limited and always strictly controlled access to the surrounding
system. This is to meet Requirement 1 above. The arena of activity for any
specific code is defined by the client by way of a security policy. Java 2
provides an implementation for such protected spaces by the use of
protected domains, security policy files and security managers which we
shall see in greater detail in the later parts of this book.

2. A set of bytecodes — JVM instructions — which are interpreted by the JVM.
You have to have these to prevent any code from jumping outside the
pre-determined area of operation, but they have a benefit of their own.
Since they are machine-independent, if you have a JVM for your

Java 2 Network Security

workstation, then you can run any applet from any server, satisfying
Requirement 2 above.

3. A high-level object-oriented language in which to write the classes that
make up the code. This is a language similar in many ways to C++ with
some functions (such as pointers) omitted because they could be used by
malicious code to escape from its area of operation pre-determined by the
client.

There is now a Java Development Kit (JDK) — comprising the JVM, compiler,
and basic classes — for most operating systems, and most Web browsers
contain a JVM, so executable content is now real.

A Java program that is loaded from the Web and is run on a Web browser
system is called an applet. A Java program that is loaded locally, rather than
from the Web, is called an application. In JDK 1.1, an application was not
constrained by the sandbox and could access the local machine, just like a
program written in any other language.

However, in Java 2, any piece of code, local or remote, is recognized by two
characteristics: the location of its origin (URL address) and the identities of
the entities signing the code. The user can define in his or her security policy,
exactly how much of which resource can be accessed by a code having a
particular URL source and signers. This is what is called fine-grained access
control.

Due to these security features, all you have to do is to write an application
once in Java. Then that application can be run anywhere that has a JVM in
compliance with the Java Compatibility Kit (JCK)™. This makes Java very
useful for people writing applications which will be used by a wide variety of
users — quite independently of whether they will ever be downloaded from the
Web.

1.3 Java Is Not an Island: Java as a Part of Security
Java security must be holistic, adequate and perpetual.

1. First, Java security must be holistic. An attacker who wishes you harm
(rather than one who wants to prove his own cleverness) will focus on the
weak links in the security, so the security of a system that uses Java must
be reviewed as a whole, following the flows of data and applications, and
considering the potential for attack or accident at each point. Specifically,

1 sun Microsystems requires that code obtained by third parties by modifying the original source code of the JVM pass
the JCK. This is done to maintain compatibility among the Java platforms implemented by different vendors.

An Overview of Java and Security 5

6

if Java is being used to pass applets over a shared network like the
Internet, then you have to consider:

« Private network protection, using a firewall and allied security policies

« Private data protection, using encryption to shield data as it flows over
the public network

¢ User authentication, using digital signatures, or protected passwords

. Secondly, Java security must be adequate. It has to be strong enough for

the purpose in hand: Java must not be the weak link. But there is no need
to spend extra money to make it far and away the strongest link, unless
one of the two following circumstances occur:

« Your potential attackers don't just want to crack your system, they want
to crack your Java system.

¢ Your users have a particular fear of Java, and you need to reassure
them (security has to match levels of threat and worry, as well as, levels
of potential loss).

. Thirdly, Java security must be perpetual. This book will help you build a

secure Java system to face today’s perils of accident and attack. But those
perils will change. So you must review your Java security — as a part of
your overall security of course — regularly, to stay one jump ahead of
potential attackers.

How well does Java meet those needs? Three points:

1. Java architecture permits secure design

The Java 2 security architecture allows a user to predetermine the area of
activity for any code local or remote, and enforce strict control over access
of any code to system resources. This has been made possible by the use
of the concepts of protection domains, user defined security policies and
security managers (which are described in great detail in Chapter 3, “The
New Java Security Model” on page 69).

. Java implementations respond to error reports

The attack applets we describe later were all reported by applet hunters.
They come not from incidents of loss on the Internet, but from laboratory
studies of how Java can be used and abused. The applet hunters have
been as responsible as they are clever, and have alerted the Java
implementors to the problems before telling the public. So normally you
will hear of an implementation loophole at the same time as hearing of the
fix. Thus any risk of using Java gets gradually less as loopholes are
closed.

Java 2 Network Security

3. Nothing in Java should permit complacency

Installers and users of Java must be as willing to respond as the
implementors. That is, users must recognize that loopholes will be found
and must be closed without delay.

In summary, provided that you have an implementation that is free of known
errors, and that you install, maintain and review Java carefully, you can reach
levels of security which are appropriate for any business purpose.

1.3.1 Safety and Security

To enthusiastic object-oriented programmers, it is the Java language that is
important. It contains a number of important differences from C++ which
reduce the chance of writing a rogue program by accident, as well as making
it more difficult to write a rogue program by design.

But, from a security point of view, it is the Java Virtual Machine that matters.
The business benefits of Java are the security and portability of the JVM, and
these come from the bytecodes, not from the Java source language.

So, we shall be more concerned with bytecode programs, which are different
from Java source programs. All valid Java source programs can be compiled
to bytecode programs, but there are bytecode programs that have no
corresponding Java source. And, of course, it is possible to generate Java
bytecode programs from other high-level languages. The first other language
was NetREXX, a variant of the REXX language, and others have followed.

This difference between high-level and bytecode is both bad and good:

« It is bad because people can circumvent the design features of the Java
language. This was designed to produce well-behaved bytecode
programs, a design that has limited security strength if an attacker can
write directly in bytecode.

« It is good because you can foil the decompilers. These take bytecode and
generate Java source code — source code which is very readable because
of the large amount of information a Java class file contains. To prevent
people from decompiling your valuable copyright code, you can modify the
compiled class file so that there is no decompiled version. We discuss this
in detail in 5.4.1, “Beating the Decompilation Threat” on page 134. So the
good features of the high-level Java language should be seen as safety
features, not as security features.

An Overview of Java and Security 7

1.3.2 Java as an Aid to Security

Sometimes, discussions of Java and security focus only on the perils of Java,
as though there was only a downside to using it, from a security point of view
anyway. But this is not the whole story. Java can be a great help to the
security of a system, and can strengthen weak links, primarily because code
distribution is a risky process.

Many applications need code running on the client in cooperation with code
running on the server — for example, graphical front ends, or dialers to
connect to the telephone network — and this code has to be installed there
somehow. The distribution of this code is often a weak link in an online
system, and it is usually much easier to attack this than to waste time trying to
decrypt messages flowing over the Internet. What is the danger? If this code
can be tampered with, then, for example, a dialer number can be changed so
that the client dials the attacker’s site rather than the proper server. The client
will never realize this because the attacker, acting as a man-in-the-middle
(MIM)Z, forwards all traffic between client and server, reading it as it goes. Or
a virus can be introduced, or a host of other horrible possibilities.

The options for code distribution are:
* To send a physical diskette or CD-ROM to the client
« To have the client download the code over an existing network

¢ To use Java

The safest of the three is Java. It isn’t always suitable — the client must
already have a network connection that is fast enough for the purpose — but it
is by far the easiest to update with a new release, it is less easily intercepted
than a physical distribution and, unlike a normal download, it is checked on
arrival. Moreover, it can be signed and verified for appropriate signatures.

The checking and signing of Java code is central to Java security and very
much more will be said about them in Part 2, “Under the Hood” on page 107.
In this introductory chapter, it is enough to describe briefly the three
components of applet checking:

1. The class loader is responsible for bringing together all of the different
parts of the program so that it can be executed.

2 A network entity that intercepts data flowing between two machines is commonly known as a sniffer. A sniffer could
have a more active role than just copying frames off the wire. In fact a more dangerous attack could be accomplished if the
sniffer is able to acts as a man-in-the-middle, a machine that actively inserts itself in the data flows between two
legitimate systems in order to compromise the data flowing between them. To the client, the MIM masquerades as the
server and to the server the MIM masquerades as the client.

8 Java 2 Network Security

2. The class file verifier (which includes the bytecode verifier) checks that the
program obeys the rules of the Java Virtual Machine (but note that this
does not necessarily mean that it obeys the rules of the Java language).

3. The security manager imposes local restrictions on the things that the
program is allowed to do. It is perfectly possible to customize this to allow
code limited access to carefully controlled resources. This could mean
allowing no access to the local file system, and network access only to the
location from which the code, or its Web page, came.

You may wish, for example, to print something from an applet. You are
unlikely to want your security manager to allow anyone to do that, but you
might allow access to especially trustworthy people. So you download the
applet; discover that it is located at a trustworthy URL address and encrypted
with someone’s private key; check the accompanying public key certificate to
make sure it is valid, and identify someone especially trustworthy; decrypt the
applet with that public key, and then allow it the necessary access.

One important thing that distinguishes Java from other forms of executable
content is that it has both the web of trust that signatures bring and the three
security components to validate the downloaded code. These precautions are
taken, not because Java users are less trustful than others, but because even
the most trusted of code suppliers sometimes make mistakes, or can have
their systems compromised. Without the validation, a web of trust can
become a web of corruption if any one trusted site is successfully cracked.

1.3.3 Java as a Threat to Security

So, in the absence of implementation errors, either on the part of the browser
vendors or on the part of computer operators, administrators and systems
programmers, Java should be safe. The browser vendors have a good
reputation for responding to reports of flaws in their implementations, and one
of the key purposes of this book is to help you avoid any slips in your
installation.

If something does go wrong, then the most severe threat you face is system
modification, the result of what are sometimes called attack applets. This is
worse than someone’s being able to read data from your system, because
you have no idea what has been left behind. There could be a virus on your
computer, or on any computer to which you are connected. Alternatively,
some of your business data could have been modified so that it is no longer
valid.

This is exactly the sort of thing that Java is intended to prevent, and its
defenses against attack applets are strong. They are equally strong against

An Overview of Java and Security 9

the next, still severe, threat of privacy invasion, in which read access rather
than update access is gained. This does not leave you having to reinstall all
your software and reassemble all your business data, but the loss can be
serious enough. In addition to the exposure of business data, if your private
key is compromised, then it can be used to sign electronic payments in your
name.

Because Java has the strongest security for executable content, it has been
seen as a challenge by security specialists, who find both the intellectual
challenge exciting and want to help close any loopholes in Java
implementations. Up to the date of writing, all the reported attack applets
were developed by such specialists, not by malicious or criminal attackers.

There are another couple of, much less severe, threats against which Java
does not have strong defenses. The very essence of Java is that a program
from a server will come down and run on your client with little, if any,
intervention from you. What if the program is not one you want to run... If it is
stealing your cycles?

The most extreme form of cycle stealing is a denial of service attack. The
applet can use so much of the client's machine time that it cannot perform its
normal function. This is the Java equivalent of flooding a company with mail
or with telephone calls; like those nuisances it cannot readily be prevented —
all you can do is find out who is responsible and take action after the event.

Less extreme examples of cycle stealing are the irksome, nuisance, applets.
These run unhelpful programs intended to show how clever the author is and
embarrass the owner of the client machine. They can even pretend to be you
(psyche stealing?), for example by sending e-mail that appears to come from
you.

1.3.4 Writing Secure Java

Valuable Java code is likely to need to communicate with the server it came
from, and to do so securely. All sensitive communication over the Internet
needs proper cryptographic protection. From JDK 1.1 onwards, Java provides
general purpose APIs for cryptographic functions, collectively known as the
Java Cryptography Architecture (JCA) and Java Cryptography Extension
(JCE). Java 2 significantly extends the Java Cryptography Architecture. The
set of the Java core classes (which are the Java classes shipped with the
Java platform?®) can be divided into two subsets:

e Security related core classes

e Other core classes
3 In this book, the Java 2 Platform, Standard Edition, V1.2 (J2SE) is often referred to as Java platform or Java 2 platform.

10 Java 2 Network Security

The Security related core classes in Java 2 can be further subdivided as:
« Access control and permissions related core classes

< Cryptography related core classes

Of these, only the cryptography related core classes form a part of the JCA.
In addition to these, all classes in JCE 1.2 form part of the JCA.

Some cryptographic functions are seen as being dangerous in the wrong
hands. No government wants to provide organized crime, or terrorist groups,
with a cheap effective way of communicating that the police cannot decrypt.
Exactly how to prevent this is not so clear, so there are many different export
and import rules for cryptographic products. The cryptographic interfaces are
divided into two parts, JCA and JCE, which reflect the divide between
exportable and unexportable cryptography. We discuss this in more detail in
Chapter 13, “Cryptography in Java 2" on page 475.

1.3.5 Staying One Jump Ahead

To get ahead, the owners of a client or a Web site need to develop an overall
security policy of which Java is a part, and implement it with care. They need
to use the latest information on what is known about Java security. This is
bound to change; realistically, Java is so young that it cannot be otherwise.

So how do they find the very latest information? Two key sources are the
CERT Coordination Center, which is on the Web at http://www.cert.org/ and
Sun Microsystems'’s list of frequently asked questions about applet security at
http://java.javasoft.com/sfaq. This gets you ahead. Staying ahead means that
the security policy should include regular checks of these sites, and regular
reviews of which are the right sites to check.*

Another part of staying ahead involves balancing security with stability. If an
implementation error is discovered in the browser you use, and you see on
the Web sites a description of the problem together with news of a new beta
version of the browser to fix the problem, do you change to the new beta at
once? Systems managers are traditionally very cautious about beta code:
they want to see a lot of testing before they put it live on their production
systems. This caution is one of the most important causes of the very high
availability levels of modern systems, so systems managers are not about to
change.

Traditionally, a change to include new function is forced to wait until it passes
thorough testing, while a security change may be allowed through with less

4 See also the list of the Java security Web sites in Appendix D, “Sources of Information about Java Security” on page
651.

An Overview of Java and Security 11

testing. It's a business decision, and it's worth including guidance in the
security policy. The only way in which Java is different from all other areas of
security, where similar business decisions must be made, is that news of a
loophole can be spread worldwide extremely quickly, so the presumption
should be that security fixes must go on quickly.

1.3.6 The Vigilant Web Site

The cure for abuse is proper use, not non-use. Executable content has such a
great value to computer systems and to computer business that we need to
do it properly, not to ban it.

Proper use of Java involves vigilance on everybody’s part, including:

 Vigilance on the part of the systems administrators who need to be sure
that they can trust their sources

« Vigilance on the part of the network administrators who need to protect
against network attacks such as the MIM attack

« Vigilance on the part of applet developers who need to be sure that the
tools they are using do not corrupt their class files: their workstations may
not be production machines, but they must be properly protected

There is something of an irony in remarks one sometimes hears about how
Java should be turned off, made by people who are happy to download a
code patch or a driver from a Web site. It is similar to those who are deeply
concerned about sending their credit card information over the Web, but
would willingly hand a credit card to a waiter in a restaurant.

If Java is used with vigilance, then its unique combination of web of trust and
code validation makes it more secure than forms of executable content which
depend on the web of trust alone. And, of course, dramatically more secure
than downloading natively executable code from the Web.

1.4 Understanding Java 2 Security

12

As we already said in 1.1, “Java Is Not Just a Language” on page 3, in most
programming languages it is the application that needs to implement security,
not the language itself. This is not true in Java. Since its inception, Java has
demonstrated that it was built for the net. For this reason, although Java is not
just for applets any more, it looks immediately clear that, unlike other
programming languages and systems, security mechanisms must be an
integral part of Java.

Java 2 Network Security

The history of Java security has been parallel to the main releases of Java:
JDK 1.0, JDK 1.1 and Java 2 SDK, Standard Edition, V1.2°;

1. The JDK 1.0 security model was very strict. Local code was granted
access to all the system resources, while a remote applet was always
considered untrusted, and could be used almost only for cosmetic
functions, like the decoration of a Web page.

2. JDK 1.1 still considered local code as completely trusted, with full access
to all of the system resources. However, JDK 1.1 also offered Java
developers the possibility to apply a digital signature to the code they
wrote. By looking at the digital signature, the user on a client machine
could decide whether a particular remote code was to be considered
trusted or not. If untrusted, that remote code would run in a restricted
environment. If trusted, that code would be considered as a local code,
with full access to all of the system resources. The JDK 1.1 security model
was more attractive, but still presented several limitations. For example,
remote code with a trusted signature was granted full access to all the
system resources, as well as local code. So, even when you wanted to
grant a signed remote code, say, only read access to a particular file in a
particular directory of your system, you had to grant it full read access to
all your files and all your directories. Moreover, that code was
automatically granted the permission to write on your system, install other
code, open a socket, and a lot of other things. This happened without your
intervention or your awareness.

3. The Java 2 security model implements fine-grained access control. You
can now classify the Java code that is to run on your system basing your
judgement on the URL location where that code resides and/or the owners
of the code itself. The owners of the code are identified through their
digital signatures. Multiple signatures for a single piece of code are
allowed in Java 2. Possibilities are now endless. You can say that a piece
of code coming from a particular location and/or signed by particular
signers can only read that file and write in that directory. Other code
coming from another location and/or signed by other entities can open
only a specific socket, while still other code can be classified to have full
access. Moreover, in Java 2, even local code can be subjected to security
restrictions.

In this section we will demonstrate to you that Java is not a threat to security,
provided that your Java system is configured in the correct way. On the
contrary, the security features that are part of the Java programming
language itself can really improve the overall security of your system.

5 In this book, Java 2 SDK, Standard Edition, V1.2 (J2SDK) is sometimes referred to as Java 2 SDK.

An Overview of Java and Security 13

We will show you two simple examples, and we will explain to you the main
concepts that are involved. However, we will not go through all the details,
because this will be done in other sections of the book.

1.4.1 An Example of Applet Security in Java 2

In 1.3.2, “Java as an Aid to Security” on page 8, we introduced an interesting
scenario, where the user on the client machine may wish to print something
from an applet, but does not want the security manager to allow anyone to do
that. On the contrary, the user might grant this right only to especially
trustworthy entities. So this is the sequence of the operations:

1. An applet packaged in a sighed Java Archive (JAR) file is downloaded.

2. The Java Runtime Environment (JRE)6 detects that it has come from a
trustworthy URL location and is signed with the private key of a particular
entity”’.

3. The JRE then verifies that the entity that signed the JAR file is the entity
that owns the accompanying public key certificate and that the contents of
the JAR file have not been tampered with.

4. Finally, the JRE verifies that the entity that signed the JAR file has a
matching certificate in the keystore database. This ensures that the entity
is trustworthy.

1.4.1.1 The Java Code
Let’s consider the following piece of code:

inport java. aw.*;
inport java.aw.event.*;
inport java.applet.*;

public class GetPrintJob extends Applet inplenents ActionListener
{

bool ean p = true;

public GetPrintJob()
{

super () ;
Button b = new Button("get PrintJob");

Figure 1. (Part 1 of 2). GetPrintJob.java Applet Source Code
6 In this book, Java 2 Runtime Environment, Standard Edition, V1.2 (J2RE) is often referred to as Java Runtime

Environment (JRE) 1.2.
7 In Java 2, signatures by multiple entities can be applied on the same JAR file.

14 Java 2 Network Security

add(b, BorderLayout.CENTER ;
b. addAct i onLi stener (this);

}
publ i ¢ voi d acti onPerforned(Acti onEvent evt)
{
try
{
Tool ki t. get Def aul t Tool kit ().getPrintJob(null, "PrintJob", null);
}
cat ch(Exception e)
{
Systemout. println("There was an exception, "+ e.toString());
p=f al se;
}
if (p)
Systemout. println("No exception. Test is successful.");
}
publ i c void pai nt (G aphics g)
{
new Get Print Job();
}

Figure 2. (Part 2 of 2). GetPrintJob.java Applet Source Code

This is the code of an applet that, once downloaded on your system, does
nothing but displays a button. If you push the button, the applet attempts to
get a PrintJob object, which results in initiating a print operation on the
toolkit's platform.

In JDK 1.0, this operation would not have been allowed to a remote applet, by
default considered untrusted. In JDK 1.1, the remote applet should have been
signed and the signature considered as trusted. However, once granted the
permission to access your system resources, that applet could do everything
a local code would be allowed to do, not only print to a printer. The
fine-grained access control implemented by the Java 2 security model gives
you the possibility to grant only the permission to print (since this is the only
permission this applet requires) and only to the code you trust.

The applet above can be invoked by a very simple HTML page, such as the
following one:

An Overview of Java and Security 15

16

<HTM.>
<HEAD>
<TI TLE>Get Pri nt Job Appl et </ TI TLE>
</ HEAD>
<BCDY>
<H3>Get Pri nt Job Appl et </ H3>

<APPLET Code="Get PrintJob" Wdth=250 Hei ght =50>
</ APPLET>

</ BCDY>
</ HTM>

Figure 3. GetPrintJob.html File Invoking the GetPrintJob Applet

The applet source code shown in Figure 1 on page 14 and Figure 2 on page
15 can be compiled by issuing the command:

javac GetPrintJob.java

which translates Java source code into Java bytecode. The resulting file
produced by the Java compiler j avac is GetPrintJob.class.

1.4.1.2 Running the Applet without the Necessary Permission

After saving GetPrintJob.class and GetPrintJob.html in the public directory of
a Web server, having host name wtr05218.itso.ral.ibm.com, we try to access
the HTML file from a client machine using the Java 2 Applet Viewer. The
Applet Viewer is a development tool shipped with the SDK. The applet can be
invoked from a remote machine running Java 2 by entering the following
command:

appl etvi ewer http://wr05218.itso.ral.ibmconi Get PrintJob. ht m

The Applet Viewer window with a getPrintJob button is immediately displayed:

Java 2 Network Security

E%%Applet Yiewer: GetPrintlob !IEI E
Applet

Applet started.

Figure 4. GetPrintJob Applet Running

However, upon clicking on the getPrintJob button, no print operation on the
toolkit's platform will be initiated and you will see a security exception being
displayed on the Command Prompt window from which you launched the
Applet Viewer:

There was an exception, java.security.AccessControl Exception: access denied
(j ava. | ang. Runt i nePer m ssi on queuePrintJob)

The same exception will be displayed every time the button is clicked.

The reason for this exception is that the applet has not been granted any
permissions before being downloaded, so it has to run in a restricted
environment. When its button is pressed and the applet attempts to initiate a
print operation on the toolkit's platform, a security exception is thrown
because the applet is attempting to run out of its restricted environment.

In a JDK 1.1 environment, we would solve this problem by signing the applet
code on the Web server, and recognizing the signer as trusted on the client.
However, this would grant the applet all permissions, not only the specific
permission that the applet needs to print. In a Java 2 environment the
situation is different, since you can limit the permissions the code gets to only
what the code claims it needs. In this case the only security-related operation
the applet needs to perform is to initiate a print operation on the toolkit's
platform. Since the applet resides in the public HTML directory of the Web
server wtr05218.itso.ral.ibm.com, we will grant this permission to all the code
coming from that location. To further limit the security exposure of our
system, we want the remote applet to be signed by a trusted entity, and we
will limit the permission by also looking at the digital signature, so that
another applet coming from the same location will not be granted the same
permission unless signed by the same trusted entity. The sequence of
operations to get this is explained in the following sections.

An Overview of Java and Security 17

1.4.1.3 Packing the Applet Class in a JAR File
First of all, we sign the code of the GetPrintJob applet on the server machine.

To do this, the applet file must be packed in the JAR format, through the
command:

jar cvf GetPrintJob.jar GetPrintJob.class

The command above must be launched on the same directory where the file
GetPrintJob.class resides and it automatically creates the JAR file
GetPrintJob.jar, which includes a compressed version of the original class
file. If you examine the contents of GetPrintJob.jar (on Windows systems this
can be done even with the WinZip utility), you will see that it contains also a
file called MANIFEST.MF. This is a text file containing general information
about the files that have been packed in the JAR file. The file MANIFEST.MF
is often called the manifest file.

1.4.1.4 Creating a Keystore and a Signer’s Key Pair

We also need to generate a key pair (a public key and associated private
key). With Java 2, this can be done using the Java 2 keyt ool command line
utility with the option - genkey, which generates a key pair and wraps the public
key into an X.509 V1 self-signed certificate. The details are shown in the
following session screen:

C\>keyt ool -genkey

Enter keystore password: Paolina

Wat is your first and last nane?

Marco Fistoi a

Wat is the nane of your organizational unit?
1TSO

Wat is the nane of your organization?

| BM Qor por at i on

Wat is the nane of your dty or Locality?

CGry

Wat is the nane of your Sate or Province?

North Carolina

Wat is the two-letter country code for this unit?
s

Is <ON=Mrrco Pistoia, QX TSQ GIBMQrporation, L=Cary, ST=North Garolina, GUS> correct?

Enter key password for <nykey>
(RETUN i f sane as keystore password): Centonze

18

The process we have just described creates a public and private key pair and
associates the public key with the certificate of the signer, whose alias by
default is mykey. The private key and the certificate are stored in a flat
keystore file called .keystore, located in the user home directory. A keystore is
a database of private keys and their associate X.509 certificate chains

Java 2 Network Security

authenticating the corresponding public keys. The public information in the
default implementation of a keystore file is stored unencrypted; however, a
keystore password is necessary for the user to verify in the future that the
keystore file has not been tampered with. The private key is
password-protected.

1.4.1.5 Signing the Code

Once the keystore has been generated, and a certificate has been created for
the signer, the JAR file can be signed using the private key of the signer. This
is done by launching the Java 2 command line tool j arsi gner against the JAR
file, as shown in the following session:

D\ WWHIM.> arsi gner Get PrintJob.jar nykey
Enter Passphrase for keystore: Paolina
Enter key password for nykey: Centonze

D\ WWHIM>

The j arsi gner utility temporarily opens the JAR file, adds the information
related to the signature, and packs the JAR file again. At the end of this
process, you will see in the D:\WWW\HTML directory that the GetPrintJob.jar
file has changed and its size has become larger. Notice that a signed JAR file
in Java 2 still has the .jar extension. The j arsi gner utility does not add a .sig
extension to the .jar extension of the JAR file, as it happened with the JDK 1.1
j avakey command line tool.

At this point, the HTML file invoking the applet must be modified to point to
the JAR file GetPrintJob.jar. We open the file GetPrintJob.html, shown in
Figure 3 on page 16, and we modify the <APPLET>tag in the following way:

<APPLET Archive="GetPrintJob.jar" Code="GetPrintJob" Wdth=250 Hei ght =50>

Then we save the resulting file as GetPrintJobJAR.html.

1.4.1.6 Exporting the Signer’s Certificate on the Server

Notice that, on the client machine, the signer of the code must be considered
a trusted entity. For this reason, on the server machine, we export the signer’s
certificate into a file, called marcoCer.cer. This is done using again the

keyt ool command with the -export option, as shown in the following session:

An Overview of Java and Security 19

20

C\A\WNNN\ Profil es\pi stoi a. 000>keyt ool -export -alias nykey -file nmarcoCer. cer
Enter keystore password: Paolina
Gertificate stored in file <narcoCer. cer>

C\WNNN Profil es\ pi st oi a. 000>

1.4.1.7 Importing the Signer’s Certificate on the Client

The file marcoCer.cer must be copied on the client machine and then
imported into the local keystore as a trusted certificate. Of course, a local
keystore must have been previously created. The -inport option of the

keyt ool command is used to import a certificate. The following session shows
that we import the certificate giving to the owner of the certificate the alias
marcokey.

C\WNNN Profil es\pistoi a. 000>keytool -inport -alias narcokey -file narcoCer. cer

Enter keystore password: np3101r
Onner: ON=Marco Pistoia, QKX TSQ OIBVMQorporation, L=Cary, ST=North Carolina,
cus
Issuer: ON=Marco Ristoia, QX TSQ Ol BMorporation, L=Cary, ST=North Carolina,
CGUus

Seria nunber: 36f3206e
Valid from Fri Mr 19 23:13:34 EST 1999 until: Fri Jun 18 00: 13: 34 EDT 1999
Gertificate fingerprints:

Mb: 60: CA F2: DL: 4E CL: D1: AD Br: 37: 68: 2B A5: 9C 33: 64

SHAL: FC @B F5: 30: 75: 0A 21: 6E F6: 21: 9C 17: C3: FD A3: 53: Ad: E3: 45: 5C
Trust this certificate? [no]: vyes
Certificate was added to keystore

C\WNNN Profil es\ pi stoi a. 000>
N /

The keyt ool option in this case asks only for the password of the local
keystore. Since the private key was never exported out of the server machine,
it is not even imported in the client machine, and no password is required to
protect the private key. As you can see from the screen above, the keyt ool
command shows the particulars of the certificate to be imported, and then,
before actually importing it, it asks for further confirmation that the certificate
is to be considered trusted.

1.4.1.8 Modifying the Security Policy on the Client System

Now the Java security system needs to be informed that code signed by the
signer marcokey and residing in the HTML public directory of the Web server
wtr05218.itso.ral.ibm.com must be granted permission to initiate a print
operation on the toolkit's platform. The security policy of the Java system is
configured in a text file called a policy file. By default, after a typical

Java 2 Network Security

installation of the Java 2 SDK, Standard Edition, V1.2.x, the policy file that
affects the Applet Viewer security comes in the directory
drive:\jdk1.2.x\jre\lib\security (in our system, drive is D) and is called
java.policy. Rather than manually editing this file, with the risks of generating
security exposures by doing syntax mistakes, it is convenient to use a new
utility available with the Java 2 platform, the Policy Tool, that is launched from
the command line by entering the command pol i cyt ool .

When the Policy Tool window is brought up, you have to select the policy file
you want to configure (this can be done by clicking on Open from the File
menu) and the keystore where the signer’s certificates reside (click on
Change KeyStore from the Edit menu). The following figure shows the Policy
Tool window we used on the client machine:

E;g Policy Tool =] B3

File Edit

Policy File: | Dojdk . 2jrellibsecuritdjava. policy
keystore: file: i AIMMTIProfilesipistoia 0008 keystore

Add Palicy Entry Edit Policy Entry Remaove Faolicy Entry

CodeBase "file:$java. home}lliblax-"
CodeBase =ALL=

Figure 5. Opening the java.policy File with the Policy Tool on the Client Machine

What we need to do now is to grant permission to initiate a print operation on
the toolkit's platform to all the code signed by marcokey and residing in the
URL http://wtr05218.itso.ral.ibm.com/. To do this, we click on Add Policy
Entry and the Policy Entry panel is displayed. Here we type
http://wr05218.itso.ral.ibmconi* in the CodeBase field and nar cokey in the
SignedBy field, as shown next:

An Overview of Java and Security 21

Policy Entry E3

CodeBase: | hitpdiwtrds21 8.tso.ralibm.coms™

SignedBy: marcokey

Add Permission Edit Permissian §'ﬁ'é"r;ﬁ'ﬁ{r'émﬁ'é?'r'”'r'i'i'gé'i'aﬁ“é

Cone | Cancel |

Figure 6. Policy Entry Panel

The wildcard character * is necessary when JAR files in the specified
directory need to receive the privileges. Without that character, only class
files would receive the specified permissions.

This way we are granting particular security privileges to all the JAR files
stored in the public HTML directory of the Web server
wtr05218.itso.ral.ibm.com and signed by marcokey.

Then we click on Add Permission, and the permission dialog appears:

22 Java 2 Network Security

Permizszions

Add Mew Permission:

Target Mame:

-
-
-

Actions:

Signed By

ﬁl Cancel |

Figure 7. Permission Dialog

The specific permission we need in this case is a RuntimePermission, and
the target is queuePrintJob. After selecting these items from the Permission
and Target Name menus, the Permission dialog appears as follows:

Permissions

Add Mew Permission:

RuntimePermission java.lang.RuntimePermission

gueuePrintJob gqueuePrintlob

-
-
-

Signed By:

&l Cancel |

Figure 8. Selecting the Appropriate Values in the Permission Dialog Panel Fields

After pressing OK, we see that the Policy Entry panel has registered the new
permission:

An Overview of Java and Security 23

24

Policy Entry

CodeBase:

SignedBy;

hitpefhatr0521 8 itso ral ibm.camf®

marcokey

Add Permission | Edit Permission

Remaove Permission

ang.Runtimerer h"guedeFrintdob";

Dane | Cancel |

Figure 9. New Permission Registered in the Policy Entry Dialog

Then we click on Done, and in the Policy Tool window we see that the new
policy entry has been registered:

Java 2 Network Security

Eg‘,% Policy Tool M=] E3

File Edit

Policy File: | Dajdk? 2 redliblsecuribdjava. policy
keystore: filez:ANIMMTIProfilesipistoia 000 keystore

Add Palicy Entry Edit Palicy Entry Femaove Folicy Entry

CodeBase "file:$java homeMlibfext-"
CodeBase =ALL=
CodeBase "hitpSiwtr0s21 8itsoralibm.coms™, SignedBy "marcokey”

Figure 10. New Policy Entry Registered in the Policy Tool Window

Before closing the Policy Tool, it is necessary to save this configuration, by
selecting the Save item from the File menu. Upon opening with a text editor
the java.policy file in the directory D:\jdk1.2.x\jre\lib\security, we would see
that the following entry has been generated:

grant signedBy "narcokey", codeBase "http://wr05218.itso.ral.ibmcom*" {
pernissi on java. | ang. Runti nePer mi ssi on " queuePri nt Job";

h

1.4.1.9 Running the Applet with the Necessary Permission
At this point, we can run the GetPrintJob signed applet by entering the
following command on the command line:

appl etvi ewer http://wr05218.itso.ral.ibmconi GetPrintJobJAR ht

An Applet Viewer window very similar to the one shown in Figure 4 on page
17 is brought up. However, this time the applet is signed and the combination
of the signer and the URL where the applet resides have been granted the
permission to initiate a print operation on the toolkit's platform. For this
reason, when the getPrintJob button is pressed, the following Print window
will be displayed:

An Overview of Java and Security 25

Print K B3 |
— Prinker
Propertie=s |

M arne: WWATHERTOCAWEM 24P5 2

Status Feady
Type: Bk Metwark Printer 24
“Where: IBEM24FP52

Commett: [Frint tofile
— Print range — Copiez
Lo | Mumber of copies: 1 -

€ Bages [ru:-m:l i)
£ Selection Iﬂ [Callate
ITI Cancel |

Figure 11. Print Window Opened by the GetPrintJob Applet

No security exceptions are thrown this time. According to the Java code
shown in Figure 1 on page 14 and Figure 2 on page 15, the Command
Prompt window registers the following message:

No exception. Test is successful.

However, if the same applet had attempted to read or write a file from the
local file system, or open a socket connection, a security exception would
have been thrown, because such permissions were not granted to this code.

1.4.2 An Example of Application Security in Java 2

The example of remote code downloading described in 1.4.1, “An Example of
Applet Security in Java 2" on page 14 can give you an idea of the reason why
the new Java security model adds a security layer to the basic security of your
system. Moreover, as you can see, no particular programming efforts are
required to use it, since security is part of Java.

Another example that we want to show you in this chapter relates to Java
application security. As we have discussed in Point 1 and Point 2 on page 13,
in previous versions of Java, the security model granted full permissions to all

26 Java 2 Network Security

the local code. In other words, a Java application launched from the
command line was not subjected to any security restrictions. In Java 2, even
applications can be subjected to the security policy of the local system.

A practical use of this restriction would be if you receive the bytecode of a
Java application on a diskette or CD-ROM in the mail, or you get it from a
remote site through the FTP protocol, and then you want to run it on your
system. As far as you know, this application only has to initiate a print
operation on the toolkit’s platform, since this is what the application developer
claims. However, you cannot be completely sure, since you did not have the
opportunity to read the source code of the application. So it is possible that
the application you are going to run on your system has some hidden agenda,
and while it opens a pretty Print screen as the one shown in Figure 11 on
page 26, it also attempts to read a file from your local file system, open a
socket connection to a remote machine and send the contents of that file to a
remote host. The file could contain sensitive information that you are not
willing to share with other people. The application could write files on your
system, install software you do not want, throw in a virus, or perform other
terrible operations. For this reason, you do not want this application to be
granted full permissions on your system.

The new Java security model offers you a way to limit the freedom of a Java
local application installed on your system. The exact limits on the
application’s freedom depend as usual on the location of the application on
your file system and/or the digital signatures that have been applied on the
code.

1.4.2.1 The Java Code

Let's consider the following Java code, obtained by transforming the
GetPrintJob applet, shown in Figure 1 on page 14 and Figure 2 on page 15,
in the GetPrintJob Java application:

inport java.aw.*;
inport java.aw.event.*;

class GetPrintJob extends Frane inpl ements ActionLi stener

{

bool ean p = true;

Get Pri nt Job()
{

Figure 12. (Part 1 of 2). GetPrintJob.java Application Source Code

An Overview of Java and Security 27

}

super ("Tool kit.getPrintJob() test case");
set S ze(300, 100);

set Locati on(200, 200);

Button b = new Button("get PrintJob");
add(b, BorderLayout. CENTER) ;

b. addAct i onLi st ener (t hi s);

show() ;

publ i ¢ voi d acti onPerforned(Acti onEvent evt)

{

}

try
{
Tool ki t. get Def aul t Tool kit ().getPrintJob(null, "PrintJob", null);

}

cat ch(Exception e)

{
Systemout. println("There was an exception, "+ e.toString());
p=f al se;

}

if (p)
Systemout. println("No exception. Test is successful.");

public static void main(String[] args)

{
}

new Get Print Job();

Figure 13. (Part 2 of 2). GetPrintJob.java Application Source Code

28

What this application does is similar to what we have seen with the applet,
except that it runs locally. Once run, it displays a button, and each time you
press the button, it attempts to get a PrintJob object, which results in initiating
a print operation on the toolkit’s platform. This operation would have been
allowed in JDK 1.0 and 1.1, since local applications were granted full access
permissions on the underlying operating system.

In Java 2, according to the new security model, a security manager is not
automatically installed when an application is running. In other words, an
application has by default full access to resources, as was always the case in

Java 2 Network Security

JDK 1.0 and 1.1. However, by specifying a special parameter on the
command line, -0 ava. security. nanager, you can invoke a security manager,
and in this case the application would be subjected to the same security
restrictions as a remote applet that has been downloaded on your system.

The Java source code shown above is compiled and transformed in Java
bytecode through the Java compiler j avac:

javac GetPrintJob.java

1.4.2.2 Running the Application without a Security Manager
The file produced after launching the above j avac command is
GetPrintJob.class and the application can be launched by entering:

java GetPrintJob

from the same directory where GetPrintJob.class resides. After launching the
command above, the following graphical button is displayed:

Eﬁf’i T oolkit_getPrintJob[] test case M=l E

netPrintdob

Figure 14. getPrintJob Button Displayed by the GetPrintJob Application

On pressing the getPrintJob button, you see that the application works
correctly: a Print window similar to the one shown in Figure 11 on page 26 is
brought up, and the Command Prompt window from which you launched the
application displays the following message:

No exception. Test is successful.

The reason for this is that a local application is by default not subjected to any
restrictions, and is allowed full access to system resources. A security
manager is not automatically installed when an application is running.

1.4.2.3 Running the Application without the Necessary Permission
To apply the same security policy to an application found on the local file
system as to downloaded applets, you can invoke the interpreter with the new
-D ava. security. nanager command line argument.

To execute the GetPrintJob application with the default security manager,
type the following:

An Overview of Java and Security 29

30

java -Dava. security. manager Get PrintJob

The application window this time displays a Warning yellow bar on the
bottom, to remind you that the application is running under a security
manager:

E%Tuulkit.getl’rint.luh[] test caze

getPrintloh

IW”arning: Applet \Window

Figure 15. Executing the GetPrintJob Application with the Default Security Manager

However, on clicking on the getPrintJob button, you would see that the
application does not work as expected: the Print window is not brought up
and the Command Prompt window from which you launched the application
registers the following security exception:

There was an exception, java.security.AccessControl Exception: access denied
(j ava. | ang. Runt i nePer mi ssi on queuePrintJob)

The reason for this message is that the application is now running under the
default security manager of the Java platform, and the security manager
detects that the application does not have the proper permissions. This is a
new feature implemented in the Java 2 security model, which was not
implemented in the previous versions of Java, where local applications were
automatically granted full permissions without the possibility to restrict their
access to the system resources.

In order to run correctly, this application needs the permission to initiate a
print operation on the toolkit's platform. The following sections show the steps
to do this.

1.4.2.4 Packing the Application Class in a JAR File

First of all, the application class file GetPrintJob.class must be packed in a
JAR file, called for instance GetPrintJob.jar. This could be done as explained
in 1.4.1.3, “Packing the Applet Class in a JAR File” on page 18, by entering
the command:

jar cvf GetPrintJob.jar GetPrintJob.class

However, the command above is not enough to produce a JAR file that could
be run using the j ava command. In fact, when the j ava command runs against

Java 2 Network Security

a JAR file, it needs to know the main class file contained in the JAR file itself.
To do this, we create a text file called for example MainClass.txt, which
contains the following line:

Miai n-d ass: Get PrintJob

It is important that, when you edit this file, you hit Enter at the end of the line,
so that an invisible end-of-line character is added at the end of this line and
an empty new line is created.

After this, you can create the JAR file GetPrintJob.jar by using the j ar
command. However, this time, you should use the moption of the jar
command and specify the file MainClass.txt on the command line, as follows:

jar cvfmGetPrintJob.jar Mindass.txt GetPrintJob.class

The moption forces the jar command to take into account the contents of the
file MainClass.txt while producing the manifest file. So this time the file
MANIFEST.MF of the GetPrintJob.jar file will contain the line:

Mai n-d ass: Get PrintJob

This way the j ava command will know that GetPrintJob.class is the main Java
class file that has to be run.

1.4.2.5 Code Signing

As we have explained, restricting access to local code makes particular
sense in all the cases where we have received the bytecode of an application
from a not completely trusted source and we have to run it on our system. In
this example, we assume that the application has been written, compiled and
signed on a machine called wtr05218.itso.ral.ibm.com, and then it has to run
on a different machine, say wtr05366.itso.ral.ibm.com.

To sign the JAR file on wtr05218, we assume that we have already created
the keystore file .keystore in the user home directory and that this file
contains a key pair for the signer (see 1.4.1.4, “Creating a Keystore and a
Signer’s Key Pair” on page 18).

The signature on the JAR file is applied through the j ar si gner command line
tool, as explained in 1.4.1.5, “Signing the Code” on page 19.

The signer’s certificate must be exported to a file on the machine wtr05218
(see 1.4.1.6, “Exporting the Signer’s Certificate on the Server” on page 19),
the file must be transferred to the machine wtr05366, for example using a
diskette or via FTP, and then the certificate must be imported in the local

An Overview of Java and Security 31

keystore as a trusted certificate (see 1.4.1.7, “Importing the Signer’s
Certificate on the Client” on page 20).

1.4.2.6 Modifying the Security Policy

After saving the GetPrintJob.jar signed JAR file in the local directory
D:\itso\ch01 of the machine wtr05366, the Java security system running on
this machine must be informed that all the code signed by the signer
marcokey and residing in the local directory D:\itso\chO1 must be granted
permission to initiate a print operation on the toolkit's platform. If you do not
modify the policy file properly, you will not be able to run the application
correctly with the default security manager, because a security exception
would be thrown.

The policy file configuration can be performed in a way very similar to the one
we have shown in 1.4.1.8, “Modifying the Security Policy on the Client
System” on page 20. The main difference now is that the system policy file
that by default applies to Java applications, which is still called java.policy, is
located in the directory drive:\Program Files\JavaSoft\JRE\1.2\lib\security.
The Policy Tool can be used to modify this policy file:

Eﬁg Policy Tool H=] B3

File Edit

Falicy File: D:IPrngram Files\ avaSoftREV . 2ikisecuritjava.policy
keystore: filedCANIMMTIProfilesipistoia. 000 keystare

Add Policy Entry Edit Policy Entry Rermaove Folicy Entry

CodeBase "file:$java. home¥libiext-"
CodeBase =ALL=
CodeBase "file D fitsafch01™, SignedBy "marcokey”

Figure 16. Policy Tool Window

This entry is automatically registered in the policy file after the Policy Tool
configuration:

32 Java 2 Network Security

grant signedBy "narcokey", codeBase “file:/D/itso/ch0l/*" {
perm ssi on j ava. |l ang. Runti nePer nmi ssi on " queuePrint Job";

h

1.4.2.7 Running the Application with the Necessary Permission
The java command can be launched against a JAR file, provided that the -j ar
option is specified. After granting the code signed by marcokey and residing
in the local directory D:\itso\ch01 permission to perform a print operation on
the toolkit's platform, we launch the command:

javac -0 ava. security. nanager -jar GetPrintJob.jar

A button is shown similar to the one in Figure 15 on page 30. This time, the
print operation can be performed. In fact, as soon as we click on the
getPrintJob button, the Print window is brought up (see Figure 11 on page
26) and the Command Prompt window from which we launched the
GetPrintJob application registers the following message:

No exception. Test is successful.

However, if the same application had attempted to read or write a file from the
local file system, open a socket connection or perform another sensitive
operation, a security exception would have been thrown, because such
permissions were not granted to this code.

1.5 Summary

In this first chapter we have explained some basic concepts of Java and
security and introduced the new Java 2 security model. We have also shown
some basic examples to give you a better understanding of how Java can add
a further security layer to the underlying operating system, without requiring
particular programming efforts.

Although, in this first chapter, we did not explain all the details about the
operations we performed and the underlying Java security architecture, you
can rest assured that in the next chapters all these concepts will be explained
in great detail.

An Overview of Java and Security 33

34 Java 2 Network Security

Chapter 2. Attack and Defense

Many claims have been made for the security of Java. An underlying fact
supporting such claims is that security was designed-in at an early stage in
the development of the language. Saying that Java has strong security is like
challenging the world to find the holes in it, which is exactly what has
happened. Some very clever (and very devious) people have been applying
their brain-power to the problem of breaking down the Java defenses.

In this chapter we give a high-level view of Java’s built-in security features
and then summarize the different ways in which it can be attacked.

2.1 Components of Java

For the reasons we have explained in 1.1, “Java Is Not Just a Language” on
page 3, it is not surprising that Java has become so widely accepted, so
quickly. Before we look at the security issues, let us review some Java
fundamentals.

There are a number of different components to Java:
1. Development environment

The Java 2 SDK contains the tools and executable code needed to
compile and test Java programs. However, unlike a normal language, the
Java 2 SDK includes object frameworks for creating graphical user
interfaces, for networking and for complex 1/0. Normally, in other
programming languages, these things are provided as additions, either by
the operating system or by another software package. Of course,
fully-featured development environments do exist for Java, but the core
language includes a lot of what they would normally have to provide.

2. Execution environment

Java’s execution environment is neither that of a compiled language nor an
interpreted language. Instead it is a hybrid, implemented by the Java
Virtual Machine (JVM). Java is often said to be platform-independent, but
first the JVM must be ported to each platform to provide the environment it
needs. The JVM implementation is responsible for all of the built-in
security of Java, so it is important that it is done properly.

The JVM is a subset of the Java Runtime Environment (JRE). JRE is the
Java platform on which you can run, test and ship your own applications. It
consists of the JVM, the Java platform core classes, and supporting files.
It contains no development tools: no compiler, debugger, or other tools.

© Copyright IBM Corp. 1997 1999 35

3. Interfaces and architectures

Java applications live in the real world. This means that they must be able
to interact with non-Java applications. Some of these interactions are very
simple (such as the way that a Java applet is invoked in a Web page).
Others are the subject of more complex architectural definitions, such as
the JDBC interface for relational database support. The mechanism for
adding encryption to Java security, the Java Cryptography Architecture
(JCA), falls into this latter category.

We will examine these components in the next three sections.

2.1.1 The Development Environment

36

Once you have installed the Java 2 SDK, you can start creating Java source
code and compiling it. Java is like any other high-level programming
language, in that you write the source code in an English-like form. The
source code then has to be converted into a form that the machine can
understand before it can be executed. To perform this conversion for a normal
language, the code is usually either compiled (converted once and stored as
machine code) or interpreted (converted and executed at run time).

Java combines these two approaches. The source code has to be compiled
with a Java compiler, such as j avac, before it can be used. This is a
conventional compilation. However, the output that j avac produces is not
machine-specific code, but instead is bytecode, a system-independent
format. We will take a closer look at how bytecode is constructed in 5.5, “Java
Bytecode” on page 136.

In order to execute, the compiled code has to be processed by an interpreter,
which is part of the Java execution environment known as the JVM. The JVM
is a run-time platform, providing a number of built-in system services, such as
thread support, memory management and /O, in addition to the interpreter.

2.1.1.1 Class Consciousness

Java is an object-oriented language, meaning that a program is composed of
a number of object classes, each containing data and methods. One result of
this is that, although a program may consist of just a single class, when you
have compiled it into bytecode, only a small proportion of the code that gets
executed is likely to be in the resulting class file. The rest of the function will
be in other classes that the main program references. The JVM uses dynamic
linking to load these classes as they are needed. As an example, consider the
simple applet contained in the following Java source file:

Java 2 Network Security

inport java.awt . Border Layout;

inport java.aw.event. ActionEvent;
inport java.aw.event. ActionLi stener;
inport janjar.exanpl es.Button;

public class PointlessButton extends java. appl et. Appl et
i npl enent s j ava. awt . event . Acti onLi st ener

{
Button donowt = new Button("Do Nothing");

int count = O;

/**

* The button was clicked.

*/
publ i c void actionPerforned(java. awt . event. Acti onEvent e)
{
donowt . set Label ("D d Nothing " + ++count + " tine" + (count ==1 ? "" : "s"));
}
public void init()
{
set Layout (new Bor der Layout ()) ;
this.add("Center", donow);
donowt . addAct i onLi st ener (this);
}

Figure 17. PointlessButton.java

If the PointlessButton.java file was placed, say, in the C:\itso\ch02 directory,
then the following Java source file, Button.java, should be placed in the
C:\itso\ch02\jamjar\examples directory:

package j anj ar. exanpl es;

inport java.aw. ol or;
inport java.aw.event.MuseEvent;
inport java.aw.event.Museli stener;

/**

* This class was generated by a Srart Qui de.
*/

Figure 18. (Part 1 of 2). Button.java

Attack and Defense 37

public class Button extends java.awt.Button inpl enents MuseLi st ener

{

/**

* @aramtitle java.lang. Sring

*/
public Button(String title)
{
super (title);
addMouseli st ener (thi s);
set Backgr ound(Gol or. white);
}
/**

* Set the color of the button to red when the nouse enters
*/
publ i ¢ voi d mouseEnt er ed(MbuseEvent)

set Backgr ound(Col or. yel | ow) ;

/**

* Reset the color of the button to white when the nouse exits

*/
publ i ¢ voi d mouseExi t ed(MouseEvent)
{
set Backgr ound(Gol or. white);
}
/**

* Three do not hi ng net hods.
* Needed to inplenent the Muselistener interface
*/

publ i ¢ voi d moused i cked(MuseEvent e) {}

publ i ¢ voi d mousePr essed(MuseEvent €) {}

publ i ¢ voi d mouseRel eased(MuseEvent e) {}

Figure 19. (Part 2 of 2). Button.java

The first listing, PointlessButton.java (see Figure 17 on page 37) is an applet
that simply places a button on the Web page. Instead of using the standard
AWT Button class, it uses a class of our own, also called Button (see Figure
18 on page 37 and Figure 19 on page 38), but available in a locally-written
package. This works like a normal button, except that it changes color when

38 Java 2 Network Security

you move the mouse pointer over it and registers how many times you clicked
on it.

From the directory C:\itso\ch02, you should compile these files, by issuing the
following command:
javac Pointl essButton.java

Next, we show you the listing of an HTML file that includes two copies of the
PointlessButton applet in the Web page:

<HTM_>
<HEAD>
<Tl TLE>Poi nt| ess Button</ Tl TLE>
</ HEAD>

<BCDY>
<CENTER><H2>Poi nt | ess But t on</ H2>
<H>>

<APPLET GCode="Poi nt| essButton. cl ass" Wdt h=200 Hei ght =50>
<H4>Thi s area contai ns a Java appl et, but your browser is not Java-enabl ed</ H4>
</ APPLET>

<APPLET Gode="Poi nt| essButton. cl ass" Wdt h=200 Hei ght =50>
<H4>Thi s area contai ns a Java appl et, but your browser is not Java-enabl ed</ H4>
</ APPLET>
</ BCDY>
</ HTM>

Figure 20. PointlessButton.html|

The HTML file above is saved in the same directory where the Java class file
PointlessButton.class resides.

You can load the PointlessButton.html file in your Web browser by pointing
your browser to the URL where the HTML file resides. Figure 21 on page 40
shows the two copies of the applet running in the Web page:

Attack and Defense 39

40

Puointless Button - Metscape

File Edit Yiew Go Communicator Help
<« » A B - =+ & i N
Back Fonweard Reload Home Search Metzcape Print Securiby Stop
wthuokmalks dt‘- Lucation:lhttp:.-’.-’wtlDEZI 8 itzo.ral.ibm. com/PointlessButton. html j
ﬁlnstanth’le%age Internet ['_‘i Loakup ['_‘i MewtCool

Pointless Button

Do Mothing Did Mothing 4 times

@ == | &pplet PointiessButkon mnning

Figure 21. Running the pointlessButton Applet

The total size of the bytecode for this example is only 2 KB. However, the two
classes cause a lot of other code to be dynamically installed, either as a
result of inheritance (defined by the ext ends keyword in the class definition) or
by instantiation (when a class creates an instance of another class with the
newkeyword). Figure 22 on page 41 shows the hierarchy of classes that could
potentially be loaded to run our simple applet. Notice that this is a simplified
view, because it does not consider classes that may be invoked by classes
above the lowest level of the hierarchy:

Java 2 Network Security

» Uses
_______________________________________ .
: Extends
> \ L
. ! , Package
S D | ' __J Boundary

Component EventObject

Container

Button

String PointlessButton

Figure 22. Classes Loaded for the PointlessButton Applet

This diagram illustrates a number of things about Java classes:

1. The classes are arranged in packages, which are collections of related
classes. The language defines a large number of these, which have to be
implemented by every JVM implementation. You can add your own class
packages by defining new classes that inherit from one of the basic
classes. In our example, all but two of the classes are provided as
standard. Normally, Java class loaders impose a direct relationship
between a package name and the location of the directory in which it
expects to find the class files for the package. So, in our example, the
classes contained in the jamjar.examples package will be found in
directory ${codeBase}/jamjar/examples (codeBase is the base directory
on thle server from which the applet is loaded, specified in the <APPLET>
tag).

1 In fact we are guilty of using an improper name construction here. If your package will be used together with packages
from other sources, you should follow the naming standard laid down in the Java Language Specification, Gosling, Joy
and Steele. In our case this would lead to a package name something like com.ibm.jamjar.examples. If you want to know
more about the Java language specification, refer to http://java.sun.com/docs/books/jls/.

Attack and Defense 41

42

2. Classes are defined as extending existing classes. This means that they
can inherit the properties (variables and methods) of the higher (or super)
class. They can also selectively override the properties of the super class.
They also add new properties of their own.

3. Java identifies classes using the fully-qualified class name, that is, the
combination of the package name and the class name. This allows you to
have duplicated class names, such as our two Button classes. If two
classes in different packages do have duplicate names, the programmer
must take care to use the right one. Two things that help with this are:

« Importing classes by name, instead of importing the whole package

* Placing the desired classes at the start of the class path

2.1.1.2 Access to Classes, Fields and Methods
Java provides mechanisms for limiting access to classes, fields and methods.

A class or interface may be declared public, in which case it may be
accessed, using a qualified name, by any Java code that can access the
package in which it is declared. A class or interface that is not declared public
may be accessed only from the package in which it is declared.

A field, method, or constructor of a class may be declared using at most one
of the public, private, or protect ed keywords:

« A public member may be accessed by any Java code.

* A private member may be accessed only from within the class that
contains its declaration.

« A protected member of an object may be accessed only by the code
responsible for the implementation of that object. To be precise, a
protected member may be accessed from anywhere in the package in
which it is declared and, in addition, it may be accessed from within any
declaration of a subclass of the class type that contains its declaration.

« A member that is not declared public, protected, or private is said to have
default access and may be accessed from, and only from, anywhere in the
package in which it is declared.

Notice that every field or method of an interface must be public. Every
member of a public interface is implicitly public, whether or not the keyword
publ i c appears in its declaration. If an interface is not public, then every one
of its fields and methods must be explicitly declared public.

Java 2 Network Security

There are security implications when using these keywords to limit access to
classes, fields and methods. We will see them in 7.4, “Avoiding Security
Hazards” on page 204.

2.1.1.3 Visual Application Builders and Java Beans

Java is unusual in the breadth of function that its built-in class frameworks
provide; however, for a project of any complexity you are likely to employ
graphical tools, such as a visual application builder (VAB) to link together
predefined components, thereby reducing the code you have to write to the
core logic of the application. Examples of VABs include IBM VisualAge for
Java, Lotus BeanMachine, NetObjects BeanBuilder and Sun Microsystems’
JavaBeans Development Kit (BDK).

A componentin this context is a package of Java classes that perform a given
function. The JavaBeans definition describes a standard for components,
known as beans. Basically a bean is a package of code containing both
development and run-time components that:

« Allows a builder tool to analyze how it works (introspection)
e Allows a builder tool to customize its appearance and behavior

e Supports events, a simple communication metaphor than can be used to
connect beans

e Supports properties, or settable attributes, used both when developing an
application and programmatically when the application is running

e Supports persistence, so that a bean can be customized in an application
builder and then have its customized state saved away and reloaded later

« Provides interfaces to other component architectures, such as ActiveX and
LiveConnect

From this list you can infer that, although a bean is mostly made up of Java
classes, it can also include other files, containing persistent information and
other resources such as graphical elements, etc. These elements are all
packed (or pickled) together in a Java Archive (JAR) file.

From a security viewpoint, VABs and beans do not affect the underlying
strengths and weaknesses of Java. However, they may add more uncertainty,
in that your application now includes sizeable chunks of code that you did not
directly write. Their ability to provide interfaces to other component
architectures may also cause problems, as we discuss in 2.1.3, “Interfaces
and Architectures” on page 50.

Attack and Defense 43

2.1.1.4 Java 2 SDK Security Tools
The Java 2 development environment also contains a set of tools for
managing the security features of the new Java platform:

* The Policy Tool creates and modifies the external policy configuration files
that define your installation's security policy.

e The jar command line utility is used to create Java archives.

e The keyt ool utility creates key pairs and self-signed X.509 V1 certificates,
and manages keystores. Keys and certificates are used to digitally sign
your applications and applets. A keystore is a protected database that
holds keys and certificates.

e The jarsi gner command line tool signs JAR files, and verifies the
signature(s) of signed JAR files. It accesses the keystore when it needs to
find a key to sign a JAR file.

Notice that keyt ool and j arsi gner replace j avakey, which in Java Development
Kit (JDK) 1.1 was the command line tool used to apply a digital signature to a
JAR file.

We already saw a brief introduction on how to use the new security tools in
1.4, “Understanding Java 2 Security” on page 12. We will read more about
these tools in detail in Chapter 9, “Java 2 SDK Security Tools” on page 259.

2.1.2 The Execution Environment

44

We have said that the JVM operates on the stream of bytecode as an
interpreter. This means that it processes bytecode while the program is
running and converts it to real machine code that it executes on the fly. You
can think of a computer program as being like a railroad track, with the train
representing the execution point at any given time. In the case of an
interpreted program it is as if this train has a machine mounted on it, which
builds the track immediately in front of the train and tears it up behind. It's no
way to run a railroad.

Fortunately, in the case of Java, the JVM is not interpreting high-level
language instructions, but bytecode. This is really machine code, written for
the JVM instruction set, so the interpreter has much less analysis to do,
resulting in execution times that are very fast. The JVM often uses just-in-time
(JIT) compiler techniques to allow programs to execute faster, for example, by
translating bytecode into optimized local code once and subsequently running
it directly. Advances in JIT technology are making Java run faster all the time.
IBM is one of many organizations exploring the technology.

Java 2 Network Security

Before the JVM can start this interpretation process, it has to do a number of
things to set up the environment in which the program will run. This is the
point at which the built-in security of Java is implemented. There are three
parts to the process:

1. The first component of code checking is the class loader. This separates
the classes it loads to avoid attack. Java built-in classes, specified in the
boot class path (also known as system class path or JVM class path), are
separated from extension classes, specified in the extension class path,
and from other application classes, specified in the user or application
class path variable. An extension is a group of Java packages that
implement an API extending the Java platform, such as JavaServlet,
Java3D, JavaManagement, etc. The search order is Java built-in classes
first, extension classes and then application classes last. So, if, by
accident or design, any application code contains a class of the same
name as a built-in or extension class, the built-in or extension class will not
be overwritten by the application code.

2. The second component is the class file verifier. This runs when the code is
loaded, and confirms that the bytecode program is legal Java code and
obeys the rules of the language. It is a multipass process which begins by
making sure that the syntax is valid, checks for stack overflow or
underflow, and runs a theorem prover that looks to see that access and
type restrictions are observed.

3. The third component is the security manager, which checks sensitive
accesses at run time. This is the component that enforces the security
policy defined for the system and will not allow Java code illicit access to
the file system, or to the network, or to the run-time operating system.

The Execution process can be summarized as shown in the following figure:

Attack and Defense 45

Class
Loader

Class
Load File

Classes Verifier

Check Class
Files for
Integrity

Security
Manager

Packages &
Classes from
System classpath

Enforce Restrictions
and Fine Grained
Access Control

Extension classpath
Application classpath

Figure 23. Execution Process

2.1.2.1 The Class Loader
Before the JVM can run a Java program, it needs to locate and load the
classes which comprise that program into memory.

In a traditional execution environment, this service is provided by the
operating system which loads code from the file system in a platform-specific
way. The operating system has access to all of the low level I/O functions and
has a set of locations on the file system that it searches for programs or
shared code libraries. Depending on the operating system, this can be a list
of directories to look in using environment variables, such as Path and
CLASSPATH.

In the JRE things can get a little more complicated by the fact that not all
class files are loaded from the same type of location and may not be under
the local operating system’s control to ensure integrity. The class loading
mechanism plays a critical role in Java security since the class loader is
responsible for locating and fetching the class files, consulting the security
policy, and defining the class object with the appropriate permissions.

So how do classes get loaded? We answer this question taking as an
example the PointlessButton applet, whose code is shown in Figure 17 on
page 37. When the browser finds the <APPLET>tag in the HTML page (see
Figure 20 on page 39), it starts the JVM which, in turn, invokes the applet
class loader. This is, itself, a Java class which contains the code for fetching
the bytecode of the applet and presenting it to the JVM in an executable form.
The bytecode includes a list of referenced classes and the JVM works
through the list, checks to see if the class is already loaded and attempts to
load it if not. It first tries to load from the local disk, using a platform-specific

46 Java 2 Network Security

function provided by the browser. In our example, this is the way that all of the
core Java classes are loaded. If the class name is not found on the local disk,
the JVM again tries to retrieve the class by searching for it in the extension
class path. If this also fails, the JVM tries to retrieve the class from the Web
server, as in the case of the jamjar.examples.Button class (see Figure 18 on
page 37 and Figure 19 on page 38).

2.1.2.2 Where Class Loaders Come From

The class loader is just another Java class, albeit one with a very specific
function. An application can declare any number of class loaders, each of
which could be targeted at specific class types. The same is not true of an
applet. The security manager prevents an applet from creating its own class
loader. Clearly, if an applet can somehow circumvent this limitation, it can
subvert the class loading process and potentially take over the whole browser
machine.

The JVM keeps track of which class loader was responsible for loading any
particular class. It also keeps classes loaded by different applets separate
from each other.

You can create a specific class loader for your own application, if you wish to
do so. Java 2 has simplified the development process by creating a subclass
of ClassLoader, called SecureClassLoader. The distinguishing feature of
SecureClassLoader is that it associates a sandbox for each class that it
loads, which determines what accesses and rights the class can exercise in
the client system. We will explain more details on this in 3.5, “Java 2 Class
Loading Mechanism” on page 89 and 6.1, “Class Loaders” on page 145.

2.1.2.3 The Class File Verifier

At first sight, the job of the class file verifier may appear to be redundant.
After all, isn’t bytecode only generated by the Java compiler? So, if it is not
correctly formatted and valid, surely the compiler needs to be fixed, rather
than having to go through the overhead of checking each time a program is
run.

Java divides the world into two parts, since it considers the Java core classes
shipped as part of the JVM and installed on the local system as trusted, and
therefore not subject to verification prior to execution. Sometimes other
classes on the local disk are considered trusted as well — detailed
implementation varies between vendors. Everything else is untrusted and
therefore must be checked by the class file verifier. As we have seen, these
are also the classes that the applet class loader is responsible for fetching.

Attack and Defense 47

48

The class loading process in the example of the PointlessButton applet is
illustrated in the next figure:

Built-In Loader
for Local, Trusted
Classes

JVM
Attempts
Class Load

p
Applet Class Loader
Gets Classes from
URLs

Class File
Verifier

Figure 24. Where the Class File Verifier Fits

You can already see that, for an applet, the class loader and the class file
verifier need to operate as a team, if they are to succeed in their task of
making sure that only valid, safe code is executed.

From a security point of view the accuracy of the job done by the class file
verifier is critical. There are a large number of possible bytecode programs,
and the class file verifier has the job of determining the subset of them that
are safe to run, by testing against a set of rules. There is a further subset of
these verifiable programs: programs that are the result of compiling a legal
Java program. Figure 25 on page 49 illustrates this. The rules in the class file
verifier should aim to make the verifiable set as near as possible to the set of
Java programs. This limits the scope for an attacker to create bytecode that
subverts the safety features in Java and the protection of the security
manager.

Java 2 Network Security

Bytecode programs
that are valid, but
cannot be verified

Figure 25. Decisions the Class File Verifier Has to Make

We will look in detail at how the class file verifier works in 6.2, “The Class File
Verifier” on page 168.

2.1.2.4 The Security Manager

The third component involved in loading and running a Java program is the
security manager. This is similar to the class loader in that it is a Java class
(java.lang.SecurityManager) that any application can extend for its own
purpose.

The verified code is further subjected to run-time restrictions. The security
manager is responsible for enforcing these restrictions. Any flaw in the coding
of the security manager, or any failure by the core classes to invoke it, could
compromise the ability to run untrusted code securely.

Prior to Java 2, SecurityManager was an abstract class and a concrete
implementation had to be provided by the application manufacturer as part of
the application. Although any application could implement SecurityManager,
it was most commonly found when executing an applet, that is, within a Web
browser. The security manager built into your browser was wholly responsible
for enforcing the sandbox restrictions: the set of rules that controlled what
things an applet was allowed to do on your browser machine.

In Java 2, SecurityManager has been modified: now it is not abstract, and can
be instantiated or subclassed. The manufacturer now has an alternative. He
can choose to use the policy-based security manager implementation

Attack and Defense 49

2.1.3

provided with the Java 2 platform and supply policy information to be added
to the policy database. The manufacturer can still provide his own security
manager, if he so chooses, adding to or replacing function supplied by the
Java 2 SecurityManager. More details on this can be found in 3.5.1,
“Run-Time Access Controls” on page 91 and in Chapter 7, “The Java 2
SecurityManager” on page 187.

Interfaces and Architectures

We have discussed two parts of the world of Java, the development
environment and the execution environment. The third part is where the world
of Java meets the rest of the world, that is, the capabilities it provides for
extending Java functions and integrating with applications of other types. The
simplest example is the way that a Java applet is created and integrated into
a Web page by writing the program as a subclass of the Applet class and then
specifying the class name in an <APPLET> HTML tag. In return, Java provides
classes such as URL and a number of methods for accessing a Web server.

2.1.3.1 Don’t Go Native! Seek Purity!

Another simple way to extend Java is by the use of native methods. These are
sections of code written in some other, less exciting, language which provides
access to native system interfaces. For example, imagine an organization
with a helpdesk application which provides a C API for creating new problem
records. You may well want to use this so that your new Java application can
perform self-diagnosis and automatically report any faults it finds. One way to
do so is to create a native method to interpret between Java and the helpdesk
application’s API. This provides simple extensibility, but at the cost of
portability and flexibility, because:

* The native method has to be compiled for a specific system platform.

¢ It must be pre-installed and cannot be installed dynamically like a Java
applet.

The Java purist will deprecate this kind of application. In fact, although the
quest for 100% Pure Java® sounds like an academic exercise, there are a
number of real-world advantages to only using well-defined, architected
interfaces, not the least of which is that the security aspects have presumably
already been considered.

2.1.3.2 Some of the Roads to Purity

As projects using Java have matured from being interesting exercises in
technology into mission-critical applications, so the need has arisen for more
complex interactions with the outside world. The Java applet gives a very

2 See http://www.javasoft.com/100percent/.

50

Java 2 Network Security

effective way to deliver client function without having to install and maintain
code on every client. However, the application you create this way still needs
access to data and function contained in existing legacy systems.

—— Legacy Systems

Legacy seems to be the current word-of-the-month to describe any
computer system that does not fit the brave new architecture under
discussion. It is an unfortunate choice, in that it implies a system that is
outdated or inadequate. You may have a state-of-the-art relational
database that is critical to the running of your business, but to the
Web-based application that depends on the data it contains, it is still a
legacy system.

With JDK 1.1, JavaSoft introduced a number of new interfaces and
architectures for this kind of integration, which have been enhanced on the
Java 2 platform. The objective is to enable applications to be written in 100%
Pure Java, while still delivering the links to the outside world that real
requirements demand.

Some of the more notable interfaces of this kind are:
« JavaBeans

As we discussed above, the JavaBeans technology not only provides
easier application development, but also provides integration with other
distributed object architectures. From a security point of view this
capability opens a back door which an attacker could exploit. The Java
security manager provides strict and granular controls over what a Java
program may do. But these controls are dependent on the integrity of the
JVM and in particular the trusted classes it provides. A Java applet might
not be able to meddle with the trusted classes directly, but a Bean can
provide linkage to a different type of executable content, with less stringent
controls. This could be used to corrupt the JVM trusted classes, thereby
allowing an attack applet to take over.

* Remote Method Invocation

Remote Method Invocation (RMI) allows a Java class running on one
system to execute the methods of another class on a second system. This
kind of remote function call processing allows you to create powerful
distributed applications with a minimal overhead. For example, an applet
running on a browser system could invoke a server-side function without
having to execute a CGI program or provide its own sockets-based
protocol.

Attack and Defense 51

52

The security concerns for RMI are, in general, similar to the CGI case. For
example, consider a Java application that accesses a database of
personal information, consisting of a server-side application
communicating with a client applet. When writing the application, the
programmers will naturally assume that the only code involved is what
they write. However, the Java code that initiates the connection does not
have to be their friendly applet, it could be the work of a cracker. The
server application must be very careful to check the validity of any
requests it gets and not rely on client-side validation.

RMI has several new enhancements on the Java 2 platform. Remote
object activation introduces support for persistent references to remote
objects and automatic object activation by using these references. Custom
socket factories allow a remote object to specify the protocol that RMI will
use for remote calls to that object. RMI over a secure transport — such as
Secure Sockets Layer (SSL) — can be supported using custom socket
factories. Minor APl enhancements allow unexporting a remote object,
obtaining the stub for an object implementation, and exporting an object
on a specific port. We will read more about RMI in 14.6, “Distributed
Object Architectures — RMI” on page 537 and 15.7, “Remote Method
Invocation” on page 599.

Object Request Brokers

RMI provides a way to remotely execute Java code. However, for many
years the O-O world has been trying to achieve a more generic form of
remote execution. That is, a facility that allows a program to access the
properties and methods of a remote object, regardless of the language in
which it is implemented or the platform on which it runs. The facility that
provides the ability to find and operate on remote objects is called object
request broker (ORB). One of the most widely-accepted standards for
ORBs is the Common Object Request Broker Architecture (CORBA), and
packages are becoming available that provide a CORBA-compatible
interface for Java. Figure 26 on page 53 illustrates the relationship
between a Java application or applet and a remote object. Clearly, in an
implementation of this kind the Java program relies on the security of the
request brokers. It is the responsibility of the ORB and the inter-ORB
communications to authenticate the endpoints and apply access control.
The official standard for inter-ORB communications is the Internet
Inter-ORB Protocol (IIOP).

Java 2 Network Security

Local Host Remote Host

Java VM

Java Application
or Applet

Other Object
Implementation

@)

by

o
_\/Y
K_

@)

Py

Y

Figure 26. Interacting with an ORB

« JDBC

JDBC ought to stand for Java Database Connectivity, but actually it is a
name in its own right. JDBC is an API for executing SQL statements from
Java. Most relational databases implement the Open Database
Connectivity (ODBC) API, originated by Microsoft. JBDC thoughtfully
includes an ODBC bridge, thereby giving it instant usefulness. From a
security point of view, there are some concerns. You should beware of
giving access to more data than you intended. For example, imagine an
applet which invokes JDBC on the Web server to extract information from
a database. It is important that the server application is written to allow
only the SQL requests expected from the applet, and not the more
revealing requests that an attacker could make.

2.2 Java 2 and Cryptography

The interfaces that we have briefly described in 2.1.3, “Interfaces and
Architectures” on page 50, illustrate a big issue in Java. In the real world we
need to extend the security model to allow more powerful applications and
interfaces.
The security model needs to answer questions such as the following:

* Where did this piece of Java code come from?

« What type of things should the code be allowed to do?

 |f someone appears to be using an applet | provide, how can | find out who
they are?

Attack and Defense 53

« How can | protect the confidentiality of the data my Java application is
handling?

The answers to questions of this kind lie in cryptography. The Java 2 platform
significantly enhances the Java Cryptography Architecture (JCA), that was
introduced in JDK 1.1 to define the way that cryptographic tools are made
available to Java code.

From a security point of view, the set of security core classes shipped with the
Java 2 SDK, Standard Edition, V1.2.x can be divided into two subsets:

e Access control and permissions related core classes

« Cryptography related core classes

In the Java 2 platform, the JCA framework is formed by the cryptography
related core classes shipped with the Java 2 SDK, Standard Edition, V1.2.
Support for encryption is provided by an extension package, called Java
Cryptography Extension (JCE) 1.2. Details on cryptography can be found in
Chapter 13, “Cryptography in Java 2” on page 475.

2.2.1 Cryptographic Tools in Brief

54

The derivation of the word cryptography is from Greek and means literally
secret writing. Modern cryptography is still involved in keeping data secret,
but the ability to authenticate a user (and hence apply some kind of access
control) is even more important.

Although there are many cryptographic techniques and protocols, they mostly
fall into one of three categories:

2.2.1.1 Bulk Encryption

This is the modern equivalent of secret writing. A bulk encryption algorithm
uses a key to scramble (or encrypt) data for transmission or storage. It can
then only be unscrambled (or decrypted) using the same key. Bulk encryption
is so called because it is effective for securing large chunks of data. Some
common algorithms are Data Encryption Standard (DES), Data Encryption
Algorithm (DEA) and RC4. This is also called the symmetric encryption.

2.2.1.2 Public Key Encryption

This is also a technique for securing data but instead of using a single key for
encryption and decryption, it uses two related keys, called public key and
private key, which together form what is known as a key pair. As the word
suggests, public keys are made available to everyone, but each entity that
holds a key pair should keep the private key as secret. If data is encrypted

Java 2 Network Security

using one of the keys, it can only be decrypted using the other, and vice
versa.

Public key encryption is a form of asymmetric encryption, because the key
that is used to encrypt is different from the key used to decrypt. With this
technology, the sender in a secure communication can use the receiver’s
public key to encrypt the data, because at that point in time only the receiver
can decrypt the data, by using its own private key.

Notice that the public and the private keys are bound by a well known
mathematical relationship, so that having one of the two keys it would be
theoretically possible to obtain the other one. However, especially when the
size of the building block of the keys is very long (for instance, 512 bits), the
computational effort required makes the probability of breaking a key very
small.

Compared to bulk encryption, public key encryption is more secure, because
it does not require the transmission of a shared key that both the parties must
hold. However, public key encryption is computationally expensive and is
therefore not suited to large amounts of data. For this reason the most
common solution, implemented for example in the SSL protocaol, is for the two
parties (sender and receiver) to use public key encryption to agree on and
share a common key. After the common key has been shared using
asymmetric encryption, so that only the two parties really know it, then bulk
encryption is used. Notice that a common key is shared only for the time of a
single connection. After a secure connection is closed, a new connection
requires that the two parties agree on a new shared key.

The most commonly-used algorithm for public key encryption is the Rivest,
Shamir and Adleman (RSA) system.

2.2.1.3 Hashing

A secure hash is an algorithm that takes a stream of data and creates a
fixed-length digest of it. This digest is a fingerprint for the data. A digest has
two main properties:

1. If even one single bit of data is changed, then the message digest
changes as well. Notice, however, there is a very remote probability that
two different arbitrary messages can have the same fingerprint.

2. Even if someone was able to intercept transmitted data and its fingerprint,
that person would not be practically able to modify the original data so that
the resulting data has the same digest as the original one.

