

Quick Reference Library

JavaScript Quick Reference

Copyright 1999-2002 by Infinite Software Solutions, Inc. All rights reserved.

Trademark Information.

Welcome to the DevGuru JavaScript Quick Reference guide. This is an extensive 214 page reference source that
explains and gives comprehensive, working examples of code in a definitive manner for the JavaScript language (and
hence, for the ECMAScript and JScript languages). All elements of the language are covered, including the events,
functions, methods, objects, operators, properties, statements, and values.

The JavaScript language was developed by the Netscape Communications Corporation and is a trademarked name. It is
a cross-platform, object-based scripting language that was originally designed for use in Netscape Navigator. Indeed,
versions 2.0, and later, of Navigator can interpret JavaScript statements that are embedded within HTML code. When a
request is made to see a page, the HTML code that defines the requested page along with the embedded JavaScript
statements, are sent by the server to the client. Navigator interprets the HTML document and executes the JavaScript
code. The resultant page is displayed for the client. It is important to understand that this interpretation occurs on the
client-side rather than the server-side.

After the success of JavaScript in Navigator 2.0, the Microsoft Corporation was quick to create a clone of JavaScript,
called JScript, which is a trademarked name, that is designed to run inside the Microsoft Internet Explorer. In truth, except
for a few minor differences, JScript is essentially a carbon copy of JavaScript. As a consequence, this DevGuru
JavaScript Quick Reference will be of value to both JavaScript and JScript users.

The latest versions of JavaScript and JScript are compliant with the European Computer Manufacturing Association's
ECMAScript Language Specification (ECMA-262 standard, for short). Note that the name for this ECMA-262 language is
ECMAScript. However, Netscape will continue to use the name, JavaScript and, likewise, Microsoft will continue to use
the name, JScript. It is important to understand that the ECMA-262 standards sets minimum compatibility requirements.
You should expect current and future versions of both JavaScript and JScript to also contain additional proprietary
features, beyond the minimum requirements, designed to woo the developer to favor one language over the other.
Fortunately, both Microsoft and Netscape have promised to submit new features to ECMA for inclusion in the evolving
ECMA-262 standard. Many older browsers are, of course, still very happily utilizing older, non-compliant versions of these
scripting languages.

JavaScript is a simple to comprehend, easy to use, general purpose scripting language. When used in conjunction with a
Web browser's Document Object Model (DOM), it can produce powerful dynamic HTML browser-based applications
which also can feature animation and sound.

+ (addition)
++ (increment)
- (subtraction)
* (multiplication)
-- (decrement)
/ (division)
\ (escaped characters)
% (modulus)
= (equal)
& (and)
| (or)
^ (xor)
~ (not)
<< (left shift)
>> (right shift)
>>> (zero-fill)
== (equal to)
!= (not equal)
=== (strict equal)
!== (strict not)
> (greater than)
>= (gt or equal)
< (lesser than)
<= (lt or equal)
&& (and)
|| (or)
! (not)
?: (conditional)
, (comma)
+ (concatenate)
$1-$9 (regular expression)
$
$*
$&
$+
$`
$'
above
abs
acos
action
alert
alinkColor
anchor
 Object
 String
anchors
appCodeName
Applet
applets
apply
appName
appVersion
arguments
arguments.callee

enableExternalCapture
encoding
escape
eval
 Function
 Method
Event
exec
exp
export
fgColor
FileUpload
find
floor
focus
 Button
 Checkbox
 FileUpload
 Password
 Radio
 Reset
 Select
 Submit
 Text
 Textarea
 Window
For
for...in
form
 Button
 Checkbox
 Document
 FileUpload
 Hidden
 Object
 Password
 Radio
 Reset
 Select
 Submit
 Text
 TextArea
formatting
formName
forms
forward
 History
 Window
Frame
frames
fromCharCode
function
 Object
 Statement
getDate

log
LOG10E
LOG2E
lowsrc
match
Math
max
MAX_VALUE
menubar
method
mimeTypes
min
MIN_VALUE
modifiers
moveAbove
moveBelow
moveBy
 Layer
 Window
moveTo
 Layer
 Window
moveToAbsolute
multiline
name
 Button
 Checkbox
 FileUpload
 Form
 Hidden
 Image
 Password
 Radio
 Reset
 Select
 Submit
 Text
 Textarea
 Window
NaN
 Number
 Primitive Value
navigator
NEGATIVE_INFINITY
new
next
number
 Function
 Object
onAbort
onBlur
onChange
onClick
onDblClick
onDragDrop

Select Method
 Password
 Text
 Textarea
Select Object
selected
selectedIndex
self
setDate
setFullYear
setHours
setInterval
setMilliseconds
setMinutes
setMonth
setSeconds
setTime
setTimeout
setUTCDate
setUTCFullYear
setUTCHours
setUTCMilliseconds
setUTCMinutes
setUTCMonth
setUTCSeconds
shift
siblingAbove
siblingBelow
sin
slice
 Array
 String
sort
source
special characters (RegExp)
special operators
splice
split
sqrt
SQRT1_2
SQRT2
src
 Image
 Layer
status
statusbar
stop
string
 Object
 Function
 Method
submit
 Form
 Object
substr

arguments.caller
arguments.length
arithmetic operators
arity
Array
asin
assignment operator
atan
atan2
availHeight
availWidth
back
 History
 Window
background
below
bgColor
 Document
 Layer
bitwise operators
blur
 Button
 Checkbox
 FileUpload
 Password
 Radio
 Reset
 Select
 Submit
 Text
 Textarea
 Window
Boolean
border
break
Button
call
captureEvents
 Document
 Layer
 Window
ceil
charAt
charCodeAt
Checkbox
checked
 Object
 Radio
clearInterval
clearTimeout
click
 Button
 Checkbox
 FileUpload
 Radio
 Reset
 Submit
clip.bottom

getDay
getFullYear
getHours
getMilliseconds
getMinutes
getMonth
getSeconds
getSelection
getTime
getTimezoneOffset
getUTCDate
getUTCDay
getUTCFullYear
getUTCHours
getUTCMilliseconds
getUTCMinutes
getUTCMonth
getUTCSeconds
global
go
handleEvent
 Button
 Checkbox
 Document
 FileUpload
 Form
 Image
 Layer
 Link
 Password
 Radio
 Reset
 Select
 Submit
 Text
 Textarea
 Window
hash
 Link
 Location
height
 Event
 Image
 Screen
Hidden
history
 Object
 Window
home
host
 Link
 Location
hostname
 Link
 Location
href
 Link
 Location

onFocus
onKeyDown
onKeyPress
onKeyUp
onload
onMouseDown
onMouseMove
onMouseOut
onMouseOver
onMouseUp
onMove
onReset
onResize
onSelect
onSubmit
onUnload
open
 Document
 Window
opener
options
outerheight
outerwidth
pageX
 Event
 Layer
pageY
 Event
 Layer
pageXoffset
pageYoffset
parent
parentLayer
parse
parseFloat
parseInt
Password
pathname
 Link
 Location
personalbar
PI
pixelDepth
platform
plugins
 Document
 Navigator
plugins.refresh
pop
port
 Link
 Location
POSITIVE_INFINITY
pow
preference
previous
print
prompt

substring
switch
taint
taintEnabled
tan
target
 Event
 Form
 Link
test
text
 Link
 Object
 Option
Textarea
this
throw
title
toGMTString
toLocaleString
toLowerCase
toolbar
top
 Layer
 Window
toSource
 Array
 Boolean
 Date
 Function
 Number
 Object
 RegExp
 String
toString
 Array
 Boolean
 Date
 Function
 Number
 Object
 RegExp
 String
toUpperCase
toUTCString
try...catch
type
 Button
 Checkbox
 Event
 FileUpload
 Hidden
 Password
 Radio
 Reset
 Select
 Submit
 Text

clip.height
clip.left
clip.right
clip.top
clip.width
close
 Document
 Window
closed
colorDepth
comment
comparison operators
compile
complete
concat
 Array
 String
confirm
constructor
 Array
 Boolean
 Date
 Function
 Number
 Object
 RegExp
 String
continue
cookie
cos
current
data
Date
defaultChecked
 Checkbox
 Radio
defaultSelected
defaultStatus
defaultValue
 Password
 Text
 Textarea
delete
disableExternalCapture
do...while
document
 Layer
 Object
 Window
domain
E
elements
embeds

hspace
If...Else
ignoreCase
Image
images
import
index
indexOf
Infinity
innerHeight
innerWidth
input
 Array
 RegExp
isFinite
isNaN
javaEnabled
join
label
language
lastIndex
lastIndexOf
lastMatch
lastModified
lastParen
Layer
layers
layerX
layerY
leftContext
length
 Array
 Form
 Function
 History
 Select
 String
 Window
link
 Object
 String
linkColor
links
LN10
LN2
load
location
 Object
 Window
locationbar

protocol
 Link
 Location
prototype
 Array
 Boolean
 Date
 Function
 Number
 Object
 RegExp
push
Radio
random
referrer
RegExp
releaseEvents
 Document
 Layer
 Window
reload
replace
 Location
 String
reset
 Form
 Object
resizeBy
 Layer
 Window
resizeTo
 Layer
 Window
return
reverse
rightContext
round
routeEvent
 Document
 Layer
 Window
screen
screenX
screenY
scroll
scrollbars
scrollBy
scrollTo search
 Link
 Location
 String

 Textarea
typeof
Undefined
unescape
unshift
untaint
unwatch
URL
userAgent
UTC
value
 Button
 Checkbox
 FileUpload
 Hidden
 Option
 Password
 Radio
 Reset
 Submit
 Text
 Textarea
valueOf
 Array
 Boolean
 Date
 Function
 Number
 Object
 RegExp
 String
var
visibility
vlinkColor
void
vspace
watch
which
while
width
 Event
 Image
 Screen
window
with
write
writeln
x
y
zIndex

OPERATORS: + ++ - -- * / %

JavaScript contains the standard arithmetic operators plus ones for modulus, increment,
decrement and unary negation.

+

This is the standard addition operator and returns the sum of two numerical values (either
literals or variables):

Code:
x = a + 6;

++

This is the increment operator and is used to increment (add one to) its operand. The position
of the operator in relation to its operand determines whether the increment takes place before
or after returning a value. If it is placed after the operand, then it returns the value before
incrementing as in the following example which, assuming 'a' to be 5, sets 'x' to 5 and then
increments 'a' to 6:

Code:
x = a++;

...whereas, if the operator is placed before the operand, 'a' of the above example will first be
incremented to 6, and then the value 6 will be assigned to 'x':

Code:
x = ++a;

-

This is the standard subtraction operator and it subtracts one number from another:

Code:
x = a - 6;

This is also the unary negation operator which precedes and negates its operand. In the
following example with 'a' being 6, the value -6 is assigned to the variable 'x' while 'a' retains
the value 6:

Code:
x = -a;

--

This is the decrement operator which decrements (deducts one from) its operand. As with the
increment operator, the position of the decrement operator in relation to its operand determines
whether the decrement takes place before or after the assignment operation. If it is placed after
the operand, then a value is returned before decrementing, as in the next example which,
assuming 'a' to be 6, assigns 6 to the variable 'x' and then decrements 'a' to 5:

Code:

x = a--;

...while, if the decrement operator is placed before its operand, the decrement takes place
before the assignment. Assuming 'a' to be 6, this next example decrements 'a' to 5 and then
sets the variable 'x' to 5:

Code:
x = --a;

*

This is the standard multiplication operator and it returns the product of two numerical values
(either literals or variables):

Code:
x = a * 7;

/ This is the standard division operator which divides one number by another:

Code:
x = a / 7;

%

This is the modulus operator which returns the integer remainder of dividing the preceding
operand by the one following it. The next example returns the value 2 to the variable 'x':

Code:
x = 9 % 7;

Operator: \ (backslash inline or escaped characters)

escape(string)

The \ (backslash) is used to insert apostrophes, carriage returns, quotes, tabs, and other
special characters inside a string.

For example, in JavaScript, the start and stop of a string is delimited with either single or
double quotes. However, if the string contains single and/or double quotes, you have problems.

Consider the string, "My favorite rose is the "Peach Delight.""

JavasScript will chop the output to, My favorite rose is the

Fortunately, this has a very simple solution. All you have to do is to place a backslash \ before
each double quote in "Peach Delight". This turns each \" into a string literal.

The string is becomes, "My favorite rose is the \"Peach Delight\"."

JavasScript will now output, My favorite rose is the "Peach Delight."

This same concept is used with a variety of other characters. These backslash pairs are
refered to as inline or escaped characters.

Code:
\' single quote

\" double quote

\\ backslash

\b backspace

\f form feed

\n new line

\r carriage return

\t tab

OPERATORS: =

The basic assignment operator is the equal sign, which assigns the value (literal or variable) on
its right to the variable on its left:

Code:
x = a;

The assignment operator can also be combined with a variety of other operators to provide
shorthand versions of standard operations. It combines with the arithmetic operators +, -, *, /
and % to give the following shorthand versions:

a += b instead of a = a + b
a -= b instead of a = a - b
a *= b instead of a = a * b
a /= b instead of a = a / b
a %= b instead of a = a % b

It also combines with the following bitwise operators:

a <<= b instead of a = a << b
a >>= b instead of a = a >> b
a >>>= b instead of a = a >>> b
a &= b instead of a = a & b
a ^= b instead of a = a ^ b
a |= b instead of a = a | b

NOTE:

If the operand to the left of the equal sign itself contains an assignment operator, then the
above shorthand statements won't work. Instead you must use the longer version of the
statement.

OPERATORS: & | ^ ~ << >> >>>

Bitwise operators perform logical and shift operations. They work by treating their operands as
a series of 32 bits and performing their operations on them at this bit level. However, the return
value is a decimal format number.

The following examples of bitwise logical operators assume the variable 'a' to be 13 (binary
1101) and 'b' to be 9 (binary 1001)

&

This is the bitwise AND operator which returns a 1 for each bit position where the
corresponding bits of both its operands are 1. The following code would return 9 (1001):

Code:
result = a & b;

|

This is the bitwise OR operator and returns a one for each bit position where one or both of the
corresponding bits of its operands is a one. This example would return 13 (1101):

Code:
result = a | b;

^ This is the bitwise XOR operator, which returns a one for each position where one (not both)
of the corresponding bits of its operands is a one. The next example returns 4 (0100):

Code:
result = a ^ b;

~

This is the bitwise NOT operator and it works by converting each bit of its operand to its
opposite. This example returns -14:

Code:
result = ~a;

The following bitwise operators perform shift operations. In the examples the variable 'a' is
assumed to be 13 (binary 1101) and the variable 'b' 2 (binary 10).

<<

This is the left shift operator and it works by shifting the digits of the binary representation of
the first operand to the left by the number of places specified by the second operand. The
spaces created to the right are filled in by zeros, and any digits falling off the left are discarded.
The following code returns 52 as the binary of 13 (1101) is shifted two places to the left giving
110100:

Code:
result = a << b;

>>

This is the sign-propagating right shift operator which shifts the digits of the binary
representation of the first operand to the right by the number of places specified by the second
operand, discarding any shifted off to the right. The copies of the leftmost bit are added on from
the left, thereby preserving the sign of the number. This next example returns 3 (11) as the two
right-most bit of 13 (1101) are shifted off to the right and discarded:

Code:
result = a >> b;

Note that if 'a' were -13 in the above example, the code would return -4 as the sign is
preserved.

>>>

This is the zero-fill right shift operator which shifts the binary representation of the first operand
to the right by the number of places specified by the second operand. Bits shifted off to the
right are discarded and zeroes are added on to the left. With a positive number you would get
the same result as with the sign-propagating right shift operator, but negative numbers lose
their sign becoming positive as in the next example, which (assuming 'a' to be -13) would
return 1073741820:

Code:
result = a >>> b;

OPERATORS: == != === !== > >= < <=

A comparison operator compares two operands and returns a Boolean value (true or false) as
to the validity of the comparison. Operands can be of numeric or string type.

== This is the equal operator and returns a boolean true if both the operands are equal.
JavaScript will attempt to convert different data types to the same type in order to make the
comparison. Assuming 'a' to be 2 and 'b' to be 4, the following examples will return a value of
true:

a == 2
a == "2"
2 == '2'

!=

This is the not equal operator which returns a Boolean true if both the operands are not equal.
Javascript attempts to convert different data types to the same type before making the
comparison. The following examples return a Boolean true:

a != b
a != 4
a != "2"

=== This is the strict equal operator and only returns a Boolean true if both the operands are
equal and of the same type. These next examples return true:

a === 2
b === 4

!==

This is the strict not equal operator and only returns a value of true if both the operands are not
equal and/or not of the same type. The following examples return a Boolean true:

a !== b
a !== "2"
4 !== '4'

>

This is the greater than operator and returns a value of true if the left operand is greater than
the right.:

a > 1
b > a

>= This is the greater than or equal operator, which returns true if the first operand is greater
than or equal to the second. The following examples return true:

a >= 1
a >= 2
b >= a

<

This is the less than operator and returns true if the left operand is less than the right:

a < 3
a < b

<= This is the less than or equal operator and returns true if the first operand is less than or
equal to the second. These next examples all return true:

a <= 2
a <= 3
a <= b

OPERATORS: && || !

The logical operators are generally used with Boolean values and, when they are, they return a
Boolean value. However, both && and || actually return the value of one of their operands, so if
the relevent operand is not a Boolean value, the operator may return a non-Boolean value.

&&

This is the logical AND operator, which returns a Boolean true if both the operands are true.
Logically it follows that if the first operand is false, then the whole expression is false, and this
is how the operator works; It first evaluates the left hand operand, and if this returns false then,
without going any further, it returns false for the whole expression. Otherwise it returns the
value of the second operand: true or false for a Boolean value, or the actual value itself if non-
Boolean. Assuming 'a' to be 3, 'b' to be 5, and 'c' to be 3, the following examples all return true:

if((a == c) && (b == 5))
x = "bread" && (c == 3)

...while the following return 'cheese':

x = (b > c) && "cheese"
x = "bread" && "cheese"

||

This is the logical OR operator and it returns a value of true if one or both of the operands is
true. It works by first evaluating the left-hand operand and, if this is true, disregarding the right-
hand one and returning true for the whole expression. If, however, the left-hand operand is
false, then it returns the value of the right-hand operand: true or false if Boolean, or else the
value itself. These next examples both return true:

if((a == c) || (b == 9))
x = (a > b) || (c == 3)

...while this one returns 'cheese':

x = (a > b) || "cheese"

If, however, the first operand is not a Boolean value, the OR operator returns the value of the
first operand whether the second is true or not; in the next example 'bread':

x = "bread" || (c == 3)

!

This is the logical NOT operator which returns false if its single operand can be converted to
true, or if it is a non-Boolean value:

x = !(a == c)
x = !"cheese"

...and true if its operand can be converted to false:

x = !(a > b)

OPERATORS: ?: , delete new this typeof void

?:

This is a conditional operator that takes three operands and is used to replace simple if
statements. The first operand is a condition that evaluates to true or false, the second is an
expression of any type to be returned if the condition is true, and third is an expression of any
type to be returned if the condition is false. The following code displays one of two messages
depending on the value of the object property 'percent_proof':

Code:
with(beer)
 document.write("This beer is " + ((percent_proof < 5) ? "mild" : "strong"));

,

This is the comma operator which is most often used to include multiple expressions where
only one is required, particularly in a for loop. It evaluates both its operands and returns the
value of the second. The following code uses a two-dimensional array of 3 by 3 elements and
initializes two counters (one for each dimension) incrementing them both, which results in a
display of the left-to-right diagonal values:

Code:
for(var i=0, j=0; i<3; i++, j++)
 document.write(a[i][j] + "
");

...while using the comma operator inside the square brackets of the next example causes the
code to display all the elements of the array one row at a time:

Code:
for(var i=0, j=0; i<3; i++, j++)
 document.write(a[i, j] + "
");

delete

The delete operator is used to delete an object, an object's property or a specified element in
an array, returning true if the operation is possible, and false if not. With the defined object
'fruit' below, the following delete operations are possible:

Code:
fruit = new Object;
fruit.name = 'apple';
fruit.color = 'green';
fruit.size = 'large';

delete fruit.size;

with(fruit)
 delete color;

delete fruit;

NOTE:

To delete an object's property, you must precede that property's name with the name of the
object, unless it's used in a with statement.

The delete operator can also be used to delete an element of an array. This does not affect the
length of the array or any of the other elements but changes the deleted element to undefined.
The following example creates an array called 'fruit' and then deletes element #2 (orange):

Code:
fruit = new Array ("apple", "pear", "orange", "cherry", "grape");
delete fruit[2];

new

The new operator can be used to create an instance of a user-defined object type or of one of
the built-in object types that has a constructor function. To create a user-defined object type
you must first define it by writing a function that specifies its name, properties and methods.
For example, the following function creates an object for books with properties for title,
category and author:

Code:
function book(title, category, author)
{
 this.title = title
 this.category = category
 this.author = author
}

You can than create an instance of the object as in the following example which assigns the
values "The Thing", "horror" and "John Lynch" to the respective properties:

Code:
mybook = new book("The Thing", "horror", "John Lynch")

The property of an object can even be another object. You could, for example, create an object
for authors and use it in the above example of the 'book' object. Again you would first define it
by writing a function, and then you could create an instance of it for "John Lynch" as follows:

Code:
function author(name, real_name, age)
{
 this.name = name
 this.real_name = real_name
 this.age = age
}
author1 = new author("John Lynch", "Charlie Schwarz", 43)

Now, as long as the 'author' object and the relevent instance of it have already been defined,
the 'author' property in the 'book' object will refer to it, and you can display, say, the age of the
author of 'mybook' as follows:

Code:
document.write(mybook.author.age)

You can also add a property to any instance of an object as in the next example which adds

the property 'publisher' to the 'mybook' object and assigns it the value "Centurion Books":

Code:
mybook.publisher = "Centurion Books"

If, however, you wanted to add a property to a previously defined object type (and, therefore,
all instances of it) you would have to use the prototype property. This next example adds the
property 'publisher' to the 'book' object type, and then assigns the value 'Centurion Books' to
one particular instance of it:

Code:
book.prototype.publisher = null
mybook.publisher = "Centurion Books"

this

The keyword this is used to refer to the current object. In a method, it usually refers to the
calling object. In the following example the code first creates a function DescribeAge that takes
as its parameter an object, and returns one of two text values depending on the value of that
same object's Year property. Then another object called Car is created whose third property
Description is the value returned by the DescribeAge function. The keyword this is used as the
parameter of the DescribeAge function to refer to whichever object is calling it, as seen in the
final bit of code which creates a specific instance of the Car object whose Description property
will now contain the string "Old-fashioned":

Code:
function describeAge(obj)
{
 if(obj.year < 1996)
 return "Old-fashioned"
 else
 return "Good-as-new"
}

function car(make, year, description)
{this.make = make, this.year = year, this.description = describeAge(this)}

myCar = new car("Ford", "1993", describeAge(this))

typeof

The typeof operator returns the type of an unevaluated operand which can be a number,
string, variable, object or keyword. It can be used with or without brackets as in the following
examples of a numeric literal and the variable 'age' being 60:

typeof(age) returns number
typeof 33 returns number

The following values are returned for various types of data:

a number returns 'number';
a string returns 'string';
the keyword true returns 'boolean';
the keyword null returns 'object';
methods, functions and predefined objects return 'function';

a variable returns the type of the data assigned to it;
a property returns the type of its value;

void

The void operator evaluates an expression without returning a value. Although the use of
brackets after it is optional, it is good style to use them. The following example creates a
hyperlink on the word "green" which, when clicked, changes the background color to light
green:

Code:
Sam turned green.

STATEMENT: if...else

if (condition) {statements1} [else {statements2}]

The if...else statement executes one set of statements if a specified condition is true, and
another if it is false.

The following example tests the result of a function and displays one of two messages
depending on whether the result is less than 10 or not:

Code:
if(calcaverage(x,y,z) < 10)
 document.write("The average is less than 10.");
else
 document.write("The average is 10 or more.");

NOTE:

You shouldn't use simple assignment statements such as if(a = b) in a conditional statement.

STATEMENT: For

for ([initial-expression]; [condition]; [increment-expression])
{statements}

The for statement creates a loop consisting of three optional expressions enclosed in brackets
and separated by semicolons, and a block of statements to be executed. The first expression is
used to initialise a counter variable, the second (optional) provides a condition that is evaluated
on each pass through the loop, and the third updates or increments the counter variable.

This example simply counts up from zero for as long as the counter is less than 10:

Code:
for(i=0; i<10; i++)
 document.write(i + ".
");

STATEMENT: with

with

The with statement establishes a default object for a set of statements. If there are any
unqualified names in a set of statements, JavaScript first checks the default object to see if
they exist there as properties of that object; otherwise a local or global variable is used.

In the following example the default object is 'beer' and the code displays one of two messages
depending on the value of the property 'percent_proof':

Code:
with(beer)
{
 if(percent_proof < 5)
 document.write("Call this a strong beer?!");
 else
 document.write("This is what I call a beer!");
}

PROPERTY: Object::constructor

Object.constructor

A constructor property is inherited by all objects from their prototype. It is this fact that allows
you to create a new instance of an object using the new operator. If you display the
constructor property of any object, you see the construction of the function that created it.

For example, assuming the existence of an object called 'Cat', the following code would display
that function:

Code:
document.write(Cat.constructor)

Output:
function Cat(breed, name, age) { this.breed = breed this.name = name
this.age = age }

The constructor property can also be used to compare two objects (including those, such as
documents and forms, that cannot be constructed). This next example compares the 'Sheeba'
object with the 'Cat' object to see if it is an instance of it:

Code:
if(Sheeba.constructor == Cat)
 document.write("This is an instance of 'Cat'.")

OPERATORS: +

+

The + plus string operator is used to concatenate (join together) two or more strings. This
example joins together the three strings 'bread', 'and' and 'cheese' to produce 'bread and
cheese':

document.write("bread " + "and " + "cheese");

...while the next one would, assuming 'x' to contain the string 'honey', return 'milk and honey':

document.write("milk and " + x);

The shorthand assignment operator can also be used to concatenate strings. If the variable 'x'
has the value 'milk and ', then the following code will add the string 'honey' to the value in
variable 'x' producing the new string 'milk and honey':

Code:
var x = 'milk and ';
x += "honey";
document.write(x);

Output:
milk and honey

PROPERTY: RegExp::$1, ..., $9

These are properties containing parenthesized substrings (if any) from a regular expression.
The number of parenthesized substrings is unlimited, but these properties only hold the last
nine. All parenthesized substring, however, can be accessed throught the returned array's
indexes. When used as the second argument of the String.replace method, these properties
do not require RegExp. before them. In the following example, the day and month parts of a
date written in British format are rearranged to American style:

Code:
myRegExp = /(\d{2})\W(\d{2})\W(\d{4})/
dateString = "25/12/1997"
newString = dateString.replace(myRegExp, "$2/$1/$3")
document.write(newString)

Output:
12/25/1997

NOTE:

Because input is static, it is always used as RegExp.input

OBJECT: RegExp

new RegExp("pattern"[, "flags"])

The RegExp object contains the pattern of a regular expression, and is used to match strings
using its methods and properties. The predefined RegExp object has static properties set
whenever a regular expression is used, as well as user-defined ones for individual objects. A
RegExp object can be created in two ways: either by using the constructor function, or with a
literal text format. In both cases you need to specify the text pattern of the regular expression,
and optionally one of the three possible flags: 'g' for a global match, 'i' to ignore case, or 'gi' for
a case-insensitive global match.

The following code creates a regular expression using the constructor function, that matches
an initial letter 'a' irrespective of case:

Code:
myRegExp = new RegExp("^a", "i")

Note that when using the constructor function, you must use quotation marks to indicate
strings. Also, the normal string escape rules apply and you must use a back slash before
special characters as in the following code which creates a regular expression of a tab
character:

Code:
myRegExp = new RegExp("\\t")

Using the literal text format you do not need to use quotation marks. To create a regular
expression consisting of a case-insensitve initial 'a' you could use the following code:

Code:
myRegExp = /^a/i

...and a regular expression consisting of a tab character could be created as follows:

Code:
myRegExp = /\t/

The literal notation of a regular expression provides compilation of it when the expression is
evaluated, and this is used when you know that a regular expression is going to remain
constant. When you know that an expression is going to change, or you don't know what that
expression is because it will be input by a user, you need to use the constructor function
which is compiled at run time. You can, however, compile a regular expression at any time
using the compile method. Each window has its own predefined RegExp object thus ensuring
that different threads of JavaScript execution don't overwrite values of the RegExp object.

For a complete list and description of the special characters that can be used in a regular
expression, see the special characters page.

PROPERTIES

$1, ..., $9 Property
These are properties containing parenthized substrings (if any) from a regular expression.

$ Property
See the input property.

$* Property
See the multiline property.

$& Property
See the lastMatch property.

$+ Property
See the lastParen property.

$` Property
See the leftContext property.

$' Property
See the rightContext property.

constructor Property
This property specifies the function that creates an object's prototype. See the
Object.constructor property.

Syntax: RegExp.constructor

global Property
This property reflects whether the 'g' flag was used to match a regular expression globally in a
string, or just the first occurrence of it. Its value is true if the 'g' flag was used and false if not.
Note that this property is read-only but that calling the compile method does alter it.

Syntax: object.global

ignoreCase Property
This property reflects whether the 'i' flag was used for a case-insensitive match of a regular
expression in a string, returning true if it was and false if not. Note that this property is read-
only but that calling the compile method does alter it.

Syntax: object.ignoreCase

input Property
This property is a string against which a regular expression is matched.

Syntax: RegExp.input

lastIndex Property
This property is an integer that specifies the index at which to start the next match, but is only
set if the regular expression uses the 'g' flag to specify a global search.

Syntax: object.lastIndex

lastMatch Property
This property is the last matched characters. As this property is static, you always use
RegExp.lastMatch.

Syntax: RegExp.lastMatch

lastParen Property
This property contains the last matched parenthesized substring (if any), and as a static
property is always refered to using RegExp.lastParen.

Syntax: RegExp.lastParen

leftContext Property
This property is the substring upto the character most recently matched; i.e. everything that
comes before it, and as a static property, is always used as RegExp.leftContext.

Syntax: RegExp.leftContext

multiline Property
This property reflects whether a search is to be carried out over multiple lines, returning true if
it is, and false if not. Being a static property, you always use RegExp.multiline. When an
event handler is called for a TEXTAREA form element, the browser sets the multiline property
to true. Once the event handler has finished executing, it is reset to false, even if it was set at
true before the event handler was called.

Syntax: RegExp.multiline

prototype Property
This property represents the prototype for this class, and allows you to add your own properties
and methods to all instances of it. See the Function.prototype property.

Syntax: RegExp.prototype

rightContext Property
This property is the substring after the character most recently matched; i.e. everything that
follows it, and as a static property, is always used as RegExp.rightContext.

Syntax: RegExp.rightContext

source Property
This is a read-only property containing the source of the regular expression: i.e. everything
except the forward slashes and any flags. The source property cannot be changed directly,
however calling the compile method does alter it. For example, with the regular expression
rexp = /[^aeiou\s]{2}/g the value of the source property would be [^aeiou\s]{2}.

Syntax: object.source

METHODS

compile Method
This method compiles a regular expression object during execution of a script.

Syntax: object.compile(pattern[, flags])

exec Method
This method executes a search for a match in a specified string, returning a result array.

Syntax: object.exec([str])

 object([str])

test Method
This method tests for a match of a regular expression in a string, returning true if successful,
and false if not.

Syntax: object.test([str])

toSource Method
This method returns the source code of a RegExp object and is usually called internally by
JavaScript. It also overrides the Object.toSource method.

Syntax: object.toSource()

toString Method
This method returns a string representing the RegExp object, and this overrides the
Object.toString method.

Syntax: object.toString()

valueOf Method
This method returns a primitive value for the RegExp object as a string data type, and is
equivalent to the RegExp.toString method. It is usually called internally by JavaScript and
overrides the Object.valueOf method.

Syntax: object.valueOf()

NOTE:

The regExp object also inherits the watch and unwatch methods from the Object object.

Special Characters

The following is a complete list of all the special characters that can be used in a regular
expression. Note that the flags 'g', 'i' and 'gi' can be used after the final slash to specify a
global, case-insensitive or global, case-insensitive search respectively. See the RegExp
object.

\

The backslash is used in two ways. Firstly it is used before any letter of the alphabet when not
used literally, but to indicate a special character. For example, a regular expression consisting
of the letter 't' would be created using /t/, whereas for a tab character you would use /\t/.
Secondly it is used before a special character which you want to use literally e.g. the character
$, which is used to match a character at the end of a line or of input, would become \$ when
used literally.

^

The caret is used for a match at the beginning of a line or of input. For example, with the string
"Association of Carpenters", the regular expression /^A/ would match the initial capital letter 'A'
of Association' but not the initial 'A' of 'Association' in the string "Teachers Association".

$

The dollar sign is used for a match at the end of a line or of input. So, with the string "his cats"
the regular expression /s$/ would match the final letter 's' in 'cats' but not in 'his'.

*

The asterisk is used to match 0 or more occurrences of the preceding character. So, for
example, the regular expression /ators*/ would match the 'ator' of "alligator" and the 'ators' of
"navigators". However, the regular expression /a*/g, where the asterisk follows a single letter,
would match 1 or more occurrences of the letter 'a' throughout the string

+

The plus sign matches one or more occurrences of the preceding character the first time it
appears in a string. As such, it is equivalent to {1,}. For example, the regular expression /e+/
would match the 'e' in 'sped' and the 'e' in 'speed'.

?

The question mark is used to match the preceding character 0 or 1 times. For example, the
regular expression /e?re?/ would match the string "theater" and also the British spelling
"theatre".

.

The decimal point matches any single character except the new line character. So, for
instance, with the string "The cat eats moths" the regular expression /.t/gi would match the
letters 'at' in 'cat', 'at' in 'eats' and 'ot' in 'moths', but not the initial 'T' of 'The'.

(x)

Putting a regular expression inside parens causes it to be matched and remembered. Each
bracketed expression can then be referenced using the index of the resulting array, or by using
the $1, ..., $9 property of the RegExp object.

x|y

This expression matches either x or y, so, for example, the regular expression /hot|cold/ will
match the 'hot' of 'hot potato' and the 'cold' of 'cold potato'.

{n}

This expression matches 'n' occurrences of the preceding character, where 'n' is an integer. So
with the string "the missing snake hisssed" the regular expression /s{2}/g would match both the
'ss' in 'missing' and the first two of the three 's's in 'hisssed'.

{n,}

This expression matches at least n occurrences of the preceding character, where 'n' is a
positive integer. With the string "the missing snake hisssed", the regular expression /s{2,}/g/
would match the 'ss' of 'missing' and the 'sss' of 'hisssed'.

{n,m}

This expression matches at least 'n' and at most 'm' occurrences of the preceding character,
where 'n' and 'm' are positive integers. So, with the string "the missing snake hisssssed", the
regular expression /s{2,4}/g will match the 'ss' of 'missing' and the first four 's's of 'hisssssed'.

