

The eXperT’s Voice® in WeB DeVelopmenT

Pro
JavaScript RIA
Techniques
Best Practices, Performance, and Presentation

Den Odell

   

Turn your JavaScript knowledge into beautiful,
dynamic, and performance-tuned rich Internet
applications

Pro JavaScript™ RIA
Techniques
Best Practices, Performance,
and Presentation

Den Odell

Pro JavaScript™ RIA Techniques: Best Practices, Performance, and Presentation

Copyright © 2009 by Den Odell

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1934-7

ISBN-13 (electronic): 978-1-4302-1935-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editors: Clay Andres and Jonathan Hassell
Technical Reviewer: Kunal Mittal
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie,
Duncan Parkes, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Sofia Marchant
Copy Editor: Marilyn Smith
Associate Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Lynn L’Heureux
Proofreader: Martha Whitt
Indexer: Carol Burbo
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

For my family, friends, and loved ones

v

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

PART 1 ■ ■ ■ Best Practices
CHAPTER 1 Building a Solid Foundation . 3

CHAPTER 2 JavaScript for Rich Internet Applications . 51

PART 2 ■ ■ ■ Performance
CHAPTER 3 Understanding the Web Browser . 115

CHAPTER 4 Performance Tweaking . 135

CHAPTER 5 Smoke and Mirrors: Perceived Responsiveness 179

PART 3 ■ ■ ■ Presentation
CHAPTER 6 Beautiful Typography . 195

CHAPTER 7 Multimedia Playback . 225

CHAPTER 8 Form Controls . 249

CHAPTER 9 Offline Storage—When the Lights Go Out . 307

CHAPTER 10 Binary Ajax . 331

CHAPTER 11 Drawing in the Browser . 357

CHAPTER 12 Accessibility in Rich Internet Applications . 375

 INDEX . 403

vii

Contents

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

PART 1 ■ ■ ■ Best Practices

CHAPTER 1 Building a Solid Foundation . 3

Best Practice Overview . 3

Who Put the “Best” in Best Practice? . 4

Who Benefits from Best Practices? . 4

General Best Practices . 5

Define the Project Goals . 6

Know the Basic Rules . 6

Markup Best Practice: Semantic HTML . 14

Learn the HTML Tags . 14

Start with a Document Type Definition . 16

How Do You Put the X in XHTML? . 17

Put Best Practice into Practice . 19

Accessibility Guidelines for Web Content . 28

Formatting Best Practice: CSS . 30

Regarding Pixel- Perfect Reproduction of Designs 30

W3C CSS Standards . 31

Guidelines for Style Sheets . 31

Accessibility Guidelines for Styles . 39

Comment Blocks . 41

Browser Work- Arounds . 42

Localization Considerations . 43

■CONTENTSviii

Structuring Your Folders, Files, and Assets . 43

Readable URLs . 43

File and Folder Naming . 44

File Encoding . 44

Organizing Assets . 44

Setting Up Your Development Environment . 46

Writing Your Files: Integrated Development Environments 46

Storing Your Files: Version Control Systems . 47

Testing Your Pages: Browsers and Development Tools 47

Summary . 49

CHAPTER 2 JavaScript for Rich Internet Applications 51

Coding Style Guidelines . 51

Use Consistent Formatting . 51

Use Braces and Brackets . 52

Add Meaning with Letter Casing . 53

Use Descriptive Variable and Function Names 53

Maintain Short Function Blocks . 54

Use Comments As Documentation with ScriptDoc 56

Mark Remaining Tasks with TODO . 57

Professional JavaScript Programming . 57

Avoid Solving Nonexistent Problems . 57

Use the Document Object Model . 58

Don’t Mix JavaScript and HTML . 60

Separate Style from Code . 60

Chain Function Calls . 61

Write Bulletproof Code . 61

Code with Localization in Mind . 63

Object-Oriented JavaScript . 64

Objects, Classes, and Constructors . 64

Inheritance: Creating New Classes from Existing Ones 68

The this Keyword . 71

Access to Properties and Methods . 73

Object Literals and JavaScript Object Notation 75

Creating Namespaces and Hierarchies . 77

ix■CONTENTS

Libraries and Frameworks . 77

Selecting a Library . 78

Building a JavaScript Library . 79

Building RIAs . 97

Structuring the Application . 97

Managing Two Sets of HTML . 100

Using Design Patterns . 101

Testing and Test- Driven Development . 107

Using Third- Party Scripts . 110

Summary . 111

PART 2 ■ ■ ■ Performance

CHAPTER 3 Understanding the Web Browser . 115

Engines: The Browser’s Powerhouse . 115

The Rendering and JavaScript Engines . 115

JavaScript Engine Performance Benchmarking 116

Anatomy of a Web Page Request . 119

HTTP: The Communication Standard Behind the Web 119

HTTP Status Codes . 125

How Messages Are Transmitted . 127

Loading Order of an HTML Page . 130

Page Performance . 131

Viewing the Performance of a Page . 131

Identifying Potential Bottlenecks in Performance 132

Summary . 134

CHAPTER 4 Performance Tweaking . 135

Is Performance Really an Issue? . 135

Tweaking Your Web Server for Performance . 137

Use Separate Domain Names for External Assets 137

Use a Content Delivery Network . 137

Send HTML to the Browser in Chunks . 138

Customize HTTP Headers to Force Browser Caching 140

Compress the Output from the Server . 141

■CONTENTSx

Tweaking HTML for Performance . 142

Shrink Your HTML File Size with HTML Tidy 143

Reference JavaScript Files at the End of Your HTML 143

Reduce the Number of HTTP Requests . 144

Don’t Load Every Asset from Your Home Page 146

Reduce Domain Name Lookups . 146

Split Components Across Domains . 147

Avoid Linking to Redirects . 148

Reduce the Number of HTML Elements . 148

Don’t Link to Nonexistent Files . 149

Reduce the Size of HTTP Cookies . 149

Tweaking Your Style Sheets for Performance . 150

Shrink Your CSS File Size with CSSTidy . 150

Don’t Use the @import Command . 150

Speed Up Table Layouts . 150

Avoid CSS Filters and Expressions in IE . 151

Use Shorthand Values . 151

Use the CSS Sprite Technique . 155

Avoid Inefficient CSS Selectors . 159

Tweaking Your Images for Performance . 159

Understand Image File Formats . 160

Optimize PNG Images . 162

Don’t Forget the Favicon . 163

Tweaking Your JavaScript for Performance . 163

Shrink Your JavaScript File Using Dojo ShrinkSafe 163

Access JavaScript Libraries Through CDNs 164

Timing Is Everything . 164

Boost Core JavaScript Performance . 166

Improve Ajax Performance . 170

Improve DOM Performance . 172

Summary . 178

■CONTENTS xi

CHAPTER 5 Smoke and Mirrors: Perceived Responsiveness 179

Providing Prompt Visual Feedback . 179

Time It Right . 179

Use CSS Pseudo- Classes on Hyperlinks . 181

Let the User Know the Form Is Being Submitted 181

Change the Mouse Pointer . 182

Use a Web 2 .0–Style Animated Indicator . 183

Show a Progress Bar . 183

Handling Long- Running Scripts . 184

Divide Long- Running Scripts into Chunks . 185

Use a Timer to Run Code Blocks Multiple Times 187

Anticipating Your Site Visitors’ Needs . 189

Preload Content . 189

Load Navigation Levels Efficiently . 190

Catch Mouse Clicks Early . 192

Summary . 192

PART 3 ■ ■ ■ Presentation

CHAPTER 6 Beautiful Typography . 195

The Challenge . 195

The Basic Anatomy of a Font . 196

Using Static Images for Text . 198

Generating Images for Text Dynamically . 199

Using CSS to Embed Font Files Directly . 199

Having the Server Generate Text Images . 202

Generating Text in Custom Typefaces Using Flash 210

Generating Text Using Vector Graphics . 211

Using Reusable Custom Font Components . 211

Text2PNG . 211

Scalable Inman Flash Replacement . 215

Facelift Image Replacement . 219

Typeface .js . 221

Summary . 223

■CONTENTSxii

CHAPTER 7 Multimedia Playback . 225

Handling Accessibility . 225

Using Reusable Audio Playback Components . 226

The SoundManager Component . 226

Playing Audio Files Without Flash . 231

Using Reusable Video Playback Components . 232

YouTube Chromeless Player . 235

JW FLV Player . 241

The Future: Audio and Video in HTML 5 . 246

The <audio> and <video> Tags . 246

JavaScript API . 247

Current Adoption Level . 248

Summary . 248

CHAPTER 8 Form Controls . 249

Customizing Existing Form Controls . 249

Buttons . 249

Text Fields . 253

File Upload Controls . 255

Adding New Types of Form Controls . 259

A Calendar Widget for Date Selection . 259

Slider Control . 281

Using Reusable Form Components . 296

SWFUpload: Multiple File Uploads with Progress Bars 296

TinyMCE: Rich Text Editing . 301

Validating Forms . 304

Summary . 305

CHAPTER 9 Offline Storage—When the Lights Go Out 307

Using Cookies to Store Data . 307

Creating Cookies . 308

The Downside of Cookies . 310

Using Internet Explorer’s Data Store . 311

■CONTENTS xiii

Introducing the Data Storage APIs . 314

The Local Storage API . 314

Mozilla’s Global Storage API . 315

Client-Side Database Storage API . 317

Storing Data Using Flash Shared Objects . 322

Creating a Cross- Browser Local Data Storage API 323

Using a Reusable Offline Storage Component . 330

Summary . 330

CHAPTER 10 Binary Ajax . 331

Plain Text Files vs . Binary Files . 331

Reading Binary Files with Ajax . 331

Extracting Image Data from Photo Files . 339

Understanding the EXIF Format . 340

Reading EXIF Data Using JavaScript . 341

Displaying EXIF Data from a File . 351

Summary . 356

CHAPTER 11 Drawing in the Browser . 357

Creating Scalable Vector Graphics . 357

Creating SVG Image Files . 358

Specifying SVG Within HTML . 359

Specifying SVG Through JavaScript . 361

Drawing with Vector Markup Language . 362

Building Dynamic Graphs with a Reusable Drawing Library 363

Using the HTML 5 <canvas> Tag . 371

Summary . 373

CHAPTER 12 Accessibility in Rich Internet Applications 375

Whose Needs Are We Meeting? . 375

Users Using Assistive Technology . 375

Users on Mobile Devices . 375

Users Without a Mouse . 376

Accessibility for All . 377

■CONTENTSxiv

Proper Navigation with the Back and Forward Buttons 377

Device-Independent JavaScript . 383

Device-Independent Events . 383

Device-Independent Event Delegation . 384

Updated Content Alerts and Focus . 386

Web Accessibility Initiative: Accessible Rich Internet
Applications (WAI-ARIA) . 390

Roles . 390

States and Properties . 391

Focus Management . 393

Keyboard Interaction with ARIA Widgets . 394

WAI-ARIA Examples . 394

Validation . 399

Testing . 400

Summary . 401

INDEX . 403

xv

About the Author

■DEN ODELL is a multidisciplined web developer with
expert JavaScript skills. He is a web standards and acces-
sibility advocate, with a special passion for user interface
development.

As a front-end technical architect at the AKQA digi-
tal service agency in London, Den built and architected
several large-scale web sites and rich Internet applica-
tions for a number of clients, including Ferrari, Nike, and
Nokia. He now lives in Sweden, where he has been using
his technical skills and passion for music to help record
labels and artists develop their presence on the Web.

In his spare time, Den runs nightclub events, plays
records at clubs across Europe, and has a keen eye for
digital photography.

xvii

About the Technical Reviewer

■KUNAL MITTAL serves as Executive Director of Technology
at Sony Pictures Entertainment, where he is responsible
for the SOA and Identity Management programs. He pro-
vides a centralized engineering service to different lines of
business and consults on content management, collabora-
tion, and mobile strategies.

Kunal is an entrepreneur who helps startups define
their technology strategy, product road map, and devel-
opment plans. With strong relationships with several
development partners worldwide, he is able to help
startups and even large companies build appropriate devel-
opment partnerships. He generally works in an advisor or a
consulting CTO capacity, and serves actively in the project
management and technical architect functions.

Kunal has authored and edited several books and
articles on J2EE, WebLogic, and SOA. He holds a Master’s degree in Software Engineering and
is an instrument-rated private pilot.

xix

Acknowledgments

Throughout the course of my career, I have met and worked alongside many incredibly intel-
ligent people who have inspired me to improve my technical skills, and to varying degrees,
have had an impact on this book and its material. There are way too many people to name, but
I would like to thank you all—you know who you are.

Thanks to Clay Andres for seeing the potential in my book and allowing me to run with it.
I’d also like to offer my sincere thanks to Kunal, Sofia, Jon, Marilyn, Laura, and the rest of the
team at Apress who worked so diligently and effectively to run a tight ship for delivering such a
high-quality product from my source material.

I want to offer massive thanks to Maria for supporting me when I was busy for what must
have seemed like endless evenings and weekends as I wrote this book. Thank you for calming
my stress, keeping me together, encouraging me to keep on when times were tough, and going
above and beyond what anyone could expect. You are an amazing, beautiful, insightful, and
intelligent person; I love you, and I can’t imagine my life without you.

Thanks most of all to you, my readers, for taking the time to read and study this book. I hope
you are able to understand, learn from, and put into practice its contents and build better web
applications, and to advance your career as a result.

xxi

Introduction

Rich Internet applications (RIAs), or web applications, are those web sites that blur the bound-
ary between the web browser and standard desktop applications. Managing your e-mail through
web sites such as Google Gmail, Yahoo! Mail, and Microsoft Windows Live Hotmail is every bit
as simple and intuitive as using a desktop e-mail client such as Microsoft Outlook or Apple Mail.
Web page refreshes are not expected when performing actions, and if a new message is received
by the mail server, we expect to see it appear in our inbox immediately.

Building web sites that behave in this way is seen as a departure from the traditional
model on the Web, where performing actions such as a submitting a form or clicking a link to
refresh an online forum to see the latest posts were considered the norm. It is this difference
that has led some to label these RIAs as Web 2.0, as if an upgrade to the Web were taking place.

In some respects an upgrade has been taking place, but not an upgrade of the Web itself.
The improvements are actually in the web browsers we use to browse our favorite sites.
Gradually over the past few years, features have been added to each of the major web brows-
ers. Additionally, some attempts at conformance among browser manufacturers have meant
that finally, through the power of JavaScript and standardized Document Object Model (DOM)
scripting, live page updates are possible using data loaded dynamically from the web server.
The Web is no longer a static place.

I have written this book primarily to help you harness the power of JavaScript to add
dynamic components to your pages and to create entire RIAs of your own. (I assume you
already have some knowledge of HTML, CSS, and JavaScript.) With great power comes great
responsibility, however. I put emphasis on ensuring that you understand the importance of
creating a responsive user experience that excites, rather than frustrates, your site visitors.
I also stress that you have the ability to apply creativity through your design, to make your
application look and behave superior to any static web site. You’ll see how you can use
custom-built user interface components that don’t sacrifice usability or accessibility,

By the end of this book, you should have the confidence to build your own web site or RIA,
safe in the knowledge that it has been constructed in a robust, reliable, efficient, beautiful, and
highly accessible manner.

P A R T 1

Best Practices

In this first part of the book, I will present some tried-and- tested guidelines for building

rich Internet applications (RIAs). Applying these guidelines will allow you to build the foun-

dations of a web site structure that’s scalable from a single page with a few lines of code

up to many thousands of pages and thousands of lines of code. I will show you how to fol-

low best practices in a sensible, pragmatic way that won’t make the tasks of application

maintenance and bug fixing daunting—during construction or in the future.

3

C H A P T E R 1

Building a Solid Foundation

If you’re reading this book, chances are that you have felt the proud sense of achievement that
comes with building and releasing a web site. Perhaps you completed the project solo; per-
haps you built it as part of a team. Maybe it’s a simple site, with just a few pages you’re using
to establish a presence for yourself on the Internet for an audience of a few of your friends, or
maybe it’s a cutting- edge rich Internet application (RIA) with social networking features for a
potential audience of millions. In any case, congratulations on completing your project! You
deserve to feel proud.

Looking back to the start of your project with the knowledge and experience you have gar-
nered, I bet you can think of at least one thing that, if done differently, would have saved you
from bashing your head against the wall. If you’re just starting out in the web development
industry, it might be that you wish you had kept a backup of a previous version of your files,
because it cost you precious time trying to recover your changes after an unexpected power
outage. Or it might be that you wish you hadn’t decided to rely on that third- party software
library that seemed like it would be up to the task at the start of the project, but soon proved
itself to be a huge waste of time and effort. In the course of my own career, I’ve been in exactly
these situations and come out the other side a little wiser. I’ve learned from those mistakes
and fed that new knowledge back into the next project.

Based on my experiences and what I’ve learned from others, I’ve developed an effective,
sensible approach to web development. This approach, along with a handful of smart tech-
niques thrown in the mix, should minimize those head- bashing moments and ensure things
run more smoothly right from the get- go all the way through to the launch of your next web
site or application.

Best Practice Overview
Let’s start by considering what is meant by the term best practice. If you’ve been in the devel-
opment profession for long, you’ll have heard this expression being tossed around quite a lot
to justify a particular coding technique or approach. It is a bit of a loaded phrase, however, and
should be treated with caution. I’ll explain why.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION4

Who Put the “Best” in Best Practice?
The landscape of web development is constantly changing. Browsers rise and fall in popular-
ity, feature adoption between them is not always in parallel, and the technologies we use to
construct web sites for display in such browsers are still fairly immature, constantly undergo-
ing revisions and updates. In an environment that is in flux, what we might consider to be a
 best- practice solution to a problem right now could be obsolete in six months’ time.

The use of the word best implies that a benchmark exists for comparison or that some
kind of scientific testing has been adopted to make the distinction. However, very rarely have
such tests been undertaken. You should consider carefully any techniques, technologies, and
components that have been labeled as best practice. Evaluate them for yourself and decide if
they meet a set of criteria that benefit you as a developer, the end users of your site, and if rel-
evant, the client for whom you are undertaking the work.

The guidelines, rules, and techniques I set out in this chapter are ones that I have person-
ally tried out and can attest to their suitability for real- world web development. I consider
them to be the best we have right now. Of course, some of these could be irrelevant by the time
you are reading this book, so my advice to you is to stay up-to- date with changes in the indus-
try. Read magazines, subscribe to blog feeds, chat with other developers, and scour the Web
for knowledge. I will maintain a comprehensive list of sources I recommend on my personal
web site at http://www.denodell.com/ to give you a place to start.

By staying abreast of changes to these best practices, you should be able to remain at the
forefront of the web development industry, armed with a set of tools and techniques that will
help you make your day-to- day work more efficient, constructive, and rewarding.

Finally, don’t be afraid to review, rewrite, or refactor the code you write as you build your
sites. No one has built a web site from scratch without needing to make code alterations. Don’t
believe for a second that any code examples you see on the Web, or in this or any other book,
were written in a way that worked perfectly the first time. With that said, knowledge and expe-
rience make things easier, so practice every chance you get to become the best web developer
you can be.

Who Benefits from Best Practices?
The truth is that everyone should be able to benefit from the use of best practices in your code.
Take a look at the following lists, and use these criteria to assess any guidelines, techniques, or
technologies you come across for their suitability for your site.

Web Developers
Best practice starts at home. A site structure and code that work well for you and your web
developer colleagues will make all your lives a lot easier, and reduce the pain that can be
caused by poor coding.

	 •	 Will	my	code	adhere	to	World	Wide	Web	Consortium	recommendations?

	 •	 Will	my	site	be	usable	if	a	proprietary	technology	or		plug-	in	is	unavailable?

	 •	 Will	my	code	pass	testing	and	validation?

http://www.denodell.com/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 5

	 •	 Is	my	code	easily	understood,	well	structured,	and	maintainable?

	 •	 Can	extra	pages,	sections,	and	assets	be	added	to	the	site	without	significant	unneces-
sary	effort?

	 •	 Can	my	code	be	localized	for	different	languages and world regions without a lot of
extra	effort?

Search Engines and Other Automated Systems
Believe it or not, a large percentage of site traffic is from automated machines and scripts, such
as search engines, screen scrapers, and site analysis tools. Designing for these robots is every
bit as important as for any other group of users.

	 •	 Will	my	code	appear	appropriately	in	search	engine	results	according	to	sensible	
search	terms	used	to	find	it?

	 •	 Can	my	code	be	read	simply	and	easily	by	a	machine	or	script	that	wishes	to	read	or	
parse	its	contents	for	whatever	reason?

End Users
The most important users of your code are your site visitors, so making your code work effec-
tively for them is the number one priority.

	 •	 Will	my	code	be	usable	in	and	accessible	to	any	web	browser	or	device,	regardless	of	its	
age,	screen	size,	or	input	method?

	 •	 If	my	site	were	read	aloud	by	screen	reader	software,	would	the	content	and	its	order	
make	sense	to	the	listener?

	 •	 Can	I	be	confident	my	code	will	not	demonstrate	erroneous	behavior	or	display	error	
messages	when	used	in	a	certain	way	I	have	not	anticipated?

	 •	 Can	my	site	be	found	through	search	engines	or	other	online	tools	when	using	appro-
priate	search	terms?

	 •	 Can	my	users	access	a	localized	version	of	my	site	easily	if	one	is	available?

General Best Practices
If you’re like most developers, you probably want to spend as much of your time as possible
constructing attractive user interface components and great- looking web sites, rather than
refactoring your code base because of an unfortunate architectural decision. It’s very impor-
tant to keep your code well maintained. Without sensible structure and readability, it will
become harder and harder to maintain your code as time passes. Bear in mind that all the
guidelines in this chapter have been put together with a view to making things as easy on you,
the developer, as possible.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION6

Define the Project Goals
The following are the two most important things to consider while coding a web page:

	 •	 How	will	end	users	want	to	use	this?

	 •	 How	will	other	developers	want	to	make	changes	to	this?

Bear in mind that the end users may not be human. If you were to check the server
request logs for one of your existing sites, you would discover that many of your site visitors
are actually search engine spiders, RSS readers, or other online services capable of reading
your raw page content and transforming it into something else.

This kind of machine- based access is likely to become more widespread over the coming
years, as automatic content syndication, such as RSS feeds, becomes more commonplace. For
example, content from the popular knowledge- sharing site Wikipedia (http://www.wikipedia.
org/) is already being used in other places around the Web, including within Google Maps
(http://maps.google.com/), where articles are placed according to the geographical position of
the content described in each article.

Yahoo! and other search engine companies have been pushing for some time for web
developers to incorporate extra context- specific markup within pages, so that they can better
understand the content and perhaps present the results in their search engine in a different
way. Recipes could be presented with images and ingredients, for example; movie- related
results could contain reviews and a list of where the movie is showing near you. The possibili-
ties of connecting your code together with other developers’ code online like this are vast. By
marking up your content in the correct way, you ensure the whole system fits together in a
sensible, coherent, connected way, which helps users get the information they are looking for
faster.

As for ensuring other developers (including yourself, if only for your own sanity when
you return to a project after a long break) can follow your code, you need to consider what the
usual site maintenance tasks might be. These usually fall into the following four categories:

	 •	 Making	alterations	to	existing	pages

	 •	 Adding	new	pages

	 •	 Redesigning	or	modifying	the	page	layout

	 •	 Adding	support	for	end	users	who	need	the	page	in	other	languages,	or	in	region-	or	
 country- specific versions

By thinking about these tasks up- front, you reduce the likelihood of needing to refactor
your code or rearrange and split up files, so the job of maintenance is made easier. Welcome
back, sanity!

Know the Basic Rules
So how do we go about making sure that we	get	it	right	in	the	first	place?	The	following	seven	
rules of thumb seem to sum it up succinctly:

	 •	 Always	follow	mature,	open,	and		well-	supported	web	standards.

	 •	 Be	aware	of		cross-	browser	differences	between	HTML,	CSS,	and	JavaScript	implemen-
tations, and learn how to deal with them.

http://www.wikipedia.org/
http://www.wikipedia.org/
http://maps.google.com/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 7

	 •	 Assume	HTML	support,	but	allow	your	site	to	be	usable	regardless	of	whether	any	
other	technologies—such	as	CSS,	JavaScript,	or	any		plug-	ins—are	present	in	the	
browser.

	 •	 Name	your	folders	and	files	consistently,	and	consider	grouping	files	together	accord-
ing to purpose, site structure, and/or language.

	 •	 Regularly	purge	redundant	code,	files,	and	folders	for	a	clean	and	tidy	code	base.

	 •	 Design	your	code	for	performance.

	 •	 Don’t	overuse	technology	for	its	own	sake.

Let’s go through each of these basic rules in order.

Follow Mature, Open, and Well- Supported Web Standards
Back in the early 1990s, a very clever man who worked at the technology research organization
CERN	(European	Organization	for	Nuclear	Research,	http://www.cern.ch/), Tim Berners- Lee,
invented what we know today as the World Wide Web. He developed the concepts of home
pages, Hypertext Markup Language (HTML), and interconnected hyperlinks that form the
foundation of web browsing. He also created the world’s first web browser to demonstrate his
invention.

The	project	became	quite	large	and	eventually	took	up	many	resources	at	CERN.	When	
the decision was made to redirect funding and talent toward building the recently completed
Large	Hadron	Collider	project	instead,	Tim Berners- Lee made the decision to create a separate
organization to manage the continuation of standards development for HTML and its related
technologies. This new organization, the	World	Wide	Web	Consortium	(W3C,	http://www.
w3.org/), was born in October 1994.

Since	its	inception,	the	W3C	organization	has	documented	more	than	110	recommended	
standards and practices relating to the Web. The three that are most useful to readers of this
book	are	those	pertaining	to	HTML	(including	XHTML),	Cascading	Style	Sheets	(CSS),	and	
Domain	Object	Model	(DOM)	scripting	with	JavaScript	(also	known	as	ECMAScript,	since	the	
JavaScript	name	is	trademarked	by	Sun	Microsystems).

Two popular browsers emerged in those early days of the Web: Netscape Navigator,
released in December 1994, and Microsoft’s Internet Explorer (IE), released in August 1995.
Both browsers were based on similar underlying source code and rendered web pages in a
similar way. Of course, a web page at the time was visibly very different from what we see
today, so this wasn’t particularly difficult for both to achieve.

Roll on a year to 1996, and things get a little more interesting. Microsoft introduced basic
support	for	a	new	W3C	recommendation,	CSS	level	1,	in	IE	3.	This	recommendation	defined	
a way for web developers to apply font and color formatting; text alignment; and margins,
borders, and padding to most page elements. Netscape soon followed suit, and competition
began to intensify between the two browser manufacturers. They both were attempting to
implement	new	and	upcoming	W3C	recommendations,	often	before	those	recommendations	
were ready for the mainstream.

Naturally, such a variation in browser support for standards led to confusion for web
developers, who often tended to design for an either/or scenario. This resulted in end users
facing web sites that displayed the message “This web site works only in Internet Explorer.
Please upgrade your browser.”

http://www.cern.ch/
http://www

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION8

Of	course,	the	W3C	recommendations	are	just	that:	recommendations	for	browser	manu-
facturers and developers to follow. As developers, we must consider them only as useful as
their actual implementation in common web browsers. Over time, browsers have certainly
made strides toward convergence on their implementations of these web standards. Unfortu-
nately, older versions of browsers with poorer quality of standards adoption in their rendering
of web pages still exist, and these must be taken into account by web developers.

The principle here is to ensure you are up-to- date on common standards support in
browsers,	rather	than	just	on	the	latest	recommendations	to	emerge	from	the	W3C.	If	the	stan-
dard is well supported, you should use it. If not, it is best avoided.

Deal with Cross- Browser Issues
Web browsers are regularly updated, and they quite often feature better support for exist-
ing	W3C	recommendations	and	some	first	attempts	at	implementations	of	upcoming	
recommendations.

Historically, browsers have varied in their implementations of existing recommendations.
This is also true of browser support for the newer recommendations. This means that develop-
ers must aim to stay up-to- date with changes made to browser software and be aware of the
features and limitations of different browsers.

Most browser users, on the other hand, tend not to be quite as up-to- date with new
browser releases as developers would wish. Even browsers that are capable of automatically
updating themselves to the latest version often require the user to authorize the upgrade first.
Many users actually find these notifications distracting to what they’re trying to achieve in
their web browser then and there, and so they tend to put off the upgrade.

As developers, we must be aware and acknowledge that there are many different web
browsers and versions of web browsers in the world (some 10,000 different versions in total,
and counting). We have no control over which particular piece of software the end user is
using to browse our pages, nor should we.

What we do know from browser statistics sites, such as Net Applications’ Market Share
(http://marketshare.hitslink.com/), is that the five main web browsers in the world today are
Microsoft’s	IE,	Mozilla’s	Firefox,	Apple’s	Safari,	Opera	Software’s	Opera,	and	Google’s	Chrome.	
These five browsers account for around 99% of all access to web pages through the desktop.
However, just relying on testing in these browsers misses out on the burgeoning market in
mobile web browsing, for example, so it is worth staying up-to- date with the latest progress in
the web browser market.

Testing your pages across a multitude of browsers and operating systems allows you to
locate the portions of your code that cause different browsers to interpret it in different ways.
Minimizing these differences is one of the hardest tasks for any web developer and separates
this role from most other software- related professions. This is a task that needs to be attacked
from the get- go of a new project, as leaving it until too late can result in frantic midnight cod-
ing sessions and missed deadlines—never fun!

The	smartest	approach	is	to	build	the	HTML,	CSS,	and	JavaScript	code	that	form	the	basic	
template or outline of the site before writing any page- specific code. Then test this bare- bones
structure in as wide a range of browsers on as many different operating systems, and with as
varied a range of monitor and window sizes, as possible. Tweak the code to ensure the tem-
plate displays correctly before adding any page- specific code or content.

http://marketshare.hitslink.com/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 9

A particular source of variation is in the different interpretations of color within browsers.
Some support the reading of color profile information from image files; some don’t support
this.	Some	apply	a	gamma	correction	value;	some	don’t	apply	this	value.	Consequently,	the	
same image or color can appear slightly different in various browsers, so it’s worth checking
that your design doesn’t cause color mismatching to occur between objects on your page.

You should build and test individual page components one at a time in as many browsers
as possible during development. Again, by bringing most of the testing up- front to coincide
with development, you will experience fewer problems later on and have fewer bugs to squish.
By the end of a project, developers are often feeling the pressure of last- minute client requests
for changes, so minimizing bugs by this stage in the proceedings is a smart idea.

Assume Support for HTML Only
Your HTML markup must be visible and operate functionally in any available browser, device,
or	user	agent	without	reliance	on	CSS,	JavaScript,	or		plug-	ins.	Where	CSS,	JavaScript,	or	
 plug- ins provide additional content, layout, or functionality over and above the HTML, the
end users should be able to access the content and a functional equivalent of the behavior in
a sensible way, without reliance on these technologies. For example, if you’re using a Flash
movie to provide an animated navigation menu for your site, you need to ensure the same
navigation is available through HTML; otherwise, you are preventing a whole group of users
from accessing your site.

Obviously, this has a massive impact on the way you develop your web pages. You will
build from the HTML foundations upward, ensuring no functionality gets lost when certain
browser features are switched off or are nonexistent. Each “layer” of code should be unob-
trusive;	that	is	to	say	that	no	CSS	style	rules	or	JavaScript	code	should	exist	within	the	HTML	
markup—each should be in a separate file and stand alone.

In the context of modern web applications, which are often written in such a way so that
communication	between	the	browser	and	the	server	is	handled	via	JavaScript,	this	means	that	
those	communication	points	must	exist	when	JavaScript	is	switched	off	in	the	browser.	For	
example,	modern	JavaScript	allows	data	to	be	sent	to	and	received	from	a	web	server	without	
the need for the page to refresh when sending a form. In this case, you must ensure that the
form	can	be	submitted	without	the	need	for	JavaScript—treat	it	like	an	optional	extra,	rather	
than a requirement.

You might hear this principle called progressive enhancement, referring to the adding or
layering of extra functionality on top of the HTML, or graceful degradation, referring to the fact
that the removal of features from the browser always results in a working web page. It is the
central principle of what is termed accessibility, which refers to providing access to a web page
regardless of browser or device.

This principle is best understood through real- life examples, so let’s go through two of
them now.

First, suppose that in your web application, you have a button that, when clicked,
launches a login modal dialog box within the page, as shown in Figure 1-1. After the user fills
in	the	form	and	clicks	the	submit	button,	JavaScript	is	used	to	send	the	supplied	login	creden-
tials to the server, and then to perform a refresh of certain page elements, instead of the entire
page, based on the user’s logged- in status as shown in Figure 1-2.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION10

 Figure 1-1. A modal- style login box

 Figure 1-2. Successful login, loaded without a refresh if JavaScript is enabled

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 11

But	what	if	JavaScript	is	disabled?	You	would	need	to	ensure	that	your	HTML	code	was	
structured such that the user would be taken to a separate page with the login form. Submit-
ting this form would post the data back to the server, causing a refresh, and the server- side
code would decide which page to send according to the user’s status—either successfully
logged in or not logged in. In this way, both scenarios are made to be functionally equivalent,
although their user flow and creative treatment could potentially be different.

As another example, suppose you have a page that contains a form used for collecting
payment information for an online booking system. Within this form, depending on the type
of credit card selected, you would like certain fields to display only if the user selects a credit
card,	as	shown	in		Figure	1-3,	rather	than	a	debit	card,	as shown in Figure 1-4. For instance,
the Issue Number field is applicable only to debit cards, and perhaps you want to display the
Valid from Date fields only for cards from certain suppliers. You probably also want to make it
impossible	for	the	user	to	submit	an	incorrect	date,	such	as	February	30.

As	web	developers,	we	use	JavaScript	to	make	this	happen.	JavaScript	fires	events	when	
the user performs certain actions within the browser, and we are able to assign code to execute
when these events are fired. We even have the power to cancel the event, meaning that if the
user attempted to submit a form, for example, we could cancel that submission if we decided
that form wasn’t suitable for submission because it had failed some validation tests.

We	use	JavaScript	to	“listen”	for	changes	to	the	Card	Type	field.	This	event	gets	fired	when	
the user selects a different radio button option. When this event is fired, we can execute a
piece of code that, depending on the card type selected, shows or hides the desired fields.

 Figure 1-3. A payment card form showing credit card fields

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION12

 Figure 1-4. A payment card form showing debit card fields

We also listen for the submit event of the form to fire and, when it does, we run a small
JavaScript	routine	to	check	that	the	date	fields	contain	valid	values.	We	can	force	the	form	
submission to fail if we decide the values entered are not up to scratch.

Now what happens when someone visits your web page with a browser that doesn’t sup-
port	JavaScript?	She	selects	her	card	type	using	the	radio	button,	but	nothing	changes.	In	fact,	
in order to instantiate a change to the appearance of the page, the form must be submitted to
the server to allow the server to perform the kind of processing you had been performing using
JavaScript.	

In terms of usability, you might consider it odd to ask the users to submit the form after
they have selected their card type, as the fields are already displayed below. Probably the ideal
way to structure your page in this case is to have all of the fields existing in the page’s HTML,
and simply allow the users to fill in the information they have available on their card. When
they finally submit the form, the processing that exists on the server can validate their card
data and check whether they have entered a valid date, and if there is an error, reload the page
displaying an error message.

Name and Group Folders and Files Consistently
By establishing rules and conventions regarding the naming of folders, files, and their
contents, you make the task of locating files and code a lot easier for yourself and other devel-
opers. The task of maintenance and future additions is made simpler with a consistent naming
convention, ensuring developers always know how to name their assets. See the “Structuring

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 13

Your Folders, Files, and Assets” section later in this chapter for some examples of directory
structures you might adopt.

Maintain a Tidy Code Base
You should ensure that the files and code associated with a project are the only ones necessary
for the web site to do its job—no more and no less. Over time, certain files may be superseded
by	others,	and	certain	CSS	style	rules	or	JavaScript	files	by	others.	

I recommend that you purge all redundant files, folders, and code from your code base
on a regular basis during development. This reduces the size of the project, which aids com-
prehension of the code by other developers and ensures the end users of your site are not
downloading files that are never used, consuming bandwidth that they could potentially be
paying for.

To avoid problems with the accidental deletion of files or the situation where you later
require files you’ve deleted, you should consider using a source code management system.
Such a system will keep backups of changes made to project files and ensure you can always
revert to a previous version of a particular folder or file—even a deleted one. See the “Storing
Your	Files:	Version	Control	System”	section later in this chapter for more information.

Design Your Code for Performance
Your site visitors, whether they realize it or not, demand a responsive user interface on the
Web. If a button is clicked, the users expect some kind of reaction to indicate that their action
was recognized and is being acted upon.

HTML,	CSS,	and	JavaScript	code	run	within	the	browser	and	are	reliant	on	the	power	
of the end user’s machine or device. Your code needs to be lightweight and efficient so it
downloads quickly, displays correctly, and reacts promptly. Part 2 of this book focuses on per-
formance and explains how you can make your code lighter, leaner, and faster for the benefit
of your end users.

Don’t Use Technology for Its Own Sake
Within the wider web development community, you will often hear hype about new technolo-
gies that will make your web pages better in some way. Most recently, this hype has focused
around the Asynchronous	JavaScript	and	XML	(Ajax)	technique,	which	is	the	practice	of	com-
municating	with	the	server	using	JavaScript	within	the	browser,	meaning	that	page	refreshes	
can be less frequent. This became the favorite technique to be used by web developers on any
new project.

The problem is that sites were built so that they worked only with the Ajax technique, and so
relied	exclusively	upon	JavaScript.	Those	users	without	this	capability	in	their	browsers—users	
with some mobile web browsers, users with restrictions in place in their office environment,
users with special browser requirements due to a disability, and external robots such as search
engine spiders—could not access the information that would normally have been provided
through	HTML	pages,	connected	together	through	hyperlinks	and	buttons.	Conversely,	some	
users with capable browsers were finding that if they remained on certain sites that relied heav-
ily on the Ajax technique, eventually their browser would become slow or unresponsive. Some
web developers, keen to jump onboard the new craze, forgot to code in a way that would prevent
memory leaks from occurring in the browser.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION14

Build your sites on sound foundations and solid principles, ensuring you test and push
new technologies to usable limits before deciding they are a good choice for your project.
You’ll	learn	about	the	Ajax	technique	in	Chapter	2, and how to deal with memory leaks in
browsers	in	Chapter	4.

Markup Best Practice: Semantic HTML
HTML or XHTML forms the basic foundation of every web page. Technically, these are the
only web standards that need to be supported by all web browsers and user agents out there
in the wild. The term semantic in this context refers to applying the correct tags to match the
meaning behind the content (according to the dictionary, the word semantic literally means
meaning).

Knowledge of as many of the HTML/XHTML tags and attributes as possible will put you
in good stead. Make sure that your content is marked up with exactly the right tag for the con-
tent it encompasses: table tags for tabular data, heading tags for section headlines, and so on.
The more meaning you are able to give your content, the more capable web browsers, search
engine spiders, and other software will be at interpreting your content in the intended way.

It is advisable to include all semantic information in your markup for a page, even if
you	chose	to	use	CSS	style	rules	to	hide	some	elements	visually	within	the	browser.	A	useful	
guideline is that you should code your markup according to how it would sound if read aloud.
Imagine the tag name were read aloud, followed by the contents of that tag. In fact, this is how
most screen reader browsers work, providing audio descriptions of web pages for those with
visual impairments.

For example, suppose you’ve built a web site for movie reviews, and you want to display
an image that denotes the movie has scored four out of five possible stars. Now consider how
you would want this information to be read aloud—something like, “rated four out of a pos-
sible five stars.” Say you put this text within the HTML, so that everyone can access it. But
you don’t want this text to be displayed on the page; you want only the image of four stars
to	appear.	This	is	where	CSS	comes	into	play.	You	can	apply a class attribute to the tag sur-
rounding	this	text,	and	target	this	class	using	CSS	to	specify	that	the	text	be	hidden	and	an	
image displayed according to a specified size. The style rules for hiding portions of text in a
way that works for all browsers, including screen readers, are covered in the “Formatting Best
Practice:	CSS”	section	later	in	this	chapter.	The	HTML	for	this	part	of	the	page	might	look	like	
this:

<div class="rated-four-out-of- five">
 This movie was rated four out of a possible five stars.
</div>

Learn the HTML Tags
If you’re an experienced web developer who has worked on multiple sites, and you’ve been
marking up your content semantically, you’re already familiar with a whole host of tags: <h1>,
<h2>, <p>, , , and , to name a few. However, a number of less common tags are
rarely at the forefront of developers’ minds. Without some of these tags, you risk marking up
your documents in the wrong way, missing an opportunity to add meaning to your content for
the benefit of your users, search engines, and others.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 15

The following are a few tags that add important meaning for the browser or end user, but
are commonly forgotten:

<abbr>: Abbreviation, used for marking up inline text as an abbreviation. In many browsers,
hovering the mouse over the text reveals the unabbreviated version.

<abbr title="et cetera">etc.</abbr>

<acronym>: Acronym, used for marking up inline text as an acronym. In many browsers,
hovering the mouse over the text reveals the elongated version.

<acronym title="World Wide Web">WWW</acronym>

<address>:	Contact	information for page. At first glance, you may think this tag should be
used to mark up postal addresses listed on the page. However, that is an incorrect usage
of the tag. It should be used only to mark up the contact details of the page author. (Of
course, a postal address could be part of that information.)

<address>
 Author: Den Odell

 Email the author
</address>

<blockquote>: Long quotation. An important point to note about block quotes that often
gets missed is that the tag may contain only block- level elements. Therefore, the quote
itself must, at the very least, be enclosed by a paragraph or other block- level element.

<blockquote>
 <p>If music be the food of love, play on,

 Give me excess of it, that surfeiting,

 The appetite may sicken, and so die.</p>
</blockquote>

<ins> and : Inserted and deleted copy. is used to show that one piece of con-
tent has been deleted. <ins> shows that another piece has been inserted into a page. For
example, these tags might be used on a blog post where the author has, after publication,
returned to the piece and edited it to alter a particular sentence. The tags can be used
to show this in a semantic way. Often, content within a tag will be rendered in the
browser as struck through with a line.

There are 50 <ins>60</ins> million inhabitants of the UK

Keep these tags in mind as you code your pages. See if you can spot opportunities to work
them into your markup to denote the correct meaning of your content.

■Tip Keep a reference list of tags and attributes on hand when developing, and revise that list occasionally.
A great online resource for XHTML tags and attributes can be found at http://www.w3schools.com/tags/.

mailto:me@denodell.com
http://www.w3schools.com/tags/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION16

Start with a Document Type Definition
You should start every HTML or XHTML page with a Document Type Definition (DTD, or
DOCTYPE). This should appear before any other HTML tags in a page. The DTD indicates the
HTML standard used for the page content, which is important information for any software
parsing the page contents. For example, if the browser knows that the content in the rest of the
document is XHTML, it then may assume that each tag is closed, that the casing of tags and
attributes is consistent, and that tags are properly nested, as these are the rules that apply to
XHTML documents.

The DTD is not a standard tag and does not need to be closed, Here is an example:

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Transitional//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- transitional.dtd">

This DTD declares the rest of the page contents to be in the XHTML 1.0 Transitional for-
mat and tells the content reader which URL it can visit to get the specification to follow.

By omitting the DTD, you run the risk of having the browser itself try to figure out which
standard to use, which can result in some odd rendering bugs.

DOCTYPE Switching
One of the huge complaints that arose from earlier releases of Microsoft’s IE browser (up to and
including	version	5.5)	was	that	it	would	not	actually	render	some	styles	as	the	W3C	recommen-
dation suggested. More specifically, the box model, which determines how the browser should
apply	CSS	width	and	height	dimensions	to	a		block-	level	element	that	also	has	padding,	was	not	
in	line	with	the	W3C’s	recommendation,	nor	with	implementations	in	other	browsers.

Microsoft developers faced a predicament with the release of IE 6: they could either adopt
the correct implementation and break the rendering of all existing pages designed for previous
versions of the browser, or they could leave it as is and force all developers to use different style
sheets for IE than for other browsers. Obviously, neither option was desirable. As a solution,
they built in both rendering methods and came up with a way of switching between them using
the DTD at the start of the document.

By supplying a DTD that omitted the URL portion, the developer forced the browser into
quirks mode—the original but incorrect way of rendering the box model within IE. By supply-
ing a DTD with the full URL portion, the developer forced the browser into standards mode,
complying	with	W3C	standards.	Thus,	the	choice	was	left	to	developers	to	pick	which	render-
ing method to use for their site.

DTD Selection
As developers, we want to push forward standards adoption across the Web, both in terms of
our code and the software used to interpret it. However, we must realize that simply adopting
the	latest	recommendation	from	the	W3C	is	not	always	the	smartest	move.	We	must	take	into	
account the proportion of existing browsers that support that recommendation.

As it stands at the time of printing, the following selection of DTDs have full cross- browser
support and are recommended:

	 •	 HTML	4.01	Strict

	 •	 HTML	4.01	Transitional

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 17

	 •	 HTML	4.01	Frameset

	 •	 XHTML	1.0	Strict

	 •	 XHTML	1.0	Transitional

	 •	 XHTML	1.0	Frameset

HTML 4.01 is a trimmed- down version of HTML 4 that emphasizes structure over presenta-
tion. HTML 4.01 Strict should be used as a default DTD, unless there is an overriding reason to
use another version. It renders the document in the strictest, most standards- compliant mode.

HTML 4.01 Transitional includes all elements and attributes of HTML 4.01 Strict, but
adds presentational attributes, deprecated elements, and link targets. HTML 4.01 Transitional
should be used if integration with legacy code is required.

HTML 4.01 Frameset includes all elements and attributes of HTML 4.01 Transitional but
adds support for framesets. You should not use it, except in cases where using framesets is
unavoidable.

As discussed shortly, XHTML is essentially HTML in the format of XML. It can be read by
XML parsers, and transformed using Extensible Stylesheet Language Transformations (XSLT)
to any other text- based form.

DTD Validation
Selecting a DTD to describe your document doesn’t mean that the markup you have written
adheres to the specification contained within that DTD. To avoid errors, you should run your
page through an HTML validator, which will check your page’s adherence to the DTD you
specified.

One	of	the	best	validators	is	the	online	tool	supplied	by	the	W3C,	at	http://validator.
w3.org/. You can run the validation from a public- facing URL by uploading your HTML file or
by	directly	entering	your	markup	into	a	text	field	on	the	site.	Clicking	the	Check	button	on	the	
W3C	validator	site	runs	the	validation.	Any resulting errors are listed in document source code
order.

How Do You Put the X in XHTML?
As XHTML is essentially HTML with XML rules applied, the rules are the same as for XML:

	 •	 All	tags	must	be	well	formed.

	 •	 All	elements	and	attribute	names	should	be	in	either	lowercase	or	uppercase,	as	XML	is	
 case- sensitive. Many find lowercase to be easier to read.

	 •	 Values	for	attributes	must	be	quoted	and	provided.	Even	simple	numeric	values	must	
be quoted. In instances where the attribute serves as a Boolean on-or- off type of value
(for example, the checked and disabled attributes for <input> elements), the value
should be set to be the same as the attribute name, as in this example:

<input checked="checked" type="checkbox" name="item1" id="item1" value="1" />

Unlike HTML, XHTML is well formed—every tag that’s opened must be closed. This
means that it is simpler for a browser to parse XHTML than HTML, and therefore its use is also
suited for mobile applications, where processors are slow and memory small. Specifically for

http://validator

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION18

mobile usage, there is XHTML Mobile Profile (now known as XHTML Basic), a subset of full
XHTML.

In fact, the general transformability and readability of XHTML makes it suitable for other
web services and computer programs to access and parse, meaning it is incredibly versatile,
and as such, its use is highly recommended. All examples in the rest of this book will favor
XHTML over HTML.

Well-Formed Documents
An XHTML document is well formed when all elements have closing tags or are self- closing
and all elements are nested properly with respect to others. That is to say that any tag opened
must be closed before its parent tag is closed.

Here is an example of the correct nesting of tags:

<p>
 Here is a paragraph with emphasized text.
</p>

And here is an example that shows incorrect nesting:

<p>
 Here is a paragraph with emphasized</p> text.

In XHTML documents, elements with no inner content, such as
 and , must
be self- closing. A space should be placed between the final character of the tag name and the
slash character at the end of the tag. Omitting this space has been known to cause issues with
rendering in some older browsers, including Netscape 4.

Element Prohibitions
XHTML does place some restrictions on the nesting of elements. Inline elements cannot be
placed directly inside the <body> element, for example, and must be wholly nested inside
	block-	level	elements.		Block-	level	elements	cannot	be	placed	inside	inline	elements.	Certain	
elements are considered both block and inline, depending on the content within them, such
as <ins> and . It is worth noting which elements these are by looking through your HTML
reference guide. Be aware that certain elements cannot contain other elements, such as those
listed in Table 1-1.

 Table 1-1. Some Tags with Content Restrictions

Tag Restriction

<a>	 Cannot	contain	other	<a> tags

<pre>	 Cannot	contain	the	, <object>, <big>, <small>, <sub>, or <sup> elements

<button>	 	Cannot	contain	the	<input>, <select>, <textarea>, <label>, <button>, <form>,
<fieldset>, <iframe>, or <isindex> elements

<label>	 Cannot	contain	other	<label> elements

<form>	 Cannot	contain	other	<form> elements

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 19

Put Best Practice into Practice
So you’re sitting in front of your computer ready to code up an HTML page according to best
practices.	How	do	you	go	about	doing	that?

Remember that your goal is to write code that is consistent and easy to follow for other
developers, and results in a web page that is correctly marked up and accessible to end users.
Let’s go through some guidelines and rules that should help you follow best practices.

Write Code That’s Neat and Tidy
Code	indentation	enhances	code readability. By indenting sections of code based on their
grouping or degree of nesting, your code will be easier to read and understand. Remember that
one	of	the	goals	here	is	for	maintainability	by	other	developers.	Just	as	you	tidy	up	your	living	
room in case you have guests, you should keep your code tidy for when you might have visitors.

Tab characters should be used for indentation instead of whitespace. This facilitates main-
tenance as well as readability, while reducing the overall weight of a page. In your development
environment, you can configure tab spacing to map to a certain number of character spaces.
Usually two, four, or eight character spaces are sufficient for readability.

Code	blocks	residing	inside	other	tags	should	be	indented.	For	every	level	of	nesting,	the	
code should be indented one tab inward. Tags that contain only text content for display, or
inline elements, need not have their content indented with respect to their parent. Take a look
at the following example, which shows some typical spacing.

<div id="container">
 <p>A paragraph of content</p>
 <table>
 <tr>
 <th>Name</th>
 <th>Value</th>
 </tr>
 <tr>
 <td>Red</td>
 <td>ff0000</td>
 </tr>
 </table>
</div>

Cut Down on Comments
I’m sure you’ve seen many examples of HTML comments strewn throughout web sites. They
are in this format:

<!-- comment goes here -- >

Often, they are used to note the beginning and end of particular tags or sections of the page.
While this may be useful when trying to establish which server- generated code is doing what
to your front- end output, most development environments and built- in browser development
tools allow you to locate the starting and ending points of blocks and sections of content, so this
usage of comments is somewhat redundant.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION20

Including large numbers of comments within your HTML means the end users must
download more markup data to their browser across the network before they have a page dis-
played that they can interact with. I recommend steering clear of HTML comments, with the
following exceptions:

	 •	 Where	the	use	of	particular	markup	might	seem	odd	to	another	developer	viewing	your	
code at a later date. A comment can provide an explanation and avoid confusion.

	 •	 Where	it	causes	a	particular	browser	to	have	a	certain,	specific	behavior.	This	is	the	
case with conditional comments in IE, which we will look at next.

Use Conditional Comments for IE
As of IE version 5 and above (Windows- only), Microsoft added a very useful feature called
conditional comments. The idea is that if a developer needs to write code to specifically target
a particular version of IE, or for IE itself, this can be done by a specially formatted comment
tag,	rather	than	by	using	JavaScript	or		server-	side	browser	detection.	To	all	other	browsers,	the	
contents of the tag appear as a standard comment, so they are ignored.

Here is an example of a conditional comment targeting IE version 6 and above:

<!--[if gte IE 6]>
 <p>You are browsing with Internet Explorer version 6 or above.</p>
<![endif]-->

The following includes a conditional comment targeting IE users only:

<!--[if IE]>
 <p>You are using Internet Explorer browser.</p>
<![endif]-->

And, as a final example, this conditional comment targets versions of IE older than version 7:

<!--[if lt IE 7]>
 <p>You are using a version of Internet Explorer older than version 7.</p>
<![endif]-->

Within conditional comments, lt denotes less than, gt means greater than, lte means
less than or equal to, and gte means greater than or equal to.

This	technique	really	comes	into	play	with	regard	to	importing	external	style	sheets.	Con-
sider the following code, which would sit within the <head> block of an XHTML document. It
conditionally loads an external style sheet for IE 6 users,

<link rel="stylesheet" href="master.css" type="text/css" />
<!--[if IE 6]>
 <link rel="stylesheet" href="master.ie6.css" type="text/css" />
<![endif]-->

When they read in this code, most web browsers see a reference to a single style sheet,
master.css, followed by a comment (between the <!- - and -- > comment markers), which they
ignore. IE 6 is the exception. Because it identifies the opening of a conditional comment block
that specifies that the containing code should be read by only that specific version of IE, it
chooses to read and parse the code within that comment.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 21

This allows developers to maintain their master style sheet for all standards- compliant
web browsers. But, for those instances where specific versions of IE just won’t play ball, they
can include a reference to a smaller style sheet containing style fixes to only those elements
that are out of whack. In the future, when IE version 6 is a distant memory, developers need
only delete the conditional comment and the code within it to remove any version- specific
code or styles from their site.

Set the <html> Tag Correctly
After the DTD declaration in every HTML document comes the <html> tag, wrapped around
the rest of the document’s contents.

For HTML documents, this can be left as just the tag without any attributes specified, but
in the case of XHTML, certain attributes must be included. Take a look at this example from an
XHTML document:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en- GB" lang="en- GB" dir="ltr">

This example has the following components:

xmlns: This attribute defines the namespace for custom tags within the document (this is
required, although it is rarely used in real- world applications at present).

xml:lang and lang: These attributes specify the language, such as en for English (and often
including the region locale, such as en- GB for Great Britain) of the entire document. Where
the language of specific content changes in the document, such as when using the French
expression c’est la vie, this text must be marked up with a tag surrounding it. In many
cases, you would use a tag, setting the xml:lang and lang attributes for this ele-
ment. In the preceding example, this attribute’s value would be fr- FR.

dir: This specifies the text direction of the content within the document. For most West-
ern languages, this value will be ltr (left to right). However, if the text direction changes
within the content, you should note this by setting the dir attribute on a tag surrounding
that content. The only other possible value is rtl (right to left).

Specify the Content Type
It is advisable to specify to the browser or user agent the content type of the document, in case
it is incapable of reading this directly from the file itself, as it reduces assumptions and ensures
that the content is readable in the form it was written. Use the <meta> tag within the <head>
part of the HTML file to do this, as in this example:

<meta http-equiv="Content- Type" content="text/html; charset=utf- 8" />

In this line of code, the browser is told that the content type is in the UTF- 8 character set.
This particular character set is very flexible, in that most worldwide characters can be inserted
directly into your document without the need for conversion to HTML entity codes. This is
especially useful for characters outside the standard English alphabet.

http://www.w3.org/1999/xhtml

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION22

Set the Page Title
The <title> tag is an essential part of any document. It needs to be a single heading that
describes the document in as few words as possible. It is used as the text for the link to your
page within search engine results, and is displayed at the top of the window within your
browser.

With this in mind, you might decide to reveal some other information in your page title
about the location of the page within the site structure, to provide some context for those who
have stumbled across your page through a Google search. The following format seems sensible
enough to portray this information while being readable and fairly succinct:

<title>Page title - Section name - Site name</title>

The Page title in this example will almost always match up with the main title of the page,
usually contained within the <h1> tag of the document. Of course, you can use whichever sepa-
rator you like between the values; the order is the essential part.

It is sensible to ensure that each distinct page in your site has a unique page title within its
section, so that duplicate results with the same name do not appear in search engine results or
on a site map.

Separate Presentation, Content, and Behavior
It is important to separate the content of a document from the code needed to apply its design
and layout. This level of separation allows you to make style changes easily, without needing
to alter the markup. You can even swap out the entire layout of the web site for another layout
fairly simply, without affecting its content.

You should avoid using inline styles within your markup (set with the style attribute of
many tags), as this makes maintenance of your pages incredibly difficult. Developers should
know to look within style sheet files for everything involving style and layout, and HTML
documents for everything regarding content. The two should never be intermingled. You
should	also	keep	all	your	JavaScript	code	outside	the	HTML	document.

Instead, within your HTML, reference style sheets through the use of the <link> tag. Refer-
ence	JavaScript	code	with	the	<script> tag. Adding class and id attributes to tags within your
HTML should be the only method for providing the connections between these files; style
attributes	and	JavaScript		on-	method	handlers	should	not	be	mingled	with	your	content.

It is possible to reference style sheet files according to the device on which you want those
styles to be displayed. For example, you will probably want to include separate style sheets for
the printer and the screen, as in this example:

<link rel="stylesheet" href="master.css" media="screen" />
<link rel="stylesheet" href="master- print.css" media="print" />

Where the media attribute is specified on a <link> tag, the printer will read a style sheet
only when that attribute contains the print value, and the screen will read a style sheet only
when this attribute contains a value of screen. This allows you to style your content differ-
ently depending on the presentation media. For example, on the printer, you probably need
little more than the basic content of the page. You could create styles that hide the navigation,
header, and footer of your page, leaving only the main body of content, which is usually what
most people printing your page want to read when they are away from their browser.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 23

Add a Wrapper Element to the Whole Document
Within the <body> tag of your pages, you often will want to add certain layout styles to the whole
page. You will soon discover that applying these styles to the <body> tag alone is not sufficient
for all the positioning and layout you wish to perform. As a solution, I recommend that you add
a “wrapper” element, usually a <div> tag, around the page content, and place the extra layout
styles within this element, rather than using the <body> tag itself.

A <div> tag merely defines a block of content and adds no extra meaning to the content
within. Use the id attribute to set an appropriate name for this element to which you can hook
the	CSS	styles,	like	this:

<body>
 <div id="page">
 ...
 </div>
</body>

If your design is really simple, you may be able to get away with just using the <body> tag.
However, consider adding a wrapper element anyway, since you never know how your design
may change in future.

Help CSS and JavaScript Target Individual Pages
A practice I advocate is to add a unique id attribute to the <body> tag on each page in your site.
Suppose that you have generic styles created for a multipage web site, and you wish to target
one specific style slightly differently on a particular page. In this case, you will need to create
an exception to the rule. If each page on the site has a unique id attribute, you can create a
style that targets just this one page over all others.

Imagine you wish all paragraph text in your site to appear with black text on a white back-
ground, but on your home page, you want it to be inverted: white text on a black background.
The home page will have a unique id attribute, like this:

<body id="homepage">

and the styles for the paragraph text will look something like this:

p {
 background:white;
 color:black;
}

#homepage p {
 background:black;
 color:white;
}

In addition, by using the id attribute in this way, you can easily get a reference to a specific
page	with	JavaScript	code,	using the document.getElementById method:

var homepage = document.getElementById("homepage");

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION24

Name Your ID and Class Attributes Consistently
You should wrap each logical section or block of the body copy in its own <div> tag using
sensible, contextual values for their id	attributes.	Certain	elements	are	common	across	most	
pages and sites, including the navigation, header, and footer. These types of elements should
be kept consistent across pages and projects, where possible, to aid with future maintenance.
This allows developers to recognize elements, even when working with unfamiliar pages.

Consider	using	id attribute values along the lines of the following:

<div id="header">
<div id="content">
<div id="aside">
<div id="footer">
<div id="navigation">

You should name your id or class attribute values according to the type of content they
enclose, rather than any style they use. For example, this form:

<p class="error">

is better than this one:

<p class="red- text">

■Tip Using a hyphen (-) to separate words in id and class attribute values makes them easier to read.

Labeling your class attributes with content- related information means that when your
site designers alter specific parts of the page, you won’t need to change your markup; only
your style sheet will need modification. It also means that the HTML document stands alone
as a description of only the content within, rather than any external file, style, or code.

Order Your Content Correctly
Getting the order of the content within your document correct is just as important as ensur-
ing that it is marked up with the correct tags. Remember that you need to make sure that
when the page is read aloud, the most important page content—the main body or subject of
the page—is read first, and the less important content—such as navigation links and copy-
right information—is read last. Screen reader software vocalizes the content of the document
strictly in source code order, which means what comes first in your markup is read aloud first.

So that users of screen readers get the content in the most meaningful way, you should
organize the <body> content of your markup in the following order:

	 •	 Page	title

	 •	 Short	list	of	links	that	jumps	the	reader	straight	to	content	further	down	in	the	page	
 (in- page links)

	 •	 Main	body	content

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 25

	 •	 Aside	content	(sidebar,	related	content,	or		context-	sensitive	links)

	 •	 Main	navigation

	 •	 Footer	and	copyright	information

You	can	use	CSS	to	alter	the	visual	layout	of	the	page	so	that	it	matches	designs	that	you	
must work with. This is explained in the “Accessibility Guidelines for Styles” section later on in
this chapter.

Separate Foreground Images from Backgrounds
It is important to make a distinction between those images on your page that are directly
related to the content and those that relate to the layout or template of the site.

Images that are directly relevant to the content of the page—figures, charts, pictures of
your pets, and so on—should be marked up using the tag, as you might expect. All other
images, including company logos and icons, should be referenced using background images
within your style sheet files. This provides another way to distinguish page layout from rel-
evant page content.

Ask yourself, “If I printed out only the body content of this page, would this image be out
of	place,	or	is	it	contextually	relevant	to	the	content?”	In	practice,	you	will	find	that	the	major-
ity	of	image	files	will	be	referenced	from	within	CSS	and	not	be	marked	up	with	the	 tag.

In those instances where you do use tags, remember to use the alt attribute to
describe the content of the image for those users who are unable to view images in their
browser for whatever reason. If the image is complex, such as a graph or chart, it might need
a more detailed explanation. In this case, consider using the longdesc attribute to point to
the URL of a page that contains an in- depth description of the information conveyed by the
image.

Use Tables Properly
Up until a few years ago, it was common practice to position page components using HTML
<table> tags. The <table> tag should be used only to represent tabular data, and never for
positioning	content	on	the	page;	CSS	is	more	than	up	to	the	task	of	positioning	content	and	
providing page layout.

There are many ways you can add extra semantic information to tabular data, all of which
aid accessibility to the information contained within the table, and so are worth implement-
ing. In a nutshell, these are as follows:

	 •	 Use	the	<caption> tag after your opening <table> tag to add a caption to the table.
Remember that you can always use style sheets to hide the contents of this tag if you
don’t want them displayed, but it is wise to add as much semantic data as possible to
your pages.

	 •	 Use	the	summary attribute of the <table> tag to provide a brief overview of the contents
of the table and what it aims to represent. This attribute can be read aloud to summa-
rize the table’s contents.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION26

	 •	 Group	the	header,	body,	and	footer sections of the table together using the <thead>,
<tbody>, and <tfoot> tags. Be aware that these must be placed in a specific order:
<thead> and <tfoot> first, followed by <tbody>. This allows the browser to display the
header and footer rows of the table while the rest of the content may still be loading.

	 •	 Use	the	<th> tag to mark up header cells and <td> for actual data.

	 •	 Give	each	header	cell	a	unique	id attribute value. Then, for each data cell, assign its
headers attribute value to be a comma- separated list of the id values of the associated
header cells.

The following is an example of a table using all of these markup techniques:

<table summary="Table showing that the average age of students in this course is 26">
 <caption>Table of students registered for this course with their ages</caption>
 <thead>
 <tr>
 <th id="student- name">Student name</th>
 <th id="age">Age</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th id="average- age">Average age</th>
 <td headers="age, average- age">26</td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td headers="student- name">John Lewis</td>
 <td headers="age">24</td>
 </tr>
 ...
 <tr>
 <td headers="student- name">Peter Jones</td>
 <td headers="age">28</td>
 </tr>
 </tbody>
</table>

Improve Your Forms
You should group logically related sections of a form together using the <fieldset> tag, with
each containing one <legend> tag to provide a header for that particular grouping of fields
within the form. For example, a credit card application form may contain sections for per-
sonal information, credit history, and bank details. In this case, the form could be created with
three <fieldset> tags with <legend> tags of Personal information, Credit history, and Bank
details, respectively, as follows:

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 27

<form method="get" action="/">
 <fieldset>
 <legend>Personal information</legend>
 ...
 </fieldset>

 <fieldset>
 <legend>Credit history</legend>
 ...
 </fieldset>

 <fieldset>
 <legend>Bank details</legend>
 ...
 </fieldset>

 <input type="submit" value="Save" />
</form>

Make sure that each field within your form that has an associated text label has that label
marked up with the <label> tag. This tag takes a for attribute, which you should set to the
same value as the id tag you set on the associated field. The default browser behavior in this
case is to make the <label> tag clickable, bringing the focus of the form into the associated
field, and allowing the user to interact with that form field when the label is selected. To allow
for more scope of applying style rules to form fields and their associated labels, add a <div>
wrapper tag around each field, which lets you target the fields through style sheets and set
spacing and other visual properties. Here is an example:

<div class="field">
 <label for="first- name">First name</label>
 <input type="text" id="first- name" name="first- name" />
</div>

Pay special attention to the text used within the <legend> and <label> tags within a
<fieldset>. When these field labels are read aloud by certain screen reader software, the text
within the <legend> tag is prefixed to the text in the <label> tags to provide extra context to the
listener. You must ensure that when this is read aloud, it makes sense to the listener.

Avoid Using Frames
You should avoid using framesets at all cost. They make the content and layout of a site diffi-
cult to maintain, are a pain to use on small-screen devices (such as mobile phones), and make
navigating around content difficult for end users who do not use a mouse as their primary
form of input to their computer.

Inline frames (using the <iframe> tag) should be used sparingly, if at all. They can be confus-
ing to the end user and lack the inherent accessible nature of a single- page HTML document.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION28

Accessibility Guidelines for Web Content
If you are not familiar with the Web	Content	Accessibility	Guidelines	(WCAG),	read	these	W3C	
recommendations at http://www.w3.org/TR/WCAG20/. These guidelines denote three different
levels of accessibility compliance of a web page: A, AA, and AAA, where AAA is the most acces-
sible content.

The accessibility guidelines relate not only to technology, but also to creative design, copy
writing, and information architecture, which together provide the total experience for the end
user. AAA compliance is the holy grail of any web site developer and should always be strived
for. However, AA compliance is usually achievable and is a happy medium for developers who
are impeded by time or design constraints. Following the guidelines in this chapter will get you
well on the way to providing the most accessible experience you can through technology, but
you must be aware of how different users interact with web pages, so I encourage you to read
the	WCAG	document.

Don’t Be Fooled by Access Keys
Once touted as a fantastic addition to web pages, access keys are keyboard shortcuts that allow
users to jump to certain content on the page or to external pages. However, modern thinking
has reasoned their use away, and you should avoid using access keys.

Keyboard shortcuts are very useful to end users who do not use a mouse. In fact, those
users often have their own shortcuts set up within their operating system. Unfortunately,
access keys often conflict with user- defined keyboard shortcuts. Users will find it confusing
when they think they are using their own shortcut, but are actually using the access key short-
cut instead, or vice versa.

Access keys can also be confusing because different sites typically use different keys to
perform the same action. This means that the end users must become familiar with a differ-
ent set of shortcuts for each web site visited. This is not expected in the world of computer
software, where certain keyboard shortcuts usually perform the same action, regardless of the
program.

One of the golden rules of accessibility is to reduce confusion among end users. So, we
must regard access keys as nice in theory, but bad in practice.

Don’t Be Fooled by Tab Indexes
Another so- called accessibility addition that you should steer clear of is tab indexes. These set
the order that links, form fields, and so on become active as the user presses the Tab key on
the keyboard. Unfortunately, it is not possible to simply add a tab index to a single field. If you
specify a tab index for one element, it must be specified for every element; otherwise, you can-
not maintain control over the tab order. The daunting task of maintainability and its limited
impact on accessibility makes this a write- off.

A better solution is to ensure your document is well structured, with important content
toward the top of the page, and to specify links and form fields in the source code in the order
that you wish for them to be tabbed. You can then use style sheets to position these elements
on the screen in the desired location or order for visual effect.

http://www.w3.org/TR/WCAG20/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 29

Don’t Rely on Plug- Ins
By definition, a browser plug- in is not inherently accessible. Since it is not part of the browser
itself, the presence of any plug- in must never be assumed. If the end user does not have a
particular plug- in, such as Adobe’s Flash Player, alternative content should be provided, as
explained earlier in this chapter.

It is not wise to wrap an entire web page within a Flash movie, as is so often the case on the
Web. The content within the movie remains inaccessible to users of certain browsers and those
without the plug- in, and is invisible to most search engines. Instead, consider the use of Flash
components on your page—perhaps a movie trailer displayed within a Flash movie container
or a special creative treatment to a navigation bar. Then ensure that those users without the
 plug- in are able to access the content in an alternative way. For example, you might include a
transcription of the movie trailer or a plain navigation bar without creative treatment. In this
way, you are creating beautiful, smart web pages without sacrificing accessibility.

Add Extra Semantics Where You Can
Some open standards are emerging for adding extra meaning to certain blocks of content
within the document markup. One such standard is known as microformats. Microformats are
blocks of HTML that represent things like people, events, tags, and so on in web pages. They
are readable by humans and machines, and entail little more than assigning certain values to
certain attributes.

The	hCard	microformat,	for example, is used to mark up address card information, similar
to	the	vCard	format,	which	is	a	commonly	used	for	exchanging	address	information	between	
computer	software.	The	following	is	an	example	of	using	the	hCard	microformat	to	mark	up	a	
name, web site URL, and mobile telephone number:

<div class="vcard">

 Den Odell

 Mobile
 +441234567890

</div>

The actual tags used are unimportant. Rather, it is the attribute names that are detected
by software built to recognize them, including some existing web browsers. Style sheet rules
can be used to hide any of the pieces of content that you do not want displayed on your page
and will leave them as the pure semantic data within the markup.

■Tip Other microformats exist for marking up calendar events (hCalendar), content reviews (hReview), and
more. New microformats are being recommended as this book is being written. Follow the progress and see
more examples online at http://microformats.org/.

http://www.denodell.com/
http://microformats.org/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION30

Formatting Best Practice: CSS
As a developer, you have most likely opened a style sheet file that someone else worked on and
thought	to	yourself,	“How	am	I	meant	to	understand	this?”	Once	you	separate	all	layout	styles	
from the markup of the document, you will notice just how many style definitions make up a
single page or site!

Because of the sheer number of style definitions required to lay out a page, it soon
becomes cumbersome to maintain the layout without sticking to some sensible guidelines for
structuring	CSS	files	and	styles.

Regarding Pixel- Perfect Reproduction of Designs
As developers, we should always strive to build pages that match the creative designs we are
working from as pixel perfectly as possible. However, sometimes the effort required for this
 pixel- perfect consistency is not worth the visual gain that comes from it.

Consider	form	fields,	for	example.	I	have	lost	track	of	the	number	of	creative	designs	I	
have worked from that showed <select> drop- down boxes with custom- designed handles
(the handle is the downward- pointing arrow on the edge of the box). Those of us who have
attempted to style these boxes in the past—and believe me, I have tried—have discovered the
extreme variations between browsers.

It does appear that the more modern the browser, the more control we have over the
native controls. That doesn’t help the majority of us, however. Many of us are still required to
support older browsers such as IE 6, however arcane their form controls may appear.

The solution is to take a best- effort approach. For those browsers that can support it, offer
the custom- styled form controls. For older browsers that don’t render the required results, it’s
necessary to be pragmatic.

All major browsers allow you to style the background color, text color, font, and line height
(although the height specification can give different results in different browsers, so some
experimentation is needed). Not all browsers allow you to specify a border style or color, or to
customize the appearance of a drop- down box handle. You should ensure your client is aware
of this fact in advance. Otherwise, you will need to adjust the designs accordingly to achieve an
identical appearance across different browsers.

From experience, and a healthy dose of common sense, we know that most end users run
only one browser on their machine. Furthermore, most users are not examining the design
elements. Typically, they will not spot a border on a <select> box that doesn’t match the other
form fields on the page. End users are mostly concerned with whether they can get the infor-
mation they want from your page quickly.

The following are a couple of rules of thumb for where to draw the line with cross- browser
variations	using	the	same	CSS:

	 •	 You	may	exclude	certain	design	aspects	of	the	page	if	the	development	time	required	
to build the support in the first place is unreasonable for the visual gain produced.

	 •	 You	may	exclude	certain	design	aspects	of	the	page	if	the	maintenance	tasks	required	
to make changes to the code base in the future to support the layout would be too
cumbersome to expect of any developer.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 31

W3C CSS Standards
CSS	1.0	was	recommended	by	the	W3C to developers back in 1996. Its support is virtually uni-
versal in about 99% of the browsers in common use today.

CSS	2.1	is	the	current	recommendation,	and	while	it	is	not	universally	supported	in	all	
browsers	(currently	limited	to	the	Firefox	3,	Safari	3,	IE	8,	Opera	9.5,	and	Google	Chrome	
versions of the most common browsers), partial support can be found in that same 99% of
browsers.	Support	exists	for	CSS	positioning	(also	referred	to	as		CSS-	P	before	CSS	2.1	reached	
recommendation) to place elements on the page at absolute locations with reference to the
 top- left corner of the browser window, and at relative locations with respect to the element in
which they are contained.

Currently	seeking	recommendation	is	CSS	3	(though	it	has	been	in	this	stage	for	a	long	
time,	as	suggestions	keep	being	made	for	additions).	The	best	CSS	3	support	so	far	can	be	
found	in	Safari	3,	but	recent	releases	of	both	Firefox	and	Opera	have	increasing	levels	of	
support.	Don’t	be	afraid	to	use	CSS	2.1	and	CSS	3	style	rules,	as	long	as	you	ensure	you	can	
adequately represent your design in as many browsers as possible.

Guidelines for Style Sheets
By	following	CSS	best	practices,	you	can achieve the main goals of making your web pages
fully accessible and your code easy to maintain. The guidelines presented in this section will
help prepare your style sheets for any changes that may be required in the future, while ensur-
ing the needs of your end users are met.

Separate Common Style Rules
It is highly desirable to include on each page only	the	CSS	style	rules	required	to	render	that	
page. Having extra style rules that are not used results in extra data the browser must down-
load and interpret before it knows to dismiss that data. However, two things must be kept in
mind: maintainability and an understanding of how the browser works.

Consider	a	web	site	dedicated	to		up-to-the-	minute	sports	scores,	which	is	made	up	of	four	
pages. The home page describes the purpose of the site to the visitor and provides links to the
other pages. The other pages include one with the sports scores, a news update page, and a
frequently asked questions (FAQ) page. According to the guideline, the only style rules on each
page would be those required to render that specific page.

Now consider how these web pages might look on the screen. Most web sites have com-
ponents that exist across every page, such as a header section with the site logo and navigation
and a footer with copyright information. Also, most site designs are based on a layout template.
so each page fits the same rough dimensions and adopts a grid layout specified by the designer.
Think of the maintenance nightmare of having to update the header, footer, and general page
layout if their styles were duplicated in each of the four style sheet files for the site’s four pages.
A more sensible approach is needed to ensure maintainability and avoid style rule duplication.

All major web browsers seek to give the end user the fastest and most pleasurable
 web- browsing experience they are able to offer, and they adopt many approaches in order to
do that. One such approach is called caching, which involves storing a copy of all the HTML,
images,	style	sheets,	JavaScript	files,	and	other	static	assets	requested	to	display	the	web	page	
locally on the end user’s hard disk. This means that when the users click the web browser’s
back button or revisit a page, the browser only needs to look on the hard disk to retrieve the

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION32

data required to display the page. This avoids downloading these assets again over the com-
paratively slow Internet connection, so the page is displayed much faster than before.

In simple cases, an image—the site logo, for example—is downloaded once when the user
visits the home page. Provided that each page is pointing to the same image file on the web
server, and that image has not been updated in the meantime, the web browser will take that
image from its cache on the hard disk, rather than waste time downloading it again. We can
take this same principle and apply it to style sheets.

Let’s say you have one style sheet for your web site that contains only the styles for the
general page layout and common components that appear across all pages. You include a ref-
erence to this same file on each of your pages. The web browser will download this file once,
when the end user first visits a page on the web site (usually the home page), and thereafter on
subsequent page visits, the browser will use the file already downloaded. This speeds up the
rendering of pages, as time isn’t spent downloading more files than are necessary. This has the
added benefit of keeping all the page styles common to the entire site together in one file, so
you no longer have style rule duplication across your pages.

You can lay out the page- specific style rules in single files of their own, so each page will
reference two external style sheets: one common to the site and one unique to the page.

Understand Cascade and Specificity
Two important terms used when discussing style sheets are cascade and specificity.	Cascading	
(the letter C	in	the	acronym	CSS)	is	used	to	describe	how	styles	are	applied	in	an	additive	fash-
ion. Specificity describes the specific levels of instance at which a particular style is applied to
the page.

The most sensible way to organize your style rules is to start off writing generic styles and
increase the specificity of your styles as you progress. Often, the more generic your styles, the
more efficient your style sheet files can be. Try to avoid overspecifying a style rule. There is no
need to list every tag, ID, or class applied to the element you are styling—keep things short and
simple.

As an example, consider an HTML page with the following markup for the <body> tag:

<body>
 <div id="page">
 <div id="header">
 <h1>My Page Title</h1>
 </div>
 ...
 </div>
</body>

Rather than specifying the following to apply styles to the heading tag:

body #page #header h1 {
}

specify something simpler:

#header h1 {
}

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 33

Since you know that all id attribute values within HTML must be unique, there can be only
one element on the page with the id value of header, so specifying its parent elements in the style
rule adds redundancy. You do not need to specify the body tag selector either, since the only tags
you are able to apply styles to are within the <body> tag, by definition. Also, in the preceding new
style rule, you are able to keep header as a distinct component of the page that is not restricted
by its parent element. If you choose to move the <div id="header"> tag around the markup and
place it within a different parent element, you know the style rule will apply to it in the same way.

Let’s consider another example. Suppose you want two paragraphs of text to appear in the
same font, and differ only in their size and color. Here’s the HTML:

<body>
 <div id="page">
 <p>The quick, brown fox jumped over the lazy dog.</p>
 <div class="alternative">
 <p>The five boxing wizards jump quickly.</p>
 </div>
 </div>
</body>

Now check out the style rules:

#page p {
 font- family: Verdana, Arial, Helvetica, sans- serif;
 font- size: 1.3em;
 color: #000;
}

#page div.alternative p {
 color: #f00;
 font- size: 1em;
}

The styles described in the most generic style rule, the former of the two rules in the preced-
ing code, will be applied to all paragraph tags within the <div id="page"> tag. The latter style
rules are applied to the more specific paragraph tags within the <div class="alternative"> tag.
This additive effect is what we call cascade.

Also of interest is the !important keyword, which can be added to the end of any style to
force that rule to take precedence over any other rules at a more specific level. You could add
this keyword to the preceding example, like this:

#page p {
 font- family: Verdana, Arial, Helvetica, sans- serif;
 font- size: 1.3em;
 color: #000!important;
}

#page div.alternative p {
 color: #f00;
 font- size: 1em;
}

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION34

Since the color of the more generic style has been marked as !important, its style will take
precedence over a more specific instance of that style. In this case, the color #000 is applied to
all paragraph text within the sample page.

In many cases, the usage of the !important keyword to enforce incorrect precedence is
wrong, and is the sign of a poorly architected style sheet. Needing to return to the style sheet
file later to figure out why the styles specified are not being applied is not worth the time or
headache.	Consider	refactoring	your	styles	if	you	find	yourself	needing	to	use	the	!important
keyword, so the correct rules are applied to the desired elements. In some cases, this may
mean adding a little extra markup to the page to ensure the styles can be applied in the correct
way. But this is better than having a poorly structured style sheet with confusing style rules.

Think About the Printer
When building the style sheets for a site, most developers neglect the printer, though rarely
deliberately. It is important to know what does and what does not get printed when your users
click that print button on their browser’s toolbar. There are three items you need to consider:

Wide content:	Content	wider	than	the	width	of	a	printed	page	is	usually	chopped	off—not	
printed at all. Some browsers allow scaling of content to fit the printed page, but this can
result in text that’s very difficult to read, depending on the width of your site layout.

Background images and colors: Since you should be including as foreground images only
those graphics that directly relate to that page’s content, all other images (such as logos)
should be background images. In many cases, all the images on the page will actually
be	background	images,	specified	within	external	CSS	style	sheet	files.	Most	browsers	
will not print those background images and colors. This was a smart move on the part
of the browser vendors to save ink and print only what’s necessary: the textual content
of the page. As noted earlier, in most cases, users print a web page to read its main body
content—whether it’s a train timetable, book review, or bank statement. Rarely will a site
visitor want to print the page exactly as it appears on screen. For those who do, there are
often hidden preference settings within the browser to enable the printing of background
images and colors, but these options are rarely switched on by default.

Text color: Most users in an office environment will have access to a laser printer only,
which will often print in black and white. Most home users will have an inkjet printer
capable	of	full-color,		photo-	quality	printing.	Consider	the	lowest	common	denominator	
and test print your pages on a black-and- white printer, if you have access to one, or by
choosing to print on your inkjet printer with black ink only. Text color also comes into
play when you consider background images. Suppose your web page has white text on a
dark background. Since that background color won’t print, you will be left with white text
printed on your crisp, white paper. Of course, the printer has no white ink to print with, so
the user actually gets a blank page!

A printout of a web page usually shows large chunks of blank space where background
images and colors once were, often with some content chopped off the page and some
 light- colored text missing entirely. This is hardly what the users want to see on their printed
pages.

You don’t want to be responsible for user frustration, so you should get around these limi-
tations by specifying a style sheet that will be read only by the printer, using this markup:

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 35

<link rel="stylesheet" href="master- print.css" media="print" />

Within this print- only style sheet, you will want to minimize the whitespace that would
appear on the printed page, removing unnecessary components, and ensure that no content is
chopped off or hidden in the final printed article. For example, you can remove the navigation
by applying the following style rule:

#navigation {
 display: none;
}

You may want to specify a font color, such as black, to override all other text colors on the
page. This can be achieved with the following style rule:

* {
 color:#000!important;
}

This applies the color black (in hexadecimal notation, black is #000000 or, in shorthand,
#000) to all elements on the page (the * wildcard is used to target all elements on the page).
Note the use of the keyword !important at the end of the style rule. As I noted earlier, this is
a dangerous keyword to use, as it enforces this style’s importance over any other style in the
document. However, it is very useful in a printer style sheet, as allows you to override the font
color of any element on the page, as specified by a master style sheet, without needing to con-
sider its level of specificity.

Format Your Style Rules
One tried-and- tested layout for style rules that demonstrates good legibility is shown in the
following example:

.module-heading,

.module-subheading {
 background: #333;
 color: #f00;
 float: left; /* inline comment */
}

In this style rule, multiple style selectors are used to apply this style rule to page elements
with	two	different	CSS	classes.	Rather	than	putting	the	style	definitions	on	the	same	line,	
which could be confusing, the style selectors are placed on separate lines. The style rule is
opened	at	the	end	of	the	line	following	the	last	CSS	class	name	and	closed	on	a	separate	line	
after all the style rules. The style rules themselves are indented one tab stop with respect to
the style definitions themselves. A space appears between the colon character after each style
property name and its respective value.

Each style property exists on its own line, and each line is terminated with a semicolon.
If you need to supply a comment to associate with any style rule to aid future development or
maintenance, this comment should follow the semicolon on the same line as the rule itself.
For consistency in your style rules, you may choose to order your style property names alpha-
betically, according to the type of style property (text, color, layout, and so on), or by any other
grouping that is suitable for your application.

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION36

Apply Multiple Class Names to a Single Page Element
As mentioned earlier in this chapter, CSS	class	names	specified	within	your	HTML	markup	
should describe the information that the element’s content represents, rather than how that
content should be displayed.

You may wish to apply multiple class names to the same element, to avoid duplicating
your	style	rules.	Within	your	markup,	this	can	be	achieved	simply	by	separating	each	CSS	class	
with the space character, as in this example:

<div class="article main- article">
 <p>Hello, world.</p>
</div>

Style rules written for both article and main- article classes will be applied to the <div>
tag, from left to right, so styles specified within the main- article style rule will take precedence
over those within the article style rule.

If you need to apply a special style to elements that contain multiple classes in this way,
the	following	CSS	selector	syntax	will	allow	you	to	do	just	that:

div.article.main-article p {
 color: #0f0;
}

This style rule applies to <p> tags whose parent tag is <div class="article
 main- article">. Note the lack of a space character	between	the	CSS	class	names.

Reset the Browser’s Default Styles
By default, a web browser will have its own set of default style rules to apply to a page without
styles. This will include font face, size, line height, and color, as well as padding and margins to
differing degrees on different elements and tags.

To provide a level playing field for your own styles, I recommend that you reset the brows-
er’s default styles. This passes the precise control over each element to your own style sheets,
providing more consistency across different browsers.

At its very simplest, the following style rule levels all margin and padding applied to all
page elements down to zero, ready for you to specify your own margin and padding spacing
individually for each element that requires it in your style rules:

* {
 margin: 0;
 padding: 0;

}

CSS	style	guru	Eric	Meyer	provides	a very comprehensive reset style sheet that completely
eradicates cross- browser differences between the default style rules (http://meyerweb.com/
eric/tools/css/reset/). Its current incarnation is shown in Listing 1-1.

http://meyerweb.com/eric/tools/css/reset/
http://meyerweb.com/eric/tools/css/reset/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 37

 Listing 1-1. Eric Meyer’s Universal Cross- Browser Style Reset

/* v1.0 | 20080212 */
html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, font, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {
 margin: 0;
 padding: 0;
 border: 0;
 outline: 0;
 font- size: 100%;
 vertical- align: baseline;
 background: transparent;
}

body {
 line- height: 1;
}

ol, ul {
 list- style: none;
}

blockquote, q {
 quotes: none;
}

blockquote:before, blockquote:after,
q:before, q:after {
 content: '';
 content: none;
}

/* remember to define focus styles! */
:focus {
 outline: 0;
}

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION38

/* remember to highlight inserts somehow! */
ins {
 text- decoration: none;
}

del {
 text- decoration: line- through;
}

/* tables still need cellspacing="0" in the mark- up */
table {
 border- collapse: collapse;
 border- spacing: 0;
}

Eric	Meyer	has	spent	a	lot	of	time	researching	and	testing	CSS	support	in	each	major	
browser, and his reset style is the much- appreciated fruit of this labor.

Whether you choose to use the simple margin/padding reset code shown at the beginning
of this section, Eric Meyer’s full reset-the-heck-out-of- everything code shown in Listing 1-1,
or one of the other alternatives you can find through a quick search of the Web, you should
specify these reset styles at the very start of your main	site	CSS	file,	before	you	apply	any	other	
style rules.

Master Shorthand Style Rules
Certain	styles	can	be	combined	or shortened and, where possible, you should use these ver-
sions	to	reduce	the	size	of	your	CSS	files	and	save	on	the	volume	of	data	downloaded	across	
the wire from the web server to the browser.

As a simple example, certain margin and padding values on an element could either be
specified the long- winded way:

p {
 margin- top: 5px;
 margin- right: 7px;
 margin- bottom: 5px;
 margin- left: 7px;
 padding- top: 6px;
 padding- right: 3px;
 padding- bottom: 6px;
 padding- left: 3px;
}

or in shorthand:

p {
 margin: 5px 7px 5px 7px;
 padding: 6px 3px 6px 3px;
}

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 39

Note that the order of the shorthand values for margin, padding, and border is always as
follows:

	 •	 Top

	 •	 Right

	 •	 Bottom

	 •	 Left

In the case where the values for margin- top and margin- bottom are identical, and the
values for margin- left and margin- right are also identical, further shorthand notation may
apply, like so:

p {
 margin: 5px 7px; /* 5px top and bottom, 7px left and right */
 padding: 6px 3px;
}

Other styles—such as font, color, and background—also have their own form of shorthand
notation.	Chapter	4,	which	focuses	on	improving	performance	in	CSS	files,	provides	more	
details about the shorthand for these styles.

Accessibility Guidelines for Styles
By now, you know that one of our primary concerns as web developers is accessibility—ensuring
our content is available to everyone, regardless of browser, device, or input method. Primarily,
the focus is on ensuring semantic markup, as discussed earlier in this chapter, but you must
ensure that your style sheets back up the principle. Users with displays of different sizes and
resolutions should be able to view your page content in a clear manner.

Hide Content from CSS- Capable Browsers
You can use style sheets to visually hide the contents of a particular tag within your markup
if you do not want them displayed on the screen. Recall the movie review site example earlier
in this chapter, where you wanted to ensure the text was in your HTML, so that if the content
were read aloud or read without any style sheets applied, the user would understand the rating
the	reviewer	had	assigned	to	that	movie.	Now	it’s	time	to	apply	your	CSS.	You	want	to	show	an	
image representing the equivalent four-out-of- five star rating, rather than show that text.

Hiding text in this way should be accomplished using the text- indent style property,
choosing a value that positions the text off the left edge of the browser viewport so that it is no
longer visible, as follows:

div#hide-me {
 text- indent: -9999px;
}

Using any other style property for hiding the text has the unfortunate side effect of render-
ing	the	text	unreadable	through	the	popular	JAWS	screen	reader	software,	manufactured	by
Freedom Scientific (http://www.freedomscientific.com/).

http://www.freedomscientific.com/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION40

Move Content Blocks to Maintain Correct Markup Source Order
Earlier in this chapter, you learned that the order of blocks of content within your markup
should be such that when the page is read aloud, the most relevant page content comes
first, and secondary content, including navigation and copyright information, comes last. Of
course, this order may not suit the visual appearance of your site, where you most likely wish
to have your navigation links appear above the main body of content.

If you have two block elements in sequence within your markup and would rather have
the latter content appear in the browser before the former, you can use the style property
float to reorder those two blocks of content. Look at the following snippet of HTML code:

<div id="body">
 ...
</div>

<div id="navigation">
 ...
</div>

By default, the <div id="body"> tag would appear before the <div id="navigation"> tag,
but you can reverse this order with the float style property, as follows:

#body {
 float: right;
}

#navigation {
 float: left;
}

You may also wish to consider using combinations of absolute and relative positioning to
relocate content blocks around the page to achieve the layout you need.

Use Relative Font Sizes
Some site visitors, who are perhaps visually impaired or simply have their screen resolution
set high, may resize the base font size in their browser to view the site optimally. All the major
browsers have this feature. As developers, we must consider the end user’s needs in addition
to the design criteria for our web pages.

To handle the possibility of font resizing, you should use relative units within your style
sheets, so that as the browser’s base font size changes, so too does the page text, proportion-
ally. The em unit is one such relative unit, as is % (percent). You should absolutely not use px
(pixel) or pt (point) values to specify font sizes in your style sheets, as these will not scale
according to the end user’s need.

To make calculation of font sizes easier when working with relative font size units, try set-
ting the default font size on your <body> tag element to a size of 62.5%. At this level in default
browser settings, the size of 1em becomes visually equivalent to the size of 10px. Each 0.1em
increment then corresponds to a visible increase of 1px, so 1.1em is visually equivalent to
11px and 1.2em to 12px. This trick is extremely useful when working with creative designs that
invariably have font sizes measured in pixels. The following are examples of sizes:

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 41

body {
 font- size: 62.5%; /* resets font sizes so 1em is visually equivalent to 10px */
}

ul li {
 font- size: 1.1em; /* visually equivalent to 11px */
}

h2 {
 font- size: 1.5em; /* visually equivalent to 15px */
}

Comment Blocks
To aid with maintenance and to help other developers understand your style sheets, it is smart
to group logically related style rules together within your style sheet files. Precede them with a
comment describing the purpose of this group’s styles, using a consistent notation, such as the
following:

/* -- -
 Form styles

 Group of styles for displaying form controls according to
 the agreed design

*/

Inline comments, placed next to style rules themselves, should be included only when
necessary to clarify a particular rule. For example, where a style rule has been added to deal
with an edge case in a particular browser, it makes sense to note this, so that a future devel-
oper does not deem the rule unnecessary and remove it without understanding its original
intention.

At the very top of each style sheet file, it may be sensible to include an opening comment
section, detailing the author(s) of that file and the purpose of the style rules in the file, and list-
ing each of the logical groups contained within the file in the order in which they occur, using
a consistent format. Here is an example of the format of a comment block describing an entire
style sheet file and its purpose:

/* -- -
 Filename common.css
 Author Den Odell me@denodell.com
 Description Basic page layout and default styles for site

 Contents
 - Reset styles
 - Page column layout
 - Form control styles

mailto:me@denodell.com

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION42

 Color palette
 #777 Medium grey
 #aaa Light grey
 #a3d60a Site- wide green

*/

Including such a comment block allows developers to see at a glance whether the file
contains the code they are seeking. In the case of your common site- wide style sheet, it may be
wise to include a list of some of the key colors used across the site. Developers can then easily
find these colors, and copy and paste those values if necessary.

Browser Work- Arounds
If you need to include extra styles to target specific versions of IE, you should use the condi-
tional comments technique described earlier in this chapter to include a separate style sheet
file for those styles.

■Caution Steer clear of hacks that involve setting style values that are out of the ordinary or use combina-
tions of backslashes, comments, and other odd characters to confuse and bewilder certain browsers. If you
cannot avoid the use of a particular hack, be sure to include a clear comment as to why you have chosen to
leave it in and what purpose it serves, to warn other developers who may view that style sheet file in future.

When using PNG- 24 images in IE 6 or earlier, transparent portions of the image files
appear in gray/light blue, rather than as transparent. Unfortunately, Microsoft did not intro-
duce support for transparencies in this file type until the release of IE 7. However, you can use
a work- around that enables simple PNG- 24 images to display as background or foreground
images on the page.