Attack and Defense 55

Hashing functions are often found in the context of digital signatures. This is a
method for authenticating the source of a message, formed by encrypting a
hash of the source data. Public key encryption is used to create the signature,
so it effectively ties the signed data to the owner of the key pair that created
the signature.

2.2.2 Java Cryptography Architecture

56

JCA is described as a provider architecture. The primary principal in the
design of the JCA has been to separate the cryptographic concepts from their
algorithmic implementations. It is designed to allow different vendors to
provide their own implementation of the cryptographic tools and other
administrative functions. This makes a very flexible framework which will
cater for future requirements and allow vendor independence.

The architecture defines a series of classes, called engine classes, that are
representations of general cryptographic functions. So, for example, there are
several different standards for digital signatures, which differ in their detailed
implementation but which, at a high level, are very similar. For this reason, a
single engine class, java.security.Signature, has been created that represents
all of the variations in a digital signature. The actual implementation of the
different signature algorithms is done by a provider class which may be
offered by a number of vendors.

Provider Classes

Provider Three |
< Provider Two |

| Provider One |
-
G

Algorithm A |
\
< Algorithm B T »
< MessageDigest

Engine Classes

User Code

S/
j

by

Figure 27. Provider and Engine Classes

Java 2 Network Security

The provider architecture has the virtue of offering a standard interface to the
programmer who wants to use a cryptographic function, while at the same
time having the flexibility to handle different underlying standards and
protocols. The providers may be added either statically or dynamically.

Support for the management of keys and access control lists was not in the
initial release of JDK 1.1, but has been provided in Java 2 SDK, Standard
Edition, V1.2. Currently, Sun Microsystems’ version of the JRE comes
standard with a default provider, named SUN. Other Java Runtime
Environments (JRES) may not necessarily supply the SUN provider. The SUN
provider includes an implementation of the following algorithms:

« Digital Signature Algorithm (DSA)
 SHA3-1 and MD5* message digest algorithms

« SHA1PRNG pseudo-random number generation algorithm

Moreover, the SUN provider implements a DSA key factory, a certificate
factory for X.509 certificates and certificate revocation list (CRLs), and a
keystore implementation for the proprietary keystore type named Java
Keystore (JKS).

2.2.3 United States Export Rules for Encryption

Unfortunately, only a subset of the cryptographic possibilities are
implemented in Java 2 SDK, Standard Edition, V1.2. It includes all of the
engine classes needed for digital signatures, plus a provider package, but
nothing for bulk or public key encryption. The reason for this is the restrictions
placed by the United States government on the export of cryptographic
technology.

The National Security Agency (NSA) is responsible for monitoring
communications between the United States and the rest of the world, aiming
to intercept such things as the messages of unfriendly governments and
organized crime. Clearly, it is not a good thing for such people to have access
to unbreakable encryption, so the United States government sets limits on the
strength of cipher that a United States company can export for commercial
purposes.

3 Secure Hash Algorithm (SHA) is a government-standardized algorithm that is used to construct a message
authentication code that detects attempts to modify data while in transit.
4 MDS5 is the standard name for the RSA-MD5 Message Digest algorithm.

Attack and Defense 57

— Cipher Strength

Cipher strength is controlled by the size of the key used in the encryption
algorithm. Current export rules limit the key size for bulk encryption to 40
bits, which can now be cracked in a matter of hours with quite modest
computing facilities. Each extra bit doubles the key space, so a key size of
64 bits is 16 million times tougher than 40 bits. A similar rule applies to
public key encryption, where an export-quality 512-bit modulus is
inadequate, but a 1024-bit modulus is expected to remain effective for the
next ten years, at least for commercial use.

This applies to any software that can be used for general purpose encryption.
So, the SUN provider package that comes with Java 2 SDK, Standard Edition,
V1.2 can include the full-strength RSA public key algorithm, but it can only be
used as part of a digital signature process and not for general encryption.

Finally, in 1996, the United States government relaxed the export rules. The
promise is that any strength of encryption may be exported, so long as it
provides a technique for key recovery, that is, a way for the NSA to retrieve
the encryption key if they need to break the code.

The JavaSoft response to the current restrictions was to define two, related,
packages for cryptography in Java. The exportable part of JCA is the one that
contains the tools for signatures and is implemented in Java 2 SDK, Standard
Edition, V1.2. The not-for-export part is the Java Cryptography Extension
(JCE) 1.2, which includes the general purpose encryption capabilities. JCE
1.2 is a standard extension to the Java 2 platform. It supplements the
cryptographic services defined in the Java 2 SDK by adding support for
ciphers, key agreement, and message authentication codes (MACs). The
eventual aim is to develop a full strength, exportable cryptographic toolkit.

The default provider that comes with JCE 1.2 is called SunJCE. We will see
more details about JCE in 13.4, “Java Cryptography Extension” on page 493.

2.2.4 Signed Code

58

Using JCA, it is possible for a Java application or applet to create its own
digital signatures. Now you can write more sophisticated programs, because
the Java 2 security implementation allows you to let an applet do something
that the sandbox permissions normally would forbid. In this case, the
browser’s user needs to be convinced that the applet is from a trustworthy
source and belongs to a trusted entity.

Java 2 Network Security

The signature on an applet links the code to the programmer or administrator
who created or packaged it. However, the user has to be able to check that
the signature is valid. The signer enables this by providing a public key
certificate.

2.2.5 The Other Side of the Coin — Access Control

When you receive an applet that has been digitally signed, you know where it
comes from and who is the owner of the code, and you can make a judgment
of whether or not it is trustworthy. Next, you want to exercise some access
control.

For example, consider an applet that wants to use your hard disk to store
some configuration information. You probably have no objection to it doing so,
but that does not mean that you are happy for it to overwrite any file on the
system. This is the difference between a binary trust model (/ trust you, do
what you like or | don't trust you, don’t do anything) and a fine-grained trust
model (Tell me what you want to do and I'll decide whether | trust you or not).

The security model implemented in JDK 1.1 was binary, while Java 2 offers
the implementation of a fine-grained trust model, as we have already
introduced in 1.4, “Understanding Java 2 Security” on page 12.

2.3 Attacking the World of Java

In general, security considerations have a low priority early in the software
lifecycle. This makes Java very unusual, in that security has been an
important consideration from the very beginning. No doubt, this is because
the environment to which the infant language has been exposed in its
formative years is a cruel and unforgiving one: the Internet. In this section we
take a cracker’s-eye view. What opportunities do we have to abuse a remote
Java code, to make it do our dastardly deeds for us?

2.3.1 Perils in the Life of Remote Code

The remote Java code that runs in your Web browser has had an unusually
long and interesting life history. Along the way it has passed through a
number of phases, each of which is in some way vulnerable to attack. Figure
28 on page 60 illustrates the points of peril in the life of an applet:

Attack and Defense 59

Java
Virtual
Machine

MEEESNTW
Y

Figure 28. Perils in the Life of an Applet

Let us look at the points of vulnerability in some detail:

60 Java 2 Network Security

1. You may think that all of the programmers you know are angels, but there
is no way to tell if really there is a devil inside. In the case of remote Java
code, you are another step away from the person who wrote the code. So,
when you buy a software product from a well-known company, you can be
fairly sure that the contents of the shrink-wrap will not do you any harm
(but even this is not 100% true, as we will see in the story of the JAR bug,
described in 12.6, “The JAR Bug — Fixed In Java 2 SDK, Standard Edition,
V1.2.1” on page 461). When you receive any code from the Internet you
have to be wary of where it really comes from. In the case of a Java applet,
the risk is in some ways worse, because you may not even be conscious
that you have received the program at all. We will show some examples of
the kind of things that a hostile applet can do in 7.3.2, “Malicious Applets”
on page 195.

2. The Java compiler, j avac, takes source code and compiles it into class files
(in bytecode format) that can be executed by the JVM. It is quite common
for a developer to have multiple versions of j avac on his or her computer.
For example, the Java 2 SDK for various system platforms is available for
download from the JavaSoft Web site http://www.javasoft.com and other
computer manufacturers. The Java compiler j avac is also provided as part
of many application development tools. Very often, a developer will have a
current and one or more beta versions installed. It is also very common
that developers have old versions installed too, especially when they are
programming for platforms (such as Web browsers or Web servers) that
have not picked up the current version of Java yet.

Normally you expect that the bytecode generated by a compiler would
reflect the source code you feed in. However, a compiler can easily be
hacked so that it adds its own, nefarious, functions. Even worse, a
compiler could produce bytecode output that cannot be a translation of
normal Java source code. This would be a way to introduce code to exploit
some frailty of the Java code verification process, for example.

Although a hacked compiler is the most obvious example of a
compromised programming tool, the same concern also applies to other
parts of the programmer’s arsenal, such as editors, development toolkits
and pre-built components.

Attack and Defense 61

62

3.

—— Can Applet Developers Trust Their Tools?

Naturally, you want to be at the leading edge of development, using the
latest and greatest tools for your Java development. However, this
enthusiasm needs to be moderated by some caution. You must make
sure that the tools you use come from a reputable source. You should
also report any odd behavior to the manufacturer. It is probably only a
bug, but it could be the manifestation of a hacker’s work.

If an attacker can get update access to the class files, those files can be
replaced by malicious code, which could then attack the system in harmful
or annoying ways, for example, by modifying business data or by
displaying rude messages. One obvious point of attack is where the class
files are stored on the Web server. If an attacker can get update access to
the directory they are in, they can be corrupted. Java class files should
therefore be protected in much the same way as CGI programs, for
example. Some basic principles for protection are:

« Don't allow update permissions for the user ID that the Web server
runs under. Many successful attacks on Web servers rely on finding
holes in the logic or implementation of CGI programs and tricking them
into executing arbitrary commands.

« Make sure that the server has been properly hardened to reduce the
risk of someone gaining access beyond the normal Web connection.
You should remove unwanted network services and user IDs, enforce
password restrictions and limit access using firewall controls. You
should also make sure that you have the fixes for the latest security
advisories installed.

One side-effect of Java’s portability is that a webmaster can get remote
code from any number of different sources. The code could just generate
some entertaining animation or cool dialogs. Alternatively it could be a
fully-fledged application, containing thousands of lines of source code.

Any code you import in this way should be treated with suspicion. This
raises a moral question: how responsible should you feel if your Web site
somehow damages a client connecting to it, even if you are not ultimately
responsible for the content that caused the damage? Most reasonable
people will agree that there is a duty of care which should be balanced
against your desire to build the world’s most dynamic and attractive Web
site. Indeed it would be a good idea to check whether your agreements
with others mean that you have a formal /egal duty of care. You do not
want a thoughtlessly included applet to result in your being sued.

Java 2 Network Security

—— Why Webmasters Should Check Their Sources

So, you are the administrator of a Web site and you want to include
some applet code from somewhere else. You want to be sure that the
applet is safe, but how can you check it?

For simple applets you should try to get the code in source form, so that
you can inspect it and compile it yourself. This means that you need to
understand the Java language. Your job already requires you to have a
superhuman knowledge of computer systems and the Web; adding Java
to your knowledge base must be a trivial matter for a person of such
skill.

In fact the problem is not so great as it first appears. It is much easier to
read a computer program and understand what it is doing than to write it
in the first place. In 7.3.2, “Malicious Applets” on page 195, we will
discuss some of the things that you should watch for.

Applets that are only provided in compiled form are more of a problem.
Very often they are too large to do a practical visual check and anyway,
if they are commercially-produced, the writer is unlikely to want to share
his coding tricks with the world at large. You can, of course, check the
external behavior, but that gives no clue to what browser holes it may be
probing or background threads it may be spinning. There are tools like
j avap and Mocha which allow you to at least get an idea of what an
applet is doing.

JDK 1.1 introduced signed applets which allow you to check who the
real originator of an applet is and know that it has not been altered on its
way to you. You still have to make a judgment of who to trust, but at
least you are basing the judgment on sound data. With Java 2, the
fine-grained access control mechanism helps you decide what
resources should be accessed by whom and to what extent.

5. The next journey in the life of an applet is when it is loaded into the
browser’'s JVM across the network from the server. Although it could,
potentially, be intercepted in mid-flight and modified, a much more likely
form of attack would involve some type of spoofing. What this means is
that the attacker fools the browser into thinking that it is connecting to
rocksolid.reliable.org, when really the applet is coming from
nogood.badguys.com. The most sophisticated form of spoofing is the Web
spoof, where the attacker acts as a filter for all of the traffic between the
browser and anywhere else, passing most requests straight through, but
intercepting particular requests and modifying them or replacing them with
something more sinister (see Figure 29 on page 64). Note that it does not

Attack and Defense 63

have to be this way around. It is equally possible for a Web spoof to screen
everything going to and from a server, rather than a client system.

The Web

The Web

Unsuspecting User

Figure 29. A Web Spoof

Spoofing is not just a problem for Java applets, of course. Any Web
content can be attacked in this way. With Java this gives the attacker an
opportunity to execute a malicious applet or try to exploit security holes in
the browser environment. However, compared to the risk of downloading
and installing a conventional program in this kind of environment, the risk
is small. In fact, signed applets and servlets (see 14.5.7, “The Current
Servlet Security Model” on page 530) can again help with this problem. An
attacker may be able to substitute subversive class files to attack the
browser, but it is much more difficult to forge the class signature.

64 Java 2 Network Security

—— Why Network Administrators Should Guard against Spoofing —

If you are a network administrator responsible for a site in which
browsers or servers live, how do you protect your network environment
from an attacker that spoofs as a legitimate address? The first thing is to
ensure that your systems and firewalls do not accept any of the common
methods that can induce them to believe that a network node is really
somewhere else. The Internet Control Message Protocol (ICMP)
redirect and Internet Protocol (IP) source route functions are good
examples.

You may also consider that you do not want any of the browsers in your
site to be able to run applets from outside the firewall. A number of
firewall implementations now provide screening for Java in general or for
specific classes.

Refer to Chapter 15., “Java and Firewalls — In and Out of the Net” on
page 557 for more details on firewalls and the relationship between Java
and firewalls.

6. Finally the applet arrives at the browser. Here, class files are loaded and
verified and the JVM goes to work. If the installation is working as
designed, the worst peril that can befall you as a user is that the applet
may annoy you or eat excessive system resources (see 7.3.2, “Malicious
Applets” on page 195). There are two other possible sources of security
vulnerability:

« The JVM, if there are bugs in its implementation
« The browser itself, if a hacked version has been installed unknowingly

Of these two, the first is more likely. There have been a number of
well-publicized security breaches found in the JVM components. The best
description of how these operate can be found in Java Security — Hostile
Applets, Holes, and Antidotes, by Felten and McGraw. The best way to
protect yourself is to make sure you are aware of the latest breaches and
install the fixes as they arrive.

The possibility of installing a browser that has been tampered with is a real
one, although there are considerable practical hurdles for an attacker to
overcome in creating such a thing. If you do as we recommend above and
install the latest fixes, you will inevitably be running a downloaded version
of the browser. There is some small risk that this could be a hacked
version, but no examples of this have yet been detected.

Attack and Defense 65

— Should a Web User Switch Java Off?

The big question that all browser users ask about Java is this: "Should |
allow it to run or not?" In the final analysis, this is a personal decision.
As we have described, there is some peril in allowing Java applets to
run in your system, unless you can be sure of where they have come
from and who is the owner of the code. The Java 2 security model is a
great help in this sense, because it allows you to grant specific
permissions only to specific code. However, you may decide that the
risk of having Java running on your system is too high to take.

If you take this view, you should also review your other Web usage. If
you download any executable program from the Web it is potentially far
more dangerous to the health of your system than any Java applet.

Notice that many companies and software producers are writing
applications that use Java applets for their client component. These are
usually designed for intranet, rather than Internet use, so the likelihood
of attack is presumably much lower.

2.3.2 Vulnerabilities in Java Applications

66

A Java applet is an obvious vehicle to mount an attack from, because it could
install itself uninvited and probe for weaknesses. A Java application, on the
other hand, is a much less obvious threat. There are many ways in which
such an application could be implemented, for example:

« On a Web server using CGI to interface with Web pages or applets

« As a stand-alone application on a server, interfacing with client code using
socket connections

« As a stand-alone application on a server, using remote object request
services (like RMI or CORBA) for communication

To a cracker, the fact that the application is written in Java rather than any
other language is not really important. The strategies that he or she would
use to search for vulnerabilities are the same. For example:

« Many successful attacks rely on driving the application with data that it is
not equipped to handle. In particular, if the application uses a command
line interface, it should be very careful to screen out escape sequences
that an attacker could use to execute arbitrary commands.

« Applications frequently have to give themselves temporary higher
privileges to use system functions or get special access (such as user IDs

Java 2 Network Security

for database control). If an attacker can crash the application at this critical
point, or link to it from another running program, he or she can use the
special privileges illegally.

As we said earlier, vulnerabilities of this kind apply to applications written in
Java the same as any other application programming environment. However,
Java does include safety features that make it harder for an attacker to find a
flaw. These safety features work at two levels:

* Java source

The Java language uses strong type constraints to prevent the
programmer from accessing data in an inconsistent way. You can cast
objects from one type to another, but only if the two classes are related by
inheritance; that is, one must be a superclass of the other. This does not
operate symmetrically, which means you can always cast from a subclass
to its superclass, but not always vice versa. Referring again to Figure 22
on page 41, you could access an instance of the Button class as an
Object, but you could not access a Button as a Panel.

Furthermore, Java prevents you from having direct access to program
memory. In C it is common to use a pointer to locate a variable in memory
and then to manipulate the pointer to process the data in it. This is a
frequent source of coding errors, due to the pointer becoming corrupted or
iterating beyond the end of the data. Java allows a variable to be accessed
only through the methods of the object that contains it, thereby removing
this class of error.

« Bytecode

The JVM is type-aware. In other words, most of the primitive machine
instructions are associated with a particular type. This means that the JVM
also applies the type constraints that the compiler imposes on the Java
source. In fact, this job is split between the class file verifier, which
handles everything that can be statically checked, and the JVM, which
deals with run-time exceptions. Contrast this with other languages, in
which the compiler produces microprocessor machine code. In this case
the program is just handled as a sequence of bytes, with no concept of the
data types that are being represented.

The JVM is also, at a basic level, strongly compartmentalized, mirroring
the object orientation of the Java source. This means that each method in
the code has its own execution stack and only has access to the memory
of the class instance for which it was invoked.

Attack and Defense 67

2.4 Summary

68

In this chapter of the book we gave you an overview of the Java security
architecture. You should now have a general idea of the Java development
environment, the execution process and the relationship between Java and

cryptography.

We also described the most common attacks to Java and the vulnerabilities in
Java applications. We underlined how the final decision to permit Java on
your client is up to you. However, the fine-grained security model
implemented in the Java 2 platform greatly helps system and network
administrators selectively manage security permissions to Java code
downloaded and run on your system. Java 2 adds a further security layer to
the security of the underlying system where your applications are to run.

Java 2 Network Security

Chapter 3. The New Java Security Model

This chapter describes the history of Java security, showing how Java
security evolved from very basic and strict rules to powerful and flexible
capabilities. Java has changed its security architecture according to its three
main releases. For this reason, we show a technical comparison between the
Java security model in JDK 1.0, JDK 1.1 and Java 2.

Moreover this chapter introduces all the main concepts related to the Java
security architecture. The same concepts will be studied in detail in the rest of
the book.

3.1 The Need for Java Security

From its inception, Java has shown that it was designed for the net. Java
brought about, for the first time on a large scale, the concept of dynamic
loading of code from a source outside the system. Though this is very
powerful, and adds several features to the system using it, it is also a grave
security threat. There are several risks associated with loading and running
remote code. The remote code could steal memory, or CPU time; it could
throw in a virus; it could read files on a local system and transmit them to
another machine, etc. It is clear, then, that unlike other programming
languages and systems, security mechanisms must be an integral part of
Java.

Moreover, Java is not just for applets any more. Developers now use Java to
build stand-alone, enterprise-class applications to enable disparate clients,
such as workstations, PCs or Java-based network computers to access
legacy databases and share applications across the network.

Java was designed to offer the following basic security measures:

« Language design features, such as legal type conversions only, no pointer
arithmetic and bounds checking on arrays, provide strong memory
protection.

« A sandbox mechanism controls what a Java program is permitted to do.

« Encryption and digital signatures are used by code owners to attach their
certificate to Java classes. In this way, the end user can ascertain who the
owner of the code is and whether the class file was altered after having
been signed by the owner's certificate.

Java security builds upon three fundamental aspects of the Java Runtime
Environment (JRE):

© Copyright IBM Corp. 1997 1999 69

1. Class loader

The class loader (see 2.1.2.1, “The Class Loader” on page 46 and 2.1.2.2,
“Where Class Loaders Come From” on page 47) determines how and
when Java programs can load codes, and ensures that system-level
components within the run-time environment are not replaced.

2. Class file verifier

The class file verifier (see 2.1.2.3, “The Class File Verifier” on page 47)
ensures proper formatting of downloaded code. It verifies that the
bytecode does not violate the type safety restrictions of the Java Virtual
Machine (JVM), that internal stacks cannot over/underflow, and that the
bytecode instructions will have correctly typed parameters.

3. Security manager

The security manager (see 2.1.2.4, “The Security Manager” on page 49)
performs run-time access controls on attempts to perform file 1/O, network
I/0O, create a new class loader, manipulate threads and thread groups,
start processes on the underlying operating system, terminate the JVM,
load non-Java libraries (native code) into the JVM, perform certain types
of windowing system operations and load certain types of classes into the
JVM. For example, the Java applet sandbox, which severely constrains
downloaded, untrusted applets to a limited set of functions that are
considered to be relatively safe, is a function of the security manager.

Java security functionalities, even if built and designed in the language itself,
have been changing their features over time, and their evolution has been
dependent on the major Java language releases that have been developed
until now: JDK 1.0, JDK 1.1 and Java 2 SDK, Standard Edition, V1.2.

3.2 Evolution of the Java Security Model

The Java programming language is one of the fastest-growing technologies in
use on the Internet today. The principal reason why Java has scored over
other languages is the promise that an application written once in Java can be
run from any machine that has a JVM. From the early stages of Java
development, it was realized that this feature poses the greatest challenge to
Java security because code distribution is risky.

3.2.1 The JDK 1.0 Sandbox Security Model

The entire focus of the initial security model provided by Version 1.0 of the
Java platform (known as the sandbox model) was to treat code downloaded
from a remote location as untrusworthy and provide a restricted environment

70 Java 2 Network Security

(the sandbox) to limit the resources that could be accessed by the alien code.
At the same time local code was considered trustworthy and was allowed full
access to all the system resources, as illustrated in the figure below:

Remote Code

Local Code

Sandbox \

Y
JVM

Resources

Figure 30. JDK 1.0 Sandbox Security Model

This was achieved by using the three components discussed in 3.1, “The
Need for Java Security” on page 69, namely the class loader, the class file
verifier and the security manager. However with the actions of the remote
code constrained to a bare minimum, the Write Once, Run Anywhere benefit
of Java could not be fully exploited.

Remote applets, though a powerful concept, were shackled by having to run
inside a sandbox, and by not being able to perform several operations. They
could not read local files and could not write to the disk. They had absolutely
no access to the system resources. Moreover they could establish a network
connection only with their servicing Web server. This heavily restricted the

use of remote applets for all but cosmetic functions to decorate a Web page.

The New Java Security Model 71

3.2.2 The Concept of Trusted Code in JDK 1.1

72

The next phase of evolution of Java security was based on an effort to
increase the breathing space for remote code at the client location without
compromising the safety of the client. The security architecture in JDK 1.1
introduced the concept of signed remote code. Remote codes, signed by a
trusted entity, were permitted access to several of the system resources that
were off limits for those remote programs without a trusted signature on them,
as shown in the following figure:

Local Code Remote Code
Signed and Unsigned/Signed
trusted by and not trusted
the client by the client
Y Y | Sandbox Y

JVM

Resources

Figure 31. Trusted and Untrusted Code in JDK 1.1

A remote code (a remote applet or servlet, for example) with an appropriate
digital signature was treated with the same respect as local code, and so it
could be considered trusted. An appropriate digital signature was one that
was recognized as trusted by the client.

On the other hand, unsigned remote code or remote code signed with a
digital signature not recognized as trusted by the client, was still confined to
the sandbox.

Java 2 Network Security

Though this opened up interesting possibilities, the system was still rather
crude, with all local Java applications enjoying full access to the system
resources and all remotely loaded code running inside a sandbox, unless
signed by a trusted entity.

3.2.2.1 The jar and javakey Tools

Starting with JDK 1.1, the Java platform has offered the jar command line
tool to pack and deliver remote codes together with their signatures, if any, in
the Java Archive (JAR) format. The JAR file format (which we introduced in
1.4.1.3, “Packing the Applet Class in a JAR File” on page 18) is based on the
ZIP file format and is used for aggregating and compressing many files into
one. Although the j ar utility can be used as a general archiving tool, the
primary motivation for its development was so that Java applets and their
requisite components (class files, images, sounds, etc.) could be downloaded
to a browser in a single HTTP transaction, rather than opening a new
connection for each piece. This greatly improves the speed with which an
applet can be loaded onto a Web page and begin functioning. The JAR
format, like a ZIP format, also supports compression, which reduces the size
of the file and improves download time still further. Additionally, a JAR file
may be digitally signed by the applet authors to authenticate the origin of the
code.

The JAR format is cross-platform, handles audio and image files as well as
class files and is backward-compatible with existing applet code. JAR
consists of a ZIP archive, as defined by PKWARE, containing a manifest file
and potentially signature files (see http://www.pkware.com). The j ar tool is
basically a Java application that combines multiple files into a single JAR file.

JDK 1.1 offered the j avakey tool to sign JAR files.

3.2.2.2 JDK 1.1 Security API

The Java security API was built around the java.security package and its
subpackages java.security.acl and java.security.interfaces. The first release
for Java security, available in JDK 1.1, included primarily cryptography
functions, which could be incorporated into Java-based applications. The
cryptography framework in the Java security APl was designed so that a new
algorithm could be added later on without much difficulty and could be used in
the same fashion as existing algorithms. For example, even if Digital
Signature Algorithm (DSA) was the only built-in algorithm in this release, it
was possible to use software from providers to help generate RSA signatures
and key pairs for encryption.

The New Java Security Model 73

The first release of Java security in JDK 1.1 included APIs for digital
signatures, message digests, key management and access control lists
(ACLs). APIs for data encryption and other functionalities, together with their
implementations, were released separately in the Java Cryptography
Extension (JCE) 1.1 as an add-on package to JDK, in accordance with United
States export control regulations (see 2.2.3, “United States Export Rules for
Encryption” on page 57). The JCE APIs included block and stream cipher,
symmetric and asymmetric encryption and support for multiple modes of
operation and multiple encryption.

3.2.3 The Fine-Grained Access Control of Java 2

74

An obvious handicap with the JDK 1.1 security architecture was no easy way
of achieving fine-grained access control, with all local code enjoying
unrestricted access to all the system resources and all remote code
subjected to sandbox constraints unless signed in a way recognizable to the
client as trusted. By fine-grained access control, we mean the ability to grant
specific permissions to a particular piece of code about accessing specific
resources of the client (say read and write permission on file x, but only read
permissions on file y and no permissions on file z) depending on the signers
of the code and/or the URL location from which the code was loaded. Thus,
existence of a fine-grained access control would allow a user to specify
access permissions on a case-by-case basis rather than a rigid classification
of local code being fully trusted and remote code being untrusted and
restricted to a sandbox, unless signed in a way recognizable to the client as
fully trusted.

The new security architecture developed in Java 2 allows easy fine tuning of
the access controls. The concept of signed code can now be extended to
local code as well. With the new security model, all code, whether remotely
downloaded or local, signed or unsigned, will have access to system
resources based on what is defined in a policy file. This allows the client to
explicitly specify the permissions to be granted to different signatories of code
and different sources. This way the end user can download, install and run
applications from the Web by granting them permissions for only those
actions that are necessary. This will eliminate codes that have a hidden
agenda, such as letting you play a nice game while sending your credit card
information or your password file to a particular server at the same time.

Consider for example the following scenario, based on the JDK 1.1 security
model. You download a little tic-tac-toe program from the Web. It is signed by
an entity you trust, and you are sure that it will not crash your system. For this
reason, you accept to run it. Nonetheless, this code reads your address book,
and sends all the e-mail addresses you have to the database of the nearest

Java 2 Network Security

junk mailer. Though not very malicious, this is something we all would like to
avoid. This is a very likely situation, since more and more software is just
being brought off the net, and this trend is likely to continue for a long time.
This might lead to fly-by-night software vendors, some of whom might come
up with very innovative software, but some of whom you cannot really trust.
With JDK 1.1, you do not have an option to restrict access to code to do only
certain things. You either install the software, or you make do without it.

However, if you are running Java 2-enabled software, you can instruct the
JVM, through modifications in a policy file, that code loaded from a particular
URL (local or remote) and/or signed by a particular entity is restricted to
specific local resources. For example, you may specify in the policy file that
the code in question may read files in one particular directory and can do
nothing else — cannot open sockets, cannot write or delete any files, etc. This
is the fine-grained control mechanism offered by Java 2. For more on this, see
1.4, “Understanding Java 2 Security” on page 12.

In versions of Java prior to Java 2, the JVM resource access was enforced by
the sandbox security model, which was a function of the security manager.
Extensions were usually limited to features implemented by the platform
providers such as Web browsers and Web servers. When using Java 2, you
can have full control over what each of your programs and applications is
permitted to do — this was never possible until now. Similarly, you can now
define the exact things an applet coming from a particular URL can do, or
what any programs (applets, applications, servlets) signed by one or more
particular entities can do. Further, in multi-user systems, the system
administrator can define a default system policy, and each of the users of the
system can have their own policy, which is combined with the system default.

Java programs now have the ability to define access restrictions on sensitive
resources without having to write a new security manager or modify the
underlying platform. For example, applets downloaded into a Java 2-enabled
Web browser and servlets downloaded into a Java 2-enabled Web server can
add resource access controls to a JVM without having to modify the
underlying browser or server implementation. These new concepts of
permission and policy enable the Java 2 platform to offer fine-grained, highly
configurable, flexible, and extensible access control.

The Java 2 security model has been depicted in Figure 32 on page 76. As
seen in the figure, a predetermined security policy of the client decides the
security domains within which a specific piece of local or remote code can
reside:

The New Java Security Model 75

Local or remote code
(signed or unsigned)

Security
Policy

/

Domain A

Y
Sandbox

Domain C

JVM

Resources

Figure 32. Fine-Grained Access Control Mechanism in Java 2 SDK

3.2.3.1 Lexical Scoping of Privilege Modifications

A new security feature implemented for the first time in Java 2 is the lexical
scoping of privilege modification, which is a technique enforcing the least
privileged mode. Using this technique, it is possible to enable only the
execution of the piece of code that needs the privilege. All the sensitive code
could therefore be added at one place and defined as privileged, by calling
the doPrivileged() method, belonging to the java.security.AccessController
class. The doPrivileged() method is discussed in 3.5.1, “Run-Time Access
Controls” on page 91. But to get an idea in advance, basically, through the
use of this method, Java 2 provides a facility to mark Java code as being
privileged and temporarily grant it some permissions that it normally would

76 Java 2 Network Security

not enjoy by itself by virtue of its location of origin and the identity of its
signers.

3.2.3.2 Java 2 Security Tools

Java 2 provides four powerful security tools for ensuring confidentiality,
integrity, authenticity of data and adequate control on access to various
system and non-system resources. These are j ar, keytool , j arsi gner and
Policy Tool.

The jar function is similar in Java 2 to what it was in JDK 1.1 (see 3.2.2.1,
“The jar and javakey Tools” on page 73). JAR files acquire specific
significance, since the old j avakey, and its newer version j ar si gner, can sign
only JAR files.

The keyt ool command line utility creates key pairs — pairs of public and
private keys — imports and exports X.509 V1, V2 and V3 certificates (see
Appendix C, “X.509 Certificates” on page 649), generates self-signed X.509
V1 certificates and manages keystores. A keystore is a protected database
that holds private keys as well as public keys and certificates. In the default
implementation, a keystore is protected using a password and each private
key stored in the keystore is protected with a possibly different password. The
private keys are used to digitally sign applications and applets whereas public
keys are used to verify signed data, and certificates are used to verify
whether a public key indeed belongs to the person it is supposed to belong.

The j arsi gner command line tool signs JAR files and verifies the signature(s)
of signed JAR files. It accesses the keystore when it needs to find:

¢ A private key when signing a JAR file
¢ A public key when verifying a signature

« A certificate when verifying a public key

In the Java 2 platform, the keyt ool and j arsi gner command line utilities
replace the JDK 1.1 tool j avakey. The j avakey tool had several shortcomings,
the most significant of them being the fact that both the public and private
keys were stored in the same, unprotected location (often called an identity
database). This allowed anyone with access to the identity database to
determine all keys that were stored in the file. In contrast, private keys are
now password protected in the keystore.

The Policy Tool utility, which is launched through the pol i cyt ool command,
creates and modifies the external policy configuration files that define the
client’s security policy.

The New Java Security Model 77

All of these tools are discussed in detail later in this book (see Chapter 9,
“Java 2 SDK Security Tools” on page 259).

3.2.3.3 Java 2 Security API

In Java 2 two new subpackages have been added to the java.security
package, and they are java.security.cert and java.security.spec. These
packages offer more features to deal with X.509 certificates and to create
certificate revocation lists (CRLs) and certificate signing requests (CSRs). In
particular, java.security.Certificate, that in JDK 1.1 was an interface of
abstract methods for managing an identity certificate, is completely
deprecated in Java 2, which offers the entire package java.security.cert to
handle certificates. Moreover, the package java.security.cert adds X.509 V3
support to certificates.

Java 2 also provides an additional certificate interface: the X509Extension
interface in the java.security.cert package. This is an interface for X.509
extensions. The extensions defined for X.509 V3 certificates and V2 CRLs
provide methods for associating additional attributes with users or public
keys, for managing the certification hierarchy, and for managing CRL
distribution.

3.2.4 A Comparison of the Three Java Security Models

78

Table 1 on page 79 shows a comparison of the three Java security models
based on seven parameters, which are:

« Resource access to local unsigned code

This refers to the options provided by the security architecture to a client
to determine access to local resources for local unsigned code.

« Resource access to local signed code

This refers to the options provided by the security architecture to a client
to determine access to local resources for local signed code.

* Resource access to remote unsigned code

This refers to the options provided by the security architecture to a client
to determine access to local resources for remote unsigned code.

* Resource access to remote signed code

This refers to the options provided by the security architecture to a client
to determine access to local resources for remote signed code.

« Lexical scoping of privilege modification

This refers to the availability of the option in the security architecture to
temporarily grant more privileges to a specific piece of code in an

Java 2 Network Security

execution thread, which are additional to the privileges the code would
have enjoyed by itself. This facility is available only with Java 2 and
achieved with the help of the doPrivileged() method introduced in 3.2.3.1,
“Lexical Scoping of Privilege Modifications” on page 76. This method
actually internally modifies the way the run-time stack (for an execution
thread) is checked for permissions.

» Cryptographic services for data confidentiality/integrity

This refers to the availability of cryptographic services for data
confidentiality and integrity. Such services became available only with JDK

1.1.

« Digital signature services for code signhing

This refers to the facility of digital signature services for signing code.

Such services became available only with JDK 1.1.

Table 1. Evolution of the Java Security Model

JDK 1.0 JDK 1.1 Java 2 SDK

Local unsigned code Unconstrained Unconstrained Policy based
resource access
Local signed code Not available Unconstrained if trusted | Policy based
resource access -

Constrained by the Java

sandbox if untrusted
Remote unsigned code | Constrained by the Java | Constrained by the Java | Policy based
resource access sandbox sandbox
Remote signed code Not available Unconstrained if trusted | Policy based
resource access -

Constrained by the Java

sandbox if untrusted
Lexical scoping of Not available Not available Stack annotation based
privilege modification with doPrivileged()
Cryptographic Not available Java Cryptography Java Cryptography
services for data Extension 1.1 Extension 1.2
confidentiality/integrity
Digital signature Not available Java Cryptography Java Cryptography
services for code Architecture DSA Architecture DSA
signing signature signature

This comparison shows the increasing flexibility and functionality provided by
the evolving Java security model in determining a security policy.

The New Java Security Model 79

3.3 Java 2 Protection Domain and Permissions Model

80

This section explains the concepts of protection domain, code source and
security policy file which are the foundations of the new security model.

A protection domain can be scoped by a set of objects that are currently
directly accessible by a principal, where a principal is an entity in the
computer system to which permissions are granted. A principal can access
objects in the protection domain by virtue of the permissions it enjoys over
the objects in the protection domain. These permissions are specified
explicitly in a security policy file, which is a text file that can be edited
manually or through the Policy Tool. The Java 2 security architecture allows
the combination of a system security policy, defined by the system
administrator, with one or more user-defined security policies. A default
system policy file comes with the installation of the Java 2 SDK (see 3.6, “The
Policy File” on page 93).

Notice that, even if an arbitrary number of policy files can be specified, there
is only one policy (meaning, one set of protection domains) in effect for the
JVM at any given time. That policy might be the result of processing the
information from many policy files. The default policy implementation, via the
java.security.Policy class, has a public refresh() method that can be used to
re-init the policy, eventually re-reading the policy file(s). However, there is no
automatic policy change: refresh() must be called explicitly.

Using this security model, it is possible to grant specific access permissions
to specific code whether local or remote. Local or remote code is now
identified by its code source. The code source for a code is a combination of
the URL location from which the code is loaded and the entity or entities that
signed the code originating from that location. The code source is
represented by the java.security.CodeSource class. The location from which
the code is loaded is passed as an argument to the constructor of the
CodeSource class in the form of a java.net.URL object. The identity of the
signer(s) is passed as the second argument to the constructor of the
CodeSource object in the form of a set of java.security.cert.Certificate
objects. These certificates are for the public keys corresponding to the private
keys that signed the code. The constructor of the CodeSource class therefore
looks like the following line:

publ i c GodeSource(URL url, Certificate[] certs)
The location from which the code is loaded is referred to as the code base in

the policy file, as we have seen in the examples of 1.4, “Understanding Java 2
Security” on page 12. In the Java 2 security model, a policy file serves as a

Java 2 Network Security

rule book, which lists what permission(s) can be granted to what type of code,
depending on the location of origin of the code and the signer(s) for the code.

A policy file consists of a number of grant entries. The syntax of the grant
entry is as follows:

grant [signedBy signers][, codeBase URL] {
permssion perm ssion_class [target][, action][, signedBy signers];
[permission ...]

}

Figure 33. The Syntax of a grant Entry in a Policy File

This syntax will be discussed in 3.6, “The Policy File” on page 93. For now, it
should be noticed that, in the grant entry, si gner s will be replaced by the
name of the entity or entities that have signed the code and URL will be
replaced by the URL address of the location from where the code has
originated. If the list of signers is omitted, code signed by any signers will be
granted the specified permissions. If the code base is omitted, code coming
from any location will be granted the specified permissions. In addition to this,
a policy file can specify the URL location of the keystore.

Notice that, even if the default policy implementation is file-based, application
developers can implement their own Policy subclass, providing an
implementation of the abstract methods in the java.security.Policy class.
There could be multiple instances of the Policy class, even if only one is in
effect at any time. The currently installed Policy object can be obtained by
calling the static getPolicy() method in the Policy class. Codes with
permission to reset the policy can change the currently installed Policy object
by calling the static setPolicy() method in the Policy class.

A protection domain is identified as an association of a code source and the
permissions granted to that code source. A code source is composed of a
URL (code’s origination location) and optional signer(s). The permissions
granted to a code source are specified in the policy file(s). When a
non-system (non-trusted) class is loaded, it is mapped to a protection domain
based upon its code source — where it was loaded from and any signers it
may have. The grant entries in the policy file describe the permissions
granted to a particular code source. Notice that classes that have the same
permissions but are from different code sources belong to different protection
domains.

The New Java Security Model 81

82

Protection domains generally fall into two categories: system domain and
application domains. We can think of the system domain as a single
collection of all system code, which is not subjected to any policy restrictions
and is granted all permissions. An application domain is specific to an
application or applet and can include the domains of extensions as well, since
even the standard extensions are subjected to the security policy specified in
the policy file. The default java.policy file grants all extensions full access
permissions to all system resources (java.security.AllPermission), provided
the extension classes are stored as JAR files in the extensions directory
${java.home}lib\ext or its subdirectories. On Windows systems, the default
extensions directory is usually C:\Program Files\JavaSoft\JRE\1.2\lib\ext (see
Figure 335 on page 642 and Figure 336 on page 643).

Notice that a thread of execution (which is often, but not necessarily, tied to a
single Java thread, which in turn is not necessarily tied to the thread concept
of the underlying operating system) may occur completely within a single
protection domain or may involve an application domain and also the system
domain. All protected resources, such as the file system, the networking
facility, the screen and the keyboard, are accessible only via the system
domains, as shown in the following figure:

System
Domain

File 11O Printer AWT Net I/O

Figure 34. Domain Composition of a Java Application Environment

Java 2 Network Security

Each class file loaded into the JVM via a class loader is assigned to one and
only one protection domain, as determined by the code source of the class.
However, multiple classes may be assigned to the same protection domain,
depending on the code source itself. In addition, a single protection domain
may include one or more permissions, and the same permission can be part
of different protection domains.

The Java application environment maintains a mapping from code (classes
and instances) to their protection domains and then to their permissions as
shown in the following figure:

Many - One /\ Many - Many

Classes Domains Permissions

Figure 35. Mapping in the Java Application Environment

3.4 New Class Search Path

With JDK 1.1, the default class path value included the path where the Java
system classes (compressed in the ZIP file classes.zip) resided, along with
the current working directory, for instance:

CQLASSPATH=. ; C\jdkl. 1. 7\ cl asses; C\jdkl. 1. 7\li b\ cl asses. zi p
Note that the default class path also included a path to a classes folder on the
same directory level as lib. You could put your own class files (no JAR or ZIP

files) in this classes folder that you had to create, and the Java executables
would be able to find them with the default class path.

Either the -cl asspat h and -cp flags of the j ava command line tool, or the
CLASSPATH environment variable could be used to add a new library

The New Java Security Model 83

location to the class path, to expand upon the core set of class libraries
provided by the JDK:

« |f the CLASSPATH environment variable was set, the effective class path
would still contain the classes.zip file (as in the default setting), but with
the newly assigned value in place of the current working directory. So,
when defining the CLASSPATH system environment variable, if you
wanted the current working directory to be part of the class path, you had
to explicitly specify it as part of the value of CLASSPATH.

« If, on the other hand, the - cl asspat h or the equivalent - cp option was used,
the value of this option specified on the command line had to contain both
the original classes.zip reference, and the new application classes, for
example:

java -classpath C\jdkl. 1. 7\1ib\cl asses. zi p; \ app\ cl asses Appl i cation

The reason for this was that this option was used to override the search
path for system classes.

This discrepancy between the two means of setting the class path caused a
great deal of confusion, along with outright errors. Often, the explicitly
specified version of classes.zip did not match the version of the j ava
command being used.

This source of confusion has been eliminated in the Java 2 platform. The
-cl asspat h command line option now has the same functionality as the
CLASSPATH environment variable. However, the single search path once
specified by the class path has been broken down into three distinct areas
which will be discussed in the following sections.

3.4.1 Boot Class Path

84

With the Java 2 platform, the system classes no longer reside in a ZIP file.
They are now stored in JAR files: the run-time classes are found in the file
rt.jar, while the SDK-supported tool classes are found in the tools.jar file. Both
these files come with the default installation of the Java 2 SDK. Also, the
system class files are no longer specified by either the CLASSPATH system
environment variable or the - cl asspat h command line option. Instead, the
location of the system class files is specified automatically by the run-time
environment as the value of the sun.boot.class.path variable, and takes the
name of boot class path. Notice that the terms JVM class path and system
class path are equivalent to boot class path. In beta releases of Java 2 SDK,
Standard Edition, V1.2, the system class path was referred to by the value of
a variable java.sys.class.path, which was replaced by sun.boot.class.path
when Java 2 was officially released.

Java 2 Network Security

After the default installation of the Java 2 SDK on a Windows system, the
boot class path is automatically configured to include the two files rt.jar and
i18n.jar (both found in the directory lib under ${java.home}!) and the entire
directory classes, which does not exist by default, but can be created by the
user under the directory ${java.h0me}2.

This default can be changed with the - boot cl asspat h compile time flag and the
- Xboot cl asspat h run-time flag. For example, if temp.jar is a JAR file containing
a different version of the system class files, the two following commands will
use temp.jar to overwrite the default system class files:

javac -bootcl asspath D \tenporary\tenp.jar HelloWrld.java
java - Xboot cl asspat h: D:\tenporary\tenp.jar Helloverld

Let’'s consider the following example. We have a simple program
HelloWorld.java. We try to run it using the command:

java - Xboot cl asspat h: D \tenporary Hel | oVeér | d

We launch this command from the directory D:, which contains neither the

HelloWorld class file, nor the rt.jar file. The directory D:\temporary contains
the file HelloWorld.class, but does not contain the rt.jar file. In this case the
JVM tries to find all the run-time classes in the directory D:\temporary only,
but doesn't find them there. Hence we get an exception:

Can't find class java.lang.NoClassDefFroundError. (Wrong Class Path?)

This is a good response, because the JVM has detected that we might have
made a mistake in specifying the system class path.

We now type the following command, again from the D: directory:
java -Xbootclasspath:D:\temporary;D:\jdk1.2\re\lib\rt.jar HelloWorld

In this case, the HelloWorld program gets executed successfully.

This demonstrates that, in order to execute the program, the JVM is looking
for mainly two things: the rt.jar file, containing the classes necessary for the
JVM to execute any program, and the application class file being executed.
After launching the above command line argument, the JVM finds the
HelloWorld application class file in D:\temporary first (since it searches for
classes in the order of the paths specified after -Xbootclasspath keyword in
the command line) and then finds the rt.jar file in the D:\jdk1.2\jre\lib directory.

1 For developing and testing reasons, a copy of rt.jar and i18n.jar is also found in the directory where the development
environment is installed (for example, on Windows systems, C:\jdk1.2.x\jre\lib).

2 ${java.home} translates into the directory where the JRE is installed. On Windows systems, by default, this directory is
C:\Program Files\JavaSoft\JRE\1.2 (see A.2, “Program GetProperty” on page 644).

The New Java Security Model 85

Next, we try to run the command:
java - Xboot cl asspat h: D:\tenporary; d:\jdkl. 2\jre\lib Hel | oVrld

This time we again get the error message:
Can't find class java.lang.NoClassDefFroundError. (Wrong Class Path?)

This is because the -Xbootclasspath option requires that the full path for the
rt.jar file be given, including the name of the file rt.jar; just the name of the
directory containing the rt.jar file is not sufficient. On the other hand, the
application class is found either from the current working directory or any of
the directories specified after the -Xbootclasspath keyword.

It is therefore important to remember, when using the -Xbootclasspath flag, to
also include the default rt.jar file. With the Java 2 platform, the only classes
trusted by the run-time are those on the boot class path. Thus, by explicitly
adding something to the system class path, it becomes trusted. With JDK 1.1,
anything loaded locally through the class path became trusted.

Two other JAR files are shipped with the Java 2 platform in the same directory
as rt.jar:

« i18n.jar, which provides internationalization support classes and, as we
already said, is part of the default boot class path

 jaws.jar, which provides capabilities such as JavaScript integration with
Netscape's JSObject, along with JSException classes, and browser
plug-in interoperability

— The Compile-Time Flag

The - boot cl asspat h option is used to cross-compile against a specified set
of boot classes. The Java 2 SDK j avac command would by default compile
against its own Java 2 bootstrap classes, and we may tell j avac to compile
against JDK 1.1 bootstrap classes instead, if needed at times. We do this
with the - boot cl asspat h compile flag. Failing to do this allows compilation
against a 1.2 API that might not be present on a 1.1 JVM and would fail at
run time. The following command displays the use of the Java 2 SDK j avac
command to compile code that will run on a 1.1 JVM:

javac -target 1.1 -bootclasspath D\jdk1l. 1. 7\ | i b\ cl asses. zi p d dCode. j ava

3.4.2 Extensions Framework

Extensions are packages of classes written in the Java programming
language (and any associated native code) that application developers can

86 Java 2 Network Security

use to extend the functionality of the core part of the Java platform. Standard
extensions are, for example, JavaServlet, Java3D and JavaManagement. The
extension framework allows the JVM to use the extension classes in much the
same way as the system classes.

The size of the core part of the Java platform has been growing steadily since
the release of JDK 1.0. The first Java platform had eight core packages, in
JDK 1.1 there were twenty-two packages, and in Java 2 there are over fifty!
The extensions framework provides a standard means to add functionality to
the Java platform for use when needed, without having to increase the size of
the core API.

While the CLASSPATH system environment variable or - cl asspat h command
line option can still be used to add non-system libraries, this process, too, has
been greatly simplified with Java 2 SDK, Standard Edition, V1.2. Simply place
a JAR file in the extensions directory ${java.home}${/}lib${/}ext3, and the
library is added. JAR files placed in the extensions directory are called
installed extensions.

An entry in the default system policy file shipped with the Java 2 SDK is
devoted to the extensions directory and its subdirectories, as shown in the
following screen:

grant codeBase "file: ${java. honge}/lib/ext/-" {
pernissi on java.security. A | Perm ssion;

h

This means that all the classes placed in JAR files in the extensions directory
and its subdirectories are automatically granted all permissions, irrespective
of eventual signers.

Classes not contained in a JAR file can be added simply by placing them in
the classes directory found under the JRE installation directory, ${java.home}.
Note, however, that this directory does not exist by default, so it must be
created by the user. However, as we have mentioned in 3.4.1, “Boot Class
Path” on page 84, the classes directory is automatically considered part of
the boot class path, while the ext directory is subjected to the security policy.

The locations of installed extensions can be overridden at compile time by
using the -extdirs flag of the j avac command, followed by a sequence of
directories separated by semicolons (;).

8 ${/} is the file separator variable. Its value is translated into the forward slash / on UNIX systems, and the back slash \

on Windows systems. Its use grants policy file portability across the platforms. More details about this are found in 3.6,
“The Policy File” on page 93.

The New Java Security Model 87

Notice that any native libraries that are installed with an extension are stored
in the directory ${java.home}${/}bin.

The new extensions framework also supports downloadable extensions. To
use a library within an applet, the library file can be specified in a special

d ass- Pat h: line in the manifest file MANIFEST.MF of the applet’s JAR file (we
already introduced the manifest file of a JAR file in 1.4.1.3, “Packing the
Applet Class in a JAR File” on page 18). This is a handy alternative to either
storing everything in one very large JAR file, or specifying multiple JAR files
within the <APPLET> tag of the HTML page (both of which can still be done).
Below is a sample 4 ass- Pat h: manifest file entry, which shows how to add
two JAR files to the normal class path as extensions:

dass-Path: nilind.jar app/deepak.jar

Once the extension is found, it is downloaded and placed into a namespace in
memory. Some differences between installed and downloaded extensions
are:

¢ The classes in an installed extension are shared by all code in the same
JVM. Classes for downloaded extensions are private to the session of the
application or applet that uses the downloaded extension.

¢ An extension becomes an installed extension if the location of its JAR file
is ${java.home}${/}ib${/}ext. The location of the JAR files that serve as
downloaded extensions is irrelevant. A downloaded extension is an
extension because it is referenced from the 4 ass- Pat h: in the header of
another JAR file's manifest.

« Only applets and applications bundled in a JAR file can make use of
downloaded extensions. Applets and applications not bundled in a JAR file
do not have a manifest from which to reference downloaded extensions.
This limitation does not exist for installed extensions, which are shared by
all code in the same JVM.

« Downloaded extensions are purely temporary. Also, they cannot use native
code, and must be signed or loaded from a trusted source to gain
permissions to perform system-level actions. These limitations do not exist
for installed extensions, which may be permanently installed in the
extensions directory and are granted all permissions by default.

3.4.3 Application Class Path

88

The property java.class.path is used by an application to specify the
application’s search path of URLs for loading application classes and
resources. The CLASSPATH environment variable specifies the default value
of the property java.class.path. If the CLASSPATH is not set, then the default

Java 2 Network Security

value for java.class.path is set to the current directory. The option - cl asspat h
of the java command is now shorthand for setting the java.class.path
property. Formerly, this option was used in JDK 1.0 and 1.1 to override the
search path for the system classes, but in the new j ava command, there is no
longer a need to set the system class path, and if you want to override the
search path for the system classes, you have to use the command line option
- Xboot cl asspat h.

The value of the variable java.class.path is called application class path or
user class path.

3.4.4 Class Search Paths in Summary
In summary, three basic search paths are used to find classes in the Java 2
platform:*

1. The first location searched is the boot class path. This can be set using
the - Xboot cl asspat h option. Its value can be examined by calling:

Syst em get Propert y("sun. boot . cl ass. pat h")

2. The second location searched is the extensions directory, which by default
is ${java.home}${/}ib${/}ext. The extensions directory can be examined by
calling:

System get Property("java. ext.dirs")

3. The third and final location searched is the application class path, set by

either the -cl asspat h option or the CLASSPATH system environment

variable. The value of the application class path can be examined by
calling:

Syst em get Property("j ava. cl ass. path")

As with the user class path, boot class path entries are separated by
semicolons (;) and can be directories, JAR archives, or ZIP archives.

In the case of a sealed JAR file (see 12.1.1, “Manifest File” on page 387 and
12.6, “The JAR Bug — Fixed In Java 2 SDK, Standard Edition, V1.2.1" on
page 461), the search is limited to the JAR file only.

3.5 Java 2 Class Loading Mechanism

The class loading mechanism plays a critical role in Java security since the
class loader is responsible for locating and fetching the class files, consulting

4 The properties sun.boot.class.path, java.ext.dirs and java.class.path, mentioned in the list, can only be examined from a
trusted program. See Appendix A, “Getting Internal System Properties” on page 641 for more details.

The New Java Security Model 89

90

the security policy, and defining the appropriate permissions associated with
the class object.

In JDK 1.1, local code and correctly signed remote code were generally
trusted to have full access to all vital system resources, such as the file
system itself, while unsigned remote code was not trusted and could access
only limited resources. A security manager was responsible for determining
which resource accesses were allowed. For this reason each application,
such as a Web browser or a Web server, had to write its own subclasses of
SecurityManager and ClassLoader.

Java 2 has simplified the development process:

e As discussed in 2.1.2.4, “The Security Manager” on page 49,
SecurityManager is no longer an abstract class and can be instantiated or
subclassed. Most of its methods now make calls to methods in class
AccessController, which provides the access control functions in Java 2.
This greatly simplifies the writing of new SecurityManager subclasses.

« A new powerful subclass of ClassLoader has been created in Java 2. It is
called SecureClassLoader and is found in the package java.security (see
2.1.2.2, “Where Class Loaders Come From” on page 47). The
distinguishing feature of a SecureClassLoader is that it associates a
protection domain with each class that it loads. SecureClassLoader has a
protected constructor, so its real use is to provide the basis for the
development of other class loaders. When creating a custom class loader,
one can subclass from the SecureClassLoader class or its subclasses,
depending on the particular need.

To automatically invoke the security subsystem, a Java application is started
from the command line of a native operating system with some additional
command line arguments. We have shown one example of how applications
can be subjected to security restrictions in Java 2 by specifying additional
command line arguments (see 1.4.2, “An Example of Application Security in
Java 2" on page 26). More details are discussed in 3.8.1, “Applying a Security
Manager to Applets and Applications” on page 99.

When a Java code starts executing, the Java run time creates an instance of
SecureClassLoader, which in turn is used to locate and load the class file of
the code. A subclass of the security manager is created and installed in the
Java run time. The main() method, in the case of an application, is then called
with the command line arguments; the init() method is called in the case of an
applet or a servlet.

Java 2 Network Security

SecureClassLoader is used to safely and correctly load classes into the Java
run time. How does the SecureClassLoader ensure secure loading of
classes?

1. First, SecureClassLoader searches for classes in the correct order. The
correct order starts with the most trusted classes. Therefore, when the
JVM needs a class, SecureClassLoader first looks for files referenced by
the class path of the JVM, or the boot class path. This ensures that
classes within the core Java API will not be superseded by classes loaded
from the network or any other location.

2. If not found in the JVM class path, the locations of the installed extensions
are searched.

3. Finally, the locations defined by the application class path are searched.

Once the class file has been loaded into the JVM, SecureClassLoader
assigns the appropriate protection domain to the class file. The following list
explains how SecureClassLoader does this:

1. When SecureClassLoader loads a class into the JVM, it also creates the
code source for the class from the code base URL and any digital
certificate(s) used to sign the code.

2. The code source is then used to locate the protection domain for the class.
The protection domain contains the Permission objects that have been
granted to the class. The information contained in the protection domain
and the permissions granted to the code source are used in determining
access control during run time.

3. Once a Java program starts to run, SecureClassLoader assists the JVM in
loading other classes required to run the program. These classes are also
assigned the appropriate protection domains based on their code source.

Notice that another new class, java.net.URLClassLoader, extends
SecureClassLoader to provide a general purpose class loader to load class
files from a list of local class file directories or HTTP-based URLSs.

3.5.1 Run-Time Access Controls

At various points during a Java program’s execution, access to protected
resources is requested. This includes network I/O attempts, local file 1/O,
attempts to create a new ClassLoader or access to a program-defined
resource. To verify whether the running program is allowed to perform the
operation, the library routine makes a call to the method
SecurityManager.checkPermission(). This method takes a Permission object
argument and determines whether or not it is granted to the current thread.

The New Java Security Model 91

92

Each thread in the JVM contains a number of stack frames. Simply stated,
these frames contain the method instance variables for each method called in
the current thread. The method checkPermission() walks back through the
current thread’s stack frames, getting the protection domain for each of the
classes on the thread’s stack. As each protection domain in the thread stack
is located, the permission to check is compared to the Permission objects
contained in the protection domain. For each stack frame, if the checked
permission matches one of the Permission objects in the protection domain,
testing of the permissions continues with the protection domain of the next
stack frame (class) on the stack.

This testing repeats until the end of the stack is reached. That is, all of the
classes in the thread have the permission to perform the operation. Thus, the
access control check succeeds, typically meaning that the requested
operation is able to proceed. If the checked permission is not granted to all
classes on the stack (there is no appropriate Permission object in all of the
class’s ProtectionDomain objects), then a SecurityException is thrown, and
access to the resource is denied.

A wrinkle in the above scenario is when a class has a set of permissions, and
does not care who its callers may be. For example, a Java bean may be
installed on a desktop computer needing to read files from the local disk
drive. The ProtectionDomain of the bean'’s class has permission to read these
local files. However, the program loaded from a Web server that calls the
bean has a ProtectionDomain that does not have local file read permission.
Normally, if the bean were called by the program loaded from the Web server,
the bean would be denied access to the files on the local disk drive because
the program from the Web server does not have a local file read permission.
However, if the bean calls AccessController.doPrivileged(), an annotation is
made on the thread's stack frame indicating that when the checkPermission()
method searches for ProtectionDomains, the search stops at this stack frame.
The bean may make any number of method calls, but when the
checkPermission() method is called on another permission object, the search
back through the stack frames to find ProtectionDomain objects stops at this
stack frame.

Based on the above scenario, the ProtectionDomain objects for the bean will
be checked, but the ProtectionDomain objects for the program from the Web
server are not checked since the search stopped at the stack frame for the
bean. Therefore, the file read operation will succeed.

A subtle aspect of the above doPrivileged() operation is that programs
creating new threads would lose protection domain information when a new
thread is created. That is, each new thread creates a new run-time stack. The

Java 2 Network Security

classes on the stack of the parent thread are not present in the new thread.
Important protection domain information is no longer available when a
checkPermission() operation is performed, giving new threads more
permissions than the threads that created them. This would give new threads
more permissions than the threads that created them. To correct this
apparent loss of security information, the ProtectionDomain objects of the
parent thread are attached to (inherited by) a child thread when it is created.
So, unless a doPrivileged() operation is performed in the child thread, the
parent thread’s ProtectionDomain objects are also checked during a
checkPermission() operation.

3.6 The Policy File

As described in 3.5.1, “Run-Time Access Controls” on page 91,
checkPermission() verifies that the protection domain of every class on the
thread stack includes permission to perform the requested operation. Multiple
policy files can define the overall policy; these policy files must be specified in
the Java security properties file, java.security, by default located in the
directory ${java.home}${/}ib${/}security. The default is to have a single
system-wide policy file, and a user-defined policy file in the user's home
directory.

A policy file contains a list of entries or directives. It may contain first of all a
keystore entry and then must contain one or more grant entries. The keystore
directive in the policy file is the URL to the keystore file. It is required if one of
the grant entries in the policy file specifies signers whose certificate is stored
in a keystore different from the default one. The keystore entry in the policy
file can be an absolute URL or can be relative to the location of the policy file
itself.

Let's talk now about the grant directives (see Figure 33 on page 81). In Java
2, you will notice several Permission classes. All these have the same
ancestor, java.security.Permission. This is an abstract class, and is
subclassed to represent specific accesses. The specific accesses are usually
a part of the package where they are most likely to be used — for instance, the
permission FilePermission is a part of the java.io package, thus making it
java.io.FilePermission, and the SocketPermission class is part of the java.net
package, so that you will find java.net.SocketPermission. Most of the
permissions can be instantiated by giving two parameters, the first being the
target, such as the name of the file, or the socket number, and the second
being the permitted action, like read, write, open, listen. In most cases, a set
of actions can be specified together as a comma-separated, composite string.

The New Java Security Model 93

94

Notice, however, that not all of the Permission classes defined in the Java 2
platform have applicable actions yet and the second argument to the
constructor would be null. The only system Permission classes that do have
actions are FilePermission (read, write, execute, delete), PropertyPermission
(read, write) and SocketPermission (resolve, accept, connect, listen).

A special permission class exists called java.security.AllPermission. This is a
permission that implies all permissions. It is introduced to simplify the work to
system administrators who might need to perform multiple tasks that require
all or numerous permissions. Of course much caution is needed when
granting this permission. In fact, the AllPermission class represents the
permission to perform any operation. For this reason, this permission is
usually given only to classes within the Java API and to classes in Java
standard extensions, because granting this type of permission is potentially
dangerous.

The permission policy that you set up is in a policy file. Each permission that
you wish to grant must be a statement containing two parts: a code source
and a list of permissions:

* The code source is also comprised of two parts:
1. Code base URL

The code base URL indicates where the classes originate from. This
field is obtained by the keyword codeBase followed by a quoted string
indicating the URL, for example:

codeBase "htt p://waw redbooks. i bm cont

This field is optional. If omitted, the associated permissions are granted
to code from any source.

2. Digital certificate(s) used to sign the classes

This field is obtained by the keyword si gnedBy followed by a quoted
string indicating the name assigned to a digital certificate used to sign
the classes. A comma-separated list of multiple signers is allowed. So,
for example, correct entries could be:

si gnedBy " Mar co"
or
si gnedBy " Duane, Mar co”

This field is optional. If omitted, the associated permissions are granted
to a signed or unsigned code. Also note that if there are multiple
signers, the code must be signed by all of the signers in the list to be
granted the permissions.

Java 2 Network Security

« Each permission of the list is comprised of five parts:
1. The keyword per ni ssi on
This field is required.
2. The fully qualified name of the Permission class

This field is also required, and includes the package name, for
example:

java. util.PropertyPern ssion
3. A quoted string naming the target of the Permission class

For example, "j ava. versi on" could be the target for a
PropertyPermission, while "D \\Wrks\\ St ats. txt" could be the target
for a FilePermission. The only Permission class that this target field is
not applicable to is the special java.security.AllPermission.

4. A quoted string naming the actions requested

As we said, a set of actions can be specified together as a
comma-separated composite string. For example, "read" or

"read, wite, del ete, execute" could be actions for a FilePermission, and
"resol ve, accept” or "listen" could be the actions for a
SocketPermission. Action fields are not applicable to all Permission
classes, but only to FilePermission, PropertyPermission and
SocketPermission.

5. Digital certificate used to sign the Permission class

This field is obtained by the keyword si gnedBy followed by a quoted
string indicating the name assigned to a digital certificate used to sign
the Permission class. As we will see in 8.4.2, “grant Entries” on page
243, multiple signers are not allowed in this case.

This field is optional. It may be necessary to prevent spoofing when the
Permission class is not resident in the Java run time but is loaded from
over the network.

Note that the syntax of the grant entries must be followed exactly; the
omission of even a single comma results in rejection of the code by the JVM.
An inadvertent mistake editing the policy file may cause unexpected changes
in the Java security policy which, in turn, may compromise the security of the
whole system. In future versions of Java, the default policy file may be
encrypted, or may be stored in a format other than a flat file, which will make
manual editing of the policy impractical. Today, the Policy Tool utility prevents
errors likely in manual editing of the default text policy files. In the future, the
Policy Tool will be essential in updating non-text policy data stored.

The New Java Security Model 95

This is also a good point to discuss the ${/} file path separator we have been
using. In a policy file, the strings for a file path must be written in a platform
specific format. Strings are processed by java.io.StreamTokenizer, which
considers a back slash (\) as an escape string. Therefore, in a policy file on a
Windows system, we find two back slashes (\\) required to indicate one
single back slash (for example, C\\nilind\\fil el instead of C\mlind\filel).
However, if the property policy.expandProperties in the java.security
properties file is set to true, one can write portable policy files. The ${/}
symbol can be used, which is automatically converted to an appropriate
format, depending on the platform. For example, C ${/}mlind${/}filelis
convertedto C/mlind/filel on UNIX systems and C\nilind\filelon
Windows systems.

3.6.1 The Default System-Wide Policy File

This is the default system-wide policy file, java.policy, that comes with the
Java 2 SDK installation in the directory ${java.home}${/}lib${/}security:

}

grant {
/1
/1
/1
/1
/1
/1
11
11

grant codeBase "file:${java. honme}/lib/ext/-" {
permssion java. security. Al |l Pernission;

/1 default permissions granted to all domains

Alows any thread to stop itself using the java.lang. Thread. stop()
net hod that takes no argunent.

Note that this permssion is granted by default only to remain
backwar ds conpati bl e.

It is strongly reconmended that you either renove this permssion
fromthis policy file or further restrict it to code sources

that you specify, because Thread.stop() is potentially unsafe.
See "http://java. sun. coninotes" for nore infornation.

perm ssi on java. | ang. Runti nePer ni ssi on "stopThread";

/1 allows anyone to listen on un-privileged ports
per m ssi on j ava. net. Socket Permi ssion "l ocal host: 1024-", "listen";
/1 "standard" properies that can be read by anyone

pernmission java. util.PropertyPermssion "java. version”, "read";
permission java. util.PropertyPermssion "java. vendor"”, "read";
pernmission java. util.PropertyPermssion "java.vendor.url", "read";

Figure 36. (Part 1 of 2). The Default System Policy File

96 Java 2 Network Security

permission java. util.PropertyPermssion "java.class. version", "read";
permission java. util.PropertyPermssion "os. nane", "read";

permssion java. util.PropertyPermssion "os.version", "read";
permission java. util.PropertyPermssion "os.arch", "read";

permission java. util.PropertyPermssion "file.separator”, "read";
permission java. util.PropertyPerm ssion "path. separator”, "read";
permission java. util.PropertyPermssion "line.separator”, "read";

permission java. util.PropertyPerm ssion "java. specification.version", "read";
permission java. util.PropertyPermssion "java. specification.vendor", "read";
permission java. util.PropertyPermssion "java. specification. nane", "read";

permission java. util.PropertyPermssion "java. vmspecification.version", "read";
permission java. util.PropertyPermssion "java. vm specification.vendor", "read";
permission java. util.PropertyPermssion "java. vm speci fication. nane", "read";
pernmission java. util.PropertyPermssion "java.vmversion", "read";

permission java. util.PropertyPermssion "java.vmvendor", "read";

permission java. util.PropertyPermssion "java. vmnane", "read";

}

Figure 37. (Part 2 of 2). The Default System Policy File

As already noted (see 1.4.1.8, “Modifying the Security Policy on the Client
System” on page 20), a copy of this file is also installed in the SDK home
directory (on Windows systems, it comes by default in C:\jdk1.2.x\lib\security)
for use with development tools, such as Applet Viewer.

As you can see from the default policy file shown above, in the first grant
statement the code base is "fil e: ${j ava. hone}/ | i b/ ext/-" and no signers are
specified. This means that all the JAR files that are loaded from the Java
extensions directory and its subdirectories will be granted all permissions.
The second grant statement does not specify any code base or signer. This
statement lists the standard permissions to be granted to all classes. All the
non-system classes will have read access to the system properties listed.
They will also be able to listen on a socket with a port number 1024 or greater
(which implies that the class will be able to create a server socket on an
unprivileged port).

Notice that any thread is allowed to stop itself using the
java.lang.Thread.stop() method. As the comments in the policy file state,
Thread.stop() is potentially unsafe. For this reason, you should remove this
permission from this policy file or further restrict it to code sources that you

specify.

The New Java Security Model 97

3.7 Security Manager vs Access Controller

The access controller has been introduced in the Java 2 platform. Before the
access controller existed, the security manager had to rely on its internal
logic to determine the security policy needed to be in effect, and any change
in the security policy meant changing the security manager itself.

Prior to Java 2, implementing customized security policies was possible with
the security manager alone, but it took a great deal of effort. Starting with
Java 2, the security manager can defer access control decisions to the
access controller. Determining security policies is much more flexible now
since the policy to be enforced by the security manager can be specified in a
file. The access controller provides a simple procedure for giving specific
permissions to specific code. The Java API still calls the methods of the
security manager to enforce system security, but most of these methods call
the access controller.

One of the reasons we still have both the security manager and the access
controller is for backward compatibility. The security manager was the
primary interface to the system security for Java programs prior to Java 2.
The large body of Java programs built upon JDK 1.0 and 1.1 dictates that the
security manager not be changed but supplemented by the access controller,
which provides a simple method for implementing fine-grained access
control.

Another role played by the access controller is allowing a program to
determine that access to a resource must require explicit permissions. For
instance, consider an online attendance marking system where each
employee has to update his attendance record every day in the company’s
attendance database. Here, each employee should have access only to his
records and not to records of others. While global access to the database
might be controlled by the security manager (for instance if it is necessary to
open a socket connection to access the database), access to a particular
record is controlled by the access controller. Thus, a program can quite
simply use the same security framework to specify access to general
resources of the operating system as well as any specific resources of the
program.

3.8 Security Management with Java 2

In this section we show you how to apply the security features of Java 2 to
applets and applications running on your system.

98 Java 2 Network Security

3.8.1 Applying a Security Manager to Applets and Applications

The security manager is invoked by all the Java system code to perform
access control checks based on the security policy currently in effect. A
security manager (an implementation of the class SecurityManager) is
typically installed when an applet is running (the Applet Viewer and most of
the browsers install a security manager). A security manager is, however, not
automatically installed when an application is running. To apply the same
security policy to an application as is implemented by the security manager
for an applet, there are two options available:

1. While running the application, the j ava command line option
-0 ava. security. nanager should be provided. For instance, the JVM would
invoke the security manager to apply the security policy to the application
HelloWorld with the following command:

java -0 ava. security. manager Hell oWrld

An example of this was shown in 1.4.2, “An Example of Application
Security in Java 2” on page 26, where we also demonstrated the
differences that can be generated when running an application under the
security manager and without it.

Notice that the command line option - ava. security. manager is a new flag
introduced with Java 2 SDK, Standard Edition, V1.2. An application did not
run under a security manager in JDK 1.0 or 1.1, since local code was
considered trusted by default.

A variant of the option above allows the user to specify a customized
security manager, say the class MySecurityManager. In this case the
syntax is the following:

java -0 ava. security. manager =MySecuri t yManager Hel | oVér | d

The default built-in security manager can be invoked by any of the
following commands which are equivalent:

java -0 ava. security. manager Hel | oWrld
java -0 ava. security. manager="" Hel | oVerld
java -0 ava. security. manager =defaul t Hel | oV@rld

2. The application itself can call the setSecurityManager() method in the
java.lang.System class. Examples of how to use the setSecurityManager()
method are shown in 7.5, “Examples of Security Manager Extensions” on
page 206.

3.8.2 Applying a User-Defined Security Policy

It is also possible to apply a user-defined security policy file in addition to or
different from the security policy files specified in the security properties file

The New Java Security Model 99

java.security. This can be done by using the -0 ava. securi ty. pol i cy command
line argument. A command like:

java -Djava. security. manager -D ava. security. policy=M/Policy HelloWrld
means that the security policy file MyPolicy will be used in addition to all the
policy files specified in the security properties file. A command like:

java -0 ava. security. manager -0 ava. security. policy==MPolicy Hel |l oWrld

means that only the security policy file MyPolicy will be used and all others
will be ignored.

Notice that the j ava command line option - O ava. securi ty. pol i cy allows you
to specify the URL of MyPolicy, so that even remote policy files can be passed
on to the command line.

3.8.3 Java Security Debugging

Security access can be monitored by setting the j ava. securi ty. debug system
property. A list of all debugging options can be viewed by typing:

java -0 ava. security. debug=hel p

The following screen shows the results of typing the command above:

al turn on al | debuggi ng

access print all checkPermssion results

jar jar verification

pol i cy | oadi ng and granting

scl per mi ssi ons Secur ed assLoader assi gns

The foll ow ng can be used w th access:

stack i ncl ude stack trace

donai n dunps all donai ns in context

failure before throw ng exception, dunp stack
and donai n that didn't have permssion

We want to show now a concrete example of security debugging. Consider
the following Java application:

100 Java 2 Network Security

cl ass SomeProperties
{
public static void main(String args[])
{
Systemout.println("This programlists a few systemproperties");
String S = Systemget Property("sun. boot. cl ass. path");
Systemout . println("sun.boot.class.path =" + 9);
String S1 = Systemget Property("j ava. sys. cl ass. path");
Systemout . println("java.sys.class.path =" + Sl);
String 2 = System get Propert y("user. hone");
Systemout . println("user.hone =" +);
}
}

Figure 38. SomeProperties.java

The program above can be compiled by simply issuing the command:

javac SoreProperties.java

You can then run the Java class SomeProperties by launching:

java SoneProperties

The output produced is shown in the following screen:

This programlists a few systemproperties

sun. boot . cl ass. path = D\ Program Fi | es\ JavaSof t\JRA\ 1. 2\l i b\rt.jar; D\ Program
F 1l es\JavaSof t\JRE\ 1. 2\l i b\i 18mj ar; D\ Program Fi | es\ JavaSof t \ JRE\ 1. 2\ cl asses
java.sys.class.path = nul

user. hore = C\WNNN\ Profil es\pistoia

The program SomeProperties displays the value of the properties
sun.boot.class.path and user.home. It also attempts to print the value of the
property java.sys.class.path, which was the variable used with beta versions
of Java 2 SDK, Standard Edition, V1.2 to indicate the system class path. That
variable was then deprecated in the GA version of Java 2 SDK, Standard
Edition, V1.2, and replaced by sun.boot.class.path. Hence, the value of
java.sys.class.path is displayed as null in the output screen above.

Notice that the program above will not work with the option

-0 ava. securi ty. nanager ; it will throw an AccessControlException, unless it is
granted in one of the current policy files the permission to read system
properties. This can be done by adding the following lines to one of the policy
files currently in use:

The New Java Security Model 101

grant codeBase "file:D/itso/ch03/" {
permssion java. util.PropertyPermssion "sun. boot. cl ass. path", "read";
pernissi on java. util.PropertyPernission "user. hone", “read";
permssion java. util.PropertyPermssion "java. sys. cl ass. path", "read";

h

where file:/D:/itso/ch03/ is the URL of the directory where
SomeProperties.class is installed.