[xyz]

This expression matches any one of the set of characters enclosed within the square brackets.
A series of characters can be separated by a hyphen: e.g. you can use [abcde] or [a-e]. With
the string "the black cat", the regular expression /[abc]/g would match the 'b', 'a' and 'c' in
'black' and the 'c' and 'a' in 'cat'.

[^xyz]

This expression matches any character other than those following the caret. A series of
characters can be separated by a hyphen: e.g. you can use [a-e] instead of [abcde]. With the
string "black", the regular expression /[^bla]/ would match the letter 'c'.

[\b]

This expression matches a backspace character.

\b

This expression matches any word boundary such as a space. So, for instance, with the string
"the black cat", the regular expression /\bc/ would match the 'c' in 'cat', not the one in 'black'.

\B

This expression is used to match a non-word boundary. For example, with the string "the black
cat", the regular expression /\Bc/g would match the 'c' in 'black' but not the one in 'cat'.

\cX

This expression matches a control character: i.e. a combination of the contol key <CTRL> and
any other key represented by the 'X'.

\d

This expression matches any digit character, and is equivalent to [0-9]. For example, with the
string "the 4th of July", the regular expression /\d/ would match the character '4'. (The
expression /[0-9]/ would work just the same.)

\D

This expression matches any non-digit character, and is equivalent to [^0-9]. So, with the string
"45X", the regular expression /\D/ would match the letter 'X'. (The expression [^0-9] would work
just as well.

\f

This expression matches a formfeed.

\n

This expression matches a linefeed.

\r

This expression matches a carriage return.

\s

This expression matches any white space character including tab, line feed and form feed. It is
equivalent to [\t\v\f\n\r]. So, for example, with the string "Christmas Day", the expression /\s/
would match the space between the two words.

\S

This expression is the opposite to \s and matches any non-white space character. it is
equivalent to [^ \t\v\f\n\r]. So, with the string "Christmas Day", the expression /\S/ would match
the 'C' of 'Christmas'.

\t

This expression matches a tab character.

\v

This expression matches a vertical tab character.

\w

This expression matches any alpha-numeric character including the underscore, and is
therefore equivalent to [a-zA-Z0-9_]. For example, with the string "O = 2a", the regular
expression /\w/ would match the character '2'.

\W

This expression is the opposite of \w and matches any character other than an alpha-numeric
character or the underscore. It is therefore equivalent to [^a-zA-Z0-9_]. With the string "O =
2a", the expression /\W/ matches the character 'O'.

\n

Where n is a positive integer, this expression refers to a previous parenthesized substring
within a regular expression. (See the (x) expression.) With the string "John, Francis, Bob,
Sherri", the regular expression /[E-H]\w*(,)(\s)\w*\1\2/ would match the substring "Francis, Bob,
". This saves you having to type a complicated substring repeated within a regular expression.

Note that if n represents a number higher than the number of previous parenthesized
substrings, then it is treated as an octal return. See below.

\ooctal

Where o is an octal escape value, this expression allows you to embed ASCII codes into
regular expressions.

\xhex

Where x is an hexadecimal escape value, this expression allows you to embed ASCII codes
into regular expressions.

PROPERTY: RegExp::input

This property is a string against which a regular expression is matched. Input is static and is
therefore always used as RegExp.input. If this property has a value, that value is used by
default as the argument of the exec and test methods, unless another argument is provided.
When no argument is provided with these methods, the script or browser can preset the input
method as follows:

 Where a TEXT form element calls an event handler, it is set to the value of the contained
text.

 Where a TEXTAREA form element calls an event handler, it is set to the value of the
contained text and the multiline property is set to true so that the match can be executed
throughout the text.

 Where a SELECT form element calls an event handler, it is set to the value of the selected
text.

Use the href property to change a link. Where a Link object calls an event handler, it is set to
the value of the text between the <A> tags.

The value of input clears after the event handler completes.

PROPERTY: Link::href

object.href

href is a property of both the Link and the Location objects and is a string specifying the
entire URL, of which all other properties are substrings. If you wish to change a location, you
can safely do so by setting the href property. Assuming a link (stored in the first element of the
links property) to a URL ...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...the following code would display the href property of it:

Code:
document.write(document.links[0].href)

Output:
http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

OBJECT: Link

The Link object is a piece of text, an image or an area of an image that loads a hypertext link
reference into the target window when selected. Area objects are also a type of Link object. A
link can be created either by using the HTML 'A' or 'AREA' tags, or by calling the String.link
method. Each 'A' or 'AREA' tag that has an HREF attribute is placed by the JavaScript engine
in an array in the document.links property. A Link object can then be accessed by indexing
this array. The following code demonstrates the creation of a link to an anchor in the
'Authors.htm' page using the String.link method:

Code:
document.write("AUTHORS".link("Authors.htm#author"))

The exact same link can also be created using HTML as follows:

Code:
AUTHORS

A Link object is a Location object and shares the same properties. When you click a Link
object, the destination document's referrer property then contains the URL of the source page.
A link can also be used to execute JavaScript code rather than to reference a hyperlink. The
following code, for example, simply creates a function to display the message "Hello World!"
which is then called if the user clicks on the 'GREETINGS' link:

Code:
<script language="javascript">
function write_hello()
{
 document.write("Hello World!")
}
</script>
GREETINGS

A full URL takes the following form:

<protocol>//<host>[:<port>]/<pathname>[<hash>][<search>]

PROPERTIES

hash Property
The hash property is a string beginning with a hash (#), that specifies an anchor name in an
HTTP URL.

Syntax: object.hash

host Property
The host property is a string comprising of the hostname and host strings.

Syntax: object.host

hostname Property
The hostname property specifies the server name, subdomain and domain name (or IP
address) of a URL.

Syntax: object.hostname

href Property
The href property is a string specifying the entire URL, and of which all other Link properties
are substrings.

Syntax: object.href

pathname Property
The pathname property is a string portion of a URL specifying how a particular resource can
be accessed.

Syntax: object.pathname

port Property
The port property is a string specifying the communications port that the server uses.

Syntax: object.port

protocol Property
The protocol property is the string at the beginning of a URL, up to and including the first
colon (:), which specifies the method of access to the URL.

Syntax: object.protocol

search Property
The search property is a string beginning with a question mark that specifies any query
information in an HTTP URL.

Syntax: object.search

target Property
The target property is a string specifying the window that displays the contents of a clicked
hyperlink.

Syntax: object.target

text Property
The text property is a string containing the text of a corresponding 'A' tag.

Syntax: object.text

METHODS

handleEvent Method
The HandleEvent method invokes the handler for the specified event.

Syntax: object.handleEvent(event)

EVENT HANDLERS

The Link object has all of the following event handlers, but the Area object can only use the
onDblClick, onMouseOut and onMouseOver event handlers.

onClick EventHandler
The onClick event handler executes javaScript code whenever the user clicks (i.e. when the
mouse button is pressed and released) on a form object.

Syntax: onClick = "myJavaScriptCode"

onDblClick EventHandler
The onDblClick event handler executes JavaScript code whenever the user double clicks on
an object in a form.

Syntax: onDblClick = "myJavaScriptCode"

onKeyDown EventHandler
The onKeyDown event handler is used to execute certain JavaScript code whenever the user
depresses a key.

Syntax: onKeyDown = "myJavaScriptCode"

onKeyPress EventHandler
The onKeyPress event handler executes JavaScript code whenever the user presses or holds
down a key

Syntax: onKeyPress = "myJavaScriptCode"

onKeyUp EventHandler
The onKeyUp event handler executes JavaScript code whenever the user releases a
depressed key.

Syntax: onKeyUp = "myJavaScriptCode"

onMouseDown EventHandler
The onMouseDown event handler executes JavaScript code whenever the user depresses
the mouse button over an area or link.

Syntax: onMouseDown = "myJavaScriptCode"

onMouseOut EventHandler
The onMouseOut event handler executes JavaScript code whenever the mouse pointer
leaves an area or a link within that area or link.

Syntax: onMouseOut = "myJavaScriptCode"

onMouseUp EventHandler
The onMouseUp event handler executes JavaScript code whenever the user releases a
depressed mouse button over an area or link.

Syntax: onMouseUp = "myJavaScriptCode"

onMouseOver EventHandler
The onMouseOver event handler cause JavaScript code to be executed whenever the mouse
pointer leaves an area or a link within an area or link.

Syntax: onMouseOver "myJavaScriptCode"

PROPERTY: Link::hash

object.hash

hash is a property of both the Link and the Location objects and is a string beginning with a
hash (#). It specifies an anchor name in an HTTP URL. Assuming a link (stored in the first
element of the links property) to a URL ...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...the following code would display the hash property of it:

Code:
document.write(document.links[0].hash)

Output:
#local?email=name@otherco.com

NOTE:

Although the hash property can be set at any time, it is safer to set the href property to change
a link.

OBJECT: Location

The Location object is part of a Window object and is accessed through the window.location
property. It contains the complete URL of a given Window object, or, if none is specified, of the
current Window object. All of its properties are strings representing different portions of the
URL, which generally takes the following form:

<protocol>//<host>[:<port>]/<pathname>[<hash>][<search>]

You can create a Location object by simply assigning a URL to the location property of an
object:

Code:
window.location = "file:///C:/Projects"

PROPERTIES

hash Property
The hash property is a string beginning with a hash (#), that specifies an anchor name in an
HTTP URL.

Syntax: location.hash

host Property
The host property is a string comprising of the hostname and port strings.

Syntax: location.host

hostname Property
The hostname property specifies the server name, subdomain and domain name (or IP
address) of a URL.

Syntax: location.hostname

href Property
The href property is a string specifying the entire URL, and of which all other Link properties
are substrings.

Syntax: location.href

pathname Property
The pathname property is a string portion of a URL specifying how a particular resource can
be accessed.

Syntax: location.pathname

port Property
The port property is a string specifying the communications port that the server uses.

Syntax: location.port

protocol Property

The protocol property is the string at the beginning of a URL, up to and including the first
colon (:), which specifies the method of access to the URL.

Syntax: location.protocol

search Property
The search property is a string beginning with a question mark that specifies any query
information in an HTTP URL.

Syntax: location.search

METHODS

reload Method
The reload method forces a reload of the window's current document, i.e. the one contained in
the Location.href property.

Syntax: location.reload([forceGet])

replace Method
The replace method replaces the current History entry with the specified URL. After calling
the replace method, you cannot navigate back to the previous URL using the browser's Back
button.

Syntax: location.replace(URL)

PROPERTY: Location::hash

location.hash

hash is a property of both the Link and the Location objects and is a string beginning with a
hash (#). It specifies an anchor name in an HTTP URL. For example, assuming the following
URL to be your current window...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...you could find out the hash property as follows:

Code:
document.write(location.hash)

Output:
#local?email=name@otherco.com

NOTE:

Although the hash property can be set at any time, it is safer to set the href property to change
a location

PROPERTY: Location::href

location.href

href is a property of both the Link and the Location objects and is a string specifying the
entire URL, of which all other properties are substrings. If you wish to change a location, you
can safely do so by setting the href property. Assuming your current window to be the URL...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...you could find out the href property as follows:

Code:
document.write(location.href)

Output:
http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

PROPERTY: Location::host

location.host

host is a property of both the Link and the Location objects and is a string comprising of the
hostname and port strings. If the port property is the default of 80, then the hostname
property is the same as the host property. Assuming your current window to be the URL...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...you could find out the host property as follows:

Code:
document.write(location.host)

Output:
home.newco.com:80

NOTE:

Although the host property can be set at any time, it is safer to set the href property to change
a location.

PROPERTY: Location::hostname

location.hostname

hostname is a property of both the Link and the Location objects and specifies the server
name, subdomain and domain name (or IP address) of a URL. Assuming your current window
to be the URL...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...you could find out the hostname property as follows:

Code:
document.write(location.hostname)

Output:
home.newco.com

NOTE:

Although the hostname property can be set at any time, it is safer to set the href property to
change a location.

PROPERTY: Location::pathname

location.pathname

pathname is a property of both the Link and the Location objects and is a string portion of a
URL specifying how a particular resource can be accessed. Assuming your current window to
be the URL...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...you could find out the pathname property as follows:

Code:
document.write(location.pathname)

Output:
products/enquiries.htm

NOTE:

Although the pathname property can be set at any time, it is safer to set the href property to
change a location.

PROPERTY: Location::port

location.port

port is a property of both the Link and the Location objects and is a string specifying the
communications port that the server uses. If this is the default of 80, then it is not specified,
with the result that the hostname property will be the same as the host property. Assuming
your current window to be the URL...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...you could find out the port property as follows:

Code:
document.write(location.port)

Output:
80

NOTE:

Although the port property can be set at any time, it is safer to set the href property to change
a location.

PROPERTY: Location::protocol

location.protocol

protocol is a property of both the Link and the Location objects and is the string at the
beginning of a URL, up to and including the first colon (:), which specifies the method of access
to the URL. Assuming your current window to be the URL...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...you could find out the protocol property as follows:

Code:
document.write(location.protocol)

Output:
http:

NOTE:

Although the protocol property can be set at any time, it is safer to set the href property to
change a location.

PROPERTY: Location::search

location.search

search is a property of both the Link and the Location objects and is a string beginning with a
question mark that specifies any query information in an HTTP URL. It contains one or more
pairs of variables and values, separated by ampersands. Assuming your current window to be
the URL...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...you could find out the search property as follows:

Code:
document.write(location.search)

Output:
?email=name@otherco.com

NOTE:

Although the search property can be set at any time, it is safer to set the href property to
change a location.

METHOD: Location::reload

Location.reload([forceGet])

The reload method forces a reload of the window's current document, i.e. the one contained in
the Location.href property. It behaves in exactly the same way as the browser's reload button
which, by default reloads from the cache. If, however, the user has specified that the server be
checked every time for an updated version, then the reload method will do the same. You can
force an unconditional HTTP GET of the document from the server by supplying 'true' for the
parameter, but this should only be done if you believe that disk and memory caches are off or
broken, or you believe the server has an updated version.

In the following example the event handler calls the reload method in response to the clicking
of a button:

Code:
onClick="window.location.reload()"

PROPERTY: Link::host

object.host

host is a property of both the Link and the Location objects and is a string comprising of the
hostname and port strings. If the port property is the default of 80, then the hostname
property is the same as the host property. Assuming a link (stored in the first element of the
links property) to a URL ...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...the following code would display the host property of it:

Code:
document.write(document.links[0].host)

Output:
home.newco.com:80

NOTE:

Although the host property can be set at any time, it is safer to set the href property to change
a link.

PROPERTY: Link::hostname

object.hostname

hostname is a property of both the Link and the Location objects and specifies the server
name, subdomain and domain name (or IP address) of a URL. Assuming a link (stored in the
first element of the links property) to a URL ...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...the following code would display the hostname property of it:

Code:
document.write(document.links[0].hostname)

Output:
home.newco.com

NOTE:

Although the hostname property can be set at any time, it is safer to set the href property to
change a link.

PROPERTY: Link::pathname

object.pathname

Pathname is a property of both the Link and the Location objects and is a string portion of a
URL specifying how a particular resource can be accessed. Assuming a link (stored in the first
element of the links property) to a URL ...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...the following code would display the pathname property of it:

Code:
document.write(document.links[0].pathname)

Output:
products/enquiries.htm

NOTE:

Although the pathname property can be set at any time, it is safer to set the href property to
change a link.

PROPERTY: Link::port

object.port

Port is a property of both the Link and the Location objects and is a string specifying the
communications port that the server uses. If this is the default of 80, then it is not specified,
with the result that the hostname property will be the same as the host property. Assuming a
link (stored in the first element of the links property) to a URL ...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...the following code would display the port property of it:

Code:
document.write(document.links[0].port)

Output:
80

NOTE:

Although the port property can be set at any time, it is safer to set the href property to change
a link.

PROPERTY: Link::protocol

object.protocol

Protocol is a property of both the Link and the Location objects and is the string at the
beginning of a URL, up to and including the first colon (:), which specifies the method of access
to the URL. Assuming a link (stored in the first element of the Links property) to a URL ...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...the following code would display the protocol property of it:

Code:
document.write(document.links[0].protocol)

Output:
http:

NOTE:

Although the protocol property can be set at any time, it is safer to set the href property to
change a link

PROPERTY: Link::search

object.search

Search is a property of both the Link and the Location objects and is a string beginning with a
question mark that specifies any query information in an HTTP URL. It contains one or more
pairs of variables and values, separated by ampersands. Assuming a link (stored in the first
element of the links property) to a URL ...

http://home.newco.com/products/enquiries.htm#local?email=name@otherco.com

...the following code would display the search property of it:

Code:
document.write(document.links[0].search)

Output:
?email=name@otherco.com

NOTE:

Although the search property can be set at any time, it is safer to set the href property to
change a location.

PROPERTY: Link::target

object.target

The target property is a string specifying the name of the window or frame that displays the
contents of a clicked hyperlink. If you provide a name that does not exist, a new window will be
opened. By default this is the target attribute of the <A> or <AREA> tags, but you can override
it by setting the target property. You can do this at any time, but you cannot assign the value of
a JavaScript expression or variable.

EVENT HANDLER: onDblClick

onDblClick = myJavaScriptCode

Event handler for Document, Link.

The onDblClick event handler executes the specified JavaScript code or function on the
occurance of a double click event.

The onDblClick event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.
layerX - the cursor location when the click event occurs.
layerY - the cursor location when the click event occurs.
pageX - the cursor location when the click event occurs.
pageY - the cursor location when the click event occurs.
screenX - the cursor location when the click event occurs.
screenY - the cursor location when the click event occurs.
which - 1 represents a left mouse double-click and 3 a right double-click.
modifiers - lists the modifier keys (shift, alt, ctrl, etc.) held down when the click event occurs.

The following example shows the use of the onDblClick event handler with a document
object. As you can see, this is defined within the document's HTML <BODY> tag.

Code:
<body onDblClick = "document.write('Hello World!')">

NOTE:

Macintosh platforms don't support mouse double-clicks and therefore this event handler is not
implemented.

OBJECT: Document

The Document object provides access to the elements in an HTML page from within your
script. This includes the properties of every form, link and anchor (and, where applicable, any
sub-elements), as well as global Document properties such as background and foreground
colors.

PROPERTIES

alinkColor Property
This property defines the color of an active link. The "colorinfo" argument is a string that can
contain either the hexadecimal definition of the color or it's literal description.

Syntax: document.alinkColor = "colorinfo"

anchors Property
This property is an array containing references to all the named Anchor objects in the current
document.

Syntax: document.anchors["anchorID"]

applets Property
This property is an array containing references to all the Applet objects in the current
document.

Syntax: document.applets["appletID"]

bgColor Property
This property defines a document's background color. The "colorinfo" argument is a string
that can contain either the hexadecimal definition of the color or it's literal description.

Syntax: document.bgColor = "colorinfo"

cookie Property
This property is a string that returns a report detailing all visible and un-expired cookies that are
associated with the specified document.

Syntax: document.cookie [= "expression(s)"]

domain Property
This property sets or returns the domain name of the server from which the document
originated.

Syntax: document.domain = "domaininfo"

embeds Property
This property is an array containing references to all the embedded objects in the current
document.

Syntax: document.embeds["embed_objID"]

fgColor Property
This property defines a document's foreground (text) color. The "colorinfo" argument is a
string that can contain either the hexadecimal definition of the color or it's literal description.

Syntax: document.fgColor = "colorinfo"

formName Property
Every form in a document has a separate document object property, the name of which is
taken from the value asigned to the form with the <FORM NAME = "formID"> tag. Any form in
the document can then be referred to with the syntax below.

Syntax: document."formname"

forms Property
This property is an array containing references to all the Form objects in the current document.

Syntax: document.forms["formID"]

images Property
This property is an array containing references to all the Image objects in the current
document.

Syntax: document.images["imageID"]

lastModified Property
This property returns the date that the document was last modified.

Syntax: document.lastModified

layers Property
This property is an array containing references to all the Layer objects in the current
document.

Syntax: document.layers["layerID"]

linkColor Property
This property defines the color of any hyperlinks in the document. The "colorinfo" argument is
a string that can contain either the hexadecimal definition of the color or it's literal description.

Syntax: document.linkColor = "colorinfo"

links Property
This property is an array containing references to all the Area and Link objects in the current
document.

Syntax: document.links["linkID"]

plugins Property
This property is an array containing references to all the Plugin objects in the current
document.

Syntax: document.plugins["pluginID"]

referrer Property
If a destination document is reached by a user clicking on a Link object in another document
(the referrer), this property returns the referring document's URL.

Syntax: document.referrer

title Property

This property returns the document's name as defined between the <TITLE></TITLE> tags.

Syntax: document.title

URL Property
This property is used to retrieve the document's full URL.

Syntax: document.URL

vlinkColor Property
This property defines the color of any visited links in the document. The "colorinfo" argument
is a string that can contain either the hexadecimal definition of the color or it's literal
description.

Syntax: document.vlinkColor = "colorinfo"

METHODS

captureEvents Method
This method instructs the document to capture and handle all events of a particular type. See
the event object for a list of event types.

Syntax: document.captureEvents(eventType)

close Method
This method closes an output stream previously opened with the document.open method and
forces data collected from any instances of the document.write or document.writeln
methods to be displayed.

Syntax: document.close()

getSelection Method
This method can be used to return the contents of selected text in the current document.

Syntax: document.getSelection()

handleEvent Method
This method calls the handler for the specified event.

Syntax: document.handleEvent(event)

open Method
This method is used to open a stream to collect the output from any write or writeln methods.

Syntax: document.open([mimeType[, replace]])

releaseEvents Method
This method is used to set the document to release any events of the type eventType and
passes them along to objects further down the event heirarchy.

Syntax: document.releaseEvents(eventType)

routeEvent Method
This method is used to send the event specified along the normal event hierarchy.

Syntax: document.routeEvent(event)

write Method
This method is used to write HTML expressions to the specified document.

Syntax: document.write("expression(s)")

writeln Method
This method is identical to the write method detailed above, with the addition of writing a new
line character after any specified expressions.

Syntax: document.writeln("expression(s)")

EVENT HANDLERS

onClick Event handler
This event handler executes some specified JavaScript code on the occurrence of a Click
event (when an element is clicked).

Syntax: document.onClick="myJavaScriptCode"

onDblClick Event handler
This event handler executes some specified JavaScript code on the occurrence of a DblClick
event (when an element is double-clicked).

Syntax: document.onDblClick="myJavaScriptCode"

onKeyDown Event handler
This event handler executes some specified JavaScript code on the occurrence of a KeyDown
event (when a key is depressed).

Syntax: document.onKeyDown="myJavaScriptCode"

onKeyPress Event handler
This event handler executes some specified JavaScript code on the occurrence of a KeyPress
event (when a key is depressed and held down).

Syntax: document.onKeyPress="myJavaScriptCode"

onKeyUp Event handler
This event handler executes some specified JavaScript code on the occurrence of a KeyUp
event (when a key is released).

Syntax: document.onKeyUp="myJavaScriptCode"

onMouseDown Event handler
This event handler executes some specified JavaScript code on the occurrence of a
MouseDown event (when a mouse button is depressed).

Syntax: document.onMouseDown="myJavaScriptCode"

onMouseUp Event handler
This event handler executes some specified JavaScript code on the occurrence of a MouseUp
event (when a mouse button is released).

Syntax: document.onMouseUp="myJavaScriptCode"

OBJECT: Button

document.alinkColor = "colorinfo"

This property defines the color of an active link (defined as after mouse button down, but
before mouse button up). The "colorinfo" argument is a string that can contain either the
hexadecimal definition of the color or its literal description. If you use the hex definition of a
color it must be in the format rrggbb - for example, the hex value for the named color 'forest
green' is '228B22'.

Both lines in the follwing code do exactly the same thing, the first using the hex value of a color
and the second using its name.

Code:
document.alinkColor = "228B22"
document.alinkColor = "forestgreen"

PROPERTY: Document::anchors

document.anchors["anchorID"]

This property is an array containing references to all the named Anchor objects in the current
document. These references are stored in the array in the order in which they are defined in
the source code. The "anchorID" argument is used to access items in the array and this can
either be a string containing the anchor name as defined within the <A> tags in the HTML
source, or an integer (with '0' being the first item in the array).

Both examples below return the same results; the first uses the defined names of the anchors
and the second uses their reference number within the array.

Code:
document.anchors["anchorname1"]
document.anchors["anchorname2"]
document.anchors["anchorname3"]

document.anchors[0]
document.anchors[1]
document.anchors[2]

PROPERTY: Document::applets

document.applets["appletID"]

This property is an array containing references to all the named Applet objects in the current
document. These references are stored in the array in the order in which they are defined in
the source code. The "appletID" argument is used to access items in the array and this can
either be a string containing the applet name as defined within the <APPLET> tags in the
HTML source, or an integer (with '0' being the first item in the array).

Both examples below return the same results; the first uses the defined names of the applets
and the second uses their reference number within the array.

Code:
document.applets["appletname1"]
document.applets["appletname2"]
document.applets["appletname3"]

document.applets[0]
document.applets[1]
document.applets[2]

PROPERTY: Document::bgColor

document.bgColor = "colorinfo"

This property defines a document's background color. The "colorinfo" argument is a string
that can contain either the hexadecimal definition of the color or its literal description. If you use
the hex definition of a color it must be in the format rrggbb - for example, the hex value for the
named color 'forest green' is '228B22'.

Both lines in the follwing code do exactly the same thing, the first using the hex value of a color
and the second using its name.

Code:
document.bgColor = "228B22"
document.bgColor = "forestgreen"

PROPERTY: Document::cookie

document.cookie[= "expression(s)"]

This property is a string that returns a report detailing all visible and un-expired cookies that are
associated with the specified document. The value returned using this method only contains
the name and value attributes of the associated cookies in a single string.

When setting the cookie property, which can be done at any time, the following syntax must be
used:

"name" = "value"; expires = "date"; path = "directory"; domain = "domainName"; secure

The "date" parameter must be in the format as returned by the toGMTString() method of the
Date object. The expires attribute is optional; not setting this will mean that the cookie will
expire when the user shuts down their browser. If set, the cookie survives until the set expiry
date. "domainName" sets the cookie's visibility to a particular domain although this attribute is
rarely use as it defaults to the domain of the carrying document and visibility of the cookie is
normally restricted to this document alone. The path parameter is similar to domain in that it
restricts the cookie's visibilty to the specified directory on the web server. The secure attribute
is less commonly used. It is a Boolean (true or false) that, when true, suggests that the browser
should only make secure (SSL) URL requests when the cookie is sent to the server.

Code:
document.write(document.cookie)

Output:
usr_id=13455; bookmark=products.html

OBJECT: Date

new Date()>

new Date(milliseconds)

new Date(dateString)

new Date(yr_num, mo_num, day_num [, hr_num, min_num,
 sec_num, ms_num])

The Date object allows you to work programatically with dates and times. You create a Date
object using the Date constructor as shown in the syntax above and the available parameters
are as follows:

milliseconds - an integer that represents the number of milliseconds since 01/01/70 00:00:00.

dateString - a string that represents the date in a format that is recognized by the Date.parse
method.

yr_num, mo_num, day_num - an integer that represents the year, month or day of the date.

hr_num, min_num, sec_num, ms_num - an integer that represents the hours, minutes,
seconds and milliseconds.

If you don't supply any of the above parameters, JavaScript creates an object for today's date
according to the time on the local machine. If any arguments are supplied, you have to include
the year, month and day as a minimum, with the time parameters being optional. Note that if
you only supply some arguments, any not supplied are set to 0.

All dates are calculated in milliseconds from 01 January, 1970 00:00:00 Universal Time (UTC)
with a day containing 86,400,000 milliseconds. The range of a Date object relative to
01/01/1970 (UTC) is -100,000,000 to 100,000,000 days and both Universal (UTC) time and
Greenwich Mean Time (GMT) are supported.

The following code uses Date objects to calculate the time remaining, in days, to the start of
the next millennium.

Code:
d = new Date() //today's date
mill=new Date(3000, 00, 01, 00, 00, 00) //Next millennium start date
diff = mill-d //difference in milliseconds
mtg = new String(diff/86400000) //calculate days and convert to string
point=mtg.indexOf(".") //find the decimal point
days=mtg.substring(0,point) //get just the whole days
document.write("There are only " + days + " days remaining to the start of the next
millennium.")

Output:
There are only 365033 days remaining to the start of the next millennium.

PROPERTIES

constructor Property
This property returns a reference to the function that created the Date object's prototype.

Syntax: object.constructor

prototype Property
This property represents the prototype for the object's class and can be used to add properties
and methods to all instances of that class.

Syntax: object.prototype

METHODS

getDate Method
This method returns an integer (between 1 and 31) representing the day of the month for the
specified (local time) date.

Syntax: object.getDate()

getDay Method
This method returns an integer (0 for Sunday thru 6 for Saturday) representing the day of the
week.

Syntax: object.getDay()

getFullYear Method
This method returns an integer representing the year of a specified date. The integer returned
is a four digit number, 1999, for example, and this method is to be prefered over getYear.

Syntax: object.getFullYear()

getHours Method
This method returns an integer between 0 and 23 that represents the hour (local time) for the
specified date.

Syntax: object.getHours()

getMilliseconds Method
This method returns an integer between 0 and 999 that represents the milliseconds (local time)
for the specified date.

Syntax: object.getMilliseconds()

getMinutes Method
This method returns an integer between 0 and 59 that represents the minutes (local time) for
the specified date.

Syntax: object.getMinutes()

getMonth Method
This method returns an integer (0 for January thru 11 for December) that represents the month
for the specified date.

Syntax: object.getMonth()

getSeconds Method
This method returns an integer between 0 and 59 that represents the seconds (local time) for
the specified date.

Syntax: object.getSeconds()

getTime Method
This method returns a numeric value representing the number of milliseconds since midnight
01/01/1970 for the specified date.

Syntax: object.getTime()

getTimezoneOffset Method
This method returns the difference in minutes between local time and Greenwich Mean Time.
This value is not a constant, as you might think, because of the practice of using Daylight
Saving Time.

Syntax: object.getTimezoneOffset()

getUTCDate Method
This method returns an integer between 1 and 31 that represents the day of the month,
according to universal time, for the specified date.

Syntax: object.getUTCDate()

getUTCDay Method
This method returns an integer (0 for Sunday thru 6 for Saturday) that represents the day of the
week, according to universal time, for the specified date.

Syntax: object.getUTCDay()

getUTCFullYear Method
This method returns a four-digit absolute number that represents the year, according to
universal time, for the supplied date.

Syntax: object.getUTCFullYear()

getUTCHours Method
This method returns an integer between 0 and 23 that represents the hours, according to
universal time, in the supplied date.

Syntax: object.getUTCHours()

getUTCMilliseconds Method
This method returns an integer between 0 and 999 that represents the milliseconds, according
to universal time, in the specified date.

Syntax: object.getUTCMilliseconds()

getUTCMinutes Method
This method returns an integer between 0 and 59 that represents the minutes, in universal
time, for the supplied date.

Syntax: object.getUTCMinutes()

getUTCMonth Method
This method returns an integer, 0 for January thru 11 for December, according to universal
time, for the specified date.

Syntax: object.getUTCMonth

getUTCSeconds Method
This method returns an integer between 0 and 59 that represents the seconds, according to

universal time, for the specified date.

Syntax: object.getUTCSeconds()

parse Method
This method returns takes a date string and returns the number of milliseconds since January
01 1970 00:00:00.

Syntax: Date.parsedateString

setDate Method
This method is used to set the day of the month, using an integer from 1 to 31, for the supplied
date according to local time.

Syntax: object.setDate(dateVal)

setFullYear Method
This method is used to set the full year for the supplied date according to local time.

Syntax: object.setFullYear(yearVal [, monthVal, dayVal])

setHours Method
This method is used to set the hours for the supplied date according to local time.

Syntax: object.setHours(hoursVal [, minutesVal, secondsVal, msVal])

setMilliseconds Method
This method is used to set the milliseconds for the supplied date according to local time. The
millisecondsVal parameter expects a number between 0 and 999 athough if this is exceeded,
the setMilliseconds method will automatically increment other values in the Date object, e.g. if
1020 is specified, the seconds value is incremented by one and millisecondsVal is set to 20.

Syntax: object.setMilliseconds(millisecondsVal)

setMinutes Method
This method is used to set the minutes for the supplied date according to local time.

Syntax: object.setMinutes(minutesVal [, secondsVal, msVal])

setMonth Method
This method is used to set the month for the supplied date according to local time.

Syntax: object.setMonth(monthVal [, dayVal])

setSeconds Method
This method is used to set the seconds for the specified date according to local time.

Syntax: object.setSeconds(secondsVal [, msVal)

setTime Method
This method is used to set the time of a Date object according to local time. The timeVal
argument is an integer that represents the number of milliseconds elapsed since 1 January
1970 00:00:00.

Syntax: object.setTime(timeVal)

setUTCDate Method
This method is used to set the day of the month, using an integer from 1 to 31, for the supplied

date according to universal time.

Syntax: object.setUTCDate(dateVal)

setUTCFullYear Method
This method is used to set the full year for the supplied date according to universal time.

Syntax: document.setUTCFullYear(yearVal [, monthVal, dayVal])

setUTCHours Method
This method is used to set the hours for the supplied date according to universal time.

Syntax: object.setUTCHours(hoursVal [, minutesVal, secondsVal, msVal])

setUTCMilliseconds Method
This method is used to set the milliseconds for the supplied date according to universal time.
The millisecondsVal parameter expects a number between 0 and 999 athough if this is
exceeded, the setMilliseconds method will automatically increment other values in the Date
object, e.g. if 1020 is specified, the seconds value is incremented by one and millisecondsVal
is set to 20.

Syntax: object.setUTCMilliseconds(millisecondsVal)

setUTCMinutes Method
This method is used to set the minutes for the supplied date according to universal time.

Syntax: object.setUTCMinutes(minutesVal [, secondsVal, msVal])

setUTCMonth Method
This method is used to set the month for the supplied date according to universal time.

Syntax: object.setUTCMonth(monthVal [, dayVal])

setUTCSeconds Method
This method is used to set the seconds for the specified date according to universal time.

Syntax: object.setUTCSeconds(secondsVal [, msVal)

toGMTString Method
This method converts a local date to Greenwich Mean Time.

Syntax: object.toGMTString()

toLocaleString Method
This method uses the relevant locale's date conventions when converting a date to a string.

Syntax: object.toLocaleString()

toSource Method
This method is used to return the source code that created the specified Date object.

Syntax: object.toSource()

toString Method
This method returns a string that represents the Date object. This method is automatically
called by JavaScript whenever a Date object needs to be displayed as text (as with many of
the other methods of the Date object).

Syntax: object.toString()

toUTCString Method
This method uses the universal time convention when converting a date to a string.

Syntax: object.toUTCString()

UTC Method
This method returns the number of milliseconds from the date in a Date object since January 1,
1970 00:00:00 according to universal time. This is a static method of Date so the format is
always Date.UTC() as opposed to objectName.UTC().

Syntax: Date.UTC(year, month, day [, hours, minutes, seconds, ms])

valueOf Method
This method is used to return a primitive value, as a number data type, of the specified Date
object. This is returned as the number of millisecond since January 1, 1970 00:00:00.