Let’s say that in your main style sheet, you have the following style rule defined:

#header {
 background:url(my-image.png) no- repeat;
}

In your IE 6- specific style sheet file, which you have referenced using conditional com-
ments, you would include something like the following style rule:

#header {
 background: transparent none;
 filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src='my-image.png', ➥

 sizingMethod='scale');
}

This IE 6- specific style rule hides the background image specified in the original style
sheet and instead uses a Microsoft- specific DirectX filter to reference the same image file.
This filter is able to display the transparent portions of the image correctly and places it where

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 43

the background image once sat. There are several limitations with this technique, however,
including a lack of support for background positioning and repeating, so use it with so me
caution.

Localization Considerations
One of the most important pieces of future- proofing for a web site is to consider that the site
may need to be viewable in alternate languages or in country- or region- specific versions.

Not only will the text content of the web site be different, but there will most likely be
some alteration to at least one portion of your style sheets. For example, you may need to
replace an image file that contains text embedded in a certain language within it, or some
other region- specific style, which could even mean altering the text direction for certain
alphabets.

To aid this future- proofing, from the outset, you should aim to include all region- agnostic
styles within your main style sheet files and to include a separate style sheet file to provide the
 locale- specific style rules that override the main style sheet on a per- locale basis. In this way,
it becomes easy to add support for new languages and locales, as it is simply a case of creating
a new style sheet file from the existing region- specific file and making substitutions to those
styles to apply to the new region and/or language.

Structuring Your Folders, Files, and Assets
A simple but expandable folder structure provides a good foundation for the addition of future
content and assets, without making the task of maintenance more of a burden to the devel-
oper. The following sections provide some guidelines for structuring your folders, files, and
assets.

Readable URLs
You should create folders that correlate to the site map of your project, so that HTML pages
and server- side scripts are stored in folders that cause their URLs to be sensible, readable, and
meaningful. Often, the default or index page within each folder can be assigned within the web
server configuration so that URLs can be requested by folder name only, and the index file is
loaded by default.

You should also attempt to reflect the hierarchy of your site map similarly with folders, so
that URLs read as hierarchy structures also. Some search engines may use text in the URL, as
well as page contents, as search criteria.

For example, this URL:

http://www.mywebsite.com/news/

is neater, readable, and more memorable than this one:

http://www.mywebsite.com/news.php

Also, the sections of the URL should reflect the site map and a sensible hierarchical struc-
ture, such as in the following example:

http://www.mywebsite.com/music/rock/

http://www.mywebsite.com/news/
http://www.mywebsite.com/news.php
http://www.mywebsite.com/music/rock/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION44

File and Folder Naming
When naming folders and files, you should use lowercase alphanumeric characters, with
each word separated by a hyphen character for legibility. Steer clear of using characters other
than English letters, numbers, or hyphens. When referencing these folders and files from
code, make sure the casing is consistently lowercase, as certain web server operating systems,
including Unix, Linux, and Mac OS X, are case- sensitive. Also, never use the space character or
characters reserved for URLs, including the ampersand, hash character, or the question mark,
for naming folders or files, or you may find these cannot be referenced consistently from dif-
ferent web browsers.

One requirement that crops up time and time again is to provide your end users with site
content localized into their language. It can be incredibly disruptive to perform this localiza-
tion task after you have built your site, as it may require you to rewrite or refactor your HTML,
CSS,	and	JavaScript	files	to	support	it.	You	should	group	together	assets	that	relate	to	a	specific	
region, language, or locale into their own folders, named after the locale (specified, for exam-
ple, as language and location, such as en- us for US English). Store nonlocale-specific assets at
the same level as this folder structure.

■Tip Consider the use of XML files, a content management server, or server- side resource files to provide
localized content directly into script- generated markup. This will make maintenance tasks simpler than edit-
ing copies of static HTML pages.

File Encoding
The UTF- 8 encoding type should be used for all text- based files, as this allows the direct use of
extended characters and non- English character sets within the files, without the need for spe-
cial	control	characters	and	ASCII	codes.	

In practice, it is a lot easier to create files in UTF- 8 format from the outset, rather than
to translate them later. If you need to convert a file from another encoding format to UTF- 8,
make a backup of the existing file and use your development environment’s file properties
dialog box to set the format of the document to the appropriate encoding type. This may affect
the encoding of certain characters already within the file, so use the backup file to copy and
paste the characters from the backup to the newly UTF- 8 encoded file.

In some cases, the byte- order mark (BOM) at the beginning of a UTF- 8 encoded file can
cause havoc with server- side technologies such as PHP. When encoding files that are to be
processed by such technologies, ensure the BOM is removed using the development environ-
ment’s file properties dialog box, if this option exists.

Organizing Assets
Consider	whether	placing	all	static asset files (style sheets, images, scripts, audio, and video),
excluding HTML, within a common folder might be worthwhile. This logically separates
 client- side code from the structure of the site and its content, avoiding clutter at the root level

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 45

of the site’s document tree. The following directory structure is an example of one that follows
this approach, and has also been created with localization in mind:

\assets
 \images
 \en- gb
 \fr- fr
 \scripts
 \third- party
 \styles
 \en- gb
 \fr- fr
 \flash
 \documents
 \en- gb
 \fr- fr
 \video
 \en- gb
 \fr- fr
 \audio
 \en- gb
 \fr- fr

Image Guidelines
Group together contextually related images within folders with meaningful names, to make
them easier to find. These names may correlate to the site map of the project or to their con-
tent or usage on the page.

Choose	the	image	format	that	gives	the	lowest	file	size,	while	still	retaining	the	best	qual-
ity. Use compression carefully. The desired result is an image practically indistinguishable
from the original to the human eye at a distance of about 0.5 meter (about 1.5 feet) from the
screen.

The PNG file format often results in smaller file sizes for certain types of images. PNG is
a lossless format and allows alpha transparencies for web browsers that provide support for
that feature (unfortunately, IE 6 does not, by default, but you can try applying the work- around
described earlier in this chapter). However, many image manipulation programs include extra
gamma information in the image file. Unfortunately, this gamma information is not interpreted
in a similar way across browsers, meaning that odd image artifacts and colors may appear.
Fortunately, several tools exist to remove this gamma information from PNG files, without
compromising the quality of the final image, which has the added benefit of reducing the file
size of the image (since extra information is removed). Smush it (http://www.smushit.com/) is
one such web- based tool for removing this extra information.

See	Chapter	4	for	more	details	on	selecting	the	best	image	format	for	the	most	faithful	
reproduction of graphics, while ensuring the smallest possible file size.

http://www.smushit.com/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION46

Multimedia Guidelines
The ubiquitous Adobe Flash Player plug- in should be used to display video until all browsers
include their own built- in codecs. Supply a download link to the displayed movie file, prefer-
ably in multiple formats, so users without the Flash plug- in may download the movie file for
offline viewing.

Use	the	MP3	storage	type	for	all	audio,	and	harness	Adobe’s	Flash	Player	to	present	it	to	
the	end	user.	A	download	link	to	the	MP3	file	should	be	supplied	for	users	without	the	Flash	
 plug- in.

Chapter	7	provides	more	details	about	including multimedia components in your pages.

Setting Up Your Development Environment
It’s also important to consider how you will work on your projects, whether you are working
alone or as part of a team. In this section, we’ll look at which tools you can leverage to write
your files, store your files, and test your pages in a modern, effective way.

Writing Your Files: Integrated Development Environments
Gone are the days of using Notepad for Windows or TextEdit for Mac OS X for writing
 client- side code for the Web. Modern web sites require a lot of code spread out over mul-
tiple files and folders, so an effective way of navigating these folders and editing these files
is needed. Desktop application developers have long used integrated development envi-
ronments (IDEs) to write, maintain, and debug their code. Now the time is right for web
developers to follow suit. Each IDE is slightly different, and it really is a matter of personal
taste which you find best for your own needs.

One IDE gaining a lot of popularity in the web development community, and my per-
sonal favorite, is Aptana Studio (http://www.aptana.com/). This IDE is built upon Eclipse, one
of	the	more	popular	and		well-	established	development	environments	for	Java	developers.	
It	allows	you	to	store	project	files	together;	supports	syntax	highlighting	of	HTML,	CSS,	and	
JavaScript	files;	and	even	contains	a		built-	in	web	server	for	testing	your	code	without	needing	
to deploy to a separate web hosting infrastructure. Files can be synchronized between your
computer and an FTP or SFTP server, and Aptana ensures that files aren’t overwritten when
they shouldn’t be when performing a sync. The same plug- in architecture found in Eclipse
is supported, so the multitude of extensions and add- ons already developed for that IDE are
available for use within Aptana, making it more than just a basic package.

Other IDEs that are popular among developers include the following;

	 •	 Notepad++		(http://notepad- plus.sourceforge.net/) for Windows systems

	 •	 Microsoft	Visual	Web	Developer (http://www.microsoft.com/express/vwd/) for
Windows systems

	 •	 TextMate	(http://macromates.com/) for Mac OS X systems

	 •	 Coda	(http://www.panic.com/coda/) for Mac OS X systems

	 •	 Adobe	Dreamweaver	(http://www.adobe.com/products/dreamweaver/) for both
Windows and Mac OS X systems

Investigate these IDEs, try them out, and find which works best for you.

http://www.aptana.com/
http://notepad-�plus.sourceforge.net/
http://www.microsoft.com/express/vwd/
http://macromates.com/
http://www.panic.com/coda/
http://www.adobe.com/products/dreamweaver/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 47

■Caution Be wary of any IDE that attempts to write code for you automatically. As a developer, you need
to be confident of your own skills and consciously aware of all code that is added to your project.

Storing Your Files: Version Control Systems
One of the guidelines I proposed earlier in this chapter is to regularly purge your folder struc-
ture and files for content that is no longer relevant or needed. The result is a tidy, pruned
project holding only the code that’s needed for the site you are building. This is all well and
good,	but	what	if	you	accidentally	delete	some	code	or	files	you	later	need?	This	is	where	ver-
sion control systems come into play.

Version control systems store revisions and backups of your files and folders, allowing you
to step back in time and recover lost code. Such systems also manage team collaboration, so
more than one developer can work on the same file at the same time. The version control sys-
tem manages the merging of the changes made by each developer into a single file or central
storage location for the code.

Subversion (http://subversion.tigris.org/) is a popular, open source version control
system used in personal and professional development environments. You set up the server
part of the system on a web server available via a URL, and the developers use a Subversion cli-
ent tool to access that web server, taking a local copy of the code to their computer to work on
it there. Making a change to a file is as simple as editing the file. When the developers are com-
fortable that they have completed the feature they were working on, they then “commit” their
code back to the server, which manages any merging of files and creation of backup copies.

Subversion appears to be surprisingly simple for developers to use, which is probably why
it has been so quickly adopted in the relatively short time it has been around. Of course, the
lack of any price tag helps make it accessible to personal users as well as professionals.

You don’t need to set up your own server if you want to take advantage of Subversion.
Several companies offer services to store your code online, safely backed up each and every
time you make a change. One such company is Beanstalk (http://beanstalkapp.com/), which
offers different pricing models depending on your needs, but also provides a limited free stor-
age plan (up to 20MB at the time of writing), which may be sufficient if you are working on a
relatively small project. Google has its own	Subversion	hosting	system	known	as	Google	Code	
(http://code.google.com/hosting/), which is free and also contains a wiki and bug- tracking
system. Another open source online storage repository is GitHub (http://github.com/), which
offers various pricing solutions, including a free service for smaller projects. This service uses
the GIT technology, rather than Subversion, but the two version control systems are actually
very similar in structure and setup.

Once again, investigate these systems and see which one might work best for you.
Remember that if you do not use a version control system for your projects, large or small, you
run the risk of losing valuable code at any time.

Testing Your Pages: Browsers and Development Tools
Now that you’ve decided which IDE and version control system you’re going to use to work
on your files, you need to consider your testing setup. Testing and code validation are vitally

http://subversion.tigris.org/
http://beanstalkapp.com/
http://code.google.com/hosting/
http://github.com/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION48

important to your work as a professional web developer. You need to make sure that the sites
you	build	work	in	all	the	major	desktop	web	browsers	(currently	IE	6,	7,	and	8;	Firefox	2	and	3;	
Opera	9.5	and	up;	Safari	3	and	up;	and	Google	Chrome)	and	as	many	mobile	devices	you	can	
lay your hands on. Of course, the guidelines I’ve endorsed in this chapter should mean that
your sites work in all of these and more. But the only way to know for sure and to iron out sub-
tle	differences	in	HTML,	CSS,	and	JavaScript	implementations	is	to	test	everything	you	write	
thoroughly in as many different browsers and systems as possible.

Be sure you’ve installed copies of all the web browsers you can on your machine. Some
browsers don’t support the running of multiple versions on the same machine, so you may
want to consider using virtual machine technology to run a secondary copy of your operating
system within memory. For Windows users,	Microsoft	Virtual	PC	(http://www.microsoft.com/
windows/products/winfamily/virtualpc/) is the ideal choice. It is free, and Microsoft even pro-
vides regularly updated machine images preinstalled with different versions of IE via the web
site, to aid your testing. For Mac OS X users, VMware (http://www.vmware.com/) and Parallels
(http://www.parallels.com/) are your best options.

If you are unable to run such virtualization systems, you might be able to use the services
of a browser testing web site, such as BrowserShots (http://www.browsershots.org/), which
run a URL you supply through various web browsers on different machines and relay the
screen grab of the results to you for your comparison. This alternative is certainly not ideal, but
it’s a good backup or secondary option.

Different browsers have different development tools available for you to prod and poke
within	the	HTML,	CSS,	and	JavaScript	output	of	your	pages.	Some	such	tools	even	allow	you	to	
make changes to your code on the fly and see the results immediately. The gold standard is the
Firebug plug- in for Mozilla’s Firefox (http://getfirebug.com/). I’ve never met a web developer
who hasn’t sworn by it for investigating which styles have been applied to their page elements
and	what	the	values	of	variables	in	their	JavaScript	are	at	any	given	time.	When	errors	occur	
on your page, the Firebug console points these out to you, and shows on which line numbers
in	your	code	these	errors	occurred.	If	you’re	debugging	JavaScript	errors,	you	can	see	the	list	
of function calls that occurred before the error took place, which can help you track down the
error.

The Internet Explorer Developer Toolbar plug- in is available for IE 6 and 7. This tool pales
in comparison to Firebug, but it does allow you to see which styles are applied to which page
elements. IE 8 has its own built- in developer tools, which sit somewhere between those of the
Developer Toolbar and Firebug. For debugging JavaScript	issues	within	IE,	Microsoft’s	Visual	
Web Developer IDE is a very useful tool. It is able to hook onto the internal processes that run
IE	on	the	Windows	machine.	When	a	JavaScript	error	occurs,	Visual	Web	Developer	allows	you	
to see a full list of all the actions and code called prior to the error taking place, including links
to where that error occurred. This is helpful for probing variable values and debugging the
issue.

Opera,	Safari,	and	Google	Chrome	have their own built- in developer tools. Most of these
do not seem to be fully feature- complete at the time of writing, but they are shaping up to be
about as useful as Firebug.

You should download and learn how to use each browser and its associated development
tools, so when those elusive browser- specific bugs rear their heads, you are able to quickly and
effectively track down the source of the problem and nip it in the bud.

One last word about testing: don’t leave it until the last moment. The projects that con-
sistently deliver on time without developer misery are those that have been tested in many

http://www.microsoft.com/windows/products/winfamily/virtualpc/
http://www.microsoft.com/windows/products/winfamily/virtualpc/
http://www.vmware.com/
http://www.parallels.com/
http://www.browsershots.org/
http://getfirebug.com/

CHAPTER 1 ■ BUILDING A SOLID FOUNDATION 49

different browsers from the get- go and all the way through the development process, to ensure
the final product is the best, most compatible web site possible.

Summary
This chapter discussed the importance of using tried-and- tested current ideas, known as best
practices, and how to use discernment when selecting which guidelines to apply to your own
projects.	We	have	gone	through	HTML,	CSS,	file	structures,	and	development	environments,	
reviewing smart, modern, and effective techniques for writing and maintaining code. You now
know that the whole purpose behind using these best practices is to ensure the pages you cre-
ate are fully accessible by anyone, regardless of browser, device, or input method. You also
want to make sure that the code you write can be easily read, understood, and updated in the
future.

The	next	chapter	guides	you	through	JavaScript	best	practices.	It	covers	how	to	structure	
your client- side code in such a way that it is similarly easy to read, understand, and update,
regardless of the size of the code base. This will help you to build effective RIAs, based on solid,
scalable code rules.

C h a p t e r 2

JavaScript for rich Internet
applications

In the previous chapter, I explained how to assemble a solid foundation for your web site
code, including making your pages fully accessible and operational without requiring any
 front- end technology except HTML. I explained that the other components that make up your
site—the style sheets, images, plug- ins, and so on—are layers built on your HTML foundation
to apply visual layout and design to your pages, and provide a more natural experience for
your site visitors.

In this chapter, the focus is on JavaScript, which we use in our pages to simplify tasks for
our end users, provide reactions to their actions, and attempt to make their time on the Web
a gentler and user- friendlier experience. You’re going to build on your existing knowledge of
this language throughout this chapter to discover how to structure your code in a scalable,
flexible, and maintainable way; use object- oriented programming principles; and overcome
 cross- browser implementation differences. You’ll then discover techniques to help you build
RIAs and, finally, learn how to write automated tests for your code to make it more robust.

This is going to be a fairly theoretical chapter, but it is full of useful and important infor-
mation, so let’s get to it!

Coding Style Guidelines
As a web developer, you can simplify your day-to- day coding experience by structuring and
organizing your JavaScript code in a consistent manner, writing code to solve your problem
or meet your goal, without overcomplicating its appearance. By following some guidelines,
you can make your code cleaner, clearer, more manageable, better understood, better docu-
mented, and easier to read.

Use Consistent Formatting
As you saw in the previous chapter, the hallmark of legible code—be it HTML, CSS, or
JavaScript—is consistent formatting. The contents of JavaScript functions, for example, should
be indented one tab space with respect to the function name and enclosing braces. You should
end each statement with a semicolon character, and each statement should exist on its own
line to ensure good legibility, as in the following example:

51

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS52

function myFunction() {
 alert("Hello, world");
 return true;
}

Similarly, the contents of logical blocks and loops should also be indented. As a rule of
thumb, the contents of a set of opening and closing braces ({ and }) should be indented with
respect to these braces, as in this example:

if (x == y) {
 alert("We have a match!");
} else {
 alert("We have a problem!");
}

However, you may want to use extra indentation where it makes the code easier to read,
as in the case statements in the following code:

switch (prompt("What is your favorite fruit?", "banana")) {
 case "banana":
 alert("Well done. Bananas are full of potassium.");
 break;
 case "mango":
 alert("Exotic and tasty!");
 break;
 default:
 alert("That's not to my taste, but keep it up to get your 5-a- day.");
 break;
}

Use Braces and Brackets
Braces ({}) and brackets (()) are used throughout JavaScript to delineate blocks of code
and reduce confusion within long statements. You should use them whenever possible to
minimize potential defects and increase legibility, both of which will aid any future code
maintenance.

The following example shows a JavaScript routine where braces and brackets have been
removed in order to shorten the code.

var result = 0;
if (confirm("Would you like to do some math?"))
 result = 10 / 2 * 100 % 30;
alert("OK, the result is: " + result);

This is perfectly valid syntax within the language, however it makes the logic slightly
harder to follow.

The following form is less confusing and therefore a wholly more stable, legible, and
maintainable code routine.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 53

var result = 0;
if (confirm("Would you like to do some math?")) {
 result = ((10 / 2) * 100) % 30;
}
alert("OK, the result is: " + result);

Notice that with this format, you can be sure when the alert statement will execute. And
you can see how much more understandable math routines become when using brackets to
group operations together.

Add Meaning with Letter Casing
A few simple rules for letter casing in variable and function names will enable you to tell at a
glance how they are used within your code. The following are a few common guidelines for
casing that you would be wise to follow in your own code:

	 •	 Begin	most	variable	and	function	names	with	a	lowercase	letter.

	 •	 Begin	object	constructor	names	with	an	uppercase	letter.	(Object	constructors	are	dis-
cussed	in	the	“Objects,	Classes,	and	Constructors”	section	later	in	the	chapter.)

	 •	 Use	camel case, where each new word begins with an uppercase letter and all other
characters are lowercase, to mark the start of new words.

	 •	 Use	all	uppercase	characters	to	denote	constants—values	that	should	never	change	
throughout the life of code.

The following code shows examples of each of these types of casing:

// Object constructor – see later in the chapter for what this means
var Calendar = function() {

 // Uppercase for constants
 var DAYS_IN_ONE_WEEK = 7;

 // Lowercase character to start variable or function name
 var count;
 function add() {
 }

 // Camel casing for new words in variable and function names
 var currentDate;
 function doSomethingWithCurrentDate() {
 }
}

Use Descriptive Variable and Function Names
Choosing appropriate names for your variables and functions is one of the fundamentals of
an easy-to- understand code base. Name your variables and functions so they indicate their
use and purpose. Don’t be afraid to use lengthier names if they get across the message.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS54

Imagine you saw your code with only its variable and function names, without any logic or val-
ues. Could you understand the purpose of each at a glance? If not, it’s time to start renaming.
Here are some examples of descriptive variable and function names:

var currentDate;
function setCurrentDate() {
}
var userName;
function updateUserName() {
}

You should also avoid the use of so- called magic numbers, which are numbers used in
calculations that seem to have appeared from nowhere. This example shows magic numbers
in action:

var daysInAYear = 52 * 7; // With some thinking, you can figure it out
var seatsOnThePlane = 25 * 6; // But what does this really mean?

Where did all the numbers come from, and what do they mean? You should aim to reduce
all confusion in your code. Spell it out, so a developer won’t need to stare at each line of code
to understand it. The following version adds definitions for the number constants used in the
previous example.

var WEEKS_IN_A_YEAR = 52;
var DAYS_IN_A_WEEK = 7;
var daysInAYear = WEEKS_IN_A_YEAR * DAYS_IN_A_WEEK; // Forget leap years

var SEAT_ROWS_ON_PLANE = 25;
var SEATS_PER_ROW = 6;
var seatsOnThePlane = SEAT_ROWS_ON_PLANE * SEATS_PER_ROW; // Ah, clarity!

Notice how much clearer everything suddenly becomes.

Maintain Short Function Blocks
A function should do one thing and do it well. Try to avoid combining unrelated code into one
function, as in this example:

function feedbackOnUsersFavoriteFruit() {
 var favoriteFruit = prompt("What is your favorite fruit?", "None");
 var score = 0;
 switch (favoriteFruit.toLowerCase()) {
 case "banana":
 score = 6;
 break;
 case "apple":
 score = 4;
 break;
 default:
 break;
 }

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 55

 if (score > 5) {
 alert("You picked one of my favorites too!");
 } else if (score > 0) {
 alert("Credit for choosing a fruit, at least!");
 } else {
 alert("Not sure about your choice of fruit!");
 }
}

The simpler each function is, the easier it is to test and debug. If your function needs to do
many logically different operations in succession, separate the one large function into several
smaller functions to perform each task individually, as in this example:

function getFavoriteFruit() {
 return prompt("What is your favorite fruit?", "None");
}

function getFruitScore(fruit) {
 var score = 0;
 switch (favoriteFruit.toLowerCase()) {
 case "banana":
 score = 6;
 break;
 case "apple":
 score = 4;
 break;
 default:
 break;
 }
 return score;
}

function getMessageByScore(score) {
 var message = "";
 if (score > 5) {
 message = "You picked one of my favorites too!";
 } else if (score > 0) {
 message = "Credit for choosing a fruit, at least!";
 } else {
 message = "Not sure about your choice of fruit!";
 }
 return message;
}

function feedbackOnUsersFavoriteFruit() { // The old function name
 var favoriteFruit = getFavoriteFruit();
 var score = getFruitScore(favoriteFruit);
 alert(getMessageByScore(score));
}

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS56

As far as possible, each function should do one logical action, taking an input and produc-
ing an output, as necessary.

Use Comments As Documentation with ScriptDoc
Rather than including many inline comments next to your code, ensure that your variables
and functions are named accurately, and that your code blocks are short and self- explanatory.
Littering your code with many inline comments reduces the chance that any of them will actu-
ally be read.

You should document each function you write by providing a comment block before the
function that defines what the function does, its expected inputs, and the kind of output it
produces, as well as some example uses. This type of comment block has the following advan-
tages:

	 •	 It	ensures	all	developers	understand	what	a	function	is	(and	isn’t)	supposed	to	do.

	 •	 It	helps	you	determine	when	a	function	is	performing	too	many	actions,	as	discussed	
in the previous section. If the function’s description is particularly complicated, this
indicates it should be separated into several smaller functions.

	 •	 It	helps	define	the	sort	of	testing	you	could	perform	on	that	function,	by	noting	which	
ranges or types of input the function should be able to accept.

	 •	 It	provides	visual	separation	within	your	code.

You should use the open ScriptDoc format (http://www.scriptdoc.org/) to document
your code. This format has been designed so it can be used regardless of programming lan-
guage. Since the format and structure are predefined, you can use software such as Aptana
Studio (http://www.aptana.com/) to automatically produce documentation in a readable style
from specially formatted comment blocks within your code.

The following example shows how to document what an entire JavaScript file does. The
comment should exist as the very first thing in the JavaScript file, so developers will be able to
understand the purpose of the functions contained in the file.

/**
 * @projectDescription This file contains code to perform date object manipulation
 *
 * @author Den Odell me@denodell.com
 * @version 1.0
 */

Here is an example of how to document a function within a file using the ScriptDoc for-
mat:

/**
 * Takes a number and squares it, rounding the result to the nearest integer
 *
 * Examples:
 * square(2.5); => 6
 * square(2); => 4
 *

http://www.scriptdoc.org/
http://www.aptana.com/
mailto:me@denodell.com

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 57

 * @param {Float} number The number to be squared
 * @return {Integer} Returns the rounded square of the input
 */

function square(number) {
 return Math.round(number * number);
}

I encourage you to familiarize yourself with the specification given on the ScriptDoc web
site, and the specific options to use to describe and document your functions appropriately.
Using	it	will	vastly	improve	the	understanding	of	your	code	and	can	provide	useful	documen-
tation to provide to other developers who might wish to work on your code in the future.

Mark Remaining Tasks with TODO
A useful habit to get into while coding is to mark sections of your code that are not complete
with a comment containing the word TODO, like this:

function checkPasswordStrength(password) {
 // TODO: Complete this function, checking the strength of the supplied password
 return true;
}

This allows you to later search your code base for this word, and quickly locate any areas
that require completion.

Professional JavaScript Programming
Now that we’ve reviewed some basic guidelines for formatting, documentation, and clarity in
your JavaScript files, let’s look at some JavaScript coding principles. Professionals follow these
practices to make their JavaScript robust, scalable, and built on a solid understanding of the
problem they are trying to solve.

Avoid Solving Nonexistent Problems
When you write JavaScript code, write only the code you need to solve the problem at hand.
For example, suppose you wish to write some JavaScript code that allows the users of your site
to log in to their profile page, dynamically refreshing part of the page when they provide suc-
cessful credentials. To solve this problem, you do not need to write code that will refresh any
piece of content on any page in your site—at least not until that becomes a requirement or the
solution to a new problem.

Your code can be completed in less time by following this guideline, as you build only the
exact code to do the job, rather than attempting to build generic, overcomplicated code that is
often less reliable in practice.

Later, when you need to solve a different problem and you think that some code you have
written already could be reworked to do the job, that would be the time to rewrite it.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS58

Use the Document Object Model
As an extension to the JavaScript language, the	W3C	recommended	the	Document	Object	
Model	(DOM),	which	standardizes	the	way	that	web	developers	interact	with	elements	within	
the HTML of their rendered pages. Methods were added to the language to locate page ele-
ments by their id attributes or their tag names, allowing for dynamic manipulation of their
attributes, CSS style properties, and even the removal or addition of entire elements.

The	DOM	recommendation	defines	everything that exists within an HTML page to be
known by the generic name node. Five types of nodes can exist within a page, as follows, all of
which are JavaScript representations of page components:

	 •	 Document node: Represents the topmost node of the HTML page, effectively mapping
to the <html> element.

	 •	 Element node: Every HTML tag on the page is represented as an element node.

	 •	 Attribute node: Every attribute of a tag, such as the attribute href related to an <a> tag,
is represented as an attribute node. Each attribute is always associated with an element
node.

	 •	 Text node: The text between opening and closing tags, such as the text between <p> and
</p>, is represented as a text node. Each text node is associated with an element node.

	 •	 Comment node: An HTML comment is represented as a comment node.

Each element node may contain other element nodes within it, known as child nodes. The
<html> element has two child nodes, <head> and <body>, according to the structure represented
within XHTML.

The following example shows the HTML <body> element with two child nodes beneath it:

<body>
 <h1>My Page Title</h1>

</body>

The first child node (which represents the <h1> tag) has a text node beneath it, containing
the text My Page Title. Note that the text within an element is not considered part of the ele-
ment itself, but rather a child node of it.

The second child node of the <body> tag is another element node (representing the
tag) containing two attribute nodes (representing the values stored in src and alt). From the
point of view of the <h1> tag, the <body> tag is known as its parent node, and the tag is
know as its sibling, since they exist at the same level within the document hierarchy.

Element nodes can be found directly within a document by using one of two methods,
both of which are demonstrated in the following example:

// Returns an element node representing the tag with an id attribute chart- image
var img = document.getElementById("chart- image");

// Returns an array of element nodes, all of which are <body> tags
var bodyTag = document.getElementByTagName("body");

// Returns the element with id attribute chart- image within the first <body> tag
var img = bodyTags[0].getElementById("chart- image");

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 59

■Note Two new element location methods are available in some browsers but are not yet ubiquitous.
These methods are querySelectorAll(), which locates element nodes based on CSS 3 selectors, and
getElementsByClassName(), which locates element nodes based on CSS class names.

Once	you’ve	located	an	element,	chances	are	you’ll	want	to	do	something	with	it.	Maybe	
you want to alter its text or any of its attributes; maybe you want to remove the element from
the	page	completely,	or	add	a	new	element	before,	after,	or	within	it.	The	DOM	provides	meth-
ods to handle all of these cases.

Dynamically alter CSS properties
Reading and altering CSS style properties is as simple as using the style object on the element
you have located. The following demonstrates how to read the color CSS property and alter
the margin- left CSS property.

var navigationEleemnt = document.getElementById("navigation");
if (navigationElement.style.color == "black") {
 navigationElement.style.marginLeft = "50px";
}

■Note CSS style property names that use hyphens to divide words in the name are referred to within
JavaScript using camel casing instead.

Manipulate elements and their Contents
The simplest, and in many browsers the quickest, way to set the content of an element through
the	DOM	is	to	use	the innerHTML property of the element. This property represents the HTML
code of everything within the element as a string, which can be read out or set to whatever you
want. Here’s an example of how to read and set the innerHTML value of an element:

var pTag = document.getElementsByTagName("p")[0]; // First <p> tag on page
alert(pTag.innerHTML); // Outputs current HTML string contents of tag
pTag.innerHTML = "New HTML contents!"; // Rewrite the tag's HTML
alert(pTag.innerHTML); // Outputs "New HTML contents!" and the ➥

 tag's contents on the page are now in bold text

Although this is quick and easy, there is a risk of introducing errors, such as causing ren-
dering bugs by setting HTML that is not properly closed. The most robust way to manipulate
elements	is	to	use		built-	in	DOM		node-	manipulation	methods,	which	will	always	add	HTML	
code to the page with the correct formatting according to the current DOCTYPE of the page.

The following example demonstrates creating a new element node using the
createElement() method. We can insert this new element into the page using the

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS60

appendChild() method, which creates a new horizontal rule element and appends it to the
end of the list of nodes contained within the <body> tag. It will show up at the bottom of the
HTML page.

var horizontalRule = document.createElement("hr"); // In memory only, for now
var bodyTag = document.getElementsByTagName("body")[0];
bodyTag.appendChild(horizontalRule); // Make the <hr> tag appear on the page

In the converse fashion, removing an element from the page is as simple as calling the
removeChild() method on the parent element of the element you want to remove, as follows:

var horizontalRule = document.getElementsByTagName("hr")[0];
// The <hr> tag above must be a direct child of the <body> tag
var bodyTag = document.getElementsByTagName("body")[0];
bodyTag.removeChild(horizontalRule); // The element disappears from the page

I’ve	shown	you	just	a	few	of	the	DOM	methods.	I	recommend	that	you	become	famil-
iar	with	the	DOM.	It	is	the	unified	way	for	accessing	your	page	contents	through	JavaScript.	
Mozilla maintains a useful online resource with plenty of examples and explanations at
https://developer.mozilla.org/en/Gecko_DOM_Reference.

Don’t Mix JavaScript and HTML
As I noted in the previous chapter, you should never put JavaScript code inline with your
HTML code. If you find yourself using attributes such as onclick, onmouseover, and so on
within	HTML,	stop	right	now!	Locate	elements	using	the	DOM	methods	available	for	doing	
so, and apply your code to these. This separates your behavioral code from your content, and
allows you to make changes to each without affecting the other in a drastic way.

Some browsers do not support JavaScript. Some users prefer to switch it off. Some users
are working in closed environments where JavaScript is disabled as a matter of course. These
users shouldn’t need to download all the JavaScript code for the page they are accessing, as
this makes the page size larger without providing any benefit to them.

You should aim to include all JavaScript code within external files, referenced via <script>
tags within your HTML code, so users without JavaScript download only the content they
need,	and	other	browsers	download	the	file	via	the	referenced	URL.	This	also	allows	the	
browser to locally cache the external file, so that if multiple pages reference that file, it is
downloaded only once and loaded from the local copy on every subsequent request.

Separate Style from Code
You’ll find that sometimes you want to affect certain style properties of elements on your page
from your JavaScript. Perhaps you want to show or hide a portion of the page, or apply a new
color scheme to certain elements when a user performs an action. As far as you can, separate
style	rules	out	into	CSS,	and	then	use	the	DOM	to	switch	the	CSS	class	name	being	used	on	the	
element you wish to change; the browser will then handle the change in style properties for
you. In this way, you create looser connections between the display style and the behavioral
code.

By allowing the CSS file to be responsible for the design and layout, and the JavaScript to
take care of the interactions and behaviors, you know in which file to look to make changes to

https://developer.mozilla.org/en/Gecko_DOM_Reference

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 61

either. You can also create a whole new design using CSS, without needing to alter your HTML
or JavaScript code.

Exceptions to this rule apply when you need to dynamically alter certain properties by
amounts you cannot know ahead of time, such as changing the width of a component to
match the distance the mouse has moved from an initial position. In this case, there would be
too many possible values to code every option within CSS. Instead, only the width property
should be altered through JavaScript, and all other styling associated with the same element
should be performed within your CSS files.

Chain Function Calls
Chaining refers to executing methods on the results of other methods, saving redundant
lines of code. The following example demonstrates this by executing several methods in turn,
each acting on the result of the previous call. The final value returned is the result of the final
method in the chain.

// Gets the width of the element with id horizontal- rule within the <body> tag
var hrTagWidth = document.getElementsByTagName("body")[0] ➥

 .getElementById("horizontal- rule").style.width;

Write Bulletproof Code
When writing your code, certain method calls may not always return the values you rely upon
in the rest of your code. If this is the case, you’ll end up with JavaScript errors, and your code
will stop executing. Professional JavaScript developers check that the values returned from
such methods are in the required format before performing further operations on them.

The following example shows this practice in action, where an element is found using the
DOM.

var horizontalRule = document.getElementById("horizontal- rule");
if (horizontalRule) { // If the element exists, then...
 horizontalRule.parentNode.removeChild(horizontalRule); // ...remove the node
}

This code checks that the element actually exists—that its value is not null or undefined. If
you were to perform operations on an element that is later removed from the HTML, an error
would occur, and code execution would stop.

handle Fatal exception errors Gracefully
A useful feature of the JavaScript language, like many others, is the ability to wrap groups of
statements that you have reason to suspect might cause an exception—the kind of error that
forces your code to stop executing—within a try/catch code block in order to handle the error
in a graceful manner. The code within the try section will execute; the code in the catch sec-
tion will execute only if the try section code causes an error to occur. If no error occurs, the
code in the catch section is ignored. Here is an example of a try/catch structure that alerts the
user to an error in code execution when it occurs, without this exception causing JavaScript
code execution to cease.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS62

try {
 // The following code is not valid and would normally cause an exception
 document.getElementById("horizontal- rule").propertyName.toString();
} catch (error) {
 alert("An error occurred.");
)

Notice how the catch block exposes a variable, which I’ve named error. This variable
contains information about the error that occurred. In the following code, I attempt to find
out the type of error that occurred so I can provide a more useful message to the end user or
developer.

try {
 // varx is not in the language, so a SyntaxError exception will be thrown
 varx x = 0;
} catch (error) {
 // There are six basic exception types, all described here
 if (error instanceOf TypeError) {
 // A variable used was not of the expected type
 } else if (error instanceOf SyntaxError) {
 alert(error.message); // Output the message describing the exception
 } else if (error instanceOf RangeError) {
 // A numeric variable has exceeded its allowed range
 } else if (error instanceOf EvalError) {
 // The eval() JavaScript function was used incorrectly
 } else if (error instanceOf ReferenceError) {
 // An invalid reference was used
 } else if (error instanceOf URIError) {
 // The encodeURI() or decodeURI() functions were used incorrectly
 }
}

Define Custom exceptions
In addition to catching and handling the built- in JavaScript exceptions, you can define your
own type of exceptions, which you can force to occur at any time in your code. The following
example demonstrates how to define and raise a custom error in specific circumstances.

// Define a new type of error
var domObjectNotFoundException = new Error("DOM object not found");

function getDOMObjectById(id) {
 var domObject = document.getElementById(id);
 if (!domObject) {
 // Throw an exception of our custom error type if the DOM object ➥

 doesn't exist
 throw domObjectNotFoundException;
 }

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 63

 return domObject;
}

try {
 // Assume we're trying to act upon an element that does not exist
 getDOMObjectById("this-id-is-not-on-the- page").style.width = "100px";
} catch (error) {
 if (error instanceOf domObjectNotFoundException) {
 alert(error.message); // Outputs "DOM object not found!"
 } else {
 // Catch different type of error
 }
}

and Finally . . .
As an extension to the familiar try/catch block structure, you can add an extra block denoted
by the finally keyword. The finally keyword allows you to add an extra set of statements to
execute, regardless of whether or not an exception occurred, in order to structure related code
together. In the following example, the final alert statement is called, regardless of whether
the	DOM	object	was	found.

try {
 getDOMObjectById("this-id-is-not-on-the- page").style.width = "100px";
} catch (error) {
 alert(error.message);
} finally {
 alert("That's all, folks!");
}

Code with Localization in Mind
Localization is one of the more common requirements given to RIAs that have already been
built. Imagine you’ve built a large dynamic web application, only to find out you need to
restructure all your code in order to be able to localize the text strings used throughout.

Separate your text strings into variables, and include these all together in one place within
your	code.	This	allows	you	to	simply	override	their	values	at	a	later	stage,	if	needed.	Using	this	
approach will save you valuable time at a later stage when you need to add regional- specific
text strings to your JavaScript code.

You could consider moving these variables to a separate file—perhaps one for each
language—so the HTML page can choose to reference the language- specific file it needs, and
the rest of the application uses these variables as normal. This off- loads the language selection
to the HTML page, which seems like a sensible choice, since there will be language- specific
text in the content already.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS64

Object-Oriented JavaScript
JavaScript coding has come a long way since its humble beginnings and has reached the point
where many front- end web developers find themselves writing complex code in a manner not
dissimilar	to	that	of	traditional	software	engineers.	Over	time,	developers	have	sought	to	mini-
mize errors, increase code reuse, and ease understanding of their code by applying some of
the same object- oriented principles as those used by traditional programmers.

By grouping related code together into reusable components, or objects, each with its own
variables and functions, you promote code reuse and provide a layer of abstraction that will
help you and your fellow developers to understand your code better. Gone are the days of your
JavaScript files being long lists of functions that show little interrelation to each other and are
difficult to navigate.

■Caution JavaScript was not designed as an object- oriented programming language, and to think of it
as such can lead to some confusion. Some of the principles of object- oriented code design do apply, but not
all. Read this section carefully if you are familiar with the use of these principles in other languages, so you
understand the differences.

This section will help get you in the habit of writing JavaScript code using object- oriented
principles and techniques, just as the professionals do.

Objects, Classes, and Constructors
Two important concepts of object- oriented programming are objects and classes. You’re now
going to discover what these mean and how they relate to the JavaScript language.

What Is an Object?
An object is a special type of data that contains functions and variables. JavaScript contains
several built- in core objects, including Math, Array, and String. These provide a set of func-
tions to perform actions on certain types of data. The following shows some examples of
calling the methods of these objects.

alert(Math.round(9.9)); // Outputs '10'
var cityList = new Array("New York", "London", "Stockholm");
var sortedCityList = cityList.sort(); // "London", "New York", "Stockholm"
alert(sortedCityList.join()); // Outputs "London, New York, Stockholm" as a string

Notice how you can access the method within the object by using a dot (.) between the
object’s name and the name of the method you’re calling.

What Is a Class?
A class is a definition of an object. It is never used itself within code, except as a basis for cre-
ating objects. Defining a class in JavaScript is as simple as writing a function. The following
example shows two ways to define a class using the function keyword.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 65

function EmailMessage() { // Defines a class with the name EmailMessage
}

var EmailMessage = function() { // Different way of defining the same class
}

Both of these are valid forms for defining classes. Use	whichever	form	you	prefer	in	your	
code.

Objects as Instances of Classes
Look again at the example of using objects:

alert(Math.round(9.9));
var cityList = new Array("New York", "London", "Stockholm");
var sortedCityList = cityList.sort();
alert(sortedCityList.join());

Observe	the	difference	between	the	usage	of	the	Math object and the Array object. Notice
that the Math object can be used as is, but the Array object needs the new keyword before it. The
Array object defines a template of array list- related functions, which makes it a class, accord-
ing to our previous definition.

To create something from a class that is usable within your code, you use the new keyword,
which creates an instance of that class. Essentially, this allows you to create one or many objects
that each contain all the functions and variables defined within the class, without interfering
with each other. The following shows a few examples of creating objects as instances of classes.

var oceans = new Array("Atlantic", "Pacific", "Indian", "Arctic", "Antarctic");
var myMessage = new EmailMessage(); // Using the class defined previously
var anotherMessage = new EmailMessage(); // Independent of myMessage, above

Constructors
A constructor is optional code that can be executed at the instant an object is created from a
class, using the new keyword. In JavaScript, this is performed as simply as adding code to the
function that defines the class, as follows:

var EmailMessage = function() {
 // Action that should be performed when the class is instantiated
 alert("New message created.");
}

var myMessage = new EmailMessage(); // Outputs "New message created."
var anotherMessage = new EmailMessage(); // Outputs "New message created."

Just as normal functions within the JavaScript language can be passed parameters that the
function can use internally, so can class constructors. Here is a class constructor that takes one
parameter:

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS66

var EmailMessage = function(message) {
 alert(message);
}

// Outputs "Return to sender"
var myMessage = new EmailMessage("Return to sender");

properties
In object- oriented terminology, a property is a variable stored within an object. Properties are
defined within the class, using the this keyword, and are then available to each object instan-
tiated from that class. The following example shows how to define properties within a class
and how to access those properties from object instances.

var EmailMessage = function() {
 this.subject = ""; // Use the this keyword to assign a property to a class
}

var myMessage = new EmailMessage();
myMessage.subject = "Check this out..."; // Assign a value to the property

var anotherMessage = new EmailMessage();
anotherMessage.subject = "Have you seen this before?";

alert(myMessage.subject); // Outputs "Check this out..."
alert(anotherMessage.subject); // Outputs "Have you seen this before?"

You use the this keyword within the class to refer to the scope of the instantiated object,
as discussed in a little more detail shortly.

Methods
While properties define variables associated with a class or object, methods define executable
functions available to all object instances. The following example demonstrates how to add a
method to a class and how to execute it from within an object instantiated from that class.

var EmailMessage = function(subject) {
 this.subject = subject;
 this.send = function() {
 alert("Message '" + this.subject + "' sent!");
 }
}

var myMessage = new EmailMessage("Dear John...");
myMessage.send(); // Outputs "Message 'Dear John...' sent!"

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 67

the prototype Keyword
Another way to assign properties and methods to a class, outside the class definition itself, is
by using the prototype keyword against the class name after it has been defined. Here’s how to
add properties and methods to a class in this way:

var EmailMessage = function(subject) {
 this.subject = subject;
}

EmailMessage.prototype.from = ""; // Dynamically assign new property to class
EmailMessage.prototype.send = function() { // Dynamically assign new method
 alert("Message from " + this.from + " sent!"); // 'this' still behaves as normal
}

var myMessage = new EmailMessage("My new website");
myMessage.from = "me@denodell.com";
myMessage.send(); // Outputs "Message from me@denodell.com sent!"

As well as allowing you to add extra properties and methods to the class after it has been
defined, you can use the prototype keyword to assign new properties and methods to objects
already created from those classes. This allows you to dynamically add new functionality to
object instances that already exist. The following example demonstrates this principal.

var EmailMessage = function(subject) {
 this.subject = subject;
}

// Instantiate an object from the EmailMessage class
var myMessage = new EmailMessage("Coming to visit...");

// Add a new method to the class
EmailMessage.prototype.send = function() {
 alert("Message sent!");
}

// The new method exists on an object created before the method was added!
myMessage.send(); // Outputs "Message sent!"

Singletons
A singleton is a class that will only ever have a single instance in your code, such as the Math
object that exists within the JavaScript language itself. You cannot create new instances of this
object, though it does contain properties and methods you can take advantage of in your code.
 Listing 2-1 demonstrates how to create a singleton.

mailto:me@denodell.com
mailto:me@denodell.com

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS68

 Listing 2-1. Creating a Singleton

var User = function() {
 this.username = "";
 this.password = "";
 this.login = function() {
 return true;
 }
}

// Create an instance of the User class, storing it in the same variable used to
// define the class initially. The original class has now been removed from the
// code, leaving only the single object instance of it
User = new User();

// Example method call on the single instance of User
User.login();

// Example of a self- instantiating class
var Inbox = new function() {
 this.messageCount = 0;
 this.refresh = function() {
 return true;
 }
}();
// The new keyword and braces force the function to immediately execute,
// meaning the Inbox variable now contains the single object instance,
// not the class

// Example method call on the single instance of Inbox
Inbox.refresh();

Now you are familiar with creating classes with properties and methods. Let’s move on to
an important aspect of object- oriented programming: inheritance.

Inheritance: Creating New Classes from Existing Ones
Inheritance allows you to create classes derived from other classes in order to specialize that
class in some way. The original class is known as the parent, and the new class derived from it
is known as the child.

Inheritance in JavaScript is performed using the prototype keyword, once again. After
definition of the child class, you assign the parent class to the child’s prototype, which has the
outcome of making the parent’s properties and methods immediately available to the child.
The child class can then override or extend any of the parent’s methods or properties, as it
requires. Listing 2-2 shows how basic inheritance is performed using JavaScript.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 69

 Listing 2-2. Basic Inheritance in JavaScript

var EmailMessage = function(subject) {
 this.subject = subject;
 this.send = function() {
 alert("Message '" + this.subject + "' sent!");
 }
}

// Create a new, empty class
var EventInvitation = function() {};

// Inherit properties and methods from the EmailMessage class
EventInvitation.prototype = new EmailMessage();

// EventInvitation thinks it is the EmailMessage class, so correct this...
EventInvitation.prototype.constructor = EventInvitation;

// Define the subject for all instances of the EventInvitation class
EventInvitation.prototype.subject = "You are cordially invited to...";

// Create an instance of the EventInvitation class
var myEventInvitation = new EventInvitation();

// Outputs "Message 'You are cordially invited to...' sent!"
myEventInvitation.send();

encapsulation: each Class Doing What It Does Best
When using inheritance to create variations or specializations of existing classes, all the prop-
erties and methods of the parent class are available to the child. You do not need to declare
or define anything extra within the child class to be able to use properties and methods of the
parent. This is termed encapsulation. The child class needs to contain definitions only for the
properties and methods that are in addition to those of the parent.

polymorphism: redefining Inherited properties and Methods
You have seen that, when creating a new child class that inherits from a parent class, the child
has available all the properties and methods from the parent. Now suppose that you want your
child class to contain a method with the same name as that of the parent, and to execute the
code within that method in your child, instead of using the method from the parent. This is
known as polymorphism. Listing 2-3 demonstrates polymorphism, where the child class con-
tains a method with the same name as the parent class from which it was inherited.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS70

Listing 2-3. Polymorphism in Action: Replacing the Method of a Parent Class

var EmailMessage = function(subject) {
 this.subject = subject;
 this.send = function() {
 alert("Email message sent!");
 }
}

// Inherit EventInvitation class from EmailMessage
var EventInvitation = function() {};
EventInvitation.prototype = new EmailMessage("You are cordially invited to...");
EventInvitation.prototype.constructor = EventInvitation;

// Override the inherited send method
EventInvitation.prototype.send = function() {
 alert("Event invitation sent!");
}

var myEmailMessage = new EmailMessage("A new email coming your way.");
var myEventInvitation = new EventInvitation();

myEmailMessage.send(); // Outputs "Email message sent!"
myEventInvitation.send(); // Outputs "Event invitation sent!"

Now suppose that you want to override a method in a child class so that it executes extra
code in addition to that of the method in the parent class. So, instead of replacing a parent’s
method, you wish to extend it in some way, while still using the same method name provided
by the parent. Listing 2-4 demonstrates this principle.

■Caution Any methods or properties you wish to extend as demonstrated in Listing 2-4 must be declared in
the parent class using the prototype keyword; otherwise, they cannot be located from within the child class.

 Listing 2-4. Polymorphism in Action: Extending the Method of a Parent Class

var EmailMessage = function(subject) {
 this.subject = subject;
}

// We wish to be able to extend this method later,
// so it must be declared using the prototype keyword
EmailMessage.prototype.send = function() {
 alert("Email message sent!");
}

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 71

// Inherit EventInvitation class from EmailMessage
var EventInvitation = function() {};
EventInvitation.prototype = new EmailMessage("You are cordially invited to...");
EventInvitation.constructor.prototype = EventInvitation;

// Override the inherited send method
EventInvitation.prototype.send = function() {
 // Add code to the EventInvitation send method
 alert("Event invitation sent!");

 // Find and execute the send method from the EmailMessage class
 // this.constructor.prototype refers to the EmailMessage class
 this.constructor.prototype.send.call(this);
}

var myEmailMessage = new EmailMessage("A new email coming your way.");
var myEventInvitation = new EventInvitation();

// Outputs "Email message sent!"
myEmailMessage.send();

// Outputs "Event invitation sent!" followed by "Email message sent!"
myEventInvitation.send();

The this Keyword
A fundamental part of building any object- based RIA is understanding the this keyword
within JavaScript. You have seen it used in this chapter’s code examples, when associating
properties and methods with classes and when calling parent class methods from within child
classes. Knowing how to properly use this powerful keyword will improve your coding skills
and give you a better handle on the JavaScript language itself.

The this keyword refers to the owner of the function it is contained within. If it occurs
within a method as part of a class, it refers to the class itself, or rather the object instance of the
class	created	when	your	code	is	executing.	Out	of	the	context	of	a	class,	this usually refers to
the global window object of the page. Take a look at Listing 2-5, which shows a few examples of
the this keyword in action, based around a single function being used in different contexts.

 Listing 2-5. The this Keyword in Action

var showSubject = function() {
 // Output the subject property with the same owner as this function
 alert(this.subject);
}

// Outputs "undefined" since the this keyword refers to the global window object
// which has no variable named subject
showSubject();

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS72

// Set the a global subject property
this.subject = "Global subject";

// Outputs "Global subject" now that the property has been set
showSubject();

// Define the EmailMessage class
var EmailMessage = function(subject) {
 this.subject = subject;
}

// Copy and assign the showSubject function to the EmailMessage class,
// making the EmailMessage class the owner of the function.
// Note the lack of braces after the function, which copies the code of the
// function rather than executing it straightaway
EmailMessage.prototype.showSubject = showSubject;

// Create a new instance of the class
var myEmailMessage = new EmailMessage("I am the subject.");

// Outputs "I am the subject.", since the owner of the function is the class
myEmailMessage.showSubject();

// Outputs "Global subject" just to demonstrate that this has not been lost
showSubject();

// Now let's add another method to the class, calling showSubject differently
EmailMessage.prototype.outputSubject = function() {
 showSubject();
}

// Outputs "Global subject" since this method calls the function
// that is associated with the window object
myEmailMessage.outputSubject();

If you wish to call a function or method and ensure that the this keyword refers to a
different object than the one it would normally refer to, two functions allow you to do this:
apply and call. The difference between the two in implementation terms is very minor. apply
expects any arguments you are passing to the function to be supplied as an array, whereas
call does not. Listing 2-6 shows these two functions in action, altering the value of the this
keyword in a set of reusable functions.

 Listing 2-6. Using apply and call to Alter the Value of the this Keyword

var showSubject = function() {
 alert(this.subject);
}

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 73

var setSubjectAndFrom = function(subject, from) {
 this.subject = subject;
 this.from = from;
}

// Executed against the global window object
showSubject(); // Outputs "undefined"
setSubjectAndFrom("Global subject", "me@denodell.com");
showSubject(); // Outputs "Global subject"

// Create EmailMessage class
var EmailMessage = function() {
 this.subject = "";
 this.from = "";
};

// Instantiate class
var myEmailMessage = new EmailMessage();

// Execute setSubjectAndFrom function, forcing the this keyword within the function
// to refer to myEmailMessage instead of the window object. Parameters are
// passed in series after the object to apply as the owner, setting the subject to
// "New subject" and the from property to "den@denodell.com"
setSubjectAndFrom.call(myEmailMessage, "New subject", "den@denodell.com");

// As a demonstration, we will do the same thing now using apply instead of call;
// apply expects an array of arguments, unlike call.
// You can use either apply or call in your code
setSubjectAndFrom.apply(myEmailMessage, ["New subject", "den@denodell.com"]);

// Outputs "New subject"
showSubject.call(myEmailMessage);

Access to Properties and Methods
Most programming languages allow you to define the level of access a particular property or
method within an object has within the scope of the entire application. All of the properties
and methods for classes created in the examples so far have been publicly available, which is
to say that they can be accessed from anywhere within the code base. Creating a new instance
of a class allows read and write access to any property within the instance, and allows any of
the methods to be executed.

But what if you were creating a property or method for a class that you wanted to be avail-
able only internally within the class, termed private?	Or	suppose	you	wanted		read-	only	access	to	
a private property from outside the class definition; you might say this is a privileged property.

mailto:me@denodell.com
mailto:den@denodell.com
mailto:den@denodell.com
mailto:den@denodell.com

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS74

■Caution Don’t confuse the terms public, private, and privileged here with similar names in other languages.
In this context, we are discussing only access to properties and methods within classes from outside that class.

The different types of access to properties of a class are demonstrated in Listing 2-7.

 Listing 2-7. Restricting Access to Properties and Methods of a Class

var EmailMessage = function(subject) {
 // Publicly accessible properties and methods
 this.subject = subject;
 this.send = function() {
 alert("Message sent!");
 }

 // Private properties and methods.
 // Use of var instead of the this keyword to set a property means that the
 // scope of that variable is restricted to the function it sits inside of and is
 // not accessible externally
 var messageHeaders = "";
 var addEncryption = function() {
 // TODO: Add encryption method
 return true;
 }

 // Protecting a property, making it read- only from outside of the class
 // achieved by creating a private property and a public method
 var messageSize = 1024;
 this.getMessageSize = function() {
 alert(messageSize);
 }
}

var myEmailMessage = new EmailMessage("Save these dates...");

alert(myEmailMessage.subject); // Outputs "Save these dates..."
myEmailMessage.send(); // Outputs "Message sent!"

// Outputs "undefined" as messageHeaders is not a publicly visible property
alert(myEmailMessage.messageHeaders);

// Causes an exception to occur since the method does not exist
try {
 myEmailMessage.addEncryption();
} catch (e) {
 alert("Method does not exist publicly!");
}

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 75

// Outputs "undefined" since messageSize is not accessible outside of the class
alert(myEmailMessage.messageSize);

// Outputs "1024", the value of the private messageSize variable
myEmailMessage.getMessageSize();

Object Literals and JavaScript Object Notation
An object literal within the JavaScript language is essentially a list or grouping of any number
of	property	names	and	their	associated	values.	Object	literal	values	can	be	strings,	integer	
numbers, floating- point numbers, Boolean values, arrays, functions, or even other object liter-
als, denoted in a particular format.

The	format	for	object	literals	is	commonly	known	as	JavaScript	Object	Notation	(JSON).	
The start and end of an object literal are denoted by curly braces: { and }. Each item in the list
within the braces is separated by a comma, and each name is separated from its value by a
colon.

Object	literals	are	used	within	the	language	to	group	together	related	properties	and	
methods in a similar way to a class. However, an object literal only ever has one instance, and
it is not possible to execute any code statements at the point of its creation, as you could with a
class definition. Listing 2-8 shows an object literal with values of many different types.

 Listing 2-8. Object Literal with Many Types of Values

var earth = {
 name: "Terra Firma", // String
 planet: true, // Boolean
 moons: 1, // Integer (whole) number
 diameter: 12756.36, // Floating point number (decimal)
 oceans: ["Atlantic", "Pacific", "Indian", "Arctic", "Antarctic"], // Array
 poles: { // A nested object literal
 north: "Arctic",
 south: "Antarctic"
 },
 setDiameter: function(diameter) { // Function
 this.diameter = diameter; // The this keyword refers to the earth variable
 }
}

// Dot notation is used to access properties of the object
alert(earth.diameter); // Outputs "12756.36"
earth.setDiameter(12756.37);
alert(earth.diameter); // Outputs "12756.37"

You can use object literals to create singletons, provided that you do not need to execute
any specific code when that singleton is instantiated.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS76

Using Object Literals When Creating Classes
The object literal notation can be used together with the prototype keyword to set the defini-
tion of a class, as follows:

var EmailMessage = function() {};
EmailMessage.prototype = {
 subject: "",
 from: "",
 send: function() {
 alert("Message sent!");
 }
}
var myEmailMessage = new EmailMessage();

// Properties and methods are accessed as normal
myEmailMessage.subject = "Come over for a party...";

The limitation with this format is that you may need to write extra code to initialize the
properties within the class.

Using Object Literals as Inputs to Functions
When you are writing a function that requires several arguments, you should consider accept-
ing an object literal as the input to such a function. This allows you to replace all arguments
with	a	single	one;	values	can	be	extracted	from	the	single	argument	using	dot	notation.	Using	
object literals in this way often results in code that is easier to read and understand, since each
property value in an object literal is named, providing context to the arguments supplied to
the function.

 Listing 2-9 demonstrates two functions that are identical in behavior, but one accepts
multiple arguments and the other accepts just a single argument.

 Listing 2-9. Object Literal As an Input to a Function

// Using multiple arguments in a specific order
var sendEmail = function(to, from, subject, body) {
 alert("Message '" + subject + "' from '" + from + "' sent to '" + to + "'!");
}
// Arguments must be in the correct order when calling the function.
// Outputs "Message 'Dinner this week?' from 'me@denodell.com' sent to
// 'you@denodell.com'!"
sendEmail("you@denodell.com", "me@denodell.com", "Dinner this week?", ➥

 "Do you want to come over for dinner this week? Let me know.");

// Same function, but a single object literal argument containing named properties
var sendEmail = function(message) {
 alert("Message '" + message.subject + "' from '" + message.from + "' sent ➥

 to '" + message.to + "'!");
}

mailto:me@denodell.com
mailto:you@denodell.com
mailto:you@denodell.com
mailto:me@denodell.com

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 77

// One object literal argument with named property values in no specific order
// Outputs "Message 'Dinner this week?' from 'me@denodell.com" sent to
// 'you@denodell.com'!"
sendEmail({
 from: 'me@denodell.com',
 to: 'you@denodell.com',
 subject: 'Dinner this week?',
 body: 'Do you want to come over for dinner this week? Let me know.'
});

Creating Namespaces and Hierarchies
Creating too many variables within the global window object is commonly referred to as pol-
luting the global scope. This practice is dangerous, since you may define a variable that is also
used by a third- party script you may be running on your site. JavaScript does not give you a
warning when a variable is being overwritten in this way, so you may be relying on values that
have been overwritten outside your control.

The solution to this problem is to create a single variable in the global scope that acts as
an object literal or singleton, containing all the code for your application. This is known as a
namespace in many programming languages. You are able to create other object literals or
singletons within this global object to maintain a hierarchy of namespaces, grouping related
code together. Here is an example of a namespace hierarchy:

var MyCompany = new function(){
 this.MyClient = { // Object literal
 WebMail: function() { // Constructor
 alert("Creating WebMail application...");
 }
 };
}(); // Create MyCompany as a singleton

// Now you can access the hierarchy through dot notation.
// Outputs "Creating WebMail application..."
var myWebMail = new MyCompany.MyClient.WebMail();

Libraries and Frameworks
Several open source JavaScript libraries have been written in recent years to simplify the devel-
opment of dynamic web pages and RIAs. Primarily, they exist to smooth out inconsistencies
between different browsers’ implementation of JavaScript and to help developers write fewer
lines of code to achieve their goals.

Unfortunately,	browsers	differ	in	their	support	for	certain	aspects	of	JavaScript—not	all	
browsers support the same actions using the same methods. Some of the key points of varia-
tion include the following:

	 •	 Handling	events	that	occur	when	the	user	interacts	with	the	page

	 •	 Loading	remote	content	from	a	web	server

mailto:me@denodell.com
mailto:you@denodell.com
mailto:me@denodell.com
mailto:you@denodell.com

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS78

	 •	 Detecting	when	the	DOM	has	been	initialized	and	is	ready	to	use

	 •	 Determining	which	CSS	styles	are	applied	to	a	particular	element

JavaScript libraries iron out these differences by plugging missing functionality and fixing
improper implementations.

Additionally, many JavaScript libraries include extra utility methods to simplify common
tasks, such as locating page elements by using CSS 3 selector notation. Many libraries are also
starting to add support for appealing effect transitions, smoothing the appearance as one style
adapts into another on the page.

■Tip A guide to the CSS 3 selector notation can be found at http://www.w3.org/TR/css3- selectors/
#selectors. Bear in mind that the list of selectors is still a work in progress at present.

You should use a JavaScript library when building RIAs. You will not be able to survive
without the cross- browser smoothing over, and the extra utility methods will help you code
more efficiently.

Selecting a Library
Several open source JavaScript libraries are available. Currently, some of the most popular
libraries include jQuery (http://jquery.com/), Dojo (http://www.dojotoolkit.org/), Prototype
(http://www.prototypejs.org/), MooTools (http://mootools.net/),	Yahoo!	User	Interface	
Library (http://developer.yahoo.com/yui/), and Ext JS (http://extjs.com/). A number of
these libraries have a multitude of third- party plug- ins that support extra functionality.

When investigating and selecting a JavaScript library, consider the following criteria:

Avoids extending JavaScript objects: Choose a library that does not rely heavily on extend-
ing native JavaScript objects, such as Function, String, Array, and so on. If you discover a
library that allows you to call methods or alter properties on such objects that are not part
of the JavaScript language, be very wary. Future additions to the language could break
these methods and properties, and other third-party JavaScript libraries could overwrite
the same methods in a different way.

Is well documented: Choose a library that is well documented and has a multitude of test
cases that are run before new releases to the library are made available.

Has an active community: Choose a library that has an active community of developers
and users. It is more likely that any problems you encounter will have been solved before.
And, if not, there’s a better chance that your problem will be addressed and any necessary
changes to the library made as a result.

Does not have memory leaks: Choose a library that does not leak memory. This goes back
to the test cases mentioned previously.

Is small and efficient: Choose a library that is not large and bloated. Small does not neces-
sarily mean better, but it does mean that the users of your code have less JavaScript to
download before they can use your site.

http://www.w3.org/TR/css3-�selectors/#selectors
http://www.w3.org/TR/css3-�selectors/#selectors
http://jquery.com/
http://www.dojotoolkit.org/
http://www.prototypejs.org/
http://mootools.net/
http://developer.yahoo.com/yui/
http://extjs.com/

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 79

Has its own namespace: Choose a library that doesn’t pollute the global scope. Make sure
that the library sits within its own namespace.

Allows standard JavaScript syntax: Finally, choose a library that allows you to write
JavaScript as it was intended to be written. Be wary of a library that forces you to spend
a lot of time learning how to use its patterns, as if it were a different language entirely.
Remember that you are a JavaScript programmer, not a library programmer.

Not all of these criteria are met by every library. You should research the available libraries
carefully so as to make an informed decision about the library you’ll come to rely upon when
building your RIAs.

Building a JavaScript Library
In order to understand the kinds of problems that libraries solve, particularly regarding
 cross- browser compatibility, and to demonstrate the sort of library that adheres to most of
the guidelines suggested in the previous section, let’s go through the formation of a basic
JavaScript library. This library will serve as the basis for many of the code examples used in this
book.

Using	the	principles	of		object-	oriented	programming	discussed	in	this	chapter,	let’s	create	
a class to describe our JavaScript library, naming the library simply $:

var $ = function() {};

Not only is this a valid name within the language for a function or variable name, it is
actually used fairly frequently as the name to represent a JavaScript library’s global namespace
due to its short length (meaning shorter code). Its use originally came about from its existence
in the Ruby and PHP programming languages.

Detecting When the DOM Is available
A major bugbear of JavaScript programmers	is	that	the	DOM	is	sometimes	not	available	for	
use at the point when an executing script needs it to be. If the script is referred to within the
<head> section of an HTML page, it will be executed before the <body> of that page has loaded,
meaning it will not be able to locate page elements at that time. Previously, developers would
add their entire code to the window.onload event, meaning it would execute when the entire
page—including any external images, CSS, and JavaScript files—had loaded. The more images
on the page, the longer the user would wait before the script was executed.

Eventually, several browser manufacturers, together with the W3C, introduced a
DOMContentLoaded event, which fired at the point when the page elements were loaded and
could be accessed through JavaScript. This event fired before the window.onload event and
before the external files had finished loading, meaning that developers could have their scripts
executing	against	the	DOM	without	needing	to	wait	for	the	entire	page	contents	to	load.

Unfortunately,	the	DOMContentLoaded event is not yet implemented in all common brows-
ers, notably IE 6, 7, and 8. To smooth over this inconsistency and provide support for this
event where it exists and a work-around where it doesn’t, you need to write your own method
to	execute	your	code	when	the	DOM	is	ready	to	be	used. Listing 2-10 shows one way of achiev-
ing this behavior in all browsers as part of your $ library.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS80

 Listing 2-10. Executing Code When the DOM Is Ready for Access

$.prototype.onDomReady = function(callback){ // callback should be a function
 if (document.addEventListener) {
 // If the browser supports the DOMContentLoaded event,
 // assign the callback function to execute when that event fires
 document.addEventListener("DOMContentLoaded", callback, false);
 } else {
 if(document.body && document.body.lastChild){
 // If the DOM is available for access, execute the callback function
 callback();
 } else {
 // Reexecute the current function, denoted by arguments.callee,
 // after waiting a brief nanosecond so as not to lock up the browser
 return setTimeout(arguments.callee, 0);
 }
 }
}

// Example usage

// Instantiate the $ library object as a singleton for use on a page
$ = new $();

// Outputs "The DOM is ready!" when the DOM is ready for access
$.onDomReady(function() {
 alert("The DOM is ready!");
});

handling events in the Browser
JavaScript events fire within the browser when certain actions occur, such as hyperlink clicks
and form submissions, and you can write code to be executed at these points. The problem is
that the way to assign functions to these events differs between IE 6 and 7 and other brows-
ers. Not only that, but the method of establishing the page element the event occurred on and
other attributes of the event, such as mouse positions, also differs between these browsers.
 Listing 2-11 shows how to add methods to your $ library to smooth out these inconsistencies.

 Listing 2-11. Writing Methods to Standardize Event Handling in Browsers

// Add a new namespace to the $ library to hold all event- related code,
// using an object literal notation to add multiple methods at once

$.prototype.Events = {

 // The add method allows us to assign a function to execute when an
 // event of a specified type occurs on a specific element

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 81

 add: function (element, eventType, callback) {
 // Store the current value of this to use within subfunctions
 var self = this;
 eventType = eventType.toLowerCase();

 if (element.addEventListener) {
 // If the W3C event listener method is available, use that
 element.addEventListener(eventType, function(e){
 // Execute callback function, passing it a standardized version of
 // the event object, e. The standardize method is defined later
 callback(self.standardize(e));
 }, false);
 } else if (element.attachEvent) {
 // Otherwise use the Internet Explorer- proprietary event handler
 element.attachEvent("on" + eventType, function() {
 // IE uses window.event to store the current event's properties
 callback(self.standardize(window.event));
 });
 }
 },

 // The remove method allows us to remove previously assigned code
 // from an event

 remove: function (element, eventType, callback) {
 eventType = eventType.toLowerCase();

 if (element.removeEventListener) {
 // If the W3C- specified method is available, use that
 element.removeEventListener(element, eventType, callback);
 } else if (element.detachEvent) {
 // Otherwise, use the Internet Explorer- specific method
 element.detachEvent("on" + eventType, callback);
 }
 },

 // The standardize method produces a unified set of event
 // properties, regardless of the browser

 standardize: function(event) {

 // These two methods, defined later, return the current position of the
 // mouse pointer, relative to the document as a whole, and relative to the
 // element the event occurred within
 var page = this.getMousePositionRelativeToDocument(event);
 var offset = this.getMousePositionOffset(event);

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS82

 // Let's stop events from firing on element nodes above the current
 if (event.stopPropagation) {
 event.stopPropagation();
 } else {
 event.cancelBubble = true;
 }

 // We return an object literal containing seven properties and one method
 return {
 // The target is the element the event occurred on
 target: this.getTarget(event),

 // The relatedTarget is the element the event was listening for,
 // which can be different from the target if the event occurred on an
 // element located within the relatedTarget element in the DOM
 relatedTarget: this.getRelatedTarget(event),

 // If the event was a keyboard- related one, key returns the character
 key: this.getCharacterFromKey(event),

 // Return the x and y coordinates of the mouse pointer,
 // relative to the document
 pageX: page.x,
 pageY: page.y,

 // Return the x and y coordinates of the mouse pointer,
 // relative to the element the current event occurred on
 offsetX: offset.x,
 offsetY: offset.y,

 // The preventDefault method stops the default event of the element
 // we're acting upon from occurring. If we were listening for click
 // events on a hyperlink, for example, this method would stop the
 // link from being followed
 preventDefault: function() {
 if (event.preventDefault) {
 event.preventDefault(); // W3C method
 } else {
 event.returnValue = false; // Internet Explorer method
 }
 }
 };
 },

 // The getTarget method locates the element the event occurred on

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 83

 getTarget: function(event) {
 // Internet Explorer value is srcElement, W3C value is target
 var target = event.srcElement || event.target;

 // Fix legacy Safari bug which reports events occurring on a text
 // node instead of an element node
 if (target.nodeType == 3) { // 3 denotes a text node
 target = target.parentNode; // Get parent node of text node
 }

 // Return the element node the event occurred on
 return target;
 },

 // The getCharacterFromKey method returns the character pressed when
 // keyboard events occur. You should use the keypress event
 // as others vary in reliability

 getCharacterFromKey: function(event) {
 var character = "";
 if (event.keyCode) { // Internet Explorer
 character = String.fromCharCode(event.keyCode);
 } else if (event.which) { // W3C
 character = String.fromCharCode(event.which);
 }
 return character;
 },

 // The getMousePositionRelativeToDocument method returns the current
 // mouse pointer position relative to the top left edge of the current page

 getMousePositionRelativeToDocument: function(event) {
 var x = 0, y = 0;

 if (event.pageX) {
 // pageX gets coordinates of pointer from left of entire document
 x = event.pageX;
 y = event.pageY;
 } else if (event.clientX) {
 // clientX gets coordinates from left of current viewable area
 // so we have to add the distance the page has scrolled onto this value
 x = event.clientX + document.body.scrollLeft + ➥

 document.documentElement.scrollLeft;
 y = event.clientY + document.body.scrollTop + ➥

 document.documentElement.scrollTop;
 }

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS84

 // Return an object literal containing the x and y mouse coordinates
 return {
 x: x,
 y: y
 }
 },

 // The getMousePositionOffset method returns the distance of the mouse
 // pointer from the top left of the element the event occurred on

 getMousePositionOffset: function(event) {
 var x = 0, y = 0;

 if (event.layerX) {
 x = event.layerX;
 y = event.layerY;
 } else if (event.offsetX) {
 // Internet Explorer- proprietary
 x = event.offsetX;
 y = event.offsetY;
 }

 // Returns an object literal containing the x and y coordinates of the
 // mouse relative to the element the event fired on
 return {
 x: x,
 y: y
 }
 },

 // The getRelatedTarget method returns the element node the event was set up to
 // fire on, which can be different from the element the event actually fired on

 getRelatedTarget: function(event) {
 var relatedTarget = event.relatedTarget;
 if (event.type == "mouseover") {
 // With mouseover events, relatedTarget is not set by default
 relatedTarget = event.fromElement;
 } else if (event.type == "mouseout") {
 // With mouseout events, relatedTarget is not set by default
 relatedTarget = event.toElement;
 }
 return relatedTarget;
 }
};

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 85

// Example usage

// Instantiate the library as a singleton for use on a page
$ = new $();

// Clicking anywhere on the page will output the current coordinates
// of the mouse pointer
$.Events.add(document.body, "click", function(e) {
 alert("Mouse clicked at 'x' position " + e.pageX + " and 'y' position "+ ➥

 e.pageY);
});

Loading Content on Demand with ajax
One	of	the	fundamental	parts	of	most RIAs is the ability to communicate directly with a web
server without the need to refresh the page. This allows web applications to behave more like
desktop applications, which can load and save data in the background, and update portions of
the page independently of others.

Asynchronous JavaScript and XML (Ajax for short) is the name commonly given to
this practice of downloading or sending content to and from a remote web server through
JavaScript. Although it is mentioned in the name, the technique does not actually rely on
 XML- format data for communication; indeed, any type of content can be transmitted or
received. The term asynchronous means that, while content is being loaded, the rest of your
script can still execute—the code doesn’t stop to wait for the content to finish loading before it
continues.

■Caution As a security measure, when you use the Ajax technique, browsers will allow you to access only
content that is stored on the same domain as the page that is currently executing the code. Many developers
work around this restriction by including a server- side script on their web server which, when passed a URL
as a query string parameter, loads the contents of that URL and passes them back to the Ajax request on the
page.

Don’t forget that when you’re writing your code, if you provide the means to perform
an action or load certain content using this technique, the same action must be able to be
performed using HTML alone, where it is relevant. If you are creating a web mail client, for
example, you should build the application to work with HTML first, before adding JavaScript
and Ajax techniques to turn this into an RIA.

Let’s add some JavaScript methods to your $ library to deal with the interaction between
the browser and the web server. There are several cross- browser obstacles to overcome,
as explained in the comments in the code. Listing 2-12 demonstrates how to load content
dynamically in a cross- browser way.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS86

 Listing 2-12. Loading Content Dynamically Using Ajax

// Define a new namespace within the $ library, called Remote, to store
// our Ajax methods

$.prototype.Remote = {

 // The getConnector method returns the base object for performing
 // dynamic browser- server communication through JavaScript

 getConnector: function() {
 var connectionObject = null;
 if (window.XMLHttpRequest) {
 // If the W3C- supported request object is available, use that
 connectionObject = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 // Otherwise, if the IE- proprietary object is available, use that
 connectionObject = new ActiveXObject('Microsoft.XMLHTTP');
 }

 // Both objects contain virtually identical properties and methods
 // so it's just a case of returning the correct one that's supported
 // within the current browser
 return connectionObject;
 },

 // The configureConnector method defines what should happen while the
 // request is taking place, and ensures that a callback method is executed
 // when the response is successfully received from the server

 configureConnector: function(connector, callback) {
 // The readystatechange event fires at different points in the life cycle
 // of the request, when loading starts, while it is continuing and
 // again when it ends
 connector.onreadystatechange = function() {

 // If the current state of the request informs us that the
 // current request has completed
 if (connector.readyState == 4) {

 // Ensure the HTTP status denotes successful download of content
 if (connector.status == 200) {

 // Execute the callback method, passing it an object
 // literal containing two properties, the raw text of the

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 87

 // downloaded content and the same content in XML format,
 // if the content requested was able to be parsed as XML.
 // We also set its owner to be the connector in case this
 // object is required in the callback function

 callback.call(connector, {
 text: connector.responseText,
 xml: connector.responseXML
 });
 }
 }
 }
 },

 // The load method takes an object literal containing a URL to load and a method
 // to execute once the content has been downloaded from that URL. Since the
 // Ajax technique is asynchronous, the rest of the code does not wait for the
 // content to finish downloading before continuing, hence the need to pass in
 // the method to execute once the content has downloaded in the background.

 load: function(request) {
 // Take the url from the request object literal input,
 // or use an empty string value if it doesn't exist
 var url = request.url || "";

 // Take the callback method from the request input object literal,
 // or use an empty function if it is not supplied
 var callback = request.callback || function() {};

 // Get our cross- browser connection object
 var connector = this.getConnector();

 if (connector) {
 // Configure the connector to execute the callback method once the
 // content has been successfully downloaded
 this.configureConnector(connector, callback);

 // Now actually make the request for the contents found at the URL
 connector.open("GET", url, true);
 connector.send("");
 }
 },

 // The save method performs an HTTP POST action, effectively sending content,
 // such as a form's field values, to a server- side script for processing

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS88

 save: function(request) {
 var url = request.url || "";
 var callback = request.callback || function() {};

 // The data variable is a string of URL- encoded name- value pairs to send to
 // the server in the following format:
 // "parameter1=value1¶meter2=value2&..."
 var data = request.data || "";

 var connector = this.getConnector();
 if (connector) {
 this.configureConnector(connector, callback);

 // Now actually send the data to script found at the URL
 connector.open("POST", url, true);
 connector.setRequestHeader("Content- type", ➥

 "application/x-www-form- urlencoded");
 connector.setRequestHeader("Content- length", data.length);
 connector.setRequestHeader("Connection", "close");
 connector.send(data);
 }
 }
}

// Example usage

// Instantiate the library as a singleton
$ = new $();

// Load the contents of the URL index.html from the root of the web server
$.Remote.load({
 url: "/index.html",
 callback: function(response) {
 // Get the plain text contents of the file
 var text = response.text;

 // If the HTML file was written in XHTML format, it would be available
 // in XML format through the response.xml property
 var xml = response.xml;

 // Output the contents of the index.html file as plain text
 alert(text);
 }
});

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 89

// Send some data to a server- side script at the URL process- form.php
$.Remote.save({
 url: "/process.form.php",
 data: "name=Den&surname=Odell",
 callback: function(response) {
 // Output the server- side script's response to the form submission
 alert(response.text);
 }
});

The Ajax technique is data- format agnostic, so the data sent and received should be in a
format that makes is easy for you to actually do something with it in your code. From experi-
ence,	we	know	that	XML	parsing	through	JavaScript	is	rather	slow,	and	so	JSON	provides	a	
lighter alternative, both in terms of data size and the speed at which it can be converted into
a	meaningful	native	format	for	JavaScript	to	use.	Since	JSON	is	inherently	just	a	JavaScript	
object, it is incredibly simple to parse into a usable object. In most cases, it is possible to repre-
sent	XML	data	in	JSON	format	using	fewer	characters.

In some cases, you may wish the server to return HTML so that, instead of parsing with
JavaScript,	you	can	simply	insert	that	content	into	the	DOM.	XHTML	provides	a	great	format	
for this. When dynamically inserting HTML into the page through JavaScript, all the necessary
CSS styles on the page will be applied as expected to the new markup, This means that you do
not need to do anything further to achieve the required look of the page when adding content
dynamically to a page using Ajax.

Using Utility Functions
Many JavaScript libraries contain a handful of useful methods that allow developers to save
time and write shorter, more efficient code within their own routines. Listing 2-13 adds a few
 string- manipulation methods and a method that allows you to merge together two object liter-
als (which is not built into the language as it stands) to your $ JavaScript library.

 Listing 2-13. Adding Utility Methods to the $ Library

// Add the Utils namespace to hold a set of useful, reusable methods

$.prototype.Utils = {

 // The mergeObjects method copies all the property values of one object
 // literal into another, replacing any properties that already exist, and
 // adding any that don't

 mergeObjects: function(original, newObject) {
 for (var key in newObject){
 // for ... in ... loops expose unwanted properties such as prototype
 // and constructor, among others. Using the hasOwnProperty
 // native method allows us to only allow real properties to pass

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS90

 if (newObject.hasOwnProperty(key)) {
 // Loop through every item in the new object literal,
 // getting the value of that item in the original object and
 // the equivalent value in the original object, if it exists
 var newPropertyValue = newObject[key];
 var originalPropertyValue = original[key];
 }

 // Set the value in the original object to the equivalent value from the
 // new object, except if the property's value is an object type, in
 // which case call this method again recursively, in order to copy every
 // value within that object literal also
 original[key] = (originalPropertyValue && ➥

 typeof newPropertyValue == 'object' && ➥

 typeof originalPropertyValue == 'object') ? ➥

 this.mergeObjects(originalPropertyValue, newPropertyValue) : ➥

 newPropertyValue;
 }

 // Return the original object, with all properties copied over from
 // the new object
 return original;
 },

 // The replaceText method takes a text string containing placeholder values and
 // replaces those placeholders with actual values passed in through the values
 // object literal.
 // For example: "You have {count} messages in the {folderName} folder"
 // Each placeholder, marked with braces – { } – will be replaced with the
 // actual value from the values object literal, the properties count and
 // folderName will be sought in this case

 replaceText: function(text, values) {
 for (var key in values) {
 if (values.hasOwnProperty(key)) {
 // Loop through all properties in the value object literal
 if (typeof values[key] == undefined) { // Code defensively
 values[key] = "";
 }

 // Replace the property name wrapped in braces from the text
 // string with the actual value of that property. The regular
 // expression ensures that multiple occurrences are replaced
 text = text.replace(new RegExp("{" + key +"}", "g"), values[key]);
 }
 }

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 91

 // Return the text with all placeholder values replaced with real ones
 return text;
 },

 // The toCamelCase method takes a hyphenated value and converts it into
 // a camel case equivalent, e.g., margin- left becomes marginLeft. Hyphens
 // are removed, and each word after the first begins with a capital letter

 toCamelCase: function(hyphenatedValue) {
 var result = hyphenatedValue.replace(/- \D/g, function(character) {
 return character.charAt(1).toUpperCase();
 });
 return result;
 },

 // The toHyphens method performs the opposite conversion, taking a camel
 // case string and converting it into a hyphenated one.
 // e.g., marginLeft becomes margin- left

 toHyphens: function(camelCaseValue) {
 var result = camelCaseValue.replace(/[A- Z]/g, function(character) {
 return (‘- ‘ + character.charAt(0).toLowerCase());
 });
 return result;
 }
};

// Example usage on a page

// Instantiate the library as a singleton
$ = new $();

// Combine two object literals
var creature = {
 face: 1,
 arms: 2,
 legs: 2
};

var animal = {
 legs: 4,
 chicken: true
};

// Resulting object literal becomes...
// {
// face: 1,
// arms: 2,

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS92

// legs: 4,
// chicken: true
// }
creature = $.Utils.mergeObjects(creature, animal);

// Outputs "You have 3 messages waiting in your inbox.";
$.Utils.replaceText("You have {count} messages waiting in your {folder}.", {
 count: 3,
 folder: "inbox"
});

// Outputs "fontFamily"
alert($.Utils.toCamelCase("font-family"));

// Outputs "font- family"
alert($.Utils.toHyphens("fontFamily"));

handling CSS and Styles
So far, we’ve looked into how to deal with handling events and dynamically loading content
in a cross- browser way. Both techniques are essential for building RIAs. In addition to these,
most developers require the ability to discover which styles are applied to a particular element,
and require the ability to add and remove CSS class names from elements to alter styles in a
dynamic way within their application. Listing 2-14 shows how to perform these actions in a
 cross- browser manner and add them to your $ library.

 Listing 2-14. Adding CSS Style- Related Methods to the $ Library

// Define the CSS namespace within the $ library to store style- related methods

$.prototype.CSS = {

 // The getAppliedStyle method returns the current value of a specific
 // CSS style property on a particular element

 getAppliedStyle: function(element, styleName) {
 var style = "";

 if (window.getComputedStyle) {
 // W3C- specific method. Expects a style property with hyphens
 style = element.ownerDocument.defaultView.getComputedStyle(➥

 element, null).getPropertyValue($.Utils.toHyphens(styleName));
 } else if (element.currentStyle) {
 // Internet Explorer- specific method. Expects style property names
 // in camel case
 style = element.currentStyle[$.Utils.toCamelCase(styleName)];
 }

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 93

 // Return the value of the style property found
 return style;
 },

 // The getArrayOfClassNames method is a utility method which returns an
 // array of all the CSS class names assigned to a particular element.
 // Multiple class names are separated by a space character

 getArrayOfClassNames: function(element) {
 var classNames = [];
 if (element.className) {
 // If the element has a CSS class specified, create an array
 classNames = element.className.split(' ');
 }
 return classNames;
 },

 // The addClass method adds a new CSS class of a given name to a
 // particular element

 addClass: function(element, className) {
 // Get a list of the current CSS class names applied to the element
 var classNames = this.getArrayOfClassNames(element);

 // Add the new class name to the list
 classNames.push(className);

 // Convert the list in space- separated string and assign to the element
 element.className = classNames.join(' ');
 },

 // The removeClass method removes a given CSS class name from
 // a given element

 removeClass: function(element, className) {
 var classNames = this.getArrayOfClassNames(element);

 // Create a new array for storing all the final CSS class names in
 var resultingClassNames = [];

 for (var index = 0; index < classNames.length; index++) {
 // Loop through every class name in the list
 if (className != classNames[index]) {
 // Add the class name to the new list if it isn't the one specified
 resultingClassNames.push(classNames[index]);
 }
 }

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS94

 // Convert the new list into a space- separated string and assign it
 element.className = resultingClassNames.join(" ");
 },

 // The hasClass method returns true if a given class name exists on a
 // specific element, false otherwise

 hasClass: function(element, className) {
 // Assume by default that the class name is not applied to the element
 var isClassNamePresent = false;

 var classNames = this.getArrayOfClassNames(element);
 for (var index = 0; index < classNames.length; index++) {
 // Loop through each CSS class name applied to this element
 if (className == classNames[index]) {
 // If the specific class name is found, set the return value to true
 isClassNamePresent = true;
 }
 }

 // Return true or false, depending on if the specified class name was found
 return isClassNamePresent;
 },

 // The getPosition method returns the x and y coordinates of the top- left
 // position of a page element within the current page, along with the
 // current width and height of that element

 getPosition: function(element) {
 var x = 0, y = 0;

 var elementBackup = element;

 if (element.offsetParent) {
 // The offsetLeft and offsetTop properties get the position of the
 // element with respect to its parent node. To get the position with
 // respect to the page itself, we need to go up the tree, adding the
 // offsets together each time until we reach the node at the top of
 // the document, by which point, we'll have coordinates for the
 // position of the element in the page
 do {
 x += element.offsetLeft;
 y += element.offsetTop;

 // Deliberately using = to force the loop to execute on the next
 // parent node in the page hierarchy
 } while (element = element.offsetParent)
 }

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 95

 // Return an object literal with the x and y coordinates of the element,
 // along with the actual width and height of the element
 return {
 x: x,
 y: y,
 height: elementBackup.offsetHeight,
 width: elementBackup.offsetWidth
 }
 }
};

// Example usage on a page

// Instantiate the library as a singleton
$ = new $();

// Locate the first <hr> element within the page
var horizontalRule = document.getElementsByTagName("hr")[0];

// Output the current width of the <hr> element
alert($.CSS.getAppliedStyle(horizontalRule, "width"));

// Add the hide CSS class to the <hr> element
$.CSS.addClass(horizontalRule, "hide");

// Remove the hide CSS class from the <hr> element
$.CSS.removeClass(horizontalRule, "hide");

// Outputs true if the hide CSS class exists on the <hr> element
alert($.CSS.hasClass(horizontalRule, "hide"));

// Outputs the x and y coordinates of the <hr> element
var position = $.CSS.getPosition(horizontalRule)
alert("The element is at 'x' position '" + position.x + "' and 'y' position '" + ➥

 position.y + "'. It also has a width of '" + position.width + "' and a height ➥

 of '" + position.height + "'");

Locating elements Within the page
You already know how to use the methods getElementById() and getElementsByTagName() to
locate	elements	within	the	DOM,	but	what	if	you	want	to	locate	a	group	of	tags	that	share	the	
same	CSS	class	name,	for	example?	A	reusable	method	to	provide	this	kind	of	DOM	element	
location could be incredibly useful. Listing 2-15 shows how to perform this kind of element
location and make it reusable by adding it to your $ library.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS96

 Listing 2-15. Adding Methods for Locating Elements Within the DOM to the $ Library

// Add a new Elements namespace to the $ library

$.prototype.Elements = {

 // The getElementsByClassName method returns an array of DOM elements
 // which all have the same given CSS class name applied. To improve the speed
 // of the method, an optional contextElement can be supplied which restricts the
 // search to only those child nodes within that element in the node hierarchy

 getElementsByClassName: function(className, contextElement){
 var allElements = null;
 if (contextElement) {
 // Get an array of all elements within the contextElement
 // The * wildcard value returns all tags
 allElements = contextElement.getElementsByTagName("*");
 } else {
 // Get an array of all elements, if no contextElement was supplied
 allElements = document.getElementsByTagName("*");
 }

 var results = [];
 for (var elementIndex = 0; elementIndex < allElements.length; ➥

 elementIndex++) {
 // Loop through every element found
 var element = allElements[elementIndex];

 // If the element has the specified class, add that element to
 // the output array
 if ($.CSS.hasClass(element, className)) {
 results.push(element);
 }
 }

 // Return the list of elements that contain the specific CSS class name
 return results;
 }
}

Completing the Library
Before you can actually use your $ library class, it must be instantiated into a singleton object.
Let’s put all this code together into one file named $.js and add the code shown in Listing 2-16
to the very end of the file. Then you will be able to reference this file externally from your
HTML page, allowing you to use its methods to ensure your code works across the different
browsers.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 97

 Listing 2-16. Instantiating the $ Library

// Instantiate the $ library as a singleton right at the end of the file,
// ready to use on a page which references the $.js file

$ = new $();

Throughout the rest of this book, the $ library will be used as the basis for many of the
code examples.

You will find the same functionality exists with virtually all other JavaScript libraries, so
feel free to use any library you prefer within your own code. Remember to use the criteria
explained at the beginning of this section to select a library that will provide the best results
and support.

Building RIAs
Throughout this chapter, you have been introduced to the building blocks that will work
together to enable you to build your own RIAs.

When beginning work on an RIA, you should define the classes and objects that represent
the major concepts within your application. Any concept that is repeatable should be created
as a class, and any concept that exists only once in the system should be created as an object
literal	or	a	singleton.	Use	the	concept	of	namespaces	to	group	logically	related	code	together,	
much as you did when building the $ JavaScript library in the previous section.

Structuring the Application
Let’s take a web mail client as an example, and come up with the high- level concepts that repre-
sent the entire system. The primary concept within any e- mail client is that of the mail message.
A mail message should represent, at the very least, the sender and recipient(s) of the message,
the subject, message body, and any file attachments. The actions that can be performed on a
mail message primarily include composing, sending, and deleting.

When creating a new e- mail message within your code, you might want to be able to
prepopulate the values of the message, if you’re creating a message on behalf of the user.
Alternatively, you might want to take input from the user to compose the message.

You can form the bare- bones structure for this class using this information, as shown in
 Listing 2-17. Notice how you provide default values in case any input values are missing and,
if no input values are passed to the class when instantiated, you force the compose() method to
fire.

 Listing 2-17. The Bare- Bones Structure of an E- Mail Message Class

var EmailMessage = function(input){
 this.from = input.from || "";
 this.to = input.to || []; // Array of recipients
 this.subject = input.subject || "";
 this.body = input.body || "";
 this.attachments = input.attachments || []; // Array of attachment URLs
 this.compose = function() {

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS98

 // TODO: Bring up an email composition form, populating the object
 // instance with the data entered
 };
 this.send = function() {
 // TODO: Send the message data to a server- side mail sender
 // script using Ajax
 };
 this.remove = function() {
 // TODO: Delete the message
 };

 // If the input attribute is not supplied, force the compose method to fire
 if (!input) {
 this.compose();
 }
}

// Example usage on a page

// Create an object representing a populated email message
var myEmailMessage = new EmailMessage({
 from: "me@denodell.com",
 to: ["test@denodell.com"],
 subject: "Test message.",
 body: "This is a test message. Please ignore."
 // We don't supply attachments so the default value will be used instead
});

// Create a new empty message, which will force the compose method to fire
var emptyEmailMessage = new EmailMessage();

Now you have the basic class in place that represents the primary data structure of the
application. Next, let’s introduce one more class structure to represent a folder, which can
contain one or many messages and one or many subfolders. Each folder must have the ability
to add new messages into its structure. Listing 2-18 shows the code to represent a folder class.

 Listing 2-18. A Folder Class Structure

var Folder = function(input) {
 this.name = input.name || "";
 this.folders = input.folders || []; // Array of instances of the Folder class
 this.messages = input.messages || []; // Array of EmailMessage instances
 this.addMessage(message) = function() {
 this.messages.push(message);
 },

mailto:me@denodell.com
mailto:test@denodell.com

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 99

 this.removeMessage(message) = function() {
 // TODO: Remove the message from the folder
 },
 this.listMessages = function() {
 // TODO: Display a list of the messages in this folder
 }
}

// Example usage on a page

// Create a new Inbox folder
var inbox = new Folder({
 name: "Inbox"
});

// Create a new message
var myEmailMessage = new EmailMessage({
 from: "me@denodell.com",
 to: ["test@denodell.com"],
 subject: "Test message.",
 body: "This is a test message. Please ignore."
});

// Add the new message to the inbox folder
inbox.addMessage(myEmailMessage);

In addition, you need a singleton to represent the entire web mail client application.
This singleton should contain the list of top- level folders, be able to load the folders and mes-
sages stored on a web server, and be able to initialize the application using these, as shown in
 Listing 2-19.