Notice that permission to read the system property java.sys.class.path must
be granted although this system property does not exist, because the system
attempts to read it anyway; otherwise, an AccessControlException will be
thrown, as shown:

java. security. AccessControl Exception: access denied (java. util.PropertyPermssion
j ava. sys. cl ass. pat h read)
at java.security. AccessControl Gont ext . checkPer mi ssi on(Conpi | ed Gode)
at java.security. AccessQntrol | er.checkPer m ssi on(AccessCGontrol | er.j ava: 403)
at java.lang. SecurityManager . checkPer mi ssi on(Securi t yManager . j ava: 549)
at java.lang. Securit yManager . checkPr opert yAccess(Securi t yManager . j ava: 1222)
at java.lang. Syst emget Property(Syst emj ava: 507)

L at SoneProperties. mai n(SoneProperties. j ava: 8)
J

The following command, launched from the directory D:\itso\ch03 where the
SomeProperties class file resides, shows how it is possible to perform full
security debugging:

java -D ava. security. debug=all SomeProperties > Qutput.txt 2> SecurityDebug. txt

Launching this command will cause two text files to be created: Output.txt,
which will contain the normal output of the program as shown above, and
SecurityDebug.txt, which is the file containing all the security debugging
information. We show the contents of SecurityDebug.txt in the two following
figures:

scl:

policy:
policy:
policy:
policy:
policy:
policy:
policy:
policy:
policy:

getPerm ssions (file:/D:/itso/ch03/ <no certificates>)
reading file:D:/Program Fil es/JavaSoft/JRE/ 1.2/1ib/security/java.policy
Addi ng policy entry:

si gnedBy nul |

codeBase file:D:/Program Fil es/JavaSoft/JRE/ 1.2/ 1ib/ext/-

(java.security. All Perm ssion <all perm ssions> <all actions>)

Addi ng policy entry:
si gnedBy nul |

Figure 39. (Part 1 of 3). Security Debug Information

102 Java 2 Network Security

pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i
pol i

pol i
pol i
pol i
pol i

cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:
cy:

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

cy:
cy:
cy:
cy:

codeBase nul |

(java. l ang. Runti mePer m ssion stopThread)

(j ava. net . Socket Per m ssi on | ocal host: 1024- |isten, resol ve)
(java.util.PropertyPerm ssion java.version read)
(java.util.PropertyPerm ssion java.vendor read)
(java.util.PropertyPerm ssion java.vendor.url read)
(java.util.PropertyPerm ssion java.cl ass. version read)
(java.util.PropertyPerm ssion o0s.nane read)
(java.util.PropertyPerm ssion os.version read)
(java.util.PropertyPerm ssion os.arch read)
(java.util.PropertyPermssion file.separator read)
(java.util.PropertyPerm ssion path. separator read)
(java.util.PropertyPermssion |ine.separator read)
(java.util.PropertyPerm ssion java.specification.version read)
(java.util.PropertyPerm ssion java. specification.vendor read)
(java.util.PropertyPerm ssion java.specification.name read)
(java.util.PropertyPerm ssion java.vm specification.version read)
(java.util.PropertyPerm ssion java.vm specification. vendor read)
(java.util.PropertyPerm ssion java.vm specification. name read)
(java.util.PropertyPerm ssion java.vmversion read)
(java.util.PropertyPerm ssion java.vmvendor read)
(java.util.PropertyPerm ssion java.vm nane read)

reading file:C/WNNT/Profiles/pistoia.000/.java. policy
error parsing file:C/WNNT/Profiles/pistoia.000/.java. policy
java.io. Fil eNot FoundException: C \WNNT\Profiles\pistoia.000\.java.policy (The system cannot

find the file specified)
java.io. Fi | eNot FoundException: C\WNNT\ Profiles\pistoia.000\.java.policy (The systemcannot find the
file specified)

java.io.FilelnputStream open(Native Method)
java.io.FilelnputStream <init>(Fil el nput Stream java: 68)

sun.
sun.
sun.
sun.
sun.

security. provider. PolicyFile.getlnputStrean(PolicyFile.java:544)
security.provider.PolicyFile.init(PolicyFile.java:508)

security. provider. PolicyFile.initPolicyFile(PolicyFile.java:352)
security. provider. PolicyFile.access$0(PolicyFile.java: 285)
security. provider. PolicyFile$l.run(PolicyFile.java: 225)

java. security. AccessControl | er.doPrivil eged(Native Mt hod)

sun.
sun.
sun.
sun.

security.provider.PolicyFile.init(PolicyFile.java:223)

security. provider. PolicyFile.getPerm ssions(PolicyFile.java: 791)
security. provider. PolicyPerm ssions.init(PolicyFile.java: 1082)
security. provider. PolicyPerm ssions.toString(PolicyFile.java: 1101)

java.lang. String.val uex (String.java: 1911)

java.lang. StringBuffer.append(StringBuffer.java: 365)

j ava. security. Secured assLoader . get Prot ect i onDonmai n(Secur eCl assLoader . j ava: 148)
java. security. Secured assLoader . def i ned ass(Secur ed asslLoader . j ava: 101)

java. net. URLd assLoader . def i ned ass(URLO assLoader . j ava: 248)

j ava. net. URLA assLoader. access$1(URLO assLoader . j ava: 216)

java. net. URLA assLoader $1. run(URLO assLoader . j ava: 197)

java. security. AccessControl | er.doPrivil eged(Native Mt hod)

java. net. URLd assLoader. fi ndd ass(URLO assLoader . j ava: 191)

java.lang. d assLoader. | oadd ass(d assLoader . j ava: 280)

sun.

mi sc. Launcher $Appd assLoader . | oadd ass(Launcher. j ava: 275)

java.lang. d assLoader. | oadd ass(d assLoader . j ava: 237)
eval uate((file:/D/itso/ch03/ <no certificates>))
granting (java.lang. Runti nePerm ssion stopThread)
granting (java.net. Socket Perm ssion | ocal host: 1024- |isten,resol ve)
granting (java.util.PropertyPerm ssion java.version read)

Figure 40. (Part 2 of 3). Security Debug Information

The New Java Security Model 103

policy: granting (java.util.PropertyPerm ssion java.vendor read)
policy: granting (java.util.PropertyPerm ssion java.vendor.url read)
policy: granting (java.util.PropertyPerm ssion java.class.version read)
policy: granting (java.util.PropertyPerm ssion os.nane read)
policy: granting (java.util.PropertyPerm ssion os.version read)
policy: granting (java.util.PropertyPerm ssion os.arch read)
policy: granting (java.util.PropertyPerm ssion file.separator read)
policy: granting (java.util.PropertyPerm ssion path. separator read)
policy: granting (java.util.PropertyPerm ssion |line.separator read)
policy: granting (java.util.PropertyPerm ssion java.specification.version read)
policy: granting (java.util.PropertyPerm ssion java.specification.vendor read)
policy: granting (java.util.PropertyPerm ssion java.specification.nane read)
policy: granting (java.util.PropertyPerm ssion java.vm specification.version read)
policy: granting (java.util.PropertyPerm ssion java.vm specification.vendor read)
policy: granting (java.util.PropertyPerm ssion java.vm specification.nane read)
policy: granting (java.util.PropertyPerm ssion java.vm version read)
policy: granting (java.util.PropertyPerm ssion java.vm vendor read)
policy: granting (java.util.PropertyPerm ssion java.vm name read)
scl : java. security. Perm ssi ons@939d51d (
(java.io. FilePermssion \D\ S&4-2109-01\i t so\ ch03\ - read)
(j ava. net. Socket Permi ssi on | ocal host: 1024- |isten, resol ve)
(java.util.PropertyPerm ssion java.specification.nane read)
(java.util.PropertyPerm ssion java.version read)
(java.util.PropertyPerm ssion java.specification.version read)
(java.util.PropertyPerm ssion java.vm vendor read)
(java.util.PropertyPerm ssion java.vm specification. version read)
(java.util.PropertyPerm ssion os.arch read)
(java.util.PropertyPerm ssion java.vendor.url read)
(java.util.PropertyPerm ssion |ine.separator read)
(java.util.PropertyPerm ssion os.nanme read)
(java.util.PropertyPerm ssion java.vendor read)
(java.util.PropertyPerm ssion java.vm specification.vendor read)
(java.util.PropertyPerm ssion java.specification.vendor read)
(java.util.PropertyPern ssion java.vm nanme read)
(java.util.PropertyPerm ssion java.vm specification. name read)
(java.util.PropertyPerm ssion java.class. version read)
(java.util.PropertyPerm ssion os.version read)
(java.util.PropertyPern ssion java.vm version read)
(java.util.PropertyPerm ssion path. separator read)
(java.util.PropertyPerm ssion file.separator read)
(java.lang. Runti mePerm ssi on stopThread)
(java.l ang. Runti mePer ni ssion exitVM)
)
scl:
Figure 41. (Part 3 of 3). Security Debug Information
As you can see, due to the - ava. securi ty. debug=al | option given during the
run-time command, an entire step-by-step security debug history is produced.
This output would be printed on the screen if we had not redirected it to the
SecurityDebug.txt file.
The output shown in the two figures above is produced with a security policy
determined only by the default system-wide policy file, the same shown in
Figure 36 on page 96 and Figure 37 on page 97.
104 Java 2 Network Security

The first step the system performs when running a program is to load classes.
The sequence of loading classes was seen in 3.5, “Java 2 Class Loading
Mechanism” on page 89. The classes in the system class path are first
loaded without checking for their protection domains since these classes are
shipped with the JVM and are supposed to be trusted. Next, in the sequence
of class loading, are the classes in the extensions directories, specified by the
java.ext.dirs system variable. Finally the classes specified by the value of
java.class.path, which gives the application class path, are loaded.

These classes have to be assigned to their protection domains. Hence the
getPermissions() method of SecureClassLoader is invoked. The argument
passed to the getPermissions() method is the code source of the
SomeProperties class.

In general, the getPermissions() method returns an object of type
PermissionCollection, which is a list of all the permissions given to the code
source supplied as argument to getPermissions(). To get the
PermissionCollection object, the security policy files that specify the
permissions to be granted to a given code source are examined. The security
properties file used in this example is the same default properties file
java.security that comes with the installation of the Java 2 SDK. The locations
of the policy files in the preference order it gives are:

policy.url.1=file: ${java. hone}/|ib/security/java. policy
policy.url.2=file:${user. hone}/.java. policy

The policy file located at file:${java.home}/lib/security/java.policy is accessed
first. Then the policy file specified at file:${user.home}/.java.policy is
accessed. The second file, .java.policy, is a user-defined policy file, which can
be written by the user to specify more information on permissions. Note that it
is not installed by default; rather, users must create it explicitly.

In this case, the file has not been explicitly created. Therefore in the debug
history, we see that the file ${user.home}/.java.policy is not found during
run-time. Once the security policy file has been found, the permissions
granted for different code sources are evaluated. The protection domain for
the classes in the extensions directories and application class path are
assigned, then the final set of permissions for those classes are listed.

The program is executed successfully because the classes in the application
class path (which is the current directory D:\itso\ch03) have the permissions
to access all the resources required to execute the program.

The New Java Security Model 105

3.9 Summary

This first part of the book has been a tour through the many aspects of Java
security. You should now have a good high-level understanding of the issues
involved and the mechanisms that are at work. In the next section we look

under the covers, at the detailed operation of the JVM and the security
classes.

106 Java 2 Network Security

Part 2. Under the Hood

© Copyright IBM Corp. 1997 1999 107

108 Java 2 Network Security

Chapter 4. The Java Virtual Machine

This part of the book is aimed primarily at people who wish to understand the
inner workings of the Java 2 security model.

Understanding how the various components of the Java Virtual Machine
(JVM) cooperate to provide a secure execution environment will enable you to
understand how to administer your own security policy using the new features
of Java 2 and to know when you should consider implementing your own
extensions to provide a more tailored security policy.

4.1 The Java Virtual Machine, Close Up

Later chapters examine in detail the key components of the JVM involved in
providing a secure environment. In this chapter we identify and introduce
those components.

The following figure shows a simplified representation of the JVM:

ClassLoader Class File Heap
Instance | » Verifier JiT
Class
Area
Primordial Class Loader Execution
Engine
Untrusted Classes
i
Trusted Classes Native
i Method Security
Native Methods Native Method Loader Area Manager
v
Operating System
[_] JavaCode
|:| Native Code

Figure 42. Components of the JVM

© Copyright IBM Corp. 1997 1999 109

The JVM components that play a role in the security framework are the class
loader, class file verifier and security manager.

4.1.1 The Class Loader

110

Before the JVM can run a Java program, it needs to locate and load the
classes which comprise that program into memory. In a traditional execution
environment, this service is provided by the operating system which loads
code from the file system in a platform-specific way.

The operating system has access to all of the low level 1/O functions and has
a set of locations on the file system which it searches for programs or shared
code libraries. Depending on the operating system, this can be a list of
directories to look in using environment variables, such as Path and
CLASSPATH, or a LINKLIST, which is included in each executable that
specifies where to find components.

In the Java run-time environment things are more complicated by the fact that
not all class files are loaded from the same type of location and may not be
under the local operating system’s control to ensure integrity. However, in
general, classes can be divided into two categories, trusted and untrusted.

* Trusted Classes

Trusted classes are class files that the JVM can assume are well behaved
and safe. By making this assumption, the JVM can execute these classes
more quickly because the verification and authorization steps can be
skipped.

On the Java 2 platform, where increased security is one of the main goals,
the classes that are considered trusted have been restricted even further
than in previous releases. By default, Java 2 considers only the Java
Runtime Environment (JRE) classes to be fully trusted. These are the
classes found in the boot class path. All others are subject to verification
and permission checking. These are the classes that form the JVM’s base
functionality. They are shipped with the JVM implementation and are
defined in the Java specification.

In reality, Java 2 uses an internal list of directories (boot class path) to look
in for these classes. We will look more at this in 6.1.1, “Loading Classes
from Trusted Sources” on page 146.

In previous releases, this list was the CLASSPATH environment variable
and all classes found in this path setting were considered trusted and
treated the same as the JRE core classes, unless, of course, an
application explicitly changed this policy with its own SecurityManager
implementation.

Java 2 Network Security

¢ Untrusted Classes

With Java 2, all local files outside the boot class path are not automatically
treated as trusted, neither are files loaded from a network source such as
a remote Web server. This simply means these class files will be verified
by the class file verifier upon loading and the code will be subjected to the
security policy. The permission structure is quite granular in Java 2 (see
3.2.3, “The Fine-Grained Access Control of Java 2" on page 74). There
are, in effect, levels, or more precisely groups, of trust (or untrust). This
grouping is the foundation for protection domains (see 3.3, “Java 2
Protection Domain and Permissions Model” on page 80).

For instance, Java 2 supports a new extension class framework. This
framework allows the group of classes in the extensions directory (see
3.4.2, “Extensions Framework” on page 86 and 6.1.2, “Loading Classes
from Untrusted Sources” on page 147) to be treated as extensions to the
JVM core classes. These classes are subjected to verification and the
security policy, but the default policy is AllPermission, as shown below in
the lines extracted from the java.policy file that comes with the installation
of the Java 2 SDK, Standard Edition, V1.2:

grant codeBase "file: ${java hone}/lib/ext/-" {
pernission java. security. Al Perm ssion;

H

With many possible sources for class files and the different checks required,
different mechanisms are required to locate and load classes.

The ClassLoader class, in the package java.lang, is an abstract class and
until Java 2 there was not a concrete implementation of a ClassLoader
shipped with the JDK.

Prior to Java 2, application writers, such as Web browser manufacturers,
were required to implement any class loading requirements beyond those the
JVM’s internal class loader would provide. This internal loader would have
loaded classes from the local file system from locations specified by the
CLASSPATH system environment variable.

Beginning with Java 2, the internal loader is restricted to handling only the
JVM’s core and extension classes. A new class, SecureClassLoader, in the
package java.security, extends ClassLoader to provide function to build the
protection domains for a class. Another new class, java.net.URLClassLoader,
extends SecureClassLoader to provide a general purpose class loader to
load class files from a list of local file directories or HTTP-based URLs.

The Java Virtual Machine 111

Application developers using Java 2 still have a great deal of flexibility in
implementing their class loading and security requirements, but can now also
take advantage of a lot of function and a robust and flexible security model
built into the JDK.

4.1.2 The Class File Verifier

Some of the class files loaded by the JVM will come from untrusted sources.
These files need to be checked prior to execution to ensure that they do not
threaten the integrity of the JVM. The class file verifier is invoked by the class
loader to perform a series of tests on class files which are regarded as
potentially unsafe.

These tests check all aspects of a class file from its size and structure down
to its run-time characteristics. Only when these tests have been passed is the
file made available for use.

4.1.3 The Heap

The heap is an area of memory used by the JVM to store Java objects during
the execution of a program. Precisely how objects are stored on the heap is
implementation specific and this adds another level of security since it means
that a hacker can have no idea of how the JVM represents objects in memory.
This in turn makes it far more difficult to mount an attack that depends on
accessing memory directly.

One of the interesting features of the JVM design is that as objects are no
longer needed, they are automatically marked for garbage collection and at
some point the memory they occupied is freed up and made available for
reuse.

4.1.4 The Class Area

112

The class area is where the JVM stores class-specific information such as
static methods and static fields. When a class is loaded and has been
verified, the JVM creates an entry in the class area for that class.

Often the class area is simply a part of the heap. In this case classes may
also be garbage collected once they are no longer used. Alternatively, if the
JVM implementation places the class area in a separate part of memory, it
will require additional logic on the part of the JVM implementer to clean up
classes which are not being used.

When a just-in-time (JIT) compiler is present, the native code generated for
class methods is also stored in the class area.

Java 2 Network Security

4.1.5 The Native Method Loader

Many of the core Java classes, such as those classes representing GUI
elements or networking features, require native-code implementations to
access the underlying operating system functions. These native methods are
composed of a Java wrapper — which specifies the method signature — and a
native-code implementation — often a DLL or shared library.

The native method loader is responsible for locating and loading these shared
libraries into the JVM. Note that it is not possible for the JVM to perform any
validation or verification of native code.

Once native code has been loaded, it is stored in the native method area for
speedy access when required.

4.1.6 The Security Manager

Even when untrusted code has been verified, it is still subject to run-time
restrictions. The security manager is responsible for enforcing these
restrictions. It is the security manager component, of a Web browser's JVM
for instance, that prevents applets from reading or writing to the file system,
accessing the network in an unsafe way, making inquiries about the run-time
environment, printing and so on.

Prior to Java 2, in an application such as a Web browser, the security
manager was provided by the application manufacturer as part of the
application.

In Java 2, the manufacturer now has an alternative. He can choose to use the
policy based SecurityManager implementation provided with the JDK and
supply policy information to be added to the policy database. The
manufacturer can still provide his own security manager, if he so chooses,
adding to or replacing function supplied by the JDK’s SecurityManager.

4.1.7 The Execution Engine

The execution engine is the heart of the JVM. It is the virtual processor which
executes bytecode. Memory management, thread management and calls to
native methods are also performed by the execution engine.

4.1.8 Just-in-Time Compilers

Since Java bytecodes are interpreted at run time in the execution engine,
Java programs generally execute more slowly than the equivalent native
platform code. This performance overhead occurs because each bytecode

The Java Virtual Machine 113

114

instruction must be translated into one or more native instructions each time it
is encountered.

The performance of Java is still significantly better than that of other
interpreted languages because the bytecode instructions were designed to
be very low level — the simplest instructions have a one-to-one correlation
with native machine code instructions.

Nevertheless, Sun saw that there would be a need to improve the execution
performance of Java and to do so in a way which did not compromise the
Write Once, Run Anywhere goal and did not undermine the security of the
JVM.

Since all bytecode instructions are ultimately translated to native machine
code by the JVM interpreter, the principal ways of speeding performance
involve making this translation as quick as possible and performing it as few
times as possible.

The security and portability of Java is dependent on the bytecode and class
file format. This is what enables code to be run on any JVM and to be
rigorously tested to ensure that it is safe prior to execution. Translating
bytecode into native machine code and producing an executable file as
happens with other programming languages would compromise the security
and portability of Java. Thus, any translation must occur after a class file has
been loaded and verified.

Two options present themselves:

1. Translate the whole class file into native code as soon as it is loaded and
verified.

2. Translate the class file on a method-by-method basis as needed.

The first option seems quite attractive but it is possible that many of the
methods in a class file will never be executed. Time to translate these
methods is therefore wasted. The second option was the one selected by
Sun. In this case, the first time a method is called, it is translated into native
code, which is then stored in the class area. The class specification is
updated so that future calls to the method run the native code rather than the
original bytecode.

This meets our requirement that bytecode should be translated as few times
as is necessary — once when the code is executed and not at all in the case of
code which is not executed.

Java 2 Network Security

The process of translating the bytecode to native code on the fly is known as
JIT compilation and performed by the JIT compiler. Sun provided a
specification for how and when JIT compilers should execute and vendors
were left to implement their own JIT compilers as they chose.

JIT-compiled code executes much more quickly than regular bytecode —
between 10 to 50 times faster — without impacting portability or security.

4.2 Summary

You now have a good idea of how the various components of the JVM work
together. The next chapters examine the principle elements of the Java
security architecture — the class file structure, the class loader, the bytecode
verifier and the security manager — in greater detail.

The Java Virtual Machine 115

116 Java 2 Network Security

Chapter 5. Class Files in Java 2

In this chapter we explore a number of topics:

« The relationship between Java class files and conventional object and
executable files

* The threat presented by the class file format

* How bytecodes aid security

In addition, we show you:
« A description of the contents of a Java class file

¢ A description of the ways to reduce the threat of decompilation

5.1 The Traditional Development Life Cycle

As you have seen earlier, Java is a compiled language. That is, source code
is written in a high-level language and then converted through a process of
compilation to a machine-level language, the Java bytecode, which then runs
on the Java Virtual Machine (JVM). Before we look more closely at Java
bytecode, we will quickly review the differences between high- and low-level
languages, the compilation process and run-time behavior of a more
traditional environment.

Program files are recognized in different ways depending on the operating
environment. On most desktop operating systems, program files are
recognized first by the file extension (such as exe or com) and secondly by
the file format itself. Executable files contain information in a header which
informs the operating system that this file is a program and has certain
requirements in order to run. These requirements include such things as the
address at which the program should be loaded, other supporting files which
will be required and so on.

When the operating system attempts to run a program file, it loads the file and
ensures that the header is legitimate, that is, that it describes a real program.
The header also indicates where the starting point of the program itself is.
The program is stored in the program file as machine code instructions.
These instructions are numeric values which are read and interpreted by the
processor as it executes. Having validated the header, the operating system
starts executing the code at the indicated starting point.

From the above description, it should be clear that anyone with a good
understanding of the header format and of the machine code for a particular

© Copyright IBM Corp. 1997 1999 117

operating system could construct a program file using little more than an
editor capable of producing binary files.

Of course this is not how programs are produced. The closest that anyone
gets to this is writing assembler code. Assembler language programming is
very low-level. Its statements, after macro expansion, usually translate into
one or at most two machine language instructions. The assembler source
code is then fed through an assembler which converts the (almost) human
readable code into machine code, generates the appropriate header and
finally outputs an executable file.

Most programs, however, are written in a high-level language such as C, C++,
COBOL and so forth. It is the task of the compiler to translate high-level
instructions into low-level machine code in the most optimal way. The
resultant machine code output is generally very efficient, although —
depending on the compiler — it may be possible to write more efficiently in
assembler language. Because different compilers manage the translation and
optimization process in different ways, they will produce different output for
the same source code. In general it is true to say that the higher level the
source language, the more scope there is for variation in the resultant
executable file since there will be more possible translations of each
high-level statement into low-level machine code.

During the compilation process, high-level features such as variable and
function names are replaced by references to addresses in memory and by
machine code instructions, which cause the appropriate address to be
accessed (in the case of variables) or jumped to (in the case of functions).

In the case of both assembler language and high-level language
programming, the output of the assembler or compilation phase is generally
not immediately executable. Instead, an intermediate file (known as an object
module or object filel) is produced. One object file is produced for each
source file compiled, regardless of the content or structure of the source
code. These object modules are then combined using a tool called a linker
which is responsible for producing the final executable file (or shared library).
The linker ensures that references to a function or variable in one object
module from another object module are correctly resolved.

1 An unfortunate nomenclature and nothing at all to do with object-oriented programming. If the source file is the subject
of the compilation process then the resultant file must be the object.

118 Java 2 Network Security

Figure 43. Program Compilation and Linking

In summary then:

« An object file contains the machine code which is the actual program plus
some additional information describing any dependencies on other object
files.

¢ An executable file is a collection of object files with all inter-file
dependencies resolved, together with some header information which
identifies the file as executable.

5.2 The Java Development Life Cycle

Moving back to the world of Java, we see that it is a high-level programming
language and that bytecode is the low-level machine language of the JVM.
Java is an object-oriented language; that is, it deals primarily with objects and
their interrelationships. Objects are best thought of in this context as a
collection of data (fields, in Java parlance) and the functions (methods) which
operate on that data. Objects are created at run time based on templates
(classes) defined by the programmer.

A Java source file may contain definitions for one or more classes. During
compilation each of these classes results in the generation of a single class
file. In some respects, the class file is the Java equivalent of an object module
rather than an executable program file; that is, it contains compiled machine
code, but may also contain references to methods and fields which exist in
other classes and hence in other class files.

Class files are the last stage of the development process in Java. There is no
separate link phase. Linking is performed at run time by the JVM. If a
reference is found within one class file to another, then the JVM loads the
referenced class file and resolves the references as needed.

The astute reader will deduce that this demand loading and linking requires
the class file to contain information about other class files, methods and fields

Class FilesinJava2 119

which it references, and in particular, the names of these files, fields and
methods. This is in fact the case as we shall see in 5.3, “The Java 2 Class
File Format” on page 124.

Even more astute readers may be pondering some of the following questions.

¢ Is it possible to compile Java source code to some machine language
other than that of the JVM?

« |s it possible to compile some other high-level language to bytecode for
the JVM?

« |Is there such a thing as an assembler for Java?

« What is the relationship between the Java language and bytecode?
The simple answer to the first three questions is yes.

It is possible with the appropriate compiler (generally referred to as a native

code compiler) to translate Java source code to any other low-level machine
code, although this rather defeats the Write Once, Run Anywhere proposition
for Java programs, since the resultant executable program will only run on the
platform for which it has been compiled.

It is also possible to compile other high-level languages into Java bytecode,
possibly via an interim step in which the source code is translated into Java
source code which is in turn compiled. Bytecode compilers already exist for
Ada, COBOL, BASIC and NetREXX (a dialect of the popular REXX
programming language).

Finally, Jasmin is a freely available Java assembler which allows serious
geeks to write Java code at a level one step removed from bytecode. Java
Grinder? is a another freely available Java assembler and disassembler and
is very simple to use. Let’s consider the following Java code:

inport java.io.*;

public class Count

{

public static void main(String[] args) throws Exception

{
int count=0;
if (args.length >= 1)

Figure 44. (Part 1 of 2). Count.java

2 Java Grinder can be downloaded from http://www-personal.umich.edu/~mcafee/javal.

120

Java 2 Network Security

FilelnputStreamfis = new Fil el nput Strean{args[0]);
try
{
while (fis.read() !'= -1)
count ++;
Systemout.println("H! W counted " + count + " chars.");
} /1 try{} block ends
catch (Exception e)
{
Systemout. printl n("No characters counted");
Systemout. printl n("Exception caught" + e.toString());
} /1 catch(){} bl ock ends
} /1 if block ends
el se
Systemerr. println("UWage: Gount file_nane");
} // main() nethod ends
} /1 class Gount ends

Figure 45. (Part 2 of 2). Count.java

We compile this code using the Java compiler:

javac Qount.java

This command produces the Count.class file. This is a simple Java program
that counts the number of characters in a file. The file name is given as an
argument on the command line. If the Count program is able to count the
characters in the file, it prints the number of characters counted, and if not, it
prints the exception. We run this program against this sample text file, called
itso.txt:

Marco Pistoia
Duane Rel | er
Deepak Qupta
MIind Nagnur
Ashok Ranani

Figure 46. itso.txt

Both the Count.class and itso.txt files are stored in the same directory, say
D:\itso\ch05, and we launch the command:

java Count itso.txt

Class FilesinJava2 121

This is the output we receive:
H! V& counted 70 chars

On disassembling the class file with the freely available software Java
Grinder, we get an output file, which is shown in the following figures:

public class Gount extends (bj ect {
public void <init>() {
nmaxstack 1
al oad_0
i nvokespeci al void (hject. <init>()
return
}
public static void main(String[]) throws Exception {
nmaxstack 4
iconst_O
istore 1
al oad 0
arrayl ength
iconst 1
if_icnplt |abel 4
new Fi | el nput Stream
dup
al oad_0
i const_O
aal oad
i nvokespeci al void FilelnputStream<init>(Sring)
astore 2
try // catchl
goto | abel 2
| abel 1: iinc11
| abel 2: al oad 2
i nvokevirtual int FilelnputSreamread()
iconst_ni
i f_icnpne |abel 1
getstatic PrintStream System out
new S ringBuf fer
dup
ldc "H! W& counted "
i nvokespeci al void StringBuffer.<init>(String)
iload 1
i nvokevirtual StringBuffer StringBuffer.append(int)
Idc " chars."

Figure 47. (Part 1 of 2). Disassembled Count.class File

122 Java 2 Network Security

i nvokevirtual StringBuffer StringBuffer.append(String)
invokevirtual String StringBuffer.toSring()
i nvokevirtual void PrintStreamprintln(Sring)

catchl: catch Exception: | abel 3
goto | abel 5
| abel 3: astore 3

getstatic PrintStream System out
I dc "No characters counted"
i nvokevirtual void PrintStreamprintln(String)
getstatic PrintStream System out
new S ringBuf fer
dup
| dc "Exception caught”
i nvokespeci al void StringBuffer.<init>(Sring)
al oad_3
i nvokevirtual String Throwabl e.toString()
i nvokevirtual StringBuffer StringBuffer.append(String)
invokevirtual String StringBuffer.toString()
i nvokevirtual void PrintStreamprintln(String)
goto | abel 5
| abel 4: getstatic PrintStream Systemerr
I dc "Usage: Count file_narme"
i nvokevirtual void PrintStreamprintln(Sring)
| abel 5: return

}

Figure 48. (Part 2 of 2). Disassembled Count.class File
On assembling it again, we get the same functioning as the original class file.
Notice that even if someone changes your code by simply changing the

message:

H! V¢ counted count chars

to something undesirable like:

H! Quess what else | did to this program

the result can be disturbing. It is possible to manipulate it even further and
add statements that can vary from serious things like reading files from your
system to merely annoying things like throwing up continuous messages.
Class files are most vulnerable when they are in transit along the information
superhighway. There are ways to help prevent or at least detect this
tampering. The Java 2 SDK provides tools for sealing classes in JAR files, as

Class FilesinJava2 123

we will see in 12.1.1, “Manifest File” on page 387 and 12.6, “The JAR Bug —
Fixed In Java 2 SDK, Standard Edition, V1.2.1" on page 461.

The following figure gives a pictorial model of how different languages, such
as COBOL, C++, NetREXX and Java, are compiled in different ways, as we
discussed in 5.1, “The Traditional Development Life Cycle” on page 117:

Object
Module

COBOL
Source

Bytecode
Compiler

Executable

C++ Bytecode Object
Source Compiler | Module

Native Compiler

Y

Virtual
Machine
NetREXX

Figure 49. Compiler Models

5.3 The Java 2 Class File Format

The class file contains a lot more information than its cousin, the executable
file. Of course, it still contains the same type of information: program
requirements, an identifier indicating that this is a program and executable
code (bytecode, in this case). However, it also contains some very rich
information about the original source code.

124 Java 2 Network Security

The high level structure of a class file is shown in the following table:

Table 2. Class File Contents

Field

Description

Magic number

Four bytes identifying this file as a Java class file. Always set to Ox CAFEBABE

JVM minor version

The minor version number of the JVM on which this class file is intended to run

JVM major version

The major version number of the JVM on which this class file is intended to run

Constant pool count

Number of entries in Constant Pool Table

Constant pool

See 5.4, “The Constant Pool” on page 129

Access flags

Mask of modifiers used with class and interface declaration

Class name

The name of this class

Super class name

The name of the superclass in the Java class hierarchy

Interfaces count

Number of direct super interfaces

Interfaces

Description of the interfaces implemented for this class

Fields count

Number of structures in the fields table

Fields

Description of the class variables defined for this class

Methods count

Number of structures in the methods table

Methods

Description of the methods declared by this class

Attributes count

Number of attributes in the attributes table

Attributes

Attributes associated with the class file

Much here is as we would expect. There is information to identify the file as a
Java class file, as well as the JVM on which it was compiled to run. In
addition, there is information describing the dependencies of this class in
terms of classes, interfaces®, fields, and methods. There is much more
information than this however, buried within the constant pool (see 5.4, “The
Constant Pool” on page 129): information which includes variable and method
names within both this class file and those on which it depends.

Let’'s explain in more detail the fields listed in Table 2:

3 Each Java class has only a single superclass, and it inherits variables and methods from that superclass and all its
superclasses. This limitation makes the relationship between classes easy to understand and design, but it can also be
restrictive. To solve this problem, Java introduces the concept of interfaces, which collect method names (not
implementations) into one place, and then allow you to add those methods as a group to the various classes that need

them.

Class FilesinJava2 125

« The magic number is a hexadecimal number identifying the class format
and is always OXCAFEBABE®.

e The values of minor version and major version are the minor and major
versions of the compiler that produced this class.

e The constant pool is a table of variable length structures representing
various string constants, class names, field names, and other constants
that are referred to.

* The access flag is a mask of modifiers used with the class and interface
declarations (for example, ACC PUBLI Cfor public class or interface,
ACC FI NAL for a final class etc. — see 2.1.1.2, “Access to Classes, Fields
and Methods” on page 42).

* The interfaces field is an array of entries describing the interfaces
implemented by the class.

* The fields field is an array of entries describing the class variables
declared by this class or interface. It does not include those inherited.

* The methods field is an array of entries describing the methods declared
by this class or interface.

* The only attribute defined for the attributes table is SourceFi | e, which
indicates the name of the source file from which the class was created.

In addition to managing dynamic linking, the JVM must also ensure that class
files contain only legal bytecode and do not attempt to subvert the run-time
environment, and to do this, still more information is required in the class.
More details of how this works are in Chapter 6, “The Class Loader and Class
File Verifier” on page 145.

The main thing to understand at this point is that the inclusion of all of this
information makes the job of a hacker much simpler in many ways. We
discuss this in the next section.

5.3.1 Decompilation Attacks

One of the areas seldom discussed when considering security
implications of deploying Java is that of securing Java assets. Often
considerable effort is put into developing software and the resultant
intellectual property can be very valuable to a company.

Hackers are a clever (although potentially misguided) bunch and there are
many reasons why they might want to get inside your code. Here are a
few:

4 Just out of curiosity, OXCAFEBABE corresponds to the decimal number 3405691582.

126 Java 2 Network Security

« To steal a valuable algorithm for use in their own code
» To understand how a security function works to enable them to bypass it

« To extract confidential information (such as hard-coded passwords and
keys)

* To enable them to alter the code so that it behaves in a malicious way
(such as installing Trojan horses or viruses)

« To demonstrate their prowess

« For their entertainment (much as other people might solve crosswords)

The chief tool in the arsenal of the hacker in these cases is the decompiler. A
decompiler, as its name suggests, undoes the work performed by a compiler.
That is, it takes an executable file and attempts to re-create the original
source code.

Advances in compiler technology now make it effectively impossible to go
from machine code to a high-level language such as C. Modern compilers
remove all variable and function names, move code about to optimize its
execution profile and, as was discussed previously, there are many possible
ways to translate a high-level statement into a low-level machine code
representation. For a decompiler, to produce the original source code is
impossible without a lot of additional information which simply is not shipped
in an executable file.

It is, however, very easy to recover an assembler language version of the
program. On the other hand, the amount of effort required to actually
understand what such a program does makes it far less worthwhile to the
hacker to do.® So, it is fair to say that it is impossible to completely protect any
program from tampering.

When the Java Development Kit (JDK) 1.0.2 was shipped, a decompiler
named Mocha was quickly available which performed excellently. It was able
to recover Java source code from a class file. It was so successful that at
least one person used it as a way of formatting his source code! In fact the
only information lost in the compilation process (and unrecoverable using
Mocha) are the comments. However, if meaningful variable names are used
in the code (such as account Nunber, or passwor d), then it is readily possible to
understand the function of the code, even without the comments.

5 Nevertheless, it is done. Much pirated software is distributed in a cracked format, that is, with software protection
disabled or removed.

Class FilesinJava2 127

Already, there are decompilers available, like SourceAgain®, which can
decompile Java codes including those programs written with the Java 2 SDK
using new APIs.

Here is what a test decompiler returned for the same Count.class file we used
in 5.2, “The Java Development Life Cycle” on page 119 (the originating
source code Count.java was shown in Figure 44 on page 120 and Figure 45
on page 121):

{

inport java.io.FilelnputStream
inport java.io.PrintSream
public class Gount

public static void main(String[] as) throws Exception

{
int i =0;
if (as.length >= 1)
{
FilelnputStreamfil ei nputstreaml = new Fil el nput Stream (as[0]);
try
{
while (fileinputstreanil.read() !'= -1)
++ ;
Systemout.println ("H! W counted " +i + " chars.");
}
cat ch(Excepti on excepti onl)
{
Systemout. printl n("No characters counted");
Systemout . printl n("Exception caught” + exceptionl.toSring());
}
}
el se
Systemerr. println("Uage: Gount file_nane");
}

Figure 50. Decompiled Count.class

You can see that the code has been successfully decompiled. Only small
things like the name of the variables are changed.

There can be some advantages of having a decompiler:

1. Recovery of lost source code (by accident or otherwise)

6 See http://www.ahpah.com/product.html.

128

Java 2 Network Security

2. Migration of applications to a new hardware platform

3. Translation of code written in obsolete languages not supported by
compiler tools nowadays

4. Determination of the existence of viruses or malicious code in the program

5. Recovery of someone else’s source code (to determine an algorithm for
example)

As long as you are decompiling your own code with your own decompiler or a
freely available one, you are safe. But once you decompile someone else’s
code, there may be legal and moral issues. Many programs are protected by
copyright laws and license agreements.

— Should You Have a Decompiler in Your Toolkit?

If you can read Java source code, it is a good idea to have a decompiler
available, to check the function of Java class files that you receive,
particularly if they come from an unknown origin.

The only problem with this is that you are stepping into a legal and moral
mine field. Decompilers are downloadable from a number of sources and
also are in some commercial Java development packages. However there
have been strong attempts to prevent them being available in this way,
because it allows unscrupulous people to steal the source code of
proprietary products.

The authorsi view is that, until verifiable Java is more generally available,
there is a place for the decompiler as a tool for checking what is really
going on inside a class file.

5.4 The Constant Pool

We said earlier that the constant pool contains a great deal of information. In
fact it contains an interesting mixture of items. The constant pool combines
the function of a symbol table for linking purposes as well as a repository for
constant values and string literals present in the source code. It may be
considered as an array of heterogeneous data types which are referenced by
index number from other sections of the class file such as the Field and
Method sections. In addition, many Java bytecode instructions take as
arguments numbers which are in turn used as indexes into the constant pool.

Class FilesinJava2 129

The following table shows the types of entries in the constant pool, as defined
by the current JVM:

Table 3. Constant Pool Entry Types

Type names Used for... Contains...
UTF8 String in UTF8 format? An array of bytes making up the
string
Integer A constant 32-bit signed integer value The numeric value of the integer
Long A constant 64-bit signed integer value The numeric value of the long
Float A constant 32-bit floating point value The numeric value of the float
Double A constant 64-hit double precision The numeric value of the double
floating point value
String A Java string literal Reference to the UTF8
representation of the string
ClassRef Symbolic reference to a class Reference to a UTF8 representation
of the class name
FieldRef Symbolic reference to a field Reference to a ClassRef for the class
in which the field occurs and a
NameAndType for this field
MethodRef Symbolic reference to a method Reference to a ClassRef for the class
in which the method occurs and a
NameAndType for this method
InterfaceMethodRef Symbolic reference to an interface Reference to a ClassRef for the
method interface in which the field occurs
and a NameAndType for this method
NameAndType Shorthand representation of a field or Reference to a UTF8 representation
method signature and name of the name and another to the
signature®

a. A shorthand for writing Unicode strings.

b. The signature of a field is simply its type. The signature of a method is both its return type and the types of any
parameters which it takes. Method signatures are represented by a pair of parentheses with the parameter types enclosed
and separated by semicolons. The parentheses are followed by the return type of the method. See Appendix B, “Signature
Formats” on page 647, for a full description of Java type representations.

As an example of a constant pool, let’s take a look at the PointlessButton
example we met in Appendix 2.1.1.1, “Class Consciousness” on page 36 (the
source code PointlessButton.java is shown in Figure 17 on page 37). The

130 Java 2 Network Security

Table 4. Constant Pool Example

following table shows a dump of the constant pool for the PointlessButton

class:

Index Type Value

1 UTF8 bytes = "Point| essButton"

2 Class name = (1) "PointlessButton”

3 UTF8 bytes = "javal appl et/ Appl et "

4 Class nane = (3) "javal appl et/ Appl et"

13 NameAndType | nane = (8) "donowt", type = (7) "Ljanjar/exanpl es/Button;"

14 FieldRef class = (2) "PointlessButton", nane and type = (13) "donowt",
"Lj am ar/ exanpl es/ Butt on; "

17 UTF8 bytes = "Dd Nothing "

18 String value = (17) "Did Nothing "

24 MethodRef class = (20) "java/lang/ String", name and type = (23) "val ueG",
"(Lj ava/ | ang/ (hj ect ;) Ljava/l ang/ String;"

25 UTF8 bytes = "<init>"

33 NameAndType | nane = (31) "append", type = (32) "(l)Ljava/lang/ StringBuffer;"

34 MethodRef class = (16) "java/lang/ StringBuffer", name and type = (33)
"append", "(l)Ljava/lang/ SringBuffer;"

52 MethodRef class = (49) "java/ant/Button", nane and type = (51) "set Label ",
"(Ljava/l ang/ String;) V'

53 UTF8 bytes = "Code"

54 UTF8f bytes = "() V'

55 NameAndType | nane = (25) "<init>", type = (54) "()V'

56 MethodRef class = (4) "javal appl et/ Appl et”, nane and type = (55) "<init>",

"OV'value = (37) " tines"

The full table has 83 entries, not bad for such a simple program. Looking at

this data you can see that there is a wealth of information here.

As an example of how a method is represented, let's look at entry number 56.
This is a MethodRef entry and as such it has two further references to track

down:

Class Files in Java 2

131

132

1. The first is the Class entry (4), which in turn references a UTF8 entry (3)
for the class name: java.applet.Applet.

2. The second is the NameAndType entry, which identifies the method name
and the type of the method. The NameAndType entry (55) references a
UTF8 entry (25) for the method name <i ni t >, and another UTF8 entry (54)
for the type ()M

The name used here is a little special: <i ni t>is not a valid name in itself,
but it is used by the JVM to represent a constructor for a class. The type
entry () Vindicates a method which takes no parameters (empty
parentheses) and returns no value (Vfollowing the parentheses indicates a
return type of void - Java’s term for no value). These details are explained
in Appendix B, “Signature Formats” on page 647.

From this little jaunt through the constant pool we see that the
PointlessButton class calls the java.applet.Applet default constructor.
Following a similar process, we can identify all of the other fields and
methods utilized in this class. Furthermore, by finding where entry number 56
is referenced in the bytecode, we can build a clear picture of what this code
does.

This is precisely what the j avap utility, shipped with the Java 2 SDK, does. By
examining the constant pool and other parts of the class file structure, it is
able to produce a high-level picture of the class file. Here's the output of j avap
when run against PointlessButton.class with the command:

javap Pointl essButton

Gonpi | ed fromPoint| essButton. j ava
public class PointlessButton extends java. appl et. Appl et i npl enent s
java. aw . event . Acti onLi stener {
jamar. exanpl es. Butt on donowt ;
int count;
public PointlessButton();
public voi d acti onPerforned(j ava. awt . event . Acti onEvent);
public void init();

\} J

As we already knew, PointlessButton extends java.applet.Applet and as such
it must call the Applet constructor — the method reference we saw by tracing
through the constant pool.

If this were all that j avap did, then it would still be a useful tool for examining
class files for which we didn’t have the source code in an attempt to reuse
them or work out what they were doing. But it is not all. By using additional

Java 2 Network Security

option switches it is possible to get richer information, including even the
disassembled bytecode. The following is the result of running j avap with the
-c (disassemble the code) and - privat e (show all classes and members)

options enabled:

Gonp

}

Met h

0
1
4
5
8
9
11
14
17
18
19
22

Met h

iled from Pointl essButton.java

public class PointlessButton extends java.applet.Applet inplenments java.awt .event. ActionListener {
j anj ar. exanpl es. Button donowt ;

int count;

public PointlessButton();

public void actionPerforned(java. aw . event. Acti onEvent);
public void init();

od Pointl essButton()
al oad_0
i nvokespeci al #15 <Met hod j ava. appl et. Appl et () >
al oad_0
new #8 <O ass j anj ar . exanpl es. Butt on>
dup
Idc #5 <String "Do Not hi ng">
i nvokespeci al #17 <Met hod j anj ar . exanpl es. Butt on(j ava. | ang. Stri ng) >
putfield #24 <Fi el d janjar. exanpl es. Button donowt >
al oad_0
iconst_0O
putfield #23 <Field int count>
return

od voi d actionPerforned(java. awt. event. Acti onEvent)
al oad_0
getfield #24 <Field janjar.exanpl es. Button donow >
new #14 <d ass java. |l ang. Stri ngBuf f er>
dup
ldc #4 <String "Did Nothing ">
i nvokespeci al #18 <Met hod j ava. | ang. StringBuffer(java.lang. String)>
al oad_0
dup
getfield #23 <Field int count>
iconst_1
i add
dup_x1
putfield #23 <Field int count>
i nvokevirtual #21 <Method java.lang. StringBuffer append(int)>
ldc #2 <String " time">
i nvokevirtual #22 <Method java.lang. StringBuffer append(java.lang.String)>
al oad_0
getfield #23 <Field int count>
iconst_1
if_icnpne 45
Idc #1 <String "">
goto 47
Idc #6 <String "s">
i nvokevirtual #22 <Method java.lang. StringBuffer append(java.lang.String)>
i nvokevirtual #27 <Method java.lang. String toString()>
i nvokevirtual #25 <Method void setLabel (java.lang. String)>
return

Figure

51. (Part 1 of 2). Output of the javap Command with Options -c and -p

Class Files in Java 2

133

Met hod voi d init()

al oad_0

new #10 <d ass j ava. awt . Bor der Layout >

dup

i nvokespeci al #16 <Met hod j ava. awt . Bor der Layout () >

i nvokevirtual #26 <Method void setLayout (java. awt . Layout Manager) >
al oad_0

ldc #3 <String "Center">

al oad_0

getfield #24 <Field janjar. exanpl es. Button donowt >

i nvokevirtual #19 <Method java.aw . Conponent add(java.lang. String,

pop

al oad_0

getfield #24 <Field janjar.exanpl es. Button donow >
al oad_0

j ava. awt . Conponent) >

i nvokevirtual #20 <Method voi d addActi onLi stener (java. awt . event . Acti onLi stener) >

return

Figure 52. (Part 2 of 2). Output of the javap Command with Options -¢ and -p

Here we have the complete code for all of the methods albeit in a language

that we could define as Java assembler. By appropriate use of a binary editor
it would be a relatively simple matter for a hacker to subvert the function of
this code. For example, simply changing the value of the string O d Not hi ng in
the constant pool, we could cause the button to print a rude message when
pressed. This is a trivial example but hopefully illustrates the vulnerability of
class files.

5.4.1 Beating the Decompilation Threat

The very real threat of decompilation is not going to go away. Decompilers
work by recognizing patterns in the generated bytecode which can be
translated back into Java source code statements. The field and method
names required to make this source code more readable are readily available
in the constant pool as we have seen.

To date, there have been two main approaches to thwarting would-be
decompilers: code obfuscation and bytecode hosing":

1. The principle of obscuring (or obfuscating) source code to make it more
difficult to read is not new. In the UNIX world — where incompatibilities
between platforms and implementations make it necessary to distribute
many applications in source format — shrouding is common. This is the
process of replacing variable names with meaningless symbols, removing
comments and white space and generally leaving as little human readable
content in the source code without impacting its compilability. The end
result of obfuscation is that although a class file will decompile into valid

7 For the benefit of non-US readers, if something is hosed, it is seriously damaged, in this case deliberately.

134

Java 2 Network Security

Java, that valid Java will not be very readable by humans. Note that
although obfuscation certainly makes decompilation more difficult and the
Java file not readable, it might not protect your code against a determined
adversary. You can think of copyrighting your code, although it is not an
ideal solution, but it is better than nothing.

After the release of Mocha, the author released Crema, a further appalling
coffee pun, which was designed to thwart Mocha. It did this by replacing
names in the constant pool with illegal Java variable names and reserved
words (such asif and cl ass). This had no affect on the JVM, which merely
used the names as tags to resolve references without attributing any
meaning to them. Nor did it actually prevent decompilation. It did however
mean that the decompiled code was more difficult to read and understand
and also would not recompile as the Java compiler would object to the
illegal names.

. Bytecode hosing is more subtle and is aimed at preventing the decompiler
from recognizing patterns within the bytecode from which it could recover
valid source. It does this by breaking up recognizable patterns of
bytecodes with do-nothing instruction sequences (such as the NOP code
or a PUSH followed by a POP). A good example of a bytecode hoser is
HoseMocha.

Of course, this approach can be defeated, since once a hacker has
established what types of do-nothing sequences are being generated by a
bytecode hoser, he or she can modify the behavior of the decompiler to
ignore such sequences. Furthermore, attempts to decompile hosed
bytecode will generally result in broadly readable code interspersed with
unintelligible passages rather than completely unreadable code.

In addition to this, bytecode hosers present a more insidious problem to
Java users. As we have already seen in Appendix 2.1.2, “The Execution
Environment” on page 44, the principal method of optimizing Java
performance is in the JVM and in particular through the use of just-in-time
(JIT) compilation. And how do JIT compilers work? Yes, you guessed it,
they recognize patterns in the generated bytecode that can be optimized
into native code. Breaking up these patterns through the use of a bytecode
hoser can seriously impact the performance of JIT compilers.

For this reason, it is safe to assume that Java compilers will not follow the
same evolutionary path as their native compiler cousins in terms of
generating wildly differing output for the same source code since this too
would thwart JIT compilers.

This is a well understood dilemma in security circles: the trade off between
security and performance/price/ease-of-use.

Class FilesinJava2 135

The only safe course of action is to assume that all Java code will at some
point be decompiled.

For developers this means ensuring that no sensitive information, like
passwords or cryptographic keys, is distributed in the class file either
algorithmically or as hard-coded values. This can be accomplished by
building client/server type applications with a Java presentation layer which
can be run anywhere and a secured server side where sensitive information
or algorithms can be stored. This may also involve extending the development
and testing process to ensure that distributed Java code is safe.

Also note that if a hacker is able to decompile your program, he can look for
weaknesses in its security. This will help him in attacking your system more
efficiently. Browser JVMs may become targets of such attacks.

Finally you may decide that the existing method of protecting distributed
code, that of legal sanction under copyright laws, is sufficient to deal with any
serious threat to Java-based intellectual property. However, in a networked
environment, these assumptions cannot be made so lightly.

5.5 Java Bytecode

In the next chapter we look at how the Java class loader and class file verifier
provide a level of security against rogue class files. This section prepares us
for that chapter by looking more closely at bytecode.

5.5.1 A Bytecode Example

Though you may not realize it, you have already seen an example of bytecode
or at least its human readable format. The output generated by the j avap
command when we ran it with the -c flag (see Figure 51 on page 133 and
Figure 52 on page 134) contained a disassembly of each of the methods in
the class file.

Let’s consider now the actionPerformed() method of the PointlessButton
class:

public voi d actionPerforned(j ava. ant . event . Acti onEvent €)

{

donowt . set Label ("Od Nothing " + +count + " tine" + (count == 1?2 "" : "s"));

}

We compile the PointlessButton.java file with the Java compiler j avac and
subsequently disassemble the class file with the command:

136 Java 2 Network Security

javap -c -private PointlessButton

In this process, the actionPerformed() method generates the code snippet in

the following figure:

0

(oo NI

10
13
14
15
18
19
20
21
24
27
29
32
33
36
37
40
42
45
47
50
53
56

Met hod voi d acti onPerf orned(j ava. ant . event . Acti onEvent)

al oad_0

getfield #24 <Fi el d janm ar. exanpl es. Butt on donowt >

new #14 <Qd ass java.lang. StringBuf fer>

dup

ldc #4 <Sring "D d Nothing ">

i nvokespeci al #18 <Method java. |l ang. StringBuffer(java.lang. String)>
al oad_0

dup

getfield #23 <Field int count>

iconst 1

i add

dup_x1

putfield #23 <Field int count>

i nvokevi rtual #21 <Method java.lang. StringBuffer append(int)>

ldc #2 <String " time">

i nvokevi rtual #22 <Method java.lang. StringBuffer append(java.lang. Sring)>
al oad_0

getfield #23 <Field int count>

iconst_1

if_icnpne 45

ldc #1 <String "">

goto 47

Idc #6 <Sring "s">

i nvokevi rtual #22 <Method java.lang. StringBuffer append(java.lang. Sring)>
i nvokevi rtual #27 <Method java.lang. String toString()>

i nvokevi rtual #25 <Method voi d set Label (j ava.l ang. S ring)>

return

Figure 53. Disassembled actionPerformed() Method

Notice the #n references in the bytecode such as instruction 45:
45 |dc #6 <String "s">

The #6 reference here refers to entry number 6 in the constant pool, while the
text after the #6 reference is a comment for the benefit of the reader showing
that entry #36 in the constant pool is a String with value s.

The next thing that you should notice about this code is that even at this level,
there are still references made to methods and fields. From this you may infer

Class FilesinJava2 137

that Java is object-oriented even at the bytecode level and you would be
correct.

We are not going to analyze all of this code, there are other books which
serve to teach bytecode. Instead we will compare this code fragment with
80x86 equivalent code and draw some conclusions about the measures that
exist within bytecode itself to protect the JVM against subversion.

Let’'s look at the following fragment:

13 aload O

14 dup

15 getfield #23 <Held int count>
18 iconst _1

19 iadd

20 dup_x1

21 putfield #23 <F eld int count>

The following table explains what each of these instructions does:

Table 5. Bytecode Byte-by-Byte

Instruction Effect Stack after instruction
al oad_0 Push a copy of local variable 0 onto the stack. this (PointlessButton)
This variable is equivalent to the t hi s keyword in [end of stack]

Java source code; it holds a reference to the current
object. In this case, that object is an instance of
PointlessButton.

dup Duplicates the item on the top of the stack. this (PointlessButton)
this (PointlessButton)
[end of stack]

getfield #23 | Pops the top item from the stack. this.count (int)
Checks that it is a PointlessButton reference. this (PointlessButton)
Gets the count field with type | (integer) from it. [end of stack]

Pushes the count field onto the stack.

iconst_1 Pushes the integer constant 1 onto the stack. 1 (int)

this.count (int)

this (PointlessButton)
[end of stack]

i add Pops the top two values from the stack. this.count + 1 (int)
Adds them. this (PointlessButton)
Pushes the result (as an integer). [end of stack]

138 Java 2 Network Security

Instruction Effect Stack after instruction
dup_x1 Duplicates the value on top of the stack and inserts | this.count + 1 (int)
it under the second item from the top. this (PointlessButton)
this.count + 1 (int)
[end of stack]
putfield #23 | Store the value on top of the stack in the this.count + 1 (int)

PointlessButton.count field of the object second
from the top of the stack.

[end

of stack]

The net of this sequence of operations is to have incremented the count field
of the current object by one and left a copy of it on the stack (for use in the

next instruction which prints the count).

The equivalent 80x86 code looks like this:

MOV BX thisPointlessButton ; Set BXto the base address of this button

MV 9, count_field ; Set 9 tothe offset of the count in button cl ass
MV CX [BX+9] ; Get the count field in register CX

INC X ; increment the X register

MV BX+9], X ; Store the result in BX+S (the count field)

There are a few differences here which we will examine in turn:

e Stack-based architecture vs register-based architecture

The JVM has a stack-based architecture. This means that its instructions
deal with pushing values onto, popping values from, and manipulating

values on a stack.

The 80x86 processor range from Intel are register-based. They have a
number of temporary storage areas (registers) some of which are general
purpose, others of which have a particular function.

The advantage of making the JVM stack-based is that it is easier to
implement a stack-based architecture using registers than vice versa.

Thus, porting the JVM to Intel platforms is easy compared with porting a
register-based virtual machine to a stack-based hardware platform.

In addition, there are benefits in a stack-based architecture when it comes
to establishing what code actually does — more of this in the next chapter.

Object-oriented vs non-object-oriented

As we have already mentioned, the Java bytecode is object-oriented. This
makes for safer code since the JVM checks at run time that the type of
fields being accessed or methods invoked for an object are genuinely
applicable to that object.

Class Filesin Java2 139

140

In the 80x86 code snippet, we have variable names to make it clearer what
the code is doing, but there are no checks to make sure that the value
loaded into the base register really is a pointer to an object of type
PointlessButton and that the offset loaded into S represents the count
field of that object.

There is no object-level information at all stored in 80x86 machine code,
regardless of the high-level language from which it was compiled!

This is so important we will restate it: even if you write programs in Java,
once you compile them to 80x86 machine code, all object information is
lost and with it a degree of security, since the run-time engine cannot test
for the validity of method and/or field accesses.

Type Safety

While on the subject of type information, a difference to notice is the
inclusion of type information in JVM bytecode instructions. The instruction
i add, for example, pops the top two values from the stack, adds them and
pushes the return value. The i prefix indicates that the instruction
operates on and returns an integer value. The JVM will actually check that
the stack contains two integers when the i add instruction is to be
executed. In fact this check is performed by the bytecode verifier, prior to
run-time execution.

Contrast this with the 80x86 instructions, which contain no type
information. In this case, it is possible that the data loaded into the CX
register for incrementing is an integer. However, it is also possible that it is
part of a telephone number, an address, or anything different. There are
simply no checks performed on data type. This is fine if you can trust your
compiler and there is no likelihood of programs being attacked en route to
their execution environment. As we have seen, however, in a networked
environment, these assumptions cannot be made so lightly.

Not all bytecodes are typed; with a maximum of 256 distinct bytecode
values, there are simply not enough to go around. Where a bytecode
instruction is typed, the type on which it can operate is indicated by the

Java 2 Network Security

prefix of the instruction. Table 6 lists the type prefixes and Table 7 shows
the bytecodes in detail:

Table 6. Type Prefixes for Bytecode

Prefix Bytecode type
i Integer
f Floating point
I Long
d Double precision floating point
b Byte
S Short
c Character
a Object reference

Table 7. Bytecode Table

Bytecode int long float double byte char short object Function
ref

?2c X Convert value of type ? to
character.

?2d X X X Convert value of type ? to double.

?2i X X X Convert value of type ? to integer.

?2f X X X Convert value of type ? to float.

22| X X X Convert value of type ? to long.

?2s X Convert value of type ? to short.

?add X X X X Add two values of type ?.

?al oad X X X X X X X X Push an element of type ? from an
array onto the stack.

?and X X Perform logical AND on two values
of type ?.

?astore X X X X X X X X Pop a type ? from the stack and
store in an array of type ?.

?cnp X Compare two long values. If they're
equal push 0, if the first is greater
push 1, else push -1.

Class FilesinJava2 141

Bytecode int long float double byte char short object Function
ref

?cnpg X X Compare two |IEEE values of type
? from the stack. If theyre equal
push 0, if the first is greater push 1
if the second is greater push -1. If
either is not-a-number (NaN) push
1.

?cnpl X X Compare two IEEE values of type
? from the stack. If they're equal
push 0, if the first is greater push 1
if the second is greater push -1. If
either is NaN push 1.

?const X X X X X Push constant value n of type ?
onto the stack.

?2div X X X X Perform a division using two values
of type ? and store the quotient.

?inc X Increment the top of the stack
(possibly by a negative value).

?i push X X Push sign extender byte or short
value onto stack.

?l oad X X X X Push a value of type ? from a local
variable.

?mul X X X X Perform multiplication of two
values of type ?.

?neg X X X X Negate a value of type ?.

?newar r ay X Create a new array of object
references.

?or X X Perform logical OR on two values
of type ?.

?rem X X X X Perform a division using two values
of type ? and store the remainder.

?return X X X X X Return a value of type ? to the
invoking method.

?shl X X Perform arithmetic shift left on type
?.

?shr X X Perform arithmetic shift right on
type ?.

?store X X X X X Pop a value of type ? and store in
a local variable.

?sub X X X X Perform a subtraction using two
values of type ?.

There are a few seeming anomalies about this table. For example, the ?cnp
and ?newvarray instructions are typed and yet only apply to a single type (long

142 Java 2 Network Security

in the case of 2cnp and object references in the case of ?nevarr ay).
Interestingly enough there is no equivalent of the ?cnp instruction for integers.
These oddities can be explained away in terms of future expansions to the
instruction set. However there are other peculiarities which are not as easily
explained.

Consider the fact that there are no typed arithmetic instructions for byte or
short values. This, coupled with the lack of support for short and byte values
in the constant pool, might lead you to believe that the underlying support in
the JVM for these types is less than full. You would be right.

The JVM’s processor stack is 32 bits wide. Values which are longer (doubles
or longs) or shorter (bytes or shorts) than this are treated specially within the
JVM. Double and long values occupy two spaces each on the stack and thus
require special instructions to deal with them. Bytes and shorts on the other
hand are treated as integers within the JVM for arithmetic and logical
operations. If you are dealing with pure Java source code then this is not a
problem as the Java compiler will take care of generating the appropriate
instructions on your behalf. If you start to work with bytecode which has not
been generated from the Java compiler then things become a little different
and it is quite possible that variables of byte or short types may end up
containing values larger than their maximum permissible ones.

This is a symptom of one of the general difficulties with the JVM. There is no
one-to-one relationship between Java source code and bytecode.

On the one hand, the lack of a tight binding between the source language and
bytecode enables cross-compilation from other source languages, as we
discussed previously. On the other hand it does mean that there has to be a
lot more work performed to ensure that the bytecode being executed is safe.
There is some concern that the lack of a rigid relationship between the Java
language and Java bytecode may be the source of some as yet undiscovered
nastiness which could emerge to overthrow the entire Java security model.
The next chapter looks at some of the measures which have been taken to
prevent this type of nastiness.

Class Filesin Java2 143

144 Java 2 Network Security

Chapter 6. The Class Loader and Class File Verifier

In this chapter we explore two topics:

1. How class files are located and loaded by the class loader

2. How the class file verifier ensures that class files are legal prior to
execution

The following discussion assumes a Java Virtual Machine (JVM) that is
running with a security manager. This is the wrong book to be running without
one.

6.1 Class Loaders

Class loaders are the gatekeepers of the JVM, controlling what bytecode may
be loaded and what should be rejected. As such they have a number of
responsibilities:

1. To separate name spaces, thus preventing intentional and unintentional
code corruption and limiting name clash problems to class files from one
source.

2. To protect the boundaries of the core Java class packages (trusted
classes) by refusing to load classes into these restricted packages.

3. Starting in Java 2, establish the protection domain (set of permissions) for
a loaded class. This is the basis for run-time authorization checking for
access to resources.

4. To enforce a search order that will prevent core and local classes from
being replaced by classes from less trusted sources.

The class loader has another, useful, side effect. By controlling how the JVM
loads code, all platform-specific file 1/O is channelled through one part of the
JVM, thus making porting the JVM to different platforms a much simpler task.

Let’'s look a little more closely at these responsibilities and why they are
necessary.

First, Java code can be loaded from a number of different sources. Some of
the more common sources are:

« The trusted core classes that ship with the JVM (java.lang.*, java.applet.*
etc.)

¢ Any installed JVM extensions

© Copyright IBM Corp. 1997 1999 145

¢ Classes stored in the local file system (usually found using the
CLASSPATH system environment variable)

* Classes retrieved from external sources such as from a Web server

Clearly, we would not want to overwrite a trusted JVM class with an identically
named class from a Web server since this would undermine the entire Java
security model. For instance, the SecurityManager class is responsible for a
large part of the JVM run-time security and is a trusted local class; consider
what would happen to security if the SecurityManager could be replaced by a
class loaded from a remote site. The class loader must therefore ensure that
trusted local classes are loaded in preference to remote classes where a
name clash occurs.

Secondly, where classes are loaded from Web servers, it is possible that
there could be a deliberate or unintentional collision of names (although the
Sun Java naming conventions exist to prevent unintentional nhame collisions).
If two versions of a class exist and are used by different applets from different
Web sites, then the JVM, through the auspices of the class loader, must
ensure that the two classes can coexist without any possibility of confusion
occurring.

The class loader must protect the boundaries of the trusted class packages.
The core Java class libraries that ship with the JVM reside in a series of
packages. Within the Java programming language, it is possible to give
special access privileges to classes that reside in the same package; thus, a
class which is part of the java.lang package, for instance, has access to
methods and fields within other classes in the java.lang package which are
not accessible to classes outside of this package.

If it were possible for a programmer to add his or her own classes to the
java.lang package, then those classes would also have privileged access to
the core classes. This would be an exposure of the JVM and consequently
must not be allowed. The class loader must therefore ensure that classes
cannot be dynamically added to the various core language packages.

The JVM may have many class loaders operating at any point in time, each of
which is responsible for locating and loading classes from different sources.

6.1.1 Loading Classes from Trusted Sources

146

There is one class loader, the primordial class loader, which is a built-in part
of the JVM; that is, its code is written in the same language the JVM is written
in (typically C) and is an integral part of the JVM. It is also known as the

internal, or null, or default class loader. The primordial class loader is the root

Java 2 Network Security

of the class loader delegation hierarchy (see 6.1.4.2, “How the Design Is
Implemented” on page 152 for details on delegation) and is responsible for
loading the trusted classes of the Java run time.

Classes loaded by the primordial class loader are regarded as special insofar
as they are not subject to verification prior to execution; that is, they are
assumed to be well formed, safe Java classes. In the Java Development Kit
(JDK) 1.1, these are the JVM core classes plus any classes which can be
found using the CLASSPATH system environment variable. Obviously, if
would-be attackers could somehow introduce a malicious class into the
CLASSPATH of a JVM they could cause serious damage?.

In Java 2, this exposure is minimized by removing the core class path
information from the CLASSPATH environment variable and subjecting all but
the core classes to verification and the security policy. It is also possible to
subject the core classes to verification using the -verify option of the j ava
command or the -J-verify option of the appl et vi ener command, for example.
Of course, this does not affect that part of the JVM implemented in the native
language.

The core classes in Java 2 are located by using a JVM internal property,
sun.boot.class.path. The value of this property is called the boot class path
and is formed internally from install information or can be specified by the

j ava command option - Xboot cl asspat h, which becomes - J- Xboot cl asspat h for
the appl et vi ener command (see 3.4.1, “Boot Class Path” on page 84).

6.1.2 Loading Classes from Untrusted Sources

Along with bounding the scope of implicitly trusted classes to just the Java
core classes, Java 2 removed the responsibility for the loading of local user
classes from the primordial loader. Now, at JVM startup, the application class
path information is copied from the CLASSPATH environment variable into
the JVM internal property java.class.path and this is used to start an instance
of java.net.URLClassLoader, a new class loader class extending the new
class java.lang.SecureClassLoader (described in 6.1.3, “Beyond What the
JVM Provides” on page 148). This instance is given a list of file-based URLs
generated from CLASSPATH, which it will use to locate and load local user
classes. This class loader instance will also verify the class file and set up the
associated protection domain. The value of java.class.path can also be set on
the command line using the option -cl asspath (or -cp). This will override the
CLASSPATH environment setting.

1 This was the basis of one of the attacks discovered by the Secure Internet Programming team at Princeton University.
Their attack, Slash and Burn, is described more fully in Java Security, Hostile Applets, Holes and Antidotes, Gary
McGraw and Ed Felten.

The Class Loader and Class File Verifier 147

From a trust viewpoint, logically in between the fully trusted core classes (no
policy file permission entries required) and the completely untrusted
application classes (explicit policy file permissions required) are classes of
the new extension class framework (see 3.4.2, “Extensions Framework” on
page 86). This framework allows for the installation of Java archive files in a
specific extensions directory pointed to by the JVM internal property
java.ext.dirs. The default setting for java.ext.dirs is ${java.home}/lib/ext and
can be set using the - [j ava. ext. di rs=soneval ue command line option. A
Java class called ExtClassLoader is responsible for loading installed
extensions. ExtClassLoader is an inner class of the sun.misc.Launcher class.
ExtClassLoader is also know as extensions class loader.

These classes are in the search order after core classes, but before
application classes. They are subjected to verification and policy, but the
default policy is AllPermissions (see 4.1.1, “The Class Loader” on page 110).

6.1.3 Beyond What the JVM Provides

148

Application writers (including JVM implementers) are at liberty to build more
class loaders to handle the loading of classes from different sources such as
the Internet, an intranet, local storage or perhaps even from ROM in an
embedded system. These class loaders are not a part of the JVM; rather,
they are part of an application running on top of the JVM.

In JDK 1.1, application implementers were required to implement any class
loading requirements beyond what the primordial loader would provide by
extending the java.lang.ClassLoader abstract class. The most obvious
example of this is in the context of a Web browser which must load classes
from an HTTP server. The browser’s class loader that does this is generally
known as the applet class loader and is itself a Java class which knows how
to request and load other Java class files from a Web server across a TCP/IP
network. The JDK’s Applet Viewer includes a reference implementation called
AppletClassLoader, which is shipped with the JDK in the sun.applet package
and has been the basis for most browsers’ class loaders.

Starting with Java 2, the Java run time includes an implementation of
ClassLoader called SecureClassLoader. SecureClassLoader implements the
basic security related requirements of class loading. It handles checking with
the security manager, calling the class file verifier, linking of the class and
setting up the protection domain. Its constructor is protected.
SecureClassLoader is meant to be the basis for the development of other
class loaders. To extend this, there is also a general purpose loader included
in the SDK, called URLClassLoader, in the java.net package, which is a
subclass of SecureClassLoader. URLClassLoader adds the ability to find and

Java 2 Network Security

load class files from a list of file and HTTP-based URLs. URLClassLoader
should meet most of the requirements an application may have for loading
class files. And if not, developers should now develop their own loaders by
subclassing one of these two classes, instead of the ClassLoader abstract
class, to benefit from the function and security built into SecureClassLoader.

It should be clear that there can be many types of class loaders within a Java
environment at any one time. In addition, there may be many instances of a
particular type of class loader operating at once.

To summarize:

e There will always be one and only one primordial class loader. It is part of
the JVM, like the execution engine.

* There will be one instance of the URLClassLoader which was created at
JVM initialization. This instance is responsible for loading user classes
from the local file system specified in the java.class.path property, which is
set from the CLASSPATH environment variable.

* |In a Web browser environment, there will be at least one additional class
loader, which is responsible for loading the applet classes.

« There will be zero or more additional class loader types. These should
extend one of the class loader classes: URLClassLoader,
SecureClassLoader, or least desirably the ClassLoader abstract class.
There are, of course, other choices.

« For each additional ClassLoader type, there will be zero or more instances
of that type created as Java objects.

Let’s look at this last point more closely.

Why would we want to have multiple instances of the same class loader
running at any one time?

To answer this question we need to examine what class loaders do with a
class once it has been loaded.

Every class present in the JVM has been loaded by one and only one class
loader. For any given class, the JVM remembers which class loader was
responsible for loading it. If that class subsequently requires other classes to
be loaded, the JVM uses the same class loader to load those classes.

This gives rise to the concept of a name space, the set of all classes which
have been loaded by a particular instance of a class loader. Within this name
space, duplicate class names are prohibited. More importantly, there is no

The Class Loader and Class File Verifier 149

cross name space visibility of classes; a class in one name space (loaded by
a particular class loader instance) cannot access a class in another name
space (loaded by a different class loader instance).

Returning to the question Why would we want to have multiple instances of
the same class loader running at any one time?, consider the case of the
applet class loader. It is responsible for loading classes from a Web server
across the Internet or intranets. On most networks (and certainly the Internet)
there are many Web servers from which classes could be loaded and there is
nothing to prevent two webmasters from having different classes on their sites
with the same name.

Since a given instance of a class loader cannot load multiple classes with the
same name, if we didn’t have multiple instances of the applet class loader, we
would very quickly run into problems when loading classes from multiple
sites. Moreover, it is essential for the security of the JVM to separate classes
from different sites so that they cannot inadvertently or deliberately cross
reference each other. This is achieved by having classes from separate Web
sites loaded into separate name spaces, which in turn is managed by having
different instances of the applet class loader for each site from which applets
are loaded.

6.1.4 The Class Loading Process

150

We now look at the class loading process. First, we will look at it from a
design viewpoint. Second, we show how the design is implemented in Java 2
class loaders and how it should be implemented by an application needing to
develop a class loader in Java 2. Keep in mind, we are assuming a security
manager.

6.1.4.1 What Is Supposed to Happen

In this section, we look at some of the design aspects of the class loading
architecture in Java 2. In other words, we describe what is supposed to
happen from the viewpoint of the Java architects.

1. When a class is referenced, the JVM execution environment invokes the
instance of the class loader associated with the requesting program to
locate and load the referenced class.

2. The class loader first checks to see if the requested class has been
previously loaded by itself.

« If so, the loader checks with the security manager to see if the program
has permission to access the requested class.

« If it does not have permission, a security exception is generated.

Java 2 Network Security

« If the program has permission, the loader returns a reference to the
existing class object.

« If not already loaded, the class loader checks with the security
manager to see if this program has permission to create the requested
class.

« If it does not, a security exception is generated.

« If the program has permission, the loader first tries to find the
requested class in the core Java API followed by any JVM
extensions. The difference between the core and extension classes
is that the extension classes are subject to verification and the
security policy in effect. This step prevents the JVM'’s core and
extension classes from being replaced by classes from another
location. If the class is found, the class is loaded into the class area
and a reference to the class object is returned. The core and
extension classes should be loaded using the JVM’s built-in class
loader, the primordial class loader.

. If we have come to this point without finding the requested class, this
means that the requested class has not been found in a trusted location.
Therefore, the class loader will load the class as an array of bytes to be
verified by the class file verifier before constructing a class object. The
loader will look through the application class path before going to the
network to locate the class. The application class path is found in the JVM
internal property java.class.path, which is set from the CLASSPATH
environment variable, or the - cl asspat h (or -cp) argument of the j ava
command.

. The class file verifier is responsible for making sure that class files contain
only legal Java bytecodes and that they behave properly (for example,
they do not attempt to underflow or overflow the stack, forge illegal
pointers to memory or in any other way subvert the JVM). Details of this
are in 6.2, “The Class File Verifier” on page 168. If verification fails, a
security exception is generated.

. If the bytecodes pass verification, a class object is created and a
protection domain is associated with the class for subsequent resource
authorization checking. The class is then linked by resolving any
references to other classes within it. This may result in additional calls to
the class loader to locate and load other classes.

. Next, static initialization of the class is performed; that is, static variables
are defined and static initializers are run.

. Finally, the class is available to be executed.

The Class Loader and Class File Verifier 151

152

6.1.4.2 How the Design Is Implemented

Every class loader, being just another Java class itself, is loaded by a class
loader, with one exception, the primordial class loader. This forms a run-time
parent-child hierarchical relationship between class loader objects with the
primordial class loader at the root. This relationship is the basis for the
delegation model, which is the recommended implementation model for all
class loaders starting with Java 2. That is, every class loader upon entry
should immediately invoke (delegate the request to) the class loader which
loaded it, its parent class loader. This will cause a call back all the way to the
JVM’s internal loader which will stop this apparent foolishness and attempt to
load the class from the bootstrap class path or the extension class path. Only
if all ancestors fail should the child try to locate and load the class.

To illustrate how this works, consider the PointlessButton applet (see Figure
17 on page 37). As a reminder, PointlessButton uses a second class,
jamjar.examples.Button, which represents a push button on the browser
display. Pushing the button results in nothing happening except a display is
updated to inform you how many times nothing has happened to date.

In this example, we will work on a Web browser, called
MyFavoriteWebBrowser. MyFavoriteWebBrowser just happens to implement
a Java 2 style class loader, which extends URLClassLoader and is called
Java2StyleAppletClassLoader. When MyFavoriteWebBrowser encounters the
PointlessButton applet in a Web page the following sequence of events
occurs:

1. MyFavoriteWebBrowser finds the <APPLET>tag in the Web page and
determines that it needs to load PointlessButton.class. It creates an
instance of MyFavoriteWebBrowser’s Java2StyleAppletClassLoader, with
the URL of the Web page, and invokes its findClass() method with the
class name from the <APPLET> tag.

2. Java2StyleAppletClassLoader first delegates this request to its parent. As
it turns out, the parent in this case is an instance of URLClassLoader. This
is because the JVM for Java 2 creates an instance of URLClassLoader
during JVM startup. In fact the JVM'’s internal loader no longer handles
user class files. This instance of URLClassLoader loads the initial class
file in a user program and any subsequent user classes found using the
CLASSPATH environment variable. This instance of URLClassLoader has
as its list of URLs the directories and files specified in the CLASSPATH
variable. Of course, URLClassLoader will first ask its parent to handle the
request, which is the primordial class loader.

Java 2 Network Security

3. The primordial class loader, which only knows about the core classes, fails
to locate PointlessButton and returns control to the child that called it, in
this case, the JVM-created instance of URLClassLoader.