Syntax: object.valueOf()

METHOD: Date::parse

Date.parse(dateString)

This method takes a date string an returns the number of milliseconds since January 01 1970
00:00:00, according to local time. It accepts the standard date syntax, e.g. "Friday, 9 July,
11:10:00 GMT+0130". If a time zone is not specified, this method assumes that the supplied
string is local time.

This is a static method of Date and, subsequently, the syntax is always Date.parse() as
opposed to objectName.parse().

The following code uses the Date.parse method to set the value of the myDate object to that of
the supplied string.

Code:
myDate = new Date()
myDate.setTime(Date.parse("July 3, 1999"))
document.write(myDate)

Output:
Sat Jul 3 00:00:00 UTC+0100 1999

METHOD: Date::setFullYear

object.setFullYear(yearVal [, monthVal, dayVal])

This method is used to set the full year for the supplied date according to local time. If you do
not supply the monthVal and dayVal arguments, JavaScript will use the values returned using
the getMonth and getDay methods. Also, if the supplied argument is outside the range
expected, the setFullYear method will alter the other parameters accordingly (see example
below).

The available parameters are as follows:

yearVal - this value is an integer representing the year, e.g. 1999

monthVal - an integer representing the month (0 for January thru 11 for December)

dayVal - this value is an integer that represents the day of the month (1 thru 31). If you
supply this parameter you also must supply the monthVal.

The following code uses the setFullYear method to change the value of the myDate object and
also demonstrates how this method will adjust the other parameters if a value is supplied that
exceeds the expected range. In this case the dayVal supplied is 35 which causes the
monthVal value to be incremented by 2. This is calculated thus:

35 - 31(maximum expected value for month) = 4 (this increments monthVal by one).

The result is that setFullYear method uses 4 for for the dayVal and increments the monthVal
by one, from 8 to 9.

Code:
myDate = new Date()
document.write(myDate +"
")
myDate.setFullYear(1999, 08, 35)
document.write(myDate)

Output:
Fri Jul 9 12:32:32 UTC+0100 1999
Sat Sep 4 12:32:32 UTC+0100 1999

METHOD: Date::setHours

object.setHours(hoursVal [, minutesVal, secondsVal, msVal])

This method is used to set the hours for the supplied date according to local time. If you do not
supply the minutesVal and secondsVal and msVal arguments, JavaScript will use the values
returned using the getUTCMinutes, getUTCSeconds and getMilliseconds methods. Also, if
the supplied argument is outside the range expected, the setHours method will alter the other
parameters accordingly (see example below).

The available parameters are as follows:

hoursVal - this value is an integer (0 thru 23) representing the hour.

minutesVal - an integer (0 thru 59) representing the minutes.

secondsVal - this value is an integer (0 thru 59) that represents the seconds. If
you supply this parameter you also must supply minutesVal.

msVal - this value is a number between 0 and 999 that represents milliseconds. If this
value is supplied, you must also supply minutesVal and secondsVal.

The following code uses the setHours method to change the value of the myDate object and
also demonstrates how this method will adjust the other parameters if a value is supplied that
exceeds the expected range. In this case the minutesVal supplied is 100 which causes the
hourVal value to be incremented by 1. This is calculated thus:

100 - 60 (maximum expected value for minutes) = 40 (this increments hoursVal by one).

The result of this calculation (40) is then used for the minutesVal parameter.

Code:
myDate = new Date()
document.write(myDate +"
")
myDate.setHours(15, 100)
document.write(myDate)

Output:
Fri Jul 9 13:47:32 UTC+0100 1999
Fri Jul 9 16:40:32 UTC+0100 1999

METHOD: Date::setMinutes

object.setMinutes(minutesVal [, secondsVal, msVal])

This method is used to set the minutesfield for the supplied date according to local time. If you
do not supply the secondsVal and msVal arguments, JavaScript will use the values returned
using the getUTCSeconds and getMilliseconds methods. Also, if the supplied argument is
outside the range expected, the setMinutes method will alter the other parameters accordingly
(see example below).

The available parameters are as follows:

minutesVal - an integer (0 thru 59) representing the minutes.

secondsVal - this value is an integer (0 thru 59) that represents the seconds. If
you supply this parameter you also must supply minutesVal.

msVal - this value is a number between 0 and 999 that represents milliseconds. If this
value is supplied, you must also supply minutesVal and secondsVal.

The following code uses the setMinutes method to change the value of the myDate object and
also demonstrates how this method will adjust the other parameters if a value is supplied that
exceeds the expected range. In this case the secondsVal supplied is 100 which causes the
minutesVal value to be incremented by 1. This is calculated thus:

100 - 60 (maximum expected value for seconds) = 40 (this increments minuteVal by one).

The result of this calculation (40) is then used for the secondsVal parameter.

Code:
myDate = new Date()
document.write(myDate +"
")
myDate.setMinutes(15, 100)
document.write(myDate)

Output:
Fri Jul 9 13:47:32 UTC+0100 1999
Fri Jul 9 13:16:40 UTC+0100 1999

METHOD: Date::setMonth

object.setMonth(monthVal [, dayVal])

This method is used to set the month for the supplied date according to local time. If you do not
supply the dayVal argument, JavaScript will use the value returned using the getDate method.
Also, if the supplied argument is outside the range expected, the setMonth method will alter
the other parameters of the date object accordingly (see example below).

The available parameters are as follows:

monthVal - an integer (0 for January thru 11 for December) representing the month.

dayVal - this value is an integer (1 thru 31) that represents the day of the month.

The following code uses the setMonth method to change the value of the myDate object and
also demonstrates how this method will adjust the other parameters if a value is supplied that
exceeds the expected range. In this case the monthVal supplied is 13 which causes the year
to be incremented by 1. This is calculated thus:

13 - 12 (maximum expected value for seconds) = 1 (this increments the year by one).

The result of this calculation (1 = February) is then used for the monthVal parameter.

Code:
myDate = new Date()
document.write(myDate +"
")
myDate.setMonth(13)
document.write(myDate)

Output:
Fri Jul 9 13:47:32 UTC+0100 1999
Wed Feb 9 13:16:40 UTC+0100 2000

METHOD: Date::setSeconds

object.setSeconds(secondsVal [, msVal])

This method is used to set the seconds for the supplied date according to local time. If you do
not supply the msVal argument, JavaScript will use the value returned using the
getMilliseconds method. Also, if the supplied argument is outside the range expected, the
setSeconds method will alter the other parameters of the date object accordingly (see
example below).

The available parameters are as follows:

secondsVal - an integer (0 thru 59) representing the seconds.

msVal - this value is an integer (1 thru 999) that represents the milliseconds.

The following code uses the setSeconds method to change the value of the myDate object
and also demonstrates how this method will adjust the other parameters if a value is supplied
that exceeds the expected range. In this case the secondsVal supplied is 90 which causes the
minutes to be incremented by 1. This is calculated thus:

90 - 60 (maximum expected value for seconds) = 30 (this increments the minutes by one).

The result of this calculation (30) is then used for the secondsVal parameter.

Code:
myDate = new Date()
document.write(myDate +"
")
myDate.setSeconds(90)
document.write(myDate)

Output:
Fri Jul 9 13:30:20 UTC+0100 1999
Fri Jul 9 13:31:30 UTC+0100 1999

METHOD: Date::setUTCFullYear

object.setUTCFullYear(yearVal [, monthVal, dayVal])

This method is used to set the full year for the supplied date according to universal time. If you
do not supply the monthVal and dayVal arguments, JavaScript will use the values returned
using the getMonth and getDay methods. Also, if the supplied argument is outside the range
expected, the setUTCFullYear method will alter the other parameters accordingly (see
example below).

The available parameters are as follows:

yearVal - this value is an integer representing the year, e.g. 1999

monthVal - an integer representing the month (0 for January thru 11 for December)

dayVal - this value is an integer that represents the day of the month (1 thru 31). If you
supply this parameter you also must supply the monthVal.
The following code uses the setUTCFullYear method to change the value of the myDate
object and also demonstrates how this method will adjust the other parameters if a value is
supplied that exceeds the expected range. In this case the dayVal supplied is 35 which causes
the monthVal value to be incremented by 2. This is calculated thus:

35 - 31(maximum expected value for month) = 4 (this increments monthVal by one).

The result is that setUTCFullYear method uses 4 for for the dayVal and increments the
monthVal by one, from 8 to 9.

Code:
myDate = new Date()
document.write(myDate +"
")
myDate.setUTCFullYear(1999, 08, 35)
document.write(myDate)

Output:
Fri Jul 9 12:32:32 UTC+0100 1999
Sat Sep 4 12:32:32 UTC+0100 1999

METHOD: Date::setUTCHours

object.setUTCHours(hoursVal [, minutesVal, secondsVal, msVal])

This method is used to set the hours for the supplied date according to local time. If you do not
supply the minutesVal and secondsVal and msVal arguments, JavaScript will use the values
returned using the getUTCMinutes, getUTCSeconds and getMilliseconds methods. Also, if
the supplied argument is outside the range expected, the setUTCHours method will alter the
other parameters accordingly (see example below).

The available parameters are as follows:

hoursVal - this value is an integer (0 thru 23) representing the hour.

minutesVal - an integer (0 thru 59) representing the minutes.

secondsVal - this value is an integer (0 thru 59) that represents the seconds. If
you supply this parameter you also must supply minutesVal.

msVal - this value is a number between 0 and 999 that represents milliseconds. If this
value is supplied, you must also supply minutesVal and secondsVal.

The following code uses the setUTCHours method to change the value of the myDate object
and also demonstrates how this method will adjust the other parameters if a value is supplied
that exceeds the expected range. In this case the minutesVal supplied is 100 which causes
the hourVal value to be incremented by 1. This is calculated thus:

100 - 60 (maximum expected value for minutes) = 40 (this increments hoursVal by one).

The result of this calculation (40) is then used for the minutesVal parameter.

Code:
myDate = new Date()
document.write(myDate +"
")
myDate.setUTCHours(15, 100)
document.write(myDate)

Output:
Fri Jul 9 13:47:32 UTC+0100 1999
Fri Jul 9 16:40:32 UTC+0100 1999

METHOD: Date::setUTCMinutes

object.setUTCMinutes(minutesVal [, secondsVal, msVal])

This method is used to set the minutes field for the supplied date according to universal time. If
you do not supply the secondsVal and msVal arguments, JavaScript will use the values
returned using the getUTCSeconds and getMilliseconds methods. Also, if the supplied
argument is outside the range expected, the setUTCMinutes method will alter the other
parameters accordingly (see example below).

The available parameters are as follows:

minutesVal - an integer (0 thru 59) representing the minutes.

secondsVal - this value is an integer (0 thru 59) that represents the seconds. If
you supply this parameter you also must supply minutesVal.

msVal - this value is a number between 0 and 999 that represents milliseconds. If this
value is supplied, you must also supply minutesVal and secondsVal.

The following code uses the setUTCMinutes method to change the value of the myDate object
and also demonstrates how this method will adjust the other parameters if a value is supplied
that exceeds the expected range. In this case the secondsVal supplied is 100 which causes
the minutesVal value to be incremented by 1. This is calculated thus:

100 - 60 (maximum expected value for seconds) = 40 (this increments minuteVal by one).

The result of this calculation (40) is then used for the secondsVal parameter.

Code:
myDate = new Date()
document.write(myDate +"
")
myDate.setUTCMinutes(15, 100)
document.write(myDate)

Output:
Fri Jul 9 13:47:32 UTC+0100 1999
Fri Jul 9 13:16:40 UTC+0100 1999

METHOD: Date::setUTCMonth

object.setUTCMonth(monthVal [, dayVal])

This method is used to set the month for the supplied date according to universal time. If you
do not supply the dayVal argument, JavaScript will use the value returned using the getDate
method. Also, if the supplied argument is outside the range expected, the setUTCMonth
method will alter the other parameters of the date object accordingly (see example below).

The available parameters are as follows:

monthVal - an integer (0 for January thru 11 for December) representing the month.

dayVal - this value is an integer (1 thru 31) that represents the day of the month.

The following code uses the setUTCMonth method to change the value of the myDate object
and also demonstrates how this method will adjust the other parameters if a value is supplied
that exceeds the expected range. In this case the monthVal supplied is 13 which causes the
year to be incremented by 1. This is calculated thus:

13 - 12 (maximum expected value for seconds) = 1 (this increments the year by one).

The result of this calculation (1 = February) is then used for the monthVal parameter.

Code:
myDate = new Date()
document.write(myDate +"
")
myDate.setUTCMonth(13)
document.write(myDate)

Output:
Fri Jul 9 13:47:32 UTC+0100 1999
Wed Feb 9 13:16:40 UTC+0100 2000

METHOD: Date::setUTCSeconds

object.setUTCSeconds(secondsVal [, msVal])

This method is used to set the seconds for the supplied date according to universal time. If you
do not supply the msVal argument, JavaScript will use the value returned using the
getMilliseconds method. Also, if the supplied argument is outside the range expected, the
setUTCSeconds method will alter the other parameters of the date object accordingly (see
example below).

The available parameters are as follows:

secondsVal - an integer (0 thru 59) representing the seconds.

msVal - this value is an integer (1 thru 999) that represents the milliseconds.

The following code uses the setUTCSeconds method to change the value of the myDate
object and also demonstrates how this method will adjust the other parameters if a value is
supplied that exceeds the expected range. In this case the secondsVal supplied is 90 which
causes the minutes to be incremented by 1. This is calculated thus:

90 - 60 (maximum expected value for seconds) = 30 (this increments the minutes by one).

The result of this calculation (30) is then used for the secondsVal parameter.

Code:
myDate = new Date()
document.write(myDate +"
")
myDate.setUTCSeconds(90)
document.write(myDate)

Output:
Fri Jul 9 13:30:20 UTC+0100 1999
Fri Jul 9 13:31:30 UTC+0100 1999

METHOD: Date::toGMTString

object.toGMTString()

This method converts a local date to Greenwich Mean Time.

The following code uses the toGMTString method to convert the date set in the myDate object
to Greenwich Mean Time and returns this date as a string.

Code:
myDate = new Date()
document.write(myDate.toGMTString())

Output:
Fri, 29 Oct 1999 16:28:58 UTC

METHOD: Date::toLocaleString

object.toLocaleString()

This method uses the relevant locale's date conventions when converting a date to a string.
This is done by using the default date format of the user's operating system. This takes in to
account the differences between date formatting methods used in different countries, e.g. in
the U.K. the date comes before the month as opposed to the U.S. convention of the month
first.

The following code uses the toLocaleString method to convert the date set in the myDate
object to a string. For the purposes of this example, the locale of the operating system is set to
that of the United Kingdom.

Code:
myDate = new Date(99, 04, 23)
document.write(myDate.toLocaleString())

Output:
23/05/1999 00:00:00

PROPERTY: Document::domain

document.domain = "domaininfo"

This property sets or returns the domain name of the server from which the document
originated. This defaults to the domain name of the server that the document was retreived
from, but can be changed to a suffix (and only a suffix) of this name. This allows the sharing of
script properties, security allowing, between documents delivered from different servers
providing they share the same domain suffix.

The way you can alter the domain name property is very limited. For example, if a document
was retreived from the URL 'search.devguru.com', you could change the domain property to
'devguru.com' but not 'search.devguru'.

These examples relate to a document retreived from the URL 'search.devguru.com'

Code:
document.domain = "devguru.com" // This example is o.k.

document.domain = "search.devguru" // This example is not allowed

document.domain = "devguru.net" // This example is not allowed

PROPERTY: Document::embeds

document.embeds["embed_objID"]

This property is an array containing references to all the embedded objects in the current
document. These references are stored in the array in the order in which they are defined in
the source code. The "embed_objID" argument is used to access items in the array and this
can either be a string containing the embedded object's name as defined within the <EMBED>
tag in the HTML source, or an integer (with '0' being the first item in the array).

Both examples below return the same results; the first uses the defined names of the
embedded objects and the second uses their reference number within the array.

Code:
document.embeds["embed_obj1"]
document.embeds["embed_obj2"]
document.embeds["embed_obj3"]

document.embeds[0]
document.embeds[1]
document.embeds[2]

PROPERTY: Document::fgColor

document.fgColor = "colorinfo"

This property defines a document's foreground (text) color. The "colorinfo" argument is a
string that can contain either the hexadecimal definition of the color or its literal description. If
you use the hex definition of a color it must be in the format rrggbb - for example, the hex value
for the named color 'forest green' is '228B22'.

Both lines in the follwing code do exactly the same thing, the first using the hex value of a color
and the second using its name.

Code:
document.fgColor = "228B22"
document.fgColor = "forestgreen"

PROPERTY: Document::forms

document.forms["formID"]

This property is an array containing references to all the Form objects in the current document.
These references are stored in the array in the order in which they are defined in the source
code. The "formID" argument is used to access items in the array and this can either be a
string containing the form name as defined within the <FORM> tag in the HTML source, or an
integer (with '0' being the first item in the array).

All examples below return the same results; the first uses the defined names of the forms and
the second uses their reference number within the array.

Code:
document.forms["formname1"]
document.forms["formname2"]
document.forms["formname3"]

document.forms[0]
document.forms[1]
document.forms[2]

Because a separate property is assigned to the document object for each form, (see the
document.formname property) you can also use the following syntax.

document.formname1
document.formname2
document.formname3

PROPERTY: Document::images

document.images["imageID"]

This property is an array containing references to all the Image objects in the current
document. These references are stored in the array in the order in which they are defined in
the source code. The "imageID" argument is used to access items in the array and this can
either be a string containing the image name as defined within the tag in the HTML
source, or an integer (with '0' being the first item in the array).

Both examples below return the same results; the first uses the defined names of the images
and the second uses their reference number within the array.

Code:
document.images["imagename1"]
document.images["imagename2"]
document.images["imagename3"]

document.images[0]
document.images[1]
document.images[2]

PROPERTY: Document::lastModified

document.lastModified

This property returns a string relating to the date that the document was last modified, which is
usually, but not always, contained in the HTTP header of a document. When this data is
supplied, the server from which the document originated interogates the file for its 'last
modified' date and includes this in the header information of the document. If a particular
server doesn't do this, and no 'date last modified' data exists in the HTTP header, JavaScript
will return a value of '0', which it interprets as 'Janurary 1, 1970 GMT'.

The following code gets the last modified date of a document and displays it in the browser.

Code:
datelastmod = document.lastModified
document.write("This document was last modified on " + datelastmod)

Output:
"This document was last modified on 10/28/97 12/06/56"

PROPERTY: Document::layers

document.layers["layerID"]

This property is an array containing references to all the Layer objects in the current
document. These references are stored in the array in the order in which they are defined in
the source code. The "layerID" argument is used to access items in the array and this can
either be a string containing the layer name as defined within the <LAYER> or <ILAYER> tag
in the HTML source, or an integer (with '0' being the first item in the array).

Both examples below return the same results; the first uses the defined names of the layers
and the second uses their reference number within the array.

Note that when accessing the layers by their reference integer, as opposed to name, they are
stored in the array in z-order (from back to front, with the back-most layer indexed as '0').

Code:
document.layers["layername1"]
document.layers["layername2"]
document.layers["layername3"]

document.layers[0]
document.layers[1]
document.layers[2]

PROPERTY: Document::linkColor

document.linkColor = "colorinfo"

This property defines the color of any hyperlinks in the document. The "colorinfo" argument is
a string that can contain either the hexadecimal definition of the color or its literal description. If
you use the hex definition of a color it must be in the format rrggbb - for example, the hex value
for the named color 'forest green' is '228B22'.

Both lines in the follwing code do exactly the same thing, the first using the hex value of a color
and the second using its name.

Code:
document.linkColor = "228B22"
document.linkColor = "forestgreen"

PROPERTY: Document::links

document.links["linkID"]

This property is an array containing references to all the Area and Link objects in the current
document. These references are stored in the array in the order in which they are defined in
the source code. The "linkID" argument is an integer relating to a link defined within a or <AREA HREF = " "> tag in the HTML source.

Code:
document.links[0]
document.links[1]
document.links[2]

PROPERTY: Document::plugins

document.plugins["pluginID"]

This property is an array containing references to all the Plugin objects in the current
document. These references are stored in the array in the order in which they are defined in
the source code, and are accessed using the "pluginID" argument, which is an integer with
the first plugin object being '0'.

Code:
document.plugins[0]
document.plugins[1]
document.plugins[2]

PROPERTY: Document::vlinkColor

document.vlinkColor = "colorinfo"

This property defines the color of any visited links in the document. The "colorinfo" argument
is a string that can contain either the hexadecimal definition of the color or its literal description.
If you use the hex definition of a color it must be in the format rrggbb - for example, the hex
value for the named color 'forest green' is '228B22'.

Both lines in the follwing code do exactly the same thing, the first using the hex value of a color
and the second using its name.

Code:
document.linkColor = "228B22"
document.linkColor = "forestgreen"

METHOD: Document::close

document.close()

This method closes an output stream previously opened with the document.open method and
forces data collected from any instances of the document.write or document.writeln
methods to be displayed.

The following code demonstrates this and displays the output stream in a new window.

Code:
function newWindowTest() {
 var message1 = "Hello, world!"
 var message2 = "This is a test."
 newWindow.document.open("text/html", "replace")
 newWindow.document.writeln("message1)
 newWindow.document.write("message2)
 newWindow.document.close()
}

newWindow=window.open('','','toolbar=no,scrollbars=no,width=200,height=150')
newWindowTest()

Output: (to new window)
"Hello, world! This is a test."

METHOD: Document::getSelection

document.getSelection()

This method can be used to return a string containing any selected text in the current
document.

The following code, when placed in a form in the current document, will display any selected
text in a message box when the button is clicked.

Code:
<INPUT TYPE="BUTTON" NAME="selectString" VALUE="Show
any highlighted text" onClick="alert('The following text is
selected:\n'+document.getSelection());">

METHOD: Document::open

document.open([mimeType[, replace]])

This method is used to open a stream to collect the output from any write or writeln methods.
The first of the optional parameters is mimeType which determines the type of document you
are writing to; if this parameter is not used, the default value is "text/html". The second
parameter is replace, also optional, which causes the history entry for the new document to
inherit the history entry from the document from which it was opened.

The following code demonstrates this method and displays the output stream in a new window.

Code:
function newWindowTest() {
 var message1 = "Hello, world!"
 var message2 = "This is a test."
 newWindow.document.open("text/html", "replace")
 newWindow.document.writeln("message1)
 newWindow.document.write("message2)
 newWindow.document.close()
}

newWindow=window.open('','','toolbar=no,scrollbars=no,width=200,height=150')
newWindowTest()

Output: (to new window)
"Hello, world! This is a test."

METHOD: Document::write

document.write("expression1", [expression2, [...]])

This method is used to write HTML expressions and JavaScript code to the specified document
in a current or new window.

Multiple arguments, ("expression1", [expression2, [...]]), can be listed and they will be
appended to the document in order of occurrence. They can be of any type supported by
JavaScript (string, numeric, logical), but all non-string expressions will be converted to a string
before being appended.

In general, it is not necessary to open the document using the document.open method, since
the document.write method will automatically open the file and discard (erase) the contents.
However, after the write is complete, you need to close the document by using the
document.close method. In some browsers, the results of the write may not be completely
displayed, due to buffering, until the close occurs.

Code:
newWindow = window.open('', 'newWin')
var tagBoldOpen = ""
var tagBoldClose = ""
newWindow.document.write(tagBoldOpen)
newWindow.document.write("This is some bold text.", tagBoldClose)
newWindow.document.close()

EVENT HANDLER: onClick

onClick = myJavaScriptCode

Event handler for Button, Document, Checkbox, Link, Radio, Reset, Submit.

The onClick event handler executes the specified JavaScript code or function on the
occurance of a click event. When used with checkboxes, links, radio, reset and submit buttons,
onClick can return a false value which cancels the normal action associated with the click
event. With form objects that have default actions this works as follows:

Radio buttons and checkboxes - nothing is set
Submit buttons - submission of the form is cancelled.
Reset buttons - resetting of the form is cancelled.

The onClick event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.
*layerX - the cursor location when the click event occurs.
*layerY - the cursor location when the click event occurs.
*pageX - the cursor location when the click event occurs.
*pageY - the cursor location when the click event occurs.
*screenX - the cursor location when the click event occurs.
*screenY - the cursor location when the click event occurs.
which - 1 represents a left mouse click and 3 a right click.
modifiers - lists the modifier keys (shift, alt, ctrl, etc.) held down when the click event occurs.

*when a link is clicked.

The following example shows the use of the onClick event handler to offer users the chance to
cancel the resetting of a from when clicking on a Reset button.

Code:
<INPUT TYPE="RESET" onClick="return confirm('Are you sure?')">

OBJECT: Button

A Button object is created with every instance of an HTML <INPUT> tag (with a 'type' value
set as 'button') on a form. These objects are then stored in the elements array of the parent
form and accessed using either the name defined within the HTML tag or an integer (with '0'
being the first element defined, in source order, in the specified form).

PROPERTIES

form Property
This property returns a reference to the button's parent form.

Syntax: button.form

name Property
This property sets or returns the value of the button's name attribute.

Syntax: button.name

type Property
Every element on a form has an associated type property. In the case of a Button object, the
value of this property is always "button".

Syntax: button.type

value Property
This property sets or returns the button's value attribute. This is the text that is actually
displayed on the button face.

Syntax: button.value

METHODS

blur Method
This method removes the focus from the specified Button object.

Syntax: button.blur()

click Method
This method simulates a mouse-click on the button.

Syntax: button.click()

focus Method
This method gives focus to the specified Button object.

Syntax: button.focus()

handleEvent Method
This method calls the handler for the specified event.

Syntax: button.handleEvent(event)

EVENT HANDLERS

onBlur Event handler
This event handler executes some specified JavaScript code on the occurrence of a blur event
(when the button object loses focus).

Syntax: button.onBlur="myJavaScriptCode"

onClick Event handler
This event handler executes some specified JavaScript code on the occurrence of a click
event (when the button object is clicked).

Syntax: button.onClick="myJavaScriptCode"

onFocus Event handler
This event handler executes some specified JavaScript code on the occurrence of a focus
event (when the button object receives focus).

Syntax: button.onFocus="myJavaScriptCode"

onMouseDown Event handler
This event handler executes some specified JavaScript code on the occurrence of an
onMouseDown event (when a mouse button is depressed).

Syntax: button.onMouseDown="myJavaScriptCode"

onMouseUp Event handler
This event handler executes some specified JavaScript code on the occurrence of an
onMouseUp event (when a mouse button is released).

Syntax: button.onMouseUp="myJavaScriptCode"

PROPERTY: Button::form

button.form

This property returns a reference to the Button object's parent Form.

The following code dispays the name of the Button object's parent Form when it is clicked and
assumes, for the purposes of this example, that the Form is called "myForm".

Code:
<INPUT NAME="myButton" TYPE="button" VALUE="Form name?" onClick= "document.write
(document.myForm.myButton.form.name)">

PROPERTY: Button::value

button.value

This property sets or returns the button's Value attribute. This is the text that is actually
displayed on the Button face.

The following code uses the button's onClick event handler to call a JavaScript function that
changes the Value attribute of the Button..

Code:
<form name="myForm" title="myForm">
<INPUT NAME="myButton" TYPE="button" VALUE="Click to change value"
onClick=valChange()>

<script language="javascript">
function valChange() {
 document.myForm.myButton.value="Value has changed"
}
</script>
</form>

EVENT HANDLER: onBlur

onBlur = myJavaScriptCode

Event handler for Button, Checkbox, FileUpload, Layer, Password, Radio, Reset, Select,
Submit, Text, TextArea, Window.

The onBlur event handler executes the specified JavaScript code or function on the occurance
of a blur event. This is when a window, frame or form element loses focus. This can be caused
by the user clicking outside of the current window, frame or form element, by using the TAB
key to cycle through the various elements on screen, or by a call to the window.blur method.

The onBlur event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

The following example shows the use of the onBlur event handler to ask the user to check that
the details given are correct. Note that the first line is HTML code.

Code:
Enter email address <INPUT TYPE="text" VALUE="" NAME="userEmail" onBlur=addCheck()>

<script type="text/javascript" language="JavaScript">

function addCheck() {
 alert("Please check your email details are correct before submitting")
}

</script>

OBJECT: Checkbox

A Checkbox object is created with every instance of an HTML <INPUT> tag (with a 'type'
value set as 'checkbox') on a Form. These objects are then stored in the Elements array of
the parent form and accessed using either the name defined within the HTML tag or an integer
(with '0' being the first element defined, in source order, in the specified Form).

PROPERTIES

checked Property
This property is a boolean value that sets or returns the current state of the Checkbox object;
true if checked and false otherwise.

Syntax: checkbox.checked

defaultChecked Property
This property sets or returns the default value of the checked property.

Syntax: checkbox.defaultChecked

form Property
This property returns a reference to the Checkbox object's parent Form.

Syntax: checkbox.form

name Property
This property sets or returns the Checkbox object's Name attribute.

Syntax: checkbox.name

type Property
Every element on a form has an associated Type property. In the case of a Checkbox object,
the value of this property is always "checkbox".

Syntax: checkbox.type

value Property
This property sets the Value that is returned when the Checkbox is checked.

Syntax: checkbox.value

METHODS

blur Method
This method removes the Focus from the specified Checkbox object.

Syntax: checkbox.blur()

click Method
This method simulates a mouse-click on the Checkbox object.

Syntax: checkbox.click()

focus Method
This method gives Focus to the specified Checkbox object.

Syntax: checkbox.focus()

handleEvent Method
This method calls the handler for the specified Event.

Syntax: checkbox.handleEvent(event)

EVENT HANDLERS

onBlur Event handler
This event handler executes some specified JavaScript code on the occurrence of a Blur event
(when the Checkbox object loses focus).

Syntax: checkbox.onBlur="myJavaScriptCode"

onClick Event handler
This event handler executes some specified JavaScript code on the occurrence of a Click
event (when the Checkbox object is clicked).

Syntax: checkbox.onClick="myJavaScriptCode"

onFocus Event handler
This event handler executes some specified JavaScript code on the occurrence of a Focus
event (when the Checkbox object receives focus).

Syntax: checkbox.onFocus="myJavaScriptCode"

EVENT HANDLER: onFocus

onFocus = myJavaScriptCode

Event handler for Button, Checkbox, FileUpload, Layer, Password, Radio, Reset, Select,
Submit, Text, TextArea, Window.

The onFocus event handler executes the specified JavaScript code or function on the
occurance of a focus event. This is when a window, frame or form element is given focus. This
can be caused by the user clicking on the current window, frame or form element, by using the
TAB key to cycle through the various elements on screen, or by a call to the window.focus
method. Be aware that assigning an alert box to an object's onFocus event handler with result
in recurrent alerts as pressing the 'o.k.' button in the alert box will return focus to the calling
element or object.

The onFocus event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

The following example shows the use of the onFocus event handler to replace the default
string displayed in the text box. Note that the first line is HTML code and it is accepted that the
text box resides on a form called 'myForm'.

Code:
<input type="text" name="myText" value="Give me focus" onFocus = "changeVal()">

<script type="text/javascript" language="JavaScript">

s1 = new String(myForm.myText.value)

function changeVal() {
 s1 = "I'm feeling focused"
 document.myForm.myText.value = s1.toUpperCase()
}

</script>

OBJECT: FileUpload

A FileUpload object provides a field in which the user can enter a file name to be uploaded
and used as input and is created with every instance of an HTML <INPUT> tag (with the 'type'
attribute set to 'file') on a form. These objects are then stored in the elements array of the
parent form and accessed using either the name defined within the HTML tag or an integer
(with '0' being the first element defined, in source order, in the specified form).

PROPERTIES

form Property
This property returns a reference to the parent Form of the FileUpload object.

Syntax: object.form

name Property
This property sets or returns the value of the FileUpoad object's name attribute.

Syntax: object.name

type Property
Every element on a form has an associated type property. In the case of a FileUpload object,
the value of this property is always 'file'.

Syntax: object.type

value Property
This property sets or returns the FileUpload object's value attribute. This is a string input by
the user that specifies the file to upload.

Syntax: object.value

METHODS

blur Method
This method removes the focus from the specified FileUpload object.

Syntax: object.blur()

click Method
This method simulates a mouse-click on the FileUpload object.

Syntax: object.click()

focus Method
This method gives focus to the specified FileUpload object.

Syntax: object.focus()

handleEvent Method
This method calls the handler for the specified event.

Syntax: object.handleEvent(event)

EVENT HANDLERS

onBlur Event handler
This event handler executes some specified JavaScript code on the occurrence of a blur event
(when the FileUpload object loses focus).

Syntax: object.onBlur="myJavaScriptCode"

onChange Event handler
This event handler executes some specified JavaScript code on the occurrence of a click
event (when the FileUpload object loses focus and its value has altered).

Syntax: object.onClick="myJavaScriptCode"

onFocus Event handler
This event handler executes some specified JavaScript code on the occurrence of a focus
event (when the FileUpload object receives focus).

Syntax: object.onFocus="myJavaScriptCode"

EVENT HANDLER: onChange

onChange = myJavaScriptCode

Event handler for FileUpload, Select, Text, TextArea.

The onChange event handler executes the specified JavaScript code or function on the
occurance of a change event. This is when the data in one of the above form elements is
altered by the user. This is used frequently to validate the data that has been entered by the
user by calling a specified JavaScript function.

The onChange event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

The following example shows the use of the onChange event handler to call a JavaScript
function that validates the data input by the user (in this case, the function simply checks
wether the entered email address contains the '@' character and displays a relevant message).
Note that the first line is HTML code and assumes that the text box is on a form called
'myForm'.

Code:
<INPUT TYPE="text" VALUE="Enter email address" NAME="userEmail"
onChange=validateInput(this.value)>

<script type="text/javascript" language="JavaScript">

this.myForm.userEmail.focus()
this.myForm.userEmail.select()

function validateInput() {
userInput = new String()
userInput = this.myForm.userEmail.value
 if (userInput.match("@"))
 alert("Thanks for your interest.")
 else
 alert("Please check your email details are correct before submitting")
}

</script>

OBJECT: Select

The Select object represents a selection list in a Form object. As such, it must be declared
inside <FORM> tags. The JavaScript runtime engine creates such an object for every selection
list in a particular form, and assigns it to the Form's elements array. It is through this array that
a particular Select object can be accessed, either by index-number or by its NAME attribute.

PROPERTIES

form Property
This property is a reference to the parent form to which a particular Select object belongs.

Syntax: object.form

length Property
This property contains the number of options in the selection list. For example, to refer to the
length of the first Select object in the first form of the current document, you could use the
following code:

Code:
document.forms[0].elements[0].length

Syntax: object.length

name Property
This property consists of a string which gives the name of the selection. For example, to refer
to the name of the first Select object in the first form of the current document, you could use
the following code:

Code:
document.forms[0].elements[0].name

Syntax: object.name

options Property
This property is an array of all the options in a particular Select object. There is one element
(numbered in ascending order from zero) for each <OPTION> tag.