 Listing 2-19. Singleton Representing a Web Mail Client Application

var WebMail = new function() {
 this.folders = [];
 this.loadFolders = function() {
 // TODO: Load list of folders via Ajax from the server and populate Folder
 // object instances from this information
 };
 this.loadMessagesIntoFolders = function() {
 // TODO: Load list of messages via Ajax from the server, create EmailMessage
 // object instances and populate the folder instances with these messages
 };

 // Initialize the data, loading messages into folders, ready for use
 this.folders = this.loadFolders();
 this.loadMessagesIntoFolders();

mailto:me@denodell.com
mailto:test@denodell.com

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS100

 // Initialize the user interface. When the user clicks the create-mail- button
 // element, a new EmailMessage is created, which launches the new mail
 // composition form automatically
 $.Events.add(document.getElementById("create-mail- button"), ➥

 "click", function() {
 new EmailMessage();
 });
}();

So far, you have defined structures to hold folders and messages within your web mail
system, which are essentially the data- related components of the application. But a web mail
client needs to allow the users to create and manage these structures via their browser using
an intuitive user interface. You need to build that interface using HTML and CSS, and then use
JavaScript to listen for user interaction with any page components and execute code based on
the actions taken. Remember that you need to make the application work first and foremost
when JavaScript is switched off in the browser, so be sure this is all in place before adding any
JavaScript code.

If the user clicks a Create Message button, for example, you could execute the code to
create a new instance of the EmailMessage class, which would display the form on the page in
order to create a new message. You would handle your code as follows:

	 •	 All	code	related	to	the	data	storage	and	user	interface	of		e-	mail		message-	specific	data	
should be handled within the EmailMessage class.

	 •	 All	code	related	to	the	data	and	user	interface	of		folder-	specific	data	should	be	handled	
within the Folder class.

	 •	 All	code	related	to	the	user	interface	of	the	application	itself	should	be	stored	within	
the singleton representing the application as a whole.

With this level of separation, you should find it easier to maintain your code base as it
grows larger. When problems surface, you should be able to locate their sources quickly.

Managing Two Sets of HTML
You will be building the HTML of your RIA to function correctly when JavaScript is unavail-
able. So how can your user interface dynamically present forms and other HTML code, which
are stored within separate files? You have two options available to help you achieve this.

Maintain two sets of HTML code: You will have one set for the HTML- only application and
another for the JavaScript application. You can store the HTML for the JavaScript applica-
tion	directly	within	the	code,	either	in	plain	text	or	created	dynamically	using	the	DOM.

Use server- side scripting: With server- side scripting, you can maintain a single include file
containing each page’s or component’s HTML code. Within your HTML- only application,
you refer to a page that contains the header, footer, navigation, and other page elements
surrounding the include file HTML. Within your JavaScript code, you use the Ajax tech-
nique to dynamically load in the include file only, giving you exactly the HTML code you
need.	You	can	then	insert	this	code	into	the	page	in	the	desired	location,	using	the	DOM.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 101

So far, we have explored building RIAs following one particular software architectural
design pattern, or code organization technique: using a singleton to pull together the objects
and classes to create a user interface that is incredibly powerful and scalable. Now let’s look at
a couple other patterns,

Using Design Patterns
Along with the Singleton pattern, two other patterns can be used to construct and assemble
your	code:	the		Model-View-	Controller	pattern	and	the	Observer	pattern.

the Model-View- Controller pattern
The Model-View- Controller (MVC) software architecture pattern divides an application into
three logically separate groupings:

	 •	 The	model, which contains code related to data storage and manipulation

	 •	 The	view, which contains code related to building and managing the user interface

	 •	 The	controller, which acts as a bridge, containing code to connect the model and view
together through an event- based mechanism

The controller links together the model and view, both of which are agnostic of each other—
completely stand- alone. Figure 2-1 illustrates the logical division of the MVC software pattern.

View

Controller

Model

User Interface

Events

Data

 Figure 2-1. The MVC pattern of code separation

 Listing 2-20 shows the web mail application example adapted to the MVC pattern.

 Listing 2-20. Web Mail Client Application Using the MVC Software Pattern

var WebMail = new function() {

 // The Model contains only the code needed to store and manipulate the raw
 // data of the application. Our EmailMessage and Folder classes are therefore
 // defined within this code, as well as any other data storage and manipulation
 // code for the application as a whole

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS102

 var Model = function() {
 this.EmailMessage = function(input) {
 // TODO: Insert class definition code for EmailMessage here
 };

 this.Folder = function(input) {
 // TODO: Insert class definition code for Folder here
 };

 this.folders = [];
 this.getMessages = function(folderName) {
 // TODO: Return a list of messages within the specified folder
 }
 this.composeMessage = function() {}
 this.sendMessage = function(messageId) {}
 this.deleteMessage = function(messageId) {
 // TODO: Insert code to delete message with the specified messageId
 }
 };

 // The View contains only the code needed to construct the user interface and to
 // wire up button events – though it does not specify what code to execute when
 // those events occur, that is handled by the Controller

 var View = function() {

 // Define the methods to execute when certain events occur – the code for
 // the methods is passed in from the Controller
 this.onComposeButtonClick = function() {};
 this.onSendButtonClick = function() {};
 this.onDeleteMessageButtonClick = function() {};

 var self = this;

 // Wire up the HTML button events on the page
 $.Events.add(document.getElementById("compose- button"), "click", ➥

 this.onComposeButtonClick);
 $.Events.add(document.getElementById("delete-message- 2"), "click", ➥

 function(e) {
 // Pass a message identifier parameter, defaulted to a value of 2
 self.onDeleteMessageButtonClick(e, 2);
 });

 // Add user interface- specific methods
 this.showComposeMailForm = function() {
 // TODO: Show the form to compose a new email

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 103

 // Wire up a new button, which we want to use to send the new email
 $.Events.add(document.getElementById("send- button"), "click", ➥

 function(e) {
 // Pass an extra message identifier parameter, defaulted to 2
 self.onSendButtonClick(e, 2);
 });
 };

 this.updateMessageList = function(messages) {
 // TODO: Add code to remove the compose mail form from the page
 }

 this.updateMessageList(messages) {
 // TODO: Display the list of messages
 }
 }

 // The Controller contains event- based code and higher-level actions,
 // connecting the Model and the View to create the full application

 var Controller = function(model, view) {
 var composeEmail = function(e) {
 // Stop the default button click event from occurring – that would be
 // for the HTML- only version of the site, which we are overriding
 e.preventDefault();

 view.showComposeMailForm();
 };

 var sendEmail = function(e, message) {
 e.preventDefault();

 var messageId = new model.EmailMessage(message);
 model.sendMessage(messageId);
 view.hideComposeMailForm();
 };

 var deleteMessage = function(e, messageId) {
 e.preventDefault();

 model.deleteMessage();
 view.updateMessageList(model.getMessages("Inbox"));
 };

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS104

 // Connect the user instantiated events in the View to actual code
 view.onComposeButtonClick = composeEmail;
 view.onSendButtonClick = sendEmail;
 view.onDeleteMessageButtonClick = deleteMessage;
 }

 // Plug the whole MVC structure together
 new Controller(new Model(), new View());
}();

Don’t feel too overwhelmed by this code. It may seem complicated at first, but once you
get some practice building code with the MVC pattern, you will soon understand how it works
and discover its inherent scalability.

the Observer pattern
The	Observer	pattern	is	very	powerful	and	highly	scalable. I personally find it to be every bit as
useful as the MVC pattern, if not more so, in my own projects.

The	Observer	pattern	relies	on	two	ideas:	broadcasting	events	(the	terms	publishing and
firing are also commonly used), and listening for events (the term subscribing is also com-
monly used). Code is grouped together into logical blocks, each of which fires its own events
and listens for other events fired within the wider application. No two blocks of code are ever
connected together or know about each other, which is a marked difference from the MVC
pattern, where the controller knows about the model and the view.

	Figure	2-2	illustrates	the	Observer	pattern.	In	this	case	there	are	two	code	blocks,	both	
unaware of each other, firing and listening for events within a shared event space. Theoretically,
there could be an infinite number of code blocks all sharing the same, or several, event spaces.

Events
Code
Block

fire fire

listen listen
Code
Block

 Figure 2-2. Observer pattern with two distinct code blocks and one event space

Within	code,	you	can	implement	the	Observer	pattern	by	creating	a	new	class	that	stores	
a list of events, and contains methods to listen to a certain event within that list and to fire a
certain event within that list. You may wish to reuse this pattern across your application in
different places. Listing 2-21 shows	the	Observer	pattern	defined	as	a	class	you	can	use	within	
your application. Add this listing to the $ library code you created earlier in this chapter, before
the end of the file, where it is declared as a singleton.

 Listing 2-21. A Class Representing the Observer Pattern

$.prototype.Observer = function() {
 // Create an array to store the events
 this.events = [];

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 105

 // The listen method listens for an event of a specific name to fire, assigning
 // a method to execute when it does
 this.listen = function(eventName, method) {
 if (typeof method == "function") {
 if (!this.events[eventName]) {
 this.events[eventName] = []
 }
 this.events[eventName].push(method);
 }
 };

 // The fire method fires an event of a specific name, executing all methods
 // that have been associated with that event in turn, passing in any optional
 // parameters that have been sent along with the request to fire
 this.fire = function(eventName, params, scope) {
 scope = scope || window;
 for (var methodIndex = 0; methodIndex < this.events[eventName].length; ➥

 methodIndex++) {
 this.events[eventName][methodIndex].call(scope, params);
 }
 }
}

 Listing 2-22 shows the	code	for	using	the	Observer	pattern	class	within	the	sample	web	
mail client application.

 Listing 2-22. Web Mail Client Application Using the Observer Pattern

// We will inherit the Observer pattern later, bringing in the listen
// and fire methods to the WebMail constructor
var WebMail = function() {

 // Define an object literal constant to represent the list of different
 // events that are allowable within the application
 this.EVENT = {
 UI_READY: 0,
 MESSAGES_LOADED: 1,
 DELETE_MESSAGE: 2
 }

 // Define a code block called Data to house all data storage and manipulation
 // properties and methods. This block does not know about any others, it is
 // only aware of the list of EVENTs and listen and fire events of the WebMail
 // application, which is passed into the code block as the app input variable,
 var Data = new function(app) {

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS106

 var EmailMessage = function(){
 // TODO: define EmailMessage class
 };
 var Folder = function(){
 // TODO: define Folder class
 };

 // Execute the attached function when the UI_READY event is fired
 app.listen(app.EVENT.UI_READY, function() {

 // TODO: Insert code to load messages from the server via Ajax
 // into the messages variable
 var messages = [];

 // Inform any code block listening to the MESSAGES_LOADED event
 // that the messages have been loaded from the server, passing
 // across the list of messages also
 app.fire(app.EVENT.MESSAGES_LOADED, messages);
 });

 // Execute the function when the DELETE_MESSAGE event is fired
 app.listen(app.EVENT.DELETE_MESSAGE, function(messageId) {
 // TODO: Insert code to actually delete message
 });
 // This self-instantiation makes the app variable equal to the
 // this keyword value, which is WebMail itself
 }(this);

 // Define a code block called UserInterface to house all user interface-
 // related properties and methods. This block is agnostic of all others and
 // knows only about the events being fired around the application
 var UserInterface = new function(app) {
 // TODO: Build user interface components within the browser

 $.Events.add(document.getElementById("delete- button"), "click", ➥

 function(e) {
 // Stop the default action of the delete button within HTML
 e.preventDefault();

 // TODO: Establish the real id of the message being deleted
 var messageId = 0;

 // Inform any code block listening for the DELETE_MESSAGE event that
 // a message with the given message ID needs to be deleted
 app.fire(app.EVENT.DELETE_MESSAGE, messageId);
 });

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 107

 app.listen(app.EVENT.MESSAGES_READY, function (messages) {
 // TODO: Display the messages passed in from the event
 });

 // Inform any code block listening that the UI has been constructed
 // and is ready for use
 app.fire(app.EVENT.UI_READY);
 }(this); // Self- instantiate, as we did with Data previously
}

// Inherit the Observer pattern, adopting its listen and fire events
WebMail.prototype = new $.Observer();

// Create the WebMail application as a singleton, executing the code within
WebMail = new WebMail();

The code in Listing 2-22 creates a singleton representing the beginnings of a web mail client
within the browser. Its data- specific code and user interface– specific code know nothing of each
other. However, they both know about the list of predefined events that has been created for
their use and any variables that need to be passed across with each event. The web mail applica-
tion is then defined by the list of events that exist within it. These events almost invariably are
named after high- level actions within the system, such as delete message or send mail, which
makes the code fairly easy to read.

The two code blocks are said to be loosely coupled, because they both perform actions
against each other’s data, but are not tied to, or reliant upon, each other’s code in any way.
Any single code block could be removed from the system without causing any errors in the
browser. This cannot be said for the MVC pattern, whose controller needs both the model and
the view available at all times to operate without errors.

You can also fire and listen for events outside the application code. For example, any code
within the page can listen for the WebMail.EVENT.MESSAGE_DELETE event and add its own code
to execute when this event is fired within the web mail application. So, you can create smaller
modules	using	the	Observer	pattern	that	fit	together	into	a	larger	application,	and	the	appli-
cation	itself	may	also	use	the	Observer	pattern.	This	makes	this	pattern	extremely	powerful,	
versatile, and maintainable.

Testing and Test- Driven Development
You should be testing your code as you write, pretty much line by line or function by function.
Don’t spend your days just writing code without testing it. Always test, and test across as many
different browsers as you can, so you have confidence in your code and coding skills.

Test-driven development is a concept that has found favor among programmers. The
general principle is that when you are ready to write a new function, you create just the basic
shell of that function first, defining its inputs and outputs. You then write your series of test
cases for that function immediately, predicting the outputs for a set of inputs. With the test
cases written, you may then return to your function and write the code that then fulfils the test
cases. This is a sensible approach to development, as it ensures that testing becomes a main
priority and ensures that each function is robust and less prone to errors.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS108

Testing frameworks exist to ensure that no matter what reasonable set of inputs you can
provide to the functions you have written in your code base, you will get sensible outputs. By
knowing that your function works in a series of predetermined conditions, you can be sure
that when you use it within your code, it will work as expected.

Yahoo! has released a very useful testing	framework	for	JavaScript	called	YUI	Test	(http://
developer.yahoo.com/yui/yuitest/).	YUI	Test	is	part	of	the	Yahoo!	UI	JavaScript	library,	but	
it behaves just fine if you are using another JavaScript library. It allows you to write and run
effective test cases on your code, detecting and logging errors as they occur. Test cases can be
grouped together into larger test suites to provide a simple way of running multiple tests in
one pass. What sets this testing framework above others I have used is that it provides support
for testing asynchronous method calls, which allows you to test Ajax callback methods. It also
provides	simulation	of	DOM	events	in	most	common	browsers.

To	use	YUI	Test,	you	first	create	a	test	page	that	refers	to	the	YUI	Test	JavaScript	file	and	
your own JavaScript code you wish to test. Then, within a <script> tag on the page, you call
one of the functions in your code multiple times with different inputs. You tell the test frame-
work which outputs you are expecting for each input, and the framework logs whether the real
output of the function call matched your prediction. Any output that doesn’t match your pre-
diction is flagged as an error. Listing 2-23 shows	a	simple	test	suite	written	to	run	with	the	YUI	
Test framework.

■Note When writing your test cases, be sure that you test “edge” cases—those conditions that might not
be expected in typical use but may occur in odd circumstances, such as when input data is expected but
missing.

 Listing 2-23. Basic Test Suite HTML Page Using YUI Test

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content- Type" content="text/html; charset=utf- 8" />
 <title>Test suite example with YUI Test</title>

 <!- - Include Yahoo! CSS and JS for the Test framework -- >
 <link rel="stylesheet" type="text/css" href="http://yui.yahooapis.com/ ➥

 2.6.0/build/logger/assets/skins/sam/logger.css" />
 <link rel="stylesheet" type="text/css" href="http://yui.yahooapis.com/ ➥

 2.6.0/build/fonts/fonts- min.css" />
 <link rel="stylesheet" type="text/css" href="http://yui.yahooapis.com/ ➥

 2.6.0/build/yuitest/assets/skins/sam/yuitest.css" />
 <script type="text/javascript" src="http://yui.yahooapis.com/ ➥

 2.6.0/build/yahoo-dom-event/yahoo-dom- event.js"></script>
 <script type="text/javascript" src="http://yui.yahooapis.com/ ➥

 2.6.0/build/logger/logger- min.js"></script>

http://developer.yahoo.com/yui/yuitest/
http://developer.yahoo.com/yui/yuitest/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://yui.yahooapis.com/%E2%9E%A52.6.0/build/logger/assets/skins/sam/logger.css
http://yui.yahooapis.com/%E2%9E%A52.6.0/build/logger/assets/skins/sam/logger.css
http://yui.yahooapis.com/%E2%9E%A5%C2%AD2.6.0/build/fonts/fonts-%C2%ADmin.css
http://yui.yahooapis.com/%E2%9E%A5%C2%AD2.6.0/build/fonts/fonts-%C2%ADmin.css
http://yui.yahooapis.com/%E2%9E%A52.6.0/build/yuitest/assets/skins/sam/yuitest.css
http://yui.yahooapis.com/%E2%9E%A52.6.0/build/yuitest/assets/skins/sam/yuitest.css
http://yui.yahooapis.com/%E2%9E%A5%C2%AD2.6.0/build/yahoo-dom-event/yahoo-dom-%C2%ADevent.js%22%3E%3C/
http://yui.yahooapis.com/%E2%9E%A5%C2%AD2.6.0/build/yahoo-dom-event/yahoo-dom-%C2%ADevent.js%22%3E%3C/
http://yui.yahooapis.com/%E2%9E%A5%C2%AD2.6.0/build/logger/logger-%C2%ADmin.js%22%3E%3C/
http://yui.yahooapis.com/%E2%9E%A5%C2%AD2.6.0/build/logger/logger-%C2%ADmin.js%22%3E%3C/

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 109

 <script type="text/javascript" src="http://yui.yahooapis.com/ ➥

 2.6.0/build/yuitest/yuitest- min.js"></script>
 </head>
 <body>
 <h1>Test suite example with YUI Test</h1>
 <div id="testLogger"><!- - The logging console will go here -- ></div>

 <script type="text/javascript">
 // This will be the function we will write our test cases for
 var squareAndRound = function(number) {
 return Math.round(number * number);
 }

 // Now, create the test case code
 YAHOO.namespace("example.yuitest");

 // Create a new test case
 YAHOO.example.yuitest.MyTestCase = new YAHOO.tool.TestCase({
 name: "My test case", // Give a name to label the test case with

 // All test case functions must begin with the test prefix
 testTen: function() {
 var Assert = YAHOO.util.Assert; // Allows you to test the value

 // Execute the function we're testing
 var result = squareAndRound(10);

 // Assert that you expect the result of the function to be 100.
 // If it is, the test passes, if not an error is logged
 Assert.areEqual(100, result);
 }

 // Insert a multitude of other test cases here to push the
 // function to the limit
 });

 // Create a new test suite and add the test case to it
 YAHOO.example.yuitest.ExampleSuite = new ➥

 YAHOO.tool.TestSuite("Example Suite");
 YAHOO.example.yuitest.ExampleSuite.add(➥

 YAHOO.example.yuitest.MyTestCase);

 // When the DOM is ready...
 YAHOO.util.Event.onDOMReady(function (){
 // Create the logging console on the page
 var logger = new YAHOO.tool.TestLogger("testLogger");

http://yui.yahooapis.com/%E2%9E%A5%C2%AD2.6.0/build/yuitest/yuitest-%C2%ADmin.js%22%3E%3C/
http://yui.yahooapis.com/%E2%9E%A5%C2%AD2.6.0/build/yuitest/yuitest-%C2%ADmin.js%22%3E%3C/

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS110

 // Add the test suite to the test runner's list of tasks
 YAHOO.tool.TestRunner.add(YAHOO.example.yuitest.ExampleSuite);

 // Run the test runner, which executes the tests and outputs the
 // results in the logging console
 YAHOO.tool.TestRunner.run();
 });
 </script>
 </body>
</html>

 Figure 2-3 shows an example of the logging console that indicates how well your code is
running against your test cases.

 Figure 2-3. Yahoo! UI Test framework logging console

Using Third- Party Scripts
Reusing code that has already been written to solve the problems you are facing as an RIA
developer makes good sense. You’ve seen it in practice already with JavaScript libraries.
Similarly, allowing others to reuse code that you have written benefits the web development
community in return.

Here are some guidelines for using third- party scripts in your applications:

	 •	 Check	that	the	code	has	been	thoroughly	tested	with	a	testing	framework,	such	as	the	
YUI	Test	framework	we	looked	at	in	the	previous	section.	

	 •	 Make	sure	that	the	script	supports	all	the	browsers	that	you	support	with	your	appli-
cation, so you won’t need to later replace the script with one that does provide all the
support you need.

	 •	 Keep	all		third-	party	scripts	together	in	a	single	folder,	out	of	the	way	of	your	own	
scripts. Treat them as plug- ins to your application, rather than part of the core code
itself.

Chapter 2 ■ JaVaSCrIpt FOr rICh INterNet appLICatIONS 111

Throughout the rest of this book, I will introduce you to several third- party scripts that
should be useful to you as you seek to add extra functionality to your RIAs.

Summary
In this chapter, you have learned how to build RIAs in JavaScript using object- oriented pro-
gramming principles and software architectural design patterns.

The chapter covered how to apply a clean and readable coding style, and how to use the
JavaScript language in a robust way. You’ve seen how third- party libraries and frameworks
allow you to build your code on a solid, cross- browser foundation. You’ve also learned how to
test your code in a thorough way, to ensure no errors exist in your applications.

This marks the end of the first part of this book. Now you are ready to begin building your
own RIAs. By applying the principles covered in this part, you will create a solid, accessible
application, available to anyone using any web browser on any device.

In the next part of this book, you will learn how to improve the performance and respon-
siveness of your web applications, which will provide the best experience for your end users.

P A R T 2

Performance

At this point, you should have a solid grounding in HTML, CSS, and JavaScript coding, and

be able to build a simple RIA using these technologies. The first part of this book covered

the best practices for creating scalable, maintainable, and robust RIAs.

The second part of this book focuses on performance, efficiency, and speed. Here, you

will discover techniques for ensuring that end users get a more responsive user interface,

while reducing the bandwidth burden on your hosting provider.

115115

C h A P T e R 3

Understanding the Web
Browser

The web browser acts as a facilitator—downloading, rendering, and executing your web
application for your end users. The web browser has the power and potential to make simple
code look like a glossy magazine article (in the case of Apple’s Safari browser) or as plain text
without any images or advanced abilities (in the case of the open source Lynx browser, avail-
able from http://lynx.isc.org/).

This chapter explains how web browsers work internally to put together the page your
users see on their screen based on the code you’ve written. It also describes how web pages get
to your browser over your network connection, and highlights a number of points of conten-
tion that can hinder performance.

Engines: The Browser’s Powerhouse
Before we delve into the inner workings of the browser, you need to understand an impor-
tant distinction, which is between the user interface of the web browser and the code it runs
behind the scenes. Let’s use the analogy of a car. The car engine determines whether you have
a powerful or efficient car. The car body may look beautiful and be well designed, which is
great when it’s stationary, but not much use when you’re trying to get from point A to point B
in good time. Like a car body, a well- designed web browser user interface reflects little of its
inner workings. And like the engine under the hood of the car, the behind-the- scenes code for
the browser does the heavy lifting. In fact, this code is also referred to as the browser’s engine.

The Rendering and JavaScript Engines
Most browsers are constructed internally of two main engines:

	 •	 A	rendering	engine	(also	known	as	a	layout	engine),	which	converts	HTML	and	CSS	to	
a visible page on the screen

	 •	 The	JavaScript	engine,	which	interprets	the	JavaScript	code	you	have	written	into	
something that the browser can understand and execute

http://lynx.isc.org/

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 116

These internal engines are distinct from the browser’s user interface. Different engines,
written by different companies, organizations, and individuals, essentially distinguish how
one browser displays a web page compared to another. Since the engine is separate from
the	user	interface,	it	is	technically	possible	to	use	the	same	rendering	and	JavaScript	engines	
within two web browsers that look completely different from each other. The user interface
can be thought of as the “skin” that surrounds the engines. In fact, some web browsers are
built on the same rendering engines, as Table 3-1 attests.

 Table 3‑1. Web Browsers and Their Associated Rendering Engines

Rendering Engine Web Browser

Trident Microsoft Internet Explorer

Gecko Mozilla Firefox

Presto Opera browser

WebKit	 Apple	Safari	(including	iPhone),	Google	Chrome,	Nokia	(for	mobile	devices)

	Table	3‑2	lists	the	main	JavaScript	engines	and	a	selection	of	the	browsers	that	use	those	
engines.	Note	that	different	combinations	of	rendering	and	JavaScript	engines	can	be	used	
in the same browser, as the two can be distinct from each other, demonstrated in practice by
Google	Chrome	and	Safari.

 Table 3‑2. Web Browsers and Their Associated JavaScript Engines

JavaScript Engine Web Browser

JScript	 Microsoft	Internet	Explorer

SpiderMonkey Mozilla Firefox (up to and including version 3.5)

TraceMonkey Mozilla Firefox (version 3.6)

JavaScriptCore	 Apple	Safari	(up	to	and	including	version	3.2)

Nitro	 Apple	Safari	(version	4)

V8	 Google	Chrome

Futhark Opera

As	larger	and	more	complex		JavaScript‑	driven	RIAs	are	developed	and	made	available	
online, browser engines need to be able to interpret them into something users can access.
JavaScript	engine	developers	are	motivated	to	improve	their	software	to	claim	theirs	is	the	
fastest and most efficient browser on the market. The actual aim of these developers is to
ensure	that	end	users	experience	RIAs	in	a	way	similar	to	their	experience	with	desktop	
applications.	In	many	ways,	the	browser	is	becoming	the	new	operating	system.	Negative	
experiences such as long loading times, browser hangs, and slow responses to user actions are
slowly becoming things of the past.

JavaScript Engine Performance Benchmarking
Let’s return to our car analogy. As you might expect, not all engines are created equal. Some
engines are more efficient than others; some require more resources than others (memory

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 117

space,	disk	space,	and	so	on);	and	some	are	faster	than	others.	Just	as	figures,	charts,	and	raw	
data are used to compare performance and efficiency of car models and manufacturers, so,
too, are such comparisons made in the web browser world. Performance benchmark tests are
commonplace, and their results are viewed with much interest by web developers.

Some controversy surrounds such comparisons, as many manufacturers choose to pro-
mote the benchmark test results that favor their product. This means that some vigilance and
examination of the results are required to take in the full performance picture.

At	the	time	of	writing,	four	major	JavaScript	benchmarking	test	suites	are	in	common	use	
to	compare	the	performance	of	different	JavaScript	engines	in	different	browsers:

SunSpider:	Created	by	the	WebKit	engine	development	team,	SunSpider	is	currently	the	
most	commonly	used	JavaScript	performance	benchmarking	suite.	Its	tests	focus	solely	
around	core	JavaScript	functionality,	such	as	function	calls,	recursion,	looping,	and	math-
ematical	operations.	However,	SunSpider	also	includes	tests	for	specific	applications,	
such	as	generating	a	tag	cloud	from	an	input	in	JSON	format	using	string	manipulation,	
decompression, and cryptography. This test suite does not contain any tests for bench-
marking DOM interaction performance.

Dromaeo JavaScript test suite:	This	JavaScript	benchmark	suite	was	created	by	Mozilla	
developers	to	allow	them	to	test	their	own	JavaScript	engines	in		real‑	world	situations.	It	
contains	the	tests	to	measure	the	performance	of	core	JavaScript	processing,	including	
binary tree traversal, string and array processing, and prime number computation. This
test suite does not include any DOM- specific tests.

Dromaeo DOM test suite:	In	addition	to	the	core	JavaScript	tests,	the	Mozilla	team	created	
a benchmark suite for testing DOM traversal and manipulation within the browser. These
tests	are	vitally	important	to	RIA	developers,	since	many	web	applications	feature	a	lot	of	
page	interaction	through	JavaScript.	The	faster	the	DOM	interaction	is,	the	faster	the	per-
ceived performance of the web application will be. Unfortunately, currently this test suite
does	not	run	correctly	within	IE	versions	6,	7,	and	8,	causing	a	JavaScript	exception	error	
to fire partway through its execution.

V8 Benchmark Suite: This test suite was created by Google. V8 is the name of the
JavaScript	engine	used	within	Google’s	Chrome	browser.	Google’s	developers	settled	on	
a	new	approach	to	addressing	the	problem	of	JavaScript	efficiency	by	effectively	inter-
preting	JavaScript	code	down	to		machine‑	code	level—the	very	codes	that	the	silicon	
chips	within	your	computer	understand.	While	this	makes	Chrome	very	efficient	at	core	
JavaScript	performance—and	is	what	the	V8	benchmark	tests	focus	on	exclusively—this	
means very little when attempting to interact with a web page through the DOM, which
relies	on	efficient		cross‑	communication	between	the	JavaScript	engine	and	the	rendering	
engine.

As you can see, politics are involved in benchmarking. You might, for instance, suspect
SunSpider of including tests that give favorable results when run in a WebKit- based browser,
since	the	same	team	built	both	the	browser	and	the	testing	tool.	None	of	the	benchmark	cre-
ators	claim	to	favor	any	particular	browser,	of	course.	However,	it	would	be	wise	to	take	the	
results of all the benchmarking tools into consideration. Let the combined results of all four
test	suites	influence	your	judgment	of	which	is	the		best‑	performing	JavaScript	engine.

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 118

Each	test	suite	can	be	run	via	the	Dromaeo	JavaScript	performance	site,	at	http://
dromaeo.com/,	which	amalgamates	all	the	benchmarking	tools	into	a	central	JavaScript	
 performance- testing hub.

Each benchmarking suite runs many different tests several times in quick succession,
measuring how many tests are completed in a given time frame, and the average of the results
is taken, which gives the final performance figure for each test suite for each browser. These
tests	tend	to	center	on	two	main	facets	of	JavaScript:	raw	processing	power	of	code	execution	
and interaction with a web page via the DOM. You can’t put a performance figure on the true
illustration	of		real‑	world	use	of	JavaScript	within	web	pages	without	testing	both	facets.

I ran several browsers through the different benchmark suites on the same test machine
in near- identical circumstances so as not to give favoritism to any particular browser.
	Table	3‑3	shows	the	results	of	those	tests,	along	with	an	average	of	the	three	core	JavaScript	
tests—V8,	SunSpider,	and	Dromaeo	JS—to	provide	a	single	set	of	results	for	comparison.	Exact	
numbers aren’t so important here, as we are looking at the relative performance differences of
the browsers.

 Table 3‑3. JavaScript Benchmark Test Suite Results (in Tests Run per Second)

Browser V8 SunSpider Dromaeo Dromaeo Core JS
 JS DOM Average

Internet	Explorer	6	 0.82	 5.38	 5.42* 18.52* 3.87

Firefox	2.0.0.20	 1.41	 6.09	 8.11	 13.33	 5.20

Google	Chrome	 67.95	 121.04	 129.32	 48.75	 106.10

Firefox	3.0.6	 4.16	 25.66	 22.39	 41.07	 17.40

Firefox	3.5	Beta	2	 3.49	 56.96	 33.56	 51.91	 31.34

Firefox	3.6	Alpha	1	 2.82	 79.12	 38.06	 82.99	 40.00

Internet	Explorer	7	 0.96	 6.02	 3.70	 12.12	 3.56

Internet	Explorer	8	 1.98	 18.10	 49.00	 24.73* 23.03

Safari	3.2.1	 4.60	 22.06	 38.01	 52.61	 21.56

Opera	9.6.3	 3.89	 13.96	 13.79	 19.07	 10.55

Safari	4	Beta	 72.90	 120.97	 65.95	 291.42	 86.61

* Estimated from extrapolation of results

 Figure 3-1 shows the results of Table 3-3 in a more accessible form. The combination of
DOM	performance	and	core	JavaScript	performance,	which	gives	a	pretty	good	approximation	
to real- world experience, is plotted on a single chart, grouped by browser. These results show
that,	in	general,	the	more	recent	the	browser,	the	better	the	JavaScript	performance,	in	terms	
of	both	DOM	access	speeds	and	core	JavaScript	performance.	We	can	also	establish	that	IE	
versions 6 and 7 are among the slowest browsers of all those tested, despite these being two of
the most popular browsers in the world at the time of testing. It appears from these results that
RIAs	experience	better	performance	in		WebKit‑	based	browsers	(Safari	and	Google	Chrome)	
and Firefox. IE users suffer the worst in terms of real- world performance.

http://dromaeo.com/
http://dromaeo.com/

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 119

Now	you	have	some	insight	into	web	browser	engine	capabilities.	In	the	rest	of	this	part	of	
the book, you’ll discover techniques to improve the performance and responsiveness of your
RIAs.

Internet Explorer 7

Firefox 2.0.0.20

Internet Explorer 6

Opera 9.6.3

Internet Explorer 8

Firefox 3.0.6

Safari 3.2.1

Firefox 3.5 Beta

Firefox 3.6 Alpha

Google Chrome

Safari 4 Beta

Dromaeo DOM
Slower

Core JavaScript
Faster

 Figure 3‑1. JavaScript benchmark test results by browser

Anatomy of a Web Page Request
Have	you	ever	wondered	what	happens between the time you type a web address into your
address bar and the moment a full page appears in your browser? In this section, you will learn
the	process	involved	in	taking	a	URL	and	turning	it	into	something	your	web	browser	can	
display.

HTTP: The Communication Standard Behind the Web
The language of communication between your browser and the destination web host is called
Hypertext	Transfer	Protocol	(HTTP).	Within this language, or protocol, the browser is known
as the client and the web host as the server. Messages are sent back and forth between the cli-
ent	and	the	server	from	the	moment	you	follow	a	link	or	type	in	a	new	URL	in	your	browser’s	
address bar to the point that the page is loaded on screen. Within this language, request mes-
sages pass from the client to the server, and response messages are returned from the server to
the client.

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 120

■Note Preceding the web address of the current page in your browser’s address bar, you will find the name
of the protocol used to access that URL. In most cases, this appears as http://, denoting HTTP. However, if
you are browsing certain web sites or pages, this might appear as https://, which denotes HTTPS, a secure
form of HTTP for sending sensitive data. Other protocols include ftp:// and feed://, for browsing File
Transfer Protocol (FTP) sites and RSS news feeds, respectively.

Type www.google.com into your browser’s address bar and let’s take a look at what happens
once you click the Go button.

An hTTP Request Message
When your browser makes a request	for	a	URL,	a	plain	text	HTTP	request	message	is	created,	
which will be sent to the server, asking it to send back a page or file from it. Listing 3-1 shows
an	example	of	an	HTTP	request	message.

 Listing 3‑1. HTTP Request Message Example for www.google.com

GET / HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en- GB; rv:1.9.0.3) ➥

 Gecko/2008092417 Firefox/3.0.3 (.NET CLR 3.5.30729)
Accept: text/html,application/xhtml+xml,application/xml;
Accept-Language: en- gb,en;
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf- 8;
Keep-Alive: 300
Connection: keep- alive
Cookie: PREF=ID=64637ffc707d92f4:TM=1222191214:LM=...

This	may	look	a	little	confusing	if	you’re	not	familiar	with	HTTP.	Let’s	break	it	down	and	
go through each header, or entry, in the request message so you understand what is happen-
ing. The first part of this header defines the action, or method, used for sending this request.
Eight actions can	be	supplied	within	an	HTTP	request	message,	as	summarized	in		Table	3‑4.	
The actions GET, HEAD, OPTIONS, and TRACE merely retrieve information from the server; whereas
POST, PUT, and DELETE cause changes to occur to data residing on the server.

 Table 3‑4. HTTP Request Actions

Action Description

GET	 	Requests	the	body	contents	of	a	page	at	a	specified	URL,	usually	in	HTML	format,	
and nothing more. This is the most commonly used action on the Web.

POST Sends data back to the server, where the data is included in the request message
itself.	This	action	is	commonly	used	to	send	data	from	an	HTML	form	back	to	the	
server for processing.

continued

ftp://and
http://www.google.com
http://www.google.com
http://www.google.com

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 121

Action Description

HEAD Same as GET,	except	the	body	of	the	HTML	page	requested	will	not	be	sent	back	
with the response. This can be used if you need to know only the metadata that
comes along with a response, rather than the response itself, or if you simply
wish	to	prove	that	a	resource	at	a	particular	URL	actually	exists.

PUT	 	Used	to	update	a	URL	resource	on	the	server,	similar	in	many	ways	to	POST, but
only	if	the	server	allows	it	for	the	URL	requested.

DELETE	 	Deletes	the	resource	at	a	particular	URL	from	the	server,	if	the	server	allows	it	
for	the	URL	requested.	You	wouldn’t	be	able	to	delete	Google’s	home	page,	for	
example.

TRACE Sends the request received by the server back to the sender. This can be used to
show what servers or services located in the connection chain between the client
and the server have been added, changed, or removed from the request.

OPTIONS	 	Returns	a	list	of	all	the	other	actions	available	for	use	on	a	particular	URL,	such	as	
DELETE and PUT.	If	you	send	the	URL	as	a	wildcard	character	(*), the response will
contain a list of the actions supported by the web server software.

The	sample	HTTP request in Listing 3-1 begins like this:

GET / HTTP/1.1

It performs a GET	request	so	that	the	server	will	return	the	HTML	markup	of	the	page	being	
requested. The page in question is specified here as /, which denotes the root of the web site
being accessed. HTTP/1.1 denotes the version number of the language used in this request.

Host: www.google.com

It’s	no	use	specifying	the	URL	to	access	as	/ (the root), if you don’t also send the domain
name of the server you are trying to access in the message. The Host	header	of	the	HTTP	
request message states that domain name.

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en- GB; rv:1.9.0.3) ➥

 Gecko/2008092417 Firefox/3.0.3 (.NET CLR 3.5.30729)

User agent refers to the web browser or software used to access web pages. This header
entry in the request message specifies not only the browser name and its version number, but
also information about the operating system the browser is running within (in this example,
Windows NT 5.1, which denotes Windows XP), the current locale set in the operating system
 (en-GB, for UK English), and any additional data the browser or operating system chooses to
add.	In		Listing	3‑1,	the	version	of	the	.NET	common	language	runtime	(CLR)	is	included.	By	
sending this information, the server has the option to use this information however it wants—
either by storing the information in its log files for later statistical analysis or by responding
with	different	HTML	markup	based	on	the	type	of	browser	software	being	used	to	request	
the data. For instance, if the server detects that the user agent is one from a mobile device, a
 cut- down version of a normal web site’s markup, better suited for such devices, could be deliv-
ered in the response. In practice, it’s best not to rely on this data, though, as it can be easily
spoofed and altered.

Accept: text/html,application/xhtml+xml,application/xml;

http://www.google.com

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 122

The Accept header contains a list of Multipurpose Internet Mail Extensions (MIME) types
that the browser accepts—meaning those types it knows how to interpret into something
 human- readable. The MIME type text/html	indicates	HTML,	application/xhtml+xml indicates
XHTML	(though	some	web	browsers	don’t	recognize	this	type	at	the	time	of	writing),	and
application/xml indicates XML content.

Accept-Language: en- gb,en;

Similar to the Accept header, the Accept- Language header tells the server the language and
locale that is currently configured within the browser. The server can then decide whether
to send language- or locale- specific data back to the browser, based on this information. In
 Listing 3-1, there are two values: en- gb, which denotes English language and UK locale, and
as a backup, simply en, which denotes only the English language with no specific geographi-
cal locale. Of course, the server may choose to ignore this information if the web site being
accessed has only one language version, or if the developer of the site wishes to give this
choice to the user without making any assumptions.

Accept-Encoding: gzip,deflate

Specific content encoding types supported by the browser are sent with the Accept- Encoding
header. If the server is unable to support the encoding types passed in this list, it will use its own
standard	encoding.	However,	if	it	is	able	to	support	one	or	more	of	these	encoding	types,	it	allows	
for the data to be sent to the browser compressed, safe in the knowledge that the browser will be
able	to	support	the	decompression	at	the	other	end.	Compression	allows	the	same	content	to	be	
represented with less data, meaning that the browser will receive the response faster.

Two different algorithms for compression are specified in Listing 3-1: gzip and deflate.
Both compression algorithms give effective results, although files that are plain text—including
HTML,	CSS,	and	JavaScript	files—will	compress	much	more	efficiently	than	binary	files,	such	as	
images. This is because plain text files tend to contain a lot of whitespace characters, which can
be compressed very efficiently.

Accept-Charset: ISO-8859-1,utf- 8;

Character	sets,	which are data encodings of letters and symbols of world alphabets, that
the browser understands are declared in the Accept- Charset	request	header.	The		ISO‑8859‑	1	
set is commonly referred to as Latin- 1 and can represent most European characters, including
accented letters. The UTF- 8 set is more recent and is capable of storing representations of vir-
tually all the world’s languages, making it extremely versatile and highly recommended.

Keep-Alive: 300

The Keep- Alive header value dictates the length of time in seconds to keep the connection
open between the client and server. This persistently open connection will be reused for subse-
quent requests and responses, instead of opening a new connection each time. By keeping the
connection open, there is no need to reestablish the connection each time, which can take time
and uses up network resources. The connection specified in Listing 3-1 is allowed to remain
open for 300 seconds, or 5 minutes.

Connection: keep- alive

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 123

The Connection header specifies the preferred connection type for this request. With the
HTTP/1.1	protocol,	 keep- alive is the most common connection type.

Cookie: PREF=ID=64637ffc707d92f4:TM=1222191214:LM=...

HTTP	cookies	are	small	pieces	of		text‑	based	data	stored	on	your	computer.	Cookies	
are placed by web sites you visit so that the web site might be able to store and retrieve data
capable of providing you with a personalized experience. For example, you may visit http://
www.google.com/ and log in to the Gmail service. The process of logging in will store a cookie
on your machine with an identifier value that Google can retrieve on subsequent visits to auto-
matically log you in.

Each	HTTP	request	message	will	send	any	cookies	that	have	been	stored	on	the	computer	
associated with the particular domain name (web site address) being accessed. In Listing 3-1,
an identifier representing the user’s Google login is stored in a cookie and sent to the server to
automatically	log	the	user	into	his	account.	Cookies	can	make	life	a	bit	more	convenient	for	
users. But they are sent with every request, so they should be kept small.

An hTTP Response Message
When the server receives the request	message	and	processes	its	data,	it	creates	an	HTTP	
response message to contain the results. Listing 3-2 shows the server response message to the
request message shown in Listing 3-1.

 Listing 3‑2. HTTP Response Message Example for www.google.com

HTTP/1.x 200 OK
Cache-Control: private, max- age=0
Date: Fri, 27 Mar 2009 12:42:14 GMT
Expires: -1
Content-Type: text/html; charset=UTF- 8
Content-Encoding: gzip
Server: gws
Content-Length: 2520

<html><head>
... rest of HTML for Google’s home page ...
</body></html>

Let’s go through these headers one at a time, to make sure you fully understand what the
browser receives from the server and how it uses this information.

HTTP/1.x 200 OK

The first header of the response from the server lets the browser client know which version
of	the	HTTP	protocol	is	used	to	format	the	rest	of	the	message.	In	this	case,	any	minor	version	
number within version 1 of the specification will understand the message. After the version is
a status number and short description informing the browser what the outcome of the request
was, which determines the sort of data in the rest of the message. These status codes are
important to understanding what is happening within the browser upon receipt of a response
message, and they are described in the following section.

http://www.google.com/
http://www.google.com/
http://www.google.com

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 124

Cache-Control: private, max- age=0

Browsers maintain a local file cache, storing files that have recently been requested on the
computer accessing them so as to avoid downloading those files again, making the experience
for the end user a little more responsive. The Cache- Control header gives the browser certain
parameters regarding the currently requested file, telling it for how long it should cache the file,
for example. In this case, private tells the browser and any proxy server between the web server
and client that the file is specific to the user requesting it, perhaps because it has been personal-
ized for that user. Without this setting, proxy servers could send another user’s customized home
page to the requesting user, causing real confusion. The max- age property tells the browser or
proxy server how long to cache the file, in seconds. In this case, a value of 0 ensures a fresh copy
of the file is requested every time from the server, which is best for personalized sites such as
Google’s	home	page.	Other	files,	such	as	images,	CSS,	and	JavaScript,	might	ideally	be	sent	with	
longer max- age values, ensuring they do not need to be requested on every new page request.

■Note Setting Cache- Control to a value of no- cache tells the browser not to store the file in its cache,
forcing it to download the same file from the server every time it is requested.

Date: Fri, 27 Mar 2009 12:42:14 GMT

The Date header value simply indicates the date and time the response message was sent.

Expires: -1

The Expires header specifies the date and time at which the file sent is considered stale
(or old), and a new copy should be downloaded. A value of -1 indicates that the content is
already too old, forcing the browser to download a fresh copy from the server next time.

Content-Type: text/html; charset=UTF- 8

The Content- Type header specifies the MIME type of the content sent in this request. text/
html	denotes	that	the	content	sent	is	HTML.	The	character	set	of	the	content,	if	it	is		text‑	based,	
can also be specified in this header.

Content-Encoding: gzip

The type of content encoding applied to the content sent in the response is indicated
with the Content- Encoding header. The server listens for the Accept- Encoding request header,
described earlier, and should send back content only in an encoding that is supported by the
client.

Server: gws

The name of the web server software is sent to the client in the Server header. A value of
gws indicates Google’s own web server software was used to generate the response.

Content-Length: 2520

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 125

The size, in bytes, of the file contents sent with this response message is specified in the
 Content- Length header.

<html><head>
... rest of HTML for Google’s home page ...
</body></html>

The final part of the response message contains the actual file contents returned from the
server	for	the	requested	URL.		Listing	3‑1	requests	an	HTML	page,	so		Listing	3‑2	returns	the	
HTML	markup.	If	the	file	type	requested	were	an	image,	you	would	see	a	text	representation	
of the binary data stored within the image file requested, which would then be converted back
into binary data within the client, displaying the image correctly.

HTTP Status Codes
HTTP	status	codes	are three- digit codes that denote the server’s response to the request, indi-
cating whether it was successful or whether some other action now needs to take place within
the	client	in	order	to	locate	the	requested	data	successfully.	Here,	I	will	describe	some	of	the	
more	common	status	codes	returned	in	HTTP	response	messages.	For	a	full	list	of	all	HTTP	
status codes, see http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

200+ (Success)
A	status	code	in	the	range	200–299	indicates that the request was received by the server,
understood, and processed, and that the client should expect some kind of content to be sent
with the current response message. Table 3-5 lists the common status codes in this range.

 Table 3‑5. HTTP Status Codes Indicating a Successful Response

Status Code Description

200 OK Successful request. The response message contains the data requested.

201 Created A new resource was created on the server according to a POST or PUT
action in the request.

204 No Content	 	Successful	request,	but	there	is	no	content	at	the	requested	URL	to	
send back to the client.

206 Partial Content The response message contains the partial contents of a larger request.
This allows browsers to resume downloads of large files that have been
interrupted due to a network failure or user cancellation of the down-
load.

300+ (Redirection)
A	status	code	in	the	range	300–399 indicates that, in order to successfully complete the
request,	the	client	must	take	an	extra	step	and	redirect	to	another	URL,	or	not	expect	any	con-
tent. Table 3-6 lists the common status codes in this range.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 126

 Table 3‑6. HTTP Status Codes Indicating a Redirection Is Required

Status Code Description

301 Moved Permanently	 	The	requested	URL	has	been	moved,	and	the	client	should	no	longer	
attempt	to	use	that	URL,	effectively	blacklisting	it.	The	client	should	
use	the	URL	returned	in	the	response	message	for	all	future	requests.

302 Found	 	The	requested	URL	has	been	moved	temporarily	and	can	be	ac-
cessed	by	the	URL	given	in	the	response	message.	No	blacklisting	
occurs, as it is only a temporary redirection.

304 Not Modified	 	The	requested	URL	has	been	requested	before	and	has	not	changed	
since the last time it was requested. The client should use a locally
cached	copy	of	the	file	at	the	requested	URL	instead,	to	conserve	
bandwidth and deliver the file to the end user faster.

400+ (Client error)
An	HTTP	status	code	in	the	range	400–499	indicates	that	there	was	an	error	in	the	request	mes-
sage sent to the server, and the server was unable to return the requested file. The indication is
that the fault lies with the client, not the server. Table 3-7 shows the common status codes in
this range.

 Table 3‑7. HTTP Status Codes Indicating an Error in the Client’s Request Message

Status Code Description

400 Bad Request The request message was not in the expected format and so could not
be understood by the server.

401 Unauthorized The server was expecting a username and password to be sent along
with the request, to access a restricted area of the server, and these
details were missing.

403 Forbidden The server refuses to respond to the client’s request. For example, this
could be because the IP address of the requesting machine has been
placed on a blacklist.

404 Not Found	 	No	content	could	be	found	at	the	requested	URL.	The	client	is	welcome	
to	try	this	URL	again	in	future,	at	which	point	a	file	may	exist	at	that	
location.

405 Method	 The	HTTP	request	message	specifies	an	action	that	is	not	permitted	on
Not Allowed the	specified	URL.	If	a	request	message	tried	to	call	a	DELETE action on

the Google home page, for example, you would receive this message.

410 Gone Identical to 404 Not Found, except that the client should never try to
access	this	URL	again.	If	the	client	is	a	search	engine	spider,	it	should	
remove	this	URL	from	its	index.

413 Request Entity The request message is too large for the server to process. Such a status
Too Large code	could	be	returned	if	an	HTML	form	posted	more	data	to	the	server	

than it could handle.

414 Request URL	 If	the	server	maintains	a	limit	for	the	acceptable	size	of	a	URL,	this	status
Too Long code	is	returned	when	the	request	message	contains	a	URL	longer	than	

this limit.

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 127

500+ (Server error)
A status code in the range	500–599	indicates	that	the	request	sent	was	valid,	but	the	request	
could not be successfully fulfilled due to a problem with the server. The indication is that the
fault lies with the server, not the client. Table 3-8 lists the common status codes in this range.

 Table 3‑8. HTTP Status Codes Indicating an Error with the Server

Status Code Description

500 Internal Server Error The most common status code returned denoting a general error
occurred on the server. This often arises when the requested
URL	is	a		server‑	side	script	that	ran	into	an	error	while	it	was	
executing.

501 Not Implemented	 	The	server	does	not	understand	or	support	the	HTTP	action	be-
ing requested.

502 Bad Gateway A proxy server passing messages between the client and destina-
tion server has a problem, which means the destination server
cannot understand the request or cannot be certain of giving a
response that will be received correctly by the client.

503 Service Unavailable The server is not processing requests right now, perhaps because
it has been overloaded with data or because of a scheduled
maintenance period.

504 Gateway Timeout A proxy server between the client and destination server is not
forwarding messages between the two in a timely fashion.

How Messages Are Transmitted
Now	that	we’ve	covered	the	language of communication messages on the Web, we need to
look at how these messages are actually transmitted between the browser and the destination
server. The messages need to travel from where the browser is located to where the web server
is located, and back again, which could be around the world. This section explains how these
messages go from their source to their destination without getting lost along the way.

IP Addresses: Phone Numbers of the Internet
Once the browser has created its HTTP	request	message,	it	needs	to	deliver	that	to	the	web	
server.	So,	its	first	task	is	to	locate	that	web	server.	Taking	our	HTTP	request	message	example	
from Listing 3-1, the domain name of the web server, www.google.com, needs to be converted
into an Internet Protocol (IP) address before it can be located. This type of address looks like a
series of numbers separated with a dot (.) character. In the case of www.google.com, this might
look like 209.85.171.99. IP addresses help the browser and other Internet- connected systems
find the information they need to route the message through to the destination web server. An
IP address is like a phone number for the server.

In order to convert the human- readable domain name (which is also known as a host-
name) into this sequence of numbers, your browser must connect to an online database,
called	a	Domain	Name	System	(DNS)	or	name server, which contains information about host-
names and their associated numerical IP addresses. A name server is useful for two primary
reasons:

http://www.google.com
http://www.google.com

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 128

	 •	 Human‑readable	hostnames	are	much	easier	to	remember	than	a	sequence	of	numbers.

	 •	 The	hostname	and	IP	address	can	be	updated	independently	of	each	other.		

For example, Google could move its web server to another machine in another part of the
world where the IP address would be different. Instead of having to communicate this change
of address through the hostname, Google merely asks that the IP address be updated in the
DNS	database	to	point	to	the	IP	address	at	the	new	location.	This	makes	the	system	transpar-
ent to the end user.

Before	we	delve	further	into	how	the	DNS	system	works,	it	is	important	that	you	under-
stand	the	different	components	of	a	URL.	Using	the	URL	www.google.com as an example, let’s
divide the address by the separator dots and look at each component, in turn, beginning with
the last and working backward.

com: The rightmost section of any web address is called the top- level domain. You will have
seen .net, .org,	and	many	others	used.	The	DNS	system	uses	this	portion	of	the	URL	first,	
to filter the list of addresses to only those within this top- level domain.

google:	The	middle	part	of	our	URL	tells	the	DNS	server	to	locate	the	google entry within
its list of .com	URLs.	The	system	is	effectively	filtering	the	available	URLs.

www:	The	first	portion	of	the	URL	relates	to	the	specific	server,	or	subdomain,	at	google.com
to access. Again, the list has effectively been filtered to only those servers at that domain.

Don’t	believe	that	there	is	only	a	single	DNS	server	that	is	actively	processing	all	these	
requests for IP addresses from every browser and Internet- connected device in the world.
There	are	13		root‑	level	DNS	systems	in	existence	(each	of	which	is	structured	of	a	cluster	of	
servers to deal with the traffic load), though it is possible for companies or organizations to
provide local copies of these to their own networks to speed up the lookup process.

Root‑level	DNS	systems	take	care	of	the		top‑	level	domain	and	server	portions	of	the	URL,	
looking up the IP address for this level only. From that point, the request is moved to the serv-
ers	at	that	domain—in	this	example,	the	DNS	servers	at	google.com.

Every	entry	in	a	DNS	database	contains	not	just	IP	addresses,	but	also	contact	details	of	
the owner of the domain and addresses of a couple of key servers, including ones for local
name servers.

Most organizations will have, at the very least, a primary and secondary name server of
their own on their network (Google has four name servers at present). In case of a problem on
the first server, the request will be redirected to the second, reducing the likelihood of a lookup
failure.	The		root‑	level	DNS	system	passes	the	request	for	www.google.com/ to the local Google
name servers, who then return the exact IP address for the local server named www, returning
the final IP address of the destination web server.

Packets: Chunks of Data
Communication	messages	sent	between	computers	on	the	Internet	are	formed	of	small	chunks	
of data, called packets. Several packets usually make up one request.

The primary reason for sending packets of data instead of the whole data message in one
shot is to reduce the effect of network problems. If a packet doesn’t get delivered, it can be sent
again until it is successfully received. It’s not necessary to resend the entire data message. Also,
for less powerful computer systems, smaller packets are easier to manage than larger ones, as
they each take only a small portion of available memory to process.

http://www.google.com
http://www.google.com/

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 129

Routes and Routers: The Switchboard of the Internet
Once your browser has learned the IP address of its final destination, it then needs to connect
to that destination to send it the request message and wait for the response data. Devices called
routers sit at every major traffic junction on the Internet, performing the connection and rout-
ing of data packets around the world. These devices maintain local routing tables, which contain
information about how best to direct data packets from where they are now to a location closer
to the web server until the packets reach their destination.

You can see for yourself how data is routed between your browser and the server you are
trying to access using software already built into your computer. If you are a Microsoft Windows
user, load the command prompt. To do this, select Start ➤	Run.	In	the	box	that	appears,	type	cmd,
and then press Enter. In the command prompt window, type the following command and press
the Enter key:

tracert www.google.com

If you are an Apple Mac user, load the Terminal application from within your
Applications/Utilities folder. In the window that appears, type the following command
and press Enter:

traceroute www.google.com

You will see something that looks similar to the following:

Tracing route to www.l.google.com [64.233.183.103] ➥

 over a maximum of 30 hops:

1 6 ms <1 ms <1 ms 10.0.1.1
2 2 ms 5 ms 5 ms gw1.A218.priv.bahnhof.se [85.24.240.1]
3 642 ms * 15 ms hsb-A218.c3750- stortorget.bahnhof.net [85.24.152.50]
4 4 ms 3 ms 4 ms stortorget-mmo.c7600- limhamn.bahnhof.net ➥

 [85.24.151.29]
5 4 ms 17 ms 6 ms c7600-limhamn.mlm- rr1.bahnhof.net [85.24.151.202]
6 4 ms 14 ms 1 ms 82.96.55.41
7 56 ms 200 ms 205 ms v1315-r84.tc-cr1- r69.sto.se.p80.net [82.96.1.61]
8 28 ms 11 ms 15 ms 72.14.198.177
9 15 ms 10 ms 10 ms 209.85.252.186
10 33 ms 35 ms 33 ms 209.85.252.192
11 51 ms 35 ms 36 ms 66.249.95.132
12 38 ms 37 ms * 72.14.233.79
13 39 ms 45 ms 48 ms 216.239.43.34
14 * 42 ms 3402 ms nf-in- f103.google.com [64.233.183.103]

Trace complete.

This is a visual representation of a chunk of test data moving from your computer to the
server at www.google.com. Within the square brackets in the first line of the response, you see
the	IP	address	found	from	a	DNS	lookup.	Following	that	is	a	list	of	several	servers,	the	first	of	
which is your computer and the last the destination server at google.com. In between are the
router devices that are taking that data and moving it around the world to make sure the data

http://www.google.com
http://www.google.com
http://www.l.google.com
http://www.google.com

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 130

reaches the destination. You should be able to see that the first few entries correspond to serv-
ers owned by your Internet service provider (ISP).

You may notice that routers do not necessarily select geographically nearby locations.
This is because the most efficient way of getting the data around the world may be to jump
across county, country, and continental boundaries.

Loading Order of an HTML Page
Once the browser has received the response	for	a	page	request,	it	takes	the	HTML	markup	
provided in that response and displays it. This section explains how this is performed, and the
impact	that	repositioning	certain	HTML	tags	within	a	page	can	have	on	its	loading	time.

An	HTML	document contains two main sections: the head and the body, denoted by the
<head> and <body> tags, respectively. Browsers will usually begin constructing the page while
the data in the response message is still downloading, beginning with the <head> section before
moving onto the <body>. The head section may contain any of the following tags: <style>,
<link>, <script>, <meta>, <title>, and <base>.

All of these tags, with the exception of <script>, are permitted only within the <head> sec-
tion and nowhere else. This rule tells you something of what the browser needs to know before
it renders the <body>	portion	of	the	HTML.	If	you	take	a	look	at	the	description	of	each	of	these	
tags in turn, it should become obvious why this information needs to be known in advance of
processing the <body> markup:

<style>:	Contains	CSS	style	definitions	in	order	to	lay	out	the	HTML	on	the	page	in	a	cus-
tom design. The browser needs to know how to lay out the tags before it displays those
tags on the screen, in order to prevent ugly rendering effects. Otherwise, the browser
would draw tags in their default style before applying the custom style to them. This tag
ensures this never has to happen.

<link>: Links to external data. When referencing an external style sheet, the browser needs
to know about these links for the same reasons as it needs to know about the styles in the
<style> tag. Where it applies to linking to other documents within the site, it merely repre-
sents header information, separate from the main body of the page.

<meta>: Provides data defining the content of the page but external to the page content
itself. Examples include specifying keywords and descriptions of the page for use by
search engine spiders. It is also possible to use this tag to perform the same action as cer-
tain	HTTP	response	message	header	values—for	example,	to	set	an	expiration	date	on	the	
content or to specify the content type.

<title>: Specifies the title of the page. This is the text that appears in the window title of
your browser, your bookmark link, search engine results, and other places.

<base>:	Allows	the	page	developer	to	stipulate	a	base	URL	for	all	links,	images,	and	other	
URLs	specified	within	the	page	content.	For	example,	if	the	<base> tag is set to point to
http://www.google.com/ and a link in the page is specified only as logo.gif, then the full
URL	that	the	browser	will	look	for	will	be	a	combination	of	the	two	URLs:	http://www.
google.com/logo.gif.

Once the browser has read the <head> section and downloaded all the necessary externally
linked	files	therein,	it	can	get	on	with	the	job	of	reading	and	parsing	the	body	of	the	HTML	
document sequentially, tag by tag.

http://www.google.com/
http://www

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 131

Page Performance
An important aspect of page performance is how long it takes to download that page to the
web browser. If you find that page is taking too long, you can try to discover what is causing it
to perform poorly.

Viewing the Performance of a Page
Two tools are useful for viewing the live download times of your page and its contents:

	 •	 The	most	popular	tool	is	the Firebug plug- in for Firefox. Firebug can be downloaded
from http://www.getfirebug.com/.

	 •	 The	other	option	is	the	network	timeline	tool	in	Safari	4.	To	enable	this	feature,	open	
the browser’s preferences page, click the Advanced tab, and check the “Show Develop
Menu in menu bar” option. You can then access the network timeline tool by selecting
Develop ➤	Show	Web	Inspector	and	selecting	the	Resources	tab.

Both tools allow you to see how long the server took to respond to the request message, as
well as the time it took to download the files.

 Figure 3-2 shows visually the loading time of various components of the Google home
page using the Firebug plug- in. Two vertical lines are shown in the results: the first marks the
point	at	which	the	DOM	became	available	for	access	through	JavaScript,	and	the	second	marks	
the time the page, including all its external references, completed downloading. Figure 3-3
shows the loading of Google home page components using Safari’s network timeline tool.

 Figure 3‑2. Viewing the loading time of a page using the Firebug plug- in

http://www.getfirebug.com/

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 132

 Figure 3‑3. Viewing the loading time of a page using Safari’s network timeline tool

I recommend that you install one or both of these tools to test your pages as you build
them, to see where points of contention lie in the performance of your web applications.

Identifying Potential Bottlenecks in Performance
We want to believe that our browsers are always loading page requests as effectively as they
can, downloading every last bit of data as fast as possible and rendering the page to the screen
as each chunk of data is received. Unfortunately, this is not always the case.

In this section, I will expose some potential bottlenecks that could cause pages to load inef-
ficiently. For now, I won’t reveal any solutions or work- arounds to these deficiencies; but rest
assured, I will show you how to solve as many of these as possible in the upcoming chapters.

engine horsepower
Earlier in this chapter, we looked at	the	rendering	engine	and	JavaScript	engine,	which	exist	
within	web	browsers	to	convert	simple	files	in	HTML,	CSS,	and	JavaScript	format	into	fully	
working, interactive web pages. It is no surprise that the engines in different browsers have
different performance characteristics, since they are built on different underlying code.

Typically, with the release of a new version, a web browser engine’s efficiency is increased,
as the browser manufacturer alters its underlying code to make the resulting engine more pow-
erful as part of the upgrade. This serves to make the performance of the current generation of

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 133

most of the leading web browsers several times better than that of any previous generation.
In	general,	the	older	the	browser	being	used,	the	worse	rendering	and	JavaScript	performance	
your end user is likely to experience.

User’s Upload Speeds
Most users connect to the Internet via their ISP through an asymmetrical connection. This
means that the bandwidth most users have available to download data is far larger than the
bandwidth they have available to upload data; both connection speeds are not identical.
Bandwidth is directly proportional to the speed it takes to download or upload data.

You may wonder what data needs to be uploaded from your computer to make a web
page request. In fact, each external file that is linked to from the requested page—each image,
style	sheet,	and	JavaScript	file—requires	that	a	new	HTTP	request	message	be	constructed	
and sent to the server before it can be downloaded. If you have a large number of external files
linked to from your page, regardless of the size of those files, you may find that the upload
limit is reached for the user’s Internet connection, and it will need to wait until previous
requests are sent before sending new ones. Internet speeds are improving all the time, so this
problem is decreasing, but it’s worth making adjustments to your pages to reduce the problem
for those on slower connections, such as mobile users.

Parallel Connection Limits
Many browsers have internal limits set on the number of simultaneous connections that can
be	established	to	each	server	at	the	same	time.	A	page	in	a	modern	RIA,	especially	one	with	
a complicated design, could have in excess of 50 external file references to load to render the
full page. A limit on the number of simultaneous connections can clearly limit the speed that a
page is downloaded and displayed to the user.

The	HTTP	1.1	specification	makes	a	recommendation	of	a	simultaneous	connection	limit	
of two file downloads at a time. Opera and Safari browsers increase this limit to four. IE 8
increases it to six downloads simultaneously. These limits clearly throttle the performance of a
browser. If all files could be downloaded at the same time, the page would be presented to the
end user faster.

Choice of Image Format
Historically,	three	image	formats	have	prevailed	on	the	Web:	GIF,	JPEG,	and	PNG.	These	for-
mats are very different from each other. By making the wrong choice when encoding your
images for your pages, or opting for inefficient compression settings, it is possible to cause
your image files to be larger than is necessary. Since most web pages consist of images more
than any other type of file, the choice of file format should be of primary concern.

Unnecessary Content
The larger the file size, the longer the wait to download it to the browser. When constructing
your	markup,	ensure	that	you	aren’t	making	reference	to	unnecessary	style	sheet	or	JavaScript	
files, or including large commented sections within your pages. By including unnecessary
code, you run the risk of downloading data to the user’s browser that will never be used,
increasing the time taken to render the complete page.

ChAPTeR 3 ■ UNDeRSTANDING The WeB BROWSeR 134

Cache Settings
Some web developers choose to disable all caching in their web browsers so they always have
the latest copy of their own files for testing. Most end users, however, leave their cache settings
at the default, which usually means that the rules for deciding what gets cached and for how
long lie with the response headers of the web server transmitting the content. Tweaking the
server to send only content that has changed from previous similar requests ensures less data
needs to be received by the browser, resulting in a faster experience for the end user.

Uncompressed Text Files and extra Whitespace
When you structure and write your		text‑	based	HTML,	style	sheet,	and	JavaScript	files,	the	use	
of whitespace can be important. Tab spacing, line breaks, character spaces, and comments are
useful in making your code easier to read and understand, and simpler to maintain.

Each tab, line break, and space character is data that the browser does not need to render
a page effectively. If you can remove this unnecessary data, your file sizes will be smaller and
therefore faster to download.

Most browsers and servers support compression algorithms, usually gzip and deflate,
which shrink the size of the data and remove all unnecessary characters at the point of trans-
mission, and then decompress the data when it is received. Without compression, files are
larger than they need to be, and page download time is adversely affected.

Summary
This chapter described the process involved in requesting a page from a web server to be sent
to your web browser, turning that response into a web page, and highlighted several factors
that adversely affect the speed and efficiency of this process.

In the following chapter, I will reveal how you can make drastic improvements to the
performance of your web applications through specific changes to your web servers and code,
giving your end users a better experience.

135135

C h a p t e r 4

performance tweaking

The previous chapter explained how the browser and web server communicate with each
other through messages and how these messages find their way around the world to the cor-
rect destination. You saw that the performance of the different web browsers varies depending
on their rendering and JavaScript engines.

In this chapter, we will look at how to make your web page come to life, ready for your
visitors to use in their web browser, as quickly as possible. Studies have shown that users don’t
notice good performance, but they do feel hurt by poor performance. People expect their web
sites to load as soon as they make a request for it. Why should we give them any less of an
experience than they expect? The key here is efficiency—getting the most data downloaded to
the browser in the quickest time.

Is Performance Really an Issue?
In today’s world of ever- increasing communication speeds, broadband and fiber- optic con-
nections, and ever- more powerful home computers, you might ask yourself whether we need
to be efficient at all. After all, if your home broadband speed is now 4 Mbps, and last year it was
2 Mbps, then surely that web page built over 12 months ago will load twice as fast now as it
did then. While there would be a performance improvement, unfortunately, this is not always
proportional to the speed increase of the connection. Doubling download speed doesn’t halve
delivery time. To construct RIAs under this assumption neglects the bigger world communica-
tions picture and can have a negative effect for some users.

The previous chapter pointed out some bottlenecks that can prevent the most efficient
delivery of a web page and its assets to the browser for display:

	 •	 Users’	upload	speed,	which	is	almost	always	much	lower	than	their	download	speed

	 •	 Parallel	connection	limits	imposed	by	the	web	browser,	which	limit	the	amount	of	data	
that can be loaded from any one server at any one time

	 •	 File	format	choices	for	images

	 •	 Inclusion	of	unnecessary	content

	 •	 Inefficient	cache	settings

	 •	 Inclusion	of	whitespace	data	in	text	files,	which	is	ignored	by	the	browser

Chapter 4 ■ perFOrMaNCe tWeaKING136

The effect of one or any combination of these things will limit the speed at which a web
page is rendered within the web browser.

Consider, for example, a 20KB HTML page, which references a 10KB CSS file, a 15KB
JavaScript file, and 25 external images of 5KB each. In total, this represents 170KB of data to be
downloaded to the browser. A 2 Mbps home ISP connection could feasibly download 170KB of
data in around 1.5 seconds, but in real- world tests, such a page would take considerably more
time to download, perhaps 3 or 4 seconds at best.

Each file needs to be requested separately, and each consists of an HTTP request message
being formed by the browser, being sent to the server, and waiting for the server to execute any
scripts before responding with an HTTP response message containing the data requested. This
will happen 28 times in this example.

You have seen that there is a parallel connection limit imposed by the browser, which,
depending on the browser, will download between two and eight files at the same time.
Assuming the worst- case scenario, which is present in IE 6 and 7, after the first file—the HTML
file containing the requests for all the other files—is received, files will be downloaded in up to
14 separate instances, each with the time overhead of the request/response connection, which
is typically in the order of about 150 milliseconds. This will therefore add around 2 seconds
to the total load time of the page in these browsers. So what seems as though it could take
1.5 seconds to reach your end users might take more than twice that time.

Performance and efficiency are therefore very relevant topics, particularly for users with
restrictive browsers or slow network connections. These include browsers running on mobile
devices and users with dial- up connections.

The recent rise in raw computing power supplied for mobile devices has allowed
 full- featured web browsers to be offered by many manufacturers. These browsers display web
pages virtually identically to how they appear on desktop computers. Popular mobile browsers
include Opera, IE, and specific- variations on the WebKit rendering engine, such as Safari on
Apple’s iPhone and Google Chrome on Google Android devices.

Although mobile devices may be able to display web sites in the same way as desktop
computers, they do have some limitations. The iPhone, for example, is capable of storing in
its local cache only items that are no greater than 25KB. If you have a JavaScript file included
across all pages of your site, and this file is larger than 25KB, the iPhone will be forced to down-
load that file with each page request.

Often, the smaller the device, the more limiting its memory and disk space offered to the
browser	cache.	Files	that	would	be	downloaded	and	stored	between	multiple	page	requests	on	
a desktop computer need to be downloaded with each page on a mobile device. Therefore, you
need to consider efficiency for the sake of users on these devices.

Also realize that, although the number of broadband connections has surpassed those
of dial- up modem connections in many countries in the Western world, in many other parts
of the world, dial- up connections are still dominant. The difference between a 100KB and
1024KB web page at dial- up speeds is several seconds. You need to make your code efficient
because of the many millions of users in the world who are still using dial- up connections.

Now that you understand why it’s important to make your web pages lean and efficient,
let’s take a look at how you can go about making that happen.

Chapter 4 ■ perFOrMaNCe tWeaKING 137

Tweaking Your Web Server for Performance
There are three parts working in tandem to deliver a web site to the end user: the web server, the
web browser, and the physical connection between the two. The physical connection is virtually
out of your control, but, in most cases, you do have control over the other two components, so
you need to tweak both to provide the best performance for your site visitors. Let’s start by look-
ing at the web server and what you can do behind the scenes to make your site load faster.

■Tip For more information about the guidelines presented here, see the Yahoo! best practice guidelines for
speeding up your web site, at http://developer.yahoo.com/performance/rules.html.

Use Separate Domain Names for External Assets
You should consider setting up a second domain name for your web application, if you intend
to use HTTP cookies within your site.

Cookies—small text files saved to the user’s computer—are sent to the web server with
each page request, as you saw in the previous chapter. These are important for page requests,
so that the web server can assemble custom HTML based on the data in the cookie. If you were
logged in to a web site, a cookie might contain your login identifier, which the server could
then use to show you a customized home page, for example.

You usually customize only HTML based on cookie data, but the trouble is that the data is
sent with every file type request—HTML or otherwise. This means that in the vast majority of
cases, the cookie data is sent by the browser and then ignored by the server. The cookie data is
sent automatically by the browser based on the domain name of the site being accessed; you
cannot override this behavior based on file type.

A solution is to use different domain names. By creating two separate domain names for
a site, you can choose to host all images, style sheets, JavaScript files, and other external assets
from one domain name, and all HTML from the other. By having the cookie data saved only to
the domain that hosts the HTML files, you ensure that the cookie data is not sent to the server
when requesting any other file type. This makes the data sent in the HTTP request message
smaller, allowing it to reach the web server faster.

This technique is recommended only where you rely on cookie data being stored in the
user’s browser. In other circumstances, the extra DNS lookup, to locate the IP address of the
second domain name, would actually result in worse performance for the end user, so this
technique should be used carefully.

Use a Content Delivery Network
The Internet is a complicated beast—a connection of nodes in a gigantic, expanding network—
and it can sometimes be difficult to believe the speed at which data is actually able to travel
great distances between your computer and the remote server. Typically, however, the greater
the distance your data needs to travel, the more computers and routers it must pass through

http://developer.yahoo.com/performance/rules.html

Chapter 4 ■ perFOrMaNCe tWeaKING138

to get to its destination. Each stopover on the journey can add time to the trip. The quality and
type of cabling connecting these points also impact the amount of time between your browser
requesting a page and the web server sending the data back in the response. This speed differ-
ence will mean that users connecting to your RIA from various locations around the world will
not all be able to access the data at the same speed as each other.

Several companies have set up their own servers in numerous locations around the world
and provide a service whereby your code is replicated to all those locations. This reduces the
distance between your browser and the web server, improving the response time—often very
noticeably. These local server installations are often referred to as content delivery networks
(CDNs).

By hosting your files on one of these CDNs, you bring your files physically closer to the
end user, resulting in a real boost in performance. Google adopts this approach extensively,
and the benefits are evident by the speed at which Google sites operate. This technique is also
used heavily in the hosting of video and media files, for which the immediacy of playback is
important for the site owner.

Companies such as EdgeCast (http://www.edgecast.com/) and Akamai (http://www.
akamai.com/) provide this service for small, medium, and large businesses. Their costs can be
a little off- putting for a smaller, more personal site. Google offers a couple of options for per-
sonal users, allowing them to host certain files for free on its network. Video files can be hosted
via Google’s YouTube service (http://www.youtube.com/); small page components can be
hosted via the iGoogle (http://www.google.com/ig/) widget hosting service; and certain popu-
lar JavaScript libraries are hosted via Google’s Ajax APIs service, as described in more detail in
the “Access JavaScript Libraries Through CDNs” section later in this chapter. All three solu-
tions are free and allow you to take advantage of Google’s globally distributed server network.

Send HTML to the Browser in Chunks
Most web servers aren’t serving flat HTML files to their end users. Typically, the user requests
a file, which causes the server to perform some action. The result of that action is the piecing
together of a final HTML file, which is then sent to the user. Those actions are typically written
in server- side scripting languages such as PHP, ASP.NET, or Java Server Pages (JSP).

After making a request to the server to view a page, the browser is left waiting while the
server pieces together the HTML code to send back. If you could get access to some part of this
resulting HTML as soon as possible, the browser could begin its work of loading in external
assets, such as style sheets, while waiting for the server to send the remainder of the HTML
page. This means the whole page will be ready for the end user to interact with sooner than if
the browser had to wait for the entire HTML page to be sent in a single, large chunk.

As the HTML page is assembled, it is stored in a memory buffer on the server until the
page assembly is complete, and then the buffer is emptied into the HTTP response message.
It is possible to flush this buffer to the HTTP response stream on demand in your server- side
code, which results in the HTML created up to that point being sent to the browser. If you
perform this flushing of the buffer at tactical points in your page, the browser gets HTML to
render sooner, and the end users have something in front of them on their screen sooner. In
other words, you get an increase in performance.

One such tactical point at which to empty the memory buffer is between the end of the
HTML <head> tag and before the start of the <body> tag. Since most of the hard work on the
server is typically performed on elements within the body of the page, the head section is usu-
ally ready to be sent much earlier in the page- formation stage. By giving this <head> section to

http://www.edgecast.com/
http://www.akamai.com/
http://www.akamai.com/
http://www.youtube.com/
http://www.google.com/ig/

Chapter 4 ■ perFOrMaNCe tWeaKING 139

the browser early, it can then load in the style sheets and other external assets at the same time
as the rest of the HTML page is being received by the browser.

The reason this is not performed by default by the server is simply that the server is
not aware of when you might wish to perform the operation on your page. By executing the
command at the wrong place in the page—such as midway through a tag or before a closing
tag—you could potentially cause rendering bugs. Exercise some caution where you choose to
use this technique, but I thoroughly recommend you employ it where possible.

■Caution A known limitation exists within certain versions of IE: the browser will not display any output
until it has received the first 256 bytes of page data. Flushing the buffer near the start of the page will have
no performance improvement effect in this browser if there are fewer than 256 characters within the <head>
section being written.

Let’s look at how you can use this technique with three common languages: PHP, C#, and
JSP.

Flushing the Buffer with php
If your server- side code is written in PHP, there is a directive you can call in your page to flush
the buffer at the point of your choosing. Simply execute the following code between the end of
the head section and beginning of the body section of the page:

</head>
 <?php flush(); ?>
<body>

Flushing the Buffer with aSp.Net/C#
If your server is running Microsoft’s ASP.NET with the C# language, there is a directive to flush
the buffer on demand. Execute the following code between the end of the head and beginning
of the body section on your page:

</head>
 <% Response.Flush(); %>
<body>

Flushing the Buffer with JSp
If your server- side scripting language is JSP, there is an equivalent command to flush the buf-
fer at the point of your choosing. Execute the following code between the end of the HTML
head section and start of the body section in your page:

</head>
 <% response.flushBuffer(); %>
<body>

Chapter 4 ■ perFOrMaNCe tWeaKING140

Customize HTTP Headers to Force Browser Caching
The topic of caching comes up many times in any discussion of performance. Once you have
downloaded certain assets to the end user’s browser, you don’t want that browser to download
those assets again on subsequent page requests or visits to the site, unless they have changed.
Aside from the obvious performance advantage of taking those files directly from the user’s
computer, rather than downloading them again, this reduces the load on the web server,
which is incredibly useful if you suddenly get an unexpected rise in traffic on a certain day
(this is often called the Digg effect, after the popular link submission and rating site at http://
www.digg.com/).

You can force the browser to hold on to copies of files it has already downloaded by send-
ing those files along with certain header content in the web server’s HTTP response. There are
two headers you can take advantage of here:

	 •	 Expires: This literally tells the browser that the file downloaded is valid up until a cer-
tain date and time, so it does not need to download it again until that date.

	 •	 Cache-Control: This can be used to inform the browser, and any proxy server sitting
between the web server and browser, to cache the particular file.

The Expires header value is a full date, marking the point after which any subsequent
requests by the browser should go directly to the server for a fresh copy.

Expires: Thu, 15 Apr 2010 20:00:00 GMT
Cache-Control: Public

Using	 Cache- Control allows you to store your data closer to the end user. This means that,
for example, if one user accessing the Web through a certain ISP requests your page, the data
can be cached onto the proxy server so that a second user from the same ISP will be served
the data from the physically closer proxy server (assuming both share the same proxy server).
You have already seen that physical proximity between browser and server can impact perfor-
mance, so this effect is desired, where possible.

The Cache- Control header value contains one of four possible values:

	 •	 Private: Proxy servers should not cache this file, but it can be stored in the browser’s
cache. This value is usually set on HTML files that contain some form of personaliza-
tion to a particular user.

	 •	 Public: Shared caches, including those on proxy servers, will keep a copy of the
requested file. The proxy server will then send subsequent requests to the browser,
instead of needing to make a request directly from the web server. This is the ideal value
to use for as many files as possible, as it results in the best performance for end users.

	 •	 No-cache: The file sent in the response should not be cached outside the current session.
A fresh copy will be downloaded from the server in another session.

	 •	 No-store: The file sent in the response should never be cached. Subsequent requests in
the same session will cause the server to send back a whole new copy of the page.

Ideally, you will want to set the Expires header for static components, like your JavaScript
files, style sheets, and other external assets, together with a Cache- Control value of Public.
Certain dynamic HTML files, or pages that return data for Ajax requests, should have their
 Cache- Control header values set to a more appropriate value, such as No- cache .

http://www.digg.com/
http://www.digg.com/

Chapter 4 ■ perFOrMaNCe tWeaKING 141

One trick is to set an Expires header for all static components to a date far in the future, in
the order of a few years, so that, once downloaded, such files will never again be requested from
the server, resulting in large performance boosts for subsequent page visits. Of course, you still
need a way to send file updates to the end user when you make changes. This can be achieved
by	adding	a	version	number	to	the	URL	of	the	files	being	requested,	in	the	file	name,	domain	
name,	or	folder	name.	This	new	URL	won’t	match	any	in	the	browser’s	cache,	so	it	forces	the	
browser to take a fresh version from the server. You then set the Expires header of the new file
so far in the future that once it is downloaded, it is never requested from the server again.

To use this technique, create a folder or file for each release of your web application,
incrementing the release version number each time you send a new code release to the server.
Here, you can see the version number embedded in the file request in two different ways,
which both perform the same task of requesting a totally new file:

/v1.0.1/assets/styles/mysite.css
/assets/styles/mysite-v1.0.1.css

You will discover you are able to make a large impact on performance through clever
usage of this feature, which is gaining popularity and is used by many major sites, including
Yahoo!

Consult the manual for your particular web server to learn how to set the Expires and
 Cache- Control headers for your site.

Compress the Output from the Server
Probably the single biggest web server performance improvement can be achieved by com-
pressing your text- based content—HTML, style sheets, and JavaScript files—before it is sent
to the browser, letting the browser decompress the data before displaying it. Compression
involves encoding data in a different, more efficient way. In some cases, compression can
reduce file sizes by up to 70% of the original. The two popular compression algorithms are
known as gzip and deflate, which were mentioned in the previous chapter.

The great thing about this technique is that it is simple to enable on the server. It is sup-
ported by virtually every modern web browser. Browsers that don’t support the compression
technique will be sent the data uncompressed from the server instead, so data is never lost.
You should enable this feature in your web server, if it is not set by default, at your earliest
available opportunity. You will immediately notice its impact, and so will your end users.

Compressing	data	on	the	server	does	increase	the	server’s	CPU	load	over	simply	returning	
the file uncompressed. This is usually not enough of an increase to cause any issues, but is cer-
tainly worth being aware of if your server hardware is limited in any way.

■Note Certain very old browsers tell the server that they support compressed content but actually do not.
Some compression server components are smart enough not to send compressed data to these browsers. In
practice, this is not enough of an issue to cause any real concern.

Let’s look at how you can enable compression on three popular servers: Apache, Microsoft
Internet Information Services (IIS), and Tomcat.

Chapter 4 ■ perFOrMaNCe tWeaKING142

enabling Compression in apache Web Server
If you are running Apache web server version 1.3, you should install and enable the mod_gzip
module, available online at http://sourceforge.net/projects/mod- gzip/. If you are running
version 2.x of Apache, you should configure the mod_deflate module, which is included in the
Apache	installation.	Full	instructions	on	mod_deflate can be found online at http://httpd.
apache.org/docs/2.0/mod/mod_deflate.html. Basic configuration is as simple as typing the
following into your apache.confd file:

AddOutputFilterByType DEFLATE text/html text/plain text/xml ➥

 text/javascript text/json

enabling Compression in IIS
If you are running Microsoft IIS version 7, some files are compressed by default. However, you
should enable compression for all files by executing the following command from the server’s
command line:

appcmd set config -section:urlCompression /doDynamicCompression:true

Unfortunately,	enabling	gzip compression in Microsoft’s IIS version 6 is not quite as
simple. Instead of listing all the exhaustive steps here, I refer you to the following instructions
for enabling this fantastic performance feature: http://www.wwwcoder.com/main/parentid/170/
site/3669/68/default.aspx.

enabling Compression in tomcat
Enabling the same kind of compression within Tomcat is just as simple as with other tech-
nologies. Here is the line to add to your server.xml file:

compression="on"

Now we’ve taken a look at some important changes to make to the web server to boost the
speed at which content is received into the browser. Next, let’s see what can be done on the
front end, within the browser itself, to ensure your pages load as quickly as possible.

Tweaking HTML for Performance
Most of the improvements you can make for performance can be achieved through changes
to front- end code. We’ll start our discussion of front- end performance with the bare bones of
every web page: the HTML to mark up your document.

You might wonder how it is possible to strip down what is already probably one of the
smallest files in your application, but believe me, it’s doable, and it’s worthwhile. The HTML
page is the key to downloading all other assets. It contains all the references to your external
files for layout and behavior, so it follows that the faster your HTML loads, the less of a bottle-
neck it will be to the download of your other assets. In addition to this, you can make some
tweaks to your HTML to take advantage of certain browser behaviors to get the page onto the
screen even faster.

http://httpd
http://www.wwwcoder.com/main/parentid/170/

Chapter 4 ■ perFOrMaNCe tWeaKING 143

In Part 1 of this book, I suggested some best practices for HTML, some of which are inher-
ently performance- friendly. These include writing well- formed XHTML to prevent the browser
from having to guess where each tag ends, and referencing style sheets and JavaScript files
externally using <link href=""> and <script src=""> tags, respectively, to take advantage of
the browser’s cache. Here, we’ll look at some other ways to improve browser performance by
making changes to your HTML content.

Shrink Your HTML File Size with HTML Tidy
When your web browser reads in your HTML file, it parses the tags contained within into
internal objects, which it then applies layout and design to according to your style sheets. Note
that this parsing step pays attention only to the tags within your HTML, disregarding any for-
matting or spacing around those tags, except within tags themselves, such as the text within
a paragraph tag. Despite looking like empty space, each whitespace character—single space,
tab, or line break—is represented in your HTML file as a single byte of data. Adding together
all these redundant spaces for a large HTML document can reveal that anything up to around
25% of the total file size is taken up with redundant data that will effectively be ignored by the
browser. If you could remove these spacing characters, you would reduce the file size, bringing
the HTML file to the browser faster.

You don’t want to remove the whitespace characters from the original HTML you work
from, since that would make maintenance extremely difficult (you wouldn’t be able to deter-
mine the nesting of tags). You want to deploy the copy of the file without the whitespaces to
your live web servers, while retaining the full HTML source for development.

One tool that will automatically strip out these unnecessary whitespace characters and
also the HTML comments, which are not useful to end users, is called HTML Tidy. Originally
developed by Dave Raggett of the W3C organization, it is now maintained and continually
improved upon by the open source community. You can just run this tool on your computer
or, if you’re working with other developers and have set up an automated build environment,
it can be automated to run on the source HTML and overwrite the file of the same name in the
resulting zip or package file for deployment. More details on this excellent tool can be found at
http://tidy.sourceforge.net/.

Reference JavaScript Files at the End of Your HTML
Common web site development practices, and most tutorials, tell you to reference your
external JavaScript files from within the <head> portion of your HTML documents. But you
can improve the performance of your pages by referencing these files right at the end of your
markup, just before the </body> tag.

In normal circumstances, when your web page is being loaded and rendered, the browser
will download several files, such as style sheets and images, simultaneously. This is not the
case when the browser encounters linked, external JavaScript files. In this case, the browser
typically blocks the download of any other page component until the JavaScript code has
been loaded and executed. Since JavaScript can alter the contents of a web page dynamically
through the DOM, this rule is important to ensure that these manipulations occur in the order
specified by the developer. It would not be acceptable for two external JavaScript files to be
read in and for the second script to execute before the first if it downloaded faster.

Take a look at the following code, which shows the <body> contents of a simple HTML page.

http://tidy.sourceforge.net/

Chapter 4 ■ perFOrMaNCe tWeaKING144

<body>
 <h1>JavaScript content blocking test</h1>

 <script type="text/javascript">
 document.write((new Date()).toString());
 </script>

</body>

When a typical browser encounters this code, it begins rendering the page one tag at a
time, starting with the <h1>	tag.	Upon	encountering	the	 tag, the browser begins down-
loading the image file referenced and moves on to the next tag in source code order. This next
tag is a <script> tag, so the browser temporarily pauses its parsing, and reads and executes the
contents of that tag before resuming, moving on to loading the image referenced in the next
tag.

Since JavaScript is very powerful in its ability to manipulate the layout and content of an
HTML page, if the rest of the page continued to render while the script was executing, you
could experience unexpected behavior based on the speed of the page download, as well as
the performance of the browser’s rendering and JavaScript engines. You could never guar-
antee that the script would execute at the same time every time you refreshed your page. It is
almost essential that the browser pause its rendering of the remaining page while interpreting
and executing the script in order to produce the reliable behavior you expect when writing
your scripts.

Assuming you have moved all of your scripts into external files for ease of maintenance
and in order to take advantage of the browser’s local disk caching of those files, if you include
your references to those external files in the <head> of the HTML document, the browser will
pause downloading and rendering any other part of the page while it reads in and executes
those scripts. Since the browser reads in the contents of the <head> tag before processing the
<body> tag, this will slow down the rendering of the page for the user. Clearly, the larger the
scripts, the longer the wait before the user can access the page. By simply moving your exter-
nal script references to the end of your HTML files, just before the closing </body> tag, you
avoid impeding the downloading and rendering of the rest of the page, thus improving the
performance for your end user.

■Note Some more modern browser releases no longer pause downloading other assets while waiting for
JavaScript files to download, but the execution of these scripts always happens in the order specified in the
HTML document.

Reduce the Number of HTTP Requests
Since the network is almost always the greatest bottleneck in web page performance, it follows
that the fewer components and external files referenced from any web page, the less commu-
nication that needs to occur between the browser and the server to fetch those files. There are

Chapter 4 ■ perFOrMaNCe tWeaKING 145

two primary techniques you can use to achieve the goal of reducing the number of file requests
from the server: structure your project appropriately and combine files when possible.

Good Division and Structure
First	and	foremost,	you	need	to	make	sure you have a structure to your external style sheets,
scripts, and assets that ensures you have loaded on each page only the code that is neces-
sary to render that page. You will want to group together all of your common style rules, for
example, into a single style sheet file, and then have further style sheet files for any page- or
 component- specific style rules. The common style sheet file will be downloaded and cached
the first time it is requested, and subsequent requests for that file from different pages within
your site will cause the local cached copy to be used, saving on downloads on these subse-
quent pages

Combine Files
As a basic rule of thumb, the fewer the files, the fewer the HTTP requests, and the faster that
page will render. Each file contains a header portion of its own, in addition to the HTTP
header, which is hidden within the start of the file. This header portion does not typically con-
tain much information for a text file such as an HTML file, a style sheet, or a JavaScript file, but
for	other	types	of	files,	it	can	contain	a	lot	of	extra	information.	For	example,	a	photographic	
image	file’s	hidden	header	might	include	copyright	information	and	camera	settings.	Find-
ing ways to combine related files will reduce the file header sizes and the number of browser/
server communication requests. This may increase the time taken to download a single file on
its first request, but will reduce the amount of data downloaded overall. You might combine
several separate JavaScript files into a single file, if your scripts are divided up. The same could
apply to your style sheet files.

This will also reduce the amount of code within your HTML file, as you will need to ref-
erence fewer external files. If you are working with other developers and have access to an
automated release- management tool, you should be able to configure that to automatically
combine together all your CSS files and all your JavaScript files into two single files.

A caveat regarding this technique is that it can contradict the advice given in the previous
section regarding making sure files are cacheable. You don’t want to be repeatedly download-
ing the same code to the browser on each different page request, as this will result in more
data being requested from the server than is necessary. Remember to choose the path that
results in the least browser/server communication and most use of locally cached files. Typi-
cally, I will reference the following files:

	 •	 Two	external	style	sheet	files:	a	common		site-	wide	file	and		page-	specific	file

	 •	 Two	external	JavaScript	files:	a	JavaScript	library	file,	to	smooth	out		cross-	browser	
inconsistencies and add useful utility methods, and a site- specific code file

Where you reference several third- party JavaScript files throughout your site, combine
these all into one file so they are loaded from the cache after their initial download.

Chapter 4 ■ perFOrMaNCe tWeaKING146

Don’t Load Every Asset from Your Home Page
Your home page is most often the first page your visitors will see when they visit your web
site. You need to make a good impression with this page, both with its layout and its perfor-
mance. If it takes 10 seconds to render your home page to a usable state, visitors are unlikely
to want to continue into your site, as they might believe that each page will take that long to
render. Ideally, your web page should take no longer than 4 seconds to load once the server
has started sending back its first response. A recent study undertaken for Akamai (http://www.
akamai.com/) has shown that 75% of users would not return to a web site that took longer than
4 seconds to load, and that page load time was one of the major sources of frustration they
encounter online—exactly the situation you are trying to avoid.

Typically, the home page is the most frequently visited page on a site, and usually only a
fairly small percentage of users actually make it past that page into the site itself. These users
may have lost interest, accidentally visited the wrong page, or, hopefully, have acquired all the
information they need from the home page so don’t need to delve any deeper into the site.

You may make the decision that, in order to speed up the rest of your web site, you are
going to load all of the CSS and JavaScript for the entire site from the home page. These files
will	then	be	stored	in	the	browser	cache,	so	subsequent	page	requests	will	be	faster.	Unfor-
tunately, by weighing down the site- entry page in this way, you cause a lot more data than is
necessary to be downloaded, slowing down the rendering of what is the most important page
on the site. Only reference what you absolutely need to on your home page, as it is the one
that, above all others, needs to be perfect from a performance perspective.

Reduce Domain Name Lookups
As explained in the previous chapter, the DNS database links together the common domain
names you see advertised (for example, www.google.com) with IP addresses (for example,
216.239.51.99) that Internet- connected devices use to route data from your browser, at one
place on the Internet, to the web server you want to access, at another location.

Each time you, or a file referenced within your HTML, CSS, or JavaScript, makes a request
for a file located on a different domain name, your browser needs to run a DNS lookup, to find
the IP address of the new domain in order to access it. Each one of these lookups takes time,
in the order of around 20 to 120 milliseconds. So, in a worst- case scenario, if you request files
from eight different domain names, the lookups alone could potentially take 1 second to com-
plete, which is a huge amount of time, considering you are attempting to download all your
assets and have your page up and running within about 4 seconds.

Browsers will actually cache the results of a DNS lookup for a certain period of time, to aid
with performance of subsequent file requests. However, the duration this cached information
is	valid	varies	among	browsers.	For	example,	in	IE,	this	lookup	is	typically	cached	for	30	min-
utes.	In	Firefox,	the	lookup	is	cached	for	only	1	minute.	These	values	are	nominal,	completely	
arbitrary, and at the discretion of the browser manufacturers.

By referencing files across several domains, you cause a performance overhead to be
introduced to your page. On the other hand, in order to avoid HTTP cookies being sent with
all file requests, it is advantageous to reference certain assets from a different domain than the
HTML code itself. Therefore, you need to reach a compromise. A recommendation is to use no
more than two to four separate domain names for file hosting. After this level, the DNS lookup
overhead becomes too much of a performance burden versus the performance benefit it is
intended to give.

http://www.akamai.com/
http://www.akamai.com/
http://www.google.com

Chapter 4 ■ perFOrMaNCe tWeaKING 147

■Note You could point all your file references to the resolved IP address of multiple domain names, to
avoid the need for DNS lookups to be performed. This technique has the drawback of not being particularly
scalable or maintainable—you would need to update all your pages if you wanted to move your server to
another ISP or location. DNS provides a convenient and necessary redirection service. You update the pointer
in the domain name database, rather than updating and redeploying all of your pages.

Split Components Across Domains
The HTTP 1.1 specification includes a recommendation relating to the number of simultaneous
files the browser should be able to download in parallel from the same domain name: it sug-
gests a limit of two concurrent files. Some browsers enforce this limit to the letter; some choose
to allow more than two simultaneous downloads from the same domain name. Table 4-1 shows
the number of simultaneous downloads permitted per domain name and total permitted
simultaneous downloads within the most common browsers.

 Table 4‑1. Number of Simultaneous File Downloads by Browser

Browser Simultaneous Downloads Maximum Simultaneous
 per Domain Name Downloads

Internet Explorer 6 2 60

Internet Explorer 7 2 56

Internet Explorer 8 6 60

Firefox	2	 2	 24

Firefox	3	 6	 30

Opera 9.6 4 20

Google Chrome 6 60

Safari 3 4 60

Safari 4 Beta 4 60

You can see that the browser is limited in the number of simultaneous requests per
domain name. So let’s set up another domain, point its DNS record to the same IP address as
the first domain—since the limitation is only by domain name, not by IP address—so they are
both referencing the same code on the same web server.

By dividing your assets among the available domain names in this way, you are able to
introduce a potentially large performance boost to your pages. Don’t forget the suggested limit
of two to four separate domains, to avoid the DNS lookup performance burden discussed in
the previous section.

■Tip Your domains do not need to be top- level domains. They can be only subdomains (such as http://
assets.mydomain.com/), which don’t require you to purchase new domain names from a registrar.

http://assets.mydomain.com/
http://assets.mydomain.com/

Chapter 4 ■ perFOrMaNCe tWeaKING148

Avoid Linking to Redirects
As discussed in the previous chapter, HTTP redirects commonly occur when the browser
makes a request for a file that no longer exists on a web server. In this case, the web server
usually accounts for this by supplying a redirect message, pointing to the new location of the
requested file.

In	this	scenario,	the	browser/server	communication	is	doubled.	First,	the	request	is	made	
for the missing file, and the server responds with the correct location. Then the browser makes
a	request	for	the	file	at	the	correct	URL,	and	the	server	responds	with	the	contents	of	that	file.	
Since one of the greatest performance bottlenecks in a web application is the communication
network between the browser and server, by doubling the amount of traffic for a particular
file request, you are reducing the performance of your application. In addition, most browsers
do not cache the server’s supplied redirect information, so if you are requesting files from, for
example, http://google.com/, and that server redirects all traffic to http://www.google.com/,
that redirection is going to occur for all external file references from that one page, adding
a potentially large performance drain to the page load time. If you know a file’s location has
moved	on	the	server,	and	you	are	accessing	that	file	via	an	old	URL,	be	sure	to	alter	the	link	to	
point to the new location of the file.

You might be linking to a redirect without being aware of it. Many developers add links
without including a trailing slash character (/) at the end, as in http://www.google.com. Leav-
ing out this trailing slash character will cause many web servers to raise an HTTP redirect
message,	pointing	to	the	URL	including	this	slash	character:	http://www.google.com/. To
improve the responsiveness of your links, add a trailing slash character to all your links that do
not point directly to file names.

Reduce the Number of HTML Elements
The number of HTML elements on your page not only affects how long your HTML takes to
download to the browser, but also the performance of your JavaScript code and the speed with
which the browser’s rendering engine is able to apply your CSS to your page.

Particularly burdensome on performance is the level of nesting your HTML structure uses.
The more complicated and deep your nesting, the more work the browser’s rendering engine
must do in order to make sense of the structure. A light structure, only three or four tags deep,
will give better performance compared to a deeper structure.

Each HTML element that exists in your page is represented to JavaScript through the
DOM. The browser itself creates the DOM references from the elements that exist on the
page, and this is organized in a hierarchical structure that matches the structure of the HTML
document. The more complex the structure, or the more elements, the longer this process of
generating the DOM in the browser will take, and the longer it will take to access individual
elements through JavaScript.

When building your HTML, think carefully about each tag. Consider whether it needs to
be there. If you are introducing it only to achieve a layout effect, you should strive to achieve
the same outcome through CSS, where possible. If you are introducing dummy elements that
you will later populate with JavaScript, consider creating these elements using JavaScript and
injecting them onto your page via the DOM.

http://google.com/
http://www.google.com/
http://www.google.com
http://www.google.com/

Chapter 4 ■ perFOrMaNCe tWeaKING 149

Don’t Link to Nonexistent Files
As you’ve already seen, HTTP requests that don’t return an intended response are wasteful;
they keep the web server and the browser occupied for little benefit.

Frequently,	when	reviewing	web	site	performance,	I	observe	that	requests	for	certain	assets	
return HTTP 404 errors, meaning the file requested does not exist on the server. In many cases,
these requested files are background images referenced from CSS classes where the image
file itself has since been removed—a hangover from the development process. Since, unlike
foreground images, background images can go unnoticed, they are often unintentionally left
referenced within CSS files. These images are still requested by the browser, and the server
responds with a 404 error.

For	some	web	sites,	the	developer	or	web	server	creates	a	custom	error	page,	which	often	
matches the design and layout of the rest of the site. This is great for the users, as often such
pages	contain	links	to	a	page	they	intended	to	reach	but	typed	the	URL	incorrectly,	and	it	
improves their experience of the web site. However, often the HTML code for an HTTP 404
error is returned, though not displayed. The browser must download the HTML for this error
page for each incorrect file request. It won’t be cached one time and used for each different
request,	as	the	URL	for	each	failed	asset	will	be	different.	The	browser	will	then	attempt	and	
fail to interpret the HTML as an image, style sheet, or JavaScript file. This particular scenario
will add a lot of unnecessary performance overhead. To avoid this, audit your pages, checking
each and every referenced file to ensure it exists.

Don’t forget the browser is able to make requests for only a limited number of files at a
time. To waste this limit with requests that do not produce any worthwhile gain reduces the
performance of your web application.

■Caution If a JavaScript file is being requested by the page that does not exist on the server, and an error
page is returned by the server instead of the requested file, the browser will pause its parsing of the page
while waiting for the contents of the error page to download. This exacerbates the effect of linking to non-
existent files.

Reduce the Size of HTTP Cookies
Each HTTP request message that is sent from the browser to the server contains the HTTP
cookie data associated with that domain. This is so that both the client, through JavaScript,
and the server, through any back- end processing, have access to this information in order to
customize the site for that particular user. Obviously, this data takes up space in the request
message. Since it is communicated for each file being requested, it can add a lot of extra infor-
mation that is rarely used except, typically, for the page that returns the HTML document.

By ensuring that the data stored in the cookie is small, the data being sent in each HTTP
request message is reduced, and the server receives the message sooner.

Consider including nothing more than a simple, unique user identifier within the HTTP
cookie and storing other information within a database on the server, using the unique identi-
fier as a key to look up this extra information.

Chapter 4 ■ perFOrMaNCe tWeaKING150

Tweaking Your Style Sheets for Performance
You have learned that combining style rules into external style sheet files delivers the best per-
formance, as it allows those files to be cached independently of the HTML files that reference
them. Now we will look at techniques related to the contents of your style sheet files and how
they can be tweaked to provide better performance within the browser.

Shrink Your CSS File Size with CSSTidy
You have already seen how whitespace characters can add to the size of your files, which are
useful to developers but not browsers. Similar to the HTML Tidy tool for HTML files, the
CSSTidy tool removes extra whitespace characters from CSS files. It has the added benefit of
allowing you to optimize your styles where the opportunity exists to do so and to strip out
comments from the CSS, which are useful only to developers, not to the browser or your end
users.

CSSTidy is a command- line tool, so it can be configured to run automatically as part of an
automated development/release process, should you work in an environment set up in that
way. To find out more about this tool and download it, visit http://csstidy.sourceforge.net/.

Don’t Use the @import Command
You can include a reference to an external style sheet file from within your HTML file either by
using the HTML <link> tag or by using the @import directive within a style sheet file or HTML
<style> tag, as in this example:

<style type="text/css">
 @import url("filename.css")
</style>

 In many browsers, the behavior of both methods is identical. However, certain versions of
IE behave in a slightly different way when using the @import method. They actually wait until
the whole page has been read and rendered before loading and applying the external reference
from the @import	directive.	For	this	reason,	the	@import	method	should	be	avoided.	Use	the	
<link> tag to associate external style sheets with your HTML files.

Speed Up Table Layouts
Rendering HTML tables is notoriously labor- intensive on the browser. There are typically four
or more levels of tag nesting that, alone, take time to parse. The browser then needs to calcu-
late the widths of each table cell, which it attempts to do intelligently based on the width of
the contents of each cell in the table. This means the browser usually needs to read in the data
for the entire table before it is able to render it correctly. On a slow page, where you see the
HTML table loading progressively onto the page, you might observe that the layout of the table
alters—some of the columns change width—as the data is still being downloaded, and settles
on its final dimensions only when all the data has completed downloading.

The CSS table- layout: fixed style rule reduces this constant calculation and reevalua-
tion work the browser must do to render your HTML tables. It’s used as follows:

http://csstidy.sourceforge.net/

Chapter 4 ■ perFOrMaNCe tWeaKING 151

table {
 table- layout: fixed;
}

The table- layout: fixed rule “fixes” the table layout, which means that the rendering
engine will calculate the widths of the table cells based solely on data found in the cells con-
tained in the header row of the table. Since it does not need to do any more cell- width
calculations, the time taken to render a long table is reduced.

Make sure you have set widths, through CSS style rules, for the cells in the header row of
the table. These will then apply automatically to each of their associated columns in the table,
regardless of the content of the cells in the rest of the table.

Avoid CSS Filters and Expressions in IE
IE introduced several new CSS properties and extra layout functionality, which are custom
only to IE and not adopted by other browsers. Two such style properties are CSS filters, which
allow developers to access some of Microsoft’s native DirectX drawing components, and CSS
expressions, which allow dynamic scripting capabilities within otherwise static style rules.

If you’ve ever attempted to provide handling for transparent PNG images within IE 6,
where they are not natively supported, you may have come across and used one particular CSS
filter, AlphaImageLoader:

.image {
 filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(➥

 src='image.png', sizingMethod='scale');
}

Although there is no doubt that this filter does the job, it does have some big performance
drawbacks:

	 •	 While	the	referenced	transparent	PNG	is	being	loaded,	the	browser	actually	locks	up	
and does not continue rendering any portion of the page or download any additional
assets during that time.

	 •	 You	might	expect	the	results	of	one	filtered	image	to	be	cached	as	other	files	are,	but	
images referenced through CSS filters are not cached. Every transparent PNG loaded
in this way, whether or not it has been loaded previously, is downloaded every time the
page is refreshed.

Use Shorthand Values
CSS contains many similar and related style properties for laying out box- based structures and
setting the typographical nature of page text within such structures. In several circumstances,
multiple style rules can be combined into a single style rule, saving on file size and improving
the download time, without sacrificing maintainability or scalability. Here, we’ll look at some
shorthand for colors, margins, padding, borders, backgrounds, fonts, and lists.

Chapter 4 ■ perFOrMaNCe tWeaKING152

Colors
Use	hexadecimal	values	to	specify	color properties within your style rules, because these
typically take up less space than most named colors and equivalent RGB notation. If you use
named color values, restrict yourself to the 16 colors defined within the HTML 4.01 specifica-
tion (http://www.w3.org/TR/REC-html40/types.html#h- 6.5).

A hexadecimal color value is normally specified like this:

body {
 color: #000000;
}

This example sets the text color for the HTML <body> tag to black, represented as #000000
in hexadecimal. The first two characters after the hash (#) character in this color representa-
tion denote the red component of that color, the second group of two characters represents
the green component, and the final two characters represent the blue component, so the for-
mat is #rrggbb.

Browsers support a shorter notation for certain hexadecimal values, where each of the
 two- digit hex values for each color component is identical. Typically, these are known as the
 web- safe color values. The previous style rule could be represented in this shorter form:

body {
 color: #000;
}

 Table 4-2 lists a selection of colors, their equivalent hexadecimal values, and their short-
hand equivalent hexadecimal value, if available.

 Table 4‑2. Some Hexadecimal Color Values

Color Hexadecimal Shorthand

Black #000000 #000

Light blue #336699 #369

Green #00ff00 #0f0

White #ffffff #fff

Dark gray #121212

Crimson #dc143c

Margins and padding
You are likely familiar with the CSS properties for margins and padding. The margin is the
space around the element, and padding is the space between the element boundary box and
its contents. You are also probably aware that you can apply these style rules independently to
each side of an element or in one fell swoop to every side of the element.

Suppose that you want to apply a margin of 10 pixels around each of your HTML para-
graph tags using CSS. You could specify this in either of the two possible ways shown in the
following code excerpt:

http://www.w3.org/TR/REC-html40/types.html#h-�6.5

Chapter 4 ■ perFOrMaNCe tWeaKING 153

p.four-rules {
 margin- top: 10px;
 margin- right: 10px;
 margin- bottom: 10px;
 margin- left: 10px;
}

p.one-rule {
 margin: 10px;
}

Notice how the second style rule combines four lines of code into one, without altering
the result.

Now suppose that you want to apply a different margin size to each of the four different
sides of the element. Here’s how multiple style rules can be combined into single rules when
affecting certain properties of box- based elements:

/* apply 10px padding to the top of the element, 5px to right, 20px to bottom
 and 0 pixels padding to the left of the element */
padding: 10px 5px 20px 0;

/* apply 10px margin to top, 5px to left and right, 15px to bottom */
margin: 10px 5px 15px;

/* apply 10px margin to top and bottom of element, 5px to left and right */
margin: 10px 5px;

/* apply 10px padding to all sides */
padding: 10px;

Borders
A multitude of CSS properties are available for styling borders around page elements. Put sim-
ply, a border consists of three style properties: a width, a border style (such as solid or dotted),
and a color. Specific CSS style properties allow you to apply different styles to each side of an
element.	For	example,	 border-top- width specifies the width of the border above the element,
and border-bottom- color specifies the color to apply to the border at the bottom of the element.
Using	these	properties	for	every	side	of	the	element	is	rather		long-	winded.	Instead,	use	one	of	
the shorthand techniques shown in the following code to apply border styles to an element.

/* applies 1px wide, solid black border to each side of the element */
border: 1px solid #000;

/* applies same border style to the top side of the element only */
border-top: 1px solid #000;

/* sets top border width to 2px, left and right borders to 3px and bottom to 1px */
border-width: 2px 3px 1px;

Chapter 4 ■ perFOrMaNCe tWeaKING154

/* sets the top and bottom borders black, and left and right borders red (#f00) */
border-color: #000 #f00;

Backgrounds
Several CSS style properties relate to the display and positioning of backgrounds within an
element:

	 •	 background-color: Sets the base background color of the element.

	 •	 background-image: Applies a background image that will sit on top of the element’s
background color.

	 •	 background-repeat: Allows you to specify whether the background image should tile
within the available space, and if it should, whether that tiling should occur horizon-
tally, vertically, or both.

	 •	 background-attachment: Specifies whether the background image should scroll with the
page or element, or remain fixed in the position it was in when the element was first
rendered.

	 •	 background-position: Attaches a background image to a specific location within the
element, such as attached to the bottom right of the element, or located 25 pixels in
from the left edge of the element.

Rather than specifying values for each of these CSS properties individually, you can spec-
ify them all simultaneously with a single background CSS shorthand property, as follows:

/*
 Use the following format for shorthand background properties.

 background: color image repeat attachment position;
*/

/*
 The image image1.jpg should appear from at the top- left position (0, 0) of
 the element, it should not tile in any direction and it should scroll along with
 the page as normal. Underneath the image should appear a red background,
 filling the dimensions of the element.
*/
p {
 background: #f00 url(image1.jpg) no- repeat scroll 0 0;
}

Fonts
A shorthand notation exists for combining font formatting style rules into a single rule. You
can combine the following individual font styles:

	 •	 font-style: Specifies normal, italic, or oblique text style.

	 •	 font-variant: Specifies normal or small capital letter text style.

Chapter 4 ■ perFOrMaNCe tWeaKING 155

	 •	 font-weight: Specifies the thickness of the text, enabling bold or light text styles.

	 •	 font-size: Specifies the size of the characters within the text.

	 •	 line-height: Specifies the height each line of text should consume.

	 •	 font-family: Specifies the typeface in which to display the text.

The following shows how these separate style properties can be combined into a single
style rule.

/*
 Use the following format for shorthand font styles. Observe the location of
 the slash (/) character, between the font size and line height attributes. Also
 note that there can be multiple font family values, separated by commas, to
 allow for backup typefaces in the case that the preferred face is not available.

 font: style variant weight size/line- height family
*/
p {
 font: italic small- caps bold 1.2em/1.8em Arial, Helvetica, sans- serif;
}

Lists
Unordered,	bulleted	list	styles	can also be combined into a single style rule for brevity. The fol-
lowing three individual style properties can be combined:

	 •	 list-style-type: Specifies the type of bullet to use to denote individual list items.

	 •	 list-style-position: Specifies where the bullet should sit in relation to the list, either
in the flow of the text or separated into its own column with spacing.

	 •	 list-style-image: Specifies an optional image file to use to represent the bullet. If the
image does not exist or is not specified, the bullet type from the list-style- type prop-
erty is used instead.

The following shows how these styles can be combined into a single style rule for custom-
izing unordered lists.

li {
 /*
 Use the following format for shorthand list styles.
 list- style: type position image;
 */
 list- style: circle inside url(mybullet.gif);
}

Use the CSS Sprite Technique
You’re now going to discover a technique, called CSS sprites, that will enable you to reduce the
number and size of the image files in your RIA. This will reduce the number and size of HTTP

Chapter 4 ■ perFOrMaNCe tWeaKING156

requests (as you know, one of the largest performance bottlenecks in most web sites), and
often also reduces the number of style rules needed to represent those images on the page.

The CSS sprite technique involves merging visibly related image files together into a single
file. It borrows from the sprite technique used in early video games graphics, and used more
recently to store groups of icon images together within a single file in some computer operat-
ing systems.

Suppose that you use four separate image files, each of identical size, to represent four
buttons	that	will	control	multimedia	playback	on	your	site:	Play,	Rewind,	Forward,	and	Stop.	
Here’s how you might typically reference these files using CSS to associate them with page ele-
ments:

/* Each button element has two classes: control and a button- specific style */
.control {
 /* Each icon is 100 pixels square */
 width: 100px;
 height: 100px;
 /* Any text within the button element should be hidden if the button is
 displayed as an icon using CSS */
 text- indent: -10000px;
}

.play {
 background- image: url(play.png);
}

.rewind {
 background- image: url(rewind.png);
}

.forward {
 background- image: url(forward.png);
}

.stop {
 background- image: url(stop.png);
}

	Figure	4-1	shows	how	you might combine these four separate images together into a sin-
gle image file, using a standard graphic software package. Each individual image measures
100 pixels wide by 100 pixels tall, and the resulting image is 200 pixels wide by 200 pixels tall.

The CSS sprite technique involves specifying the 100- pixel square portion of the larger
image file that contains the specific button icon you wish to display within your element. The
following example demonstrates how this can be achieved using CSS style rules, shifting the
background image within the dimensions of the element to display the required portion of the
image.

Chapter 4 ■ perFOrMaNCe tWeaKING 157

 Figure 4‑1. Four related images combined into a single image file

.control {
 /* Each button control element is fixed in size to 100 pixels square */
 width: 100px;
 height: 100px;
 text- indent: -10000px;
 /* Reference the single, combined image file */
 background- image: url(combined- image.png);
}

.play {
 /* Displays 100 pixels square, beginning at the top- left of the background.
 This corresponds to the Play icon in the image in Figure 4-1 */
 background- position: 0 0;
}

.rewind {
 /* Shift the background image 100 pixels to the left, so that the Rewind
 image is located at the top- left position of the element, fitting the 100
 pixel display square exactly. */
 background- position: -100px 0;
}

.forward {
 /* Shift the background image 100 pixels upwards, so the Forward image
 is located within the top- left 100 pixel square of the element */
 background- position: 0 -100px;
}

.stop {
 /* Shift the background image 100 pixels to the left and 100 pixels
 upwards, so the Stop image is visible in the 100 pixel display square */
 background- position: -100px -100px;
}

Chapter 4 ■ perFOrMaNCe tWeaKING158

By shifting the background image within the element, you are able to display the exact
portion of the image you wish to appear. You have reduced four separate images into one,
and added only one extra line to the CSS style rules. Since a single combined image is typically
smaller than several individual images, and results in fewer HTTP requests, there is often a
noticeable performance benefit to the end user with this technique.

■Caution Before you start combining your entire image library together into one single combined file to
use with this technique, stop and think about the context of the image files you are combining. For the sake
of maintainability, consider joining together only related images, such as icons, with similar visual sizes. To
ease maintenance further, use a graphics software package, such as Adobe Photoshop, which supports lay-
ers that you can utilize to reexport your sprite image file if you need to make changes to an individual image
it contains.

So, the CSS sprite technique is a great performance booster. By reducing the number of
HTTP requests, you are less reliant on the connection speed to the server and parallel connec-
tion limits within the browser. However, the way you combine images together will have an
effect on performance. Therefore, you want to make sure to do this in the best way possible.
Here are some ways to optimize CSS sprite images:

Avoid a single, behemoth sprite image file: Since you are combining smaller images into a
single larger one, the resulting file size, though usually smaller than the sum of its parts,
will no doubt be larger than that of any single file it replaces. Larger files take longer to
download, so the users will need to wait before they see any images in their browser. The
intention is to give your end users a web page that loads and displays in record time, so
think carefully about your CSS sprite images. You will need to separate them into a few,
carefully constructed image files, rather than a single, all- encompassing behemoth.

Use space wisely and efficiently: Huge swathes of whitespace between individual images
within a sprite image are less efficient than an image with less whitespace. As with other
types of files, you don’t want to store extra image data that will never be used. Keep the indi-
vidual images that go together to form the master sprite image as tightly packed as possible
to minimize wasted space. Choose component images that are of a similar size to provide
the best fit and reduce the amount of whitespace in the sprite image. You can arrange the
individual images into a square grid or use a horizontally or vertically aligned sequence of
images. You might think that the alignment of the images has no impact on file size, but
actually, smaller file sizes are possible when images are aligned in a single horizontal row.

Consider the maintenance tasks: A single image, stored in its own file, is a lot easier to update
and maintain than a group of images stored together in one single file. When editing a large
sprite image, care must be taken not to alter images surrounding the individual image being
edited, as such changes could pass unnoticed. If you use graphics software, such as Adobe
Photoshop, which allows you to save images with separate layers and dividing grid lines,
you should place each separate image into a different layer, aligned to these fixed grid lines.
Keep a backup of this master file along with your images, and export your sprite image in
PNG format (discussed later in this chapter) whenever an alteration is made.

Chapter 4 ■ perFOrMaNCe tWeaKING 159

Avoid Inefficient CSS Selectors
The CSS selector provides the mechanism for the browser to apply your style rules to your
page. Typically, the browser will search for style rules to apply to a page element as it is cre-
ated, comparing the tag name, id attribute, and class attribute of the element to the list of
style rules. The browser then searches for style rules to apply based on possible inherited val-
ues from other CSS selectors in the document, and combines the results, giving precedence
to more specific style rules or rules given later in the document. The browser effectively needs
to perform a series of searches to locate the styles to apply to an element, and each of these
searches takes a certain length of time to complete. Admittedly, these searches are over in a
matter of milliseconds, but it is possible to speed up the process by writing style rules that
avoid unnecessary searching.

Ensure that your CSS selector is only as long as it needs to be to apply your style rules to
your elements. If you find yourself chaining a long series of tag, id, and class names together
into a single selector, chances are you should be looking for a different, leaner approach.

Avoid specifying selectors that include tag names, as these typically cause the longest style
rule searches to take place. Instead, filter your selectors by an appropriate id attribute located
on a parent element. The search does not need to attempt to look for style rules applied to any
other id attribute, thus improving the speed at which results are returned.

The following shows examples of both effective and ineffective CSS selectors, based on the
style rule searching mechanism employed by most browsers.

/* Ineffective selectors - avoid these in your code */
table tbody tr td { ... }
#body #content #results a { ... }
form div#field label { ... }

/* More effective selectors */
#header .title { ... }
#results a { ... }
#field .label { ... }

Tweaking Your Images for Performance
Image files constitute the majority of all data requested from the server for most web sites.
Increasingly complex designs and layouts often require complex image resources, which typi-
cally translate into larger file sizes and slower download times.

The information company Alexa (http://www.alexa.com/) provides a list of the most
popular web sites in the world, based on traffic. Table 4-3 shows the top- five sites globally and
the proportion of their home page data devoted to images. The YSlow extension to Mozilla’s
Firefox	browser	was	used	to	extract	this	information.	You	can	download	this	component	from	
http://developer.yahoo.com/yslow/ to perform your own tests.

Being smart about the way you handle the images in your web application can make a
great performance improvement, since their file sizes make up a proportionally large percent-
age of the page weight of most RIAs.

http://www.alexa.com/
http://developer.yahoo.com/yslow/

Chapter 4 ■ perFOrMaNCe tWeaKING160

 Table 4‑3. Proportion of Popular Sites’ Home Pages Devoted to Images

Site Total Page Weight Image Weight Proportion of Weight
 As Images

www.yahoo.com 219.8KB 101.9KB 46.3%

www.google.com 10.1KB 7.5KB 74.3%

www.youtube.com 204.6KB 105.4KB 51.5%

www.live.com 15.2KB 9.8KB 64.5%

www.facebook.com 380.1KB 110.9KB 29.2%

Understand Image File Formats
The three major image file formats used	on	web	pages	are	Graphics	Interchange	Format	(GIF),	
Joint Photographic Experts Group format (JPEG), and Portable Network Graphics format
(PNG). Most developers have only comparatively recently picked up on the PNG format, and
its support is growing, for good reason. Let’s look at the pros and cons of each of these formats,
and why I recommend the PNG format.

GIF Format
The company CompuServe launched	the	GIF	format	back	in	1987.	It	was	popular	on	the	Web	
because	it	typically	produced	small	file	sizes.	Until	the	late	1990s,	the	GIF	format	was	subject	
to a patent, and its use typically required a license.

GIF	file	sizes	are	small due to two main characteristics:

Color depth: The color depth of the image is only 8 bit, which means that only 256 differ-
ent colors can be represented in one image file, compared to the millions of unique colors
capable of being displayed on modern displays. That 256- color palette is not fixed, how-
ever, and can be selected from the full range of millions of colors. If your image uses fewer
than 256 colors, only the colors actually used are saved along with the image data, reduc-
ing the size of the data stored.

Compression: The image data itself is compressed using an algorithm known as
 Lempel-Ziv- Welch (LZW). This type of compression does not actually remove any data
from the image; rather, it represents that data in a more compressed manner. Browsers
convert this compressed data back into the original image data for display, so the files can
be smaller without sacrificing image quality.

This file format is very efficient for representing small icons, typically less than 16 pixels
square, and simple drawings or line art. These types of images can have a restricted color pal-
ette, and the compression method is very effective for less complex images. The file format is
less efficient for larger and more complex images.

http://www.yahoo.com
http://www.google.com
http://www.youtube.com
http://www.live.com
http://www.facebook.com

Chapter 4 ■ perFOrMaNCe tWeaKING 161

When	saving	a	GIF	file,	you	have	the	option	to	select	one	of	the	colors	in	the	palette	to	be	
represented as a transparent color. When such a file is then displayed within the browser,
that selected color is no longer visible; instead, the contents beneath the image on the page
are	shown,	allowing	for	transparencies	in	GIF	image	files.	This	particular	technique	does	not	
work well with gradients or drop shadows, since you cannot represent different degrees of
transparency—it is either on or off for a particular selected color.

The	GIF	image	format	is	also	capable	of	storing	several	image	frames	in	one	individual	
file, also holding the information about when to show those frames and for how long. This
allows for a basic form of animation, where each frame is stored as a full image. You will most
likely have seen these animation files used as the loading indicators for many RIAs.

GIF	animations	store	each	frame	individually,	which	is	not	so	efficient,	especially	where	
there	are	very	few	differences	between	each	frame.	Unfortunately,	no	other	web	image	for-
mat is yet able to represent animations in all browsers, so this is the only choice for animated
images, other than the	use	of		third-	party		plug-	ins,	such	as	Adobe’s	Flash	Player.

JpeG Format
For	representing	photographic	or very complex images on the Web, JPEG (or JPG) image for-
mat is ideal. The Joint Photographic Experts Group formed in 1986 to create a file format for
compressing this type of image, and the resulting format was finalized and approved as an
international standard in 1994. The format is open and not subject to any patent laws.

The JPEG format is particularly suited to complex images where there are no sharp
contrasts between neighboring pixels, so line drawings are not appropriate for this type of
compression. Unlike	GIF,	JPEG	is	a	lossy format. This is because, to perform the compres-
sion, data is removed from the original image and cannot be restored. The compression is not
achieved by storing the existing image data in a different way, but rather by removing compo-
nents from the image that typically are unnoticed by the human eye.

When saving an image in JPEG format from your graphics software, you are usually given
the choice of the level of compression to apply to the resulting file. The less compression that
takes place, the larger the file size will be and the more of the original image is left intact. The
greater the compression, the smaller the file size but less of the original image is left intact—
meaning at greater levels of compression, there is a chance that image artifacts might be
visible to the eye. Choose the level of compression that allows the image to remain free of
visual abnormalities, while achieving the smallest possible file size.

pNG Format
The PNG image file format was developed to	improve	upon	the	GIF	file	format	while	being	
open and patent- free. While this file format is the most recent of the three formats, its support
is universal among modern browsers.

The PNG file format is capable of storing 24- bit image color palettes—representing more
than 16 million colors in a single compressed file—and also supports alpha- channel transpar-
ent	layers.	This	means	that,	rather	than	GIF’s	restrictive		single-	color	transparency,	different	
levels of transparency can be applied to any portion of the image independently of another.

Chapter 4 ■ perFOrMaNCe tWeaKING162

■Caution Support for the PNG alpha transparency layers was not introduced by default in IE 6. Attempts
to use this feature will result in a light- blue background appearing where the transparent portions of the
image should be. You can get around this either by using the CSS AlphaImageTransform DirectX filter (but,
as discussed earlier in this chapter, this has huge performance drawbacks) or by reexporting your image in a
different format, such as GIF or as PNG- 8 (a variant of PNG that supports single color transparencies, similar
to GIF), which will reduce or remove the transparencies in the image when displayed in this browser.

Unlike	JPEG,	PNG	is	a	lossless image format, which means that all the data from the origi-
nal image is retained within the file after compression, and can be recovered at any time. The
compression	applied	to	the	image	uses	a	method	similar	to	the	GIF	image	file	format,	in	that	
the data is simply represented in a different way, compressed using the deflate compression
method, which can also be used to compress the HTTP response data from your web server, as
discussed earlier in this chapter.

In	almost	all	cases,	PNG	images	are	smaller	in	file	size	than	their	equivalent	GIF	coun-
terparts (with the exception of very small images, usually less than 16 pixels square), despite
being able to store and represent many more colors.

Due to its smaller file sizes, PNG is the preferred format for most images on the Web.
You	should	use	GIF	only	for	small	images,	where	the	resultant	image	file	will	be	smaller	than	
if PNG had been used. The JPEG format should be used for complex images, such as photo-
graphs, where its compression algorithm works best, removing components from the image
that would otherwise go unnoticed by the eye.

Optimize PNG Images
PNG image files contain more than just raw image data. A set of header data is also provided at
the beginning of the file to describe the image contained in the rest of the file. Each set of data
is known as a chunk. Some of the chunks are mandatory, including the color palette and image
data. Many chunks are optional, such as image gamma and white balance data.

Since a PNG file needs to contain only this mandatory data, you can remove the optional
data chunks from the file to reduce its size. Typically, your graphics software will save your
PNG files with the optional chunks intact, so you should find a way to remove these to cut
down the file size.

A command- line tool is available for most operating systems to allow you to strip the
optional data chunks from your PNG files. This tool is called Pngcrush, and it’s available for
download from http://pmt.sourceforge.net/pngcrush/. You can run this tool automatically
on your images as part of an automated build environment or manually on your own images,
depending on your particular development setup. Conveniently, a web site called Smush
it (http://www.smushit.com/) has been set up to make this task even easier for you. Point
this	web	site	to	the	URL	of	your	own	site,	or	upload	your	images	to	the	site,	and	a	zip	file	is	
produced of all your images, with all the unnecessary data chunks removed. The site also per-
forms	a	conversion	of	your	images	from	GIF	and	JPEG	to	PNG,	where	this	would	save	on	file	
size.	A	Mozilla	Firefox	browser	extension	is	available	for	download	from	the	site	to	allow	you	
to apply the optimization on demand to whichever site is currently displayed in your browser
window.

http://pmt.sourceforge.net/pngcrush/
http://www.smushit.com/

Chapter 4 ■ perFOrMaNCe tWeaKING 163

Don’t Forget the Favicon
A favorites icon, commonly known as a favicon, is an image file that is located at the root of
your web server and named favicon.ico, by default. It is a small (usually 16 by 16 pixels) icon
that	you	will	see	displayed	to	the	left	of	the	URL	in	your	browser’s	address	bar.	It	is	also	used	as	
the	image	to	represent	the	URL	when	saved	as	a	“favorite”	in	your	browser,	hence	its	name.

Your browser requests this type of file whenever you browse to a web site, and there is no
way to turn this feature off in all browsers through code. Therefore, you should ensure that
an image exists at this location to avoid having the browser receive an HTTP 404 error instead
(see the discussion earlier in this chapter to discover why this is bad).

The smaller the image, the better—less than 1KB is preferable. Also, set HTTP response
headers on the file to ensure it remains cached on the user’s machine and is not downloaded
on every visit to the site.

Tweaking Your JavaScript for Performance
Efficient JavaScript code is vital to any RIA, as it has the power to frustrate or delight your end
users. With increasingly complex code comes a greater opportunity for problems to creep in,
including memory leaks, performance- intensive tasks that lock up the browser, and a lack of
consideration for usability and performance.

Keep in mind that JavaScript is a client- side language whose performance is directly
related to the browser it is being executed within, and the power of the device on which that
browser is running. With this in mind, consider using the web server to perform intensive
tasks, such as constructing the initial view of your RIA, or to perform computational analysis
on a large amount of data. Any operation that will cause your end users to wait an excessive
amount of time for a result should be performed on the server, where possible.

In this section, we will look at how you can improve your JavaScript code, to minimize any
negative performance for your server or end users. The topics covered here are not exhaustive.
Since JavaScript is a large programming language, there are numerous possibilities for small and
large performance tweaks to particular functions, loops, and routines. The material included
here is tailored to building RIAs, so a healthy portion of the information is devoted to the perfor-
mance implications of DOM and Ajax routines.

Shrink Your JavaScript File Using Dojo ShrinkSafe
Again, we return to the topic of extra information in files. JavaScript files are full of whitespace
characters and (hopefully) also have plenty of comments and documentation. This information
is ideal for developers who need to be able to understand the code stored inside those files, but
browsers don’t need any of that information—it’s ignored after it’s received, so there’s no point
in sending it.

Depending on your file, you can cut around 50% of the file size of a JavaScript file by strip-
ping out unnecessary whitespace and comments, a process known as minification. You can
reduce the file size further by using a process called obfuscation, which shortens variable and
function names. But be aware that obfuscation is usually fairly risky, as it does not take into
account the way in which the file being compressed is used in the context of the site where it
sits.

Chapter 4 ■ perFOrMaNCe tWeaKING164

The developers of the Dojo JavaScript library have built their own JavaScript file compres-
sor, known as ShrinkSafe, which uses both minification and obfuscation techniques. You can
download this tool from http://shrinksafe.dojotoolkit.org/.

ShrinkSafe works in a slightly smarter way than most obfuscators, removing the inherent
risk by altering only the variable and function names of code that is not publicly accessible
from outside the script. This ensures that any public API or code within that file will still work
properly within the context of the site. You should use this tool to make your code as small as
possible, to ensure the fastest download possible to the browser.

Access JavaScript Libraries Through CDNs
Earlier, you learned that using CDNs reduces the distance your data needs to travel over the
Internet. Many JavaScript libraries, such as jQuery and Prototype, are hosted on CDNs to pro-
vide a faster response time over the network for the end users. They have the added benefit of
being available in the end user’s browser cache if that user has visited another site referencing
the	same	library	from	the	same	URL.	

Google is looking to be the leader in CDN JavaScript library hosting. It provides access to
the following libraries and third- party JavaScript components at the time of writing:

	 •	 jQuery	(plus	its	associated	jQuery	UI	library)

	 •	 Prototype	(plus	its	associated	script.aculo.us	UI	library)

	 •	 Dojo	Toolkit

	 •	 Yahoo!	UI

	 •	 MooTools

	 •	 SWFObject	(a	useful	library	for	embedding	Adobe	Flash	on	a	page)

Each	is	available	directly	from	a	fixed	URL	as	either	the	full,	original	file	or	as	a	minified	
version, often up to 50% smaller. The full documentation from Google on this service is avail-
able online at http://code.google.com/apis/ajaxlibs/.

The only drawback with accessing a file from a different domain than the one the current
site is hosted on is the extra DNS lookup required to locate the IP address of the new domain
name. Thankfully, this lookup time is more than made up for by the speed at which each ref-
erenced file is downloaded. The CDN allows users to receive a copy of the file from a server
location physically close to their browser, ensuring network performance bottlenecks are lim-
ited.

Timing Is Everything
When JavaScript files are loaded normally, using file references within your HTML file, the
browser blocks the downloading and parsing of the rest of the page until the script has down-
loaded and executed. This is not ideal, particularly if there is a lot of code to download. There
is a way to overcome this performance bottleneck using JavaScript itself, though you must
exercise caution. Scripts usually block the browser to avoid race conditions, where one piece
of code completes before another, causing execution to occur in the wrong order. If you are
going to load scripts in this way, you need a technique to have a block of JavaScript code exe-
cute once a file has completed downloading, to prevent a race condition.

http://shrinksafe.dojotoolkit.org/
http://code.google.com/apis/ajaxlibs/

Chapter 4 ■ perFOrMaNCe tWeaKING 165

 Listing 4-1 shows how to load a JavaScript file on demand without blocking the browser,
and how to specify some code to execute when it has completed downloading. Add this code
to the $ JavaScript library you created in Chapter 2.

 Listing 4‑1. Loading a JavaScript File on Demand Without Blocking the Browser

$.prototype.Remote.loadScript = function(fileName, callback) {
 var scriptTag = document.createElement("script");
 scriptTag.src = fileName;

 if (callback) {
 scriptTag.onload = callback;
 scriptTag.onreadystatechange = function() {
 if (scriptTag.readyState == 4) {
 callback();
 }
 }
 }

 document.getElementsByTagName("head")[0].appendChild(scriptTag);
}

// Example usage
// Assuming an instance of the $ library exists on the page

// Loads my- script.js, then outputs "script loaded and available" when complete
$.Remote.loadScript("my-script.js", function() {
 alert("script loaded and available!");
});

Back in Chapter 2, I introduced you to the ability to execute JavaScript code once the DOM
for the whole page has been initialized and is ready for access. This occurs before the entire
page has loaded, as it considers only that the HTML has loaded, regardless of any referenced
external assets, such as images. By writing your code to execute when this event fires, as shown
in Listing 4-2, you enable your code to get to work sooner, cutting out extra waiting time for the
end user. You can use this event to load in several JavaScript files in parallel, using the tech-
nique outlined in Listing 4-1.

 Listing 4‑2. Executing Scripts As Soon As the DOM Is Ready

$.onDomReady(function() {
 // This function executes as soon as the DOM is ready for access

 // Load two JavaScript files, my- script.js and my-other- script.js, simultaneously
 $.Remote.loadScript("my- script.js", function() {
 // my- script.js loaded
 });

Chapter 4 ■ perFOrMaNCe tWeaKING166

 $.Remote.loadScript("my-other- script.js", function() {
 // my-other- script.js loaded
 });
});

Boost Core JavaScript Performance
By core JavaScript, I am referring to that part of the language that focuses on pure data pro-
cessing, execution, looping, and logic, rather than the part of the language focusing on page
manipulation through the DOM or the use of the Ajax technique. Here, I will propose a num-
ber of improvements you can make to your own core JavaScript code to speed up its execution
time.

Use a Memoizer
A memoizer is a function that doubles as a storage mechanism. It saves the results of previous
executions of that function routine so that future calls to the function with identical inputs will
return the output from the list of stored results, instead of computing the result again. This
improves the performance of functions that are called multiple times throughout your code.
It is only possible to “memoize” functions that always produce the same output based on an
identical set of inputs.

 Listing 4-3 shows how to build a utility function that allows you to add the ability to store
result values to any function, automatically returning the result of the function from its inter-
nal storage property where possible to boost performance. Add this code to the $ JavaScript
library, as before.

 Listing 4‑3. Using a Memoizer to Speed Up Execution Time of Repetitive Functions

// memoize expects a function as an input and returns the same function
// with storage capabilities added

$.prototype.Utils.memoize = function(func) {
 return function() {
 // Add a memory object property to this function, if it does not exist
 func.memory = func.memory || {};

 // Create a key to use to store and retrieve function results within
 // the memory object property. The key should be based on a combination
 // of all the arguments passed to the function to ensure it is unique based
 // on all combinations of inputs
 arguments.join = Array.prototype.join;
 var key = arguments.join("|");

 // Does the key exist in the memory object?
 if (key in func.memory) {
 // If it does, then return the associated value to avoid recomputation
 return func.memory[key];

Chapter 4 ■ perFOrMaNCe tWeaKING 167

 } else {
 // If it doesn't, execute the associated function then save the result
 // to the memory object
 func.memory[key] = func.apply(this, arguments);

 // Return the newly saved value, the result of the function's execution
 return func.memory[key];
 }
 }
};

// Example usage
// Assuming an instance of the $ library exists on the page

// Write a function that computes the factorial of a given number
// - execute it 99999 times to exaggerate the effect of a slow- running function
var computeFactorial = function(input) {
 var result;
 for (var count = 0; count < 99999; count++) {
 result = 1;
 for (var num = 2; num <= input; num++) {
 result *= num;
 }
 }
 return result;
}

// Add memoize capability to the factorial function
computeFactorial = $.Utils.memoize(computeFactorial);

// Measure the speed of the factorial function's execution
computeFactorial(100); // Execution takes ~945 milliseconds
computeFactorial(50); // Execution takes ~506 milliseconds
computeFactorial(100); // Execution takes 0- 1 milliseconds - using stored value
computeFactorial(50); // Execution takes 0- 1 milliseconds - using stored value

Use efficient String Concatenation
By far, the most common way of concatenating strings together into larger strings is to use the
+ operator, like this:

var outputString = "start text " + inputString + " end text";

When you are performing many string concatenations, such as within a code loop, the
time taken to perform the full series of concatenations using the + operator adds up to a severe
performance penalty, particularly in IE.

Chapter 4 ■ perFOrMaNCe tWeaKING168

You can use an alternative technique for concatenating strings, which does not suffer the
same performance penalty. This solution involves utilizing an array, as follows:

var myArray = [];
myArray.push('Welcome, ');
myArray.push (userName);
myArray.push(', to the site.');
myArray.join('');

In some cases, string concatenation performance can be improved in IE by up to 25 times
by using an array in this way versus using the + operator.

Use regular expressions
Regular expressions provide a useful, powerful, and efficient way to perform string manipulation
and pattern matching—faster than any other method. Within JavaScript, regular expressions can
be defined in two different ways: as a literal or using an object constructor, as follows:

// Both the following regular expressions are designed to find any instance of
// a capital letter within the string being searched.
var expression = new RegExp("[A- Z]", "g"); // slow - needs to be processed first
var expression = /[A- Z]/g; // fast - ready to use

// Outputs "_est _tring"
alert(Test String".replace(expression, "_"));

The RegExp object constructor takes a string and converts this into a regular expression,
whereas the literal form is ready to be used without any extra processing. This makes the literal
form of the regular expression the fastest way to search strings using JavaScript.

Avoid using the RegExp constructor to create a regular expression, except where you
absolutely need to generate this expression dynamically. You can find a very thorough
tutorial on regular expressions in JavaScript online at http://www.evolt.org/article/
Regular_Expressions_in_JavaScript/17/36435/.

Loop Faster and More efficiently
Most JavaScript code is full of loops. Often, you will need to process arrays or iterate through
object literals to perform calculations or manipulations on the data stored therein. Looping
through data is a notoriously slow task in JavaScript, particular in IE 6 and 7. The following
shows a typical JavaScript for loop, together with a subtly different, but incredibly more effi-
cient, version of the same loop.

var myArray = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100];

// The most common type of loop
for (var index = 0; index < myArray.length; index++) {
 // On every iteration through the loop, the value of myArray.length must
 // be recomputed to ensure it has not changed since the last iteration
 // - this is slow
}

http://www.evolt.org/article/

Chapter 4 ■ perFOrMaNCe tWeaKING 169

// A subtly different but much faster version of the same loop
for (var index = 0, length = myArray.length; index < length; index++) {
 // The value of myArray.length is computed once and stored in a variable.
 // The value is read back from the variable on each iteration instead of being
 // recomputed - much faster!
}

You have two JavaScript commands at your disposal to manage your loops:

	 •	 break stops the current loop from executing, continuing to execute the code that follows
the loop.

	 •	 continue stops the current iteration of the loop and moves onto the next iteration.

You can use these commands to effectively stop your loops from iterating if you have
located the value you were seeking, or to skip execution of certain code blocks if they are irrel-
evant to the current iteration of the loop. The following shows an example of both commands.

var myArray = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100];
for (var index = 0, length = myArray.length; index < length; index++) {
 if (myArray[index] < 50) {
 // Ignore any values in the array below 50
 // continue executes the next iteration immediately, ignoring any other code
 // within the loop
 continue;
 }

 if (myArray[index] == 90) {
 // Ignore any values in the array above 90
 // break stops the loop from iterating immediately, ignoring any other code
 // No other iterations will be performed in the loop
 break;
 }
}

Coming Soon: Background Web Worker processes
The Web Hypertext Application Technology Working Group (WHATWG) is a community of
developers and companies dedicated to pushing forward adoption and recommendations of
new technologies on the Web. Currently, this group is busy working on a specification called
Web Workers, which will allow developers to assign JavaScript code to execute in background
threads, without blocking users from interacting with the browser and without blocking other
code from executing.

This recommendation is in its early stages, but is being built in a preliminary form within
Mozilla	Firefox	3.5	and		WebKit-	based	browsers.	It is published online at http://www.whatwg.
org/specs/web-workers/current- work/. When it’s complete, you will be able to run code that
takes a long time to execute in the background, without affecting the performance of the rest
of the page. (I personally cannot wait for this recommendation to be completed and imple-
mented in browsers—it will make core JavaScript performance issues a thing of the past!)

http://www.whatwg

Chapter 4 ■ perFOrMaNCe tWeaKING170

Improve Ajax Performance
As discussed in Chapter 2, Ajax is a staple part of most RIAs, enabling developers to retain con-
trol over their user interface in the browser, while sending and receiving data to and from the
web server in the background. We have established that a major performance bottleneck in
RIAs is the network connection between the browser and the web server, so you need to make
all the changes you can to improve the performance and efficiency of your code to reduce this
impact as much as possible.

Use JSON Format for responses
You can use the Ajax technique to make requests for any text- based data from the server, though
the technique and its underlying code does provide built- in support for XML format, converting
the response from the server into an XML data structure within JavaScript where possible. The
problem with this from a performance perspective is that XML parsing through JavaScript is an
incredibly slow operation to perform within most browsers, so you should rule out this option
when possible.

Instead, use the JSON format, introduced in Chapter 2, to encode your data. This format is
hierarchical, just like XML, and represents data in name/value pairs, just like JavaScript object
literals. However, it has the benefit of being incredibly lightweight, since it does not rely on
opening, closing, and nesting tags to represent its hierarchical data. You are effectively able to
represent the same data using less space, which means the data will be available to your web
application sooner.

Since the data received will be in text format and not directly available as a JavaScript
object, you need to parse the JSON- format text response into an object literal you can access
with your RIA. Douglas Crockford, inventor of the JSON format, provides an open source JSON
parser. This parser is available from the JSON web site (http://www.json.org/json2.js), and
you may use it to perform this conversion from text to native object. Some browsers, including
IE	8	and	Firefox	3.5,	provide	native	implementations	of	the	JSON	parser	within	the	browser	
itself, speeding up parsing in those browsers.

Use JSON- p with the <script> tag
A different approach to fetching JSON data from the server was first proposed back in 2005
by Bob Ippolito on his blog at http://bob.pythonmac.org/. Known as JSON with Padding, or
 JSON- P, the technique involves using JavaScript to dynamically create a <script> tag within
the	current	page,	pointing	to	a	URL	that	returns	data	in	JSON	format.	This	allows	the	browser	
to execute the returned data as it does with any other script. Of course, JSON data is virtually
identical to object literal notation, except that it is just the raw data—it is not assigned to a
variable or wrapped in a function call. So, when JSON data is executed via the <script> tag, it
is parsed by the browser but immediately disappears. If you could somehow assign this data
to a variable or wrap it as the input to a function call, then you could read and manipulate it as
you want.

The JSON- P technique takes exactly that approach. By passing a known query string
parameter to the requested script containing the name of a function within the requesting
page, the server should take the JSON data and wrap it in a call to a function of this name. The
following	shows	how	requesting	a	URL	with	or	without	this	optional	parameter	should	affect	
the JSON data returned.

http://www.json.org/json2.js
http://bob.pythonmac.org/

Chapter 4 ■ perFOrMaNCe tWeaKING 171

<!-- Make a request for a PHP script that returns JSON- format data -- >
<script type="text/javascript" src="/my- json.php"></script>

<!-- Effectively produces the following code, which gets executed.
 Since the data is not assigned to a variable or used in a function call, it
 is treated as an object literal but immediately disappears -- >
<script type="text/javascript">
{
 to: "den@denodell.com",
 from: "me@denodell.com",
 subject: "Dinner tonight?",
 body: "Do you feel like having dinner tonight? Call me."
}
</script>

<!-- Make a request for the same URL with an optional query string parameter -- >
<script type="text/javascript" src="/my- json.php?jsonp=myFunction"></script>

<!-- Provided the PHP script knows what to do with the query string parameter,
 the JSON data is returned, wrapped in a call to the specified function name.
 The myFunction function executes and its input data is the JSON data,
 already as an object literal, so there is no need to perform any parsing -- >
<script type="text/javascript">
myFunction({
 to: "den@denodell.com",
 from: "me@denodell.com",
 subject: "Dinner tonight?",
 body: "Do you feel like having dinner tonight? Call me."
});
</script>

When the code is executed, the function of the name specified in the query string parame-
ter is called, and its input is the JSON data requested. This uses the browser’s built- in JavaScript
parser and the data is treated as an object literal; the function is executed immediately when
the browser receives it.

 Listing 4-4 shows how you can use the JSON- P technique to load JSON data from a given
URL	and	make	it	available	natively	to	a	function,	which	executes	once	the	data	has	been	
received. Add this code to the $ JavaScript library you began in Chapter 2.

 Listing 4‑4. Using JSON- P

// The loadJSONP method mimics the existing loadScript method but allows
// the returned JSON data to be available to the callback method as an input.
// Add this method to our $ JavaScript library code.

$.prototype.Remote.loadJSONP = function(url, callback){
 // The callback function needs to exist within the global window object
 window.tempFunction = callback;

mailto:den@denodell.com
mailto:me@denodell.com
mailto:den@denodell.com
mailto:me@denodell.com

Chapter 4 ■ perFOrMaNCe tWeaKING172

 // Append the jsonp=tempFunction query string parameter to the URL.
 // The server should wrap the returned JSON data in a call to the function
 // of the name specified in this parameter, so it is executed when
 // the data is returned
 url = url.contains("?") ? url + "&jsonp=tempFunction" : "?jsonp=tempFunction";

 // Call the existing loadScript method to place the <script> tag on the page
 this.loadScript(url);
}

// Example usage
// Assuming an instance of the $ library exists on the page

// Make a request for the file my- script.php?jsonp=tempFunction, which
// returns the JSON data wrapped in a call to the tempFunction method
$.Remote.loadJSONP("my-script.php", function(data) {
 // Outputs "object" denoting an object literal has been returned
 alert(typeof data);
});

■Tip Unlike the Ajax technique, JSON- P is not limited to requesting data on the same domain as the page
making the request, since the <script> tag can request JavaScript files from any domain. The only require-
ment is that the external script returning the JSON data supports the extra query string parameter to wrap
the returned data with a call to the specified function name.

Consolidate Server requests and responses
Instead of sending multiple requests for data in a short space of time, consider how you can
alter your code to send a single request less frequently to the server, and have the server
respond with a single block of data containing amalgamated responses of all the requested
data. This will reduce the amount of communication between the browser and the web server,
and thus improve the performance of your RIA.

In addition, where your RIA requires many updates from the server, consider using Ajax to
post the data in its current state to the server, and configure your server- side script to respond
with only the changes to the data that need to be made. The response should be a lot smaller
than normal, easier to parse, and reduce the burden on the web server and network.

Improve DOM Performance
RIAs require updates to be made to the user interface of the page based on some kind of input,
usually from the user or the server. The JavaScript DOM is required to make changes to HTML
elements or CSS properties within the user interface. This is notoriously slow, particularly in

Chapter 4 ■ perFOrMaNCe tWeaKING 173

older browsers, as you saw in the performance benchmark results in Chapter 3. This section
presents some guidelines and code snippets designed to help improve the performance of
your page interactions through JavaScript.

Minimize DOM access
Using	JavaScript	to	access	HTML	elements is a time- intensive operation, so it should be done
as little as possible. If you need to access a DOM element, set it to a variable and use that vari-
able reference throughout the rest of the code, as shown in this example:

// The DOM reference is located once during this routine, and referenced through
// a variable everywhere else

var menu = document.getElementById('menu');
if ($.CSS.hasClass(menu, "navigation")) {
 $.CSS.addClass(menu, "menu");
 // Outputs the current width of the menu element
 alert($.CSS.getAppliedStyle(menu, "width"));
}

If you need to create and add DOM elements to the page dynamically, apply all attributes
and set all necessary properties before adding the new elements to the page. This way, the
browser will not need to keep accessing the live DOM to make changes.

When locating page elements through the DOM, filter the DOM tree as much as possible—
the less traversal, the faster the access will be. If you are searching for an element with a par-
ticular class name and you know it will exist within a certain tag, filter the node tree by this tag
first to return results faster, as in this example:

// Locate a known element that wraps the node tree you want to traverse
var filterElement = document.getElementById("menu");

// Find all elements with a class name of selected within the filterElement.
// This is faster than traversing the entire DOM node tree of the page
var selected = $.Elements.getElementsByClassName("selected", filterElement);

Use DocumentFragment Objects
An often- overlooked part of the DOM specification is the ability to use DocumentFragment
objects in JavaScript as a sort of mini- DOM to create, append, and manipulate elements
within your code before adding the whole mini- DOM node tree onto the page in one single
action. This improves performance considerably compared with the traditional method of
adding each DOM element one at a time directly to the page. Here’s how you can use this
technique to add a set of elements to the page.

// Create a DocumentFragment object as an offline mini- DOM,
// which is not connected to the live DOM of the page.
var miniDOM = document.createDocumentFragment();

Chapter 4 ■ perFOrMaNCe tWeaKING174

// Create some new DOM elements
var p = document.createElement("p");
var hr = document.createElement("hr");
var h2 = document.createElement("h2");

// Add each element to the DocumentFragment object
miniDOM.appendChild(p);
miniDOM.appendChild(hr);
miniDOM.appendChild(h2);

// Add a copy of this single DocumentFragment to the page. Making a single
// action against the live DOM means considerable performance improvement
// over multiple actions
document.body.appendChild(miniDOM.cloneNode(true));

plug Memory Leaks
In most browsers, when JavaScript objects are created, memory is allocated to them on the
machine or device running the code. When they are destroyed or are no longer used, that
memory is reclaimed, making it available for the rest of the code to use later.

IE 6 and 7 have a memory management issue due to the fact that they have two memory
managers: one for core JavaScript code and one for DOM objects. Both work perfectly by
themselves, but when a circular reference occurs between them, as shown in the following
example, two worlds collide, and memory leaks abound.

<div id="leaking"></div>

<script type="text/javascript">
 // A DOM element is assigned to a variable, which is then assigned to
 // a property of the original DOM element, creating a circular reference.
 // This causes a memory leak to occur in Internet Explorer 6 and 7.

 var leakyDiv = document.getElementById('leaking');
 document.getElementById('leaking').newProperty = leakyDiv;
</script>

If left untouched, these memory leaks can eventually force the browser to crash when it
runs out of available memory. The memory is not even reclaimed when a page refresh occurs,
so it can cause serious problems for your end users.

IE 7 introduced a work- around of sorts: when the user moves to another page or site, the
memory	allocated	to	the	previous	page	is	freed	up.	Unfortunately,	it	frees	up	only	the	memory	
for DOM objects that existed on the page at the point the user navigated away. If you used
JavaScript to remove a few DOM elements from the page, the memory leaked due to those
particular elements would never be recovered. Since it is quite common to add and remove
DOM elements dynamically in web applications, memory leakage is still a big problem for
RIAs in these browsers. Thankfully, there is a way to plug the leak when a page refresh occurs,
by freeing up the memory using the unload event of the page, as shown in Listing 4-5.

Chapter 4 ■ perFOrMaNCe tWeaKING 175

 Listing 4‑5. Plugging a Memory Leak

<div id="leaking"></div>

<script type="text/javascript">
 var leakyDiv = document.getElementById('leaking');
 document.getElementById('leaking').newProperty = leakyDiv;

 $.Events.add(window, "unload", function() {
 // Remove all circular references before page is unloaded to plug the leak
 document.getElementById('leaking').newProperty = null;
 });
</script>

Microsoft has released the beta version of a piece of software for IE 7 called the JavaScript
Memory Leak Detector, which allows you to detect memory leaks. This is a very useful tool to
run while you’re building your web application. It will help you to ensure you capture and plug
all those memory leaks—you don’t want your end users’ browsers to crash because they visit
your site! You can download the tool from http://blogs.msdn.com/gpde/pages/javascript-
memory-leak- detector.aspx.

Use event Delegates
RIAs are most often, by their nature, event- driven. They wait for events to occur, such as but-
ton clicks, mouse movements, or key presses, and execute certain code functions when they
do. With DOM events, even if an event occurs on a particular element, it also bubbles up from
that element and also occurs on all elements surrounding it. The following example demon-
strates this behavior:

<body>
 <div>
 <!- - Events on the anchor tag also occur on the <div> and <body> tags -- >
 Back to home>
 </div>
</body>

Here, a click event on the anchor <a> tag also fires on the surrounding elements, begin-
ning with the inner element and bubbling outward from there to the top level of the page
structure.

You may consider this behavior slightly odd, but you can use it to your advantage to
provide performance improvements in the code you write to associate events with actions.
Instead of creating separate event handlers for each element, write single event handlers that
listen for all events of a certain type that occur throughout the entire page. You can then assign
actions to occur depending on properties of the element the event occurred on, as shown in
 Listing 4-6. These are called event delegates, as they become logic blocks that delegate actions
based on properties of events and page elements.

Chapter 4 ■ perFOrMaNCe tWeaKING176

 Listing 4‑6. Event Delegation

Back to home

<script type="text/javascript">
 // Listen for click events firing within the whole document
 $.Events.add(document.body, "click", function(e) {
 // e.target contains a reference to the actual element the
 // event took place on
 if (e.target.tagName.toLowerCase() == "a") {
 alert("You clicked the anchor tag");
 } else {
 alert("You clicked somewhere other than on the anchor tag");
 }
 });
</script>

By listening for each event type only once, on the top- level document.body element, and
then identifying the element the event actually took place on, you ensure that you have only
a handful of events to wire up when your page loads. This helps achieve the overall goal of
reducing the time it takes before the end user is able to interact with the page.

Change Class, Not Style, When Updating CSS
Through the DOM, you are able to manipulate CSS style properties directly. Any action against
a DOM element through JavaScript takes time to complete. A better solution when you need
to update style properties to new, known values is to use the power of the browser’s render-
ing engine by simply adding, removing, or swapping the class value applied to the element
you wish to modify. The new styles will then be contained in style sheet files, where layout
and design code belongs. This way, only one DOM manipulation would be required to add or
remove whole swathes of style properties. Listing 4-7 demonstrates this technique.

 Listing 4‑7. Updating Applied Class Names Instead of Individual Styles

<div id="menu"></div>

<script type="text/javascript">
 $.Events.add(document.body, "click", function(e) {
 // If the user clicks on an element with an id of menu
 if (e.target.id == "menu") {
 // Toggle the menu- highlight class on that element. That class is
 // specified within the style sheet file to have a different design

 if ($.CSS.hasClass("menu- highlight")) {
 $.CSS.removeClass("menu- highlight");

Chapter 4 ■ perFOrMaNCe tWeaKING 177

 } else {
 $.CSS.addClass("menu- highlight");
 }
 };
 });
</script>

Duplicate existing Nodes rather than Create New Ones
Creating DOM elements dynamically is a fairly common requirement in RIAs, but you pay a
performance penalty each time you create an element when using the standard document.
createElement method. Through experience, I have found that duplicating existing nodes is
faster than creating new ones from scratch. If you are creating multiple elements with similar
attributes, create one instance, and then use the cloneNode method to duplicate the element
and its associated attributes for a performance boost.

Armed with this knowledge, you can add a new method to your $ JavaScript library to
speed up the creation of DOM elements in certain cases, as shown in Listing 4-8.

 Listing 4‑8. Creating DOM Elements Efficiently

$.prototype.Elements.create = function(tagName) {
 // This method utilizes the memoizer technique
 this.memory = this.memory || {};
 if (tagName in this.memory) {
 // If we have stored an element of this tag name already, duplicate it
 return this.memory[tagName].cloneNode(true);
 } else {
 // Create a new element of the tag name and store it
 this.memory[tagName] = document.createElement(tagName);
 return this.memory[tagName].cloneNode(true);
 }
};

// Example usage
// Assuming an instance of the $ library exists on the page

// Create two elements from scratch
var newH2Tag = $.Elements.create("h2");
var newPTag = $.Elements.create("p");

// Create another element of the same type as one already created.
// Duplicates the stored element, boosting performance over creating
// the element from scratch again
var anotherH2Tag = $.Elements.create("h2"); // Uses a duplicate

Chapter 4 ■ perFOrMaNCe tWeaKING178

append elements to the page as htML Strings
The correct way to add new DOM elements to your page is to use the appendChild DOM method
against an existing page element. The problem with this method is that in certain older browsers,
it runs fairly slowly, particularly when there are many new elements to add to the page. There is
a much faster, though riskier, way of adding elements to your page: write the new elements as
HTML strings and assign the string to the innerHTML property of a page element. Listing 4-9 dem-
onstrates this technique.

 Listing 4‑9. Adding Page Elements Dynamically As an HTML String

<div id="container"></div>

<script type="text/javascript">
 var pageElement = document.getElementById("container");
 var newElementString = "<p>Hello, world!</p>";

 // Setting the innerHTML property of a DOM element is faster than any other
 // method for adding elements dynamically to a page
 pageElement.innerHTML = newElementString;
</script>

If your RIA requires you to add many elements to the page, and the DocumentFragment
technique suggested earlier is not helping, you might consider using this method as a last
resort.

This approach is risky is because you are able to add incorrect, invalid HTML to the page,
which may cause the page layout to break. Imagine if you opened a tag in your HTML string
but never closed it. So if you must use this technique, be very careful!

Summary
This chapter covered a wide range of topics related to performance. It provided many sugges-
tions to help improve the speed of your RIAs, through tweaks made to your web server, your
HTML markup, your style sheets, your images, and your JavaScript code.

Remember that your end users won’t notice good performance; they will only feel the
pain of poor performance. Don’t give them any reason to complain. Take advantage of the
wealth of information in this chapter, and give your site visitors the experience they deserve.

The next chapter deals with the different, though related, topic of perceived performance—
giving the impression of a responsive application, despite what might actually be happening
behind the scenes.

179179

C h a p t e r 5

Smoke and Mirrors: perceived
responsiveness

The previous chapter covered the topic of code performance and efficiency, including many
suggestions to help improve your end users’ experience with your RIAs. Unfortunately, no
matter how hard you try, you will not be able to reduce the amount of time required for cer-
tain actions. Ajax requests, for example, are limited by the quality of the network connection
between the browser and server.

As web developers, we need to figure out how to keep our end users informed that things
are occurring behind the scenes, and give them the impression that they are receiving a fast,
responsive web browsing experience, despite these holdups. This chapter covers this issue
of perceived responsiveness, rather than actual performance—the art of illusion and “smoke
and mirrors” to provide the impression of a fast and responsive web application in those times
when the browser and server just can’t produce actual results quickly enough.

Providing Prompt Visual Feedback
There can be nothing more irritating than waiting for software to respond to your attempts
to interact with it. If you click a button that suggests it will perform a certain action, but noth-
ing seems to happen, you quickly become frustrated. Conversely, if you click a button and are
informed immediately that the action will take some time to complete, and are given some
indication of how long you will need to wait, the frustration level is significantly reduced.
Providing feedback is the most important part of promoting a friendly user experience.
Common sense tells us that people will prefer an interface that is friendly and responsive to
one that is not.

Time It Right
Experiments show that, on average, humans tend to react to events within around 300 milli-
seconds; if the eye sees something it needs to react to, the brain takes about 300 milliseconds
to process the input and form a reaction. This information gives us a good idea of how soon
after users perform an action in the browser that they expect a response.

If your application takes more than 300 milliseconds to react after an event takes place, it
will seem unnatural to most people. If you are not able to produce the final result within this

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS180

time frame, you need to give some indication that you are processing their action, to avoid
having users attempt to repeat the action, or simply getting frustrated and leaving the web site.

The JavaScript code in Listing 5-1 shows how to execute a function only if 300 milliseconds
have passed since a user submitted a form via Ajax without receiving a response from the server.
In some cases, this may be preferable to instant feedback in order to prevent any flicker, as con-
tent is added to the page and removed within 300 milliseconds. By waiting 300 milliseconds, you
provide feedback only after you know the intended action has not yet completed.

 Listing 5‑1. Providing a Response 300 Milliseconds After an Action

$.onDomReady(function() {
 // Outputs "Please wait..." if the Ajax request does not complete
 // within 300 milliseconds

 var visualFeedback = function() {
 alert("Please wait...");
 };

 // Listen for the submit event on the first <form> tag on the current page
 $.Events.add(document.getElementsByTagName("form")[0], "submit", ➥

 function(e) {
 // Stop the default form submission from occurring
 e.preventDefault();

 // Execute the visualFeedback function after 300 milliseconds, storing a
 // reference to the timer within a variable named reaction
 var reaction = window.setTimeout(visualFeedback, 300);

 // Save the form data to the server via Ajax
 $.Remote.save({
 url: "/save- form.php",
 data: "...", // TODO: Real form data goes here
 callback: function(response) {
 // Terminate the execution of the visualFeedback function. If 300
 // milliseconds have not passed, it will not have been executed. If
 // they have, it will have executed already, providing feedback to
 // the end user
 window.clearTimer(reaction);

 // TODO: Perform actions on the Ajax response
 }
 });
 });
});

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS 181

Use CSS Pseudo- Classes on Hyperlinks
CSS pseudo- classes allow you to provide a visual response to mouse and keyboard events that
occur on hyperlinks on the page, indicating different states to the user. Listing 5-2 shows how
you can use these pseudo- classes to provide a reaction to events occurring on hyperlinks within
your page. For correct operation, these styles must be provided in the order shown.

 Listing 5‑2. CSS Pseudo- Classes for Providing Visual Feedback on Hyperlinks

a:link {
 /* Applied to unvisited links */
}

a:visited {
 /* Applied to visited links */
}

a:hover {
 /* Applied to the link currently underneath the mouse pointer */
}

a:focus {
 /* Applied to the link currently selected via the keyboard */
 /* e.g., when using the tab key to cycle through links on the page */
}

a:active {
 /* Applied to the link for a brief period while it is being selected */
}

Let the User Know the Form Is Being Submitted
Forms, especially those containing a lot of data, can take time to be submitted to the server. As
noted in earlier chapters, most users’ upload connection speed is slower than their download
speed. Additionally, web servers usually need to process the data being sent before sending a
response back to the client. This has been known to cause frustration to some users, who pro-
ceed to resubmit the form when they believe they have waited long enough for a response to
be received.

Duplicate form submissions can cause problems on the web server, such as repeating data
in a database or, in the worst case, causing credit cards to be charged multiple times. To avoid
this, you can use JavaScript to provide visual feedback that lets users know that their form is
being submitted, and preventing them from resubmitting the form. Listing 5-3 demonstrates
this technique.

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS182

 Listing 5‑3. Informing the User That the Form Is Being Submitted

$.onDomReady(function() {
 // Listen for the submit event to fire within the page - this can only
 // occur on <form> tags

 $.Events.add(document.getElementsByTagName("form")[0]

 // Locate the submit button within the current form,
 // which should have a class of submit- button assigned to it
 var buttons = $.Elements.getElementsByClassName("submit- button", ➥

 e.target);

 // Code defensively
 if (buttons.length > 0) {

 // Disable the submit button so it cannot be submitted twice. This
 // visually grays out the button
 buttons[0].disabled = "disabled";

 // Set the submit button text to reflect the fact that the form is
 // now being submitted
 buttons[0].value = "Saving...";
 }
 });
});

Change the Mouse Pointer
One of the simplest ways you can let site visitors know that an action is taking place behind the
scenes is to update the mouse pointer to indicate that the application is busy. This is just what
an operating system does when you load an application or file from your hard drive, indicating
that an action is occurring and could take some length of time.

Use JavaScript to set a class, such as busy, on your page’s <body> tag when you begin
performing an action, and remove it when the action is complete to restore the pointer to its
normal state. You can then write the following CSS to set the mouse pointer to the correct state
based on the class:

// Change the mouse pointer on every page element

body.busy,
body.busy * {
 cursor: progress;
}

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS 183

Use a Web 2.0–Style Animated Indicator
Another approach to indicating to the user that the page, or part of the page, is busy updating
for an undetermined length of time is to use the almost ubiquitous Web 2.0–style animated
icon. Figure 5-1 shows an example of this indicator.

 Figure 5‑1. Web 2.0–style animated loading indicator (spinner)

For example, if you are updating only a portion of the page while posting a form back to
the server via Ajax, you could center the spinner’s position over that portion of the page and
render any controls within that area inactive while the processing is taking place. This can be
achieved by assigning an indicator class to a page element via JavaScript when the Ajax com-
munication begins, and removing it once it ends. You should then use CSS to associate the
indicator image to this element, as follows:

.indicator {
 background: url(/spinner.gif) center no- repeat;
}

You can browse and download a large variety of Web 2.0–style loading indicators to use
with this technique from http://www.ajaxload.info/ or http://www.loadinfo.net/. Customize
these as necessary to fit your own web application design.

Show a Progress Bar
In some cases, you may be able to calculate how long a particular code execution is going to
take or the proportion of the code that has executed as a percentage of the total. For example,
if you are looping through an array of 1,000 values, you will know on each loop of the array the
proportion of the array you have already processed, based on the current index and the total
number of items in that array.

When you know what proportion of a particular routine has completed, you can use a
progress bar– style indicator to indicate the percentage of the code execution that has taken
place. Figure 5-2 shows an example of such a progress bar.

 Figure 5‑2. A progress bar indicator

In many ways, this type of progress bar is far superior to a cursor change or animated
icon, as it allows the user to predict, based on how long execution has taken thus far, how long
the action will take to complete. It is also a common part of the operating system user inter-
face, so users are already used to seeing a progress bar. Giving the end users an idea of how

http://www.ajaxload.info/
http://www.loadinfo.net/

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS184

long they will need to wait offers them the freedom to make choices based on that decision—
whether they should fetch that coffee now or later, whether they have enough time to visit a
different web site in a separate browser window while they wait, and so on.

Building a progress bar is as simple as creating two nested <div> elements on your page
with specific class and id values:

<div class="progress- bar">
 <div class="progress" id="code- progress"></div>
</div>

Then use CSS to set the dimensions, text, and border styles of the two elements to create
the bar:

.progress-bar {
 border: 1px solid #000;
 background: #fff;
 width: 150px;
 height: 20px;
}

.progress {
 background: #666;
 color: #000;
 text- align: right;
 height: 100%;
 width: 0%; // The default position of the bar's progress - starts at 0% complete
}

You then use JavaScript to dynamically update the width of the inner <div> element to the
percentage of the progress of your code as it runs:

document.getElementById('code-progress').style.width = '70%';

By updating this value regularly, you can achieve a smooth progress bar effect.

Handling Long‑ Running Scripts
JavaScript does not run in a threaded fashion as some programming languages do; that
is, most JavaScript code runs sequentially. While JavaScript is actually executing code, the
browser locks up, and then becomes active again when the code is finished running. In most
cases, users won’t notice this happening, as scripts complete execution quickly. However,
occasionally, a script will run for a sufficient length of time that users see a message dialog
box in their browser. This dialog box alerts users that a script is being unresponsive and
offers them the choice of terminating the script or continuing to allow it to run, as shown in
 Figure 5-3.

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS 185

 Figure 5‑3. Slow- running script dialog box

One of our goals as web developers is to ensure our code effectively goes unnoticed by the
end users. If our code is efficient and responsive enough, the users will feel as though the sys-
tem is responding in a natural fashion; disturb this responsiveness, and the users will become
frustrated. For this reason, you must ensure the users never see a message informing them
that a script is unresponsive.

Divide Long- Running Scripts into Chunks
If you are running code that you know will take some time to execute, potentially causing this
message dialog box to appear, you can restructure your JavaScript routine to break it into
smaller chunks, each one calling the next after a split- second delay. The browser identifies this
as several smaller scripts, rather than one longer routine, and the slow- running script dialog
box is not displayed.

To take advantage of this technique, you can use the code pattern shown in Listing 5-4,
adapted for JavaScript by Julien Lecomte of Yahoo! (his personal blog is at http://www.
julienlecomte.net/), to divide your long- running routine into smaller chunks. Using this
routine, you can update a progress bar or other visual indicator based on the current state of
completion of the larger routine:

 Listing 5‑4. Julien Lecomte’s Code Pattern for Breaking Up Long Scripts into Smaller Blocks

function myLongRoutine(progressFunction [, other arguments]) {
 // Initialize the routine's data variables here

 // The following anonymous function represents a single set of
 // operations on the data
 (function () {

 // Process or operate on the data here

http://www

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS186

 if (still data left to process) {
 // If there is still data left to process, execute the progressFunction
 // passing it the current value and total, allowing it to present this
 // information to the end user as, for example, a progress bar
 progressFunction(currentValue, total);

 // Execute the next set of operations on the data after a brief
 // pause to enable the browser to remain responsive. A value of 0
 // milliseconds is used, which ensures the briefest possible pause
 // allowed within the browser before the next operation begins.
 // arguments.callee represents the anonymous function
 window.setTimeout(arguments.callee, 0);
 }
 })(); // Begin executing the anonymous function immediately
}

An example usage of this technique can be seen in the sorting algorithm shown in
 Listing 5-5.

 Listing 5‑5. A Long- Running Sort Routine Split into Smaller Code Blocks

function sort(progressFunction, data) {
 var counter = 0;
 var total = 1000;
 var progressBar = document.getElementById('code- progress');

 // Create an anonymous function to encapsulate each processing
 // block of the sort algorithm
 (function() {

 // The sort algorithm itself
 for (var index = total; index < counter; index--) {
 if (data[index] < data[index - 1]) {
 var value = data[index];
 data[index] = data[index - 1];
 data[index - 1] = value;
 }
 }
 counter++;

 // Execute the progress function now this iteration has completed, to keep
 // the user informed of progress
 progressFunction(counter, total, progressBar);

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS 187

 if (counter < total) {
 // If we haven't completed all iterations of the sort, execute the next
 // block after a short delay
 window.setTimeout(arguments.callee, 0);
 }
 })();
}

// The progress function simply updates a visual progress bar with an
// indication of how far through the routine the code has reached
function progress(value, total, progressBar) {
 var percentageComplete = Math.round((value / total) * 100);
 progressBar.style.width = percentageComplete + "%";
}

// Kick things off on the page once the DOM is ready to be accessed
$.onDomReady(function() {
 // Generate an array of random numbers to sort
 var data = [];
 for (var index = 0, length = 1000; index < length; index++) {
 data[i] = Math.floor(Math.random() * length);
 }

 // Execute the sort routine with this data
 sort(progress, data);
});

Since this technique actually interrupts the code from executing in order to keep the
browser responsive, the full routine takes longer to execute than if it were to run directly. You
can reduce the effect of this by running each smaller code block multiple times, instead of only
a single time.

Use a Timer to Run Code Blocks Multiple Times
Running each code block of a long routine multiple times ensures there are fewer breaks. You
can still make sure the browser does not lock up by introducing a timer to your code pattern.
This timer will allow multiple executions of each code block until a fixed duration has been
reached, at which point, it will force a break to occur. If you ensure these fixed durations do
not exceed around 50 milliseconds, you continue to keep the browser responsive, but allow
more code to execute without interruption. Consider it a compromise approach that keeps the
code running and the user happy.

 Listing 5-6 shows how the sort function of Listing 5-5 can be modified to use a timer to
improve the time taken to execute a long routine.

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS188

 Listing 5‑6. Improved Performance of the Sort Algorithm in Listing 5-5

function sort(progressFunction, data) {
 var counter = 0;
 var total = 1000;
 var progressBar = document.getElementById('code- progress');

 (function() {
 // Store the time at the beginning of execution of this code block
 var startTime = (new Date()).getTime();

 // Store a reference to this function to call it later
 var anonFunction = arguments.callee;

 // Encapsulate the sort algorithm within a nested function so it can be
 // called multiple times within the surrounding anonymous function
 function sortAlgortihm() {
 for (var index = total; index < counter; index--) {
 if (data[index] < data[index - 1]) {
 var value = data[index];
 data[index] = data[index - 1];
 data[index - 1] = value;
 }
 }
 counter++;

 // Get the current time after execution of the algorithm
 var endTime = (new Date()).getTime();

 if ((endTime - startTime) < 50) {
 // If we have been processing for less than 50 milliseconds,
 // continue sorting
 sortAlgorithm();
 } else {
 // Otherwise the duration limit has been released so force a
 // break to occur before continuing execution
 window.setTimeout(anonFunction, 0);
 }

 // Update the progress bar
 progressFunction(counter, total, progressBar);
 }

 // Start execution of the sort algorithm
 sortAlgorithm();
 })();
}

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS 189

Anticipating Your Site Visitors’ Needs
When you have included all the performance enhancements you can to your web application,
and provided feedback to your users where necessary, the next step in improving the perceived
performance of your web application is to attempt to anticipate your users’ actions. If you have
a good idea about what your end users are going to be acting upon at a particular stage of your
web application flow, you can prepare for that action, loading in extra data or executing some
code in advance. This way, when they take that action, they don’t need to wait as long to see
a result. You’re not improving the actual performance of your code, but rather distributing
the loading and executing of code in order to adjust the perceived responsiveness of your web
application.

Preload Content
Once your page has loaded, and the user is interacting with your page, there is a lot of “dead
time” in the browser, when the browser is not executing scripts, not loading data, not ren-
dering the page—not doing anything. You can take advantage of this time to preload data or
execute scripts that your users will likely need to interact with your application at a later time.

“Lazy loading” of components can help speed up the load time of your page. By loading
only the content you need to display the initial view of your page, the page takes less time to be
ready for your user. Nonessential components can be loaded on demand through JavaScript at
predetermined times or based on some other action.

Consider what your users would need to achieve next in the flow of your web application,
and use that information to determine which components and extra data you could preload
and execute in advance to provide a better experience for your users.

A simple example is the web mail client, now a staple part of most online web application
suites, attempting to re- create the desktop e- mail package within a browser window. The stan-
dard initial view when logging in to a web mail client is the inbox. When web mail users arrive
at their inbox, they are probably going to want to open and read any unread messages. In most
cases, web mail clients do not load any messages until the users click the message they wish
to view. Then the message data is loaded, and the data is applied to the HTML template and
placed within the page using DOM manipulation, displaying the message to the user.

By preloading unread message data once the initial view of the web application has loaded,
you reduce the time for the user to see the message, which provides an instant improvement on
the usual method of loading the data when the user clicks the message. Figure 5-4 shows a flow-
chart describing this behavior.

Load initial
view and

message list

Preload
unread

messages

User clicks
unread

message

Message
displays

immediately

 Figure 5‑4. Flow of handling unread mail messages

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS190

Load Navigation Levels Efficiently
A common feature of many large sites is a drop- down navigation menu at the top of the page.
When the users move their mouse over the top navigation, the subnavigation appears beneath
it, as shown in Figure 5-5.

 Figure 5‑5. A multilevel main page navigation

Typically, this entire menu structure will be coded in HTML on the page in the following
way:

<ul id="top- navigation">
 Home

 Products
 <ul class="sub- navigation">
 Perpetual motion machine
 ...

 Company information

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS 191

You would then use CSS to hide the <ul class="sub- navigation"> element by default,
showing it when users move their mouse over the top- level menu item by using JavaScript.

You can take advantage of the lazy loading technique by initially loading only the HTML
for the top- level navigation, without any sublevel navigation, like so:

<ul id="top- navigation">
 Home
 Products
 Company information

This results in less HTML to load initially, making the web application load faster.
Now suppose that you have a larger navigation structure, with many top- level links, each

containing several subnavigation items. The code to represent this would consume potentially
up to half of your HTML for each page, causing the initial load time of the page to be consider-
ably longer than you can make it using this lazy loading technique.

Since you are now loading only the top- level of this hierarchical navigation, you need to
be able to load in the full navigation via an Ajax request using JavaScript, and then swap out
the flat navigation with the hierarchical one at some point after the page has loaded. You have
several options for when to load the full navigation:

	 •	 When	the	page,	including	all	external	assets	and	images,	has	finished	loaded,	using	this	
code:

$.Events.add(window, "load", functionToLoadMenuHTML);

	 •	 When	the	HTML	is	accessible	to	the	DOM,	using	this	code:

$.onDomReady(functionToLoadMenuHTML):

	 •	 When	the	user	moves	the	mouse	or	brings	focus	to	the	navigation

Using the third option, you delay loading until you believe the user actually wants to do
something with the navigation. Rather than loading this content regardless of what the user
does, you are anticipating the actual needs of the user. This behavior can be achieved using
the code in Listing 5-7.

 Listing 5‑7. Loading Full Navigation HTML on Interaction with a Placeholder

$.onDomReady(function() {
 // Define a function to retrieve the full navigation HTML via Ajax
 var getNavigationHTML = function() {
 $.Remote.load("full- navigation.html", function(response) {
 // Set the HTML in the correct place on the page
 document.getElementById("top- navigation").innerHTML = response.text;
 });

Chapter 5 ■ SMOKe aND MIrrOrS: perCeIVeD reSpONSIVeNeSS192

 // Never execute this again when the mouse moves over the navigation
 $.Events.remove(document.getElementById("top- navigation"), ➥

 "mouseover", getNavigationHTML
 }

 // Execute this function when the mouse is brought over the top of the
 // navigation element
 $.Events.add(document.getElementById("top- navigation"), "mouseover", ➥

 getNavigationHTML
});

Catch Mouse Clicks Early
If you wish to execute some JavaScript code when the user clicks a link or button within your
page, consider hooking onto the mousedown event, rather than the click event. The browser
fires the click event after the mouse button has been released; the mousedown event is fired
when the mouse button is pressed initially. By hooking into the mousedown event, you are able
to execute your code a few valuable milliseconds sooner than when listening for the click
event.

$.Events.add(document.body, "mousedown", function() {
 alert("I fire first!");
});

$.Events.add(document.body, "click", function() {
 alert("I am slow in comparison!");
});

Summary
In this chapter, you have discovered some ways to make your web site appear to be responsive,
even when some actions take a while to complete. You can improve your users’ experience
of your site by giving them visual feedback when a more time- consuming action affects the
performance of your RIA. You have seen how to use the “dead time” in your users’ browser to
preload and execute data that they may wish to use later on in the page’s life cycle, making your
web applications appear to be more responsive. Responsiveness is key to web applications,
which are often attempting to replicate desktop applications within the browser.

That brings us to the end of the part of this book dealing with web application performance.
Try to apply the techniques you’ve learned to your own web applications. You will find that your
users will be really happy with the results. Happy users mean less frustration, fewer complaints,
more satisfied clients, and fewer sleepless nights for you, as the developer.

The next part of the book will focus on the user interface and introduce you to several
techniques for improving the presentation of your RIAs. Specifically, the next chapter will
show you how to apply heading text to your pages using custom fonts that are not installed on
your end users’ computers.

P A R T 3

Presentation

So far in this book, I have shown how you can develop your code according to best

practices, and how to alter that code to get the greatest performance and responsive-

ness from your web applications. In this, the third and final part of the book, I will take

you into the realm of the user interface, introducing you to techniques and third- party

reusable components that will help you to build a better- looking and better- behaving

RIA. And perhaps you will be inspired to develop your own reusable components and

share them with the rest of the web development community!

195195

C h A P T e R 6

Beautiful Typography

You won’t be long into your career as a web developer before you discover the need to format
some text in a custom or corporate font—a typeface that is not in the standard set of pre-
installed fonts on your end users’ computers. You will then need to decide how best to display
that stylized text. This chapter presents a number of different solutions to the problem. We’ll
look at the pros and cons of each method with regard to ease of development and maintain-
ability, accessibility, performance, and visual appearance.

The Challenge
Throughout this chapter, we will attempt to re- create the headings shown in Figure 6-1. The
first heading in the figure uses the font Sketch Rockwell, and the second heading uses the
Silom font. Neither of these fonts is guaranteed to be installed on your end users’ machines.
In fact, it’s likely that your users won’t have these fonts. Therefore, to use them in your site,
you will need to represent them by means of one of the techniques covered in this chapter.

Before we get started with any coding, let’s take a moment to examine exactly what con-
stitutes a font.

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY196

 Figure 6-1. Sample page with two headings displayed in custom fonts

The Basic Anatomy of a Font
 Figure 6-2 shows the parts of a typeface and the terminology used to describe them. Work-
ing from the bottom, the baseline is the imaginary line upon which most of the characters sit.
From the baseline, the character springs up to the median line, which is the line above the
baseline that marks the top of most characters. The distance between the baseline and the
median is the x- height, more commonly called the font size.

Certain characters, including uppercase letters and lowercase b, d, f, among others, have
portions of their character above the median line. This portion of the character that sits above
the median is known as the ascender. Conversely, some characters, such as g and j, have a seg-
ment that sits below the baseline, known as the descender.

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 197

xAbg
aa

Ascender

Median

Baseline

Baseline

Font Size

Descender Leading

Kerning

 Figure 6-2. The basic anatomy of the Times New Roman font

The spacing between individual letters is known as kerning. The space between the base-
line of one line and the median line of the following line is known as the leading, which is the
spacing between lines of text.

 Table 6-1 shows how this font terminology translates to CSS style properties. Note that the
baseline, median, ascender, and descender positions are dictated by the typeface itself, and
are not alterable through CSS. This is because to do so would severely change the appearance
of the font on the page, stretching it disproportionately in any one direction.

 Table 6-1. Typeface CSS Style Properties

Typeface Term CSS Style Property

X-height (font size) font-size

Kerning letter-spacing

Leading line-heighta

a. The ­line-­height CSS property measures the distance between the baselines of two lines, not the baseline of
one line and the median of the next line.

Let’s now take a look at some different techniques for rendering text in custom fonts onto
your pages.

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY198

Using Static Images for Text
Many developers’ first foray into custom fonts involves creating a flat image file of the text
heading to be displayed using a graphics program, such as Adobe Photoshop. This image is
then referenced as a foreground image within a tag on the page, with the text for the heading
situated within the alt attribute of the tag, like this:

<h1></h1>
<h2><img src="heading-new- product.png" ➥

 alt="New product released: Human Teleporter" /></h2>

This is a quick and simple method for getting your stylized headings onto your page. How-
ever, this approach has some limitations involving maintainability and accessibility.

What if you need to change the text? You will need to re- create the image within your
graphics software. If you have content that could change on a regular basis, such as the news
article headings in this chapter’s example (Figure 6-1), maintenance becomes a rather fre-
quent, repetitive, and monotonous task.

Additionally, there are two issues with accessibility in this technique. One arises for users
who are visually impaired and need to magnify text to read it (using extra software or their web
browser’s built- in zoom feature). In this case, the text size will increase but the images will not.
In fact, if the images were to zoom, the pixelated nature of those image files would become
more apparent, rendering them harder to read. Making text harder to read is not our goal for
our end users, visually impaired or otherwise.

The second accessibility issue with this technique is the use of the alt attribute:

<h1></h1>

If a screen reader application were to read aloud the contents of this <h1> tag, the user
would hear that there is an image tag within the header and then hear its associated alt attri-
bute value. The preferred approach is to include the same text directly within the heading tag,
like this:

<h1>News</h1>

If this were read aloud, the user would hear just the header text you wish for them to hear,
reducing the chance of confusion for the end user.

Similarly, search engine spiders or other remote computers accessing the content on your
page would not always be able to extract the proper heading text from the markup used in the
first example and, if they were, they might not assign that text as much precedence in their
system as the more simplified heading of the second example. The simpler and more semantic
the heading text, the more understandable it will be to your end users.

Let’s take the approach of working with the more semantic HTML markup for our heading
text, and use CSS to apply a background image to the heading tag, simultaneously hiding the
text from view. The HTML for our headings becomes the more idealistic form:

<h1>News</h1>
<h2>New product released: Human Teleporter</h2>

And now we use CSS style rules to produce the same visual effect as using an tag on
the page, our stylized headings:

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 199

h1,
h2 {
 text- indent: -10000px; /* Hide the real text off the side of the screen */
 font- size: 1px; /* Ensure the large font size of headers does
 not impact the image dimensions */
}

h1 {
 background- image: url(heading- news.png);
 width: 257px; /* The width of the image */
 height: 65px; /* The height of the image */
}

h2 {
 background- image: url(heading-new- product.png);
 width: 353px; /* The width of the image */
 height: 62px; /* The height of the image */
}

The result is exactly the same visual layout as before, except that we have fixed one of the
previous method’s accessibility disadvantages: we have removed the image tags from within
the header tags and replaced them with the sole semantic text representation of each heading.
This is much better. However, we still have the problem of maintainability, as updated header
text will require new image files to be created. Now let’s look at a more maintainable solution.

Generating Images for Text Dynamically
To remove the requirement to keep generating new image files manually whenever you need
to change the text in a custom font, you can instead generate text in the required typeface
dynamically. This can be done either on the server or within the browser. Let’s look at the dif-
ferent techniques available, and their advantages and disadvantages, so you can choose the
best solution to fit your application’s requirements.

Using CSS to Embed Font Files Directly
Naturally, as developers, we want to use custom fonts on our page in as simple a way as pos-
sible. We want to include our text content directly within our HTML pages and use CSS to style
that text in the font, color, and size of our choosing, just as we do with the built- in fonts, such
as Arial, Helvetica, and Times New Roman.

The simplest approach is to specify your custom typefaces directly using CSS in the fol-
lowing way, in the standard format:

h2 {
 font- family: "Silom", monospace:
}

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY200

Here, we dictate that the contents of all <h2> heading tags should utilize the Silom font. If
this font is not installed on the user’s machine, it should fall back to using the default mono-
space font specified by the browser. (In a monospace font, all the characters occupy the same
width.) Of course, not many end users will actually have the Silom font, so most browsers will
display the default monospace font instead.

It is not appropriate to ask your end users to download and install custom fonts on their
computer just to display your web page as it was designed. In many cases, the user may not
even know how to do this, or it may not be allowed in their environment (such as in a corpo-
rate office).

CSS Web Fonts
Ideally, we need a way for the browser to load custom font files on demand when they are ref-
erenced through CSS. Interestingly, the ability to embed custom font files through CSS in this
way has existed in IE since version 4, although it had been all but forgotten until recently. It
regained attention with the proposal of a W3C specification known as CSS Web Fonts, which
seeks to have all browser manufacturers conform to the same method of implementing this
useful feature. This new recommendation, which you can read online at http://www.w3.org/
TR/css3- webfonts/, allows web developers to declare new fonts for use on the page and have
the associated font file load when that font name is used in the rest of the CSS style rules.

■Caution CSS Web Fonts is a new W3C recommendation, and as such, is not fully implemented in all
browsers. Since this technique is a W3C recommendation, once it is widely adopted by browsers, it should
be considered to be the de facto standard for custom font embedding within CSS.

Take a look at the following description for the Silom font in the W3C Web Fonts format:

/* Declare a new font face for use within the rest of the CSS */
@font-face {

 /* Declare the name this new font will take in the CSS file */
 font- family: "Silom";

 /* Locate the font file on the server and declare that its format is the */
 /* TrueType font format */
 src: url(/assets/fonts/silom.ttf) format("truetype");
}

You can then reference the Silom font as you might expect within your CSS, in the same
way as before:

h2 {
 font- family: "Silom", monospace;
}

http://www.w3.org/

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 201

Provided your browser supports the @font- face directive for loading external fonts in this
way, you will see the Silom font in use. Browsers that do not support this technique will use
the fallback font specified in the font- family style property—in this case, the browser’s default
monospace font.

Two different font formats are supported by this technique: OpenType and TrueType.
OpenType is an international ISO standard and intended as a replacement for the proprietary
TrueType font format, which was developed by Apple and requires licensing for its use.

Problems with embedded Font Files
Unfortunately, browser support for the CSS Web Fonts technique is mixed at best. Firefox ver-
sions 3.5 and later support TrueType and OpenType font formats using this technique, but at
the time of writing, this browser version does not have a large installed user base. The Web-
Kit engine team has implemented this technique, and its support is available within Google
Chrome 2 and Safari 3 browsers. IE versions 4 and later support the technique, but only using
their proprietary Embedded OpenType (EOT) font format, a compressed and restricted ver-
sion of the OpenType format.

With the EOT format, the file itself contains a list of trusted sites on which the font may
be used. This restriction means that those wishing to copy and reuse a copyright- limited font
file on their own web site will not be able to do so. To generate EOT fonts, you need to use
Microsoft’s Web Embedding Fonts Tool (WEFT), available from http://www.microsoft.com/
typography/web/embedding/weft3/weft01.htm.

Another problem with this approach is that providing links to font files within your CSS
may cause you to stumble across a legal gray area in terms of copyright. Many of your clients,
corporate or otherwise, will use specific fonts for their branding, and typically, they will have
paid a substantial amount to license those fonts for exclusivity. Since your CSS is publicly
accessible—it must be to be usable by the browser—and is written in plain text, avid develop-
ers visiting your site may trawl through your CSS. Upon spotting a reference to an external font
file, they may choose to download that font file from your server via its URL and use it, without
paying for the rights to do so. This is a big copyright no- no, and most organizations do not
want to allow their exclusive fonts to be inappropriately used.

Microsoft is pushing for its EOT specification to be a W3C recommendation, the main
reason being that its generated font files are wrapped in a Digital Rights Management (DRM)
layer. This means that the fonts can be used only by the licensed party on a list of trusted
web sites embedded within the file itself. Of course, it is still possible for this type of file to be
downloaded, but it cannot be used except for in the context in which it was designed, namely
on the web site on which it was created to be used.

An alternative method of download restriction, known as Cross- Origin Resource Shar-
ing, is being considered for W3C recommendation (see http://www.w3.org/TR/cors/), and
is being implemented already by Mozilla in its Firefox browser. This is a technique that
can apply to any server- requested content, not just font files. It limits the content to being
delivered to the page only if the requesting domain is in a whitelist of allowed domains,
maintained at the server. This access list uses new HTTP response headers, most notably the
 Access-Control-Allow- Origin header, which contains a list of domains permitted to access the
requested content. For example, to allow access only to the domain http://mydomain.com, the
following HTTP header would be added to the response:

Access-Control-Allow-Origin: http://mydomain.com

http://www.microsoft.com/
http://www.w3.org/TR/cors/
http://mydomain.com
http://mydomain.com

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY202

To allow access to all domains, the wildcard character can be used in place of a specific
domain name:

Access-Control-Allow-Origin: *

There are two downsides to this technique as it stands:

	 •	 The	font	file	requested	would	still	be	downloaded	and	cached	within	the	browser,	
allowing users, if they were maliciously inclined, to take that file from their computer
and upload it to their own domain, thus bypassing the access control restriction.

	 •	 Since	this	is	still	a	work	in	progress	at	W3C,	its	browser	implementation	is	currently	too	
limited to be of much use. As with other standards, you won’t want to use it until the
technology is finalized and adopted within all the major browsers.

For now, you may wish to program your server directly to send out the font file to the
requesting page only if that page is hosted on the same server. You can do this by checking
domain names prior to sending the content. Unfortunately, this requires some extra pro-
cessing time on the server, which could have an impact on the performance of your page,
especially if applied to all external files.

Having the Server Generate Text Images
Rather than manually creating each custom- styled heading image yourself, why not rely on
your web server to perform this generation dynamically on your behalf? Suppose that your
server contains a script that accepts a text string as a parameter through the query string of its
URL and returns an image file for inclusion on your page. The URL to create a styled header
image rendering the title “News” might look something like this, where generate- image is the
name of the script file generating the image:

http://www.myserver.com/generate-image?text=News

In order to make this work on your particular web server, you need to use the appropriate
 server- side technology and prewritten code component to download, or write your own. Now
let’s look at the basic scripting required for a few common server technologies: PHP, ASP.NET,
and JSP.

Dynamic Image Generation in PhP
PHP provides built- in methods that allow you to generate blank canvases and to draw graphi-
cal components, including text in custom typefaces, within those canvases. The code in
 Listing 6-1 shows how to generate text images in PHP.

 Listing 6-1. Generating Images Containing Text in Custom Fonts Using PHP

// First, we need to know the actual text we wish to represent. Assuming the text
// is being passed to this script via a query string parameter named text in the
// URL, we can extract the text to display from the URL into a variable with the
// following line of code.

$text = $_GET['text'];

http://www.myserver.com/generate-image?text=News

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 203

// Now we that have our text, we need to know how big to create our empty canvas to
// completely encompass the rendered text in our chosen font. To establish the size
// of the bounding box surrounding our text, we can call a handy function,
// ImageTTFBBox, passing it the font size, display angle, font file location and the
// actual text we wish to represent.

$fontFilename = 'font-file-­location.ttf';
$size = 24;
$angle = 0;
$boundingBox = @ImageTTFBBox($size, $angle, $fontFilename, $text);

// The variable $boundingBox is an array of points around the bounding box from
// which we can establish the width and height we require our canvas to be.

$lowerLeftCornerX = $boundingBox[0];
$lowerLeftCornerY = $boundingBox[1];
$lowerRightCornerX = $boundingBox[2];
$lowerRightCornerY = $boundingBox[3];
$upperRightCornerY = $boundingBox[5];
$width = abs($lowerRightCornerX - $lowerLeftCornerX);
$height = abs($upperRightCornerY - $lowerRightCornerY);

// Creating an empty canvas of our required dimensions is then as simple as
// calling the PHP method ImageCreate.

$image = @ImageCreate($width, $height);

// The first thing to do with our blank canvas is to set its background color. When
// we set colors, we need to separate the red, green, and blue components and
// represent them in hexadecimal. In this case, we wish to use a white background.
// Within CSS, we would specify this as #ffffff; in PHP we would specify it in the
// following format.

$background_hex['red'] = 0xFF;
$background_hex['green'] = 0xFF;
$background_hex['blue'] = 0xFF;

// To set the background color of our canvas, we use the ImageColorAllocate
// method. This method must be called for every color to be
// used within our canvas, though its first use against an image canvas always sets
// the background color, which is what it is used for here.

$background = @ImageColorAllocate($image, $background_hex['red'], ➥

 $background_hex['green'], $background_hex['blue']);

// Now we have our empty canvas with a colored background. We move onto the
// contents of our canvas: the text. We already have the location of the font file

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY204

// to use and the size of the text. Before we write into the canvas, we need to
// also specify its color. We must specify colors in their constituent hexadecimal
// parts as with our background color, previously, and make a call to
// ImageColorAllocate to create the color reference required by other PHP
// methods later.

$color_hex['red'] = 0x00;
$color_hex['green'] = 0x00;
$color_hex['blue'] = 0x00;
$color = ImageColorAllocate($image, $color_hex['red'], $color_hex['green'], ➥

 $color_hex['blue']);

// Before we render our text into the canvas, we need to calculate the baseline
// position of our font, which will be the point at which the text is rendered from,
// as we saw in Figure 6-2, earlier in the chapter.

$top = -$lowerLeftCornerX;
$left = abs($upperRightCornerY - $lowerRightCornerY) - $lowerLeftCornerY;

// Render the text onto the canvas.

ImageTTFText($image, $size, $angle, $left, $top, $color, $fontFilename, $text);

// And finally we draw the canvas to the screen as a PNG image file using the
// ImagePNG function, first setting the correct response header to the browser,
// and finally destroying the reference to the created canvas to conserve PHP
// application memory.

header('Content-type: image/png') ;
ImagePNG($image) ;
ImageDestroy($image);

Assuming you save the code in Listing 6-1 to your web server root using the file name
 generate- image.php, you can generate images dynamically using the following image URL
format within your HTML and CSS:

/generate-image.php?text=News

Dynamic Image Generation in ASP.NeT (C#)
As you may be aware, the ASP.NET platform supports multiple coding languages. For the
following example, I have opted to use the C# language, though it should be fairly easy to
convert into other languages, as the API objects and methods are virtually identical between
languages.

Create a new ASPX web form called generate- image.aspx, and then add the code in
 Listing 6-2 to the automatically generated code- behind file, generate- image.aspx.cs.

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 205

 Listing 6-2. Generating Images Containing Text in Custom Fonts Using C#

namespace CustomImage
{
 using System;
 using System.Drawing;
 using System.Drawing.Text;
 using System.Web;

 public class GenerateImage: System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 // Extract the text we wish to display from the query string
 // parameter text.
 string text = Request.QueryString["text"];

 // Define variables for the other information we need to represent our
 // font: the font file location, its size, color, and background color
 // of the canvas we wish to display the text on top of.

 string fontFileLocation = "font-file- location.ttf";
 int size = 24;
 Color color = Color.Black;
 Color backgroundColor = Color.White;

 // Next, we create a new Bitmap object, which represents the empty
 // canvas within which we will place our text. We start with a catch- 22
 // situation, however, as we want to create a canvas as large as the
 // text we wish to represent, but unfortunately we can't measure the
 // dimensions of the text without having a canvas to put the text on.
 // The way we overcome this hurdle is by starting off with a dummy
 // canvas, measuring 1 pixel by 1 pixel in size, which we will use as
 // the basis for our text measurements and then replace with the
 // real canvas later.

 Bitmap canvas = new Bitmap(1, 1);

 // Within ASP.NET, the Graphics class contains the methods we need to
 // draw and measure text that sits on the canvas. The first step before
 // using these methods is to declare an instance of the object and
 // associate it with our canvas.

 Graphics graphics = Graphics.FromImage(canvas);

 // Before writing any text, we need to define our font. ASP.NET defines
 // two types of font collections: the fonts installed on the system and
 // a private collection of fonts that can be loaded dynamically

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY206

 // from a file for temporary use. It is the latter we need to use, so we
 // create a new private font collection and add our font to it using the
 // file location of the TrueType font we declared earlier.

 PrivateFontCollection myFonts = new PrivateFontCollection();
 myFonts.AddFontFile(Server.MapPath(fontFileLocation));

 // Individual fonts are always associated with font families, which are
 // a collection of related fonts that belong together. These families
 // consist of variations of the same font, such as bold or italicized
 // versions of the same font. Now we have added our font to our private
 // font collection, it is stored within its family group, which has been
 // defined within the font file and extracted automatically by ASP.NET.
 // To get a font reference we can use in our code, we must get to it
 // through its font family. We know that we have only added one font,
 // which can only belong to one font family, so we can get this font
 // family in code.

 FontFamily myFontFamily = myFonts.Families(0);

 // Now we can create a reference to the specific font within this family
 // in the required size, which we choose to measure in pixels.

 Font myFont = new Font(myFontFamily, size, FontStyle.Regular, ➥

 GraphicsUnit.Pixel);

 // Now we have our text and a definition of our font, we need to measure
 // the space that text will consume when written out to our canvas. We
 // use the MeasureString method to achieve this, passing it the text to
 // render and the font definition, and it gives back the width and
 // height dimensions of the rendered text.

 int width = Convert.ToInt32(graphics.MeasureString(text, myFont).Width);
 int height = Convert.ToInt32(graphics.MeasureString(➥

 text, myFont).Height);

 // With the width and height of the rendered text established, we now
 // need to re- create our canvas using these dimensions and specifying
 // a color depth for the final image (24- bit RGB in this case).

 canvas = new Bitmap(width, height, PixelFormat.Format24bppRgb);
 graphics = Graphics.FromImage(canvas);

 // We have our final canvas created, so we can start to build up what
 // will be the final image. Let's start this by filling the canvas with
 // our background color, which we defined earlier as white.

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 207

 graphics.Clear(backgroundColor);

 // Now, before we can write our text onto the canvas, we need to
 // generate an instance of the ASP.NET concept of a brush to paint
 // the text with. We don't want anything too fancy for now, so we'll
 // instantiate a solid color brush, using the foreground text color we
 // assigned earlier.

 SolidBrush brush = new SolidBrush(color);

 // OK, now everything is set up ready for us to paint our text onto the
 // canvas with our selected font. The following code draws the text
 // onto the canvas using our brush, starting at the top left corner of
 // the canvas area.

 int topLeftCornerX = 0;
 int topLeftCornerY = 0;
 graphics.DrawString(text, myFont, brush, topLeftCornerX, ➥

 topLeftCornerY, StringFormat.GenericTypographic);

 // We have our canvas all ready to display, so the next step is to
 // actually draw it out to the screen as a PNG- format image. Before
 // that, we first send the correct content type header to the browser
 // so it will display the data as an image, and finally we free up the
 // application memory taken up by the canvas for use by the rest
 // of the web server.

 Response.ContentType = "image/png";
 canvas.Save(Response.OutputStream, ImageFormat.Png);
 canvas.Dispose();
 }
 }
}

After connecting your web form to your new code- behind file, you should be able gener-
ate images dynamically in your predefined font using the following image URL format within
your HTML and CSS code:

/generate-image.aspx?text=News

Dynamic Image Generation in Java/JSP
You may have a Java-supporting web server with which you create and run JSP pages. In this
case, the procedure for dynamic text image generation is similar to that for PHP and ASP.NET:
you create an empty canvas, draw your text onto it using your specified font, and then send
that canvas to the browser with the correct content type.

Enter the code in Listing 6-3 into a new JSP file, saving it as generate- image.jsp.

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY208

 Listing 6-3. Generating Images Containing Text in Custom Fonts in JSP

<%
 // Let's kick things off by grabbing the value of the text parameter from the
 // query string, which we'll use as the text to render within our image.

 String text = request.getParameter("text");

 // Next, we'll declare a few variables for use later in our code, which we'll
 // use to store our font file location, the text size we wish to use and the
 // foreground and background colors for the text and canvas, respectively.

 String fontFileLocation = "font-file-­location.ttf";
 float size = 24f;
 Color color = Color.BLACK;
 Color backgroundColor = Color.WHITE;

 // Now we've defined our variables, let's create an object instance to represent
 // the font we wish to use, which we'll grab from the server file system, and
 // then set our desired size.

 Font font = Font.createFont(Font.TRUETYPE_FONT, ➥

 new java.io.FileInputStream(fontFileLocation));
 font = font.deriveFont(size);

 // Before we create our canvas and draw our text onto it, we first establish how
 // large we need that canvas to be by measuring the dimensions of the text
 // drawn in our font using a temporary container to perform the measurement
 // within.

 FontRenderContext fontRenderContext = new FontRenderContext();
 TextLayout textLayout = new TextLayout(text, font, fontRenderContext);
 Rectangle2D dimensions = textLayout.getBounds();
 int width = (int)Math.ceil(dimensions.getWidth());
 int height = (int)Math.ceil(dimensions.getHeight());

 // Now we've established the width and height our canvas needs to be, we can
 // create our empty canvas, specifying a high color depth.

 BufferedImage canvas = new BufferedImage(width, height, ➥

 BufferedImage.TYPE_INT_RGB);

 // The methods we need to draw within this empty canvas are contained within
 // Java's Graphics2D class. Before we can use these methods, we must
 // associate an instance of this object with our canvas.

 Graphics2D graphics = canvas.createGraphics();

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 209

 // Our next step is to fill the canvas with our background color, which is
 // achieved by setting the color to be used and then creating a solid rectangle
 // shape to fill the canvas with the set color.

 graphics.setColor(backgroundColor);
 int topLeftPositionX = 0;
 int topLeftPositionY = 0;
 graphics.fillRect(topLeftPositionX, topLeftPositionY, width, height);

 // With our canvas filled with our background color, we can now prepare to
 // write our text on top. We need to set the color and font of the text, and
 // also the top and left positions of the font's baseline, the imaginary
 // horizontal line upon which characters of a font are positioned, as
 // described in Figure 6-2, earlier in this chapter.

 graphics.setFont(font);
 graphics.setColor(color);
 float baseLinePositionX = (float)- dimensions.getX();
 float baseLinePositionY = (float)- dimensions.getY();

 // With the color, size and position set, we are finally in a position to draw
 // our text onto the canvas.

 graphics.drawString(text, baseLinePositionX, baseLinePositionY);

 // With our canvas complete, it remains for us to output the canvas to the
 // browser, first correctly setting the content type of the response and finally
 // returning the application memory used by the canvas to the server for use
 // elsewhere.

 response.setContentType("image/png");
 ServletOutputStream outputStream = response.getOutputStream();
 PNGImageEncoder imageEncoder = ➥

 PNGCodec.createPNGEncoder(outputStream);
 imageEncoder.encode(canvas);
 graphics.dispose();
%>

You should now be able to dynamically generate images in your custom font using the fol-
lowing image URL format within your HTML and CSS:

/generate-image.jsp?text=News

extending the Server- Script Code Routines
The three code examples in Listings 6- 1, 6- 2, and 6- 3 demonstrate the basic structure of
routines to display text within images using custom fonts. They have plenty of room for
improvement. Here are some suggestions to consider if you choose to enhance these routines:

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY210

Code defensively: You will almost definitely need to add some error checking to the routine,
and to make sure that the query string parameter is actually supplied. Removing assump-
tions in this way will improve the stability of the code.

Cache all created images: To improve performance, you should consider saving each cre-
ated image canvas to disk, perhaps with a file name similar to the text being rendered.
That way, when a future request is made for the same heading, you can check whether the
image has already been created and exists on disk. Loading in precomputed images in this
way saves a lot of processing power and time on the server.

Consider text wrapping: Some longer headings you wish to replace may not fit into the lay-
out dimensions of the web application in your browser. In this case, you will require the
ability to wrap the text at the final word break before the character limit you define.

Add text smoothing: Some graphics libraries within PHP, ASP.NET, and Java allow you
to set the amount of smoothing on the text, known as the anti- aliasing effect. Smooth-
ing your fonts will help prevent the edges of your text from appearing jagged and of poor
quality.

Add other query string parameters: You may wish certain headings to appear in bold, ital-
ics, underlined, or even in different colors or using alternative fonts. Why not watch for
extra query string parameters passed to your routine and vary your text attributes based
on these parameter values? This would be far better than duplicating your code to deal
with these different uses.

Generating Text in Custom Typefaces Using Flash
Adobe’s Flash Player is an external browser plug- in installed on virtually all end users’
browsers. Exceptions include certain mobile browsers and older browsers. Latest statistics
for installed versions are available on Adobe’s web site at http://www.adobe.com/products/
player_census/flashplayer/version_penetration.html.

You must be wary of using Flash Player, or any other type of plug- in, when it is not neces-
sary. Use it only to provide functionality that does not already exist within the browser, and
even then, only if you provide suitable backup content for those users who do not have the
 plug- in. Using Flash Player to display headings in embedded fonts fits this role perfectly. If the
 plug- in isn’t present, you can fall back to the same heading text in a different, though appro-
priate, font.

Flash supports font embedding within movie files and even allows you to specify which
characters from the font set are embedded. This means that you don’t need to embed every
character into every movie, which can save on file size. For example, if you provide text only to
an English- speaking audience, you might prevent all extended characters from being embed-
ded within your Flash movie.

The simplest approach is to create a Flash movie containing your embedded font and a
dynamic text layer. The movie would then expect to receive a variable containing the text to
render passed to it from the HTML, often passed to Flash via the query string of the movie URL
itself. The Flash movie would simply take the passed- in text and populate its text layer with the
supplied text, which would then be rendered using the embedded font on the page.

http://www.adobe.com/products/

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 211

Generating Text Using Vector Graphics
Many popular browsers have support for drawing vector graphics within the browser window.
Think of vector graphics as ordinary pictures, with lines and curves making up the visual image.
Instead of defining the pixels within the image, you can describe how a picture is formed from
scratch from these shapes.

By being able to describe images in this way, you make such images resolution- and
 size- independent. Since you always know how to form an image from scratch from data that
describes how the image is constructed, you can simply change a vector, such as the width,
and the image will adjust to fit the new space without losing quality. This is actually how most
fonts are described within their associated font files, so that resizing text does not result in a
loss of quality. Drawing fonts within the browser, in the same way that they are created within
font files, provides a great alternative to embedding the actual required font within your CSS,
as described earlier.

The following browsers support vector graphics drawing in various forms:

	 •	 Firefox	1.5	and	up

	 •	 IE	6	and	up

	 •	 Opera	9	and	up

	 •	 Safari	3.0	and	up	(including	iPhone)

	 •	 Google	Chrome

As you can see, this represents the majority of browsers on the market today. Using vector
graphics is an extremely attractive and viable technique for rendering text in custom fonts. I
will cover the topic of drawing within the browser in Chapter 11.

Using Reusable Custom Font Components
By now, you should appreciate the usefulness of a reusable script. As you would expect,
 ready-to- use components are available for applying custom font headings to your pages in a
 cross- browser-friendly manner. Developers who have been through the pain of applying the
techniques discussed in this chapter, and managed to come out on the other side, have pack-
aged their code and made it available freely for the rest of us to use in our own RIAs.

In this section, we will look at a few of the more popular prepackaged components
available: Text2PNG, Scalable Inman Flash Replacement, Facelift Image Replacement, and
Typeface.js. I recommend investigating each of these components, finding one that suits your
needs, and giving it a try in your own web applications.

Text2PNG
By using the Text2PNG component (http://text2png.com/), you can replace text on your page
with an image rendered with your chosen typeface. You can choose to replace specific text
instances, replace the text in specific tags, or replace all text.

The Text2PNG component generates images dynamically via a web server. You are given
the option to host the server- side part of the code yourself or call the code hosted on the devel-
opers’ servers. If you host the code yourself, on a server running PHP version 4.3 or higher, you

http://text2png.com/

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY212

can use your own custom fonts, uploaded to a specific folder on the server. Otherwise, you are
limited	to	the	about	200	predefined	fonts	installed	on	the	developers’	servers.

Sample Text2PNG Usage
Setting up the component in your own pages is as simple as including the prewritten
JavaScript code; writing your CSS to assign the fonts, colors, and sizes you wish to use; and
adding a few lines of your own JavaScript to perform the image replacement on the text you
choose.

To represent the headings in the example in Figure 6-1, you might write the following
HTML code, where text_script.js is the supplied component JavaScript file:

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>Text2PNG Example</title>
 <link rel="stylesheet" src="myExample.css" type="text/css" />
 </head>
 <body>
 <h1 id="title">News</h1>
 <h2 id="news- headline">New product released: Human Teleporter</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit...</p>
 <script src="text_script.js" type="text/javascript"></script>
 <script src="my- example.js" type="text/javascript"></script>
 </body>
</html>

Within the referenced CSS file, my-example.css, specify the custom font you wish to use
first, followed by the acceptable fallback fonts from the list of the default fonts available within
most browsers:

h1 {
 font- family: 'Sketchy Rockwell', Arial, Helvetica, sans- serif;
 font- size: 1.6em;
}

h2#news-headline {
 font- family: 'Silom', Times New Roman, serif;
 font- size: 1.3em;
}

Within your own JavaScript file, my- example.js, you define the headings, text, or portions
of the page you wish to replace with images of that text written in your custom font. Three
methods are available:

	 •	 replace(): Allows you to replace the contents of a single element.

	 •	 replaceTags(): Allows you to replace the contents of all specified named tags.

	 •	 replaceAll(): Allows you to replace the content within all child elements.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 213

Let’s take a look at each in turn.

■Caution Don’t forget to ensure you make the calls to any JavaScript methods after the DOM is avail-
able to read through JavaScript, using the $.onDomReady() event of the $ JavaScript library you started in
Chapter 2. If you call these text replacement methods too early in the life cycle of the page, no text will be
replaced, and you may even generate a JavaScript error within the browser, which will be shown to the end
user (not acceptable!).

Replacing a Single element
The first method at our fingertips is replace(), which creates a PNG image file from the entire
text content of a page element. Any child elements or HTML tags within the specified tag will
be removed, replaced with the image representation of the text. Using the sample HTML, you
could replace the header text within the <h2 id="news- headline"> tag using the following
method call:

text2png.replace("news-headline");

This method expects to receive either a string representing the id attribute of the element
to be replaced, as in the preceding example, or a DOM element, like this:

text2png.replace(document.getElementById("news-headline"));

Both alternatives perform the same functionality, so it is up to you which you prefer to
use.

Replacing multiple specific page elements is as simple as passing extra arguments to the
replace() method for each element you wish to replace. Let’s say you wanted to replace the
<h2 id="news- headline"> element as before, and also the text within another page element,
<h1 id="title">. This can be performed in one method call, like so:

text2png.replace("news-headine", "title");

Replacing All Content Within a Specific Named Tag
Text2PNG’s built- in replaceTags() method performs the same type replacement as the
replace() method, but it replaces all elements with a given tag name. Let’s say that, as in the
earlier HTML example, you want to replace all <h1> and <h2> header tags within your page with
their text- image equivalent. To do this, simply use the replaceTags() method, like so:

text2png.replaceTags("h1", "h2");

This method will replace the text content within all the specified tags on the current page,
regardless of how many of each type of tag there are. This is a quick and convenient way to
perform replacement. There is no limit to the number of parameters that can be passed to this
function, so you could choose to replace just the contents of a single tag or the contents of
many tags.

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY214

Replacing the Contents of All Child elements
The replaceAll() method provides a simple way to replace the contents of all nested HTML
elements below the element passed to the method call. As an example, assume that you have a
list of bullet points within your HTML document, like so:

<ul id="list">
 Faster and more efficient
 Smaller and lighter
 Beautiful and elegant

To replace the text within each tag with its image equivalent, use the replaceAll()
method, passing it the id attribute value of the surrounding element. This way, the text within
all subelements will be replaced in one go:

text2png.replaceAll('list');

This method also supports multiple parameters. For example, if you have two lists, <ul
id="list"> and <ul id="other- list”>, you could replace the text within both sets of child
nodes with a single call to the replaceAll() method, like so:

text2png.replaceAll("list", "other- list");

Applying extra Text Formatting with Text2PNG
The Text2PNG replace(), replaceTags(), and replaceAll() methods each accepts an optional
final parameter, specified as a JSON object, that sets certain formatting properties of the
resulting text image. Where possible, Text2PNG will attempt to derive the display format of
the image from the CSS applied to the original text, before it is replaced. Where there is no CSS
property applied, it will then attempt to establish the format from the options object passed to
the method call, if that is set. If that is unavailable, default values are set internally to provide a
fallback format where needed.

The following example shows how to replace all <h2> tags on the page with their
 text- image equivalent, applying a couple of extra formatting options in the process:

text2png.replaceTags("h2", {
 opacity: 50,
 bold: 1
});

The full list of options and CSS rules that are applied to the resulting text can be found in
the documentation at the project web site (http://www.text2png.com/).

Text2PNG Appraisal
One of the first things that appealed to me about the Text2PNG component is its ability to read
and assess which styles should be applied to the resulting image from the CSS applied to the
text being replaced. It makes perfect sense to me that style and visual information should be
stored within my CSS style definitions, whether or not I am using JavaScript to perform the
replacement.

http://www.text2png.com/

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 215

By specifying in my element’s font- family CSS property the custom font I wish to use,
along with a list of alternative fonts, I am using CSS the same way I would normally. The rare
occasion may arise where my end users do not have JavaScript enabled in their browser, but
happen to have the custom font I have specified installed on their computer; in that case, the
font appears as I intended, and image replacement does not occur.

International languages are supported via the UTF- 8 character set, provided the charac-
ters exist within the custom typeface being used. The one limitation that does exist is that only
text read from left to right is supported at present, so that excludes languages like Arabic and
Hebrew.

Performance is always one of my main concerns when using third- party scripts, and I am
happy to report that the Text2PNG developers have left no stone unturned in this regard. The
developers claim that only five HTTP requests will occur in the process of using their compo-
nent, which includes everything from the initial loading of their script to the transmission of
the final image back to the browser.

Only a single image is sent back to the browser, regardless of how many replacements
occurred, because the script uses the CSS sprite technique (described in Chapter 4) to com-
bine all the text to be displayed using custom fonts into a single image file. Unfortunately, the
CSS sprite technique is not currently applied to IE 6 or Opera. However, the images returned
to all browsers are cached both on the server and within the browser, with an expiration date
set ten years into the future from the date the image was first generated.

Support for this component is provided by most browsers, from IE 6 and up, Firefox 2 and
up, Safari 3 and up, and Google Chrome. Missing from the list is the Opera browser.

When JavaScript attempts to read the font- family style applied to a page element in
Opera, only the applied font is returned to the script. Since the custom font most likely won’t
exist on the user’s machine, Opera will return only the name of the backup font that is actu-
ally applied. Since this component requires being able to read the name of the custom font
in order to ask the server to render the text within an image in that font, problems occur
in Opera. Let’s hope that a future Opera update addresses this issue, so its users don’t lose
out. That said, since this is purely a visual effect, provided a suitable backup font is available
instead, displaying the same text in a custom font cannot really be described as imperative,
but rather considered as “nice to have.”

Scalable Inman Flash Replacement
The Scalable Inman Flash Replacement (sIFR) component, originally devised by Shaun Inman
(http://shauninman.com/), is very popular, largely due to its flexibility, its reusability, and the
speed with which it can be applied to an existing page.

This component relies on the Adobe Flash technique discussed earlier in this chapter. To
use it, you must create a customized Flash movie file from a supplied template, embedding the
custom font you wish to display, along with any specific extended characters needed, into the
movie. With the Flash movie file created, you reference the supplied JavaScript and CSS files in
your page, and then execute the specific text replacements you require via the JavaScript API
made available through the developer’s script.

At	the	time	of	writing,	the	current	full	release	of	the	sIFR	component	is	version	2.0.7,	
whose output Flash movie files are compatible with Flash Player version 6 (the current release
of	this		plug-	in	is	version	10).	A separate stream of development, authorized by Shaun Inman,
is now being undertaken by another developer, Mark Wubben. Currently in early beta, this
version of sIFR will become version 3 of the component, compatible with Flash Player version

http://shauninman.com/

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY216

8 and up, giving web developers access to the many improvements to typography and text styl-
ing available in the later Flash Player versions.

Full documentation and download details for sIFR version 2 can be found at http://wiki.
novemberborn.net/sifr/ and for version 3 at http://wiki.novemberborn.net/sifr3/.

Sample sIFR Usage
Let’s go through an example, using the page shown earlier in Figure 6-1 as the goal, and using
sIFR version 3. Including the component involves linking to the necessary style sheet and
JavaScript files within your HTML file, like so:

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>siFR 3 Example</title>
 <link rel="stylesheet" src="sifr.css" type="text/css" />
 </head>
 <body>
 <h1>News</h1>
 <h2 id="news- headline">New product released: Human Teleporter</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit...</p>
 <script src="sifr.js" type="text/javascript"></script>
 <script src="sifr- config.js" type="text/javascript"></script>
 </body>
</html>

Assuming you have already downloaded the component, and followed the instructions
to export the required fonts into custom Flash files, you must now make references to these
movie files from within the script in order to use them on your page. Append a few lines to the
 sifr- config.js file, supplied by the component, to refer to your font- embedded Flash files:

var silom = {
 src: 'silom.swf'
};

var sketchyRockwell = {
 src: 'sketchy- rockwell.swf'
};

Note that the src attribute contains the URL of the Flash file, which is relative to the page
on which it is being displayed.

The next step, before you perform any text replacement, is to load your Flash movie files
into the browser. This is necessary to prevent the movie files from loading each time a replace-
ment is made. To perform this action, append the following line to sifr- config.js:

sIFR.activate(silom, sketchyRockwell);

http://wiki
http://wiki.novemberborn.net/sifr3/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 217

Now you’re ready to actually perform the text replacement. This is achieved by making a
call to the sIFR.replace() function, assigning your fonts to the tags or elements on the page
you wish to replace:

sIFR.replace(sketchyRockwell, {
 selector: 'h1'
});

sIFR.replace(silom, {
 selector: 'h2'
});

The selector engine built into sIFR is fairly flexible. As well as separating multiple selectors
using a comma to perform multiple replacements of a particular font simultaneously, you are
able to select specific tags and elements using any of the following selection formats, based on
CSS selectors:

	 •	 h1

	 •	 h1 > em

	 •	 h1 em

	 •	 .foo

	 •	 h1.foo

	 •	 #bar

	 •	 h1#bar

	 •	 h1#bar.foo

	 •	 #bar.foo

	 •	 .foo.baz

Now that all of your required text has been replaced, you may need to tweak the sizing, as
in some cases, the sIFR component does not establish the correct font size. If necessary, edit the
sifr.css file, appending the following code to the end of the file, within the @screen section:

.sIFR-active h1 {
 visibility: hidden;
 font- family: Verdana;
 line- height: 1em;
 font- size: 24px;
}

The class .sIFR- active is added to the <body> element of the page when the sIFR script
initializes, so this CSS rule will be applied only if that is the case. You set the visibility prop-
erty of the text to hidden so that the original page text is no longer displayed once your text
replacement has occurred. The font size for display is set at the end of the rule. Remember
that this style, and any other styles apart from visibility, is necessary only if there are display
problems when you perform the replacement in the previous step.

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY218

Applying extra Text Formatting with sIFR
Adobe Flash supports a subset of CSS, which allows some of the text formatting you may wish
to apply to be set through your normal style sheet. The CSS class .sIFR- root is applied to each
Flash movie and allows you to customize styles for the movie itself and its contents. Since the
sIFR component, being Flash, keeps references to any child elements of the element you’re
replacing, these also can be styled directly within the Flash movie via CSS.

Say, for example, you are replacing a list item element, , and that tag contains text
and a nested link element, <a>. The link itself is also passed into the Flash movie, allowing it to
continue to be clickable and also styled differently from the rest of the text. This ability alone
makes this approach superior to many other text replacement methods.

By default, the customized Flash movie files support bold, italic, underlined, and normal
text. Kerning and leading properties can be tweaked as necessary through JavaScript and
CSS configuration. Extra text effects are possible also, either by further customizing the Flash
movie file to contain those effects or by a series of filters that are present within Flash Player
versions 8 and up, which sIFR makes available for configuration through JavaScript. These
filters include adding a drop shadow to the text, blurring the text, adding a glow effect around
the text, and many others. See the full sIFR version 3 documentation for the list of available
effects and how to use them on your page.

sIFR Appraisal
The sIFR component works well for replacing a few headings on a page, and it is very flexible if
you wish to use different sizes and styles. However, this component is not recommended if you
need to replace more than around five or six headings on a page. At this point, performance
takes a noticeable hit, as browser memory is pushed to the limit, slowing down the pages and
noticeably impacting page load times.

This component is supported by IE 6 and up, Firefox 2 and up, Safari 2 and up, Google
Chrome,	and	Opera	9.5	and	up.	There	is	the	obvious	requirement	that	the	Flash	Player		plug-	in	
be installed in the end user’s browser. If that plug- in is not detected, no replacement occurs,
and the original browser text is displayed, so you don’t need to worry about the condition
where JavaScript is supported but Flash is not.

Performance of this component is improving with each code release. Flash is fairly notori-
ous for consuming large amounts of browser memory. The developers have ensured that each
Flash movie exported has a low refresh rate in order to improve matters further. The Flash
movie files are cached within the browser, so that they should need to be downloaded only
once, and then reused freely from the cache on subsequent pages. Each movie file consumes
around	50KB	to	60KB	of	disk	space	by	default,	growing	larger	if	extra	characters	are	embed-
ded within the file. The sIFR version 3 JavaScript file itself weighs in at around 32KB when
minified. The combined weight of JavaScript and Flash make this one of the larger third- party
 text- replacement components.

This component has been around for a few years, so can be considered quite mature, sta-
ble, and well supported. Future development will focus on, among other things, the ability to
piggyback the code on top of other JavaScript libraries, including jQuery and Prototype. This
means that in future, there will be less code duplication, and the JavaScript for the component
should become considerably lighter if you are already using one of these libraries in your code.

Again, definitely do not use this technique if you wish to replace more than a handful of
headings, as the impact on performance can become rather distracting for your end users.

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 219

Facelift Image Replacement
A newer component on the block, Facelift Image Replacement (FLIR, pronounced “fleer”), has
similarities with the Text2PNG component discussed earlier. Both use the server- side image
generation technique, relying on a PHP server to deliver the image to the requesting web page.
One noticeable difference is that with Text2PNG, you can use the developer’s own server to
perform the generation for free, but with FLIR, you are charged a fee for this service (admit-
tedly, this cost is only $1 per month).

To get the component up and running on your own server requires PHP to be installed.
Also, for some of the extended effects supported, it requires ImageMagick (http://www.
imagemagick.org/) to be installed.

Sample FLIR Usage
Download the FLIR component from its online home at http://facelift.mawhorter.net/ and
install the files on your web server. Next, copy your TrueType font files to your server and cre-
ate a reference within the config- flir.php file to associate a font file with a CSS font- family
value (a few examples are provided within the file to help you get started). Then set up your
HTML file with references to the FLIR component’s own JavaScript file and include one of
your own, along with your own CSS file:

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>FLIR Example</title>
 <link rel="stylesheet" src="my- example.css" type="text/css" />
 </head>
 <body>
 <h1>News</h1>
 <h2 id="news- headline">New product released: Human Teleporter</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit...</p>
 <script src="$.js" type="text/javascript"></script>
 <script src="flir.js" type="text/javascript"></script>
 <script src="my- example.js" type="text/javascript"></script>
 </body>
</html>

Now configure FLIR to replace only the page elements you choose. Start this off in your
own JavaScript file, my- example.js, using the following code:

$.onDomReady(function() {
 FLIR.init({
 path: '/path-to- flir/'
 });
 FLIR.auto();
});

By default, FLIR will replace all heading tags <h1> to <h5> when the FLIR.auto() method
is called. However, this functionality can be overridden by passing in an array of CSS selectors

http://www.imagemagick.org/
http://www.imagemagick.org/
http://facelift.mawhorter.net/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY220

corresponding to the elements you wish to replace. In this example, you could use the follow-
ing to replace only the two headers you want to use custom fonts:

FLIR.auto(['h1', 'h2#news- headline']);

By default, FLIR uses the same technique as the Text2PNG component for determining
which font you wish to apply to your text: it checks which font- family CSS value you have
applied to the element being replaced. This font- family value is then correlated to a font file
on the server using your configuration in config- flir.php, and the correct font is displayed
upon replacement.

To perform single replacements, or to gain more control over the text style displayed, you
can use the FLIR.replace() method, which takes an optional argument defining the text style.
Here’s how to perform a simple, single replacement on the <h2 id="news- headline"> tag in the
HTML example:

FLIR.replace('h2#news-headline');

To set further style options for the resultant text image, you can add a FLIRStyle object as
an additional argument to the FLIR.replace() method—in this case, to specify the exact font
required and for the text to wrap over multiple lines:

FLIR.replace('h2#news- headline', new FLIRStyle({
 cFont: 'silom',
 mode: 'wrap'
}));

See the documentation at the FLIR web site for the full list of FLIRStyle options.
FLIR also has an architecture that supports plug- ins, and two FLIR plug- ins are currently

available: FancyFonts and QuickEffects. These let you use the ImageMagick PHP component
installed on the web server on your replaced text through JavaScript. More details on using
these plug- ins or adding your own can be found on the component’s web site.

FLIR Appraisal
As you have seen, the FLIR component is similar to the Text2PNG component. Since both use
the same JavaScript technique to read the current style applied to the page elements, the same
browser support exists: IE 6 and up, Firefox 2 and up, Safari 3 and up, and Google Chrome.
And as with Text2PNG, there is no Opera browser support at present. Default browser text is
displayed in other browsers, using the backup font- family values determined through CSS
only.

The performance of this component rates slightly poorer than that of Text2PNG, as CSS
sprites are not supported in FLIR; separate images are downloaded for each heading image
being replaced. This means potentially several more HTTP requests and responses, reducing
the speed at which the finished page is displayed. (Obviously, this component could be greatly
improved with support for CSS sprite images, and that may be added in a future version.)

The ease of setup of FLIR is to be applauded. Creating direct links between custom CSS
 font- family typeface names and specific TrueType font files that sit on the server is painless.
The default replacement mechanism, which replaces the most standard HTML heading tags,
captures and simplifies the majority of developers’ desires for such a component. Remember

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 221

that the easier it is to set up and use a third- party component like this, the simpler mainte-
nance tasks on it usually are at a later stage.

The JavaScript include file that provides FLIR support to your pages weighs in at around
16KB when minified. Each image produced by the server varies in size, but should usually
weigh in at about 2KB per image, on average, which makes this component comparatively
lightweight.

FLIR is a fairly young component. That is not necessarily a problem, but it could mean
that community support will be somewhat limited until it has been around a little longer and a
few more bugs are ironed out.

Overall, this component uses some smart ideas to produce beautifully styled headers.
However, it is not as performance- friendly as it could be. Also, it requires that your web server
run PHP.

Typeface.js
The free Typeface.js component (http://typeface.neocracy.org/) is a fairly recent addition
to the collection of custom font text rendering tools available online. It should be considered
a work in progress for now, but shows promise for a simple component based on the vector
graphics technique described earlier in the chapter.

The font files are converted from TrueType format to a JavaScript file that describes the
various glyphs and properties of the font. This information is then converted through the
JavaScript routine into vectors that are drawn onto the page in place of the text you wish to
replace. You can convert your font files to the JavaScript format using a tool on the project’s
web site.

Sample Typeface.js Usage
Let’s work through the same example using the headings in Figure 6-1, as we have done
throughout this chapter. Start with the HTML:

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>Typeface.js Example</title>
 <link rel="stylesheet" src="my- example.css" type="text/css" />
 </head>
 <body>
 <h1>News</h1>
 <h2 id="news- headline">New product released: Human Teleporter</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit...</p>
 <script src="typeface- 0.11.js" type="text/javascript"></script>
 <script src="sketchy- rockwell.typeface.js"➥

 type="text/javascript"></script>
 <script src="silom.typeface.js" type="text/javascript"></script>
 </body>
</html>

http://typeface.neocracy.org/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY222

Include your own style sheet file, my- example.css, to define your fonts and other styles:

h1 {
 font- family: 'Sketchy Rockwell', Arial, Helvetica, sans- serif;
 font- size: 1.6em;
}

h2#news-headline {
 font- family: 'Silom', Times New Roman, serif;
 font- size: 1.3em;
}

You may be wondering why you have not included a separate JavaScript file to initialize
the Typeface.js script and perform specific replacements, as you have needed to do with the
other third- party components discussed in this chapter. By default, Typeface.js will replace all
header tags, <h1> to <h6>, whose text has been specified through CSS to use a custom font that
has been loaded through a JavaScript font description file, generated via the Typeface.js web
site. Remember that vectors are resolution- and size- independent, and can be resized without
losing quality. This means that all sizes of text are supported through the font representation
in a single JavaScript file. If the font is described in this way, Typeface.js will replace the text
with a vector- based rendering of the text in your custom font. If no custom font is specified, no
replacement will occur.

Now suppose that you want to replace some text within your HTML that isn’t within a
header tag. You still don’t need to write any JavaScript to do this, thankfully. Let’s say you have
the following text within a paragraph tag on your page that you wish to replace:

<p class="coming- soon">This product will be launched shortly!</p>

Set the custom font name you wish to display through the font- family CSS property for
this element and ensure you include a reference to the JavaScript representation of that font.
To tell Typeface.js to perform the replacement, simply add the CSS class name typeface- js to
the element, like this:

<p class="coming- soon typeface- js">This product will be launched shortly!</p>

The replacement will be made once the page loads.
By enabling functionality through CSS styles, you avoid needing a separate JavaScript file

to include code to perform this replacement.

Typeface.js Appraisal
Typeface.js is a newer component using a fairly advanced browser technique. The vector
drawing technique is ideally suited for representing TrueType font files, which are vector defi-
nitions themselves. However, browser performance is the major issue affecting the adoption
of this technique right now.

Browser support is reasonably good, including IE 6 and up, Safari 2 and up, Firefox 1.5 and
up, and Google Chrome. Note that Opera is again missing from the list, for the same reasons as
for the other components covered in this chapter, with the exception of sIFR.

Vector	drawing	performance	is	noticeably	poor	in	most	browsers,	particularly	in	IE	6	and	7.	

ChAPTeR 6 ■ BeAUTIFUL TYPOGRAPhY 223

Until browser performance with vector graphics improves across the board, I suggest that
text replacement with Typeface.js be limited to around five or six per page. Above this level,
you risk irritating your end users.

The	Typeface.js	JavaScript	file	weighs	around	10KB	in	its	minified	form,	and	each	font	def-
inition	file	can	be	expected	to	weigh	around	60KB	to	70KB	each.	As	this	component	constitutes	
a pretty hefty download for just a small visual change for your end users, choose wisely.

This component and a very similar one using the same technique, named Cufón (http://
wiki.github.com/sorccu/cufon/about/), are going to be the ones to watch over the next few
months and years. As browsers become more powerful, the abilities web developers can take
advantage of increase, allowing us to improve the experience for our end users.

Summary
This chapter covered a number of different techniques and assessed a selection of third- party
components that allow you to display text on your web pages in custom fonts not directly sup-
ported by the browser. You should now be in a position to make your own decision on which
technique is best for you and your web applications. Use that technique to add beautiful
typographical text to your web pages, while minimizing the impact on the performance, acces-
sibility, and maintainability of your site. Of course, if none of these techniques or components
seems right for you, don’t be afraid to experiment with other techniques you invent yourself. If
you create something that works, please share your experience with the rest of the web devel-
opment community, so we may all benefit.

In the next chapter, we will look into the different methods and components available for
displaying and controlling audio and video playback within your web applications.

http://wiki.github.com/sorccu/cufon/about/
http://wiki.github.com/sorccu/cufon/about/

225

C h a p t e r 7

Multimedia playback

The desire to use the Internet to broadcast audio and video to consumers has been around
almost as long as the Web itself. Multimedia browser plug- ins, usually restricted to certain
audio and video formats developed by certain manufacturers, and streaming servers to provide
content to these plug- ins, have been around for several years. In recent times, format- specific
 plug- ins have been shunned by many web developers, who have opted to use the Adobe Flash
Player browser plug- in, largely due to its proliferation. Flash Player boasts an installed user base
of around 99% of Internet- connected browsers (according to Adobe’s own statistics at http://
www.adobe.com/products/player_census/flashplayer/) and is available for Windows, Mac,
Solaris, and Linux platforms.

Flash Player is capable of displaying video and playing audio. The Flash Video (FLV) file
format is most commonly used for video, and the popular MP3 format is most commonly used
for audio. Version 10 of the Flash Player plug- in also provides support for H.264, a modern
 video- compression standard that was designed to produce smaller video files and be appro-
priate for mobile devices as well as desktop machines. H.264 is widely regarded as one of the
best video- compression methods currently available. A brief overview of this compression for-
mat is available at the Apple web site (http://www.apple.com/quicktime/technologies/h264/).

This chapter begins with the important topic of how to deal with accessibility for multi-
media content. Then it covers some prebuilt audio and video player components that utilize
the Flash Player plug- in. Finally, we’ll take a look forward to the future of native browser sup-
port for audio and video.

Handling Accessibility
One of our most important considerations as web developers is providing adequate access to
our page contents, and this certainly applies to multimedia content. Your end users might be
browsing via a text- based or mobile browser, or they may not have the Flash Player installed
or JavaScript enabled. You need to provide these users with some relevant content in place of
the video component. Similarly, for those users who have a hearing impairment or are in an
environment where they are unable to listen to audio—maybe they left their headphones at
home—you need to provide an alternative to the audio track.

http://www.adobe.com/products/player_census/flashplayer/
http://www.adobe.com/products/player_census/flashplayer/
http://www.apple.com/quicktime/technologies/h264/

Chapter 7 ■ MULtIMeDIa pLaYBaCK226

Most third- party components use JavaScript to replace the contents of a specific tag on a
web page with the required multimedia content:

<div id="replace-with-multimedia- component"></div>

This tag provides a useful location within your HTML to store extra information regarding
the video or audio. It could contain metadata about the multimedia file, a description, or even
a full transcription of the audio content. This information can be read by users whose brows-
ers do not support the component, or by search engines trolling the page for their indexes.
Within the replaced tag, you may also include a download link to the raw audio and video
files presented using the component. This provides a backup option for users viewing your
page without JavaScript or the Flash Player plug- in to be able to see and hear your multimedia
content.

Another accessibility option is to add subtitles to video. Many Flash multimedia com-
ponents support the display of subtitles. These subtitles can be described in a separate file,
containing a transcription of the contents together with the timestamp at which the tran-
scribed text corresponds to the audio. The W3C defines a recommendation for subtitle files,
known as Timed Text, which you can read about at http://www.w3.org/AudioVideo/TT/.

Using Reusable Audio Playback Components
The vast majority of third- party multimedia components focus on video, rather than audio.
However, you may need to include audio on its own, such as for a radio site or an online music
shop.

Here, we’ll look at one fully functional ready-to- use audio component that provides all
you need to add audio playback to your web pages. Then we’ll review some experiments that
attempt to force the browser to play audio files without using the Flash Player.

■Caution A word of warning for those keen to take advantage of playing sounds on web pages: don’t
overdo it! Background sounds and sound effects can have their place, but overuse or misplaced use may
discourage your end users from using your application. Remember that we are not trying to irritate the users
of our web applications, but rather give them a pleasurable browsing experience!

The SoundManager Component
Web developer and fervent music lover Scott Schiller has developed SoundManager, a drop- in
component that utilizes version 8 of the Flash Player plug- in to expose its sound- playing abil-
ity through a JavaScript API.

http://www.w3.org/AudioVideo/TT/

Chapter 7 ■ MULtIMeDIa pLaYBaCK 227

To demonstrate the use of this component, let’s create a sample page for an imaginary
online music store selling MP3 audio tracks, as shown in Figure 7-1. In this example, you will
offer the ability to play short samples of the tracks, to entice listeners to pay to download the
full song. You’ll use the SoundManager component to provide the audio samples when the
user clicks the title of each track.

 Figure 7‑1. Online MP3 shop example, with the ability to preview tracks

To begin, visit the SoundManager project web site at http://www.schillmania.com/projects/
soundmanager2/ and download the files for the component. The most important files are the Flash
movie file, which simply exposes Flash’s sound player API to JavaScript, and the JavaScript API,
which you will use in your own JavaScript code to play sound files on your page.

Next, build the HTML code for the page, as shown in Listing 7-1.

 Listing 7‑1. HTML Markup for the Online MP3 Store Example

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

http://www.schillmania.com/projects/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 7 ■ MULtIMeDIa pLaYBaCK228

 <head>
 <title>SoundManager Example</title>
 <link rel="stylesheet" href="my-example.css" type="text/css" />
 </head>
 <body>
 <h1>Online shop</h1>
 <p>Click the track title to listen to a short preview.</p>
 <table>
 <thead>
 <tr>
 <th>Track title</th>
 <th>Artist</th>
 <th>Purchase</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td id="track1">Ghost Town</td>
 <td>Phil And The Spectres</td>
 <td>Buy now for $0.99</td>
 </tr>
 <tr>
 <td id="track2">Higgs Boson</td>
 <td>The Large Hadron Colliders</td>
 <td>Buy now for $0.99</td>
 </tr>
 </tbody>
 </table>

 <!- - Include our $ JavaScript library -- >
 <script src="$.js" type="text/javascript"></script>

 <!- - Include the SoundManager component, which connects our page to the
 audio playback component -- >
 <script src="soundmanager2.js" type="text/javascript"></script>

 <!- - Include a custom script we'll write later to play our audio files -- >
 <script src="my- example.js" type="text/javascript"></script>
 </body>
</html>

SoundManager will perform all its initializations as soon as possible after the DOM has
loaded. Once initialized, SoundManager fires its onload() event, which you hook into in your
code to set up your audio. Add the code shown in Listing 7-2 to a file named my- example.js.

Chapter 7 ■ MULtIMeDIa pLaYBaCK 229

 Listing 7‑2. JavaScript Code for Online MP3 Store Example

// Execute this code once the SoundManager component has initialized so that we do
// not generate any timing errors

soundManager.onload = function() {

 // Define two audio tracks we wish to play later
 var track1 = soundManager.createSound({

 // Internal identifier for this track
 id: "track- one",

 // Location of MP3 file
 url: "/track1.mp3",

 // Volume level, out of 100
 volume: 50
 });

 var track2 = soundManager.createSound({
 id: "track- two",
 url: "/track2.mp3",
 volume: 50
 });

 $.Events.add(document.getElementById("track1"), "click", function() {
 // When the user clicks the HTML element with an id of track1, the first
 // MP3 file plays
 track1.play();

 // Other SoundManager methods include: stop(), pause(), resume(),
 // setVolume(x) and mute()
 });

 $.Events.add(document.getElementById("track2"), "click", function() {
 // When the user clicks the HTML element with an id of track2, the
 // second MP3 file plays
 track2.play();
 });
}

This is a simple example but demonstrates the ease of use of the SoundManager com-
ponent. You may wish to extend this example so that when the audio is playing, the play icon
is switched to a pause icon, and when paused, the play icon reappears. Also, as it stands, it is
possible to play several audio tracks simultaneously. You may choose to add some defensive
coding techniques to prevent this from occurring.

Chapter 7 ■ MULtIMeDIa pLaYBaCK230

the SoundManager Feature Set
The SoundManager component is feature- rich and provides everything you need to play audio
tracks on your web pages. Through the JavaScript API, you are able to read many dynamically
set properties of your audio, including the duration and size of the file, what proportion of it
has loaded at any one time, the position within the audio that is currently being played, and
whether the audio is currently playing or is paused.

You are also able to configure certain properties yourself when creating the SoundManager
object, including the following:

	 •	 Whether	the	audio	should	stream	(play	while	its	loading)

	 •	 Its	volume

	 •	 Its	pan	position	in	the	stereo	field

	 •	 Its	default	start	position

	 •	 Whether	the	audio	should	play	automatically	or	simply	load	and	then	wait	for	user	
interaction before playing

Each SoundManager object then exposes events that you can hook into to execute specific
code when certain properties of the audio change, such as when the audio begins playing, is
paused, is resumed, or finishes loading. You can even hook into an event that is called periodi-
cally while the audio is playing. For example, you could write code to update the position of a
visible progress bar in your page based on the current play position of the audio.

SoundManager also exposes extra functionality to end users who have Flash Player ver-
sion 9 or later installed, allowing the display of waveform and equalizer data derived from the
track being playing. This means that you can provide more visual feedback to your audience, if
required.

SoundManager appraisal
The original SoundManager component has been available since 2004, and its current version
since 2007. This gives a level of maturity to the product; plenty of time has been allowed for
any bugs to surface and be squashed, and the component has been used on many web sites
during that time.

As expected, the component will not work unless your end users are running JavaScript
and have Flash Player 8 or later installed. Browser support is very good, including IE 6 and
above, Firefox 1.5 and above, Safari 1.3 and above, Opera 9.5 and above, and Google Chrome.

Performance can be considered fairly good, although some older browser/machine con-
figurations have reported a noticeable lag between executing some methods and getting a
response from Flash Player. This is believed to be related to Adobe’s own Flash-to- JavaScript
connection interface, rather than anything the developer has specifically coded. It is most
likely you will not notice any performance drawbacks, except if you choose to take advantage
of the Flash Player 9– specific functionality. This additional functionality is known to place a
large burden on the end user’s CPU, causing the page to slow down noticeably. So, you’ll want
to steer clear of this functionality where possible to avoid problems.

Chapter 7 ■ MULtIMeDIa pLaYBaCK 231

You should be aware of a couple of known limitations with SoundManager, which are
derived directly from limitations within Flash Player 8:

	 •	 The	method	for	loading	a	sound	file	will	support	only	the	MP3	file	format.	I	recom-
mend using this file format anyway, but this may mean that you need to re- encode
your audio to this format before you utilize this component within your pages.

	 •	 There	is	an	issue	with	looping	audio	tracks.	If	you	have	a	track	that	you	wish	to	play	
looped, you will find a noticeable audio gap between the end of the track and before
the beginning plays again. Currently, there is no work- around for this issue, so take
heed.

In terms of file size, the component is fairly light. The JavaScript portion of the compo-
nent weighs in at 24KB minified. If you choose to use gzip compression on your server, as
described in Chapter 4, you will find the file effectively becomes 6KB in size when downloaded
to the end user’s browser. The Flash movie file that performs that actual audio playback is only
4KB, although if you wish to use the Flash Player 9– specific features, a second file is used in its
place, which is 8KB.

Overall, I rate this component very highly, as it supports virtually all cases of audio playback
you should ever need. You can build playback buttons within your page and have these trigger
playback of the audio. You can set the volume, pan, and other settings. You may also construct a
page component for feeding back to the end users the position of the playhead within the play-
ing audio, also allowing them to seek to a new position in the audio by clicking with the mouse
within the component or by pressing certain predefined keys on their keyboard.

Playing Audio Files Without Flash
Right now, browser support for playing audio natively is fairly poor. Later in this chapter, we
look into the proposal for future support of native audio and video playback HTML tags. For
now, let’s take a look at a few experiments performed by developer Reinier Zwitserloot to allow
audio playback within the browser using JavaScript alone. There’s no Flash Player here, folks!
He writes up his notes and shows demos at the following URL: http://www.zwitserloot.com/
files/soundkit/soundcheck.html. You’ll find three tests, each consisting of Play and Stop but-
tons to start and stop the test:

	 •	 The	first	test	uses	JavaScript	to	dynamically	add	an	<iframe> on the page, pointing to
an external HTML file, which contains little more than an <embed> tag linking to an
uncompressed WAV audio format file.

	 •	 The	second	test	uses	JavaScript	to	dynamically	add	an	<embed> tag linking to the WAV
file directly in the page. Its associated Stop button removes the element from the page;
clicking the Play button again adds it to the page. The DOM element exists the whole
time in JavaScript and is added and removed from the page via the two buttons.

	 •	 The	third	test	is	similar	to	the	second,	except	that	when	the	Play	button	is	clicked,	a	
new DOM object is created each time, instead of reusing the existing object.

http://www.zwitserloot.com/

Chapter 7 ■ MULtIMeDIa pLaYBaCK232

The results of the tests are interesting. Generally, they prove that there is not much scope
for building a reusable, cross- browser component around the technique, due to the varying
results in different browsers.

	 •	 In	Opera,	no	sound	is	played	whatsoever	for	any	of	the	three	tests.	

	 •	 In	Safari,	all	tests	succeed	in	starting	the	audio	playing;	however,	the	first	test	gives	a	
slight delay before audio feedback is heard, and the second and third tests are incapa-
ble of stopping the audio playing once started.

	 •	 Running	the	first	test	in	Firefox	produces	the	same	delay	before	any	audio	is	heard	or	
stopped; however, both buttons work as expected in all three test cases in this browser.

	 •	 IE	6	refuses	to	play	any	sound	using	the	first	technique.	The	second	test	succeeds,	
except that clicking Play after the audio has stopped has the unexpected outcome of
restarting the audio from the position where it was last stopped. The third test works as
expected in IE 6.

Reinier Zwitserloot also notes that multiple sounds can play simultaneously in all brows-
ers, aside from Opera, and that the MP3, WAV, and MIDI audio formats appear to be supported.

Ideally, developers would like to play audio within the browser natively, avoiding the need
for external Flash Player components. Reiner’s experiments highlight the patchy nature of this
support. Toward the end of the chapter, we will look at a proposed standard for native audio
playback within the browser, which is gaining some support from browser manufacturers. For
now, the solution to playing audio files within the browser relies on the Flash Player plug- in.

Using Reusable Video Playback Components
Video playback within web pages is now commonplace, so knowing how to add such abilities to
your own web applications is imperative. Here, we will look at two third- party reusable compo-
nents that allow you to embed video files in your pages with the help of the Flash Player plug- in.
As discussed earlier in the chapter, don’t forget about accessibility for your users who may not
have the Flash Player plug- in installed or may have JavaScript disabled. Providing backup con-
tent also gives search engine spiders something to read and index.

■Caution Each Flash component on your page uses up a certain proportion of your user’s CPU time to
run, and including multiple components on your page exacerbates this effect. Be wary of the number of Flash
components you are including on your page, and don’t go overboard. Remember that it may work fine on
your development machine, but your end users may not be fortunate enough to have a powerful machine.
Also, don’t forget that the user’s network speed may also have an adverse effect on the download time for
each component.

To demonstrate the components, let’s create a simple example. Suppose you are building
a help page within a web site, which plays a video tutorial on how to install a particular prod-
uct. This page provides a video playback component, with customized playback buttons and

Chapter 7 ■ MULtIMeDIa pLaYBaCK 233

feedback controls, whose appearance is intended to match a custom design. Figure 7-2 shows
the layout of the final page.

 Figure 7‑2. Video tutorial page with video playback and custom controls

 Listing 7-3 shows the HTML markup for this page, which you can adjust later to suit the
individual implementations.

 Listing 7‑3. HTML Markup for Video Tutorial Page

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>Video Tutorial Example</title>
 <link rel="stylesheet" href="my- example.css" type="text/css" />
 </head>
 <body>
 <h1>Video tutorial</h1>
 <h2>Demonstration 1</h2>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 7 ■ MULtIMeDIa pLaYBaCK234

 <!- - JavaScript will be used to replace the following tag with the video
 playback component -- >
 <div id="movie">
 <p>The movie could not be displayed. ➥

 Download the movie to your computer.</p>
 </div>

 <!- - Placeholder element which we will populate with video playback
 controls using JavaScript later -- >
 <div id="controls"></div>

 <!- - Include the $ JavaScript library -- >
 <script src="$.js" type="text/javascript"></script>

 <!- - Include a custom script we'll write later to initialize the video
 playback controls -- >
 <script src="build- controls.js" type="text/javascript"></script>

 <!- - Include a custom script we'll write later to display the video -- >
 <script src="my- example.js" type="text/javascript"></script>
 </body>
</html>

Notice that the HTML code is rather sparse. You have not included the video playback
controls on the page itself, but instead will construct them through JavaScript and add them
to the page. This makes the page less confusing to those users without a JavaScript- capable
browser. If the movie is capable of being displayed in the browser, you’ll add the controls; if
not, the users will see the video title and a link to download the video file to their computer for
offline viewing. The HTML code, therefore, is the only code needed for non- JavaScript users.

 Listing 7-4 shows the code for the build- controls.js JavaScript file included within the
HTML page in Listing 7-3, which you will use to construct the video controls to add to the
page.

 Listing 7‑4. JavaScript to Add Playback Controls to the Video Tutorial Page

$.onDomReady(function() {
 // Create duration control, <p id="duration">, insert after <h2> tag

 var durationControl = $.Elements.create("p");
 p.id = "duration";
 durationControl.insertAfter(document.getElementsByTagName("h2")[0]);

 // Create play / pause control element, <div id="play- pause">, insert within
 // the <div id="controls"> tag

Chapter 7 ■ MULtIMeDIa pLaYBaCK 235

 var playPauseControl = $.Elements.create("div");
 playPauseControl.id = "play- pause";
 playPauseControl.innerHTML = "play / pause";
 document.getElementById("controls").appendChild(playPauseControl);

 // Create playhead control, <div id="playhead"><div id="playhead- position">
 // </div></div>, insert within <div id="controls"> element on the page

 var playheadControl = $.Elements.create("div");
 playheadControl.id = "playhead";
 var playheadPositionControl = $.Elements.create("div");
 playheadPositionControl.id = "playhead- position";
 playheadControl.appendChild(playheadPositionControl);
 document.getElementById("controls").appendChild(playheadControl);
});

Now that you have added your new controls to the page through JavaScript, you need to
set your CSS in the my- example.css file, referenced from the HTML page in Listing 7-3. Note
that the playhead controls you created through JavaScript in Listing 7-4 are produced by the
following HTML code on the page:

<div id="playhead">
 <div id="playhead- position"></div>
</div>

Use CSS to style this to behave like a progress bar, as detailed in Chapter 5.
With the bare bones of the sample page constructed, you’re ready to use reusable compo-

nents to embed video files on your page and to connect the controls on your page to handle
playback of the video file. We’ll look at two different Adobe Flash Player– based reusable com-
ponents: YouTube Chromeless Player and JW FLV Player.

YouTube Chromeless Player
By far, the most popular video upload and sharing web site is the Google- owned YouTube site
(http://www.youtube.com/). Hosting your video files on Google’s distributed CDN through this
service often gives you better performance than hosting it yourself, as you discovered back in
Chapter 4.

It has always been possible to embed the standard YouTube player in your own sites, but
Google has recently made available a new version of the player for developers. This version,
known as the YouTube Chromeless Player, has all the default playback controls removed, leav-
ing only the video itself. This allows you to create your own custom controls to manipulate a
YouTube video through an exposed JavaScript API. Figure 7-3 shows an example of the You-
Tube Chromeless Player with custom controls.

■Note The chrome of an application is defined as the controls and other elements surrounding the main
point of interest. Chromeless, in this case, denotes that there are no controls around the video itself.

http://www.youtube.com/

Chapter 7 ■ MULtIMeDIa pLaYBaCK236

 Figure 7‑3. YouTube Chromeless Player on a page with custom HTML controls

The requirements for using the Chromeless Player are Flash Player version 8 or higher,
and, naturally, JavaScript. The full reference for the YouTube Chromeless Player is available at
http://code.google.com/intl/en/apis/youtube/chromeless_player_reference.html.

In contrast to most third- party components, which contain all the code they require wrapped
in their JavaScript API, the YouTube Chromeless Player does not include code for actually placing
the Flash movie component into your page. Instead, Google recommends the use of a third- party
JavaScript component called SWFObject, conveniently also hosted on its CDN.

the SWFObject Component
SWFObject is a JavaScript component that allows you to embed Flash movie files in your pages.
It also provides the ability to detect the currently installed version of the Flash Player plug- in,
allowing you to embed movie files that require a certain version of the player only if it exists
within the user’s browser. It also overcomes an annoying licensing restriction in IE, where Flash
content must first be clicked before it will play.

You can download the SWFObject component from its project home page at http://code.
google.com/p/swfobject/. The component is also hosted directly by Google at http://ajax.
googleapis.com/ajax/libs/swfobject/2.1/swfobject.js. At the time of writing, the current
version of the component is 2.1.

http://code.google.com/intl/en/apis/youtube/chromeless_player_reference.html
http://code
http://ajax

Chapter 7 ■ MULtIMeDIa pLaYBaCK 237

Using the SWFObject component to embed a Flash file in your page is very similar to
using any other third- party component. First, include the JavaScript API of the component,
either within the <head> tag or at the bottom of the HTML, before the end of the <body> tag:

<script type="text/javascript" ➥

 src=" http://ajax.googleapis.com/ajax/libs/swfobject/2.1/swfobject.js" />

Embedding a Flash movie file in your page is as simple as referencing the following
JavaScript code from your HTML page:

// Specify the URL of the Flash movie to display
var movieURL = "my-movie.swf";

// Specify which tag to replace on the HTML page. In this case, a tag with an id
// attribute value of movie will be replaced
var tagIDToReplace = "movie";

// Specify the dimensions of the Flash movie - 320px x 240px
var width = 320;
var height = 240;

// Specify which version of Flash is required to display this movie. Users with
// older versions of the plug- in will not see the Flash movie and the HTML
// tag will not be replaced
var flashVersionRequired = "8";
var expressInstallURL = null; // You can safely ignore this

// Specify any variables to pass to the Flash movie
var flashVars = {}; // Again, this can be ignored

// Specify parameters for the Flash movie
var parameters = {

 // Allows communication between Flash and JavaScript
 allowScriptAccess: "always"
};

// Specify some attributes for the resulting HTML tag, which embeds the
// Flash movie on the page
var attributes = {
 id: "flash- movie"
};

// Embed the Flash movie on the page
swfobject.embedSWF(movieURL, tagIDToReplace, width, height, ➥

 flashVersionRequired, expressInstallURL, flashVars, parameters, attributes);

http://ajax.googleapis.com/ajax/libs/swfobject/2.1/swfobject.js

Chapter 7 ■ MULtIMeDIa pLaYBaCK238

The SWFObject JavaScript code weighs in at 12KB, when minified, and works well in
nearly every JavaScript- enabled, Flash- supporting browser in the wild.

Now that you’ve seen how to take advantage of the SWFObject component to embed any
Flash movie file in your page, let’s see how to implement the YouTube Chromeless Player with
the help of this component.

Youtube Chromeless player Implementation
The YouTube Chromeless Player consists of two Flash movie files:

	 •	apiplayer.swf: Contains the actual functionality for playing video files.

	 •	cl.swf: Supplies a wrapper for the first Flash file, providing security restric-
tions and exposing the player’s API functions for access through JavaScript. The
URL for accessing this wrapper Flash file directly is http://www.youtube.com/
apiplayer?enablejsapi=1.

To implement the YouTube Chromeless Player for the sample page, add a reference to the
SWFObject JavaScript library file toward the end of the code in Listing 7-3, and then add the
code in Listing 7-5 to my- example.js, the JavaScript file referenced within Listing 7-3. This adds
video playback functionality to your page and connects your page controls to control playback
of your movie file.

 Listing 7‑5. Displaying a Video Tutorial Using the YouTube Chromeless Player

$.onDomReady(function() {
 // To include the player onto our page, we simply use
 // SWFObject to embed the YouTube player onto our page

 var movieURL = "http://www.youtube.com/apiplayer?enablejsapi=1";
 var tagIDToReplace = "movie";
 var width = 320;
 var height = 240;
 var flashVersionRequired = "8";
 var expressInstallURL = null;
 var flashVars = null;
 var parameters = {
 allowScriptAccess: "always"
 };
 var attributes = {
 id: "flash- movie"
 };

 // Actually embed the video player onto the page
 swfobject.embedSWF(movieURL, tagIDToReplace, width, height, ➥

 flashVersionRequired, expressInstallURL, flashVars, parameters, attributes);

http://www.youtube.com/
http://www.youtube.com/apiplayer?enablejsapi=1

Chapter 7 ■ MULtIMeDIa pLaYBaCK 239

 // Now we have the player embedded within our page, we
 // need to point it to the video file we wish to play. As
 // you may imagine, we can only link to videos hosted via
 // the YouTube service itself. We load the video based
 // on the unique identifier assigned to each movie using
 // the player's loadVideoById() method. When the YouTube
 // player is ready to be interacted with, it calls a
 // function with the specific name onYouTubePlayerReady.
 // We hook into this event by adding our own
 // initialization code to a function of that name.

 function onYouTubePlayerReady() {

 // We created the element with id of flash- movie with SWFObject earlier
 var youTubePlayer = document.getElementById("flash- movie");
 // This is the unique YouTube identifier for the video we wish to display
 var videoID = "u1zgFlCw8Aw";
 // Start the video at the beginning
 var startTime = 0;
 // Load the video into the player
 youTubePlayer.loadVideoById(videoID, startTime);

 // Let's wire up the controls on our page to the video
 // player. Let's start with the play/pause button. When
 // this button is pressed, we want to start playing the video if it
 // is paused and pause it if it is already playing. The
 // playVideo() and pauseVideo() methods of the YouTube
 // JavaScript API are quite self- explanatory. We just
 // need to detect whether the video is playing to
 // switch our logic. The way we do this is to use the
 // getPlayerState() method, which returns a number
 // representing the current state of the player,
 // whether the movie is playing, paused, buffering, etc.

 var playPauseControl = document.getElementById("play- pause");
 $.Events.add(playPauseControl, "click", function() {
 var playingState = 1;
 var pausedState = 2;
 var currentPlayerState = youTubePlayer.getPlayerState();
 if (currentPlayerState == playingState) {
 youTubePlayer.pauseVideo();
 } else if (currentPlayerState == pausedState) {
 youTubePlayer.playVideo();
 }
 });

Chapter 7 ■ MULtIMeDIa pLaYBaCK240

 // Now we are able to play and pause the movie to our
 // heart's content. Let's display the duration of the
 // movie, which we show next to the video on our
 // example page. This information is not made
 // available to us until the video's associative
 // metadata has been loaded, which, according to
 // Google, occurs just after the video begins playing.
 // We'll write our code, therefore, to wait for the
 // video to start playing and, when it does, get the
 // duration value and write it to the browser. We can
 // listen for the player state change event and write
 // code to update the duration value on the page when
 // the event fires.

 youTubePlayer.addEventListener("onStateChange", function(newState) {
 var playingState = 1;
 if (newState == playingState) {

 // If the video is now playing, get the
 // duration of the movie, make it more user-
 // friendly, and display it on the page
 var durationField = document.getElementById("duration");
 var durationInSeconds = youTubePlayer.getDuration();
 var durationInMinutes = durationInSeconds / 60;
 var durationFullMinutes = Math.ceil(durationInMinutes);
 var durationRemainder = durationInMinutes ➥

 - Math.floor(durationInMinutes);
 var durationRemainderInSeconds = durationRemainder * 60;
 var durationText = "Duration: " + durationFullMinutes + "m " ➥

 + durationRemainderInSeconds + "s";
 durationField.innerHTML = durationText;
 }
 });

 // Now we need to connect up our playhead control so
 // we can show our users the progress of playback
 // through the movie, using the technique for progress
 // controls presented in Chapter 5

 // Execute this routine on an interval, once a second
 window.setInterval(function() {

Chapter 7 ■ MULtIMeDIa pLaYBaCK 241

 // Calculate the current playback position in the
 // movie as a percentage of the total duration
 var playheadPosition = document.getElementById("playhead- position");
 var currentPlaybackPositionInSeconds = youTubePlayer.getCurrentTime();
 var durationInSeconds = youTubePlayer.getDuration();
 var playbackPositionAsPercentage = (currentPlaybackPositionInSeconds ➥

 / durationInSeconds) * 100;

 // Update the width of the progress bar to reflect this percentage
 playheadPosition.style.width = playbackPositionAsPercentage + "%";
 }, 1000); // Executed once every 1000 milliseconds = 1 second
 }
});

You have now created the video tutorial page, displaying a video from the YouTube
service and interacting with it through custom- built page controls. The full JavaScript API
includes extra functionality that was not required in this example. You can find more details
about this API in the documentation, at http://code.google.com/intl/en/apis/youtube/
js_api_reference.html.

Youtube Chromeless player appraisal
Google’s YouTube Chromeless Player provides a simple and useful way to customize the
design of YouTube- uploaded video playback to suit the design of your site. The fact that the
video clips, JavaScript API, and Flash movie wrapper are linked to directly from Google’s
servers mean performance is pretty snappy. Also, the company has the ability to dynami-
cally update the software to fix bugs and add new features, without you needing to make any
changes to your code. The size of the files downloaded to the browser to support the player is
refreshingly small.

The most obvious limitation is that your movie files need to reside within YouTube, which
you may not deem appropriate, depending on the type of content you wish to present. The
YouTube logo appears as an overlay on top of the playing movie clip, which, again, you may
deem inappropriate or distracting. The JavaScript API is also fairly basic, providing only the
bare bones of what is needed to control playback of the video.

In short, as long as you don’t mind hosting your videos via YouTube and require just the
basics for playback, Google’s Chromeless Player is probably your best choice for embedded
video playback on your site.

JW FLV Player
Developer Jeroen Wijering’s Flash Video (FLV format) reusable video player component, cur-
rently in its fourth version, is a well- established, well- documented, and well- used third- party
component for embedding videos in your web pages. Check out the project home page at
 http://www.longtailvideo.com/players/jw-flv- player/ and download the component files to
your computer.

http://code.google.com/intl/en/apis/youtube/
http://www.longtailvideo.com/players/jw-flv-�player/and

Chapter 7 ■ MULtIMeDIa pLaYBaCK242

JW FLV player Implementation
Similar to the YouTube Chromeless Player, the JW FLV Player has its JavaScript API supplied to
the page via Flash Player. Also, you need to embed this Flash file in the page using SWFObject,
as discussed earlier.

To implement JW FLV Player for the sample page, first, add the SWFObject library to
 Listing 7-3, before the end of the <body> tag:

<script type="text/javascript" ➥

 src=" http://ajax.googleapis.com/ajax/libs/swfobject/2.1/swfobject.js" />

Next, within the my- example.js file, embed the JW FLV Player in your page, using the code
in Listing 7-6.

 Listing 7‑6. Video Tutorial Page Using JW FLV Media Player

$.onDomReady(function() {
 // The JW FLV Player is represented as player.swf,
 // downloaded from the project web site
 var movieURL = "player.swf";
 var tagIDToReplace = "movie";
 var width = 320;
 var height = 240;
 var flashVersionRequired = "8";
 var expressInstallURL = null;

 // Specify the video file we wish to display, and
 // instruct the player to begin playing immediately
 // without displaying the player's default controls
 // within the Flash movie
 var flashVars = {
 file: "my- video.flv",
 autostart: "true",
 controlbar: "none",
 icons: "false"
 };
 var parameters = {
 allowScriptAccess: "always"
 };
 var attributes = {
 id: "flash- movie"
 };

 // Embed the media player onto the page
 swfobject.embedSWF(movieURL, tagIDToReplace, width, height, ➥

 flashVersionRequired, expressInstallURL, flashVars, parameters, attributes);

http://ajax.googleapis.com/ajax/libs/swfobject/2.1/swfobject.js

Chapter 7 ■ MULtIMeDIa pLaYBaCK 243

 // Once the player has initialized, it calls a
 // function on the page named playerReady. We write
 // our code to connect up our controls by adding our
 // code into a function of this name

 function playerReady(playerInstance) {

 // playerInstance is an object representing the
 // media player on the page. Its id represents the
 // id of the page element within HTML
 var myJWPlayer = document.getElementById(playerInstance["id"]);
 var playPauseControl = document.getElementById("play- pause");
 $.Events.add(playPauseControl, "click", function() {
 // When the user clicks the play/pause button,
 // send the PLAY event to the player, which
 // toggles its playback mode between play and pause
 myJWPlayer.sendEvent("PLAY");
 });

 // The player allows us to write code to hook onto
 // certain events that get fired from within the
 // Flash component itself.

 // Here, we assign the function named setDuration,
 // which we define later, to be called when the
 // LOADED event is fired by the component - which
 // happens when the video file has loaded - which
 // we will use to populate our duration element on the page
 myJWPlayer.addModelListener("LOADED", "setDuration");

 // The setPlayheadPosition function, defined
 // later, will be called when the TIME event fires
 // within the player component - this occurs at a
 // fixed interval, once every 100 milliseconds -
 // and we can use this to update our progress bar
 myJWPlayer.addModelListener("TIME", "setPlayheadPosition");
 }
});

// The setDuration method will be called by the Flash
// component when the video file has loaded, passing it an
// object literal containing the id of the player on the
// page that fired the event
function setDuration(options) {
 var durationField = document.getElementById("duration");

Chapter 7 ■ MULtIMeDIa pLaYBaCK244

 // Find the player component using the id passed to this function
 var myJWPlayer = document.getElementById(options.id);

 // Get the current status of the player component and
 // establish from this the duration of the video file
 var durationInSeconds = myJWPlayer.getConfig().duration;

 // Make the duration more user- friendly
 var durationInMinutes = durationInSeconds / 60;
 var durationFullMinutes = Math.ceil(durationInMinutes);
 var durationRemainder = durationInMinutes ➥

 - Math.floor(durationInMinutes);
 var durationRemainderInSeconds = durationRemainder * 60;
 var durationText = "Duration: " + durationFullMinutes + "m " ➥

 + durationRemainderInSeconds + "s";

 // Output the duration to the element on the page
 durationField.innerHTML = durationText;
}

// The setPlayheadPosition method will be called by the
// Flash component once every 100 milliseconds, passing it
// an object literal containing the current position of
// playback within the video and the total duration of the
// video
function setPlayheadPosition(options) {
 var playheadPosition = document.getElementById("playhead- position");

 // Get the current position of playback within the
 // video as a percentage of the total duration
 var currentPlaybackPositionInSeconds = options.position;
 var durationInSeconds = options.duration;
 var playbackPositionAsPercentage = (currentPlaybackPositionInSeconds ➥

 / durationInSeconds) * 100;

 // Move the progress bar on the page to the correct
 // position based on the percentage calculated
 // previously
 playheadPosition.style.width = playbackPositionAsPercentage + "%";
}

And there you have it—your video tutorial page is now ready for use, with the JW FLV Player
embedded and all controls wired up and functioning correctly, as per the example shown earlier
in Figure 7-2.

Chapter 7 ■ MULtIMeDIa pLaYBaCK 245

JW FLV player Feature Set
The JW FLV Player offers several extra features that were not included in the example:

Playlist support: The JW FLV Player supports playlist files, specified in XML format. You
can specify an external file that contains the details of a list of movie files you wish to dis-
play within your player, and the player will play each in turn. The playlist can be accessed
through the API also, if you wish to present the list of all videos in your own custom con-
trol. You may even load in a playlist file dynamically, which could be very useful in a web
application scenario where you do not wish to refresh the whole page to load in a new set
of video files to present to your users.

Progressive download: A standard movie file hosted on any web server will progressively
download and play; that is, the movie will download partially, and playback will begin
before the whole movie has finished downloading. The rest of the movie will then down-
load in the background while playing.

HTTP streaming: The JW FLV Player also supports HTTP streaming. This requires you to
write a little extra code to run on the server side. With this feature, the end user can jump
straight into any position of the video, regardless of whether it has downloaded to the
local computer. Details of how to implement this feature on your own server are provided
on the JW FLV Player project home page.

Accessibility support: As noted earlier, accessibility for your web applications is an impor-
tant subject, especially in the realm of multimedia. The JW FLV Player supports closed
captions (subtitles) and closed audio description, which is an extra audio track provided
to give guidance to the visually impaired as to actions in the scene not discernible using
the standard audio track alone. Subtitles are described using the W3C’s Timed Text for-
mat, which is XML- based and describes the subtitle text to display, its start time, and its
end time.

Plug-in support: If the JW FLV Player component does not perform everything you need
it to, its architecture supports the ability to add plug- ins to provide extra functionality.
 Plug- ins can also be accessed through JavaScript using the API, which makes it very
appealing for developers who find the player lacking in specific areas.

In addition to these features, the developers are consistently adding new ones. You will
want to keep up-to- date with changes made to this component, which aims to be a one- stop
solution for all your video playback needs.

JW FLV player appraisal
The JW FLV Player is an incredibly feature- rich, stable, and mature component that will allow
you to embed videos and video playlists in your web applications with ease. It’s your best
choice if you need to do more than simply embed a single YouTube movie into your page.

The component is free to use in nonprofit sites, but for commercial use, you need to pur-
chase a commercial license. The license cost is quite low and well worth the investment. There
is also a premium option, which allows you to use the component on up to 50 different sites
and web applications.

Chapter 7 ■ MULtIMeDIa pLaYBaCK246

In terms of file size, the Flash component, which contains and exposes the JavaScript API
also, weighs in at 44KB. This makes it heavier than the YouTube Chromeless Player, so choose
which component to use carefully.

Browser compatibility is very good. Provided the Flash Player plug- in is installed on the
end user’s browser, this component should work without any difficulty.

The Future: Audio and Video in HTML 5
At the time of writing, the new HTML 5 recommendation is still in its draft stage. However,
this hasn’t stopped browser manufacturers from cherry- picking some of the more interesting
features for inclusion in their browsers to gain some leverage over the competition. One of the
areas of great interest being addressed in HTML 5 is in the realm of native audio and video play-
back within the browser, without reliance on JavaScript, Flash, or any other external plug- in.

■Note Other additions to the HTML 5 set in this update of the specification include drawing graphics
directly onto the page, allowing offline storage of web application data (in case the user’s Internet connection
drops but you still wish to continue running your RIA), element drag-and- drop, browser history management,
and live document editing (to allow developers to build native rich- text document editors).

The <audio> and <video> Tags
Implementation of native audio and video support is based around two new proposed HTML
tags: <audio> and <video>. Placing content within these tags provides a useful mechanism for
displaying alternative content to those browsers unable to support these tags. The ability to
provide backup content when a feature is unsupported applies to HTML 5 in general.

Let’s take a look at how to use the <video> tag. The <audio> tag is quite similar. Following
is the HTML 5 code for displaying a video file natively within the browser:

<video id="my- video" src="/my- video.mp4" type="video/mp4" autoplay="true">
 Sorry, your browser does not support the ability to play video files natively.
</video>

The <video> tag takes a number of optional attributes:

	 •	 src: Source URL of the video file.

	 •	 type: MIME type of the video file to display.

	 •	 autoplay: Boolean setting that determines whether to play the video file automatically
as soon as the page has loaded.

Chapter 7 ■ MULtIMeDIa pLaYBaCK 247

	 •	 width and height: Set the dimensions of the movie.

	 •	 controls: Boolean setting that determines whether to show the browser’s default con-
trols (play, pause, and so on) or to switch them off.

	 •	 loop: Boolean setting that determines whether the movie should play again from the
start upon completion.

	 •	 poster: Image file URL to display while the video file is loading. This should typically
be a still frame taken from the movie itself to provide a teaser for end users before they
choose to play the movie. After playback has occurred, the poster frame is not shown
again until the page is refreshed.

Since the tag may contain other content and page elements to provide as a backup, you
could feasibly consider providing your Adobe Flash– based video playback through a tag
embedded within the <video> tag, as in the following example:

<video id="my- video" src="/my- video.mp4" type="video/mp4" autoplay="true">
 <div id="my-backup- video">
 <p>Sorry, your browser is unable to display our video file, but you may ➥

 download the file to your computer ➥

 to watch it instead.</p>
 </div>
</video>

Through JavaScript, you would then determine whether the API exists to support the
<video> tag. If not, you would load in the video file through your Flash- based component as
usual. This way, preference is given to the native browser method of displaying videos, falling
back to Flash Player if that does not exist, and falling further back to a download link, as in the
preceding code example, if that backup component is not supported or JavaScript is disabled.
This approach provides good accessibility.

JavaScript API
A JavaScript API is added with HTML 5, along with support for these tags. This API allows you
to control playback through JavaScript, or to design and build your own controls to manipu-
late playback and feedback properties of the playing audio or video.

The methods available are similar to those provided with the third- party multimedia com-
ponents we have looked at in this chapter, such as play(), pause(), and load(). There is also
a series of dynamic attributes, set by the playing file, which allow you to discover the current
play position, the size and duration of the media, and other information you can use as feed-
back to your users.

Completing the API is a set of events, each of which you can hook into through JavaScript.
These fire in response to certain occurrences, such as the starting and stopping of playback.
There is even an event that triggers periodically during playback to allow for the updating of
any user interface component you have developed to show the playback position to the end
user.

Chapter 7 ■ MULtIMeDIa pLaYBaCK248

Current Adoption Level
At present, support for the <audio> and <video> tags is available in a limited fashion in Safari
3.1 and up, Google Chrome, Opera 9.5 and up (video playback only, not audio), and Firefox
3.5 and up. While this does not constitute the vast majority of installed browsers by market
share, it does provide a useful test bed for the tags and their associative JavaScript API. This
gives developers a chance to iron out the bugs and implementation details before adoption
becomes more widespread.

A point of contention among these early adopters has been the audio and video file for-
mat and the codecs supported. Each manufacturer has its own preference as to which is the
best format and is seeking to force that to be the adopted standard. The standards body would
like to settle on an open source codec, but this seems to be disputed by some manufacturers
who believe their own codec to be superior. As it stands, you will find that different formats
are supported through the use of these tags in different browsers, so it is too early to use them
widely. You can read the latest progress online at http://www.whatwg.org/specs/web-apps/
current- work/.

Summary
This chapter reviewed a few third- party audio and video player components, which make use
of Adobe’s Flash Player browser plug- in. You’ve seen how you can utilize these components
in your own web pages to play and manipulate multimedia files. We have also taken a look
into the future of browser support for native audio and video playback. You should now be in
a position to implement multimedia playback in your own pages, building your own controls
on the page and controlling playback of the media from those controls via JavaScript APIs
exposed through each of the third- party components.

In the next chapter, we will look at customizing form controls in your pages using
JavaScript, providing some more user- friendly interfaces for the completion of forms than the
native HTML controls.

http://www.whatwg.org/specs/web-apps/

249

C h a p t e r 8

Form Controls

Forms often make up a major part of any web application. A form might encourage users to
submit feedback, provide search functionality, let users add information to an online data-
base, and so on. With a form, you are inviting your end users to give some kind of information
back to you in order to get something back themselves. Forms are some of the most interactive
parts of the web site. They also can be the parts that most regularly frustrate users. Building
and laying out forms and form fields correctly are absolutely paramount to your applications.

This chapter guides you through customization of existing HTML form fields and shows
you how to add new types of controls. You’ll see how to construct forms that are more under-
standable and visually pleasing for your end users.

Customizing Existing Form Controls
The wide variety of form fields available within HTML allow you to collect pretty much all the
information you require from your users in order to perform some process or provide some
functionality within your site. You are probably used to using CSS to style your form fields, and
you may have noticed that certain form controls do not respond to certain styles. For example,
attempting to change the border style of a <select> drop- down element has different effects in
different browsers—some apply the style; others ignore it.

Some problems exist with styling because form fields used in browsers are typically taken
directly from the equivalent form fields present within the operating system. Such controls
are usually changeable only by making alterations to the operating system’s theme or style.
Over time, browser manufacturers have bowed to pressure and attempted to give developers
more control over styling such controls. Unfortunately, support is patchy among browsers, so
making style changes to controls such as <select> boxes may not have the same effect in each
browser.

In short, some niggles persist when styling certain controls. Here, we confront these
 head- on and look at a few solutions—using CSS and occasionally some JavaScript—that work
in as many browsers as possible. Let’s get started with form buttons.

Buttons
You probably use buttons on a daily basis when browsing the Web, clicking them to save
some data you’ve typed into a form, delete an entry from a database, send an e- mail message
through a web mail client, and so on.

Chapter 8 ■ FOrM CONtrOLS250

Buttons are typically rendered to the page using the tags <input type="submit">, <input
type="reset">, <input type="button">, and <input type="image">. The first three of these but-
ton types are rendered using the operating system’s or browser’s default style. The intention is
to provide some design consistency between the page and the operating system or browser’s
user interface. The <input type="image"> button type renders an image located at a specified
URL and submits the form it lies within when the user selects that image.

Button Style Customization
CSS support for the submit, reset, and button input types in browsers has been a little patchy
in the past. For example, early versions of Safari didn’t support the alteration of the default
style at all. But things have settled since then, and virtually all browsers now support full CSS
styling. However, even today, it is still tricky to match the exact positioning of text within the
button in all the different browsers.

A common design for buttons in many RIAs uses rounded corners and shadows, as shown
in Figure 8-1. Suppose that you want adjust this type of button so that its size depends on the
size of the text it contains. This way, if users resize the text in their browser, the text within the
customized button will also resize, without losing the style you have applied to its background,
which is great for accessibility.

 Figure 8‑1. Customized submit button

To build this control in a way that allows you to resize each button horizontally depend-
ing on the amount of text contained within it, you need to add an extra element around the
<input> element:

<div class="button">
 <input type="submit" value="Save as draft" />
</div>

Then you can use the CSS background- position property, in combination with a very wide
image, as shown in Figure 8-2, as the background for both elements. You’ll show a portion of
the left side of the image as the background for the outer element, and the right side of the
image as the background for the <input> element itself.

 Figure 8‑2. Wide image to use as background for a submit button

The CSS to produce this customized submit button using the preceding HTML and wide
image looks like this:

.button {
 /* pin background to the top- left of the outer element */
 background: url(button- bg.png) top left no- repeat;

Chapter 8 ■ FOrM CONtrOLS 251

 /* force 14px of the left side of the background to show */
 padding- left: 14px;

 /* force the element to alter its width to fit its contents, no more */
 float: left;

 /* height of the background image */
 height: 50px;
}

.button input {
 /* pin background to the top- right of the input element */
 background: url(button- bg.png) top right no- repeat;

 /* 23px of rounded corner + shadow at right of image */
 /* 9px of shadow height at bottom of image */
 padding: 0 23px 9px 0;

 font- size: 1.7em; /* the em unit allows the text to be resized by the user */
 height: 50px; /* height of the background image */
 overflow: visible; /* fixes an odd rendering bug in IE */
 border: 0; /* removes the default border around the input element */
 margin: 0; /* removes the default margin around the input element */
}

You see that you can remove the default style of a button element and change it to suit the
design and layout of your own pages, while still using browser text for the button itself.

an alternative to Image- type Form Buttons
You know that the <input type="image"> element allows you to specify an image URL and use
that image as a form button. Suppose that you have several such images used throughout your
site. In that case, it would more efficient to use the CSS sprite technique, introduced back in
Chapter 4. You could combine all these separate images into one single file, and use CSS class
names to select the correct portion of the sprite image to display within the page element.
 Figure 8-3 shows an example of a sprite image of four custom buttons: OK, Cancel, Back, and
Forward.

 Figure 8‑3. CSS sprite containing four images to use as buttons

An additional improvement is to use an <input type="submit"> tag, instead of <input
type="image">. This way, if the user’s browser does not support CSS or it has been manually
disabled for whatever reason, a standard submit button will appear on the page instead—the
principle of progressive enhancement in action.

Chapter 8 ■ FOrM CONtrOLS252

Let’s walk through how to use this technique. You need two HTML elements for each but-
ton: the <input> tag itself and a wrapper tag, which could feasibly be any block- level element.
In this case, you will use a <div> tag. Here’s the HTML:

<div class="sprite ok">
 <input type="submit" value="OK" />
</div>

<div class="sprite cancel">
 <input type="submit" value="Cancel" />
</div>

<div class="sprite back">
 <input type="submit" value="Back" />
</div>

<div class="sprite forward">
 <input type="submit" value="Forward" />
</div>

Notice that each button has a different CSS class on the outer element and the value of
the button itself is set correctly. This provides those without a CSS- capable browser access to a
standard submit button instead.

Now, you need to write the CSS to produce the results you want. Let’s start with the class
sprite, which is set on each of the wrapper elements:

.sprite {
 background- image: url(button- sprite.png);
 background- repeat: no- repeat;
 width: 85px;
 height: 39px;
 overflow: hidden;
}

Here, you set the background image to be your sprite image, and you tell it not to repeat
itself if given the chance. You force the width and height to match the dimensions of one of
the button images within the sprite, and not the dimensions of the whole sprite image itself.
Finally, you set the overflow property to hidden, which means that any content that extends
outside the boundary marked by the width and height of this element will be cropped off
and not displayed. The reason for setting this final property will become more evident in a
moment.

Next, set the background position for each button to represent the correct button within
each element, as follows:

.sprite.ok {
 background- position: 0 0;
}

Chapter 8 ■ FOrM CONtrOLS 253

.sprite.cancel {
 background- position: -85px 0;
}

.sprite.back {
 background- position: 0 -39px;
}

.sprite.forward {
 background- position: -85px -39px;
}

Finally, now that you’ve sorted out the display of the correct button, you need to apply
some CSS treatment to the <input> tag to hide its text content but still allow it to be selectable:

.sprite input {
 padding: 0;
 margin: 0;
 border: 0;
 background: transparent;
 display: block;
 height: 39px;
 font- size: 0;
 text- align: right;
 width: 500px;
}

This starts out by simply resetting the margin, padding, and border properties. The values
for these properties make sure that the background is transparent to show through the image
of the button underneath, and force the height of the element to match that of the image so
the whole thing is selectable.

The last three lines of this style are employed to make sure that the element’s default text
does not display on top of the image of the button. You take advantage of the fact that any por-
tion of this element larger than that of the surrounding element will be cropped off and not
displayed—thanks to the overflow: hidden style property on the outer element. All you need
to do is make the <input> element considerably wider than the wrapper element and align the
text, which you make as small as possible so it takes up less space, to the right of the element.
This means the text sits within the portion of the element hidden from display, and leaves you
with the button looking the way you intended in all browsers.

Text Fields
The humble text field accepts data in many different formats. It is by far the most common
form field in the HTML set. Because this type of field is so flexible, one concern is having some
control over what the user enters. In some cases, you should use a little gray matter, along
with a little JavaScript, to ensure that the correct data is input. For example, you may want to
restrict the field to accept only numbers or accept only the characters that are allowable within
an e- mail address. We’ll look at enforcing both of these types of restrictions.

Chapter 8 ■ FOrM CONtrOLS254

a Numbers- Only text Field
This example demonstrates how to style a text field that, provided JavaScript is available, will
not accept any input other than numbers. Let’s start by creating a new <input type="text">
element and assigning it a class of numerical:

<form action="get" action="/" id="form">
 <input type="text" class="numerical" />
 <input type="submit" value="save" />
</form>

Now you can write your JavaScript to apply to only elements with this specific class:

$.onDomReady(function() {
 // Listen for keypress events within the form
 $.Events.add(document.getElementById("form"), "keypress", ➥

 function(e) {
 // Was the key pressed within a field with a class of numerical
 if (e.target.className == "numerical") {

 // The following regular expression matches everything not numeric
 if (e.key.match(/[^0- 9]/g)) {

 // Cancel the keypress event if a number key was not pressed
 e.preventDefault();
 }
 }
 });
});

This JavaScript code will wait until the DOM is ready to be accessed, and then start listen-
ing for keypress events that occur within the scope of the <form> tag on the page. If one of these
events occurs on an element with a class of numerical—in this case, the text field—then you
use a regular expression to see if the key that was pressed is a number. If it is not a number, you
prevent it from being written into the field by effectively halting the browser event in its tracks.
If the key pressed maps to a number, then there’s no problem; the event is allowed to proceed,
and the character is written into the field.

By changing the regular expression used in this routine, you can limit which characters
are allowed within the field. Let’s see how that works with another kind of text field.

an e-Mail address Field
Suppose that you have a field whose class is set to email and you want to restrict which charac-
ters can be entered into this field to those permitted within e- mail addresses. The HTML looks
like this:

<input type="text" class="email" />

You can simply amend the code shown the previous section to cope with this case.

Chapter 8 ■ FOrM CONtrOLS 255

$.onDomReady(function() {
 $.Events.add(document.getElementById("form"), "keypress", ➥

 function(e) {
 switch(e.target.className) {
 case "numerical":
 if (e.key.match(/[^0- 9]/g)) {
 e.preventDefault();
 }
 break;

 case "email":
 // The following regular expression matches all characters not
 // permitted within an email address
 if (e.key.match(/[^a-zA-Z0-9@!#$%&'*+- \/=?^_{}~.]+/g)) {
 e.preventDefault();
 }
 break;
 }
 });
});

As you can see, this slice of code is virtually identical to the JavaScript in the previous sec-
tion, except that it uses a different regular expression. Now you are canceling the keypress
event for every character that is not within the list of characters allowed within an e- mail
address. You can use this approach to add new restrictions. Just use the appropriate regular
expression to match the type of restriction you wish to impose.

Don’t forget that some users will not have JavaScript enabled in their browsers. For these
users, you must add appropriate server- side validation, so that values sent back to the server
are not saved if they contain characters that would otherwise have been restricted through
JavaScript.

File Upload Controls
The file upload control is fairly unique in HTML, in that it typically adds two linked form con-
trols to the page: a text field and a button. The exception is within the Safari browser, where
the text field is replaced with a text label; the file name is not editable in this case.

So, the file upload control usually consists of two distinctly different form elements added
through one tag, and the two cannot be separated. Applying a design to this control using CSS
is particularly difficult, because the same styles are applied to both elements. For example,
styling the button with a custom image using CSS alone is not straightforward.

Thankfully, there is a technique that enables you to apply custom styles to the file upload
control. The downside is that the text field portion of the control is effectively removed—it’s
replaced with a text label, as in Safari. Personally, I find this a perfectly acceptable limitation,
as not many users actually type file locations directly into a field. Most prefer to browse to the
proper file location.

Here, I’ll show you how to construct your own file upload control using this technique,
based on the design depicted in Figure 8-4.

Chapter 8 ■ FOrM CONtrOLS256

 Figure 8‑4. A customized file upload control

In the HTML for the control, you wrap your file upload field in a <div> tag and add another
<div> element next to the upload field, which you’ll use to represent the file name of the
selected text using JavaScript. In fact, since you need to use JavaScript to display the value in the
text label dynamically, it makes sense that the whole customized control will be applied only if
JavaScript is enabled. Other users should see the default browser style upload field. Here’s the
HTML to achieve this design:

<form method="post" action="/" id="form" enctype="multipart/form- data">
 <div class="file" id="uploader">
 <input type="file" id="file-upload" />
 <div class="file- label"></div>
 </div>

 <input type="submit" value="Save" />
</form>

In order to ensure the CSS for this control is applied only when JavaScript is enabled, you’ll
use JavaScript to dynamically add a new class of active to the <div class="file" id="uploader">
element:

$.CSS.addClass(document.getElementById("uploader"), "active");

Then write all your CSS to hang from this new class name:

div.file.active {
 position: relative;
 background: url(file- upload.png) top left no- repeat;
 /* dimensions of background image */
 width: 288px;
 height: 39px;
}

div.file.active .file- label {
 /* position above background */
 position: absolute;
 top: 0;
 left: 10px;
 /* only consume the width of the text label part of the image */
 width: 175px;
 height: 100%;
 overflow: hidden;
 z- index: 1;
 font- size: 1.4em;
 /* ensure text is accurately positioned, vertically centered */
 line- height: 31px;
}

Chapter 8 ■ FOrM CONtrOLS 257

div.file.active input {
 position: absolute;
 /* make the file input transparent in Firefox */
 -moz- opacity: 0;
 /* apply transparency in IE 8 */
 -ms- filter:"progid:DXImageTransform.Microsoft.Alpha(Opacity=0)";
 /* apply transparency in IE 7 and below */
 filter: alpha(opacity=0);
 /* apply transparency in other capable browsers, e.g., Safari, Opera */
 opacity: 0;
 /* position transparent file input above background and file label */
 z- index: 2;
 /* if this border is not set, Opera does not apply the transparency */
 border: 0;
 /* fill the available space marked by the outer wrapper element */
 width: 100%;
 height: 100%;
}

 Figure 8-5 shows how these style rules are applied to the elements in three stages, starting
with the native file upload control and ending with the final customized control:

	 •	 First,	you	set	the	image	that	represents	the	whole	file	upload	control	as	the	background	
image of the wrapper element and set its size to match the dimensions of the image.

	 •	 Then,	you	position	the	file	label	so	it	sits	in	a	layer	above	the	background	and	style	its	
text (stage two of Figure 8-5).

	 •	 Finally,	you	apply	some	style	rules	to	the	native	file	upload	control,	making	it	transparent	
so that the user can see straight through to the background image and file label under-
neath, but still allowing the element itself to be clickable (stage three of Figure 8-5).

 Figure 8‑5. The three stages of customizing a file upload control

This is a pretty spectacular phenomenon, which actually works well across all modern
browsers. Since setting transparency using the CSS 3 opacity property is not currently possible
across all browsers, you must adopt each browser’s own implementation in a set of rules to
target each of the modern browser’s opacity setting ability. With the control now invisible, you
position it so that it sits above the background and the file label, and ensure it consumes the
full width and height of the wrapper element.

All that remains is to write the JavaScript code to apply the CSS class active to the wrapper
element and ensure that the text label is updated when the user selects a file using the control.

Chapter 8 ■ FOrM CONtrOLS258

$.onDomReady(function() {
 // Find all the fields with class file within the <form> tag with id of form
 var fileUploadFields = $.Elements.getElementsByClassName("file", ➥

 document.getElementById("form"));
 for (var index, length = fileUploadFields.length; index < length; index++) {
 var fileUpload = fileUploadFields[index];
 // Add the class active to the file upload fields
 $.CSS.addClass(fileUpload, "active");
 }

 // We'll call the setFileLabel function when certain browser events fire
 var setFileLabel = function(e) {
 if (e.target.type == "file") {
 // Find the nearest text label to display the file name within
 var fileLabel = $.Elements.getElementsByClassName(➥

 "file- label", e.target.parentNode)[0];
 // Get the file name from the upload field
 var file = e.target.value;

 // Display only 19 characters of text within the file name label
 var numberOfChars = 19;
 if (file.length > numberOfChars) {
 // Truncate the file name if it's longer than 19 characters
 file = file.substr(0, 4) + " ... " + ➥

 file.substr(file.length - numberOfChars + 4, file.length)
 }
 // Write the file name to the label element
 fileLabel.innerHTML = file;
 }
 }

 // Listen for change events on the control and set the label text
 $.Events.add(document.getElementById("file-upload"), "change", ➥

 setFileLabel);

 // Listen for mouseout events on the control and set the label text - used for
 // Internet Explorer which does not fire the change event when it should
 $.Events.add(document.getElementById("file-upload"), "mouseout", ➥

 setFileLabel);
});

This script is in two parts. The first part finds all the <div class="file"> elements within
the form and applies the CSS class active to them. This allows the CSS rules you wrote earlier
to be applied to these elements. The second part of the code listens for change and mouseout
events to occur within the upload field and calls a method when these events are fired. This
method takes the file name from the upload field and populates the text label with its value,
truncating it if it’s too long to fit in the available space.

Chapter 8 ■ FOrM CONtrOLS 259

To be listening for the change event might not seem surprising to you, since you want to
know when the value in the upload field is changed. However, using the mouseout event might
seem a little strange. The problem is that some older browsers do not fire the change event
when a file is selected, but instead fire the mouseout event. Therefore, you need to listen for
both events to ensure a proper cross- browser implementation.

Adding New Types of Form Controls
The standard HTML form controls are often more than enough to deal with getting data from
your users into your application. However, in some cases, you may want to use some more
intuitive controls or controls that are present within the operating system but not exposed
through HTML. The good news is that, with a little JavaScript and the occasional dab of Flash,
you can build almost any kind of custom user interface for your forms.

The way you perform this awesome feat is by hiding fields that already exist within your
form, and then providing a new interface for altering the values within those fields. When the
user interacts with your new controls, you update the hidden fields behind the scenes. This
ensures that all the data is sent to the server through HTML form fields in the usual way, and
you reduce the risk of errors or missing data.

In this section, you will see how to use this technique to build two types of form controls
that are not native to HTML. Later in this chapter, I’ll introduce some third- party reusable
form control components.

A Calendar Widget for Date Selection
A standard HTML form may allow date selection by means of a text box whose contents are
validated against a certain format for date entry, such as in the form DD-MM- YYYY. Alterna-
tively, the form may present a group of three select boxes—one each for the day, month, and
year, respectively—and the user is asked to pick the appropriate value from each to select the
required date.

Wouldn’t it be more intuitive to supply the user with a familiar calendar interface for
selecting a date? Such widgets can be found on many hotel and flight booking web sites today.
Some are implemented well, but some leave a lot to be desired.

For example, many existing calendar widgets require users to click a calendar icon to
launch a pop- up calendar, or it may be simply presented to them when they click the usual
date selection fields on the page. Although it saves on page space within the site’s layout, this
mechanism can frustrate end users. Some calendar widgets require the user to click a certain
button to close them, rather than closing automatically when the user interacts with other
fields. Some pop up their calendars inappropriately over other controls on the page, rendering
those controls inaccessible.

A little thought and consideration about how your users might wish to interact with your
controls can pay huge dividends. Remember that you are trying to give a pleasurable, almost
unnoticeable, user experience. Any causes of frustration for end users must be avoided. With
that in mind, let’s see how to construct a more intuitive control: a reusable calendar widget,
containing all the logic and HTML required.

The sample calendar control will be connected to three <select> tags, but the interface
will look like Figure 8-6. Before looking at the code for this control, let’s define how it should
behave:

Chapter 8 ■ FOrM CONtrOLS260

	 •	 Page	developers	can	style	and	position	the	calendar	as	appropriate	to	the	design	of	
their site.

	 •	 The	control	can	be	instantiated	at	a	time	of	the	page	developer’s	choosing.

	 •	 Multiple	instances	can	exist	on	the	same	page	and	will	not	interfere	with	each	other.

	 •	 Month	and	day	names	should	be	localizable	but	default	to	English.

	 •	 Page	developers	can	hook	into	events	that	occur	within	the	calendar	widget	and	extract	
useful information from it. For example, the developer may wish to know when a new
date is selected, and what that new date is.

 Figure 8‑6. Custom calendar form control connected to three <select> boxes

In order to create a widget object that can be instantiated, you need to use a constructor
class. As explained in Chapter 2, in object- oriented programming, a class is like a definition of
how your code should behave. An object is a specific instance of that class, where each object
created is independent of the other objects, but they all share the capabilities of the class from
which they were instantiated.

Internally, our widget will contain code related to its presence in the browser: HTML ren-
dering and the wiring up of user events, such as mouse clicks. Also contained in the widget
will be code related to maintaining the current state of the calendar and calculations involving
dates and months. You want to keep this logical separation of data and display code, ensuring
that there is no crossover between the two.

The Observer pattern (introduced in Chapter 2) provides a useful way of maintaining this
distinction. You have a section of code related to data storage and manipulation. When this
code performs an action that the display might like to know about, it fires an event of a prede-
termined name.

You tell your display- related code to listen for when certain events are fired. When they
are, code can be executed within the display, taking any relevant data that has been passed to
the event and using it to alter the display. The same technique applies the other way around.
For example, when the user clicks to change the selected date, the data- storage code needs
to know about this. The data- storage code listens for an event fired by this click. The value of
the new date can be passed along with the event, and the data- storage code can be updated as
appropriate.

Chapter 8 ■ FOrM CONtrOLS 261

This pattern allows for two or more distinct blocks of code to coexist within the same sys-
tem, without messy cross- references between the two. A single method acts as the mediator,
defining a list of permitted events and allowing each code block to fire or listen to any of those
events in the system.

Creating Utility Methods for Dates
To manipulate and format native JavaScript Date objects into more user- friendly displays, you
need some new utility methods. Let’s make these methods reusable by adding them to the $
JavaScript library you started in Chapter 2. Listing 8-1 shows the utility methods you’ll use to
make the calendar widget easier to work with. Add this code to the library before it is instanti-
ated as a singleton on its last line.

 Listing 8‑1. Extending the $ JavaScript Library with Utility Methods for Dates

// Add the padZero method to the Utils namespace. This method returns the string
// form of a number passed to it. If the number is less than 10, an extra 0 is
// added to the beginning of the resulting string
$.prototype.Utils.padZero = function(number) {
 return (number < 10 ? "0" : "") + number.toString();
}

// Create a new namespace called Date for holding all date- specific utility methods
$.prototype.Date = {

 // The copy method duplicates a Date object and returns the copy. Typically,
 // Dates are passed around in JavaScript as references to a single object, so
 // normal variable copying is not possible - each copy would always point as
 // a reference to the same object. This method creates a new Date object,
 // taking the exact date and time from the existing object
 copy: function(date) {
 var newDate = new Date();
 newDate.setTime(date.valueOf());
 return newDate;
 },

 // The add method takes an existing Date object and adds a specified number of
 // days, months and years to that object, returning the resulting Date object
 add: function(date, options) {
 // The options object literal contains three properties - day, month and
 // year - representing the number of each to add to the input Date object
 var daysToAdd = options.day || 0;
 var monthsToAdd = options.month || 0;
 var yearsToAdd = options.year || 0;

 // Create a new Date object and add the days, months and years
 // specified to it
 var date = this.copy(date);

Chapter 8 ■ FOrM CONtrOLS262

 var initialDay = date.getDate();
 var initialMonth = date.getMonth();
 var initialYear = date.getFullYear();
 date.setFullYear(initialYear + yearsToAdd);
 date.setMonth(initialMonth + monthsToAdd);
 date.setDate(initialDay + daysToAdd);

 // Return the resulting Date object
 return date;
 },

 // The matchDay method returns true if the two Date objects passed to it have
 // the same day number - i.e., inputs of 28 May and 28 June would return true
 // since the day number is the same for each
 matchDay: function(date1, date2) {
 return date1.getDate() == date2.getDate();
 },

 // The matchMonth method returns true if both Date objects passed to it occur
 // within the same month and same year as each other
 matchMonth: function(date1, date2) {
 return ((date1.getMonth() == date2.getMonth()) && (date1.getFullYear() == ➥

 date2.getFullYear()));
 },

 // The match method returns true or false depending on whether the two Date
 // objects input represent identical dates
 match: function(date1, date2) {
 return this.matchDay(date1, date2) && this.matchMonth(date1, date2);
 },

 // The format method returns a date as a user- friendly formatted string
 format: function(date, formatDefinition, dayName, monthName) {
 var d = date.getDate(); // Single or double digit day
 var dd = $.Utils.padZero(d); // Double digit day
 var dddd = dayName; // Day name
 var ddd = dddd.substr(0, 3); // Short day name
 var m = date.getMonth(); // Single or double digit month
 var mm = $.Utils.padZero(m); // Double digit month
 var mmmm = monthName; // Full month name
 var mmm = mmmm.substr(0, 3); // Short month name
 var yy = $.Utils.padZero(date.getYear()); // Two digit year
 var yyyy = date.getFullYear(); // Four digit year
 var tttt = date.getTime(); // Date represented as time

Chapter 8 ■ FOrM CONtrOLS 263

 return $.Utils.replaceText(formatDefinition, {
 d: d,
 dd: dd,
 ddd: ddd,
 dddd: dddd,
 m: m,
 mm: mm,
 mmm: mmm,
 mmmm: mmmm,
 yy: yy,
 yyyy: yyyy,
 tttt: tttt
 })
 },

 // The getStartOfFirstWeekInMonthSquare method returns the Date object
 // representing the first day of a month square. This is usually a day before
 // the first of the month, which occurs on a Sunday in JavaScript, allowing a
 // calendar to display dates that fit into a neat date square, including dates
 // that occur in the previous month
 getStartOfFirstWeekInMonthSquare: function(date) {
 date = this.copy(date);
 date.setDate(1); // First day in month
 date.setDate(1 - date.getDay()); // Go back to Sunday at start of week
 return date;
 },

 // The getEndOfWeekInMonthSquare method returns the last date that would fit
 // into a neat month square around the month represented in the date
 // input parameter
 getEndOfWeekInMonthSquare: function(date, weeksInSquare) {
 var DAYS_IN_WEEK = 7;

 date = this.copy(date);
 date.setDate(1);
 date = this.add(date, {
 month: 1
 });

 // Go back to the last day of the month
 date.setDate(date.getDate() - 1);

Chapter 8 ■ FOrM CONtrOLS264

 // Look forward to last day of month square
 var numberOfDaysToEndOfWeek = (DAYS_IN_WEEK - 1) - date.getDay();
 date = this.add(date, {
 day: numberOfDaysToEndOfWeek
 });

 return date;
 }
}

Building the Calendar
 Listing 8-2 shows how to build the calendar control using the Observer pattern, the utility
methods in Listing 8-1, and two completely separate code blocks: one for data manipulation
and storage, and one for the user interface and interaction code. Save this code in a file named
calendar.js.

 Listing 8‑2. A Calendar Custom Form Control

// Create the constructor that will represent our calendar form control. The inputs
// are contained within the options object literal, which should contain
// three properties:
// - destinationElement: the DOM element on the page within which to insert
// the calendar form control
// - selectedDate: a JavaScript Date object representing the default selected date
// on the calendar
// - strings: an object literal containing text strings to allow for localization of
// the calendar form control, including day and month names and text for
// 'previous' and 'next' button labels to change the currently displayed month

var Calendar = function(options) {

 // Store the list of events supported by the calendar, according to the
 // Observer pattern
 this.eventType = {

 // The INITIALIZE event will be fired once the calendar is instantiated
 INITIALIZE: 0,

 // The READY event will be fired once the currently selected date has been
 // established after instantiation
 READY: 1,

 // The HTML_RENDERED event will be fired as soon as the calendar control is
 // rendered onto the page
 HTML_RENDERED: 2,

Chapter 8 ■ FOrM CONtrOLS 265

 // The INCREMENT_DISPLAY_MONTH event will be fired when the users indicate
 // they wish to display the next month forward from the currently
 // displayed month
 INCREMENT_DISPLAY_MONTH: 3,

 // The DECREMENT_DISPLAY_MONTH event will be fired when the users indicate
 // they wish to display the previous month before the currently
 // displayed month
 DECREMENT_DISPLAY_MONTH: 4,

 // The MONTH_CHANGED event will be fired once the currently displayed month
 // value has been changed, so that the UI can be updated to
 // reflect the new month
 MONTH_CHANGED: 5,

 // The DATE_SELECTED event will be fired when the users indicate they
 // wish to select a new date from the calendar control. The new date value
 // is passed along with the event
 DATE_SELECTED: 6
 }

 // The initialize self- instantiating function creates instances of the two code
 // blocks in the system and fires the first event of the system, the INITIALIZE
 // event, to kick off proceedings
 var initialize = function(options) {

 // Data storage and manipulation code will be represented by the Data code
 // block, defined later. We instantiate the code block but do not need to
 // assign it to a variable here, since it is completely self-contained.
 new this.Data(options, this);

 // User interface and interaction code will be represented within the UI
 // code block, also defined later
 new this.UI(options, this);

 // Now that the code blocks and event list have been initialized, fire the
 // INITIALIZE event. The Data and UI code blocks can listen for this event
 // and act appropriately to initialize their own code
 this.fire(this.eventType.INITIALIZE);
 }.call(this, options);
}

// Add support for the Observer pattern's listen and fire events to the calendar
Calendar.prototype = new $.Observer;

// The Data code block is a constructor and contains code to store and manipulate
// data within the calendar, primarily representing the currently selected date and

Chapter 8 ■ FOrM CONtrOLS266

// the currently displayed month on the calendar control. When it is instantiated,
// the object literal's inputs to the calendar are passed in, along with a reference
// to the parent object, the Calendar class, from which the code block can utilize
// the events list and Observer methods listen and fire.
Calendar.prototype.Data = function(options, thisCalendar) {

 // Store three properties representing the master Calendar instance that
 // instantiated Data, the currently selected date, and the currently
 // displayed month
 this.thisCalendar = this;
 this.selectedDate = null;
 this.displayMonth = null;

 // We create getter and setter methods to protect these properties and ensure
 // sensible data gets written to them

 // The getDisplayMonth method returns a copy of the JavaScript Date object that
 // represents the currently displayed month within the control
 this.getDisplayMonth = function() {
 return $.Date.copy(this.displayMonth);
 }

 // The setDisplayMonth method sets the currently displayed month to the passed
 // in month, if it exists, or sets it to the current date if it is not supplied
 this.setDisplayMonth = function(date) {
 this.displayMonth = $.Date.copy(date) || new Date();
 // We only care about the month, not the specific day for this variable. Set
 // the day to the 1st of the month to avoid any problems jumping
 // between months
 this.displayMonth.setDate(1);

 // Allow chaining of method calls by returning this
 return this;
 }

 // The getSelectedDate method returns a copy of the JavaScript Date object
 // representing the currently selected date on the calendar
 this.getSelectedDate = function() {
 return $.Date.copy(this.selectedDate);
 }

 // The setSelectedDate method sets the currently selected date to the value
 // passed into the method, if one is provided. If it is not, the current date is
 // used instead
 this.setSelectedDate = function(date) {
 this.selectedDate = $.Date.copy(date) || new Date();
 return this;
 }

Chapter 8 ■ FOrM CONtrOLS 267

 // The getCalendarInstance method returns the reference to the master Calendar
 // instance that instantiated the Data code block. We need this to be able to
 // access the Observer pattern methods and events list used in the whole system
 this.getCalendarInstance = function() {
 return this.thisCalendar;
 }

 // The setCalendarInstance method sets the current Calendar object instance to
 // the value passed into the method. If a value is not passed in, we use the
 // current object scope instead
 this.setCalendarInstance = function(thisCalendar) {
 this.thisCalendar = thisCalendar || this;
 return this;
 }

 // With the getters and setters complete, we define our methods to manipulate
 // the dates as required by the system

 // The incrementDisplayMonth method adds one month to the displayMonth property,
 // then fires the MONTH_CHANGED event to notify the entire calendar control
 // that the value has changed, in case the code needs to react to this event
 this.incrementDisplayMonth = function() {
 this.setDisplayMonth($.Date.add(this.getDisplayMonth(), {
 month: 1
 }));

 var thisCalendar = this.getCalendarInstance();
 var eventType = thisCalendar.eventType;

 // Pass the new display month and currently selected date to any code block
 // in the calendar control listening for the MONTH_CHANGED event
 thisCalendar.fire(eventType.MONTH_CHANGED, {
 displayMonth: this.getDisplayMonth(),
 selectedDate: this.getSelectedDate()
 });
 }

 // The decrementDisplayMonth method subtracts one month from the displayMonth
 // property,then fires the MONTH_CHANGED event to notify other code blocks that
 // the display month has been altered
 this.decrementDisplayMonth = function() {
 this.setDisplayMonth($.Date.add(this.getDisplayMonth(), {
 month: -1
 }));

 var thisCalendar = this.getCalendarInstance();
 var eventType = thisCalendar.eventType;

Chapter 8 ■ FOrM CONtrOLS268

 thisCalendar.fire(eventType.MONTH_CHANGED, {
 displayMonth: this.getDisplayMonth(),
 selectedDate: this.getSelectedDate()
 });
 }

 // The addObservers method assigns functions to execute when certain events
 // are fired within the calendar control, either by the current code block or
 // by others
 this.addObservers = function() {
 var self = this;
 var thisCalendar = this.getCalendarInstance();
 var eventType = thisCalendar.eventType;

 // Listen for the INITIALIZE event being fired, then fire the READY event
 // immediately, passing it the current month to display and the currently
 // selected date. The master Calendar instance will fire the INITIALIZE
 // event once it has instantiated this code block
 thisCalendar.listen(eventType.INITIALIZE, function() {
 thisCalendar.fire(eventType.READY, {
 displayMonth: self.getDisplayMonth(),
 selectedDate: self.getSelectedDate()
 });
 });

 // Listen for the INCREMENT_DISPLAY_MONTH event to fire, and increment the
 // date stored in the displayMonth property accordingly when it is fired
 thisCalendar.listen(eventType.INCREMENT_DISPLAY_MONTH, function() {
 self.incrementDisplayMonth();
 });

 // Listen for the DECREMENT_DISPLAY_MONTH event to fire, and decrement the
 // displayMonth date property when it occurs
 thisCalendar.listen(eventType.DECREMENT_DISPLAY_MONTH, function(){
 self.decrementDisplayMonth();
 });

 // Listen for the DATE_SELECTED event and store the passed in JavaScript
 // Date object as the newly selected date and update the displayMonth
 // property according to the month of the newly selected date
 thisCalendar.listen(eventType.DATE_SELECTED, function(selectedDate) {
 self.setSelectedDate(selectedDate);
 self.setDisplayMonth(selectedDate);
 });

 return this;
 };

Chapter 8 ■ FOrM CONtrOLS 269

 // Initialize the Data code block, storing the passed in properties and
 // beginning to listen for events fired in the system
 var initialize = function(options, thisCalendar){
 this
 .setCalendarInstance(thisCalendar)
 .setSelectedDate(options.selectedDate)
 .setDisplayMonth(options.selectedDate)
 .addObservers();
 }.call(this, options, thisCalendar);
};

// The UI code block is a constructor and contains code to display and allow
// interaction with the visible calendar control on the page. This code block is
// completely separate from the Data code block defined previously, but relies
// on the same set of events being fired within the control, according to
// the Observer pattern
Calendar.prototype.UI = function(options, thisCalendar) {

 // Define three properties for this code block: a reference to the master
 // Calendar instance, which will instantiate this code block, the destination
 // DOM element to place the calendar control within, and an object literal
 // containing the text strings to use for day and month names, along with
 // the text for 'previous' and 'next' buttons
 this.thisCalendar = this;
 this.destinationElement = $.Elements.create("div");
 this.strings = {
 days: ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", ➥

 "Saturday"],
 months: ["January", "February", "March", "April", "May", "June", "July", ➥

 "August", "September", "October", "November", "December"],
 previous: 'Previous',
 next: 'Next'
 }

 // We now declare a series of getter and setter methods to protect access to
 // these properties, ensuring they always have real values contained within them

 this.getCalendarInstance = function() {
 return this.thisCalendar;
 }

 this.setCalendarInstance = function(thisCalendar) {
 this.thisCalendar = thisCalendar || this;
 return this;
 }

Chapter 8 ■ FOrM CONtrOLS270

 // The getDestinationElement method returns the destinationElement property
 this.getDestinationElement = function() {
 return this.destinationElement;
 }

 // The setDestinationElement method sets the destinationElement property to the
 // passed in value, or creates a new element from scratch if one is not supplied
 this.setDestinationElement = function(element) {
 this.destinationElement = element || $.Elements.create("div");
 return this;
 }

 // The getLanguageStrings method returns the strings property for use
 // within the calendar
 this.getLanguageStrings = function() {
 return this.strings;
 }

 // The setLanguageStrings method combines a supplied object literal with the
 // current strings object literal property, overriding existing values with
 // those supplied with an identical property name
 this.setLanguageStrings = function(languageStrings) {
 this.strings = $.Utils.mergeObjects(this.strings, languageStrings);
 return this;
 }

 // The getDayNameByDay method expects a number representing the day of the week
 // (0 = Sunday, 6 = Saturday) and returns, from the strings object literal, the
 // day name that corresponds with that weekday
 this.getDayNameByDay = function(day) {
 return this.getLanguageStrings().days[day];
 }

 // The getDayName method returns the weekday name for a supplied JavaScript Date
 // object, using the strings object literal property
 this.getDayName = function(date) {
 return this.getDayNameByDay(date.getDay());
 }

 // The getMonthNameByMonth method expects a number representing a month
 // (0 = January, 11 = December) and returns the name of the month corresponding
 // to that month from the strings object literal property
 this.getMonthNameByMonth = function(month) {
 return this.getLanguageStrings().months[month];
 }

 // The getMonthName method returns the month name for a supplied JavaScript Date
 // object, using the names stored in the strings object literal property

Chapter 8 ■ FOrM CONtrOLS 271

 this.getMonthName = function(date) {
 return this.getMonthNameByMonth(date.getMonth());
 }

 // The applyStyle method sets a class on the destinationElement to allow us to
 // use CSS to style the calendar control correctly
 this.applyStyle = function() {
 $.CSS.addClass(this.getDestinationElement(), "cal- container");
 return this;
 }

 // The getHeadingElement method returns a DOM element displaying the month
 // and year of the currently displayed month for inclusion at the top of the
 // calendar control
 this.getHeadingElement = function(displayMonth) {

 // Create a paragraph tag and format the currently displayed month by its
 // full month name and year
 var p = $.Elements.create("p");
 p.innerHTML = $.Date.format(displayMonth, "{mmmm} {yyyy}", "", ➥

 this.getMonthName(displayMonth));

 // Return this new paragraph tag. It will be added to the control at
 // a later stage
 return p;
 }

 // The getMonthNavigatorElement creates and returns the DOM elements that will
 // allow the user to navigate forward and backward through the months in order
 // to select a different date
 this.getMonthNavigatorElement = function() {

 // Create an ordered list element to contain the previous and next buttons
 // within two list items
 var ul = $.Elements.create("ul");

 // Create the list item and link, which will act as the previous button to
 // take the user's calendar view back one month without selecting a
 // new date on the calendar itself
 var liPrevious = $.Elements.create("li");
 liPrevious.className = "cal- previous";
 var aPrevious = $.Elements.create("a");
 aPrevious.className = "cal-btn- previous";
 aPrevious.title = this.getLanguageStrings().previous;
 aPrevious.innerHTML = this.getLanguageStrings().previous;
 liPrevious.appendChild(aPrevious);

Chapter 8 ■ FOrM CONtrOLS272

 // Create the list item and link, which will act as the next button to take
 // the user forward one month
 var liNext = $.Elements.create("li");
 liNext.className = "cal- next";
 var aNext = $.Elements.create("a");
 aNext.className = "cal-btn- next";
 aNext.title = this.getLanguageStrings().next;
 aNext.innerHTML = this.getLanguageStrings().next;
 liNext.appendChild(aNext);

 ul.appendChild(liPrevious);
 ul.appendChild(liNext);

 // Return the list item representing this month navigator. It will be added
 // to the calendar control later
 return ul;
 }

 // The getCalendarElement method creates the actual calendar element as
 // a <table> tag
 this.getCalendarElement = function(displayMonth, selectedDate) {
 var DAYS_IN_WEEK = 7;

 // No month can cross more than 6 weeks, so we'll render all months with
 // 6 weeks. We will display dates that fall outside the current date using a
 // different style to differentiate them from the current month but still
 // allow them to be selectable, giving the user the chance to select dates
 // that are not in the current month but fall a few days either side
 var WEEKS_TO_SHOW = 6;

 // Get the first day to display in this 6- week month block
 var dateDisplay = $.Date.getStartOfFirstWeekInMonthSquare(displayMonth);

 // Create a <table> element to house the calendar
 var table = $.Elements.create("table");
 table.cellpadding = "0";

 // Create the header cells for the table, which will display the name of
 // each day of the week
 var thead = $.Elements.create("thead");
 var tr = $.Elements.create("tr");
 for (var day = 0, totalDays = DAYS_IN_WEEK; day < totalDays; day++) {
 var th = $.Elements.create("th");

 // Format the title attribute to be the full name of the day of the week
 th.title = $.Date.format(new Date(), "{dddd}", ➥

 this.getDayNameByDay(day), "");

Chapter 8 ■ FOrM CONtrOLS 273

 // Format the displayed text to be the shortened form of the weekday
 // name, to save on space
 th.innerHTML = $.Date.format(new Date(), "{ddd}", ➥

 this.getDayNameByDay(day), "");
 tr.appendChild(th);
 }
 thead.appendChild(tr);

 // Create the cells representing each day of the 6- week month block
 var tbody = $.Elements.create("tbody");

 // Loop through the weeks on display
 for (var week = 0, totalWeeks = WEEKS_TO_SHOW; week < totalWeeks; week++) {

 // Each week is represented by a row in the table
 var tr = $.Elements.create("tr");

 // Loop through the days in each week
 for (var day = 0, totalDays = DAYS_IN_WEEK; day < totalDays; day++) {

 // Establish if the current date in the loop exists within the
 // currently displayed month
 var isCurrentDisplayedMonth = $.Date.matchMonth(displayMonth, ➥

 dateDisplay);

 // Establish if the current date in the loop matches the
 // currently selected date
 var isSelectedDate = $.Date.match(selectedDate, dateDisplay);

 // Represent the current date in the loop as a table cell with
 // a link inside
 var td = $.Elements.create("td");

 // The title attribute of the table cell contains the full date,
 // e.g., Thursday 14 May 2009
 td.title = $.Date.format(dateDisplay, "{dddd} {d} {mmmm} {yyyy}", ➥

 this.getDayName(dateDisplay), this.getMonthName(dateDisplay));

 // Set the class of the table cell correctly, denoting if the
 // current date is selected or if it is in the current
 // month or one of the neighboring months
 td.className = isSelectedDate ? (isCurrentDisplayedMonth ? ➥

 "cal-selected- date" : "cal-different- month ➥

 cal-selected- date") : (isCurrentDisplayedMonth ? ➥

 "cal-current- month" :"cal-different- month");

 // Create a link element to display the date within
 var a = $.Elements.create("a");

Chapter 8 ■ FOrM CONtrOLS274

 // Set the class of the link element
 a.className = $.Date.format(dateDisplay, "cal-btn- day day- {d}", ➥

 this.getDayName(dateDisplay), this.getMonthName(dateDisplay));

 // Create a new custom attribute to store the current date as a
 // string representing the JavaScript Date object - this is so that
 // we can retrieve the date again later
 a.setAttribute("datetime", $.Date.format(dateDisplay, "{tttt}", ➥

 this.getDayName(dateDisplay), this.getMonthName(dateDisplay)));

 // Set the text within the link to display the date number of
 // the current date
 a.innerHTML = $.Date.format(dateDisplay, "{d}", ➥

 this.getDayName(dateDisplay), this.getMonthName(dateDisplay));

 // Add the link to the table cell and table cell to the table row
 td.appendChild(a);
 tr.appendChild(td);

 // Increment the date in the loop by one day for the next iteration
 dateDisplay = $.Date.add(dateDisplay, {
 day: 1
 });
 }

 // Add the table row to the <tbody> tag
 tbody.appendChild(tr);
 }

 // Add the header and body of the table to the <table> element itself
 table.appendChild(thead);
 table.appendChild(tbody);

 // Return the fully populated <table> element for adding to the
 // calendar control
 return table;
 }

 // The render method constructs the calendar control from supplied values for
 // the currently displayed month and currently selected date, then adds it to
 // the page within the specified DOM element
 this.render = function(dates) {
 var displayMonth = dates.displayMonth;
 var selectedDate = dates.selectedDate;

Chapter 8 ■ FOrM CONtrOLS 275

 // Use DocumentFragment objects for performance efficiency,
 // as described in Chapter 4
 var miniDOM = document.createDocumentFragment();
 miniDOM.appendChild(this.getHeadingElement(displayMonth));
 miniDOM.appendChild(this.getMonthNavigatorElement());
 miniDOM.appendChild(this.getCalendarElement(displayMonth, selectedDate));

 // Clear out any elements already within the DOM element container
 this.destinationElement.innerHTML = "";

 // Add the calendar control to the page
 this.getDestinationElement().appendChild(miniDOM.cloneNode(true));

 return this;
 }

 // The wireUpUserEvents method listens for mouse clicks occurring within
 // the calendar control
 this.wireUpUserEvents = function() {
 var self = this;

 $.Events.add(this.getDestinationElement(), "click", function(e) {
 // Stop the default click action of the element being selected
 e.preventDefault();

 // Execute the clickEvent method whenever the user selects something
 // within the calendar control
 self.clickEvent(e);
 });
 }

 // The clickEvent method is fired when the user clicks within the calendar
 // control and is used to either select a different month to be
 // displayed or to select a new date from the calendar
 this.clickEvent = function(e) {
 var thisCalendar = this.getCalendarInstance();
 var eventType = thisCalendar.eventType;

 // Based on which element was clicked, we will fire calendar- wide
 // events using the Observer pattern
 if ($.CSS.hasClass(e.target, "cal-btn- previous")) {

 // If the user clicks the previous button in the month navigator,
 // then fire the DECREMENT_DISPLAY_MONTH event - we define
 // the behavior of that event later
 thisCalendar.fire(eventType.DECREMENT_DISPLAY_MONTH);
 } else if ($.CSS.hasClass(e.target, "cal-btn- next")) {

Chapter 8 ■ FOrM CONtrOLS276

 // If the user clicks the next button in the month navigator, fire the
 // INCREMENT_DISPLAY_MONTH event
 thisCalendar.fire(eventType.INCREMENT_DISPLAY_MONTH);
 } else if ($.CSS.hasClass(e.target, "cal-btn- day")) {

 // If the user clicks a specific date within the calendar, we extract
 // the date from the datetime attribute we stored previously, then
 // fire the DATE_SELECTED event, passing it the selected
 // date as a JavaScript Date object
 var newlySelectedDate = new Date();
 newlySelectedDate.setTime(e.target.getAttribute("datetime"));
 thisCalendar.fire(eventType.DATE_SELECTED, newlySelectedDate);
 }
 }

 // The addObservers method assigns methods to fire when certain events fire in
 // the control, according to the Observer pattern
 this.addObservers = function() {
 var self = this;
 var thisCalendar = this.getCalendarInstance();
 var eventType = this.getCalendarInstance().eventType;

 // Listen for the READY event, which passes across the current month to
 // display and the currently selected date, and use this data to render the
 // calendar control on the page. Once rendered, fire the
 // HTML_RENDERED event
 thisCalendar.listen(eventType.READY, function(dates) {
 self.render(dates);
 thisCalendar.fire(eventType.HTML_RENDERED);
 });

 // Listen for the HTML_RENDERED event and set the appropriate class for
 // applying the correct styling to the calendar control. Also, connect up
 // browser events to detect when buttons and dates are selected
 // within the control
 thisCalendar.listen(eventType.HTML_RENDERED, function() {
 self.applyStyle();
 self.wireUpUserEvents();
 });

 // Listen for the MONTH_CHANGED event and re- render the control using the
 // new display and selected dates
 thisCalendar.listen(eventType.MONTH_CHANGED, function(dates) {
 self.render(dates);
 });

Chapter 8 ■ FOrM CONtrOLS 277

 // Listen for the DATE_SELECTED event, re- rendering the control using
 // the currently selected date. The display date will be set to the same as
 // the selected date so that, when selected, the selected month becomes
 // the month currently displayed - useful if the user clicks on one of the
 // dates that lies just outside the current month within the control
 thisCalendar.listen(eventType.DATE_SELECTED, function(selectedDate) {
 self.render({
 displayMonth: selectedDate,
 selectedDate: selectedDate
 });
 });

 return this;
 }

 // The initialize self- instantiating function stores the relevant values passed
 // in and begins listening for events fired within the control, according to
 // the Observer pattern
 var initialize = function(options, thisCalendar) {
 this
 .setCalendarInstance(thisCalendar)
 .setDestinationElement(options.destinationElement)
 .setLanguageStrings(options.strings)
 .addObservers();

 return this;
 }(options, thisCalendar);
};

testing the Calendar Control
Now let’s create a simple HTML page to put your new calendar control to the test. The code in
 Listing 8-3 defines an HTML page containing three <select> boxes to represent day, month,
and year inputs in a <form>. You’ll connect your calendar control to these three controls, as
shown earlier in Figure 8-6.

 Listing 8‑3. HTML Page Containing a Custom Calendar Control

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <meta http-equiv="Content- Type" content="text/html; charset=utf- 8" />
 <title>Calendar example</title>
 <!- - Define and reference your own style sheet file here -- >
 <link rel="stylesheet" href="calendar.css" type="text/css" />
 </head>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 8 ■ FOrM CONtrOLS278

 <body>
 <form method="post" action="/">
 <div id="select- boxes">
 <select name="day" id="day">
 <option value="1">1</option>
 <!- - Fill in the missing option values here -- >
 <option value="31">31</option>
 </select>

 <select name="month" id="month">
 <option value="0">January</option>
 <!- - Fill in the missing option values here -- >
 <option value="11">December</option>
 </select>

 <select name="year" id="year">
 <option value="2000">2000</option>
 <!- - Fill in the missing option values here -- >
 <option value="2009">2009</option>
 </select>
 </div>

 <div id="calendar"></div>
 <div>
 <input type="submit" value="Save" />
 </div>
 </form>

 <!- - Reference the $ JavaScript library, complete with the additions
 we made earlier -- >
 <script type="text/javascript" src="$.js"></script>

 <!- - Reference the file containing our calendar control constructor -- >
 <script type="text/javascript" src="calendar.js"></script>

 <!- - The code to place the calendar onto the page and connect it to the
 existing HTML controls. You should place this within an external file
 in a real web application instead of in page -- >
 <script type="text/javascript">
 $.onDomReady(function() {

 // Get references to the three <select> boxes representing the
 // selected date
 var dayField = document.getElementById('day');
 var monthField = document.getElementById('month');
 var yearField = document.getElementById('year');

Chapter 8 ■ FOrM CONtrOLS 279

 // Instantiate a calendar control, placing it in the
 // <div id="calendar"> tag on the page and using
 // the currently selected date from the <select> boxes.
 // For fun, let's localize the calendar control into Spanish,
 // so we pass the text in by means of the strings
 // object literal property
 var calendar = new Calendar({
 destinationElement: document.getElementById('calendar'),
 strings: {
 days: ["domingo", "lunes", "martes", "miércoles", ➥

 "jueves", "viernes", "sábado"],
 months: ["enero", "febrero", "marzo", "abril", "mayo", ➥

 "junio", "julio", "agosto", "septiembre", "octubre", ➥

 "noviembre", "diciembre"],
 previous: "anterior",
 next: "siguiente"
 },
 selectedDate: (function() {

 // Get the currently selected date from the <select> boxes
 // and pass it to the calendar control as a JavaScript
 // Date object
 var day = dayField.options[➥

 dayField.options.selectedIndex].value;
 var month = monthField.options[➥

 monthField.options.selectedIndex].value;
 var year = yearField.options[➥

 yearField.options.selectedIndex].value;
 return new Date(year, month, day);
 }())
 });

 // Use the Observer pattern nature of the calendar control to listen
 // for the DATE_SELECTED event to fire from within the calendar
 // control. This event fires when a new date is selected on the
 // calendar and passes to any listening function the newly
 // selected date as a JavaScript Date object
 calendar.listen(calendar.eventType.DATE_SELECTED, ➥

 function(selectedDate) {

 // Establish the day, month, and year from the newly selected
 // date and select the appropriate options in each <select>
 // box on the page. When the HTML form is saved, the
 // selected date will therefore be saved as it now exists
 // within existing HTML form controls
 var day = selectedDate.getDate();

Chapter 8 ■ FOrM CONtrOLS280

 var month = selectedDate.getMonth();
 var year = selectedDate.getFullYear();
 for (var index = 0, length = dayField.options.length; ➥

 index < length; index++) {
 if (dayField.options[index].value == day) {
 dayField.options[index].selected = "selected";
 }
 }
 for (var index = 0, length = monthField.options.length; ➥

 index < length; index++) {
 if (monthField.options[index].value == month) {
 monthField.options[index].selected = "selected";
 }
 }
 for (var index = 0, length = yearField.options.length; ➥

 index < length; index++) {
 if (yearField.options[index].value == year) {
 yearField.options[index].selected = "selected";
 }
 }
 });

 // When the user changes the selected options within the <select>
 // boxes, we want to reflect this on the calendar control. To do
 // this we first create a JavaScript Date object based on the newly
 // selected form field values, then fire the DATE_SELECTED event
 // within the calendar, passing the control the new Date object.
 // The display will then be updated by the code within the control
 // listening for this event to be fired
 function selectDateOnCalendar(e) {
 var day = dayField.options[➥

 dayField.options.selectedIndex].value;
 var month = monthField.options[➥

 monthField.options.selectedIndex].value;
 var year = yearField.options[➥

 yearField.options.selectedIndex].value;
 calendar.fire(calendar.eventType.DATE_SELECTED, ➥

 new Date(year, month, day));
 }

 $.Events.add(dayField, "change", selectDateOnCalendar);
 $.Events.add(monthField, "change", selectDateOnCalendar);
 $.Events.add(yearField, "change", selectDateOnCalendar);
 });
 </script>
 </body>
</html>

Chapter 8 ■ FOrM CONtrOLS 281

As an extension of this example, you could put two calendar widgets on a page, and code
them so that selecting a date in one forces the other to change. To achieve this, you would lis-
ten for events fired within the first calendar instance and use that to fire events on the second.

The Observer pattern is versatile and will support a virtually limitless number of calendar
widgets on one page, all of which could be associated with each other. Feel free to experiment.
Pull the code apart to see what it does. Try listening to and firing events of your own, and
observe the outcome.

Slider Control
Another useful control you may want to add to your forms is a slider. This type of control can
provide a more visually descriptive method for selecting values than from a list. It’s appropri-
ate in cases where the values increment by equal amounts and lie within a fixed range.

To demonstrate how to build a slider control for a form, we’ll walk through creating the
slider shown in Figure 8-7. Above this slider is a <select> box that serves as a volume- level
selector as part of a multimedia playback page. This list has 11 entries, representing values
from 0 to 100 in steps of 10, where 0 is denoted by the Mute option and 100 is denoted by the
Max option.

 Figure 8‑7. A slider and connected <select> box representing a volume control

The slider control beneath the <select> box provides an alternative means to set the vol-
ume level. The user can click and drag the triangular handle element left and right along the
control, and the handle will snap to the positions immediately beneath the values displayed
along the top of the control. When the user releases the mouse button, you take the selected
value and update the <select> box to match it. Conversely, if the user selects a value from the
 drop- down box, the slider should update to the correct position.

Building the Slider
Similar to how you constructed the calendar widget in the previous section, you will use the
Observer pattern for the slider control. You will create two completely separate code blocks:
one for managing and manipulating the data and one for managing the displayed widget on
the page. These will be connected to each other only through the published events, managed
by the main slider control constructor. Listing 8-4 shows the code for this slider control. Save
this code in a file named slider.js.

 Listing 8‑4. A Custom Slider Form Control

// We start by declaring the Slider class which represents the slider control, as we
// did with the Calendar control, previously

var Slider = function(options) {

Chapter 8 ■ FOrM CONtrOLS282

 // Declare the event types that define the slider's behavior
 this.eventType = {

 // The INITIALIZE event kicks everything off and is fired after all the code
 // blocks are instantiated
 INITIALIZE: 0,

 // The READY event is fired when the data has been initialized and is ready
 // to be rendered to the page
 READY: 1,

 // The HTML_RENDERED event is fired once the control has been
 // rendered to the page
 HTML_RENDERED: 2,

 // The HANDLE_MOVED event is fired when the user has dragged
 // the control's handle
 HANDLE_MOVED: 3,

 // The VALUE_CHANGED event is fired when the slider's value has been altered
 VALUE_CHANGED: 4,

 // The MOVE event is fired when the code wishes to update the position of
 // the slider to represent a new value
 MOVE: 5
 }

 // The initialize self- instantiating function instantiates the two code blocks:
 // Data, which represents the data storage and manipulation code, and UI,
 // which represents the control on the page and its interactions with the user
 var initialize = function(options) {
 new this.Data(options, this);
 new this.UI(options, this);

 // Once the code blocks are instantiated, we fire the INITIALIZE event
 this.fire(this.eventType.INITIALIZE);

 return this;
 }.call(this, options);
}

// Inherit the Observer pattern's listen and fire events
Slider.prototype = new $.Observer;

// The Data code block represents the data storage and manipulation part of the
// slider control's code base
Slider.prototype.Data = function(options, thisSlider){

Chapter 8 ■ FOrM CONtrOLS 283

 // Store a reference to the master slider object instance in order to refer to
 // its events list, and declare a property to store an array of possible values
 // represented on the slider and a property to store the currently selected
 // index within that array of values
 this.thisSlider = this;
 this.values = [];
 this.selectedIndex = 0;

 // A series of getters and setters provide a means for the rest of the code to
 // access the stored data properties safely
 this.getSliderInstance = function() {
 return this.thisSlider;
 }

 this.setSliderInstance = function(thisSlider) {
 this.thisSlider = thisSlider || this;
 return this;
 }

 this.getValues = function() {
 return this.values;
 }

 this.setValues = function(values) {
 this.values = values || this.getValues();
 return this;
 }

 this.getSelectedIndex = function() {
 return this.selectedIndex;
 }

 this.setSelectedIndex = function(newIndex) {
 this.selectedIndex = newIndex || this.getSelectedIndex();
 return this;
 }

 // The getIndexByPercentage method provides a useful way of establishing
 // the index in the array of slider values that is represented by the position to
 // which the slider handle has been dragged within the control, specified as a
 // percentage. If the handle is dragged to the far left, the first index of the
 // array would be returned; if dragged to the far right, the last index would
 // be returned
 this.getIndexByPercentage = function(percentage) {
 var values = this.getValues();
 var index = Math.round((percentage / 100) * (values.length - 1));
 return index;
 }

Chapter 8 ■ FOrM CONtrOLS284

 // The getPercentageByIndex method returns the percentage position through
 // the slider where the handle should be located, based on a specific index of the
 // array of values. An index of 0 would return 0 percent. The final index
 // of the array would represent 100 percent.
 this.getPercentageByIndex = function(index) {
 var values = this.getValues();
 var percentage = ((index / (values.length - 1)) * 100);
 return percentage;
 }

 // The getValueByPercentage locates the value represented within the array
 // of values for a given percentage position of the handle through the
 // slider control
 this.getValueByPercentage = function(percentage) {
 var values = this.getValues();
 var index = this.getIndexByPercentage(percentage);
 return values[index];
 }

 // The addObservers method listens for events fired within the slider control
 // and reacts to them
 this.addObservers = function() {
 var self = this;
 var thisSlider = this.getSliderInstance();
 var eventType = thisSlider.eventType;

 // Listen for the INITIALIZE event and immediately fire the READY event,
 // passing it the array of values to represent on the control and the
 // selected index within that array of the currently selected item
 thisSlider.listen(eventType.INITIALIZE, function() {
 thisSlider.fire(eventType.READY, {
 values: self.getValues(),
 index: self.getSelectedIndex()
 });
 });

 // Listen for the HANDLE_MOVED event, which receives the current percentage
 // position of the handle through the control. Fire the VALUE_CHANGED event,
 // passing it the array of values and the index within that array that
 // should be represented at the position of the handle
 thisSlider.listen(eventType.HANDLE_MOVED, function(percentage) {
 thisSlider.fire(eventType.VALUE_CHANGED, {
 values: self.getValues(),
 index: self.getIndexByPercentage(percentage)
 });
 });

Chapter 8 ■ FOrM CONtrOLS 285

 // Listen for the MOVE event, which receives the new index position to move
 // the control to. Fire the VALUE_CHANGED event, passing it the array of
 // values and the new index within that array so that the UI can be updated
 thisSlider.listen(eventType.MOVE, function(index) {
 thisSlider.fire(eventType.VALUE_CHANGED, {
 values: self.getValues(),
 index: index
 });
 });

 // Listen for the VALUE_CHANGED event, setting the selected index from the
 // value passed to the event
 thisSlider.listen(eventType.VALUE_CHANGED, function(results) {
 self.setSelectedIndex(results.index);
 });

 return this;
 };

 // Initialize the Data code block within the slider control by setting its
 // default values and begin to listen for events fired in the system
 var initialize = function(options, thisSlider){
 this
 .setSliderInstance(thisSlider)
 .setValues(options.values)
 .setSelectedIndex(options.selectedIndex)
 .addObservers();

 return this;
 }.call(this, options, thisSlider);
}

// The UI code block contains the code necessary to render the slider control to the
// page and provide user interaction with that control
Slider.prototype.UI = function(options, thisSlider){

 // Define the UI- related properties for the slider control, including a
 // reference to the master Slider object instance to connect to its events,
 // a reference to the DOM element to place the control within on the page,
 // and references to the handle element, its container, and the labels to
 // display beneath the handle
 this.thisSlider = this;
 this.destinationElement = null;
 this.handleElement = null;
 this.handleRangeElement = null;
 this.valueLabelsElement = null;

Chapter 8 ■ FOrM CONtrOLS286

 // Create getter and setter methods to protect the values in the properties
 this.getSliderInstance = function() {
 return this.thisSlider;
 }

 this.setSliderInstance = function(thisSlider) {
 this.thisSlider = thisSlider || this;
 return this;
 }

 this.getDestinationElement = function() {
 return this.destinationElement;
 }

 this.setDestinationElement = function(destinationElement) {
 this.destinationElement = destinationElement || $.Elements.create("div");
 return this;
 }

 this.getHandleElement = function() {
 return this.handleElement;
 }

 this.setHandleElement = function(handleElement) {
 this.handleElement = handleElement || $.Elements.create("div");
 return this;
 }

 this.getHandleRangeElement = function() {
 return this.handleRangeElement;
 }

 this.setHandleRangeElement = function(handleRangeElement) {
 this.handleRangeElement = handleRangeElement || $.Elements.create("div");
 return this;
 }

 this.getValueLabelsElement = function() {
 return this.valueLabelsElement;
 }

 this.setValueLabelsElement = function(valueLabelsElement) {
 this.valueLabelsElement = valueLabelsElement || $.Elements.create("div");
 return this;
 }

Chapter 8 ■ FOrM CONtrOLS 287

 // The generateSliderElement method generates a DOM object containing the
 // elements required to render a slider control on the page
 this.generateSliderElement = function(values) {

 // Create a single container element within which to place all
 // other elements
 var container = $.Elements.create("div");

 // Create an element to store the set of value labels associated with the
 // array of possible data values represented within the slider control
 var valueLabels = $.Elements.create("div");
 valueLabels.className = "value- labels";

 // Loop through the array of values passed to this method, creating a
 // DOM element for each one containing the text value to show on the
 // slider control's label row
 for (var index = 0, length = values.length; index < length; index++) {
 var valueLabel = $.Elements.create("div");
 valueLabel.className = "value- label";
 valueLabel.innerHTML = values[index];
 valueLabels.appendChild(valueLabel);
 }

 // Add the valueLabels element, complete with the value labels within, to
 // the container DOM element
 container.appendChild(valueLabels);

 // Create a DOM element to use as the handle for the user to drag to select
 // values along the slider control
 var handle = $.Elements.create("div");
 handle.className = "handle";

 // Create a DOM element to use as a container for the handle, allowing us to
 // later use CSS to restrict how far the handle can be moved within
 // the slider
 var handleRange = $.Elements.create("div");
 handleRange.className = "handle- range";

 // Add the handle to its container element
 handleRange.appendChild(handle);

 // Add the handle container to the container element surrounding the
 // whole slider control
 container.appendChild(handleRange);

Chapter 8 ■ FOrM CONtrOLS288

 // Return the single DOM element containing the slider's HTML elements
 return container;
 }

 // The render method draws the slider component onto the page within the
 // specified page element
 this.render = function(values) {
 var thisSlider = this.getSliderInstance();
 var eventType = thisSlider.eventType;

 // Get the DOM elements for the slider control and add them to the page
 var documentFragment = document.createDocumentFragment();
 documentFragment.appendChild(this.generateSliderElement(values));
 this.getDestinationElement().appendChild(documentFragment.cloneNode(true));

 // Fire the HTML_RENDERED event now that the control is on the page
 thisSlider.fire(eventType.HTML_RENDERED);

 return this;
 }

 // The applyStyle method adds a class name to the page element to allow the
 // slider control to be styled in the appropriate way
 this.applyStyle = function() {
 $.CSS.addClass(this.getDestinationElement(), "slider");

 // To ensure that the handle is always displayed within the handle range
 // container element, we specify the handle to use absolute positioning
 // relative to its container element. This ensures the slider should work
 // in the case where the CSS style rule for this has been neglected
 this.getHandleRangeElement().style.position = "relative";
 this.getHandleElement().style.position = "absolute";

 return this;
 }

 // The positionLabels method sets the position of the value label elements along
 // the width of the slider control from left to right, filling all available
 // space
 this.positionLabels = function() {

 // Find the width of the container element, encompassing the
 // individual labels
 var labelContainerWidth = parseInt($.CSS.getAppliedStyle(➥

 this.getValueLabelsElement(), "width"));

Chapter 8 ■ FOrM CONtrOLS 289

 // Get an array of all the label value elements in the slider control
 var labels = $.Elements.getElementsByClassName("value- label", ➥

 this.getDestinationElement());

 // Make a pretty good estimate of the width of each of the value elements
 var defaultWidth = Math.round(labelContainerWidth / labels.length);

 // Loop through each label element
 for (var index = 0, length = labels.length; index < length; index++) {

 // Ensure each label uses absolute positioning or it will not
 // display correctly
 labels[index].style.position = "absolute";

 // Try to get the actual width of each label element based on the
 // text within it
 var width = parseInt($.CSS.getAppliedStyle(labels[➥

 labelIndex], "width"));

 // Sometimes, Internet Explorer does not return a width in this way.
 // If no value is returned, use the estimated width calculated
 // earlier instead
 if (isNaN(width)) {
 width = defaultWidth;
 }

 // We want to center the label text around the position we're trying
 // to find, so we need to calculate half the width of the label in order
 // to shift it that distance to the left of the central point - making
 // the text appear centered
 var halfWidth = Math.round(width / 2);
 var proportionThroughSlider = labelIndex / (labels.length - 1);
 var position = (Math.round(proportionThroughSlider * ➥

 labelContainerWidth) - halfWidth);

 // Position this label element correctly using CSS
 labels[labelIndex].style.width = width + "px";
 labels[labelIndex].style.left = position + "px";
 }

 // We need to set the label wrapper element's CSS positioning to relative,
 // so that the label elements display correctly within it
 this.getValueLabelsElement().style.position = "relative";

 return this;
 }

Chapter 8 ■ FOrM CONtrOLS290

 // The setHandlePositionByPercentage method positions the handle within its
 // container element based on the supplied percentage value
 this.setHandlePositionByPercentage = function(percentage) {
 this.getHandleElement().style.left = percentage + "%";
 return this;
 }

 // The setHandlePosition moves the handle element to the position represented by
 // the selected index and data value array passed to it. If the selected index
 // is 0, the handle is moved all the way to the left. If the selected index is
 // the last in the array, the handle is moved all the way to the right
 this.setHandlePosition = function(data) {
 var percentage = (data.index / (data.values.length - 1)) * 100;
 this.setHandlePositionByPercentage(percentage);

 return this;
 };

 // The wireUpUserEvents method provides the user interactions with the
 // slider control, allowing the handle to be dragged to a new position
 this.wireUpUserEvents = function() {
 var self = this;

 // Execute methods when the mouse is pressed down on the handle, and
 // released and moved anywhere on the page
 $.Events.add(this.getHandleElement(), "mousedown", function(e) {
 self.onMouseDown(e);
 });

 $.Events.add(document.body, "mouseup", function(e) {
 self.onMouseUp(e);
 });

 $.Events.add(document.body, "mousemove", function(e) {
 self.onMouseMove(e);
 });
 }

 // Define a value to store whether the mouse button is currently
 // depressed – only gets set if the initial button press occurred over
 // the handle element
 this.mouseButtonHeldDown = false;

 // Executed when the mouse is pressed down on the handle element
 this.onMouseDown = function(e) {

Chapter 8 ■ FOrM CONtrOLS 291

 // Prevent the default mouse down action on the handle element
 e.preventDefault();

 // Denote that the mouse button is now held down on the handle
 this.mouseButtonHeldDown = true;
 }

 // Executed when the mouse button is lifted up anywhere on the page
 this.onMouseUp = function(e) {

 // Signify that the mouse button is no longer being held down
 this.mouseButtonHeldDown = false;
 }

 // Executed when the mouse is being moved anywhere on the page
 this.onMouseMove = function(e) {

 // If the mouse button is still being held down on the handle and the mouse
 // is being moved, this can be considered a drag of the handle, so execute
 // a new onDrag method
 if (this.mouseButtonHeldDown) {
 this.onDrag(e);
 }
 }

 // The onDrag method allows the slider handle to be moved horizontally within
 // its container, updating the selected value within the control when it is
 // moved to a new position
 this.onDrag = function(e) {
 var thisSlider = this.getSliderInstance();
 var eventType = thisSlider.eventType;

 // Get the width of the handle's container element
 var handleHolderWidth = parseInt($.CSS.getAppliedStyle(➥

 this.getHandleRangeElement(), "width"));

 // Get the current x- position of the mouse
 var mouseX = e.pageX;

 // Get the current x- position of the handle's container element
 var elementWrapperX = parseInt($.CSS.getPosition(➥

 this.getHandleRangeElement()).x);

 // Calculate the difference between these two values, which represents the
 // distance in pixels of the current handle position from the leftmost point
 // of the container element
 var distanceFromLeft = mouseX - elementWrapperX;

Chapter 8 ■ FOrM CONtrOLS292

 // Restrict dragging of the handle to within the confines of the
 // container element
 if (distanceFromLeft >= 0 && distanceFromLeft <= handleHolderWidth) {

 // Calculate the percentage position the handle lies within
 // its container
 var percentage = Math.round((distanceFromLeft / handleHolderWidth) * ➥

 100);

 // Fire the HANDLE_MOVED event, passing it the new percentage position
 // of the handle
 thisSlider.fire(eventType.HANDLE_MOVED, percentage);
 }
 }

 // The addObservers method listens for events fired within the slider control as
 // a whole and acts upon them to update the UI of the control
 this.addObservers = function(){
 var self = this;
 var thisSlider = this.getSliderInstance();
 var eventType = thisSlider.eventType;

 // Listen for the READY event to fire, which passes across the data values
 // and selected index, and use these to render the control and set the
 // initial position of the handle
 thisSlider.listen(eventType.READY, function(data) {
 self.render(data.values);
 self.setHandlePosition(data);
 });

 // Listen for the HTML_RENDERED event to fire, and use it to locate and
 // store references to some of the new controls added. Position the labels
 // within the control and set up the controls for user interaction within
 // the browser
 thisSlider.listen(eventType.HTML_RENDERED, function(){
 var destinationElement = self.getDestinationElement();

 self
 .setHandleElement($.Elements.getElementsByClassName("handle", ➥

 self.getDestinationElement())[0])
 .setHandleRangeElement($.Elements.getElementsByClassName(➥

 "handle- range", self.getDestinationElement())[0])
 .setValueLabelsElement($.Elements.getElementsByClassName(➥

 " value- labels", self.getDestinationElement())[0])
 .applyStyle()
 .positionLabels()
 .wireUpUserEvents();
 });

Chapter 8 ■ FOrM CONtrOLS 293

 // Listen for the VALUE_CHANGED event to fire and update the handle position
 // to snap to the appropriate position based on the newly selected
 // data value
 thisSlider.listen(eventType.VALUE_CHANGED, function(data){
 self.setHandlePosition(data);
 });

 return this;
 };

 // Initialize the UI data block, setting the default properties and begin
 // listening for events
 var initialize = function(){
 this
 .setSliderInstance(thisSlider)
 .setDestinationElement(options.destinationElement)
 .addObservers();
 }.call(this, options, thisSlider)
}

testing the Slider Control
Now you can put your slider widget to work within a real HTML form. The code in Listing 8-5
shows an HTML page containing a <select> box with a fixed set of values representing the vol-
ume control, as shown earlier in Figure 8-7.

 Listing 8‑5. An HTML Page Containing a Slider Control

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <meta http-equiv="Content- Type" content="text/html; charset=utf- 8" />
 <title>Slider example</title>

 <!- - Reference your own set of style rules for the slider control -- >
 <link rel="stylesheet" href="slider.css" type="text/css" />
 </head>

 <body>
 <h1>Slider example</h1>
 <form method="post" action="/">
 <div id="volume- control">
 <label for="volume">Select volume level</label>

 <!- - Create the element to associate with the slider control -- >
 <select name="volume" id="volume">
 <option value="0">Mute</option>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 8 ■ FOrM CONtrOLS294

 <option value="10">1</option>
 <option value="20">2</option>
 <option value="30" selected="selected">3</option>
 <option value="40">4</option>
 <option value="50">5</option>
 <option value="60">6</option>
 <option value="70">7</option>
 <option value="80">8</option>
 <option value="90">9</option>
 <option value="100">Max</option>
 </select>
 </div>

 <!- - Create an element to place the slider control within -- >
 <div id="volume- slider"></div>
 <div>
 <input type="submit" value="Save" />
 </div>
 </form>

 <!- - Include a reference to the $ JavaScript library -- >
 <script type="text/javascript" src="$.js"></script>

 <!- - Include a reference to the Slider component class -- >
 <script type="text/javascript" src="slider.js"></script>

 <!- - The following script adds the slider control to the page and associates
 it with the <select> box on the page. In a real web application, this
 code should be placed within an external file and referenced here
 instead. It is included here for simplicity -- >
 <script type="text/javascript">
 $.onDomReady(function() {

 // Get a reference to the <select> box we wish to use as the basis
 // for the slider control
 var volumeSelectBox = document.getElementById("volume");

 // Create a new instance of our slider control, placing the element
 // within the appropriate tag on the page and using the option
 // values from the <select> element as the slider's data values,
 // setting the default position of the slider to the currently
 // selected value in the <select> box
 var slider = new Slider({
 destinationElement: document.getElementById("volume- slider"),
 values: (function() {

Chapter 8 ■ FOrM CONtrOLS 295

 // Create and return an array of data values taken from the
 // options in the <select> box we are representing
 // as a slider
 var values = [];
 for (var index = 0, length = ➥

 volumeSelectBox.options.length; ➥

 index < length; index++) {
 values.push(volumeSelectBox.options[index].text);
 }
 return values;
 })(),
 selectedIndex: volumeSelectBox.options.selectedIndex
 });

 // Listen for the VALUE_CHANGED event to fire within the slider
 // instance, setting the selected option in the <select> box list to
 // match the newly selected value on the slider control. This allows
 // the value to be saved with the rest of the HTML form as the
 // slider value is represented within a real HTML form field element
 slider.listen(slider.eventType.VALUE_CHANGED, function(result) {
 volumeSelectBox.options[result.index].selected = true;
 });

 // Listen for changes to the selected option within the <select>
 // box, updating the slider position when the user selects a new
 // value using the drop down list instead of the slider
 // control. This keeps both controls in sync with each other
 $.Events.add(volumeSelectBox, "change", function() {
 slider.fire(slider.eventType.MOVE, ➥

 volumeSelectBox.options.selectedIndex);
 });
 });
 </script>
 </body>
</html>

That’s it! You’ve built a slider widget and connected it to a form control to provide a more
intuitive way for your end users to interact with your forms, while ensuring that data gets sent
back to the server in the correct format.

A drawback of this slider widget is that users without a mouse are unable to interact with
the slider handle, and must use the <select> box above the slider to change the volume value.
In Chapter 12, which is devoted to the topic of accessibility in RIAs, you will learn how to tackle
this kind of problem by allowing users to interact with such controls using the keyboard.

You can apply the same techniques you used to construct the sample calendar and slider
widgets to building your own custom form controls to offer your end users a more intuitive
experience. Try to stick to building widgets that are simple to use. You might design controls

Chapter 8 ■ FOrM CONtrOLS296

that mimic those that people will already be familiar with from the operating system, but that
are not exposed as part of HTML. You could also use ideas from the real world that translate
well to the Web. Remember that this is a task in improving user experience, rather than dem-
onstrating your JavaScript skills. That said, if you think you have a killer idea, don’t hesitate to
give it a shot, even if it isn’t easy to create. If it works, share it with the rest of the web devel-
opment community to promote the principle of reusable code. Don’t forget to document
your code and write unit tests to ensure you don’t accidentally break your code with a future
update.

Using Reusable Form Components
As with other areas of web development, some developers have already done the hard work of
creating custom form controls, and they have made the results available as reusable compo-
nents. Here, we’ll look at two such components that provide functionality that is not present
by default through HTML (though most web developers probably wish they were): SWFUpload
for	multiple	file	uploads	and	Tiny	MCE	for	rich	text	editing.

SWFUpload: Multiple File Uploads with Progress Bars
The HTML file upload control works well for uploading small, single files. As you might expect,
the selected file isn’t sent to the server until the form is submitted, along with the rest of the
data in the form. This could be a problem if the user has selected a large file that the server
might reject for being too large or in a file format it was not expecting. Also, for larger files,
there is no progress indicator when the form is submitted—no way of letting the users know
how long they need to wait to discover if the form submission was successful. A preferred solu-
tion would do the following:

	 •	 Allow	users	to	select	one	or	many	files

	 •	 Have	those	files	begin	sending	themselves	to	the	server	before	the	rest	of	the	form	has	
been completed, if the page developer specifies this

	 •	 Show	a	progress	indicator	to	give	users	an	idea	of	how	long	they	will	need	to	wait	for	
their file to upload

Fortunately, such solutions exist.
Adobe’s Flash Player is an incredibly versatile browser plug- in that has a very strong pres-

ence on the Web, supported by a large installation base. Along with the many other Flash Player
uses discussed throughout this part of the book, this plug- in supports a method for uploading
files to a server. Not only that, but it is also able to report the upload progress and queue up
multiple files to be sent in one shot.

Many smart Flash developers have written reusable components to expose this function-
ality for JavaScript developers to use on their pages. A quick Google search will reveal versions
coded to work with several of the popular JavaScript libraries, such as jQuery (jQuery Trans-
mit at http://code.google.com/p/jquery- transmit/) and MooTools (FancyUpload at http://
digitarald.de/project/fancyupload/). Most of these components have virtually identical
JavaScript APIs, which makes porting between them a fairly simple task.

http://digitarald.de/project/fancyupload/
http://digitarald.de/project/fancyupload/

Chapter 8 ■ FOrM CONtrOLS 297

■Caution You should ensure that any file upload component you choose has been updated to work with
Flash Player version 10. An important security change was introduced in this version of Flash. This version
requires the Browse file selection button to be contained within the Flash movie, and not on the page itself.

In this section, we’ll look at a file upload component that can be run stand- alone, without
requiring another JavaScript library. This component is called SWFUpload, and you can find
the project home page at http://www.swfupload.org/. Download the latest release, and let’s
get started building a simple example form to demonstrate its abilities.

SWFUpload Sample Usage
 Listing 8-6 shows a simple HTML page containing all the necessary form fields and elements
to support the SWFUpload component.

 Listing 8‑6. HTML Page Demonstrating the SWFUpload Component

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <meta http-equiv="Content- Type" content="text/html; charset=utf- 8" />
 <title>Multiple file upload example</title>
 <link rel="stylesheet" href="upload.css" type="text/css" />
 </head>

 <body>
 <h1>Multiple file uploads example</h1>

 <!- - Forms with file upload fields must use the multipart/form- data encoding
 type when sending the data to the server for processing -- >
 <form method="post" action="/" id="form" enctype="multipart/form- data">
 <fieldset>
 <legend>Files to upload</legend>

 <label for="make- multiple">Select files</label>

 <!- - Include a real file upload control, in case JavaScript
 is disabled -- >
 <input type="file" id="make- multiple" />

 <!- - Create an element to hold the Browse button in the Flash
 component. The button to launch the file selection dialog
 using Flash must itself be in Flash. Adobe considers it
 a security risk otherwise -- >

http://www.swfupload.org/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 8 ■ FOrM CONtrOLS298

 <!- - Create an element to reflect the current upload progress
 back to the user -- >
 <div id="upload- progress"></div>
 </fieldset>
 </form>

 <!- - Reference the $ JavaScript library -- >
 <script type="text/javascript" src="$.js"></script>

 <!- - Load the SWFObject API -- >
 <script type="text/javascript" src="swfupload.js"></script>

 <!- - Configure our page. This code block should be contained within
 an external file within a real web application. It is provided here
 for simplicity -- >
 <script type="text/javascript">

 // Define the settings to initialize the SWFObject component with
 var settings = {

 // Locate the Flash file that provides the upload functionality
 flash_url : "swfupload.swf",

 // Specify the URL to upload the file to on the server - relative to
 // the location of the Flash file
 upload_url: "upload.php",

 // Show debug information in the browser - useful for development
 debug: true,

 // Image file to use for the Browse button - relative to the
 // location of the Flash file
 button_image_url: "browse.png",

 // Dimensions of the Browse button
 button_width: "85",
 button_height: "39",

 // DOM element id to populate with the Browse button when
 // the component initializes
 button_placeholder_id: "browse- button",

 // The swfupload_loaded_handler method will be called when the
 // component has been initialized, if it has been supplied
 swfupload_loaded_handler: function() {

Chapter 8 ■ FOrM CONtrOLS 299

 // Add a class of hide to the existing file upload control. Use
 // CSS to make the control invisible. Since the SWFUpload
 // component has successfully initialized, we no longer
 // need this control
 $.CSS.addClass(document.getElementById(➥

 "make- multiple"), "hide");
 }
 };

 // The file_queued_handler method is called by the SWFUpload component
 // once a file has been selected in the file selection dialog, passing
 // in an object literal containing details about that file, including
 // its name, file size, and more. If multiple files are selected in the
 // dialog, this method is called multiple times, once for each file.
 // Here, we create an array of files to act as a file queue for
 // uploading later
 var queue = [];
 settings.file_queued_handler = function(file) {
 queue.push(file);
 }

 // The upload_progress_handler event is fired regularly on a fixed time
 // interval by the SWFUpload component, executing the following
 // method each time. It specifies which file is currently being
 // uploaded, the number of data bytes already sent to the server, and the
 // total number of data bytes in the file. We use this to calculate the
 // percentage complete of the file upload and reflect this within the
 // HTML page while the file is being uploaded, giving our end users
 // feedback on the progress of their uploads
 settings.upload_progress_handler = function(file, bytesSent, ➥

 bytesTotal) {
 var percentComplete = (bytesSent / bytesTotal) * 100;
 var text = "{fileName} ({percentComplete}% complete)";

 document.getElementById("upload- progress").innerHTML = ➥

 $.Utils.replaceText(text, {
 fileName: file.name,
 percentComplete: percentComplete
 });
 }

 // The upload_complete_handler event is fired when a file completes
 // uploading. We use this event to automatically begin upload of the
 // next file in the queue. Once the last file has been uploaded, we
 // submit the form on the page

Chapter 8 ■ FOrM CONtrOLS300

 var filesCompleted = 0;
 settings.upload_complete_handler = function() {
 filesCompleted++;
 if (filesCompleted < queue.length) {
 this.startUpload(); // Process the next in the queue
 } else if (filesCompleted == queue.length) {
 document.getElementById("form").submit()
 }
 }

 // Now that the settings for the SWFUpload control have been configured,
 // let's put it to use on our page once the DOM is ready to be accessed
 $.onDomReady(function() {

 // Apply the settings to the SWFUpload control and it's ready for
 // use on the page
 var uploader = new SWFUpload(settings);

 // Listen for the form submission event on the page
 $.Events.add(document.getElementById("form"), "submit", ➥

 function(e) {

 // When the user attempts to submit the form, if there are files
 // waiting in the queue to be uploaded, cancel the form
 // submission and upload these files. The startUpload() method
 // of SWFUpload does exactly that. It begins upload of the first
 // file in the queue. The files then upload one by one until
 // the final file has been sent, at which point the
 // upload_complete_handler event fires and our method
 // specified earlier submits the form to the server. If there
 // are no files to be uploaded, the form will submit
 // as normal here
 if (queue.length > 0) {
 e.preventDefault();
 uploader.startUpload();
 }
 });
 });
 </script>
 </body>
</html>

This example demonstrates the use of the SWFUpload component. The page is capable of
submitting multiple files for upload through a single file selection dialog box, and it shows the
users a progress indicator, allowing them to infer how much longer they will need to wait for
the form to be submitted.

Chapter 8 ■ FOrM CONtrOLS 301

SWFUpload appraisal
The SWFUpload component allows you to upload multiple files, though only one simultane-
ously, to a server- side script, and supports cancellation of uploads at any time, all without
requiring a page refresh. It allows you to restrict the file types and file size. Through a plug- in
available with the component download, this component is capable of measuring the current
and average upload speed of files, and allows you to relay this information to your page in
order to keep your users informed. As you might expect, SWFUpload does not impose its own
user interface, but rather requires that you, the page developer, build that yourself, connecting
to the component through JavaScript events fired by the component. In short, the SWFUpload
component provides a more elegant and user- friendlier solution for uploading multiple files
or single large files than the default file upload control provided by HTML.

The component requires Flash Player version 9 or later to be installed on the end user’s
browser and JavaScript to be enabled. You may want to use the SWFObject component, intro-
duced in Chapter 7, to detect through JavaScript whether the correct version of Flash Player is
installed before attempting to include the component on your page.

The JavaScript file that must be included on the page weighs in at 19KB when minified.
The Flash file, which exposes its capabilities to the page, is 12KB. Both are very acceptable
sizes for use within a web application, and using gzip compression on your server will reduce
these file sizes even more.

TinyMCE: Rich Text Editing
HTML’s own <textarea> element allows users to input text in a more free- form manner than
in a standard text input box, but it allows only plain text entry. You may want to provide your
users with a means to input styled and formatted text, and even pictures. For example, most
blog publishers would like to write text they can emphasize with bold, italics, and underline
styles, and also to be able to drop images into their blog posts at specific positions. Thankfully,
we are able to utilize third- party components to convert a standard <textarea> into a fully
editable rich text area, where the content is converted into standard XHTML and saved back
into the HTML form in this format. When the page is later reloaded, the content is read from
XHTML and converted back into the rich text display.

The forerunning component in this field is TinyMCE,	which	you	can	find	at	http://
tinymce.moxiecode.com/. Figure 8-8 shows an example of this component on a page.

 Figure 8‑8. TinyMCE rich text control displayed using the “simple” button theme

http://tinymce.moxiecode.com/
http://tinymce.moxiecode.com/

Chapter 8 ■ FOrM CONtrOLS302

tinyMCe Sample Usage
Implementing	the	TinyMCE	component	on your page is incredibly simple. Take a look at the
HTML code in Listing 8-7, which contains a <textarea> element you can replace with the rich
text component.

 Listing 8‑7. Using the TinyMCE Rich Text Editor on an HTML Page

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <meta http-equiv="Content- Type" content="text/html; charset=utf- 8" />
 <title>Rich text example</title>
 </head>

 <body>
 <h1>Rich text example</h1>
 <form method="post" action="/" id="form">
 <div>

 <!- - Create a <textarea> field we will replace with the rich text
 editor later through JavaScript -- >
 <textarea id="freetext" name="freetext"></textarea>

 <input type="submit" value="Save" />
 </div>
 </form>

 <!- - Include the TinyMCE control JavaScript file at the file path it
 installs itself by default -- >
 <script type="text/javascript" ➥

 src="tinymce/jscripts/tiny_mce/tiny_mce.js"></script>

 <!- - The folllowing script would ideally be within an external file in a
 real web application. It is included in page for simplicity -- >
 <script type="text/javascript">

 // Instruct TinyMCE to replace all <textarea> tags on the page with the
 // rich text editor control, using the default advanced theme button
 // set, which contains buttons for virtually all functionality provided
 // by the component. These include bold, italic, underline, and
 // strikethrough text styles; image, hyperlink, table, and list support;
 // and support for multiple levels of undo and redo in case the
 // user makes a mistake
 tinyMCE.init({
 mode : "textareas",
 theme : "advanced"
 });

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 8 ■ FOrM CONtrOLS 303

 // If you only wish to replace single <textarea> instances on the page,
 // rather than all, the following code allows you to select the exact
 // elements to replace by their id attributes. The simple button set
 // theme contains controls for simple text editing and multiple levels
 // of undo, rather than the overwhelming selection of buttons in the
 // advanced theme
 //
 // tinyMCE.init({
 // mode : "exact",
 // elements: "freetext",
 // theme : "simple"
 // });
 </script>
 </body>
</html>

tinyMCe Feature Set
The	full	feature	list	of	the	TinyMCE	component is vast. It includes support for inserting tables,
 spell- checking, and selecting from a color palette. You can also customize the display and
ordering of the buttons within the control.

TinyMCE	has	a		plug-	in	architecture,	which	allows	developers	to	add	their	own	buttons	to	
the editor to provide specific behaviors or to customize the way existing buttons behave. Two
such plug- ins are available directly from the project home page (both have license fees):

MCImageManager: This plug- in provides a rich, graphical user interface for selecting and
manipulating	images	through	integration	with	a	PHP	or	an	ASP.NET	back	end.	It	supports	
preview thumbnails; uploading of new images; deletion of existing images; and cropping,
resizing, and rotating of images.

MCFileManager: This plug- in provides a user interface for managing files on the server,
hosted	through	a	PHP	or	ASP.NET	back	end.	It	allows	users	to	add,	remove,	and	rename	
files.

These two plug- ins integrate together, for a full set of image and file manipulation tools
that are exposable to your end users in a visually pleasing way—perfect for a content manage-
ment system or blogging tool.

tinyMCe appraisal
TinyMCE	provides	a	clean,	unobtrusive method for replacing standard <textarea> form tags
within HTML with custom controls capable of rich text editing. The contents of the rich text
field are converted into HTML tags, which are stored within the <textarea> itself for submis-
sion with the rest of the form. When the form is reopened for editing at a later date, these
HTML tags are reconverted into rich text within the editor control.

The	TinyMCE	component	is	large—all	its	parts	add	up	to	2MB	of	disk	space.	Thankfully,	
not all of this needs to be loaded simultaneously. The initial load is 170KB for the simple theme
or 218KB for the advanced theme. No extra download is required for multiple instances of the
editor on the same page.

Chapter 8 ■ FOrM CONtrOLS304

Clearly, this is a lot of data and far surpasses the size of any other third- party component
discussed in this book. The developers are aware of this and provide some server- side scripts
for	PHP,	ASP.NET,	JSP,	and	ColdFusion.	These	are	 gzip- style compression scripts for reducing
the download time for those servers not already employing this method of compression.

In	summary,	the	TinyMCE	rich	text	editor	is	simply	the	best	in	its	field;	however,	this	
comes at a price: the size of the download. My suggestion is to use the control sparingly and
ensure your servers are employing gzip compression to help make the loading time shorter.

Validating Forms
No chapter on HTML forms would be complete without a mention of form validation. All form
validation must be handled by a server- side script that runs after the form is submitted. How-
ever, for a better user experience, you should replicate the same validation rules applied in
the back end through JavaScript before the form is submitted, so that your users do not need
to wait for the server to process the script before refreshing the page to show the results of the
validation.

Form validation through JavaScript should occur when the user attempts to submit the
form. Field-by- field validation could be executed when focus is taken away from each field.
Hooking into the submit event of the page’s <form> tag allows you to specify your validation
code, checking for required fields, fields in a certain format, and so on, and preventing the
event from completing if validation is unsuccessful. If validation is successful, the event should
be allowed to progress and the form should be submitted to the server.

■Caution It is important to use the submit event of the form rather than connecting to the click event
of the form’s submit button. This is because there is more than one way to submit a form, including pressing
the Enter key. Such cases won’t be captured with the click event, so stick to the submit event of the form,
and you’ll be safe.

If the form contains a mixture of required and nonrequired fields, be sure to label all those
that are required as such. If all fields on the form are mandatory, there is an argument for not
needing to point that out explicitly. In many cases, an asterisk (*) next to the field name with a
single line above the form explaining that fields marked in this way are mandatory will be suf-
ficient for identifying required fields.

Finally, you should decide how any validation error messages should appear on the page
if the form fails validation: as a list of errors in one place (either at the top or bottom of the
form) or next to each relevant field on the form that failed validation. In either case, when you
build the HTML code for these messages, you should use <label> tags around each individual
message and use its for attribute to connect that message to the form field to which it relates.
Not only is this good for accessibility, but it also means the user can simply click an error mes-
sage to be taken directly to the field to which it relates, which is the common browser behavior
of a <label> tag.

Chapter 8 ■ FOrM CONtrOLS 305

Summary
This chapter began by demonstrating novel ways to customize existing HTML form controls
to suit the design and layout of your own web application. It then delved into building new
user interfaces to replace existing HTML form fields to provide a better user experience. Next,
it covered a selection of third- party JavaScript and Flash- based plug- ins, which provide extra
functionality not supported by default in HTML. You should now be in a position to design
forms in your web applications the way you want to, replacing existing controls where they do
not provide a suitable user experience for the type of data you wish to collect.

Don’t be afraid to come up with new ideas for form controls that your end users would
prefer to use. If you do write anything, try to package it as reusable code and provide it to the
rest of the web development community, so we may all benefit from each other’s inspiration
and ingenuity.

In the next chapter, we will look at how to write extra code for web applications that allow
us to cope with connection drops or power failures between the browser and the web server.
You’ll learn how to allow for storage of data locally on the user’s machine before sending it off
to the server.

307

C h a p t e r 9

Offline Storage—When the
Lights Go Out

We’ve all been there. You’ve spent 20 minutes perfecting that important e- mail message in
your web mail client, you’re finally ready to send it—and boom!—it’s not going anywhere. You
try again, and still nothing. Then you realize that your network connection has dropped, so
you don’t have access to the Internet anymore. What do you do? At this point, many of us have
attempted to copy and paste the text into a document stored on the computer itself, where
it’s comparatively safe. You should be able to retrieve it if you need to restart your browser or,
worse still, the system crashes.

This is the problem with most RIAs: they are only as good as the reliability of the network
connection and browser in which they are running. We need some way of storing important
information on the user’s computer or device if the network connection between the browser
and the server becomes unavailable for some reason.

In this chapter, we’ll investigate the methods available to us in different browsers for stor-
ing content locally. You’ll see how to use a combination of these methods effectively within
your own RIAs to save data, read back data, and delete data, ensuring cross- browser support.

Using Cookies to Store Data
In reality, local data storage has been available to developers since the early days of the web
browser in the form of cookies. These are small text files, with an upper size limit of 4KB,
which are stored on the user’s computer and associated with a particular web site domain.
This adds a level of security, since a site can access only the cookies associated with its domain
name.

Cookies can be set by the web server and also through JavaScript in most web browsers.
They are commonly used to store small items of data, such as a user’s login ID or username for
a certain web site to allow the user to log in automatically.

The browser manages the cookies internally and often provides a means, usually through
its settings or preferences window, for users to view and delete cookies. Users can also disable
cookies altogether. However, in practice, since so many web sites rely on them, including all
web sites that require a user to log in, disabling cookies entirely is rarely done.

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt308

Creating Cookies
Each cookie is given a name when it is created, and any necessary text values are stored within
it. When that cookie is needed, it is looked up by its name and the value is returned, provided
the domain name associated with the cookie matches that of the web site executing the script.

Each cookie has an expiry date property, which defines how long the cookie should be
allowed to exist before the browser erases it automatically. For many applications, the cookie
will be told to expire many years from its time of creation, so the data remains on the user’s
machine without needing to be re- created.

For some applications, values may need to be set to last only for the duration of the user’s
visit to the site, This type of cookie is known as a session cookie, as once the browser session is
ended, the cookie is deleted. A session cookie is created if an expiry date is not assigned to the
cookie, meaning it will exist only for the duration of the current browsing session. Setting the
expiry date of a cookie to a date that has already passed will delete the cookie from the browser
permanently.

As I’ve mentioned, you must specify the domain name the cookie is to be associated with
to provide some security. No web site hosted on another domain should be able to access
the cookie. In addition to this, you can specify a path value, and the cookie will be valid only
within that directory in your web site structure. Typically, this value is set to point to the root
directory of the web site, so all pages can access the cookie, However, you may decide that
your cookie is relevant only within a certain section of your web site; in which case, you would
change the path value to point to that directory instead.

 Listing 9-1 shows how to set a cookie, read back its value, and delete it through JavaScript.
Add the code to your $ JavaScript library (started in Chapter 2), before the last line of the file
that instantiates the library.

 Listing 9‑1. Setting and Reading Cookie Values

// Create a new namespace within the $ library for storage- related code
$.prototype.Storage = {}

// Create a Cookies namespace for storing cookie- related storage methods
$.prototype.Storage.Cookies = {

 // The set method sets a cookie on the local machine with the given name
 // and value
 set: function(input) {

 // Expect an object literal as an input, with name, value, expiry and
 // path properties
 var name = input.name || "";
 var value = input.value || "";

 // If an expiry date is provided, get its value as a string for setting in
 // the cookie. If no expiry date is provided, default to 10 years ahead
 var tenYearsAhead = new Date();
 tenYearsAhead.setFullYear(tenYearsAhead.getFullYear() + 10);

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 309

 // Use an expiry date provided as an input or default to a date
 // 10 years in the future
 var expiry = (input.expiry ? input.expiry.toUTCString() : ➥

 tenYearsAhead.toUTCString());

 // Default to the site root directory if no path is given
 var path = input.path || "/";

 // A cookie is set as a specially formatted string. The domain will be
 // assigned automatically to the current domain of the site being accessed
 var cookieFormat = "{name}={value}; expires={expiry}; path={path}";

 // Create a new cookie by assigning the formatted string to document.cookie
 document.cookie = $.Utils.replaceText(cookieFormat, {

 // Use the escape method to ensure nonalphanumeric characters
 // are encoded and cannot break the resulting formatted cookie string
 name: escape(name),
 value: escape(value),
 expiry: expiryDate,
 path: path
 });
 },

 // The get method retrieves a previously stored cookie value by name
 get: function(name) {
 // document.cookie is a string automatically containing all cookies valid
 // for the current domain and path of the site being accessed

 // Locate the cookie using a regular expression run against document.cookie
 var cookieFinder = new RegExp("(^|;) ?" + name + "=([^;]*)(;|$)");
 var cookie = document.cookie.match(cookieFinder);

 var value = "";
 if (cookie) {

 // If a cookie was located, take its value found using the
 // regular expression
 value = unescape(cookie[2]);
 }
 return value;
 },

 // The remove method deletes an existing cookie by name
 remove: function(name) {

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt310

 // A cookie is removed by resetting the expiry date to any time
 // before the present
 var expiryDate = new Date();

 // Wind back the clock
 expiryDate.setTime(expiryDate.getTime() - 1);

 // Let the previously defined set method reset the cookie's expiry date,
 // deleting the cookie
 this.set({
 name: escape(name),
 expiry: expiryDate
 });
 }
}

 Listing 9-2 provides examples of how to create, locate, and delete cookies in your own
 page- specific JavaScript code using the methods created in Listing 9-1.

 Listing 9‑2. Creating, Locating, and Deleting Cookies Using the $ Library

// Create a new cookie which will expire, by default, in 10 years
$.Storage.Cookies.set({
 name: "email",
 value: "me@denodell.com"
});

// Output the value of the cookie named "email" we created earlier.
// After a browser restart, the data will still be there
alert($.Storage.Cookies.get("email"));

// Delete the "email" cookie
$.Storage.Cookies.remove("email");

// Outputs an empty string, since the cookie no longer exists
alert($.Storage.Cookies.get("email"));

The Downside of Cookies
Cookies provide a simple, cross- browser way of storing small amounts of text- based data within
the browser for later retrieval. They do have a downside, though.

When your browser makes a request for a page or file that resides on a certain domain, it
also sends the entire contents of the cookie associated with that domain along with the request.
This is by design, as it allows the web server to read the cookies stored on the user’s machine
and personalize the response based on its values. The more data you store in cookies, the
larger these requests are going to be, up to the maximum limit of 4KB. This may not sound like
a lot, but remember that the cookies are sent regardless of the content type of the file being
requested. For example, if your page consists of one HTML file, two CSS files, two JavaScript

mailto:me@denodell.com

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 311

files, and twenty image files, the cookie data will be sent to the server with the request for each
of these files, adding a maximum of 100KB extra data (25 requests ✕ 4KB cookie size) being sent
to the web server.

You may wonder why this behavior exists at all, since it might result in excessive amounts
of data being sent to the server for no reason. Unfortunately, it is the only guaranteed way
to ensure that, should the server wish to use this cookie data to alter an image, script, HTML
page, or some other file, it has that cookie available. This is by no means an elegant solution,
but it is the simplest, and the approach taken when the HTTP specification was written to
include cookie support.

Also remember that many users have an asynchronous connection, meaning their upload
speed from the browser to the server is much slower than their download speed from the
server to the browser. Therefore, the time taken to transmit this extra cookie data could have a
big impact on performance. In Chapter 4, I explained a work- around for this technique, which
involves hosting your images and external assets on a second domain, separate from the
domain containing the HTML file itself. Still, sending the cookie data with every HTML request
seems a little unnecessary when you consider the main goal here is to store data locally to pro-
tect against unforeseen network connection drops and unfortunate browser crashes.

Using Internet Explorer’s Data Store
Microsoft introduced its own methods within IE (starting with version 5) that allow content to
be stored on the user’s machine from within a JavaScript web application, using what is known
as the userData data store. This implementation involves using attribute nodes on a specific
type of DOM element to store data, adding and removing attributes in order to add and remove
data. Data is persisted by calling a save() method on the DOM element, and recalled using
a load() method. These elements are added by an IE- specific userData behavior associated
with the DOM element. The data store itself is actually represented internally within IE as an
 XML- based structure.

Microsoft imposes a base storage limit of 64KB per page within your site, and a maximum
of 640KB of data per domain. Security restrictions are similar to those used within cookie stor-
age: no domain is able to access data from another, and data can be removed after a specified
time by adding an optional expiry date to the data store. Unlike cookies, however, the expiry
date applies to the whole data store, not to individual pieces of data. Additionally, there is no
concept of a data store that lasts only for the duration of the current session. In my opinion,
the expiry date option should be ignored, allowing the data to be removed by the browser or
by the user manually.

 Listing 9-3 shows how to get, set, and remove data using the userData mechanism in IE.
Add the code to your $ JavaScript library, before the library is instantiated at the end of its file.

 Listing 9‑3. Setting, Getting, and Removing Data Using Internet Explorer’s userData Mechanism

// Add a UserData namespace to hold Microsoft userData- specific methods
$.prototype.Storage.UserData = {

 // Reference an element to store data within
 storageElement:null,

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt312

 // Data can be stored in different data stores by using different names. We
 // want all our data to be in one place, so we pick one name and stick with it
 dataStore: "data- store",

 // Before we can use any data, we need to initialize the DOM element
 initialize: function() {

 // Data is stored within DOM elements, so let's create one to use
 this.storageElement = $.Elements.create("span");

 // The behavior attribute is what allows the DOM element to be able to load
 // and save data to a data store
 this.storageElement.addBehavior('#default#userdata');

 // We don't want this element to be seen on the page, so hide it
 this.storageElement.style.display = 'none';

 // Add the new DOM element to the end of the page
 document.body.appendChild(this.storageElement);

 // Load any previously stored data from the data store, populating the
 // element's attributes with the data
 this.storageElement.load(this.dataStore);
 },

 // The set method saves a data value with a given name to the data store
 set: function(input) {

 // Expect an object literal as an input, containing name and value
 var name = input.name || "";
 var value = input.value || "";

 // Save the data name and value to the DOM element
 this.storageElement.setAttribute(name, value);

 // Commit the current data from the DOM element to the data store
 this.storageElement.save(this.dataStore);
 },

 // The get method returns a previously stored value from the data store from a
 // given property name
 get: function(name) {

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 313

 // Return the attribute value of the given name, or an empty string
 // if it does not exist
 return this.storageElement.getAttribute(name) || "";
 },

 // The remove method permanently removes the data name and associated
 // value from the data store
 remove: function(name) {

 // Remove the attribute of the given name from the DOM element used for
 // storing the data within
 this.storageElement.removeAttribute(name);

 // Commit the changes made to the data store so the specified data is
 // permanently removed
 this.storageElement.save(this.dataStore);
 }
}

 Listing 9-4 shows how to create, locate, and delete data within your own page using
JavaScript and the methods created in Listing 9-3.

 Listing 9‑4. Creating, Locating, and Deleting userData in Internet Explorer

// Initialize the userData store
$.Storage.UserData.initialize();

// Save an email address to the data store
$.Storage.UserData.set({
 name: "email",
 value: "me@denodell.com"
});

// Output the "email" value we created earlier.
// After a browser restart, the data will still be there
alert($.Storage.UserData.get("email"));

// Delete the "email" data value permanently from the data store
$.Storage.UserData.remove("email");

// Outputs an empty string since the data no longer exists
alert($.Storage.UserData.get("email"));

mailto:me@denodell.com

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt314

The userData technique provides a useful mechanism for storing larger amounts of text
data offline than possible using cookies. The data is not passed with server requests, as it is
with cookies, giving the benefit of permanent data storage without the overhead. This tech-
nique is supported by IE 5 and up, although IE 8 now also supports a new technique, which
allows for greater storage potential, using the WHATWG Local Storage API.

Introducing the Data Storage APIs
As discussed in Chapter 7, the WHATWG organization has been active in pushing forward
a recommendation for HTML 5, an update of the language relevant to the building of RIAs.
Support for parts of this recommendation is already making its way into recent browser
releases. Of interest to us here is a group of APIs to allow for offline storage, accessible through
JavaScript. Let’s take a look at each of the data storage APIs.

The Local Storage API
The first of these APIs is known as local storage. By default, most browsers allocate 5MB of space
for data to be stored locally and shared among all sites, though this setting is user- configurable
within the settings for each supported browser. This is considerably more space than if you
stored data using cookies or the IE- specific userData mechanism. Like both of these methods,
the local storage API associates the data stored with the domain the current web site is running
within, providing the necessary security for the saved data.

With this API, you cannot limit access to data within different directories on the same web
site, as is possible with cookies, and most important, you cannot configure an expiration date
for the data. This puts the length of the existence of the data under the control of the browser
and any user settings it supports to allow end users to manage the data that is being saved in
their name. As with all the methods discussed so far, data can be stored only as strings.

At the time of writing, the local storage API is supported by IE 8 and up, Safari 3.1 and up,
Google Chrome 2 and up, and Firefox 3.5 and up.

 Listing 9-5 shows just how simple it is to implement the local storage API within your
$ JavaScript library. Add this code to the library before it is instantiated at the end of the file.

 Listing 9‑5. Setting, Getting, and Removing Data Using the Local Storage API

// Add a LocalStorage namespace to keep local storage API code together
$.prototype.Storage.LocalStorage = {

 // The set method stores a value with a given name using the local storage API
 set: function(input) {

 // Expect an object literal as an input, containing name and value to set
 var name = input.name || "";
 var value = input.value || "";

 // Save the data using the top- level localStorage object
 localStorage.setItem(name, value);
 },

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 315

 // The get method retrieves a previously stored value by name
 get: function(name) {

 // Return an empty string if the item requested does not exist; otherwise,
 // fetch the value from the localStorage object
 return localStorage.getItem(name) || "";
 },

 // The remove method deletes a previously stored value from the
 // localStorage object
 remove: function(name) {

 // Remove the item from localStorage
 localStorage.removeItem(name);
 }
}

 Listing 9-6 shows how you can use the methods defined in Listing 9-5 to store, retrieve,
and delete data from the local computer within JavaScript on your own pages.

 Listing 9‑6. Storing, Retrieving, and Removing Data Using the Local Storage API

// Save an email address
$.Storage.LocalStorage.set({
 name: "email",
 value: "me@denodell.com"
});

// Output the "email" value we saved earlier.
// After a browser restart, the data will still be there
alert($.Storage.LocalStorage.get("email"));

// Delete the "email" data value permanently
$.Storage.LocalStorage.remove("email");

// Outputs an empty string since the "email" data no longer exists
alert($.Storage.LocalStorage.get("email"));

Mozilla’s Global Storage API
Before the local storage API was defined by the WHATWG, Mozilla developers implemented its
own similar, but notably different, storage API for the same purpose: to store data on the user’s
local computer or device. They called this DOM storage or global storage, and it provides meth-
ods for storing, retrieving, and deleting data in much the same way as the local storage API. It
even has the same 5MB default data size limit. The only implementation difference between
this technique and the local storage API is that the global storage object must specify which
domain to store the data against, even though, for all intents and purposes, this must be the
same domain on which the code is currently executing.

mailto:me@denodell.com

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt316

 Listing 9-7 shows how to use Mozilla’s global storage API to store, retrieve, and remove
data from the local computer or device. Add this code to your $ JavaScript library before the
library is instantiated at the end of its file.

 Listing 9‑7. Setting, Getting, and Removing Data Using the Global Storage API

// Add a GlobalStorage namespace to contain all global storage API- related
// methods
$.prototype.Storage.GlobalStorage = {
 dataStore: null,

 // The initialize method locates the data store to use if the global storage API
 // is supported in the browser
 initialize: function() {

 // The data store itself is an index of the globalStorage array, where the
 // index is always the name of the domain of the current site
 if (globalStorage) {
 this.dataStore = globalStorage[location.host];
 }
 },

 // The set method stores a value with a given name in the global storage API
 set: function(input) {
 // Expect an object literal as an input, containing name and value to set
 var name = input.name || "";
 var value = input.value || "";

 // Save the data using our data store provided by globalStorage
 this.dataStore.setItem(name, value);
 },

 // The get method retrieves a previously stored value by name
 get: function(name) {

 // Return an empty string if the item requested does not exist; otherwise,
 // locate it from the data store
 return this.dataStore.getItem(name) || "";
 },

 // The remove method permanently deletes a previously stored value by name
 // from the data store
 remove: function(name) {

 // Remove the item from the data store using the global storage API's
 // removeItem method
 this.dataStore.removeItem(name);
 }
}

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 317

 Listing 9-8 shows how to use these methods to store, retrieve, and remove data from the
local computer or device using the global storage API within JavaScript on your own pages.

 Listing 9‑8. Storing, Retrieving, and Removing Data Using the Global Storage API

// Initialize GlobalStorage for use
$.Storage.GlobalStorage.initialize();

// Save an email address
$.Storage.GlobalStorage.set({
 name: "email",
 value: "me@denodell.com"
});

// Output the "email" value we created earlier.
// After a browser restart, the data will still be there
alert($.Storage.GlobalStorage.get("email"));

// Delete the "email" data value permanently
$.Storage.GlobalStorage.remove("email");

// Outputs an empty string since the "email" data no longer exists
alert($.Storage.GlobalStorage.get("email"));

Client-Side Database Storage API
The emerging HTML 5 recommendation contains a second storage implementation API, which
is more full- featured than the local storage API we looked into earlier. The client- side database
storage API allows web developers to store data within a SQLite database, implemented within
the browser.

■Note SQLite is an open source software library that implements a database that does not require a server
or any setup before it is used. Standard Structured Query Language (SQL) commands are used to communi-
cate with the database, saving and retrieving data as necessary. Refer to the project web site (http://www.
sqlite.org/lang.html) for the full list of SQL commands supported by SQLite.

By using a database to store offline data, developers can represent their data structures
within a database table, rather than through text strings, which is currently the only possible
 cross- browser option for data storage. Databases also allow for the storage of binary data, such
as image files, providing a more flexible solution for web applications that may require any
type of data to be stored and retrieved at will.

Having a local database available to access through JavaScript as a standard for all brows-
ers will take some time to achieve. At present, this API and database system are available only
in Safari 3.1 on the desktop and within the Safari browser on the iPhone. Others will follow
when the specification is more fully developed.

mailto:me@denodell.com
http://www.sqlite.org/lang.html
http://www.sqlite.org/lang.html

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt318

Each database is locked to the domain that created it, as a security measure. Each site
may create as many databases as it requires, containing as many tables and rows as neces-
sary. At present, in Safari 3.1, the default is 5MB of storage space for each domain. Through the
browser preferences, users may choose their local database size, on a per- domain basis or a
global basis (applied to all sites), from a minimum of 1MB to a maximum of 500MB.

As a performance measure, transactions and executions performed on the database are
written using the SQL language and happen asynchronously. The command is executed and
passed a callback function to execute once it is complete. In the meantime, the rest of the code
is allowed to execute, meaning that large, complicated database transactions won’t prevent
the browser and the web application from reacting as normal to the end user’s needs.

 Listing 9-9 shows how to use the client- side database storage API to get, set, and remove
text values stored within the SQLite database on the local machine. Add this code to your
$ JavaScript library before the library is instantiated. Keep in mind that this is a rather limited
usage, compared to all that the client- side database storage API will be able to achieve.

 Listing 9‑9. Getting, Setting, and Deleting Data Using the Database Storage API

// Add a DBStorage namespace to contain all client- side database storage- related
// methods
$.prototype.Storage.DBStorage = {

 // There can be multiple databases in each domain, but for this example we'll
 // define a single one to use throughout the application
 databaseName: "data_store",
 databaseDesc: "Data store",

 // Specify which SQLite database version we are using, in case future versions
 // alter methods
 sqlLiteDBVersion: "1.0",

 // 5MB of storage = 5120 bytes. This is the maximum default size of the
 // SQLite database
 FIVE_MB: 5120,

 // Define a database table name for storing our data
 tableName: "data- store",

 // Define a property to store a reference to the database
 database: null,

 // The initialize method creates the table in the database to store our name and
 // value data in, if it does not already exist. The name becomes the primary key
 initialize: function() {

 // Open the SQLite database
 this.database = openDatabase(this.databaseName, ➥

 this.sqlLiteDBVersion, this.databaseDesc, this.FIVE_MB);

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 319

 // Construct the SQL command to create a table in the database
 var command = "CREATE TABLE IF NOT EXISTS {tableName} (name ➥

 TEXT UNIQUE NOT NULL PRIMARY KEY, value TEXT NOT NULL)";
 command = $.Utils.replaceText(command, {
 tableName: this.tableName
 });

 // Execute the SQL command
 this.execute(command);
 },

 // The execute method executes a given SQL command against the database,
 // executing an optional callback function on the command's completion,
 // passing across the result of the transaction against the database to that
 // callback function
 execute: function(command, callback) {
 callback = callback || function() {};

 // Execute the supplied SQL command, then execute the callback function
 this.database.transaction(function(db) {
 db.executeSql(command, [], callback);
 });
 },

 // The get method performs a lookup against the database for the name key and
 // passes the value it finds, if any, into the supplied callback function
 get: function(name, callback) {

 // Generate the command to locate a value from the database by name
 var command = "SELECT value FROM {tableName} WHERE name = {name}";
 command = $.Utils.replaceText(command, {
 tableName: this.tableName,
 name: name
 });

 // Execute the SQL command
 this.execute(command, function(db, result) {
 var value = "";

 // Locate the value within the first row of the SQL data returned
 if (result.rows.length > 0) {
 value = result.rows.item(0)['value'];
 }

 // Execute the callback method, passing it the value found, if any
 callback(value);

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt320

 // Return a null value in case any calling method is expecting a
 // return value from this method - no code should expect this, but
 // just in case, we provide a return value here
 return null;
 });
 },

 // The set method stores a value by name into the database
 set: function(input) {

 // Expect an object literal as an input, containing name and value to set
 var name = input.name || "";
 var value = input.value || "";

 var self = this;

 // Check to see if a value already exists by this name in the database
 this.get(name, function(value) {

 // By default, we will insert the value into the database, so specify
 // the command to do that
 var command = "INSERT INTO {tableName} (name, value) VALUES ➥

 ({name}, {value})";

 // If a value already exists against this name in the database, perform
 // a SQL update command instead
 if (value != "") {
 command = "UPDATE {tableName} SET value = {value} WHERE ➥

 name = {name}";
 }

 command = $.Utils.replaceText(command, {
 tableName: self.tableName,
 name: name,
 value: value
 });

 // Execute the SQL command, saving the data into the database
 this.execute(command);
 });
 },

 // The remove method deletes the name and value from the database
 remove: function(name) {

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 321

 // Generate the SQL command to remove the value from the database
 var command = "DELETE FROM {tableName} WHERE name = {name}";
 command = $.Utils.replaceText(command, {
 tableName: this.tableName,
 name: name
 });

 // Execute the command, removing the entry from the database
 this.execute(command);
 }
}

 Listing 9-10 shows how to store, retrieve, and remove text values using a SQLite database
located on the user’s local computer or storage device using JavaScript within your pages.
Notice how you need to use a callback function now when retrieving data. Since the data-
base acts asynchronously, the only way to know when the data has been located is to tell the
method what code to execute after that data has been found.

 Listing 9‑10. Setting, Getting, and Removing Data Using the Database Storage API

// Initialize the client- side database
$.Storage.DBStorage.initialize();

// Save an email address
$.Storage.DBStorage.set({
 name: "email",
 value: "me@denodell.com"
});

// Output the "email" value we created earlier.
// After a browser restart, the data will still be there
$.Storage.DBStorage.get("email", function(value) {
 alert(value);
});

// Delete the "email" data value permanently
$.Storage.DBStorage.remove("email");

// Outputs an empty string since the "email" data no longer exists
$.Storage.DBStorage.get("email", function(value) {
 alert(value);
});

mailto:me@denodell.com

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt322

Storing Data Using Flash Shared Objects
If your end users have Adobe’s Flash Player plug- in installed (version 8 or later), another data
storage technique is available. Using a specially constructed movie file, you can expose what
are known as Flash local shared objects, commonly called Flash cookies, through a simple API
for JavaScript to use to store data locally.

Unlike browser cookies, local shared objects allow each domain to store 100KB of data on
the user’s machine, and these values are not sent to the server with HTTP requests. Users are
able to alter this storage amount, although many choose to leave it at the default setting. As
you might expect, as a security measure, data set from one domain cannot be accessed from
any other.

I have constructed the necessary Flash movie file, which is available from this book’s
details page at the Apress web site (http://www.apress.com/), along with the rest of the source
code for this book (and also available for download from my own site at http://www.denodell.
com/) for inclusion in your own RIAs. Use the SWFObject component, introduced in Chapter 7,
to place the Flash movie on your pages.

The Flash movie file exposes three methods that can be called against an instance of the
movie on the page: get(), set(), and remove(). Listing 9-11 shows the code to add to your
$ JavaScript library to use Flash cookies. Add the code to the end of the $ library file, before it
is instantiated.

 Listing 9‑11. Getting, Setting, and Removing Data Using Flash Local Shared Objects

// Create a Flash namespace to contain all Flash cookie- related storage methods

$.prototype.Storage.Flash = {

 // Object used to store a reference to the Flash movie element on the page
 flashComponent: null,

 // The initialize method sets the internal flashComponent object to the one
 // passed in from the page - use SWFObject to load in the movie on the page.
 // Chapter 7 shows how to use SWFObject to embed a Flash movie

 initialize: function(flashComponent) {
 this.flashComponent = flashComponent;
 },

 // The set method stores a value by name into a Flash shared object
 set: function(input) {

 // Expect an object literal as an input, containing name and value to set
 var name = input.name || "";
 var value = input.value || "";

 // Save the data using the set method within the Flash movie object
 this.flashComponent.set(name, value);
 },

http://www.apress.com/
http://www.denodell

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 323

 // The get method retrieves a previously stored value by name
 get: function(name) {

 // Return an empty string if the value requested does not exist
 return this.flashComponent.get(name) || "";
 },

 // The remove method deletes the value with the given name from the Flash
 // shared object
 remove: function(name) {
 this.flashComponent.remove(name);
 }
}

 Listing 9-12 shows how to use the methods from Listing 9-11 to store, retrieve, and
remove data from the local computer or device using Flash local shared objects on a page
using JavaScript.

 Listing 9‑12. Storing, Retrieving, and Removing Data Using Flash Local Shared Objects

// Initialize the Flash shared object by referencing the DOM element on the page
// that contains the Flash storage file - you can find this file on my web site at
// http://www.denodell.com/
$.Storage.Flash.initialize(document.getElementById("flash-object"));

// Save an email address
$.Storage.Flash.set({
 name: "email",
 value: "me@denodell.com"
});

// Output the "email" value we created earlier.
// After a browser restart, the data will still be there
alert($.Storage.Flash.get("email"));

// Delete the "email" data value permanently
$.Storage.Flash.remove("email");

// Outputs an empty string since the "email" data no longer exists
alert($.Storage.Flash.get("email"));

Creating a Cross‑ Browser Local Data Storage API
So far in this chapter, you have discovered how to use several different techniques to store
and retrieve text strings from the local user’s computer or device. Each technique varies in the
quantity of data that is permitted to be stored and in the level of support for it among different
browsers. To handle local storage in your RIAs, you can set up a single API for cross- browser
support, which includes all the available techniques and uses the best one available.

http://www.denodell.com/
mailto:me@denodell.com

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt324

First, let’s organize the different storage techniques in order of preference, starting with
the ones that combine the largest storage space with the most standards- adopting practices
and ending with the least storage space and least-preferred solution:

Local storage API: Preferred since it is becoming an established standard, is simple to use,
and has fairly strong support among the latest browser releases. Provides 5MB storage by
default.

Client-side database storage API: An emerging standard and, due to its versatility, would
be the most preferred were it not for the fact that the specification is very much subject to
change at the time of writing. Provides 5MB storage by default.

Mozilla global storage API: A good backup for those Firefox 2 and 3 users whose browsers
do not yet support the local storage API but do support this very similar API. Provides 5MB
storage by default.

IE’s userData mechanism: IE versions 5 to 7 do not support any of the preferred methods so
far, but do provide this mechanism for storing data locally without requiring any plug- ins.
Provides 64KB storage by default.

Flash local shared objects: For those users whose browsers do not support any of the more
preferred methods, the ubiquitous Flash Player plug- in can be harnessed to store data
locally without relying on cookies. Provides 100KB storage by default.

Cookies: Definitely the least-preferred option. Cookie files are oppressively small, and
their data gets sent with each HTTP request to the server, clogging up the connection
more and more the larger the cookies become. Provides 4KB storage by default.

Using this information, you can create three universal methods—get(), set(), and
remove()—which favor the most-preferred technique, moving all the way down to simple
cookies when the preferred techniques are unavailable. Listing 9-13 shows a cross- browser
local storage API that you can implement within your $ JavaScript library using the code
given in this chapter. Notice that, since one of the techniques (the client- side database API)
requires a callback function to be supplied when retrieving data, this practice needs to be
adopted by the API for all techniques.

 Listing 9‑13. Cross- Browser Local Data Storage API

// Stores a reference to the technique's code object, set with the initialize method
$.prototype.Storage.dataStore = null;

// The initialize method selects the technique to use for local data storage. Takes
// a parameter that specifies the Flash element on the page in order to support
// Flash Shared Objects. If this parameter is not provided, Flash will not attempt
// to be used to store the data
$.prototype.Storage.initialize = function(flashElement) {

 // Work through our order of preference
 if (window.localStorage) {

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 325

 // If local storage API is available, set the dataStore to point to the
 // local storage API namespace we created earlier
 this.dataStore = $.Storage.LocalStorage;

 } else if (window.openDatabase) {

 // If the client- side database API is supported, assign the dataStore to the
 // DBStorage namespace and initialize it
 this.dataStore = $.Storage.DBStorage;
 this.dataStore.initialize();

 } else if (window.globalStorage) {

 // If the global storage API is supported, set dataStore to point to the
 // appropriate namespace
 this.dataStore = $.Storage.GlobalStorage;
 this.dataStore.initialize();

 } else if (window.ActiveXObject) {
 // If Internet Explorer's userData mechanism is present,
 // initialize that for use
 this.dataStore = $.Storage.UserData;
 this.dataStore.initialize();

 } else if (flashElement) {

 // If Flash 8 is supported, set the dataStore to use Flash Shared Objects
 this.dataStore = $.Storage.Flash;
 this.dataStore.initialize(flashElement);

 } else {

 // If all else fails, use cookies
 this.dataStore = $.Storage.Cookies;
 }
};

// The get method retrieves a previously stored value and passes it to the
// specified callback function. Because the callback technique is used in the
// client- side database API, we need to use it throughout
$.prototype.Storage.get = function(name, callback) {

 // Only one object (client- side database API) actually uses the callback
 // parameter as part of the data retrieval process. Other namespaces specified
 // in the dataStore will just ignore it
 var value = this.dataStore.get(name, callback);

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt326

 // If a value is returned (which it isn't with the client- side database API),
 // execute the callback function, passing it the value found.
 if (value && callback) {
 callback(value);
 }
};

// The set method stores a value against a specified name
$.prototype.Storage.set = function(name, value) {

 // All the different techniques accept the same inputs for setting data, so this
 // universal method is fairly simple
 this.dataStore.set(name, value);
};

// The remove method permanently deletes data by a specified name
$.prototype.Storage.remove = function(name) {

 // Each technique accepts the same inputs for removing data
 this.dataStore.remove(name);
};

 Listing 9-14 shows how to use your new cross- browser offline data storage API to store,
retrieve, and remove data from the local computer or device using JavaScript on a page.

 Listing 9‑14. Getting, Setting, and Removing Data Using a Cross- Browser API

// Execute the code that makes the decision about which of the various techniques
// to use within the current browser. In this case, no parameter is supplied to the
// initialize method, which means that Flash will not be used to store data
$.Storage.initialize();

// Save an email address using whichever technique was selected previously
$.Storage.set({
 name: "email",
 value: "me@denodell.com"
});

// Output the "email" value we saved earlier.
// After a browser restart, the data will still be there
$.Storage.get("email", function(value) {
 alert(value);
});

// Delete the "email" data value permanently
$.Storage.remove("email");

mailto:me@denodell.com

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 327

// Outputs an empty string since the "email" data no longer exists
$.Storage.get("email", function(value) {
 alert(value);
});

As you have seen in previous chapters, storing and retrieving data from local data sources
is faster than accessing data from a remote web server. This is why you want to ensure that
your files are cached to the browser so they need to be downloaded only once. By having your
web application store the user’s data within the local data store and accessing it from there,
you can improve the perceived responsiveness of your application by performing the Ajax
operations behind the scenes, and allowing the users to interact only with the presaved data
in the data store. Then your users won’t ever need to click a button to save a form via Ajax and
wait for the server’s response before moving on to the next part of the web application.

The cross- browser API in Listing 9-13 could be implemented in a web mail client so that
new e- mail messages being composed are saved at regular intervals without user interaction.
If the network connection drops, the users can carry on writing their mail, which will be stored
locally as they write, until a connection to the server is restored. And if the browser crashes,
the e- mail message can be resurrected—the users will not have lost their message (and their
patience). Listing 9-15 shows a simple example of how to implement this behavior within an
HTML page.

 Listing 9‑15. Saving an E- Mail Message Being Composed into Local Storage

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <meta http-equiv="Content- Type" content="text/html; charset=utf- 8" />
 <title>Offline email message storage example</title>
 </head>

 <body>
 <h1>Offline email message storage example</h1>

 <!- - Create a form for composing the email message -- >
 <form method="post" action="/" id="compose- message">
 <div>
 <label for="to">To</label>
 <input type="text" name="to" id="to" />
 </div>

 <div>
 <label for="subject">Subject</label>
 <input type="text" name="subject" id="subject" />
 </div>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt328

 <div>
 <label for="message- body">Message</label>
 <textarea id="message- body" name="message-body" ➥

 rows="10" cols="20"></textarea>
 </div>

 <div>
 <input type="submit" value="Save" />
 </div>
 </form>

 <!- - Create an element to use to place the Flash storage component later -- >
 <div id="flash-storage- element"></div>

 <!- - Reference the $ JavaScript library -- >
 <script type="text/javascript" src="$.js"></script>

 <!- - Reference SWFObject from Google's CDN -- >
 <script type="text/javascript" ➥

 src="http://ajax.googleapis.com/ajax/libs/swfobject/2.1/swfobject.js"> ➥

 </script>

 <!- - The following code is included inline for simplicity. In a real web
 application, it should be stored in an external file -- >
 <script type="text/javascript">
 $.onDomReady(function() {

 // Find this Flash offline storage component online at
 // http://www.denodell.com/
 var movieURL = "storage.swf";
 var tagIDToReplace = "flash-storage- element";
 var width = 1;
 var height = 1;
 var flashVersionRequired = "8";
 var parameters = {
 allowScriptAccess: "always"
 };
 var attributes = {
 id: "flash- storage"
 };

 swfobject.embedSWF(movieURL, tagIDToReplace, width, height, ➥

 flashVersionRequired, null, {}, parameters, attributes);

 // Initialize our offline data storage API, passing it a reference
 // to the Flash element on the page to allow storage using Flash
 $.Storage.initialize(document.getElementById("flash- storage"));

http://ajax.googleapis.com/ajax/libs/swfobject/2.1/swfobject.js
http://www.denodell.com/

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt 329

 // Populate the message fields with the last saved values so that
 // when the user returns to the page after a browser crash,
 // the fields are prepopulated with the last saved values
 // automatically for them
 $.Storage.get("to", function(value) {
 document.getElementById("to").value = value;
 });

 $.Storage.get("subject", function(value) {
 document.getElementById("subject").value = value;
 });

 $.Storage.get("message- body", function(value) {
 document.getElementById("message- body").value = value;
 });

 // Save the contents of the message being composed
 // once every 30 seconds
 var THIRTY_SECONDS = 30000; // 30 seconds = 30000 milliseconds

 var saveMessage = window.setInterval(function() {

 // Save the values of the To, Subject, and Message Body fields
 // in case of network drop or browser crash
 $.Storage.set({
 name: "to",
 value: document.getElementById("to").value
 });
 $.Storage.set({
 name: "subject",
 value: document.getElementById("subject").value
 });
 $.Storage.set({
 name: "message- body",
 value: document.getElementById("message- body").value
 });
 }, THIRTY_SECONDS);

 // When the user submits the form to save the message to the server,
 // remove the previously stored field values and stop them from
 // being saved again while the form is being submitted
 $.Events.add(document.getElementById("compose- message"), ➥

 "submit", function(e) {

 // Stop the HTML page from submitting the form so we can
 // handle the data submission via Ajax instead
 e.preventDefault();

Chapter 9 ■ OFFLINe StOraGe—WheN the L IGhtS GO OUt330

 // Stop saving the message field values every 30 seconds
 window.clearInterval(saveMessage);

 // TODO: send form field values to the server using Ajax

 // Remove the local data now the message has been sent
 $.Storage.remove("to");
 $.Storage.remove("subject");
 $.Storage.remove("message- body");

 // TODO: change the page to display the mailbox folder contents
 });
 });
 </script>
 </body>
</html>

Using a Reusable Offline Storage Component
PersistJS (http://pablotron.org/software/persist- js/) is an open source local data storage
library that is being constantly updated to support newer browsers and techniques. In addition
to supporting the techniques we have investigated in this chapter, this library also supports
Gears.

Gears is a browser plug- in developed by Google that provides a SQLite database for offline
data storage. It also offers a way to offload intensive JavaScript routines to separate worker pro-
cesses on the end user’s machine to boost performance. This plug- in is available for download
for many browsers from http://gears.google.com/. It is built into Google’s Chrome browser by
default.

Summary
This chapter covered the different techniques for storing data on your user’s machine through
your web applications. It presented a cross- browser API for storing, retrieving, and removing
data from the local data store. Using local data storage provides better user experiences because,
if a network connection drops or the browser software crashes, the data is still safe. It can remain
on the user’s computer until it can be sent to the server, and then it can be deleted.

In the next chapter, we will investigate some advanced Ajax techniques for extracting hid-
den information from nontext files stored on a web server.

http://pablotron.org/software/persist-�js/
http://gears.google.com/

331

C h a p t e r 1 0

Binary ajax

At this point, you should be familiar with retrieving and sending text- based data between
the browser and the web server using the Ajax technique. This chapter explains how to retrieve
data stored in other types of files, such as images, audio, and video, dynamically through
JavaScript. This allows you to extract information stored within those files for use within your
web application.

Plain Text Files vs. Binary Files
All files—whether they represent text, image, audio, or some other kind of data—are stored on
a computer’s file system as data according to a specified format. Computer software programs,
such as Microsoft Word or Apple iTunes, load only those files that match the specific format
they expect, and convert them into something more usable for the users of that software.

Computer file data is stored as a long sequence of 8- bit hexadecimal (hex) bytes, each
capable of representing values from 0 to 255 in base 16 format, often represented as 0x00 to
0xFF in common hex notation. Text characters are stored in files as hex bytes within the range
0x20 to 0x7E, and computer files that contain only data bytes within this range are known as
plain text files. HTML, style sheet, and JavaScript files are plain text files. Files containing data
bytes outside that range are known as binary files. Images and Flash components are examples
of binary files.

In order to distinguish one type of binary file from another, and to ensure the format of
that file is of the expected type, each file type has its own specification, written by the individ-
ual or organization responsible for creating that data file format. This specification describes
how the data is stored and formatted within that file.

Typically, a binary file will have a header section containing information describing the
actual data represented within the main part of the file. In an image file, this header informa-
tion might contain the width, height, and resolution of the image. In an MP3 music file, this
might contain that name of the artist, track, and genre of the music stored within the file.

Reading Binary Files with Ajax
Chapter 2 presented the code required to make an Ajax request within your web application
for a plain text file hosted on your web server. To demonstrate how to retrieve binary files, let’s
extend that code to make requests for binary files.

Chapter 10 ■ B INarY aJaX332

■Note As with Ajax requests for plain text files, you are unable to request files that are hosted on servers
other than the one currently running your JavaScript code.

Binary files are typically much larger than plain text files, so you will want to tell the server
to return only a certain portion of the data from the file requested. You will most likely want
to read the header data stored at the beginning of the file. Therefore, it makes sense to receive
only the first part of the file, rather than the entire file. Fortunately, you can take advantage
of the Range HTTP request header to specify how much of the file to receive. For example, the
following Range header instructs the server to return only the first 1,024 bytes of the requested
file:

Range: bytes=0- 1024

The Range header is not supported by every web server, so before you use it, you must
check to see if it is supported. This is achieved by establishing an HTTP HEAD request for the
file from which you wish to read the contents. A HEAD request returns only the HTTP response
headers that would accompany the requested file’s contents, not the actual file contents. You
then check that the Accept- Ranges HTTP response header exists and contains the value bytes,
which indicates that the web server supports this feature. Once you’ve established this feature
is supported, you can send the real HTTP GET request for the binary file, supplying the Range
request header.

 Listing 10-1 shows the code to add to your existing Ajax methods within your $ JavaScript
library (which you started in Chapter 2) to support the connection and retrieval of data using
a cross- browser Ajax connector object. Notice the similarities between requesting binary files
and requesting plain text files.

 Listing 10‑1. Configuring a Binary Connector

// The method configureBinaryConnector takes three input parameters:
// - A cross- browser Ajax connector object
// - An optional length to specify how much data the server should
// return, in bytes
// - A callback function to pass the downloaded binary data to

$.prototype.Remote.configureBinaryConnector = function(input) {
 // Create fallback values for each of the inputs in case they are not specified
 var connector = input.connector || this.getConnector();
 var length = input.length || -1;
 var callback = input.callback || function() {};

 // By default, Firefox will attempt to convert the binary data received into a
 // different format if it is of a known type. We will force Firefox to believe
 // the data is of an unknown type, so it does not perform any conversion on the
 // raw binary data returned by the server

Chapter 10 ■ B INarY aJaX 333

 if (connector.overrideMimeType) {
 connector.overrideMimeType("text/plain; charset=x-user- defined");
 }

 // If a length has been specified, set the HTTP Range request header to return
 // only the specified amount of data from the start of the file - otherwise we
 // would have to download the entire file, which would slow down any
 // processing we wish to perform upon it
 if (length > -1) {
 connector.setRequestHeader("Range", "bytes=0- " + length);
 }

 // Internet Explorer returns the binary data in the connector.responseBody
 // property. Other browsers return it in the connector.responseText property
 if (typeof connector.onload != "undefined") {

 // The connector.onload event handler exists within the W3C XmlHttpRequest
 // object but not Microsoft's XMLHTTP ActiveX object.
 connector.onload = function(){

 // HTTP status 200 means the file downloaded successfully in its
 // entirety, and 206 means that the portion of the file specified with
 // the HTTP Range request header was returned successfully
 if (connector.status == 200 || connector.status == 206) {

 // In those browsers that support connector.onload, the binary data
 // from the file is returned in connector.responseText
 var binaryData = connector.responseText;

 // Wrap the data in a BinaryReader object, which we will define
 // later, which will expose methods and properties for interacting
 // with the data within the binary file.
 // The this keyword refers to $.Remote
 var binaryReader = new this.BinaryReader(binaryData);

 // Execute the callback function passed into this routine, passing
 // it the new binaryReader object as a parameter
 callback(binaryReader);
 }
 }
 } else {

 // The connector.onload event handler does not exist, so this should be
 // Internet Explorer - we'll use the cross- browser Ajax onreadystatechange
 // event handler instead in this case

Chapter 10 ■ B INarY aJaX334

 connector.onreadystatechange = function() {
 if (connector.readyState == 4) {
 if (connector.status == 200 || connector.status == 206) {

 // The file, or part of the file requested, was returned
 // successfully. The binary data in Internet Explorer is
 // returned in the connector.responseBody property
 var binaryData = connector.responseBody;

 // Create a new instance of the BinaryReader constructor,
 // defined later, which will allow chunks of data to be looked
 // up from within the binary file as a whole.
 // The this keyword refers to $.Remote
 var binaryReader = new this.BinaryReader(binaryData);

 // Execute the callback function passed into the routine,
 // passing it the binaryReader object instance to allow the
 // callback to access the data within the file
 callback(binaryData);
 }
 }
 }
 }
}

Now you can configure your cross- browser connection object to enable you to receive the
binary data. Listing 10-2 shows how you can make a request for a binary file, or part of a file,
through JavaScript. Add this code to your $ JavaScript library.

■Caution Unfortunately, at the time of writing, the Opera browser does not return the binary data from
an Ajax request in a usable form for this routine. Bear this in mind when constructing your web application
around this code. All other modern browsers, including IE 6, will return the data in a usable form.

 Listing 10‑2. Loading a Complete or Partial Binary File Using Ajax

// The loadBinary method loads a binary file from a specified URL and executes a
// callback function, passing it the returned raw binary data. If an optional length
// parameter is specified, only a portion of the file is downloaded, up to the
// number of bytes specified in that parameter

Chapter 10 ■ B INarY aJaX 335

$.prototype.Remote.loadBinary = function(request) {
 var url = request.url || "";
 var length = request.length || -1;
 var callback = request.callback || function() {};

 // The this keyword here refers to the $.Remote namespace
 var self = this;

 if (length > -1) {

 // If a data length has been specified, meaning that only part of
 // the file should be downloaded, perform an HTTP HEAD request,
 // which returns only the HTTP Response headers
 self.load({
 url: url,
 type: "HEAD",
 callback: function() {

 // Create a new Ajax connector object and open
 // the connection
 var connector = self.getConnector();
 connector.open("GET", url, true);

 // Find out if the web server supports the HTTP Range header
 // by testing the value of the HTTP Accept- Ranges
 // response header
 if (this.getResponseHeader("Accept- Ranges") == "bytes") {

 // If the web server supports the selection of ranges of
 // data, check that the length specified does not
 // exceed the length of all the data in the file
 var fileLength = this.getResponseHeader(➥

 "Content- Length");
 if (length > parseInt(fileLength, 10)) {
 length = parseInt(fileLength, 10);
 }

 // Configure the new connector so that it specifies the
 // length of data to retrieve from the file. This data
 // is then passed to the callback function
 self.configureBinaryConnector({
 connector: connector,
 length: length,
 callback: callback
 });
 } else {

Chapter 10 ■ B INarY aJaX336

 // The web server does not support the selection of
 // ranges of data, so we'll leave out specifying a
 // length when we configure the new connector,
 // so that all the data inside the file is passed to
 // the callback function
 self.configureBinaryConnector({
 connector: connector,
 callback: callback
 });
 }

 // Make the request for the binary file using the settings
 // configured in the new connector object
 connector.send("");
 }
 });
 } else {

 // If no length has been specified, load the entire binary file and
 // pass this to the callback function
 var connector = this.getConnector();
 connector.open("GET", url, true);
 this.configureBinaryConnector({
 connector: connector,
 callback: callback
 });
 connector.send("");
 }
 }

Now you’re able to make requests for binary files and return the raw data from inside the
file. Next, you need to be able to read the specific parts of that file that interest you. Listing 10-3
shows a new constructor you can use to read and extract specific data from the returned binary
file. Add this code to your $ JavaScript library.

 Listing 10‑3. Binary File Reader

// Internet Explorer does not allow us to return some of the information we
// require from our binary data. To overcome this, we must write two VBScript
// (Microsoft's own scripting format) functions to the page, IEgetByte and
// IEgetLength, which we will call from our JavaScript code when needed.
// The functions are added to the page using document.writeln and are wrapped
// in an Internet Explorer conditional comment so they are not read by other
// browsers

Chapter 10 ■ B INarY aJaX 337

document.writeln(
 '<!-- [if IE]>' +
 '<script type="text/vbscript">\r\n' +
 ' Function IEgetByte(data, position)\r\n' +
 ' IEgetByte = AscB(MidB(data,position + 1, 1))\r\n' +
 ' End Function\r\n' +
 ' Function IEgetLength(data)\r\n' +
 ' IEgetLength = LenB(data)\r\n' +
 ' End Function\r\n' +
 '</script>' +
 '<![endif]-- >'
);

// The BinaryReader constructor takes raw binary data as its input and contains
// methods to help extract data in different formats from that raw data

$.prototype.Remote.BinaryReader = function(data) {
 // Store the data input to a property of this constructor
 this.data = data;

 // The isBigEndian property denotes whether or not the binary data being
 // processed is in the standard hexadecimal format, also known as "big
 // endian" - where the number 8 would be represented within 4 bytes of data
 // as 00000008 - or in the reverse format (also known as "little endian") -
 // where the number 8 would be represented as 08000000. true indicates
 // the data is big endian, the common format
 this.isBigEndian = true;

 // Add a setter method to enable the isBigEndian property value to be
 // changed as and when needed
 this.setIsBigEndian = function(isBigEndian) {
 this.isBigEndian = isBigEndian;
 }

 // The getLength method returns the length in bytes of the binary data
 this.getLength = function() {

 // Binary data is represented as a string in all browsers except Internet
 // Explorer. Standard browsers will simply return the length property of
 // the string, IE will use the VBScript function declared earlier to
 // calculate the length of the binary data
 return (typeof this.data == "string") ? this.data.length : ➥

 IEgetLength(data);
 };

Chapter 10 ■ B INarY aJaX338

 // The getByte method returns a single byte of data located at the specified
 // position in bytes from the start of the data
 this.getByte = function(position) {

 // Standard browsers will use the charCodeAt function to return a Unicode
 // value representing the data stored at the specified position, which is
 // then converted to a hexadecimal value. This does not work in Internet
 // Explorer, which must use its own VBScript function to extract the
 // required byte from the data
 return (typeof this.data == "string") ? ➥

 (this.data.charCodeAt(position) & 0xFF) : IEgetByte(data, position);
 };

 // The getChar method returns the ASCII character represented by the byte
 // of data stored at the specified position
 this.getChar = function(position) {
 return String.fromCharCode(this.getByte(position));
 };

 // The getString method returns the ASCII string represented by the data that
 // begins at the specified position and continues for the specified length
 this.getString = function(position, length) {

 // Create an array to store each of the characters of the string
 var chars = [];

 // Get the character stored at each byte from the specified position until
 // the specified length, and add it to the array of characters
 for (var index = position, end = position + length; index < end; index++) {
 chars.push(this.getChar(index));
 }

 // Return the array of characters joined together as a single string
 return chars.join("");
 };

 // The getHex method returns a string representing the hexadecimal data
 // beginning at the specified position and continuing for the specified length
 this.getHex = function(position, length) {

 // Create an array to store each of the individual hexadecimal strings
 var result = [];

Chapter 10 ■ B INarY aJaX 339

 // Get the value of each byte and convert it to base 16 (hexadecimal),
 // then convert it to a 2-character string and add it to the output array
 for (var index = position, end = position + length; index < end; index++) {
 var newByte = this.getByte(index).toString(16).toUpperCase();
 result.push((newByte.length == 1) ? "0" + newByte : newByte);
 }

 // If the data is not stored in the standard big endian format, then reverse
 // the sequence of the array, which will provide us with little endian
 // format data
 if (!this.isBigEndian) {
 result.reverse();
 }

 // Return the array of hexadecimal characters joined together into
 // a single string
 return result.join("");
 };

 // The getNumber method executes the getHex method and converts its
 // result from a base 16 value to a standard integer number
 this.getNumber = function(position, length) {
 return parseInt(this.getHex(position, length), 16);
 };
}

So now you have the code you need to request binary files from the server and, using the
specification of the particular type of binary file you are reading, you are able to extract the
data of interest from those files. Next, let’s look at how to do this with a specific type of binary
file—one containing a photo.

Extracting Image Data from Photo Files
Suppose that as part of your web application, you wish to extract information from a photo-
graph image file taken using a digital camera, such as when the photo was taken and its
dimensions. Most photographs taken with digital cameras store this information in the header
portion of the JPEG image file produced when taking the picture. You can use your binary
Ajax file reader (Listing 10-3) to extract this information, provided you know the specification
describing how the data is stored within the file. In the case of photograph files, this data is
stored in the Exchangeable Image File (EXIF) format.

Before you can extract the data stored within the image file, you need to know how the
data is structured within the file. This is always according to a very strict format specification,
so there is no chance of the data being misrepresented or confused with a different file format.

Chapter 10 ■ B INarY aJaX340

Understanding the EXIF Format
The EXIF format describes how extra information is stored within JPEG image files. A useful
description of this specification can be found online at http://park2.wakwak.com/~tsuruzoh/
Computer/Digicams/exif- e.html.

the JpeG and eXIF headers
A JPEG file may contain any amount of data before the EXIF data within that file begins. The
beginning of the EXIF data is marked by the following data in hex notation (extra spaces added
for clarity):

FFE1 ssss 4578 6966 0000

where ssss represents the size of the EXIF data block in the file as a hex number. The sequence
4578 6966 represents the string "Exif".

The next point in the file marks the start of the EXIF data itself. The following 2 bytes of
data in the file are either 4949 (II as a string) or 4D4D (MM as a string). This denotes the alignment
of the hex bytes in the rest of the EXIF data. If this format is specified as MM, the rest of the data
is in the standard hex notation; for example, the number 8 would be represented in 2 bytes of
hex code as 0008. If this format is II, each byte sits in reverse order; for example, the number 8
would be represented as 0800.

Following this byte- alignment indicator comes the data 002A (2A00 if the reverse format is
being used), which is the hex representation of the number 42, but not really used for anything
in particular. (Anecdotally, the number 42 was chosen because, according to author Douglas
Adams, it represents the answer to the question of “life, the universe, and everything”). The
following 4- byte number indicates the number of bytes from the start of the EXIF data to the
actual image information data you wish to extract.

Image File Directories and tags
EXIF image information is stored in blocks of data known as Image File Directories (IFDs). Each
of these directories contains one or more tags, representing the image information data itself,
matching the data structure shown in Table 10-1.

 Table 10‑1. Image File Directory Structure

Data Length Data Type Represents

2 bytes Number The number of tags represented within this directory

12 bytes ✕ tag count Tags Image information data

4 bytes Number Distance from the start of the EXIF data to the next
IFD in the sequence

Each of the tags stored within an IFD has an identical data structure, matching that shown
in Table 10-2.

Chapter 10 ■ B INarY aJaX 341

 Table 10‑2. Image File Directory Tag Structure

Data Length Data Type Represents

2 bytes Hexadecimal Code denoting the image data stored in this tag

2 bytes Number Format of the image data stored in this tag

4 bytes Number Length of the image data stored in this tag

4 bytes Mixed Image data itself if the length of the data is 4 bytes or less, or
a number pointing to the location of the image data some-
where else in the file to be looked up

An example of a tag is shown here, in standard (MM) hexadecimal format (spaces added for
clarity):

A002 0004 00000001 00000640

The tag A002 refers to the width of image in the current file. The format 0004 denotes that
the data is represented as a 4- byte number. The length of the image data is 00000001, which
denotes that there is a single 4- byte number being represented. The data itself, since it is
4 bytes of data or less, is stored within the final 4- byte sequence, 00000640. This represents
the number 1,600 stored in hex format. From this tag, you have learned that the image stored
in the current file has a width of 1,600 pixels. You can find a full list of the EXIF tags online at
http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/EXIF.html.

Reading EXIF Data Using JavaScript
Now that you have an overview of the way data is stored in EXIF format within a JPEG image
file, you can write your own constructor. Listing 10-4 shows an EXIF data reader that will con-
vert the binary data into an object containing information about the image represented by that
data. Save this code as a separate file, named exif- reader.js.

 Listing 10‑4. EXIF Data Reader

// The ExifData constructor takes a BinaryReader object as its only input and
// returns an object containing the image information stored within its
// binary data

var ExifReader = function(data) {

 // Create an object literal containing a selection of tag IDs stored within the
 // IFD representing the main image data
 var MainImageTags = {
 // Company name. e.g., Nikon, Motorola, Apple, etc.
 "010F": "Make",

 // Camera name. e.g., D80, iPhone, etc.
 "0110": "Model",

http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/EXIF.html

Chapter 10 ■ B INarY aJaX342

 // Angle of the camera when the image was taken, to the nearest 90°
 "0112": "Orientation",

 // Resolution of the x axis of the image. e.g., 72
 "011A": "XResolution",

 // Resolution of the y axis of the image. e.g., 72
 "011B": "YResolution",

 // A value representing the unit the resolution data is stored in
 "0128": "ResolutionUnit",

 // The name of the software package used to manipulate the image after it
 // was taken. e.g., Adobe Photoshop
 "0131": "Software",

 // The date and time the image was taken
 "0132": "DateTime",

 // The computer operating system used to manipulate the image after it was
 // taken. e.g., Mac OS X
 "013C": "HostComputer",

 // A value representing the location of further image data
 "8769": "ExifOffset",

 // A value representing the location of longitude and latitude data denoting
 // where on the globe the image was taken
 "8825": "GPSOffset"

 // Many more tags exist, but have been removed for brevity
 }

 // Create an object literal containing a selection of tag IDs representing
 // further image information data
 var ExtendedDataTags = {
 // The F- Stop position of the camera at the point the photo was taken.
 // e.g., F2.8
 "829D": "FNumber",

 // A value representing the color profile of the image data
 "A001": "ColorSpace",

 // The width of the image. e.g., 800
 "A002": "ImageWidth",

Chapter 10 ■ B INarY aJaX 343

 // The height of the image. e.g., 600
 "A003": "ImageHeight"

 // Many more tags exist, but have been removed for brevity
 }

 // Create an object literal containing a selection of tag IDs representing the
 // latitude and longitude position the image was taken
 var GPSTags = {
 // The location in relation to the equator.
 // e.g., "N" for North, "S" for South
 "0001" : "LatitudeRef",

 // The latitude represented in degrees, minutes and seconds
 "0002" : "Latitude",

 // The location in relation to the Prime Meridian line, passing through
 // Greenwich, London. e.g., "E" for East, "W" for West
 "0003" : "LongitudeRef",

 // The longitude represented in degrees, minutes and seconds
 "0004" : "Longitude"

 // Many more tags exist, but have been removed for brevity
 }

 // Create an object literal to provide user- friendly text in place of those
 // values that are reference values. The key of each object is the tag name
 // from the lists defined above
 var LookupValues = {

 // The Orientation tag data denotes a single digit from 1 to 8
 "Orientation": {
 1: "Straight On",
 2: "Straight On - Image Flipped",
 3: "180°",
 4: "180° - Image Flipped",
 5: "90° Counter- clockwise - Image Flipped",
 6: "90° Clockwise",
 7: "90° Clockwise - Image Flipped",
 8: "90° Counter- clockwise"
 },

Chapter 10 ■ B INarY aJaX344

 // The ResolutionUnit tag data denotes a single digit from 1 to 3
 "ResolutionUnit": {
 1: "No unit",
 2: "Pixels Per Inch",
 3: "Pixels Per Centimeter"
 },

 // The ColorSpace tag data is either the value 1 or the value 65535
 "ColorSpace": {
 1: "sRGB",
 65535: "Uncalibrated"
 }
 }

 // The exifPosition property stores the location within the data of the start of
 // the EXIF data. Note how we use an anonymous function to execute a routine
 // to locate this position
 this.exifPosition = function() {
 var pointer = 0;
 var length = data.getLength();

 // Loop through the binary file data, looking for the FFE1 hex value that
 // denotes the start of the EXIF data section
 while (pointer <= length) {
 if (data.getHex(pointer, 2) == "FFE1") {
 return pointer;
 }
 pointer++;
 }
 }();

 // The isExif property denotes whether there is EXIF data stored at
 // the location denoted by the exifPosition property
 this.isExif = function(position) {

 // position denotes the start of the EXIF data section. The first 4 bytes
 // of data in this section are FFE1ssss, where ssss denotes the total size
 // of the EXIF data section. The next 4 bytes should be the string "Exif",
 // followed by 2 bytes representing the number 0. If this is the case, we
 // have confirmed that this is indeed EXIF data
 var exifString = data.getString(position + 4, 4);
 var dataValue = data.getNumber(position + 8, 2);
 return (exifString == "Exif") && (dataValue == 0);
 }(this.exifPosition);

Chapter 10 ■ B INarY aJaX 345

 if (this.isExif) {

 // If we have confirmed that the data we are reading is in EXIF format,
 // then continue with the routine.

 // The dataStartPosition property denotes the point at which the rest of
 // the EXIF data is measured from. Any data offset values are measured
 // from this point. The point is situated after the "Exif" string and the 2
 // bytes of the number 0, located previously
 this.dataStartPosition = this.exifPosition + 10;

 // The first 2 bytes of data in this section denote the alignment of the
 // rest of the data. This data is a string with two possible values:
 // MM denotes the standard big endian data format is used, whereas
 // II denotes the reversed little endian format is being used. We use
 // this value to set the isBigEndian property of the BinaryReader object
 // instance referred to by the data object
 var byteAlign = data.getString(this.dataStartPosition, 2);
 data.setIsBigEndian((byteAlign == "MM"));

 // The next 2 bytes of data denote that IFD tag data is coming up
 var tagMark = data.getHex(this.dataStartPosition + 2, 2);

 // The next 4 bytes of data represent a number pointing to the offset
 // position of the start of the first IFD within this EXIF data
 var offsetToFirstIFD = data.getNumber(this.dataStartPosition + 4, 4);

 // Create a function we can reuse to locate tags within a particular IFD
 // and work out their values. The readIFD function takes four parameters:
 // - data: The BinaryReader object instance to read binary data from
 // - start: The start position of EXIF data
 // (we'll pass in dataStartPosition)
 // - offset: The distance in bytes from the start position of EXIF data to
 // the start of the IFD to be read
 // - tagSet: An object literal cross- referencing tag IDs to readable
 // tag names
 var readIFD = function(data, start, offset, tagSet) {

 // The first 2 bytes of any IFD denote the number of tags in that IFD.
 // Each tag is 12 bytes long
 var numberOfTags = data.getNumber(start + offset, 2);

 // The last 4 bytes of any IFD denote an offset to the next
 // connected IFD
 var nextOffset = data.getNumber(start + offset + 2 + ➥

 (numberOfTags * 12), 4);

Chapter 10 ■ B INarY aJaX346

 // Create an object literal for storing the tag names and
 // values to return
 var tags = {};

 // Add the location of the next IFD data to the output object literal
 tags.NextOffset = nextOffset;

 // Go through each tag in the directory one by one
 for (var index = 0; index < numberOfTags; index++) {

 // Calculate where the tag begins. We need to account for the first
 // 2 bytes in the IFD, which denote the number of tags
 var tagStartPosition = start + offset + 2 + (index * 12);

 // The first 2 bytes of this tag denote an ID representing what the
 // data stored within this tag actually means
 var id = data.getHex(tagStartPosition, 2);

 // Look up the name relating to the tag ID from the tagSet
 // object literal
 var tagName = tagSet[id];

 if (tagName) {

 // The next 2 bytes after the tag ID denote the data format of
 // the information stored within this tag
 var format = data.getNumber(tagStartPosition + 2, 2);

 // The next 4 bytes denote the length of the tag data
 var tagDataLength = data.getNumber(tagStartPosition + 4, 4);

 // The final 4 bytes of the 12- byte tag contain either the
 // tag data itself if the length of the data is 4 bytes or less,
 // or an offset distance in bytes to the location where
 // the tag data is stored within the file
 var value = data.getNumber(tagStartPosition + 8, 4);

 // Create a temporary variable to store the tag data in
 var tagData = "";

 // Calculate the tag data value based on the format of that data
 switch (format) {

 // A format value of 2 denotes the tag data is stored
 // as a string

Chapter 10 ■ B INarY aJaX 347

 case 2:
 // Locate the position in the binary data file where the
 // tag data is to be found. If the tag data is longer
 // than 4 bytes, it will be found at the distance stored
 // in the value variable from the start of the EXIF
 // data. If the tag data is 4 bytes or shorter, the data
 // is located within the last 4 bytes of the tag itself
 var dataPosition = (tagDataLength > 4) ? ➥

 start + value : tagStartPosition + 8;

 // Locate the string representing the tag data.
 // According to the EXIF format, the last byte of string
 // data is always "00", so we can ignore this last byte
 tagData = data.getString(dataPosition, ➥

 tagDataLength - 1);
 break;

 // A format value of 3 denotes the tag data is stored as a
 // number, 2 bytes in length
 case 3:

 // Find the 2- byte number stored 8 bytes in from
 // the start of the tag
 tagData = data.getNumber(tagStartPosition + 8, 2);
 break;

 // A format value of 4 denotes the tag data is a
 // 4- byte number
 case 4:

 // In this case, we simply return the number stored in
 // the value variable that we extracted earlier
 tagData = value;
 break;

 // A format value of 5 denotes the tag data is stored as a
 // rational number, the result of one number divided by
 // another. The first 4- byte number in an 8- byte sequence
 // is the numerator, the second 4- byte number is
 // the denominator
 case 5:

 // Define an array to store the tag data
 var tagDataArray = [];

Chapter 10 ■ B INarY aJaX348

 // Calculate rational numbers for as long as there is
 // data to process
 for (var rIndex = 0; rIndex < tagDataLength; rIndex++) {

 // Locate the start position of the 8- byte sequence
 // representing this rational number
 var rationalStartPosition = value + start + ➥

 (8 * rIndex);

 // The numerator is the first 4- byte number of the
 // 8- byte data sequence
 var numerator = data.getNumber(➥

 rationalStartPosition, 4);

 // The denominator is the second 4- byte number of
 // the 8- byte data sequence
 var denominator = data.getNumber(➥

 rationalStartPosition + 4, 4);

 // Add the resulting rational number to
 // the tagDataArray
 tagDataArray.push(numerator / denominator);
 }

 // Return the array of rational numbers
 tagData = tagDataArray;
 break;

 // A format value of 7 denotes the tag data is of an
 // undefined or case- specific custom type
 case 7:

 // Locate the position in the binary data file where the
 // tag data is to be found
 var dataPosition = tagDataLength > 4 ? start + ➥

 value : tagStartPosition + 8;

 // Return the string representation of the data
 // stored in this tag
 tagData = data.getString(dataPosition, tagDataLength);
 break;

 default:
 break;
 }

Chapter 10 ■ B INarY aJaX 349

 // Certain tag data values, such as Orientation and
 // ResolutionUnit, are stored as numbers representing
 // equivalent text values. These text values are stored
 // in the LookupValues object literal. If the current tag
 // name is found in that object literal, then replace the
 // tagData with the user- friendly text representation
 // of the current data value
 if (LookupValues[tagName]) {
 tagData = LookupValues[tagName][tagData];
 }

 // Certain tag data, such as DateTime and GPS Latitude and
 // Longitude, are not stored in user- or code- friendly formats.
 // The reformat method, defined later, reformats the tag data
 // that requires it into a better format
 tags[tagName] = reformat(tagName, tagData);
 }
 }

 // Return the tags object literal, containing the tag names and
 // their associated data in a user- friendly format
 return tags;
 }

 // The reformat method converts certain IFD tag data into a format that is
 // more code- or user- friendly
 var reformat = function(tagName, tagData){
 switch (tagName) {
 case "DateTime":

 // Tag data in the DateTime tag is stored as a string in the
 // format YYYY:MM:DD HH:MM:SS. Let's convert that string
 // to a native JavaScript Date object
 var datePart = value.split(" ")[0].split(":");
 var timePart = value.split(" ")[1].split(":");
 var year = datePart[0];

 // Months in JavaScript run from 0 - 11
 var month = datePart[1] - 1;
 var day = datePart[2];
 var hour = timePart[0];
 var minute = timePart[1];
 var second = timePart[2];

Chapter 10 ■ B INarY aJaX350

 // Replace the tagData with a JavaScript Date object
 // old representing the string- based date
 tagData = new Date(year, month, day, hour, minute, second);
 break;

 case "Latitude":
 case "Longitude":

 // Latitude and longitude data is stored as an array of three
 // values: degrees, minutes and seconds, which together refer
 // to a point on the globe. Let's take this format and convert
 // it into two others, the standard format for representing
 // geo- location data: degrees° minutes' seconds"
 // and a decimal- based format favored by Google Maps and others
 var degrees = parseFloat(value[0]);
 var minutes = parseFloat(value[1]);
 var seconds = parseFloat(value[2]);

 // The decimal format found by turning the minutes and seconds
 // from base 60 values to base 100 values and adding them to
 // the degrees
 var decimalFormat = (degrees + (minutes / 60) + ➥

 ((seconds / 60)/100));

 // Some GPS latitude and longitude tags do not represent seconds
 // separately, but rather store their minutes value as a
 // floating point number. If this is the case, we should
 // separate out the minutes and seconds values in order to
 // represent them correctly in the standard format
 if (Math.floor(minutes) < minutes) {
 seconds += (minutes - Math.floor(minutes)) * 60;
 minutes = Math.floor(minutes);
 seconds = Math.round(seconds * 100) / 100;
 }
 var standardFormat = degrees + "° " + minutes + "' " + ➥

 seconds + "\"";

 // Replace the tagData with an object literal containing both
 // standard and decimal formats representing the position on
 // the globe denoted by the original array representation
 tagData = {
 standard: standardFormat,
 decimal: decimalFormat
 }
 break;

Chapter 10 ■ B INarY aJaX 351

 default:
 break;
 }

 // Return the new tagData where appropriate, or simply return the
 // original tagData if no reformatting took place
 return tagData;
 }

 // Create a MainImage property, containing an object literal of tag names
 // and associated tag data derived from the main image information data
 // section of the binary image data
 this.MainImage = readIFD(data, this.dataStartPosition, offsetToFirstIFD, ➥

 MainImageTags);

 if (this.MainImage.ExifOffset) {

 // If the MainImage data contains an offset pointing to the location of
 // an extended image data IFD, then read this data in addition, and
 // assign the resulting tag data to the ExtendedData property
 this.ExtendedData = readIFD(data, this.dataStartPosition, ➥

 this.MainImage.ExifOffset, ExtendedDataTags);
 }

 if (this.MainImage.GPSOffset) {

 // If the MainImage data contains an offset pointing to the location of
 // GPS latitude and longitude data, then read this associated IFD and
 // assign the resulting tag data to the GPSData property
 this.GPSData = readIFD(data, this.dataStartPosition, ➥

 this.MainImage.GPSOffset, GPSTags);
 }
 }
};

Displaying EXIF Data from a File
Let’s look at a real- world example to demonstrate extracting EXIF data from an image file
loaded via the binary Ajax technique. Figure 10-1 shows an HTML page that displays the image
information data extracted from an image file included on the page with an tag.

Chapter 10 ■ B INarY aJaX352

 Figure 10‑1. Sample page displaying data extracted from an image file

The HTML code for this page is shown in Listing 10-5.

 Listing 10‑5. HTML Page for Displaying Image Data via Ajax

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml_lang="en" lang="en">
 <head>
 <meta http-equiv="Content- Type" content="text/html; charset=utf- 8" />
 <title>Displaying Image Data</title>
 <!- - Feel free to add your own style sheet -- >
 </head>
 <body>
 <h1>Displaying Image Data</h1>
 <!- - Refer to the JPG photo image file you wish to extract information from
 in the following tag -- >

 <div id="output">
 <!- - We will use JavaScript to place our image information
 within this tag -- >
 </div>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 10 ■ B INarY aJaX 353

 <!- - Load our $ library -- >
 <script type="text/javascript" src="$.js"></script>

 <!- - Load our EXIF data reader constructor -- >
 <script type="text/javascript" src="exif- reader.js"></script>

 <!- - Load a JavaScript file for this page, which we will define later -- >
 <script type="text/javascript" src="my-page.js"></script>
 </body>
</html>

The code in Listing 10-6 should be added to a file named my-page.js. This file is referenced
by the HTML page (Listing 10-5) and will display the EXIF image information data on that page.

 Listing 10‑6. Displaying EXIF Image Data on an HTML Page

$.onDomReady(function() {

 // Wait for the DOM to become ready, then load the image file, extract its
 // information and display it on the page
 $.Remote.loadBinary({

 // Load the binary file referred to within the tag on the HTML page
 url: document.getElementById("image").src,

 // Only load the first 2KB of data (2048 bytes = 2KB) from the file since
 // the header information is stored at the beginning of the file. Loading
 // too much data can cause the whole data extraction routine to
 // run a lot slower - especially in IE
 length: 2048,

 // Specify a callback function to execute once the first 2KB of the image
 // file have loaded, passing it an instance of the BinaryReader object
 callback: function(data){

 // Read the EXIF data from the binary file
 var exifData = new ExifReader(data);

 // Store the main image information in a local variable
 var mainImageData = exifData.MainImage;

 // Store the extended image information in a local variable
 var extendedData = exifData.ExtendedData;

 // Store the GPS location information in a local variable
 var gpsData = exifData.GPSData;

Chapter 10 ■ B INarY aJaX354

 // Define a renderTable function, which will append a heading as an
 // <h2> tag and a set of name/value pairs as rows within a <table>
 // tag to a supplied DOM element
 var renderTable = function(dom, headingText, fields){

 // Create a new <h2> tag, set its text to the supplied headingText
 // and add the element to the DOM object passed in
 var heading = $.Elements.create("h2");
 heading.innerHTML = headingText;
 dom.appendChild(heading);

 // Create new <table> and <tbody> tags. Internet Explorer will not
 // add <tr> table rows directly to a <table> tag. It will only do
 // this to a <tbody> tag
 var table = $.Elements.create("table");
 var tbody = $.Elements.create("tbody");

 // Loop through the name/value pairs passed in as an object literal
 for (var field in fields) {
 if (fields[field]) {

 // Create a new table header <th> tag and set its text to
 // the name portion of this name/value pair
 var th = $.Elements.create("th");
 th.innerHTML = field;

 // Create a new table cell <td> tag and set its text to the
 // value of the name/value pair
 var td = $.Elements.create("td");
 td.innerHTML = fields[field];

 // Create a new table row <tr> tag and add the table header
 // and cell tags, finally appending the row itself to the
 // <tbody> tag created earlier
 var tr = $.Elements.create("tr");
 tr.appendChild(th);
 tr.appendChild(td);
 tbody.appendChild(tr);
 }
 }

 // Append the <tbody> tag to the <table> tag and append that to the
 // DOM object passed in and return the resulting DOM object
 table.appendChild(tbody);
 dom.appendChild(table);
 return dom;
 }

Chapter 10 ■ B INarY aJaX 355

 // Create a new DocumentFragment, as explained in Chapter 4, for
 // faster DOM manipulations
 var miniDOM = document.createDocumentFragment();

 if (mainImageData) {
 // If the main image information data exists, then render a "Main
 // Image Data" heading and associated <table> tag containing the
 // specified name/value data pairs stored in an object literal
 miniDOM = renderTable(miniDOM, "Main Image Data", {
 "Taken At": mainImageData.DateTime,
 "Host Computer": mainImageData.HostComputer,
 "Make": mainImageData.Make,
 "Model": mainImageData.Model,
 "Software": mainImageData.Software,
 "Resolution": mainImageData.XResolution + " x " + ➥

 mainImageData.YResolution + " " + ➥

 mainImageData.ResolutionUnit,
 "Camera Orientation": mainImageData.Orientation
 });
 }

 if (extendedData) {
 // If the extended image information data is present, then render
 // this data onto the page
 miniDOM = renderTable(miniDOM, "Extended Image Data", {
 "ColorSpace": extendedData.ColorSpace,
 "F Stop": extendedData.FNumber,
 "Width": extendedData.ImageWidth,
 "Height": extendedData.ImageHeight
 });
 }

 if (gpsData) {
 // If the GPS location information data is present in the EXIF data
 // of the image file, then display this on the page
 miniDOM = renderTable(miniDOM, "GPS Data", {
 "Latitude": gpsData.Latitude.standard + " " + ➥

 gpsData.LatitudeRef,
 "Longitude": gpsData.Longitude.standard + " " + ➥

 gpsData.LongitudeRef
 });

 // In addition, create a link to Google Maps, passing the latitude
 // and longitude in the query string of the URL in decimal format
 var link = $.Elements.create("a");
 var href = [];
 href.push("http://maps.google.com/maps?z=12&q=");

http://maps.google.com/maps?z=12&q=

Chapter 10 ■ B INarY aJaX356

 // In the decimal format, negative numbers relate to points below
 // the equator, in the southern hemisphere
 href.push(gpsData.LatitudeRef == "S" ? "- " : "");
 href.push(gpsData.Latitude.decimal);
 href.push(",");

 // In the decimal format, negative numbers relate to points to the
 // west of Greenwich, London
 href.push(gpsData.LongitudeRef == "W" ? "- " : "");
 href.push(gpsData.Longitude.decimal);
 link.href = href.join("");
 link.innerHTML = "Show location on a Google map";

 // Add this new link to the DocumentFragment object
 miniDOM.appendChild(link);
 }

 // Take the contents of the DocumentFragment and add it to the <div
 // id="output"> element on the HTML page. We only interact with the live
 // DOM once in this code, here. This provides a good performance
 // improvement over interacting with the live DOM for each element added
 document.getElementById("output").appendChild(➥

 miniDOM.cloneNode(true));
 }
 });
});

Run the HTML page of Listing 10-5 from a web server to see the final result. The image
data is extracted from the binary image file and displayed on the page in tabular form, as
shown in Figure 10-1.

Congratulations! You are now able to read binary file data using Ajax, which should open
up a whole world of extra possibilities for your own web applications.

Summary
This chapter explained how to load binary files using the Ajax technique. You have seen how
to locate and extract information from these files according to a known data format specifica-
tion. You took this principle and applied it to photos taken with a digital camera, allowing you
to extract information about those images, such as when and where the photo was taken, from
the file itself. You should now be able to apply the techniques you have learned in this chapter
to extract information stored in any other type of binary files, including music and movie files,
to help benefit your own RIAs.

In the next chapter, you will learn how to draw graphics dynamically within the browser
based on data on your pages, without the use of tags.

357

C h a p t e r 1 1

Drawing in the Browser

As part of your web application, you may wish to dynamically render a chart, graph, or other
visual representation of live data. Of course, you could send your data to the server and have
it generate the required images, but why go to all that trouble when you can have the browser
do the drawing? Methods are available to allow you to render graphic elements within current
browsers by using entirely front-end code.

This chapter introduces two separate technologies available in today’s browsers that
make it possible to draw vector graphics in your browser: Scalable Vector Graphics and Vector
Markup Language. We’ll also look at a third-party cross-browser component that will allow you
to draw charts, graphs, and other graphics within your own RIAs using either technology, as
appropriate. Finally, you’ll learn about a new HTML 5 tag for rendering graphics on your pages.

Creating Scalable Vector Graphics
As discussed in the previous chapter, standard image graphic files in GIF, JPG, and PNG format
are stored as binary data. They are designed to be displayed in sizes no larger than their original
version. These types of images cannot be scaled or resized larger without loss of image quality.

In contrast, vector graphics are images that can be scaled and resized without loss of
image quality. This is achieved by describing the image by its constituent parts: lines, shapes,
colors, gradients, and other elements that fit together to create the final graphic. Font files are
an example of vector graphics. Fonts can be resized to any dimensions without loss of quality.
Each time the font is resized, its appearance is recalculated based on the series of lines and
shapes that make up each individual character.

Scalable Vector Graphics (SVG) is a W3C recommendation (http://www.w3.org/Graphics/
SVG/) that details a specific XML format that can be used to describe two-dimensional vector
graphics for display in a browser. SVG is for graphical content what XHTML is for text content.
In fact, like XHTML, SVG works alongside other in-browser technologies, such as CSS and the
JavaScript DOM, to allow developers to provide dynamic and interactive graphics.

SVG was developed to provide browsers and developers with native support for creating
the kind of graphical content that previously was possible only by using Adobe’s Flash Player
plug-in. At present, SVG support is built into Firefox 1.5 and up, Safari 3 and up, Opera 9.5 and
up, and Google Chrome browsers. Its use on the Web is fairly limited, mainly due its lack of
support in IE and the prevalence of plug-ins such as Flash Player.

SVG data can be placed inline directly within an XHTML page or referenced as an image
file, with an .svg extension, via an tag on a page, just like other images. An <svg> tag
surrounds the content describing the image, and acts like a canvas to contain the drawing.

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/

Chapter 11 ■ DraWING IN the BrOWSer358

Inside this canvas, you can take advantage of a myriad tags for defining the image you wish to
display. Along with drawing simple shapes and lines, you can also load external image files,
render text, and apply gradients to any element within the SVG canvas.

Creating SVG Image Files
First, let’s look at a simple stand-alone SVG image file. Listing 11-1 shows the XML-style con-
tents of an SVG image file, which creates a gradient, some shapes, a line, and some text. Save
this code to a file named my-vector.svg and open it in a browser that supports SVG rendering.
You should see the page shown in Figure 11-1.

Listing 11-1. A Simple SVG Image File

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" ➥

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<!-- We specify the custom SVG DOCTYPE shown here to add tag support -->

<!-- First, we define a canvas to draw upon, using the <svg> tag -->
<svg width="1024" height="768" version="1.1" ➥

 xmlns="http://www.w3.org/2000/svg">

 <!-- Define a gradient. This won't be displayed yet, just defined. x1 and y1
 denote the position where the gradient will begin, and x2 and y2 denote
 where the gradient will end. The colors used and at which points along
 the gradient they change are denoted by the <stop> tags within
 the <linearGradient> tag -->
 <linearGradient id="gradient" gradientUnits="userSpaceOnUse" ➥

 x1="0" y1="0" x2="200" y2="0">
 <stop offset="0" stop-color="#000000" />
 <stop offset="1" stop-color="#cccccc" />
 </linearGradient>

 <!-- Draw a square, beginning at the location denoted by x and y. Fill its
 contents with the gradient defined previously, referenced by its id -->
 <rect x="20" y="20" width="200" height="200" fill="url(#gradient)" />

 <!-- Draw a rectangle at position x, y with rounded corners, whose radius
 is denoted by the rx and ry attributes. Note the use of the style attribute
 which applies styles to the element as it would within XHTML -->
 <rect x="220" y="220" rx="20" ry="20" width="250" height="100" ➥

 style="fill:#330000;"/>

 <!-- Draw a circle, with the radius denoted by the attribute r. We define a
 border around the circle using the stroke and stroke-width attributes -->
 <circle cx="350" cy="120" r="50" stroke="#336699" ➥

 stroke-width="25" fill="#003300" />

http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd
http://www.w3.org/2000/svg

Chapter 11 ■ DraWING IN the BrOWSer 359

 <!-- Draw a line from the position x1, y1 to the position x2, y2. You would
 not actually see the line until you applied a stroke-width border to it,
 which we do here by means of the style attribute on the <line> tag -->
 <line x1="20" y1="20" x2="320" y2="320" ➥

 style="stroke:#cccccc;stroke-width:3"/>

 <!-- Write text on the canvas in a fixed size and color -->
 <g font-size="50" font-weight="bold" fill="#333333">
 <text x="200" y="460">Text Example</text>
 </g>
</svg>

Figure 11-1. A simple SVG image file

Specifying SVG Within HTML
Creating separate stand-alone image files using SVG works, but this technique does not pro-
vide for dynamic rendering. By defining the images directly within your HTML pages, you’re
able to use the DOM for dynamic interaction with the individual elements within the canvas.
Listing 11-2 shows how to describe the image of Figure 11-1 using XHTML without any exter-
nal image file references.

Chapter 11 ■ DraWING IN the BrOWSer360

You must save the file shown in Listing 11-2 using an .xhtml extension in order to force the
browser to render the page using its XML and HTML parsers together, rather than just using
its HTML parser. The XML parser contains the code necessary to render SVG, and the browser
will use its XML parser only when it is absolutely sure the page contents are XML. This can be
set either by specifying the file extension .xhtml or by ensuring the web server sends a MIME
type of application/xhtml+xml to describe the file contents. This MIME type should actually be
used to send all XHTML file contents, rather than the usual text/html MIME type for ordinary
HTML documents. The only reason for not using this is that IE does not recognize this MIME
type and refuses to render the page.

Listing 11-2. A Simple SVG Image, Described Within an XHTML Page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>SVG Demo</title>
 </head>
 <body>
 <h1>SVG Demo</h1>
 <svg width="1024" height="768" version="1.1" ➥

 xmlns="http://www.w3.org/2000/svg">
 <linearGradient id="gradient" gradientUnits="userSpaceOnUse" ➥

 x1="0" y1="0" x2="200" y2="0">
 <stop offset="0" stop-color="#000000" />
 <stop offset="1" stop-color="#cccccc" />
 </linearGradient>
 <rect x="20" y="20" width="200" height="200" fill="url(#gradient)" />
 <rect x="220" y="220" rx="20" ry="20" width="250" height="100" ➥

 style="fill:#330000;"/>
 <circle cx="350" cy="120" r="50" stroke="#336699" ➥

 stroke-width="25" fill="#003300" />
 <line x1="20" y1="20" x2="320" y2="320" ➥

 style="stroke:#cccccc;stroke-width:3"/>
 <g font-size="50" font-weight="bold" fill="#333333">
 <text x="200" y="460">Text Example</text>
 </g>
 </svg>
 </body>
</html>

This approach is not particularly cross-browser-friendly. IE does not recognize the .xhtml
file extension or the application/xhtml+xml MIME type. Even though IE does not support SVG,
you still want your XHTML pages to load in that browser. Another solution is needed.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/2000/svg

Chapter 11 ■ DraWING IN the BrOWSer 361

Specifying SVG Through JavaScript
Thankfully, there is a solution that allows you to write standard HTML pages but still create
SVG images within your web applications, and that is to use JavaScript to dynamically add
the SVG elements to the page, ensuring the browser’s XML parser is used to create those ele-
ments. Listing 11-3 shows the beginnings of a representation of the image of Figure 11-1 using
JavaScript to create SVG elements dynamically.

Listing 11-3. A Simple SVG Image, Described Through JavaScript

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>SVG Demo</title>
 </head>
 <body>
 <h1>SVG Demo</h1>

 <!-- Including script block on the page to demonstrate -
 this would normally exist in a separate JavaScript file -->
 <script type="text/javascript">

 // document.createElementNS creates a new element using a defined
 // namespace - in this case, the SVG namespace, referred to by the URL.
 // The tag created is <svg> according to the second parameter. Because
 // namespaces are a part of XHTML and XML, the element is rendered using
 // the browser's XML parser - just what we need to represent SVG
 // on our page

 var svg = document.createElementNS(➥

 'http://www.w3.org/2000/svg', 'svg');
 svg.setAttribute('width', '1024');
 svg.setAttribute('height', '768');

 // Dynamically create a <circle> element and add it to the previously
 // created <svg> canvas
 var circle = document.createElementNS(➥

 'http://www.w3.org/2000/svg', 'circle');
 circle.setAttribute('cx', '350');
 circle.setAttribute('cy', '120');
 circle.setAttribute('r', '50');
 circle.setAttribute('stroke', '#336699');
 circle.setAttribute('stroke-width', '25');
 circle.setAttribute('fill', '#003300');
 svg.appendChild(circle);

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/2000/svg
http://www.w3.org/2000/svg

Chapter 11 ■ DraWING IN the BrOWSer362

 // TODO: Represent all other vector elements here in a similar way

 // Add the <svg> tag to the page, rendering the image
 document.body.appendChild(svg);
 </script>
 </body>
</html>

Drawing with Vector Markup Language
Back in 1998, Microsoft submitted its own proposal for an XML-based vector graphics format,
known as Vector Markup Language (VML), to the W3C for consideration as a recommendation.
Since Adobe, Sun, and others were also in the process of submitting their own similar formats,
the W3C decided to develop a unified format for all to use, which, in 2002, became the SVG rec-
ommendation, as discussed in the previous section. Unfortunately for web developers, Microsoft
developers chose not to adopt SVG—and still have not in IE 8—and continued instead to work
on and improve their VML format.

VML is supported in all releases of IE from version 5, but is not supported in any other
browser. A cross-browser vector graphics library would need to support both SVG and VML to
be a viable solution for developers.

VML has remarkable similarities to SVG and supports virtually identical features. The dif-
ferent, more succinct format of VML, however, makes its file size smaller than an equivalent
representation of the same image using SVG. Interestingly, VML elements are positioned using
CSS and do not require a single element surrounding them to act as a canvas. The tags can be
added directly to the page in any location. Listing 11-4 shows the image in Figure 11-1 repre-
sented using VML within an HTML page.

Listing 11-4. A Simple VML Image, Described Within an HTML Page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>SVG Demo</title>

 <!-- To use VML within your page, use the <style> element to switch on
 its behavior -->
 <style>v\: * {behavior:url(#default#VML); display: inline-block;}</style>

 <!-- Next, declare the VML namespace to go with the behavior -->
 <xml:namespace ns="urn:schemas-microsoft-com:vml" prefix="v" />
 </head>
 <body>
 <h1>SVG Demo</h1>
 <v:rect style='position: absolute; top: 20px; left: 20px; width: 200px; ➥

 height: 200px' fillcolor="#000000">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 11 ■ DraWING IN the BrOWSer 363

 <v:fill method="linear sigma" color2="#cccccc" angle="90" ➥

 type="gradient" />
 </v:rect>

 <v:oval style="top: 120px; left: 350px; width: 50px; height: 50px;"
 fillcolor="#003300" strokecolor="#336699" strokeweight="25px" />

 <v:line from="20px,20px" to="320px,320px" strokecolor="#cccccc" ➥

 strokewidth="3px" />

 <!-- VML text cannot be written directly onto the page; it must be
 encompassed by another shape. Here, we create a rectangle to
 hold the text -->
 <v:rect style="top=460px; left=200px; width=500; height=100">
 <v:textbox ><span style="font-size: 50px; font-weight: bold; ➥

 color: #333333;">Text Example</v:textbox>
 </v:rect>
 </body>
</html>

Building Dynamic Graphs with a Reusable
Drawing Library
So far, you have seen how modern browsers support XML-based vector graphics, but that
IE uses a different syntax than the other browsers. In order to use vector graphics within
your web applications, you need a simple way of specifying your vector graphics that can be
supported by the two different models. We often require JavaScript libraries to smooth out
cross-browser inconsistencies, as discussed in Chapter 2. In this case, we can use Raphaël,
a reusable JavaScript library built by developer Dmitry Baranovskiy.

Raphaël simplifies the creation of custom vector graphics in a cross-browser way through
a single, simple JavaScript API. The library works by selecting the appropriate vector graph-
ics drawing technique: SVG or VML, depending on the browser. You can download the library
from the project home page at http://raphaeljs.com/, which also provides many examples of
the component in action. The library component code weighs in at 53KB compressed.

As you have seen, every graphical object created using SVG and VML is also a DOM object,
which means you can add event handlers or dynamically modify existing graphical elements,
just as with any other page element.

As an example, suppose that you wish to represent a set of data to the end users of a web
application using a line graph. The data is constantly changing—perhaps you are using Ajax to
receive new data every 30 seconds from the server. You want to reflect the changes on the graph
as the new data arrives. Figure 11-2 shows how this might look to your users. Clicking the “Get
new data” link simulates the receipt of new data from the server, updating the graph. Hovering
the mouse over each point on the graph highlights that point and reveals its exact value.

http://raphaeljs.com/

Chapter 11 ■ DraWING IN the BrOWSer364

Figure 11-2. Dynamically updating a graph

Listing 11-5 shows how you might build the graph shown in Figure 11-2 dynamically in
an HTML page, using the Raphaël JavaScript library to ensure cross-browser compatibility.
First, an empty canvas is created, and then a grid is drawn and the correct x- and y-axis labels
are added. Next, the data points are plotted and lines drawn between them. When the “Get
new data” link is clicked, new data is generated at random, the existing lines and points are
removed from the canvas, and the new data points and lines are added in their place.

Listing 11-5. Drawing a Dynamic Graph Using the Raphaël JavaScript Library

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>Dynamic graph</title>
 <meta http-equiv="content-type" content="text/html;charset=utf-8" />
 </head>
 <body>
 <h1>Dynamic graph</h1>

 <!-- Element we'll populate with a button later via JavaScript -->
 <p id="button"></p>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 11 ■ DraWING IN the BrOWSer 365

 <!-- Element we'll populate with the graph later using JavaScript -->
 <div id="canvas"></div>

 <!-- Reference the $ JavaScript library -->
 <script type="text/javascript" src="$.js"></script>

 <!-- Reference the Raphaël JavaScript library -->
 <script type="text/javascript" src="raphael.js"></script>

 <!-- For simplicity, I include the JavaScript code to generate the graph
 within the page. You should reference it from an external file within
 your own web applications -->
 <script type="text/javascript">

 // Declare a new constructor which will draw and represent our graph
 var Graph = function(input) {

 // Expected inputs include the data labels for the x axis as an
 // array, the data values themselves as an array, the width and
 // height of the canvas, and the element itself to populate with
 // the canvas
 this.labels = input.labels || [];
 this.data = input.data || [];
 this.width = input.width || 600;
 this.height = input.height || 300;
 this.element = input.element || $.Elements.create("div");

 // Create a new cross-browser canvas using Raphaël. The paper
 // property represents an object that we can execute methods on
 // later to alter and affect the new canvas
 this.paper = Raphael(this.element, this.width, this.height);

 // Establish the maximum value from the data array, rounded to the
 // nearest 100. This value will be used as the maximum point on the
 // y axis of the graph
 this.maximumDataValue = Math.ceil(Math.max.apply(Math, ➥

 this.data) / 100) * 100;

 // The buildGrid method draws the grid onto the canvas, including
 // the axis labels, and returns the x and y coordinates of the
 // position of the actual grid (assuming spacing for the labels) and
 // the width and height of the grid itself, not counting the labels
 this.buildGrid = function() {

 // Define the height and width to allocate to the axis labels
 var xLabelHeight = 20, yLabelWidth = 20;

Chapter 11 ■ DraWING IN the BrOWSer366

 // Establish the x and y coordinates of the grid itself, and the
 // width and height of the grid, not counting the axis labels
 var x = yLabelWidth, y = 20;
 var width = this.width - yLabelWidth;
 var height = this.height - xLabelHeight - y;

 // Calculate how many lines to draw in each direction on
 // the grid
 var horizLines = this.data.length * 2;
 var vertLines = (this.maximumDataValue / 10);

 // Draw the grid in light gray (hex color #ccc) using Raphaël
 this.paper.drawGrid(x, y, width, height, horizLines, ➥

 vertLines, "#ccc");

 // The drawXLabels function creates and positions the labels on
 // the x axis of the graph
 var drawXLabels = function() {
 for (var index = 0, length = this.data.length; ➥

 index < length; index++) {
 var x = yLabelWidth + ((index / this.data.length) ➥

 * width) + (width/(2 * this.data.length));
 var y = this.height - (xLabelHeight/2);

 // Use Raphaël to draw the label text onto the canvas
 this.paper.text(x, y, this.labels[index]).attr({
 "font": '10px "Arial"',
 stroke: "none",
 fill: "#000"
 });
 }
 }.call(this);

 // The drawYLabels function creates and positions the labels on
 // the y axis based on the maximum data value we calculated
 // earlier and rounded to the nearest 100. This allows us to
 // use rounded numbers as our axis labels
 var drawYLabels = function() {
 for (var index = 0, length = vertLines; index <= length; ➥

 index++) {
 var labelText = (index * this.maximumDataValue) / ➥

 vertLines;
 var labelPosition = height - (vertLines * index * ➥
 height / this.maximumDataValue) + y;

Chapter 11 ■ DraWING IN the BrOWSer 367

 // Use Raphaël to draw the label text onto the canvas
 this.paper.text(yLabelWidth / 2, labelPosition, ➥

 labelText).attr({
 "font": '10px "Arial"',
 stroke: "none",
 fill: "#000"
 });
 }
 }.call(this);

 // Now return the x and y coordinates of the start of the grid
 // within the canvas along with the width and height of the grid
 return {
 x: x,
 y: y,
 width: width,
 height: height
 }
 }

 // Execute the buildGrid method, storing the returned values in the
 // grid property
 this.grid = this.buildGrid();

 // The drawPath method plots the points and draws the lines onto
 // the existing grid
 this.drawPath = function() {

 // To draw a line using Raphaël, create a path and give it a
 // stroke-width value equivalent to the width for that line
 var pathAttributes = {
 stroke: "#333",
 "stroke-width": 4,
 "stroke-linejoin": "round"
 };
 this.path = this.paper.path(pathAttributes);

 // Create arrays for storing references to the points, text, and
 // shapes we're going to be drawing onto the grid
 this.points = [];
 this.text = [];
 this.rects = [];

 // Loop through each item in the data array
 for (var index = 0, length = this.data.length; index < length; ➥

 index++) {

Chapter 11 ■ DraWING IN the BrOWSer368

 // Calculate the x and y coordinate position of the point on
 // the grid, which will represent the current data item
 var x = this.grid.x + (index * (this.grid.width / ➥

 this.data.length)) + (this.grid.width / (2 * ➥

 this.data.length));
 var y = this.grid.y + this.grid.height - (this.data[index] ➥

 * this.grid.height / this.maximumDataValue);

 // The first data item will be represented by a point and
 // will not have a line drawn to its position. All other
 // data items will have lines drawn to them
 if (index == 0) {
 this.path.moveTo(x, y, 10);
 } else {
 this.path.lineTo(x, y, 10);
 }

 // The drawPoints function renders points onto the grid,
 // along with a text label above each point, which is hidden
 // until the user hovers the mouse over an invisible
 // rectangle covering the point and a large area around it.
 // This provides a larger area for the mouse interaction to
 // take place, avoiding the need for the user to locate the
 // smaller points on the grid in order to see the text
 // label associated with that point
 var drawPoints = function(){

 // Draw an invisible rectangle from the top to bottom of
 // the grid surrounding the point representing the data
 // value. The opacity value of 0 makes the rectangle
 // invisible but still present on the grid
 var rect = this.paper.rect(this.grid.x + ➥

 (this.grid.width * index / this.data.length), ➥

 this.grid.y, (this.grid.width * (index + 1) / ➥

 this.data.length), this.grid.height).attr({ ➥

 stroke: "none", fill: "#fff", opacity: 0});

 // Add the object representing the rectangle to an array
 this.rects.push(rect);

 // Draw a point representing the data value onto the
 // grid and add it to an array of all the points
 var point = this.paper.circle(x, y, 5).attr({
 'fill': "#333"
 });
 this.points.push(point);

Chapter 11 ■ DraWING IN the BrOWSer 369

 // Draw a text label above the point and add it to an
 // array of labels
 var text = this.paper.text(x, y - 15, ➥

 this.data[index]).attr({
 "font": '10px "Arial"',
 stroke: "none",
 fill: "#000"
 });
 this.text.push(text);

 // Because the XML elements that represent each shape or
 // object within the canvas can be manipulated using
 // the standard DOM, we can use DOM methods, such as
 // insertAfter, just as with HTML elements
 text.insertAfter(dot);

 // Hide the text label by default
 text.hide();

 // We can add events to the elements created on the
 // canvas since they behave like standard HTML elements.
 // Here, we use Raphaël to dynamically alter the color
 // and size of the point created earlier, and show the
 // text label, when the user moves the mouse over the
 // invisible rectangle element surrounding the point
 rect.mouseover(function(){
 point.attr({
 "fill": "#999",
 "r": 7
 });
 text.show();
 });
 // When the user moves the mouse away from the rectangle
 // surrounding the point, the text is hidden once again
 // and the point is restored to its original size
 // and color
 rect.mouseout(function(){
 point.attr({
 "fill": "#333",
 "r": 5
 });
 text.hide();
 });
 }.call(this)
 }
 }

Chapter 11 ■ DraWING IN the BrOWSer370

 // Now execute the drawPath method just described
 this.drawPath();

 // The replaceData method is used to remove the vectors from the
 // grid, leaving the grid intact, so that new data can be plotted
 this.replaceData = function(data) {

 // The new data is passed as an input to the method, and the
 // existing data is replaced with that new data
 this.data = data;

 // Remove the line from the grid
 this.path.remove();

 // Remove the points from the grid, one by one
 for (var index = 0, length = this.points.length; ➥

 index < length; index++) {
 this.points[index].remove();
 }

 // Remove the text labels from the grid
 for (var index = 0, length = this.text.length; ➥

 index < length; index++) {
 this.text[index].remove();
 }

 // Remove the invisible rectangle shapes from the grid
 for (var index = 0, length = this.rects.length; ➥

 index < length; index++) {
 this.rects[index].remove();
 }

 // Execute the drawPath method, which draws the line, points,
 // and text labels onto the grid - this time using the new data
 this.drawPath();
 }
 }

 // Instantiate the Graph constructor, passing in the data, labels, and
 // DOM element to place the new graph within
 var myGraph = new Graph({
 labels: [2004, 2005, 2006, 2007, 2008, 2009],
 data: [0, 47, 32, 100, 78, 89],
 element: document.getElementById("canvas")
 });

Chapter 11 ■ DraWING IN the BrOWSer 371

 // Place a 'Get new data' button onto the page which, when clicked, will
 // generate a new set of data values at random. This is to simulate what
 // could be an Ajax call in a real-world RIA to fetch new, unknown data
 // from the server
 var getNewData = $.Elements.create("a");
 getNewData.innerHTML = "Get new data";
 document.getElementById("button").appendChild(getNewData);

 $.Events.add(getNewData, "click", function(e) {
 e.preventDefault();

 // Generate a new set of data at random, each value being in the
 // range from 0 to 100
 var data = [];
 for (var index = 0, length = 5; index < length; index++) {
 data.push(Math.round(Math.random() * 100));
 }

 // Execute the replaceData method of the Graph instance to render
 // the new set of data onto the grid
 myGraph.replaceData(data);
 });
 </script>
 </body>
</html>

You should familiarize yourself with the full list of features supported by this powerful
JavaScript library. You can use it whenever you require the ability to display vector graphics
dynamically within your own RIAs.

Using the HTML 5 <canvas> Tag
The Mac OS X Dashboard feature uses HTML, CSS, and JavaScript to generate small widgets such
as clocks, calendars, weather, and stock reports. When building this feature, Apple developers
introduced a new HTML tag to support the ability to dynamically create graphical components
within these widgets. This tag, <canvas>, was made a recommendation by WHATWG, and support
was added for the tag within Safari 2, Firefox 1.5, Google Chrome, and Opera 9.5. IE does not sup-
port this tag in any release up to version 8 (there is eternal hope that the developers will include it
in the next version). As described at the end of this section, some work has been done to provide
an implementation of the <canvas> tag in IE using the Flash Player plug-in.

Unlike with SVG, no tags are created within the <canvas> tag on the page; instead,
graphics are generated entirely by using the native JavaScript API. As such, the graphical com-
ponents within the tag cannot be styled with CSS, nor are they accessible for manipulation or
assigning to events through the DOM. If you wish to connect DOM events to your graphics to
provide user interactivity, use SVG instead.

Chapter 11 ■ DraWING IN the BrOWSer372

Only two primitive shapes are permitted within the tag: rectangles and lines, which can be
curved and manipulated to create all other required shapes. The graphics themselves are not
vector-based, so if you need to perform any resizing of the graphical components within the
tag, you must write the code to perform this action yourself, based on the graphics you added
to the tag.

An advantage of the <canvas> tag is its good support for embedding and manipulating
pictures in image files, which is not easy to achieve using SVG. Performance of the <canvas>
tag is superior to SVG, especially with large, complex graphics. This is likely because SVG must
maintain references to each graphic component as a DOM element; <canvas> does not have
this requirement.

Listing 11-6 shows how to use the <canvas> tag with JavaScript to draw a rectangle shape
with a gradient-filled background within an HTML page.

Listing 11-6. A Simple Canvas Tag Image

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" >
 <head>
 <title>Canvas demo</title>
 </head>
 <body>
 <h1>Canvas demo</h1>

 <!-- The <canvas> tag takes optional width and height attributes. If these are
 left out, the canvas is usually 300 pixels wide by 150 pixels high -->
 <canvas id="canvas" width="300" height="300"></canvas>

 <!-- The following script is included here for simplicity. You should
 reference the code from a separate file, ideally -->
 <script type="text/javascript">

 // Get a DOM reference to the <canvas> tag
 var canvas = document.getElementById("canvas");

 // The actual drawing surface within the <canvas> tag is known as a
 // rendering context. The drawing methods are associated with the
 // context so we must first get a reference to this context. At present,
 // the <canvas> tag supports only a 2D shape-rendering context. In the
 // future, it is envisioned that 3D shape rendering will be possible
 var context = canvas.getContext("2d");

 // Define a gradient, fading from #000000 to #cccccc horizontally across
 // the space of 200 pixels
 var gradient = context.createLinearGradient(0, 0, 200, 0);
 gradient.addColorStop(0, "#000000");
 gradient.addColorStop(1, "#cccccc");

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 11 ■ DraWING IN the BrOWSer 373

 // To use the gradient within a rectangle, we define the gradient as the
 // current fill style and then execute the fillRect method
 context.fillStyle = gradient;

 // Draw the gradient-filled rectangle from position (20, 20) stretching
 // 200 pixels wide and tall from that point
 context.fillRect(20, 20, 200, 200);
 </script>
 </body>
</html>

Mozilla provides a useful tutorial on the <canvas> tag and its associated API at https://
developer.mozilla.org/en/Canvas_tutorial/. You can also see demonstrations of what
other developers are doing with the <canvas> tag at the Canvas Demos web site (http://www.
canvasdemos.com/).

To tackle the lack of IE support for the <canvas> tag, developer Grant Jones attempted
to build a reusable Flash component that could provide an implementation of this tag. His
code works by duplicating the <canvas> tag API within JavaScript in IE and sending the code
to a Flash component in this browser instead. His mission was to determine whether this type
of approach could enable a more responsive graphics drawing engine to be built in IE without
the need for VML-based rendering found in other libraries, such as Raphaël. He describes his
experiences in some detail in a blog post at http://www.azarask.in/blog/post/flash-canvas/.
His conclusion reveals that this approach does not provide a suitably faster graphics rendering
capability over any native implementation. The JavaScript-to-Flash communication is fairly
slow, and the more cross-communication that occurs, the slower the overall result. In one par-
ticular test, he noted that using the Flash technique was 40 times slower than native <canvas>
rendering in other browsers. For now, it is recommended that you use Raphaël instead of rely-
ing on a third-party plug-in that gives no performance benefit.

Summary
In this chapter, you learned about the different technologies that make vector graphics draw-
ing possible in modern browsers. You were introduced to a third-party JavaScript library that
allows you to easily create custom dynamic vector graphics within your own web applications.
You also were introduced to a new tag in HTML 5 for rendering graphics dynamically on your
page.

In the final chapter of this book, I will return to the topic of accessibility, revealing how
to make your RIAs as accessible as possible using current techniques and emerging browser
standards.

https://developer.mozilla.org/en/Canvas_tutorial/
https://developer.mozilla.org/en/Canvas_tutorial/
http://www.canvasdemos.com/
http://www.canvasdemos.com/
http://www.azarask.in/blog/post/flash-canvas/

375

C h a p t e r 1 2

accessibility in rich Internet
applications

As I have emphasized from the very start of this book, accessibility is one of the fundamen-
tals of web development. As web developers, we need to ensure that our web applications can
reach and be used by the widest audience possible. Our end users should be able to access
the information and interface we provide using whatever browsing technology they have
available, to suit their own needs and preferences. This final chapter of the book focuses on
designing your RIAs for the greatest accessibility possible.

Whose Needs Are We Meeting?
Web sites and applications are usually simple to navigate and interact with if you are an able-
bodied person using a mouse on a computer with an adequate screen size and resolution. Most
web sites are designed with this type of user in mind. However, other groups of users do not fit
this description, yet are relying on us to provide them with a usable, interactive experience.

Users Using Assistive Technology
Assistive technology is a general term given to software or hardware used to assist those with
physical impairments, learning difficulties, or disabilities to perform tasks that they would
otherwise be incapable of or have difficulty performing. A number of software developers have
built tools to allow such users to access information and interact with sites on the Web. Exam-
ples are JAWS (http://www.freedomscientific.com/), which is a screen reader that vocalizes
the page contents, and ZoomText (http://www.aisquared.com/), which is a screen magnifier
that helps the user read the page contents more easily.

We need to ensure our web applications are usable by individuals using assistive technology.

Users on Mobile Devices
Web browsing on mobile devices has increased in leaps and bounds in just the past few years.
What started as plain HTML tags rendered in a default style quickly adapted to basic CSS and
JavaScript. We have now reached the point where browsers running on the same rendering
and JavaScript engines as desktop versions of Opera, Firefox, Safari, and IE are operating on
mobile devices.

http://www.freedomscientific.com/
http://www.aisquared.com/

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS376

Mobile devices typically have very restrictive screen sizes. At the time of writing, some of
the largest mobile devices sport a maximum screen resolution of 480 pixels wide by 320 pixels
tall. In contrast, the lowest screen resolution seen on desktop computers in recent years is
1024 pixels wide by 768 pixels tall. We need to ensure our web applications are usable by indi-
viduals using browsing devices with small screens. Figure 12-1 compares the search results
pages of Google and Yahoo! on an Apple iPhone. Notice how Yahoo!’s results are readable at
the default screen size, whereas Google’s results page requires the user to zoom the page to
read its text.

Figure 12-1. Google’s and Yahoo!’s search results on a small screen

Users Without a Mouse
Pointing and clicking with the mouse has become such an ingrained part of the computer
experience that many users can move the pointer on the screen with incredible accuracy and
speed. However, some people still do not use a mouse, out of necessity or choice.

The second most common input method for web browsing is the keyboard. Most brows-
ers allow the user to navigate around the page using the Tab key to jump between hyperlinks
and form elements—the types of elements that are interactive. Navigating with the keyboard
in this way removes the need for the accuracy required when using a mouse.

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 377

■Note Many developers use a combination of the mouse and keyboard to interact with elements on the
page when browsing. They find it is sometimes faster to use the keyboard to locate elements.

An increasingly popular method for browser and computer interaction in recent times
is the touchscreen—users select and interact with elements on the page by actually touching
the screen with their fingers. In many ways, this is the ultimate pointing device. In the future,
touchscreens may provide more advanced ways of interacting with computers, potentially
removing the need for a mouse altogether.

We need to ensure our web applications are usable by individuals interacting with pages
using input devices other than a mouse.

Accessibility for All
Clearly, with web browsers providing JavaScript support in scenarios previously unseen, our
role as web developers is made all the more difficult. We must ensure that users of all brows-
ers, assistive technologies, devices, and input methods are able to use our web applications
intuitively and without difficulty.

Of course, you build your web applications using semantic HTML, ensuring those users
without JavaScript are able to use your RIA without difficulty. But now that JavaScript is sup-
ported in most browsers and on most devices, it’s time to take accessibility to the next level.

Proper Navigation with the Back and
Forward Buttons
As web application developers, we must meet the needs and expectations of our users. One
of the most fundamental and noticeable issues with web applications is that the browser’s
Back and Forward toolbar buttons, which typically move the user back and forth through the
browser’s page history, completely break down when page content is updated via Ajax rather
than via a full page refresh. Users can spend hours within a web application, such as a web
mail client—navigating to different pages and application states, reading, composing, and
deleting messages—but when they click the Back button on the browser’s toolbar, they are
taken back to the page they viewed before loading that web mail application. Users expect
their browser to behave in a certain way and become frustrated when it does not. We must fix
this issue within our web applications to avoid frustrating end users.

Pages are added to the browser history when a new URL is loaded, which typically occurs
when the user selects a hyperlink or submits a form. The developer may also dynamically alter
the location object, which represents the URL, through JavaScript. Most changes made to the
URL cause a page refresh, with the exception of changes made to the hash—any part of the
URL following the # character.

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS378

The URL hash is used to navigate to content elsewhere within the same page, which means
a page refresh is not required, yet the new URL is still added to the browser’s history. You can
take advantage of this phenomenon through your web applications, updating the URL hash
value at relevant points, such as when new content is loaded via Ajax. When changes are made
to the hash value, which will occur when the user navigates the browser history using the Back
and Forward toolbar buttons, you can perform the necessary action in your code to return the
application to the state it was in at the time that hash value was added. With this technique, you
are able to give your users the behavior they expect from their browser history navigation.

Listing 12-1 shows how to write a routine to add browser history items through updates
made to the hash part of the URL and a routine for reading back previously stored values from
the hash when the user navigates back and forth through their browser history. Add this code
to your $ JavaScript library, before the final line in the file, where it is instantiated.

Listing 12-1. Adding and Retrieving Browser History Items Through JavaScript

// Create a History namespace for managing browser history items
// within our RIAs
$.prototype.History = {

 // The currentValue property holds the current hash value from the URL,
 // which is found via the global location.hash property. This property
 // value contains the # character, so we remove this as it is not needed
 currentValue: location.hash.replace(/#/g, ""),

 // To overcome an issue in Internet Explorer's history handling, we need to
 // add and read back our history items from an <iframe> tag on the page in
 // that browser. Here, we maintain a reference to that element, which we
 // define later
 iframe: null,

 // We will want to perform some action when the user clicks the Back
 // and Forward buttons in their browser and the current history item
 // changes. The onChange method will be called when this change occurs
 onChange: function() {},

 // The enable method starts listening for changes occurring to the current
 // hash portion of the URL and hence the browser's history item list itself
 enable: function() {

 // Internet Explorer behaves differently from the other browsers, so we
 // need to create an <iframe> to contain the changes to the hash
 if (window.ActiveXObject) {

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 379

 // Create a hidden <iframe> and add it to the page
 this.iframe = $.Elements.create("iframe");
 this.iframe.style.display = "none";
 this.iframe.src = "javascript:false;";
 document.body.appendChild(this.iframe);

 // Initialize the <iframe> with a history item to start with. The add
 // method is defined later
 this.add(this.currentValue);
 }

 var self = this;

 // The detectHistoryChange function detects when the current hash value
 // differs from the last and executes the onChange method when it does
 var detectHistoryChange = function() {

 // Get the last saved and latest hash values
 var lastValue = self.currentValue;
 var latestValue = location.hash.replace(/#/g, "");

 // Get the hash slightly different in Internet Explorer
 if (self.iframe) {
 var latestValue = ➥

 self.iframe.contentWindow.document.location.hash.replace(➥

 /#/g, "");
 }

 // If the latest and last hash values differ, save the new value and
 // call the onChange property, passing it the latest and previous
 // hash values
 if (latestValue != lastValue) {
 self.currentValue = latestValue;
 self.onChange(latestValue, lastValue);
 }
 }

 // Execute the detectHistoryChange function once every 300 milliseconds -
 // see Chapter 5 for the importance of this number - and begin listening for
 // changes occurring to the hash value
 window.setInterval(detectHistoryChange, 300);
 },

 // The add method takes a specified text string value and adds it to the URL
 // hash, creating a new browser history item with that value
 add: function(newValue) {
 if (this.iframe) {

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS380

 // Add the hash to Internet Explorer's <iframe> tag
 var iframeDocument = this.iframe.contentWindow.document;
 iframeDocument.open();
 iframeDocument.close();
 iframeDocument.location.hash = newValue;
 } else {
 // All other browsers can access the hash property of the current page
 location.hash = newValue;
 }
 }
}

To see how the code in Listing 12-1 can be used within a web application, take a look at
the simple example in Listing 12-2, which uses Ajax to load the contents of other linked pages
into a page element on the same page, as shown in Figure 12-2. The browser history list is
added to with each Ajax request, allowing the user to navigate back and forth between the con-
tent loaded in the Ajax requests using the Back and Forward buttons on the browser toolbar.

Figure 12-2. Loading content via Ajax, adding to the browser’s page visit history

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 381

Listing 12-2. Adding and Navigating Page Visit History Items Using Ajax

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Browser history test</title>
 </head>
 <body>
 <h1>Browser history test</h1>

 <!-- Create a navigation list of links to other pages -->

 Page 1
 Page 2
 Page 3

 <!-- Create an empty page element to store our Ajax responses -->
 <div id="content"></div>

 <!-- Reference the $ JavaScript library -->
 <script type="text/javascript" src="$.js"></script>

 <!-- In a real web application, you should reference the following code from
 an external file. It is included inline here for simplicity -->
 <script type="text/javascript">
 $.onDomReady(function() {
 // Enable the browser history listener so we can manually add
 // items to the browser's history
 $.History.enable();

 // Assign a function to our new browser history onChange event
 $.History.onChange = function(currentItem, previousItem) {

 // We will be adding URLs of pages to load via Ajax to the
 // browser history, so if a URL exists in the current history
 // item's hash value, load that URL via Ajax, populating the
 // <div id="content">page element with the result. If there is
 // no URL in the current history item's hash value, empty the
 // page element

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS382

 if (currentItem != "") {
 $.Remote.load({
 url: currentItem,
 callback: function(response){
 document.getElementById("content").innerHTML = ➥

 response.text;
 }
 });
 } else {
 document.getElementById("content").innerHTML = "";
 }
 }

 // Listen for mouse click events throughout the current page
 $.Events.add(document.body, "click", function(e) {

 // If the user clicks on an anchor <a> tag, stop the default
 // action from occurring and add the URL to the browser history
 // via the URL hash
 if (e.target.tagName.toLowerCase() == "a") {
 e.preventDefault();

 // We add the URL of the current link to the history list,
 // which will, in turn, fire the onChange method we defined
 // previously, loading the URL via Ajax and displaying its
 // contents on the page. Navigating through the browser
 // history using the Back and Forward buttons on the browser
 // toolbar will cause the different pages to load via Ajax
 // according to the order they were loaded in the first
 // place. Click a few links and see for yourself
 $.History.add(e.target.href);
 }
 });
 });
 </script>
 </body>
</html>

Along with adding URLs to the browser history through updates to the URL hash value,
you also can add any text values you like. You may even want to consider using a separator
character, such as |, to break up multiple text values you wish to store. Consider a web mail
application, for example. You may wish to include the value folder|inbox to the history list
to inform your application to load the inbox folder, and perhaps use message|display|123 to
instruct your application to display message number 123. By building the page-change events
using the onChange event, you enable your end users to utilize their Back and Forward toolbar
buttons to navigate around your web applications in a way that meets their expectations.

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 383

Device-Independent JavaScript
To support the needs of all the users who may potentially use your web application, you will
need to update your JavaScript code to remove the reliance on mouse-based interaction. You
also will need to improve the flow of your RIA for users who are browsing in a linear fashion—
those using a keyboard or software that vocalizes the page contents. You can provide this
support by using device-independent events in your JavaScript code.

Device-Independent Events
Throughout this book, you have seen examples of how to assign JavaScript functions to
events triggered on DOM elements within the current page. In most cases, you have used the
$.Events.add() method of the $ JavaScript library you began in Chapter 2. Some of the event
types you can listen for using this method are mouse-specific; some are device-independent.
Table 12-1 shows the most common event types fired on DOM elements within a page and
clarifies whether they are mouse-dependent, keyboard-dependent, or device-independent.

Table 12-1. Device Dependency of Common JavaScript Events

Event Type Input Device Event Fired

mouseover Mouse When the mouse pointer is moved over an
element.

mouseout Mouse When the mouse pointer is moved away from
an element.

mousedown Mouse When the mouse button is pressed down.

mouseup Mouse When the mouse button is released.

click Device-independent for When an element is selected by a press
hyperlink and form elements and release of the mouse button, the Enter
Mouse-dependent for all key, a tap of the finger or any other device-
others specific selection mechanism.

focus Device-independent When an element is brought to focus. Occurs
when the mouse clicks on a hyperlink or
form element, or when the keyboard is used
to cycle between all hyperlinks and form ele-
ments on a page (usually using the Tab key)
or other device-specific focus mechanism.

blur Device-independent When focus is moved away from an element.
The opposite of focus.

change Device-independent When a value in a form field is changed by
the user.

select Device-independent When text is selected within a form field.

submit Device-independent When a form is submitted.

keydown Keyboard When a keyboard key is pressed or held down.

keypress Keyboard When a key is pressed on the keyboard that
causes text to be written to the page, such as
in a text field.

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS384

From Table 12-1, you can see that the click (only for hyperlink and form elements), focus,
blur, change, select, and submit events are input device–independent. Therefore, where pos-
sible, you should assign your JavaScript event handlers to these event types to build the most
accessible user experience.

Where you still need to use device-dependent event handlers in your code, ensure you pro-
vide an alternative means to perform that function using an equivalent event type. Table 12-2
shows which of your code assigned to mouse-specific events should also be assigned to other
events to provide a more accessible experience for your end users.

Table 12-2. Mouse-Dependent and Related Events

Mouse-Specific Event Related Event

mouseover focus

mouseout blur

mousedown keydown and/or keypress

mouseup keyup

For example, suppose your RIA provides an expanded navigation menu when the user
hovers the mouse over a single menu item using the mouseover event. You could reveal the
same expanded navigation menu when a keyboard-reliant user focuses on that same single
menu item by assigning the same code routine to the focus event, which is fired when a key-
board user uses the Tab key in the browser to highlight this element.

Back in Chapter 5, I recommended capturing the mousedown event to execute a code routine, as
this event fired before the click event. From what you’ve learned in this section, you can see that
this approach does not meet the criteria for a highly accessible RIA. To improve the accessibility of
this technique, apply the same code routine to the keydown event, as shown in Table 12-2. You may
also wish to apply the same code routine to the device-independent click event, and execute the
code in that routine only if the mousedown or keydown events have not fired first. This gives the per-
ceived performance boost while providing maximum accessibility improvement for all your users.

Device-Independent Event Delegation
In JavaScript, events are raised by the users when they interact with a particular element and
bubble up the DOM node tree, firing on each element in turn until the top node of the tree,
the HTML document itself, is reached. As I explained in Chapter 4, you can use this behavior
to your advantage by listening for events occurring throughout the page from a single element
near the top of the DOM tree, such as the <body> tag. Since the events bubble up, you can
catch them directly on this element rather than attach code to every element you want to react
to events on, improving performance within your web applications. For example, to listen for
all click events fired within a web application, add the following code to the page:

$.Events.add(document.body, "click", function(e) {
 // Code to execute when a click event occurs within the page goes here
});

Unfortunately, certain events do not bubble up from the element on which they occurred.
This list includes the device-independent focus, blur, change, and submit events. It is suspected

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 385

that these particular event types do not bubble up because they do not make sense on all ele-
ments, though no one really knows for sure why they lack this behavior. A work-around exists
to enable you to delegate the focus and blur events, as discussed next; however, no such del-
egation is possible for the change and submit events.

You could simulate the change event by comparing the value of a field during a focus event
handler to the value of the same field during a blur event handler. If the value changed, you
know a change event should occur, and you could execute your code accordingly. Unfortunately,
a submit event could be fired any number of ways, so in this case, it is best to associate this event
handler with a <form> element directly, rather than using event delegation. Thankfully, usually
there are not many HTML forms on a page at any one time within a web application, so this
should have little performance impact on your code.

To permit event delegation on the focus and blur event types, in IE, you can use the pro-
prietary focusin and focusout events that fire at the same time as focus and blur, respectively.
These proprietary event types bubble up just like ordinary events, so you simply associate your
code with these event handlers instead, and the problem is resolved.

For other browsers, which use the W3C standard addEventListener() method, you need
to turn to the opposite of event bubbling, known as event capturing, to delegate events to
focus and blur. With event capturing, events fire starting at the top of the DOM node tree,
working down toward the element, rather than in the opposite direction you are used to with
event bubbling. Unlike event bubbling, event capturing fires events on all elements in the
DOM tree, regardless of whether or not it makes sense to fire on a particular element. To listen
to events through the event-capturing phase, rather than the bubbling phase, simply set the
last parameter of the addEventListener() method to true (in the examples so far, it has been
set to false):

document.body.addEventListener("focus", function(e) {
 // Code to execute when focus events fire on the page goes here
}, true);

To put this all together into a reusable routine to simplify your code, let’s alter the event
addition code we’ve been using up to now from the $ JavaScript library to deal with this event
anomaly. Listing 12-3 shows the code you should use in place of the current $.Events.add()
routine in the $ JavaScript library.

Listing 12-3. Improving Event Handling Within the $ JavaScript Library

$.prototype.Events.add = function(element, eventType, callback) {
 var self = this;
 eventType = eventType.toLowerCase();

 if (element.addEventListener) {

 // If the W3C-standard addEventListener method is supported, then associate
 // the event as normal. The final parameter of the method is set to true if
 // the event type is either focus or blur
 element.addEventListener(eventType, function(e){
 callback(self.standardize(e));
 }, (eventType == "focus" || eventType == "blur"));

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS386

 } else if (element.attachEvent) {

 // Detect the event type and switch behavior for focus and blur event types
 // to use the IE-proprietary focusin and focusout event types in their place
 switch (eventType) {
 case "focus":
 element.onfocusin = function(){
 callback(self.standardize(window.event));
 }
 break;
 case "blur":
 element.onfocusout = function(){
 callback(self.standardize(window.event));
 }
 break;
 default:
 element.attachEvent("on" + eventType, function(){
 callback(self.standardize(window.event));
 });
 break;
 }
 }
}

Updated Content Alerts and Focus
Most users have no trouble noticing visually when parts of a web application update dynami-
cally via Ajax or DOM manipulation. Such updates usually occur as a result of user interaction
with a hyperlink or form element, or on a fixed time interval. However, users with visual
impairments and users with assistive technology that vocalizes the page may not be aware of
dynamic updates made to other portions of the page away from the section of the page with
which they are currently interacting. We need a way to help these users locate updated content
when it is appropriate to do so. Additionally, users browsing with a keyboard will not want to
frantically use their Tab key to navigate the page to reach the updated page content, so we also
need to bring the keyboard focus to the updated content where appropriate. Thankfully, we
can meet both needs using the same technique: the DOM element focus() method.

As you saw in Table 12-1, the focus event handler works in a device-independent manner
on hyperlinks and form elements. The same is true of the focus() method, which allows you to
force the currently focused element to change to one you specify. Focus can also be brought to
elements that have a tabindex attribute value set, and this behavior is supported in all modern
browsers and assistive technology.

Back in Chapter 1, I advised against using the tabindex attribute within your markup,
because this disrupts the natural flow of the page. The better option is to lay out your source
code in the order you wish the page to be accessed. This rule is still relevant, but if you set the
attribute through JavaScript immediately before bringing the element to focus, you can then
remove the attribute immediately, leaving focus on the required element without disruption to
the tab order of the page.

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 387

In most cases, you should ensure that the updated content appears immediately after the
content that causes the update to occur, in order to keep a more natural flow to the page for
screen readers and keyboard users, to reduce any confusion.

■Caution Use extreme caution and tact when forcing the user’s focus to another part of the page. This
has the potential to confuse users who are expecting the page to flow in a certain way, which you will be
interrupting. Use this technique only when the user would expect a change to occur, such as when following
a link or submitting a form. Do not use this technique for content updated on a fixed time interval, which will
constantly force users’ focus away from the content they are reading, leading to much frustration.

Listing 12-4 shows a way to apply this technique to an HTML form within a web applica-
tion, which is submitted via Ajax. The server response is placed on the page in place of the
form, and focus is brought to the returned content to allow the users to locate and read the
response from their form submission and continue browsing from this point. This behavior is
depicted in Figure 12-3. The top of the figure shows the page before the form is submitted, and
the bottom shows the page after the form is submitted. Often, when an element is brought to
focus, an outline appears around it to indicate that this is the current element. In Figure 12-3,
this outline is clearly visible around the returned content, showing that this element indeed
has the user’s current focus.

Figure 12-3. Ajax form submission with focus brought to the returned content

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS388

Listing 12-4. Alerting Users to Updated Page Content

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Focusing on updated content </title>
 </head>
 <body>
 <h1>Focusing on updated content</h1>

 <!-- Create a form to submit to the server via Ajax -->
 <form id="form" method="post" action="/form-result.html">
 <fieldset>
 <legend>Personal details</legend>

 <div class="field">
 <label for="full-name">Full name</label>
 <input type="text" name="full-name" id="full-name" />
 </div>

 <input type="submit" value="Save" />
 </fieldset>
 </form>

 <!-- Create an empty element to be populated with the response of the form
 submission from the server -->
 <div id="result">
 </div>

 <!-- Include the $ JavaScript library -->
 <script type="text/javascript" src="$.js"></script>

 <!-- Reference the following code externally from within your own web
 applications. It is included within the page here for simplicity -->
 <script type="text/javascript">
 $.onDomReady(function() {

 // Store references to the form and result element for use later
 var result = document.getElementById("result");
 var form = document.getElementById("form");

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 389

 // When the form is submitted, send the details via Ajax, place the
 // response into the <div id="result"> element and bring focus
 // to this element
 $.Events.add(form, "submit", function(e) {
 e.preventDefault();

 // Send the form details to the server via Ajax
 $.Remote.save({
 url: document.getElementById("form").action,
 data: "full-name=" + document.getElementById(➥

 "full-name").value,
 callback: function(response) {

 // Place the HTML response from the server into the
 // <div id="result"> page element
 result.innerHTML = response.text;

 // Set the tabIndex property to make the element
 // focusable
 result.setAttribute("tabIndex", 0);

 // Focus on the <div id="result"> page element, which
 // now contains the response from the server
 result.focus();

 // Remove the tabIndex property to prevent any further
 // disruption to the natural focus order of the page
 result.removeAttribute("tabIndex");

 // Remove the <form> element from the page now that the
 // results have been returned
 form.parentNode.removeChild(form);
 }
 });
 });
 });
 </script>
 </body>
</html>

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS390

Web Accessibility Initiative: Accessible Rich
Internet Applications (WAI-ARIA)
The W3C’s Web Accessibility Initiative (WAI) group, whose focus is to make the Web more acces-
sible, is addressing the problem of accessibility within RIAs with new recommendations for
browser and assistive technology manufacturers, as well as web developers. These recommen-
dations, collectively known as Accessible Rich Internet Applications (shortened to WAI-ARIA or
ARIA), deal with alerting the user to updated content; allowing universal access to widgets. form
controls, and draggable/droppable elements regardless of browser, device, or input method; and
many other topics. You can read the recommendations at http://www.w3.org/TR/wai-aria/.

At the time of writing, support for some or all of the ARIA recommendation has been built
into Firefox 3 and up, Opera 9.5 and up, IE 8 and up, Safari 4 and up, and Google Chrome 2 and
up. In addition, accessibility software such as JAWS version 10, Window-Eyes, and ZoomText
support the ARIA recommendations.

In this section, I will present the essentials of the ARIA recommendations and show you
how to add ARIA support to your own web applications to provide the most accessible RIA
possible to your end users. You should adopt the ARIA recommendations within your own
web applications as soon as you can.

Roles
ARIA roles are a means by which to assign extra semantic meaning to page elements, which
allows the browser or assistive technology to better understand what kind of functionality you
are intending for the page element and its contents. This can alter how the contents of that
element are portrayed to the users of the browser in a way that they, in turn, might understand
better.

Roles do not add behavior to an element; they only let the browser and end user know
what behavior to expect. You must still add the behavior yourself through JavaScript.

A role is assigned to an element by means of the role attribute on a page element, as in
the following example, which denotes an unordered list used for site navigation:

<ul id="navigation" role="navigation">
 ...

The concept of the role attribute was actually introduced by the W3C as part of an exten-
sion to XHTML, known as the Role Attribute Module (which you can read about at http://www.
w3.org/TR/xhtml-role/). The ARIA recommendation adds the specific attribute values and
their meaning. Five role categories are defined within the ARIA recommendation:

User input widget: Elements marked with these types of roles behave like form widgets for
collecting user input, such as sliders and custom text boxes.

User interface element: These elements behave like parts of the graphical user interface,
such as buttons, menus, tabs, and tool tips.

Document structure: Elements marked with these roles describe structures that organize
content within the page. This category includes roles for marking grids, headings, and
images.

http://www.w3.org/TR/wai-aria/
http://www

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 391

Application structure: These elements mark self-contained areas representing application
user interfaces, such as dialog boxes, progress bars, and timers.

Landmark: These mark regions of the page intended as navigational points of reference
within the page, such as the header, navigation, and main content. Browsers are expected
to provide a means for users to easily jump between these landmark points using the key-
board or other appropriate mechanism.

This full list of roles is available within the ARIA recommendation. A small subset of this
list is shown in Table 12-3.

Table 12-3. A Selection of ARIA Role Attribute Values

Role Category Meaning

button User interface An input that allows for user-triggered actions when
pressed

combobox User input widget A drop-down list of selectable values that also contains
a text box allowing the user to enter a new value not
found in the list

dialog Application structure An in-page modal window designed to interrupt the ap-
plication to prompt the user to enter some information
or require confirmation

grid Document structure Denotes data arranged in rows and columns like a table

heading Document structure Indicates a heading for a section of the page

main Landmark Denotes the main content of a document

navigation Landmark A collection of links for navigating around the page or to
other pages

progressbar Application structure An element that displays progress for tasks that take
a long period of time to complete (like the progress bar
presented in Chapter 5)

slider User input widget A form control allowing the user to select a value from
a range (like the slider control presented in Chapter 8)

toolbar User interface Denotes a group of small functional buttons

You can apply the role attribute to elements directly in your markup or set it dynamically
through JavaScript using the setAttribute() DOM method:

var list = $.Elements.create("ul");
list.setAttribute("role", "navigation");

States and Properties
Whereas roles provide the browser with general information about the type of content contained
within a particular element on the page, states and properties give specific detailed information
to the browser. A state refers to an element whose value is likely to change throughout the time
the web application is being used, whereas a property is not likely to change. As with roles, these
attribute values do not add behavior. They only present information to the user. You must add
the behavior yourself using JavaScript.

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS392

States and properties fall into four distinct categories:

Widget attributes: These values are specific to user interface elements that receive user
input and process actions. They support the user input and user interface role categories.

Live region attributes: A live region is an element on the page that is updated dynamically
using JavaScript at some time within use of the web application, such as a live news article
feed loaded from the server via Ajax on a fixed time interval. Values of live region attri-
butes indicate to the browser that content updates may occur within the page element
while the user does not have that element focused.

Drag-and-drop attributes: These values indicate specific information about draggable
elements and their associated drop targets. The extra information allows the browser or
screen reader to develop a suitable method to present the information about the drag-
gable and droppable elements.

Relationship attributes: These values describe relationships between different page ele-
ments that cannot be determined through the normal page structure.

All state and property attribute names begin with the aria- prefix. Table 12-4 shows
a selection of state and property attributes and their meanings. The full list of states, proper-
ties, and their permitted values is available within the ARIA documentation.

Table 12-4. A Selection of ARIA States and Properties

State or Property Category Meaning

aria-activedescendant Relationship Denotes the currently active item within a wid-
get as the user interacts with that widget

aria-atomic Live region Indicates whether the browser should present
the entire contents of the element when an
update occurs or whether to simply present
the changes that occurred

aria-autocomplete Widget Indicates whether the field this property
relates to contains autocomplete suggestions
when the user types into the field

aria-busy Live region Indicates whether the specified live region is
currently being updated

aria-checked Widget Indicates the current state of a check box, radio
button, or other element replicating a similar
on/off state

aria-controls Relationship Identifies the elements whose contents are
controlled by the current element, such as
a tab control that changes the currently dis-
played tab on the page

aria-dropeffect Drag-and-drop Indicates the functionality performed when
a dragged element is dropped on a target ele-
ment, such as copy or move operation

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 393

State or Property Category Meaning

aria-grabbed Drag-and-drop Indicates whether an element is currently being
“grabbed,” ready for dragging to a drop target
element

aria-labelledby Relationship Identifies the element that provides a label to
the current element, such as to a form field

aria-live Live region Indicates that an element will be updated
dynamically

The value of the aria-live attribute determines how the browser should handle the update:

	 •	 A	value	of	off will not alert the user to an update.

	 •	 A	value	of	polite, which should be the normal behavior, will alert the users of an update
at the next available opportunity, when they have completed their current action.

	 •	 A	value	of	assertive will interrupt the users immediately, alerting them to the content
update.

Focus Management
You have seen already how important element focus is for accessibility in RIAs. Screen reader
users, keyboard users, and others need to focus on elements in order to interact with them.
Earlier in this chapter, you saw how assigning a tabindex attribute value allows an element to
be selectable using the DOM element’s focus() method.

The WAI-ARIA recommendation defines how the behavior of the tabindex attribute should
be extended to be more usable, to allow different types of navigation around page elements, as
shown in Table 12-5.

Table 12-5. Behavior of tabindex Based on Its Value

tabindex Attribute Behavior

No tabindex attribute Only hyperlinks and form elements are focusable. Keyboard focus
follows source code order.

tabindex="0" (zero) Allows the element to be focusable, regardless of type. Keyboard
focus follows source code order.

tabindex="1" (positive) Allows the element to be focusable, regardless of type. Keyboard
focus follows tabindex value order from 1 upward.

tabindex="-1" (negative) Allows the element to be focusable through JavaScript but not
using the default keyboard key for changing focus. The developer
should assign the element focus through JavaScript based on key
presses of the arrow keys.

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS394

As recommended earlier, where possible, you should attempt to avoid the use of positive
values of the tabindex attribute and instead rely on document source code to provide the cor-
rect focus behavior.

Keyboard Interaction with ARIA Widgets
So far, web developers have been left to their own devices when developing widgets and form
components that respond to keyboard interaction—no guidelines had been set regarding
which keys to use for what behavior. The ARIA recommendation includes clear suggestions as
to which keys to use for navigating within page widgets and components, thus providing clar-
ity for web developers, browser manufacturers, and end users.

Navigating between widgets on the page should be achieved by use of the Tab key, as is
the case at present. When the user has focused on a particular widget, the arrow keys, space-
bar, and Enter keys should be used to navigate and allow the user to interact with that widget.
The recommendation suggests setting the tabindex attribute value to 0 on the currently
accessed widget when it has the focus. As the user navigates using the arrow keys within the
widget, the aria-activedescendant property should be set on the currently selected or focused
element. This property makes it crystal clear to the browser which element the user has cur-
rently selected.

WAI-ARIA Examples
The W3C document WAI-ARIA Best Practices (http://www.w3.org/TR/wai-aria-practices/)
is incredibly useful, practical, and highly recommended reading for all web developers. This
document describes in great detail how to add ARIA support to your web applications. Here,
I’ll present a few simple examples to demonstrate how to add ARIA support to your own web
applications. I strongly encourage you to read the W3C document thoroughly to get a better
understanding of the material and how to apply it to your own web applications.

Marking Up page Structure Using roles, States, and properties
As explained earlier, landmark roles allow you to add extra semantic meaning to page ele-
ments that perform a specific duty on the page or as part of the web application as a whole.
Listing 12-5 shows an HTML page marked up with ARIA landmark roles to provide this extra
meaning to browsers, screen readers, and other assistive technology to allow them to pass that
extra meaning onto the users of their software. Figure 12-4 shows how this is structured within
an HTML page, as marked with dotted lines around each landmark role area.

http://www.w3.org/TR/wai-aria-practices/

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 395

Figure 12-4. Depiction of ARIA landmark roles within an HTML page

Listing 12-5. Marking Up an HTML Page Using ARIA Landmark Roles

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>ARIA page example</title>
 </head>

 <!-- The application role denotes a part of the page which acts as a standalone
 RIA - in this case, the entire page is going to represent an RIA so we
 place the role on the <body> tag -->
 <body role="application">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS396

 <!-- The header element of the page, containing page title, logos, and any
 other general site information, is marked with the banner role to
 denote this function -->
 <div id="header" role="banner">
 <h1>ARIA page example</h1>

 <!-- A site-wide search functionality should be marked up with the
 search landmark role -->
 <form method="post" action="/search/" role="search">
 <label for="query">Search query</label>
 <input type="text" name="query" id="query" />
 <input type="submit" value="Search" />
 </form>
 </div>

 <!-- Navigational lists are marked with the navigation role -->
 <ul id="navigation" role="navigation">
 News
 <!-- Other navigation links go here -->

 <!-- The main part of the page is denoted with the main role -->
 <div id="main" role="main">
 <p>The main part of the document goes here.</p>
 </div>

 <!-- Secondary sideline or complementary content, which would make sense
 when read out of the context of the rest of the page, is marked with
 the complementary role -->
 <div id="aside" role="complementary">
 <p>Secondary or related information goes here.</p>
 </div>
 </body>
</html>

Dynamically Loading Content via ajax
Virtually all web applications load or save data via the Ajax technique. Earlier in the chapter,
you saw how you would need to write some extra code to draw focus to the updated content
once the Ajax communication had completed. This can be greatly simplified with ARIA and its
concept of live regions, which are parts of the page that the browser knows might be updated
at some point during use of the application. Listing 12-6 shows a simple web application con-
sisting of a live region that updates its contents based on a series of selected links on the page,
as shown earlier in Figure 12-2.

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 397

Listing 12-6. Dynamically Loading Content Accessibly via Ajax and ARIA

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>ARIA Ajax example</title>
 </head>

 <body role="application">
 <div id="header" role="banner">
 <h1>ARIA Ajax example</h1>
 </div>

 <ul id="navigation" role="navigation">
 Page 1
 Page 2
 Page 3

 <!-- Mark the following element as being a live region using the aria-live
 attribute. The polite value means that users won't be hounded by a
 notification that the content has updated until they have completed
 their current activity. The aria-atomic attribute value of true means
 that users will be notified of the updated contents of the entire live
 region, not just a specific part of the region that changed. The
 aria-busy attribute will be set to true when the live region is being
 updated, resetting to false when no updates are being made at
 that time -->
 <div id="live-region" aria-live="polite" aria-atomic="true" ➥

 aria-busy="false">
 <h2>Default page content</h2>
 <p>Clicking on the navigation links will cause this content to change
 dynamically if JavaScript is enabled. The ARIA attributes ensure
 that screen readers and other assistive technology will be informed
 of the changes.</p>
 </div>

 <!-- Include the $ JavaScript library -->
 <script type="text/javascript" src="$.js"></script>

 <!-- You should move the following script to an external file within a real
 web application. It is included on the page here for simplicity -->
 <script type="text/javascript">
 $.onDomReady(function() {

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS398

 // Locate the live region page element and store a reference to it
 var liveRegion = document.getElementById("live-region");

 // Listen for click events firing within the navigation list
 $.Events.add(document.getElementById("navigation"), "click", ➥

 function(e) {
 if (e.target.tagName.toLowerCase() == "a") {

 // If the user selected a navigation link, cancel its
 // default action
 e.preventDefault();

 // Inform the browser or any assistive technology being used
 // that the live region is now being updated
 liveRegion.setAttribute("aria-busy", "true");

 // Begin loading the contents of the page specified by the
 // link URL
 $.Remote.load({
 url: e.target.href,
 callback: function(response) {

 // When the content has loaded, replace the HTML
 // within the live region with the new HTML content
 // loaded from the server
 liveRegion.innerHTML = response.text;

 // Inform the browser that the live region has
 // finished being updated
 liveRegion.setAttribute("aria-busy", "false");

 // Users of assistive technology will be informed of
 // the content update at the next opportunity
 // after they have completed their current action
 }
 });
 }
 });
 });
 </script>
 </body>
</html>

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 399

Making a progress Bar More accessible
Back in Chapter 5, you saw how to construct a progress bar out of two page elements, some
CSS, and a little JavaScript. You can update this fairly simply, adopting the ARIA recommenda-
tion to provide this information in a usable and accessible way for all users, as follows:

<!-- The polite aria-live attribute value will inform the user of a dynamic update
 occurring within the element only when the user is not occupied somewhere
 else on the page -->
<div class="progress-bar" aria-live="polite">
 <!-- The aria-valuemin attribute denotes the minimum value of a range, the
 aria-valuemax attribute denotes the maximum value of that range, the
 aria-valuenow attribute denotes the current value within that range, and
 the aria-valuetext attribute denotes the current text value related to the
 numeric value -->
 <div class="progress" id="code-progress" role="progressbar" ➥

 aria-valuemin="0" aria-valuemax="100" aria-valuenow="25" ➥

 aria-valuetext="25%">25%</div>
</div>

You must then update the value of the aria-valuenow attribute at the same time as the
width of the progress bar element through JavaScript, as shown in the following line, which
denotes the current progress position to be 25%:

document.getElementById("code-progress").setAttribute("aria-valuenow", "25");
document.getElementById("code-progress").setAttribute("aria-valuetext", "25%");

Validation
Adding the ARIA attributes to HTML elements causes no ill effects in any browser, whether
or not that browser supports ARIA. You may, however, notice that attempts to validate your
page using the W3C validator online at http://validator.w3.org/ reveal a series of errors if
the ARIA attributes are added directly to your markup. This is because the validator does not
recognize the ARIA attributes as valid XHTML, which is correct, since ARIA attributes are an
extension of XHTML, and not yet part of the XHTML specification itself. Until the ARIA recom-
mendations are finalized and its support is added to the W3C validator, I suggest you ensure
that the rest of your page validates, and simply ignore the ARIA-related errors. These attributes
will not cause any rendering issues in any browser.

The way to make sure your markup will still validate is to use JavaScript to set the ARIA-
specific attributes and their values programmatically using the setAttribute() DOM method:

document.getElementById("live-region").setAttribute("aria-live", "polite");

Since ARIA is relevant only when JavaScript is enabled, there is no accessibility issue when
enabling the attributes within your web application in this way.

http://validator.w3.org/

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS400

Testing
Performing testing of a web application as it affects screen reader users is very difficult if you
are not a screen reader user yourself. Simply downloading screen reader software and listen-
ing to the output does not give you an accurate representation of how a day-to-day user of this
software interacts with the web application. The best testing you can perform in this case is
user testing. Take the results of such testing very seriously, and consider every suggestion to
improve your web application for assistive technology users.

For more simplistic testing and to ensure you have set your ARIA attributes correctly, try
downloading and using the Juicy Studio Accessibility Toolbar for Firefox from https://addons.
mozilla.org/en-US/firefox/addon/9108/. This add-on enables developers to examine live
regions, roles, states, and properties. It also provides other useful accessibility checks, such as
color-contrast levels. Figure 12-5 shows the add-on revealing hidden ARIA roles and properties
on an HTML page.

Figure 12-5. Juicy Studio Accessibility Toolbar revealing ARIA roles and properties on a page

Try disconnecting your mouse and navigating your web application using solely your
keyboard. This is an incredibly effective way of revealing how you can make improvements to
your RIA to support your users who prefer or require this input method.

https://addons

Chapter 12 ■ aCCeSSIBIL ItY IN r ICh INterNet appLICatIONS 401

Summary
In this chapter, you have discovered how to improve the accessibility of your RIAs for your end
users, regardless of browser, device, or input method. This brings to a close the final part of
this book, in which you have discovered how to improve the presentational aspect of your web
applications: the user interface.

Throughout this book, I have presented numerous tips, techniques, and technologies that,
when used together, allow you to build stable, accessible, high-performing, and well-designed
RIAs using JavaScript. I encourage you to stay up-to-date with the constantly evolving web
standards, browser updates, and advances in web development techniques. I will maintain an
updated list of news, links, and useful advice via my web site at http://www.denodell.com/ to
reflect as many of these advances as possible to keep you well informed.

Continue to experiment, reuse, invent, reinvent, and push the browser to the limit. Learn
from others’ mistakes. Give back to the wider web development community the fruits of your
own labor when you can. Finally, constantly strive to be the best, most thoughtful web devel-
oper you can be, and never forget the two most important aspects of any web application:
maintainability and accessibility.

Good luck in your endeavors!

http://www.denodell.com/

403

Index

Symbols and Numbers
- (hyphen), separating words with, 24
$ JavaScript library. See also $ library

adding client-side database storage code
to, 318–321

adding code for setting and reading
cookie values to, 308–310

adding code to use Flash cookies to,
322–323

extending with utility methods for dates,
261–264

implementing cross-browser local storage
API in, 324–326

improving event handling within, 385–386
using to create, locate, and delete cookies,

310
$ library. See also $ JavaScript library

adding CSS style–related methods to,
92–95

adding JavaScript methods to, 85–89
adding methods for locating elements

within the page, 95–96
adding utility functions to, 89–92
completing, 96–97
instantiating, 96–97
loading content dynamically using Ajax,

85–89
% (percent), for font sizing, 40
() (parentheses) in JavaScript, 52–53
/ character. See also trailing slash character

(/)
effect of omission of on performance, 148

@font-face directive, 201
@import method, admonition against using,

150
200+ status codes, 125
300+ status codes, 125
400+ status codes, 126

A
abbr tag, 15
Accept header, 122
Accept-Charset request header, 122
Accept-Encoding header, 122
Accept-Language header, 122
Accept-Ranges HTTP response header, 332

access keys, 28
Access-Control-Allow-Origin header, 201, 202
accessibility

creating web applications for, 375–401
guidelines for styles, 39–41
handling of by web developers, 225–226
principle, 9
support (JW FLV player), 245

acronym tag, 15
active class

JavaScript code for applying to wrapper
element, 257–258

writing CSS to hang from, 256–257
addEventListener() method, 385
address tag, 15
Adobe Dreamweaver web site, 46
Adobe web site, 210
Ajax

adding and navigating page visit history
items using, 380–382

dynamically loading content via, 396–399
HTML page code for displaying image

data via, 352–353
improving performance of, 170–172
loading a complete or partial binary file

using, 334–336
loading content on demand with, 85–89
reading binary files with, 331–339
using JSON format for responses, 170

Akamai
web site address, 138
web site address for page loading study

results, 146
alert statement, 63
Alexa information company web site, 159
AlphaImageLoader filter, 151
alt attribute

using for heading text, 198
using with img tag, 25

Apache web server
adding compression configuration to

apache.confd file, 142
enabling compression in, 142

applications, third-party scripts in, 110–111
application/xhtml+xml

MIME type, 360
XHTML indicated by, 122

403

nINDEX404

application/xml, XML content indicated by,
122

apply and call, 72–73
Apress web site address for book files, 322
Aptana Studio

IDE, 46
software, 56

ARIA
aria-live attribute, 393
landmark roles, 394–396
roles, 390–391
states and properties, 391–393
widgets, 394

ascender, of a font, 196
ASP.NET (C#)

dynamic image generation in, 204–207
flushing the buffer with, 139

assets
limiting loading of from home page, 146
organizing, 44–46

assistive technology, 375
Asynchronous JavaScript and XML (Ajax)

technique, 13
attribute node, 58
audio and video in HTML 5, 246–248
audio files, playing without Flash, 231–232
audio playback components, 226–232
audiovideo tags

current adoption level of, 248
reading about latest progress on, 248

audiovideo tags, in HTML 5, 246–247
author web site address, 322

B
background Web Workers, 169
background-position property, 250
backgrounds

CSS style properties for, 154
separating foreground images from, 25
tweaking for performance, 154

Baranovskiy, Dmitry, 363
base storage limit, 311
baseline, fonts, 196
Beanstalk web site, 47
Berners-Lee, Tim, 7
best practices

checklist for web developers, 4–5
designing for search engines and auto-

mated systems, 5
general, 5–14
importance of knowing the basic rules,

6–7
making code work for end users, 5
overview, 3–5

putting into practice for HTML page, 19–27
who benefits from, 4

binary connector, code for configuring,
332–334

binary file reader, code for, 336–339
binary files

vs. plain text files, 331
reading with Ajax, 331–339

blockquote tag, 15
body content, organizing, 24–25
body element, with two child nodes, 58
body tag, as parent node, 58
border styles, 153
borders, tweaking for performance, 153–154
box model, 16
braces ()

rule for use of, 52
using in JavaScript to avoid confusion,

52–53
brackets or parentheses [()] in JavaScript,

52–53
browser caching, 140–141
browser history items, 378–380
browser testing web site, 48
browsers. See also web browsers

BrowserShots, 48
with built-in developer tools, 48
dealing with cross-browser issues, 8–9
and development tools, 47–49
drawing in, 357–373
engines the powerhouse of, 115–119
five main in world today, 8
forcing to hold onto copies of files, 140
handling JavaScript events in, 80–85
hiding content from CSS-capable, 39
limitations of, 136
number of simultaneous file downloads

by, 147
popular mobile, 136
release of Microsoft Internet Explorer (IE)

7
release of Netscape Navigator, 7
resetting default styles for, 36–38
sending HTML to in chunks, 138–139
work-arounds for, 42–43
writing methods to standardize event

handling in, 80–85
buffer

flushing with ASP.NET/C#, 139
flushing with PHP, 139

buttons
CSS support for submit, reset, and button

input, 250
rendering to the page, 249–250
style customization, 250–251

nINDEX 405

C
C#

flushing the buffer with (ASP.Net), 139
generating images containing text using,

204–207
cache settings, 134
Cache-Control header, 140

in HTTP response message, 124
possible values contained in, 140

calendar form control
building using Observer pattern, 264–277
code for, 264, 277
connected to three select boxes, 259
how it should behave, 259–261
testing, 277–281

calendar widget, for date selection, 259–281
calendar.js file, 264–277
call and apply, 72–73
camel casing, 53, 59
Canvas Demos web site, 373
canvas tag

code for a simple image, 372–373
Mozilla tutorial for, 373
using HTML 5’s, 371

caption tag, 25
cascade and specificity, 32–34
case statements, 52
casing, types of, 53
CDN JavaScript library hosting, 164
CDNs (content delivery networks), 164
CERN (European Organization for Nuclear

Research)
development of web standards at, 7
web site, 7

chain function calls, 61
chaining, 61
change event, 258
character sets, 122
child nodes, 58
chrome vs. chromeless, 235
classes

class attribute, 14
in JavaScript, 64–65
using object literals when creating, 76

click events, 384
client, browser as, 119
client errors, 126–127
client-side database storage API, 317,

318–322, 324
Coda IDE web site, 46
code

coding style guidelines, 51–57
executing when DOM is ready for access,

79–80
writing bulletproof, 61

colors
hexidecimal values for, 152
tweaking for performance, 152
using shorthand values for, 152

comment blocks
advantages of, 56–57
format example for, 41–42
in style sheets, 41–42

comment node, 58
comments as documentation with Script-

Doc, 56–57
compose() method, 97
compression

enabling in Apache web server, 142
enabling in IIS, 142
enabling in Tomcat, 142

compression algorithms, 122
CompuServe, GIF format launched by, 160
conditional comments

techniques for browser work-arounds,
42–43

XHTML best practices for, 20–21
Connection header, 123
constructors in JavaScript, 65
content

alerts and focus, 386–390
blocks, moving, 40
content delivery networks (CDNs),

137–138
Content-Encoding header, 124
Content-Type header, 124
dynamically loading, 396–399
specifying type in documents, 21

cookies
creating, locating, and deleting using the $

library, 308, 310
the downside of, 311
setting and reading values, 308
using to store data, 307–311

core JavaScript performance, 166–169
createElement() method, 59
credit card fields, 11
cross-browser

connection object, configuring, 334–336
dealing with issues, 8–9

cross-browser local data storage API
creating, 323–330
getting, setting, and removing data using,

326–327
implementing in $ JavaScript library,

324–326
Cross-Origin Resource Sharing, 201
CSS (Cascading Style Sheets)

AlphaImageTransform DirectX filter, 162
changing class, not style, when updating,

176–177

nINDEX406

CSS 3 selector notation, 78
CSS-capable browsers, 39
CSSTidy, 150
file size, 150
filters and expressions, 151
formatting best practice, 30–43
and JavaScript, 23
to produce customized submit button,

250–251
pseudo-classes, 181
selectors, 159
separating style from code with, 60–61
sprite images, 158, 251
sprite technique, 155–158
style properties, 59
and styles, handling, 92–95
table-layout, 150
using to embed font files directly, 199–202
Web Fonts, 200–201

Cufón web site address, 223
custom font components, 211–223
custom fonts, 201

D
data

compression to improve performance,
141–142

storage, using cookies for, 307–311
storage APIs, 314–322

Date header value, 124
date selection calendar widget, 259–281
dates, creating utility methods for, 261–264
debit card fields, 11
del tag, 15
descenders, font, 196
designs

patterns, 101–107
pixel-perfect reproduction of, 30

development
environment, setting up, 46–49
tools for testing your web pages, 47–49

Digg effect web site, 140
Digital Rights Management layer, 201
dir attribute, 21
div tags, 23
DOCTYPE switching, 16
document node, 58
Document Object Model (DOM), 58–59
Document Type Definition (DTD or

DOCTYPE), 16
documentation

using Aptana Studio software to produce,
56

using comments as with ScriptDoc, 56–57

documents
adding a wrapper element to, 23
DocumentFragment objects, 173–174
ordering content correctly in, 24–25

Dojo JavaScript library web site, 78
Dojo ShrinkSafe

shrinking JavaScript file using, 163–164
web site, 164

DOM (Document Object Model)
access, minimizing, 173
DOMContentLoader event, 79
element focus() method, 386–390
elements, 177–178
performance, improving, 172–178
reference, 60

domains
name lookups, 146
names, 137
splitting components across, 147

drawing, in browsers, 357–373
DTD selection/validation, 16–17
dynamic graphs, 363–371

E
EdgeCast web site, 138
element node

child nodes in, 58
finding within a document, 58–59

elements
locating within the page, 95–96
manipulating, 59–60

em unit, 40
e-mail

address field, 254–255
message class, 97–100

embedded font files, 201–202
Embedded OpenType (EOT) font format

generating, 201
supported by IE, 201

encapsulation in JavaScript, 69
engine horsepower, 132
event handling

within $ JavaScript library, 385–386
writing methods to standardize in brows-

ers, 80–85
events

bubbling, 384
capturing, 385
delegation, 175–176, 384–386
device-independent, 383–384
mouse-dependent and related events, 384

exceptions
defining custom, 62–63
errors, 61–62

nINDEX 407

Exchangeable Image File (EXIF) format
photo file data stored in, 339
understanding, 340–341
web site address, 340

EXIF
data, displaying, 351–356
data reader (exif-reader.js), 341–351
headers, 340–341
image data, 353–356
tags, 341

Expires header, 140–141
Ext JS JavaScript library, 78
external assets, 137

F
Facelift Image Replacement (FLIR), 219–221
FancyFonts, 220
favicon (favorite icon), 163
fieldset tags, 26–27
file upload controls

constructing a customized, 255–259
how style rules are applied to elements,

257
files and folders

file encoding, 44
file size, 133
naming, 12–13, 44
version control systems for storing, 47

finally keyword, 63
Firebug plug-in, 48, 131
Flash

font embedding support in, 210
generating text in custom typefaces using,

210
local shared objects, 322–324
movie files, 237–238
Player, 225
Video (FLV) file format, 225

FLIR
appraisal of, 220–221
configuring to replace page elements, 219
FLIR.auto() method, 219–220
FLIRStyle object, 220
plug-ins, 220
sample usage of, 219–220

focus management, 393–394
folders

folder class, 98–99
naming and grouping consistently, 12–13
structuring, 43–46

fonts
basic anatomy of, 196–197
copyright issues with custom, 201
embedded files, 201–202

font-family style property, 201
having server generate text images, 210
resizing, 40–41
shorthand notation for improving perfor-

mance, 154–155
sizes, 40–41, 196
styles, 154, 155

for attribute, 304
foreground images, 25
form controls

adding new types of, 259–296
customizing existing, 249–259

formatting, 51–52
forms

informing user they are being submitted,
181–182

validation of HTML, 304
framesets, avoiding use of, 27
FTP (File Transfer Protocol), 120
functions

function blocks, 54–56
using object literals as inputs to, 76–77

G
Gears browser plug-in

SQLite database and, 330
web site address, 330

getElementsByClassName() method, 59
GIFs, 160–161
GitHub, 47
global storage API

Mozilla’s, 315, 317
setting, getting, and removing data using,

316–317
Google

Ajax APIs service, 138
CDN JavaScript library hosting by, 164
Code, 47

graceful degradation principle, 9
gt (greater than) in conditional comments, 20
guidelines for coding style, 51, 57

H
H.264

Flash Player version 10 support for, 225
web site address for overview of, 225

hCalendar microformat, 29
hCard microformat, 29
head section (HTML), 130
heading text

using CSS style rules to produce, 198–199
using semantic HTML markup for, 198

home pages, limiting loading assets from, 146

nINDEX408

Host header of HTTP request message, 121
hReview microformat, 29
HTML

4.01 specification, 152
assuming support for it only on web

pages, 9–12
documents, 130
elements, reducing number of, 148
HTML 5, 371
and JavaScript, 60
managing two sets of, 100–107
referencing JavaScript files at end of,

143–144
sending to browser in chunks, 138–139
shrinking file size with HTML Tidy, 143
specifying SVG within, 359–360
tweaking for performance, 142–149

HTML page
containing a custom calendar control,

277–281
containing a slider control, 293–295
demonstrating SWFUpload component,

297–300
displaying EXIF image data on, 353–356
marking up using ARIA landmark roles,

394–396
pages, loading order of, 130
simple VML image described within,

362–363
strings, 178
tags, 14–15, 21
Tidy, 143
using TinyMCE rich text editor on,

302–303
HTTP

404 errors, 149
communication standard behind the web,

119–125
cookies, 123, 149
HEAD request, 332
headers, 140–141
messages, 127–130
redirects, 147–148
response messages, 123–125
streaming feature, 245

HTTP requests
combining files together for, 145
importance of good division and structure

of, 145
reducing the number of, 144–145

HTTP status codes
for client errors, 126–127
for server errors, 127
web site address for full list of, 125

hyphen (-), separating words with, 24

I
id and class attributes, 23–24, 26
IE (Internet Explorer)

avoiding CSS filters and expressions in, 151
limitations in certain versions of, 139
userData mechanism, 324
using conditional comments for, 20–21

iframe tag, 27
iGoogle widget hosting service

small page components hosted on, 138
web site address, 138

IIS, enabling compression in, 142
image data

extracting from photo files, 339–356
HTML page code for displaying via Ajax,

352–353
image file directories and tags, 340–341
image file directory (IFD) tag structure,

340–341
image file formats, 133, 160–162
image guidelines, 45
ImageMagick, 219
images

combining, 156
generating for text dynamically, 199–211
tweaking for performance, 159–163

image-type form buttons, 251–253
img tag, 58
!important keyword, 33
indicator class, 183
inheritance, 68–69
Inman, Shaun, 215
innerHTML property, 59
input element, 250
input tags, 253
input type= 251, 253, 254
ins and del tags, 15
integrated development environments (IDEs)

popular among developers, 46
for writing files, 46

Internet Explorer (IE)
creating, locating, and deleting userData

in, 313–314
data store, 311–314
Developer Toolbar plug-in, for IE 6 and 7

48
IP addresses, 127–128
iPhone, 136
Ippolito, Bob, 170

J
JavaScript

adding and removing browser history
items through, 378–380

basic inheritance in, 68–69

nINDEX 409

boosting performance of core, 166–169
class, 64–65
constructors in, 65
core objects built in to, 64
creating singletons in, 67–68
device-independent, 383–390
encapsulation in, 69
engines, 115–119
and HTML, 60
JavaScript API, 247
JavaScript DOM, 172–178
libraries and frameworks, 77–97
Memory Leak Detector, 175
object notation (JSON), 75, 77
object-oriented, 64, 77
objects, classes, and constructors, 64–68
objects as instances of classes in, 65
reading EXIF data using, 341–351
restricting access to properties and meth-

ods of a class, 74–75
for Rich Internet Applications, 51
shrinking file using Dojo ShrinkSafe,

163–164
tweaking for performance, 163–178
understanding this keyword within, 73
using DOM as an extension to, 58–59

JavaScript events
device-dependency of common, 383–384
handling in the browser, 80–85

JavaScript files
executing when DOM is ready, 165–166
loading on demand without blocking the

browser, 165
referencing at the end of your HTML,

143–144
timing in, 164–166

JavaScript libraries
accessing through CDNs, 164
building, 79–97
criteria for selecting, 78–79
detecting when the DOM is available,

79–80
and frameworks, 77–97
selecting, 78–79

JavaScript programming, 57–63
JavaSLASHJSP, 207–209
JAWS screen reader, 375
Jones, Grant, 373
JPEG

and EXIF headers, 340–341
format, 161

jQuery JavaScript library, 78
jQuery Transmit, 296
JSON format, 170
JSON-P (JSON with Padding), 170–172
JSP, 207–209

Juicy Studio Accessibility Toolbar, 400
JW FLV player

appraisal of, 245–246
feature set, 244
implementation, 242–244
video tutorial page using, 242–244
web site for component home page, 241

K
Keep-Alive header value, 122
kerning of fonts, 197

L
label tags, 304
lazy loading technique, 191
leading, 197
Lecomte, Julien, 185–186
legend tag, 26–27
letter-casing, 53
libraries and frameworks in JavaScript, 77–97
line-height CSS property, 197
lists, improving performance for, 155
local data storage API, 324, 327–330
local storage API

creating a cross-browser, 323–330
implementing within $ JavaScript library,

314–315
setting, getting, and removing data using,

314–315
support for, 314

localization, coding considerations for, 63
location object, 377
login modal dialog box, 9
longdesc attribute, 25
looping, 168–169
lossless image format, 162
lossy format, 161
lt (less than) in conditional comments, 20
ltr (left to right) value in XHTML documents,

21
Lynx browser, 115

M
magic numbers, avoiding use of, 54
margins and padding

applying different size to each side of ele-
ment, 153

resetting, 253
tweaking for performance, 152–153
values, 38

markup best practices, semantic HTML,
14–16

markup source order, 40
MCFileManager plug-in, 303

nINDEX410

media attribute specified on a link tags, 22
median line of fonts, 196
memory leaks, plugging, 174–175
meta tags, 21
methods

access to in JavaScript, 73–75
in JavaScript, 66–67

Meyer, Eric, 36–38
microformats, 29
Microsoft Virtual PC, 48
Microsoft Visual Web Developer IDE, 46, 48
Microsoft Web Embedding Fonts Tool

(WEFT)
for generating EOT fonts, 201
web site address, 201

MIME type, 122
minification process (JavaScript files), 163
mobile browsers, 136
mobile devices, creating web applications

for, 375–376
mod_deflate module, 142
mod_gzip module, 142
modal-style login box, 9
Model-View-Controller (MVC) pattern, 101,

104
MooTools, 78, 296
mouse

clicks, 192
creating web applications for users with-

out, 376–377
mousedown event, 192
mouseout event, 258
pointer, changing, 182–183

Mozilla
global storage API, 315–317, 324
tutorial, 373
web site address for DOM reference, 60

MP3 format, 225
multimedia guidelines, 46
myExample.css, 212
my-example.js

defining headings, text, or portions of
page in, 212

methods available in, 212

N
namespaces and hierarchies, creating, 77
navigation

with back and forward buttons, 377–382
levels, 190–192
loading full HTML on interaction with a

placeholder, 191–192
Net Applications Market Share, 8
new keyword, 65
No-cache value, 140

nodes
duplicating, 177–178
types of, 58

No-store value for Cache-Control header, 140
Notepad++ IDE, 46
numbers-only text field, 254

O
obfuscation process (JavaScript files), 163
object literals

and JavaScript object notation (JSON),
75–77

with many types of values, 75
using as inputs to functions, 76–77
using when creating classes, 76

objects
in JavaScript, 64–65
object-oriented JavaScript, 64–77

Observer pattern, 104–107
Odell, Den web site, 322, 401
offline storage, 307–330
Online MP3 Store example

HTML markup for, 227–228
JavaScript code for, 228–229

onLoad() event fired by SoundManager, 228
OpenType font format, 201
overflow: hidden style property, 253

P
packets, 128
page elements

applying multiple class names to single,
36

marking up using roles, states, and prop-
erties, 394–396

page performance
identifying bottlenecks in, 132–134
tools for viewing, 131–132

pages
setting titles, 22
viewing performance of, 131
visit history items, 380–382

parallel connection limits, 133
Parallels web site, 48
parent class, 69–70
parent node, 58
payment card form, 11
performance

admonition against using @import com-
mand, 150

avoiding CSS filters and expressions in IE,
151

avoiding links to nonexistent files to im-
prove, 149

nINDEX 411

improving Ajax’s, 170–172
improving for lists, 155
reducing size of HTTP cookies to improve,

149
shorthand notation for fonts, 154–155
shrinking CSS file size with CSSTidy, 150
speeding up table layouts, 150–151
tweaking, 135
tweaking JavaScript for, 163–178
tweaking style sheets for, 150–159
tweaking images for, 159–163
tweaking web server for, 137–142
upload/download speed issues of, 135–136
using shorthand values for, 151–155

PersistJS
open source local data storage library, 330
web site address, 330

photo files, extracting image data from,
339–356

PHP
dynamic image generation in, 202–204
flushing the buffer with, 139

pixel-perfect reproduction of designs, 30
plain text vs. binary files, 331
playback controls, 234–235
playlist support (JW FLV player), 245
plug-in support (JW FLV player), 245
plug-ins in web pages, 29
PNG

format, 161–162
images, optimizing, 162
PNG-24 images, 42
Pngcrush command-line tool, 162

polymorphism
in JavaScript, 69
replacing the method of a parent class,

69–70
presentation, 22, 193, 223
printer considerations for style sheets, 34–35
Private value for Cache-Control header, 140
progress bar

building, 184
making more accessible, 399
setting dimensions, text, and border

styles, 184
showing, 183–184

progressive download feature (JW FLV
player), 245

progressive enhancement principle, 9
project goals, defining, 6
properties

access to in JavaScript, 73–75
in object-oriented terminology, 66

Prototype JavaScript library, 78
prototype keyword, 67
Public value for Cache-Control header, 140

Q
querySelectorAll() method, 59
QuickEffects (FLIR plug-in), 220
quirks mode, browser, 16

R
Raggett, Dave, 143
Range HTTP request header, 332
RaphaÎl

built by Dmitry Baranovskiy, 363
JavaScript library, 364–371
web site address to download, 363

redirection status codes, 125
redirects, avoiding linking to, 147–148
regular expressions in JavaScript, 168
removeChild() method, 60
rendering engines, 115–116
replace() method, 212–213
replaceAll() method, 212, 214
replaceTags() method, 212, 213
reusable custom font components, 211–223
reusable drawing library, 363–371
reusable form components, 296–304
reusable offline storage component, 330
Rich Internet Applications (RIAs)

Accessibility in, 375–401
best practices for building, 1, 49
building, 97–107
JavaScript for, 51
target audience, 375–377

routes and routers, 129–130
routing tables, 129
rtl (right to left) value in XHTML documents,

21

S
Safari 4 network timeline tool, 131
Scalable Inman Flash Replacement (sIFR)

component, 215–218
Scalable Vector Graphics (SVG), 357–358
Schiller, Scott, 226–231
script tags, using JSON-P with, 170–172
ScriptDoc

example documenting a function within a
file, 56–57

using comments as documentation with,
56–57

web site address, 56
scripts

dividing long-running into chunks, 185–187
handling long-running, 184–189
long-running sort routine, 186–187

search engines, 5
semantic HTML, 14–16

nINDEX412

separation, importance of, 22
servers

compressing the output from, 141–142
requests and responses, 172
server errors, 127
Server header in HTTP response message,

124
as web host, 119

server-script code routines
enhancing, 209–210
extending, 209–210

server-side scripting, 100–101
setAttribute() DOM method, 399
shorthand values

for margin, padding, and border style
rules, 39

using in CSS, 151–155
ShrinkSafe JavaScript file compressor, 164
sibling node, 58
sIFR, 217–218
Silom font, 200–201
singletons, creating in JavaScript, 67–68
slider control

building for a form, 281–293
slider.js file, 281–293
testing, 293–295

slow-running script dialog box, 184
Smush it, 45, 162
sort algorithm, 187–189
SoundManager component

appraisal of, 230–231
browser support for, 230
feature set, 230
limitations with, 231
by Scott Schiller, 226, 231

SoundManager project, 227
source code management system, 13
span tag in XHTML documents, 21
specificity, 32. See also cascade and

specificity
SQLite database

client-side database storage within,
317–322

Gears browser plug-in for, 330
SQLite software library, 317
standards mode, browser, 16
states and properties (ARIA), 391–393
static images, 198–199
string concatenation in JavaScript, 167–168
style rules

formatting, 35
mastering shorthand, 38–39

style sheets
creating print-only, 34–35
guidelines for CSS, 31–39

printer considerations when building,
34–35

separate common style rules for each
page, 31–32

tweaking for performance, 150–159
styles, accessibility guidelines for, 39–41
Subversion, 47
successful status codes, 125
summary attribute (table tag), 25
SVG image files

creating, 358, 359
simple described through JavaScript,

361–362
specifying within HTML, 359–360

SWFObject component
downloading, 236
for embedding Flash movie files in web

pages, 236–238
SWFUpload

appraisal of, 301
multiple file uploads with progress bars,

296–301
sample usage of, 297–300
web site address, 297

T
tab indexes

reason against use on web pages, 28
tabindex attribute, 393–394

tables
example using markup techniques, 26
grouping header, body, and footer

sections of, 26
layouts, 150–151
using properly, 25–26

testing
and test-driven development, 107–110
web applications, 400

text
fields, 253–255
files, uncompressed, 134
generating using vector graphics, 211
node, 58
text_script.js, 212
textarea element, 301
TextMate IDE, 46
using static images for, 198–199

text images
generating dynamically in PHP, 204
generating in ASP.NET (C#), 204–207
generating in PHP, 202–204
server-generated, 210

Text2PNG component
adding extra text formatting with, 214
appraisal of, 214–215

nINDEX 413

replacing a single element, 213
replacing all content within a specific

named tag with, 213
replacing the content of all child elements

with, 214
sample usage of, 212
using, 211–215
web site address, 211, 214

th tags, header cells and, 26
third-party scripts, 110–111
this keyword, 71–73
Timed Text, 226
timer to run code blocks, 187–189
Times New Roman font, 196
TinyMCE, 301–304
TODO comment, 57
Tomcat, 142
trailing slash character (/), 148
TrueType font format, 201
try/catch code errors, 61–62
typeface CSS style properties, 197
Typeface.js component, 221–223
typography, creating, 195, 223

U
universal cross-browser style reset, 36–38
upload speeds, 133
URLs, creating for web pages, 43
user agent, 121
userData data store, 311–314
userData mechanism, 324
userData technique, 311–314
UTF-8 encoding, 44
utility functions, adding to $ library, 89–92

V
validation, 399
variable and function names, 53–54
vector graphics

browsers that support drawing, 211
creating scalable, 357–358
generating text using, 211

Vector Markup Language (VML), 362–363
version control systems, 47
video playback components, 232–246
video tags, 246–247
video tutorial page

displaying using YouTube Chromeless
Player, 238–241

HTML markup for, 233–234
JavaScript to add playback controls to,

234–235
using JW FLV player, 242
with video playback and custom controls,

232

visual feedback, 179–184
VML image, 362–363
VMware, 48
volume control, 281

W
W3C CSS standards, 31
W3C validator, 399
WAI-ARIA, 390–400
Web 2.0–style indicators, 183
web applications

anticipating your site visitor’s needs,
189–192

creating for mobile device users, 375–376
creating for multiple user needs, 375–377
creating for users of assistive technology,

375
creating for users without a mouse,

376–377
importance of timing, 179–181
options for loading full navigation, 191
preloading content to improve perfor-

mance, 189
providing rapid response, 180–181

web browsers, 115–130
web content, accessibility guidelines for, 28
Web Content Accessibility Guidelines

(WCAG), 28
web developers, best practices for, 4–5
Web Hypertext Application Technology

Working Group (WHATWG), 169
web mail client application

flow of handling unread mail messages,
189

singleton representing, 99–100
using MVC software pattern, 101–104
using the Observer pattern, 105–107

web pages
assuming support for HTML only for, 9–12
bottlenecks preventing efficient delivery

of, 135–136
localization considerations, 43
request, anatomy of, 119, 130
testing with browser and development

tools, 47–49
web servers, tweaking for performance,

137–142
web site addresses

Adobe Dreamweaver for Windows and
Mac OS X systems, 46

Akamai, 138
for Akamai page loading study results, 146
Alexa information company, 159
for Apache web server 2.x mod_deflate

module, 142

nINDEX414

Apress’s for book files, 322
Aptana Studio IDE, 46
Aptana Studio software, 56
audiovideo tags, 248
Beanstalk online code storage, 47
Bob Ippolito blog about JSON-P, 170
Canvas Demos, 373
CDN JavaScript library hosting by Google,

164
CERN, 7
Coda IDE for Mac OS X systems, 46
Cross-Origin Resource Sharing, 201
CSS Web Fonts specification, 200
CufÛn, 223
Den Odell, 401
Den Odell’s web site for book code, 322
Dojo JavaScript library, 78
Dojo ShrinkSafe, 164
EdgeCast, 138
Eric Meyer’s universal cross-browser style

reset, 36
Exchangeable Image File (EXIF) format,

340
Ext JS JavaScript library, 78
Facelift Image Replacement (FLIR), 219
Firebug plug-in for Firefox, 131
for Firebug plug-in for Mozilla Firefox, 48
for full list of HTTP status codes, 125
for Gears browser plug-in, 330
GitHub open source online storage re-

pository, 47
Google Code Subversion hosting system,

47
HTML 4.01 specification, 152
for HTML Tidy information, 143
iGoogle widget hosting service, 138
ImageMagick, 219
for information about Digg effect, 140
for information on enabling compression

in IIs 6, 142
Inman, Shaun, 215
JavaScript Memory Leak Detector, 175
JAWS screen reader, 375
jQuery JavaScript library, 78
jQuery Transmit, 296
Juicy Studio Accessibility Toolbar from

Firefox, 400
Julien Lecomte’s personal blog, 185
for list of EXIF tags, 341
Lynx browser, 115
for microformat information, 29
Microsoft Virtual PC, 48
Microsoft Visual Web Developer IDE, 46
Microsoft’s Web Embedding Fonts Tool

(WEFT), 201
mod_gzip module for Apache web server

1.3, 142

MooTools (FancyUpload), 296
MooTools JavaScript library, 78
Mozilla tutorial for canvas tag, 373
Net Applications’ Market Share, 8
Notepad++ IDE for Windows systems, 46
Parallels for Mac OS X, 48
PersistJS, 330
Pngcrush command-line tool, 162
Prototype JavaScript library, 78
Reinier Zwitserloot notes and demos, 231
ScriptDoc, 56
for ShrinkSafe JavaScript file compressor,

164
sIFR documentation and download de-

tails, 216
Smush it, 45, 162
SQLite software library, 317
Subversion version control system, 47
SWFUpload, 297
Text2PNG component, 214
TextMate IDE for Mac OS X systems, 46
TinyMCE, 301
Typeface.js component, 221
VMware for Mac OS X, 48
W3C recommendation for Timed Text,

226
for W3C Scalable Vector Graphics recom-

mendation, 357
W3C validator, 399
WAI-ARIA Best Practices document, 394
Web 2.0–style loading indicators (spin-

ners), 183
Web Content Accessibility Guidelines

(WCAG), 28
for Web Workers project, 169
World Wide Web Consortium (W3C), 7
for XHTML tags and attributes, 15
Yahoo! best practices guidelines for

speeding up web site, 142
Yahoo! User Interface Library, 78
YouTube, 138
YouTube Chromeless Player, 235
YSlow extension to Mozilla’s Firefox

browser, 159
YUI Test, 108
ZoomText screen magnifier, 375

web sites
building a sound foundation for, 3, 29
designing for performance, 13
importance of maintaining a tidy code

base, 13
top-five most popular, 159
Yahoo! best practices guidelines, 142

web standards, 7
Web Workers, 169
WHATWG organization, 314, 322
whitespace, 134

nINDEX 415

Wijering, Jeroen, 241–246
window onload event, 79
World Wide Web Consortium (W3C), 7
wrapper element, adding to documents, 23
Wubben, Mark, 215

X
x-height, font, 196
XHTML

best practices, 18–27
cutting down on comments in code, 19
putting the X in, 17–18
restrictions on nesting of elements, 18–19
using conditional comments for IE, 20–21
writing code, 19

XHTML documents
components in, 21
handling of elements with no inner con-

tent, 18
well-formed, 18
xml:lang and lang attributes, 21
xmlns attribute, 21

XHTML tags and attributes
with content restrictions, 18
examples of nesting, 18
web site address for, 15

Y
Yahoo!

best practices guidelines, 142
UI test framework logging console, 110
User Interface Library, 78

YouTube, 138
YouTube Chromeless Player

appraisal of, 241
displaying video tutorial using, 238–241
example of with custom controls, 235
Flash movie files in, 238
implementation, 238–241
requirements for using, 236
video upload and sharing web site,

235–241
web site address, 235
web site address for documentation, 241
web site address for full reference for, 236

YSlow extension, 159
YUI Test, 108–110

Z
ZoomText screen magnifier, 375
Zwitserloot, Reinier, 231–232

Offer valid through 11/09.

	Prelims

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Building a Solid Foundation
	Best Practice Overview
	Who Put the fiBestfl in Best Practic
	Who Benefits from Best Practices?
	Web Developers
	Search Engines and Other Automated Systems
	End Users

	General Best Practices
	Define the Project Goals
	Know the Basic Rules
	Follow Mature, Open, and WellSupported Web Standards
	Deal with CrossBrowser Issues
	Assume Support for HTML Only
	Name and Group Folders and Files Consistently
	Maintain a Tidy Code Base
	Design Your Code for Performance
	Don’t Use Technology for Its Own Sake

	Markup Best Practice: Semantic HTML
	Learn the HTML Tags
	Start with a Document Type Definition
	DOCTYPE Switching
	DTD Selection
	DTD Validation

	How Do You Put the X in XHTML?
	Well-Formed Documents
	Element Prohibitions

	Put Best Practice into Practice
	Write Code That’s Neat and Tidy
	Cut Down on Comments
	Use Conditional Comments for IE
	Set the <html> Tag Correctly
	Specify the Content Type
	Set the Page Title
	Separate Presentation, Content, and Behavior
	Add a Wrapper Element to the Whole Document
	Help CSS and JavaScript Target Individual Pages
	Name Your ID and Class Attributes Consistently
	Order Your Content Correctly
	Separate Foreground Images from Backgrounds
	Use Tables Properly
	Improve Your Forms
	Avoid Using Frames

	Accessibility Guidelines for Web Content
	Don’t Be Fooled by Access Keys
	Don’t Be Fooled by Tab Indexes
	Don’t Rely on PlugIns
	Add Extra Semantics Where You Can

	Formatting Best Practice: CSS
	Regarding PixelPerfect Reproduction of Designs
	W3C CSS Standards
	Guidelines for Style Sheets
	Separate Common Style Rules
	Understand Cascade and Specificity
	Think About the Printer
	Format Your Style Rules
	Apply Multiple Class Names to a Single Page Element
	Reset the Browser’s Default Styles
	Master Shorthand Style Rules

	Accessibility Guidelines for Styles
	Hide Content from CSSCapable Browsers
	Move Content Blocks to Maintain Correct Markup Source Order
	Use Relative Font Sizes

	Comment Blocks
	Browser WorkArounds
	Localization Considerations

	Structuring Your Folders, Files, and Assets
	Readable URLs
	File and Folder Naming
	File Encoding
	Organizing Assets
	Image Guidelines
	Multimedia Guidelines

	Setting Up Your Development Environment
	Writing Your Files: Integrated Development Environments
	Storing Your Files: Version Control Systems
	Testing Your Pages: Browsers and Development Tools

	Summary

	JavaScript for rich Internet applications
	Coding Style Guidelines
	Use Consistent Formatting
	Use Braces and Brackets
	Add Meaning with Letter Casing
	Use Descriptive Variable and Function Names
	Maintain Short Function Blocks
	Use Comments As Documentation with ScriptDoc
	Mark Remaining Tasks with TODO

	Professional JavaScript Programming
	Avoid Solving Nonexistent Problems
	Use the Document Object Model
	Dynamically alter CSS properties
	Manipulate elements and their Contents

	Don’t Mix JavaScript and HTML
	Separate Style from Code
	Chain Function Calls
	Write Bulletproof Code
	handle Fatal exception errors Gracefully
	Define Custom exceptions
	and Finally . . .

	Code with Localization in Mind

	Object-Oriented JavaScript
	Objects, Classes, and Constructors
	What Is an Object?
	What Is a Class?
	Objects as Instances of Classes
	Constructors
	properties
	Methods
	the prototype Keyword
	Singletons

	Inheritance: Creating New Classes from Existing Ones
	encapsulation: each Class Doing What It Does Best
	polymorphism: redefining Inherited properties and Methods

	The this Keyword
	Access to Properties and Methods
	Object Literals and JavaScript Object Notation
	Using Object Literals When Creating Classes
	Using Object Literals as Inputs to Functions

	Creating Namespaces and Hierarchies

	Libraries and Frameworks
	Selecting a Library
	Building a JavaScript Library
	Detecting When the DOM Is available
	handling events in the Browser
	Loading Content on Demand with ajax
	Using Utility Functions
	handling CSS and Styles
	Locating elements Within the page
	Completing the Library

	Building RIAs
	Structuring the Application
	Managing Two Sets of HTML
	Using Design Patterns
	the Model-ViewController pattern
	the Observer pattern

	Testing and TestDriven Development
	Using ThirdParty Scripts
	Summary

	Understanding the Web Browser
	Engines: The Browser’s Powerhouse
	The Rendering and JavaScript Engines
	JavaScript Engine Performance Benchmarking

	Anatomy of a Web Page Request
	HTTP: The Communication Standard Behind the Web
	An hTTP Request Message
	An hTTP Response Message

	HTTP Status Codes
	200+ (Success)
	300+ (Redirection)
	400+ (Client error)
	500+ (Server error)

	How Messages Are Transmitted
	IP Addresses: Phone Numbers of the Internet
	Packets: Chunks of Data
	Routes and Routers: The Switchboard of the Internet

	Loading Order of an HTML Page

	Page Performance
	Viewing the Performance of a Page
	Identifying Potential Bottlenecks in Performance
	engine horsepower
	User’s Upload Speeds
	Parallel Connection Limits
	Choice of Image Format
	Unnecessary Content
	Cache Settings
	Uncompressed Text Files and extra Whitespace

	Summary

	performance tweaking
	Is Performance Really an Issue?
	Tweaking Your Web Server for Performance
	Use Separate Domain Names for External Assets
	Use a Content Delivery Network
	Send HTML to the Browser in Chunks
	Flushing the Buffer with php
	Flushing the Buffer with aSp.Net/C#
	Flushing the Buffer with JSp

	Customize HTTP Headers to Force Browser Caching
	Compress the Output from the Server
	enabling Compression in apache Web Server
	enabling Compression in IIS
	enabling Compression in tomcat

	Tweaking HTML for Performance
	Shrink Your HTML File Size with HTML Tidy
	Reference JavaScript Files at the End of Your HTML
	Reduce the Number of HTTP Requests
	Good Division and Structure
	Combine Files

	Don’t Load Every Asset from Your Home Page
	Reduce Domain Name Lookups
	Split Components Across Domains
	Avoid Linking to Redirects
	Reduce the Number of HTML Elements
	Don’t Link to Nonexistent Files
	Reduce the Size of HTTP Cookies

	Tweaking Your Style Sheets for Performance
	Shrink Your CSS File Size with CSSTidy
	Don’t Use the @import Command
	Speed Up Table Layouts
	Avoid CSS Filters and Expressions in IE
	Use Shorthand Values
	Colors
	Margins and padding
	Borders
	Backgrounds
	Fonts
	Lists

	Use the CSS Sprite Technique
	Avoid Inefficient CSS Selectors

	Tweaking Your Images for Performance
	Understand Image File Formats
	GIF Format
	JpeG Format
	pNG Format

	Optimize PNG Images
	Don’t Forget the Favicon

	Tweaking Your JavaScript for Performance
	Shrink Your JavaScript File Using Dojo ShrinkSafe
	Access JavaScript Libraries Through CDNs
	Timing Is Everything
	Boost Core JavaScript Performance
	Use a Memoizer
	Use efficient String Concatenation
	Use regular expressions
	Loop Faster and More efficiently
	Coming Soon: Background Web Worker processes

	Improve Ajax Performance
	Use JSON Format for responses
	Use JSONp with the <script> tag
	Consolidate Server requests and responses

	Improve DOM Performance
	Minimize DOM access
	Use DocumentFragment Objects
	plug Memory Leaks
	Use event Delegates
	Change Class, Not Style, When Updating CSS
	Duplicate existing Nodes rather than Create New Ones
	append elements to the page as htML Strings

	Summary

	Smoke and Mirrors: perceived responsiveness
	Providing Prompt Visual Feedback
	Time It Right
	Use CSS Pseudo-Classes on Hyperlinks
	Let the User Know the Form Is Being Submitted
	Change the Mouse Pointer
	Use a Web 2.0–Style Animated Indicator
	Show a Progress Bar

	Handling LongRunning Scripts
	Divide Long-Running Scripts into Chunks
	Use a Timer to Run Code Blocks Multiple Times

	Anticipating Your Site Visitors’ Needs
	Preload Content
	Load Navigation Levels Efficiently
	Catch Mouse Clicks Early

	Summary

	Beautiful Typography
	The Challenge
	The Basic Anatomy of a Font
	Using Static Images for Text
	Generating Images for Text Dynamically
	Using CSS to Embed Font Files Directly
	CSS Web Fonts
	Problems with embedded Font Files

	Having the Server Generate Text Images
	Dynamic Image Generation in PhP
	Dynamic Image Generation in ASP.NeT (C#)
	Dynamic Image Generation in Java/JSP
	extending the ServerScript Code Routines

	Generating Text in Custom Typefaces Using Flash
	Generating Text Using Vector Graphics

	Using Reusable Custom Font Components
	Text2PNG
	Sample Text2PNG Usage
	Replacing a Single element
	Replacing All Content Within a Specific Named Tag
	Replacing the Contents of All Child elements
	Applying extra Text Formatting with Text2PNG
	Text2PNG Appraisal

	Scalable Inman Flash Replacement
	Sample sIFR Usage
	Applying extra Text Formatting with sIFR
	sIFR Appraisal

	Facelift Image Replacement
	Sample FLIR Usage
	FLIR Appraisal

	Typeface.js
	Sample Typeface.js Usage
	Typeface.js Appraisal

	Summary

	Multimedia playback
	Handling Accessibility
	Using Reusable Audio Playback Components
	The SoundManager Component
	the SoundManager Feature Set
	SoundManager appraisal

	Playing Audio Files Without Flash

	Using Reusable Video Playback Components
	YouTube Chromeless Player
	the SWFObject Component
	Youtube Chromeless player Implementation
	Youtube Chromeless player appraisal

	JW FLV Player
	JW FLV player Implementation
	JW FLV player Feature Set
	JW FLV player appraisal

	The Future: Audio and Video in HTML 5
	The <audio> and <video> Tags
	JavaScript API
	Current Adoption Level

	Summary

	Form Controls
	Customizing Existing Form Controls
	Buttons
	Button Style Customization
	an alternative to Imaget ype Form Buttons

	Text Fields
	a NumbersOnly text Field
	an e-Mail address Field

	File Upload Controls

	Adding New Types of Form Controls
	A Calendar Widget for Date Selection
	Creating Utility Methods for Dates
	Building the Calendar
	testing the Calendar Control

	Slider Control
	Building the Slider
	testing the Slider Control

	Using Reusable Form Components
	SWFUpload: Multiple File Uploads with Progress Bars
	SWFUpload Sample Usage
	SWFUpload appraisal

	TinyMCE: Rich Text Editing
	tinyMCe Sample Usage
	tinyMCe Feature Set
	tinyMCe appraisal

	Validating Forms
	Summary

	Offline Storage—When the Lights Go Out
	Using Cookies to Store Data
	Creating Cookies
	The Downside of Cookies

	Using Internet Explorer’s Data Store
	Introducing the Data Storage APIs
	The Local Storage API
	Mozilla’s Global Storage API
	Client-Side Database Storage API

	Storing Data Using Flash Shared Objects
	Creating a CrossBrowser Local Data Storage API
	Using a Reusable Offline Storage Component
	Summary

	Binary ajax
	Plain Text Files vs. Binary Files
	Reading Binary Files with Ajax
	Extracting Image Data from Photo Files
	Understanding the EXIF Format
	the JpeG and eXIF headers
	Image File Directories and tags

	Reading EXIF Data Using JavaScript
	Displaying EXIF Data from a File

	Summary

	Drawing in the Browser
	Creating Scalable Vector Graphics
	Creating SVG Image Files
	Specifying SVG Within HTML
	Specifying SVG Through JavaScript

	Drawing with Vector Markup Language
	Building Dynamic Graphs with a Reusable Drawing Library
	Using the HTML 5 <canvas> Tag
	Summary

	accessibility in rich Internet applications
	Whose Needs Are We Meeting?
	Users Using Assistive Technology
	Users on Mobile Devices
	Users Without a Mouse
	Accessibility for All

	Proper Navigation with the Back and Forward Buttons
	Device-Independent JavaScript
	Device-Independent Events
	Device-Independent Event Delegation
	Updated Content Alerts and Focus

	Web Accessibility Initiative: Accessible Rich Internet Applications (WAI-ARIA)
	Roles
	States and Properties
	Focus Management
	Keyboard Interaction with ARIA Widgets
	WAI-ARIA Examples
	Marking Up page Structure Using roles, States, and properties
	Dynamically Loading Content via ajax
	Making a progress Bar More accessible

	Validation
	Testing

	Summary

	Index