— An Observation on the sun.boot.class.path Property

This is a good time to bring up an observation. The locations the
primordial class loader will search are specified by the JVM internal
property values sun.boot.class.path and java.ext.dirs. The boot class
path identified in property sun.boot.class.path on our test system
(determined using the System.getProperty() method), has the value:

drive:\ProgramFil es\JavaSof t\JRE\ 1. 2\l ib\rt.jar;
drive:\ProgramFil es\JavaSof t\JRR\ 1. 2\l i b\i 18n. j ar;
drive:\ProgramFil es\ JavaSof t \ JRR\ 1. 2\ cl asses

This tells us a couple of things. First, the core APIs are contained in two
JAR files, rt.jar and i18n.jar. But, what is the last entry? This does not
exist by default. There is no file or directory with this name. However, it
would appear that if we create a directory with this name, the JVM
would look in it for class files and, would consider them core classes.
Indeed, this is the case. This is very powerful, but one should take care
in granting the ability to create directories or files within the Java
run-time directory structure, especially creating a directory named
classes and the ability to place files in it.

We also found that only class files are recognized in this classes
directory. Other files, such as JAR files, are ignored.

4. This instance of URLClassLoader attempts to find PointlessButton in the
application class path, specified by the java.class.path property. For this
example, PointlessButton does not exist on the local system, so
URLClassLoader returns to Java2StyleClassLoader failing to find a
PointlessButton class.

5. Java2StyleClassLoader now knows it must find and load the requested
class itself. Since Java2StyleClassLoader extends URLClassLoader and
uses as much of the URLClassLoader function as possible, we are at this
point really executing the same findClass() logic as was just executed in
the JVM created URLClassLoader, except the list of places to look is
different. The URL list is not from the CLASSPATH, it is the URL of the
Web page. So, the loader connects to the Web site specified by the URL
using the HTTP protocol and downloads the PointlessButton class. The
last thing findClass() does is to call defineClass() which runs the class file
through the verifier, links it and sets up the protection domain for the class.

The Class Loader and Class File Verifier 153

154

6. The JVM begins executing the PointlessButton applet.

7. PointlessButton needs to create an instance of jamjar.examples.Button, a
class which currently has not been loaded. PointlessButton requests the
JVM to load the class.

8. The JVM locates the instance of Java2StyleAppletClassLoader which
loaded PointlessButton and invokes it to load jamjar.examples.Button.

9. The same steps that were described above for locating and loading
PointlessButton are now executed looking for jamjar.examples.Button and
the jamjar.examples.Button is executed.

10.jamjar.examples.Button creates a java.lang.String object for the title of the
button. The String class has not yet been loaded, so again the JVM is
requested to load the class.

11.The class loader which loaded both PointlessButton and
jamjar.examples.Button (the same instance of Java2StyleClassLoader we
are now getting tired of hearing about) is now invoked to load the
java.lang.String class.

12.Java2StyleAppletClassLoader again delegates the request, only this time
the primordial class loader is able to locate and load the class since it is
part of the trusted classes package. Since the primordial class loader was
successful, both URLClassLoader and Java2StyleAppletClassLoader
have nothing to do but return the reference to the String class created by
the primordial class loader.

There are a few interesting points to note here:

 In this example, Java2StyleClassLoader really offered no additional
function beyond what URLClassLoader provides except to give us a
meaningful name to use during the discussion and to provide a place
holder for future potential changes to the browser’s loading needs without
affecting the browser’s mainline code. So, for this example, the browser
could have just created an instance of URLClassLoader.

« At Step 3 on page 153, if we had been using a regular java.awt.Button
class then the primordial class loader would have been able to find the
class in the trusted packages and the search would have stopped.

« There are actually many references to the java.lang.String class in the
code. However, only the first reference results in the class being loaded
from disk. Subsequent requests to the class loader will result in it returning
the class already loaded. Since it is the primordial class loader which
loads the String class, if there are multiple applets on a single page, only
the first one to request a String class will result in the primordial class
loader loading the class from disk.

Java 2 Network Security

Note also the order in which the applet class loader Java2StyleClassLoader
searches for classes. An applet class loader could decide not to follow the
delegation model and search the Web server from which it loaded the applet
first for any subsequent classes and this would cut out some calls to the
primordial class loader. This would be incredibly bad practice for two reasons:

* Most of the class load requests for an applet will be for trusted classes
from the SDK packages, so searching the Web server for each of the
classes encountered would be very expensive and wasteful in terms of
network traffic.

* More importantly, if classes were sought on the Web server before being
sought in the trusted package, it would allow subversion of built-in types,
enabling malicious programmers to substitute their own implementations
of core, trusted classes such as the SecurityManager or even the applet
class loader itself.

For this reason, even prior to Java 2, all commercially available browsers
have applet class loaders which implement the following search strategyz:

1. Ask the primordial class loader to load the class from the trusted
packages.

2. If this fails, request the class from the Web server from which the original
class was loaded.

3. If this fails, report the class as not locatable by throwing a ClassNotFound
exception.

This search strategy is effectively the same as the delegation model
advocated in Java 2 and ensures that classes are loaded from the most
trusted source in which they are available. Java 2 makes implementing this
strategy much easier through the delegation model and the functions now
provided by URLClassLoader and SecureClassLoader.

6.1.5 Should You Build Your Own Class Loader

The ability to create additional class loaders is a very powerful feature of Java
and places a heavy responsibility on the class loader implementer. This
becomes particularly apparent when you realize that user-written class
loaders have the choice of following the delegation model or not. They get
first choice on whether to load a class or not. They can even take priority over
the primordial class loader. This enables a user-written class loader to
replace any of the system classes, including the SecurityManager. In other
words, since the class loader is Cerberus to the JVM’s Hades, you had better

2 This is common practice but note that it is not enforced by the JVM architecture. Class loader writers are at liberty to
implement any search strategy they choose for locating classes.

The Class Loader and Class File Verifier 155

156

be sure that when you replace it, you don't inadvertently install a lap dog in its
place.

We have already stated that a class loader which has loaded a particular
class is invoked to load any dependent classes. We also know that a class
loader generally has responsibility for loading classes from one particular
source such as Web servers.

What if the class first loaded requires access to a class from the trusted core
classes such as java.lang.String? This class needs to be loaded from the
local core class package, not from across a network. It would be possible to
write code to handle this within the application’s class loader but it is
unnecessary. We already have a class loader in the shape of the primordial
class loader which knows how to load classes from the trusted packages.

With the Java 2 enhancements to security and class loading, there is much
less reason to implement your own class loader.

URLClassLoader can load classes from a list of file-based and HTTP-based
URLs. It knows how to process class files, Java Archive (JAR) files and
signed JAR files. It handles setting up the protection domains and handles
the questions for the security manager during class loading.

If you are on a 1.1 system, the JDK includes the class RMIClassLoader,
which is still available in the Java 2 platform. Its methods are static, so they
can be called directly to load individual unsigned class files from a single URL
and define a class from the loaded file. Its name is misleading, since it is
much more general purpose than its name implies and can be used to just
load class files. It can support HTTP, Internet Inter-ORB Protocol (IIOP) and
other protocols.

If, after all this, you still have reason to build your own class loader, such as
one that performs class access auditing, or work across a network protocol
other than HTTP, you can still benefit from subclassing one of the provided
classes. For instance, if you are not using HTTP, but everything else is the

same, implement your own XYZClassLoader based on SecureClassLoader
and model it after URLClassLoader.

The next two sections show application class loaders. They both demonstrate
how to extend the class loading functions of the SDK by simply adding the
logic to record in a file all classes it is asked to load:

1. The firstis a class loader written JDK 1.1 style, although it also runs on
Java 2 SDK, Standard Edition, V1.2.x; It extends the abstract class
ClassLoader and implements all steps in the class loading process.

Java 2 Network Security

2. The second is Java 2 style, extending URLClassLoader. This requires
much less work on our part and provides the protection domain for the
class allowing for run-time authorization checking by the security
manager.

6.1.5.1 Program AuditClassLoader (JDK 1.1 Style)

AuditClassLoader (shown in Figure 54 on page 157 through Figure 58 on
page 161) is an implementation of a class loader based on the abstract class
ClassLoader. It first puts an entry in a log file, auditclasses.log, and then
locates and loads a class file. It then defines and resolves a class from the
class file. It is pretty much what a JDK 1.1 application developer had to do to
implement a class loader. It works fine in Java 2, but does not follow the
delegation hierarchy. It assumes all core class names start with j ava. and
calls the primordial class loader (via the findSystemClass() method) for these;
otherwise, it loads all classes itself using the j ava. cl ass. path (which if you
will remember is set from CLASSPATH) to locate the class file. It does check
to see if the class is already loaded. It does not have an access control
scheme.

/**
* Audi t A assLoader
* Extends Q assLoader to record | oadi ng of classes
*
*/
inport java.util.*;
inport java. util.zip.*;
inport java.io.*;
inport java.net.?*;

public class Auditd assLoader extends A assLoader

{
private Hashtabl e | oadedd asses = new Hasht abl e();
private Hashtabl e resol vedd asses = new Hasht abl e();
private Socket sock;
private DataQutput Stream auditl og;

/**

* constructor.

*/
publ i ¢ Audit d assLoader ()
{

super () ;

Figure 54. (Part 1 of 5). AuditClassLoader.java

The Class Loader and Class File Verifier 157

try

{
audi tl og = new Dat aQut put Strean{new Fi | eQut put St rean{"audi tcl asses. | 0g"));
auditlog.witeBytes("Audit Started:\n");
}
catch (1 CException e)
{
Systemerr.printIn("Audit file not opened properly\n" + e.toString());
}
}
/**

* @eturn byte[]
* @aramnane java.lang. String
* @xception java.io. | CException The exception description.
*/
private byte[] getdassFile(String className) throws java.io.|CException
{
Input Streami s;
byte cl assBytes[];

is = | ocated ass(cl assNane) ;

classBytes = new byte[is.available()];
i s.read(cl assBytes);

return cl assByt es;

* The nethod which actually loads a class file

* The | oadd ass nethod is invoked to | oad a new cl ass.

* The steps which it nust carry out are:

* - Check to see if the class requested has al ready been | oaded.
* - Check to see if the class is a "systent class.

* - Retrieve the bytes for the cl ass

* - Resolve the class if instructed

* - Return the class to the caller.

* @aramjava.lang. String nane The fully qualified nane of the class to | oad

* @aram bool ean resolve If true then the class is resol ved

*/

public dass | oadd ass(String nanme, bool ean resol ve) throws A assNot FoundBExcepti on

Figure 55. (Part 2 of 5). AuditClassLoader.java

158

Java 2 Network Security

Qass thedass = null;

try

{
/*
* Wite the nane of the class being | oaded to the log file
*/

auditlog.witeBytes("loading class: " + name + "\n");

/*

* Only attenpt to load the class if it's not in the cache
*

/

i f(!l oadedd asses. cont ai nsKey(nane))

{

/*

* |f the class is a systemclass, invoke the prinordial class | oader
*/

if (name.startsWth("java."))

{
}

el se

{

thed ass = findSystend ass(nane);

/*
* G herwise, get the class as a bytearray and define it
*/
byte[] classBytes = getd assH | e(nhane);
thed ass = defi ned ass(nane, classBytes, 0, classBytes.length);

}

/*

* Store the class in the | ocal cache

*/

if (theQass !'=null) | oadedd asses. put (nare, thed ass);

}
catch(I CException ioe)

{
}

catch(d assFornat Error cfe)

t hrow new A assNbt FoundExcepti on() ;

Figure 56. (Part 3 of 5). AuditClassLoader.java

The Class Loader and Class File Verifier

159

{
}

t hrow new A assNot FoundExcepti on();

/*

* Resolve the class if it's
* a) not resol ved

* b) the resolve flag is set

*/
if (resolve & !resol vedd asses. cont ai nsKey(nane))
{
resol ved ass((d ass) | oadedd asses. get (nane)) ;
resol vedd asses. put (nane, "true");
}
return (d ass) | oadedd asses. get (nane);
}
/**

* Autility nethod used to locate a class file fromit’s name
* this method searches the class path, including ZI P archives
* @aramclassNane the fully qualified class nane

* @eturn an InputStreamfor the class file

*/

private I nput Stream|ocated ass(String classNane) throws | CException

{

String fileNanme = classNane. repl ace(’.’, File.separatorChar) + ".class";
String searchPath = Systemget Property("j ava. cl ass. pat h") . t oUpper Case() ;
String cl assPat hEntry;

while (searchPath !'=""")

{
int sclndex = searchPath.index™d (Fi | e. pat hSepar at or Char) ;

if (sclndex == -1)

{
cl assPat hEntry = sear chPat h;
searchPath = "";
}
el se
{
cl assPat hEntry = sear chPat h. substri ng(0, sclndex);
sear chPat h = sear chPat h. substri ng(scl ndex + 1);
}

Figure 57. (Part 4 of 5). AuditClassLoader.java

160

Java 2 Network Security

}

}

if (classPathEntry.endsWth(".z P'))
{
ZipFile zf;
ZipEntry ze;
zf = new Zi pFil e(cl assPat hEntry);
ze = zf.getEntry(fil eNane);
if (ze!'=null)
return zf.getl nput Streanfze);
}
el se
{
String full Name = classPathEntry + File.separatorChar + fil eNang;
Filef =newFile(full Nane);
if (f.exists()) return new FilelnputStrean{ full Nane);
}
throw new | CException(classNane + " not found");

Figure 58. (Part 5 of 5). AuditClassLoader.java

TestAuditClassLoader (see Figure 59 on page 161 and Figure 60 on page
162) is a program that can be used to invoke AuditClassLoader. It takes as a
single parameter the name of a class, so the correct way to launch it is:

java Test Audi t d assLoader C assNane

It creates an instance of AuditClassLoader and asks it to load the class name
it received as a parameter. It then checks to see if the class is abstract. If it is,
it asks the class to print information about itself. If it is not abstract, it creates
a new instance of the class and asks the instance to print information about
itself.

/**
* Test Auditd assLoader
* Expects a class nane as input

*
*/
inport java.lang.reflect. Mdifier;

public class TestAuditd assLoader

Figure 59. (Part 1 of 2). TestAuditClassLoader.java

The Class Loader and Class File Verifier 161

/**
* main entrypoint - starts the application
* @aramargs java.lang. String[]
*/
public static void main(java.lang. String[] args) throws Exception
{
if (args.length !'=0)
{
Audi t d assLoader | oader = new Auditd assLoader ();
A ass nysel f = | oader. | oadd ass(args[0], true);
int nods = nysel f.get Mdifiers();
if (!'Modifier.isAbstract (nods))
{
(pbj ect o0 = nysel f. new nstance();
Systemout . printl n("New i nstance created:");
Systemout . println(o);

}

el se

{

Systemout . println("Abstract class | oaded:");
Systemout . println(nyself);

Figure 60. (Part 2 of 2). TestAuditClassLoader.java

We show now the results of running TestAuditClassLoader, first against a
concrete class and second, against an abstract class.

On running TestAuditClassLoader against a concrete class, for example the
GetPrintJob applet class obtained from the code in Figure 1 on page 14 and
Figure 2 on page 15, the output produced is:

* On the console:

New i nstance creat ed:
Get Pri nt Job[panel 0, O, 0, 0x0, i nval i d, | ayout = ava. awt . H owLayout]

¢ In the auditclasses.log file:

162 Java 2 Network Security

Audit Sarted:

| oadi ng class: GetPrintJob

| oadi ng cl ass: j ava. appl et . Appl et

| oadi ng cl ass: java.aw .event.ActionLi stener
| oadi ng cl ass: java. | ang. Thronabl e

| oadi ng cl ass: java.lang. Exception

| oadi ng cl ass: java.awt.Button

| oadi ng cl ass: java.aw . nt ai ner

Upon running TestAuditClassLoader against an abstract class, for example
java.util.TimeZone, we would see the following:

¢ On the console:

Abstract cl ass | oaded:
class java. util. T neZone

« In the auditclasses.log file:

Audit Sarted:
| oadi ng cl ass: java. util.Ti neZone

6.1.5.2 Program Audit2ClassLoader (Java 2 Style)
Audit2ClassLoader (shown in Figure 61 on page 163 through Figure 63 on
page 165) is based on the Java 2 URLClassLoader, which extends the new
SecureClassLoader class. It extends URLClassLoader by overriding the
loadClass() method. It simply records class load requests in a file hard-coded
as auditclasses.log and then asks its parent to load the class. By using all of
URLClassLoader’s function, Audit2ClassLoader is very short. But, it offers a
more elegant implementation than AuditClassLoader because it implements
the delegation model and associates a protection domain with the class.

/**

* Audi t 24 assLoader

* Extends java. net. URLd assLoader to record the | oadi ng
* of classes

*

*/

inport java.io.*;
inport java.net.*;

Figure 61. (Part 1 of 3). Audit2ClassLoader.java

The Class Loader and Class File Verifier 163

inport java.lang.*;

public class Audit2d assLoader extends URLA asslLoader

{
private DataQut put Stream audit! og;

/ * %
* Audi t 2d asslLoader construct or

* Calls URLA asslLoader’s constructor and
* opens a file for recording class | oad nessages

*

*/
publ i ¢ Audit2d assLoader (UR[] urls)
{
super (url s);
try
{
audi tl og = new Dat aQut put St rear{new Fi | eQut put S rean{"audi t cl asses. | 0g"));
auditlog.witeBytes("Audit Started:\n");
}
catch (1 CException e)
{
Systemerr.printIn("Audit file not opened properl y\n" + e.toString());
}
}
/**

* The net hod which actually loads a class file

* The findd ass nethod is invoked to | oad a new cl ass.

* The steps which it nust carry out are:

* - Wite nessage to log file.

* - Qll parent finddass nmethod to | oad, verify, resolve and
* set up protection domains.

* @aramjava.lang. String nane The fully qualified nane of the class to | oad
*/
public dass | cadd ass(Sring nane) throws A assNot FoundException
{
try
{

}
catch (1 CException ioe)

audi tl og. writeBytes("l oadi ng cl ass: + nane + "\n");

Figure 62. (Part 2 of 3). Audit2ClassLoader.java

164 Java 2 Network Security

{
Systemerr.printIn("Gould not wite to audit file\n" + ioe.toString());
}
try
{
return super.| oadd ass(nane);
}
catch (Exception €)
{
t hr ow new A assNot FoundExcept i on(nane) ;
}
}
}

Figure 63. (Part 3 of 3). Audit2ClassLoader.java

Figure 64 on page 166 shows TestAudit2ClassLoader, a program which can
be used to try out Audit2ClassLoader. The significant difference here from
TestAuditClassLoader is that Audit2ClassLoader requires a list of URLs to be
passed to its constructor. This is really a requirement of URLClassLoader.
This limits the scope of where Audit2ClassLoader will look for user class files.
In this test case, it will only look in the current directory. Note the creation of
the URL using file:./. The / character is very important. It says this is a
directory; otherwise, it is assumed the URL points to a file. However, files in
java.class.path (application class path) and sun.boot.class.path (core
classes) will be found and loaded during delegation by the appropriate class
loader instance. In this example the result is the same as our JDK 1.1 style
class loader (AuditClassLoader) except that AuditClassLoader has two tiers,
system classes (a class starting with j ava.) and all others (found via
CLASSPATH), whereas AuditClass2Loader uses delegation (not a naming
convention) and has three tiers, as follows:

< AuditClass2Loader will handle the files not found by delegation and will
only look in the URL list passed on to its constructor. In our example, using
TestClass2Loader, this is just the current directory.

* The URLClassLoader instance created at JVM startup will handle the
classes not found by the primordial loader and that it can find via
java.class.path

« The primordial loader will find all core classes found using
sun.boot.class.path, which can be more than just java., as in
AuditClassLoader.

The Class Loader and Class File Verifier 165

/**
* Test Audit2d asslLoader
* Expects a class nane as input.
*
*/
inport java.net.*;
inport java.lang.reflect.Mdifier;
publ ic class Test Audit2d assLoader
{
/**
* main entrypoint - starts the application
* @aramargs java.lang. String[]
*/
public static void main(java.lang. String[] args) throws Exception
{
if (args.length !=0)
{
URL dirs[] = new UR[1];
dirs[0] = new URL("file:./");
Audi t 24 assLoader | oader = new Audit2d assLoader (dirs);
d ass nysel f = | oader. | oadd ass(args[0]);
int nods = nysel f.get Mdifiers();
if (!'Modifier.isAbstract (nods))
{
(bj ect 0 = nysel f. new nstance();
Systemout. printl n("New i nstance created:");
Systemout . println(o);
}
el se
{
Systemout. printl n("Abstract class | oaded:");
Systemout . print| n(nysel f);
}
}
}
}

Figure 64. TestAudit2ClassLoader.java

Here are the results of running TestAudit2ClassLoader using the same
classes as we used for trying out TestAuditClassloader.

On running TestAudit2ClassLoader against the concrete class GetPrintJob
(see again Figure 1 on page 14 and Figure 2 on page 15), the results are:

166 Java 2 Network Security

¢ On the console:

New i nstance creat ed:
Get Pri nt Job[panel 0, O, 0, 0x0, i nval i d, | ayout = ava. awt . H owLayout]

¢ In the auditclasses.log file:

Audit Sarted:
| oadi ng class: GetPrintJob

On running TestAudit2ClassLoader against an abstract class, such as
java.util. TimeZone, the output would be:

¢ On the console:

Abstract class | oaded:
class java. util. T meZone

¢ In the auditclasses.log file:

Audit Sarted:
| oading class: java. util.Ti neZone

6.1.5.3 In Summary

Obviously, Audit2ClassLoader is much simpler to implement and adds access
control using Java 2's new security mechanism. There is, however, a small
price we paid for this. We saw that TestAuditClassLoader recorded a
message in the log file for the class being loaded and for each class loaded
during the resolve step, that is for each class the subject class referenced.
This is not true for TestAudit2ClassLoader. In fact we saw that in this case
there is only a message for the class requested. This is because
Audit2ClassLoader asks its parent to do all the real work by delegating the
request. The parent, URLCLassLoader, happily handles the resolve step for
Audit2ClassLoader. We could do a little more of the work in
Audit2ClassLoader and handle this, if it were necessary.

The Class Loader and Class File Verifier 167

6.2 The Class File Verifier3

Once a class has been located and loaded by a class loader (other than the
primordial class loader), it still has another hurdle to cross before being
available for execution within the JVM. At this point we can be reasonably
sure that the class file in question cannot supplant any of the core classes,
cannot inveigle its way into the trusted packages and cannot interfere with
other safe classes already loaded.

We cannot, however, be sure that the class itself is safe. There is still the
safety net of the SecurityManager which will prevent the class from accessing
protected resources such as network and local hard disk, but that in itself is
not enough. The class might contain illegal bytecode, forge pointers to
protected memory, overflow or underflow the program stack, or in some other
way corrupt the integrity of the JVM.

As we have said in earlier chapters, a well behaved Java compiler produces
well behaved Java classes and we would be quite happy to run these within
the JVM since the Java language itself and the compiler enforce a high
degree of safety. Unfortunately we cannot guarantee that everyone is using a
well behaved Java compiler. Nasty devious hacker types may be using
homemade compilers to produce code designed to crash the JVM or worse,
subvert the security thereof. In fact, as we saw in Chapter 5, “Class Files in
Java 2" on page 117, we cannot even be sure that the source language was
Java in the first place!

In addition to this there is the problem of release-to-release binary
compatibility. Let's say that you have built an applet which uses a class called
TaxCalculator from a third party. You have constructed your applet with great
care and have purchased and installed the TaxCalculator class on the server
with your applet code.

At this point you are certain that the methods you call in TaxCalculator are
present and valid but what happens if/when you upgrade TaxCalculator? Of
course you should make sure that the API exposed by TaxCalculator hasn’t
changed and that your class will still work, but what if you forget? In practice it
is quite possible that TaxCalculator has changed between versions and
methods or fields which were previously accessible have become
inaccessible, been removed or changed type from dynamic to static fields. In
this case, when your applet is downloaded to a browser and it tries to make
method calls or access fields within TaxCalculator those calls may fail.

3 Important note — The class file verifier is sometimes referred to as the bytecode verifier, but as we show in this section,
running the bytecode verifier is only one part of the class file verification process.

168

Java 2 Network Security

This is because the binary code compatibility between the classes has been
broken between releases. These problems exist with all forms of binary
distributable libraries. On most systems this results in at best a system
message and the application refusing to run; at worst the entire operating
system could crash. The JVM has to perform at least as well as other
systems in these circumstances and preferably better.

For all of the above reasons, an extra stage of checking is required before
executing Java code and this is where the class file verifier comes in.

After loading an untrusted class via a ClassLoader instance, the class file is
handed over to the class file verifier which attempts to ensure that the class is
fit to be run. The class file verifier is itself a part of the Java Virtual Machine
and as such cannot be removed or overridden without replacing the JVM
itself.

6.2.1 An Example of Class File Verification

As a very simple example to show the affects of class file verification and to
see when classes are subjected to verification, we wrote a Java class,
TestVerify.java, which adds two integers initialized to the values 3 and 4 and
displays the answer 7.

/**

* TestVerify.java

* bed to create an invalid class file to
* test when verification occurs

*/

inport java.aw.*;
inport java.applet.*;

public class TestVerify extends Appl et

{
public static void main(String[] args)
{
Systemout.printin("3 +4 =" + add());
}
static int add()
{
int ab,c;
a=3

Figure 65. (Part 1 of 2). TestVerify.java

The Class Loader and Class File Verifier 169

b =4; // use hex editor to change to "a = 4" inclass file
return (atb);

}
publ i ¢ voi d pai nt (G aphics g)
{
g.drawstring("3 + 4 =" + add(), 10, 20);
}

}

Figure 66. (Part 2 of 2). TestVerify.java
* The class above can be launched as a Java application, through the
command:
java Test Verify
This is the output produced:
3+4=17

e Or, TestVerify can be launched as a Java applet using Applet Viewer or a
Java-enabled Web browser. The following is the code of TestVerify.html, a
simple HTML page that invokes the TestVerify applet:

<HTM.>
<HEAD>
<TI TLE>Test Verify Appl et</ TI TLE>
</ HEAD>
<BCDY>
<H3>Test Veri fy Appl et </ H3>

<APPLET Code="Test Verify" Wdth=250 Hei ght =50>
</ APPLET>

</ BADY>
</ HTM>

Figure 67. TestVerify.html

Below, in Figure 68 on page 171, is the output of the command:
appl et vi ener Test Verify. htn

170 Java 2 Network Security

Eg’,i'ﬁpplet Yiewer: TestWerify (_ (O] =]
A pplet

3+4=7

Applet started.

Figure 68. TestVerify Class Running as an Applet

TestVerify was used to determine when verification of classes occurs. In the
TestVerify.class file, the initialization of variable b in method add() was
modified using a hexadecimal editor to re-initialize variable a, so that variable
b is never initialized.

Below, in Figure 69 on page 171 and Figure 70 on page 172, is the output of
the command:

javap -c Test\Verify

public Te

public st
public vo

}

Met hod Test Ve
0 aload 0
1 i nvokesp
4 return

Method int ad
0 iconst_3
listore O
2 iconst_4
3istore_ 1
4 iload O
5iload 1
6 iadd
7 ireturn

Gonpi | ed from Test Verify.java
public class TestVerify extends java. appl et. Appl et {

static int add();

st Verify();

atic void nain(java.lang. String[]);
i d paint(java. awnt.Q aphics);

rify()

eci al #9 <Met hod j ava. appl et . Appl et () >

d()

Figure 69. (Part 1 of 2). Disassembling TestVerify.class Using javap

The Class Loader and Class File Verifier 171

Met hod voi d nmai n(java.lang. String[])
0 getstatic #14 <Field java.io. PrintSreamout >
3 new #7 <d ass java.l ang. S ri ngBuf f er >
6 dup
7 ldc #2 <String "3 + 4 = ">
9 invokespeci al #10 <Method java. |l ang. StringBuffer(java.lang. String)>
12 invokestatic #11 <Method int add() >
15 invokevirtual #12 <Method java.lang. StringBuffer append(int)>
18 invokevirtual #16 <Method java.lang. String toString()>
21 invokevirtual #15 <Method void println(java.lang. String)>
24 return

Met hod voi d pai nt (j ava. awt . G aphi cs)
0 aload_1
new #7 <d ass j ava.l ang. St ri ngBuf f er >
dup
ldc #1 <String "3 + 4 = ">
i nvokespeci al #10 <Method java. l ang. StringBuffer(java.lang. String)>
10 invokestatic #11 <Method int add() >
13 invokevirtual #12 <Method java.lang. StringBuffer append(int)>
16 i nvokevirtual #16 <Method java.lang. String toString()>
19 bi push 10
21 bi push 20
23 invokevirtual #13 <Method void drawstring(java.lang. String, int, int)>
26 return

1
4
5
7

Figure 70. (Part 2 of 2). Disassembling TestVerify.class Using javap

If you look at method add(), instruction 3, you will see anistore_1 instruction.
This is the initialization of variable b and has the bytecode 3C As you can see
in Figure 71 on page 173, we changed this via a hexadecimal editor to 3B, the
bytecode for i store_0, which is the same as instruction 1 and re-initializes
variable a, thereby eliminating the initialization of variable b.

172 Java 2 Network Security

B Testverify class

a000o0z290 0008
00000240 0000

00000340 0002 0029

Figure 71. Edit of TestVerify.class with istore_1 Instruction Changed to istore_0

000001ED0 0100 126A 6176 612F 6170 706C 6574 2F41 ...java-applet A
000001Cc0 7070 6CRS 7401 0011 BAGRL1 7eGl 2Fhl 7774 pplet...java-awt
00000100 2F47 7261 7068 6963 7301 0013 kAkl 7661 ~Graphics...java
000001ED 2F6Y9 6F2F 5072 £96E 7453 7472 6561 6D01 sio-Print3tream.
000001F0 0016 eARl 7A6l 2F6C 616E 672F 5374 7269 ..java-lang-3tri
00000200 eERY 4275 6666 6572 0100 1064 6176 612F ngBuffer...java~s
00000210 eCe1 BERY 2F53 7973 7465 6D0OL 0004 6D6l lang-System...ma
00000220 696E 0100 036F 7574 0100 0570 6169 6EF4 in...out...paint
00000230 0100 0770 7269 BE74 &CeE 0100 0874 &F33 .. i
00000240 7472 6%96E 6700 2100 0300 0400 0000 0000
00000250 0400 0100 2300 1BOO O100 2400 0000 1DOOD ...
00000260 0100 0100 0000 0524 BPO0 O9B1 OOOO 0001
00000270 0025 0000 0006 OOO1 0000 0009 000G 002A .
00000280 0019 0001 0024 0000 0028 000z 00Oz 0000 ..

] 1A1B 60AC 0000 0OO1
0003 0000 0013 0002 0014
0000020 0015 0009 0032 0020 0001 0024 OOOO
000002c0 0004 0001 0000 0019 BzOO OEBE OOO7
00000200 02ZB7 000A EBS0O OBEe O0OC BeOO 10ER
00000Z2E0 BE10OO 0OOO 0100 2500 0000 0AO0 0200
000002F0 DEOO 1800 0OCOO 0100 3400 1D0O0 0100
00000300 0000 3700 0400 0200 0O0OOO 1B2E BBOO
00000310 1201 BY00 OABS OOOE BeOO OCEe OO10
00000320 1014 BeOO ODE1 0OOO 0001 0025 OOOO
00000330 0002 0000 0018 OO1& 0017 0001 0027

.println...tod

aozs ..

O[]

We then ran the modified class file in a JDK 1.1.6 system as an application

and as an applet:

« As a local application, a user class can only be found by searching the
CLASSPATH system environment variable. Since the current directory is
always front appended to CLASSPATH, a program runs as a trusted class
and, therefore, is not subject to verification. The modified version of our
program ran and produced the following erroneous results:

3 + 4 = 26246588

« Using the JDK 1.1.6 Applet Viewer, which forces all user classes to be
verified, produced the following results:

java.lang. \VerifyEror
at java.lang.
at sun. appl et
at sun. appl et
at sun. appl et
at sun. appl et
at sun. appl et

-

A assLoader . resol ved ass(d assLoader . j ava: 237)

. Appl et A assLoader . | oadCode(Appl et A assLoader . j ava: 299)
. Appl et A assLoader . | oadCode(Appl et A assLoader . j ava: 375)

. Appl et Panel . creat eAppl et (Appl et Panel . j ava: 456)
. Appl et Panel . runLoader (Appl et Panel . j ava: 392)
. Appl et Panel . run(Conpi | ed Code)

at java.lang. Thread. run(Thread. j ava: 466)

As you can see, the file failed verification and was not allowed to run.

We then tried this on our Java 2 system. Since now, in Java 2, the primordial
class loader loads only the core classes using the property

The Class Loader and Class File Verifier

173

sun.boot.class.path, this class always fails verification and does not run, with
one exception. We will talk about this in a moment.

* When run as an application, it produced the following output:

Exception in thread "main" java.lang. VerifyEror: (class: Test\erify,
net hod: add signature: ()1) Accessing value fromuninitialized register 1

* When run as an applet, the output produced is the following:

java.lang. VerifyEror: (class: TestVerify, nethod: add signature: ()I)
Accessing val ue fromuninitialized register 1
at java.lang. d ass. new nst anceO(Nati ve Met hod)
at java.lang.d ass. new nst ance(d ass. j ava: 239)
at sun. appl et . Appl et Panel . creat eAppl et (Appl et Panel . j ava: 532)
at sun. appl et . Appl et Panel . r unLoader (Appl et Panel . j ava: 468)
at sun. appl et . Appl et Panel . run(Conpi | ed Code)

L at java.lang. Thread. run(Thread. j ava: 479)
)

As you can see, the code we have shown fails as an application and as an
applet in a normal mode of operation.

However, we just said there was an exception. If you will remember, in the
Box “An Observation on the sun.boot.class.path Property” on page 153, we
showed that there was a non-existent directory called classes in the
java.home directory which, if created, provided a place to put classes to be
considered core. Well, we placed the TestVerify class in this directory (after
creating it) and ran the class as an application and as an applet. As
suspected it ran without being verified in both cases. Here are the results:

¢ As an application:
3 + 4 = 26284364
¢ As an applet using Applet Viewer:

EiApplet Viewer: TestVerify M=l

Applet

3+ 4=26248042

Applet started.

Figure 72. TestVerify Running as an Applet from ${java.home}${/}classes Directory

174 Java 2 Network Security

One last thing to note: the results when TestVerify was not verified are
different each time. This is because the memory for integer b was never
initialized and the add operation just added 3 to whatever value happened to
be left from some previous usage of that memory location.

6.2.2 The Duties of the Class File Verifier

Before discussing what the class file actually does, we look at the possible
ways in which a class file might be unsafe. By understanding a threat, we can
understand better how the Java architecture guards against it.

The following are some of the things that a class file could do which could
compromise the integrity of the JVM:

« Forge illegal pointers

If a Java class can obtain a reference to an object of one type and treat it
as an object of a different type then it effectively circumvents the access
modifiers (private, protected, etc.) on the fields of that object. This type of
attack is known as a class confusion attack since it relies on confusing the
JVM about the class of an object.

e Contain illegal bytecode instructions

The JVM’s execution engine is responsible for running the bytecode of a
program in the same way as a conventional processor runs machine code.

When a conventional processor encounters an illegal instruction in a
program, there is nothing that it can do other than stop execution. You may
have seen this in Windows systems, where the operating system can at
least identify that an illegal instruction has been found and display a
message.

Similarly, if the execution engine finds a bytecode instruction that it cannot
execute, it is forced to stop executing. In a well written execution engine
this would not be good, but in a poorly written version it is possible that the
entire JVM, or the Web browser in which it is embedded or even the
underlying operating system might be halted. This is obviously
unacceptable.

« Contain illegal parameters for bytecode instructions

Passing too many or too few parameters to a bytecode instruction, or
passing parameters of the wrong type, can lead to class confusion or
errors in executing the instruction.

¢ Overflow or underflow the program stack

If a class file could underflow the stack (by attempting to pop more values
from it than it had placed on it) or overflow the stack (by placing values on

The Class Loader and Class File Verifier 175

it that it did not remove) then it could at best cause the JVM to execute an
instruction with illegal parameters or at worst crash the JVM by exhausting
its memory.

« Perform illegal casting operations

Attempting to convert from one data type to another — for example, from an
integer to a floating point or from a String to an Object — is known as
casting. Some types of casting can result in a loss of precision (such as
converting a floating point number to an integer) or are simply illegal (such
as converting a String to a DatalnputStream).

The legality of other types of casts is less clear; for example, all Strings
are Objects (since the String class is derived from the Object class) but
not all Objects are Strings. Trying to cast from an Object to a String is legal
only if the Object is originally a String or a String derivative. Allowing
illegal casts to be performed will result in class confusion and thus must
be prevented.

« Attempt to access classes, fields or methods illegally

As discussed above, a class file may attempt to access a nonexistent
class. Even if the class does exist, it may attempt to make reference to
methods or fields within the class which either do not exist or to which it
has no access rights. This may be part of a deliberate hacking attempt or
as a result of a break in release-to-release binary compatibility.

By tagging each object with its type, the JVM could check for illegal casts. By
checking the size of the stack before and after each method call, stack
overflows and underflows can be caught. The JVM could also test the stack
before each bytecode is executed and thus avoid illegal or wrongly numbered
parameters.

In fact, all of these tests could be made at run time but the performance
impact would be significant. Any work that the class file verifier can do in
advance of run time to reduce the performance burden is welcome. With
some idea of the magnitude of the task before the class file verifier, we now
look at how it meets this challenge.

6.2.3 The Four Passes of the Class File Verifier

176

Before we go into any detail on how the class file verifier works it is important
to note that the Java specification requires the JVM to behave in a particular
way when it encounters certain problems with class files, which is usually to
throw an error and refuse to use the class.

Java 2 Network Security

The precise implementation varies from one vendor to the next and is not
specified. Thus some vendors may make all checks prior to making a class
file available; others may defer some or all checks until run time. The process
described below is the way in which Sun’s HotJava Web browser works; it has
been adopted by most JVM writers, not least because it saves the effort of
reinventing a complex process.

The class file verifier makes four passes over the newly loaded class file,
each pass examining it in closer detail. Should any of the passes find fault
with the code then the class file is rejected. For reasons which we explain
below, not all of these tests are performed prior to executing the code. The
first three passes are performed prior to execution and only if the code
passes the tests here will it be made available for use.

The fourth pass, really a series of ad hoc tests, is performed at execution
time, once the code has already started to run.

6.2.3.1 Pass 1 — File Integrity Check

The first and simplest pass checks the structure of the class file. It ensures
that the file has the appropriate signature (first four bytes are OxCAFEBABE) and
that each of the structures within the file is of the appropriate length. It
checks that the class file itself is neither too long nor too short and that the
constant pool contains only valid entries. Of course class files may have
varying lengths but each of the structures (such as the constant pool) has its
length included as part of the file specification.

If a file is too long or too short, the class file verifier throws an error and
refuses to make the class available for use.

6.2.3.2 Pass 2 — Class Integrity Check

The second pass performs all other checking which is possible without
examining the actual bytecode instructions themselves. Specifically, it
ensures that:

« The class has a superclass (unless this class is Object).

* The superclass is not a final class, and this class does not attempt to
override a final method in its superclass.

« Constant pool entries are well formed, and all method and field references
have legal names and signatures.

Note that in this pass, no check is made as to whether fields, methods or
classes actually exist, merely that their names and signatures are legal
according to the language specification.

The Class Loader and Class File Verifier 177

178

6.2.3.3 Pass 3 — Bytecode Integrity Check

This is the pass in which the bytecode verifier runs and is the most complex
pass of the class file verifier. The individual bytecodes are examined to
determine how the code will actually behave at run time. This includes
data-flow analysis, stack checking and static type checking for method
arguments and bytecode operands.

It is the bytecode verifier which is responsible for checking that the bytecodes
have the correct number and type of operands, that datatypes are not
accessed illegally, that the stack is not over or underflowed and that methods
are called with the appropriate parameter types.

The precise details of how the bytecode verifier operates may be found in 6.3,
“The Bytecode Verifier in Detail” on page 180. For now, it is important to state
two points:

1. The bytecode verifier analyzes the code in a class file statically. It attempts
to reconstruct the behavior of the code at run time, but does not actually
run the code.

2. Some very important work has been done, which demonstrates that it is
impossible for static analysis of code to identify all of the problems which
may occur at run time. We include this proof in 6.4, “An Incompleteness
Theorem for Bytecode Verifiers” on page 183.

To restate this in simple terms, any class file falls into one of three categories:
¢ Run-time behavior is demonstrably safe.
« Run-time behavior is demonstrably unsafe.

* Run-time behavior is neither demonstrably safe nor demonstrably unsafe.

Clearly the bytecode verifier should accept those class files in the first
category and reject those in the second category. The problem arises with
class files in the third category.

These class files may or may not contain code that will cause a problem at
run time, but it is impossible from static analysis of the code to determine
which.

The more complex the bytecode verifier becomes, the more it can reduce the
number of cases which fall into the third category but no matter how complex
the verifier, it can never completely eliminate the third category and for this
reason there will always be bytecode programs which pass verification, but
which may contain illegal code.

Java 2 Network Security

This means that simply having the bytecode verifier is not enough to prevent
run-time errors in the JVM and that the JVM must perform some run-time
checking of the executable code.

Lest you begin panicking at this stage you should comfort yourself with the
thought that the level of verification performed by the JVM prior to executing
bytecode is significantly higher than that performed by traditional run-time
environments for native code (that is, none at all).

6.2.3.4 Pass 4 — Run-Time Integrity Check

As we have hinted, the JVM must make a trade-off between security and
efficiency. For that reason, the bytecode verifier does not exhaustively check
for the existence of fields and classes in pass 3. If it did, then the JVM would
need to load all classes required by an applet or application prior to running it.
This would result in a very heavy overhead which is not strictly required.

We will examine the following case with three classes, MyClass,
MyOtherClass and SubclassOfMyClass, which is derived from MyClass.
MyOtherClass has two public methods:

» methodReturningMyClass(), which returns an instance of MyClass
* methodReturningSubclassOfMyClass(), which returns an instance of
SubclassOfMyClass.

Against this background, consider the following code snippet:

MG herd ass x = new M/Q herd ass();
M/Q ass y = x. net hodRet ur ni ngM/d ass();

In 6.2.3.3, “Pass 3 — Bytecode Integrity Check” on page 178, the class file
verifier has ascertained that the method methodReturningMyClass() is listed
in the constant pool as a method of MyOtherClass which is public (and
therefore reachable from this code).

It also checks that the return type of methodReturningMyClass() is MyClass.
Having made this check and assuming that the classes and methods in
guestion do exist, the assignment statement in the second line of code is
perfectly legal. The bytecode verifier does not in fact need to load and check
the class MyClass at this point.

Now consider this similar code:

The Class Loader and Class File Verifier 179

MG herd ass x = new M/Q herQd ass();
M/Q ass y = x. net hodRet ur ni ngSubcl assd M/A ass() ;

In this case, the return type of the method call does not return an object of the
same class as y, but the assignment is still legal since the method returns a
subclass of MyClass. This is not, however, obvious from the code alone: the
verifier would need to load the class file for the return type
SubclassOfMyClass and check that it is indeed a subclass of MyClass.

Loading this class involves a possible network access and running the class
file verifier for the class and it may well be that these lines of code are never
executed in the normal course of the program’s execution in which case
loading and checking the subclass would be a waste of time.

For that reason, class files are only loaded when they are required, that is
when a method call is executed or a field in an object of that class is modified.
This is determined at run time and so that is when the fourth pass of the
verifier is executed.

6.3 The Bytecode Verifier in Detail

180

The first stage of the bytecode verifier process is the identifying of bytecode
instructions and their arguments. This operation is completed in two passes.
The first pass locates the start of each instruction and stores it in a table.
Having found the start of each instruction, the verifier makes a second pass,
parsing the instructions. This involves building a structure for each
instruction, storing the instruction and its arguments. These arguments are
checked for validity at this point. Specifically:

¢ All arguments to flow-control instructions must cause branches to the start
of a valid instruction.

« All references to local variables must be legal. That is, an instruction may
not attempt to read or write to a local variable beyond those that a method
declares.

« All references to the constant pool must be to an entry of the appropriate
type.

¢ All opcodes must have the correct number of arguments.

« Each exception handler must have start and end points at the beginning of

valid instructions with the start point before the end point. In addition, the
offset of the exception handler must be the start of a valid instruction.

Java 2 Network Security

6.3.1 The Data Flow Analyzer

Having established that the bytecodes are syntactically correct, the bytecode
verifier now has the task of analyzing the run-time behavior of the code
(within the limitations examined in 6.4, “An Incompleteness Theorem for
Bytecode Verifiers” on page 183).

To perform this analysis, the bytecode verifier has to keep track of two pieces
of information for each instruction:

e The status of the stack prior to executing that instruction in the form of the
number and type of items on the stack.

« The contents of local variables prior to executing that instruction. Only the
type of each local variable is tracked. The value is ignored.

Where types are concerned, the analyzer does not need to distinguish
between the various normal integer types (byte, short, char) since, as we
discuss in 5.5, “Java Bytecode” on page 136, they all have the same internal
representation.

The first stage is the initialization of the data flow analyzer:

¢ Each instruction is marked as unvisited. That is, the data flow analyzer has
not yet examined that instruction.

 For the first instruction, the stack is marked as empty and the local
variables corresponding to the method’s arguments are initialized with the
appropriate types.

« All other local variables declared as used by the method are marked as
containing illegal values.

* The changed bit of the first instruction is set, indicating that the analyzer
should examine this instruction.
Finally, the data flow analyzer runs, looping through the following steps:
1. Find a virtual machine instruction whose changed bit is set.

2. If no instruction remains whose changed bit is set, the method has
successfully been verified; otherwise turn off the changed bit of the
instruction found and proceed to Step 3.

3. Emulate the effect of this instruction on the stack and local variables:

« If the instruction uses values from the stack, ensure that there are
sufficient elements on the stack and that the element(s) on the top of
the stack are of the appropriate type.

The Class Loader and Class File Verifier 181

« If the instruction pushes values onto the stack, ensure that there is
sufficient room on the stack for the new element(s) and update the
stack status to reflect the pushed values.

« If the instruction reads a local variable, ensure that the specified
variable contains a value of the appropriate type.

« If the instruction writes a value to a local variable, change the type of
that variable to reflect that change.

4. Determine the set of all possible instructions which could be executed
next. These are:

« The next instruction in sequence, if the current instruction is not an
unconditional goto, a return, or a t hrow

* The target instruction of a conditional or unconditional branch.
¢ The first instruction of all exception handlers for this instruction.

5. For each of the possible following instructions, merge the stack and local
variables as they exist after executing the current instruction with the state
prior to executing the following instruction. In the exception-handler case,
change the stack so that it contains a single object of the exception type
indicated by the exception handler information. Merging proceeds as
follows:

« If the stacks are of different sizes then this is an error. Stop!

« If the stacks contain exactly the same types, then they are already
merged.

« If the stacks are identical other than having differently typed object
references at corresponding places on the stacks then the merged
stack will have this object reference replaced by an instance of the first
common superclass or common superinterface of the two types. Such
a reference type always exists because the type Object is a supertype
of all class and interface types.

« If this is the first time the successor instruction has been visited, set up
the stack and local variable values using those calculated in Step 2 and
set the changed bit for the successor instruction. If the instruction has
been seen before, merge the stack and local variable values calculated
in Step 2 and Step 3 into the values already there; set the changed bit
if there is any modification.

6. Go to Step 1.

182 Java 2 Network Security

If the dataflow analyzer runs on the method without reporting any failures,
then the method has been successfully verified by Pass 3 of the class file
verifier (see 6.2.3.1, “Pass 1 — File Integrity Check” on page 177).

6.4 An Incompleteness Theorem for Bytecode Verifiers

The bytecode verifier is a key component of Java security. Practical bytecode
verifiers divide bytecode programs into three classes:

1. Those that will not cause problems when they run
2. Those that will cause problems when they run

3. Those where the verifier is not certain.

You can improve a bytecode verifier by reducing its area of uncertainty. Can
you eliminate uncertainty completely? Can you build a complete bytecode
verifier that determines whether a program is safe or not before it runs?

The answer is no, you cannot. It is mathematically impossible. This short
section shows why.*

To demonstrate this, we focus on one aspect of bytecode verification,
stack-underflow checking. This involves determining whether a bytecode
program will underflow the stack, by removing more items from it than were
ever placed on it. Then we use the argument known as reductio ad absurdum.
We assume that there is a complete stack-underflow checker and show that
this assumption leads to a contradiction. This means that the assumption
must have been false — a complete stack-underflow checker is impossible.
Since a complete bytecode verifier must contain a complete stack-underflow
checker, a complete bytecode verifier is impossible too.

Suppose then that there is such a thing as a complete stack-underflow
checker. We write a method in standard Java bytecode which takes as its
argument the name of a class file and returns:

« The value true if the specified class file does not underflow the stack

¢ The value fal se if it does

We call this method doesNotUnderflow().®

4 The problem has been deliberately stated in terms that mathematicians may recognize as being similar to the halting
problem. The proof, a diagonalization argument, follows the flow of Christopher Strachey’s halting-problem proof
(Computer Journal 1967).

5 We have here used Church’s Thesis, which states that a programming language (such as the Java bytecode language)
which can code a Turing machine can code any computable function.

The Class Loader and Class File Verifier 183

We now consider the bytecode program Snarl, whose main method contains
the following code lines:

i f doesNot Lhder f| ow(cl assF | e)
while true pop(); I/thus underfiowing Snar’s stack
else

{4 I/ exiting gracefully

The pop() method — which removes the top element from the stack — may not
be pure Java, but can certainly be written in bytecode. The bytecode program
Snarl is compiled into the class file Snarl.class.®

What happens if we give Snarl itself as a parameter? The first thing it does is
to invoke the method doesNotUnderflow on Snarl.class:

« If doesNotUnderflow(Snarl.class) is true, then Snarl immediately
underflows the stack.

« If doesNotUnderflow(Snarl.class) is fal se, then Snarl exits safely, without
underflowing the stack.

This contradiction means that there could never have been a method
doesNotUnderflow() which worked for all class files. The quest for a way of
determining statically that a class would behave itself at run time was
doomed. Complete checking for stack underflow must be done at run time if it
is to be done at all.

This result can be generalized and applied to any aspect of bytecode
verification where you try to determine statically something that happens at
run time. So all bytecode verifiers are incomplete. This does not, of course,
mean that they are not useful — they contribute significantly to Java security —
nor that they cannot be improved. It does mean, however, that some checking
has to be left until run time.

6.5 Summary

You have now seen the types of checking which take place before a class file
from an untrusted source can be loaded and run inside the JVM and the
improvements in this area Java 2 offers.

6 Snarlis a pretty nasty piece of programming, and most practical bytecode verifiers would reject it out of hand. The
reason for this is that while true pop (); is disastrous if executed and has no practical purpose; a good rule of thumb is to
leave it out. But there's nothing invalid about Snarl — if we really have finite bytecode for the method doesNotUnderflow(),
then we can readily construct the bytecode for Snarl — and doesNotUnderflow(), being complete, has no need for rules of
thumb.

184 Java 2 Network Security

Once itis running, code from untrusted sources is subject to further checking
at the hands of the security manager which we have mentioned briefly here.
Chapter 7, “The Java 2 SecurityManager” on page 187 describes how the
security manager works and looks at ways in which it is possible to reduce
the burden placed on the class loader and class file verifier by extending the
range of classes which the JVM regards as trusted.

The Class Loader and Class File Verifier 185

186 Java 2 Network Security

Chapter 7. The Java 2 SecurityManager

As we said in 1.3.3, “Java as a Threat to Security” on page 9, we can imagine
four levels of attack to which a Java environment can be subjected:

1. System modification, in which a program gets read/write access and
makes some changes to the system

2. Privacy invasion, in which a program gets read access and steals
restricted information from your system

3. Denial of service, in which a program uses system resources without
being invited

4. Impersonation, in which a program masquerades as the real user of the
system

The Java security manager enforces restrictions based on policy statements
that are designed to prevent the first two of these and, with Java 2, to some
extent the last. In this chapter we look at what the security manager does,
and how it does it.

Along the way, we will look at some of the loopholes (now closed) in which
security has been circumvented in previous releases of the Java
Development Kit (JDK). Finally we briefly consider the tricks that an applet
can use to perform the nuisance attacks — denial of service and
impersonation.

7.1 What SecurityManager Does

Beginning with Java 2, the class java.lang.SecurityManager is no longer
abstract and its implementation supports the new policy driven security
model.

Before Java 2, SecurityManager was an abstract class that application
developers, such as Web browser manufacturers, extended to implement a
set of access controls. These controls placed applets in the so-called
sandbox. Although the class was abstract, it did implement a set of methods
with names starting with check, for example checkWrite() and
checkConnect(). The intent was for the application developer to override
these methods with something that answered the question Is the applet
allowed to do this? either by quietly returning to the caller (an implicit Yes) or
by throwing a security exception (an emphatic No). As shipped, each method
did have a default behavior in case the application did not override the
method. Each method simply said no by throwing a security exception.

© Copyright IBM Corp. 1997 1999 187

With Java 2, SecurityManager is a fully functional resource level access
control facility. Application developers need only call one method,
checkPermission(), which takes a permission object as a parameter. For
compatibility, the other check methods are still available, but now answer the
guestion using the new permission and policy file model by turning the
request into a permission and calling checkPermission(). All of the check
methods can still be overridden, if necessary.

Table 8 summarizes the checks, the default policy (based on the java.policy
file that comes with the installation of Java 2 SDK, Standard Edition, V1.2.x)
and the permission type which is passed to checkPermission() by each check
method. This is also the permission type to pass to checkPermission() when
you call it directly.

Note that, if running an applet using the Java 2 SDK, Standard Edition, V1.2.x
Applet Viewer, Applet Viewer will add socket permissions to connect, accept,
and resolve to the local host and the host the applet is loaded from, including
the host name of the local system, if loaded locally.

Table 8. Security Manager Controls

Area of Check Method "Isprogramallowed | Permission Type Passed to
Control to..." checkPermission()
Network checkAccept() ... accept a socket j ava. net . Socket Per ni ssi on
connections connection? "host:port", "accept";
checkConnect() ... request a socket j ava. net . Socket Per mi ssi on
connection? "host", "resol ve";
j ava. net . Socket Per mi ssi on
"host:port", "connect";
checkListen() ... listen for j ava. net . Socket Per ni ssi on
connection? "l ocal host: 1024-", "listen";
j ava. net . Socket Per mi ssi on
"l ocal host: port", "listen";
checkMulticast() ... use multicast? j ava. net . Socket Per m ssi on
naddr . get Host Addr ess() ,
"accept, connect";
checkSetFactory() ... set socket factory? java. | ang. Runti mePer m ssi on
"set Fact ory"
Threads checkAccess() ... modify thread java. | ang. Runt i mePer m ssi on
arguments? "modi f yThr ead";
java.l ang. Runti mePer m ssi on
"modi f yThr ead@ oup";

188 Java 2 Network Security

Area of Check Method "Isprogramallowed | Permission Type Passed to
Control to..." checkPermission()
File system checkDelete() ... delete a specified java.io.FilePermssion "file",
file? "del ete";
checkRead() ... read from a java. | ang. Runti mePer ni ssi on
specified file? "readFi | eDescriptor”;
java.io.FilePermssion "file",
"read";
checkWrite() ... Write to a specified java. | ang. Runt i mePer ni ssi on
file? "witeF | eDescriptor”;
java.io. Fi | ePernission
"file","wite";
Operating checkExec() ... execute a system java.io. Fil ePernission
system command? "commmand", "execute";
checkPrintJobAccess() ... create a print job? java. | ang. Runt i mePer ni ssi on
"queuePrint Job";
checkSystemClipboardAccess() | ... access the system j ava. awt . AWPer mi ssi on
clipboard? "accessd i pboard";
checkLink() ... link to a system java. | ang. Runt i mePer ni ssi on
library? "l oadLi brary. /i b";
checkTopLevelWindow() ... display a window j ava. awt . AWPer ni ssi on
without also " showW ndoww't hout Viér ni ngBanner "
displaying a banner ;
warning that the
window was created
by an applet?
JVM control checkExit() ... kill the JvM? java. | ang. Runt i mePer ni ssi on
"exi t W
checkPropertyAccess() ... access specified j ava. | ang. Propert yPer m ssi on
system properties? "key", "read,wite";
checkPropertiesAccess() ... access system j ava. | ang. PropertyPerm ssion"*",
properties? "read,wite";
checkAwtEventQueueAccess() ... access the AWT j ava. awt . AWPer mi ssi on
event queue? "accessEvent Queue”;
checkCreateClassLoader() ... create a new class j ava. Runt i mePer m ssi on
loader? "creat ed assLoader";
Packages checkPackageAccess() ... access a specified java. | ang. Runt i mePer m ssi on
and classes Java class package? "accessd assl nPackage. package";

The Java 2 SecurityManager 189

Area of Check Method "Isprogramallowed | Permission Type Passed to
Control to..." checkPermission()
checkPackageDefinition() ... define a specified java. | ang. Runti mePer m ssi on
Java class package? "def i ned assl nPackage. package";
checkMemberAccess() ... access declared java. | ang. Runti mePer ni ssi on
members of a class? "accessDecl ar edMenber s";
Security checkSecurityAccess() ... execute a specified | java. security. SecurityPerm ss
functions security function? ion "action";

7.2 Operation of the Security Manager

Although any Java program, applet, servlet, bean or application, can extend
java.lang.SecurityManager, the JVM will allow only one security manager to
be active at a time. To make a security manager active you have to call the
static system method java.System.setSecurityManager() or set the property
java.security.manager as an option on the j ava command. The command line
option -0 ava. securi ty. manager will make the Java 2 SDK, Standard Edition,
V1.2.x default security manager (java.lang.SecurityManager) active. The
option -0 ava. securi ty. manager =MySecur i t yManager will load and make
MySecurityManager.class the active security manager.

Once a security manager is active, by either method above, it cannot be
replaced unless the program has the authority to do the two following things:
1. Create an instance of SecurityManager.

2. Set a security manager instance as active.

In order for an application stored in the local directory D:\itso\chQ7 to replace

the active security manager, this is what you should set in the current policy
file:

grant codeBase "file:/D/itso/ ch07" {
pernissi on java. | ang. Runti nePer mi ssi on " creat eSecuri t yManager";
permssi on j ava. |l ang. Runti nePer ni ssi on "set Securi t yManager";

h

In fact, if there is a security manager already installed:

1. Invoking a new security manager constructor first calls the
SecurityManager’s checkPermission() method with the
RuntimePermission createSecurityManager permission to ensure the
calling thread has permission to create a new security manager. This may
result in throwing a SecurityException.

190 Java 2 Network Security

2. Invoking the java.lang.System.setSecurityManager() method first calls the
security manager’s checkPermission() method with a RuntimePermission
setSecurityManager permission to ensure it is permitted to replace the
existing security manager. This may result in throwing a
SecurityException.

The installed security manager is only really active on request; it does not
check anything unless it is called by other system functions. Figure 73
illustrates the flow for a specific restricted operation, establishing a network
connection. The calling code creates a new Socket class, using one of the
constructor methods it provides. This method invokes the checkConnect()
method of the local SecurityManager subclass instance.

Untrusted name space

your.own.program

Socket(host, port)

Trusted name space

2

checkConnect(host, port)

java.net.Socket

Return...

SecurityManager

checkPermission
java.net.SocketPermission
(host.port, "connect")

Or...

Security
Exception

Figure 73. Secuirty Manager Operation

The security manager has a very simple question to answer: Is this program
allowed to perform the subject operation? In Figure 73, can your.own.program
connect to host:port? In order to answer this question, the security manager

The Java 2 SecurityManager 191

checks that each class in the stack has a permission entry to connect to
host.port.

7.2.1 Interdependence of the Three JVM Security Elements

Although the three elements of JVM security — class loader, class file verifier
and security manager — each have unique functions, they are interdependent.
The security manager relies on the class loader to keep untrusted classes
and local classes in separate name spaces and protection domains and to
prevent the local trusted classes from being overwritten (for example, by a
Socket class that failed to invoke the checkConnect() method).

Conversely, the class loader relies on the security manager to prevent an
applet from loading its own class loader, which could flag untrusted code as
trusted. And everything relies on the class file verifier to make sure that class
confusion is avoided and that class protection directives are honored.

The bottom line is this: if an attacker can breach one of the three defenses,
the security of the whole system is usually compromised.

7.3 Attacking the Defenses of Java

192

We have now seen how the different parts of the Java defense act together to
create a secure environment in which programs can run. If everything is
working correctly, you should be safe from programs that try to attack your
system or use your system to mount attacks on other systems, in theory...

In practice, a number of holes were found in previous releases of the
implementation of the Java defense, and a variety of attack applets were
demonstrated that exploited them. Luckily for all of us, most of these holes
were discovered by researchers in a lab environment and quickly plugged.

Although the security framework is much more robust in Java 2, we should
not expect it to be without holes. The JVM is a large piece of code and,
inevitably, there will be bugs in it. Some of the attacks have exploited bugs,
but most of them rely on finding ambiguities: using JVM facilities in a way that
the original writers did not envision. The new security model is much more
rigorous and much less prone to ambiguities and has benefited from the
experience of earlier releases. However, attack techniques do not stand still,
so you should regularly monitor the JavaSoft Web site at
http://www.javasoft.com to find out if security bugs have been discovered and
download the latest release of the SDK containing the necessary fixes.

Java 2 Network Security

7.3.1 Types of Attack

Although we do not describe any attacks in detail, it is worth summarizing
some of the techniques that have been successfully used by hackers or
researchers in previous releases:

« Infiltrating local classes

Prior to Java 2, David Hopwood, once a student at Oxford and then a
Netscape employee, discovered an implementation bug in a vendor
implementation of the JVM that allowed an applet to load a class from any
directory on the browser system. This bug was quickly fixed. But, there will
always be opportunities for the industrious cracker to exploit.

Downloading code packages from the Internet has become a part of
everyday life for many people. Any of those packages could have been
modified to plant a Trojan horse class file along with their legitimate
payload. Of course, this is not just a Java problem, but more like a new
form of computer virus. One solution lies in signed content, so that you
know that the package you download has not been tampered with.

Fully trusted classes are those that the JVM assumes and depends upon
being correct and well behaved. Prior to Java 2, any class pointed to by
the CLASSPATH environment variable was considered trusted. Therefore,
changing the trusted class set could be accomplished simply by changing
the value of CLASSPATH. In Java 2, the fully trusted classes are limited to
those on the boot class path, which is internally specified in the JVM by
the sun.boot.class.path property; all other classes are subject to
verification and security policy. Protecting the trusted classes in Java 2 is a
matter of limiting access to the directories and files on the boot class path.

« Type confusion

Java goes to great lengths to ensure that objects of a particular type are
dealt with consistently. We see this both in the compiler and later in the
third pass of the class file verifier (see 6.2.3.3, “Pass 3 — Bytecode
Integrity Check” on page 178).

It is crucial that the class of an object and level of access it allows (as
specified by the private, protected or publ i c keywords) are preserved. In
the JVM, objects are referenced by entries in the constant pool. As shown
in 5.4, “The Constant Pool” on page 129, each entry includes the type of
the referenced object.

If, somehow, an attacker can create an object reference that is not of the
type it claims to be, there is a possibility of breaking down the protection.
Several examples have shown ways to achieve type confusion, by taking
advantage of various implementation flaws, such as:

The Java 2 SecurityManager 193

194

¢ A bug that allowed a class loader to be created but avoided calling the
ClassLoader constructor that normally invokes
checkCreateClassLoader() (see Table 8 on page 188)

« Flaws in JVM access checking which allowed a method or object
defined as private in one class to be accessed by another class as
public

« A bug in the JVM that failed to distinguish between two classes with the
same name but loaded by different class loaders

These bugs were discovered in vendor implementations of the JVM.
* Network loopholes

The first security-related JVM flaw to get worldwide attention was a failure
to check the source IP address of an applet rigorously enough. This was
exploited by abusing the Domain Name System (DNS), a network service
responsible for resolving names to addresses and vice versa, to fool the
security manager into allowing the applet to connect to a host that would
normally have been invisible to the server from which the applet was
loaded. In this way the attacker could access a system that would normally
be safe behind a firewall.

e JavaScript backdoors

There was a series of JavaScript exploits that allowed a script to persist
after the Web page it was invoked from had been exited. This was used to
track the user’'s Web accesses. The flaw was fixed, but then reappeared
when Netscape introduced LiveConnect, which allows a JavaScript script
to create Java objects and invoke Java methods. Both languages have
strict limitations on what they are allowed to do, but the limitations are
different limitations. By combining them you effectively get a union of the
two protection schemes.

If application developers use the fully functional security manager in Java 2
as a base for their work, the number and variations of security
implementations, and therefore possibilities for error, will be greatly reduced.

Flaws and the security exposures they might create are inevitable. However,
Java receives a great deal of attention by a wide audience. An encouraging
thing about this is that most of the flaws found to date were identified by
researchers in the field attempting to find and close all holes. Fixes were
provided rapidly by Sun and application vendors. All of this experience has
influenced the evolution of the Java Security Architecture now available in
Java 2.

Java 2 Network Security

7.3.2 Malicious Applets

So far we have talked about system modification and privacy invasion (see
Point 1 and Point 2 on page 187). What about the last two categories of
exposure — the things that are allowed by the framework (see 3 and 4 on page
187), but which can still be annoying or damaging?

Setting the rules for a program’s environment is always a question of striking
a balance. The program needs some system and/or network resources;
otherwise, it will not be useful at all. On the other hand, it must not be allowed
to have free reign over the system, especially if this program has been
downloaded from a remote site.

We have said that there are two types of malicious programs, denial of
service and impersonation. There is also another type of malice that is not
Java-specific. This is based on deception, that is, to try to trick the user into
entering information that they would not normally give away. This sort of thing
is not specific to Java, in fact there are much easier ways to do the same
thing using scripting languages or simple HTML forms, so we won'’t consider
them further here.?

7.3.2.1 Cycle Stealing

Denial of service attacks have, for a long time, been a scourge of the Internet.
Normally you think of them taking down a server or even a whole site. A
denial of service applet is unusual in that it normally only affects a single
system or user.

Denial of service implies that the user can no longer use the system. Cycle
stealing is much more subtle; by this we mean any program that consumes
resources, whether computer or human, without the user’s permission. The
most extreme form of these are denial of service programs, but the most
insidious ones may not be detected by their victim at all.

There are obvious denial of service attacks. For example a program could try
to create an infinite number of windows, or it could sit in a tight loop, using up
CPU cycles. These are very annoying and they can have a real impact, for
example if the user has to reboot the machine to recover. However, if they are
tied to a particular Web page, the user will quickly realize where the problem
is coming from and simply not go there. A program that is not so easily traced
back to its source is more effective.

The key to this kind of program lies in persistent, background, threads. Every
implementation of the Java Virtual Machine (JVM) supports threads, and the
language makes it very easy to use them. Normally, when you leave a Web

1 The Hostile Applets home page is at http://www.rstcorp.com/hostile-applets/index.html.

The Java 2 SecurityManager 195

page in a browser containing an applet, the applet will stop any threads it
created. However, there is nothing to assist the applet in this task nor to
enforce that this is done. Indeed, if the applet fails (intentionally or
unintentionally) to explicitly stop any threads it created, they will continue to
run until they end on their own or the application (the Web browser for
instance) ends.

Program AppletThread, shown in Figure 74 on page 196 and Figure 75 on
page 197, demonstrates this. It starts a thread which prints out a message
every 5 seconds that proclaims it is still alive and for how long it has been
alive and gives its thread identification information.

inport java.util.Cal endar;
inport java.text.S npl ebat eFormat ;
inport java.util.Date;

public class Appl et Thread extends Appl et inpl enents Runnabl e

{
public void start()
{
Thread aThread = new Thread(this);
aThread. start();
Systemout . println("Applet start.");
}
public void run()
{
int i =1;
Systemout.println("Thread started, id: " + Thread. current Thread().toString());
while (true)
{
try
{
Thr ead. sl eep(5000) ;
}
catch (InterruptedException e)
{
e.print StackTrace();
}

S npl eDat eFormat fornatter = new S npl eDat eFor nat ("HH nMm ss™) ;
Date currentTine = new Date();
Sring AppletTine = fornatter.format (currentTine);

Figure 74. (Part 1 of 2). AppletThread.java

196 Java 2 Network Security

Systemout. println(Thread. current Thread().toString() + ": Aive at " +
AppletTine + " for " + 5% + " seconds.");

i ++
}
}
publ i c void pai nt (G aphics g)
{
g.drawstring("Applet with a thread running, see consol e for nessages", 10, 30);
}

Figure 75. (Part 2 of 2). AppletThread.java

The following HTML file, called AppletThread.html, simply invokes the
AppletThread applet and displays the results on a Web page:

<HTM.>

<BDY>
<APPLET Code="Appl et Thread" Wdt h=400 Hei ght =60>
</ APPLET>

</ BCDY>

</ HTM>

Figure 76. AppletThread.html|

Another applet, AppletClock (see Figure 77 on page 198), is used to help
demonstrate the malicious functionality of AppletThread. AppletClock merely
posts the time it started on the browser’s window.

This way, when we switch pages in the browser, we can see if the time
messages from AppletThread are time stamped after we have left the
AppletThread page and gone on to AppletClock’s page, thereby showing the
thread is still around and running, instead of stopped.

The Java 2 SecurityManager 197

198

/**
* Applet to post its birth tinme on browser w ndow

* |t is used to hel p denonstrate a poi nt about threads
*/

inport java.aw.*;

inport java.applet.*;

inport java.util.Cal endar;

inport java.text.S npl eDat eFornat ;
inport java.util.Date;

public class Appl et d ock extends Appl et

{
Sring AppletSartTi ne;
public void start()
{
S npl eDat eFormat fornatter = new S npl eDat eFor nat ("HH mMm ss™);
Date currentTine = new Date();
AppletStartTine = fornmatter. format (currentTinme);
}
publ i c void pai nt (G aphics g)
{
g.drawstring("Applet Started at " + AppletStartTine, 10, 30);
}
}

Figure 77. AppletClock.java

The following lines of code belong to the HTML file AppletClock.html
necessary to invoke the AppletClock applet:

<HTM_>

<BCDY>
<APPLET GCode="Appl et d ock" Wdt h=400 Hei ght =60>
</ APPLET>

</ BCDY>

</ HTM>

Figure 78. AppletClock.htm/

Java 2 Network Security

Because we wanted to travel from one page to another, we used Netscape
Communicator Version 4.5 as the browser environment instead of the Java 2
SDK Applet Viewer. In each of the following figures you will see the Netscape
Navigator browser window, the Netscape browser’s Java console window and
the Windows NT Task Manager’s performance window.

In Figure 79, we see that AppletThread has started and has spawned a
thread which has printed out its identification and is happily pronouncing its
well-being every 5 seconds. This is our starting point and we take note of the
number of threads in the system and the memory and CPU usage information
on the Task Manager display.

7 Netscape

Fle Edit “iew [Go Communicator Help

OO AP T

Back Forward Reload I-Tnme Search Metzcape Print Security i)

w‘ 7 Bookmarks J‘ anation:Ifile:f/.-’DI/work/App\elThraad htrl j ﬁvw’hat's Related

Anpletwith a thread running, see console for messages

M Java Console [_ (O] x|
Metscape Communications Corporation-- Java 1.1.5 ‘l
E Windows NT Task M Type '?' for options.
o m = hL Lkt = e Symantec Javal ByteCode Compiler Version 210.065
Fie Dptions Wiew Help Copyright {3 1996-97 Symantec Corparation
o Applet start.
Peit
Apphcalmsl eS| (FEIEIENES I Thread started, id: Thread[Thread-2,5 applet-ApplefThread.class]
~CPU Usage—— - CPU Usage Histoarp——————————————————— Thread[Thread-2 5 applet-AppletThread.class]: Alive at17:02:02 for 5 seconds
Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:02:07 for 10 seconds.
Thread[Thread-2 5 applet-AppletThread.class]: Alive at17:02:12 for 15 seconds.
Thread[Thread-2 5 applet-AppletThread.class]: Alive at17:02:17 for 20 seconds.
~MEM Usage—— [Memory Usage Histoy———————————————————
HE IM&k ;
~Totals———— | Physical Memary [K]
Handles 2204 Total 130472
Threads 162 Avallable 74380
Processes 23 File Cache 15140
— Commit Charge (K]—————— 1~ Kemel Memary [K]
Tatal 46176 Total 11700
Lirnit 510504 Paged 8360
Peak 79632 Monpaged 2740 _I _lll
q ¥
|Processes: 23 |CPU Usage: 2% [Mem Usage: 46176 /5105045 | _Clear Close |

Figure 79. AppletThread after Just Starting

Now that we have set the stage, let's see what happens when we leave this
page and travel on to another. Figure 80 on page 200 shows the results of
going to the Web page hosting the AppletClock applet and staying there for a

The Java 2 SecurityManager 199

short period of time. AppletClock started at 17:02:30. We can also see that
the thread that AppletThread spawned is still running happily along at
17:03:03 and has been alive now for 65 seconds. Notice that the thread count
has increased (albeit by 1) and that the memory usage has increased as well.

File Edit “iew Go Communicator Help

I M S NP/ S SR~ = " S]

Back Forward Reload Hame Search Metscape Frint Security Stop
¥ " Bookmarks & Location: [fle: /7 /Dl/work/AppletClack. htrl x| @ what's Fielated

Applet Started at 17:02:30

I Jawa Console [_ o] x]
Metscape Communications Corporation -- Java 1.1.5 Al

E windows NT Task M Type '?' for options
=T i =101 Symantec Javal ByteCode Compiler Version 210.065

Eile Options Miew Help Copyright (C) 1996-87 Symantec Corporation

Applet start.

Thread started, id: Thread[Thread-2 5 applet-AppletThread class]

—CPU Usage—— ~CPUUsageHistoy————————————————— Thread[Thread-2,5,applet-AppleiThread.class]: Alive at 17:02:02 for 5 seconds.

Thread[Thread-2,5 applet-ApplefThread.class]: Alive at 17:02:07 for 10 seconds.
Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:02:12 for 15 seconds.
Thread[Thread-2,5 applet-ApplefThread.class]: Alive at 17:02:17 for 20 seconds.
Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:02:22 for 25 seconds.
Thread[Thread-2,5 applet-ApplefThread.class]: Alive at 17:02:27 for 30 seconds.
Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:02:32 for 35 seconds.
Thread[Thread-2,5applet-ApplefThread.class]: Alive at 17:02:37 for 40 seconds.
Thread[Thread-2 5, applet-AppletThread class]: Alive at 17:02:43 for 45 seconds
Thread[Thread-2,5,applet-ApplefThread.class]: Alive at 17:02:48 for 50 seconds.
Thread[Thread-2,5 applet-ApplefThread.class]: Alive at 17:02:53 for 55 seconds.
Thread[Thread-2,5,applet-ApplefThread.class]: Alive at 17:02:58 for 60 seconds.
Thread[Thread-2,5 applet-ApplefThread.class]: Alive at 17:03:03 for 65 seconds.

Applicalionsl Processes Performance |

—MEM Usage—— [~ Memory Usage History

HT HOK

~Totals——————————— |~ Physical Memory [K]
Handles 2208 Taotal 130472
Threads 163 Avaiable 73732
Processes 23 File Cache 16292
— Commit Charge (K]~ Kemel Memary [K]
Total 47140 Tatal 11604
Lirrit 510504 Paged 8968
Peak 3832 MNonpaged 2636 _I _ILI
1 ¥
[Processes: 23 |CPU Usage: 1% [Mem Usage: 47140K /5105048 | _Clear | Close |

Figure 80. AppletClock Invoked for the First Time

At this point, we can already see the effect of applets not properly cleaning up
after themselves. But, let’s carry this out just a little bit further to point out a
couple more interesting affects.

Next, we press the Back button to return to the AppletThread.html page.
When the browser returns to the AppletThread page it re-runs the applet’s
start() method. This causes AppletThread to spawn a second thread. Figure
81 on page 201 shows that the original thread and a new thread are now both
running happily along. You can see that the new thread, having 1D

200 Java 2 Network Security

3,5,applet-AppletThread.class, is much younger, only 10 seconds old, while
the one with ID 2,5,applet-AppletThread.class is 80 seconds old. This time
the Task Manager doesn’t show an increase in threads, but the memory and
CPU usage have increased. The thread count stays the same because the
main thread for AppletClock stopped, and AppletThread started the new one.