Syntax: object.options

selectedIndex Property
This property, which is tainted by default, is an integer relating to the currently-selected option
of a Select object. If, however, the Select object allows for multiple selections (i.e. when the
<SELECT> tag includes the MULTIPLE attribute), the selectedIndex property will only return
the index of the first option selected. For example, the following code would return the index of
the selected option of a Select object called MySelect in MyForm:

Code:
document.myForm.mySelect.selectedIndex

Syntax: object.selectedIndex

type Property

This property holds the type of the Select object, having the value "select-one" where only one
option can be selected and "select-multiple" where multiple selections are possible. The
following code could be used to determine the type of the first Select object of the first form of
the current document:

Code:
document.forms[0].elements[0].type

Syntax: object.type

METHODS

blur Method
This method removes focus from a selection list.

Syntax: object.blur()

focus Method
This method moves the focus to the specified selection list allowing the user to then select from
it.

Syntax: object.focus()

handleEvent Method
This method calls the handler for a specified event.

Syntax: object.handleEvent(event)

NOTE:

The Select object also inherits the watch and unwatch methods from the Object object.

EVENT HANDLERS

onBlur EventHandler
This event handler causes JavaScript code to be executed whenever a blur event occurs; i.e.
whenever a window, frame or form element loses focus.

Syntax: onBlur = "myJavaScriptCode"

onChange EventHandler
This event handler executes JavaScript code whenever a Select, Text or Textarea field loses
focus after having been altered.

Syntax: onChange = "myJavaScriptCode"

onFocus EventHandler
This event handler executes JavaScript whenever a focus event occurs; i.e. whenever the user
focuse on a window, frame or frameset, or inputs to a form element.

Syntax: onFocus = "myJavaScriptCode"

PROPERTY: Select::options

object.options

The options property is an array of all the options in a particular Select object. There is one
element (numbered in ascending order from zero) for each <OPTION> tag. You can use the
length property of this array to refer to the number of options in a particular Select object as
follows:

Code:
document.myForm.mySelect.options.length

...or by simply using the length property of the Select object:

Code:
document.myForm.mySelect.length

You can use the options array to add options to, or delete options from any Select object.
When adding or altering an option, you assign an Option object to a particular element of the
array. The following code first creates an Option object called Folk, and then assigns it to
element # 3 of the options array of a user-defined Select object called MusicType. If there is a
value already assigned to element 3, it will be replaced by Folk, otherwise it will be created
along with undefined elements at every index between the one created and the last existant
one.

Code:
document.forms[0].musicType.options[3] = new Option("Folk", "folk", false, false)

Similarly, you can delete any option by assigning the value null to the appropriate element of
the options array:

Code:
document.forms[0].musicType.options[2] = null

This will have the effect of removing element # 2 from the options array, and at the same time
compressing the array so that element # 3 becomes # 2, element # 4 becomes # 3 etc. After
deleting an option you must refresh the document by using history.go(0) at the end of the
code. To determine which option of a Select object is currently selected, you can use the
selectedIndex property along with the options property as follows:

Code:
document.forms[0].musicType.options.selectedIndex

...or you could simply use the selectedIndex property of the Select object:

Code:
document.forms[0].musicType.selectedIndex

Both the above lines of code return the number of the currently-selected index. If, however, the
Select object allows for multiple selections (i.e. when the <SELECT> tag includes the
MULTIPLE attribute), the selectedIndex property will only return the index of the first option
selected. To determine all of the selected options, you would have to loop through the options
array testing each option individually.

OBJECT: Option

new Option([text[, value[, defaultSelected[, selected]]]])

An Option object is created for every option in a selection list, and is put in the options
property of the Select object. It can be created in one of two ways: you can either use the
HTML <OPTION> tag, or use the Option constructor. Using HTML you could create a
'Dachshund' option for a selection list of dog breeds as follows:

Code:
<option> Dachshund

You could also create the same option using the Option constructor and assigning it to an
index of the options property of the relevent Select object:

Code:
document.myForm.dogBreed[4] = new Option("Dachshund")

After creating an Option object in this way you must refresh the document by using
history.go(0) at the end of the code. Using the Option constructor, you can optionally specify
a value to be returned to the server when an option is selected and the form submitted (in this
case "dachs"):

Code:
new Option("Dachshund", "dachs")

It is also possible to designate the option to be the pre-selected default selection in the option
box display (i.e., this option has the HTML "selected" attribute included inside the "option" tag).
This is done by setting the defaultSelected argument to be true.

Code:
new Option("Dachshund", "dachs", true)

The selected argument is used for multiple selections.

PROPERTIES

defaultSelected Property
This property, by default tainted, is a Boolean value which initially reflects whether an option
was declared with the HTML SELECTED attribute, reading true if it was and false if not

Syntax: object.defaultSelected

selected Property
This property, which is tainted by default, is a Boolean value reflecting whether a particular
option is selected, returning true if it is and false if not. The selected property can be set at
any time, immediately updating the display of the Select object.

Syntax: object.selected

text Property
This property, by default tainted, reflects the text value following any particular HTML OPTION
tag for a Select object. It can be reset at any time, immediately updating the display of the

selection.

Syntax: object.text

value Property
This property, tainted by default, is a string value that is returned to the server when an option
is selected and the form submitted. It reflects the VALUE attribute in the HTML. If there is no
VALUE attribute, then the value property is an empty string.

Syntax: object.value

METHODS

The Select object inherits the watch and unwatch methods from the Object object.

PROPERTY: Option::defaultSelected

object.defaultSelected

This property, by default tainted, is a Boolean value which initially reflects whether an option
was declared with the HTML SELECTED attribute, reading true if it was and false if not. You
can set the defaultselected property at any time, and this will override the initial setting, but it
won't be reflected in the display of the Select object. If, however, you set the defaultSelected
property of a Select object created with the MULTIPLE attribute, any initial defaults are
unaffected.

For example, assuming a Select object called DogBreed with the first option initially selected
by default, the following code would alter that default to the fourth option:

Code:
document.myForm.dogBreed.options[3].defaultSelected = true

You could then test to see that this has actually happened as follows:

Code:
if(document.myForm.dogType.options[3].defaultSelected == true)
 document.write("It's true, I tell you.")

METHOD: Object::watch

Object.watch(property, handlerfunction)

The watch method is inherited by every object descended from Object and adds a watchpoint
to a property of the method. Whenever a value is assigned to it, it calls up a function allowing
you to watch any new value assigned and, if necessary, alter it.

For example, this following code watches the 'name' property of the 'city' object, and if the
name 'Leningrad' is assigned to it, it is altered to the city's new name of 'St. Petersburg'. Note
the code that is enclosed in the pair of curly braces (an if statement) which is associated with
the handlerfunction argument called 'myfunction':

Code:
city = {name:"Chicago"}
city.watch("name", myfunction (property, oldval, newval)
 {
 if(newval == "Leningrad")
 newval = "St. Petersburg"
 return newval
 }
) //end of watch method

NOTE:

A watchpoint for a property does not disappear if that property is deleted. It can, however, be
removed by using the unwatch method.

OBJECT: Object

Object is the primitive Javascript object from which all other objects are derived. They
therefore have all the methods defined for Object.

It is created by using the Object constructor as follows:

Code:
new Object()

PROPERTIES

constructor Property
This specifies a function to create an object's property and is inherited by all objects from their
prototype.

Syntax: Object.constructor

prototype Property
This allows the addition of properties and methods to any object.

Syntax: Object.prototype.name = value

METHODS

eval Method
The eval method is deprecated as a method of Object, but is still used as a high level function.
It evaluates a string of JavaScript in the context of an object.

Syntax: Object.eval(string)

toSource Method
The toSource method returns a literal representing the source code of an object. This can then
be used to create a new object.

Syntax: Object.toSource()

toString Method
The toString method returns a string representing a specified object.

Syntax: Object.toString()

unwatch Method
This method removes a watchpoint set for an object and property name with the watch
method.

Syntax: Object.unwatch(property)

valueOf Method
This method returns a primitive value for a specified object.

Syntax: Object.valueOf()

watch Method
This method adds a watchpoint to a property of the object.

Syntax: Object.watch(property, handler)

PROPERTY: Object::prototype

Object.prototype.name = value

Any object that can call a constructor function has a prototype property allowing the addition
of properties and methods.

The following example first creates a 'color' property for the 'Cat' object, and then creates a
specific instance of it:

Code:
Cat.prototype.color = null
Sheeba.color = "black"

METHOD: Object::toSource

Object.toSource()

The toSource method returns a literal representing the source code of an object. This can then
be used to create a new object. Although the toSource method is usually called by JavaScript
behind the scenes, you can call it yourself. In the case of the built-in Object object, it returns a
string indicating that the source code is not available, while, for instances of Object, it returns
the source. With a user-defined object, toSource will return the JavaScript source that defines
it. The following examples illustrate these three cases:

Code:
Object.toSource()

Output:
function Object() { [native code] }

Code:
function Cat(breed, name, age)
{
 this.breed = breed
 this.name = name
 this.age = age
}
Cat.toSource()

Output:
function Cat(breed, name, age) { this.breed = breed; this.name = name; this.age = age; }

Code:
Sheeba = new Cat("Manx", "Felix", 7)
Sheeba.toSource()

Output:
{breed:"Manx", name:"Felix", age:7}

METHOD: Object::toString

Object.toString()

The toString method is inherited by every object descended from Object and returns a string
representing a specified object. There are times when an object needs to be represented as a
string, and the toString method (which comes with every object) is automatically called to do
that. ToString returns the object type or the constructor function that created it. The following
examples illustrate the use of this method and the return:

document.write(Sheeba) returns [object Object]
document.write(Sheeba.toString) returns function toString() { [native code] }

The toString method can, however, be overwritten in a custom object by assigning a user-
defined function in its place as follows:

Code:
Cat.prototype.toString = myToString

NOTE:

Every core JavaScript object will over-ride the toString method to return an appropriate value,
and will only call it when it needs to convert an object to a string.

METHOD: Object::valueOf

Object.valueOf()

The valueOf method returns a primitive value for a specified object and is inherited by all
objects descended from Object. It is usually called automatically by JavaScript behind the
scenes whenever it encounters an object where a primitive value is expected. If the object has
no primitive value, then the object itself is returned as [object Object]. You can also call
valueOf yourself to convert a built-in object into a primitive value. The following two examples
illustrate uses of it:

Code:
(Object.valueOf()

Output:
function Object() { [native code] }

Code:
function Cat(breed, name, age)
{
 this.breed = breed
 this.name = name
}
Cat.valueOf()

Output:
function Cat(breed, name, age) { this.breed = breed this.name = name }

The valueOf method can also be overwritten in a custom object by assigning a user-defined
function with no arguments in its place as follows:

Code:
Cat.prototype.valueOf() = myValueOf()

NOTE:

Every core JavaScript object will over-ride the valueOf method to return an appropriate value.

OBJECT: Layer

Layers provide a way to position overlapping transparent or opaque blocks of HTML content
precisely on a page. When combining this functionality with JavaScript the author of a web
page now has the ability to dynamically move or alter HTML elements, opening up new
possibilities such as animation and zooming in/out of elements. A Layer object is created with
every instance of the HTML <LAYER> or <ILAYER> tag in a document. These objects are then
stored in the layers array of the parent document and accessed using either the name defined
within the HTML tag or an integer (with '0' being the first element defined, in source order, in
the specified form).

The ability to position elements above or below others requires a third positional parameter.
This is called the z-index (the higher the z-index the more to the fore the layer is) and elements
can be manipulated using this parameter to dynamically move them, not just horizontally and
vertically, but also 'forwards' (above) and 'backwards' (below) relative to other elements on the
screen.

The following example creates two layers and uses the above attribute of the layer tag to
display the aboveLayer layer at the top.

Code:
<layer name=aboveLayer bgcolor="lightgreen" top=50 left=80 width=150 height=50> Hello
from the layer above</layer>
<layer name=belowLayer above=aboveLayer bgcolor="lightblue" top=20 left=50 width=75
height=100>Layer below</layer>

PROPERTIES

above Property
If a layer is topmost in the z-order, this property relates to the enclosing window object,
otherwise it is a reference to the layer object above the calling layer. An example of this
property is given in the code above.

Syntax: layer.above

background Property
This property is used to set the image used for the backdrop of a layer. The value is null if the
layer has no image backdrop.

Syntax: layer.background.src = "image"

bgColor Property
This property defines a document's background color. The "colorinfo" argument is a string
that can contain either the hexadecimal definition of the color or its literal description.

Syntax: layer.bgColor = "colorinfo"

below Property
This property represents the layer below the calling layer. The value of this property is null if
the calling layer is the bottom most in the z-order.

Syntax: layer.below

clip.bottom Property
This property sets the bottom edge of the layer's viewable area (known as the clipping

rectangle). Anything outside of this area is not seen.

Syntax: layer.clip.bottom

clip.height Property
This property sets the height, in pixels, of the layer's viewable area (known as the clipping
rectangle). Anything outside of this area is not seen.

Syntax: layer.clip.height

clip.left Property
This property sets the left edge of the layer's viewable area (known as the clipping rectangle).
Anything outside of this are is not seen.

Syntax: layer.clip.left

clip.right Property
This property sets the right edge of the layer's viewable area (known as the clipping rectangle).
Anything outside of this are is not seen.

Syntax: layer.clip.right

clip.top Property
This property sets the top edge of the layer's viewable area (known as the clipping rectangle).
Anything outside of this are is not seen.

Syntax: layer.clip.top

clip.width Property
This property sets the width, in pixels, of the layer's viewable area (known as the clipping
rectangle). Anything outside of this are is not seen.

Syntax: layer.clip.width

document Property
This property is used to access the document contained within a layer. All the methods
available to the Document object can also be used to modify the contents of the layer.

Syntax: layer.document

left Property
This property returns the horizontal position, in pixels, of the left edge of a layer in relation to its
parent layer.

Syntax: layer.left

name Property
This property returns a string that contains the name of a layer as defined by the ID atttribute of
the <LAYER> tag.

Syntax: layer.name

pageX / pageYProperty
These properties return the X (horixontal) and Y (vertical) position of the specified layer in
relation to the page containing it.

Syntax: layer.pageX
Syntax: layer.pageY

parentLayer Property
For a layer nested within another, this property is a reference to the parent Layer object. If not
a nested layer, this property refers to the Window object that contains the layer.

Syntax: layer.parentLayer

siblingAbove Property
This property is a reference to the Layer object above the specified layer in z-order, amongst
layers that share the same parent layer. This property's value is null if no sibling above exists.

Syntax: layer.siblingAbove

siblingBelow Property
This property is a reference to the Layer object below the specified layer in z-order, amongst
layers that share the same parent layer. This property's value is null if no sibling above exists

Syntax: layer.siblingBelow

src Property
This property returns a string containing the URL of the source of the layer's content. This is
the same as the SRC attribute of the <LAYER> tag.

Syntax: layer.src

top Property
This property is a reference to the top-most browser window that contains the specified layer.
Use this property to affect changes to the layer's top-most window i.e. layerName.top.close().

Syntax: layer.top

visibility Property
This property determines whether or not a layer is visible.

Syntax: layer.visibilty = "value"

zIndex Property
This property returns the relative z-order of the specified layer in relation to any sibling layers.
Any siblings with a lower zIndex are displayed below the specified layer and any with a higher
zIndex are stacked above.

Syntax: layer.zIndex

METHODS

captureEvents Method
This method instructs the window or document to capture all events of a particular type. See
the event object for a list of event types.

Syntax: layer.captureEvent(eventType)

handleEvent Method
This method is used to call the handler for the specified event.

Syntax: layer.handleEvent("eventID")

load Method

This method is used to change the contents of a layer by loading a file containing HTML code
into the layer.

Syntax: layer.load("fileName", width)

moveAbove Method
This method is used to move the layer above the one specified with the layerName argument.

Syntax: layer.moveAbove(layerName)

moveBelow Method
This method is used to move the layer below the one specified with the layerName argument.

Syntax: layer.moveBelowlayerName

moveBy Method
This method is used to move the layer a specified number of pixels in relation to its current co-
ordinates.

Syntax: layer.moveBy(horizPixels, vertPixels)

moveTo Method
This method moves the layer's left edge and top edge to the specified x and y co-ordinates,
respectively.

Syntax: layer.moveTo(Xposition, Yposition)

moveToAbsolute Method
This method moves the specified layer to the pixel co-ordinates supplied in the x and y
parameters, relative to the page, as opposed to the parent layer.

Syntax: layer.moveToAbsolute(xCoord, yCoord)

releaseEvents Method
This method is used to release any captured events of the specified type and to send them on
to objects further down the event hierarchy.

Syntax: layer.releaseEvents("eventType")

resizeBy Method
This method is used to resize the layer by the specified horizontal and vertical number of
pixels.

Syntax: layer.resizeBy(horizPixels, vertPixels)

resizeTo Method
This method is used to resize a layer to the dimensions supplied with the width and height
(both integers, in pixels) parameters.

Syntax: layer.resizeTo(outerWidth, outerHeight)

routeEvent Method
This method is used to send a captured event further down the normal event hierarchy;
specifically, the event is passed to the original target object unless a sub-object of the window
(a document or layer) is also set to capture this type of event, in which case the event is
passed to that sub-object.

Syntax: layer.routeEvent(eventType)

EVENT HANDLERS

onBlur Event handler
This event handler executes some specified JavaScript code on the occurrence of a Blur event
(when an window loses focus).

Syntax: layer.onBlur="myJavaScriptCode"

onFocus Event handler
This event handler executes some specified JavaScript code on the occurrence of a KeyPress
event.

Syntax: layer.onFocus="myJavaScriptCode"

onload Event handler
This event handler executes some specified JavaScript code on the occurrence of a Load
event.

Syntax: layer.onload="myJavaScriptCode"

onMouseOut Event handler
This event handler executes some specified JavaScript code on the occurrence of a
MouseOut event.

Syntax: layer.onMouseOut="myJavaScriptCode"

onMouseOver Event handler
This event handler executes some specified JavaScript code on the occurrence of a
MouseOver event.

Syntax: layer.onMouseOver="myJavaScriptCode"

PROPERTY: Layer::visibility

layer.visibility = "value"

This property determines whether or not a layer is visible. The "value" parameter can be
"show", "hide" or "inherit", the latter causing the layer to inherit the value of its parent object's
visibility property.

The following example creates two layers, aboveLayer and belowLayer, and alters the visibility
property of the aboveLayer layer on the occurance of a MouseOver event.

Code:
<layer name=aboveLayer bgcolor="lightgreen" top=50 left=80 width=150 height=50
onMouseOver=visibility="hide">

Mouse over me to reveal the layer below

</layer>

<layer name=belowLayer above=aboveLayer bgcolor="lightblue" top=20 left=20 width=150
height=50>

Hello from the layer below!

</layer>

abs
acos
alert
anchor
apply
asin
atan
atan2
back
 History
 Window
blur
 Button
 Checkbox
 FileUpload
 Password
 Radio
 Reset
 Select
 Submit
 Text
 Textarea
 Window
call
captureEvents
 Document
 Layer
 Window
ceil
charAt
charCodeAt
clearInterval
clearTimeout
click
 Button
 Checkbox
 FileUpload
 Radio
 Reset
 Submit
close
 Document
 Window
compile
concat
 Array
 String
confirm
cos
disableExternalCapture
enableExternalCapture
eval
exec
exp
find
floor

focus
 Button
 Checkbox
 FileUpload
 Password
 Radio
 Reset
 Select
 Submit
 Text
 Textarea
 Window
forward
 History
 Window
fromCharCode
getDate
getDay
getFullYear
getHours
getMilliseconds
getMinutes
getMonth
getSeconds
getSelection
getTime
getTimezoneOffset
getUTCDate
getUTCDay
getUTCFullYear
getUTCHours
getUTCMilliseconds
getUTCMinutes
getUTCMonth
getUTCSeconds
go
handleEvent
 Button
 Checkbox
 Document
 FileUpload
 Form
 Image
 Layer
 Link
 Password
 Radio
 Reset
 Select
 Submit
 Text
 Textarea
 Window
home
indexOf

match
max
min
moveAbove
moveBelow
moveBy
 Layer
 Window
moveTo
 Layer
 Window
moveToAbsolute
open
 Document
 Window
parse
plugins.refresh
pop
pow
preference
print
prompt
push
random
releaseEvents
 Document
 Layer
 Window
reload
replace
 Location
 String
reset
resizeBy
 Layer
 Window
resizeTo
 Layer
 Window
reverse
round
routeEvent
 Document
 Layer
 Window scroll
scrollBy
scrollTo
search
select
 Password
 Text
 Textarea
setDate
setFullYear
setHours
setInterval

setTimeout
setUTCDate
setUTCFullYear
setUTCHours
setUTCMilliseconds
setUTCMinutes
setUTCMonth
setUTCSeconds
shift
sin
slice
 Array
 String
sort
splice
split
sqrt
stop
String formatting
submit
substr
substring
taintEnabled
tan
test
toLocaleString
toLowerCase
toSource
 Array
 Boolean
 Date
 Function
 Number
 RegExp
 String
toString
 Array
 Boolean
 Date
 Function
 Number
 Object
 RegExp
 String
toUpperCase
toUTCString
unshift
unwatch
UTC
valueOf
 Array
 Boolean
 Date
 Function
 Number

javaEnabled
join
lastIndexOf
link
load
log

setMilliseconds
setMinutes
setMonth
setSeconds
setTime

 Object
 RegExp
 String
watch
write
writeln

OBJECT: Math

The Math object is a top-level, built-in JavaScript object which can be accessed without using
a constructor or calling a method. It also has static properties and methods for mathematical
constants and functions. This means that you can refer to, say, the constant PI as Math.PI,
and you can call the Tangent function with Math.tan(x). To illustrate this, the following code
calculates the length of the side of a right-angled triangle opposite the angle Theta:

Code:
len = Math.tan(theta) * adj

All constants are defined as precision real numbers in JavaScript. When using several Math
constants and methods, it is often more convenient to use the with statement to avoid having
to repeatedly type the word Math:

Code:
with(Math)
{
 a = 28.27
 adj = sqrt(a/PI)
 len = adj * tan(1.1071)
}

PROPERTIES

E Property
This property is Euler's constant and the base of natural logarithms (approximately 2.7183)

Syntax: Math.E

LN10 Property
This property is the natural logarithm of 10, (approximately 2.3026).

Syntax: Math.LN10

LN2 Property
This property is the natural logarithm of 2, which is approximately 0.6931.

Syntax: Math.LN2

LOG10E Property
This property is the base 10 logarithm of E (approximately 0.4343).

Syntax: Math.LOG10E

LOG2E Property
This property is the base 2 logarithm of E (approximately 1.4427).

Syntax: Math.LOG2E

PI Property
This property is the ratio of the circuference of a circle to its diameter (approximately 3.1416).

Syntax: Math.PI

SQRT1_2 Property
This property is the value of 1 divided by the square root of 2 and is approximately equal to
0.7071.

Syntax: Math.SQRT1_2

SQRT2 Property
This property is the square root of 2 (approximately 1.4142).

Syntax: Math.SQRT2

METHODS

abs Method
This method returns the absolute value of a number.

Syntax: Math.abs(x)

acos Method
This method returns the arccosine of a number as a numeric value between 0 and PI radians.
Passing it a value for 'x' which is outsite the range -1 to 1 will cause the Netscape browser to
return NaN, and the Internet Explorer browser to return an error message. Passing it -1 will
return the value of PI.

Syntax: Math.acos(x)

asin Method
This method returns the arcsine of a number as a numeric value between
-PI/2 and PI/2 radians. Passing it a value for 'x' which is outsite the range -1 to 1 will cause the
Netscape browser to return NaN, and the Internet Explorer browser to return an error
message. Passing it 1 will return the value of PI/2.

Syntax: Math.asin(x)

atan Method
This method returns the arctangent of a number as a numeric value between -PI/2 and PI/2
radians.

Syntax: Math.atan(x)

atan2 Method
This method returns the arctangent of the quotient of its arguments.

Syntax: Math.atan2(y, x)

ceil Method
This method returns an integer equal to, or the next integer greater than, the number passed to
it. Hence, if you passed it 3.79, it would return 4, and passing it -3.79 would return -3.

Syntax: Math.ceil(x)

cos Method
This method returns the cosine of a number, which will be a numeric value between -1 and 1.

Syntax: Math.cos(x)

exp Method
This method returns the value of Ex where E is Euler's constant and x is the argument passed
to it.

Syntax: Math.exp(x)

floor Method
This method returns an integer equal to, or the next integer less than, the number passed to it.
Hence, if you passed it 3.79, it would return 3, and passing it -3.79 would return -4.

Syntax: Math.floor(x)

log Method
This method returns the natural logarithm (base E) of a number. If you pass the log method the
number 0, the Netscape browser will return -Infinity, and with an argument of a negative
number NaN. In both these cases Internet Explorer returns an error message.

Syntax: Math.log(x)

max Method
This method returns the greater of the two numbers passed to it as arguments. Hence, if you
passed it the numbers 9 and 11, it would return 11, whereas passing it -9 and -11 returns -9.

Syntax: Math.max(x, y)

min Method
This method returns the lesser of the two numbers passed to it as arguments. Hence, if you
passed it the numbers 9 and 11, it would return 9, whereas passing it -9 and -11 returns -11.

Syntax: Math.min(x, y)

pow Method
This method returns the value of x to the power of y (xy), where x is the base, and y is the
exponent.

Syntax: Math.pow(x, y)

random Method
This method takes no arguments and returns a pseudo-random number between 0 and 1. The
random number generator is seeded from the current time.

Syntax: Math.random()

round Method
This method is used to round a number to the nearest integer. If the fractional portion of the
number is .5 or higher, then the number is rounded up, otherwise it is rounded down.

Syntax: Math.round(x)

sin Method
This method is used to return the sine of its argument, which will be a number between -1 and
1.

Syntax: Math.sin(x)

sqrt Method
This method returns the square root of a number. If that number is negative, then the Netscape
browser returns the value of NaN, whereas the Internet Explorer browser returns an Error
message.

Syntax: Math.sqrt(x)

tan Method
This method returns a number representing the tangent of an angle.

Syntax: Math.tan(x)

METHOD: Math::atan2

Math.atan2(y, x)

The atan2 method returns the arctangent of the quotient of its two arguments. Compare this to
the atan method whose single argument is the ratio of these two co-ordinates. Specifically, the
angle returned is a numeric value between PI and -PI and represents the counterclockwise
angle in radians (not degrees) between the positive X axis and the point (x, y).

NOTE:

The y co-ordinate is passed as the first argument and the x co-ordinate is passed as the
second argument, i.e. atan2(y, x). This is purposeful and is agreement with the ECMA-262
standard.

Assuming you had a point with the (x, y) co-ordinates of (3, 6), you could calculate the angle in
radians between that point and the positive X axis as follows:

Code:
Math.atan2(6, 3)

output:
0.4636476090008061

This is equivalent to calculating the arctangent of the ratio of these two co-ordinates, which is
6/3 = 2, as follows:

Code:
Math.atan(2)

output:
0.4636476090008061

METHOD: Window::alert

window.alert("message")

This method is used to display an alert box containing a message and an o.k. button. Use this
method to convey a message that does not require a decision from the user.

Code:
window.alert("Welcome to DevGuru.com")

If you wish to have the text appear on more than one line, you use the \n as a line break.

window.alert("Welcome to\nDevGuru.com")

Output:

METHOD: String::anchor

object.anchor("name")

This method is used to create an HTML anchor in a document.

The following code creates an HTML anchor called "newAnchor" and writes the contents of the
"myString" String object to the document which can then be used as a target for a hyperlink.
This has identical results to using the HTML code: Anchor

Code:
myString = new String("Anchor")
document.write (myString.anchor("newAnchor"))

METHOD: Function::apply

Function.apply(thisArg[, argArray])

The apply method allows you to call a function and specify what the keyword this will refer to
within the context of that function. The thisArg argument should be an object. Within the
context of the function being called, this will refer to thisArg. The second argument to the
apply method is an array. The elements of this array will be passed as the arguments to the
function being called. The argArray parameter can be either an array literal or the deprecated
arguments property of a function.

The apply method can be used to simulate object inheritance as in the following example. We
first define the constructor for an object called Car which has three properties. Then the
constructor for a second object called RentalCar is defined. RentalCar will inherit the properties
of Car and add one additional property of its own - carNo. The RentalCar constructor uses the
apply method to call the Car constructor, passing itself as thisArg. Therefore, inside the Car
function, the keyword this actually refers to the RentalCar object being constructed, and not a
new Car object. By this means,the RentalCar object inherits the properties from the Car object.

Code:
function Car(make, model, year)
{
 this.make = make;
 this.model = model;
 this.year = year;
}

function RentalCar(carNo, make, model, year)
{
 this.carNo = carNo;
 Car.apply(this, new Array(make, model, year))
}

myCar = new RentalCar(2134,"Ford","Mustang",1998)
document.write("Your car is a " + myCar.year + " " +
 myCar.make + " " + myCar.model + ".")

Output:
Your car is a 1998 Ford Mustang.

NOTE: The apply method is very similar to the call method and only differs in that, up until
now, you could use the deprecated arguments array as one of its parameters.

PROPERTY: Function::arguments

[Function.]arguments

The arguments property consists of an array of all the arguments passed to a function. The
arguments property is only available inside a function, but can be used to refer to any of the
function's arguments by stating the appropriate element of the array. For example;
arguments[0]; newFunction.arguments[1] etc. (Note that the arguments property can be
preceeded by the function name). The arguments array is especially useful with functions that
can be called with a variable number of arguments, or with more arguments than they were
formally declared to accept.

In this next example, a function is declared to calculate the average of a variable number of
numbers (which are the function's arguments). By using the arguments array and the
arguments.length property, you can pass the function any number of arguments and have it
return the average of them:

Code:
function calcAverage()
{
 var sum = 0
 for(var i=0; i<arguments.length; i++)
 sum = sum + arguments[i]
 var average = sum/arguments.length
 return average
}
document.write("Average = " + calcAverage(400, 600, 83))

Output:
Average = 361

The arguments property itself has the following three properties:

PROPERTIES

arguments.callee Property
The arguments.callee property can only be used within the body of a function and returns a
string specifying what that function is. As the this keyword doesn't refer to the current function,
you can use the arguments.callee property instead.

Syntax: [Function.]arguments.callee

The next example demonstrates the use of this property:

Code:
function testCallee(){return arguments.callee}
document.write(testCallee())

Output:
function testCallee(){return arguments.callee}

arguments.caller Property
The arguments.caller property is deprecated in JavaScript 1.3 and is no longer used, but

where it is, it specifies the name of the function that called the currently executing function.

arguments.length Property
The arguments.length property returns the number of arguments passed to a function, as
opposed to the function.length property, which returns the number of arguments that a
function expects to receive.

Syntax: [Function.]arguments.length

The distinction between the arguments.length and Function.length properties is
demonstrated in this next example of a function which is designed to take as its arguments 3
numbers and then calculate the average of them. If exactly 3 arguments are passed to it, it
carries out the calculation, otherwise it returns an appropriate message:

Code:
function calc3Average(x, y, z)
{
 if(arguments.length != calc3Average.length)
 return "Use 3 arguments!"
 else
 var average = (x + y + z)/3
 return "The average is " + average
}

OBJECT: Function

new Function([arg1[, arg2[, ... argN]],] functionBody)

The Function object permits a function to have methods and properties associated with it. To
accomplish this, the function is temporarily considered to an object whenever you wish to
invoke a method or read the value of a property.

Note that JavaScript treats the function, itself, as a data type that has a value. To return that
value, the function must have a return statement.

When a Function object is created by using the Function constructor, it is evaluated each
time. This is not as efficient as the alternative method of declaring a function using the
function statement where the code is compiled.

The following example creates a Function object to calculate the average of two numbers, and
then displays that average:

Code:
var twoNumAverage = new Function("x", "y", "return (x + y)/2")
document.write(twoNumAverage(3,7))

The Function object can be called just as if it were a function by specifying the variable name:

Code:
var average = twoNumAverage(12,17)

If a function changes the value of a parameter, this change is not reflected globally or in the
calling function, unless that parameter is an object, in which case any changes made to any if
its properties will be reflected outside of it. In the next example, an object called TaxiCo is
created with a property containing the size of the taxi fleet. A Function object called AddCar is
then created which allows a user to alter the size of the Fleet property to reflect an increase in
the number of cars, and then an instance of this function adds 2 to the Fleet property with the
final line of code displaying the new size of the taxi fleet:

Code:
taxiCo = {name:"City Cabs", phone:"321765", fleet:17}
var addCar = new Function("obj", "x", "obj.fleet = obj.fleet + x")
addCar(taxiCo, 2)
document.write("New fleet size = " + taxiCo.fleet)

Output:
New fleet size = 19

The function in the above example could also be created by declaring it using the function
statement as follows...

function addCar(obj,x){obj.fleet = obj.fleet + x}

...the difference being that when you use the Function constructor, AddCar is a variable
whose value is just a reference to the function created, whereas with the function statement
AddCar is not a variable at all but the name of the function itself.

You can also nest a function within a function in which case the inner function can only be
accessed by statements in the outer function. The inner function can use arguments and
variables of the outer function, but not vice versa. The following example has an inner function
that converts a monetary value from Pounds Sterling into Dollars. The outer function takes four
values (the first two in Dollars and the second two in Pounds), passes each of the Pound
values to the inner function to be converted to Dollars, and then adds them all together
returning the sum:

Code:
function totalDollars(v,w,x,y)
{
 function convertPounds(a)
 {
 return a * 1.62
 }
 return v + w + convertPounds(x) + convertPounds(y)
}
document.write("Total Dollars = " + totalDollars(400, 560, 250, 460))

Output:
Total Dollars = 2110.2

A Function object can also be assigned to an event handler (which must be spelled in
lowercase) as in the following example:

Code:
window.onmouseover = new Function("document.bgColor='lightgreen'")

A Function object can be assigned to a variable, which in turn can then be assigned to an
event handler, provided it doesn't take any arguments, because event-handlers cannot handle
them. In the following example a function which changes the background color to green is
assigned to a variable ChangeBGColor. This in turn is assigned to an onMouseOver event
connected to an anchor in a line of text:

Code:
<script language="javascript">
var changeBGColor = new Function("document.bgColor='lightgreen'")
</script>
He turned green with envy.

PROPERTIES

arguments Property
The arguments property consists of an array of all the arguments passed to a function.

Syntax: [Function.]arguments

arguments.callee Property
The arguments.callee property can only be used within the body of a function and returns a
string specifying what that function is.

Syntax: [Function.]arguments.callee

arguments.caller Property
The arguments.caller property is deprecated in JavaScript 1.3 and is no longer used, but

where it is, it specifies the name of the function that called the currently executing function.

Syntax: [Function.]arguments.caller

arguments.length Property
The arguments.length property returns the number of arguments passed to a function.

Syntax: [Function.]arguments.length

arity Property
The arity property specifies the number of arguments expected by a function. It is external to
the function and is in contrast to the arguments.length property which specifies the number of
arguments actually passed to a function.

Syntax: [Function.]arity Compare the length property below.

constructor Property
The constructor property specifies the function that creates an object's prototype. It is a direct
reference to the function itself rather than a string containing the function's name. See the
constructor property of the Object object for more details and examples.

Syntax: Function.constructor

length Property
The length property specifies the number of arguments expected by a function. It is external to
the function and is in contrast to the arguments.length property which specifies the number of
arguments actually passed to a function. Compare the arity property above.