3 Netscape

File Edit “iew Go Communicator Help
~ - - o &
I TS N S & & #
Bachk Forward Reload Home Seaich Metscape Print Security Stop
v w‘ " Bockmarks \& Locatian: Ihle:f’.e'.e’D\f’wolkx’AppIetThread.html j @' What's Related
Appletwith a thread running, see console for messages
M Java Console M= E3
Metscape Communications Corporation -- Java 1.1.5 -
(= x Type '?'for options.
pfindowsNIRlasiHanagen - 100]] Symantec Javal ByteCode Compiler Version 210 065
Eile Dptions Wiew Help Copyright (C) 1896-87 Symantec Corparation
Applet start.
Perfarmance
Apphcahoml falcces ey | Thread started, id: Thread[Thread-2,5 applet-ApplefThread.class]
- CPU Usage | | CPU UsageHistoy ——————————— Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:02:02 for 5 seconds.
Thread[Thread-2,5,appletAppletThread.class]: Alive at 17:02:07 for 10 seconds.
Thread[Thread-2,5,appletAppletThread.class]: Alive at 17:02:1 2 for 15 seconds.
Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:02:17 for 20 seconds.
Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:02:22 for 25 seconds.
Thread[Thread-2,9,appletAppletThread.class]: Alive at 17:02:27 for 30 seconds.
N - P Thread[Thread-2,9,appletAppletThread.class]: Alive at 17:02:32 for 35 seconds.
MEM U M U Histy
i iy B IR Thread[Thread-2.5 applet-AppletThread class]: Alive at 17:02:37 for 40 seconds.
Thread[Thread-2,5,appletAppletThread.class]: Alive at 17:02:43 for 45 seconds.
Thread[Thread-2,5,applet-AppletThread. class]: Alive at 17:02:48 for 50 seconds
O Thread[Thread-2,5,appletAppletThread.class): Alive at 17:02:53 for 55 seconds.
. Thread[Thread-2,5,appletAppletThread.class): Alive at 17:02:58 for B0 seconds.
Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:03:03 for 65 seconds.
r~ Totals r~ Physical temany (K] Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:02:08 far 70 seconds.
Handles 2212 Tatal 130472 Applet start.
Threads 163 Aveailable 3360 Thread started, id: Thread[Thread-3,5, applet-AppletThread.class]
Processes 23 File Cache 15052 Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:03:13 for 75 seconds.
G it Ch K kemel M K Thread[Thread-3,5,applet-AppletThread.class]: Alive at 17:03:14 for 5 seconds.
ommit Charge (K) &mel Memary (K] Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:03:18 for 80 seconds.
V@] e e Thread[Thread-3,5.applet-AppletThread class]: Alive at 17.03:18 for 10 seconds.
Lirnit 510504 Paged 8968
Peak 79832 Monpaged 2624 _I _lﬂ
q ¥
[Processes: 23 |CPU Usage: 1% [Mem Usage: 48044 / 510508 C|Eaf| Close |

Figure 81. Upon Using the Back Button to Return to the AppletThread Page

The last thing we do for this exercise is to press the Forward and Back
buttons several more times to toggle between AppletThread and AppletClock
to better illustrate the affect. Figure 82 on page 202 shows the results: seven
threads are now running in the background and the memory, CPU usage and
thread count have increased significantly. Imagine the effect of surfing the
Internet for an hour if all of the applets you encountered behaved this way.
Not only could your system’s performance degrade, but there is a potential for
more serious misuse of your system’s resources and even unauthorized
gathering of information from your system.

201

The Java 2 SecurityManager

- Applet start.

1

w'"d‘“ N Task Manager I [=] Thread started, id: Thread[Thread-4 5, applet-AppleiThread.class]
File DOptions ¥iew Help Applet start.

File Edit “iew Go Communicator Help
« 9 A 4 = = & @
Back Fopward Reload Home Search Netscape Print Security Stop
w‘ " Bookmarks !‘ Location: If\le'z‘x’f’DIx’wnrk:’AppIEtElnck htral j ﬁl' whhat's Related

Applet Started at 17:03:35

I Java Console M=] 3
Thread[Thread-2,5,appletAppletThread.class]: Alive at 17:03:249 for 20 seconds.

Apphcationsl Processes Performance |

—CPU Usage——

Thread started, id: Thread[Thread-5,5,applet-AppleiThread.class]
Thread[Thread-2 8,applet-AppletThread.class]: Alive at 17:03:33 for 85 seconds.
—CPU Usage Histay—————————————————————— Applet start.

Thread started, id: Thread[Thread-6 5 applet-ApplefThread.class]
Thread[Thread-3 5,applet-AppletThread.class]: Alive at 17:03:34 for 25 seconds.
Applet start.

Thread started, id: Thread[Thread-7 5 applet-ApplefThread.class]
Thread[Thread-4 5 applet-AppletThread.class]: Alive at 17:03:36 for 5 seconds.

~MEM Usage——

Thread[Thread-55,applet-AppletThread.class]: Alive at 17:03:38 for 5 seconds.

ey Uszgp (T Thread[Thread-2 5 applet-AppletThread.class]: Alive at 17:03:38 for 100 seconds

Thread[Thread-5 5 applet-AppletThread.class]: Alive at 17:03:349 for 5 seconds.
Thread[Thread-3,5,applet-AppletThread.class]: Alive at 17:03:39 for 30 seconds.
. Thread[Thread-7,5,applet-AppletThread.class]: Alive at 17:03:40 for 5 seconds.
SO3007 Thread[Thread-4 5,applet-AppletThread.class]: Alive at 17:03:42 for 10 seconds.
Thread[Thread-4,9,appletAppletThread.class]: Alive at 17:03:43 for 10 seconds.
i Totals —Physical Memarp (K] Thread[Thread-2,5,appletAppletThread.class]: Alive at 17:03:43 for 105 seconds
Handles 2238 Tatal 130472 Thread[Thread-6,5,appletAppletThread.class): Alive at 17:03:44 for 10 seconds.
Threads 168 Available 71ez Thread[Thread-3,5,appletAppletThread.class]: Alive at 17:03:44 for 38 seconds.
Processes 23 File Cache 15064 Thread[Thread-7,5,appletAppletThread.class]: Alive at 17:03:45 for 10 seconds.
. Thread[Thread-4,5,appletAppletThread.class): Alive at 17:03:47 for 18 seconds.
- i Cle 2) e e [y Thread[Thread-5.5,applek-AppletThread class]: Alive al 17:03:48 for 15 seconds.
Total 50800 Total 11584 Thread[Thread-2,5,applet-AppletThread.class]: Alive at 17:03:48 for 110 seconds
Lirnit 510504 Paged 8972 =
Peak 79832 Monpaged 2612 il _’I_
|Piocesses: 23 |CPU Usage: 5% [Mem Usage: 50300k / 510504k, [_Clear | Close

Figure 82. AppletClock after Several Iterations of the Back and Forward Buttons

202

Alternatively, we can also press the Reload button, while possibly holding the
Shift key, in order to force the browser to retrieve a new copy of the Web
contents. Doing an experiment like this, we were able to generate 50 threads,
with consequent increase of CPU and memory usage.

Another thing to say is that, with a simple modification, the AppletThread
applet could be transformed into an invisible applet. It would be enough to
remove from its code the line:

g.drawString("Applet with a thread running, see console for nessages", 10, 30);

The result would be that the applet runs on your system and generates
multiple threads, and you could be totally unaware of this.

Java 2 Network Security

Another modification of the AppletThread applet could make the applet not
only reside in memory even when another Web page is displayed, but it could
even generate additional threads by itself, without the need to reload the page
hosting it. However, we did not want to show how to write such a malicious
applet in this book. The applet we have described here is fairly benign. What
has really happened here is that the attacker has obtained free use of
machine cycles on your system. What sort of thing might he or she want to do
with them?

One example might be to do brute force cipher cracking. A feature of any
good symmetric key encryption algorithm is a uniform key space. That is, if
you want to crack the code, there is no mathematical shortcut to finding the
key, you just have to try all possible keys until you find one that works. Several
recent encryption challenges have been solved by using spare cycles on a
large number of computers working as a loosely-coupled complex, each
being delegated a range of keys to try, under the direction of a central
coordinator.

This sort of effort depends on the cooperation and goodwill of a lot of people
who donate machine time and access. But, if we replaced the AppletThread
URL in the above example with, for example, getNextKeyRange, it would be
possible to do the same thing without having to ask anybody. A number of
other applets along the same lines have been demonstrated, such as applets
that kill the threads of other applets executing concurrently.

7.3.2.2 Impersonation

Internet e-mail is based on the Simple Mail Transfer Protocol (SMTP). Mail
messages are passed from one SMTP gateway to another using sessions on
TCP/IP port 25. Abusing these connections to send bogus e-mail is an
established nuisance of the Internet. A hacker can create mail messages that
appear to come from someone else, which can be used to embarrass or
annoy the receiver of the mail and the apparent sender.

Mail that has been forged in this way is not impossible to tell from the real
thing, however. The SMTP gateways keep track of the original IP address, so
you can trace the message back, if not to a person, at least to a machine
(unless the originator was also using a spoofed IP address).

A Java applet allows this kind of errant behavior to go one stage further. Until
Java 2, there was nothing to prevent an applet from connecting to port 25 and
appearing to be a mail client. However, the only system it could connect to
was the one that it was originally loaded from, because of the sandbox
restrictions. So, if an attacker had control over a Web page, he or she could
cause an applet to be sent to a client machine, which connected back to the

The Java 2 SecurityManager 203

server and sent e-mail to the target of the attack. When the recipient checks
the IP address, it belongs to a complete stranger, who has no idea that
anything has happened.

Java 2 enforces and refines the security model and now we can restrict
access by individual resource, including the port number.

7.4 Avoiding Security Hazards

An attack in Java is likely to come through the front door, meaning through
public methods on your applet’s class and public static methods on any public
class (see 2.1.1.2, “Access to Classes, Fields and Methods” on page 42).
Therefore, to reduce security risks in your Java applet, all public methods
should be examined and classified as follows:

1. The method is declared public but does not need to be, so it could be
changed to private, protected or default access.

2. The method is absolutely safe or, in other words, it does not use directly or
indirectly any extra-sandbox privileges and does not reveal private data.

3. The method is reasonably safe in that it uses extra-sandbox privileges in a
limited fashion, constrained so as to be, in practice, safe.

4. The method allows malicious use directly.

After classifying your applet’s public methods, you may be able to take
specific measures to close security holes they may introduce.

You can use the javap command line utility from the Java 2 SDK, with the
option -publ i c, to generate a list of all public methods on your applet's class.
An example is shown in the following session screen:

/D \i tso\ ch02>j avap - public Pointl essButton
Qonpi | ed from Poi ntl essButton. java
public class PointlessButton extends java. appl et. Appl et inplenents java. aw .event. ActionLi stener {
publ i ¢ Pointl essButton();
publ i c voi d acti onPerfor ned(j ava. awt . event . Acti onEvent);
public voidinit();
}

D\itso\ ch02>

This example is generated by running the j avap command against the
PointlessButton class, whose code is shown in Figure 17 on page 37.

204 Java 2 Network Security

Most applets have too many public methods. Potential security holes can be
plugged by simply changing the methods to private, protected or default
access, whenever possible.

In Java bean development, the BeanlInfo interface is used to list all the
methods that your bean advertises to a builder, and so these methods must
be public. You may be able to reduce your security exposure by constraining
access to the remaining, non-advertised methods.

Next, identify the public methods that run in the sandbox and only call
methods that also run in the sandbox. These may be considered absolutely
safe if these additional conditions are met:

* The method does not return sensitive data, such as the user's name, the
machine’s IP address or any other personal information.

« The method does not return an object, unless all of the object’s public
methods are also absolutely safe.

* The method does not trust its input parameters in security-sensitive
contexts, since the input may come from untrusted sources.

Methods that have been deemed absolutely safe require no further treatment.
For the remaining public methods, you will need to estimate the overall
security risk of allowing unrestricted access to them by untrusted users. A
security guideline could be the following: a method is reasonably safe if it
uses extra-sandbox permissions, but it can do nothing malicious, regardless
of the state of the applet as configured through input parameters to that
method, or via other public methods.

Once the reasonably safe methods have been addressed, evaluate the
remaining potentially dangerous methods. Do not make calls to enable
privileges in these methods; instead, require that the method’s caller do the
enabling. Any method that could be used maliciously in a rather transparent
manner should be treated in this way. For example, as we have already
discussed, a setFileName() method that takes the name of a file and saves to
it is dangerous and falls in this category.

7.4.1 How to Test

In the process of making these changes, you must ensure that the applet’s
functionality has not been broken. You should verify the following:

¢ In a trusted environment, all functionality should work from the user
interface with no security exceptions.

The Java 2 SecurityManager 205

¢ In an untrusted environment, all methods assessed as absolutely safe
should work.

¢ In a trusted environment, all methods assessed as absolutely or
reasonably safe should work.

¢ In a trusted environment, all methods, including the dangerous ones,
should work when called from another trusted applet on the page.

You also need to define exactly what, if anything, your applet does in an
untrusted environment. Once you have a functionality definition, then you will
need to verify that your applet can provide this functionality and handle user
requests for functionality that cannot be done in the sandbox.

The first step is to verify that all attempts to acquire a guarded resource are
done in atry{} block, with a security exception being caught and handled.
The rest is user interface work, targeted at how well you communicate to the
user, through the user interface, what functionality is available in an untrusted
environment.

7.5 Examples of Security Manager Extensions

The Java 2 permission structure allows for granting a code source (code from
some source) the right to perform some action (such as read, write, connect,
etc.) on a resource (file, port, etc.). The structure is very flexible and most
applications will find that the new security manager will give them all the
function they need. However, there will be cases where an application
developer will want to extend or limit the default security manager’s
capabilities. Several examples come to mind:

¢ You may want to prevent access to a file even if someone explicitly gives
that permission by entering a grant statement in a policy file.

* You may want to keep track of requests for access to certain resources.

* You may want to prompt users with a special password before accessing
files in the local file system.

« If this is a multi-user system, such as a server, you may want to extend the
security model to incorporate the concept of a user by adding
principal-based access control.

7.5.1 First Example — Overriding checkWrite()

For our first example, we will take an easy task and continue with our theme
from 6.1.5, “Should You Build Your Own Class Loader” on page 155, by
implementing a simple audit log of permission requests to write to files.

206 Java 2 Network Security

Our example creates a log file during construction of the security manager
and overrides the checkWrite() method. Whenever a checkWrite() is received,
it will log (in file writerequests.log) that a check is being made for write access
to a file and the file’s name, and then will call the parent SecurityManager’'s
checkWrite() method. Figure 83 on page 207 and Figure 84 on page 208
show MySecurityManager.java, which implements this extension to the
SecurityManager class.

/**

* M/SecurityManager. j ava

* Extends SecurityManager

* Snple extension to log wite pernission requests
*/

inport java.io.*;

inport java.net.*;

inport java.lang.*;

inport java.security.Perm ssion;
inport java.security.AccessController;

public class M/SecurityManager extends SecurityManager

{
private DataQutput Stream auditl og;

publ i ¢ MySecurit yManager ()
{

super(); /* initilize using parent constructor */

try
{
audi tl og = new Dat aQut put Strearm{new Fi | eQut put S rean{"witerequests.log"));

auditlog. witeBytes("Wite Requests Log Started:\n");

}
catch (1 CException e)
{
Systemerr.printIn("Wite requests log file not opened properly\n" +
e.tosring());
}

Systemout . print| n("MSecurityMnager constructed");
}

public void checkWite(Sring f)

Figure 83. (Part 1 of 2). MySecurityManager.java

The Java 2 SecurityManager 207

try
{
auditlog.witeBytes("Wite Request file: " +f + "\n");
}
cat ch(| CException i oe)
{
Systemerr.printIn("Could not wite to log file\n" +ioe.toSring());
}

super. checkWite(f); /* G do real checkWite */

}

Figure 84. (Part 2 of 2). MySecurityManager.java

In Figure 85 on page 208 and Figure 86 on page 209 is TestSM.java. This
program sets MySecurityManager as the current security manager and asks
it whether it has write permission to a file name passed to it on the command
line. You can actually pass it any number of file names to check.

/**

* Test M/SecurityManager
*/

inport java.io.*;
inport java.security.*;

public class Test SM
{

/**

* main entrypoint - starts the application
* @aramargs java.lang. String[]

pu/bl ic static void main(java.lang. String[] args)
{ if (args.length > 0)
{ Syst em set Securi t yManager (new M/Securi t yManager ());
for (int i =0; i <args.length; i++)
{

Figure 85. (Part 1 of 2). TestSM.java

208 Java 2 Network Security

}

try
{
Syst em get Securi t yManager () . checkWi te(args[i]);
}
cat ch(SecurityException se)
{
Systemout. println("Wite request for: " + args[i] +
' deni ed. Message:");
Systemout. println(se.toring());
br eak;
}
Systemout.println("Wite request for: " + args[i] + " permtted");

Figure 86. (Part 2 of 2). TestSM.java

Before we can run this test case, we have to consider the permissions
required for it. The TestSM application creates a security manager instance
and then sets it as the active security manager by using the method
java.lang.System.setSecurityManager(). Alternatively, we could have set a
security manager by the command line option -0 ava. securi ty. nanager. In any
case, supposing that D:\itso\ch07 is the directory where the file TestSM.class
is stored, the following statements must exist in either a user policy file or the
system policy file:

grant codeBase "file:/D/itso/ch07/" {
pernissi on java. | ang. Runti nePer mi ssi on " creat eSecuri t yManager";
permssi on j ava. |l ang. Runti nePer ni ssi on "set Securi t yManager";

h

On the other hand, it makes sense for a security manager to be completely
trusted, and not subjected to security checks. For this reason, the class file
MySecurityManager.class should be stored in a separate directory and its
code be granted AllPermission. The most correct way to do this is probably to
store MySecurityManager in the classes directory under ${java.home}. This
directory does not exist by default, but once you create it, each class file that
is stored in that directory becomes part of the boot class path (see 3.4.1,
“Boot Class Path” on page 84, Figure 335 on page 642 and Figure 336 on
page 643); thus it is completely trusted.

The Java 2 SecurityManager 209

Next, we need to decide on a couple of tests. Since we are just checking
permissions, the files do not actually have to exist, but the permissions must.
So the previous statements are not enough. In fact, the JVM, by default, gives
our applications permission to read files in the current directory, not to write
them, so we should set appropriate write permissions even if the files that we
pass to TestSM on the command line are in the same directory.

The following screen shows our user policy file, which by default is called
.java.policy and is specified by the policy.url.2 property. This property is set in
the java.security file, found in the ${java.home}/lib/security directory. You can
see that classes found in our working directory D:\itso\ch07 have permission
to create and set a security manager and to write the file testFilel, stored in
the same directory:

grant codeBase "file:/D/itso/ch07/" {

pernissi on java. | ang. Runti nePer mi ssi on " creat eSecuri t yManager " ;

permssi on j ava. |l ang. Runti nePer ni ssi on "set Securi t yManager";

pernission java.io.FlePermission "D ${/}itso${/}ch07${/}testFHlel", "wite";
b

We are now ready to run the test case. We run the program as follows:
java TestSMtestFilel testFile2

Write access to testFilel should be permitted and write access to testFile2
should be denied. The results of this are shown next:

¢ The output on the console:

M/Securi t yManager const ruct ed

Wite request for: testFilel permtted

Wite request for: testFile2 denied. Message:

java. security. AccessQontrol Exception: access denied (java.io.FilePernission testFHle2 wite)

210

¢ The resultant contents of the writerequests.log file:

Wite Requests Log Sarted:
Wite Request file: testFlel
Wite Request file: testFle2

With this example complete you should have a good idea what it takes to add
function to the SecurityManager provided with Java 2 without losing the
function provided by SecurityManager. We have also shown how to catch a
security exception and handle it in a proper way.

Java 2 Network Security

7.5.2 Second Example — Overriding checkPermission()

We want to show you now the use of the new checkPermission() method
which takes a Permission object as an argument. However, if you test this
example on Java 2 SDK, Standard Edition, V1.2 and V1.2.1, you will run into
a problem, which prevents you from completing the test successfully. On
these two platforms, overriding SecurityManager.checkPermission() causes
the JVM to overflow its stack when calling System.setSecurityManager(), or
during JVM initialization if the option - O ava. securi ty. manager is used. This
does not occur if you choose to override one of the other check methods (see
7.5.1, “First Example — Overriding checkWrite()” on page 206). We reported
this problem and a fix was implemented in the maintenance release Java 2
SDK, Standard Edition, JDK V1.2.2. So, if you have a need to extend
SecurityManager and wish to override checkPermission(), you must run with
a minimum of Java 2, Standard Edition, V1.2.2.

In Figure 87 on page 211 through Figure 90 on page 213 are the
SecurityManager extension, CPSecurityManager.java and the test program,
TestCheckPerm.java respectively. They show you how to create a permission
from the file name argument and how to call checkPermission().

/**

* (PSecurityManager. j ava

* Extends SecurityManager

* Snple extension to log wite pernission requests
*/

inport java.io.*;

inport java.net.*;

inport java.lang.*;

inport java.security.Permssion;
inport java.security.AccessController;

public class CPSecurityManager extends SecurityManager

{
private DataQut put Stream audit! og;

publ i ¢ CPSecuri t yManager ()
{

super(); /* initilize using parent constructor */

try
{

Figure 87. (Part 1 of 2). CPSecurityManager.java

The Java 2 SecurityManager 211

audi tl og = new Dat aQut put Streanfnew Fi | eQut put Strean{" CPwiterequests.log"));
auditlog. witeBytes("Wite Requests Log Started:\n");
}
catch (1 CException e)
{
Systemerr.println("Wite requests log file not opened properly\n" +
e.tosring());

}
Systemout . print| n("GPSecurityManager constructed");
}
publ i ¢ voi d checkPer n ssi on(Perni ssi on pern)
{
String s = permget Actions();
if (s.indextf("wite") I=-1)
{
try
{
auditl og.witeBytes("Request: " + permtoString() + "\n");
}
catch (1 CException ioe)
{
Systemerr.println("Could not wite tolog file\n" + ioe.toSring());
}
}
super . checkPermi ssi on(pern); /* G do real checkPerm ssion */
}

}

Figure 88. (Part 2 of 2). CPSecurityManager.java

/**

* Test CPSecurityManager
*/

inport java.io.*;
inport java.security.*;

public cl ass Test CheckPer m
{

Figure 89. (Part 1 of 2). TestCheckPerm.java

212 Java 2 Network Security

/**
* main entrypoint - starts the application
* @aramargs java.lang. String[]
*
/
public static void main(java.lang. Sring[] args)
{
if (args.length > 0)
{
Fi | ePerm ssion fp;
Syst em set Securi t yManager (new CPSecuri t yManager ());
for (int i =0; i <args.length; i++)
{

fp =newFilePermssion(args[i], "wite");

try
{
Syst em get Secur i t yManager () . checkPer m ssi on(fp);

}
catch (SecurityException se)

{
Systemout.println("Wite request for: " + args[i] + " denied. Message:");
Systemout. println(se.toString());
br eak;

}

Systemout. printIn("Wite request for: " + args[i] + " permtted");

Figure 90. (Part 2 of 2). TestCheckPerm.java

7.5.2.1 The Bug and the Fix

In order to understand why this program caused the Java 2 JVM to overflow,
we must show the lines of code of the method
java.lang.System.setSecurityManager(), as reported in the src.jar file after
installing Java 2 SDK, Standard Edition, V1.2 and V1.2.1:

The Java 2 SecurityManager 213

{

}

public static synchroni zed voi d set Securit yManager (Securi t yManager s)
if (security !'=null)
/] ask the currently installed security nmanager if we can replace it.

securi ty. checkPer m ssi on(hew Runt i mePer m ssi on("set Securit yManager"));

security = s;
| net Addr essCachePol i cy. set | f Not Set (| net Addr essCachePol i cy. FCREVER) ;

Figure 91. setSecurityManager() in Java 2 Standard Edition SDK V1.2 and V1.2.1

214

What this method does is the following:

« If there is a security manager already installed, setSecurityManager() first
calls the security manager's checkPermission() method with a
Runt i mePer m ssi on("set Securi t yManager") permission, to ensure it is
permitted to replace the existing security manager. This may result in
throwing a SecurityException.

« Otherwise, the argument is established as the current security manager. If
the argument is null and no security manager has been established, then
no action is taken and the method simply returns.

Essentially, the problem that causes the JVM to overflow in the 1.2 and 1.2.1
platforms is that when the JVM first tries to initialize the policy, it generates
security checks to be invoked, which causes the JVM to try to initialize the
policy, which causes security checks to be invoked... This way a loop is
generated. The program could still be launched by entering the following
command:

javac Test CheckPermfil eTestl fil eTest2

However, a severe problem would occur and the following error window would
be displayed instantly:

Java 2 Network Security

i java.exe - Application Error E3

o The exception unknown software exception [0=c00000fd) accurred in the application at lacation 0R78015800.

Click on OF, to terminate the application
Click on CAMCEL to debug the application

Catizel |

Figure 92. JVM Overflow Error Message

The loop does not occur if there is only system code on the stack, but when
you set a security manager, which is not on system code, you run into the
looping problem.

As we said, this bug has been fixed in the
java.lang.System.setSecurityManager() implementation of the maintenance
release Java 2 SDK, Standard Edition, V1.2.22, as shown in the following
figure:

public static synchroni zed voi d set SecurityManager (final SecurityMnager s)
{
if (security !'=null)
{
/] ask the currently installed security nmanager if we can replace it.
securi ty. checkPer m ssi on(hew Runt i mePer m ssi on("set Securit yManager"));

}

if (s.getdass().getdassLoader() !'= null)

{
/1 New security nmanager class is not on bootstrap classpath.
/] Cause policy to get initialized before we install the new
/] security nmanager, in order to prevent infinite |oops when
[l trying toinitialize the policy (which usually invol ves
/1 accessing sonme security and/or systemproperties, which in turn
/] calls the installed security nanager’s checkPerm ssion() nethod
/1 which will loopinfinitely if there is a non-systemcl ass
/1 (in this case: the new security rmanager class) on the stack).
Accessontrol | er. doPrivi |l eged(new Privil egedActi on()

{
publ ic Cbject run()

{

Figure 93. (Part 1 of 2). setSecurityManager() in Java 2 SDK, Standard Edition, V1.2.2

2 Java 2 SDK, Standard Edition, V1.2.2 was not yet released when this book went to print. So you should consider that
this understanding is based on a not-yet-released level of the Java 2 SDK.

The Java 2 SecurityManager 215

s.getA ass().getProtecti onDormai n().inplies(new A | Pernission());
return null;
}
};
}

security = s;
| net Addr essCachePol i cy. set | f Not Set (I net Addr essCachePol i cy. FOREVER) ;

}

Figure 94. (Part 2 of 2). setSecurityManager() in Java 2 SDK, Standard Edition, V1.2.2

216

This fix essentially forces the policy to get initialized when we call:

s.getd ass() . get Protecti onDormai n(). i npl i es(new Al l Permission());

This time, the initialization is done in a privileged block, and completes
without further looping.

7.5.2.2 Installing and Running the Program

Assuming that D:\itso\ch07 is the directory where the file
TestCheckPerm.class is stored, the following statements must exist in either a
user policy file or the system policy file:

grant codeBase "file:/D/itso/ch07/" {
pernissi on java. | ang. Runti nePer mi ssi on "creat eSecuri t yManager " ;
permssi on j ava. | ang. Runti nePer ni ssi on "set Securi t yManager";

h

On the other hand, as we mentioned in 7.5.1, “First Example — Overriding
checkWrite()” on page 206, it makes sense for a security manager to be
completely trusted, and not subjected to security checks. For this reason, the
class file CPSecurityManager.class should be stored in a separate directory
and its code be granted AllPermission. We have already said that the most
correct way to do this is probably to store CPSecurityManager in the classes
directory under ${java.home}. This directory does not exist by default, but
once you create it, each class file that is stored in that directory becomes part
of the boot class path (see 3.4.1, “Boot Class Path” on page 84, Figure 335
on page 642 and Figure 336 on page 643), thus it is completely trusted.

Next, we want to implement a couple of tests, very similar to what we did
when overriding the checkWrite() method. Since we are just checking
permissions, the files do not actually have to exist, but the permissions must.

Java 2 Network Security

So the previous statements are not enough and we have to set appropriate
write permissions. The same user policy file .java.policy shown in 7.5.1, “First
Example — Overriding checkWrite()” on page 206 can still be applied, without
any modification:

You can see that classes found in our working directory, D:\itso\ch07, have
permission to create and set a security manager and to write the file
testFilel:

rant codeBase "file:/D/itso/ ch07/" {

pernissi on java. | ang. Runti nePer mi ssi on " creat eSecuri t yManager " ;

permssi on java. | ang. Runti nePer ni ssi on "set Securi t yManager";

pernission java.io.FlePermission "D ${/}itso${/}ch07${/}testFHlel", "wite";
b

You can see that classes found in our working directory D:\itso\ch07 have
permission to create and set a security manager and to write the file
testFilel, stored in the same directory.

We are now ready to run the test case. We run the program as follows:
java Test CheckPermtestFilel testFile2
Write access to testFilel should be permitted and write access to testFile2

should be denied. The results of this are shown next and they confirm what
we expected:

¢ The output on the console:

CPSecuri t yManager const ruct ed

Wite request for: testFilel permtted

Wite request for: testFile2 denied. Message:

java. security. AccessQontrol Exception: access denied (java.io.FlePernission testFle2 wite)

¢ The resultant contents of the CPwriterequests.log file:

Wite Requests Log Sarted:
Request: (java.io.FilePernmission testFHlel wite)
Request: (java.io.FilePernission testHle2 wite)

With this example you should now have a good idea of how to override the
checkPermission() method of the default security manager.

The Java 2 SecurityManager 217

7.5.3 Third Example — Overriding checkRead() and checkWrite()

In this example we show you how to implement a security manager which
asks the user for a password whenever a simple file read or write is
attempted. This security manager overrides the default one provided by the
Java 2 SDK APIs, java.lang.SecurityManager. Here is the code:

inport java.io.*;

public class RABecurityManager extends SecurityManager
{

private String rpasswd; // W& have a private read password
private String wpasswd; // W have a private wite password

publ i c RABecurityManager(String rpwd, String wowd)

{
super () ;
/1 The class using this security manager will give the read password
this.rpasswd = rpwd;
/1 The class using this security manager will give the wite password
this. wpasswd = wpwd;

}

publ i c voi d checkRead(Fi | eDescriptor fil edescriptor)

{

}

publ i c voi d checkRead(String fil enane)

{
String pwdgi ven;

/1l Ask if the user has the required password
Systemout . printl n("Wat’s the secret password for reading the file?");
try

{
pwdgi ven = new Buf f er edReader (new | nput St r eanReader (Systemiin)). readLi ne();

i f (pwdgi ven. equal s(rpasswd))
Systemout . printl n("Ganted pernssion to read files");
el se
throw new Securi t yException("You do not have access to read the filel");

}
catch (1 CException e)

Figure 95. (Part 1 of 2). RWSecurityManager.java

218 Java 2 Network Security

t hrow new SecurityException("You do not have access to read the file!");

/1 Uhcoment the line belowif you want to call
/1 SecurityManager. checkRead() at this tine

/1 super. checkRead(fil enane);

}

publ i c void checkRead(String fil enane, (bject executionContext)
{
}

public void checkWite(FileDescriptor filedescriptor)
{
}

public void checkWite(Sring fil ename)

{
String pwdgi ven;

/1 Ask if the user has the required password
Systemout. println("Wat's the secret password for witing the file?");
try
{
pwdgi ven = new Buf f er edReader (new | nput St reanReader (Systemiin)). readLi ne();
i f (pwdgi ven. equal s(wpasswd))
Systemout. printl n("Ganted the permission to wite to files");
el se
throw new Securit yException("You do not have access to wite to a file!l");

}
catch (1 CException e)
{
t hrow new SecurityException("You do not have access to wite to a filel");
}

/1 Uhcomment the line belowif you want to call
/1 SecurityManager.checkWite() at this time

/1 super.checkWite(fil enane);

Figure 96. (Part 2 of 2). RWSecurityManager.java

The Java 2 SecurityManager 219

The code above implements a security manager, called RWSecurityManager,
that overrides the checkRead() and checkWrite() methods of
java.lang.SecurityManager. What the code really does is easy to understand
by reading the comments embedded in the code.

Next, we write the code of the application that uses this security manager. We
create a class called TestRWSecMgr, which invokes RWSecurityManager
passing two String arguments to it, corresponding to the fields rpasswd
(password for reading files on the system) and wpasswd (password for writing
to files on the system). Whenever an application tries to read any file, the
checkRead() method of the RWSecurityManager class is called. Hence this
asks the user for the password and checks the user input against the read
password supplied by the application. The same happens for writing, the only
difference being that in this case the checkWrite() method is called.

The full code for the TestRWSecMgr application is shown in the following

figure:

{

inport java.io.*;

public class Test RiGecMyr

public static void main(String[] args) throws Exception
{
int count=0;
if (args.length !=2)
Systemout. println("Usage: java Test SecMyr Fl LENAME QUTPUTFI LENAME') ;
el se
{
try
{

}
catch (SecurityException e)
{

}

Syst em set Securi t yManager (new RABecur i t yManager ("redbook”, "ibni));

Systemerr. println("SecurityManager coul d not be set!");

try
{
//Reading froma file

FilelnputStreamfis = new Fi |l el nput Streanf{args[0]);
while (fis.read() !'= -1)

Figure 97. (Part 1 of 2). TestRWScrMgr.java

220

Java 2 Network Security

}

}

count ++;
fis.close();

//Witing to afile

Dat aQut put St ream fos = new Dat aQut put St rean{new Fi | eQut put Strean{args[1]));
fos.flush();

fos.witeBytes("H! V¢ counted ");
fos.witeBytes(new I nteger(count).toString());

fos.witeBytes(" chars.");

fos.close();

catch (Exception e)

{
}

Systemerr. println("Exception caught: " + e);

Figure 98. (Part 2 of 2). TestRWScrMgr.java

As you can see, this application sets the security manager to
RWSecurityManager. This is done by calling the method
setSecurityManager() for the class java.lang.System, which we discussed in
7.5.2, “Second Example — Overriding checkPermission()” on page 211:

Syst em set Securi t yManager (new RABecur i t yManager (" redbook", "i bm')) ;

Notice that the passwords passed to the security manager are r edbook for
reading and i bmfor writing.

The class RWSecurityManager can be compiled with the command:

javac RABecurityManager.j ava

This command is supposed to be launched from the same directory where
RWSecurityManager.java resides. As we discussed in 7.5.2, “Second

Example — Overriding checkPermission()” on page 211, it makes sense for a
security manager class to be trusted by the Java system. The proper location
for a security manager is the classes directory under the directory
${java.home}. As we have already explained, this directory does not exist by
default. It must be explicitly created by the user. Once created, all the class
files that are stored in that directory automatically become part of the boot
class path. For this reason, we copy RWSecurityManager.class to the classes
directory.

The Java 2 SecurityManager 221

222

When we compile TestRWSecMgr.java, we need to specify where
RWSecurityManager.class is, because this class must be found at compile
time. The proper way to compile TestRWSecMgr.java is through the following
command, launched from the same directory where TestRWSecMgr.java
resides:

javac -classpath .;"D\\Program Fi | es\\ JavaSof t\\ JRE\\ 1. 2\\ cl asses" Test R\BecMjr . j ava

Now, if you run this program specifying the - [j ava. securi ty. manager command
line option, you will see that the TestRWSecMgr application is not allowed to
set or create a security manager. The default security manager, which is
called first, does not give this application the permission to set and create a
different security manager. It is therefore necessary to modify the current
security policy configuration, adding the following lines to one of the current
policy files:

grant codeBase “file:/F: /itso/ch07/" {
permssi on j ava. | ang. Runti nePer ni ssi on "set Securi t yManager";
pernissi on java. | ang. Runti nePer mi ssi on " creat eSecuri t yManager " ;

h

We assume here that the TestRWSecMgr class is located in the directory
F:\itso\ch07.

Then we run the program and we see that it works as expected, as shown in
the following session screen:

/F:\itso\ ch07>j ava - [ava. security. manager Test RABecMyr Test RiGecMyr. j ava resul ts. txt
Wat’ s the secret password for reading the file?
r edbook
Ganted pernission to read files
Wiat’' s the secret password for witing the file?
i bm
Ganted the pernission to wite to files

F\itso\ch0o7>
L J

The parameters passed on the command line are the Java source code of the
TestRWSecMgr class, TestRWSecMgr.java, and a file called results.txt that is
automatically created by the application in the same directory. In this file, the
application writes the number of characters it counts in the
TestRWSecMgr.java file. On opening results.txt with a normal text editor, we
find the following contents:

H! V¢ counted 1206 chars.

Java 2 Network Security

Notice that it has not been necessary to grant the code source of the
TestRWSecMgr class the permission to read and write files. This is because
we have completely overridden the methods checkRead() and checkWrite() of
the superclass java.lang.SecurityManager, which in turn would have called
checkPermission() in AccessController. Our security manager bases its policy
decision on a password. If you want to keep the behavior of SecurityManager,
which requires specific read and write permissions enabled through the policy
file, you have to call super.checkRead() and super.checkWrite(). The code in
Figure 95 on page 218 and Figure 96 on page 219 shows the calls to these
two methods commented out. Just uncomment those lines if you want to
enable the default security manager functions. At that point, you will need to
modify one of the current policy files of your system in order to have the
application work correctly. What you should add to it is the following:

grant codeBase “file:/F: /itso/ch07/" {
permssi on j ava. |l ang. Runti nePer ni ssi on "set Securi t yManager";
pernissi on java. | ang. Runti nePer mi ssi on " creat eSecuri t yManager " ;
permssion java.io.FlePermssion "<<ALL F LES>>", "read, wite";

h

This example illustrates how to implement a security manager that does more
than a simple access logging, as the others seen in 7.5.1, “First Example —
Overriding checkWrite()” on page 206 and 7.5.2, “Second Example —
Overriding checkPermission()” on page 211. In fact this shows how to
overwrite the default security manager and base the access verification on
passwords. We have also seen how it is possible to combine the
password-based control to the policy-based access control of the default
security manager.

We also want to bring your attention to the fact that the two passwords are
hardcoded in the TestRWSecMgr class file. This could be a security risk, as
we underlined in 5.3.1, “Decompilation Attacks” on page 126. The passwords
we used would appear in the clear after decompiling the program or even
after opening the class file with a hexadecimal editor or a simple text editor.
The purpose of this example, once again, was to demonstrate how to use the
Java 2 APIs to implement a customized security manager. However, for
serious applications, we recommend that you build a client/server type
application with a Java presentation layer that can be run anywhere and a
secured server side where sensitive information can be stored.

The Java 2 SecurityManager 223

7.6 Summary

224

The security manager is a class that allows applications to implement a
security policy. It allows an application to determine, before performing a
possibly unsafe or sensitive operation, what the operation is and whether it is
being attempted in a security context that allows the operation to be
performed. The application can allow or disallow the operation.

In this chapter, we explained the unique role that the security manager plays
in Java 2. You should now have a clear idea of the main functions of the
security manager and its relationship with the class loader and class file
verifier.

This chapter has also demonstrated a security attack that can affect your
system when browsing the Internet: an invisible applet can install itself on
your system, generate a number of new threads, and steal CPU cycles and
memory.

Finally, we demonstrated how to write simple extensions of the default Java 2
security manager java.lang.SecurityManager. Those examples are useful
especially when you want to add new functions to the default security
manager, such as logging or password protection, without losing the basic
features of the security manager that comes with the Java 2 platform.

Java 2 Network Security

Chapter 8. Security Configuration Files in the Java 2 SDK

The security aspects of Java have changed drastically from the Java
Development Kit (JDK) 1.1 to Java 2 SDK, Standard Edition, V1.2. In this
section, we show you how you can configure Java 2 security on your system.

After the installation of the Java 2 SDK, you will see two files located in the
directory ${java.home}${/}ib${/}security: the security file, java.security, and
the policy file, java.policy. These are the primary security configuration files of
the Java Virtual Machine (JVM) running on your system, and they are used to
define security properties and manage access permissions. After the
installation, you can modify or rewrite these default files.

Notice that a copy of these files is also installed in the Java 2 SDK
development security directory (by default, on Windows systems,
C:\jdk1.2.x\jre\lib\security), for use only with the development tools, such as
the Applet Viewer and the Java compiler j avac.

8.1 A Note on java.home and the JRE Installation Directory

An interesting thing to note is that when you install the Java 2 SDK, Standard
Edition, V1.2.x, you have the option to install the Java Runtime Environment
(JRE) 1.2.x as one of its components, as shown in the following figure:

© Copyright IBM Corp. 1997 1999 225

226

Select Components Ei |

Select the components you want ko inztall, clear the components
wau do not want ba install.

Components

M atwe Inter ace Header Fies 124k ;I

0ld Mative Interface Header Files 285 K

Demos /AN K

Java Sources 16323 K

JRE including Java Plug-n

— Dezcription
Fiedistributable rurtine for deploying Java m
applications, applet: and Javabeans
components.

Space Required: BR9E5 K

Space fvailable: 339722 K

¢ Back MHent » Cancel

Figure 99. Installing the Java Runtime Environment and Java Plug-in

If you install the Java 2 SDK while the JRE box is checked, you will have in
fact two JREs on your system: one is installed with the SDK and the other is a
separate JRE. You can uncheck the option to install the JRE at the very
beginning of the install process but later you cannot do that.

On Windows systems, Java 2 SDK, Standard Edition, V1.2.x installs by
default in the C:\jdk1.2.x directory and JRE in the directory

C:\Program Files\JavaSoft\JRE\1.2. If you keep the default settings, you will
find two pairs of the security configuration files: one in the directory
C:\jdk1.2.x\jre\lib\security and the other in the directory

C:\Program Files\JavaSoft\JRE\1.2\lib\security. The configuration files which
are effective are in the second directory. In this case, the value of the variable
java.home is C:\Program Files\JavaSoft\JRE\1.2, as demonstrated in
Appendix A, “Getting Internal System Properties” on page 641.

However, if you uncheck the option to install the JRE at the beginning, you get
only one set of security configuration files. The value of the variable

java.home in this case is C:\jdk1.2.x\jre and the configuration files are located
in C:\jdk1.2.X\jre\lib\security. Interestingly, if you do not uncheck the option at

Java 2 Network Security

the beginning, and later on, during the JRE installation, you change the
installation directory of the JRE to C:\jdk1.2.x\jre, then the previous files are
overwritten. In such a case the installation routine does not install the JRE
again and the value of java.home is C:\jJdk1.2.x\jre, which is the JRE
development directory.

The value of java.home takes effect for all the Java programs you run on your
system, including the applets you run in a Web browser that make use of the
Java Plug-in (see Chapter 11., “The Java Plug-In" on page 359); the system
uses the value of that variable to search for system libraries and configuration
files. However, for all the development tools, such as the Java compiler and
the Applet Viewer, the system always considers java.home as C:\jdk1.2.x\jre,
irrespective of whether JRE is installed again or not. This is because test
tools are used for development only. So, in this way, Java helps you separate
the development environment from the run-time environment. This is
demonstrated by the following applet:

inport java.applet.*;
inport java.aw . @ aphics;
public class PropertyAppl et extends Appl et
{
publ i c voi d pai nt (Q aphics g)
{
try
{
Sring sl = Systemget Property("j ava. hone");
String s2 = Systemget Property("user. hone");
g.drawstring("java. home has the foll owing value: " + s1, 20, 20);
g.drawstring("user. home has the foll owing value: " + s2, 20, 40);
}
catch (Exception €)
{
Systemout. println("Exception caught” + e.toString());
}
}
}

Figure 100. PropertyApplet.java

This applet is compiled through the command:

javac PropertyAppl et.java

We invoke it from within the following HTML page:

Security Configuration Files in the Java 2 SDK 227

<HTM.>
<HEAD>
<Tl TLE>Pr oper t yAppl et Appl et </ TI TLE>
</ HEAD>

<BCDY>
<CENTER><h2>Pr oper t yAppl et Appl et </ h2>
<HR>

<APPLET Gode="PropertyAppl et. class" Wdth=400 Hei ght =50>
<H4>Thi s area contai ns a Java appl et, but your browser is not Java-enabl ed</ H4>
</ APPLET>

</ BCDY>
</ HTM>

Figure 101. PropertyApplet.html

Next, we invoke this HTML page with the Java 2 SDK Applet Viewer:
appl et vi ener PropertyAppl et. ht m

In order for the command above to work without throwing any exception, it is
necessary to grant the Java class PropertyApplet, residing in the directory
D:\itso\ch08, the permission to read the Java system properties java.home
and user.home. This is done by adding the following lines to one of the
current policy files, as we will see in 8.4, “Security Policy Files” on page 242:

grant codeBase "file:/D/itso/ch08/" {
pernissi on java. util.PropertyPernission "java hone", "read";
permssion java. util.PropertyPernission "user.hone", "read";

h

The appl et vi ener command brings up the following Applet Viewer window:

228 Java 2 Network Security

E\%‘Applet Yiewer: PropertyApplet.class [_ (O]
A pplet

java.home has the following value: Ddk 2 1re
user.home has the following walue: COWNIMNMTIProfilesipistoia. 000

Applet started.

Figure 102. PropertyApplet Running

This demonstrates that for a development tool, such as the Applet Viewer, the
java.home directory changes to become the JRE development directory, while
another system property, such as user.home, still has the same value.

Notice that, whenever you have two JRE environments installed on your
machine, you need to be very careful and must know where your library and
configuration files are being picked up from. For example when you compile a
Java program using the command:

javac M/d ass.java

then the core Java classes and the extensions are picked up from the JRE
development directory (typically C:\jdk1.2.x\jre) and its subdirectories.
However, when you run the program with:

java M/d ass

then they are picked up from the separate JRE run-time directory (typically
C:\Program Files\JavaSoft\JRE\1.2) and its subdirectories. The same holds
true for the security and policy files, which are the security configuration files.

When the JRE is installed, a copy of the java executable file (java.exe on
Windows systems) is also put in a location that is on the operating system'’s
default system Path. For example, on a Windows NT system, it is typically put
in C:\WINNT\system32. Hence, when you install the Java 2 SDK, you will be
able to run the j ava command without setting the Path variable. However, to
run the j avac command, you will have to include the appropriate path to the
javac executable file (javac.exe on Windows systems) in the Path variable. All
SDK development tools, including the j avac compiler, are installed in the
same directory, typically C:\jdk1.2.x\bin, on Windows systems.

Security Configuration Files in the Java2 SDK 229

—— How Does the System Know the Value of java.home?

You are probably wondering how the system can know the value of the
java.home property. If you install Java 2 SDK, Standard Edition, V1.2 on
AIX and you run the program GetProperty shown in A.2, “Program
GetProperty” on page 644 to find out the value of java.home, you see the
following output:

property value is: J1.2/bin/..

This means that to define java.home, Java finds the directory where the
Java executable files are and then goes one level up: that is the java home
directory. This, at least, seems to happen on AIX. We repeat the same
experiment on Windows NT.

If we move all the Java executables to the D:\itso\bin directory, java.home
becomes D:\itso, as the following output demonstrates:

java. hone property value is: D\itso

If we put them in D:\ all programs return an error as there is no directory
one level up from the root directory.

Note that in order to verify the java.home directory when moving the
executables, the Path variable must be manually set to include the new
directory where the executables are and the boot class path must be
specified on the command line using the - Xboot cl asspat h option.

In the rest of this section we describe the two security configuration files of
the Java system. However, before examining them, we first need to introduce
the concept of a keystore.

8.2 Keystores

A keystore is a database of private keys and their associated certificates or
certificate chains, which authenticate the corresponding public keys.

The default keystore implementation, provided by Sun Microsystems, is a flat
file, utilizing a proprietary keystore type or format, named Java Keystore
(JKS). This format protects the integrity of the entire keystore with a keystore
password. A hash value of the entire keystore is used to protect the keystore
from alteration. Each private key in the keystore is also protected with a
separate password (though this password may be identical to the keystore
password). In different keystore implementations that can make use of

230 Java 2 Network Security

encryption, such as the keystore implementation that comes with JCE 1.2
(see Point 2 on page 492), private keys can be stored encrypted using one of
the encryption algorithms provided.

Notice that a KeyStore class is provided in the package java.security. It
supplies methods to access and modify the information in the keystores (see
10.1.6, “Key Management” on page 305).

On a Windows NT system, the keystore is created by default with the keyt ool
command as the file .keystore in the directory ${user.home}. It is possible to
change both the implementation and the location of the keystore that comes
by default with the Java 2 SDK installation, but the system must be aware of
what implementation and location have been selected:

* The implementation of the keystore is specified, as we are going to see, in
the security properties file, defined by the value of the property named
keystore.type.

« The location of the keystore is specified in the policy file, defined by the
keystore URL entry.

If you so desire, you can create a new keystore implementation. You might
want to do so to, say, store keys and certificates in a database. Then you
need to refer to your own keystore implementation in the security properties
file and to the location of the keystore in the policy file.

In a keystore you can store your own certificates or certificates of CAs and
trusted entities. As we have said, Java 2 provides the keyt ool command line
utility for storing your private keys and viewing or listing public information
about a certificate in a JKS keystore. Since a keystore is password-protected,
you need to enter a password to access the private information stored in the
keystore. Each private key may also be protected by a separate password
which also needs to be provided by the user.

Notice that public information can be accessed without the password.
However, in that case, as the keyt ool utility is unable to verify the integrity of
the keystore, a warning message is displayed on the screen, as shown here:

*kkkkkkkkkkkkkkkk VM\I’\GVM\I’\GVM\I’\G kkkkkkkkkkkkkkkkkx
* The integrity of the infornation stored in your keystore *
* has NOT been verified! In order to verify its integrity, *
* you nust provi de your keystore password. *
*kkkkkkkkkkkkkkkk VM\I’\GVM\I’\GVM\I’\G kkkkkkkkkkkkhkkkkkkx

Security Configuration Files in the Java2 SDK 231

You will notice that if you register the public information of a certificate as
trusted and then try to run an applet signed by that certificate, the JVM
automatically retrieves the public key from the keystore, without your
intervention and without asking for the keystore password. The reason for this
is that all public information, such as public key and certificate, is stored
unencrypted in the keystore, and only the private key is stored
password-encrypted, so that it is protected from unauthorized users. The
keystore password is used for an integrity check only, so you are prompted to
verify that the keystore has not been tampered with.

A demonstration of this can be obtained in the following way. When you open
the keystore with a text editor, amidst all the junk, you can see the value of a
certificate you know existed in the keystore in plain text:

keyname
state ¢ organization unit city

b ib 100000000000 Mwglce 000 D»q:u:u:l:ln ,0¢ 000

SHUY Rr@in@nRO6,8ME0:+1="0";/5><ad¢, 0OV Tl , gh 03 Th6g85y-03 ¢+ 40+ D

country 'iﬂf“" '

ooomws DEIEIEIUEIEIEIEIND]: C EIEIUEIEIEIEICarylEID

[mm)in]

OOIEM1LOO00UO000I T3 210000080000 arco

toiQ00002951103033 034009902 04033033 203100 000000 TS 100000U0000Nor th

aro Mnal00000USgO0Jary100

[mm)in]

OOIEM1O0N000UO000I TS >100000 0000 arco

istoia0)\O-0,0, oo ++Hisooe, 000o0Q O0300ul) RG
AL I:I{I:I"'AO»@xp Hw; WG | DO0Gfadi0i0s T2

iggoO- R<1DEIAEI‘7EIQIQ&1E]@"QuY I:IXu(,J‘m°DDE »Ul=0:00400f
DuU®+a‘*lD"|:||:||:|NH|:|(;|:|E|E|— POO#OI=" *, v, 083080000+
& LO5RpEW\E, Wy »ilis &, MULA=0 /g0¥i0 * 0¥ 0eq0000 * I0G4SL (00- I 2EE! &<0z¢ T|0 (&£80+2 ! u ne004 ! Shiidbz
2 . 0% ; TefR QO \FB42a¥07 « £0(M5 L b *00..0000] Tohtd, 00 CEGE " ElOij:EI+ av¥hk.nifoie ~O0mdBETL DLl [-
organlzatlon ai_F,I0* N AnoETbalond "hopiaatheelecres tzOLIE ARAY 20 i
IuDEIEIEI*THIEIEI,/EID OO00A& TG =r—¥0% ' E® S o EI}EIEI[X‘“EZFAT‘ILYefEIEI

- 26 £/ 080%,0° ~L*~ " Oxb0O0%

start date end date

first and last name

Figure 103. On Opening a Keystore with a Text Editor

Notice also that all keys or certificates stored in the keystore are identified by
aliases.

Users can have as many keystores as they wish. Users can create additional
keystores if they want to:

1. Generate a public-private key pair for themselves.

232 Java 2 Network Security

2. Sign a code with their private key and export their certificates to send to
others for verification along with the signed code.

3. Import others’ certificates to verify signatures.
4. Create a certificate request to be signed by a certification authority (CA).

All these activities are facilitated by the keyt ool command line utility. Notice
that each different keystore can be protected with a different password.

8.2.1 The Certificates KeyStore File cacerts

The cacerts file is a system-wide keystore for storing trusted CA certificates.
It is implemented in the JKS format, is located in the
${java.home}${/}lib${/}security directory and can be manipulated with the
keyt ool command line utility.

Currently, the cacerts file ships with five VeriSign root CA certificates. You can
view these certificates using the -1i st command associated with the keyt ool
utility:

keytool -list -keystore cacerts

The output of this command is shown in the following figure:

Keystore type: jks
Keystore provider: SUN
Your keystore contains 5 entries:

verisigncl ass3ca, Mn Jun 29 13:05:51 EDT 1998, trustedGCertEntry,
Certificate fingerprint (MX©b):

78: 2A 02: DF: DB: 2E 14: Db: A7: 5F: OA DF: B6: 8E 9C 5D

verisigncl asslca, Mon Jun 29 13:06: 17 EDI 1998, trustedCertEntry,
Certificate fingerprint (MX©):

51: 86: E8: 1F: BC B1: C3: 71: B5: 18: 10: DB: 5F. DC F6: 20

verisignserverca, Mn Jun 29 13:07:34 EDI 1998, trustedCertEntry,
Certificate fingerprint (MXD):

74: 7B: 82: 03: 43: FO: 00: 9E: 6B: B3: EC 47: BF: 85: A5: 93

veri signcl ass4ca, Mn Jun 29 13:06: 57 EDI 1998, trustedGCertEntry,
Certificate fingerprint (MXDB):

1B: D1: AD 17: 8B: 7F: 22: 13: 24: F5: 26: E2: 5D 4E: BO: 10

veri signcl ass2ca, Mn Jun 29 13:06: 39 EDI 1998, trustedGCertEntry,
Certificate fingerprint (MXDb):

EC 40: 7D 2B: 76: 52: 67: 05: 2C. EA F2: 3A 4F:. 65: FO: 8

Figure 104. Default CA Certificates in the Java 2 Platform

Security Configuration Files in the Java2 SDK 233

On launching this command you will be asked for the password. However, a
password is not mandatory to display the contents of a keystore; if you do not
enter the right password, the output shown in the figure above is displayed
anyway, but you will be informed that the integrity of the information stored in
the keystore has not been verified. On the contrary, you will not be allowed to
import a new certificate in the keystore file if you do not enter the exact
password. By default, the initial password is changei t . As the name itself
suggests, it is recommended you change the default password, as this
keystore is very important for the simple reason that it contains the
certificates of the CAs that are considered trusted. A keystore password can
be changed using the - st or epasswd command associated with the keyt ool
command line utility (see 9.1.3, “Commands and Options Associated with
keytool” on page 262).

Since CAs are entities that are trusted by users for signing and issuing
certificates to other entities, the cacerts file should be managed only by
system administrators. With the keyt ool utility, it is possible to add new CA
certificates or remove old CA certificates from the cacerts file. Utmost care
should be taken while importing any trusted certificate into the cacerts
keystore, as it should only contain certificates of the CAs that the system
administrators trust.

8.3 The Security Properties File, java.security

234

This is a configuration file in which you set the Java security properties for the
system. These security properties are used by classes in the java.security
package. The following figure shows the default properties file installed with
Java 2 SDK, Standard Edition, V1.2.1, except for the fact that the comments
that explain each entry have been removed here:

security. provider. 1=sun. security. provi der. Sun

pol i cy. provi der=sun. security. provider. PolicyFile
policy.url.1=file: ${java. hone}/lib/security/java. policy
policy.url.2=file: ${user. hone}/.java. policy

pol i cy. expandProperti es=true

pol i cy. al | owSyst enPr opert y=t r ue

policy.ignorel dentityScope=fal se

keyst or e. t ype=j ks

syst em scope=sun. security. provi der. | dentit yDat abase
package. access=sun.

#package. defini tion=

Figure 105. Default Security Properties File

Java 2 Network Security

As we have said, the directory where this file is installed is
${java.home}${/}lib${/}security, and a copy of it is found also in the JRE
development directory for use with the development tools.

The java.security file, amidst all the comments and explanations, contains
important directives, which are all of the form:

property vari abl e=val ue
Notice that by default the last entry is commented out.

In the following list we explain all the entries of the default security properties
file:

e Security provider

The first entry specifies the cryptography package providers, their
locations, and their precedence orders. The term provider refers to a
package or set of packages that supply a concrete implementation of a
subset of the cryptography aspects of the Java Security API. A provider
may, for example, implement one or more digital signature algorithms or
message digest algorithms.

There must be at least one provider specification in java.security. If an
alternative provider has to be added, it must be specified in the security
properties file as:

security. provider. n=cl assNane

This adds the provider with the preference order n. The provider order is
1-based. If an implementation is supplied by multiple providers, the
implementation of the provider with the higher preference (that is, lower
serial number n) is chosen. This means that the JVM looks for the
implementation required in the first provider. If it is found, it stops and uses
that; otherwise, it looks in the next provider, and continues until it gets the
implementation.

cl assNanme must specify the subclass of the java.security.Provider abstract
class whose constructor sets the values of various properties that are
required for the Java security API to look up the algorithms or other
facilities implemented by the provider.

The Provider class has methods for accessing the provider name, version
number, and other information about the implementations of the
algorithms for key generation, conversion and management facilities,
signature generation, and message digest generation.

Provider subclasses statically registered through the security properties
file are instantiated when the system is initialized. Providers may also be

Security Configuration Files in the Java2 SDK 235

236

registered dynamically. To do so, you should call either the addProvider()
or insertProviderAt() static methods in the java.security.Security class.
However, such a configuration is not persistent and can only be done by
trusted programs. This may be done if only specific applications need a
particular provider. Note that by trusted programs we mean applications
that have been granted a specific SecurityPermission by the user. See 8.4,
“Security Policy Files” on page 242 and 10.7, “The Permission Classes” on
page 339 for more details.

The default provider that comes standard with the Java 2 SDK is called
SUN, and its Provider subclass, named Sun, appears in the
sun.security.provider package. The SUN provider offers:

¢ An implementation of the Digital Signature Algorithm (DSA)

Signature algorithms are used to create a signature of a particular file
using the message digest and the private key of the signer.

¢ An implementation of the MD5 and Secure Hash Algorithm (SHA)-1
message digest algorithms

Message digest algorithms are used to create the message digests of
files using the file itself and the constant chaining variable defined in
the digest algorithm.

« A DSA key pair generator for generating a pair of public and private
keys suitable for the DSA algorithm

« A DSA algorithm parameter generator
« A DSA algorithm parameter manager

* A DSA key factory providing bi-directional conversions between
opaque DSA private and public key objects and their underlying key
material

¢ An implementation of the proprietary SHA1PRNG pseudo-random
number generation algorithm

¢ A certificate factory for X.509 certificates and certificate revocation
Lists (CRLS)

* The JKS keystore implementation for the proprietary keystore type

* Policy provider

The second entry in the security policy file specifies the class to
instantiate as the system policy. This is the name of the class that will be
used as the Policy object, in order to determine which permissions are
available for code from various sources. The code source includes the

Java 2 Network Security

URL location of the code and the certificates of the entities that have
signed the code.

The default value defined for the policy provider is the class PolicyFile in
the package sun.security.provider. This class defines the default Java 2
SDK policy implementation, which uses static policy files to configure
security on the JVM.

Policy file URL location

If the Policy object instantiated is constructed from policy files, you can
specify in the security properties file an ordered list of URLs for the policy
files to load and utilize. The default is to have a system-wide policy file
having URL location file:/${java.home}/lib/security/java.policy and a
user-defined policy file in the user's home directory, having URL location
file:${user.home}/.java.policy. To discover the value of java.home and
user.home on your system, you can use either of the two programs shown
in Appendix A, “Getting Internal System Properties” on page 641.

The policy order is 1-based. This means that the policy. url . 1 file is read
first and the subsequent files later. Note that the precedence numbers
must be serial and continuous. In other words, if policy.url.1and
policy.url.3, are present, but policy. url.2is missing, then policy.url.3is
ignored and only policy.url.1is considered. So by default, when the
Policy class is initialized, the system policy is loaded first and the user
policy is added to it. If neither is present, a built-in policy is used, and this
is the original sandbox policy. However you can change this
implementation by editing the java.security file and modifying the policy
file URL location entries according to the following syntax:

policy.url.n=URL

where n is the precedence number of the policy file to be considered and
URL points to the path of the corresponding policy file.

For instance:
policy.url.3=file:/C/itso/ibnibnpolicy

The fact that the location of a policy file is specified as a URL implies that
policy files do not need to be local, but can be retrieved from a remote
system through the HTTP protocol. This opens up interesting possibilities;
for example, system administrators can install a system-wide policy file on
a policy server and users can use it from their client machines, combining
it with a local user-defined policy file.

Property expansion

This entry specifies whether or not property expansion should be allowed
in policy files. The syntax for this entry is the following:

Security Configuration Files in the Java 2 SDK 237

238

pol i cy. expandPr operti es=bool ean
where bool ean can be either true (the default) or fal se.

* When this security property is set to true, all the system property
variables, such as ${java.home} or ${user.home} will be automatically
translated into their value each time they appear in a policy file. For
example, ${java.home} would be expanded to the value of the
java.home property (see Appendix A, “Getting Internal System
Properties” on page 641).

« If this security property is set to fal se, property variables will not be
expanded in the policy files and must be explicitly hard coded. For
example, instead of ${j ava. hone}, you will have to type the full path,
something similar to C\ Program Fi | es\ JavaSof t\ JRR\ 1. 2.

This security property, if set to true, makes policy files portable across
platforms. In fact, as we said when we spoke about the policy file URL
location, system administrators can install a system-wide policy file on a
policy server and users can retrieve it from client machines. The possibility
to expand system property variables in policy files makes it possible to use
the same policy file regardless of the operating system. For example if this
property is set to true, ${/} will be exploded to the appropriate file
separator used on the local operating system: a forward slash (/) on UNIX
systems and a backslash (\) on Windows systems. Even machines with
the same operating system could have differences limiting portability. For
example, on one Windows machine the JRE could have been installed in
the C drive, and on another machine on the D drive, making the value of
java.home C:\Program Files\JavaSoft\JRE\1.2 and

D:\Program Files\JavaSoft\JRE\1.2 respectively. Another example is given
by the system property user.home: two different users, even working on
the same machine, have different home directories, each one containing
different security entities, such as the keystores. The possibility to
translate ${user. hone} into the actual value of the user home directory
makes policy files more general. Expanding the system properties in the
policy files solves this kind of problem and applies the concept of Write
Once, Run Anywhere, which is typical of Java.

On the other hand, if this property is set to f al se, you must specify the
system properties explicitly, which means that you will rarely be able to
port a policy file from one machine to another.

Extra policy

In the security property file, you can specify whether or not an extra policy
file can be passed on the j ava command line with the option:

-D ava. security. policy=policyFile

Java 2 Network Security

The syntax for this security property is as follows:
pol i cy. al | owSyst enfr opert y=bool ean

where bool ean can be either true (the default) or fal se. If this security
property is set to true, users can specify an additional policy file on the
java command line for specific applications, as shown in the following
example:

java -Dava. security. manager -D ava.security. policy=i bnpolicy Gount

This implies that besides the policy files mentioned in the security file, an
additional i bnpol i cy file is used.

A double equal sign (==), instead of a single one (=), can be specified after
the -0 ava. security. pol i cy flag, as shown in the following example:

java -0 ava. security. manager -0 ava. security. poli cy==i bnpol i cy Count

This implies that the policy file specified on the command line (in this
example, ibmpolicy) is the only policy file used for this application.

Since the same flags used for the j ava command apply also to the
appl et vi ener command, provided they are preceded by - J, this would be
the way to specify an additional policy file for use with the Applet Viewer:

appl et vi ewer -J-D ava. security. policy=i bnpol i cy Count. htm

This example shows how to specify an exclusive extra policy file for use
with Applet Viewer:

appl et vi ewer -J-D ava. security. policy==i bnpol i cy Gount. htni

If this property is set to fal se or is commented out in the security
properties file, users will not be able to specify a policy file on the
command prompt using the option above, and only the policy files
mentioned in the properties file will be used. System administrators can
set it to fal se if they wish to strictly check all security permissions and do
not want users to set their own permissions thus overriding the
system-wide settings. However, setting this to true will grant more
flexibility as users can define their own policy files according to their
applications as and when required.

Identity scope

The security properties file allows you to set whether or not to look into the
identity scope for trusted identities when a JDK 1.1 signed Java Archive
(JAR) file is encountered. The security property to configure this is the
following:

pol i cy. i gnorel dentityScope=bool ean

where boolean can be either fal se (the default) or true.

Security Configuration Files in the Java2 SDK 239

240

If this property is set to true, the identity scope is ignored and the Java 2
security policy is enforced. If it is set to f al se, the identity scope for trusted
identities is looked into and if identity is found and is trusted it is granted
AllPermission.

Keystore type

The security properties file allows you to specify the keystore type to use
in your Java security system. The syntax for this property is:

keyst ore. type=t ype

This property is by default set to j ks, corresponding to the proprietary
keystore type, named JKS and created by Sun Microsystems. The
features of this keystore implementation are described in 8.2, “Keystores”
on page 230.

System identity scope

Each JVM has a system identity scope that manages a repository of keys,
certificates and trust levels. That repository is available to applications that
need it for authentication or signing purposes.

The class to instantiate as the system identity scope is set in the security
properties file java.security through the following property:

syst em scope=c/ assNane

A default identity scope class for a persistent database is supplied by the
provider named SUN. This class is sun.security.provider.ldentityDatabase
(a subclass of the IdentityScope class). An instance of this class is created
every time a Java program is run or an Applet Viewer is started.

By default, the value of this property is set to the class IdentityDatabase,
found in the package sun.security.provider.

Packages causing a security exception when passed to
checkPackageAccess()

In the security properties file, you are allowed to specify a
comma-separated list of packages that will cause a security exception to
be thrown when passed to SecurityManager.checkPackageAccess(),
unless the corresponding RuntimePermission has been granted. Instead
of full package names, you can specify a comma-separated list of strings,
and all packages that start with one of those strings will also cause a
security exception to be thrown.

The syntax for this entry is as follows:
package. access=stringl,string2,...,stringN

By default, this entry is set to the string sun.

Java 2 Network Security

The checkPackageAccess() method takes as argument a String
representing a package name, and throws a security exception if the
calling thread is not allowed to access the package specified by the
argument. This method is used by the loadClass() method of class
loaders. If the package is restricted, then a call is made to
checkPermission() with the permission:

j ava. | ang. RunTi nePer m ssi on(" accessd assl nPackage. packageNane")

If it does not have a permission, then the calling thread is not allowed to
access classes in that package and a security exception is thrown.

Packages causing a security exception when passed to
checkPackageDefinition()

In the security properties file, you are allowed to specify a
comma-separated list of packages that will cause a security exception to
be thrown when passed to SecurityManager.checkPackageDefinition(),
unless the corresponding RuntimePermission has been granted. Instead
of full package names, you can specify a comma-separated list of strings,
and all packages that start with one of those strings will also cause a
security exception to be thrown.

The syntax for this entry is as follows:
package. definition=stringl,string2,...,stringN

The checkPackageDefinition() method takes as argument a String
representing a package name, and throws a security exception if the
calling thread is not allowed to define classes in the package specified by
the argument.

This method is used by the loadClass() method of class loaders. If the
package is restricted, then a call is made to checkPermission() with the
permission

j ava. | ang. RunTi nePer mi ssi on(" def i ned assl nPackage. packageNane")

If it does not have a permission, then the calling thread is not allowed to
define classes in that package and a security exception is thrown.

However, by default the package.definition entry in the security property
files is not set to anything and is commented out:

#package. def i ni tion=

This means that, by default, no packages are restricted for definition.
Moreover, none of the class loaders supplied with the Java 2 SDK call
checkPackageDefinition().

Security Configuration Files in the Java2 SDK 241

8.4 Security Policy Files

Security policy files are used to grant permissions to various Java codes
depending upon the code base and/or the digital signatures applied to the
code.

We introduced the policy files in 3.6, “The Policy File” on page 93, and in
3.6.1, “The Default System-Wide Policy File” on page 96, we described all the
entries that appear in the default system-wide policy file that comes with the
installation of the Java 2 SDK. In this section, we give more details about how
you can configure security on your system through the use of policy files.

As we explained in 8.3, “The Security Properties File, java.security” on page
234, multiple policy files can be simultaneously installed and take effect on
your system. Their URL locations and order numbers must be specified in the
security properties file java.security.

A policy file contains a list of entries. There may be a keyst ore entry and zero
or more grant entries. Each grant entry contains zero or more per m ssi on
entries, and can contain a si gnedBy entry and a codeBase entry.

Case in Policy Files

In policy files, case is unimportant for the identifiers (grant, keyst ore,
per m ssi on, si gnedBy and codeBase) but is significant for any string that is
passed in as a value.

8.4.1 keystore Entry

242

The keyst ore entry is necessary in the policy file if a signer is specified in any
of the grant entries. There can be only one keyst ore entry per policy file. If
there are multiple keyst or e entries, only the first one is considered and the
rest are ignored.

The keyst ore entry line can appear anywhere in the file and it looks like:
keystore "URL" "t ype"

where URL represents the URL location of the keystore, and t ype refers to
the type of the keystore.

The t ype specification is optional. If t ype is missing, the type is taken from
the keystore.type property of the Java security properties file (see 8.3, “The
Security Properties File, java.security” on page 234). As you remember, that

Java 2 Network Security

property is by default set to JKS, the proprietary keystore implementation
supplied by Sun Microsystems.

In general, a keystore type defines the storage and data format of the
keystore information, and the algorithms used to protect private keys in the
keystore and the integrity of the keystore itself.

The URL location of the keystore can be absolute or relative to the location of
the policy file in question. For example, let’s say that in the security properties
file java.security, the entry defining the policy file in question is:

policy.url.2=file:/C/itso/ibmibnpolicy
If the keyst ore entry in this policy file is:

keystore ". keystore"

then the keystore URL location is considered relative to the location of the
policy file, and the keystore is loaded from file:/C:/itso/ibm/.keystore.

If the keyst ore entry in the policy file is:

keystore "file:/C/.keystore"

then the URL is considered absolute and the keystore is loaded from
file:/C:/.keystore.

The fact that the keystore location can be specified as a URL allows you to
retrieve a keystore not only from the local file system, but also from a remote
location, using the HTTP protocol.

8.4.2 grant Entries

These entries are used to grant permissions to codes from various sources
and/or signed by various entities.

As shown in Figure 33 on page 81, the syntax for a grant entry is as follows:

grant [signedBy "signers"][, codeBase "UR"] {
per missi on permssion_class ["target"][, "action_list"][, signedBy "signer"];
[permssion pernission_class ["target"][, "action_list"][, signedBy "signer"];

bé'rn'nssi on permssion_class ["target"][, "action_list"][, signedBy "signer"];]

b

Security Configuration Files in the Java 2 SDK 243

The entry begins with the word grant, which can be followed by the si gnedBy
and codeBase name-value pairs. A list of zero or more per ni ssi on entries
follows. A grant entry always terminates with a semicolon (;).

e signedBy entry

The value followed by the si gnedBy keyword is a double-quoted string
containing names of one or more signers. Multiple signers are separated
by commas. A signer entity is indicated through the alias of its certificate
stored in the keystore. The permissions granted are for the code that has
been signed by the private key corresponding to the public key in the
certificate indicated by the alias.

When multiple signers are specified, the code must be signed by all of
them. This is because the relationship between multiple signers is a
logical AND and not a logical CR For an CRrelationship, you need to
duplicate the same grant permission with different signers.

If this optional name-value pair is absent, then the permissions in the grant
entry are valid for code signed by anyone or code that is not signed.

e codeBase entry

The URL value followed by the codeBase keyword is the originating location
of the code to which permissions are to be granted. The value of the
codeBase entry must be represented as a double-quoted string, formatted
as a URL. This means that it should always contain forward slashes (/)
even if the platform is a Windows system, since backslashes (\) are not
allowed in a URL. Absence of this optional name-value pair indicates that
the specified permissions are to be granted to all code, regardless of its
originating location.

Let's see some examples of valid code bases:

« To grant the permissions to all class files in a specific directory, the
codeBase entry must be similar to the following:

codeBase "file:/C/ibmitso/"
This is equivalent to:
codeBase "file:/C/ibmitso"

« To grant the permissions to all the class files as well as JAR files in the
specified directory, a wildcard (*) is required at the end of the URL®:

codeBase "file:/C/ibmitso/*"

1 Thisis as per the documentation. However, this was not the case in Java 2 SDK, Standard Edition, V1.2. In fact, by
putting a wildcard (*) at the end of the URL, not only the JAR files were being excluded from the protection domain, but
the class files were also not given the permissions. In effect, the permissions were totally disregarded. The reason for this
bug is that some modifications were made to the method java.io.File.getCanonicalPath(), which on Win32 systems threw
an IOException when canonicalizing a file with a wildcard (*) in its name. This bug is fixed in V1.2.1.

244 Java 2 Network Security

¢ To grant the permissions to only a particular JAR file, the codeBase entry
must be similar to the following:

codeBase "file:/C/ibmitsol redbook.jar"

The JAR file must be specifically mentioned in the codeBase URL.
However, this does not work for a class file.

« To grant the permissions to all the class files as well as JAR files in the
specified directory and in all its subdirectories recursively, a minus sign
(-) is required at the end of the URL.:

codeBase "file:/C/ibmitso/-"
e permission entries

Each per mi ssi on entry specifies a permission that is granted to a specific
code source.

A perni ssi on entry begins with the keyword per ni ssi on, followed by the
fully qualified permission class name, such as java.io.FilePermission,
java.util.PropertyPermission, etc. (see 3.6, “The Policy File” on page 93).
The t ar get field refers to the target of the permission if any, and is
represented as a double-quoted string, such as "j ava. hone" for
PropertyPermission. A double-quoted list of one or more actions can
follow, such as "read" or "wite" or "read, wite" (multiple actions are
separated by commas). This refers to the actions that are allowed.

As we observed in 3.6, “The Policy File” on page 93, not all of the
Permission classes defined in the Java 2 platform have applicable actions
yet. The only system Permission classes that do have actions are
FilePermission (read, write, execute, delete), PropertyPermission (read,
write) and SocketPermission (resolve, accept, connect, listen).

A permi ssi on entry always terminates with a semicolon (;).

The last item in the per mi ssi on statement is composed of the si gnedBy
keyword, followed by a double-quoted string indicating a signer. Each
signer entity is indicated by the corresponding alias in the keystore. A
signed permission is granted to the specified code source only if the
permission class itself is in JAR format and is signed by the private key
corresponding to the public key in the certificate referred to by the signer’s
alias. This is useful for permission classes that are not part of the Java
core API; these non-standard permission classes are often remotely
loaded, and signing by a trusted entity is one way to ensure code
authenticity.

When it comes to signing applets and applications, multiple signers are
allowed, and this means that the code must be signed by all of these and
not a subset. However, this is not true for Permission classes. The JAR file

Security Configuration Files in the Java 2 SDK 245

246

of a Permission class can be signed by a single entity. If multiple entities
apply their digital signatures to the JAR file of a Permission class, only the
first signature takes effect, and the others are disregarded.

Absence of the optional si gnedBy specification means that the permission
in question is granted to the specified code source regardless of any
digital signature applied to the permission class file.

Let’s look at some examples of syntactically correct grant entries:

e The following grant entry allows all code (irrespective of the code base

and eventual signers) to read the property java.version from the system:

grant {
permssion java. util.PropertyPermssion "java. version", "read";

h

The following grant entry in a valid policy file would give JAR files signed
by IBM and residing in the directory D:\ibm or its subdirectories recursively
read and write file permissions to all the files in the system:

grant signedBy "IBMI, codeBase “file:/D/ibmi-" {
permssion java.io.FlePermssion "<<ALL FILES>", "wite, read";

h

We modify the si gnedBy entry above by specifying a new signer, ITSO:

grant signedBy "IBV I1TSO, codeBase "file:/D/ibm-" {
pernmission java.io.FlePermission "<<ALL HLES>", "wite, read";

h

Now the JAR files in the local directory D:\ibm and signed only by IBM will
not have access. Only if signed by both IBM and ITSO they will be granted
permission.

Here is another interesting example for a grant entry:

grant signedBy "itso" codeBase "fil e:/${user. hone}/*" {
pernission java.io. F | ePermssion "${user. hone}${/}*", "read, wite";
pernissi on java.io. F | ePermssion "${user.nyhonge} ${/}*", "read";

h

Assuming that a system property user.myhome is not defined, the above
means that only JAR files present in the home directory of the user and
signed by the private key corresponding to the public key present in the

Java 2 Network Security

certificate referred to by the alias itso in the keystore are allowed to read
and write all files in the home directory of the user.

There are some points to note in this example:

1. ${user. hone} is expanded to its value, which is the user's home
directory, only if the security properties file, java.security, sets the
property policy.expandProperties to true (see 8.3, “The Security
Properties File, java.security” on page 234). Property expansion is
allowed in a policy file anywhere a double-quoted string is used.

2. ${/} or ${file.separator} indicates the file separator specific to the
platform. The value of this variable is the file separator used on the
system, but again, this requires that property expansion is allowed in
the java.security file. However, the file separator variable should not be
used in the codeBase entry as this requires a URL-formatted string as its
value, so only forward slashes (/) are allowed, and backslashes (\) are
forbidden, irrespective of the platform.

Other property variables, such as ${user. hone}, can be used in the
codeBase statement, but if they include a file separator, this would
explode to a forward slash (/) and not to a backslash (\). This would
happen even on a Windows system, because the value for a codeBase
must be URL-formatted. So, even if the value of user.home is
something like C:\WINNT\Profiles\pistoia.000 (see Figure 335 on page
642 and Figure 336 on page 643), in a codeBase entry ${ user. hone}
would explode to C/WNNT/ Profi | es/ pi st oi a. 000.

3. H{user. hone}${/} is allowed in the per m ssi on entry, but ${user. ${ abcd}}
is not, even though ${abcd} might expand to hore. In other words,
nested variables cannot be used. The reason for this limitation is that
the property parser does not recognize nested properties; it simply
looks for the first ${, and then keeps looking until it finds the first } and
tries to interpret the result. In this case, it would try to interpret
${user. ${abcd} as a single property, but fails if there is no such
property.

4. If not using the file separator variable ${/}, on a Windows system a
single backslash (\) should be replaced by a double backslash (\\) every
time a file separator is written in a perm ssi on entry of a policy file. So,
for example, C:\WINNT\Profiles\pistoia.000 would be written as
C:\\WINNT\\Profiles\\pistoia.000. The double backslashes (\\) are
necessary to represent a single backslash (\) because in a policy file
the strings are processed by a tokenizer (java.io.StreamTokenizer),
which allows a single backslash (\) to be used as an escape character
(for example, \ n indicates a new line). Thus, two backslashes (\\) are
required to indicate a single backslash (\). After the tokenizer has

Security Configuration Files in the Java 2 SDK 247

processed the above FilePermission target string, converting double
backslashes (\\) to single backslashes (\), the end result is the actual
path.

5. If a property cannot be expanded in a keyst ore entry, grant entry or
per m ssi on entry, that specific entry is totally ignored. So, assuming that
a system property user.myhome is not defined, the per ni ssi on entry:

permssion java.io. Fil ePermssion "${user. nyhone}${/}*", "read";

is completely disregarded.

—— The Concept of Negative Permission in Java 2

From the discussion above, it is clear that the Java 2 platform lacks the
concept of negative permission. That is, according to the Java 2 security
architecture, you cannot specifically deny a permission. Everything is
restricted by default, and you must grant specific permissions to specific
codes, as explained above.

8.5 An Example of Security Settings in the Java 2 Platform

Let’s see now an example of how a policy affects the functioning of a simple
application.

8.5.1 The Count Application Source Code

We consider again the simple Count application shown in Figure 44 on page
120 and Figure 45 on page 121. The purpose of this application is to count
the characters in a text file, whose name is passed on the command line. The
code Count.java is shown in the following figure:

inport java.io.*;

public class Count

{

public static void main(String[] args) throws Exception

{
int count=0;
if (args.length >= 1)
{
FilelnputStreamfis = new Fil el nput Strean{args[0]);

Figure 106. (Part 1 of 2). Count.java

Java 2 Network Security

try
{
while (fis.read() !'= -1)
count ++;
Systemout.printin("H! V& counted " + count + " chars.");
}
catch (Exception e)
{
Systemout. printl n("No characters counted");
Systemout. println("Exception caught" + e.toString());
}
}
el se
Systemerr. println("Uage: Gount file_nane");
}
}

Figure 107. (Part 2 of 2). Count.java

We save the Count.java file in the directory D:\itso\ch08.

8.5.2 A Sample Text File

Then we write a sample text file to use in our scenario. We consider the file
itso.txt, shown in Figure 46 on page 121. We save it in the directory
D:\itso\textFile. The contents of this file are shown again in the following
figure:

Marco Pistoia
Duane Rel | er
Deepak Qupta
MIind Nagnur
Ashok Ranani

Figure 108. itso.txt

8.5.3 Compiling the Application
Then, we compile Count.java:

javac Count.java

This command creates a file called Count.class in the same directory,
D:\itso\ch08, as is the Java file Count.java.

Security Configuration Files in the Java 2 SDK 249

8.5.4 Running the Application without a Security Manager

At this point, we can run Count against the text file itso.txt. This can be done
through the following command, launched from the directory D:\itso\ch08:

java Count D\itso\textFile\itso.txt

Although the Count application attempts to read to a file in the local file
system, and no read permissions have been granted to its code source yet,
we get the output as expected, as all applications have by default full access
to all the system resources, unless a security manager is invoked:

H! V¢ counted 70 chars.

8.5.5 Running the Application with the Default Security Manager

Now, let’s run this program with restricted permissions, by invoking the default
security manager, java.lang.SecurityManager. The command to do so is the
following:

java -Dava. security. manager Gount D\itso\textFile\itso.txt

The output is shown in the following screen:

Exception in thread "main" java. security. AccessControl Excepti on: access deni ed
(java.io.FilePermission D\itso\textFle\itso.txt read)
at java. security. AccessCont rol Qont ext . checkPer i ssi on(Gonpi | ed Gode)
at java. security. AccessControl | er. checkPer m ssi on(AccessControl | er. j ava: 403)
at java.lang. SecurityMinager . checkPer m ssi on(Securi t yManager . j ava: 549)
at java.lang. Securit yManager . checkRead(Securi t yManager . j ava: 864)
at java.io.FlelnputSream<init>F el nput & reamj ava: 65)
L at Gount. nai n(Conpi | ed ode))

As you can see, we got an AccessControlException. This is because we have
invoked the default security manager, and without the adequate permission
the Count application is by default denied read access to the local file system.

8.5.6 Policy File Modification

250

Now we want to demonstrate how an adequate modification to one of the
policy files in effect can modify the behavior of the Count application when
run under the default security manager.

Keeping the default java.security file, shown in Figure 105 on page 234, we
see that a user-defined policy file, called .java.policy and placed in the user
home directory, will be added and combined to the system-wide policy file. It
is recommended to modify the user-defined policy file, rather than the

Java 2 Network Security

system-wide one. The user-defined policy file does not exist by default, so we
create it with a text editor, and insert in it the following grant entry:

grant codeBase “file:/D/itso/ch08/" {
pernission java.io.FlePermssion "D ${/}itso{/}textFle${/}itso.txt", "read";

h

The grant entry above gives permission to all the class files stored in the local
directory D:\itso\ch08 to access the file D:\itso\textFile\itso.txt in read mode.

We can then run the program again and see that this time it works as
expected. The code is how able to read the input file.

In this example, we added the policy in the .java.policy user-defined policy
file. Another possibility would have been to create a new policy file, say,
newpolicy, stored for example in the same directory where the Count.class
file is. Then the Count application could have been run using the

-0 ava. security. pol i cy command line option, as shown:

java -0 ava. security. nanager -0 ava.security. policy=newpolicy Count D \itso\textFile\itso.txt

As we explained in 8.3, “The Security Properties File, java.security” on page
234, an extra policy can be passed on the command line with the option

-D ava. security. pol i cy flag only if in the java.security file the

pol i cy. al | owSyst enProperti es entry is set to true.

Alternatively, if you are a system administrator, you can modify the
java.security file and specify the policy file newpolicy in addition to the
system-wide and user-defined policy files. The entries to do this in the
java.security file are:

policy.url.1=file: ${java. home}/|i b/ security/java.policy
policy.url.2=file:${user. hone}/.java. policy
policy.url.3=file:D/itsol ch08/ newpol i cy

In this section we showed how to add a policy by manually editing a policy
file. Care should be taken when manually editing a policy file, since a mistake
in the syntax could compromise the policy of your system. We already saw in
other parts of this book that the Java 2 SDK provides a utility that helps you
create or modify a policy file through a graphical user interface (GUI), limiting
the possibilities of inadvertent syntax errors. This utility is called Policy Tool,
and we will see more details about it in 9.4, “Policy File Creation and
Management Tool” on page 288.

Security Configuration Files in the Java2 SDK 251

8.6 File Read Access to Files in the Code Base URL Directory

Although the default security manager prevents untrusted code from having
read access to the system files, there is an exception to this rule: a class file
is automatically granted, by the default security manager, read access to all
files contained in the class’ directory and all its subdirectories recursively. So
a class file does not need explicit permission to read a file from the same URL
location directory it is in, or recursively from a subdirectory of that directory,
because this permission is automatically granted. Notice, however, that this
property is not valid for JAR files, which still require an explicit permission.

8.7 Security Properties and Policy File Protection

One thing to keep in mind is that the Java 2 SDK does not provide any
protection to the security properties file or to the policy files. They are stored
without any password protection and they are not encrypted. Moreover, by
default, they are not even protected by the operating system on which the
Java 2 SDK has been installed. So anyone having physical access to your
machine can tamper with these files. For this reason, it is important to
manually protect these files once the Java 2 SDK has been installed. Access
to the machine should be granted to authorized users only, and directory/file
protection should be activated, depending upon the underlying operating
system.

8.8 How to Implement a Policy Server

A policy serveris a Web server machine that provides access to a
system-wide policy file for all the client machines connected to the same
network. As discussed in 8.3, “The Security Properties File, java.security” on
page 234, there are two features of the Java security implementation that
allow the creation of a policy server:

1. The fact that the java.security file can specify policy files using the HTTP
protocol makes it possible to configure the local system’s policy using a
policy file retrieved from a remote system.

2. The ability to expand system properties in policy files makes it possible to
use the same policy file on different operating systems.

This way system administrators can set up an environment where a
system-wide policy file is globally accessible on a policy server machine and
shared among all the clients in the network. Users can add their own policy
restrictions by editing local user-defined policy files or by dynamically adding

252 Java 2 Network Security

a policy from the command line, if this is allowed in the Java security
configuration in the java.security file.

In the next scenario, we describe a policy server running on a Windows NT
Server Version 4.0 machine, on which a Web server is installed. The
system-wide policy file, java.policy, is stored on this machine, in the directory
lib/security under the JRE development directory D:\jdk1.2.x\jre. As
discussed in 8.1, “A Note on java.home and the JRE Installation Directory” on
page 225, the Java security configuration files found in this directory affect all
the development tools, such as the Applet Viewer and the Java compiler

j avac.

In order to make the system-wide policy file global and accessible from
remote machines, we add the following Pass statement to the HTTP
configuration file of the Web server:

Pass /security/* D\jdk1l. 2\jre\lib\security*

Assuming that the host name of the policy server machine is
WTRO05218.itso.ral.ibm.com, the above statement means that a user on a
remote machine who wants to access the system-wide policy file simply has
to access the URL http://WTR05218.itso.ral.ibm.com/security/java.policy.

In this scenario, two machines have the role of policy clients: one is another
Windows NT Server Version 4.0 machine, the other one is a RISC/6000
running AlX Version 4.3.2. This scenario is graphically shown in the following
figure:

Windows NT Policy Server

]

————— _—Ff
Windows NT Policy Client AIX Policy Client

Figure 109. Policy Server Multiplatform Scenario

Security Configuration Files in the Java2 SDK 253

On both policy client machines, we modify the java.security file in the
lib${/}security directory under the JRE development directory so that the
policy file URL statements appear as follows:

policy.url.1=file: ${j ava. hone}/li b/ security/java. policy
policy.url.2=file: ${user. hone}/.java. policy
policy.url.1=http://WR05218.itso.ral .i bmconisecurity/java. palicy

In other words, we comment out the default entries, and we add a new entry,
which tells the system to retrieve the system-wide policy file from the remote
policy server WTR05218.

Next, we write the code for the following Java applet:

inport java.io.*;
inport java.applet.*;
inport java.aw . @ aphics;
public class Gount App extends Appl et
{
publ i c void pai nt (G aphics g)
{
int count=0;
try
{
String s1 = System get Property("user. horme");
String s2 = Systemget Property(“fil e.separator");
FilelnputStreamfis = new Fil el nput Strean{sl + s2 + "itso.txt");
while (fis.read() !=-1)
count ++;
g.dranstring("File was accessed. W counted " + count + " chars.", 20, 20);
}
catch (Exception €)
{
Systemout. println("No characters counted");
Systemout. println("Exception caught" + e.toString());
}
}
}

Figure 110. CountApp.java

We compile the Java applet file with the following command:

javac Count App. j ava

254 Java 2 Network Security

This command produces the applet class file CountApp.class.

As you can see, the code above is the applet-version of the Count
application, shown in Figure 106 on page 248 and Figure 107 on page 249.
This applet, which we save in the JRE development directory of the two policy
client machines, attempts to read the contents of the file itso.txt, shown in
Figure 108 on page 249. However, this time the location of the file is the user
home directory. The user home directory is different on the various platforms,
but rather than hard coding it in the applet code, we can make use of the Java
system properties user.home and file.separator to write an applet that is
really portable across the platforms.

Notice that the applet class file is physically saved in all the policy client
machines. We could have used the Web server running as the policy server
to distribute the applet via HTTP, but in this case the code base URL for the
applet would have been the URL of the Web server. Instead, we prefer in this
case to use the local JRE development directory as the code base to show
you an example of policy file portability.

In the system-wide policy file that appears under the JRE development
directory policy server machine, we add the following grant entry to the
default contents:

grant codeBase "file:/${java. hong}/-" {
pernissi on java.io.F|ePermssion "${user.hone}${/}itso. txt", "read";
permssion java. util.PropertyPernission "user.hone", "read";
pernmissi on java. util.PropertyPermssion "file. separator”, "read";

h

This means that we are granting all the class and JAR files stored in the Java
home directory and all its subdirectories permission to read the file itso.txt in
the user home directory. We are also granting the same code source
permission to read the system properties of user.home and file.separator.
Since this scenario is run using the Applet Viewer, ${java.home} is translated
into the JRE development directory, as demonstrated in Figure 102 on page
229. This is also the directory where the applet CountApp is stored.

In order to run, the applet needs to be invoked from within an HTML page.
This is the HTML page we wrote for it:

Security Configuration Files in the Java2 SDK 255

<HTM.>
<HEAD>
<Tl TLE>Count App Appl et </ TI TLE>
</ HEAD>

<BCDY>
<CENTER><H2>Count App Appl et </ H2>
<HR>

<APPLET Code="Count App. cl ass" Wdt h=300 Hei ght =50>
<H4>Thi s area contai ns a Java appl et, but your browser is not Java-enabl ed</ H4>
</ APPLET>

</ BCDY>
</ HTM>

Figure 111. CountApp.htm/

The program works as expected on all platforms. In fact, on running the
command:

appl et vi ener Gount App. ht m

the following Applet Viewer window is brought up:

E"Eﬁﬁ.pplet Viewer: CountApp.class
Applet

File was accessed. We counted Y0 chars.

Applet started.

Figure 112. CountApp Applet Running

This demonstrates that the policy file on the policy server can be accessed by
the policy clients and the policies defined in it are effective. This is possible
because the Java 2 platform enables the specification of the policy file
through the HTTP protocol. Also notice how we make use of the variables
${java.home}, ${user.home} and ${/}, so that the same file can be used on
UNIX as well as on Windows systems. As discussed in 8.3, “The Security
Properties File, java.security” on page 234, the value of

256 Java 2 Network Security

policy.expandProperties in the java.security file must be true on the client
machines to make this happen.

Security Configuration Files in the Java 2 SDK 257

258 Java 2 Network Security

Chapter 9. Java 2 SDK Security Tools

As we introduced in Chapter 3, “The New Java Security Model” on page 69,
the Java 2 SDK provides four security-related tools. These are:

1.
2.
3.

4,

The keyt ool command line utility for key and certificate management
The jar command line tool to compress and archive Java class files

The j arsi gner command line tool to sign and verify Java Archive (JAR)
files

The GUI-based Policy Tool for creating and managing policy files

We now describe how to use these tools.

9.1 Key and Certificate Management Tool

The keyt ool command line utility is used to manage keystores. With this tool,
you can:

1.
2.
3.

Create key pairs and self-signed certificates.
Export certificates to send to others along with the signed code.

Issue certificate signing requests (CSRs) to be sent to certification
authorities (CAs) for signing.

Import other peoples’ certificates to verify signatures.

5. Designate trusted certificates and also import trusted root CA certificates

in the CA keystore cacerts.

Manage your own keystores.

9.1.1 keytool Syntax
The basic format of the keyt ool is:

keytool conmand [option] ... [option]

To get help for this tool, just enter keyt ool on the command line, with or
without the - hel p flag. You will get an output similar to the following:

© Copyright IBM Corp. 1997 1999 259

keyt ool usage:

-certreq [-v] [-alias <alias>] [-sigalg <sigal g>]
[-file <csr_file>] [-keypass <keypass>]
[-keystore <keystore>] [-storepass <storepass>|
[-storetype <storetype>]

-del ete [-v] -alias <alias>
[-keystore <keystore>] [-storepass <storepass>|
[-storetype <storetype>]

-export [-v] [-rfc] [-alias <alias>] [-file <cert _file>]
[-keystore <keystore>] [-storepass <storepass>]|
[-storetype <storetype>]

- genkey [-v] [-alias <alias>] [-keyal g <keyal g>]
[- keysi ze <keysize>] [-sigal g <sigal g>]
[-dnane <dname>] [-validity <val Days>]
[- keypass <keypass>] [-keystore <keystore>]
[-storepass <storepass>] [-storetype <storetype>]

-hel p

-identitydb [-v] [-file <idb_ file>] [-keystore <keystore>]
[-storepass <storepass>] [-storetype <storetype>]

-i mport [-v] [-nopronpt] [-trustcacerts] [-alias <alias>]
[-file <cert_file>] [-keypass <keypass>]
[-keystore <keystore>] [-storepass <storepass>]|
[-storetype <storetype>]

- keycl one [-v] [-alias <alias>] -dest <dest_alias>
[- keypass <keypass>] [-new <new keypass>]|
[-keystore <keystore>] [-storepass <storepass>|
[-storetype <storetype>]

-keypasswd [-v] [-alias <alias>]
[- keypass <ol d_keypass>] [-new <new keypass>]|
[-keystore <keystore>] [-storepass <storepass>]|
[-storetype <storetype>]

-list [-v | -rfc] [-alias <alias>]
[-keystore <keystore>] [-storepass <storepass>|

Figure 113. (Part 1 of 2). keytool Commands and Options

260 Java 2 Network Security

[-storetype <storetype>]
-printcert [-v] [-file <cert_file>]

-sel fcert [-v] [-alias <alias>] [-sigalg <sigal g>]
[-dnane <dname>] [-validity <val Days>]
[- keypass <keypass>] [-keystore <keystore>]
[-storepass <storepass>] [-storetype <storetype>]

-storepasswd [-Vv] [-new <new st or epass>]
[-keystore <keystore>] [-storepass <storepass>]|
[-storetype <storetype>]

Figure 114. (Part 2 of 2). keytool Commands and Options

Figure 113 on page 260 and Figure 114 on page 261 show the possible
commands that can be entered with the keyt ool utility and the options that are
associated with those commands.

9.1.2 Store and Private Key Password

The default implementation of the keystore that comes with the Java 2 SDK
protects the keystore with a store password to verify integrity. A private key in
the keystore is stored encrypted and is protected with a private key password,
which should be different from the store password.

Most commands operating on a keystore require the store password. Some
commands require a private key password. Passwords can be specified on
the command line (in the - st orepass and - keypass options, respectively).
However, we recommend you not put the password on the command prompt,
because it then becomes visible in the command history; anyone can see it
by examining the history, for example by using the arrow keys on the
command prompt of Windows systems (if doskey is installed) or the Esc-K
key sequence on AlIX systems (if the Korn shell is running).

If you do not specify a required password option on a command line, you will
be prompted for it. When typing in a password at the password prompt, the
password is currently echoed; this means that it is displayed exactly as typed,
and not masked by a sequence of asterisks (*), so be careful not to type it in
front of anyone and remember to close the Command Prompt window as
soon as you are done with that specific keyt ool command. On Windows
systems, there is yet another reason for closing the Command Prompt
window; if you type the full keyt ool command from the same window again,

Java 2 SDK Security Tools 261

you can still use the arrow keys from the keyt ool prompt to retrieve a
password previously typed in. So, anyone can know your store and private
key passwords if he gets access to your machine and your Command Prompt
window is still open where you accessed your keystore.

9.1.3 Commands and Options Associated with keytool

We now explain the meaning of the commands and options shown in Figure
113 on page 260 and Figure 114 on page 261.

In the keyt ool command line, conmand can be one of the following:
e -certreq

This is used to generate a CSR using the PKCS#10 format. A CSR is
intended to be sent to a CA. The CA will authenticate the certificate
requestor (usually offline) and will return a certificate or certificate chain,
used to replace the existing certificate chain (which initially consists of a
self-signed certificate) in the keystore. The private key and X.500
distinguished name! associated with the alias of the certificate are used to
create the PKCS#10 certificate request. In order to access the private key,
the appropriate password must be provided, since private keys are
protected in the keystore with a password. If - keypass is not provided at the
command line, and the key password is different from the password used
to protect the integrity of the keystore, the user is prompted for it.

si gal g specifies the algorithm that should be used to sign the CSR. The
CSR is stored in the file csr_fil e. If no file is given, the CSR is output to
standard output.

Use the -i nport command to import the response from the CA.
e -delete

Deletes the entry identified by al i as from the keystore. The user is
prompted for the alias, if no alias is provided at the command line.

* -export

Reads (from the keystore) the certificate associated with al i as, and stores
itin the file cert _fil e. If no file is given, the certificate is output to standard
output. By default, the certificate is output in binary encoding, but will be
output in the printable encoding Base 64 format? if the -rfc option is
specified.
1 X.500 distinguished names are used to identify entities, such as those which are named by the subject and issuer
(signer) fields of X.509 certificates (see Appendix C, “X.509 Certificates” on page 649). The keyt ool utility supports the
following subparts: conmonNane, or gani zat i onUhi t, or gani zat i onNarre, | ocal i t yNarre, st at eNane, and country.
2 The Base 64 formatis a commonly used Internet standard. You could encode binary data in Base 64 by rearranging the
bits of the data stream in such a way that only the 6 least significant bits are used in every byte. For more details, see the
Request for Comments (RFC) 1421 at http://info.internet.isi.edu/in-notes/rfc/files/rfc1421.txt.

262 Java 2 Network Security

If al i as refers to a trusted certificate, that certificate is output. Otherwise,
al i as refers to a key entry with an associated certificate chain. In that
case, the first certificate in the chain is returned. This certificate
authenticates the public key of the entity addressed by al i as.

- genkey

Generates a key pair and wraps the public key in an X.509 V1 self-signed
certificate, which is stored as a single-element certificate chain. This
certificate chain and the private key are stored in a new keystore entry,
identified by al i as.

keyal g specifies the algorithm to be used to generate the key pair, and
keysi ze specifies the size of each key to be generated. si gal g specifies the
algorithm that should be used to sign the self-signed certificate; this
algorithm must be compatible with keyal g. Finally, dnane specifies the
X.500 distinguished name to be associated with al i as, and is used as the
issuer and subject fields in the self-signed certificate. If no distinguished
name is provided at the command line, the user will be prompted for one.

keypass is a password used to protect the private key of the generated key
pair. If no password is provided, the user is prompted for it. If you press
Enter at the prompt, the key password is set to the same password as that
used for the keystore. keypass must be at least 6 characters long.

val Days is the number of days for which the certificate should be
considered valid.

-hel p
Lists all the commands and their options.
-identitydb

This command reads the Java Development Kit (JDK) 1.1.x-style identity
database from the file i db_fil e, and adds its entries to the keystore. If no
file is given, the identity database is read from standard input. If a keystore
does not exist, it is created. Only identity database entries that were
marked as trusted will be imported into the keystore. All other identities
will be ignored. For each trusted identity, a keystore entry will be created.
The identity's name is used as the al i as for the keystore entry.

The private keys from trusted identities will all be encrypted under the
same password, st or epass. This is the same password that is used to
protect the keystore's integrity. Users can later assign individual
passwords to those private keys by using the - keypasswd keytool command
option.

An identity in an identity database may hold more than one certificate,
each certifying the same public key. But a keystore key entry for a private

Java 2 SDK Security Tools 263

264

key has that private key and a single certificate chain (initially just a single
certificate), where the first certificate in the chain contains the public key
corresponding to the private key. When importing the information from an
identity, only the first certificate of the identity is stored in the keystore.
This is because an identity’s name in an identity database is used as the
alias for its corresponding keystore entry, and alias hames are unique
within a keystore.

-inport

This command reads the certificate or certificate chain (where the latter is
supplied in a PKCS#7 formatted reply) from the file cert _fil e, and stores it
in the keystore entry identified by al i as. If no file is given, the certificate or
PKCS#7 reply is read from standard input. keyt ool can import X.509 V1,
V2, and V3 certificates, and PKCS#7 formatted certificate chains
consisting of certificates of that type. The data to be imported must be
provided either in binary encoding format, or in printable encoding Base
64 format. In the latter case, the encoding must be bounded at the
beginning by a string that starts with ----- BEQ N, and bounded at the end
by a string that starts with ----- END

When importing a new trusted certificate, the alias you assign to it must
not yet exist in the keystore. Before adding the certificate to the keystore,
keytool tries to verify it by attempting to construct a chain of trust from that
certificate to a self-signed certificate (belonging to a root CA), using
trusted certificates that are already available in the keystore.

If the -trust cacerts option has been specified, additional certificates are
considered for the chain of trust, namely the certificates in the file named
cacerts that we introduced in 8.2.1, “The Certificates KeyStore File
cacerts” on page 233. The cacerts file represents a system-wide keystore
with CA certificates. System administrators can configure and manage
that file using keyt ool , specifying j ks as the keystore type. The cacerts
keystore file ships with five VeriSign root CA certificates whose X.500
distinguished names are shown in Figure 104 on page 233.

If keyt ool fails to establish a trust path from the certificate to be imported
up to a self-signed certificate (either from the keystore or the cacerts file),
the certificate information is printed out, and the user is prompted to verify
it, for example, by comparing the displayed certificate fingerprints with the
fingerprints obtained from some other (trusted) source of information,
which might be the certificate owner. Be very careful to ensure the
certificate is valid prior to importing it as a trusted certificate! The user
then has the option of aborting the import operation. If the - nopr onpt option
is given, however, there will be no interaction with the user.

Java 2 Network Security

When importing a certificate reply, the certificate reply is validated using
trusted certificates from the keystore, and optionally using the certificates
configured in the cacerts keystore file (if the -trust cacerts option was
specified). If the reply is a single X.509 certificate, keyt ool attempts to
establish a trust chain, starting at the certificate reply and ending at a
self-signed certificate (belonging to a root CA). The certificate reply and
the hierarchy of certificates used to authenticate the certificate reply form
the new certificate chain of alias.

If the reply is a PKCS#7 formatted certificate chain, the chain is first
ordered (with the user certificate first and the self-signed root CA
certificate last), before keyt ool attempts to match the root CA certificate
provided in the reply with any of the trusted certificates in the keystore or
the cacerts keystore file (if the -trust cacerts option was specified). If no
match can be found, the information of the root CA certificate is printed
out, and the user is prompted to verify it, for example, again, by comparing
the displayed certificate fingerprints with the fingerprints obtained from
some other (trusted) source of information, which might be the root CA
itself. The user then has the option of aborting the import operation. If the
-nopronpt option is given, however, there will be no interaction with the
user.

The new certificate chain of al i as replaces the old certificate chain
associated with this entry. The old chain can only be replaced if a valid
keypass, the password used to protect the private key of the entry, is
supplied. If no password is provided, and the private key password is
different from the keystore password, the user is prompted for it.

- keycl one

This command creates a new keystore entry, which has the same private
key and certificate chain as the original entry. The original entry is
identified by al i as (which defaults to nykey if not provided). The new
(destination) entry is identified by dest _al i as. If no destination alias is
supplied at the command line, the user is prompted for it.

If the private key password is different from the keystore password, then
the entry will only be cloned if a valid keypass is supplied. This is the
password used to protect the private key associated with al i as. If no key
password is supplied at the command line, and the private key password is
different from the keystore password, the user is prompted for it. The
private key in the cloned entry may be protected with a different password,
if desired. If no - newoption is supplied at the command line, the user is
prompted for the new entry's password (and may choose to let it be the
same as for the cloned entry's private key).

Java 2 SDK Security Tools 265

This command can be used to establish multiple certificate chains
corresponding to a given key pair, or for backup purposes.

* keypasswd

This password changes the password under which the private key
identified by al i as is protected, from ol d_keypass to new keypass.

If the - keypass option is not provided at the command line, and the private
key password is different from the keystore password, the user is
prompted for it. If the - newoption is not provided at the command line, the
user is prompted for it.

o -|ist

This command prints to standard output the contents of the keystore entry
identified by alias. If no alias is specified, the contents of the entire
keystore are printed.

This command by default prints the MD5 fingerprint of a certificate:

« If the -v option is specified, the certificate is printed in human-readable
format, with additional information such as the owner, issuer, and serial
number, and looks similar to the following screen:

Onner: ON=Marco FAistoia, QI TSQ OBV Qorporation, L=Cary, ST=North Garolina,
Cs
Issuer: ON=Marco Pistoia, QX TSQ O BMQorporation, L=Cary, ST=North Caroli na,
G
Serial nunber: 37lcdccd
Valid from Tue Apr 20 16:00: 13 EDT 1999 until: Mn Jul 19 16:00: 13 EDT 1999
Gertificate fingerprints:
MX®b: D2: FC 81: 5B E= 39: DL: 79: 01: AC 1F: 90: 59: E3: FF:
SHAL: A2: 1C 11: 3B E2: 6F: A2: 46: 80: F5: B4: 19: 62: [9: C5:

B
C 19: 91: 34: 93

5
3

« If the -rfc option is specified, certificate contents are printed using the
printable encoding Base 64 format. An example is shown in the
following screen:

266 Java 2 Network Security

M | D TGCAt 4CBDcc3MWCAYHKDZI zj gEANUAMHYXC2 ATBgNVBAYTAL VTMREWFQYDVQY BEA6MH3J0

aBDYXIvb@ uYTENVRs GALUEBX MEQRFy e TEYMBYGALUEChMPSUIN ENvenBveniF0aVeuMBDwWGAYD
VL EARIVFNPVRAWFAYDUIIDEAMNYXTj by BXINDb2I hMBAXDTK 5MDQY MDl wMDAX MLoXDTKSMDeX

On wwDAxM.owdj B-MK GALUEBhMDAMVK FzZ AVBgNVBAG TDK 5venRol ENhicn®savVBhMIPWGAWDVIH
BARDYXISMRyWFG YDVQKENSJ k09 @9y c @y YXRob 24X DTALBgNVBAS TBE ULD8XF ALBGNVBANT

DULhcniNvl FBpc3RvaVIEnggG3M | BLAYHK0ZI zj gEATCCARBCY YEA! X9TgR11E | S30gcLuzk5/ YR
t 11 870QAvw4/ gLZRInh FXUAI Uf t ZPY1Y+ / FObowdsubWY XgTUAHTRY8nZgt 2uZUKVKn5/ oBHsQ
1 sJPuenX r f G3 g7Vv+ GIKYWDWI7g/ bTXR7DY VUELOVKTL2df QuK2HXK/ yI gMZndFl AccTRFQCX
YFCPFSMzLKSuYKi 64Q 8Fgc9KBg(@B4aCF1ps93su8qlwRuFe5eZSvu/ 0660L5VOWPQeCZ1FZ

\V4661A PSnEHE GAt BV SPOTCYVEETF PCTKM/KbhPRZ6i 1R8] § go64eK7QntiZFuo38L+ ELYvH?

YnoBIDYMpPGHIFGJ ai DB+Fa528Ckot mKoB7VSVKAUNT/ s9JKgCBhAAQY YBLonLwWk+FBPFgQy8h

CXLk1nsxf zy/ WP | po6BEVIRVKV] 6FUDKt BAGox/ ZH sgd3PMKaAPaug&@BLXMFHNWLO/G j PGHFW
/ N9ADIMCTKZ3aIVKKYowOr bl vYUBAGQINMHIY1Q0Z j Z0LgJzdJOQRongEN7zZMN2A cSeNsH fV
STALBgcghkj GOANIBQACVAANLQ VA kgKge+7f Or 84 CRgxONWZFMCI FAhQaDCKE P6VB0y gt uGBW
i j dzP5sgqFag—=—

----- E\D CERTI H CATE- - - - -

Notice that you cannot specify both -v and -rfc.
-printcert

This command, which can be used independently of a keystore, reads the
certificate from the file cert_fil e, and prints its contents in a
human-readable format. If no file is given, the certificate is read from
standard input.

The certificate may be either binary encoded or in printable encoding
Base 64 format.

-sel fcert

Generates an X.509 V1 self-signed certificate, using keystore information
including the private key and public key associated with al i as. If dnane is
supplied at the command line, it is used as the X.500 distinguished name
for both the issuer and subject of the certificate. Otherwise, the X.500
distinguished name associated with al i as (at the bottom of its existing
certificate chain) is used.

The generated certificate is stored as a single-element certificate chain in
the keystore entry identified by al i as, where it replaces the existing
certificate chain.

si gal g specifies the algorithm that should be used to sign the certificate.

In order to access the private key, the appropriate password must be
provided, since private keys are protected in the keystore with a password.
If keypass is not provided at the command line, and is different from the
password used to protect the integrity of the keystore, the user is
prompted for it.

Java 2 SDK Security Tools 267

268

val Days is the number of days for which the certificate should be
considered valid.

e -storepasswd

This command changes the password used to protect the integrity of the
keystore contents. The new password is new st or epass, which must be at
least 6 characters long.

The commands above that require the presence of a keystore create it if one
is not already present.

There are three options that are valid for all the above commands, except
-hel pand -printcert. One of these is the -storepass option, which we have
already commented on. The two others are:

* -storetype

This specifies the type of keystore to be instantiated. The default keystore
type is the one that is specified as the value of the keystore.type property
in the security properties file. This value is returned by the static
getDefaultType() method in java.security.KeyStore.

e -keystore

This option specifies the keystore location. It defaults to the file .keystore
in the user's home directory, as determined by the user.home system
property. The value of the user.home system property can be found by
using one of the two applications described in Appendix A, “Getting
Internal System Properties” on page 641.

Finally, the -v option can be used with all the commands above, except - hel p.
If it appears, it signifies verbose mode, and detailed certificate information will
be output.

Notice also that:

« The -alias option refers to the alias of an entry present in the keystore. If
the alias is not present, the keystore throws the appropriate warning and
exits. On the other hand, the - genkey exits and an error message is seen
on the screen if the alias is already present.

e The -val i dity option refers to the length of time a certificate is valid and
corresponds to the number of days the certified entity can rely on the
public value, if the associated private key has not been compromised. In
general, the validity period chosen depends on a number of factors, such
as the strength of the private key used to sign the certificate or the amount
one is willing to pay for a certificate. By default, if a validity value is not
explicitly specified, it is set to 90 days.

Java 2 Network Security

An interesting thing to note here is that the keyt ool allows the validity to be
set to O or even a negative number. This is because for testing purposes
any date is assumed to be valid.

* The -fil e option refers to the file from which to import the certificate or
export the certificate to.

e The - keysi ze option refers to the modulus length of the key to be
generated.

Some options have default values, shown in the following table:

Table 9. Default Values for keytool Options

Option Default Value
-alias nykey
-keyal g (B SUN
- keysi ze 1024
-validity 90
-keystore ${user. hone} ${/}. keystore
-file st di nif reading
st dout if writing

The signature algorithm, specified with the -si gal g option, is derived from the
algorithm of the underlying private key; if the underlying private key is of type
DSA, the -si gal g option defaults to SHAIwi t hDSA, and if the underlying private
key is of type RSA, -si gal g defaults to MXbwi t hRSA.

9.1.4 An Example of keytool Usage

The session shown in the following figure is an example of how to use the
-genkey command associated with the keyt ool utility to generate a key pair
and wrap the public key in a self-signed certificate:

D \itso>keyt ool -genkey -keystore deepakstore -alias TestKey
Enter keystore password: deepak
What is your first and | ast nane?
[Uhknown] : Deepak Qupta
What is the name of your organi zational unit?
[Unknown] : 1 TSO

Figure 115. (Part 1 of 2). Usage of the -genkey Command Associated with the keytool Utility

Java 2 SDK Security Tools 269

Wiat is the nane of your organi zation?
[Unknown] : 1 BM
Wiat is the nane of your Aty or Locality?
[Uhknown] : Cary
What is the name of your State or Province?
[Uhknown] : NC
What is the two-letter country code for this unit?

[Unknown] : US
Is <ON=M/Nane, QEM/Q glhit, G-M/Qg, L=CGty, ST=State, C=IN> correct?
[no]: Y

Enter key password for <TestKey>
(RETURN i f sane as keystore password):

D\itso>

Figure 116. (Part 2 of 2). Usage of the -genkey Command Associated with the keytool Utility

Note that if you enter Nwhen you are prompted to confirm the correctness of
the information you typed in, or enter a carriage return or type anything junk,
the tool will ask you for all the information again. You can simply press Enter
for all the correct information and change the one you want.

Several other examples in later sections will show how to use all the
commands and options associated with the keyt ool command line utility.

9.2 Java Archive Tool

One characteristic of the dynamic loading of class files is that a typical applet
may involve a number of small network transfers. It may also involve the
retrieval of other files, such as graphic images. Given the indifferent
performance of many World Wide Web (WWW) connections, this can be a
serious performance hit. JDK 1.1 provided relief for this by introducing the
JAR format for packing everything into a single file. A JAR file can be created
and managed by using the Java Archive command line tool j ar. This utility,
also a part of the Java 2 SDK, allows for compression, which can further
improve performance. The compression is done based on the ZIP and the
ZLIB compression format®. This is also the only archive format (that we know
of) which is cross platform.

In addition to a number of files packed together and possibly compressed, a
JAR file can contain a special text file, called JAR manifest or simply
manifest, which is a description of each file contained in the JAR file itself.

3 More information on the ZLIB format can be seen on the site http://www.cdrom.com/publ/infozip/zlib/.

270 Java 2 Network Security

The manifest file includes the name of each file and other information used to
identify particular classes or beans.

9.2.1 Options of the jar Command
We now describe more details about the j ar command. If you know the UNIX

tar

command, j ar will be very familiar. In fact, these two commands have

almost the same syntax. The syntax for a jar command is:

jar

{ctxu}[vfnDM [jar-file] [manifest-file] [-Cdir] files ...

Notice that at least one of the options ct xu must be specified.

The meaning of the available command flags is explained in the following

table:
Table 10. jar Command Options
Flag Function
c Create a new JAR file
t List the table of contents for a JAR file
X Extract named (or all) files from a JAR file
u Update an existing JAR file
v Generate a verbose output on standard output
f Specify the JAR file name, else it is written to stdout
m Include manifest information from a specified manifest file
0 Store files in a JAR file without any compression
M Do not create a manifest file for the entries
C Change to the following directory and include the following file

If any file is a directory then it is processed recursively.

We now show, through some examples, how to use the jar command line
tool:

To archive two class files, say itso.class and javasec.class, and one text
file, say ibmreadme.txt, into an archive called ibmclasses.jar, enter:

jar cvf ibntlasses.jar itso.class javasec.class ibnreadne. t xt

Notice that the options of the j ar command can be preceded by a minus
sign or not, so the command above could have been typed as:

Java 2 SDK Security Tools 271

272

jar -cvf ibntlasses.jar itso.class javasec.cl ass ibnreadne. t xt
To extract all these files from this archive, enter:

jar xvf ibntlasses.jar

To view the contents of the JAR file, the command is:

jar tvf ibntlasses.jar

To update the contents of the JAR file ibmclasses.jar with another file
called file.txt, enter:

jar uvf ibntlasses.jar file.txt

Note that if you do not specify the f option, jar writes the output to
standard output. For example, after entering:

jar cv test.txt

the following would be displayed on standard output:

FEw hll ¢ META-INF/I: w PKw#¢ h|Z& q M
K- *{}I.—IRB E3uo’1~ JM. IH;u-O f)h‘uu)°P&Iuiw-unu.+xw61’r+r@ P
Keadl h|Z& META-INF/12 PKEEM h|Z&Y

+ test txtPELe LI | *= el M ValbRor ;%

Figure 117. Output of the jar Command Displayed on stdout

No JAR file is created in this case. However, if you redirect the output to a
file, say myJar.jar, then the command:

jar cv test.txt > nyJar.jar
is equivalent to:

jar cvf nyJar.jar test.txt

e The v option is for verbose output on the screen. For example, when

creating the JAR file myJar.jar with the command:
jar cvf nyJar.jar test.txt

the following information is displayed on standard output while the
command is executing:

added nani fest
adding: test.txt (in=13) (out=15) (deflated -15%

If the v option is not specified, the command is executed without any user
acknowledgment.

Java 2 Network Security

« The 0 option is used when you do not wish to compress the single files that
are part of the JAR file. In other words, using this option, the files are
packed together, but they are not compressed.

Using this flag is a trade off between speed and download time.
Uncompressed JAR files will take a longer time to download over the
network. However, once downloaded, classes can be extracted from it
faster.

e The command:
jar cvf ibmjar ibmclass java\redbook. cl ass

creates the JAR file ibm.jar including the two files ibm.class and
redbook.class, which are located in the java directory. Because the
directory tree is respected by the j ar command, you would see the same
files and same directory structure when extracting the JAR file ibm.jar.

Instead of typing j ava\ r edbook. cl ass, you could have used the - Coption of
the jar command, and typed:

jar cvf ibmjar ibmclass -Cjava redbook. cl ass

The - Coption is used to specify the directory where a file is located.
However, in this case the directory hierarchy is not maintained. Upon
extracting the JAR file ibm.jar, the two files ibm.class and redbook.class
are located in the same directory.

« The wildcard character (*) is allowed in the syntax of the jar command
and can be used to archive all files in a directory. For example:

jar cvf nydarFle.jar *

« The manifest uses the RFC822 ASCII format?, so it is easy to view and
process the manifest file contents. Using the moption of the j ar command,
you can include manifest information from a specified existing file. For
example, if you want to produce a JAR file, say myJarFile.jar, from the
class file MyClass.class, but you want to provide your own manifest file, or
at least a subset of the information a manifest file should contain, then the
right command would be something like:

jar cvni nyManifestlinfo nyJarFile.jar M/A ass. cl ass

where MyManifestinfo is the file containing the manifest file information.
The j ar tool takes the information from that file, and builds a manifest file.
Notice that the order with which you entered the information in the
manifest information file might be rearranged by the j ar tool according to
specific syntax rules.

4 See http://info.internet.isi.edu:80/in-notes/rfc/files/rfc822.txt.

Java 2 SDK Security Tools 273

« The - Moption of the j ar command is used to create a JAR file without the
manifest file. For example the command:

jar cvM nyJarFile.jar M/Q ass. class Yourd ass. cl ass

would produce a JAR file, called myJarFile.jar, from the class files
MyClass and YourClass. However, this file would not contain the manifest
file. This way, the j ar tool is only acting as a mere compressing tool and it
would be equivalent to other archiving and compressing tools such as
WinZip.

« If both the mand Moptions are present, the moption is ignored and the
resulting JAR file will not have a manifest file.

We will give you more details about the mand Moptions and their usage in
12.1, “JAR Files and Applet Signing” on page 385.

9.2.2 Running a JAR File

274

Java class files inside JAR files can be run like uncompressed and unpacked
class files:

* The applet files inside a JAR file can be used by an HTML file specifying
an <APPLET> tag with the Archi ve attribute. The syntax of that tag should be
something similar to the following:

<APPLET Code="itso.class" Archive="ibmjar">

e To run a class file in a JAR file on the command prompt, the -j ar option of
the j ava command has to be used. The syntax is as shown next:

java -jar [-options] jar_file [args ...]

Note here that j ava looks at the manifest file for the Mii n-d ass: parameter
and runs the class file specified by it. By default, when a JAR file is created,
this information is not added in the JAR manifest and there is no prompting by
the tool to ask for this class name. So, assuming that MyClass is the main
class of the program that has to be archived and compressed, these are the
steps you should follow:

1. Create a text file, called say, MyManifestinfo.txt, which only contains the
following:

{Maj n-dass: WA ass }

In other words, this file should contain the line:

Mai n-d ass: M/d ass

Java 2 Network Security

followed by an empty line. Notice that after the class name, you should
type Enter, in order to create an end-of-line character, or this file will be
ignored by the j ar tool.

A point to note here is that the extension .class must not be specified in
this manifest information file.

2. From the directory where MyClass.class is, run the following command:
jar cvimMQ ass.jar META- | N\ M/Mani fest I nfo. txt M/d ass. cl ass

For detailed information about this process, refer to 12.1, “JAR Files and
Applet Signing” on page 385.

9.3 JAR Signing and Verification Tool

The JAR signing and verification tool offered by Java 2 SDK is called
jarsigner. This is a command line tool, used to sign JAR files and to verify
signatures and the integrity of signed JAR files. As we will see in 12.1, “JAR
Files and Applet Signing” on page 385, a signed JAR file includes a signature
file, with extension SF, and a signature block file, with extension DSA:

* For each source file included in the JAR file, the SF file has three lines,
just as in the manifest file, listing the following:

1. The file name
2. The name of the digest algorithm used (SHA)
3. SHA digest value

In the manifest file, the Signature Hash Algorithm (SHA) digest value for
each source file is the digest of the binary data in the source file. In the SF
file, on the other hand, the digest value for a given source file is the hash
of the three lines in the manifest file for the source file. The signature file
also, by default, includes a header containing a hash of the whole manifest
file. This is an example of an SF file:

Sgnature-Version: 1.0
SHAL- O gest - Mani fest: i/ yxbl @l N&I W bL9I dh85TYM-
Ceated-By: 1.2.1 (Sun Mcrosystens Inc.)

Nane: Count . cl ass
SHAL- D gest: e3V355t f sF1j VzzkKy3cas3bazk=

* The SFfile is signed and the signature is placed in the DSA file. The DSA
file also contains, encoded inside it, the certificate or certificate chain from
the keystore which authenticates the public key corresponding to the
private key used for signing.

Java 2 SDK Security Tools 275

Inside the JAR file, both the SF and DSA files are found in the directory
META-INF. This directory was previously created by the j ar tool and already
contains the manifest file MANIFEST.MF.

The basic format for the j arsi gner command for JAR file signing purposes is:
jarsigner [options] jar-file alias

If you want a JAR file to be signed by the private key of a particular entity,

al i as should indicate the name with which the corresponding public key has

been aliased in the keystore. The tool might prompt for the password of the
keystore and the key, if any, and if not already provided as part of the options.

The syntax of the j arsi gner command, when used for sighature and integrity
verification purposes, is the following:

jarsigner -verify [options] jar-file

Quick help on this command can be obtained by entering j arsi gner on the

command prompt, with or without the - hel p flag. The output of this is shown in
the next figure:

[-internal sf]

[-keystore <url>] keystore | ocation

[- storepass <passwor d>] password for keystore integrity

[-storetype <type>] keystore type

[- keypass <passwor d>] password for private key (if different)
[-sigfile <file>] name of .SH .DSAfile

[-signedjar <file>] narme of signed JARfile

[-verify] verify a signed JARfile

[- ver bose] ver bose out put when si gni ng/ verifying

[-certs] di spl ay certificates when verbose and verifying

include the .SF file inside the signature bl ock

[-sectionsonl y] don't conpute hash of entire manifest

Figure 118. jarsigner Help on the Command Line

276

Java 2 Network Security

We now explain the meaning of the options shown in Figure 118 on page 276:
* -keystore

This option specifies the URL of the keystore location. This defaults to the
file .keystore in the user's home directory, as determined by the user.home
system property (see Appendix A, “Getting Internal System Properties” on
page 641).

A keystore is required when signing, so you must explicitly specify one if
the default keystore does not exist (or you want to use one other than the
default).

A keystore is not required when verifying, but if one is specified, or the
default exists, and the - ver bose option was also specified, additional
information is output regarding whether or not any of the certificates used
to verify the JAR file are contained in that keystore.

Note that the - keyst ore argument can actually be a file name (and path)
specification rather than a URL, in which case it is treated the same as a
file: URL. That is,

-keystore D\itso\nyKeystore

is equivalent to:

-keystore file:/D/itsol nyKeystore
* -storepass

This option specifies the password which is required to access the
keystore. This is only needed when signing (not verifying) a JAR file. In
that case, if a - st orepass option is not provided at the command line, the
user is prompted for the password.

See 9.1.2, “Store and Private Key Password” on page 261 for
recommendations on providing passwords to command line utilities.

* -storetype

This option specifies the type of keystore to be instantiated. The default
keystore type is the one that is specified as the value of the keystore.type
property in the java.security properties file. That value is also returned by
the static getDefaultType() method in java.security.KeyStore.

* -keypass

This option specifies the password used to protect the private key of the
keystore entry addressed by the alias specified on the command line. The
password is required when using j arsi gner to sign a JAR file. If no
password is provided on the command line, and the required password is
different from the store password, the user is prompted for it.

Java 2 SDK Security Tools 277

278

See 9.1.2, “Store and Private Key Password” on page 261 for
recommendations on providing passwords to command line utilities.

-sigfile

This option specifies the base file name to be used for the generated SF
and DSA files. For example, if fil e is nyS gn, the generated SF and DSA
files will be named MYSIGN.SF and MYSIGN.DSA, and will be placed in
the META-INF directory of the signed JAR file, where the manifest file also
resides.

The characters in fil e can be only letters, numbers, the underscore ()
and hyphen (-) characters. However, note that all lowercase characters
will be converted to uppercase for the SF and DSA file names.

If no -sigfil e option appears on the command line, the base file name for
the SF and DSA files will be the first 8 characters of the alias name
specified on the command line, all converted to uppercase. If the alias
name has fewer than 8 characters, the full alias name is used. If the alias
name contains any characters that are not legal in a signature file name,
each such character is converted to an underscore () character in forming
the file name.

As an example, the command:
jarsigner test.jar ibm

creates the files IBM.SF and IBM.DSA in the JAR file test.jar. By using the
-si gfi | e option, you can specify a different file name. So, the command:

jarsigner -sigfile itso test.jar IBM
creates the files ITSO.SF and ITSO.DSA in the JAR file test.jar.
- si gnedj ar

This option specifies the name to be used for the signed JAR file. If no
name is specified on the command line, the name used is the same as the
input JAR file name; in other words, the unsigned JAR file is overwritten
with the signed JAR file.

Java 2 Network Security

—— Signed JAR File Extension

In JDK 1.1, digital signatures were applied by using the javakey
command, whose functionality in the Java 2 SDK has been replaced
and enhanced by keytool and jarsigner. The javakey tool added a sig
extension to the jar extension of the JAR file to be signed. So, for
example, after signing test.jar with javakey, you would have found a file
called test.jar.sig.

In the Java 2 SDK this naming convention has been simplified, and
jarsigner does not add any extension to the jar extension of the JAR file.
By default, signing test.jar with jarsigner, produces another file that is
still called test.jar, and that contains also the digital signature
information. Therefore, this file overwrites the unsigned JAR file, unless
you use the -signedjar option to specify a different name for the signed
JAR file.

e -verify

If this option appears on the command line, the specified JAR file will be
verified, but not signed. If the verification is successful, the following
message will be displayed:

jar verified.

If you try to verify an unsigned JAR file, or a JAR file signed with an
unsupported algorithm (for example, RSA when you do not have an RSA
provider installed), the following is displayed:

jar is unsigned. (signatures nissing or not parsable)

It is possible to verify JAR files signed using either j arsi gner or the JDK
1.1 j avakey tool, or both.

e -verhose

If this appears on the command line, it indicates verbose mode, which
causes j arsi gner to output extra information on the progress of the JAR
signing or verification.

e -certs

If this option appears on the command line, along with the -verify and
-ver bose options, the output includes certificate information for each signer
of the JAR file.

e -internal sf

In the past, the DSA file generated when a JAR file was signed included a
complete encoded copy of the SF file also generated. This behavior has

Java 2 SDK Security Tools 279

been changed. To reduce the overall size of the output JAR file, the DSA
file by default does not contain a copy of the SF file. If -i nt ernal sf appears
on the command line, the old behavior is utilized.

This option is used mainly for testing; in practice, it should not be used,
since using it eliminates an optimization.

e -sectionsonly

If this option appears on the command line, the SF file generated when a
JAR file is signed does not include a header containing a hash of the
whole manifest file. It contains only information and hashes related to
each source file included in the JAR file.

For example, without this option, the SF file looks like the following:

Sgnature-\Version: 1.0
SHAL- Di gest - Mani fest: 6nvt QTd+0Ch9n®xI EQEg3l zj uUn=
Ceated-By: 1.2 (Sun Mcrosystens Inc.)

Nane: itso.txt
SHAL- D gest: HZxJi f Zpht KVILL75v060HK72\E=

Nane: redbook. cl ass
SHAL- D gest: AzHPdt YG/pHDSVHIBYQRQ i f Zad=

On the other hand, if the option -secti onsonl y is specified, the SF file looks
like the following:

/Si gnature-Version: 1.0
Ceated-By: 1.2 (Sun Mcrosystens Inc.)

Nane: itso.txt
SHAL- D gest: HZxJi f Zpht KVILL75v060HK72\VE=

Nane: redbook. cl ass
SHAL- D gest: AzHPdt YG/pHDSVHIBYQRQ i f Zad=

Notice that the SHAL- O gest - Mani fest : header information is not included in
the file generated with the -secti onsonl y option.

By default, this header is added as an optimization, so it is generally not
advisable to use the -sectiononl y option.

9.3.1 jarsigner Scenario

Using j arsi gner and keyt ool together you can send signed code or even data
to another person and he can verify the signature ensuring authenticity and
integrity. To illustrate this, consider an example where a sender Deepak

280 Java 2 Network Security

creates a JAR file and a key pair with an associated certificate, signs the JAR
file, exports his certificate and sends the JAR file along with his certificate to
the receiver named Ashok. Ashok imports the certificate sent by Deepak into
his keystore and verify the signature on the JAR file.
The scenario above requires the following steps:
* At the sender’s end:
1. Create a key pair and the associated self-signed certificate.

This is done using the - genkey command of the keyt ool utility, as shown
in the following session screen:

/D\deepak>keyt ool -genkey -keystore deepakstore -alias deepak
Enter keystore password: deepak
Wat is your first and last nane?
[Lhknown] : Deepak Gupta
Wat is the nane of your organi zational unit?
[thknown]: I TSO
Wiat is the nane of your organi zation?
[Lhknown]: BV
Wat is the nane of your dty or Locality?
[Lhknown] : Ral ei gh
Wiat is the nane of your Sate or Province?
[Lhknown] : NC
Wiat is the two-letter country code for this unit?
[Lhknown]: WS
Is <O\=Deepak Qupta, QLI TSQ Gl BV L=Ral ei gh, ST=NC C=US> correct?
[no]: Y

Enter key password for <deepak>
(RETUNN i f sane as keystore password):

D\ deepak>
N /

The keystore, deepakstore, is created only if it is not already present. A
public-private key pair and a self-signed certificate are generated and
associated with the alias deepak.

2. Sign the JAR file with the private key generated.

Assuming we have a JAR file called myjar.jar, this step is performed by
using the j arsi gner utility, as illustrated in the following session screen:

D\ deepak>j ar si gner -keyst ore deepakstore nyjar.jar deepak
Enter Passphrase for keystore: deepak

D\ deepak>

Java 2 SDK Security Tools 281

282

The j arsi gner tool would have prompted us for the key password of the
deepak alias, if this password had been different from the keystore
password.

Export the self-signed certificate created to a file.

To do this, the -export option of the keyt ool utility is used. Assuming we
want to export the certificate to the file deepak.crt, this step is
illustrated in the following session screen:

D\ deepak>keyt ool -export -keystore deepakstore -file deepak.crt -alias deepak
Enter keystore password: deepak
Certificate stored in file <deepak.crt>

D\ deepak>

. Send the certificate along with the code.

The files deepak.crt and myjar.jar can be sent to the receiver, who can
use the contents in myjar.jar after verifying the signature.

* At the receiver’s end:

1.

Verify the received certificate and import it into the receiver’s keystore.

Assume that the receiver has a keystore called ashokstore with store
password ashokr. Then the import operation can be performed by using
the -i nport command associated with the keyt ool utility option, as
shown in the following session screen:

/D\ashok>keyt ool -inport -file deepak.crt -keystore ashokstore h
Enter keystore password: ashokr
Onner: (N\=Deepak GQupta, QX TSQ OBV L=Ral eigh, ST=NG C=US
Issuer: ONFDeepak Qupta, OH TSQ C-IBV L=Raleigh, ST=NG C=U5
Seria nunber: 369e614d
Valid from Thu Jan 14 16:27:41 EST 1999 until: Véd Apr 14 17:27:41 BDT 1999
Gertificate fingerprints:
Mb: C2: BE 02: (: 33: 48: 60: 55: 5E 6B: 66: 87: A9: E7: 42: 27
SHAL: CA 15: 8E 6B: 28: A9: BB 6E B9: B3: 65: A3: 68: 77: 5C 3F: 33: 11: 10: 2C
Trust this certificate? [no]: vy
Certificate was added to keystore
D\ ashok>
N /

Note that the tool shows you the certificate information and asks
whether to trust the certificate or not.

Since the default for alias is mykey, when we import a certificate in a
local keystore it gets stored in the keystore with the alias mykey, if such
an alias does not exist already. If you wish to specify another alias you

Java 2 Network Security

should use the -al i as option of the keyt ool utility. If you attempt to
import a certificate with an alias that already exists in the local
keystore, you will receive an error message and the operation will
abort:

keytool error: Certificate not inported, alias <nykey> al ready exists

It is very important that you verify the certificate fingerprints before
agreeing to trust it. Contact the person who sent the certificate, and
ask him to provide you with the certificate fingerprints, for example by
attaching them to an encrypted e-mail. The sender should use the
-printcert command associated with the keyt ool utility to display the
information related to his certificate:

/D \ deepak>keyt ool -printcert -file deepak.crt B
Onner: (N\=Deepak GQupta, QX TSQ OI1BV L=Ral eigh, ST=NG C=US
Issuer: ONFDeepak Qupta, OH TSQ G-IBV L=Raleigh, ST=NG C=U5
Serial nunber: 369e614d
Valid from Thu Jan 14 16:27:41 EST 1999 until: Ved Apr 14 17:27:41 BDT 1999
Gertificate fingerprints:
Mb: C2: BE 02: (: 33: 48: 60: 55: 5E 6B: 66: 87: A9: E7: 42: 27
SHAL: CA 15: 8E 6B: 28: A9: BB 6E B9: B3: 65: A3: 68: 77: 5C 3F: 33: 11: 10: 2C
D\ deepak
N /

Then, you should compare the two sets of fingerprints. Only if the
fingerprints are equal is it guaranteed that the certificate has not been
replaced in transit with somebody else’s (for example, an attacker’s)
certificate. If such an attack took place, and you did not check the
certificate before you imported it, you would end up trusting anything
the attacker has signed (for example, a JAR file with malicious class
files inside).

. Verify the digital signature.

This is done by using the j ar si gner command with the -veri fy option,
as shown in the following session screen:

D\ ashok>j arsi gner -verify -keystore ashokstore nyjar.jar
jar verified.

D\ ashok>

Alternatively, to obtain further details, you can use the -ver bose option:

Java 2 SDK Security Tools 283

D\ ashok>j arsi gner -verify -verbose -keystore ashokstore nyjar.jar

188 Thu Jan 14 16:30: 44 EST 1999 META-| N/ DEEPAK SF
1004 Thu Jan 14 16:30: 44 EST 1999 META-| NH/ DEEPAK DSA
0 Thu Jan 14 16: 30: 28 EST 1999 META- | NH

snk 6 Thu Jan 14 16: 30: 24 EST 1999 nyowncl ass. cl ass
s = signature was verified
m=entry is listed i n mani f est
k = at least one certificate was found in keystore
i =

at least one certificate was found in identity scope

jar verified.

D\ ashok>
N

This verifies the signature.

If the JAR file is not signed, the above verification command will throw
the message that we have already described:

jar is unsigned. (signatures missing or not parsable)

If the files in the JAR were modified, we would see an error message.
For example, if someone has exploded a signed JAR file, has modified
one of its files, and has rebuilt the JAR file, when we try to verify the
signature using j arsi gner, we get the following error message:

jarsigner: java.lang. SecurityException: SHAL digest error for
i tso.class

where itso.class is the name of the modified file.

9.3.2 Observations on the jarsigner Verification Process

284

A successful JAR file verification occurs if the signatures are valid, and none
of the files that were in the JAR file when the signatures were generated have
been changed since then. JAR file verification through the j arsi gner tool
involves the following steps:

1. Verify the signature of the SF file itself.

That is, the verification ensures that the signature stored in each DSA file
was in fact generated using the private key corresponding to the public key
whose certificate (or certificate chain) also appears in the DSA file. It also
ensures that the signature is a valid signature of the corresponding
signature SF file, and thus the SF file has not been tampered with.

2. Verify the digest listed in each entry in the SF file with each corresponding
section in the manifest.

Java 2 Network Security

The SF file by default includes a header containing a hash of the entire
manifest file. When the header is present, then the verification can check
to see whether or not the hash in the header indeed matches the hash of
the manifest file.

« If that is the case, verification proceeds to the next step.

« If that is not the case, a less optimized verification is required, to
ensure that the hash in each source file information section in the SF
file equals the hash of its corresponding section in the manifest file.

One reason the hash of the manifest file that is stored in the SF file header
may not equal the hash of the current manifest file could be because one
or more files were added to the JAR file (using the j ar tool) after the
signature (and thus the SF file) was generated. When the j ar tool is used
to add files, the manifest file is changed (sections are added to it for the
new files), but the SF file is not. A verification is still considered successful
if none of the files that were in the JAR file when the signature was
generated have been changed since then, which is the case if the hashes
in the non-header sections of the SF file equal the hashes of the
corresponding sections in the manifest file.

3. Read each file in the JAR file that has an entry in the SF file. While
reading, compute the file's digest, and then compare the result with the
digest for this file in the manifest section.

The digests should be the same, or verification fails.

If any serious verification failures occur during the verification process, the
process is stopped and a security exception is thrown. It is caught and
displayed.

From the above description, you can see that j arsi gner only verifies the
signature present on the JAR file and in fact does not verify if that signature
has been made by some trusted entity, whose certificate is present in the
user’s keystore. It only ensures that the files inside the JAR file have not been
modified since the signature was put on it.

For all practical purposes, this is actually as good as not verifying at all,
because if a person (a hacker that is) modifies the files inside the JAR file, he
or she can just as well remove the SF and DSA signature files and sign the
modified JAR file with his or her own keys. The JAR file will still be verified.
Therefore, note that when you see the message:

jar verified.

Java 2 SDK Security Tools 285

this only implies that the signature on the JAR file has been verified and not
that it has been signed by the entity whose certificate you just imported. So,
even if the receiver did not follow Step 1 on page 282, he would see the same
results when performing Step 2 on page 283. However, this does not mean
that the step of verifying the sender’s certificate and importing it into the local
keystore can be skipped. On the contrary, the receiver should perform both
the steps we have listed, and then, to verify that the JAR file came from the
person he trusts, run the JAR file under a protection domain with a si gnedBy
parameter pointing to the certificate just imported.

9.3.3 Tampering with a Signed JAR File

286

Let's see now what happens when a signed JAR file has been tampered with
and we run the j arsi gner command with the -veri fy option to verify the
signature.

In this scenario, we initially take two files, redbook.class and itso.txt. We run
the jar command to produce a JAR file, which we call test.jar, in the following
way:

jar cvf test.jar redbook.class itso.txt

Then we assume that two different signers, ibm and test, apply their digital
signatures:

jarsigner test.jar ibm
jarsigner test.jar test

At this point, the contents of the JAR file test.jar are:

¢ redbook.class

¢ jtso.txt

* META-INF\MANIFEST.MF
* META-INF\IBM.SF

* META-INF\IBM.DSA

* META-INF\TEST.SF

* META-INFATEST.DSA

These are possible scenarios:

1. We change one of the content files, for example itso.txt.

This can be done by modifying the original itso.txt file (for example,
deleting a few characters from it and saving the new version with the same
name again) and updating the JAR file using the following command:

jar -uf test.jar itso.txt

Next, we run the following command:

Java 2 Network Security

jarsigner -verify test.jar
and we get the following exception:
jarsigner: java.lang. SecurityException: SHAL digest error for itso.txt

. We change the manifest file by modifying the SHA-1 digest of one of the
content files, for example the redbook.class file.

To do this, we have to explode the JAR file first:

D\>ar -xvf test.jar

extracted: META-| NF/ MAN FEST. MF

extracted: METAINF/ | BM SF

extracted: META-| N7/ | BM DEA

extracted: META- | NF/ TEST. SF

extracted: META-| No TEST. DA
created: META | N/

extracted: redbook. cl ass

extracted: itso.txt

D\>

At this point, the SHA-1 digest for the redbook.class file can be modified in
the manifest file with a text editor. After this, the new, tampered version of
the JAR file can be created as shown in the following session screen:

D\>jar -cvfMtest.jar META | N/ MAN FEST. M= META- | N/ | BM SF META- | N | BM DSA
META: | NF/ TEST. SF META- | NF/ TEST. D8A redbook. cl ass itso. txt

addi ng: META- | NF/ MAN FEST. MF (i n=196) (out=168) (deflated 14%

addi ng: META INF/ I BMSF (i n=249) (out=200) (deflated 19%

addi ng: META I NF/ | BMDBA (i n=972) (out=737) (deflated 24%

addi ng: META- | NF/ TEST. SF (i n=249) (out=200) (deflated 19%

addi ng: META- | NF/ TEST. D8A (i n=971) (out=740) (deflated 23%

addi ng: redbook. cl ass (in=6) (out=8) (deflated -33%

adding: itso.txt (in=70) (out=68) (deflated 2%

D\>
- J

Notice the use of the Moption for the jar command. As we said in 9.2.1,
“Options of the jar Command” on page 271, this option prevents jar from
creating a new manifest file. We use it because we are already passing the
manifest information META-INFAMANIFEST.MF on the command line.

We then attempt to verify the signature information:

jarsigner -verify test.jar
And as a result, we obtain an error message:

jarsigner: java.lang. SecurityException: invalid SHAL signature file
di gest for redbook. cl ass

Java 2 SDK Security Tools 287

3. We change some other information in the manifest file, for example we add
the following line:

Mai n-d ass: redbook

This can be done again as indicated in Step 2 on page 287. Interestingly
and as expected, if we try to verify the JAR file, it verifies:

jar verified.

4. We change the SF file by modifying the SHA-1 digest of one of the content
files, for example redbook.class.

This can be done again with a procedure similar to Step 2 on page 287.
The result of the verification test is the following:

jarsigner: java.lang. SecurityException: cannot verify signature bl ock
file META-| NF/ TEST

5. We add another file, say ibm.class, to the JAR file.

This can be done using the jar command with options uf, as indicated in

Step 1 on page 286. This operation automatically updates the manifest file
as well, with information on the new file. We then try to verify the JAR file
and it verifies as expected:

jar verified.

6. Another point to note here is that j ar si gner, while verifying, does not check
for the validity of the certificate. That is, it does not check if the certificate
with which the files were signed has expired or not.

* We create a certificate with validity -1 (which for testing purposes is
allowed by the keyt ool utility, as explained in 9.1.3, “Commands and
Options Associated with keytool” on page 262). With this certificate, we
sign a JAR file and then attempt to verify the digital signature.

* We sign a JAR file with a certificate that has already expired and then
attempt to verify the digital signature.

* We sign a JAR file with an active certificate and then try to verify the
signature after the certificate has expired.

The JAR file verifies in all cases:

jar verified.

9.4 Policy File Creation and Management Tool

The Policy Tool is a GUI-based utility for creating and managing policy files.

288 Java 2 Network Security

You can open this tool by typing pol i cyt ool on the command prompt.
According to the default security properties file java.security, the Policy Tool
expects to find a policy file called .java.policy in the user home directory. If the
.java.policy file in the user home directory exists, the tool will open it by
default as soon as you enter the pol i cyt ool command. If it does not exist, you
will receive an error message similar to the following one:

E%‘;Enm [x|
Could not find Policy File: C:hWYIMMTIProfiles\pistoia. 000) java. policy

Figure 119. Policy Tool Error
Just click OK in this case.

The following window shows what the Policy Tool looks like:

Java 2 SDK Security Tools 289

Eg_ﬁ Policy Tool M=l

File Eclit

Policy File:

keystore:

Add Policy Entry Edit Policy Entry Remove Policy Entry

Figure 120. Policy Tool Initial Screen

The functions you can perform are:
1. Create a new policy file.

To do this, you simply have to add policy entries and then save the new
security policy configuration to a policy file, using the Save As option from
the File menu. If a policy file is already under construction, and you want
to start the creation of a new one, select New from the File menu.

2. Modify an existing policy file.

To do this, open the policy file using the Open item from the File menu and
make the modifications you want to the policy configurations.

290 Java 2 Network Security

Then, save the file by selecting Save from the File menu.
3. View the warning log.

The Policy Tool maintains a warning log where it registers all the warning
messages that have been displayed during a policy configuration session.
This log can be accessed by clicking on View Warning Log from the File
menu.

4. Exit the Policy Tool.

Just select Exit from the File menu.

The following modifications can be made to policy files:
1. Add a new policy entry.

2. Modify a policy entry.

3. Remove a policy entry.

4. Change the keystore.

All these can be done using the Edit menu option. For the first three, buttons
are also provided.

To add a new entry, click on the Add Policy Entry button and the following
Policy Entry dialog will be brought up:

Java 2 SDK Security Tools 291

Policy Entry [x|

CodeBase:

SignedBy:

Add Permission Edit Permission Remave Permission

Cone | Cancel |

Figure 121. Policy Entry Dialog

The same box is displayed by clicking on Edit Policy Entry after selecting a
policy entry that had been previously defined.

At this stage, you can specify a code source by entering a code base and a
comma-separated string of signers in the CodeBase and SignedBy fields
respectively. Then you can add, edit or remove permissions; specific buttons
are provided for these operations. For example, on clicking on Add
Permission, we get the following Permissions window:

292 Java 2 Network Security

Permissions

Add Mew Permission:

Target Mame:

Actions:

(K| K

Signed By:

ﬁl Cancell

Figure 122. Permissions Screen

Drop-down lists allow you to choose among the various options already
provided in the Java 2 security implementation. Notice that you can also type
in the text box provided in the Permissions window to specify non-standard
permissions (see 10.7.1, “How to Create New Permissions” on page 344).
However, if you add a permission that is not part of the Java core APls, a
warning message appears when you press the OK button:

Permizsions

Add Mew Permission:

Permission: - MyPermission
Target Mame: - FPermissionTest
—]
Actions: =] [E Status]
Signed By: Warning: Class not found: MyPermission.

ﬁl Cancel |

Figure 123. Warning Message with a Custom Permission

For editing permissions, the same window opens. You must select the
permission to be edited and then click on Edit Permission.

To remove a permission, select the permission and click Remove
Permission.

To change the keystore to which the policy configuration should apply, click
on Change KeyStore from the Edit menu. The following window opens:

Java 2 SDK Security Tools 293

[E3 Keystore E

ey KeyStore URL: I

Mew KeyStore Type: I

ﬁl Cancel |

Figure 124. Keystore Dialog Box

Here you can specify the URL location and type of the keystore you want to
use in this policy configuration. If you do not enter anything in the New
KeyStore Type field, the system will take the default keystore type from the
java.security file (see 8.3, “The Security Properties File, java.security” on
page 234).

Note that, if you change the keystore, the previous keystore is no longer valid,
since a policy file can only refer to a single keystore at a time. Hence, if you
had permissions with a si gnedBy name-value pair related to an alias in the
previous keystore, the Policy Tool may no longer be able to find that and will
register an error. The exact nature of the error is explained in the warning log:

gg Warning

Warning: A public key for alias ‘marco’ does not exist. AI

" e

Figure 125. Warning Log

294 Java 2 Network Security

Several scenarios in this book make use of the Policy Tool to configure the
security policy in the Java system. See for example 1.4.1.8, “Modifying the
Security Policy on the Client System” on page 20 and 1.4.2.6, “Modifying the
Security Policy” on page 32.

9.4.1 Observations on the Use of the Policy Tool
There are some things to consider when using the Policy Tool:

1. If you are modifying an existing policy file and try to exit the tool without
saving the updated configuration, the Policy Tool will prompt you with the
option to save it:

E"Eﬁﬁave Changes
Save chanoes?

Yo Mo | Cancel |

Figure 126. Option to Save an Updated Configuration

However, this is the case only if you make a change in the Permissions
panel (see Figure 122 on page 293) or if you modify the keystore (see
Figure 124 on page 294). If you modify the code base URL or the list of
signers in the Policy Entry dialog box (see Figure 121 on page 292), the
Policy Tool does not prompt you to save before exiting.

2. If you are creating a new policy file and exit the Policy Tool before saving
the new configuration, the tool simply exits regardless of the changes you
have made. It does not prompt you to save before closing.

Also, you cannot open the File menu and click on Save if the policy file is
new, in which case the Policy File text box is still empty. In place of
switching to the Save As option automatically, as most applications do,
this tool throws a java.io.FileNotFoundException in a pop-up window on
the screen:

java.io FileMotFaundExceptian: null filename

Figure 127. FileNotFoundException Thrown by the Policy Tool

Java 2 SDK Security Tools 295

You must select Save As from the File menu and only then, on further
changes, can you select Save.

296 Java 2 Network Security

Chapter 10. Security APIs in Java 2

In addition to the features and the security tools discussed, Java 2 provides
several class packages that can be used for writing secure applications. The
package java.security, and its subpackages java.security.acl and
java.security.interfaces were provided in Java Development Kit (JDK) 1.1. The
Java 2 platform adds two new subpackages, java.security.cert and
java.security.spec, which provide more flexibility and functionality. These
packages together form the Java Cryptography Architecture (JCA), which
provides Java programs with cryptographic capabilities. Java also provides a
cryptographic package called javax.crypto and its two subpackages
javax.crypto.interfaces and javax.crypto.spec. However, these are sold and
distributed separately as part of the Java Cryptography Extension (JCE) 1.2,
due to the United States export regulations (see 2.2.3, “United States Export
Rules for Encryption” on page 57).

In this chapter we present the Java 2 security APls. Several examples are
provided to demonstrate how to use the Java 2 security libraries to build
secure applications.

10.1 The Package java.security

This package contains classes and interfaces for the general security
framework. It includes classes that mainly cover security concepts such as
access control and permissions, keys, key pairs and keystores, message
digests, signatures, secure random generation, etc. Many classes and
interfaces in this package are abstract and provider-based. You can supply
your own implementations by using providers other than the defaults (see
10.1.3, “Providers” on page 299).

10.1.1 Principals

With respect to security, a principal represents an entity such as an individual
user or a company. To represent this concept, the java.security package
defines an interface called Principal. This interface is used to grant a
particular type of access to a resource. Notice that there is no implementation
for principals in Java 2 SDK, Standard Edition, V1.2.

A group of principals is represented by the Group interface, discussed in
10.5, “The Package java.security.acl” on page 324.