Syntax: Function.length

prototype Property
The prototype property is a value from which all instances of an object are constructed, and
which also allows you to add other properties and methods to an object. See also the
prototype property of the Object object for more details and examples.

Syntax: Function.prototype.name = value

METHODS

apply Method
The apply method allows you to apply to a function a method from another function.

Syntax: Function.apply(thisArg[, argArray])

call Method
The call method allows you to call a method from another object

Syntax: Function.call(thisArg[, arg1[, arg2[, ...]]])

toSource Method
The toSource method creates a string representing the source code of the function. This over-

rides the Object.toSource method

Syntax: Function.toSource ()

toString Method
The toString method (like the valueOf method below) returns a string which represents the
source code of a function. This over-rides the Object.toString method.

Syntax: Function.toString ()

valueOf Method
The valueOf method (like the ToString method above) returns a string which represents the
source code of a function. This over-rides the Object.valueOf method.

Syntax: Function.valueOf ()

STATEMENT: return

return

The return statement specifies the value to be returned by a function and performs the act of
returning that value to where the function was called from.

The following example returns the average of three numbers entered as arguments:

Code:
function average(a, b, c)
{
 return (a + b + c)/3;
}

STATEMENT: function

function name([param] [, param] [..., param]) {statements}

The function statement declares a function with its specified parameters, which can include
numbers, strings and objects. To return a value, a function must have a return statement
specifying the value to return.

The word, function, is a reserved word. You cannot name a function, "function". Rather, use a
word, or blend of words, that describe the purpose that the function performs.

The following code declares a function that calculates the average of three numbers and
returns the result:

Code:
function calcaverage(a, b, c)
{
 return (a+b+c)/3;
}
document.write(calcaverage(2, 4, 6));

METHOD: Function::call

Function.call(thisArg[, arg1[, arg2[, ...]]])

The call method allows you to call a method from another object. This means you only need to
write an object once and just apply it to any other objects that make use of it. The following
example first creates an object called Car which has three properties. Then a second object is
created called HireCar which (beside others) also has those same properties. So, instead of
having to rewrite those properties, the HireCar object uses the call method to inherit them from
the Car object. Note that that you can assign a different this object when calling an existing
function.

Code:
function car(make, model, year)
{this.make = make, this.model = model, this.year = year}

function hireCar(carNo, make, model, year)
{this.carNo = carNo, car.call(this, make, model, year)}

NOTE

The call method is very similar to the apply method, but differs in that with call you cannot
have the now deprecated arguments array as one of its parameters.

METHOD: Function::toSource

Function.toSource ()

The toSource method creates a string representing the source code of the function. This over-
rides the Object.toSource method. Although the toSource method is usually called by
JavaScript behind the scenes, you can call it yourself. This can be particularly useful when
debugging. In the case of the built-in Function object, it returns a string indicating that the
source code is not available, while, for a user-defined function, toSource will return the
JavaScript source that defines it as a string. The following examples illustrate these uses:

Function.toSource() returns:
function Function() { [native code] }

function Cat(breed, name, age)
{
 this.breed = breed
 this.name = name
 this.age = age
}
Cat.toSource() returns:
function Cat(breed, name, age) { this.breed = breed; this.name = name; this.age = age; }

Sheeba = new Cat("Manx", "Felix", 7)
Sheeba.toSource() returns:
{breed:"Manx", name:"Felix", age:7}

METHOD: Function::toString

Function.toString ()

The toString method returns a string which represents the source code of a function. This over-
rides the Object.toString method. There are times when a function needs to be represented
as a string, and the toString method is automatically called to do that. In this next example, the
document.write statement requires the function Car to be represented as a string, so
JavaScript automatically calls the toString method to produce the following output:

Code:
function car(make, model, year)
{this.make = make, this.model = model, this.year = year}
document.write(car)

Output:
function car(make, model, year) {this.make = make, this.model = model, this.year = year

With the built-in Function object the toString method would produce the following string:
function Function() { [native code] }.

METHOD: Function::valueOf

Function.valueOf ()

The valueOf method returns a string which represents the source code of a function. This over-
rides the Object.valueOf method. The valueOf method is usually called by JavaScript behind
the scenes, but to demonstrate the output, the following code first creates a Function object
called Car, and then displays the value of that function:

Code:
function car(make, model, year)
{this.make = make, this.model = model, this.year = year}
document.write(car.valueOf())

Output:
function car(make, model, year) {this.make = make, this.model = model, this.year = year

With the built-in Function object the valueOf method would produce the following string:

Output:
function Function() { [native code] }.

OBJECT: History

The History object is a predefined JavaScript object which is accessible through the history
property of a window object. The window.history property is an array of URL strings which
reflect the entries in the History object. The History object consists of an array of URLs,
accessible through the browser's Go menu, which the client has visited within a window. It is
possible to change a window's current URL without an entry being made in the History object
by using the location.replace method.

PROPERTIES

current Property
The current property contains the complete URL of the current History entry.

Syntax: history.current

length Property
The length property contains the number of elements in the History list.

Syntax: history.length

next Property
The next property contains the complete URL of the next element in the History list, and is the
equivalent of the URL the user would go to if they selected Forward in the Go menu.

Syntax: history.next

previous Property
The previous property contains the complete URL of the previous element in the History list,
and is the equivalent of the URL the user would go to if they selected Back in the Go menu.

Syntax: history.previous

METHODS

back Method
The back method loads the previous URL in the History list, and is equivalent to the browser's
Back button and to history.go(-1).

Syntax: history.back()

forward Method
The forward method loads the next URL in the History list, and is equivalent to the browser's
Forward button and to history.go(1).

Syntax: history.forward()

go Method
The go method loads a specified URL from the History list.

Syntax: history.go(delta)

 history.go(location)

METHOD: History::go

history.go(delta)

history.go(location)

The go method loads a specified URL from the History list. There are two ways of doing this:
you can either go to a relative position backwards or forwards in the list, or you can specify all
or part of the URL you wish to load. To go to a relative position forwards in the list, you use as
the Delta argument a number greater than 0 for the number of places forwards and, likewise, to
go to a relative position backwards in the list, you need to specify a negative number equal to
the number of places backwards. If the Delta argument is 0, then the current page is reloaded.
for example, the following code creates a button, which when pressed, loads a page 2 entries
previous in the history list:

Code:
<INPUT TYPE="button" VALUE="Go" onClick="history.go(-2)">

In the following example, a button is created, which when pressed, loads the nearest History
entry that contains the string "home.newco.com":

Code:
<INPUT TYPE="button" VALUE="Go" onClick="history.go('home.newco.com')">

METHOD: Window::back

window.back()

Using this method is the same as clicking the browser's Back button, i.e. it undoes the last
navigation step performed from the current top-level window.

The following example creates a button on the page that acts the same as the browser's back
button.

Code:
<input type="button" value="Go back" onClick="window.back()">

Output:

OBJECT: Password

A Password object is created by using an HTML <INPUT> tag and assigning "password" to
the TYPE attribute. When a user then enters a password, an asterisk (*) is displayed for every
character entered, thus hiding the value of the password from the view of others. A Password
object must be defined within an HTML <FORM> tag and the JavaScript runtime engine will
then create an entry for it in the elements property of the appropriate Form object. The
Password object can then be accessed through this elements array by referencing either its
element number or name, if a NAME attribute was used in its creation. For example, the
following HTML code creates a password field with the name "Pass" and no initial value:

Code:
<input type = "password" name = "pass" value = "" size = 20>

Using javaScript you could then, say, test the value of a user's entry in the password field as in
the following example which, if the user's entry matches the value previously stored in the
MyPassWord variable, executes a function called AllowEntry.

Code:
if(document.myForm.pass.value == myPassWord)
 allowEntry()

NOTE:

If a user alters a password interactively, it can only be evaluated accurately if data-tainting is
enabled.

PROPERTIES

defaultValue Property
This property, tainted by default, is a string reflecting the VALUE attribute of a Password
object. Initially this is null (for security reasons) regardless of any value assigned to it. You can
override the initial defaultValue property at any time by setting it programmatically, although
this won't be reflected in the display of the Password object.

Syntax: object.defaultValue

form Property
This property is a reference to the parent form to which a particular Password object belongs.

Syntax: object.form

name Property
This property, which is tainted by default, is a string reflecting the NAME attribute of a
Password object, and can be set at any time, overriding the previous value.

NOTE:

If more than one object on any form share the same NAME attribute, an array of those objects
is automatically created.

Syntax: object.name

type Property
This property reflects the type of any particular object on a form, and in the case of the
Password object is always "password".

Syntax: object.type

value Property
This property, tainted by default, reflects the value entered into a password field by the user. It
can be set programatically at any time, but if a user tries to alter it interactively, it won't be
evaluated properly unless data-tainting is enabled. Whether altered or not, the value is at all
times displayed as a string of asterisks.

Syntax: object.value

METHODS

blur method
This method is used to remove focus from the object.

Syntax: object.blur()

focus method
This method is used to give focus to an object. It can be used to focus on a Password object
prior to a value being entered, either by the user in the password field, or by JavaScript code
programatically.

Syntax: object.focus()

handleEvent method
This method calls the handler for a specified event.

Syntax: object.handleEvent(event)

select method
This method causes the input area of a Password object to be selected and the cursor to be
positioned ready for user input.

Syntax: object.select()

NOTE:

The Select object also inherits the watch and unwatch methods from the Object object.

EVENT HANDLERS

onBlur EventHandler
This event handler causes JavaScript code to be executed whenever a blur event occurs; i.e.
whenever a window, frame or form element loses focus.

Syntax: onBlur = "myJavaScriptCode"

onFocus EventHandler
This event handler executes JavaScript whenever a focus event occurs; i.e. whenever the user
focuses on a window, frame or frameset, or inputs to a form element.

Syntax: onFocus = "myJavaScriptCode"

OBJECT: Radio

The Radio object represents a single radio button, created by an HTML <INPUT> tag of type
"radio", in a series from which the user may select only one. It is for this reason that all radio
buttons in a group must have the same value for the NAME attribute. The Radio object is a
form element and as such must be included within a <FORM> tag. The JavaScript runtime
engine creates a Radio object for each individual radio button on the form. Those which form a
group, and hence share the same NAME attribute, are stored as an array of that name. This
array is in turn stored as a single element of the elements array of the Form object. You can
access a set of radio buttons through this elements array either by the index number or by
name. To access an individual button you need to refer to it as an element of the array of those
buttons with the same NAME attribute.

For instance, assuming a set of radio buttons with the name "drink", you could refer to it as
follows:

Code:
document.myForm.drink

...or by its number in the elements array of the appropriate form (assume it to be 3 in this
case):

Code:
document.myForm.elements[3]

Then, say, to display the value of the radio button at element # 1 of the "drink" array, you could
use the following code:

Code:
document.write(document.myForm.drink[1].value)

PROPERTIES

checked Property
This property, which is by default tainted, is a Boolean value which reflects whether a particular
radio button has been selected, returning true if it has and false if not. As only one radio button
in a set can be selected at any one time, it follows that if the select property of one is true,
then that property for the others of that set is false. The checked property can be set at any
time and the change is immediately reflected in the display.

Syntax: object.checked

defaultChecked Property
This property, which is by default tainted, is a Boolean value initially reflecting whether a
particular radio button was selected by default using the CHECKED attribute, returning true if it
was, and false if not. The defaultChecked property can be set at any time, but the change is
not displayed, nor does it affect the defaultChecked property of any other radio button in the
set.

Syntax: object.defaultChecked

form Property
This property is a reference to the parent form of a set of radio buttons that share the same

NAME attribute.

Syntax: object.form

name Property
This property, tainted by default, refers to the NAME attribute of the set to which one particular
radio button belongs. The name property can be set at any time but doing so places a radio
button in a different group.

Syntax: object.name

type Property
This property specifies the type of an element in a form and reflects the TYPE attribute. In the
case of a set of radio buttons, this is "radio".

Syntax: object.type

value Property
It is this property that is returned to the server when a radio button is selected and the form
submitted. It is not displayed and so is not necessarily the same as any text that may appear
alongside the radio button. The value property is tainted by default and reflects the VALUE
attribute of the HTML code. Where no value is specified, the value property is the string "on".

Syntax: document.value

METHODS

blur Method
This method removes focus from a selection list.

Syntax: object.blur()

click Method
This method programatically triggers a radio buttons onClick event handler.

Syntax: object.click()

focus Method
This method moves the focus to the specified selection list allowing the user to then select from
it.

Syntax: object.focus()

handleEvent Method
This method calls the handler for a specified event.

Syntax: object.handleEvent(event)

NOTE:

The Radio object also inherits the watch and unwatch methods from the Object object.

EVENT HANDLERS

onBlur EventHandler
This event handler causes JavaScript code to be executed whenever a blur event occurs; i.e.
whenever a window, frame or form element loses focus.

Syntax: onBlur = "myJavaScriptCode"

onClick EventHandler
The onClick event handler executes javaScript code whenever the user clicks (i.e. when the
mouse button is pressed and released) on a Form object.

Syntax: onClick = "myJavaScriptCode"

onFocus EventHandler
This event handler executes JavaScript whenever a focus event occurs; i.e. whenever the user
focuses on a window, frame or frameset, or inputs to a form element.

Syntax: onFocus = "myJavaScriptCode"

OBJECT: Reset

A Reset object (a 'Reset' button) is created with every instance of an HTML <INPUT> tag (with
a 'type' value set as 'RESET') on a form. Clicking this button resets the values of all form
elements back to their defaults. These objects are stored in the elements array of the parent
form and accessed using either the name defined within the HTML tag or an integer (with '0'
being the first element defined, in source order, in the specified form).

PROPERTIES

form Property
This property returns a reference to the Reset object's parent form.

Syntax: object.form

name Property
This property sets or returns the value of the Reset object's name attribute.

Syntax: object.name

type Property
Every element on a form has an associated type property. In the case of a Reset object, the
value of this property is always "reset".

Syntax: object.type

value Property
This property sets or returns the Submit object's value attribute. This is the text that is actually
displayed on the button face. If this is not defined within the HTML tag the string 'Reset' is used
by default.

Syntax: object.value

METHODS

blur Method
This method removes the focus from the specified reset button.

Syntax: object.blur()

click Method
This method simulates a mouse-click on the reset button.

Syntax: object.click()

focus Method
This method gives focus to the specified reset button.

Syntax: object.focus()

handleEvent Method
This method calls the handler for the specified event.

Syntax: object.handleEvent(event)

EVENT HANDLERS

onBlur Event handler
This event handler executes some specified JavaScript code on the occurrence of a blur event
(when the Reset object loses focus).

Syntax: object.onBlur="myJavaScriptCode"

onClick Event handler
This event handler executes some specified JavaScript code on the occurrence of a click
event (when the reset button is clicked).

Syntax: object.onClick="myJavaScriptCode"

onFocus Event handler
This event handler executes some specified JavaScript code on the occurrence of a focus
event (when the reset button receives focus).

Syntax: object.onFocus="myJavaScriptCode"

OBJECT: Submit

A Submit object (a 'Submit' button) is created with every instance of an HTML <INPUT> tag
(with a 'type' value set as 'SUBMIT') on a form. These objects are then stored in the elements
array of the parent form and accessed using either the name defined within the HTML tag or an
integer (with '0' being the first element defined, in source order, in the specified form).

PROPERTIES

form Property
This property returns a reference to the Submit object's parent form.

Syntax: object.form

name Property
This property sets or returns the value of the Submit object's name attribute.

Syntax: object.name

type Property
Every element on a form has an associated type property. In the case of a Submit object, the
value of this property is always "submit".

Syntax: object.type

value Property
This property sets or returns the Submit object's value attribute. This is the text that is actually
displayed on the button face. If this is not defined within the HTML tag the string 'Submit Query'
is used by default.

Syntax: object.value

METHODS

blur Method
This method removes the focus from the specified submit button.

Syntax: object.blur()

click Method
This method simulates a mouse-click on the submit button.

Syntax: object.click()

focus Method
This method gives focus to the specified submit button.

Syntax: object.focus()

handleEvent Method
This method calls the handler for the specified event.

Syntax: object.handleEvent(event)

EVENT HANDLERS

onBlur Event handler
This event handler executes some specified JavaScript code on the occurrence of a blur event
(when the Submit object loses focus).

Syntax: object.onBlur="myJavaScriptCode"

onClick Event handler
This event handler executes some specified JavaScript code on the occurrence of a click
event (when the submit button is clicked).

Syntax: object.onClick="myJavaScriptCode"

onFocus Event handler
This event handler executes some specified JavaScript code on the occurrence of a focus
event (when the submit button receives focus).

Syntax: object.onFocus="myJavaScriptCode"

OBJECT: Text

A Text object provides a field on a form in which the user can enter data and is created with
every instance of an HTML <INPUT> tag with the type attribute set to "text". These objects are
then stored in the elements array of the parent form and accessed using either the name
defined within the HTML tag or an integer (with '0' being the first element defined, in source
order, in the specified form).

PROPERTIES

defaultValue Property
This property sets or returns a string indicating the initial value of the Text object. The value of
this property initially reflects the value between the start and end <TEXT> tags. Use of the
defaultValue property, which can be done at any time, will override the original value.

Syntax: object.defaultValue[= "newdefaultvalue"]

form Property
This property returns a reference to the parent Form of the Text object.

Syntax: object.form

name Property
This property sets or returns the value of the Text object's name attribute.

Syntax: object.name

type Property
Every element on a form has an associated type property. In the case of a Text object, the
value of this property is always "text".

Syntax: object.type

value Property
This property sets or returns the Text object's value attribute. This is the text that is actually
displayed in the text field and can be set at any time with any changes being immediately
displayed.

Syntax: object.value

METHODS

blur Method
This method removes the focus from the specified Text object.

Syntax: object.blur()

focus Method
This method gives focus to the specified Text object.

Syntax: object.focus()

handleEvent Method
This method calls the handler for the specified event.

Syntax: object.handleEvent(event)

select Method
This method is used to select and highlight the entire text that is currently in the input field.
When the user starts typing, they will replace whatever is currently there. Used in conjunction
with the focus method, this makes it easy to prompt the user for input and places the cursor in
the correct place.

Syntax: object.select()

EVENT HANDLERS

onBlur Event handler
This event handler executes some specified JavaScript code on the occurrence of a blur event
(when the Text object loses focus).

Syntax: object.onBlur="myJavaScriptCode"

onChange Event handler
This event handler executes some specified JavaScript code on the occurrence of a change
event (when the Text object loses focus and its value has altered).

Syntax: object.onChange="myJavaScriptCode"

onFocus Event handler
This event handler executes some specified JavaScript code on the occurrence of a focus
event (when the Text object receives focus).

Syntax: object.onFocus="myJavaScriptCode"

onSelect Event handler
This event handler executes some specified JavaScript code on the occurrence of a select
event (when some text in the text field is selected).

Syntax: object.onSelect="myJavaScriptCode"

EVENT HANDLER: onSelect

onSelect = myJavaScriptCode

Event handler for Text,Textarea

The onSelect event handler is used to execute specified JavaScript code whenever the user
selects some of the text within a text or textarea field. The onSelect event handler uses the
following properties of the Event Object:

type - indicates the type of event.
target - indicates the target object to which the event was sent.

In the following example, selecting some of the text in the Text object causes the 'selectEvent'
function to execute:

Code:
<INPUT TYPE="text" onSelect="selectEvent()">

OBJECT: Textarea

A Textarea object provides a multi-line field in which the user can enter data and is created
with every instance of an HTML <TEXTAREA> tag on a form. These objects are then stored in
the elements array of the parent form and accessed using either the name defined within the
HTML tag or an integer (with '0' being the first element defined, in source order, in the specified
form).

PROPERTIES

defaultValue Property
This property sets or returns a string indicating the initial value of the Textarea object. The
value of this property initially reflects the value between the start and end <TEXTAREA> tags.
Use of the defaultValue property, which can be done at any time, will override the original
value.

Syntax: object.defaultValue[= "newdefaultvalue"]

form Property
This property returns a reference to the parent Form of the Textarea object.

Syntax: object.form

name Property
This property sets or returns the value of the Textarea object's name attribute.

Syntax: object.name

type Property
Every element on a form has an associated type property. In the case of a Textarea object,
the value of this property is always "textarea".

Syntax: object.type

value Property
This property sets or returns the Textarea object's value attribute. This is the text that is
actually displayed in the Textarea and can be set at any time with any changes being
immediately displayed.

Syntax: object.value

METHODS

blur Method
This method removes the focus from the specified Textarea object.

Syntax: object.blur()

focus Method
This method gives focus to the specified Textarea object.

Syntax: object.focus()

handleEvent Method
This method calls the handler for the specified event.

Syntax: object.handleEvent(event)

select Method
This method is used to select and highlight all or a portion of a text in a Textarea element.
Used in conjunction with the focus method, this makes it easy to prompt the user for input and
places the cursor in the correct place.

Syntax: object.select()

EVENT HANDLERS

onBlur Event handler
This event handler executes some specified JavaScript code on the occurrence of a blur event
(when the Textarea object loses focus).

Syntax: object.onBlur="myJavaScriptCode"

onChange Event handler
This event handler executes some specified JavaScript code on the occurrence of a change
event (when the Textarea object loses focus and its value has altered).

Syntax: object.onChange="myJavaScriptCode"

onFocus Event handler
This event handler executes some specified JavaScript code on the occurrence of a focus
event (when the Textarea object receives focus).

Syntax: object.onFocus="myJavaScriptCode"

onKeyDown Event handler
This event handler executes some specified JavaScript code on the occurrence of a KeyDown
event (when a key is depressed).

Syntax: object.onKeyDown="myJavaScriptCode"

onKeyPress Event handler
This event handler executes some specified JavaScript code on the occurrence of a KeyPress
event (when a key is depressed and held down).

Syntax: object.onKeyPress="myJavaScriptCode"

onKeyUp Event handler
This event handler executes some specified JavaScript code on the occurrence of a KeyUp
event (when a key is released).

Syntax: object.onKeyUp="myJavaScriptCode"

onSelect Event handler
This event handler executes some specified JavaScript code on the occurrence of a select
event (when some text in the Textarea is selected).

Syntax: object.onSelect="myJavaScriptCode"

PROPERTY: Textarea::form

textarea.form

This property returns a reference to the Textarea object's parent Form.

The following code dispays the name of the Textarea object's parent Form when it is clicked
and assumes, for the purposes of this example, that the Form is called "myForm".

Code:
<TEXTAREA NAME="txtArea" VALUE="This is a Textarea object"></TEXTAREA>

<script language="javascript">
document.write ("The parent form of this Textarea is " + document.myForm.txtArea.form.name)
</script>

EVENT HANDLER: onKeyDown

onKeyDown = myJavaScriptCode

Event handler for Document, Image, Link, TextArea.

The onKeyDown event handler executes the specified JavaScript code or function on the
occurance of a KeyDown event. A KeyDown event occurs when the user depresses a key.

The onKeyDown event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.
layerX - the cursor location when the KeyDown event occurs.
layerY - the cursor location when the KeyDown event occurs.
pageX - the cursor location when the KeyDown event occurs.
pageY - the cursor location when the KeyDown event occurs.
screenX - the cursor location when the KeyDown event occurs.
screenY - the cursor location when the KeyDown event occurs.
which - this represents the key pressed as its ASCII value.
modifiers - lists the modifier keys (shift, alt, ctrl, etc.) held down when the KeyDown event
occurs.

The following example shows the use of the onKeyDown event handler to display a message
in the text box.

Code:
<body>
<form action="" method="POST" id="myForm">
<input type="text" name="myText" onKeyDown="changeVal()">

<script type="text/javascript" language="JavaScript">
s1 = new String(myForm.myText.value)

function changeVal() {
 s1 = "You pressed a key"
 myForm.myText.value = s1.toUpperCase()
}

</script>
</form>
</body>

OBJECT: Image

new Image([width,] [height])

The Image object is an image on an HTML form, created by using the HTML 'IMG' tag. Any
images created in a document are then stored in an array in the document.images property,
and it is from here that they are accessed. If you have specified a name for an image created
using the HTML 'IMG' tag, you can use that name when you index the image in the images
array. You can also use the Image constructor and the new operator to create an image object
which can then be displayed within an existing cell. The main use of this is to load an image
from the network so that it is in cache before it needs to be displayed.

For example the following code creates an Image object called MyImage:

Code:
myImage = new Image()
myImage.src = "C:/Personal/Mountain.gif"

...you could then have this image replace an existing image River on, say, the click of a button:

Code:
onClick="javascript:void(document.River.src = myImage.src)"

When one Image object replaces another, as in the above example, it cannot change the
width and height properties of it (these are read-only for this object) and the browser displays
the image with the dimensions set in the IMG tag. JavaScript can also be used to create
animation by repeatedly changing the value of the src property. This isn't as fast as GIF
animation because Javascript has to load each indivual frame as a separate file, whereas with
GIF animation all the frames are contained in one file.

PROPERTIES

border Property
The border property is read-only, and is a string stating the width of the border of an image in
pixels. For an image created using the Image constructor, this is 0.

Syntax: Image.border

complete Property
The complete property is read-only and returns a Boolean value indicating whether or not the
browser has completed loading the image.

Syntax: Image.complete

height Property
The height property is read-only, and is a string stating the HEIGHT attribute of an IMG tag in
pixels. Where an image has been created using the Image constructor, the height is of the
image itself, not the HEIGHT value of the display.

Syntax: Image.height

hspace Property
The hspace property is read-only and specifies the HSPACE value of the IMG tag, which is the

number of pixels space between the left and right margins of an image and surrounding text.
For an image created using the Image constructor, the value of this property is null.

Syntax: Image.hspace

lowsrc Property
The lowsrc property specifies the URL of a low-resolution version of an image relating to the
LOWSRC attribute of an IMG tag. A browser first loads a low-resolution version before
replacing it with the high-resolution version of the src property.

Syntax: Image.lowsrc

name Property
The name property is read-only and reflects the NAME attribute of an IMG tag. If the Image
object has been created by using the Image constructor, the value of this property is null.

Syntax: Image.name

src Property
The src property is a string representing the URL of an image and reflects the SRC attribute of
an IMG tag. The src property can be altered at any time, but when you do so the new image (if
not the same size) is scaled to fit the height and width attributes of the IMG tag. Also, the
loading of any other image into that cell is aborted, so the Lowsrc property should be altered
before setting the src property.

Syntax: Image.src

vspace Property
The vspace property is read-only and specifies the VSPACE value of the IMG tag, which is the
number of pixels space between the top and bottom margins of an image and surrounding text.
For an image created using the Image constructor, the value of this property is null.

Syntax: Image.vspace

width Property
The width property is read-only, and is a string stating the WIDTH attribute of an IMG tag in
pixels. Where an image has been created using the Image constructor, the width is of the
image itself, not the WIDTH value of the display.

Syntax: Image.width

METHODS

handleEvent Method
The handleEvent method is used to evoke the handler for a specified event.

Syntax: Image.handleEvent(event)

EVENT HANDLERS

All the event handlers that are available with the Image object also have an equivalent property
(spelled entirely in lower case letters) which can be used to set an image's event-handlers
when created using the Image constructor. Assume you have a function called MyFunction
which you want to set to the onload event-handler for an image called Ocean, you could
accomplish this with the following statement:

Code:
Ocean.onload = myFunction

The same applies for all the following event-handlers.

onAbort EventHandler
The onAbort event handler is used to execute certain JavaScript code whenever an abort
event occurs, such as when the user stops the loading of an image by clicking a link or a Stop
button.

Syntax: onAbort = "myJavaScriptCode"

onError EventHandler
The onError event handler executes certain Javascript code whenever a Javascript syntax or
runtime error occurs during the loading of a document or image.

Syntax: onError = "myJavaScriptCode"

onKeyDown EventHandler
The onKeyDown event handler is used to execute certain JavaScript code whenever the user
depresses a key.

Syntax: onKeyDown = "myJavaScriptCode"

onKeyPress EventHandler
The onKeyPress event handler executes JavaScript code whenever the user presses or holds
down a key

Syntax: onKeyPress = "myJavaScriptCode"

onKeyUp EventHandler
The onKeyUp event handler executes JavaScript code whenever the user releases a
depressed key.

Syntax: onKeyUp = "myJavaScriptCode"

onload EventHandler
The onload event handler is used to execute JavaScript code whenever the browser has
finished loading a window or all of the frames within a FRAMESET tag.

Syntax: onload ="myJavaScriptCode"

NOTE:

The event handlers onClick, onMouseOut and onMouseOver can also be used with the
Internet Explorer browser, but not with Netscape. You can, however, use these event handlers
in conjunction with the Image object with Netscape, if you define an Area object for the image,
or if the IMG tag is placed within a Link object.

EVENT HANDLER: onAbort

onAbort = myJavaScriptCode

Event handler for Image

The onAbort event handler executes the specified JavaScript code or function on the
occurance of an abort event. This is when a user cancels the loading of an image by either
clicking stop in the browser or clicking another link before the image has loaded.

The onAbort event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

The following example shows the use of the onAbort event handler to alert the user that the
'myPic' image was not loaded.

Code:
<IMG NAME = "myPic" SRC = "images/myPic.gif" onAbort = "alert('Loading of image
aborted!')">

OBJECT: Event

An Event object is created automatically by JavaScript on the occurance of an event. It has
various properties that provide information about the event such as event type, the position of
the cursor at the time the event occured, etc. Not all of the properties relate to every type of
event; the one's that do are documented in the individual event handler pages.

The following example creates a button that, when clicked, displays an alert box showing the
event type (in this case a 'click' event).

Code:
<input type="button" value="Event type" onClick='alert("The event type is " + event.type)'>

PROPERTIES

data Property
This property relates to the DragDrop event and its use returns an array that contains the URLs
of any dropped objects, as strings.

Syntax: event.data

height Property
This property relates to the height of the window or frame that contains the object that initiated
the event.

Syntax: event.height

layerX / layerY Property
These properties returns a number that represents the horizontal/vertical position, in pixels, of
the cursor relative to the layer that initiated the event, or, when passed with a resize event, it
represents the object width/height. These properties are synonyms for, and interchangable
with, the x and y event object properties.

Syntax: event.layerX
Syntax: event.layerY

modifiers Property
This property returns a string containing details of any modifier keys that were held down
during a key or mouse event. The values of the modifier keys are as follows: ALT_MASK,
CONTROL_MASK, SHIFT_MASK and META_MASK.

Syntax: event.modifiers

pageX / pageY Property
These properties return the horizontal/vertical position of the cursor relative to the page, in
pixels, at the time the event occured.

Syntax: event.pageX
Syntax: event.pageY

screenX / screenY Property
These properties return the horizontal/vertical position of the cursor relative to the screen, in
pixels, at the time the event occured.

Syntax: event.screenX
Syntax: event.screenY

target Property
This property returns a reference to the object that the event was originally sent to.

Syntax: event.target

type Property
This property returns a string that represents the type of the event (click, key down, etc.).

Syntax: event.type

which Property
This property returns a number that represents either which mouse button (1 being the left
button, 2 the middle and 3 the right) was pressed or which key was pressed (its ASCII value) at
the time the event occuered.

Syntax: event.which

width Property
This property relates to the height of the window or frame that contains the object that initiated
the event.

Syntax: event.width

x / y Property
These properties returns a number that represents the horizontal/vertical position, in pixels, of
the cursor relative to the layer that initiated the event, or, when passed with a resize event, it
represents the object width/height. These properties are synonyms for, and interchangable
with, the layerX and layerY event object properties.

Syntax: event.x
Syntax: event.y

METHODS

The Event object inherits the watch and unwatch methods of the Object object.

EVENT HANDLER: onError

onError = myJavaScriptCode

Event handler for Image, Window.

The onError event handler executes the specified JavaScript code or function on the
occurance of an error event. This is when an image or document causes an error during
loading. The distinction must be made between a browser error, when the user types in a non-
existant URL, for example, and a JavaScript runtime or syntax error. This event handler will
only be triggered by a JavaScript error, not a browser error.

As well as the onError handler triggering a JavaScript function, it can also be set to
onError="null" which suppresses the standard JavaScript error dialog boxes. To suppress
JavaScript error dialogs when calling a function using onError, the function must return true
(example 2 below demonstrates this).

There are two things to bear in mind when using window.onerror. Firstly, this only applies to
the window containing window.onerror, not any others, and secondly, window.onerror must
be spelt all lower-case and contained within <script> tags; it cannot be defined in HTML (this
obviously doesn't apply when using onError with an image tag, as in example 1 below).

The onFocus event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

The first example suppresses the normal JavaScript error dialogs if a problem arises when
trying to load the specified image, while example 2 does the same, but applied to a window, by
using return true in the called function, and displays a customized message instead.

Code:

Code:
<script type="text/javascript" language="JavaScript">

s1 = new String(myForm.myText.value)

window.onerror=myErrorHandler

function myErrorHandler() {
alert('A customized error message')
return true
}

</script>

<body onload=nonexistantFunc()>

OBJECT: Window

As the top level object in the JavaScript client hierarchy, every browser window and frame has
a corresponding Window object, created automatically with every instance of a <BODY> or
<FRAMESET> tag.

PROPERTIES

closed Property
This property is used to return a Boolean value that determines if a window has been closed. If
it has, the value returned is true.

Syntax: window.closed

defaultStatus Property
This property is used to define the default message displayed in a window's status bar.

Syntax: window.defaultStatus(= "message")

document Property
This property's value is the document object contained within the window. See Document
object.

Syntax: window.document

frames Property
This property is an array containing references to all the named child frames in the current
window.

Syntax: window.frames (= "frameID")

history Property
This property's value is the window's History object, containing details of the URL's visited from
within that window. See History object.

Syntax: window.history

innerHeight / innerWidth Properties
These properties determine the inner dimensions of a window's content area.

Syntax: window.innerHeight = pixelDimensions
 window.innerWidth = pixelDimensions

length Property
This property returns the number of child frames contained within a window, and gives identical
results as using the length property of the frames array.

Syntax: window.length

location Property
This property contains details of the current URL of the window and its value is always the
Location object for that window.

Syntax: window.location

locationbar Property
This property relates to the area of a browser's window that contains the details of the URL or
bookmark (this is where you physically enter URL details). The locationbar property has its own
property, visible, that defaults to true (visible) and can be set to false (hidden).

Syntax: window.locationbar[.visible = false]

menubar Property
This property relates to the area of a browser's window that contains the various pull-down
menus (File, Edit, View, etc.). The menubar property has its own property, visible, that defaults
to true (visible) and can be set to false (hidden).

Syntax: window.menubar[.visible = false]

name Property
This property is used to return or set a window's name.

Syntax: window.name

opener Property
When opening a window using window.open, use this property from the destination window to
return details of the source window. This has many uses, for example, window.opener.close()
will close the source window.

Syntax: window.opener

outerheight / outerwidth Property
These properties determine the dimensions, in pixels, of the outside boundary, including all
interface elements, of a window.

Syntax: window.outerheight
Syntax: window.outerwidth

pageXOffset / pageYOffset Property
These properties return the X and Y position of the current page in relation to the upper left
corner of a window's display area.

Syntax: window.pageXOffset
Syntax: window.pageYOffset

parent Property
This property is a reference to the window or frame that contains the calling child frame.