© Copyright IBM Corp. 1997 1999 297

10.1.2 Guard Interface and GuardedObject Class

298

The Guard interface is provided to create an object used to guard a protected
resource. The supplier of the resource can create an object representing the
resource, encapsulate it into a GuardedObject, and keep the resource inside
this GuardedObiject. In creating the GuardedObiject, the supplier also
specifies the Guard object. The consumer of the resource can access the
resource object only if the security checks inside the Guard object are
satisfied.

The relationship between the GuardedObject, the Object and the Guard can
be seen in the constructor of the GuardedObject class:

publ i ¢ Quarded(j ect ((bj ect obj ect, Quard guard)

The only method in the Guard interface is called checkGuard(). It takes an
Object as its argument and it performs security checks to determine whether
or not to allow access to that object.

The Permission class in java.security implements the Guard interface. For
example, suppose a system thread is asked to open a file D:\itso\redbook.lwp
for read access, but the system thread does not know who the requester is or
under what circumstances the request is being made. Therefore, the system
thread can use the GuardedObject class to delay the access control
checking, as follows:

FilelnputStreamfis = new F | el nput Stream(" D \\it so\\redbook. | wp");
Fi | ePermission fperm= new Fi | ePerm ssion("D\\itso\\redbook. | wp", "read");
Quar ded(hj ect guardFil e = new Quar ded(oj ect (fis, fperm;

Now the system thread can pass the guardFile object to the consumer thread.
For that thread to obtain the file input stream, it must call:
FilelnputStreamfinps = (Filelnput SXrean) guardFile. gethject();

The getObject() method in turn invokes the checkGuard() method on the

Guard object fperm, and because fperm is a Permission, its checkGuard()
method is:

publ i ¢ voi d checkQuard(Qoj ect object) throws SecurityException
{
Securi t yManager sm= Syst em get Securi t yManager () ;
if (sm!=nul)
sm checkPer ni ssi on(t hi s);

Java 2 Network Security

This ensures that a proper access control check takes place within the
consumer context.

10.1.3 Providers

The java.security package also supplies a Provider class. The term
cryptographic service provider (provider for short) is used to refer to a
package or set of packages that supply a concrete implementation of a
subset of the cryptography aspects of the Java security API. The Provider
class is the interface to such a package or set of packages.

As we will see in 13.3.1, “The Provider Concept in the JCA” on page 485, for
each engine! class in the API, a particular implementation is requested and
instantiated by calling a getinstance() method on the engine class, specifying
the name of the desired algorithm and, optionally, the name of the provider
whose implementation is desired. If no provider is specified, getinstance()
searches the registered providers for an implementation of the requested
cryptographic service associated with the named algorithm. In any Java
Virtual Machine (JVM), providers are installed in a given preference order
specified in the java.security file. That order is the order in which they are
searched when no specific provider is requested. If the implementation is
found in the first provider, it is used. If it is not found, it is searched for in the
second provider and so on. If it is not found in any provider, an exception is
raised. The getinstance() methods that include a Provider argument enable
developers to specify which provider they want an algorithm from. A program
can also obtain a list of all the installed Providers using the getProviders()
method in the Security class and choose one from the list.

Each provider class instance has a (currently case-sensitive) name, a version
number and a string description of the provider and its services. These three
pieces of information can be obtained by calling the methods getName(),
getVersion() and getinfo(), respectively.

10.1.3.1 Installing and Configuring Providers

Providers can be installed by first copying the package in the system and then
configuring the provider itself:

1. To install the provider classes, you can simply place the JAR file(s)
containing the classes anywhere on the user class path (see 3.4.3,
“Application Class Path” on page 88) or even on the boot class path (see
3.4.1, “Boot Class Path” on page 84). However, the best solution is to
supply the provider library as an installed or bundled extension, by placing

1 Engine is a term used to depict an abstract representation of a cryptographic service without a concrete
implementation.

Security APIsin Java2 299

300

the JAR file(s) in the extensions directory, as explained in 3.4.2,
“Extensions Framework” on page 86.

For example, to install JCE 1.2 on your Java 2 SDK, Standard Edition,
V1.2 system, you can copy the JAR file jcel_2-do.jar in the extensions
directory. This directory is indicated as the value of the java.ext.dirs
system variable (see Appendix A, “Getting Internal System Properties” on
page 641).

Following these directions, you will be able to run all the programs that use
this particular provider. If you also need to develop and compile programs
using this provider, then the JAR file containing the provider classes must
be also copied in the extensions directory under the JRE development
directory (see 8.1, “A Note on java.home and the JRE Installation
Directory” on page 225).

2. Next, you need to configure the provider. For this you simply need to add it
to your list of approved providers.

e This is done statically by adding the provider to the security provider list
in the java.security file (see 8.3, “The Security Properties File,
java.security” on page 234).

For example, to configure JCE 1.2 on your Java 2 SDK, Standard
Edition, V1.2 system, the security provider called SunJCE must be
provided together with the SUN provider in the java.security file, as
shown:

security. provider. 1=sun. security. provi der. Sun
security. provi der. 2=com sun. crypt o. provi der. SunJCE

As we have mentioned, the order number with which the provider is
added to the list is very important, in that if an implementation is
supplied in multiple providers, the implementation of the provider with
the higher preference (corresponding to the lower order number) is
chosen by the JVM.

In the same way, a provider is removed by simply deleting the entry
corresponding to it in the java.security file.

« Providers may also be registered dynamically. To do so, call either the
addProvider() or insertProviderAt() static method in the
java.security.Security class.

For example, to add the JCE 1.2 provider SunJCE dynamically, you can
use the following two lines of code:

Java 2 Network Security

Provi der sunJce = new com sun. crypt o. provi der. SUnJCK) ;
int pos = Security.addProvi der (sunJce);

The addProvider() method adds a new provider at the end of the list of
the installed providers.

On the other hand, the insertProviderAt() method adds a new provider
at a specified position in the array of providers. If the given provider is
installed in the requested position, the provider that used to be at that
position, and all the providers with a position greater than that, are
shifted up one position, toward the end of the list of the installed
providers.

Both the methods return the preference position in which the provider
was added, or -1 if the provider was not added because it was already
installed.

If the preference position of a provider has to be changed, the provider
must be first removed, and then inserted in back at the new preference
position.

A provider can be removed by calling the removeProvider() method of
the java.security.Security class.

Notice that the dynamic provider registration is not persistent and can
only be done by trusted programs or, in other words, programs that
have been granted the necessary permissions:

« To add a provider, or insert it in a specified position in the list, the
permission required is:

perm ssion java. security. SecurityPermssion "insertProvider. nane"
« To remove a provider, the permission required is:
perm ssion java. security. SecurityPermssion "renoveProvider. nane"
Note that the SunJCE provider relies on some of the algorithm
implementations supplied by the SUN provider, which is the default provider
of the Java 2 SDK platform. This means that when you install the SunJCE
provider, you need to make sure that the SUN provider is also installed. We

will see more details on this in Chapter 13, “Cryptography in Java 2” on page
475.

10.1.4 The Security Class

As we mentioned in 10.1.3, “Providers” on page 299, the package
java.security also provides a Security class to manage installed providers and

Security APIsinJava2 301

security-related properties. It only contains static methods and is never
instantiated. Its methods fall into two categories:

1. Methods used to get the installed providers, and also to add, delete, and
insert providers

The method getProviders() can be used to get the list of all installed
providers. They are returned in a Provider array in the order of their
preference.

The method getProvider() returns the Provider object specified in the
argument.

The method addProvider() is used to add a provider to the end of the
list of installed providers, as shown in Step 2 on page 300. These
methods returns the preference position in which the provider was
added, or -1 if the provider was not added because it was already
installed.

The method insertProviderAt() is used to add a new provider at a
specified position. This method returns the actual preference position
in which the Provider was added, or -1 if the provider was not added
because it was already installed, as shown in Step 2 on page 300. You
cannot install a provider that is already installed. If you need to change
the preference order, you must first remove the provider and then insert
it in the specified position.

To remove a provider, use the removeProvider() method (see Step 2 on
page 300).

2. Methods used to get and set system-wide properties

The Security class also has methods to manage security properties. A
security property is accessible with the getProperty() method and can be
set with the setProperty() method. However, only trusted programs, or
programs with specific permissions, can use these methods.

The following program shows how to get the information about a provider:

{
{

inport java.security.*;
cl ass Providerlnfornation
public static void main(String[] args)

String provider nane;

Figure 128. (Part 1 of 2). Providerinformation.java

302

Java 2 Network Security

try
{
provi dername = args[0];
Provi der nyprov = Security. get Provi der (provi der nane) ;
if (nyprov !'=null)
{
String info = nyprov. getlnfo();
Systemout. printl n("\n\n" + info + "\n\n");
}
el se
Systemout. println("No provider with the speicified nane is installed");
}
catch (Exception €)
{
Systemout. printl n("There was an exception. The exception was " +
e.tosring());
}
}
}

Figure 129. (Part 2 of 2). Providerinformation.java

Compile this program with the command:

javac Providerlnfornation.java

Then you can run it and pass it a provider name on the command line. By
default, the only security provider that comes with the installation of Java 2
SDK, Standard Edition, V1.2 is SUN, the provider supplied by Sun

Microsystems (see 8.3, “The Security Properties File, java.security” on page
234). By launching the command:

java ProviderlInfornati on SN

you would see the following output:

SN (DSA key/ paranet er generation; DSA signing; SHA-1, MX» digests;
SecureRandom X 509 certificates; JKS keystore)

The information above shows the features of the SUN provider, listed in 8.3,
“The Security Properties File, java.security” on page 234.

Assuming that you have installed JCE 1.2 on your Java 2 SDK, Standard
Edition, V1.2 system, as indicated in Step 1 on page 299 and Step 2 on page

Security APIsin Java2 303

300, you can invoke the above program and pass the SunJCE provider name
on the command line, as shown:

java Providerlnfornati on SUnJCE

The output in this case is:
SunJCE Provider (inplements DES, Triple DES, Bl owish, PBE, Dffie-Hellnan,
HVAG Mb, HVAG SHAL)

The information above shows the features of the SunJCE provider, listed in
Point 2 on page 492.

10.1.5 Access Control APIs

304

The java.security package provides the AccessController class used to make
access control decisions based on the security policy in effect. It is also used
to mark code in the execution stack as privileged (see 3.2.3.1, “Lexical
Scoping of Privilege Modifications” on page 76), thus affecting subsequent
access determinations. Finally, this class is used to obtain a snapshot of the
current calling context, so that access control decisions from a different
context can be made with respect to the saved context.

A thread's security context is based upon the classes on its execution stack.
Each class is associated with a single protection domain which, in turn,
specifies the permissions granted to that class (see 3.3, “Java 2 Protection
Domain and Permissions Model” on page 80). So a security context can be
thought of as a stack of protection domains corresponding to the classes on
the stack. When an access control decision is made, this stack of protection
domains is examined; only if every protection domain possesses the
necessary permission does the access control check pass. If a protection
domain is examined that does not possess the necessary permission, an
AccessControlException is thrown.

Consider the following two lines of code:

Fi | ePernission perm= new F | ePermission("file", "read");
AccessQontrol | er. checkPer mi ssi on(pern);

This fragment of code checks whether the calling thread has permission to
read the given file. That is, each class on this thread's execution stack must
belong to a protection domain that includes the requested permission.

Assume that this thread creates a new thread. This new child thread has a
new stack with a new security context. If the parent's security context was not

Java 2 Network Security

retained, then security decisions made in the child thread would be based
solely on the child’s security context. This would enable less trusted code (in
the parent) to access protected resources by calling more trusted code (in the
child). To prevent this, Java ensures that a child thread automatically inherits
its parent’s security context. This inheritance continues down a
thread-creation hierarchy, so that whenever a resource access is attempted,
the security context of the executing thread, and those of all its ancestors,
must permit the access.

Typically, each class in a thread’s security context must possess the
requested permission in order for an access check to pass. However, this
top-to-bottom stack crawl can be short-circuited by using the
AccessController.doPrivileged() method to mark a class on the stack as
privileged. Once a privileged frame is encountered, no further protection
domains are examined. This means that code that would otherwise lack
permission to access a resource may do so if it calls (directly or indirectly)
code that possesses the permission and calls doPrivileged(). Note that if the
class that calls doPrivileged() does not possess the requested permission, an
AccessControlException is thrown as usual. The doPrivileged() method
enables trusted code to perform operations on behalf of callers that may or
may not have the necessary permission themselves.

An implementation of the PrivilegedAction interface is passed as an argument
to doPrivileged() to define the operation to be performed with privileges
enabled. This interface is used only for operations that do not throw checked
exceptions; operations that throw checked exceptions must be implemented
as a PrivilegedExceptionAction instead.

The AccessControlContext class in java.security is used to make access
control decisions based on the security context defined by an
AccessControlContext object. An AccessControlContext object is created by
calling AccessController.getContext(), which takes a snapshot of the current
calling context and places it in the AccessControlContext returned. The
AccessControlContext.checkPermission() method makes access control
decisions based upon the encapsulated context, rather than the context of the
current execution thread.

10.1.6 Key Management

The package java.security offers several interfaces and classes to provide
key generation and management.

* The Key interface is the top-level interface for all cryptographic keys and
defines the functionality shared by all keys. All keys have three
characteristics:

Security APIsin Java2 305

306

1. An algorithm

This is the key algorithm for that key. The key algorithm is usually an
encryption or asymmetric operation algorithm (such as DSA or RSA).
The name of the algorithm of a key is obtained using the getAlgorithm()
method.

2. An encoded form

This is an external encoded form for the key used when a standard
representation of the key is needed outside the JVM, as when
transmitting the key to some other party. The key is encoded according
to a standard format (such as X.509 or PKCS#8), and is returned using
the getEncoded() method.

3. A format

This is the name of the format of the encoded key. It is returned by the
getFormat() method.

« PrivateKey and PublicKey are interfaces that extend the Key. These

interfaces contain no methods or constants. They merely serve to group
(and provide type safety for) all public and private key interfaces. The
specialized public and private key interfaces, such as the DSAPublicKey
and DSAPrivateKey interfaces in the java.security.interfaces package,
extend PublicKey and PrivateKey respectively.

« The java.security package also contains classes to manage keys and key

pairs, such as the KeyFactory class, which is used to convert keys into key
specifications (and vice versa), and the KeyFactorySpi class, which is
used to define the Service Provider Interface (SPI) for the KeyFactory
class. As we will see in 10.2, “The Package java.security.spec” on page
322, a representation of key material is opaque if it does not give you any
direct access to the key material fields.

Key factories are bi-directional. This means that they allow you to build an
opaque key object from given key material (specification), or to retrieve the
underlying key material of a key object in a suitable format. A KeyFactory
object can be created using the static KeyFactory.getinstance() method.
From a key specification, you can generate the keys using the
generatePublic() and generatePrivate() methods. To get the key
specification from a KeyFactory, you can use the getKeySpec() method.

* The KeyPair class is used to hold a public key and a private key. It

provides getPrivate() and getPublic() methods to get the private and the
public keys respectively.

Java 2 Network Security

« The KeyPairGenerator class is used to generate key pairs, while the
KeyPairGeneratorSpi class is used to define the SPI for the
KeyPairGenerator class.

A KeyPairGenerator object can be created using the getinstance() static
method for the KeyPairGenerator class. A KeyPairGenerator object must
be initialized before it can generate keys. To do this, four methods are
provided, all of them called initialize(), but each having a different
signature. The four initialize() methods allow you to:

* Generate a key pair in an algorithm-independent manner or in an
algorithm-specific manner.

* Provide a specific source of randomness or use the SecureRandom
implementation of the highest-priority installed provider as the source
of randomness.

When you initialize a key pair in an algorithm-independent manner, you
specify the key size. If you initialize in an algorithm-specific way, you
supply the AlgorithmParameterSpec to the generator.

In the algorithm-independent case, it is up to the provider to determine the
algorithm-specific parameters to be associated with each of the keys. The
provider may use pre-computed parameter values, or may generate new
values. For example:

KeyPai r Gener at or keyGen = KeyPai r Gner at or . get | nst ance("[8A") ;
Secur eRandom r andom = Secur eRandom get | nst ance(" SHALPRNG', "SWN');
r andom set Seed(user Seed) ;

keyGen.initialize(1024, random);

In the algorithm-specific case, the user supplies the parameters to
initialize a key pair:

KeyPai r Gener at or keyGen = KeyPai r Gner at or . get | nst ance("[8A") ;
DBAPar anet er Spec dsaSpec = new DSAPar aret er Spec(p, 0, 9);

Secur eRandom r andom = Secur eRandom get | nst ance(" SHALPRNG', "SUN');
random set Seed(user Seed) ;

key@Gn.initialize(dsaSpec, randon);

* The KeyStore class is used to represent an in-memory collection of keys
and certificates, while the KeyStoreSpi class defines the SPI for the
KeyStore class. You can generate a KeyStore object using the static
getinstance() method. To load a KeyStore object from an InputStream, the
load() method is provided. The store() method can be used to store the
keystore to an OutputStream.

Security APIsinJava2 307

The KeyStore class provides methods to get and set keys and certificates
from the keystore. For instance, aliases() lists all the alias names in the
keystore, deleteEntry() deletes the entry identified by a specific alias from
the keystore, and getKey() gets the key associated with a given alias from
the keystore.

10.1.6.1 An Example of Keystore Management

The following program loads a KeyStore object, gets a key with alias marco
from it and stores it into another KeyStore object. In other words, this code
performs exactly the same function as the -export and -i nport commands
associated with the keyt ool utility (see 9.1, “Key and Certificate Management
Tool” on page 259).

The code comments explain the operations in detail:

{
{

try
{

cl ass KeySt or eMvanagenent

public static void main(String[] args)

Il create the Keystore object
KeyStore ks = KeyStore. get | nstance("JKS', "SUN');
String keypass = "narcop"”;
char[] pwd = new char[6] ;
for (int i =0; i < pwdlength; i++)
pwd[i] = keypass. charAt (i);

/1 1oad the keystore fromthe system
Fil el nput Streamfisk = new

Filelnput Strean{"D\\itso\\chl0\\keyst orel\\ marcostore");
ks.l oad(fisk, pwd);

/1l get the certificate fromthe keystore with alias narco
I/l simlar to keytool -export
X509Certificate certs = (X509Certificate)ks.getCertificate("marco");

I/l Storing the sane certificate in other keystore.
Il create the keystore object
KeyStore itsostore = KeySore. get |l nstance("JKS', "SUN');
Fil el nput Streamfiskl = new
Filelnput Strean{"D\\itso\\chl0\\keyst ore2\\ marcostore");

Figure 130. (Part 1 of 2). KeyStoreManagement.java

308

Java

2 Network Security

Il 1oad the keystore
i tsostore.load(fiskl, pwd);

/] insert the certificate in the keystore
[l simlar to keytool -inport
itsostore.setCertificateEntry("narco", certs);

/1 And finally store the keystore
Fi | eQut put St ream out put store = new

Fil eQutput Strean{"D\\itso\\chlO\\keyst ore2\\ narcostore");
itsostore.store(outputstore, pwd);

}
catch (Exception €)
{
Systemout. printl n("There was an exception. The exception was "
e.toring());
}

Figure 131. (Part 2 of 2). KeyStoreManagement.java

This program is compiled by running the following command:

javac KeyStoreManagenent.j ava

Since our purpose here is to show how to use the Java security API to
manage keystores, for simplicity, we have assumed the following:

1. Both keystores are called marcostore although they are located in two
different directories: D:\itso\ch10\keystorel and D:\itso\ch10\keystore2.
These file names are hardcoded.

2. All passwords are set to nar cop, and this password is hardcoded.

3. Both keystores have been created using the keyt ool utility.

4. In the keystore D:\itso\ch10\keystorel\marcostore, the key pair and the

certificate wrapping the public key are associated with an alias called
marco.

5. In the keystore D:\itso\ch10\keystore2\marcostore, the key pair and the

certificate wrapping the public key are associated with an alias called
mykey.

Security APIsin Java2 309

310

Therefore, before launching the KeyStoreManagement program, the keystore
D:\itso\ch10\keystore2\marcokeystore contains only one keystore entry, that
related to the alias mykey, as shown in the following session screen:

D\itso\chl0\ keyst ore2>keyt ool -1ist -keystore narcostore
Enter keystore password: narcop

Keystore type: jks
Keystore provider: SN

Your keystore contains 1 entry:

nykey, Sat Apr 24 01:16:51 EDT 1999, keyEntry,
Certificate fingerprint (Mb): 26:33:61: BA OE 39: QC 38: 30: 5E 74: 76: 55: A9: Dr: 92

L D\itso\chlO\ keyst or e2>

Then we launch the KeyStoreManagement program through the following
command:

j ava KeySt or eManagenent

At this point, the program loads the marcostore keystore from the directory
D:\itso\ch10\keystorel, gets the certificate associated with the alias marco,
inserts this certificate into the marcostore destination keystore in the
directory D:\itso\ch10\keystore2 and stores the destination keystore.

~
D\itso\chl0\ keyst ore2>keyt ool -1ist -keystore narcostore
Enter keystore password: narcop
Keystore type: jks
Keyst ore provider: SN
Your keystore contains 2 entries:
nykey, Sat Apr 24 01:16:51 BEDT 1999, keyEntry,
Certificate fingerprint (MX): 26:33:61: BA OE 39: QC 38: 30: 5E 74: 76: 55: A9: D7: 92
narco, Sat Apr 24 01:42:05 BEDT 1999, trustedCertEntry,
Certificate fingerprint (MX®): 6E 66:0C C5: 24: F5: 36: 1F: 27: EE 10: 4C 9B E3: 7D B7
D\itso\ chl0\ keyst or e2>
/

Note that the keystore APIs require the keystore password to be passed to
the specific APIs accessing the keystore and the key password to the specific
APIs accessing the private key. However, security holes may be created if the
program is not coded with caution. For example, in the above example, the
password has been hardcoded in the program. As explained in 5.3.1,
“Decompilation Attacks” on page 126, the password could be easily

Java 2 Network Security

recovered from class files. Therefore, in real life, you should take these
parameters as input from the user. Our purpose here was to demonstrate how
to use the Java security APIs to manage keystores, and for this reason we
have kept things simple.

10.1.7 Message Digests and Dlgital Signatures

The package java.security provides APIs for message digests and digital
signatures:

« The MessageDigest class provides applications with the functionality of
the message digest algorithms, such as MD5 and SHAL, while the
MessageDigestSpi class defines SPIs for the MessageDigest class.

« The Signature class provides applications with the functionality of the
signature algorithms, such as SHA-1/DSA, MD2/RSA, MD5/RSA or
SHA-1/RSA, while the SignatureSpi class defines SPIs for the Signature
class.

In both the MessageDigest and the Signature class you can generate an
object using a getinstance() method. You must supply the algorithm or the
algorithm and the provider. Notice that:

* A MessageDigest object starts out initialized.

¢ A Signature object must be initialized by a private key using initSign() if it
is for signing, and by a public key using initVerify() if it is for verification.

Both the classes MessageDigest and Signature provide an update() method
that you can use to update MessageDigest objects and Signature objects with
the data to be digested or signed/verified respectively. Lastly you can digest
the data using the digest() method of the MessageDigest class and you can
sign or verify the data using the sign() or verify() method in the Signature
class respectively.

The package java.security also offers DigestinputStream and
DigestOutputStream classes for reading and writing to /0.

10.1.7.1 An Example of Message Digest Generation

The following example creates a message digest of the file
D:\itso\textFile\itso.txt and stores it in the file D:\itso\textFile\itsodigest.txt.
What the program really does is explained in the comments embedded in the
code.

Security APIsinJava2 311

inport java.security.*;
inport java.io.*;
cl ass MessageD gest Gener ati on
{
public static void main(String[] args)
{
try
{
/1l generate a Message D gest objects
MessageD gest cl assMD = MessageD gest . get | nst ance(" SHAL");
Il get the file to be digested
File inputTextFile = new File("D\\itso\\textFile\\itso.txt");
FilelnputStreamcfis = new Fi | el nput S rean{i nput TextFi |l e);
Buf f er edl nput Stream chi s = new Buf f eredl nput Strean{cfis);
byte[] cbuff = new byt e[1024];
while (cbis.available() !'=0)
{
int len = chis.read(cbuff);
/1 update the digest with the data to be digested
cl assMD. updat e(cbuff, 0, len);
}
chi s.close();
cfis.close();
/] finally cal cul ate the di gest
byte[] classdigest = classMD digest();
Il wite the digest information to a file
File outputTextFile = new File("D\\itso\\textF | e\\itsodi gest.txt");
Fi | eQut put Stream cfos = new Fi | eQut put Streanfout put TextFil e);
Buf f er edQut put St r eam cbos = new Buf f er edQut put St r ean{ cf 0s) ;
cbos. write(cl assdigest);
cbos. cl ose();
cfos.close();
}
cat ch(Exception e)
{
Systemout. println("There was en exception. The exception was " +

Figure 132. (Part 1 of 2). MessageDigestGeneration.java

312 Java 2 Network Security

e.toring());

}

Figure 133. (Part 2 of 2). MessageDigestGeneration.java

This Java file is compiled to a class file by launching the following command:
javac MessageD gest Generation. j ava

The contents of the file itso.txt are shown in Figure 108 on page 249. We run
the MessageDigestGeneration program by launching the command:

j ava MessageD gest Gener ati on

and then we see that a new file, called itsodigest.txt, is created in the same
directory D:\itso\textFile where itso.txt is. This file contains the digest

information of itso.txt, and its contents can be displayed with a normal text
editor:

File Edit “iew Inzett Fommat Help

D= 2z sl ¢Eww]
AOONOON »] He0i0s 2AGO0
Faor Help, press F1 l_ E

Figure 134. Digest Information Displayed with a Text Editor

10.1.7.2 An Example of Signature Generation

The following example creates a signature of the file D:\itso\textFile\itso.txt
and stores it in the file D:\itso\textFile\itsosignature.txt. Again, what this
program really does is explained in the comments embedded in the code.

inport java.security.*;
inport java.io.*;

cl ass S gnatureGeneration

{

Figure 135. (Part 1 of 3). SignatureGeneration.java

Security APIsin Java2 313

public static void main(String[] args)
{
try

{
/] generate the KeyPair

KeyPai r Gener at or KPG = KeyPai r Gener at or . get | nst ance(" DSA") ;
SecureRandom r = new Secur eRandony) ;

KPGinitialize(1024, r);

KeyPai r KP = KPG genKeyPair();

/1l get the private key to sign the data
PrivateKey priv = KP.getPrivate();
Systemout. printIn("Agorithmis " + priv.getA gorithn{) + "\n");

/1 generate the signature object
Signature dsasig = S gnature. getlnstance(" SHAIw t hDSA', "SUN');

/] initialize the signature object for signing with the private key
dsasig.initSgn(priv);

/] get the file to be signed

File inputTextFile = new File("D\\itso\\textFile\\itso.txt");
FilelnputStreamfis = new Fil el nput Strean{i nput TextFil e);
Buf f er edl nput Stream bi s = new Buf f er edl nput S rean{fis);

byte[] buff = new byte[1024];

int len;

while (bis.available() !'=0)

{
| en=bi s. read(buf f);
/1 update the signature object with the data to be signed
dsasi g. updat e(buff, 0, len);

}

bi s. cl ose();

fis.close();

Il sign the data and create the signature
byte[] real signature = dsasig. sign();

/] wite the digital signature to a file
File outputTextFile = new File("D\\itso\\textFil e\\itsosignature.txt");
Fi | eQut put Stream cfos = new Fi | eQut put St reanfout put TextFi |l e) ;

Figure 136. (Part 2 of 3). SignatureGeneration.java

314

Java 2 Network Security

Buf f er edQut put St r eam cbos = new Buf f er edQut put St r ean{ cf 0s) ;

cbos.wite(real signature);
cbos. cl ose();
cfos.close();

}
cat ch(Exception e)
{
Systemout. println("There was en exception. The exception was " +
e.tosring());
}

Figure 137. (Part 3 of 3). SignatureGeneration.java

This Java file is compiled to a class file by launching the following command:
javac SignatureGeneration.java

The contents of the file itso.txt are shown in Figure 108 on page 249. We run
the SignatureGeneration program by launching the command:

java S gnatureGeneration

The following message is displayed on the command line:
A gorithmis DSA

and then we see that a new file, called itsosignature.txt, is created in the
same directory D:\itso\textFile where itso.txt is. This file contains the
signature of itso.txt, and its contents can be displayed with a normal text
editor:

File Edit “iew Insett Format Help

D2 |E] S @ &5 elo] B

0.000.%° &* 6c6aht UESOD Y | <n000-5, »E<-NU=HOOOEOSO; &

For Help, press F1 o

Figure 138. Signature Displayed with a Text Editor

Security APIsin Java2 315

10.1.8 Secure Random Number Generation

In the code of the SignatureGeneration class, shown in Figure 135 on page
313 through Figure 137 on page 315, the class java.security.SecureRandom
is used. This class provides a cryptographically strong Pseudo-Random
Number Generator (PRNG). The package java.security also offers the class
SecureRandomSpi, which defines the SPI for SecureRandom.

Let’'s consider the following instruction:
SecureRandom r = new Secur eRandont) ;

This obtains a SecureRandom object containing the implementation from the
highest-priority installed security provider (SUN, in our case) that has a
SecureRandom implementation. You will remember that the list of providers is
in the java.security file (see 8.3, “The Security Properties File, java.security”
on page 234).

Another way to instantiate a SecureRandom object is via the static method
getinstance(), supplying the algorithm and optionally the provider
implementing that algorithm:

Secur eRandom random = Secur eRandom get | nst ance(" SHALPRNG', "SUN');

10.1.9 The SignedObject Class

316

SignedObiject is a class for the purpose of creating authentic run-time objects
whose integrity cannot be compromised without being detected. More
specifically, a SignedObject contains another serializable object and its
signature.

The signed object is a deep copy (in serialized form) of an original object.
Once the copy is made, further manipulation of the original object has no side
effect on the copy.

A typical usage for signing is the following:

S gnat ure si gni ngengi ne = S gnat ure. get | nstance(al gorithm provider);
S gnedhj ect so = new S gned(yj ect (nyobj ect, si gni ngKey, si gni ngEngi ne);

A typical usage for verification is the following:

Java 2 Network Security

Sgnature verificationEngi ne = S gnature. getlnstance(al gorithm provider);
if (so.verify(publickey, verificationEngine))
try

(pj ect nyobj = so.get (j ect();

}
cat ch (d assNot FoundExcepti on e)
{
¥
. J

Potential applications of SignedObject include:

It can be used internally to any Java run time as an unforgeable
authorization token — one that can be passed around without the fear that
the token can be maliciously modified without being detected.

« It can be used to sign and serialize data/object for storage outside the
Java run time (for example, storing critical access control data on disk).

* Nested SignedObject objects can be used to construct a logical sequence
of signatures, resembling a chain of authorization and delegation.

10.1.10 Permission APIs

The permission classes represent access to the system resources. The
java.security package provides the abstract class Permission, which is
subclassed to represent specific accesses. Several subclasses of this class
are available in the Java core API. You can define your own specific
permission classes by subclassing this class or by using available subclasses
like java.security.BasicPermission.

Although each permission class subclasses, directly or indirectly, the
Permission class in the package java.security, specific accesses are
represented by permission classes that are generally part of the package
where they are most likely to be used. For example, the permission class
FilePermission is part of the java.io package, and SocketPermission class
belongs to the package java.net.

Permissions may have a target and an optional list of actions. For example,
the target for FilePermission can be the file D:\itso\textFile\itso.txt and the
actions can be read and write. We have discussed the use of permissions and
their associated targets and actions when managing policy files (see 3.6,
“The Policy File” on page 93 and 8.4.2, “grant Entries” on page 243).

Besides the Permission class, the built-in permission classes found in the
java.security package are AllPermission, BasicPermission,

Security APIsinJava2 317

SecurityPermission and UnresolvedPermission. Associated with the
Permission class, there are also the abstract class
java.security.PermissionCollection and final class java.security.Permissions
class. The former represents a collection of homogeneous permissions, such
as a set of file permissions. The latter is for a collection of heterogeneous
Permission objects.

When implementing a subclass of the Permission class, it is crucial to
implement the abstract method implies(). Here a implies b means that giving
an application permission a automatically grants it permission b too. For
example, giving some code permission AllPermission implies giving all the
rest of the permissions. Of course, much caution is needed when granting
this permission.

In 10.7, “The Permission Classes” on page 339 we will:

¢ Study all the permission classes that are part of the Java core API

* See which permission classes require a target or a list of actions to be
specified

« Explain how to implement custom permissions

10.1.11 Code Source

318

The CodeSource class extends the HTML concept of code base to
encapsulate not only the URL location of the code, but also the certificates
containing the public keys that should be used to verify signed code
originating from that location. The code base is represented as a
java.net.URL object and the list of signers as an array of
java.security.cert.Certificate objects. This is the constructor for the
CodeSource class:

CodeSource(URL url, Certificate[] certs)

The URL location is then extracted using the getLocation() method and the
certificates with the getCertificates() method.

The CodeSource class also provides an implies() method which returns
whether or not the CodeSouce specified as argument is implied by this
CodeSource. For example, say that we have two CodeSource objects,
codeSourcel and codeSource2, with the following features:

e codeSurcel specifies file:/D:/- as the code base URL and has certificates
corresponding to the signers marco and deepak.

e codeSource?2 specifies file:/D:/itso/- as the code base URL and has
certificates corresponding to the signers marco, duane and deepak.

Java 2 Network Security

Then codeSource? is implied by codeSourcel, but not vice versa.

The example we have just described is implemented through the
CodeSourceTest class, whose code is shown in the following figure. Notice
that what the code below exactly does is explained in the comments
embedded in the code itself.

inport java.security.*;
inport java.security.cert.*;
inport java.net.*;

inport java.io.*;

cl ass CodeSour ceTest
{
public static void main(String[] args)
{
try
{

Il create code base URLs
URL codeBasel = new URL("file:/D/-");
URL codeBase2 = new URL("file:/D/itso/-");

/] create the Keystore object
KeyStore ks = KeyStore. get | nstance("JKS', "SUN');
Sring keypass = "javakeys";
char[] pwd = new char[8];
for (int i =0; i <pwd.length; i++)
pwd[i] = keypass. char At (i);

/1l l1oad the keystore fromthe system

Fil el nput Streamfisk = new
FilelnputStrean{"D\\itso\\chl0\\keystore\\local store");

ks. |l oad(fisk, pwd);

/] get the certificates fromthe keystore with aliases marco, deepak and duane
/] simlar to keytool -export

X509Certificate marco = (X509Certificate)ks. getCertificate("narco");
X509Certificate deepak = (X509Certificate)ks.getCertificate("deepak™);
X509Certificate duane = (X509Certificate)ks. getCertificate("duane");

Il create certificate arrays
X509Certificate[] signersl = {marco, deepak};
X509Certificate[] signers2 = {marco, deepak, duane};

Figure 139. (Part 1 of 2). CodeSourceTest.java

Security APIsin Java2 319

/1 create code sources
CodeSour ce codeSour cel = new CodeSour ce(codeBasel, signersl);
CodeSour ce codeSour ce2 = new CodeSour ce(codeBase2, signers2);

/1 display the answer
i f (codeSourcel.inplies(codeSource2))
Systemout . println("codeSourcel i nplies codeSource2");
el se
Systemout . print!| n("codeSourcel does not inply codeSource2");

}
cat ch(Exception e)
{
Systemout. printl n("There was an exception: " + e.toXring());
}

}

Figure 140. (Part 2 of 2). CodeSourceTest.java

The code shown in the figure above assumes that a JKS keystore file, called
localstore, will be stored in the directory D:\itso\ch10\keystore\localstore. The
X.509 certificates for the aliases marco, deepak and duane must be stored in
this keystore. The keystore password is assumed to be j avakeys and for
simplicity it is hardcoded in the example above. However, in general, it is
recommended that passwords not be hardcoded, since a simple
decompilation attack could expose them (see 5.3.1, “Decompilation Attacks”
on page 126).

Compile the CodeSourceTest class with the command:

javac CodeSour ceTest . j ava

Then run it by entering:

j ava CodeSour ceTest

This message will be displayed on the Command Prompt window:

codeSour cel inplies codeSource2

This confirms what we said about the implies() method for the CodeSource
class.

320 Java 2 Network Security

10.1.12 Protection Domain

This ProtectionDomain class is used to represent a unit of protection within a
Java application environment. The arguments for its constructors are a
CodeSource object and a PermissionCollection object representing the set of
permissions granted to the CodeSource object itself:

Pr ot ect i onDormai n(GodeSour ce codesour ce, Perm ssi onCol | ecti on per m ssi ons)

Notice that:

« Classes that have the same permissions but are from different code
sources belong to different protection domains.

» Each class belongs to one and only one protection domain, depending on
its code source and the permissions granted to the code source.

« All the classes in the same code source belong to the same protection
domain.

The method getCodeSource() returns the code source of the domain and the
method getPermissions() returns the permissions of the domain. Moreover,
given a particular Permission object, a method implies() is provided to check
and see if a specific ProtectionDomain implies the permission expressed in
the Permission object.

10.1.13 Policy

The package java.security provides an abstract class called Policy for
representing the system security policy for a Java application environment.
The purpose of this class is to specify which permissions are available for
code from various sources. The security policy is represented by a Policy
subclass providing an implementation of the abstract methods in this Policy
class.

There is only one Policy object in effect at any given time. It is consulted by a
ProtectionDomain when it initializes its set of permissions.

The source of the policy information used to construct the Policy object
depends upon the Policy implementation. The policy configuration may be
stored, for example, as a flat ASCII file (like the default policy implemented by
Sun), as a serialized binary file of the Policy class, or as a database.

The currently installed Policy object can be obtained by calling the getPolicy()
static method, and it can be changed by a call to the setPolicy() static
method. However, only code with permission to reset the Policy can call
setPolicy(). The refresh() method causes the Policy object to refresh/reload
its current configuration. This is implementation dependent. For example, if

Security APIsinJava2 321

the Policy object stores its policy in configuration files, calling refresh() will
cause it to re-read the configuration policy files.

The getPermissions() method takes a CodeSource object as argument,
evaluates the global policy and returns a Permissions object specifying the
set of permissions allowed for code from the specified CodeSource.

10.1.14 Secure Class Loader

The java.security package offers the SecureCLassLoader class, which
extends java.lang.ClassLoader. SecureClassLoader provides additional
support for defining classes with an associated code source and permissions
which are retrieved by the system policy by default.

10.1.15 Algorithm Parameters

The AlgorithmParameters class is an engine class that provides an opaque
representation of cryptographic parameters. An opaque representation of
cryptographic parameters is one in which you have no direct access to the
parameter fields; you can only get the name of the algorithm associated with
the parameter set and some kind of encoding for the parameter set itself. This
is in contrast to a transparent representation of cryptographic parameters, in
which you can access each value individually, through one of the get methods
defined in the corresponding specification class. However, you can call the
AlgorithmParameters.getParameterSpec() method to convert an
AlgorithmParameters object to a transparent specification.

The package java.security also provides the AlgorithmParameterGenerator
and AlgorithmParameterGeneratorSpi classes:

« The AlgorithmParameterGenerator class is used to generate a set of
parameters to be used with a certain algorithm. Parameter generators are
constructed using the getlnstance() factory methods?.

« The AlgorithmParameterGeneratorSpi class defines the SPI for the
AlgorithmParameterGenerator class.

10.2 The Package java.security.spec

This package contains classes and interfaces for key specifications and
algorithm parameter specifications. Key specifications are transparent
representations of the key material that constitutes a key. A transparent
representation of key material means that you can access each key material
value individually, through one of the get methods defined in the

2 Factory methods are static methods that return instances of a given class.

322 Java 2 Network Security

corresponding specification class. For example, DSAPrivateKeySpec, which
is a specification class for keys using the DSA algorithm, defines getX(),
getP(), getQ() and getG() methods to access the private key x, and the DSA
algorithm parameters used to calculate the key: the prime p, the sub-prime g
and the base g. This is contrasted with an opaque representation of key
material (as defined by the Key interface discussed in 10.1.6, “Key
Management” on page 305), in which you have no direct access to the key
material fields.

This package contains key specifications for DSA public and private keys,
RSA public and private keys, PKCS#8 private keys in DER-encoded format,
and X.509 public and private keys in DER-encoded format. It also provides an
algorithm parameter specification class DSAParameterSpec, which specifies
the set of parameters used with the DSA algorithm.

The interfaces provided are AlgorithmParameterSpec and KeySpec:

« The AlgorithmParameterSpec interface is a specification of cryptographic
parameters. It groups all parameter specifications. All parameter
specifications, such as the DSAParameterSpec class provided in the same
package, must implement it.

* The KeySpec interface is a specification of the key material that
constitutes a cryptographic key. This interface also groups all key
specifications. All key specifications must implement this interface.

Neither of these interfaces contain any methods or constants.

10.3 The Package java.security.cert

This package provides classes to manage and handle digital certificates and
certificate revocation lists (CRLs), and provides separate classes for
managing X.509 certificates and X.509 CRLs.

« The abstract Certificate class can be used to manage different types of
identity certificates, while the abstract X509Certificate class, which
extends Certificate and implements the X509Extension interface, is
specifically for X.509 certificates.

e The CRL class is an abstraction of CRLs, which have different formats but
important common uses. For example, all CRLs share the functionality of
listing revoked certificates, and can be queried on whether or not they list
a given certificate. Specialized CRL types can be defined by subclassing
this abstract class. An example is the X509CRL class, which extends CRL
and implements the X509Extension interface. An X509CRLEntry class is
provided for a revoked certificate entry in an X.509 CRL.

Security APIsin Java2 323

« The java.security.cert package also provides a CertificateFactory class to
generate certificates and CRL objects from their encodings, and a
CertificateFactorySpi class to define the SPI for the CertificateFactory
class. CertificateFactory objects can be instantiated using the
getinstance() method. Then, the generateCertificate() and generateCRL()
methods can be used to create a certificate and a CRL object,
respectively.

An example of Java code importing and using the java.security.cert package
is provided by the class CodeSourceTest, whose code is shown in Figure 139
on page 319 and Figure 140 on page 320.

10.4 Package java.security.interfaces

This package contains only interfaces, which are used for generating DSA
and RSA keys. The RSA key generation interfaces are as defined in the RSA
Laboratory Technical Note PKCS#1, while those for DSA are as defined in the
NIST FIPS 186 (see 2.2.2, “Java Cryptography Architecture” on page 56).

The DSAKey, DSAPrivateKey and DSAPublicKey interfaces provide the
standard interfaces to DSA keys. The package also provides a
DSAKeyPairGenerator interface for generating DSA key pairs and a
DSAParams interface for generating a DSA-specific set of key parameters,
which define a DSA key family.

The RSAPublicKey and RSAPrivateKey interfaces are for RSA keys. The
package also contains a class named RSAPrivateCrtKey, which is the
interface to an RSA private key, as defined in the PKCS#1 standard, using the
Chinese Remainder Theorem (CRT) information values.

10.5 The Package java.security.acl

This package offers a set of interfaces to manage access control lists
(ACLs).3 An access control listis a data structure used to guard access to
resources. These are the interfaces provided:

e The Acl interface represents an ACL.
« The AclEntry interface represents an entry in an ACL.

« The Group interface represents a group of principals. This interface
extends the Principal interface in the java.security package (see 10.1.1,
“Principals” on page 297).

3 JavaSoft states that the java.security.acl APIs have been superseded by classes in the java.security package.

324 Java 2 Network Security

« The Owner interface is used to manage owners of ACLs or ACL
configurations.

« The Permission interface is used to represent a permission, such as that
used to grant a particular type of access to a resource.

10.6 Examples Using the Java 2 Security APIs

We have shown several examples of code that makes use of the Java 2
security APIs. This section provides other interesting examples.

10.6.1 Signature and Signature Verification

In this section we demonstrate how to use the Java 2 APIs to sign a
document and then verify the signature. First we write a program,
SignFile.java, in which we create a key pair, use this to sign a document and
store the signature and the public key in two separate files:

inport java.io.*;
inport java.security.*;

class SignFile

{

public static void main(String arg[])
{
if (arg.length != 3)
Systemout. println("Usage: java signFi|e DATAFI LE S| GNATUREH LE
PUBLI CKEYFI LE") ;
el se
try
{
/1 V& create the keypair - Key strength can be 1024 inside the Lhited States

KeyPai r Generat or KPG = KeyPai r Gener at or . get | nst ance("DSA", "SWN');
SecureRandomr = new Secur eRandom) ;

KPGinitialize(1024, r);

KeyPai r KP = KPG generat eKeyPai r ();

/1 W get the generated keys
PrivateKey priv = KP.getPrivate();
Publ i ckey publ = KP.getPublic();

/1 V¢ intialize the signature
Signature dsasig = S gnature. getlnstance("SHALw t hDSA', "SWN');

Figure 141. (Part 1 of 2). SignFile.java

Security APIsin Java2 325

}

dsasig.initSgn(priv);

/1 Ve get the file to be signed

FilelnputStreamfis = new Fil el nput Streanfarg[0]);
Buf f er edl nput Stream bi s = new Buf f er edl nput S rean{fis);
byte[] buff = new byt e[1024];

int len;

/1 W call the update() nethod of S gnature class ->
/1 Udates the data to be signed
while (bis.available() !'= 0)

{
| en=hi s. read(buff);
dsasi g. update(buff, 0, len);
}
/1 V¢ close the buffered i nput streamand the file input stream
bi s. cl ose();
fis.close();

/1l \ get the signature
byte[] real signature = dsasig.sign();

/1 VW wite the signature to a file
FileQutputStreamfos = new Fi |l eQut put Streamarg[1]);
fos.wite(real signature);

fos.close();

/1 W wite the public key to a file

byte[] pkey = publ . get Encoded();

Fi | eQut put Stream keyf os = new F | eQut put S reanfarg[2]);
keyf os. wri t e(pkey);

keyf os. cl ose();

}
catch (Exception e)
{
Systemout. printl n("Caught Exception: " + e);
}

Figure 142. (Part 2 of 2). SignFile.java

326

The comments embedded in the code explain what the code does. A detailed
explanation follows:

Java 2 Network Security

In this program, we get a key pair generator to generate keys for the DSA
signature algorithm. The KeyPairGenerator class is used to generate pairs of
public and private keys. Key pair generators are constructed using one of the
two getinstance() factory methods provided in the KeyPairGenerator class. A
key pair generator for a particular algorithm creates a public/private key pair
that can be used with this algorithm. It also associates algorithm-specific
parameters with each of the generated keys. We generate a
KeyPairGenerator object by implementing the DSA algorithm provided by the
SUN provider of Sun Microsystems:

KeyPai r Gener at or KPG = KeyPai r Gener at or . get | nst ance("DSA", "SWN');

Then we initialize the KeyPairGenerator with a random number. The source of
randomness is an instance of the SecureRandom class. This class provides a
cryptographically strong PRNG. To get an instance of this class, you can use
the getlinstance() method specifying the PRNG algorithm and the provider
that supplies it:

SecureRandom r = Secur eRandom get | nst ance(" SHALPRNG', "SUN');

Another option, which is the option selected for this example, is to call the
SecureRandom constructor directly:

SecureRandom r = new Secur eRandony) ;

This obtains a SecureRandom object containing the implementation from the
highest-priority installed provider (SUN, in our case) that has a
SecureRandom implementation. The list of providers is available in the
java.security file (see 8.3, “The Security Properties File, java.security” on
page 234).

We can now create the key pair using the generateKeyPair() method. The key
size is set to 1024:

KPGinitialize(1024, r);
KeyPai r KP = KPG gener at eKeyPai r () ;

The private and the public keys can be retrieved using the getPrivateKey()
and the getPublicKey() methods of the KeyPair class respectively:

PrivateKey priv = KP.getPrivate();
Publ i ckey publ = KP.getPublic();

The Signature object is generated using the getinstance() factory method of
the Signature class. We need to provide the signing algorithm and the
provider name. Then we associate the private key to be used for signing
using the initSign() method:

Security APIsinJava2 327

328

S gnature dsasig = S gnature. getlnstance(" SHAIw t hDSA', "SWN');
dsasig.initSgn(priv);

Next we get the file to be signed. The signature can be generated using the
sign() method after all the data has been updated.

In fact, once generated, a Sighature object has three phases. For signing
data, it must be initialized using the initSign() method as done above. Then, it
must be updated with the data to be signed using the update() method:

dsasi g. update(buff, 0, len);

The final phase is to actually sign the data using the sign() method:

byte[] real signature = dsasig.sign();

Signature verification consists of similar phases. The initializing is done with
the public key rather than the private key. The update is done by the data to
be verified rather than the data to be signed. Lastly, the sign() method is
replaced by the verify() method.

The final step is to save the signature generated and the public key to two
files. We need to get the public key in its encoded format before writing it to
the file. This can be done using the getEncoded() method provided in the Key
interface:

byte[] pkey = publ . get Encoded();

Notice that the names of the three files used in this program should be
passed by the user on the command line. They are:

1. Input file to be signed

2. File where the signature will be written

3. File where the public key will be written

This program is compiled with the following command:

javac SignFile.java

It is executed by using the Java interpreter j ava and passing the names of the
three files on the command line. For instance:

java SignFile itso.txt sign pub

Notice that it is not necessary that the sign signature file and the pub public

key file exist. The program creates them automatically. These are their
contents after the execution of the SignFile class:

Java 2 Network Security

a sign - WordPad M=l E

File Edit “iew Insertt Format Help

D= S & s Eo] &

0-000, 0667 { aMg ecwl0T£0*00006s < aTTEz " {I% ; Ffj@«¥

For Help, press F1 i

Figure 143. sign Signature File

E pub - WordPad Mi=] E3

File Edit “iew Inzett Fomat Help

D= SR al =)o B

0,0-0,0,00*HIBOO0, 000000 0800w} BB de. idgoll- R<iDOAO
FEMO&EIE]E@" QﬁY=DXﬁaiﬁ°0ﬁE »Ulx0;e0400f - kKMpyui¥ed{0 A
O»@xp - Elg Wk |0000fo0A0AOSTOZO * 206ud®+ax *id" OOORHOC
OO0 POO#OI 27, ¢, 086x060000<4 ..O:=PE4«\ & 5W1y”_>>1'1: e,
wWLO=0, gQIWiDE)YOaanDD@:'IDq#éL (OO0- 1 HEE 1 a<O=z T |O(
af@d+3 lu nel0al fhitibz08 ; Ik QO% fBazZa¥lr £ e{usdiL
;pII+0O0, 000105+ P *BZf.D{Dci@—déiH+ﬁg§nﬂ]ﬂDDé4 (o0
»O0HME — { =rO0V0ewhez~0¥"Eh: zm(;"\ »— o2akKd-

F OaoetEl dd0ada (élﬁfl]li]]ci d0r"zh fO&I00Q84 eB0C00oaalll

For Help, press F1 i

Figure 144. pub Public Key File

The contents of the file itso.txt are shown in Figure 108 on page 249.

At this point, the three files can be sent to the receiver who will execute the
following program to verify the signature:

inport java.io.*;
inport java.security.*;
inport java.security.spec.*;

class VerifyFile

{

public static void main(String args[])

Figure 145. (Part 1 of 3). VerifyFile.java

Security APIsin Java2 329

if (args.length !=3)
Systemout. println("Usage: java VerifyFi|e DATAFI LE SI GNATUREFI LE
PUBLI CKEYFI LE") ;
el se
try

{
FilelnputStreamfis = new Fi |l el nput Streanf{args[0]);

FilelnputStreamsfis = new Fil el nput St rean{args[1]);
FilelnputStreampfis = new Fil el nput Strean{args[2]);

/1 Get the public key of the sender

byte[] encKey = new byte[pfis.available()];

pfis. read(enckey);

pfis.close();

X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(encKey) ;
KeyFact ory KeyFac = KeyFactory. getl nstance("DSA", "SWN');

Publ i ckey pubkey = KeyFac. gener at ePubl i c(pubKeySpec) ;

// Get the signature on the file - This will be verified
byte[] sigToVerify = new byte[sfis.available()];
sfis.read(si gToVerify);

sfis.close();

/1 Initialize the signature
/1 update() nmethod used to update the data to be verified
Signature dsasig = S gnature. getl nstance("SHALw t hDSA', "SWN');
dsasi g. i ni t Veri fy(pubkey);
Buf f er edl nput Stream buf = new Buf f er edl nput S rean{fis);
byte[] buff = new byt e[1024];
int len;
whi | e(buf . avai l abl e() !'= 0)
{
I en = buf.read(buff);
dsasi g. update(buff, 0, len);
}
buf . cl ose();
fis.close();

/1 Verify the signature
bool ean verifies = dsasig. verify(sigToVerify);
if (verifies)

Systemout . println("Verified: The signature on the file is correct.”

Figure 146. (Part 2 of 3). VerifyFile.java

330

Java 2 Network Security

el se
Systemout. println("Vérning: The signature on the file has been tanpered

wth.");
}
catch (Exception e)
{
Systemout . printl n("Caught Exception: " + e);
}

}

Figure 147. (Part 3 of 3). VerifyFile.java

The comments embedded in the code explain what the code does. A detailed
explanation follows.

First, notice that we must import the encoded public key bytes from the file
containing the public key and convert them to a PublicKey. Hence, we read
the key bytes, instantiate the DSA publickey using the KeyFactory class, and
generate the key from it:

byte[] encKey = new byte[pfis.available()];

pfis. read(enckey);

pfis.close();

X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(enckey) ;
KeyFact ory KeyFac = KeyFactory. getl nst ance("DSA", "SWN');

Publ i cKey pubkey = KeyFac. gener at ePubl i c¢(pubKeySpec) ;

The X509EncodedKeySpec class represents the DER encoding of a public or
private key, according to the format specified in the X.509 standard. The
public key can be created from it using the KeyFactory class. This class is
used to convert keys (opaque cryptographic keys of type Key) into key
specifications (transparent representations of the underlying key material),
and vice versa. We specify the key algorithm (DSA) and the provider (SUN)
and use the generatePublic() method to generate the public key.

The rest of the program is similar to SignFile. The only difference is that the
signature is initialized with this public key in place of the private key, and the
sign() method is replaced by the verify() method.

The program is compiled by simply entering:

javac VerifyFile.java

Security APIsinJava2 331

To run it, the user should specify three files on the command line:

1. Input file on which a signature has been applied
2. File where the signature has been written
3. File where the public key has been written

Notice that this time all three files must exist in advance. We run this program
passing to it the file itso.txt as the file on which the signature was applied (see
Figure 108 on page 249), and the signature and public key files generated by
SignFile. This way, we are simulating a scenario in which a sender generates
a signature and then sends the original file to a receiver along with the
signature and the public key.

Run the program by entering:

java VerifyFile itso.txt sign pub

The output is as expected:

1. If none of the three files has been altered after the signature was applied,
the program displays the following:

Verified: The signature on the file is correct.

2. If you change the contents of any of the three files, the program displays
the following message:

Wrning: The signature on the file has been tanpered with.

3. If you modify the signature file, so that it no longer respects the signature
format, this is the message displayed:

Caught Exception: java.security.S gnatureException:
invalid encoding for signature

This example demonstrates how you can successfully use the Java 2 APIs to
send documents with proof of data integrity and authenticity.

10.6.2 Using Keystores

In the SignFile.java program, if you wish to load the keys from a keystore
rather than generating them, you can use the following program:

inport java.io.*;
inport java.security.*;
inport java.security.cert.*;

Figure 148. (Part 1 of 3). SignFileKS.java

332

Java 2 Network Security

class S gnFilekS

{
public static void main(String arg[])
{
if (arg.length !=5)
Systemout. println("Usage: java signFi| eKS DATAFI LE S G\FI LE CERTH LE ALI AS
KEYSTCREPWD') ;
el se
try

{

/1l Access the default keystore in the user hone directory

String s1 = System get Property("user. hone");

String s2 = Systemget Property("file.separator");
FilelnputStreamfisk = new Fil el nput Strean{sl + s2 + ". keystore");
KeyStore ks = KeyStore. getl nstance("JKS', "SUN');

/1 Access the private key and the certificate of the signer alias
String keypass = arg[4];

char[] pwd = new char[keypass. | ength()];

keypass. get Chars(0, keypass.length(), pwd, 0);

ks. | oad(fi sk, pwd);

String alias = arg[3];

PrivateKey priv = (PrivateKey)ks. getKey(alias, pwd);
X509Certificate certs = (X509Certificate)ks.getCertificate(alias);

/1 Intialize the signature
Signature dsasig = S gnature. getlnstance("SHALw t hDSA', "SWN');
dsasig.initSgn(priv);

/l Get the file to be signed

FilelnputStreamfis = new Fil el nput Streanfarg[0]);
Buf f er edl nput St r eam bi s=new Buf f er edl nput Strean{fis);
byte[] buff = new byt e[1024];

int len;

/1 update() nethod of Signature class -> Ubdates the data to be signed
while (bis.available() !'=0)
{
| en=hi s. read(buff);
dsasi g. update(buff, 0, len);
}

// dose the buffered input streamand the file input stream

Figure 149. (Part 2 of 3). SignFileKS.java

Security APIsin Java2 333

bi s. cl ose();
fis.close();

/1l Get the signature
byte[] real signature = dsasig.sign();

/!l Wite the signature to a file
FileQutputStreamfos = new Fi |l eQut put Streanm(arg[1]);
fos.wite(real signature);

fos.close();

/1 Wite the certificate to a file

byte[] cert = certs. get Encoded();

Fil eQutput Streamcertfos = new Fi | eQut put Streanfarg[2]) ;
certfos.wite(cert);

certfos. cl ose();

}
catch (Exception e)
{
Systemout . println("Caught Exception: " + e);
}

Figure 150. (Part 3 of 3). SignFileKS.java

334

The comments embedded in the code explain what the code really does. You
can see that this program is very similar to SignFile. The only difference here
is that, in place of generating keys, we load an existing keystore and use keys
already created and present in it. The program is configured to retrieve the
keystore from the user home directory. System variables are used to grant
code portability across the platforms.

You can generate a keystore by using the - genkey option of the keyt ool
command line utility.

This program also gets the certificate associated with the alias passed by the
user on the command line and saves it into a file so that it can be sent to the
receiver for verification.

We generate the KeyStore object using the getlnstance() factory method for
the KeyStore class. The implementation we use is JKS and the provider is
SUN, which is the default provider supplied by Sun Microsystems:

Sring s1 = System get Property("user. hone");

Java 2 Network Security

Sring s2 = Systemget Property("file.separator");
FilelnputStreamfisk = new Fil el nput Srean{sl + s2 + ".keystore");
KeyStore ks = KeyStore. get I nstance("JKS', "SWN');

When you run this sample, ensure that you have generated a keystore called
.keystore on your user home directory. This file name and location are the
default for the keystore creation performed by the - genkey command of the
keyt ool ultility.

Next we load the keystore using the load() method, and we supply the
keystore password, which is also required as a command line argument:

ks. | oad(fisk, pwd);

Finally, we get the private key (with the getKey() method) and the certificate
(with the getCertificate() method) associated with the intended alias.
PrivateKey priv = (PrivateKey)ks. get Key(alias, pwd);

X509Certificate certs = (X509Certificate)ks.getCertificate(alias);

This program is compiled with the command:

javac SignFileKs. java

Notice that five pieces of information should be provided by the user on the
command line. They are:

Input file to be signed

File where the signature will be written

File where the certificate will be written

Alias associated with the entity signing the file
Keystore password

akrwnpRE

The program is executed by using the Java interpreter j ava and passing this
information on the command line. For instance:

java SgnFilekS itso.txt signkKS certKS narco javakeys

Notice that it is not necessary that the signature file or the file to which the
certificate is exported exist. The program creates them automatically. These
are the contents after the execution of the SignFile class:

Security APIsin Java2 335

E signk5 - WordPad M=l &

File Edit “iew Inzett Fomat Help
|| B

D= SR @] |

0,00-6uBR58@>0 " vz MGY¥rs1
— %4E (21" §Fedl,

For Help, presz F1

Figure 151. signKS Signature File

E certkS - WordPad Mi=] E

File Edit “iew Inzert Format Help

DIc|@| Slal sl [(@]o] 2
0,040, 08007% [00000*+HIsOOOOo 100 OOUVOOOOuS 100 oou
OOOORC 100000U0000Cary100

Ooud

OO0 IBM100000UO000ITS0100000U0000Marco
Pistoia00O00990427063706Z00990726063 70620100 OOUOOOOus
100 OOUVDOOORC100000UO000Cary100

Ooud

OO0IBM100000UO000ITS0100000U0000Marco
Pistoia0,0-0,0,00+tHIs000, 000000%0500u0) REJe . 1agol - RB<iDOA
O?€9Q&iE] @" Qi¥=0%X0; A& ° 06 ULx0 ;€0406f " - KCPERT VA0 {0" Adn@xp
- Mg ;WogE ' 0006F60A0A05TOZO * 26u6@+ax +io" OOORHOGOO0— POO#OT
=01 g, 04X060000<4 .0 =B 6 Wy wi:é, uWLO=0, gQ¥¥Z° 0¥ 0=
gO000€ I0g#el(00-I 2EE!a<0Oz <T|0(ALE0+ 'u *nEO0d ! Shivibz0s ; Ix
fiss Q0% " FRAZAYO’ «£4€{UsdOL ;pII*00, 000€(~ 4X OOF-gOBOU1F7
GIOM=wan? [

O°ORt*' 9y +HO{wODzoZeiP *EI="w\DE -0 DPC¢EASE:, ~, Xz WOPO1
A:E0v»rwb AOmi ADdfFAe < -De0udE] rt-0%A00000++HIsOOOOO /00,0
OOLatO{h}

Ed&gs I0Asry00igOsh V= M0w BOASO; 6

For Help, presz F1

Figure 152. certKS Certificate File

The contents of the file itso.txt are shown in Figure 108 on page 249.

336 Java 2 Network Security

At this point, the three files can be sent to the receiver who will execute the
following program to verify the signature:

inport java.io.*;

inport java.security.*;
inport java.security.spec.*;
inport java.security.cert.*;

class VerifyFilekS
{
public static void main(String args[])
{
if (args.length !=3)
Systemout. println("Usage: java VerifyFi | eKS DATAFI LE Sl G\FI LE CERTFI LE");
el se
try

{
FilelnputStreamfis = new Fil el nput Streanf{args[0]);

FilelnputStreamsfis = new Fil el nput St rean{args[1]);
InputStreamcfis = new Fil el nput Strean{args[2]);

/1 Get the certificate fromthe file

CertificateFactory nycf = CertificateFactory. getlnstance("X 509");
X509Certificate cert = (X509Certificate) nycf.generateCertificate(cfis);
cfis.close();

/1l Get the public key fromthe certificate
Publ i ckey pubkey = cert. get PublicKey();

/1l Get the signature on the file - This will be verified
byte[] sigToVerify = new byte[sfis.available()];
sfis.read(sigToVerify);

sfis.close();

/! Initialize the signature

/1 update() method used to update the data to be verified
Signature dsasig = S gnature. getlnstance("SHALw t hDSA", "SUN') ;
dsasi g. i ni tVeri fy(pubkey);

Buf f er edl nput Stream buf = new Buf f er edl nput S rean{fis);

byte[] buff = new byt e[1024];

int len;

whi I e (buf.available() !'=0)

{

Figure 153. (Part 1 of 2). VerifyFileKS.java

Security APIsinJava2 337

}

}

I en = buf.read(buff);

dsasi g. update(buff, 0, len);
}
buf . cl ose();
fis.close();

/1 Verify the signature
bool ean verifies = dsasig. verify(sigToVerify);
if (verifies)
Systemout. println("Tested: The signature on the file is correct.");
el se
Systemout. printl n("Vérning: The signature on the file has been tanpered
with.");

catch (Exception e)

{
}

Systemout . printl n("Caught Exception: " + e);

Figure 154. (Part 2 of 2). VerifyFileKS.java

338

The comments embedded in the code explain what the code does. A detailed
explanation follows.

The difference between this program and VerifyFile is only in the way they
generate the public key object. In the VerifyFile.java code, we retrieve the
public key from a file. Here, in the VerifyFileKS.java code, we simply take it
from the certificate provided; we generate an X509Certificate object using the
certificate received and use its getPublicKey() method to get the public key.

CertificateFactory nycf = CertificateFactory. getlnstance("X 509");
X509Certificate cert = (X509Certificate)nycf.generateCertificate(cfis);
cfis.close();

Publ i ckey pubkey = cert. get PublicKey();

The program above is compiled with the command:

javac VerifyFileKS. java

To run it, the user should specify on the command line the names of the
following files:

1. Input file on which a signature has been applied
2. File where the signature has been written

Java 2 Network Security

3. File where the certificate has been exported

Notice that all three files must exist in advance. We run this program passing
to it the file itso.txt as the file on which the signature was applied (see Figure
108 on page 249), and the signature and certificate files generated by
SignFileKS. This way, we are simulating a scenario in which a sender
generates a signature and then sends the original file to a receiver along with
the signature and the public key.

We run the program by entering:

java VerifyFi |l eKS itso.txt signKS certKS

The output is as expected:

1. If none of the three files has been altered after the signature was applied,
the program displays the following:

Verified: The signature on the file is correct.

2. If you change the contents of any of the three files, the program displays
the following message:

Wrning: The signature on the file has been tanpered with.

3. If you modify the signature file, so that it no longer respects the signature
format, this is the message displayed:

Caught Exception: java.security.S gnatureException:
invalid encoding for signature

This example demonstrates how you can successfully integrate the Java 2
APIs with local security structures, such as keystores, to send documents
with proof of data integrity and authenticity.

10.7 The Permission Classes

As we discussed in 10.1.10, “Permission APIs” on page 317, the permission
classes represent access to the System resources. The built-in permissions
classes are:

 java.security.Permission

This is an abstract class, which is the ancestor of all permissions; it
defines the essential functionality required for all permissions. An
important abstract method that must be implemented by each subclass is
the implies() method to compare Permissions. Basically, permission p1
implies permission p2 means that if one is granted permission p1, one is

Security APIsin Java2 339

340

also granted permission p2. Thus, this is not an equality test, but rather
more of a subset test.

The built-in permission classes that subclass Permission directly are
AllPermission, FilePermission, SocketPermission, UnresolvedPermission
and BasicPermission.

* java.security.AllPermission

This is a class that implies all permissions, including any new permissions
that may be defined later on.

As we cautioned earlier, granting AllPermission should be done with
extreme care, as it implies all other permissions. In other words, it grants
code the ability to run with security disabled. This permission should be
used only during testing, or in extremely rare cases where an application
or applet is completely trusted and adding the necessary permissions to
the policy is prohibitively cumbersome.

* java.io.FilePermission

This class represents access to a file or directory. A FilePermission
consists of a path name and a set of actions valid for that path name.

The path name indicates the file or directory subject to the specified
actions. Notice that:

« A path name that ends in /* (where / is the file separator character)
indicates all the files and directories contained in that directory.

« A path name that ends with /- indicates (recursively) all files and
subdirectories contained in that directory.

* A path name consisting of the special token <<ALL FI LES>> matches any
file or directory.

The actions to be granted are passed to the constructor in a string
containing a list of one or more comma-separated keywords. The possible
keywords are read (for read permission), wite (for write permission),
execut e (for execute permission), and del et e (for delete permission).

Be careful when granting FilePermission. Think about the implications of
granting read and especially write access to various files and directories.
The <<ALL FI LES>> path name token with write action is especially
dangerous. This grants permission to write to the entire file system, and
one thing this effectively allows is replacement of the system binaries,
including the JVM run-time environment.

Note that the code will always have permission to read files from its
originating URL location, and all subdirectories of that location; it does not

Java 2 Network Security

need explicit permissions to do so (see 8.6, “File Read Access to Files in
the Code Base URL Directory” on page 252).

 java.net.SocketPermission

This class represents access to a network via sockets. A
SocketPermission consists of a host specification and a set of actions
specifying ways to connect to that host. The possible ways to connect to
the host are accept, connect, |i sten and resol ve.

Granting code permission to accept or make connections to remote hosts
may be dangerous because malevolent code can then more easily transfer
and share confidential data among parties who may not otherwise have
access to the data.

* java.security.UnresolvedPermission

This class is used to hold permissions that were unresolved when the
policy was initialized. An unresolved permission is one whose actual
Permission class does not yet exist at the time the policy is initialized.

Whenever a policy is initialized or refreshed, Permission objects of
appropriate classes are created for all permissions allowed by the policy.
However, some permission classes may not yet exist during policy
initialization. For example, a referenced permission class may be in a JAR
file that will later be loaded. For each such class, an
UnresolvedPermission is instantiated. Thus, an UnresolvedPermission is
essentially a placeholder containing information about the permission.
Later, when code calls AccessController.checkPermission() on a
permission of a type that was previously unresolved, but whose class has
since been loaded, previously unresolved permissions of that type are
resolved. That is, for each such UnresolvedPermission, a new object of the
appropriate class type is instantiated, based on the information in the
UnresolvedPermission. This new object replaces the
UnresolvedPermission, which is removed.

* java.security.BasicPermission

This is a fully implemented abstract class. It extends the Permission class
and can be used as the base class for other permissions that want to
follow the same naming convention as BasicPermission. The name for a
BasicPermission is the name of the given permission (for example, exi t W
set Fact ory, queuePri nt Job, etc.).

BasicPermission is commonly used as the base class for named
permissions (ones that contain a name but no actions list; you either have
the named permission or you don’t.) Subclasses may implement actions
on top of BasicPermission, if desired. The built-in permission classes that

Security APIsinJava2 341

342

subclass Permission through BasicPermission are AWTPermission,
NetPermission, PropertyPermission, ReflectPermission,
RuntimePermission, SecurityPermission and SerializablePermission.

java.io.AWTPermission

This class is for Abstract Windowing Toolkit (AWT) permissions. An
AWTPermission contains a target name, but no actions list; you either
have the named permission or you don't.

The target name is the name of the AWT permission. The possible
AWTPermission target names are: accessd i pboar d, accessEvent Qieue,
l'i stenToAl | AWEvent s, showW ndowWt hout Vér ni ngBanner and

readD spl ayPi xel s.

java.net.NetPermission

This class is for various network permissions. A NetPermission contains a
target name, but no actions list; you either have the named permission or
you don't.

The target name is the name of the network permission. The possible
NetPermission target names are r equest Passwor dAut hent i cat i on,
set Def aul t Aut hent i cat or and speci f yStr eantHandl er.

java.util.PropertyPermission

This class is for property permissions. A property permission consists of a
name and a set of actions.

The name is the name of the property (j ava. hone, os. nane, etc.). The
actions to be granted are passed to the constructor in a string containing a
list of zero or more comma-separated keywords. The possible keywords
are read (for read permission) and wite (for write permission).

Care should be taken before granting code permission to access certain
system properties. For example, granting permission to access the
java.home system property gives potentially malevolent code sensitive
information about the system environment (the Java installation directory).
Also, granting permission to access the user.name and user.home system
properties gives potentially malevolent code sensitive information about
the user environment (the user’s account name and home directory).

java.lang.reflect.ReflectPermission

This is the permission class for reflective operations. A ReflectPermission
is a named permission and has no actions. The only name currently
defined is suppressAccessChecks, which allows suppressing the standard
Java language access checks — for public, default (package) access,

Java 2 Network Security

protected, and private members — performed by reflected objects at their
point of use.

« java.lang.RuntimePermission

This class is for run-time permissions. A RuntimePermission contains a
target name, but no actions list; you either have the named permission or
you don’t. The target name is the name of the run-time permission, for
example set Securi t yManager, cr eat eSecuri t yManager (see 7.5, “Examples of
Security Manager Extensions” on page 206) and queuePri nt Job (see
1.4.1.8, “Modifying the Security Policy on the Client System” on page 20
1.4.2.6, “Modifying the Security Policy” on page 32).

* java.security.SecurityPermission

This class is for security permissions. A SecurityPermission contains a
target name, but no actions list; you either have the named permission or
you don't. The target name is the name of a security configuration
parameter.

Currently the SecurityPermission object is used to guard access to the
Policy, Security, Provider, Signer, and Identity objects.

* java.io.SerializablePermission

This class is for serializable permissions. A SerializablePermission
contains a target name, but no actions list; you either have the named
permission or you don't.

The target name is the name of the serializable permission. Two are the
possible SerializablePermission target names:
enabl eSubcl assl npl enent at i on and enabl eSubsti t uti on.

The Java 2 platform also offers two other permission classes that do not
subclass java.security.Permission. These are PermissionCollection and
Permissions, and they also are found in the java.security package:

* java.security.PermissionCollection

The PermissionCollection class is an abstract class that can be used to
hold a homogenous collection of permissions. Each instance will hold
permissions of the same kind.

 java.security.Permissions

The Permissions class generally holds a heterogeneous collection of
permissions, organized into PermissionCollection objects. Thus, this class
represents a collection of PermissionCollections.

Security APIsin Java2 343

10.7.1 How to Create New Permissions

344

Custom permissions can be created when the built-in permissions in the Java
2 core APIs are not sufficient to meet the needs of a specific program. In such
cases, we can create a new class that extends, directly or indirectly, the
java.security.Permission class. Care should be taken when implementing this
permission’s implies() method.

This new class must then be included in the application package. When the
application's resource management code makes an access control decision,
it calls the AccessController.checkPermission() static method passing a new
Permission object as parameter.

The default SecurityManager class’ checkPermission() method invokes
AccessController.checkPermission(). Therefore, if our program uses the
default SecurityManager class, we can use the
SecurityManager.checkPermission() method instead of
AccessController.checkPermission(). In other words, we can use:

sm checkPer m ssi on(p)

where sm is the SecurityManager object, as shown below:

if (sm!=nul)

sm= System get Securi t yManager () ;
sm checkPer nii ssi on(new My/Per missi on(“target”, "action_list"));

Code should always invoke a permission check by calling the security
manager’s checkPermission() method. Note that, with this mechanism, you
can create a new Permission class without needing to add a new method to
the security manager. In the previous versions of Java, in order to enable
checking of a new type of access, you had to add a new method to the
security manager.

We now see an example of how to implement our own permission class. In
the main program, we check for our custom permission and then try to read
the file D:\itso\textFile\itso.txt, whose contents are shown in Figure 108 on
page 249. We then execute the program with a Policy file that contains
permission entries for MyPermission and FilePermission.

First, we code the Java source files MyPermission.java (that implements
MyPermission, extended from the BasicPermission class) and
PermissionTest.java (that contains the main() method). The following figure
shows the code for the class MyPermission:

Java 2 Network Security

inport java.security.*;
public class M/Pernission extends Basi cPernission
{
publ i c M/Perm ssion(String nare)
{
super (hane) ;
Systemout . println("Constructor M/Perm ssion(String nane) called");
}
public M/Permssion(String nane, String actions)
{
super (hane) ;
Systemout. println("Constructor M/Permssion(String nane, String actions)
called");
}
}

Figure 155. MyPermission.java

This Java file is compiled to the class file MyPermission.class with the
following command:

javac M/Perni ssion. cl ass

When creating a new Permission class we extend java.security.Permission or
java.security.BasicPermission. The difference is that java.security.Permission
defines more complex permissions that require targets and actions, like a file
name and the actions to execute on that file, for example read or write. The
java.security.BasicPermission is much simpler in that we just need to define
the target. This is why BasicPermission is known as the base class for named
permissions, which are the permissions that contain a name but no actions
list. Subclasses may implement actions on top of BasicPermission, if desired.
Another advantage of the BasicPermission class is that, in extending
Permission, it provides an implementation for the Permission.implies()
abstract method.

As you can see in Figure 155, MyPermission extends BasicPermission. Note
that we have called the parent class’s constructor using a call to the super()
method in both our permission class constructors. It is mandatory that both
the constructors be defined. If we defined only one constructor, we would get
an access control exception.

After calling the constructor of the super class, we insert a call to the
System.out.printin() method to log the call to the constructor. This way we can

Security APIsin Java2 345

verify that both the constructors are being called. The printin() statement
must be introduced after the super() call, because the call to super(), if
present, should be the first line in the constructor. The interesting thing here
is that, when this program is run, it executes the printin() statement in both
the constructors even though we used only one of the constructors to
instantiate the object MyPermission. We require the second constructor for
use by the Policy object to instantiate new Permission objects. The source
code of the PermissionTest class shows the instantiation of a MyPermission

object:
inport java.io.*;
inport java.security.*;
publ i c cl ass Perni ssionTest
{
public static void main(String args[])
{
try
{
SecurityManager sm= System get Securit yManager () ;
if (sm!=null)
sm checkPer nm ssi on(new MyPer m ssi on(" Per ni ssi onTest"));
FileinputFile = new File("D\\itso\\textFi le\\itso.txt");
FilelnputStreamfis = new Fil el nput Strean{i nputFile);
I nput St reanmReader isr = new | nput &t reanReader (fis);
Buf f er edReader br = new Buf f er edReader (i sr);
Sring |ineRead;
while ((lineRead = br.readLine()) '= null)
Systemout. println(lineRead);
}
cat ch(Exception e)
{
e.print StackTrace();
}
}
}

Figure 156. PermissionTest.java

This code is compiled to the class PermissionTest.class through the
command:

346 Java 2 Network Security

javac Pernm ssionTest.java

We define the main() method in the PermissionTest.java file. We also get the
SecurityManager, and if the SecurityManager is not null, we check for our
custom permission. The default implementation of the SecurityManager calls
the AccessController.checkPermission() method. Note that the
checkPermission() method accepts a single permission argument and always
performs security checks within the current execution context. The
checkPermission() method determines if the calling thread has permission to
perform the requested operation, based on the security policy currently in
effect. This method quietly returns if the access request is permitted, or
throws a suitable AccessControlException otherwise.