Syntax: window.parent

personalbar Property
This property relates to the browser's personal bar (or directories bar). The personalbar
property has its own property, visible, that defaults to true (visible) and can be set to false
(hidden).

Syntax: window.personalbar[.visible = false]

scrollbars Property
This property relates to the browser's scrollbars (vertical and horizontal). The scrollbars
property has its own property, visible, that defaults to true (visible) and can be set to false
(hidden).

Syntax: window.scrollbars[.visible = false]

self Property
This property is a reference (or synonym) for the current active window or frame.
Syntax: self.property or method

status Property
This property, which can be set at any time, is used to define the transient message displayed
in a window's status bar such as the text displayed when you onMouseOver a link or anchor.

Syntax: window.status(= "message")

statusbar Property
This property relates to the browser's status bar. The statusbar property has its own property,
visible, that defaults to true (visible) and can be set to false (hidden).

Syntax: window.statusbar[.visible = false]

toolbar Property
This property sets or returns a Boolean value that defines whether the browser's tool bar is
visible or not. The default is true (visible). False means hidden. It can only be set before the
window is opened and you must have UniversalBrowserWrite privilege.

Syntax: window.toolbar[.visible = false]

top Property
This property is a reference (or synonym) for the topmost browser window.

Syntax: top.property or method

window Property
This property is a reference (or synonym) for the current window or frame.

Syntax: window.property or method

METHODS

alert Method
This method displays an alert box containing a message and an o.k. button.

Syntax: window.alert("message")

back Method
Using this method is the same as clicking the browser's Back button, i.e. it undoes the last
navigation step performed from the current top-level window.

Syntax: window.back()

blur Method
This method is used to remove focus from the current window.

Syntax: window.blur()

captureEvents Method
This method instructs the window to capture all events of a particular type. See the event
object for a list of event types.

Syntax: window.captureEvent(eventType)

clearInterval Method
This method is used to cancel a timeout previously set with the setInterval method.

Syntax: window.clearInterval(intervalID)

clearTimeout Method
This method is used to cancel a timeout previously set with the setTimeout method.

Syntax: window.clearTimeout(timeoutID)

close Method
This method is used to close a specified window. If no window reference is supplied, the
close() method will close the current active window. Note that this method will only close
windows created using the open() method; if you attempt to close a window not created using
open(), the user will be prompted to confirm this action with a dialog box before closing. The
single exception to this is if the current active window has only one document in its session
history. In this case the closing of the window will not require confirmation.

Syntax: window.close()

confirm Method
This method brings up a dialog box that prompts the user to select either 'o.k.' or 'cancel', the
first returning true and the latter, false.

Syntax: window.confirm("message")

disableExternalCapture Method
This method disables the capturing of events previously enabled using the
enableExternalCapture method below.

Syntax: window.disableExternalCapture()

enableExternalCapture Method
This method allows a window that contains frames to capture events in documents loaded from
different servers.

Syntax: window.enableExternalCapture()

find Method
This method allows the searching of the contents of a window for a specified string. The
caseSensitive and backward arguments are Booleans and to use either of these you must
also specify the other. If a search string is not supplied, JavaScript will display a Find dialog
box which prompts the user for a string to search for, and also provides the facility to set the
other two (caseSensitive and backward) arguments.

Syntax: window.find([string[, caseSensitive, backward]])

focus Method
This method is used to give focus to the specified window. This is useful for bringing windows
to the top of any others on the screen.

Syntax: window.focus()

forward Method
Using this method is the same as clicking the browser's Forward button, i.e. it goes to the next
URL in the history list of the current top-level window.

Syntax: window.forward()

handleEvent Method
This method is used to call the handler for the specified event.

Syntax: window.handleEvent("eventID")

home Method
Using this method has the same effect as pressing the Home button in the browser, i.e. the
browser goes to the URL set by the user as their home page.

Syntax: window.home()

moveBy Method
This method is used to move the window a specified number of pixels in relation to its current
co-ordinates.

Syntax: window.moveBy(horizPixels, vertPixels)

moveTo Method
This method moves the window's left edge and top edge to the specified x and y co-ordinates,
respectively.

Syntax: window.moveTo(Xposition, Yposition)

open Method
This method is used to open a new browser window.

Syntax: window.open(URL, name [, features])

print Method
This method is used to print the contents of the specified window.

Syntax: window.print()

prompt Method
This method displays a dialog box prompting the user for some input.

Syntax: window.prompt(message[, defaultInput])

releaseEvents Method
This method is used to release any captured events of the specified type and to send them on
to objects further down the event hierarchy

Syntax: window.releaseEvents("eventType")

resizeBy Method
This method is used to resize the window. It moves the bottom right corner of the window by
the specified horizontal and vertical number of pixels while leaving the top left corner anchored
to its original co-ordinates.

Syntax: window.resizeBy(horizPixels, vertPixels)

resizeTo Method

This method is used to resize a window to the dimensions supplied with the outerWidth and
outerHeight (both integers, in pixels) parameters.

Syntax: window.resizeTo(outerWidth, outerHeight)

routeEvent Method
This method is used to send a captured event further down the normal event hierarchy;
specifically, the event is passed to the original target object unless a sub-object of the window
(a document or layer) is also set to capture this type of event, in which case the event is
passed to that sub-object.

Syntax: window.routeEvent(eventType)

scroll Method
This method is used to scroll the window to the supplied co-ordinates. This method is now
deprecated; use the scrollTo method detailed below instead.

Syntax: window.scroll(coordsPixels)

scrollBy Method
This method is used to scroll the window's content area by the specified number of pixels. This
is only useful when there are areas of the document that cannot be seen within the window's
current viewing area, and the visible property of the window's scrollbar must be set to true for
this method to work.

Syntax: window.scrollBy(horizPixels, vertPixels)

scrollTo Method
This method scrolls the contents of a window, the specified co-ordinate becoming the top left
corner of the viewable area.

Syntax: window.scrollTo(xPosition, yPosition)

setInterval Method
This method is used to call a function or evaluate an expression at specified intervals, in
milliseconds.

Syntax: window.setInterval(expression/function, milliseconds)

setTimeout Method
This method is used to call a function or evaluate an expression after a specified number of
milliseconds.

Syntax: window.setTimeout(expression/function, milliseconds)

stop Method
This method is used to cancel the current download. This is the same as clicking the browser's
Stop button.

Syntax: window.stop()

EVENT HANDLERS

onBlur Event handler
This event handler executes some specified JavaScript code on the occurrence of a Blur event
(when an window loses focus).

Syntax: window.onBlur="myJavaScriptCode"

onDragDrop Event handler
This event handler executes some specified JavaScript code on the occurrence of a DragDrop
event.

Syntax: window.onDragDrop="myJavaScriptCode"

onError Event handler
This event handler executes some specified JavaScript code on the occurrence of an Error
event.

Syntax: window.onError="myJavaScriptCode"

onFocus Event handler
This event handler executes some specified JavaScript code on the occurrence of a Focus
event.

Syntax: window.onFocus="myJavaScriptCode"

onload Event handler
This event handler executes some specified JavaScript code on the occurrence of a Load
event.

Syntax: window.onload="myJavaScriptCode"

onMove Event handler
This event handler executes some specified JavaScript code on the occurrence of a Move
event.

Syntax: window.onMove="myJavaScriptCode"

onResize Event handler
This event handler executes some specified JavaScript code on the occurrence of a Resize
event.

Syntax: window.onResize="myJavaScriptCode"
onUnload Event handler
This event handler executes some specified JavaScript code on the occurrence of an Unload
event.

Syntax: window.onUnload="myJavaScriptCode"

PROPERTY: Window::closed

window.closed

This property is used to return a Boolean value that determines if a window has been closed. If
it has, the value returned is true.

The following code opens a new window and then immediately closes it. The onClick event of
the button then calls a function which uses the window.closed property to display the status
(open or closed) of the window.

Code:
<INPUT TYPE="Button" NAME="winCheck" VALUE="Has window been closed?"
onClick=checkIfClosed()>

newWindow=window.open('','','toolbar=no,scrollbars=no,width=300,height=150')
newWindow.document.write("This is 'newWindow'")
newWindow.close()

function ifClosed() {
document.write("The window 'newWindow' has been closed")
}

function ifNotClosed() {
document.write("The window 'newWindow' has not been closed")
}

function checkIfClosed() {
if (newWindow.closed)
 ifClosed()
else
 ifNotClosed()
}

PROPERTY: Window::defaultStatus

window.defaultStatus(= "message")

This property, which can be set at any time, is used to define the default message displayed in
a window's status bar, with priority given to any other status messages such as the text
displayed when you onMouseOver a link or anchor.

Code:
window.defaultStatus = "This is the default status bar message."

PROPERTY: Window::frames

window.frames("frameID")

This property is an array containing references to all the named child frames in the current
window. These references are stored in the array in the order in which they are defined in the
source code. The "frameID" argument is used to access items in the array and this can either
be a string containing the child frame name as defined with the <FRAME> tag in the HTML
source, or an integer (with '0' being the first item in the array).

The first two examples below return the same results; the first uses the defined names of the
frames and the second uses their reference number within the array.

The frames array also has a length property which determines how many child frames are
contained within a window. This is identical to using the length property of the window object.
The third example shows the syntax for this.

Code:
window.frames["framename1"]
window.frames["framename2"]
window.frames["framename3"]

window.frames[0]
window.frames[1]
window.frames[2]

window.frames.length

PROPERTY: Window::status

window.status= ("message")

This property, which can be set at any time, is used to define the transient message displayed
in a window's status bar such as the text displayed when you onMouseOver a link or anchor.
When using the status property with the onMouseOver event handler, you must use the 'return
true' syntax as detailed in the example below.

Code:
<A HREF="http://www.devguru.com" onMouseOver="self.status='Visit DevGuru.com'; return
true">DevGuru.com

METHOD: Window::setInterval

window.setInterval(expression/function, milliseconds)

This method is used to call a function or evaluate an expression at specified intervals, in
milliseconds. This will continue until the clearInterval method is called or the window is closed.
If an expression is to be evaluated, it must be quoted to prevent it being evaluated immediately

The following example uses the setInterval method to call the clock() function which updates
the time in a text box.

Code:
<form name="myForm" action="" method="POST">
<input name="myClock" type="Text">
<script language=javascript>

self.setInterval('clock()', 50)

function clock() {
 time=new Date()
 document.myForm.myClock.value=time
}

</script>
</form>

METHOD: Window::setTimeout

window.setTimeout(expression/function, milliseconds)

This method is used to call a function or evaluate an expression after a specified number of
milliseconds. If an expression is to be evaluated, it must be quoted to prevent it being
evaluated immediately. Note that the use of this method does not halt the execution of any
remaining scripts until the timeout has passed, it just schedules the expression or function for
the specified time.

The following example opens a new window and uses the setTimeout method to call the
winClose() function which closes it after five seconds (5000 milliseconds).

Code:
function winClose() {
 myWindow.close()
}

myWindow = window.open("", "tinyWindow", 'width=150, height=110')
myWindow.document.write("This window will close automatically after five seconds. Thanks for
your patience")
self.setTimeout('winClose()', 5000)

In this example, the setTimeout method is used with the onClick core attribute in an input tag
within the body element to call a function after five seconds (5000 milliseconds):

<html>
<head>
<script language="Javascript">
function displayAlert()
{
alert("The GURU sez hi!")
}
</script>
</head>
<body>
<form>
Click on the button.

After 5 seconds, an alert will appear.

<input type="button" onclick="setTimeout('displayAlert()',5000)" value="Click Me">
</form>
</body>
</html>

METHOD: Window::confirm

confirm("message")

This method brings up a dialog box that prompts the user to select either 'o.k.' or 'cancel', the
first returning true and the latter, false.

The following example opens a new window, creates a button in the original window and
assigns the closeWindow() function to its onClick event handler. This function prompts the user
to confirm the closing of the new window.

Code:
<form action="" method="POST" id="myForm">
<input type="Button" name="" value="Close" id="myButton" onClick="closeWindow()">

<script type="" language="JavaScript">

myWindow = window.open("", "tinyWindow", 'toolbar, width=150, height=100')

function closeWindow() {
 myWindow.document.write("Click 'O.K'. to close me and 'Cancel' to leave me open.")
 if (confirm("Are you sure you want to close this window?")) {
 myWindow.close()
 }
}

</script>
</form>

Output:

METHOD: Window::find

window.find([string[, caseSensitive, backward]])

This method allows the searching of the contents of a window for a specified string. The
caseSensitive and backward arguments are Booleans and to use either of these you must
also specify the other. If a search string is not supplied, JavaScript will display a Find dialog
box which prompts the user for a string to search for, and also provides the facility to set the
other two (caseSensitive and backward) arguments.

The first example below uses the onClick event handler of the <A> tag to call the findhello()
function that searches the contents of the window for the strings "hello" and "goodbye". The
results of these searches are displayed, true or false, as JavaScript alerts. The second
example shows the "Find" dialog box that is displayed if no search string is supplied.

Code:
<SCRIPT>
function findhello ()
{
 alert("FIND hello = " + window.find("hello"))
 alert("FIND goodbye = " + window.find("goodbye"))
}
</SCRIPT>

Find hello
hello

Code:
self.find()

Output:

METHOD: Window::forward

window.forward()

Using this method is the same as clicking the browser's Forward button, i.e. it moves to the
next URL in the history list of the current top-level window.

The following example creates a button on the page that acts the same as the browser's
Forward button.

Code:
<input type="button" value="Go back" onClick="window.forward()">

Output:

METHOD: Window::open

window.open(URL, name [, features])

This method is used to open a new browser window. Note that, when using this method with
event handlers, you must use the syntax window.open() as opposed to just open(). Calling
just open() will, because of the scoping of static objects in JavaScript, create a new document
(equivalent to document.open()), not a window.

The available parameters are as follows:

URL - this is a string containing the URL of the document to open in the new window. If no
URL is specified, an empty window will be created.

name - this is a string containing the name of the new window. This can be used as the 'target'
attribute of a <FORM> or <A> tag to point to the new window.

features - this is an optional string that contains details of which of the standard window
features are to be used with the new window. This takes the form of a comma-delimited list.
Most of these features require yes or no (1 or 0 is also o.k.) and any of these can be turned on
by simply listing the feature (they default to yes). Also, if you don't supply any of the feature
arguments, all features with a choice of yes or no are enabled; if you do specify any feature
parameters, titlebar and hotkeys still default to yes but all others are no.

Note that many of the values for the features parameter are Netscape only. Further, with the
exception of dependent and hotkey, these Netscape only values represent potential sources
of security problems and therefore require signed script (and user's permission) if they are to
be used.

Details of the available values are given below:

features Value Description

alwaysLowered
When set to yes, this creates a window that always floats
below other windows.

alwaysRaised
When set to yes, this creates a window that always floats
above other windows.

dependent
When set to yes, the new window is created as a child
(closes when the parent window closes and does not appear
on the task bar on Windows platforms) of the current
window.

directories When set to yes, the new browser window has the standard
directory buttons.

height This sets the height of the new window in pixels.

hotkeys
When set to no, this disables the use of hotkeys (except
security and quit hotkeys) in a window without a menubar.

innerHeight This sets the inner height of the window in pixels.

innerWidth This sets the inner width of the window in pixels.

location When set to yes, this creates the standard Location entry
feild in the new browser window.

menubar When set to yes, this creates a new browser window with the
standard menu bar (File, Edit, View, etc.).

outerHeight This sets the outer height of the new window in pixels.

outerWidth This sets the outer width of the new window in pixels.

resizable When set to yes this allows the resizing of the new window
by the user.

screenX
This allows a new window to be created at a specified
number of pixels from the left side of the screen.

screenY
This allows a new window to be created at a specified
number of pixels from the top of the screen.

scrollbars When set to yes the new window is created with the
standard horizontal and vertical scrollbars, where needed

status When set to yes, the new window will have the standard
browser status bar at the bottom.

titlebar
When set to yes the new browser window will have the
standard title bar.

toolbar When set to yes the new window will have the standard
browser tool bar (Back, Forward, etc.).

width This sets the width of the new window in pixels.

z-lock
When set to yes this prevents the new window from rising
above other windows when it is made active (given focus).

These features may only be used with IE4:

channelmode sets if the window appears in channel mode.
fullscreen the new window will appear in full screen.
left same as screenX, allows a new window to be created at a

specified number of pixels from the left side of the screen.
top same as screenY, allows a new window to be created at a

specified number of pixels from the top of the screen.

The following example creates a new window of the specified dimensions complete with
toolbar, changes the background color and writes a message to it.

Code:
myWindow = window.open("", "tinyWindow", 'toolbar,width=150,height=100')
myWindow.document.write("Welcome to this new window!")
myWindow.document.bgColor="lightblue"
myWindow.document.close()

Output:

METHOD: Window::prompt

window.prompt(message[, defaultInput])

This method displays a dialog box prompting the user for some input. The optional
defaultInput parameter specifies the text that initially appears in the input field.

The following example prompts the user for their name and then writes a personalized greeting
to the page.

Code:
<body onload=greeting()>

<script language="JavaScript">
function greeting() {
 y = (prompt("Please enter your name.", "Type name here"))
 document.write("Hello " + y)
}
</script>

Output:

METHOD: Window::scrollTo

window.scrollTo(xPosition, yPosition)

This method scrolls the contents of a window, the specified co-ordinate becoming the top left
corner of the viewable area. Both parameters are integers and they represent the x and y co-
ordinates in pixels. This method is only useful where there are areas of the document not
viewable within the current viewable area of the window and the visible property of the
window's scrollbar must be set to true (enabled).

The following example assigns the toTop() function to the onClick event handler of a button.
Note that for this example to have any noticable effect, the button must be placed below the
bottom of the default viewable area of the window, i.e. you have to scroll down to be able to
see the button.

Code:
<script type="" language="JavaScript">

function toTop() {
 self.scrollTo(0, 0)
}

</script>

<form action="" method="POST" id="myForm">
<input type="Button" name="" value="Top" id="myButton" onClick=toTop()>
</form>

EVENT HANDLER: onDragDrop

onDragDrop = myJavaScriptCode

Event handler for Window.

The onDragDrop event handler executes the specified JavaScript code or function on the
occurance of a DragDrop event. This is when an object, such as a shortcut or file, is dragged
and dropped into the browser window. If the event handler returns true, the browser will
attempt to load the dropped item into its window, and if false the drag and drop process is
cancelled.

The onDragDrop event handler uses the following Event object properties.

data - this property returns the URLs of any dropped objects as an Array of Strings.
type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.
screenX - the cursor location when the click event occurs.
screenY - the cursor location when the click event occurs.
modifiers - lists the modifier keys (shift, alt, ctrl, etc.) held down when the click event occurs.

EVENT HANDLER: onMouseOut

onMouseOut = myJavaScriptCode

Event handler for Layer, Link

The onMouseOut event handler is used to execute specified Javascript code whenever the
user moves the mouse out of an area or link from inside that area or link. If used with an Area
object, that object must include the HREF attribute within the AREA tag. And if you want to set
the status or defaultStatus properties using the onMouseOut event handler, you must return
true within the event handler. onMouseOut uses the following properties of the Event object:

type - indicates the type of event.
target - indicates the target object to which the event was sent.
layerX, layerY, pageX, pageY, screenX, screenY
 indicate the cursor location at the time of the MouseOut event.

The following example creates an Image object. When the user moves the mouse outside the
image from within it, the onMouseOut event handler changes the picture displayed by calling
the 'changeImage' function which (not listed) alters the src property of the Image object.

Code:

OBJECT: Area

An Area object is a type of Link object and shares the same attributes. It defines an area of an
image as an image map. When you click on an area, that area's hypertext reference is loaded
into the target window. For more information on the Area object, see the Link object.

EVENT HANDLER: onMouseOver

onMouseOver = myJavaScriptCode

Event handler for Layer, Link

The onMouseOver event handler is used to execute specified Javascript code whenever the
user moves the mouse over an area or object from outside that area or object. If used with an
Area object, that object must include the HREF attribute within the AREA tag. And if you want
to set the status or defaultStatus properties using the onMouseOver event handler, you must
return true within the event handler. OnMouseOver uses the following properties of the Event
object:

type - indicates the type of event.
target - indicates the target object to which the event was sent.
layerX, layerY, pageX, pageY, screenX, screenY
 indicate the cursor location at the time of the MouseOver event.

The following example creates an Image object. When the user moves the mouse over that
image from outside of it, the onMouseOver event handler changes the picture displayed by
calling the 'changeImage' function which (not listed) alters the src property of the Image object.

Code:

EVENT HANDLER: onKeyPress

onKeyPress = myJavaScriptCode

Event handler for Document, Image, Link, TextArea.

The onKeyPress event handler executes the specified JavaScript code or function on the
occurance of a KeyPress event. A KeyPress event occurs when the user presses or holds
down a key.

The onKeyPress event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.
layerX - the cursor location when the KeyPress event occurs.
layerY - the cursor location when the KeyPress event occurs.
pageX - the cursor location when the KeyPress event occurs.
pageY - the cursor location when the KeyPress event occurs.
screenX - the cursor location when the KeyPress event occurs.
screenY - the cursor location when the KeyPress event occurs.
which - this represents the key pressed as its ASCII value.
modifiers - lists the modifier keys (shift, alt, ctrl, etc.) held down when the KeyPress event
occurs.

The following example shows the use of the onKeyPress event handler to display a message
in the text box.

Code:
<body>
<form action="" method="POST" id="myForm" >
<input type="text" name="myText" onKeyPress="changeVal()">

<script type="text/javascript" language="JavaScript">
s1 = new String(myForm.myText.value)

function changeVal() {
 s1 = "You pressed a key"
 myForm.myText.value = s1.toUpperCase()
}

</script>
</form>
</body>

EVENT HANDLER: onKeyUp

onKeyUp = myJavaScriptCode

Event handler for Document, Image, Link, TextArea.

The onKeyUp event handler executes the specified JavaScript code or function on the
occurance of a KeyUp event. A KeyUp event occurs when the user releases a key from its
depressed position.

The onKeyUp event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.
layerX - the cursor location when the KeyUp event occurs.
layerY - the cursor location when the KeyUp event occurs.
pageX - the cursor location when the KeyUp event occurs.
pageY - the cursor location when the KeyUpevent occurs.
screenX - the cursor location when the KeyUp event occurs.
screenY - the cursor location when the KeyUp event occurs.
which - this represents the key released as its ASCII value.
modifiers - lists the modifier keys (shift, alt, ctrl, etc.) held down when the KeyUp event occurs.

The following example shows the use of the onKeyUp event handler to display a message in
the text box.

Code:
<body>
<form action="" method="POST" id="myForm">
<input type="text" name="myText" onKeyUp="changeVal()">

<script type="text/javascript" language="JavaScript">
s1 = new String(myForm.myText.value)

function changeVal() {
 s1 = "You released a key"
 myForm.myText.value = s1.toUpperCase()
}

</script>
</form>
</body>

EVENT HANDLER: onMouseDown

onMouseDown = myJavaScriptCode

Event handler for Button, Document and Link

The onMouseDown event handler is used to execute specified Javascript code whenever the
user depresses a mouse button. onMouseDown uses the following properties of the Event
object:

type - indicates the type of event.
target - indicates the target object to which the event was sent.
layerX, layerY, pageX, pageY, screenX, screenY
 indicate the cursor location at the time of the MouseDown event.
which - 1 represents a left mouse click and 3 a right click.
modifiers - lists the modifier keys (shift, alt, ctrl, etc.) held down when the MouseDown event
occurs.

For example, with the following code, the user can click on the word 'green' to alter the
background color to green. Depressing the mouse button calls the 'changeColor' function to do
this:

Code:
<P>Click on green to change background
color.</P>

EVENT HANDLER: onMouseUp

onMouseUp = myJavaScriptCode

Event handler for Button, Document, Link

The onMouseUp event handler is used to execute specified JavaScript code whenever the
user releases the mouse button. It uses the following properties of the Event object:

type - indicates the type of event.
target - indicates the target object to which the event was sent.
layerx, layerY, pageX, pageY, screenX, screenY
 indicate the cursor position at the time of the MouseUp event.
which - represents 1 for a left-mouse-button up, and 3 for a right-mouse-button up.
modifiers - indicates any modifier keys held down when the MouseUp event occurred.

For example, with the following code, the user can click on the word 'green' to alter the
background color to green. Releasing the mouse calls the 'changeColor' function to do this:

Code:
<P>Click on green to change background
color.</P>

NOTE:

When an OnMouseUp returns false, such as over an armed link (a MouseDown over a link
causes it to become armed), the default action is canceled. This also happens with a MouseUp
over an unarmed link. To illustrate this, the following example assumes that a particular link
'lostLink' is no longer available, so when the user clicks on that link, the release of the mouse
button calls the 'myAlert' function and causes the link not to be triggered.

Code:
<P>Go to MyLink.
</P>

onAbort
onBlur
onChange
onClick
onDblClick
onDragDrop
onError
onFocus
onKeyDown
onKeyPress
onKeyUp
onload
onMouseDown
onMouseMove
onMouseOut
onMouseOver
onMouseUp
onMove
onReset
onResize
onSelect
onSubmit
onUnload

EVENT HANDLER: onload

onload = myJavaScriptCode

Event handler for Image, Layer and Window.

The onload event handler executes the specified JavaScript code or function on the occurance
of a Load event. A Load event occurs when the browser finishes loading a window or all the
frames in a window.

The onload event handler uses the following Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.
width - when the event is over a window, not a layer, this represents the width of the window.
height - when the event is over a window, not a layer, this represents the height of the window.

The following example shows the use of the onload event handler to display a message in the
text box.

Code:
<body onload = "changeVal()" >
<form action="" method="POST" id="myForm" >
<input type="text" name="myText" >

<script type="text/javascript" language="JavaScript">
s1 = new String(myForm.myText.value)

function changeVal() {
 s1 = "Greetings!"
 myForm.myText.value = s1.toUpperCase()
}

</script>
</form>
</body>

EVENT HANDLER: onMouseMove

onMouseMove = myJavaScriptCode

Event handler for no objects as default.

The onMouseMove event handler is used to execute specified Javascript code whenever the
mouse is moved. onMouseMove uses the following properties of the Event object: Because
MouseMove events occur so often, it is not a default event of any object. To use this event type
wth an object you must explicitly set the object to capture MouseMove events.

type - indicates the type of event.
target - indicates the target object to which the event was sent.
layerX, layerY, pageX, pageY, screenX, screenY
 indicate the cursor location at the time of the MouseMove event.
which - 1 represents a left mouse click and 3 a right click.
modifiers - lists the modifier keys (shift, alt, ctrl, etc.) held down when the MouseMove event
occurs.

EVENT HANDLER: onMove

onMove = myJavaScriptCode

Event handler for Window

The onMove event handler is used to execute specified Javascript code whenever the user or
the script moves a window or frame. It uses the following properties of the Event object:

type - indicates the type of event.
target - indicates the target object to which the event was sent.
screenX, screenY - indicates the position of the top left corner of the window or frame.

EVENT HANDLER: onReset

onReset = myJavaScriptCode

Event handler for Form

The onReset event handler is used to execute specified JavaScript code whenever the user
resets a form by cicking a Reset button. It uses the following properties of the Event object:

type - indicates the type of event
target - indicates the target object to which the event was sent.

The following example for a possible on-line book club creates a text field for the names of
books with the default being the Editor's Book of the Month. The user can at any time reset it to
the default which will cause the onReset event handler to display a message saying that the
text will be reset to the Book of the Month.

Code:
<FORM NAME="form1" onReset="alert('Reset to Book of the Month.')">
<P>Select a Book:

<INPUT TYPE="text" NAME="MonthBook" VALUE="The Joys of JavaScript" SIZE="25"></P>
<P><INPUT TYPE="reset" VALUE="Editor's Choice" NAME="reset1"> </P></FORM>

OBJECT: Form

Forms allow us to prompt a user for input using elements such as radio buttons, checkboxes
and selection lists. Data gathered in this manner can then be posted to a server for processing.
A form is created by enclosing HTML controls and other elements within <form></form> tags.
A page can contain as many forms as required, but they cannot be overlapping or nested (the
closing </form> tag of a form must precede the opening tag of any subsequent form).

PROPERTIES

action Property
This property specifies the URL address to which the data gathered by the form will be
submitted. An email address can also be specified using the 'mailto:anybody@anywhere.com'
syntax.

Syntax: object.action = URL

elements Property
This property is an array containing an object for each element on the form. These objects
(checkboxes, radio buttons, etc.) are added to the array in the order that they appear in the
document's source code.

Syntax: object.elements

encoding Property
This property sets the MIME type that is used to encode the data gathered by the elements in a
form for submission when using the post method. This property initially contains a string
reflecting the enctype attribute of the form tag, but using encoding will override this.

Syntax: object.encoding

length Property
This property returns the number of elements in a form.

Syntax: object.length

method Property
This property is a string specifying how information input in a form is submitted to the server.
This should return either 'get', which is the default, or 'post'.

Syntax: object.method

name Property
This property sets or returns the name of the form. Initially contains the name attribute of the
<form> tag.

Syntax: object.name

target Property
This property sets or returns the target window that responses are sent to after submission of a
form.

Syntax: object.target

METHODS

handleEvent Method
This method invokes the event handler for the specified event.

Syntax: object.handleEvent"event"

reset Method
This method resets the default values of any elements in a form. Emulates the clicking of a
Reset button (athough it is not necessary to have a reset button in a form to use this method).

Syntax: object.reset()

submit Method
This method submits a Form. This is the same as clicking a Submit button.

Syntax: object.submit()

EVENT HANDLERS

onReset Event handler
The onReset event handler is used to execute specified JavaScript code whenever the user
resets a form by cicking a Reset button.

Syntax: object.onReset="myJavaScriptCode"

onSubmit Event handler
The onSubmit event handler is used to execute specified JavaScript code whenever the user
submits a form, and as such, is included within the HTML <form> tag

Syntax: object.onSubmit="myJavaScriptCode"

$1,...,$9
$
$*
$&
$+
$`
$'
above
action
alinkColor
anchors
appCodeName
applets
appName
appVersion
arguments
arguments.callee
arguments.caller
arguments.length
arity
availHeight
availWidth
background
below
bgColor
 Document
 Layer
border
checked
 Object
 Radio
clip.bottom
clip.height
clip.left
clip.right
clip.top
clip.width
closed
colorDepth
constructor
 Array
 Boolean
 Date
 Function
 Number
 Object
 RegExp
 String
complete
cookie
current
data
defaultChecked
 Checkbox
 Radio

fgColor
form
 Button
 Checkbox
 Document
 FileUpload
 Hidden
 Password
 Radio
 Reset
 Select
 Submit
 Text
 Textarea
formName
frames
global
hash
 Link
 Location
height
 Event
 Image
 Screen
history
host
 Link
 Location
hostname
 Link
 Location
href
 Link
 Location
hspace
ignoreCase
Images
index
innerHeight
innerWidth
input
 Array
 RegExp
language
lastIndex
lastModified
lastParen
layers
layerX
layerY
left
leftContext
length
 Array
 Form
 Function

MAX_VALUE
menubar
method
mimeTypes
MIN_VALUE
modifiers
multiline
name
 Button
 Checkbox
 FileUpload
 Form
 Hidden
 Image
 Layer
 Password
 Radio
 Reset
 Select
 Submit
 Text
 Textarea
 Window
NaN
negative_infinity
next
opener
options
outerheight
outerwidth
pageX
 Event
 Layer
pageY
 Event
 Layer
pageXoffset
pageYoffset
parent
parentLayer
pathname
 Link
 Location
personalbar
PI
pixelDepth
platform
plugins
 Document
 Navigator
port
 Link
 Location
positive_infinity
previous
protocol

screenY
scrollbars
search
 Link
 Location
selected
selectedIndex
self
siblingAbove
siblingBelow
source
SQRT1_2
SQRT2
src
 Image
 Layer
status
statusbar
target
 Event
 Form
 Link
text
 Link
 Option
title
toolbar
top
 Layer
 Window
type
 Button
 Checkbox
 Event
 FileUpload
 Hidden
 Password
 Radio
 Reset
 Select
 Submit
 Text
 Textarea
URL
userAgent
value
 Button
 Checkbox
 FileUpload
 Hidden
 Option
 Password
 Radio
 Reset
 Submit
 Text

defaultSelected
defaultStatus
defaultValue
 Password
 Text
 Textarea
document
 Layer
 Window
domain
E
elements
embeds

encoding

 History
 Select
 String
 Window
linkColor
links
LN10
LN2
location
locationbar
LOG10E
LOG2E

lowsrc

 Link
 Location
prototype
 Array
 Boolean
 Date
 Function
 Number
 Object
 RegExp
referrer
rightContext

screenX

 Textarea
visibility
vlinkColor
vspace
which
width
 Event
 Image
 Screen
window
x
y
zIndex

OBJECT: Navigator

The Navigator object is designed to contain information about the version of Netscape
Navigator which is being used. However, it can also be used with Internet Explorer. All of its
properties, which are read-only, contain information about different aspects of the browser.

PROPERTIES

appCodeName Property
This property contains a string which specifies the code name of the browser.

Syntax: navigator.appCodeName

appName Property
This property is a string that specifies the name of the browser. With a Netscape browser this
property contains the string "Netscape", while with an IE explorer it contains "Microsoft Internet
Explorer".

Syntax: navigator.appName

appVersion Property
This property contains information about the browser version being used. If it is a Netscape
browser, it contains the release number, the language used, the platform on which the browser
is running, and either the letter I to indicate the international release, or the letter U for the
domestic US release which has stronger encryption. e.g., '4.5 [en] (WinNT; I)'. With IE, this
property only contains information about the compatible version of Internet Explorer and the
platform, such as: '4.0 (compatible; MSIE 4.01; Windows NT)'.

Syntax: navigator.appVersion

language property
This Property contains information, usually in the form of two letters, on the language
translation of the browser.

Syntax: navigator.language

mimeTypes Property
This property is an array of all the MIME (Multipart Internet Mail Extension) types supported by
the client.

Syntax: navigator.mimeTypes

platform Property
This property contains a string indicating the machine type for which the browser was
compiled. e.g., 'Win32' is a 32 bit Windows machine.

Syntax: navigator.platform

plugins Property
This property is an array of all the plugins installed on the client. The plugin property also has

its own method: plugins.refresh

Syntax: navigator.plugins

userAgent Property
This property contains a string representing the value of the user-agent header sent by the
client to the server in the http protocol. This information consists of the code name and the
version of the browser, and is used by the server to identify the client.

Syntax: navigator.userAgent

METHODS

javaEnabled Method
This method tests whether or not Java is enabled returning true if it is and false if not.

Syntax: navigator.javaEnabled()

plugins.refresh Method
This method makes newly-installed plugins available and updates relevent arrays such as the
plugins array. If you specify the value true, this method reloads all open documents containing
embedded objects, whereas supplying false does not cause this to happen.

Syntax: navigator.plugins.refresh(true | false)

preference Method
This method allows a signed script to get and set certain Navigator preferences.

Syntax: navigator.preference(prefName[, setValue])

taintEnabled Method
This method determines whether or not data tainting is enabled returning true if it is, and false
if not.

Syntax: navigator.taintEnabled()

METHOD: navigator::preference

navigator.preference(prefName[, setValue])

The preference method allows a signed script to get and set certain Navigator preferences.
These preferences, along with their possible values, are as follows:

autoupdate.enabled
This preference is used to enable SmartUpDate, and its value can be set to either true or
false.

browser.enable_style_sheets
This preference is used to enable style sheet, and its value can be set to either true or false.

general.always_load_images
This preference is used to automatically load images, and its value can be set to either true or
false.

javascript.enabled
This preference is used to enable JavaScript, and its value can be set to either true or false.

network.cookie.cookieBehavior
This preference is used to determine how the browser deals with cookies: if its value is set to 0,
it accepts all cookies, if 1, it only accepts those cookies that get sent back to the originating
server, and if it is set to 2, it'll disable cookies

network.cookie.warnAboutCookies
This preference is used to warn before accepting cookies, and its value can be set to either
true or false.

security.enable_java
This preference is used to enable Java, and its value can be set to either true or false.

NOTES:

To read a preference requires a UniversalPreferencesRead privilege, while setting a
preference requires a UniversalPreferencesWrite privilege.

OBJECT: Screen

A Screen object, automatically created by the JavaScript runtime engine, returns information
on the display screen's dimensions and color depth.

PROPERTIES

availHeight Property
This property returns the height of the screen in pixels, minus any permanent or semi-
permanent components of the operating system's interface i.e. Windows' Taskbar feature.

Syntax: screen.availHeight

availWidth Property
This property returns the width of the screen in pixels, minus any permanent or semi-
permanent components of the operating system's interface i.e. Windows' Taskbar feature

Syntax: screen.availWidth

colorDepth Property
If a color palette is in use, this property returns its bit depth. If not, the value reflects the
screen.pixelDepth property.

Syntax: screen.colorDepth

height Property
This property returns the height of the display screen.

Syntax: screen.height

pixelDepth Property
This property returns the color resolution, in bits per pixel, of the display screen.

Syntax: screen.pixelDepth

width Property
This property returns the width of the display screen.

Syntax: screen.width

METHODS

The Screen object inherits the watch and unwatch methods of the Object object

OBJECT: Array

new Array(arrayLength)

new Array(element0, element1, ..., elementN)

An array is an ordered set of values grouped together under a single variable name created by
using an Array object constructor. You can create an Array literal by specifying the name of
the array and the values of all its elements. The following example creates an array of three
elements:

Code:
cars = new Array("Mercedes", "Ford", "Chrysler")

The elements of an array are indexed using their ordinal number, starting with 0. You could,
therefore, refer to the second element in the above array ("Ford") as 'cars[1]'. You can specify
the number of elements in a new array by using a single numeric parameter with the Array
constructor.

For example, the following code creates an array of 7 elements:

Code:
fruit = new Array(7)

If you create an array with a single numeric parameter, that number is stored in the length
property, and the array doesn't actually have any elements until some are specifically assigned
to it. If, however, the parameter is not a number, an array of 1 element is created and that
value assigned to it. You can easily increase the size of an array by assigning a value to an
element higher than its current length.

NOTE:

If you specify 'language="Javascript1.2"' in the <SCRIPT> tag and use a single numeric
parameter with the Array constructor, it will be seen as the value of a single element of the
array rather than the number of elements you want that array to contain.

PROPERTIES

constructor Property
The constructor property contains the function that created an object's prototype.

Syntax: object.constructor

index Property
The read-only index property for an array created by a regular expression match and
containing the zero-based index of that match.

Syntax: object.index

input Property
The read-only input property for an array created by a regular expression match and
containing the original string against which the match was made.

Syntax: object.input

length Property
The length property holds an unsigned 32 bit integer representing the length of the array. It
can be altered independently of the number of elements in the array.

Syntax: object.length

prototype Property
The prototype property allows the addition of properties to an array.

Syntax: object.prototype

METHODS

concat Method
The concat method joins two or more Array objects producing one new one. The original
Array objects are unaffected by this but, if one copy of a string or number is altered, it is not
reflected in the other, whereas a change to an object reference can be seen in both copies.

Syntax: Array.concat(arrayName2, arrayName3, ..., arrayNameN)

join Method
The join method is used to join all the elements of an array into a single string separated by a
specified string separator (if none is specified, the default is a comma).

Syntax: Array.join(separator)

pop Method
The pop method is used to remove and return the last element of an array. This affects the
length of the array.

Syntax: Array.pop()

push Method
The push method is used to add one or more elements to an array, returning the new length of
it. This affects the length of the array.

Syntax: Array.push(element1, ..., elementN)

reverse Method
The reverse method, as the name implies, reverses the order of the elements in an array
making the first last and the last first. Syntax: Array.reverse()

shift Method
The shift method removes and returns the first element of an array. This affects the length of
the array.

Syntax: Array.shift()

slice Method
The slice method creates a new array from a selected section of an array.

Syntax: Array.slice(begin[,end])

splice Method
The splice method is used to add and/or remove elements of an array.

Syntax; Array.splice(index, howMany, [element1][, ..., elementN])

sort Method
The sort method sorts the elements of an array.

Syntax: Array.sort(compareFunction)

toSource Method
The toSource method is inherited from the Object object and returns the source code of the
array. For details see the Object.toSource method.

Syntax: Array.toSource()

toString Method
The toString method is inherited from the Object object and returns a string representing the
specified array and its elements. For more details see the Object.toString method.

Syntax: Array.toString()

unshift Method
The unshift method adds one or more elements to the beginning of an array and returns the
new length.

Syntax: Array.unshift(element1,..., elementN)

valueOf Method
The valueOf method is inherited from the Object object and returns a primitive value for a
specified array. For details see the Object.valueOf method.

Syntax: Array.valueOf()

METHOD: Array::concat

Array.concat(arrayName2, arrayName3, ..., arrayNameN)

The concat method joins two or more Array objects producing one new one. The original
Array objects are unaffected by this but, if one copy of a string or number is altered, it is not
reflected in the other, whereas a change to a referenced object can be seen in both Array
objects. The following example adds the elements of the array 'cars' onto the array 'trees' on to
the 'Cats' array:

Code:
Cats.concat(trees, cars)

METHOD: Array::join

Array.join(separator)

The join method is used to join all the elements of an array into a single string separated by a
specified string separator (if none is specified, the default is a comma).

The following example produces a string of all the elements of the array 'cars' separated by a
plus sign (+):

Code:
cars.join(" + ")

Output:
Mercedes + Ford + Chrysler

METHOD: Array::pop

Array.pop()

The pop method is used to remove and return the last element of an array. This affects the
length of the array. The following example creates an array called 'cars' with the listed
elements, and the pop method then removes and returns the last element "chrysler" leaving
just the two elements "Mercedes" and "Ford" in the array:

Code:
cars = ["Mercedes", "Ford", "Chrysler"]
document.write(cars.pop())

Output:
Chrysler

METHOD: Array::push

Array.push(element1, ..., elementN)

The push method is used to add one or more elements to an array, returning the new length of
it. This affects the length of the array.

The following example creates an array 'trees' of two elements and then adds two more using
the push method.

Code:
trees = ["oak", "ash"]
document.write(trees.push("beech", "pear"))

Output:
4

METHOD: Array::shift

Array.shift()

The shift method is used to remove and return the first element of an array. This affects the
length of the array. The following example creates an array called 'cars' with the listed
elements, and the shift method then removes and returns the first element "Mercedes" leaving
just the two elements "Ford" and "Chrysler" in the array:

Code:
cars = ["Mercedes", "Ford", "Chrysler"]
document.write(cars.shift())

Output:
Mercedes

METHOD: Array::slice

Array.slice(begin[,end])

The slice method creates a new array from a selected section of an array. The original array is
unaffected by this but, if a string or number in one array is altered, it is not reflected in the
other, whereas a change to a referenced object can be seen in both Array objects. The slice
method uses the zero-based array index to determine the section out of which to create the
new array. It extracts up to, but not including, the 'end' element (if no 'end' is specified, the
default is the very last element). The following code creates an array called 'trees' and then
displays a 'slice' of it:

Code:
trees = ["oak", "ash", "beech", "maple", "sycamore"]
document.write(trees.slice(1,4))

Output:
ash,beech,maple

If you use a negative index for the 'end', this specifies an element so many places from the
end. Continuing with the above example, the following code would display the second through
the third to last elements of the array:

Code:
trees = ["oak", "ash", "beech", "maple", "sycamore"]
document.write(trees.slice(1,-2))

Output:
ash,beech

METHOD: Array::splice

Array.splice(index, howMany, [element1][, ..., elementN])

The splice method is used to add and/or remove elements of an array returning an array of the
elements removed. You first need to specify the index at which you wish to start removing
elements, and the number to remove. (if 'howMany' is 0, you should specify at least 1 element
to add). The following code creates an array 'cars' and then displays two elements starting with
'cars[1]':

Code:
cars = ["Mercedes", "Ford", "Chrysler", "Honda", "Volvo"]
document.write(cars.splice(1,2))

Output:
Ford,Chrysler

You can also include optional new elements to replace the ones removed. Expanding on the
previous example, the following code would create an array consisting of the two extracted
elements "Ford" and "Chrysler", but replace them with "Citreon" in the original array:

Code:
cars = ["Mercedes", "Ford", "Chrysler", "Honda", "Volvo"]
removed_cars = cars.splice(1, 2, "Citreon")
document.write(removed_cars + "
")
document.write(cars)

Output:
Ford,Chrysler
Mercedes,Citreon,Honda,Volvo

METHOD: Array::sort

Array.sort(compareFunction)

The sort method sorts the elements of an array. If no compareFunction argument is supplied,
all the elements are converted into strings and sorted lexicographically (i.e. in dictionary order).
This means, for example, that 30 would come before 4. The following example is a straight-
forward sort of an array of names:

Code:
names = ["John", "Andrea", "Charlie", "Sam", "Kate"]
sorted_names = names.sort()
document.write(sorted_names)

Output:
Andrea,Charlie,John,Kate,Sam

By including a compareFunction argument, you can define the sort order. Two array elements
are sorted according to the return value of the compare function: if it is 0, the order of the two
elements remains unchanged; if it is greater than 0, the first of the two elements is sorted to a
higher index than the second; and if it is less than 0, the second element is sorted to a higher
index than the first. The following code creates an array called 'trees' and then, using the user-
defined function 'reverseSort', displays the elements sorted in reverse order:

Code:
trees = ["oak", "ash", "beech", "maple", "sycamore"]
function reverseSort(a, b)
{
 if(a > b)
 return -1
 if(a < b)
 return 1
 return 0
}
document.write(trees.sort(reverseSort))

Output:
sycamore,oak,maple,beech,ash

If two numbers are compared, the compareFunction simply needs to subtract the second
from the first number:

Code:
ages = [30, 25, 47, 19, 21, 8]
function sortNumbers(a, b) { return a - b}
document.write(ages.sort(sortNumbers))

Output:
8,19,21,25,30,47

METHOD: Array::unshift

Array.unshift(element1,..., elementN)

The unshift method adds one or more elements to the beginning of an array and returns the
new length. The following code first creates an array called 'trees' and then uses the unshift
method to add two new elements to the beginning of it, returning the new length of the array.
Finally, the third line of code displays all the elements of the altered array:

Code:
trees = ["beech", "maple", "sycamore"]
document.write(trees.unshift("oak", "ash"))
document.write("
" + trees)

Output:
5
oak,ash,beech,maple,sycamore

OBJECT: Boolean

new Boolean(value)

The Boolean object is an object wrapper for a Boolean value and is constructed with the
above Boolean constructor. If there is no initial value or if it is 0, -0, null, false, NaN,
undefined, or the empty string (""), the initial value is false. Otherwise, even with the string
"false", it is true. So, all the following objects have an initial value of false:

x = new Boolean()
x = new Boolean(0)
x = new Boolean(-0)
x = new Boolean(null)
x = new Boolean(false)

x = new Boolean(NaN)

x = new Boolean(undefined)
x = new Boolean("")

...whereas in the following examples the Boolean object 'x' has an initial value of true:

myBool = new Boolean(false)
x = new Boolean(myBool)

x = new Boolean("false")

Any Boolean object that is passed to a conditional statement (except those with an initial value
of null or undefined) evaluates to true. So, for instance, the conditional statement in the
following code evaluates to true.

Code:
x = new Boolean(false)
if(x)

However, this does not apply to Boolean primitives, and the conditional statement in the
following code evaluates to false.

Code:
x = false
if(x)

NOTE:

In JavaScript 1.3 and later versions, don't use a Boolean object instead of a Boolean primitive,
nor should you use a Boolean object to convert a non-Boolean value to a Boolean one. To do
so use Boolean as a function. For example, the following converts the expression 'a+b' to a
Boolean value:

Code:
x = Boolean(a+b)

PROPERTIES

constructor property
This property specifies the function that created the object's prototype. See also the
Object.constructor property.

Syntax: object.constructor

prototype property
This property represents the prototype for this object and allows you to add methods and
properties of your own. See also the Function.prototype property.

Syntax: object.prototype

METHODS

toSource method
This method, which is usually called internally by JavaScript, returns a string representing the
source code of the object. It overrides the Object.toSource method.

Syntax: object.toSource()

toString method
This method converts a Boolean object to a string representing its value: i.e. either "true" or
"false", and is called by JavaScript automatically whenever a Boolean object is used in a
situation requiring a string. This method overrides the Object.toString method.

Syntax: object.toString()

valueOf method
This method, which is usually called internally by JavaScript, returns a primitive value (either
"true" or "false") for the Boolean object. It overrides the Object.valueOf method.

Syntax: object.valueOf()

NOTE:

The Boolean object also inherits the watch and unwatch methods from the Object object.

OBJECT: Number

new Number(value)

The Number object is an object wrapper for primitive numeric values, allowing for their
manipulation. To create a Number object use the Number constructor above. The following
example creates a Number object of the numeric value 5:

Code:
five = new Number(5)

The main reason for doing this is to be able to use the constant properties for the Number
object, although you can create one in order to add properties to it. You can also convert any
object to a number by using the Number function.

PROPERTIES

constructor property
This property specifies the function that created the object's prototype. See also the
Object.constructor property.

Syntax: object.constructor

MAX_VALUE property
This property represents the largest value possible in JavaScript. It is a static property and
hence always referred to as Number.MAX_VALUE, and has a value of approximately
1.79769e+308. Numbers larger than this are represented as infinity.

Syntax: Number.MAX_VALUE

MIN_VALUE property This property represents the smallest positive number possible in
JavaScript, and as a static property is always referred to as Number.MIN_VALUE. Its value is
5e-324, and any value smaller than that is converted to 0.

Syntax: Number.MIN_VALUE

NaN property
This read-only property represents the special value Not-a-Number, and is always unequal to
any other number (including 0) and to NaN itself. As a static property, it is always referred to as
Number.NaN.

Syntax: Number.NaN

NEGATIVE_INFINITY property
This static, read-only property is a special value representing negative infinity, which is
returned on overflow.

Syntax: Number.NEGATIVE_INFINITY

POSITIVE_INFINITY property
This static, read-only property is a special value representing infinity, which is returned on
overflow.

Syntax: Number.POSITIVE_INFINITY

prototype property
This property represents the prototype for this object and allows you to add methods and
properties of your own. See also the Function.prototype property.

Syntax: object.prototype

METHODS

toSource method
This method, which is usually called by JavaScript behind the scenes, returns a string
representing the source code of the Number object. This method overrides the
Object.toSource method.

Syntax: object.toSource()

toString method
This method returns a string representing the Number object, and is called by JavaScript
whenever the code requires a string value. The optional 'radix' parameter is an integer between
2 and 36 which specifies the base to be used when representing numeric values. This method
overrides the Object.toString method.

Syntax: object.toString([radix])

valueOf method
This method, which is usually called by Javascript behind the scenes, returns the primitive
value of a Number object as a number data type. This method overrides the Object.valueOf
method.

Syntax: object.valueOf()

NOTE:

The Number object also inherits the watch and unwatch methods from the Object object.

PROPERTY: Number::NEGATIVE_INFINITY
PROPERTY: Number::POSITIVE_INFINITY

NEGATIVE_INFINITY
This static, read-only property is a special value representing negative infinity, which is
returned on overflow.

Syntax: Number.NEGATIVE_INFINITY

The NEGATIVE_INFINITY property behaves in the following ways:

Any positive value (including POSITIVE_INFINITY) multiplied by NEGATIVE_INFINITY is
NEGATIVE_INFINITY.

Any negative number (including NEGATIVE_INFINITY) multiplied by NEGATIVE_INFINITY is
POSITIVE_INFINITY.

Zero multiplied by NEGATIVE_INFINITY is NaN.

NaN multiplied by NEGATIVE_INFINITY is NaN.

NEGATIVE_INFINITY divided by any negative number except NEGATIVE_INFINITY is
POSITIVE_INFINITY.

NEGATIVE_INFINITY divided by any positive number except POSITIVE_INFINITY is
NEGATIVE_INFINITY.

NEGATIVE_INFINITY divided by either NEGATIVE_INFINITY or POSITIVE_INFINITY is NaN.

Any number divided by NEGATIVE_INFINITY is Zero.

POSITIVE_INFINITY
This static, read-only property is a special value representing infinity, which is returned on
overflow.

Syntax: Number.POSITIVE_INFINITY

The POSITIVE_INFINITY property behaves in the following ways:

Any positive number (including POSITIVE_INFINITY) multiplied by POSITIVE_INFINITY is
POSITIVE_INFINITY.

Any negative number (including NEGATIVE_INFINITY) multiplied by POSITIVE_INFINITY is
NEGATIVE_INFINITY.

Zero multiplied by POSITIVE_INFINITY is NaN.

NaN multiplied by POSITIVE_INFINITY is NaN.

POSITIVE_INFINITY divided by any negative number, except NEGATIVE_INFINITY, is
NEGATIVE_INFINITY .

POSITIVE_INFINITY divided by any positive number, except POSITIVE_INFINITY, is
POSITIVE_INFINITY.

POSITIVE_INFINITY divided by either NEGATIVE_INFINITY or POSITIVE_INFINITY is NaN.

Any number divided by POSITIVE_INFINITY is Zero.

OBJECT: String

A String object, created using the String constructor, represents a series of characters in a
string. The string can be enclosed between single or double quotes.

The following code shows the use of the String constructor to create a String object called
'myString'.

Code:
myString = new String("This is a string object")

PROPERTIES

constructor Property
This property returns a reference to the function that created the String object's prototype.

Syntax: object.constructor

length Property
This property returns the length of the string.

Syntax: object.length

prototype Property
This property is used to add properties and methods to an object.

Syntax: object.prototype

METHODS

anchor Method
This method is used to create an HTML anchor.

Syntax: object.anchor("name")

big Method
This method displays the string using a big font, as if contained within HTML <BIG></BIG>
tags.

Syntax: object.big()

blink Method
This method makes the displayed string blink, as if contained within HTML <BLINK></BLINK>
tags.

Syntax: object.blink()

bold Method
This method displays the string using a bold font, as if contained within HTML tags.

Syntax: object.bold()

charAt Method
This method returns a character from a string by referring to its index within that string.

Syntax: object.charAt(index)

charCodeAt Method
This method returns a character's Unicode value from a string by referring to its index within
that string.

Syntax: object.charCodeAt(index)

concat Method
This method joins the text contained in one string with the text from other specified strings and
returns a new string.

Syntax: object.concat(strName2, strName3....strName[n])

fixed Method
This method displays the string using a fixed-pitch font, as if contained within HTML
<TT></TT> tags.

Syntax: object.fixed()

fontcolor Method
This method displays the string using a specified color, as if contained within HTML <FONT
COLOR="color"> tags.

Syntax: object.fontcolor("color")

fontsize Method
This method displays the string using a specified font size, as if contained within HTML <FONT
SIZE="fontsize"> tags.

Syntax: object.fontsize("fontsize")

fromCharCode Method
This method takes the specified Unicode values and returns a string.

Syntax: String.fromCharCode(num1,....,numN)

indexOf Method
When called from a String object, this method returns the index of the first occurance of the
specified searchValue argument, starting from the specified fromIndex argument.

Syntax: object.indexOf(searchValue,[fromIndex])

italics Method
This method displays the string using italics, as if contained within HTML <I></I> tags.

Syntax: object.italics()

lastIndexOf Method
When called from a String object, this method returns the index of the last occurance of the
specified searchValue argument, searchng backwards from the specified fromIndex
argument.

Syntax: object.lastIndexOf(searchValue,[fromIndex])

link Method
This method is used to create an HTML hyperlink in a document.

Syntax: object.link("targetURL")

match Method
This method is used to match a specified regular expression against a string.

Syntax: object.match(regexp)

replace Method
This method is used to match a specifed regular expression against a string and replace any
match with a new substring.

Syntax: object.replace(regexp, newSubString)

search Method
This method is used to search for a match between a regular expression and the specified
string.

Syntax: object.search(regexp)

slice Method
This method is used to 'slice' a section of a string and return a new string containing that
section.

Syntax: object.slice(startSlice, endSlice)

small Method
This method displays the string using a small font, as if contained within HTML
<SMALL></SMALL> tags.

Syntax: object.smal()

split Method
This method splits a string into substrings and creates an array containing the resulting
substrings.

Syntax: object.split([separator][, limit])

strike Method
This method displays the string using struck-out text, as if contained within HTML
<STRIKE></STRIKE> tags.

Syntax: object.strike()

sub Method
This method displays the string as subscript text, as if contained within HTML
tags.

Syntax: object.sub()

substr Method
This method extracts the characters from a string beginning at the specified start index for the
specified number of characters.

Syntax: object.substr(start[, length])

substring Method

This method returns the characters in a string between two specified indices as a substring.

Syntax: object.substring(indexA, indexB)

sup Method
This method displays the string as superscript text, as if contained within HTML
tags.

Syntax: object.sup()

toLowerCase Method
This method is used to convert the characters in a string to lower case.

Syntax: object.toLowerCase()

toSource Method
This method is used to return a string that represents the source code of the object. Note that
the source code of native JavaScript objects will not be available using this method, i.e. the
value returned if applying this method to the generic String object will be [native code]
whereas applying it to an instance of a String object created in your code will return that code.

Syntax: object.toSource()

toString Method
This method is used to return a string representation of an object, i.e. myString.toString() will
simply return the contents of myString.

Syntax: object.toString()

toUpperCase Method
This method is used to convert characters in a string to upper case.

Syntax: object.toUpperCase()

valueOf Method
This method returns the primitive value of a String object as a string datatype. The value
returned using this method is identical to using String.toString.

Syntax: object.valueOf

METHOD: String::(various formatting methods)

object.'formatting_method'()

There are various methods available that allow you to perform formatting alterations to the
contents of your String object when written to a document. These methods are:

big, blink, bold, fixed, fontcolor, fontsize, italics, small, strike, sub and sup.

The following code writes the contents of the "myString" String object to the document with a
different formatting method applied each time it is written.

Code:
myString = new String("Formatting methods")
document.write ("<p>big() = " + myString.big())
document.write ("
blink() = " + myString.blink())
document.write ("
bold() = " + myString.bold())
document.write ("
fixed() = " + myString.fixed())
document.write ("
fontcolor("red") = " + myString.fontcolor("red"))
document.write ("
fontsize("5") = " + myString.fontsize("5"))
document.write ("
small() = " + myString.small())
document.write ("
strike() = " + myString.strike())
document.write ("
sub() = " + myString.sub())
document.write ("
sup() = " + myString.sup())

Output:
big() = Formatting methods
blink() = Formatting methods
bold() = Formatting methods
fixed() = Formatting methods
fontcolor("red")= Formatting methods

fontsize("5") = Formatting methods
small() = Formatting methods
strike() = Formatting methods
sub() = Formatting methods
sup() = Formatting methods

NOTE: blink() may not work on some browsers

METHOD: String::charAt

object.charAt(index)

This method returns a character from a string by referring to its index within that string. The
characters in a string are indexed from left to right with the first character indexed as 0 and the
last as String.length - 1.

The following code reads the characters from the string at the specified indicies and writes
them to the document.

Code:
myString = new String("charAt method demonstration.")
document.write (myString.charAt(26))
document.write (myString.charAt(8))
document.write (myString.charAt(2))
document.write (myString.charAt(5))

Output:
neat

METHOD: String::charCodeAt

object.charCodeAt(index)

This method returns a character's Unicode value from a string by referring to its index within
that string. The characters in a string are indexed from left to right with the first character
indexed as 0 and the last as String.length - 1.

The following code reads a character from the string at the specified index and writes its
Unicode value to the document.

Code:
myString = new String("charCodeAt method demonstration.")
document.write (myString.charCodeAt(2))

Output:
65

METHOD: String::concat

object.concat(strName2, strName3....strName[n])

This method joins the text contained in one string with the text from other specified strings and
returns a new string.

The following code combines the text contained in two specified strings and writes the
concatenated string to the document.

Code:
myString1 = new String("This demonstrates the ")
myString2 = new String("concat method.")
document.write(myString1.concat(myString2))

Output:
This demonstrates the concat method.

METHOD: String::fromCharCode

String.fromCharCode(num1,..........,numN)

This method takes the specified Unicode values and returns a string (but not a String object).
Note that this method is a static method of String. Therefore, it is not used as a method of a
String object that you have created. The syntax is always String.fromCharCode() as opposed
to myStringObject.fromCharCode().

The following code takes the specified Unicode values and writes the resulting string to the
document.

Code:
document.write (String.fromCharCode(67,65,66))

Output:
CAB

METHOD: String::indexOf

object.indexOf(searchValue,[fromIndex])

When called from a String object, this method returns the index of the first occurance of the
specified searchValue argument, starting from the specified fromIndex argument. If the
searchValue is not found, a value of -1 is returned. Characters in the string are indexed from
left to right with the first character indexed as 0 and the last as String.length-1. Note that this
method is case sensitive as shown in the example below.

The following code uses the indexOf method to find the index values of three different
character strings within the myString object. Note that the third example returns -1 because
the case of one of the characters does not match.

Code:
myString = new String("DevGuru.com")
document.writeln(myString.indexOf("Guru"))
document.writeln("
" + myString.indexOf("com"))
document.writeln("
" + myString.indexOf("Com"))

Output:
3
8
-1

METHOD: String::lastIndexOf

object.lastIndexOf(searchValue,[fromIndex])

When called from a String object, this method returns the index of the last occurrence of the
specified searchValue argument, searchng backwards from the specified fromIndex
argument. If the searchValue is not found, a value of -1 is returned. Chaacters in the string are
indexed from left to right with the first character indexed as 0 and the last as String.length-1.
Note that this method is case sensitive as shown in the example below.

The following code uses the lastIndexOf method to find the index values of four different
character strings within the myString object. Note that the third example returns -1 because
there is no occurrence of the specified string before index value 6, and the fourth example
returns -1 because the case of one of the characters does not match.

Code:
myString = new String("DevGuru.com")
document.writeln(myString.lastIndexOf("u"))
document.writeln("
" + myString.lastIndexOf("u",5))
document.writeln("
" + myString.lastIndexOf("com",6))
document.writeln("
" + myString.lastIndexOf("Com"))

Output:
6
4
-1
-1

METHOD: String::link

object.link("targetURL")

This method is used to create an HTML hyperlink in a document.

The following code writes the contents of the String object to the document as an HTML
hyperlink that takes the user to the specified "targetURL". This has identical results as using
the HTML code:
DevGuru.com

Code:
myString = new String("DevGuru.com")
document.write (myString.link(www.devguru.com))

METHOD: String::match

object.match(regexp)

This method is used to match a specifed regular expression against a string. If one or more
matches are made, an array is returned that contains all of the matches. Each entry in the
array is a copy of a string that contains a match. If no match is made, a null is returned.

To perform a global match you must include the 'g' (global) flag in the regular expression and
to perform a case-insensitive match you must include the 'i' (ignore case) flag.

The following code uses the match method to search the characters in the myString string for a
match with the specified regular expression and displays the resulting string in the browser.
Note that the 'i' flag is used to make the search case-insensitive.

Code:
myString = new String("DevGuru.com")
myRE = new RegExp("guru", "i")
results = myString.match(myRE)
for(var i =0: i < results.length; i++)
 {
 document.write(results[i])
 }

Output:
Guru

METHOD: String::replace

object.replace(regexp, newSubStr)
object.replace(regexp, function)

This method is used to match a specifed regular expression against a string and replace any
match with a new substring. The newSubStr argument can include certain RegExp properties.
These are: $1 thru $9, lastMatch, lastParen, leftContext and rightContext (for details on the
RegExp object's properties, go here). To perform a global match include the 'g' (global) flag in
the regular expression and to perform a case-insensitive match include the 'i' (ignore case)
flag.

The second argument can also be a function which is invoked after the match is performed and
the result of which is used as the replacement string.

The following code uses the replace method to alter 'DevGuru.com' in the original string to the
full URL for the DevGuru website and then uses the String.link method to provide a hyperlink
to the site.

Code:
myString = new String("Go to DevGuru.com")
rExp = /devguru.com/gi;
newString = new String ("http://www.devguru.com")
results = myString.replace(rExp, newString.link("http://www.devguru.com"))
document.write(results)

Output:
Go to http://www.devguru.com

METHOD: String::search

object.search(regexp)

This method is used to search for a match between a regular expression and the specified
string. If a match is found, the search method returns the index of the regular expression within
the string. If no match is found, a value of -1 is returned.

The first example of code below uses the search method to look for a match between the
regular expression 'rExp' and the characters in the 'myString' string object and displays the
resulting value in the browser. In the second example, removing the 'i' (ignore case) flag from
the regular expression causes the value of the search to be returned as -1

Code:
myString = new String("Go to DevGuru.com")
rExp = /devguru.com/gi;
results = myString.search(rExp)
document.write(results)

Output:
6

myString = new String("Go to DevGuru.com")
rExp = /devguru.com/g;
results = myString.search(rExp)
document.write(results)

Output:
-1

METHOD: String::slice

object.slice(startSlice[, endSlice])

This method is used to 'slice' a section of a string and return a new string containing that
section. The section of the string that is sliced begins at the specified index startSlice and
ends at the index before endSlice, i.e. up to but not including endSlice. A negative value can
be given for endSlice, in which case the section of the string that is extracted ends at that value
from the end of the original string. See the example for details.

Both examples below return the same string. The first uses a positive value for the endSlice
parameter and the second a negative value.

Code:
myString = new String("Go to DevGuru.com")
slicer=myString.slice(1,8)
document.write(slicer)

Output:
o to De

myString = new String("Go to DevGuru.com")
slicer=myString.slice(1,-9)
document.write(slicer)

Output:
o to De

METHOD: String::split

object.split [delimiter]

This method is used to 'split' a string into an array of substrings. The array numbering starts at
zero.

The optional delimiter argument is the character, regular expression, or substring that is used
to determine where to split the string. The delimiter value is not returned as part of the array of
substrings.

If the argument is a character or substring, it must be enclosed with in a pair of double quotes.
If the argument is a regular expression, do not enclose it with double quotes. If no delimiter
argument is provided, the string is not split. If the empty string, "", is used as the delimiter, the
string is split between each character in the string.

Code:
myString = new String("A,B,C,D")
splitString = myString.split(",")
document.write("
" + splitString[0])
document.write("
" + splitString[1])
document.write("
" + splitString[2])
document.write("
" + splitString[3])

Output:
A
B
C
D

OBJECT: Hidden

A Hidden object provides a text object on a form that is hidden from the user and is created
with every instance of an HTML <INPUT> tag with the type attribute set to 'hidden'. A Hidden
object is used to pass name/value pairs when the form is submitted. These objects are then
stored in the elements array of the parent form and accessed using either the name defined
within the HTML tag or an integer (with '0' being the first element defined, in source order, in
the specified form).

The following example creates a button that, when clicked, displays the Hidden object's value
in an alert box.

Code:
<form action="" method="POST" id="myForm">
<input type="Hidden" name="objHidden" value="" id="objHidden">
<input type="Button" name="" value="Get hidden value" id="myButton" onClick=getHidden()>

<script type="" language="JavaScript">
myForm.objHidden.value=("Hidden object example")

function getHidden() {
 y=myForm.objHidden.value
 self.alert("The Hidden object's value is : " + y)
}

</script> </form>

PROPERTIES

form Property
This property returns a reference to the parent Form of the Hidden object.

Syntax: object.form

name Property
This property sets or returns the value of the Hidden object's name attribute.

Syntax: object.name

type Property
Every element on a form has an associated type property. In the case of a Hidden object, the
value of this property is always "hidden".

Syntax: object.type

value Property
This property sets or returns the Hidden object's value attribute. This is the text that is held in
the Hidden object until the form is submitted.

Syntax: object.value

METHODS

The Hidden object inherits the watch and unwatch methods of the Object object.

PROPERTY: RegExp::lastIndex

This property is the index at which to start the next match, but is only set if the regular
expression uses the 'g' flag to specify a global search. It consists of an integer specifying the
index (counting from the beginning of the string and including all alphanumeric and non-
alphanumeric characters) of the first character after the last match. So, for example, the
following code searches for an occurrence of the substring 'ships' in the string "the hardships of
traveling", matches the word 'hardships', and then displays the number 14, which is the index
of the letter 'o' of 'of'. Note that the regular expression includes the white (blank) space
character \s.

Code:
myRexp = /ships*\s/g
myRexp.exec("the hardships of traveling")
document.write(myRexp.lastIndex)

Output:
14

If the value of the lastIndex property is greater than the length of the string, then both the test
and exec methods will fail, and the lastIndex property will be set to 0. For example, the
following code will match the final 'ing' of 'traveling' and set the lastIndex property to 26 (one
more than the index of the last character of the string). If you then immediately run the match
again, it will fail and the lastIndex property will be set to 0.

Code:
myRexp = /ing/g
myRexp.exec("the hardships of traveling")

If the lastIndex property is the same as the length of the string, and provided the regular
expression doesn't match an empty string (by using '?'), then there will be no match and the
lastIndex property will be set to 0. If, however, the regular expression does match an empty
string, then the regular expression will match the empty string at lastIndex.

PROPERTY: RegExp::lastParen

RegExp.lastParen

This property contains the last matched parenthesized substring (if any), and as a static
property is always refered to using RegExp.lastParen. For example, the following code uses a
regular expression containing three parenthesized substrings to search for a match in the
string "the fisherman's tale". After successfully matching the substring 'sherm', the lastParen
property will hold the value 'r', which is the match made by the last parenthesized substring
(any consonant).

Code:
rexp = /([^aeiou\s]){2}([aeiou])+([^aeiou\s]){2}/
rexp("the fisherman's tale")

Output:
r

PROPERTY: RegExp::leftContext

RegExp.leftContext

This property is the substring upto the character most recently matched (i.e. everything that
comes before it), and as a static property, is always used as RegExp.leftContext. Consider
the following code. The regular expression consists of one or more vowels. The code searches
the string "the fisherman" and matches the 'e' in 'the' printing the substring to the left of it:
namely 'th'. Then it searches the same string again from where it ended the previous search
(see the lastIndex property), this time matching the 'i' of 'fisherman' and printing the preceding
substring 'the f'.