We assume that both the class files PermissionTest.class and
MyPermission.class are stored in the directory D:\itso\ch10. If they were
stored in two different directories, the -cl asspat h option of the j ava command
could be used when running PermissionTest, in order for the application class
path to include both the directories where these files are.

As you can see in Figure 156 on page 346, the PermissionTest class attempts
to read the file itso.txt, stored in D:\itso\textFile.

At this point, we can run PermissionTest without invoking a security manager.
The command to do this is simply:

j ava Perm ssi onTest

This command produces the following output:

Marco Pistoia
Duane Rel | er
Deepak Qupta
M1ind Nagnur
Ashok Ranani

This output confirms that, without a security manager, the program works
even if no special permissions have been granted. Notice that none of the two
constructors for the class MyPermission have been called. The reason for this
is that MyPermission would be instantiated only if the current security
manager is not null.

Now we want to run PermissionTest with the default security manager. The
command to do this is:

java -D ava. security. manager Perm ssi onTest

Security APIsinJava2 347

The default security manager requires that a FilePermission be granted to the
code source of PermissionTest, so that read access to the file itso.txt is
allowed. It also requires that MyPermission be granted to PermissionTest.
Without these permissions, the system would throw an
AccessControlException. For this reason, we add the following permissions in
the user-defined policy file, which by default is ${user.nome}${/}.java.policy*:

grant codeBase "file:/D/itso/chl0/" {
pernmission java.io.FilePermission "D\\itso\\textFle\\itso.txt", "read";
per m ssi on M/Perni ssi on " Perni ssi onTest";

Now, upon running PermissionTest with the default security manager, the
program works as expected and displays the following output:

Qonstructor M/Permission(Sring nane) cal l ed

Qonstructor MPernission(Sring nane, String actions) called
Mirco Pistoia

Duane Rel | er

Deepak Gupta

M1ind Nagnur

Ashok Ramani

This also demonstrates that, when invoking the default security manager,
both the constructors for the class MyPermission are called.

10.7.2 Working with Signed Permissions

In this section we repeat the example shown in 10.7.1, “How to Create New
Permissions” on page 344, but we also demonstrate Java’s capability to
recognize a digital signature applied to a permission class file. As discussed
in 8.4.2, “grant Entries” on page 243, the ability to digitally sign permission
class files is useful for non-standard permissions that are remotely loaded.
The digital signature of a trusted entity ensures that a class has not been
replaced by an imposter class.

Let’s consider the following modification to the user-defined policy file:

4 To find out the value of the system properties, such as user.home and /, refer to Appendix A, “Getting Internal System
Properties” on page 641. Notice that / is a shortcut for file.separator (see Figure 335 on page 642 and Figure 336 on page
643).

348 Java 2 Network Security

keystore ". keystore";

grant codeBase “file:/D/itso/chl0/" {
permssion java.io.FlePermssion "D\\itso\\textHle\\itso.txt", "read";
per mi ssi on MyPer ni ssi on " Perm ssi onTest", signedBy "narco";

h

The rest is the same as in 10.7.1, “How to Create New Permissions” on page
344. Again, we run the PermissionTest class under the default security
manager:

java -D ava. security. manager Perm ssi onTest

However, this time, an exception is thrown on the command line and the
program exits without completing:

Qonstructor MPernission(Sring nane) call ed
java. security. AccessControl Exception: access denied (M/Pernission PermssionTest)
at java. security. AccessCont rol Cont ext . checkPer mi ssi on(Gonpi | ed Gode)
at java. security. AccessControll er. checkPer m ssi on(Gonpi | ed Gode)
at java.lang. SecurityManager . checkPer mi ssi on(Gonpi | ed Qode)
at Pernm ssi onTest . nai n(Conpi | ed Gode)

The reason for this error is that this time the policy now in effect requires that
the permission class MyPermission be signed by the trusted entity marco.

Consider a new scenario. The first part of the scenario is similar to the
process described in 9.3.1, “jarsigner Scenario” on page 280. You may refer
to that section for details.

On a remote machine, the code for MyPermission is written and compiled as
indicated in 10.7.1, “How to Create New Permissions” on page 344. The class
file MyPermission.class is then put into a JAR file, say MyPermission.jar:

jar cvf M/Pernission.jar M/Permssion.class

A signer, whose alias is marco, applies his digital signature on the JAR file
MyPermission.jar. To do this, a key pair for marco must have been defined in
a keystore residing in the remote machine, and the public key must have been
wrapped in a certificate. This can be done by using the - genkey command
associated with the keyt ool utility (see 9.3.1, “jarsigner Scenario” on page
280).

The signature is applied to the JAR file on the remote machine by entering
the following command:

Security APIsin Java2 349

jarsigner M/Perm ssion.jar marco

The signer on the remote machine then sends the signed JAR file
MyPermission.jar to the client machine where PermissionTest is to be run.
The signer also sends his digital certificate exported to a file.

On the local machine, the receiver verifies the received certificate and
imports it into a local keystore. As recommended in 9.3.1, “jarsigner
Scenario” on page 280, the receiver should verify the certificate fingerprints
before accepting to trust it. The receiver should also verify the digital
signature on the JAR file MyPermission.jar. This can be done by using the

j arsi gner command with the -verify option.

At this point, the receiver installs the signed JAR file MyPermission.jar in the
local file system, for example in the same directory where the
PermissionTest.class file is. However, this time it is necessary to add
MyPermission.jar to the application class path, in order for the Java run-time
to find it. The full command to run the PermissionTest program this time is:

java -classpath .; MPermssion.jar -0 ava. security. manager Perm ssi onTest

This time, the test runs to completion because the class MyPermission is
signed correctly and the PermissionTest code has the required permissions.

10.8 How to Write Privileged Code

In 10.1.5, “Access Control APIs” on page 304, we explained why in Java 2,
whenever a resource access is attempted, each class in the execution stack
is checked for permission for that resource access. The security policy would
be ineffective if code with no permissions was able to invoke code with more
permissions and access system resources that it should not access by virtue
of its own protection domain. If any caller in a thread execution stack does not
have permission to the requested resource, the
AccessController.checkPermission() method throws an
AccessControlException.

However, the Java 2 security architecture permits an exception to this rule. If
some code on the thread is granted the requested permission and is marked
as privileged, then none of the previous callers are checked for the
permission. To mark a code as privileged, it is necessary to make a call to the
AccessController.doPrivileged() method®. A piece of trusted code that is

5 In beta versions of Java 2 SDK, Standard Edition, V1.2, the AccessController class did not define a doPrivileged()
method for marking a code segment as privileged. Instead, it implemented two methods, beginPrivileged() and
endPrivileged(), that encapsulated the privileged code. These two methods were deprecated in the final release and
replaced by the doPrivileged() method.

350

Java 2 Network Security

marked as privileged is enabled to temporarily grant other codes in the thread
stack permissions that otherwise would not have been granted by virtue of
their protection domains.

In this section we examine how to make use of the doPrivileged() method.

10.8.1 First Case — No Return Value, No Exception Thrown

If you do not need to return a value from within the privileged block, and if the
privileged block is not supposed to throw any exceptions, your call to
doPrivileged() will look like the following:

sonenet hod()
/1 sone nornal code here...
AccessControl | er. doPrivil eged(new Privi | egedActi on()
public Qpj ect run()
/1 privileged code goes here, for exanple:

System| oadLi brary("awt");
return null; // nothing to return

}
1

/1 sone nornal code here...

\} J

We can also separate the privileged code, calling doPrivileged() without using
an anonymous inner class, as shown next:

class MPrivilegedAction inplenents Privil egedActi on

public ject run()
{

/1 privileged code goes here, for exanple:
System| oadLi brary("awt");
return null; // nothing to return

}
}

sonenet hod()
/1 sone nornal code here...
AccessControl | er. doPrivil eged(new M/Pri vil egedAction());

/1 sone nornal code here...

Security APIsinJava2 351

As you can see, in order to write privileged code you must use the
PrivilegedAction interface from the package java.security. This interface has a
single method, named run(), which returns an Object. Once implemented, the
run() method contains the code that needs the privilege.

The AccessController.doPrivileged() method takes an object of type
PrivilegedAction as an argument and invokes its run() method in privileged
mode.

In the above skeleton, when the call to doPrivileged() is made, an instance of
the PrivilegedAction implementation is passed to it. In general, the
doPrivileged() method calls the run() method from the PrivilegedAction
implementation after enabling privileges, and returns the run() method’s
return value as the doPrivileged() return value. In this particular case, the
return value is ignored as there is nothing to return.

10.8.2 Second Case — Return Value, No Exception Thrown

352

In this case we assume that the privileged block does need to return a value,
but no exceptions are supposed to be thrown.

If a return value is required, we can write the code in the following way:

sonenet hod()
/1 sone nornal code here...
Sring user = (String) Access@ntrol | er.doPrivil eged(new Pri vil egedActi on()
public Qpj ect run()

/1 privileged code goes here, for exanple:
return System get Property("user.nang");

}
b

/1 sone nornal code here...

}

For this case, the same considerations apply as in 10.8.1, “First Case — No
Return Value, No Exception Thrown” on page 351; the doPrivileged() method
calls the run() method from the PrivilegedAction implementation after
enabling privileges, and returns the run() method's return value as the
doPrivileged() return value. The only difference is that in this case the return
value is not null. For example, in the skeleton above, the return value is a
String object. Note that we must cast the value returned by doPrivileged() to
convert it to a String object.

Java 2 Network Security

10.8.3 Third Case — Return Value, Exception Thrown

The last case to consider is if the sensitive action performed in the run()
method could throw a checked exception. A checked exception is one of
those exceptions listed in the throws clause of a method. In this case, you
must use the PrivilegedExceptionAction interface instead of the
PrivilegedAction interface and you must also catch a
PrivilegedActionException in the try{}catch(){} block, as shown in the
following example:

sonenet hod() throws F | eNot FoundBxcepti on
/1 sone nornal code here...
try
{
Filelnput Sreamfis = (Flelnput Sream AccessGntroller.doPrivil eged(new Privil egedExcepti onAct i or
public Qoject run() throws F | eNot FoundException
{
/1 privileged code goes here, for exanple:

return new H | el nput S rean{"soner | €");

}
1
}
catch(Privil egedActi onException e)

throw (H | eNot FoundExcept i on) e. get Exception();
}

/1 sone nornal code here...

N /

Notice that the getException() method for PrivilegedActionException returns
an Exception object. Therefore, you must cast this Exception object to the
specific exception to be thrown, as only checked exceptions (those in the
throws clause of the method) will be wrapped in a PrivilegedActionException.
In effect, PrivilegedActionException is a wrapper for an exception thrown by a
privileged action. In this example, the exception that needs to be thrown is a
FileNotFoundException.

10.8.4 Accessing Local Variables

If you are using an anonymous inner class, any local variables you access
must be final. For example:

Security APIsin Java2 353

sonenet hod()

{

/1 sone nornal code here...

final Sring lib ="ant";
Access@ontrol | er. doPrivil eged(new Pri vi | egedActi on()

public Qpj ect run()
{
/1 privileged code goes here, for exanple:
System| oadLi brary(lib);
return nul | ;
}
b

/1 sone normal code here...

\} J

The variable lib used must be declared final if it is to be used inside the
privileged block. For those cases in which a variable cannot be declared final
(because it gets modified, for example) a final variable can be set to the
non-final variable’s value and then used immediately within the privileged
block. For example:

t sonenet hod()

{

/1 sone nornal code here...
Sring lib;

// W can't nake lib final because it gets set miltiple tines

/] So, we create a final Sring that we can use inside of the run() nethod
final Sring fLib =1ib;

Access@ontrol | er. doPrivil eged(new Privi | egedActi on()

public Qoj ect run()
{
/1 privileged code goes here, for exanple:
System| oadLi brary(flib);
return nul | ;
}
s

/1 sone nornal code here...

\} J

10.8.5 An Example of Privileged Blocks Usage
Let's see an example of how to use privileged blocks.

354 Java 2 Network Security

We modify the sample program Count (see Figure 106 on page 248 and
Figure 107 on page 249) so that the sensitive action it performs is
encapsulated within a privileged block. This new program is called CountFile,
and its function is to count the characters of a file and print them to standard
output. The file we give it as input is itso.txt (see Figure 108 on page 249),
stored in the directory D:\itso\textFile. This file name is hardcoded in the Java
file, but it would be very easy to modify the code of the program so that the
user is prompted to enter the file name on the command line.

inport java.io.*;
inport java.security.*;

class M/Privil egedExceptionAction inplenments Privil egedExcepti onAction

{
public oject run() throws Fil eNot FoundException

{
FilelnputStreamfis = new Filelnput Strean{"D \\itso\\textFile\\itso. txt");
try
{
int count = O;
while (fis.read() !=-1)
count ++;
Systemout.printIn("H! W counted " + count + " chars.");
}
catch (Exception €)
{
Systemout. println("Exception " + €);
}
return null;
}
}
public class GountFile
{
public GountFile() throws Fi | eNot FoundException
{
try
{
AccessControl | er. doPri vi | eged(new M/Pri vi | egedExcepti onAction());
}
catch (Privil egedActi onException e)
{

Figure 157. (Part 1 of 2). CountFile.java

Security APIsin Java2 355

throw (F | eNot FoundExcepti on) e. get Exception();

Figure 158. (Part 2 of 2). CountFile.java

Next we create a class file in a separate directory D:\itso\newdir which just
instantiates the CountFile class. The name of this class file is
CountFileCaller.class, and its code is shown in the following figure:

public class GountFileCaller
{
public static void main(String[] args)
{
try
{
Systemout. printIn("lInstantiating CountFile...");
CountFile cf = new CountFile();
}
cat ch(Exception e)
{
Systemout. println("" + e.toString());
e. print SackTrace();
}
}
}

Figure 159. CountFileCaller.java

We compile CountFile.java in the directory D:\itso\ch10 and
CountFileCaller.java in the directory D:\itso\newdir. These are the commands
we issue, respectively:

javac QountFile.java
javac -classpath .;D\itso\chl0 GCountFileCaller.java

CountFileCaller invokes CountFile, but the two files are not in the same
directory. Hence it is necessary to specify the local directory and the path to
CountFile in the application class path.

Notice also that compiling CountFile.java produces two class files:
CountFile.class and MyPrivilegedExceptionAction.

356 Java 2 Network Security

CountFileCaller indirectly attempts to read the file D:\itso\textFile\itso.txt. To
do so, it would need a special FilePermission. However, we are going to
demonstrate to you that only the CountFile class needs the specified read
permission. Since CountFile invokes the doPrivileged() method,
CountFileCaller is enabled to access the file itso.txt in read mode as well.

The read permission to CountFile is granted by adding the following lines to
one of the current policy files:

grant codeBase "file:/D/itso/chl0/" {
pernmission java.io.FlePermission "D ${/}itso${/}textH | e$/}itso. txt", "read";
b

Then, from the directory D:\itso\newdir, we run CountFileCaller. Of course, we
invoke the default security manager, through the option

-D ava. securi ty. nanager. Without this option, the program would work
regardless of permissions and privileges, because it is local, and it would not
make sense to use privileged blocks. However, it is also necessary to specify
an application class path on the command line, because the file CountFile,
which is invoked by the CountFileCaller class, is located on a different
directory. So the full command to launch this application is:

java -classpath D\itso\chl0 -D ava. security. manager CountF | eCal | er

The results are as expected:

Instantiating GountFile...
H! Ve counted 70 chars.

This demonstrates that the CountFileCaller class has been temporarily
granted the read permission it would not have had by virtue of its own
protection domain.

If the doPrivileged() method in the CountFile class had not been called, when
the CountFile class tried to access the itso.txt file, the security manager
would have checked that CountFile as well as the calling class
CountFileCaller had the permission to read the file and would have thrown an
exception. This can easily be verified by replacing the call to CountFile with a
call to Count (see Figure 106 on page 248 and Figure 107 on page 249) in
the code of CountFileCaller. Count does not make use of the doPrivileged()
method.

However, since the CountFile class calls the doPrivileged() method, the
security manager only checks if CountFile has permission to read the file, and
the permission checking stops at this point in the thread stack. Whether or not

Security APIsinJava2 357

the CountFileCaller class is granted read permission to the file itso.txt does
not matter when CountFile calls doPrivileged().

Notice if the above permission to the CountFile class is removed from the
policy file, CountFile itself would not be able to read the file and consequently
CountFileCaller would be denied the read access. The output in this case
would be as shown:

Instantiating GountFle...
java. security. AccessQontrol Exception: access denied (java.io. H|ePermssion
D\itso\textFile\itso.txt read)
java. security. AccessQntrol Exception: access denied (java.io. H|ePernssion
D\itso\textFile\itso.txt read)
at java. security. AccessCont rol Qont ext . checkPer i ssi on(Gonpi | ed Gode)
at java.security. AccessControl | er. checkPer m ssi on(Gonpi | ed Code)
at java.lang. SecurityManager . checkPer m ssi on(Gonpi | ed Gode)
at java.lang. SecurityManager . checkRead(Securi t yManager . j ava: 864)
at java.io.FlelnputSream<init>F el nput & reamj ava: 65)
at M/Privil egedExcepti onActi on. run(Gonpi | ed Code)
at java. security. AccessControll er. doPrivil eged(Nati ve Method)
at QuntFle. <init>CountF le.java: 30)
L at QountFleCller.nmain(GuntFleCaller.java: 8))

10.8.6 General Recommendations on Using the Privileged Blocks

358

Be very careful in your use of the privileged construct, and remember to make
the privileged code segment as small as possible.

Also note that the call to doPrivileged() should be made in the code that has
direct need to enable its privileges. Do not be tempted to write a utility class
that itself calls doPrivileged() as that could create security holes.

Java 2 Network Security

Chapter 11. The Java Plug-In

The Java Plug-in enables developers and users to direct Java applets or
JavaBeans components on their Web pages to use the Sun’s Java Runtime
Environment (JRE) in place of the browser’s default Java Virtual Machine
(JVM). This software can be downloaded for free from the Java Soft Web site
http://www.javasoft.com, and it comes also with the installation of JRE 1.2.x
and Java 2 SDK, Standard Edition, V1.2.x.

The Java Plug-in can be used with the following browsers:

« Netscape Navigator 3.0 or higher on Windows 95, Windows 98, Windows
NT and Solaris

¢ Microsoft Internet Explorer 3.02 or higher on Windows 95, Windows 98
and Windows NT

Sun Java 2 SDK, Netscape Communicator and Microsoft Internet Explorer
follow different methods for distributing signed Java code over the Web:

« If the applet is to run on Netscape's JVM implementation, then the code
should be put in a Java Archive (JAR) file, signed using a VeriSign
Certificate for Object Signing.

The signature format for Netscape is RSA, and the message digest
algorithm used is Secure Hash Algorithm (SHA)-1.

« If the appletis to run in a pure Sun Java 2 SDK environment, the code
must be put in a JAR file as well, but it is signed using a self-signed
certificate created by the keyt ool utility. The signature format in this case
would be Digital Signature Algorithm (DSA) and not RSA, unless you add
the providers to support RSA.

The message digest algorithms supported on this platform by default are
SHA-1 and MD5.

« If the applet is to run on Microsoft Internet Explorer, the code is putin a
CARB file for Internet Explorer and is signed using a VeriSign Certificate for
Authenticode. Note that this certificate is different from the one used with
Netscape.

The signature format in this case is RSA, while the message digest
algorithm used on this platform is MD5.

These differences generate several problems for applet developers who want
to write code that is portable across the platforms. Developers must sign and
package their code in three different ways. They often have to deploy three

© Copyright IBM Corp. 1997 1999 359

different versions of any page hosting a trusted (or even untrusted) Java
applet.

Moreover, each platform has its own way of determining policies and
permissions:

e Sun Java 2 SDK uses keystore files for storing users’ private keys and
certificates (see 8.2, “Keystores” on page 230). Certificates of certification
authorities (CAs) are located in a file called cacerts (see 8.2.1, “The
Certificates KeyStore File cacerts” on page 233).

* Netscape Navigator uses a cert7.db certificate database file and a
certificate server.

« Microsoft Internet Explorer uses Microsoft system and user stores.

All of these implementations are incompatible with each other. Signatures
applied by one cannot be verified by another. Hence, developers must also
support three different types of certificate databases and security policy
configurations.

The Java Plug-in solves these problems by allowing the codes signed with the
Java 2 method to be used with Netscape Communicator and Microsoft
Internet Explorer. This implies that you can implement your signed code only
using the Java 2 SDK methods and distribute your code to everyone.

This has some disadvantages:

« It supports the Java 2 SDK methods only. The signature algorithm must be
DSA. Internet Explorer and Communicator use the RSA algorithm to
produce signatures, and this is stronger than the DSA algorithm used by
the Java 2 SDK.

* Netscape Communicator and Microsoft Internet Explorer certificate and
key databases are not supported. A user will have to configure a Java 2
SDK certificate and key database.

However, these appear as minor problems compared to the benefits in
portability and ease of implementation when using the Java Plug-in. Overall,
the Java Plug-in is a very useful tool, which enables you to use the same
signed applet on the three major platforms: Navigator, Internet Explorer and
Java 2 SDK.

11.1 Main Features of Java Plug-In

The Java Plug-in delivers several key capabilities to people using Internet
Explorer and Navigator:

360 Java 2 Network Security

1. It provides the full Java 2 SDK, Standard Edition, V1.2 support to the
applets running on Netscape and Internet Explorer. It allows developers to
use the features of the Java 2 SDK, such as JavaBeans enhancements,
security, graphical support, etc. For example, the Java Plug-in allows Java
2 SDK signed classes to be loaded into the browser and be subject to the
Java 2 security model. This is important, because historically, after
JavaSoft's publication of a new version of Java, browser vendors have
taken several months to incorporate the changes in their browsers’ JVM
platforms. The result was that many applet developers had to continue to
code programs in an old-style fashion that was compatible with the
browsers’ old JVM platforms.

2. It provides an architecture that makes it easy for new Java features and
functionality to be incorporated. With the Java Plug-in, as soon as
JavaSoft produces a new version of the Java 2 SDK with new features, the
new capabilities become immediately available on the browser systems.

3. It provides free public download and easy installation. When browsers
encounter a Web page that specifies that the Java Plug-in is required, if
the Plug-in is not yet installed the browser will immediately prompt the
user to download and install it from the Web site
http://java.sun.com/products/jdk/1.2/jre/download-windows.html, as shown
in the next figure:

PluginNotLoaded x|

Information ok thiz page requirez a plug-in for:
application/s-java-applet;verzsion=1.2

M avigator can retrieve the plug-in for you fram;
hitp: /¢ java. sun.comdproducts/plugind . 24 plugin-install. kil

W'hat would pou like to do?

Get the Plug-n Cancel

Figure 160. Plug-in Not Loaded Message

On clicking the Get the Plug-in button, a download page is opened in a
new window. Once the Java Plug-in is downloaded and installed, any time
a Web site requires the Java Plug-in, this window will not appear and the
Java Plug-in will start immediately.

The Java Plug-in 361

Similarly, on opening a Web page requiring the Java Plug-in with Internet
Explorer, the user will be asked whether to download an ActiveX control
that is digitally signed by Sun Microsystems, Inc. and verifiable by the
associated VeriSign Class 3 certificate:

Security Warning |

Do you want toingtall and rn “Jawva Plug-in 1.2" signed on
11/25/98 12:51 PM and distributed by

Sun Microzystems, lnc.

Publizber authenticity verified by YenSign Commercial
Software Publishers Ca

Caution: Sun Microsypstems, Inc. asserts that this content iz
zafe. You should only install e this content if wou boust
Sun Microspstems, Inc. to make that aszertion.

[T Always trust content from Sun Microsystems, ne.

Tes Ha Mare [nfo

Figure 161. Internet Explorer Security Warning for Java Plug-in

You can view the details on Sun Microsystems by clicking on the button
More Info. If you click on Yes, this means that you accept to download the
code and install it. The following window appears:

362 Java 2 Network Security

: Select Java[TM] Plugin Installation ... |
Fleaze zelect the language, region and the
nearest location to download the installation.

Locale . [(NREH=yalE

Region: I LISa, j

Ayailable Locations:

154, JavaSoft/Sun Microspstems, Cuperting, T4, [1].

Inatall I

Figure 162. Java Plug-in Install Screen by Internet Explorer

If the user clicks on Install, Internet Explorer will quickly download a small
ActiveX control from Sun’s Web site. This will handle downloading the
main Java Plug-in ActiveX control and Sun’s JRE. It will then download the
files automatically and install them. Once the Java Plug-in is downloaded,
any time a Web site requires the Java Plug-in, none of these windows will
appear and the Java Plug-in will start immediately.

4. To use the Java Plug-in, Web pages need to be modified a little, as
explained in 11.3, “Java Plug-In HTML Changes” on page 364. The Java
Plug-in HTML Converter is a new tool available for this purpose; it is quite
easy to use and helps you do the changes automatically, as we will see in
11.3.5, “Java Plug-in Software HTML Converter” on page 369.

The Java Plug-in 363

11.2 What Does the Java Plug-In Do?

The Java Plug-in enables Web page authors to specify Sun’s JRE in place of
the default browser JRE for a given Web page. However, it does not replace
or modify the browser's underlying JVM. This allows the developers to
execute the Java 2 based applets with full support for all the features of Java
2.

In Netscape Navigator, the Java Plug-in runs its JRE inside the browser
making use of Netscape’s plug-in architecture. A Web page must use the
<EMBED> tag in place of the <APPLET> tag to indicate that the applet should run
with the Java Plug-in.

In Microsoft Internet Explorer, the Java Plug-in runs inside the browser
through the browser’s extension mechanisms using Microsoft's COM/ActiveX
technology. A Web page must use the <BIECT>tag in place of the <APPLET>tag
to indicate that the applet should run with the Java Plug-in.

11.3 Java Plug-In HTML Changes

To make the browsers run the Java Plug-in, some Web page changes are
required. Normally we use an HTML <APPLET> tag in the following form:

<APPLET ode="XYZApp. cl ass" Codebase="htni/" A i gn="basel i ne"
Wadt h="200" Hei ght ="200">
<PARAM Nane="r edbook" Val ue="JavaSecurity">

</ APPLET>

An <APPLET> tag specifies the information about the applet, while the <PARAV>
tags between the <APPLET> and </ APPLET> tag pair store the applet information.

The <APPLET> tag is inadequate to use Java Plug-in, because it would force the
browser itself to render the applet, and the browser would not use the Java
Plug-in to do this. For this reason, new tags are necessary. We must use the
<CBJECT> or the <BEMBED> tag — the former being for Internet Explorer and the
latter for Netscape Navigator — in place of the <APPLET> tag.

11.3.1 Changes Supported by Navigator

364

As stated, when the Java Plug-in must be used on Netscape Navigator, the
<APPLET>tag must replaced by the <eMBED> tag in order for the browser to
recognize that the Java Plug-in is required.

For example, let's say that the HTML code using the <APPLET> tag is:

Java 2 Network Security

<APPLET Code="|BM cl ass" Codebase="htni/" Wdth="200" Hei ght="200">
<PARAM Nane="r edbook" Val ue="JavaSecurity">
No Java 2 support for APPLET

</ APPLET>

Figure 163. HTML Code Using the <APPLET> Tag

Then the corresponding code using the <eEMBED> tag will be:

<EMBED Type="appl i cati on/ x-j ava- appl et ; ver si on=1. 2" Wdt h="200" Hei ght ="200"
Code="1BM cl ass" GCodebase="htnm /" redbook="JavaSecurity"
P ugi nspage="http://j ava. sun. con product s/ pl ugi n/ 1. 2/ pl ugi n-instal | . ht m ">
<NCEMBED>
No Java 2 support for APPLET
</ NCEVMBED>
</ EMBED>

Figure 164. HTML Code Using the <EMBED> Tag

As you can see, the parameters remain essentially the same. However they
all are now defined inside the <EMBED> tag itself.
Note that there are new attributes inside the <EMBED> tag:

« The Type attribute defines the type of application (applet or bean).

« The Pluginspage attribute points to the Java Plug-in download page on the
JavaSoft Web site. The value of the Pluginspage attribute is used when
the Java Plug-in is not installed on a particular system.

The <PARAM- tags that were inside the <APPLET> tag are also put inside the new
<EMBED> tag.

11.3.2 Changes Supported by Internet Explorer

The <APPLET> tag is replaced by the <OBIECT>tag in Microsoft Internet Explorer,
in order for the browser to recognize that the Java Plug-in is required.

Let’s consider again an <APPLET> tag shown in Figure 163. Then the
corresponding <CBJECT> tag will be:

The Java Plug-in 365

<CBJECT d assi d="cl si d: 8AD9C840- 044E- 11D1- B3E9- 00805F499C03" W dt h="200" Hei ght ="200"
Qodebase="ht t p: //j ava. sun. com product s/ pl ugi n/ 1. 2/jinstal | - 12-w n32. cab#Ver si on=1, 2, 0, 0">
<PARAM Nane="Code" Val ue="1BM cl ass">

<PARAM Nare="Codebase" Val ue="htm /">

<PARAM Nane="Type" Val ue="appl i cati on/ x-j ava- appl et ; ver si on=1. 2" >

<PARAM Nane="r edbook" Val ue="JavSecurity">

No Java 2 support for APPLET

</ ABIECT>

Figure 165. HTML Code Using the <OBJECT> Tag

The Classid attribute indicates the class identifier of the Java Plug-in and
should be the same in every HTML page. The Codebase attribute inside the
<CBJECT> tag points to the Java Plug-in download page. The Codebase
parameter of the <APPLET> tag is now provided inside the <PARAM> tags. In
addition, all the parameters that were initially inside the <APPLET> tag are now

defined in the <PARAM> tags.

Note that if the original <APPLET> tag already has attributes like Type,
Codebase, Code, Object or Archive in the <PARAM> tags, mapping it to the
<CBJECT>tag will cause problems, because duplicate parameter names will
occur. To avoid this, Java Plug-in also supports another set of param names,

as follows:
Table 11. Parameter Names When Using the <OBJECT> Tag
Original Parameter Names New Parameter Names
Type java_type
Codebase java_codebase
Code java_code
Object java_object
Archive java_archive

11.3.3 Changes Supported by Both Navigator and Internet Explorer

366

Most pages on the Web are meant to be launched by both browsers Netscape
Navigator and Microsoft Internet Explorer. In that case, you want your HTML
code to be compatible with both platforms. This is possible, as shown by the
following HTML code:

Java 2 Network Security

<CBJECT d assi d="cl si d: 8AD9C340- 044E- 11D1- B3E9S- 00805F499093" W dt h="200" Hei ght ="200"

<PARAM Nane="Code" Val ue="1BM cl ass">
<PARAM Nare="Codebase" Val ue="htm /">
<PARAM Nane="Type" Val ue="appl i cati on/ x-j ava- appl et ; ver si on=1. 2" >
<PARAM Nare="r edbook" Val ue="JavaSecurity">
<COMMENT>
<EMBED Type="appl i cati on/ x-j ava- appl et ; ver si on=1. 2" wi dt h="200" hei ght =" 200"
code="1 BM cl ass"
Codebase="htm /" redbook="JavaSecurity"
P ugi nspage="http://java. sun. con product s/ pl ugi n/ 1. 2/ pl ugin-instal | . ht m ">
<NCEMBED>
</ COMMENT>
No Java 2 support for APPLET
</ NCEMBED>
</ EMBED>
</ ABIECT>

Qodebase="ht t p: //j ava. sun. com product s/ pl ugi n/ 1. 2/jinstal | - 12-w n32. cab#Ver si on=1, 2, 0, 0">

Figure 166. HTML Code Supported by Both Navigator and Internet Explorer

Notice that the <OOMMENT> tag is a special HTML tag understood only by
Internet Explorer. Whatever is encapsulated between the <GCOWENT> and
</ COWENT> tag pair is considered as a comment by Internet Explorer and

therefore ignored. On the other hand, Navigator does not understand the

<CBJECT> and <COMMENT> tags. So effectively both browsers are able to read the

information they need.

11.3.4 All the Web Browsers

If a different browser loads this page, the Java Plug-in should not be
activated, because it would not be supported. Therefore, we need to put
some checks in the HTML code, as shown next:

<l-- The follow ng code to be specified at the begi nning of the <BODY> tag. -->
<SCR PT LANGQUAGE="JavaScri pt"><! - -
var _info = navigator.userAgent; var ns = fal se;
var _ie = (_info.indexth ("MJIE') > 0 & _info.indexC("Wn") >0
&% _info.indexd ("Wndows 3.1") < 0);
/] --></ SCR PT>
<COMVENT><SCR PT LANGUAGE="Javascript 1. 1" ><! - -
var _ns = (navigator. appNane. i ndex™ (" Net scape") >= 0
& ((_info.indexdF ("Wn") > 0 & _info.index(h("Wnl16") < O
&% java. | ang. Syst em get Property("os. version").indexd ("3.5") < 0)
|| _info.indexCr("Sun") > 0));

Figure 167. (Part 1 of 2). HTML Code Supported by All the Web Browsers

The Java Plug-In

367

/] --></ SCR PT></ COMVENT>

<l-- The foll owing code shoul d be repeated for each APPLET tag -->
<SCR PT LANGQUAGE="JavaScri pt"><! - -
if (_ie ==true) docunent.witeln(’
<CBJECT
A assi d="cl si d: 8ADACB40- 044E- 11D1- B3E9- 00805F499D93" W dt h="200" Hei ght ="200"

Qodebase="htt p: //j ava. sun. cond product s/ pl ugi n/ 1. 2/ j i nst al | - 12-wi n32. cab#Ver si on=1, 2, 0, 0" >
<NCEMBED><XMP>') ;
else if (_ns == true) docunent.witeln(’
<EMBED Type="appl i cati on/ x-j ava- appl et ; versi on=1. 2" Wdt h="200" Hei ght =" 200"
Qode="1BM cl ass" Codebase="htm /" redbook="JavaSecurity"
M ugi nspage="http://j ava. sun. coni product s/ pl ugi n/ 1. 2/ pl ugi n-i nstal I . ht m ">
<NCEMBED><XWP>") ;
[--></ SCR PT>
<APPLET code="1BM cl ass" codebase="htnm /" Wdt h="200" Hei ght ="200">
</ XwP>
<PARAM Nare="j ava_code" Val ue="|BM cl ass" >
<PARAM Nare="j ava_codebase" Val ue="htnm /">
<PARAM Nare="j ava_t ype" Val ue="appl i cati on/ x-j ava- appl et ; ver si on=1. 2" >
<PARAM Narre="r edbook" Val ue="JavaSecurity">
No Java 2 support for APPLET
</ APPLET></ NCEMBED></ EMBED>
</ GBJECT>

<l--
<APPLET Code="|BM cl ass" Codebase="htni/" Wdth="200" Hei ght ="200">
<PARAM Narre="r edbook" Val ue="JavaSecurity">
No Java 2 support for APPLET
</ APPLET>

Figure 168. (Part 2 of 2). HTML Code Supported by All the Web Browsers

The initial section is provided at the beginning of the <BCDY> HTML tag. It is
used to determine the browser type and the client platform. This operation is
performed by using JavaScript. Based on the browser and the platform, only
one among the <BMBED>, <CBJECT> and <APPLET> tags is considered:

* Netscape Navigator will consider only the <EMBED> tag.
« Microsoft Internet Explorer will consider only the <CBJIECT> tag.

« Any other browser will consider only the <APPLET> tag.

368 Java 2 Network Security

11.3.5 Java Plug-in Software HTML Converter

The Java Plug-in Software HTML Converter is a free tool that can be
downloaded from the JavaSoft Web site http://www.javasoft.com. It is used to
convert traditional HTML files to HTML files that incorporate the use of the
Java Plug-in. This tool is first downloaded as a ZIP file, which must then be
extracted. You run it with the command:

j ava HTM.Convert er
This opens a GUI-based tool which can be used to convert HTML files. This is

what the original screen looks like:

iﬁJava[TH] Plug-in HTML Converter
File Edit Help

i®) Al Files in Folder: |D:1deepaMHTMLCDnV | Browse...

Matching File Names:|*.htm|, *htm, *.asp |

[¢] Include Subfolders

() One File:

Backup Files to Folder: |D:1deepalﬂHTMLCnnv_ElAK | Browse...

Template File: |Standard ({IE & Navigator) for Windows & Solaris Onj

Convert...

Figure 169. Java Plug-in Software HTML Converter

This tool gives you the option of changing a particular file or an entire
directory (including its subdirectories). It also has four templates to change
for Netscape Navigator, Microsoft Internet Explorer, both of them or for all
browsers, as explained in the previous sections. You also have an option to
use your own templates.

The converter backs up your original file in the directory you specify so that
you can revert back to your original copy. It also keeps a log of the operations
in a log file.

The Java Plug-in 369

11.4 Java Plug-In Control Panel

The Java Plug-in Control Panel enables you to change the default settings
used by the Java Plug-in at startup. All applets running inside an instance of
the Java Plug-in will use these settings. On a Windows system, the icon for
the Java Plug-in Control Panel is by default created in the Start menu when it
is installed.

Once you launch the Java Plug-in Control Panel, you will see three tabs in the
Control Panel labeled Basic, Advanced and Proxies. You can use them to
enter different panels, and configure the Java Plug-in. Once you have made
all the changes, you can save your settings by clicking on the Apply button.
The Reset button restores the original settings.

11.4.1 The Basic Panel

The Basic panel is brought up by default and it is shown in the following
figure:

E&f’,%.lahra[TH] Plug-in Properties |

IBasi[: |Amranced rPruxies |

[vl] Enable Java Plug-in

[_] Show Java Console
[v] Cache JARS in memory

Java Run Time Parameters

Reset

Figure 170. Basic Panel

The Basic panel has the following settings:

370 Java 2 Network Security

e Enable Java Plug-in

This enables the Java Plug-in to run applets and JavaBeans components.
If this box is unchecked, the Java Plug-in will not be activated during any
browser session and it will not be allowed to run any applets or beans. In
that case, when a page that requires the Java Plug-in is loaded, a
message appears saying:

Java i s not enabl ed
* Show Java Console

When this option is selected, the Java Plug-in Java Console is
automatically brought up each time the Java Plug-in is activated. The Java
Console is a very useful tool, especially for debugging purposes, because
it displays the information sent to System.out and System.err.

Notice that the Java Plug-in Java Console is different from the browser
Java console, because the browser Java Console is associated with the
browser JVM, while the Java Plug-in Java Console is associated with the
JVM used by the Java Plug-in.

e Cache JARs in memory

This option is used to cache and reuse applet JAR files that have
previously been loaded, in order to ensure an efficient use of memory. You
should leave this option unchecked if you are debugging an applet or are
always interested in loading the latest applet classes.

* Network Access

This sets the network access you want to grant your running applets. For
example, you can restrict network access so the applet cannot make any
network calls, you can restrict the access only to the host that served the
applet itself or you can grant an applet unrestricted access to the network.
This last option would be a security exposure.

* Java Run Time Parameters

You can override the Java Plug-in default startup parameters by specifying
custom options. The syntax is the same as the parameters to the j ava
command line invocation, with some restrictions. For example, the

- Xboot cl asspat h option is not supported (as it is a non-standard option of
the j ava command), but you can use the -cp option to alter the class path
(see 3.4, “New Class Search Path” on page 83).

11.4.2 The Advanced Panel
The Advanced panel has the following appearance:

The Java Plug-in 371

E"gﬁ.lava[TH] Plug-in Properties

rBasi[: Advanced |Pruxies |

Java Hun Time Emdronment

Use Java Plug-in Default -

[¥| Enable Just In Time Compiler JIT path | symcjit

Debug Settings

[_| Enable Debug

Reset

Figure 171. Advanced Panel

It offers several configuration options:
e Java Plug-in Default

This is a list box which lists all the JREs installed; you can force the Java
Plug-in to run with any of them by choosing it here. By default, the Java
Plug-in has JRE 1.2.x selected. This is the first option in the list box. There
is also an option Other..., in which you can specify JVMs not detected by
the Java Plug-in. In this case, the Path text box is enabled and you must
specify the Path to the JRE you want the Plug-in to use.

¢ Enable Just In Time Compiler

This option is available for the Win32 platform only. It enables the
just-in-time (JIT) compiler. If you select this option, a path must also be
specified; as you can see in Figure 171 on page 372, the default JIT path
is symcjit. The JIT compiler must be located in the bin directory for the
JRE selected in the Java Plug-in Default list box.

¢ Enable Debug

This option is available on Internet Explorer only. It enables debugging if
Internet Explorer is being used. The debug port must be specified in the

372 Java 2 Network Security

Debug Port text box; the default is port 2502. When you run the debugger
inside Internet Explorer, a window will pop up with the debugger password.

11.4.3 The Proxies Panel
The Proxies panel has the following appearance:

Eg,i.lahra[TH] Plug-in Properties

(Basi[: rAMnced IPruxies

[¥l Use browser settings

Proxy Settings
Type Proxy Address Port

Reset

Figure 172. Proxies Panel

This panel has the following settings:
« Use browser settings

If this box is checked, the Java Plug-in uses the browser proxy settings.
You can override the default settings by unchecking this check box, then
completing the proxy information beneath the check box. You can enter
the proxy address and port for each of the supported protocolsl.

Certain situations, such as mobile users connecting to the company
through a modem, require a direct connection to the intranet environment.
Proxies should not be used in these cases. Both Internet Explorer and
Navigator support direct connection in the browser. Java Plug-in

1 Currently, the Java Plug-in only supports HTTP, FTP, Gopher and SOCKS V4 protocols through the proxy server and
does not support SSL.

The Java Plug-in 373

recognizes and supports direct connection when you choose it in the
browser.

« Same proxy server for all protocols

If you want to override the proxy settings of the browser and use the same
address and port for all the protocols, then enter the address and port
once and check this box.

11.5 Java Plug-In Security Scenario

Java Plug-in supports the security model of the JRE configured in the
Advanced panel (see Figure 171 on page 372). In particular, it supports the
Java 2 security model when the version of the JRE selected is 1.2 or later. In
this case, we can use the policy and security file to monitor permissions. The
applets are downloaded into the Java Plug-in and run under the security
manager.

11.5.1 First Step — Without Using the Java Plug-in

374

Let’s consider the following HTML file, called plugin.html:

<HTM.>
<HEAD>
<TlI TLE>Testing for Java P ug-in</ Tl TLE>
</ HEAD>

<BCDY>

OK, Hereis the applet that should run.

<APPLET Code="App.class" WIDTH=150 HEIGHT=25></APPLET>

And was it successful?

</BODY>

<HTML>

Figure 173. plugin.html — Basic Version

Before running this HTML file, we need to provide the App.class file, which is
required by the <APPLET> tag. We write the App.java code, shown in Figure 174
on page 375. The class file it defines attempts to access a file in read mode.
The file in question is itso.txt, stored in the directory D:\itso\textFile (see
Figure 108 on page 249). If this access is successful, it prints the following
message on the browser screen:

Java 2 Network Security

Fil e was accessed

Otherwise, an error message is printed on the browser’s Java Console. The
code for the App applet is shown in the following figure:

inport java.io.*;
inport java.applet.*;
inport java.aw . @ aphics;
public class App extends Appl et
{
publ i c void pai nt (G aphics g)
{
try
{
FilelnputStreamfis = new Fil el nput Strean{" D \\itso\\textFile\\itso.txt");
g.drawstring("Fi |l e was accessed", 10, 10);
}
catch (Exception e)
{
Systemout. println("Exception caught: " + e.toString());
}
}
}

Figure 174. App.java

This code is compiled by launching the command:

javac App.java

We store the HTML file and the associated applet class file in the home
directory of a test Web server machine, and then invoke the HTML file from a
client machine running Netscape Navigator. The output is as expected: the
applet is not allowed to access the file and the successful message is not
displayed:

The Java Plug-in 375

376

Testing for Java Plug-in - Netscape
File Edit “iew Go Communicator Help

'%@@\aﬁadﬂ

: Black Fopward Reload Home Search Metzcape Print Security
v w!-.- Bookmarks \J_& Go to:Ihttp:f'f'www.test.com.-’plugin.html j ﬁthat's Related
J%InstantMesxage Wiebh ail Cantact Peopls ‘ellow Pages Download |

0K, Here’s the applet that should run.

And was it successul?

= == [

Figure 175. Netscape Navigator Output Screen

It is possible to understand the reason for this failure by opening the Java
Console, which registers a netscape.security.AppletSecurityException:

Java 2 Network Security

. Java Console M =] E3
Metscape Communications Corparation -- Java 1.1.4 AI

Type ' for aptions.

Symantec Javal ByteCode Compiler Wersion 210,065

Copyright (C) 1996-97 Symantec Carporation

Exception caught: netscape.security AppletSecurityException: security.checkr

J | _"ILI
Clearl Close |

Figure 176. AppletSecurityException on the Java Console

What happens here is that we have tried to run this applet on the JVM 1.1.5
provided by Netscape Communicator V4.5. In the Java Development Kit
(JDK) 1.1 security model, a remote applet is not allowed to read files in the
local file system, hence an AppletSecurityException is thrown.

11.5.2 Second Step — Using the Java Plug-in
Next, we modify the HTML file plugin.html to enable the Java Plug-in, as

shown:
<HTM_>
<HEAD>
<TlI TLE>Testing for Java P ug-i n</ Tl TLE>
</ HEAD>

Figure 177. (Part 1 of 2). plugin.html — Java Plug-in Version

The Java Plug-in 377

<BCDY>
K, Here's the applet that should run.

<BEMBED Type="appl i cati on/ x-j ava- appl et ; versi on=1. 2" java_code = "App.cl ass
Wdth = 150 Height = 25
pl ugi nspage="http://java. sun. coni product s/ pl ugi n/ 1. 2/ pl ugi n-instal | . ht mi ">
<NCEMBED>
</ NCEVBED>
</ EMBED>

<l--
<APPLET QCDE = "App.class" WDIH = 150 HEEGHT = 25 >
</ APPLET>
-->

And was it successful ?

</ BCDY>

</ HTM>

Figure 178. (Part 2 of 2). plugin.html — Java Plug-in Version

378

If we load this Web page in the Netscape Navigator browser, the results we
get are still the same: the applet is not allowed to access the file and the Java
Console registers an exception. However, there are some differences. This
time the applet is running in the JRE 1.2 invoked by the Java Plug-in, and the
reason why the applet is not allowed to access the file is because we have not
granted it the necessary permission. This is demonstrated also by the
exception registered on the Java Console:

'-Ea.lava Console M[=]
Java(Thiy Plug-in *I

Jsing JRE version 1.2.1
Jser home directary = COWNIMMNTIProfilesipistaia. 000
Proxy Configuration: Automatic Proxy Configuration

JAR cache enabled.
Exception caught: java.security AccessControlException: access denied (java.io FilePermission

w
| | »

Clear Cloze |

Figure 179. AccessControlException on the Java Plug-in Console

Java 2 Network Security

Since we selected the Show Java Console check box in the Basic panel of
the Java Plug-in Control Panel (see 11.4.1, “The Basic Panel” on page 370),
the Java Console brought up this time is the one associated with the JRE
used by the Java Plug-in. In this case, the Plug-in is running with JRE 1.2.1,
and the Netscape Navigator Java Console is not activated. The Java Plug-in
Java Console displays a security exception of a different nature: it is a
java.security.AccessControlException.

The Netscape Communicator and Microsoft Internet Explorer JVM
implementations offer a dynamic permission prompting, as we will see in
12.4, “Signed Code Scenario in Netscape Communicator” on page 409 and
12.5, “Signed Code Scenario in Microsoft Internet Explorer” on page 437. On
the contrary, as we have just seen, the Java Plug-in does not offer any
dynamic permission prompting. Therefore, on this platform, if the policy is not
set up correctly, the applet will fail.

Notice that in the Java 2 security model an applet is not necessarily
prevented from accessing a file in the local file system; its permissions
depend upon the policy in effect at a given time. For this reason, we add the
following entry to the user-defined policy file:

grant codeBase "http://wmwu test.com” {
pernission java.io.FlePermssion "D ${/}itso${/}textFle${/}itso.txt", "read";

h

Then, we open the HTML file again, and we can see that the applet is allowed
to access the file indicated:

- Testing for Java Plug-in - Netscape

File Edit ¥iew Go Communicator Help

| - - = =
 d 2 A 4 - & & @
i Hack Fopwad Feload Home Search Metscape Print Security Stop

' Wi " Bookmarks \1& Goto Ihttp: Fvneny test.com/plugin. himl j @v What's Related

4,% Inztant Message @ Wbk ail @ Cantact @ People @ ellow Pages @ Download [:|' Charnels

CE, Here's the applet that should run.

File was accessed

And was it successfl?

@ == |Document: Done

Figure 180. Accessing the Local File with the Right Permission

The Java Plug-in 379

380

This confirms that the Java Plug-in supports the Java 2 security model,
allowing you to incorporate the advanced Java 2 security in applets and
JavaBeans components that will be distributed across the net.

11.5.2.1 Java Plug-in and Code Signed with jarsigner

A similar test can be run successfully using JAR files. In this case, you must
specify the JAR file name in the <BMBED> and <APPLET> tags of the HTML file,
using the java_archive attribute for the <BMBED> tag and the Archive attribute
for the <APPLET> tag. For example, after running the j ar utility against the
App.class file, we produce a JAR file called App.jar. Then it is necessary to
add the following:

e java_archive="App.jar" in the <EMBED> tag

e Archive="App.jar" in the <APPLET> tag
Next, we sign the App.jar file with the private key of a signer marco, using the
jarsigner utility. The certificate for this entity is stored in the keystore

.keystore, located in the user’s home directory. Finally, the policy file must
contain the following:

keystore ". keystore";

grant signedBy "narco", codeBase "http://wwtest.com" {

pernmission java.io.FlePermission "D ${/}itso${/}textH | e$/}itso. txt", "read";
b

After loading the HTML file in the Netscape Navigator browser, we can see
that the applet is allowed to access the file.

11.5.2.2 Java Plug-In and Code Signed with javakey

The Java Plug-in is compatible with the Java 2 security model as long as the
version of the JRE selected in the Advanced configuration panel (see Figure
171 on page 372) is 1.2 or later. As we mentioned in 8.3, “The Security
Properties File, java.security” on page 234, the Java 2 platform is backward
compatible with signatures applied with the old JDK 1.1 j avakey tool. For this
reason, the Java Plug-in must be compatible as well. This is what we
demonstrate now.

We want to sign the applet JAR file using the j avakey tool shipped with JDK
1.1.7B and then run it in a Java 2 system using the Java Plug-in. We install
JDK 1.1.7B on a separate machine and proceed with the following steps:

1. We create a trusted signer called duke, as shown in the following session
screen:

Java 2 Network Security

D\ deepak\ deepak\ pl ugi n>j avakey -cs duke true
Ceated identity [S gner]duke[identitydb. obj][trusted]

D\ deepak\ deepak\ pl ugi n>

2. We generate a DSA key pair of strength 1024 for duke, as shown in the
following session screen:

D\ deepak\ deepak\ pl ugi n>j avakey -gk duke CSA 1024
Generat ed DSA keys for duke (strength: 1024).

D\ deepak\ deepak\ pl ugi n>

3. Next we create a certificate directive file for duke, called dukeCertDirFile,
whose contents are shown in the following screen:

i ssuer . nane=duke

subj ect . nane=duke

subj ect . real . nane=Duke Duke
subj ect . org. uni t=I TSO

subj ect . or g=I BM

subj ect . count ry=US
start.date=1 Jan 1999

end. dat e=31 Jan 1999

seri al . nunber =1

out . fil e=duke. cer

4. Using the certificate directive file above, we can create a certificate for
duke, as shown in the following screen:

D\ deepak\ deepak\ pl ugi n>j avakey -gc dukeCertDrFile
Generated certificate fromdirective file dukeGertDrFile.

D\ deepak\ deepak\ pl ugi n>

5. We verify the results so far using the -1d and -dc options of the j avakey
command, as shown in the following session screen:

The Java Plug-in 381

382

D\ deepak\ deepak\ pl ugi n>j avakey -1d
Scope: sun.security.ldentityDatabase, source file: C\\identitydb. obj

[S gner] duke[identi tydb. obj][trusted]
public and private keys initialized
certificates:
certificate 1 for : O\NDuke Duke, QKX TSQ OBV CAS
from: ONeDuke Duke, QXITSQ GIIBM CGUS

No further infornation avail abl e.
D\ deepak\ deepak\ pl ugi n>j avakey -dc duke. cer

X 509v1 certificate,

Subj ect is O\-Duke Duke, AKX TSQ CIBM CGUS

Key: Sun DSA Public Key
par anet er s:
p: fd7f 53811d75122952df 4a9c2eecede?f 611b7523cef 4400c31e3f 80b6512669455d402251f b5
93d8d58f abf c5f 5ba30f 6¢b9b556cd78130801d346f f 2666007609950a5a49f 9f €8047b1022¢24f b
ba9d7f eb7c61bf 83b57e7c6a8a6150f 04f b83f 6d3c51ec3023554135a169132f 675f 3ae2b61d72ae
f f 22203199dd14801c7
g: 9760508f 15230bcch292h982a2eb840bf 0581cf 5
g: f7e1a085d69b3ddechbcab5c36b857h97994af bbf a3aea82f 9574c0b3d0782675159578ebad45
94f 67107108180b449167123e84c281613b7cf 09328cc8abel3c167a8b547c8d28e0a3aele2bb3a
675916ea37f Obf a213562f 1f b627a01243bccadf 1bea8519089a883df e15ae59f 06928h665e807b5
52564014c3bf ecf 492a

y: 5f552e40c064cca092099c5ca8946009a06a8458d315243f 1e8be5e9d745d6¢7345dc45694a4c
bc666563b84d4238f 8cc47f 5dde308f ed7486e915e5bf abdb3066317ddb9c039b8f 1bc183f 1c078f
274ad18f 1956284h5d30552deaalc921b89f 2ee8allccd8c9ldf c403a2383d09a050373e24a3c450
452d476eb57993918d2

Validity <Fri Jan 01 00: 00: 00 EST 1999> until <Sun Jan 31 00: 00: 00 EST 1999>

I ssuer is O\N=Duke Duke, QX TSQ G-I BV GUS

| ssuer signature used [SHALw t hDS4

Serial nunber = 01

]

D\ deepak\ deepak\ pl ugi n>

Next we create the JAR file App.jar from the class file App.class. To do
this, we apply the j ar utility, as shown in the following session screen:

D\ deepak\ deepak\ pl ugi n>j ar -cvf App.jar App.class
addi ng: App.class (in=944) (out=593) (deflated 37%

D\ deepak\ deepak\ pl ugi n>

. To sign the App JAR file, we first have to prepare a signature directive file,

which we call dirfile and whose contents are shown in the following screen:

Java 2 Network Security

si gner =duke

cert=1

chai n=0

signat ure. fil e=Duke
out.file=App.jar

8. Then, using the JDK 1.1 j avakey utility, we apply the signature to App.jar,
as shown in the following screen:

/D\deepak\ deepak\ pl ugi n>j avakey -gs dirfile AppUjar
Addi ng entry: META- | NF/ MAN FEST. MF

Ceating entry: META I NH DKE SF

Geating entry: META- | N/ DIKE CBA

Adding entry: App.class

Sgned JARfile AppUjar using directive file dirfile.

D\ deepak\ deepak\ pl ugi n>

After this process, we load the plugin.html HTML file (shown in Figure 177
on page 377 and Figure 178 on page 378) in the Netscape Navigator
browser. As expected, the Java Plug-in is activated and the applet is
loaded, but the permission to access the itso.txt file in the local file system
is denied to the applet, and the browser window appears as in Figure 175
on page 376. This is because we have not yet imported the identity
database into the Java 2 keystore, which we do in the next step.

9. We import the identity database generated with the older JDK 1.1.7B into
the Java 2 keystore .keystore being used in the user-defined policy file, as
shown in the following session screen:

D\ deepak\ wor k>keyt ool -identitydb -file identitydb. obj
Enter keystore password: javakeys
Ceating keystore entry for <duke> ...

D\ deepak\ wor k>

10.We verify the results with the -list command associated with the keytool
utility, as shown in the following screen:

The Java Plug-in 383

D\ deepak\ wor k>keyt ool -1 i st
Enter keystore password: javakeys

Keystore type: jks
Keyst ore provider: SN

Your keystore contains 2 entries:

narco, Mon Jan 25 19:18:46 EST 1999, keyEntry,
Certificate fingerprint (MXb): (D B2:98: F3:9B: 8B 32: 55: 2A CE 6B: 14: 1B 0D D7: AD
duke, Tue Jan 26 13:36:57 EST 1999, keyBEntry,
Certificate fingerprint (MXb): 17:82:9D 31: 6C 8E 06: 2A: F6: BF: 49: HO: 7A E2: 8B AA

11.We add the following in the user-defined policy file:

keystore ". keystore";

grant signedBy "duke", codeBase "http://wmwutest.com" {

pernmission java.io.FlePermission "D ${/}itso${/}textH | e$/}itso.txt", "read";
b

Now, when we run the HTML file, the applet is able to access the file on the
local file system successfully.

The above example demonstrates how applets signed with the JDK 1.1

j avakey tool can be integrated in the Java 2 platform and subjected to the
Java 2 security model. In particular, this demonstration has been done using
the Java Plug-in environment.

384 Java 2 Network Security

Chapter 12. Java Gets Out of Its Box

We have seen in previous chapters that the Java Development Kit (JDK) 1.1
applet sandbox is a very safe place where all untrusted applets can run.
However, one person’s safe can be another person’s boring or useless.
Creating effective client/server applications using Java often requires us to
give the applet some freedom from the confines of the sandbox.

The Java 2 access control security model is built around the concept of a
protection domain. The applet sandbox was a protection domain with very
tight controls. By contrast the Java application environment was a protection
domain with no controls at all, other than those imposed by the underlying
operating system. What we really need is a protection domain lying
somewhere between the two, one that provides certain well-defined
permissions that can be changed depending upon the needs at the time.

That was provided for the first time in JDK 1.1, where remotely loaded applets
were granted full permissions, provided that code was signed and the
signature was considered trusted. As we have discussed, JDK 1.1 offered
signed applets as a way to escape from the sandbox restrictions. Java 2 SDK,
Standard Edition, V1.2 has enhanced the security model provided by the
previous release, and now permissions granted to local or remote, signed or
unsigned code are all policy-based. In this sense, the Java 2 security model
provides fine-grained access control.

What about Web browser security? There are different philosophies in the
way that signed Java Archive (JAR) files are used to elicit extra permissions
from the client. In the Sun case, the browser is configured in advance to allow
a signed applet to do certain things that are normally forbidden by the
security manager. In the Netscape case, the applet must request the
permissions it wants, using a special API. Microsoft has taken yet another
approach, not using JAR files at all.

In this chapter we look at examples of the different implementations.

12.1 JAR Files and Applet Signing

In 9.2, “Java Archive Tool” on page 270, we introduced the JAR file format
and showed all the details related to the jar command line utility, which was
shipped for the first time with JDK 1.1 to create and manage JAR files. In this
section we describe the details of the JAR format.

© Copyright IBM Corp. 1997 1999 385

386

First of all, let’s consider the command below, which creates an archive for
the PointlessButton applet (see Figure 17 on page 37):

jar cvf pbutton.jar PointlessButton.class janjar\exanpl es\Button.cl ass

Figure 181 shows the format of the pbutton.jar file that the command above
creates:

pbutton.jar

——META-INF
MANIFEST.MF

PointlessButton.class «———+— JAR Payload

jamjar

|—examples /

Figure 181. The pbutton Archive

The files that make up the payload of the JAR are packed into a copy of the
original directory structure. The MANIFEST.MF file, also known as the
manifest file, contains details of the payload of the JAR. The manifest file is
created under a directory META-INF. This is what the manifest looks like in
this case:

Mani fest-Version: 1.0
Qeated-By: 1.2 (Sun Mcrosystens Inc.)

Figure 182. Manifest File Created by the jar cvf Command

JAR files can be digitally signed. A digital signature on a JAR file guarantees
the sender’s identity to the receiver, but it also vouches for the integrity of the
JAR file itself — that is, the JAR file was not altered after signing. JAR signing
allows you to generate digital signatures for any of the files in the archive. In
fact, files can be signed by more than one signer. So, for example, an applet

Java 2 Network Security

could be signed by the developer who created it and then also signed by the
IT department of the company that uses it. When the user loads the applet,
he or she not only knows that the applet comes from a trustworthy source, but
also knows that it has been approved for corporate use.

As we can see in Figure 181 on page 386, the manifest file is created by the
jar command in the META-INF directory. However, when you sign a file in a
JAR archive with the Java 2 SDK j arsi gner tool, two new files are added to
the META-INF directory; we will call them the signature file and signature
block file.

Let’s discuss in detail these files one by one.

12.1.1 Manifest File

A manifest file, MANIFEST.MF, is created by default in the META-INF
directory whenever a new JAR file is created. According to the specifications
(see http://java.sun.com/products/jdk/1.2/docs/guide/jar/manifest.html), the
manifest file must include as a minimum the following line:

Mani fest Version: 1.0

Figure 182 on page 386 shows the sample manifest file created by using the
jar command with the option cvf. However, you have the possibility to include
your own manifest information from a specified text file.

A customized manifest file can be manually edited, but this is a risky
operation, because you must be sure that you respect the syntax. Another
option you have is to let the j ar tool create a default manifest file while
compressing the files. Then you should extract the JAR file, modify the
manifest, customizing it according to your needs, and then compress the JAR
file again including the manifest file you modified. This operation also requires
editing the manifest file, but at least you can use part of the manifest
information produced by default by the j ar tool. A customized manifest can be
packed with a JAR file by using the Mor moption provided with the j ar utility:

« The Moption does not create the manifest file at all. So the command:
jar cvfMjarFile filel file2 ... fileN

compresses all the files in a single JAR file, without adding any manifest
information file. This can be useful if you wish to include your own manifest
file. In this case, in fact, you can use the Moption and your predefined
manifest file will appear as one of the regular files that must be
compressed, as shown:

jar cvfMjarFile filel file2 ... fileN META-I NA\ MNAN FEST. M-

Java Gets Out of Its Box 387

388

where META- | NP\ MAN FEST. MF is the manifest file you previously created.
Remember that there can be only one manifest file in the archive. It must
be called MANIFEST.MF and it is required to be in the directory META-INF,
otherwise it will not be recognized as the manifest file during signing,
updating, verifying, etc. and will be treated as a normal file in the JAR. The
names META-INF and MANIFEST.MF should be generated as uppercase,
but they will be recognized in any case. Also, if you manually edited the
manifest file, be sure you respect the syntax.

* The moption is probably the most useful one. It can be applied as follows:

jar cvfmjarFile mani festlnput filel file2 ... fileN
or:
jar cvnf mani festinput jarFile filel file2 ... fileN

Using the moption, a new manifest file is created taking the information
contained in an existing manifest input text file, specified on the command
prompt.

Note the order of the files to be specified on the command prompt. If the
option f is specified before m then j ar Fi | e must come before

mani f est | nput ; otherwise the order will have to be mani f est | nput
jarFile. The files to be compressed, filel file2 ... fileN, are
always specified last.

Another important thing to notice is that, with the moption, the file you pass
on the command line as the manifest file does not need to be called
MANIFEST.MF and does not need to reside in the directory META-INF.
The j ar utility will create a file called MANIFEST.MF and will place it in a
directory called META-INF, as you can see by extracting the resulting JAR
file.

There are several reasons why you might want to create a JAR file with a
specific manifest. These reasons depend on what role you want your JAR file
to play. If you're interested only in the ZIP-like features of JAR files, such as
compression and archiving, you do not have to worry about the manifest file.
The manifest doesn't really play any role in those situations. However, for
other purposes, you will need to change the default manifest file. For
example, you can add special-purpose name-value attribute headers to the
manifest file that are not contained in the default manifest. Examples of such
headers would be those for vendor information, package sealing, downloaded
extensions, and headers to make JAR-bundled applications executable.

For applications bundled in a JAR file, you have to add the following line to
your manifest file:

Java 2 Network Security

Mii n-d ass: Cl assNane

An example of this can be found in 1.4.2.4, “Packing the Application Class in
a JAR File” on page 30.

For downloaded extensions, which are JAR files referenced by other JAR files
(see 3.4.2, “Extensions Framework” on page 86), you need to add the
following line to your manifest file:

d ass-Path: ext ensi onJar Nane

A package within a JAR file can be optionally sealed, which means that all
classes defined in that package must be archived in the same JAR file.
Package sealing is a new feature introduced for the first time with Java 2
SDK, Standard Edition, V1.2. You might want to seal a package, for example,
to ensure version consistency among the classes in your software or as a
security measure. To seal a package, you need to add a Name header for the
package, followed by a Sealed header, similar to this:

Nane: nyQonpany/ nyPackage/
Seal ed: true

The Name header’s value is the package's relative path name. Note that it
ends with a forward slash (/) to distinguish it from a file name. Any headers
following a Name header, without any intervening blank lines, apply to the file
or package specified in the Name header. In the above example, because the
Sealed header occurs after the Name header, with no blank lines between,
the Sealed header will be interpreted as applying (only) to the package
myCompany/myPackage/.

Another new feature introduced only with Java 2 SDK, Standard Edition, V1.2
is package versioning. The package versioning specification defines several
manifest headers to hold versioning information. One set of such headers can
be assigned to each package. The versioning headers should appear directly
beneath the Name header for the package. This example shows all the
versioning headers:

Nane: java/util/

Secification-Title: "Java UWility d asses"
Soeci fication-Version: "1.2"

Soeci fi cation-Vendor: "Sun Mcrosystens, Inc.".
Inpl erentation-Title: "java util”

I npl enent at i on- \ersi on: "bui | d57"

I npl enent ati on-Vendor: "Sun M crosystens, Inc."

Java Gets Out of Its Box 389

390

Header information, such as vendor information, package sealing,
downloaded extensions, and headers to make JAR-bundled applications
executable, is not inserted in the default manifest file created by the j ar utility.
Therefore you must provide those headers in a manifest input file and then
use the moption, or in alternative you have to edit a manifest file with the
information you need and include it in the JAR file using the Moption, to
prevent j ar from creating the default manifest.

Notice that the default manifest has the Created-By and Manifest-Version
information (see Figure 182 on page 386). If you use the moption and either
or both of these two pieces of information are also present in the manifest
input file you pass on the command line, the same values will be present in
the new manifest file, although the order of the entries might be rearranged.

For example if your manifest input file is:

Mani fest-Version: 1.0
C eat ed- By: DEEPAK GPTA
Mi n-Q ass: Get Props

then the manifest file created is:

Mani fest-Version: 1.0
Mii n-Q ass: Get Props
C eat ed- By: DEEPAK GPTA

As you can see, the j ar utility has rearranged the order of the entries in the
manifest file.

On the other hand, if your original manifest file contained only the line:
Mai n-d ass: Get Props

then the manifest file that is created is:

Mani fest-Version: 1.0
M n-Q ass: Get Props
Ceated-By: 1.2 (Sun Mcrosystens Inc.)

So, in this case, the j ar utility has provided the missing manifest information.

Also, note that the manifest file entries must have the syntax:

Nane:. val ue

Java 2 Network Security

When the j ar utility encounters incorrect syntax, the following error is
returned in the Command Prompt window:

java.io. | Cexception: invalid header field
at java. util.jar.Attributes.read(Gonpiled Gode)
at java. util.jar.Mnifest.read(Qnpil ed (Gode)
at java. util.jar.Mnifest.<init>(Mnifest.]java: 55)
at sun.tool s.jar.Min.run(Min.java: 87)
at sun.tool s.jar. Min. nai n(Mi n. j ava: 760)

As we said also in Step 1 on page 274, the last line of the manifest input file
must be empty. That is, there should be a new line character at the end of the
file. If this is missing, the j ar utility simply ignores the manifest file. Therefore,
when you are manually editing the manifest file, make sure to press the Enter
key after the last line.

When a manifest file is signed, the digest values of the files in the JAR are
added to the manifest file. Note that this behavior is different from what
happened with the JDK 1.1 j ar utility, which always computed the digests,
regardless of whether or not the JAR file was signed. In other words, in JDK
1.1, the digests were calculated and added to the manifest file when the JAR
file was created. In Java 2 SDK, Standard Edition, V1.2, this operation is
done only when the JAR file is signed for the first time. This is to speed up the
creation of unsigned JAR files, for which you do not need any digests.

The following lines are present in the manifest of a signed JAR file:

Nane: dirpat h/ what ever. cl ass
A gorithmD gest: base-64 representation_of di gest

So after a JAR file is signed, the manifest should look like the following:

Mani fest-Version: 1.0
Ceated-By: 1.2 (Sun Mcrosystens Inc.)

Nane: Poi nt| essButton. cl ass
SHAL- D gest: § 15dpt Wir zhi | FRNLR7VRRY1br c=

Nane: j anj ar/ exanpl es/ Butt on. cl ass
SHAL- D gest: FobpYkn6ZR17eessxBE N7f KoxpE=

The digest values recorded in the manifest are calculated from the contents
of the payload files they refer to. They are used to validate the payload files
when they are verified.

Java Gets Out of Its Box 391

Notice that by default only the SHA-1 digest is present.

12.1.2 Signature File

A signature file is automatically generated and placed in the META-INF
directory each time a JAR file is sighed. This file looks very similar to the
manifest file shown above, except that the digests in it are calculated from the
manifest file entries, not from the actual contents of the payload files.

The name of this file is signerID.SF, where signerID is an arbitrary name for
the creator of the signature. If the JAR has been signed by more than one
signer, each signer will generate a separate SF file. The signature file looks
like the following:

Sgnature-\Version: 1.0
SHAL- Di gest - Mani fest: 3j dGBU TF ZH:BQXGBVENCR0p4=
Ceated-By: 1.2 (Sun Mcrosystens Inc.)

Nane: j anj ar/ exanpl es/ Butt on. cl ass
SHAL- D gest: WihnnVBvOM WH 0zl T8gnwFDYOo=

Nane: Poi nt| essButton. cl ass
\SHAl— O gest: L1S9Bcr bndZGAG | aniGan9qDFn=
J

The SHA1-Digest-Manifest header gives the digest of the complete manifest
file. The SHA1-Digest header for the different file entries in the SF file give
the digests of the entries of the respective files in the manifest file. By default,
the digest is calculated using the SHA-1 algorithm.

12.1.3 Signature Block File

In addition to the signature file, a signature block file is automatically placed
in the META-INF directory each time a JAR file is signed. Unlike the manifest
file or the signature file, which are ASCII files, signature block files are binary,
so they are not human-readable.

The signature block file is in PKCS#7 format. It contains two elements
essential for verification:

1. The digital signature for the JAR file, generated with the signer’s private
key

2. The certificate containing the signer’s public key, to be used by anyone
wanting to verify the signed JAR file

1 public Key Cryptography Standards (PKCS) is a set of rules for encoding various cryptographic structures. PKCS#7
defines a general-purpose signature format, including the signed digest, the certificate of the signer and the certification
authority (CA) certificates that support it.

392 Java 2 Network Security

Signature block file names typically will have a .DSA extension indicating that
they were created by the default Digital Signature Algorithm (DSA). Other file
name extensions are possible if keys associated with some other standard
algorithm are used for signing. For example, .RSA is the extension if the
signature is obtained from an algorithm that uses RSA encryption, and .PGP
is the extension with a Pretty Good Privacy (PGP) signature.

12.2 Signed Code Scenario in JDK 1.1 and Sun HotJava

In this section we show how to use the commands to create three key
databases:

1. A certificate authority database
2. A database for a Web server
3. A database for a Web client

We then use these keys to sign a JAR file containing an applet that attempts
to read a file on the browser system.

12.2.1 Creating the CA Key Database

The certificate authority is a principal in its own key database, with a
self-signed certificate. We create it as follows:

1. The first thing to do is to create a new key database. The key database is
created implicitly when you add the first principal to it:

D \work\ sun_si gned j ar>j avakey -cs "Jamlar CA' true
Ceated identity [S gner]Jamdar CHidentitydb. obj][trusted]

D\ wor k\ sun_si gned j ar>

This creates the key database identitydb.obj in your home directory.

2. Next, generate a key pair for the CA principal. We choose to use a
1024-bit key:

D\ work\ sun_si gned j ar>j avakey -gk "Jamdar CA' DBA 1024
Generat ed DSA keys for Jandar CA (strength: 1024).

D\ wor k\ sun_si gned j ar>

This can take a while to do. We ran it on a 75 MHz 486 machine and the
command ran for 2 minutes and 40 seconds (the time is related to the key
size).

Java Gets Out of Its Box 393

t D \wor k\ sun_si gned j ar >j avakey -1d

3. We use the list option of j avakey to check the results so far:

~

Scope: sun.security.ldentityDatabase, source file: C\users\default\identitydb.obj
[S gner]Jandar CAi dentitydb. obj][trusted]

public and private keys initialized

certificates:

No further infornation avail abl e.

D\ work\ sun_si gned j ar>

4. The key pair allows the CA to sign certificates, but we also need to

generate a certificate for the CA itself, so that others can accept the CA’s
signatures. The first thing to do is to create a certificate information file,
containing the distinguished name information for the CA and the
certificate issuer. In this case, the certificate is self-signed, so the issuer
and the subject are the same:

i ssuer. nane=Jamdar CA
i ssuer.cert=1

subj ect . nane=Jamlar CA
subj ect . real . nane=Proj ect Jamdar Certificate Authority
subj ect. org.unit=I SL
subj ect . or g=I BM

subj ect . count ry=LK
start.date=12 Sep 1997
end. dat e=12 Sep 1998
seri al . nunber =1
out.file=cert.jamar

We save this file as certinfo.jamjar.

5. Finally we can generate the CA’s certificate:

bj

D \work\sun_si gned j ar>j avakey -gc certinfo.jamar

Generated certificate fromdirective file certinfo.jamar.

D \wor k\ sun_si gned_j ar>j avakey -1d

Scope: sun.security. ldentityDatabase, source file: C\users\defaul t\identitydb.o

[S gner]Jandar CAi dentitydb. obj][trusted]
public and private keys initialized
certificates:
certificate 1 for : ONProject Jandar Certificate Authority, QX 9, OI BV CAK

from: Q\N=Project Jandar Certificate Authority, Okl 9, GIBM CGWK

No further infornation avail abl e.

D \wor k\ sun_si gned j ar>

394

Java 2 Network Security

12.2.2 Creating the Server Key Database

Now we want to create a key database for our server:

1. If we use j avakey to create the principal for the server, it will add it to the
CA database. So first we must choose to use a different key database, by
setting the identity.database directive in the main security properties file,
${java.home\lib\security\java.security, where ${java.home} in this case is
the directory where JDK 1.1 was installed. We add the following line:

i dentity. dat abase=D /wor k/ sun_si gned_j ar/ ser ver db. obj

2. The server has to know about the CA that signed its own certificate, so
first we add the CA principal to the key database and import the CA

certificate:

(D\V\or k\ sun_si gned_j ar>j avakey -cs "Jandar CA' true
Ceated identity [S gner]Jamdar CA D /work/sun_signed_jar/serverdb. obj][trusted]

D \work\ sun_si gned j ar>j avakey -ic "Jamdar CA' cert.janjar
Inported certificate fromcert.jamar for Jamdar CA

D \wor k\ sun_si gned j ar>j avakey -Id
Scope: sun.security.ldentityDatabase, source file: D/work/sun_signed_jar/serverdb. obj
S gner] Jamdar CA D /work/ sun_si gned_j ar/ ser verdb. obj] [trust ed]
no keys
certificates:
certificate 1 for : ON-Project Jandar Certificate Authority, QX 9, &I BV GWK
from: ON=Project Jandar Certificate Authority, Okl S, O BM CGWK

D \work\ sun_si gned_j ar>

/

Notice that in this case the list command shows a key database with no
keys in it, just a public key certificate. This is slightly misleading, because
the certificate contains the public key; the display should really say that
there are no key pairs.

3. We create the prin