Code:
rexp = /[aeiou]+/g
rexp("the fisherman")
document.write(RegExp.leftContext)
rexp("the fisherman")
document.write("
" + RegExp.leftContext)

Output:
th
the f

NOTE:

The regular expression in the above example uses the flag 'g' to indicate a global search. If it
wasn't there, the second search in the above example would start at the beginning of the string
producing exactly the same match as the first search: namely 'th'.

PROPERTY: RegExp::rightContext

RegExp.rightContext

This property is the substring following the character most recently matched (i.e. everything
that comes after it), and as a static property, is always used as RegExp.rightContext.
Consider the following code. The regular expression consists of one or more vowels. The code
searches the string "the fisherman" and matches the 'e' in 'the' printing the substring to the right
of it: namely 'fisherman'. Then it searches the same string again starting from where it ended in
the previous search (see the lastIndex property), this time matching the 'i' of 'fisherman' and
printing the following substring 'sherman'.

Code:
rexp = /[aeiou]+/g
rexp("the fisherman")
document.write(RegExp.rightContext)
rexp("the fisherman")
document.write("
" + RegExp.rightContext)

Output:
fisherman
sherman

NOTE:

The regular expression in the above example uses the flag 'g' to indicate a global search. If it
wasn't there, the second search in the above example would start at the beginning of the string
producing exactly the same match as the first search: namely 'fisherman'.

EVENT HANDLER: onSubmit

onSubmit = myJavaScriptCode

Event handler for Form

The onSubmit event handler is used to execute specified JavaScript code whenever the user
submits a form, and as such, is included within the HTML <FORM> tag. The onSubmit event
handler uses the following properties of the Event object:

type - indicates the type of event.
target - indicates the target object to which the event was sent.

In the following example, the onSubmit event handler calls the 'submitEvent' function:

Code:
<FORM onSubmit="submitEvent()">

If you want to validate the information in the form and only allow it to be submitted if it meets
your requirements, you will need to put a return statement that returns false in the event
handler, as in the following example using the 'validate' function:

Code:
<FORM onSubmit="return validate(this)">

EVENT HANDLER: onResize

onResize = myJavaScriptCode

Event handler for Window

The onResize even handler is use to execute specified code whenever a user or script resizes
a window or frame. This allows you to query the size and position of window elements,
dynamically reset SRC properties etc. It uses the following properties of the Event object:

type - indicates the type of event.
target - indicates the target object to which the event was sent.
width, height - indicates the width or height of the window or frame

EVENT HANDLER: onUnload

onUnload = myJavaScriptCode

Event handler for Window

The onUnload event handler is used to run a function or JavaScript code whenever the user
exits a document. The onUnload event handler is used within either the <BODY> or the
<FRAMESET> tag, and uses the following properties of the Event object:

type - indicates the type of event
target - indicates the target object to which the event was sent.

The following example shows the onUnload event handler being used to execute the 'finishOff'
function:

Code:
<BODY onUnload="finishOff()">

Compare to the onload event handler.

METHOD: RegExp::compile

object.compile(pattern[, flags])

This method compiles a regular expression object during execution of a script. It is used with a
RegExp object created with the constructor function in order to compile it once only, this
avoiding repeated compilation of a regular expression. This can be done once a regular
expression has been got and you are sure that it will then remain constant throughout the rest
of the script. The compile method can also be used to change and recompile a regular
expression.

For example, suppose you created a regular expression consisting of the letters 'man' and then
searched for a match in a string and replaced it with 'person' thus:

Code:
myRegExp = /man/
myString = "The Chairman of the Board"
newString = myString.replace(myRegExp, "person")

...the code would match the 'man' of 'Chairman' and replace it producing the word
'Chairperson'. If then you wanted to change the regular expression in order to replace either
'man' or 'woman' with 'person', you could do so using the compile method thus:

Code:
myRegExp.compile("(wo)?man")
newString = myString.replace(myRegExp, "person")

The compile method can also be used with the flags 'g' for a global match, 'i' for a case-
insensitive match and 'gi' for a global, case-insensitive match. So, to expand on the above
example, you could alter the regular expression 'MyRegExp' to search for all occurrences of
the substrings 'man' and 'woman' and replace them with 'person' as follows:

Code:
myRegExp.compile("(wo)?man", "g")
newString = myString.replace(myRegExp, "person")

NOTE:

Calling the compile method alters the value of the source, global and ignoreCase properties
of a regular expression.

METHOD: RegExp::exec

object.exec([str])

object([str])

This method executes a search for a match in a specified string, returning a result array. (If,
however, you simply want to test whether or not there is a match, it is best to use the test
method or the String.search method.) For example, the following blocks of code, one for the
Internet Explorer browser and the other for Netscape, each execute a search of the string "the
fisherman" for a match with the regular expression 'rexp'. If one is found (and in the case of the
example it is), then an appropriate message is printed.

Code:
rexp = /[aeiou]/g
myString = "the fisherman"
if(rexp.exec(myString))
 match = rexp.exec(myString)
 document.write("Successfully matched " + match)

Code:
rexp = /[aeiou]/g
myString = "the fisherman"
if(rexp(myString))
 match = RegExp.lastMatch
 document.write("Successfully matched " + match)

Output:
Successfully matched e

NOTE:

The Netscape browser can call the exec method both directly (object.exec([str])) or indirectly
(object([str])), whereas Microsoft Internet Explorer can only call it directly. If no string is
declared then the value of RegExp.input is used. If the search fails, the exec method returns
null.

METHOD: Layer::moveAbove

layer.moveAbove(layerName)

This method is used to move the layer above the one specified with the layerName argument.
Performing this re-stacking does not alter the horizontal or vertical position of either layer. Note
that after using this method, both layers share the same parent layer.

The following example creates two layers, aboveLayer and belowLayer, and calls the
moveAbove method using the onMouseOver event handler of the belowLayer object.

Code:
<layer name=aboveLayer bgcolor="lightgreen" top=50 left=80 width=150 height=50>

aboveLayer

</layer>

<layer name=belowLayer above=aboveLayer bgcolor="lightblue" top=20 left=20 width=150
height=50 onMouseOver=moveAbove(aboveLayer)>

belowLayer

</layer>

METHOD: Layer::moveBelow

layer.moveBelow(layerName)

This method is used to move the layer below the one specified with the layerName argument.
Performing this re-stacking does not alter the horizontal or vertical position of either layer. Note
that after using this method, both layers share the same parent layer.

The following example creates two layers, aboveLayer and belowLayer, and calls the
moveBelow method using the onMouseOver event handler of the aboveLayer object.

Code:
<layer name=aboveLayer bgcolor="lightgreen" top=50 left=80 width=150 height=50
onMouseOver=moveBelow(belowLayer)>

Mouse over me to reveal the layer below

</layer>

<layer name=belowLayer above=aboveLayer bgcolor="lightblue" top=20 left=20 width=150
height=50>

Hello from the layer below!

</layer>

METHOD: RegExp.test

object.test([str])

This method tests for a match of a regular expression in a string, returning true if successful,
and false if not. The test method can be used with either a string literal or a string variable. For
example, the following code tests for a match of the regular expression 'er' in the string "the
fisherman", returning an appropriate message if a match is found (which in this case it is).

Code:
rexp = /er/
if(rexp.test("the fisherman"))
 document.write("It's true, I tell you.")

Output:
true

NOTE:

If no string is declared with this method, then the value of RegExp.input is used.

METHOD: Layer::load

layer.load("fileName", width)

This method is used to change the contents of a layer by loading a file containing HTML code
into the layer. The width parameter alters the width in pixels at which the contents of the layer
are wrapped.

The following example creates a layer and then changes its contents by loading an HTML file
when the user moves the mouse over the layer.

Code:
<layer name=aboveLayer bgcolor="lightgreen" top=50 left=80 width=150 height=50
onMouseOver='load("myFile.html", 300)>

aboveLayer

</layer>

PROPERTY: RegExp::lastMatch

RegExp.lastMatch

This property is the last matched characters. As this property is static, you always use
RegExp.lastMatch. For example, the following code would search through the string "the
fisherman's tale" for a match with the regular expression of two consonants, one or more
vowels and two consonants. In this case it will match the 'sherm' of 'fisherman'.

Code:
rexp = /([^aeiou\s]){2}([aeiou])+([^aeiou\s]){2}/
rexp("the fisherman's tale")

Output:
sherm

OBJECT: Anchor

String.anchor(nameAttribute)

An Anchor object is a place in a document that is the target of a hypertext link. There are two
ways of creating it: by calling the String.anchor method or by using the HTML 'A' tag. Each of
these tags that have a NAME attribute is placed by the JavaScript engine in an array in the
document.anchors property. An Anchor object can then be accessed by indexing this array.
The former uses code to produce the anchor using the anchor method along with the
document.write or document.writeln method.

The following example creates an anchor called 'book_anchor' on the string 'INDEX OF
BOOKS'

Code:
var mystring = "INDEX OF BOOKS"
document.write(mystring.anchor("book_anchor"))

Using the HTML 'A' tag, you can do exactly the same as the above as follows:

Code:
INDEX OF BOOKS

The Anchor object inherits the watch and unwatch methods from Object, neither of which is
supported by Microsoft JScript.

NOTE:

If the Anchor object is also a Link object, it'll have entries in both the anchors and links
arrays.

OBJECT: Applet

An Applet object, created for every instance of the HTML <APPLET> tag in your document,
allows the inclusion of a Java applet in a web page. These objects are then stored in an array
in the document.applets property.

To enable an applet to access Javascript on your page, you must specify the <APPLET> tag's
MAYSCRIPT attribute; failure to do this will cause an exception if the applet tries to access
JavaScript. This allows a measure of security for each HTML page that contains the applet.

The following HTML code executes the myApp applet and sets the MAYSCRIPT attribute to
allow it access to JavaScript. This will also automatically create an Applet object called
"myApp" which will be added to the document.applets array and can be referenced as
document.applets[0] (providing this is the first instance of the <APPLET> tag in your
document) or document.applets["myApp"].

Code:
<APPLET CODE="myApp.class" WIDTH=150 HEIGHT=80 NAME="myApp" MAYSCRIPT>

PROPERTIES

All public properties of a Java applet are inherited by the Applet object.

METHODS

All public methods of a Java applet are inherited by the Applet object.

Function: escape

escape(string)

The top-level function, escape, encodes the string that is contained in the string argument to
make it portable. A string is considered portable if it can be transmitted across any network to
any computer that supports ASCII characters.

To make a string portable, characters other than the following 69 ASCII characters must be
encoded:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890
@*-_+./

All other characters are converted either to their two digit (%xx) or four digit (%uxxxx)
hexadecimal equivalent (refered to as the character's "hexadecimal escape sequence"). For
example, a blank space will be represented by %20 and a semicolon by %3B. (Note that the
hexadecimal numbers are: 0123456789ABCDEF).

Use the unescape function to decode an encoded sequence that was created using escape.

Code:
document.write(escape("Miss Piggy."))

Output:
Miss%20Piggy.

Code:
document.write(escape("!@#$%^&*()_+|"))

Output:
%21@%23%24%25%5E%26*%28%29_+%7C

Function: unescape

unescape(encodedstring)

The top-level function, unescape, decodes an encoded string argument that was created
using the escape function.

The function searches for two and four digit hexidecimal escape sequences and replaces them
in the string with their single character Latin-1 equivalent. For example, %3B signifies a
semicolon.

Code:
document.write(unescape("Miss%20Piggy%20loves%20Kermit%21"))

Output:
Miss Piggy loves Kermit!

Function: eval

eval(codestring)

The top-level function, eval, evaluates and/or executes a string of JavaScript code that is
contained in the codestring argument.

First, eval determines if the argument is a valid string and then parses the string looking for
JavaScript code. If there are JavaScript statements in the code, they will be executed and eval
will return the value of the last statement (if there is a value). If there is a JavaScript
expression, it will be evaluated and its value will be returned.

Note that the codestring argument is optional. However, if there is no argument, eval
returned, "undefined".

Code:
eval("fred=999; wilma=777; document.write(fred + wilma);");

Output:
1776

STATEMENT: export

export name1, name2, ..., nameN

export *

The export statement allows a signed script to provide properties, functions and objects to
other signed or unsigned scripts. Usually a signed script can only pass information to another
script signed by the same principals but this restriction can be overcome by the use of the
export statement by the originating script and the accompanying import statement by the
receiving script. The following code makes the 'wine' and 'beer' properties of the 'drinks' object
available to any script wanting to import them (compare the import statement):

Code:
export drinks.beer, drinks.wine;

STATEMENT: import

import objectName.name1, objectName.name2, ..., objectName.nameN

import objectName.*

The import statement allows a script to import properties, functions and objects exported by a
signed script. The following code imports the 'wine' and 'beer' properties of the object 'drinks'
provided they have been made available by an exporting script (compare the export
statement):

Code:
import drinks.beer, drinks.wine;

NOTE:

Any exported script must be loaded into a window, frame or layer before it can be imported and
used.

STATEMENT: for...in

for (variable in object) {statements}

The for...in statement is used to iterate a declared variable over every property in a specified
object. The code in the body of the for ... in loop is executed once for each property. The
variable argument can be a named variable, an array element, or a property of the object.

This example simply displays the names of all the properties of the 'drink' object.

Code:
var i;
for(i in drink)
 document.write(i + "
");

You can also have a specified variable iterate over the values of an object's properties by
placing it between square brackets after the object name. Expanding on the previous example,
the following code displays both the name of each property in the 'drink' object and its value:

Code:
var i;
for(i in drink)
 document.write(i + ": " + drink[i] + "
");

It is very easy to loop through an array. In this last example, starname is the name of an array
element in an array called, starchart.

Code:
for(starname in starchart)
 document.write(starname + "
");

OBJECT: Frame

A Frame object is created by using the HTML <FRAME> tag in a Window that contains the
<FRAMESET> tag. A frame is an independent window within a parent window (in other words,
you can display multiple frames, or windows, on a single screen). It has its own URL and is
treated, with a few exceptions, as a Window object by JavaScript (this includes having all the
same methods and properties of a Window object). For more information on Frame objects,
go to the Window object page.

Primitive Value: NaN

NaN

In ECMAScript, NaN is classified as a primitive value.

NaN means "Not-a-Number". It is used to signify that a value is not a legal number.

Note that the primitive value, Infinity, is used to signify that a number, 1.5x10321 for example,
has exceeded the defined range of legal values for a floating point number in JavaScript.

You can use the isNan function to test a value to see if it is a NaN.

Primitive Value: Infinity

Infinity

In ECMAScript, Infinity is classified as a primitive value.

Infinity is a numeric value that represents positive infinity. It is displayed, or printed out, when
a very large positive number exceeds the upper limit of the floating point numbers type which is
1.7976931348623157E+10308.

-Infinity is a numeric value that represents negative infinity. It is displayed, or printed out, when
a very large negative number exceeds the lower limit of the floating point numbers type which
is -1.7976931348623157E+10308.

Also see number.NEGATIVE_INFINITY and number.POSITIVE_INFINITY.

Code:
BigPosNum = 1.5E+339 * 2.4E+317
document.write("BigPosNum = " + BigPosNum)

Output:
BigNum = Infinity

Code:
BigNegNum = -1.5E+333
document.write("BigNegNum = " + BigNegNum)

Output:
BigNegNum = -Infinity

NOTE:

In JavaScript, all numbers, including integers, are treated as floating point numbers.

FUNCTION: isNaN

isNaN(testvalue)

The isNaN function is used to determine if the argument, testvalue, is a NaN.

A NaN, which means "Not-a-Number", is classified as a primitive value by the ECMA-262
standard and indicates that the specified value is not a legal number. The function returns true
if the argument is not a number and false if the argument is a number.

The classic example of a NaN is zero divided by zero, 0/0.

Code:
document.write(isNaN("Ima String"))
document.write(isNaN(0/0))
document.write(isNaN("348"))
document.write(isNaN(348))

Output:
true
true
false
false

Function: number

number(object)

The top-level function, number, converts the object argument to a string representing the
object's value. If the value cannot be represented by a legitimate number, the "Not-a-Number"
value, NaN is returned.

The object argument must be a JavaScript object. If no argument is provided, number returns
zero, 0.

In this example, a new Boolean object is created with a string argument of "true". The number
function returns, 1, which is the number equivalence of the value of the object.

Code:
boo = new Boolean("true")
document.write(Number(boo))

Output:
1

Function: string

string(object)

The top-level function, string, converts the object argument to a string representing the
object's value.

The object argument must be a JavaScript object. If no argument is provided, string returns
the empty string, "".

In this example, a new Boolean object is created with an argument of 0. The String function
returns, "false", which is the string equivalence of the value of the object.

Code:
boo = new Boolean(0)
document.write(String(boo))

Output:
false

STATEMENT: break

break [label]

The break statement can be used to terminate a current loop, switch or label statement and
pass control to the statement immediately following it.

The following example starts a loop printing the numbers from 1 to 10, buts exits when it
reaches 7 with an appropriate message:

Code:
var i = 0
while (i < 10)
{
 document.write(i);
 if (i==7)
 {
 document.write("the counter has reached " + i);
 break;
 }
 i++;
}

The break statement can also be used with a label as in the following example of two counts,
one nested within the other, which will be ended if the inner counter variable is equal to the
variable 'x':

Code:
outer_loop:
for(i=0; i<3; i++)
{
 document.write("
" + "outer " + i + ": ");
 for(j=0; j<5; j++)
 {
 document.write("inner " + j + " ");
 if(j==x)
 break outer_loop;
 }
}

While the break statement on its own can only be used to exit a loop, the optional label can be
added to break to exit any kind of statement. This next example tests for an even number and,
whenever it finds one, displays it, unless that number is 12:

Code:
even_number:
if(i%2==0)
{
 if(i==12)
 break even_number;
 document.write(i);
}

Function: parseFloat

parseFloat(string)

The top-level function, parseFloat, finds the first number in a string.

The function determines if the first character in the string argument is a number, parses the
string from left to right until it reaches the end of the number, discards any characters that
occur after the end of the number, and finally returns the number as a number (not as a string).

Only the first number in the string is returned, regardless of how many other numbers occur in
the string.

If the first character in the string is not a number, the function returns the Not-a-Number value
NaN.

Code:
document.write("
" + parseFloat("50"))
document.write("
" + parseFloat("50.12345"))
document.write("
" + parseFloat("32.00000000"))
document.write("
" + parseFloat("71.348 92.218 95.405"))
document.write("
" + parseFloat("37 aardvarks"))
document.write("
" + parseFloat("Awarded the best wine of 1999"))

Output:
50
50.12345
32.00000000
71.348
37
NaN

You can use the isNaN function to see if the returned value is a NaN.

Code:
cost = "$99.88"
CheckNum = parseFloat(cost)
if(isNaN(CheckNum))
 {
 document.write("
Sorry, CheckNum is a NaN")
 document.write("
Left-most character = " + cost.substring(0,1))
 }

Output:
Sorry, CheckNum is a NaN
Left-most character = $

Function: parseInt

parseInt(string, radix)

The top-level function, parseInt, find the first integer in a string.

There are two arguments. The mandatory string argument is the string which is presumed to
contain an integer. The optional radix argument specifies the base of the integer and can
range from 2 to 36. For example, 16 is the hexidecimal base (0123456789ABCDEF).

If no radix argument is provided or if it is assigned a value of 0, the function tries to determine
the base. If the string starts with a 1-9, it will be parsed as base 10. If the string starts with 0x or
0X it will be parsed as a hexidecimal number. If the string starts with a 0 it will be parsed as an
octal number. (Note that just because a number starts with a zero, it does not mean that it is
really octal.)

After determining if the first character in the string argument is a number, the parseInt function
parses the string from left to right until the end of the number or a decimal point is encountered,
then it discards any characters that occur after the end of the number (including a decimal
point and all numbers after the decimal point), and finally it returns the number as an integer
(not as a string).

Only the first integer in the string is returned, regardless of how many other numbers occur in
the string. This function does not return decimal points nor numbers to the right of a decimal.

If the first non-whitespace character is not numeric, the function returns the Not-a-Number
value NaN.

Code:
document.write("
" + parseInt("50"))
document.write("
" + parseInt("50.12345"))
document.write("
" + parseInt("32.00000000"))
document.write("
" + parseInt("71.348 92.218 95.405"))
document.write("
" + parseInt(" 37 aardvarks"))
document.write("
" + parseInt("Awarded the best wine of 1992"))

Output:
50
50
32
71
37
NaN

You can use the optional radix argument to convert a binary number string to the decimal
(base 10) equivalent.

Code:
document.write(parseInt("110", 2))

Output:
6

You can use the optional radix argument to convert a hexidecimal number string to the
decimal (base 10) equivalent.

Code:
document.write(parseInt("0xD9", 16))

Output:
217

You can use the isNaN function to see if the returned value is a NaN.

Code:
pet = "Rachel has 312 baby aardvarks"
CheckNum = parseInt(pet)
if(isNaN(CheckNum))
 {
 document.write("
Sorry, CheckNum is a NaN")
 document.write("
Left-most character = " + pet.substring(0,1))
 }

Output:
Sorry, CheckNum is a NaN
Left-most character = R

STATEMENT: switch

switch

The switch statement tests an expression against a number of case options and executes the
statements associated with the first one to match. If no match is found, the program looks for a
set of default statements to execute, and if these aren't found either, it carries on with the
statement immediately following switch. An optional break statement with each case ensures
that once a set of statements has been executed, the program exits switch. If break were
omitted, the statements associated with the following case would also be executed:

Code:
switch (i)
{
 case "Chicago" :
 document.write ("Flights to Chicago: Saturdays.");
 break;
 case "London" :
 document.write ("Flights to London: Fridays.");
 break;
 case "New York" :
 document.write ("Flights to New York: Fridays.");
 break;
 case "San Francisco" :
 document.write ("Flights to San Francisco: Wednesdays.");
 break;
 default :
 document.write ("Sorry, there are no flights to " + i + ".
");
}
document.write("Thank you for enquiring with Northern Airlines.
");

Function: taint

taint

The taint function is deprecated.

The Data-Tainting Security Model, which used the taint and untaint functions, was tried on an
experimental basis in Navigator 3. The idea behind the concept was to prevent private data
was being accessed on the Web. It proved unsuccessful and no code examples will be
provided.

STATEMENT: throw

throw (exception)

The throw statement allows the programmer to create an exception. This exception can be a
string, integer, Boolean or an object. Coupling the throw statement with the try...catch
statement, the programmer can control program flow and generate accurate error messages.

The following example determines the value of variable(z), and generates an error accordingly.
This error is then caught by the catch argument and the proper error message is then
displayed.

Code:
try {
 if(z == 1)
 throw "Error 1"
 else if(z == 2)
 throw "Error 2"
}
catch(er) {
 if(er == "Error 1")
 alert("Error 1 Please contact system Administrator")
 if(er == "Error 2")
 alert("Error 2 Please Reload the page")
}

STATEMENT: try...catch

try {statements1} [catch (exception){statements2}]

The try...catch statement is used to test a block of code for errors. The try block contains the
code to be run, while the catch block contains the code to execute if there is an error. The
exception argument is a variable in which to store the error, in this case it is the variable er.

The following example determines the value of variable(z), and generates an error accordingly.
This error is then caught by the catch argument and the proper error message is then
displayed.

Code:
try {
 if(z == 1)
 throw "Error 1"
 else if(z == 2)
 throw "Error 2"
}
catch(er) {
 if(er == "Error 1")
 alert("Error 1 Please contact system Administrator")
 if(er == "Error 2")
 alert("Error 2 Please Reload the page")
}

STATEMENT: // /*...*/

// comment text

/* multiple line comment text */

Comments are notes by the author explaining what the script does, and are ignored by the
interpreter. A comment consisting of a single line is preceded by a double slash (//):

Code:
// This is a single-line comment.

...and a multiple line comment is preceded by a /* and followed by a */:

Code:
/* This is a multiple line comment. It can contain whatever letters and characters you like and
span as many lines as you like. */

STATEMENT: continue

continue [label]

The continue statement is used to restart a while, do...while, for or label statement. In a
while loop it jumps back to the condition.

In the following example the code produces the numbers 1 thru 10 but skips the number 7:

Code:
var i = 0
while (i < 10)
{
 i++;
 if (i==7)
 continue;
 document.write(i + ".
");
}

...while in a for loop it jumps back to the update expression, as in the next example which lists
all the elements of the array 'drink' except for when the array index equals 2 (Note: since the
array indexing starts at zero, index 2 is the 3rd element in the array):

Code:
for(i=0; i<4; i++)
{
 if (i==2)
 continue;
 document.write(drink[i]);
}

It can also be used with a label as in the next example which displays an outer and inner count,
but limits the inner count to 3 more than the outer:

Code:
count_loop:
for(i=0; i<3; i++)
{
 document.write("
" + "outer " + i + ": ");
 for(j=0; j<10; j++)
 {
 document.write("inner " + j + " ");
 if(j==i+3)
 continue count_loop;
 }
}

STATEMENT: do...while

do statements while (condition);

The do...while statement executes one or more statements at least once, checking that a
certain condition is met each time before repeating. If that condition is not met, then control
moves to the statement immediately after the loop. The following example counts up in twos for
as long as the number is less than 20:

var i = 0;
do
{
 document.write(i + ".
");
 i+=2;
}
while(i<20);

FUNCTION: isFinite

isFinite(testnumber)

The top-level function, isFinite, is used to determine if the argument, testnumber, is a finite
and legal number. This function returns true for a finite number and otherwise returns false.

Code:
document.write(isFinite(2.2345))

Output:
true

Code:
document.write(isFinite(2.5E+345))

Output:
false

Code:
document.write(isFinite("Ima string"))

Output:
false

STATEMENT: label

label: statements;

A label can be used to identify a statement allowing you to refer to it elsewhere in a program. It
can be used with the break or continue statements (examples of which can be seen in the
relevent pages) to modify the execution of a loop. It can also be used with other statements as
in the following example which tests for an even number, and displays it, unless it's a 12:

Code:
even_number:
if(i%2==0)
{
 if(i==12)
 break even_number;
 document.write(i);
}

Primitive Value: Undefined

Undefined

In ECMAScript, Undefined is classified as a primitive value. Your ability to use Undefined will
be extremely dependent upon the type and version of your browser.

There are two definitions for Undefined. It can refer to a variable that has never been
declared. Or it can refer to a variable that has been declared, but has not been assigned a
value. The ECMA-262 standard uses the second version to define Undefined.

Undefined is also a type. You can use the typeof operator to determine the type of a variable
and it will return a type of "undefined" for an Undefined variable.

For this example, the value NotThere has not been declared. (Note that it is optional to enclose
the argument for the typeof operator inside a pair of parenthesis.)

Code:
document.write("NotThere is of type = " + typeof NotThere)

Output:
NotThere is of type = undefined

In this example, the value IsThere has been declared, but it is not assigned a value.

Code:
var IsThere;
document.write("IsThere is of type = " + typeof IsThere)

Output:
IsThere is of type = undefined

NOTE:

In Internet Explorer, if you attempt to utilize an undefined variable, you will get a runtime error
message b

Function: untaint

untaint

The untaint function is deprecated.

The Data-Tainting Security Model, which used the taint and untaint functions, was tried on an
experimental basis in Navigator 3. The idea behind the concept was to prevent private data
was being accessed on the Web. It proved unsuccessful and no code examples will be
provided.

STATEMENT: var

var

The var statement is used to declare a variable, and outside of a function its use is optional.
While a variable can be declared simply by assigning it a value, it is good practice to use var
as there are two cases in functions where it is necessary:

 If a global variable of the same name exists.

 If recursive or multiple functions use variables of the same name.

Code:
var i;

You can also declare more than one variable and, optionally, assign values at the same time:

Code:
var i = 0, x, max = 57;

STATEMENT: while

while

The while statement creates a loop consisting of a block of statements that is executed if the
expression evaluated is true.

The following example simply counts 1 thru 10 by incrementing a counter by 1 each time for as
long as the counter is less than 11:

Code:
var i = 0;
while(i<11)
{
 document.write(i + "
");
 i++;
}

Escape
Eval
isFinite
isNaN
Number
parseFloat
parseInt
String
Taint
Unescape
Untaint

Break
Comment
Continue
Do...While
Export
For
For...In
Function
If...Else
Import
Label
Return
Switch
throw
try...catch
Var
While
With

Arithmetic
 =
 ++
 -
 --
 /
 %

Assignment
 =

Backslash Escaped Characters
 \'
 \"
 \\
 \b
 \f
 \n
 \r
 \t

Bitwise
 &
 |
 ^
 ~
 <<
 >>
 >>>

Comparison
 ==
 !=
 ===
 !==
 >
 >=
 <
 <=

Logical
 &&
 ||
 !

Special
 ?:
 '
 delete
 new
 this
 typeof
 void

String
 +

Infinity
NaN
Undefined

Anchor
Applet
Area
Array
Boolean
Button
Checkbox
Date
Document
Event
FileUpload
Form
Frame
Function
Hidden
History
Image

Layer

Link
Location
Math
Navigator
Number
Object
Option
Password
Radio
RegExp
Reset
Screen
Select
String
Submit
Text
Textarea
Window

	DevGuru Quick Reference Library
	ADO
	ASP
	CSS
	HTML
	JavaScript
	Introduction
	Index
	Event Handlers
	onAbort
	onBlur
	onChange
	onClick
	onDblClick
	onDragDrop
	onError
	onFocus
	onKeyDown
	onKeyPress
	onKeyUp
	onload
	onMouseDown
	onMouseMove
	onMouseOut
	onMouseOver
	onMouseUp
	onMove
	onReset
	onResize
	onSelect
	onSubmit
	onUnload

	Functions
	\ (backslash escaped character)
	escape
	eval
	isFinite
	isNaN
	number
	parseFloat
	parseInt
	string
	taint
	unescape
	untaint

	Methods
	Array::concat
	Array::join
	Array::pop
	Array::push
	Array::shift
	Array::slice
	Array::sort
	Array::splice
	Array::unshift
	Date::parse
	Date::setFullYear
	Date::setHours
	Date::setMinutes
	Date::setMonth
	Date::setSeconds
	Date::setUTCFullYear
	Date::setUTCHours
	Date::setUTCMinutes
	Date::setUTCMonth
	Date::setUTCSeconds
	Date::toGMTString
	Date::toLocaleString
	Document::close
	Document::getSelection
	Document::open
	Document::write
	Function::apply
	Function::call
	Function::toSource
	Function::toString
	Function::valueOf
	History::go
	Layer::load
	Layer::moveAbove
	Layer::moveBelow
	Location::reload
	Math::atan2
	Navigator::preference
	Object::toSource
	Object::toString
	Object::valueOf
	Object::watch
	RegExp::compile
	RegExp::exec
	RegExp.test
	String::(various formatting methods)
	String::anchor
	String::charAt
	String::charCodeAt
	String::concat
	String::fromCharCode
	String::indexOf
	String::lastIndexOf
	String::link
	String::match
	String::replace
	String::search
	String::slice
	String::split
	Window::alert
	Window::back
	Window::confirm
	Window::find
	Window::forward
	Window::open
	Window::prompt
	Window::scrollTo
	Window::setInterval
	Window::setTimeout

	Objects
	Anchor
	Applet
	Area
	Array
	Methods
	concat
	join
	pop
	push
	shift
	slice
	sort
	splice
	unshift

	Boolean
	Button
	Properties
	form
	value

	Checkbox
	Date
	Methods
	parse
	setFullYear
	setHours
	setMinutes
	setMonth
	setSeconds
	setUTCFullYear
	setUTCHours
	setUTCMinutes
	setUTCMonth
	setUTCSeconds
	toGMTString
	toLocaleString

	Document
	Methods
	close
	getSelection
	open
	write

	Properties
	alinkColor
	anchors
	applets
	bgColor
	cookie
	domain
	embeds
	fgColor
	forms
	images
	lastModified
	layers
	linkColor
	links
	plugins
	vlinkColor

	Event
	FileUpload
	Form
	Frame
	Function
	Methods
	apply
	call
	toSource
	toString
	valueOf

	Properties
	arguments

	Hidden
	History
	Methods
	go

	Image
	Layer
	Methods
	load
	moveAbove
	moveBelow

	Properties
	visibility

	Link
	Properties
	hash
	host
	hostname
	href
	pathname
	port
	protocol
	search
	target

	Location
	Methods
	reload

	Properties
	hash
	host
	hostname
	href
	pathname
	port
	protocol
	search

	Math
	Methods
	atan2

	Navigator
	Methods
	preference

	Number
	Properties
	NEGATIVE_INFINITY, POSITIVE_INFINITY

	Object
	Methods
	toSource
	toString
	valueOf
	watch

	Properties
	prototype

	Option
	Properties
	defaultSelected

	Password
	Radio
	RegExp
	Methods
	compile
	exec
	test

	Properties
	$1, ..., $9
	input
	lastIndex
	lastMatch
	lastParen
	leftContext
	rightContext

	Special Characters

	Reset
	Screen
	Select
	Properties
	options

	String
	Methods
	(various formatting methods)
	anchor
	charAt
	charCodeAt
	concat
	fromCharCode
	indexOf
	lastIndexOf
	link
	match
	replace
	search
	slice
	split

	Submit
	Text
	Textarea
	Properties
	form

	Window
	Methods
	alert
	back
	confirm
	find
	forward
	open
	prompt
	scrollTo
	setInterval
	setTimeout

	Properties
	closed
	defaultStatus
	frames
	status

	Operators
	+
	+ ++ - -- * / % (Arithmetic Operators)
	= (Assignment Operators
	& | ^ ~ << >> >>> (Bitwise)
	== != === !== > >= < <= (Comparison)
	?: , delete new this typeof void
	& || ! (Logical)

	Primitive Values
	Infinity
	NaN
	Undefined

	Properties
	Button::form
	Button::value
	Document::alinkColor
	Document::anchors
	Document::applets
	Document::bgColor
	Document::cookie
	Document::domain
	Document::embeds
	Document::fgColor
	Document::forms
	Document::images
	Document::lastModified
	Document::layers
	Document::linkColor
	Document::links
	Document::plugins
	Document::vlinkColor
	Function::arguments
	Layer::visibility
	Link::hash
	Link::host
	Link::hostname
	Link::href
	Link::pathname
	Link::port
	Link::protocol
	Link::search
	Link::target
	Location::hash
	Location::host
	Location::hostname
	Location::href
	Location::pathname
	Location::port
	Location::protocol
	Location::search
	Number::NEGATIVE_INFINITY, POSITIVE_INFINITY
	Object::prototype
	Option::defaultSelected
	RegExp::$1, ..., $9
	RegExp::input
	RegExp::lastIndex
	RegExp::lastMatch
	RegExp::lastParen
	RegExp::leftContext
	RegExp::rightContext
	Select::options
	Textarea::form
	Window::closed
	Window::defaultStatus
	Window::frames
	Window::status

	Statements
	// /*...*/ (Comment)
	break
	continue
	do...while
	export
	For
	for...in
	function
	if...else
	import
	label
	return
	switch
	throw
	try...catch
	var
	while
	with

	JetSQL
	VBScript
	WML
	WMLScript
	WSH
	XHTML
	XMLDOM
	XSLT

	MMHOOCEIFCGAHKLJBIGFMJPABEMKHNKL:
	form1:
	f1:

	GBPLPOFCPKFIBEDNDALADBGJNFMLFOPM:
	form1:
	f1:

