

by Emily Vander Veer

JavaScript™

FOR

DUMmIES
‰

4TH EDITION

01_576593 ffirs.qxd 10/12/04 9:55 PM Page iii

01_576593 ffirs.qxd 10/12/04 9:55 PM Page ii

JavaScript™

FOR

DUMmIES
‰

4TH EDITION

01_576593 ffirs.qxd 10/12/04 9:55 PM Page i

01_576593 ffirs.qxd 10/12/04 9:55 PM Page ii

by Emily Vander Veer

JavaScript™

FOR

DUMmIES
‰

4TH EDITION

01_576593 ffirs.qxd 10/12/04 9:55 PM Page iii

JavaScript™ For Dummies,® 4th Edition
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail: brandreview@
wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. JavaScript is a trademark of
Sun Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004107963

ISBN: 0-7645-7659-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4B/QS/RR/QU/IN

01_576593 ffirs.qxd 10/12/04 9:55 PM Page iv

About the Author
Freelance author and Web guru Emily A. Vander Veer has penned several
books and countless articles on Internet-related technologies and trends.
You can e-mail her at eav@outtech.com.

01_576593 ffirs.qxd 10/12/04 9:55 PM Page v

01_576593 ffirs.qxd 10/12/04 9:55 PM Page vi

Dedication
For the D.

Author’s Acknowledgments
Many thanks to Gareth Hancock for giving me the opportunity to write the
very first edition of this book; to Craig Lukasik, who reviewed this book for
technical accuracy; and to all of the other tireless professionals at Wiley,
without whom this book wouldn’t have been possible.

01_576593 ffirs.qxd 10/12/04 9:55 PM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Pat O’Brien

Acquisitions Editor: Steven Hayes

Copy Editor: Virginia Sanders

Technical Editor: Craig Lukasik

Editorial Manager: Kevin Kirschner

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Composition

Project Coordinator: Erin Smith

Layout and Graphics: Andrea Dahl,
Joyce Haughey, Jacque Roth, Heather Ryan

Special Art:

Proofreaders: Carl Pierce, Joe Niesen,
TECHBOOKS Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_576593 ffirs.qxd 10/12/04 9:55 PM Page viii

Contents at a Glance
Introduction ...1

Part I: Building Killer Web Pages
for Fun and Profit ...7
Chapter 1: Hitting the Highlights: JavaScript Basics ...9
Chapter 2: Writing Your Very First Script..23
Chapter 3: JavaScript Language Basics ...35
Chapter 4: JavaScript-Accessible Data: Getting Acquainted

with the Document Object Model..73

Part II: Creating Dynamic Web Pages103
Chapter 5: Detecting Your Users’ Browser Environments ..105
Chapter 6: That’s How the Cookie Crumbles..125
Chapter 7: Working with Browser Windows and Frames ..143

Part III: Making Your Site Easy For Visitors
to Navigate and Use ...155
Chapter 8: Creating Interactive Images ...157
Chapter 9: Creating Menus..181
Chapter 10: Creating Expandable Site Maps ...191
Chapter 11: Creating Pop-Up Help (Tooltips) ...201

Part IV: Interacting with Users213
Chapter 12: Handling Forms ...215
Chapter 13: Handling User-Initiated Events ..239
Chapter 14: Handling Runtime Errors..249

Part V: The Part of Tens ..253
Chapter 15: Top Ten (Or So) Online JavaScript Resources255
Chapter 16: Ten (Or So) Most Common JavaScript Mistakes

(And How to Avoid Them)..261
Chapter 17: Ten (Or So) Tips for Debugging Your Scripts ..273

02_576593 ftoc.qxd 10/12/04 9:55 PM Page ix

Part VI: Appendixes ..293
Appendix A: JavaScript Reserved Words ..295
Appendix B: JavaScript Color Values...297
Appendix C: Document Object Model Reference ...303
Appendix D: Special Characters ...329
Appendix E: About the CD...335

Index ...341

02_576593 ftoc.qxd 10/12/04 9:55 PM Page x

Table of Contents
Introduction..1

System Requirements..1
About This Book...2
Conventions Used in This Book ...2
What You’re Not to Read...3
Foolish Assumptions ...4
How This Book Is Organized...4

Part I: Building Killer Web Pages for Fun and Profit4
Part II: Creating Dynamic Web Pages ...4
Part III: Making Your Site Easy for Visitors to Navigate and Use......5
Part IV: Interacting with Users..5
Part V: The Part of Tens...5
Part VI: Appendixes..5

Icons Used in This Book..5
Where to Go from Here..6

Part I: Building Killer Web Pages
for Fun and Profit..7

Chapter 1: Hitting the Highlights: JavaScript Basics 9
What Is JavaScript? (Hint: It’s Not the Same Thing as Java!)....................10

It’s easy! (Sort of)..11
It’s speedy!...13
Everybody’s doing it! (Okay, almost everybody!)13

JavaScript and HTML...14
JavaScript and Your Web Browser ...16
What Can I Do with JavaScript That I Can’t Do with Web Languages?....17

Make your Web site easy for folks to navigate18
Customize the way your Web site looks on-the-fly18
Create cool, dynamic animated effects ...19

What Do I Need to Get Started?..19
Hardware ...19
Software ...20
Documentation ...21

02_576593 ftoc.qxd 10/12/04 9:55 PM Page xi

Chapter 2: Writing Your Very First Script .23
From Idea to Working JavaScript Application ..24

Ideas?! I got a million of ’em! ...24
Part I: Creating an HTML file ...25
Part II: Creating your script...29
Part III: Putting it all together by attaching

a script to an HTML file..30
Testing Your Script...32

Chapter 3: JavaScript Language Basics .35
JavaScript Syntax ...35

Don’t keep your comments to yourself ...36
Fully functioning...42
Operators are standing by ..50
Working with variables ..56

Putting It All Together: Building JavaScript Expressions
and Statements ...58

The browser-detection script ...59
The date-formatting script ..64
The data-gathering script..68

Chapter 4: JavaScript-Accessible Data: Getting
Acquainted with the Document Object Model 73

Object Models Always Pose Nude ...74
Object-ivity..75
For sale by owner: Object properties ..77
There’s a method to this madness! ..79
How do you handle a hungry event? With event handlers!81
Company functions ..82

Anatomy of an Object: Properties, Methods,
Event Handlers, and Functions in Action ..84

Dynamic objects: The least you need
to know about CSS and DHTML ..84

Example DHTML script: Adding text dynamically86
Example DHTML script: Positioning text dynamically90
Example DHTML script: Changing page appearance on-the-fly93

Browser Object Models ...96
Netscape Navigator..96

JavaScript data types...98
Microsoft Internet Explorer ..100

JavaScript For Dummies, 4th Edition xii

02_576593 ftoc.qxd 10/12/04 9:55 PM Page xii

Part II: Creating Dynamic Web Pages.........................103

Chapter 5: Detecting Your Users’ Browser Environments 105
Whacking Your Way through the Browser Maze......................................105
Detecting Features ...106

Browser make and version..106
Embedded objects..112
The referrer page..121
User preferences...122

Chapter 6: That’s How the Cookie Crumbles .125
Cookie Basics..125

Why use cookies? ...126
Cookie security issues ...126
Looking at cookies from a user’s perspective127

Saving and Retrieving User Information ...131
Setting a cookie...132
Accessing a cookie ...133
Displaying content based on cookie contents:

The repeat-visitor script ..134

Chapter 7: Working with Browser Windows and Frames 143
Working with Browser Windows ..144

Opening and closing new browser windows144
Controlling the appearance of browser windows147

Working with Frames ...148
Creating HTML frames ...149
Sharing data between frames ...152

Part III: Making Your Site Easy For Visitors
to Navigate and Use..155

Chapter 8: Creating Interactive Images .157
Creating Simple Animations..157

Now you see it, now you don’t: Turning images on and off161
Slideshow Bob: Displaying a series of images165

Creating Rollovers, Hotspots, and Navigation Bars168
Creating a simple rollover ...169
Creating navigation bars by putting rollovers together................171
Carving up a single image into multiple hotspots177

xiiiTable of Contents

02_576593 ftoc.qxd 10/12/04 9:55 PM Page xiii

Chapter 9: Creating Menus .181
Getting Acquainted with Menus...182

Pull-down menus ..182
Sliding menus..186

Taking Advantage of Third-Party DHTML Menu Components190

Chapter 10: Creating Expandable Site Maps .191
Site Map Basics...191

The pull-down menu revisited ..193
Adding frames to the pull-down menu ..196
Putting it all together: Adding targeted hyperlinks197

Taking Advantage of Third-Party Site-Mapping Tools199

Chapter 11: Creating Pop-Up Help (Tooltips) .201
Creating Plain HTML Tooltips...202
Building DHTML Tooltips..204

Creating an HTML map and designating active areas204
Defining a style for the tooltip ..205
Creating custom JavaScript functions

to display and hide tooltips ..206
Calling custom functions in response to the

onMouseOver and onMouseOut events207
Putting it all together: Using DHTML code

to create simple tooltips..209
Taking Advantage of Third-Party Tooltips Scripts...................................211

Part IV: Interacting with Users...................................213

Chapter 12: Handling Forms .215
Capturing User Input by Using HTML Form Fields215

Creating an input-validation script ..216
Calling a validation script..221

Putting It All Together: The Order Form Validation Script222
Testing for existence..224
Testing for a numeric value...225
Testing for patterns..227
Form-level validation ...228

Chapter 13: Handling User-Initiated Events .239
The Skinny on Events and Event Handlers ...239
Handling Events..240

Window events ...243
Mouse events ..244
Form events...245
Keyboard events...247

JavaScript For Dummies, 4th Edition xiv

02_576593 ftoc.qxd 10/12/04 9:55 PM Page xiv

Chapter 14: Handling Runtime Errors .249
Exceptional Basics ...249
Handling Exceptions ..250

Part V: The Part of Tens ...253

Chapter 15: Top Ten (Or So) Online JavaScript Resources 255
Ten Web Sites to Check Out..255

Netscape ..256
Microsoft ...256
Builder.com ...256
Webmonkey...256
Project Cool’s JavaScript QuickStarts ...256
EarthWeb.com ..257
About.com...257
IRT.org ..257
WebReference.com...258
ScriptSearch.com ...258

Not-to-Be-Missed Newsgroups..258

Chapter 16: Ten (Or So) Most Common JavaScript Mistakes
(And How to Avoid Them) .261

Typing-in-a-Hurry Errors ...262
Breaking Up a Happy Pair ...263

Lonely angle brackets ..263
Lonely tags ..263
Lonely parentheses ..264
Lonely quotes ...265

Putting Scripting Statements in the Wrong Places265
Nesting Quotes Incorrectly ...266
Treating Numbers as Strings ..267
Treating Strings as Numbers ..268
Missing the Point: Logic Errors ..269
Neglecting Browser Incompatibility ..270

Chapter 17: Ten (Or So) Tips for Debugging Your Scripts273
JavaScript Reads Your Code, Not Your Mind!...274
Isolating the Bug...275
Consulting the Documentation...276
Displaying Variable Values ..276
Breaking Large Blocks of Statements into Smaller Functions279
Honing the Process of Elimination...280

Debugging browser problems...281
Tracking HTML bugs..281
Checking the JavaScript code...282

xvTable of Contents

02_576593 ftoc.qxd 10/12/04 9:55 PM Page xv

Taking Advantage of Others’ Experience ..282
Exercising the Time-Honored Trial-and-Error Approach283
Just Try and Catch Me Exception Handling!...283
Taking Advantage of Debugging Tools ..287

Netscape’s JavaScript console..288
Microsoft Internet Explorer’s built-in error display.......................290

Part VI: Appendixes...293

Appendix A: JavaScript Reserved Words .295

Appendix B: JavaScript Color Values .297

Appendix C: Document Object Model Reference 303
The Document Object Model..303

Anchor ...304
Applet...304
Area ..305
arguments..305
Array ..305
Boolean ..306
Button ..306
Checkbox...306
clientInformation..307
crypto ..307
Date ..308
document ..308
elements[] ...309
event...309
FileUpload ...310
Form ...310
Frame ...311
Function...311
Hidden..311
History ...312
Image..312
java ...312
JavaArray...313
JavaClass ...313
JavaObject...313
JavaPackage ..313
Link...314
location ..314
Math ...314
MimeType..315

JavaScript For Dummies, 4th Edition xvi

02_576593 ftoc.qxd 10/12/04 9:55 PM Page xvi

navigator..315
netscape ..316
Number ..316
Object...316
Option ..317
Packages ..317
Password ...318
Plugin ...318
Radio ..318
RegExp ...319
Reset...320
screen...320
Select..320
String..321
Style..321
Submit..322
sun..323
Text...323
Textarea ...323
window...324

Global Properties ...325
Built-In JavaScript Functions ..325

escape()...325
eval()..325
isFinite() ..326
isNaN() ..326
Number() ..326
parseFloat() ..326
parseInt() ..327
String() ..327
taint() ..327
unescape() ..328
untaint() ..328

Appendix D: Special Characters .329

Appendix E: About the CD .335
Getting the Most from This CD...335
System Requirements..336
Using the CD ...336
JavaScript For Dummies Chapter Files..337
What You’ll Find ...337
If You Have Problems (Of the CD Kind)...338

Index..341

xviiTable of Contents

02_576593 ftoc.qxd 10/12/04 9:55 PM Page xvii

JavaScript For Dummies, 4th Edition xviii

02_576593 ftoc.qxd 10/12/04 9:55 PM Page xviii

Introduction

Welcome to the wonderful world of Web programming with JavaScript.
If you’ve worked with HTML before but want to add more flexibility

and punch to your pages, or even if you’ve never written a stick of code in
your life but are eager to hop on the Infobahn-wagon, this book’s for you.

Although I don’t assume that you know HTML, much of what you want to
do with JavaScript is interact with objects created by using HTML — so you
understand the examples in this book that much quicker if you have a good
HTML reference handy. One to consider is HTML 4 For Dummies, 4th Edition,
by Ed Tittel (Wiley Publishing, Inc.).

I do my best to describe how JavaScript works by using real-world examples —
and not a foo (bar) in sight. When explaining things in formal notation makes
sense, I do that, but not without a recap in plain English. Most importantly, I
include tons of sample programs that illustrate the kinds of things you may
want to do in your own pages.

Along with this book comes a companion CD-ROM. This CD-ROM contains all
the sample code listings covered in the text along with many other interesting
scripts, examples, and development tools. From experience, I can tell you that
the best way to get familiar with JavaScript is to load the scripts and interact
with them as you read through each chapter. If it’s feasible for you, I suggest
installing the contents of the CD right away, before you dig into the chapters.
Then, when you come across a listing in the book, all you have to do is double-
click on the corresponding HTML file you’ve already installed. Doing so helps
reinforce your understanding of each JavaScript concept described in this
book. For more information and instructions on installing the CD-ROM, see
the About the CD appendix in the back of this book.

System Requirements
Here’s what you need to get the most out of this book and the enclosed
CD-ROM:

� A computer with a CD-ROM drive and a modem

� A sound card (okay, this one’s strictly optional, but it’s a lot of fun!)

03_576593 intro.qxd 10/12/04 9:55 PM Page 1

� Windows XT[s1] or Macintosh already installed with the following:

• A Pentium or faster processor, at least 16MB of RAM, and at least
25MB of free hard drive space if you’re running Windows XT

• A PowerPC or faster processor, at least 16MB of RAM, and at least
10MB of free hard drive space for Macintosh users

• A copy of either Netscape Navigator 7.0 or Microsoft Internet
Explorer 6.0 (Chapter 1 tells you how to get a copy, if you haven’t
already)

About This Book
Think of this book as a good friend who started at the beginning, learned the
ropes the hard way, and now wants to help you get up to speed. In this book,
you can find everything from JavaScript basics and common pitfalls to answers
to embarrassingly silly questions (and some really cool tricks, too), all of which
I explain from a first-time JavaScript programmer’s point of view. Although you
don’t find explanations of HTML in this book, you do find working examples on
the companion CD complete with all the HTML you need to understand how
JavaScript works.

Some sample topics you can find in this book are:

� Creating interactive Web pages

� Validating user input with JavaScript

� Testing and debugging your JavaScript scripts

� Adapting your scripts for cross-browser issues

� Integrating JavaScript with other technologies, such as Java applets,
Netscape plug-ins, and ActiveX components

Building intelligent Web pages with JavaScript can be overwhelming — if you
let it. You can do so much with JavaScript! To keep the deluge to a minimum,
this book concentrates on the practical considerations you need to get your
interactive pages up and running in the least amount of time possible.

Conventions Used in This Book
The rules are pretty simple. All code appears in monospaced font, like this
HTML line:

2 JavaScript For Dummies, 4th Edition

03_576593 intro.qxd 10/12/04 9:55 PM Page 2

TITLEJavaScript For DummiesTITLE

Make sure you follow the examples’ syntax exactly. Sometimes your scripts
work if you add or delete spaces or type your keywords in a different case,
but sometimes they don’t — and you want to spend your time on more inter-
esting bugs than those caused by spacing errors. (If you’re like me, you copy
and paste working code examples directly from the CD to cut down syntax
errors even more!)

Type anything you see in code font letter for letter. These items are gener-
ally JavaScript keywords, and they need to be exact. Directives in italics
are placeholders, and you can substitute other values for them. For example,
in the following line of code, you can replace state and confusion and leave
the equal sign out entirely, but you need to type var the way that it’s shown.

var state = “confusion”

Due to the margins of this book, sometimes code examples are wrapped
from one line to another. You can copy the code exactly the way it appears;
JavaScript doesn’t have a line continuation character. JavaScript has only one
place where you can’t break a line and still have the code work — between
two quotes. For example, the following line is invalid:

. . .
var fullName = “George
Washington”

And, when you see ellipses in the code (like this: . . .) you know I’ve omitted
a part of the script to help you focus on just the part I’m talking about. Or, I’ve
placed more code (like the HTML around the JavaScript) on the CD to save
paper.

All the URLs listed in this book are accurate at the time of this writing. Because
the Internet is such a dynamic medium, however, a few might be inaccessible
by the time you get around to trying them. If so, try using a search engine, such
as Yahoo! or Google, to help you find the slippery Web site you’re looking for.

What You’re Not to Read
Okay, you can read the text next to the Technical Stuff icons, but you don’t
have to understand what’s going on! Technical Stuff icons point out in-depth
information that explains why things work as they do (interesting if you’re in
the mood, but not necessary to get the most out of the JavaScript examples I
present).

3Introduction

03_576593 intro.qxd 10/12/04 9:55 PM Page 3

Foolish Assumptions
Everybody’s got to start somewhere, right? I’m starting out with the following
assumptions about you, the reader:

� You know how to navigate through an application with a mouse and a
keyboard.

� You want to build interactive Web pages for fun, for profit, or because
building them is part of your job.

� You have, or can get, a working connection to the Internet.

� You have, or can get, a copy of Netscape Navigator 7.0 or Microsoft
Internet Explorer 6.0.

How This Book Is Organized
This book contains five major parts. Each part contains several chapters, and
each chapter contains several sections. You can read the book from start to
finish if you like, or you can dive in whenever you need help on a particular
topic. (If you’re brand-new to JavaScript, however, skimming through Part I
first sure couldn’t hurt.) Here’s a breakdown of what you can find in each of
the five parts.

Part I: Building Killer Web
Pages for Fun and Profit
This part explains how to turn JavaScript from an abstract concept to some-
thing happening on the screen in front of you. It takes you step by step through
obtaining your choice of Netscape Navigator or Microsoft Internet Explorer,
discovering how to access and modify the document object model, and writing
and testing your first script. Part I also includes an overview of the JavaScript
language itself.

Part II: Creating Dynamic Web Pages
In this part, I demonstrate practical ways to create Web pages that appear
differently to different users. By the time you finish Part II, you’ll have seen
sample code for such common applications as detecting your users’ browsers
on-the-fly, formatting and displaying times and dates, and storing information
for repeat visitors by using cookies.

4 JavaScript For Dummies, 4th Edition

03_576593 intro.qxd 10/12/04 9:55 PM Page 4

Part III: Making Your Site Easy for
Visitors to Navigate and Use
The chapters in Part III are devoted to helping you create Web pages that visi-
tors can interact with easily and efficiently. You find out how to use JavaScript’s
event model and function declaration support to create hot buttons, clickable
images, mouse rollovers, and intelligent (automatically validated) HTML forms.

Part IV: Interacting with Users
JavaScript is evolving by leaps and bounds, and Part IV keeps you up-to-date
with the latest and greatest feats you can accomplish with JavaScript, including
brand-new support for dynamic HTML and cascading style sheets. In this part
you also find a double handful of the most popular JavaScript and DHTML
effects, including pull-down menus, expandable site maps, and custom tooltips.

Part V: The Part of Tens
The concluding part pulls together tidbits from the rest of the book, organized
in lists of ten. The categories include great JavaScript-related online resources,
common mistakes, and debugging tips.

Part VI: Appendixes
At the back of the book you find a handful of indispensable references, includ-
ing JavaScript reserved words, color values, document objects, and special
characters. There’s also a nifty how-to section that describes all the cool tools
you find on the companion CD.

Icons Used in This Book
Ever get in one of those moods when you’re reading along and get really
excited, and you just wish there was a way to cut to the chase and absorb
an entire chapter all at once? Well, if so, you’re in luck! Not only is this book
organized in nice, easily digestible chunks, with real-life figures and code
examples, but there’s an extra added value, too: eye-catching icons to give
you a heads-up on the most useful tidbits, categorized so that you can tell
at a glance what’s coming up.

5Introduction

03_576593 intro.qxd 10/12/04 9:55 PM Page 5

Take just a second to become familiar with the kind of information you can
expect from each icon:

This icon flags some of the cool stuff you can find on the CD-ROM included
in the back of this book. Because all the JavaScript source code listings are
on the CD (plus lots more), you can load up the scripts for each section and
follow along while you read if you want.

This icon lets you know that some really nerdy technical information is coming
your way. You can skip it if you want; reading through isn’t absolutely neces-
sary if you’re after the bare-bones basics, but it does give you a little show-off
material!

Next to the tip icon you can find handy little tricks and techniques for getting
the most bang out of your JavaScript buck.

These little gems can help you figure things out, so pay attention.

Before you jump in and start applying the information in any given section,
check out the text next to these babies — chances are they’ll save you a lot
of time and hassle!

The browser icon alerts you to an important difference between the way
Netscape Navigator implements JavaScript and the way Internet Explorer
implements JavaScript.

Where to Go from Here
So what are you waiting for? Pick a topic, any topic, and dive in. Or, if you’re
like me, begin at the beginning and read until you get so excited you have to
put the book down and try stuff out for yourself. And remember: From now on,
your life will be divided into two major time periods — before you mastered
JavaScript and after you mastered JavaScript. Enjoy!

6 JavaScript For Dummies, 4th Edition

03_576593 intro.qxd 10/12/04 9:55 PM Page 6

Part I
Building Killer
Web Pages for
Fun and Profit

04_576593 pt01.qxd 10/12/04 9:55 PM Page 7

In this part . . .
JavaScript is one of the coolest Web tools around —

and its use is spreading like wildfire. An extension to
Hypertext Markup Language (HTML), JavaScript enables
you to access and manipulate all the components that
make up a Web page. With JavaScript, you can create cool
graphic effects and build what are known as intelligent Web
pages: pages that verify input, calculate it, and make pre-
sentation decisions based on it. You can create all this, all
on the client, without having to learn an industrial-strength
language, such as C or C++!

Part I introduces you to JavaScript and then walks you step
by step through the process of creating your first script.
Finally, this part acquaints you with basic JavaScript pro-
gramming concepts, including everything you need to
know to create sophisticated custom scripts, from syntax
to the document object model.

04_576593 pt01.qxd 10/12/04 9:55 PM Page 8

Chapter 1

All You Ever Wanted
to Know about JavaScript
(But Were Afraid to Ask!)

In This Chapter
� Understanding a working definition of JavaScript

� Dispelling common JavaScript misconceptions

� Getting started with JavaScript tools

� Finding information online

Maybe you’ve surfed to a Web site that incorporates really cool features,
such as

� Images that change when you move your mouse over them

� Slideshow animations

� Input forms with pop-up messages that help you fill in fields correctly

� Customized messages that welcome repeat visitors

By using JavaScript and the book you’re reading right now you can create
all these effects and many more! The Web page in Figure 1-1 shows you an
example of the kinds of things that you can look forward to creating for your
own site.

A lot has changed since the previous edition of JavaScript For Dummies came
out. Perhaps the biggest change is the evolution of DHTML, or dynamic HTML.
DHTML refers to JavaScript combined with HTML and cascading style sheets,
and it’s a powerful combination you can use to create even more breathtak-
ingly cool Web sites than ever before.

05_576593 ch01.qxd 10/12/04 9:55 PM Page 9

Along with this increased power comes increased complexity, unfortunately —
but that’s where this new, improved, better-tasting edition of JavaScript For
Dummies comes in! Even if you’re not a crackerjack programmer, you can use
the techniques and sample scripts in this book to create interactive Web pages
bursting with animated effects.

Before you hit the JavaScript code slopes, though, you might want to take a
minute to familiarize yourself with the basics that I cover in this chapter. Here
I give you all the background that you need to get started using JavaScript as
quickly as possible!

What Is JavaScript? (Hint: It’s
Not the Same Thing as Java!)

JavaScript is a scripting language you can use — in conjunction with HTML — to
create interactive Web pages. A scripting language is a programming language

Figure 1-1:
JavaScript

lets you add
interactive
features to

your Web
site quickly
and easily.

10 Part I: Building Killer Web Pages for Fun and Profit

05_576593 ch01.qxd 10/12/04 9:55 PM Page 10

that’s designed to give folks easy access to prebuilt components. In the case of
JavaScript, those prebuilt components are the building blocks that make up a
Web page (links, images, plug-ins, HTML form elements, browser configuration
details, and so on).

You don’t need to know anything about HTML to put this book to good use;
I explain all the HTML you need to know to create and use the JavaScript
examples that you see in this book. If you’re interested in discovering more
about HTML, I suggest checking out a good book devoted to the subject. A
good one to try is HTML 4 For Dummies, 4th Edition, by Ed Tittel and Natanya
Pitts (Wiley Publishing, Inc.).

It’s easy! (Sort of)
JavaScript has a reputation of being easy to use because

� The bulk of the document object model (the portion of the language
that defines what kind of components, or objects, you can manipulate
in JavaScript) is pretty straightforward.

� For example, if you want to trigger some kind of event when a person
clicks a button, you access the onClick event handler associated with
the button object; if you want to trigger an event when an HTML form is
submitted, you access the onSubmit event handler associated with the
form object. (You become familiar with the JavaScript object model in
this book by examining and experimenting with working scripts. You can
also check out Appendix C, which lists all the objects that make up the
document object model.)

� When you load a cool Web page into your browser and wonder how
the author created the effect in JavaScript, 99 times out of a 100 all you
have to do to satisfy your curiosity is click to view the source code
(choose View➪Page Source in Navigator or choose View➪Source in
Internet Explorer). (Chapter 3 describes the .js files that are responsi-
ble for that 100th time.) This source code free-for-all, which is simply
impossible with compiled programming languages such as Java, helps
you decipher JavaScript programming by example.

However, becoming proficient in JavaScript isn’t exactly a no-brainer. One of
the biggest factors contributing to the language’s growing complexity is the fact
that the two major JavaScript-supporting browsers on the market (Netscape
Navigator and Microsoft Internet Explorer) implement JavaScript differently.
Netscape supports JavaScript directly — hardly a surprise because Netscape

11Chapter 1: All You Ever Wanted to Know about JavaScript

05_576593 ch01.qxd 10/12/04 9:55 PM Page 11

was the one that came up with JavaScript in the first place! Internet Explorer,
on the other hand, supports JavaScript indirectly by providing support for
JScript, its very own JavaScript-compatible language. And despite claims by
both Netscape and Microsoft that JavaScript and JScript, respectively, are
“open, standardized scripting languages,” neither company offers explicit,
comprehensive, all-in-one-place details describing all of the following:

� Precisely which version of JavaScript (or JScript) is implemented in each
of their browser releases.

� Precisely which programming features are included and which objects
are accessible in each version of JavaScript and JScript.

� How each version of JavaScript compares to each version of JScript.
(As you see in Chapter 4, JavaScript and JScript differ substantially.)

The upshot is that creating cross-browser, JavaScript-enabled Web pages now
falls somewhere around 6 on a difficulty scale of 1 to 10 (1 being the easiest
technology in the world to master and 10 being the hardest).

Fear not, however. Armed with an understanding of HTML and the tips and
sample scripts that you find in this book, you can become a JavaScript jockey
in no time flat!

12 Part I: Building Killer Web Pages for Fun and Profit

What’s in a name?
A long time ago, JavaScript was called
LiveScript. In a classic “if you can’t dazzle them
with brilliance, baffle them with marketing” move,
Netscape changed the name to take advantage
of the burgeoning interest in Java (another pro-
gramming language that Netscape partner Sun
Microsystems was developing at the time). By
all accounts, the strategy worked. Unfortunately,
many newbies still mistake JavaScript for Java,
and vice versa.

Here’s the scoop: Java is similar to JavaScript in
that they’re both object-based languages devel-
oped for the Web. Without going into the nitty-
gritty details of syntax, interpreters, variable
typing, and just-in-time compilers, all you have to
remember about the difference in usage between

JavaScript and Java is this: On the gigantic client/
server application that is the Web, JavaScript
lets you access Web clients (otherwise known
as browsers), and Java lets you access Web
servers. (Note: In some cases, you can also use
Java for Web client development.)

This difference might seem esoteric, but it can
help you determine which language to use to
create the Web site of your dreams. If what you
want to accomplish can be achieved inside the
confines of a Web client (in other words, by
interacting with HTML, browser plug-ins, and
Java applets), JavaScript is your best bet. But if
you want to do something fancier — say, interact
with a server-side database — you need to look
into Java or some other server-side alternative.

05_576593 ch01.qxd 10/12/04 9:55 PM Page 12

It’s speedy!
Besides being relatively easy, JavaScript is also pretty speedy. Like most
scripting languages, it’s interpreted (as opposed to being compiled). When you
program using a compiled language, such as C++, you must always reformat,
or compile, your code file before you can run it. This interim step can take
anywhere from a few seconds to several minutes or more.

The beauty of an interpreted language like JavaScript, on the other hand, is
that when you make changes to your code — in this case, to your JavaScript
script — you can test those changes immediately; you don’t have to compile
the script file first. Skipping the compile step saves a great deal of time during
the debugging stage of Web page development.

Another great thing about using an interpreted language like JavaScript is
that testing an interpreted script isn’t an all-or-nothing proposition, the way
it is with a compiled language. For example, if line 10 of a 20-line script con-
tains a syntax error, the first half of your script may still run, and you may
still get feedback immediately. The same error in a compiled program may
prevent the program from running at all.

The downside of an interpreted language is that testing is on the honor
system. Because there’s no compiler to nag you, you might be tempted to
leave your testing to the last minute or — worse yet — skip it altogether.
However, remember that whether the Web site you create is for business or
pleasure, it’s a reflection on you, and testing is essential if you want to look
your very best to potential customers, associates, and friends. (A few years
ago, visitors to your site might have overlooked a buggy script or two, but
frankly, Web site standards are much higher these days.) Fortunately,
Chapter 17 is chock-full of helpful debugging tips to help make testing your
JavaScript code as painless as possible.

Everybody’s doing it!
(Okay, almost everybody!)
Two generally available Web browsers currently support JavaScript: Microsoft’s
Internet Explorer and Netscape/AOL’s Navigator. (Beginning with version 4.0,
Navigator became synonymous with Communicator, even though technically
Netscape Communicator includes more components than just the Navigator
Web browser.) Between them, these two browsers have virtually sewn up the
browser market; almost everyone who surfs the Web is using one or the other —
and thus has the ability to view and create JavaScript-enabled Web pages.

13Chapter 1: All You Ever Wanted to Know about JavaScript

05_576593 ch01.qxd 10/12/04 9:55 PM Page 13

JavaScript and HTML
You can think of JavaScript as an extension to HTML; an add-on, if you will.

Here’s how it works. HTML tags create objects; JavaScript lets you manipulate
those objects. For example, you use the HTML <BODY> and </BODY> tags to
create a Web page, or document. As shown in Table 1-1, after that document
is created, you can interact with it by using JavaScript. For example, you can
use a special JavaScript construct called the onLoad event handler to trigger
an action — play a little welcoming tune, perhaps — when the document is
loaded onto a Web browser. (I cover event handlers in Chapter 13.) Examples
of other HTML objects that you interact with using JavaScript include win-
dows, text fields, images, and embedded Java applets.

Table 1-1 Creating and Working with Objects
Object HTML Tag JavaScript

Web page <BODY> . . . </BODY> document

Image document.myImage

HTML form <FORM name=”myForm”> document.myForm
. . . </FORM>

Button <INPUT TYPE=”button” document.myForm.
NAME=”myButton”> myButton

To add JavaScript to a Web page, all you have to do is embed JavaScript code
in an HTML file. Below the line in which you embed the JavaScript code, you
can reference, or call, that JavaScript code in response to an event handler or
an HTML link.

You have two choices when it comes to embedding JavaScript code in an
HTML file:

� You can use the <SCRIPT> and </SCRIPT> tags to include JavaScript
code directly into an HTML file.

In the example below, a JavaScript function called processOrder() is
defined at the top of the HTML file. Further down in the HTML file, the
JavaScript function is associated with an event handler — specifically,
the processOrder button’s onClick event handler. (In other words, the
JavaScript code contained in the processOrder() function runs when a
user clicks the processOrder button.)

14 Part I: Building Killer Web Pages for Fun and Profit

05_576593 ch01.qxd 10/12/04 9:55 PM Page 14

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>

// JavaScript statements go here
function processOrder() {

// More JavaScript statements go here
}

</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”myForm”>
<INPUT TYPE=”button” NAME=”processOrder” VALUE=”Click to process your

order” onClick=”processOrder();”>
...
</HTML>

� You can use the <SCRIPT> and </SCRIPT> tags to include a separate,
external JavaScript file (a file containing only JavaScript statements
and bearing a .js extension) into an HTML file.

In the example below, the JavaScript processOrder() function is
defined in the myJSfile.js file. The function is triggered, or called,
when the user clicks the Click Here to Process Your Order link.

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript” SRC=”myJSfile.js”>
</SCRIPT>
</HEAD>
<BODY>
Click here to process your order.
...
</BODY>
</HTML>

Keep in mind that most of the examples in these printed pages focus on
the JavaScript portion of the code (naturally!). But I include the HTML that
you need to create the examples on the CD-ROM, so you don’t have sweat
re-creating the Web pages from scratch!

Because Web pages aren’t made of HTML alone, however, JavaScript provides
access to more than just HTML objects. JavaScript also provides access to
browser- and platform-specific objects. Browser plug-ins (such as RealPlayer
and Adobe Acrobat), the name and version of a particular viewer’s browser,
and the current date are all examples of non-HTML objects that you can work
with by using JavaScript.

Together, all the objects that make up a Web site — HTML objects, browser-
and platform-related objects, and special objects built right into the JavaScript
language — are known as the document object model (DOM).

15Chapter 1: All You Ever Wanted to Know about JavaScript

05_576593 ch01.qxd 10/12/04 9:55 PM Page 15

JavaScript and Your Web Browser
You need to use Netscape Navigator 7.1 (or higher) or Microsoft Internet
Explorer 6.0 (or higher) to use the latest JavaScript enhancements that I
demonstrate in this book.

Not all browsers are created equal: Internet Explorer’s support for JavaScript
differs significantly from Navigator’s, and support for JavaScript varies from
browser version to browser version. For details, check out Chapter 5.

Although you can create and view JavaScript scripts with an old version of
one of these browsers, I recommend that you install the most current version
of Navigator or Internet Explorer. (What the heck — they’re both free!) The
latest versions of each product boast the very latest JavaScript features and
bug fixes; they’re also the versions that you see in the figures and examples
in this book.

You can use another browser, such as Opera or America Online (or even
another Internet protocol, such as FTP) to download the latest version of
Navigator or Internet Explorer and try it out. The section “What Do I Need to
Get Started?” later in this chapter is devoted to the ins and outs of obtaining
and installing a JavaScript-enabled browser. For now, suffice it to say that

� You need Navigator or Internet Explorer to work with JavaScript, which
means that you have to be running one of the client platforms that sup-
ports these browsers. (The Macintosh operating system and Windows
both support Navigator and Internet Explorer.)

� You need to be aware that people might use other, non-JavaScript-enabled
browsers to view your Web pages — or they might use JavaScript-enabled
browsers with JavaScript support turned off. Either way, you have no way
to guarantee that everyone who visits your page can view your JavaScript
handiwork. (Check out Chapter 5 for more information on this topic.)

16 Part I: Building Killer Web Pages for Fun and Profit

JavaScript and browser security
In an era when computer viruses proliferate
faster than crab grass, browser security is an
important issue. You might be relieved to know
that JavaScript poses no special security
threats. Because JavaScript can’t access any
objects other than browser-contained objects
(with the exception of cookies, which I discuss

in Chapter 6), no one can use JavaScript to
open up secret dial-up connections, wipe users’
hard drives, or perform other malicious acts,
even by accident. In other words, JavaScript is
subject to the security controls built into
JavaScript-supporting browsers.

05_576593 ch01.qxd 10/12/04 9:55 PM Page 16

What Can I Do with JavaScript That
I Can’t Do with Web Languages?

HTML. DHTML. XML. JavaScript. Java. Flash. When it comes to Web develop-
ment, the sheer array of languages and development tools can be confusing —
and you might be left wondering which language is best for which task.

The fact is that each language was designed with a particular kind of task in
mind, and JavaScript is no exception. Table 1-2 shows you the types of tasks
that JavaScript is best (and least) suited to perform. JavaScript is best suited
for client-side (browser-based) tasks.

Table 1-2 Using JavaScript for the Right Task
Task Is JavaScript Are JavaScript and

Useful? CSS (DHTML) Useful?

Provide users with helpful feedback Yes No

Customize page appearance Yes Yes (more sophisticated
than JavaScript alone)

Examine or change HTML form data Yes No

Create simple animations Yes Yes (more sophisticated
than JavaScript alone)

Create complex animations No No

Perform server-side processing No No

JavaScript performs its magic by working together with HTML and cascading
style sheets (CSS). Here’s how it works: HTML and CSS let you create static Web
pages by using tag building blocks, or objects. JavaScript lets you inspect and
manipulate the objects to punch up static pages with interactivity and simple
animations. (In other words, to use JavaScript, you need to use HTML; to take
advantage of dynamic HTML, or DHTML, features, you need to use both HTML
and CSS.)

By using JavaScript, you can make a Web site easy to navigate and even cus-
tomize your page depending on who’s viewing it, what browser the visitor is
using to view it, and what time of day it is. You can even create simple (but
effective) animated effects.

17Chapter 1: All You Ever Wanted to Know about JavaScript

05_576593 ch01.qxd 10/12/04 9:55 PM Page 17

Make your Web site easy
for folks to navigate
The most common way to perk up your pages with JavaScript is to make them
easier to navigate. For example, you can use JavaScript to

� Create expandable site maps.

� Add tooltips — helpful bits of text that appear when a user moves a mouse
over a particular section of your Web site.

� Swap images when a user drags a mouse over a certain area of the screen.
(This effect is called a mouse rollover, and it helps users determine at a
glance which parts of your Web page are interactive, or clickable.)

� Inspect the data that your users enter and pop up helpful suggestions if
they make an invalid entry.

� Display a thank-you message after a user submits a form.

� Load content into multiple frames when a user clicks a button so that the
user can view multiple chunks of related information at the same time.

In addition to user-initiated events, such as clicking and dragging a mouse,
JavaScript also recognizes automatic events — for example, loading a Web
page onto a browser. (Check out Chapter 5 for details, including sample
scripts that run in response to automatic events.)

Customize the way your Web
site looks on-the-fly
Everyone likes to feel special, and the folks who visit your Web site are no
exception. By using JavaScript, you can tailor the way your pages look to
different users based on criteria such as

� The specific kinds and versions of browser that visitors use to view
your page

� The current date or time

� Your users’ behaviors the last time they visited your pages

� Your users’ stated preferences

� Any other criteria you can imagine

18 Part I: Building Killer Web Pages for Fun and Profit

05_576593 ch01.qxd 10/12/04 9:55 PM Page 18

Create cool, dynamic animated effects
Many folks assume that you need Java to create animations for the Web, but
that’s just not so. Although JavaScript certainly won’t be mistaken for the
most efficient way to create high-density animations, you can use JavaScript
with cascading style sheets (the combination is sometimes known as DHTML)
to create a variety of really neat animated effects. As a matter of fact, using
JavaScript is the easiest way to implement common effects, such as rollovers,
as you can see in Chapter 8.

What Do I Need to Get Started?
I hope you’re chomping at the bit to get started on your first JavaScript-enabled
Web page! First things first, though . . . You have an idea of what JavaScript can
do for you, and you might already have something specific in mind for your
first attempt. Now’s the time to dive into the preliminaries: what you need to
get started and how to get what you need if you don’t already have it. After
you complete the setup, you can go on to the really fun stuff!

Hardware
For the purposes of this book, I assume that you’re beginning your JavaScript
adventure with a personal computer or a Mac. Your machine (or box, to use
the vernacular) should be a Pentium PC or better (unless it’s a Power Mac)
and should have at least 32MB of RAM and at least 25MB free hard drive space.
If none of this makes sense, try asking your local hardware guru; every orga-
nization seems to have at least one guru. (I’ve found, through extensive trial
and error, that most hardware gurus are fairly responsive to sugar-based snack
foods.)

You also need hardware installed that lets you connect to the Internet. This
hardware usually consists of a modem and a phone line, although some folks
opt for even faster options such as cable or DSL (digital subscriber line).
Depending on your computer, you might have an internal modem installed —
many come complete with a built-in modem. If not, you can buy a modem at
your local computer discount store. The differentiating factor among modems
is line speed: the faster the better. (Most computers these days come with a
56.6 Kbps model preinstalled, but 28.8 works just fine.) If you don’t already
have a modem, consider buying the fastest modem in your price range; you’ll
be very glad you did when you try to look at spiffy Web pages with multiple
graphics, each of which takes a loooong time to load (because graphics files
are typically very large).

19Chapter 1: All You Ever Wanted to Know about JavaScript

05_576593 ch01.qxd 10/12/04 9:55 PM Page 19

Software
For the purposes of this book, I assume that you have a Mac OS 0 or later or
a personal computer loaded with Windows 95, Windows NT, Windows 98,
Windows 2000, Windows XP, or Linux. (Currently, only Netscape Navigator
is available for use with Linux.)

I also assume that you have some way to create text files. (Most operating
systems come packaged with a variety of text editors and word processors,
any of which work just fine for creating JavaScript scripts.)

On the CD included with this book you can find some great text-editing utilities
that are designed specifically for creating JavaScript files.

JavaScript-specific software
You need a Web browser. Navigator (Netscape Communication’s commercial
Web browser) and Microsoft’s Internet Explorer are the only generally avail-
able browsers that support JavaScript at the time of this writing. So, the first
thing to do is to get a copy of Navigator or Internet Explorer.(The examples
that you see in this book are demonstrated by using both Netscape Navigator
and Internet Explorer running on Windows XP.)

Most personal computers come with Internet Explorer already installed. To
find out if this is the case for your particular computer, choose Start➪All
Programs and look for Internet Explorer.

Netscape Navigator
Netscape Navigator version 7.x bundles the Navigator browser with messaging,
Web construction, and other Internet-related goodies.

You can download a copy by visiting the following site (which offers step-by-
step installation instructions):

http://channels.netscape.com/ns/browsers/default.jsp

Of course, I’m assuming that you already have a Web browser installed or
that you have access to FTP. (FTP is short for file transfer protocol, which is
an Internet application that enables you to download files from other people’s
machines.)

Internet Explorer
If you’re a Microsoft buff, you might want to download a copy of Internet
Explorer. Download it for free (or order your copy on CD-ROM for a nominal
fee) from the following site, which offers easy-to-follow installation instructions:

www.microsoft.com/windows/ie/default.htm

20 Part I: Building Killer Web Pages for Fun and Profit

05_576593 ch01.qxd 10/12/04 9:55 PM Page 20

Documentation
For the latest Netscape Navigator and Microsoft Internet Explorer documen-
tation and technical support, respectively, check out the following URLs:

http://channels.netscape.com/ns/browsers/default.jsp

www.microsoft.com/windows/ie/default.htm

To view or download a copy of the Core JavaScript Reference, the documenta-
tion from Netscape that explains JavaScript basics and language concepts,
visit the following Web page:

http://devedge.netscape.com/central/javascript/

Microsoft’s documentation for its JavaScript-compatible scripting language,
called JScript, can be found at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/js56jsoriJScript.asp

or you can visit http://msdn.microsoft.com and search for documents on
scripting.

21Chapter 1: All You Ever Wanted to Know about JavaScript

05_576593 ch01.qxd 10/12/04 9:55 PM Page 21

22 Part I: Building Killer Web Pages for Fun and Profit

05_576593 ch01.qxd 10/12/04 9:55 PM Page 22

Chapter 2

Writing Your Very First Script
In This Chapter
� Designing your first JavaScript application

� Creating an HTML file

� Creating and attaching a script

� Running the JavaScript application

One of the best ways to figure out the particulars of a new scripting lan-
guage is to dive right in and create a script — and that’s just what this

chapter shows you how to do! Actually, this chapter shows you how to do more
than just create a script; it shows you how to create a JavaScript application.
JavaScript isn’t much use all by itself. It really needs to work in conjunction
with HTML. So, a JavaScript application includes at least one script and at
least one HTML file.

This chapter covers every single, solitary aspect of JavaScript development
from coming up with a useful idea to implementing, testing, and executing that
idea. I don’t assume that you have any previous knowledge at all, so even if
you’re new to JavaScript or the Web, you can follow along with the examples
in this chapter. And because the example that I use demonstrates most of the
common JavaScript constructs — including statements, variables, operators,
functions, and event handlers — you can apply the strategies and code shown
here to your very own script creations.

So turn on your computer, roll up those sleeves, and get ready to have
some fun!

06_576593 ch02.qxd 10/12/04 9:58 PM Page 23

From Idea to Working JavaScript
Application

Like great art, great software doesn’t just happen. Creating either one requires
you to do a bit of planning first, and then you have to use a tool — along with
some kind of logical process — to translate your plan into something concrete.

In this section, you become familiar with the basic tools that you need to create
a JavaScript application: a simple text editor and a JavaScript-supporting Web
browser. You also get a good look at the logical process (called the development
cycle in programming circles) that you need to follow to create a JavaScript
application.

Ideas?! I got a million of ’em!
The first step to creating a knock-out JavaScript application is deciding
exactly what you want your application to do. Provide some feedback to
your visitors? Perform some calculations? Display requested information
in a pop-up window?

This book describes many of the things that you want to do with JavaScript —
from validating user input to creating mouse rollovers. For more ideas, check
out ScriptSearch.com’s JavaScript section at www.scriptsearch.com/
JavaScript.

When you have a clear idea in mind, take a few minutes to jot your thoughts
down on a piece of paper. This phase — clarifying in writing exactly what you
want your application to accomplish — has a long history of usefulness in
professional software development. Formally dubbed the requirements phase,
completing this step gives you the means to test your application at the end
of the process. (Hey, you can’t test something if you don’t know exactly how
it’s supposed to work!)

Here are the requirements for the first JavaScript proverb application that I
describe in this section:

I want to create a Web page that displays the current date and time.

Notice that the requirements can be in your own words. You don’t need to
fill out a formal requirements document, or (gasp!) labor over a flowchart.
A simple, concise description fills the bill nicely.

24 Part I: Building Killer Web Pages for Fun and Profit

06_576593 ch02.qxd 10/12/04 9:58 PM Page 24

Part I: Creating an HTML file
When you have your script requirements in hand, you’re ready to hit the
coding slopes!

First off, you need to create a Web page. You do that by typing HTML code
into a text editor and saving that code as a separate file on your computer’s
hard drive, which I show you how to do in this section.

Because this book is all about JavaScript — not HTML — I don’t go into
great detail about the HTML language. Instead, I demonstrate only as
much HTML as I need to describe all the wonderful things that you can
do with JavaScript. If you need a good introduction to HTML, I suggest
HTML 4 For Dummies, 4th Edition, by Ed Tittel and Natanya Pitts (Wiley
Publishing, Inc.).

Throughout this book, I use the Notepad text editor. Why? Because it
comes free with the Windows operating system. (It’s also easy to use.) But
if you have another text-editing program installed on your machine that
you’d rather use to create your scripts, by all means, use that program.

The companion CD contains trial versions of a handful of cool text editors
that are optimized for JavaScript, including HELIOS Software Solutions’
TextPad, Bare Bones Software’s BBEdit, Macromedia Dreamweaver, and
Adobe GoLive.

Just make sure that you use a text editor to create your scripts and HTML
files rather than using a word processor. The difference is this: When
you save a file by using a word processor application, such as Microsoft
Word, the application adds special nontext characters to the saved file.
Unfortunately, HTML and JavaScript interpreters — the bits of software
inside Web browsers that process HTML and JavaScript code, respectively —
can interpret only text; they can’t interpret word-processing files containing
special characters.

One exception exists to the rule about not using word processors to create
HTML or JavaScript files. Some word processors allow you to save files in
HTML or plain text format. To save a file in plain text format by using Microsoft
Windows, for example, you simply choose File➪Save As and select Text Only
from the Save As Type drop-down list. If your word processor offers the ability
to save files in HTML or plain text format, you can use that word processor to
create HTML and script files. Otherwise, you need to use a text editor, such
as Notepad.

25Chapter 2: Writing Your Very First Script

06_576593 ch02.qxd 10/12/04 9:58 PM Page 25

Here are the steps you need to follow to create a file by using Notepad:

1. Choose Start➪All Programs➪Accessories➪Notepad to pull up the
Notepad editing window.

2. When the Notepad editing window appears, type in your HTML and
JavaScript code. (See Figure 2-1.)

3. When you’re finished typing, save the file by choosing File➪Save.

If you’re creating an HTML file containing embedded JavaScript
statements — such as the one that I describe in this chapter —
make sure that the name you give your file contains the .htm or
.html extension.

The script that I demonstrate in this chapter is embedded in an HTML file,
which is the most common way to implement JavaScript scripts. However,
you can also implement a script as a separate file by using the .js extension,
and then reference that JavaScript file explicitly from an HTML file. I cover
this technique in Chapter 1.

Listing 2-1 shows you what the HTML code for the date-and-time-stamp appli-
cation looks like in the Notepad editing window.

To see how the code in Listing 2-1 behaves in a Web browser, load the file
list0201.htm — which you find on the companion CD — into Netscape
Navigator or Internet Explorer.

Figure 2-1:
The date-
and-time-

stamp
script as it
appears in

the Notepad
editing

window.

26 Part I: Building Killer Web Pages for Fun and Profit

06_576593 ch02.qxd 10/12/04 9:58 PM Page 26

Listing 2-1: The HTML Code for the Date-and-Time-Stamp Application

<HTML>
<HEAD>
<TITLE>Displaying the current date and time (basic example)</TITLE>
</HEAD>
<BODY>
<P>This is the HTML text for my first JavaScript application.</P>
</BODY>
</HTML>

The code in Listing 2-1 displays the following:

� A title: The title text, Displaying the current date and time
(basic example), appears in the title bar of the document window.

� A bit of text: The This is the HTML text for my first
JavaScript application text appears in the body of the Web page.

Figure 2-2 shows how the HTML code in Listing 2-1 appears in Netscape 7.1.

Figure 2-2:
The HTML
portion of
the date-

and-time-
stamp

application
as it appears
in Navigator.

27Chapter 2: Writing Your Very First Script

06_576593 ch02.qxd 10/12/04 9:58 PM Page 27

Even though the Web page in Figure 2-2 looks nice, it’s only half done. No date
or time stamp appears on the page.

That’s where JavaScript comes in! You need a script to capture the current date
and time and display it on the page. You find out all you need to know to create
a script to do just that — as well as attach that script to an HTML file — in the
next two sections.

28 Part I: Building Killer Web Pages for Fun and Profit

Number crunching
Some JavaScript programmers set the LAN-
GUAGE attribute of the <SCRIPT> tag equal to a
value of JavaScript1.1, JavaScript1.2,
or JavaScript1.3 (as opposed to plain old
JavaScript) if their script takes advantage of
version-specific JavaScript code. For example,
you can use any of the following three options:

<SCRIPT LANGUAGE=”JavaScript”>
. . . (JavaScript code version 1.0 and

up)
</SCRIPT>

<SCRIPT LANGUAGE=”JavaScript1.2”>
. . . (JavaScript code version 1.2 or

up)
</SCRIPT>

<SCRIPT LANGUAGE=”JavaScript1.3”>
. . . (JavaScript code version 1.3 or

up)
</SCRIPT>

The trouble with that approach is that keeping
track of JavaScript support in the many different
versions of Navigator and Internet Explorer is
enough to keep a full-time accountant busy! Take
a look at the following and you see what I mean:

� Navigator 2.0 and Internet Explorer 3.0 sup-
port JavaScript 1.0.

� Navigator 3.0x and Internet Explorer 3.0x and
4.0x support JavaScript 1.1.

� Navigator 4.0 through 4.05 supports Java-
Script 1.2.

� Navigator 4.06 through 4.5 supports Java-
Script 1.3.

� Internet Explorer 5.x supports JScript 5.x
(which is compatible with JavaScript 1.3,
more or less).

� Navigator 6.0x and 7.1 and Internet Explorer 6
support JavaScript 1.5.

Whew! Even if you do manage to identify which
version of JavaScript or JScript first introduced
support for which JavaScript constructs you’re
using, specifying a value of JavaScript 1.3
(rather than JavaScript) for the LANGUAGE
attribute doesn’t provide any additional Java-
Script support. It simply prevents browsers that
don’t support JavaScript version 1.3 from trying
to interpret those JavaScript statements sand-
wiched between the <SCRIPT LANGUAGE=
”JavaScript1.3”> and </SCRIPT> tags.

My advice? Stick with LANGUAGE=”Java
Script”, use cutting-edge JavaScript con-
structs sparingly, and test your scripts in as
many different browsers (and versions of
browsers) as you possibly can.

06_576593 ch02.qxd 10/12/04 9:58 PM Page 28

Part II: Creating your script
When you have a working HTML file, such as the one shown previously in
Figure 2-2, you can begin creating your script.

For the date-and-time-stamp application that I describe in “Ideas?! I got a mil-
lion of ’em!” earlier in this chapter, you need to create a script that

� Captures the current date and time.

� Displays the current date and time on the Web page.

The JavaScript code required to do all this, as shown in Listing 2-2, is simpler
than you might think. In Chapter 3, you get familiar with each and every line
of JavaScript code in detail, including comments, variables, and methods. For
now, just take a gander at Listing 2-2.

Listing 2-2: JavaScript Code for the Date-and-Time-Stamp Application

// Capture the current date and time from the system clock
var todays_date = new Date();

// Display the current date and time on the Web page
document.writeln(todays_date);

As you glance over Listing 2-2, notice that

� Lines that begin with // are JavaScript comments. The JavaScript
interpreter doesn’t attempt to execute comments. Instead, comments
serve to describe in human terms what you, the JavaScript programmer,
want the JavaScript code to accomplish. In Listing 2-2, you see two com-
ment lines. (For more about JavaScript comments, flip to Chapter 3.)

� The first JavaScript statement captures the current date and time by
creating a new instance of the built-in Date object and assigning the
value of that instance to a variable called todays_date.

var todays_date = new Date();

Note: You can find out more about how variables work by turning to Chap-
ter 3. For the nitty-gritty on the built-in Date object, check out Chapter 4.

� The second JavaScript statement uses the writeln() method of the
document object to write the contents of the todays_date variable to
the body of the Web page.

document.writeln(todays_date);

In case you’re interested, Chapter 4 describes the document object and
the writeln() method in detail.

29Chapter 2: Writing Your Very First Script

06_576593 ch02.qxd 10/12/04 9:58 PM Page 29

Part III: Putting it all together by
attaching a script to an HTML file
Together, the HTML code that you see in Listing 2-1 and the JavaScript code
you see in Listing 2-2 comprise the date-and-time-stamp application. Only one
step remains: combining the two into a single HTML file. (This step is often
referred to as attaching a script to an HTML file.)

Listing 2-3 shows you how to do just that.

To experiment with the code in Listing 2-3 on your own computer, just
load the list0203.htm file (located on the companion CD) into your Web
browser.

Listing 2-3: The Whole Enchilada: The HTML and JavaScript Code
for the Date-and-Time-Stamp Application

<HTML>
<HEAD>
<TITLE>Displaying the current date and time (basic example)</TITLE>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- Hide from browsers that do not support JavaScript

// Capture the current date and time from the system clock
var todays_date = new Date();

// Display the current date and time on the Web page
document.writeln(todays_date);

// --> Finish hiding
</SCRIPT>
</HEAD>
<BODY>
<P>This is the HTML text for my first JavaScript application.</P>
</BODY>
</HTML>

The code that you see in Listing 2-3 combines the HTML code shown in
Listing 2-1 with the JavaScript code shown in Listing 2-2 — along with
four lines of additional code. It’s this additional code, shown in bold, that
attaches the JavaScript script to the HTML file.

As you scan through Listing 2-3, notice the following:

30 Part I: Building Killer Web Pages for Fun and Profit

06_576593 ch02.qxd 10/12/04 9:58 PM Page 30

� The JavaScript code is shoehorned into the HTML file by using the
HTML <SCRIPT> and </SCRIPT> tags.

All JavaScript code must appear between beginning <SCRIPT> and ending
</SCRIPT> tags. You can include more than one script per HTML file as
long as you surround each script with the <SCRIPT> and </SCRIPT> tags.
Because more than one scripting language exists, the LANGUAGE and TYPE
variables specify JavaScript as the scripting language for this particular
script.

� The JavaScript code is placed in the header section of the HTML file
(between the HTML <HEAD> and </HEAD> tags).

You can include multiple <SCRIPT> and </SCRIPT> tags in different
places in the HTML file. For example, you can include the <SCRIPT>
and </SCRIPT> tags in the body section of an HTML file between the
beginning and ending <BODY> and </BODY> tags. However, because the
browser executes JavaScript code as it encounters that code, from top
to bottom, the fact that you include your script at the very top of an
HTML file (in the header section, as shown in Listing 2-3) ensures that
the JavaScript code is available for execution as soon as the Web page
is loaded.

� HTML comments hide the script from browsers that don’t support
JavaScript.

Browsers that don’t support JavaScript ignore everything between these
two lines:

<!-- Hide from browsers that do not support JavaScript
// --> Finish hiding

Surrounding your JavaScript statements with these two hiding symbols
prevents non-JavaScript-enabled browsers from displaying your JavaScript
statements as text.

Make sure that you put the beginning and ending hiding symbols (<!-- and
// -->, respectively) on their own separate lines. Placing either symbol on
the same line as a JavaScript statement could cause a non-JavaScript-enabled
browser to display your JavaScript code, just as though the hiding symbols
didn’t exist.

Following each pair of <SCRIPT> and </SCRIPT> tags with the HTML
<NOSCRIPT> and </NOSCRIPT> tags allows you to control more precisely
what folks using non-JavaScript-enabled browsers see when they visit your
Web page. For example, the following code displays a message telling users

31Chapter 2: Writing Your Very First Script

06_576593 ch02.qxd 10/12/04 9:58 PM Page 31

that they need to use a JavaScript-enabled Web browser to get the most from
your Web page:

...
</SCRIPT>
<NOSCRIPT>
You must be running a JavaScript-enabled Web browser, such as the latest version

of Microsoft Internet Explorer or Netscape Navigator, to get the
most from this Web page.

</NOSCRIPT>

Testing Your Script
When you have an HTML file that contains embedded JavaScript code, as
shown previously in Listing 2-3, you’re ready to test your JavaScript applica-
tion! (This is the really fun part.)

To test a JavaScript application, all you need to do is load the JavaScript-
containing HTML file into a JavaScript-supporting Web browser. Figure 2-3
shows you how the code in Listing 2-3 looks when it’s loaded into the
Netscape 7.1 browser.

Figure 2-3:
The date-
and-time-

stamp appl-
ication as it
appears in
Netscape

7.1.

32 Part I: Building Killer Web Pages for Fun and Profit

06_576593 ch02.qxd 10/12/04 9:58 PM Page 32

Note: You can find a fancier version of the date-and-time-stamp application in
Chapter 3.

If you load the code in Listing 2-3 in your browser and see a Web page similar
to the one shown in Figure 2-3, congratulations! You’ve just successfully tested
your very first JavaScript script.

If you don’t see a Web page similar to the one in Figure 2-3, however, don’t
despair. Chances are good that the problem is due to one of the following
situations:

� The correct HTML file isn’t loaded. If you created your HTML file from
scratch, you might have inadvertently mistyped a statement or otherwise
introduced a bug. No problem; you can fix the bug later. (Chapter 17 is
packed with tips for debugging your scripts.) For now, try loading the
bug-free list0203.htm file from the companion CD.

� You’re not using a JavaScript-enabled browser. Make sure that you’re
using Microsoft Internet Explorer 6.0 (or higher) or Netscape Navigator 7.1
(or higher).

� JavaScript support is turned off in your browser. Netscape Navigator
and Microsoft Internet Explorer both provide ways to turn off JavaScript
support. When you turn off JavaScript support in your browser and
then load a JavaScript-containing Web page, your browser ignores all
the JavaScript code. It’s as if it didn’t exist!

To make sure that JavaScript support is turned on, do the following:

� If you’re using Netscape Navigator 7.x, choose Edit➪Preferences and
double-click the Advanced menu option to display the Scripts & Plugins
menu selection. Click the Scripts & Plugins men selection and make sure
that the Enable JavaScript for Navigator check box is selected.

� If you’re using Internet Explorer 6.x, choose Tools➪Internet Options➪
Security. Then select the Internet Web Content Zone, click the Custom
Level button, and scroll down until you find the Active Scripting category.
Finally, ensure that the Enable option (right under the Active Scripting
option) is selected.

33Chapter 2: Writing Your Very First Script

06_576593 ch02.qxd 10/12/04 9:58 PM Page 33

34 Part I: Building Killer Web Pages for Fun and Profit

06_576593 ch02.qxd 10/12/04 9:58 PM Page 34

Chapter 3

JavaScript Language Basics
In This Chapter
� Taking a look at JavaScript syntax

� Putting together JavaScript expressions and statements

� Practicing JavaScript language basics with the browser-detection script

� Understanding conditionals

� Exploring functions

Although JavaScript is an awfully powerful language, the way you use it
can be boiled down to just two major concepts: syntax and the JavaScript

object model (also called the document object model).

Syntax refers to the rules that you must follow to write JavaScript code. Not
many syntax rules exist, but you do need to understand them — just as you
need to understand and follow the rules of English syntax to write a sentence
that English-speaking folks can understand.

The document object model (DOM) refers to the Web page components, or
objects, that you can access and manipulate by using JavaScript. In the same
way that you need to have a vocabulary of English words before you can write
a story in English, you need to be somewhat familiar with the DOM before you
can write your own JavaScript scripts. (I devote Chapter 4 to the DOM.) This
chapter arms you with the syntax knowledge that you need to write your own
scripts!

JavaScript Syntax
The rules and regulations that govern how humans can communicate with
the JavaScript interpreter — that piece of the Web browser that understands
and executes JavaScript code — is called the JavaScript syntax. Although you
might feel a little overwhelmed (especially at first!) with all the technicalities

07_576593 ch03.qxd 10/12/04 9:57 PM Page 35

of JavaScript syntax, you can focus on just these few things, which are the
building blocks of your code:

� Comments: Comments are human-readable (as opposed to JavaScript-
interpreter-readable) descriptions you can add to your script to make
your script easier to understand and maintain.

� Conditionals: Conditionals are logical constructs that you can add to
your script to decide whether a particular condition is true or false at
runtime. The most basic conditional is if-else.

� Functions: Functions are named groups of statements that you define
once, and then reuse to your heart’s content.

� Loops: Loops are specialized forms of conditionals. You can add a loop
to your script that checks a particular condition multiple times, executing
whatever JavaScript code you like, until that condition becomes true or
false. Common examples of loops include the for, while, and do-while
loops.

� Operators: Operators are the JavaScript answer to conjunctions. Opera-
tors include the commas, periods, and other symbols that you use to
compare and assign values to variables.

� Variables: Variables are named placeholders that represent the bits of
data that you work with in your scripts.

I discuss each of these syntactical building blocks in the following sections.

Don’t keep your comments to yourself
The JavaScript interpreter ignores comments. Comments do have value,
though; they’re very useful for explaining things to human readers of your
script. (Include yourself in this category, by the way — after you finish a script
and put it aside for a few months, you might appreciate those comments!)

You can write JavaScript comments in two different ways. Either type of com-
ment can appear anywhere in your script and as many times as you like.

The first type of comment is a single-line comment. It begins with two forward
slashes, and it’s good for only one line. Here’s an example of a single-line
comment.

// Single-line comments don’t require an ending slash.

36 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 36

The second type of comment is a multiple-line comment. Because it spans
multiple lines, you have to tell it where to start (by using a forward slash
followed by an asterisk) and where to end (by using an asterisk and then a
forward slash). For example:

/* This comment can span multiple lines. Always remember
to close it, though; if you forget, you’ll get weird errors
when you try to display your script. */

Don’t overlap or nest multiline comments in your JavaScript code. If you do,
the JavaScript interpreter generates an error.

Remember that JavaScript scripts are the lines of code that come between
the <SCRIPT> and </SCRIPT> tags in an HTML file. You can’t use HTML
comment characters (<!-- to begin a comment line and --> to end it) to
create JavaScript comments, and you can’t use JavaScript comment charac-
ters (// and /* */) to create HTML comments.

Mint conditionals
JavaScript offers several conditional expressions that you can use to test the
value of a condition at runtime. The two most popular conditionals are the
if-else and switch statements.

if-else
The if-else conditional expression is one of the most powerful constructs
in JavaScript.

You use if-else to test a condition:

� If the condition is true, the JavaScript interpreter executes all the state-
ments that follow the if clause.

� If the condition is false, the JavaScript interpreter executes all the state-
ments that follow the else clause (if the else clause exists).

Here’s the generic description of how to use if-else:

if (condition) {
statements

}
[else {

statements
}]

37Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 37

The curly braces ({ and }) combine statements into one big block. For exam-
ple, if you follow an if condition with three JavaScript statements, all of which
are surrounded by curly braces, the JavaScript interpreter executes all three
of those statements when the if condition is true.

The square brackets ([and]) mean that the entire else clause is optional.
You don’t actually put the square brackets in your JavaScript code; you just
add the else clause if you want it or leave it off if you don’t.

Suppose that you want to figure out which browser a user is running so that
you can tailor your Web page accordingly. (As you see in Chapter 5, differ-
ences exist between the JavaScript support provided by Internet Explorer
and Netscape Navigator.) Listing 3-1 shows how you can use if-else (and
the built-in navigator object) to accomplish this goal.

Listing 3-1: JavaScript if-else Example

if (navigator.appName == “Microsoft Internet Explorer”) {
document.write(“You’re running Microsoft IE”)

}
else {

if (navigator.appName == “Netscape”) {
document.write(“You’re running Netscape”)

}

else {
document.write(“You’re not running Microsoft IE or Netscape”)

}
}

First, the JavaScript code in Listing 3-1 compares the value of the appName prop-
erty of the built-in navigator object to the text string Microsoft Internet
Explorer. (A text string is a group of characters that you manipulate as a
single block.)

� If this condition is true (the value of appName is indeed Microsoft
Internet Explorer), the JavaScript code performs the next statement,
which displays You’re running Microsoft IE on the Web page.

� If the condition is false (the value of appName isn’t Microsoft Internet
Explorer), the JavaScript code tests to see whether the value of appName
is equal to Netscape:

• If this second condition is true, the JavaScript interpreter displays
You’re running Netscape on the Web page.

• If the second condition is false, the JavaScript interpreter displays
You’re not running Microsoft IE or Netscape on the
Web page.

38 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 38

You might notice that Listing 3-1 contains two if-else statements, one
nested inside the other. Technically speaking, you can nest as many if-else
statements as you want. If you run across a situation in which you need more
than one or two nested if-else statements to do the job, however, you might
want to consider the switch statement (which I describe in the next section)
instead. The switch statement is much more efficient at testing a condition
multiple times.

Some JavaScript programmers end each statement with a semicolon, like this:

if (a == b) { // if a is equal to b
c = d; // assign the value of d to the c variable,
e = f; // assign the value of f to the e variable,

// and assign the string “American Beauty”
// to the variable called favoriteMovie

favoriteMovie = “American Beauty”;
}

Semicolons are optional in JavaScript, with one exception. If you place more
than one JavaScript statement on the same line, you must separate those
statements with semicolons. For example:

// Wrong!
c = d e = f favoriteMovie = “American Beauty”

// Correct (if a bit hard to read)
c = d; e = f; favoriteMovie = “American Beauty”;

switch
The switch statement provides an easy way to check an expression for a
bunch of different values without resorting to a string of if-else statements.

Here’s the syntax:

switch (expression) {
case label :

statement
break

case label :
statement
break

...
default : statement

}

Suppose you want to examine a value and find out whether it matches one of
a number of predefined values. Listing 3-2 shows how you can go about it by
using the switch statement.

39Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 39

Listing 3-2: Using the switch Statement to Match Values

switch (month) {
case 0 :

displayMonth = “January”
break

case 1 :
displayMonth = “February”
break

case 2 :
displayMonth = “March”
break case 3 :
displayMonth = “April”
break

case 4 :
displayMonth = “May”
break

case 5 :
displayMonth = “June”
break

case 6 :
displayMonth = “July”
break

case 7 :
displayMonth = “August”
break

case 8 :
displayMonth = “September”
break

case 9 :
displayMonth = “October”
break

case 10 :
displayMonth = “November”
break

case 11 :
displayMonth = “December”
break

default: displayMonth = “INVALID”
}

The code shown in Listing 3-2 tests the value of the month variable. If month
contains the number 0, the variable displayMonth is set to January. If month
contains the number 1, displayMonth is set to February — and so on, all
the way through the 12 months of the year.

40 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 40

The companion CD contains a date_and_time_formatted.htm file, a work-
ing copy of the script in Listing 3-2.

Note that if you forget to finish each case with a break statement (and it’s easy
to do), the interpreter falls through, meaning that it performs all the statements
that it finds until it either

� Finds a break

� Detects the end of the switch statement

For instance, in Listing 3-2, if you removed all the break statements, a month
value of 0 would cause displayMonth to be set not to January, as it should
be, but to INVALID instead.

In some cases, you may want to leave out the break statement on purpose to
force the JavaScript interpreter to fall through two or more cases. Doing so
allows you to group values easily. For example, the following code treats month
values of 0, 1, or 2 (which correspond to January, February, and March, respec-
tively) the same, by assigning the value Q1 to the displayQuarter variable.
Months 3, 4, and 5 (April, May, and June, respectively) are treated the same,
by assigning the value Q2 to the displayQuarter variable; and so on.

switch (monthId) {
case 0:
case 1:
case 2:

displayQuarter = “Q1”;
break;

case 3:
case 4:
case 5:

displayQuarter = “Q2”;
break;

case 6:
case 7:
case 8:

displayQuarter = “Q3”;
break;

case 9:
case 10:
case 11:

displayQuarter = “Q4”;
break;

}

41Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 41

Fully functioning
A function is a named group of JavaScript statements that you can declare
once, near the top of your script, and call over and over again. Adding a
reusable function to your script — instead of adding several slightly dif-
ferent versions of the same code — cuts down on the amount of typing that
you need to do (yay!), as well as the number of potential bugs in your script
(double yay!).

Organizing your script into functions, like organizing your closet, might seem
like loads of up-front work for nothing — after all, you don’t have to do it. Your
script and your closet can be functional even if they’re messy. The payoff comes
when you have to quickly find a problem (or the perfect brown leather belt)
hiding somewhere in all that confusion!

Declaring a function
Here’s the syntax for a function declaration:

function name([parameter] [, parameter] [..., parameter]) {
statements
return value

}

And here’s an example:

function calculateTotal(numberOrdered, itemPrice) {
var totalPrice = (numberOrdered * itemPrice) + salesTax
return totalPrice

}

This code snippet declares a calculateTotal function that accepts two
arguments: numberOrdered and itemPrice. The function uses these two
arguments (plus an additional variable called salesTax) to calculate the
totalPrice variable, which it then returns to the JavaScript code that
originally called it.

Your function can take as many arguments as you want it to (including none
at all), separated by commas. You generally refer to these argument values in
the body of the function (otherwise, why bother to use them at all?), so be sure
to name them something meaningful. In other words, I could have substituted
x and y for numberOrdered and itemPrice, and the code would work just as
well. It just wouldn’t be very easy to read or maintain!

Because the optional return statement is so important, I devote a whole sec-
tion to its use. (See the section “Returning a value from a function.”)

42 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 42

Calling a function
After you declare a function, which I describe in the preceding section, you
can call that function. You call a function by specifying the name of the func-
tion, followed by an open parenthesis, comma-delimited parameters, and a
closing parenthesis. For example:

alert(“Total purchases come to “ +
calculateTotal(10, 19.95))

Notice that you can embed a function call within another expression. In this
example, calculateTotal(10, 19.95) is actually part of the expression being
sent to the alert() method. (You find out all about methods in Chapter 4, but
for now, you can think of them as special kinds of functions.)

Returning a value from a function
You use the return statement to return a value from a function. To under-
stand why you might want to return a value from a function, imagine yourself
asking a friend to look up some information for you. If your friend went ahead
and did the research but neglected to pass it along to you, you’d be pretty
disappointed. Well, in this case, you’re just like a bit of JavaScript code call-
ing a function, and your friend is the function that you’re calling. Basically,
no matter how many useful things a function does, if it doesn’t return some
sort of result to the piece of code that needs it, it hasn’t finished its job.

The syntax for the return keyword is simple:

return expression

Here’s how it looks in action:

function calculateTotal(numberOrdered, itemPrice) {

var totalPrice = (numberOrdered * itemPrice) + salesTax
return totalPrice

} // Now the function is defined, so it can be called

...
document.write(“The total amount to remit to us is “ + calculateTotal(3, 4.99))

In this example code, the document.write() method calls the calculate
Total() function. The calculateTotal() function returns the value of the
totalPrice variable, which the document.write() method then displays
on the Web page.

43Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 43

Loop-the-loop
Loops are powerful constructs that you can use to reiterate a series of
JavaScript statements over and over again. JavaScript supports a number
of loops you can choose from, including the for loop and for-in loops,
the while loop, and the do-while loop. As you see in the following section,
each loop is tailored for specific kinds of situations.

The for loop
The for loop lets you step through, or traverse, a number of items quickly
and easily. As an example, suppose that you want to find out whether users
have a particular plug-in installed in their Web browsers. You can use the
for loop to step through each of the plug-ins one by one.

First, take a peek at the generic form of the for loop.

for ([initial expression]; [condition]; [update expression]) {
statements
}

The for loop introduces three terms that might be new to you: the initial
expression, the condition, and the update expression. Here’s how it all works:

1. The JavaScript interpreter looks at the initial expression.

The initial expression is almost always a number (usually 0 because
that’s the number JavaScript arrays begin with) assigned to a variable,
such as var i=0.

2. The JavaScript interpreter looks at the condition to see whether it’s true.

The condition compares the variable in Step 1 to some programmer-
defined constant; for example, i<10. If the value of i is indeed less
than 10, for instance, the i<10 statement is true.

3. If the value of the condition is true, the JavaScript interpreter performs
all the statements in the body of the for loop, and then it evaluates the
update expression.

The update expression typically increments the initial expression by 1;
for example, i++ or eachOne++. (Although ++ looks kind of funny, it’s not
a typo. It’s an operator that adds 1 to the variable that it’s next to. Think
of eachOne++ as a shorthand way of typing eachOne = eachOne + 1.)

4. Now that the variable has been bumped up, the JavaScript interpreter
goes back to Step 2 to see whether value of the condition is true, and if
it is, the whole thing starts over again. (That’s why it’s called a loop!)

Of course, at some point the condition’s value is no longer true. When
that happens, the JavaScript interpreter hops out of the for loop and
picks up again at the first statement after the loop.

44 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 44

It’s possible to create a for loop condition that always has a true value. The
easiest way to make this mistake is to specify an update condition that doesn’t
actually update the initial expression (for example, leaving off the ++ in the
example code preceding steps.) Creating a loop condition that is always true
and can never be changed or set to false is known as creating an endless or
infinite loop because the JavaScript interpreter evaluates and performs the
same statements in the body of the loop endlessly! (Okay, never is a long time.
In practice, the interpreter keeps evaluating it until you kill the Web browser
session. I’ve found that turning off the machine works nicely.)

Here’s an example of the for loop in action.

for (var i = 1; i <= 10; i++) {
document.writeln(i)

}

The file detecting_embedded_objects.htm, which you find on the companion
CD, contains an example of the for loop in action.

Here’s what’s going on in the preceding code snippet:

1. var i = 1 creates a variable called i and sets it to equal 1.

2. i <= 10 tests to see whether the i variable is less than or equal to 10.

3. The first time through, i is 1, and 1 is less than or equal to 10, so the
statement in the body of the for loop (document.writeln(i)) is per-
formed. (The value of i appears on the Web page.)

4. i++ adds one to i.

5. i <= 10 tests to see whether i is still less than or equal to 10.

6. The second time through, i is 2, and 2 is less than 10, so the statement
in the body of the for loop (document.writeln(i)) is performed.
(The value of i appears.)

7. Now the whole thing repeats from Step 3. The JavaScript interpreter
adds one to i, tests the variable to see whether it’s still less than or
equal to 10, and so on, for as many times as i satisfies the condition.

Nothing is magical about the i variable name. You could just as easily have
named your variable numberOfTimesToPrint, numberOfPigsOrdered, or
Fred. The i variable name in for loops just happens to be a convention,
nothing more.

As you might expect, the following appears on-screen when the for loop is
executed:

1 2 3 4 5 6 7 8 9 10

45Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 45

The for-in loop
If you like for, you’ll love the for-in loop. You use the for-in loop for loop-
ing, or iterating, through all properties of an object, like so:

for (var in object) {
statements

}

As an example, here’s a function that you can use to loop through all pro-
perties of a given object and display each property’s name and associated
value:

function displayProperties(inputObject, inputObjectName){

var result = “”

for (var eachProperty in inputObject) {

result += inputObjectName + “.” + eachProperty +
“ = “ + inputObject[eachProperty] + “
”

}

return result
}

This code might appear confusing at first, but it’s pretty straightforward
when you understand what the for-in loop does:

1. The code declares a function called displayProperties() that accepts
two arguments: inputObject and inputObjectName. Here’s one way to
call this function:

document.writeln(displayProperties(document, “document”))

2. The JavaScript interpreter hops up to the displayProperties() defini-
tion, only this time it substitutes the document object for the argument
inputObject and substitutes the “document” string for the argument
inputObjectName.

3. Inside the for-in loop, the JavaScript interpreter loops through all prop-
erties of the document object. Each time it comes to a new property, the
interpreter assigns the new property to the eachProperty variable. Then
the interpreter constructs a string and adds the string to the end of the
result variable.

After the for-in loop has looped through all properties of the document
object, the result variable holds a nice long string containing the names
and values of all properties in the document object. (For the skinny on
objects, flip to Chapter 4.)

46 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 46

Displaying (or dumping, as it’s called in programmerese) the property values
of an object can be useful when you’re trying to track down an error in your
script. A method like document.writeln() enables you to know exactly what
the interpreter thinks objects look like (which is sometimes quite different
from the way you think they look).

Take a look at the ch3_forin.htm file to see an example of the for-in loop.

The while loop
The while loop’s job is to do something — that is, to execute one or more
JavaScript statements — while some programmer-defined condition is true.

Obviously, then, you want to make sure that one of the statements in the body
of your while loop changes the while condition in some way so that at some
point it becomes false.

Here’s the generic version of the while loop.

while (condition) {
statements

}

In the following code, you see an actual JavaScript example of the while loop
in action.

var totalInventory=700
var numberPurchased=200
var numberSales=0

while (totalInventory > numberPurchased) {
totalInventory = totalInventory - numberPurchased
numberSales++

}
document.writeln(“Our stock supply will support “ +
numberSales + “ of these bulk sales”)

Step into the JavaScript interpreter’s virtual shoes for a minute and take a
look at how this all works! (Remember, you’re the JavaScript interpreter now,
so be serious.)

While the total inventory is more than the number purchased. . . . Well,
700 is greater than 200. Okay. Subtract the number purchased from the
total inventory and bump up the number of sales by 1. Number of sales is
now 1. That’s one loop down.

While the total inventory is more than the number purchased. . . . Hmm.
Total inventory is 500 now, and that’s still greater than 200, so I need to
subtract the number purchased from the total inventory and add another
1 to the number of sales. Number of sales is now 2. Two loops down.

47Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 47

While the total inventory is more than the number purchased. . . . Okay,
total inventory is 300 now, which is still greater than 200. Subtract number
purchased from total inventory, add 1 to the number of sales. Number of
sales is now 3. Three loops down.

While the total inventory is more than the number purchased. . . . Hey!
It’s not! Total inventory is 100, and the number purchased is 200. I’m
outta here.

Here’s what I’ll write to the screen: Our stock supply will support 3
of these bulk sales.

Nice to know how the other half thinks, isn’t it?

The do-while loop
The do-while loop is mighty close to the while loop that I describe in the
preceding section. The main difference between the two loops is that unlike
while, which might never be executed depending on whether the value of
the while condition is true when the loop begins to execute, the do-while
loop always executes at least once.

Take a look at the syntax for the do-while loop:

do {
statements

}
while (condition)

Here’s a real-life example:

var article = “a”

do {
var answer = prompt(“Would you like to purchase “

+ article
+ “ t-shirt? If so, enter the size.”, “L”)

article = “ANOTHER”
}
while (answer != null)

The first time this JavaScript code executes, the user sees a dialog box contain-
ing this message: Would you like to order a t-shirt? If so, enter
the size. The second time through the do-while loop (and for each time
thereafter that the user clicks the OK button on the dialog box) this message
appears: Would you like to order ANOTHER t-shirt? If so, enter
the size.

Load up the data_gathering.htm file to see a working example of the
do-while code shown here.

48 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 48

Never mind! Changing your mind with continue and break
The continue and break statements are both used inside loops to change
how the loops behave. (The break statement can be used also inside a switch
statement, as the example earlier in this chapter demonstrates.) The continue
and break statements do slightly different things and can be used in the same
loop (although they don’t have to be).

When the JavaScript interpreter encounters a break statement, the interpreter
breaks out of the loop that it’s currently processing and starts interpreting
again at the first line following the loop.

In contrast, the continue statement also tells the JavaScript interpreter to
stop what it’s doing, but on a somewhat smaller scale. The continue state-
ment tells the interpreter to stop the loop it’s currently processing and hop
back up to the beginning of the loop again, to continue as normal.

The continue and break statements are useful for exceptions to the rule.
For example, you might want to process all items the same way except for
two special cases. Just remember that break breaks out of a loop altogether,
and continue stops iteration execution, but then continues the loop.

Here is an example of the break statement used inside a while loop:

var totalInventory=700, numberPurchased=200, numberSales=0
while (totalInventory > numberPurchased) {

totalInventory=totalInventory - numberPurchased
numberSales++
if (numberSales > 2) {

break
}

}

When the number of sales is greater than 2 (in other words, when the number
of sales reaches 3), the break statement causes the JavaScript interpreter to
hop out of the while loop altogether.

And here’s an example of continue used inside a for loop:

for (var i = 1; i <= 20; i++) {
if (i == 13) { // superstitious; don’t print number 13

continue
}
document.writeln(i)

}

In this code snippet, when the i variable contains the value 13, the JavaScript
interpreter stops what it’s doing. It does not execute the writeln() method
but continues on with the next iteration of the for loop (that is, the interpreter
sets the i variable equal to 14 and keeps going).

49Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 49

You can test this scrap of code for yourself. It should produce the following
result:

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20

Operators are standing by
Operators are like conjunctions. Remember fifth-grade English? (Or if you
were a cartoon connoisseur, maybe you remember “Conjunction Junction.”
“And, but, and or, get you pretty far. . . .”) Ahem.

Operators, like conjunctions, enable you to join multiple phrases together
to form expressions. If you’re familiar with addition and subtraction, you’re
familiar with operators. Two categories of operators exist:

� Binary: Two items (or operands) must be sandwiched on either side of
the operator.

� Unary: Only one operand is required.

Table 3-1 gives you a rundown of the basic operators. The JavaScript inter-
preter always evaluates the expression to the right of the equal sign first, and
only then does it assign the evaluated value to the variable. (Note: The two
exceptions to this rule include the unary decrement operator (--), and the
unary increment operator (++). In these cases, if you place the operand after
the operator — as in the expression --1 — the JavaScript interpreter evaluates
the expression before evaluating anything else in the statement, including any
assignment. Check out Table 3-1 for more information about the decrement
and increment operators.)

Table 3-1 JavaScript Operators
In all these examples, x is initially set to 11.

Operator Meaning Example Result How Come?

% modulus x = x % 5 x = 1 11 / 5 = 2 with 1 remainder, so
modulus returns 1 in this case

++ increment x = x++ x = 11 ++ is applied after assignment
when you put it after x

x = ++x x = 12 ++ is applied before assign-
ment when you put it before x

-- decrement x = x-- x = 11 -- is applied after assignment
when you put it after the var

x = --x x = 10 -- is applied before assignment
when you put it before the var

50 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 50

In all these examples, x is initially set to 11.

Operator Meaning Example Result How Come?

– negation x = -x x = –11 Turns positive numbers nega-
tive and vice versa

+ addition x = x + x x = 22 11 + 11 is 22

Some of the operators are pretty normal (addition and negation, for example).
The increment and decrement operators are a little weird, though, because not
only are they a new thing (you never see ++ or -- outside a computer program
listing), but depending on whether you put them before or after the variable,
they behave differently, as I describe in Table 3-1.

Operator precedence
Just as in math, an order of evaluation is applied to a statement that contains
multiple operators. Unless you set phrases off with parentheses, the JavaScript
interpreter observes the precedence order shown in Table 3-2 (from the semi-
colon, which has the lowest order of precedence, to the parentheses, which
has the highest).

Table 3-2 JavaScript Operator Precedence
(From Lowest to Highest)

Operator Syntax

semicolon ; (separates JavaScript statements that appear on the same line)

comma ,

assignment =, +=, –=, *=, /=, %=

conditional ?:

logical “or” ||

logical “and” &&

equality ==, !=

relational <, <=, >, <=

mathematical +, –, *, /, %

unary !, –, ++, -- (negation, increment, and decrement operators)

call ()

51Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 51

So, how exactly does operator precedence work? Well, suppose the JavaScript
interpreter runs into the following statement in your script:

alert(“Grand total: “ + getTotal() + (3 * 4 / 10) + tax++)

The interpreter knows that its job is to evaluate the statement, so the first
thing that it does is scan everything between the alert() parentheses. When
it finds the next set of parentheses, it knows that’s where it needs to start. It
thinks to itself, “Okay, first I’ll get the return value from getTotal(). Then I’ll
evaluate (3 * 4 / 10). Within (3 * 4 / 10), I’ll do the division first, and
then the multiplication. Now I’ll add one to the tax variable. Okay, the last
thing I have to do is add the whole thing to come up with a string to display.”

Frankly, it’s okay if you can’t remember the precedence order. Just group
expressions in parentheses like you did back in high school algebra class.
Because parentheses outrank all the other operators, you can force JavaScript
to override its default precedence order and evaluate expressions the way
that makes the most sense to you!

Assignment operators
Assignment operators enable you to assign values to variables. Besides being
able to make a straight one-to-one assignment, though, you can also use some
assignment operators as a kind of shorthand to bump up a value based on
another value. Table 3-3 describes how this process works.

Table 3-3 JavaScript Assignment Operators
(From Lowest to Highest Precedence)

Assignment Alternate Approach Description

x = y (none) (assignment)

x += y x = x + y (addition)

x –= y x = x – y (subtraction)

x *= y x = x * y (multiplication)

x /= y x = x / y (division)

x %= y x = x % y (modulus)

The order of precedence in Table 3-3 is from lowest to highest, so the JavaScript
interpreter first evaluates any modulus operations first, then division, then
multiplication, and so on.

52 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 52

Comparison operators
When comparing two values or expressions, you can compare for equality, as
shown in Table 3-4.

Table 3-4 JavaScript Comparison Operators
Operator Example Meaning

== x == y x is equal to y

!= x != y x is not equal to y

< x < y x is less than y

> x > y x is greater than y

<= x <= y x is less than or equal to y

>= x >= y x is greater than or equal to y

?: x = (y < 0) ? -y : y if y is less than zero, assign -y to
x; otherwise, assign y to x

Logical operators
Logical operators take logical (also called Boolean) operands, and they also
return Boolean values. A Boolean value can be just one of two possibilities:
true or false. When you see two expressions separated by a logical opera-
tor, the JavaScript interpreter first resolves the expressions to see whether
each is true or false, and then resolves the entire statement:

� If an expression equates to a nonzero value, that expression is consid-
ered to be true.

� If an expression equates to zero, that expression is considered to be false.

Table 3-5 describes the logical operators available in JavaScript.

Table 3-5 JavaScript Logical Operators
Operator Meaning Example

&& and if (x == y && a != b)

|| or if (x < y || a < b)

! not if (!x)

53Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 53

The new and this operators
Two operators are designed especially to work with objects: new and this.

The new operator allows you to create your very own objects in JavaScript.
(For a list of built-in objects, check out Chapter 4.)

When you use the new operator with a function that defines a type of object,
you can create an instance (or a dozen instances) of that type of object.

The best way to explain this is by an example. Suppose that you want to
write a script that lets users input information about multiple people —
family members, say, or employees. You can create a generic function called
person and then use the new and this operators to allow users to create
multiple instances of the person function and customize each instance.
Here’s an example of a simple, generic person function:

function person(inputName, inputAge, inputSex, inputOccupation) {
this.name = inputName
this.age = inputAge
this.sex = inputSex
this.occupation = inputOccupation

}

The person() function that you see here takes four parameters, one each for
inputName, inputAge, inputSex, and inputOccupation. Then the person()
function immediately assigns these input values to its own instance attributes.
(The this.name variable is set to the inputName variable, the this.age vari-
able to the inputAge variable, and so on.)

54 Part I: Building Killer Web Pages for Fun and Profit

Watch out!
A common mistake, even (especially?) among seasoned programmers, is to use a single equal sign
(=, an assignment operator) in place of a double equal sign (==, a comparison operator) or vice
versa. The statement x = 6 assigns the value of 6 to x. The x == 6 statement, on the other hand,
compares 6 to x but doesn’t assign any value at all! Mistakenly typing ==when you mean = (or vice
versa) is a very common programming bug.

if (x = 6) { // At first glance, this looks like it compares 6 to x, but it doesn’t. It
assigns 6 to x!

document.writeln(“x is 6, all right.”)
}

07_576593 ch03.qxd 10/12/04 9:57 PM Page 54

In this example, the this keyword is shorthand for the person function. The
JavaScript interpreter knows that you’re inside a function called person(),
so it automatically substitutes the function name for the this keyword so
that you don’t have to spell out the whole function name.

Now, whenever you want to create a specific, concrete instance of the person
function, here’s what you do:

var jennifer = new person(“Jennifer McLaughlan”, 33, “F”, “lion tamer”)

This code snippet uses the new operator in conjunction with the predefined,
generic person() function to create a specific instance of person whose name
is Jennifer McLaughlan, age is 33, sex is F, and occupation is lion tamer.

After the preceding statement is performed, you can use the jennifer object
as you would any built-in object in JavaScript.

If you think that objects with properties but no methods are kind of boring,
you’re right. Here’s how you add your own methods to the objects that you
create:

function ftalk(kindOfPet){
if (kindOfPet == “dog”) {

document.writeln(“bow-wow!”)
}
else {

if (kindOfPet == “cat”) {
document.writeln(“meow-meow-meow”)

}
}

}
function pet(inputName, inputKind, inputColor) {

this.name = inputName
this.kind = inputKind
this.color = inputColor
this.talk = ftalk(inputKind)

}

Bear with me here; it all makes sense when you see it in action!

The following code first creates an instance of pet and names that instance
Boots, and then it calls the talk() method associated with Boots.

Boots = new pet(“Boots”, “cat”, “orange striped”);
Boots.talk;

55Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 55

Here’s how the JavaScript interpreter executes these two JavaScript
statements:

1. The first statement passes three variables to the pet() constructor
function and assigns the resulting object to the Boots variable.

When this first statement finishes processing, the Boots variable con-
tains an object associated with the following three properties:

• Boots.name = “Boots”

• Boots.kind = “cat”

• Boots.color = “orange striped”

2. The second statement (Boots.talk) passes the value of Boots.kind,
which is “cat”, to the ftalk() function.

3. The ftalk() function contains an if statement that says, “If the input
variable is cat, print meow-meow-meow to the screen.”

So, because the string “cat” was passed to the ftalk() function, you
see meow-meow-meow on the screen.

If creating your own objects and methods isn’t clear to you right now, it will
be after you’ve had a chance to load and play with the ch2_new_this.htm
file, located on the companion CD.

Working with variables
A variable is a named placeholder for a value. You use the var keyword to
construct an expression that first declares a variable and then (optionally)
initializes its value. To declare a variable, you type something like this:

var myCat;

This tells the JavaScript interpreter “Yo, here comes a variable, and name it
myCat, will you?”

Initializing a variable means setting a variable equal to some value, which you
typically do at the same time you declare the variable. Here’s how you might
initialize the variable myCat:

var myCat = “Fluffy”

Technically, you can declare a variable in JavaScript without using the var
keyword, like so: myCat = “Fluffy”. However, using the var keyword to
declare all your variables is a good idea because it helps the JavaScript inter-
preter properly scope variables with the same name.

56 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 56

As of this writing, the next version of JavaScript, version 2.0 — due to be
finalized later this year and (with luck) supported by upcoming browser
versions — provides for the strongly typed variables with which C and C++
programmers are familiar. What this means to you is that when browsers sup-
port JavaScript 2.0, you may use variable descriptors such as integer and
number to declare upfront precisely what kind of value you want each vari-
able to contain. Until then, however, no variable descriptors are necessary.

After you declare a variable — whether you use the var keyword or not — you
can reset its value later in the script by using the assignment operator (=). The
name of the variable can be any legal identifier (you want to use letters and
numbers, not special characters), and the value can be any legal expression.
(A legal expression is any properly punctuated expression that you see repre-
sented in this chapter: an if-else expression, an assignment expression, and
so on.)

A variable is valid only when it’s in scope. When a variable is in scope, it’s been
declared between the same curly brace boundaries as the statement that’s
trying to access it. For example, if you define a variable named firstName
inside a function called displayReport(), you can refer to the variable only
inside the displayReport() function’s curly braces. If you try to access
firstName inside another function, you get an error. If you want to reuse a
variable among functions (shudder — that way lies madness), you can declare
that variable near the top of your script before any functions are declared.
That way, the variable’s scope is the entire script, and all the functions get
to see it. Take a look at the following code example:

...
function displayReport() {

var firstName = document.myForm.givenName.value
...
alert(“Click OK to see the report for “ + firstName)
// Using firstName here is fine; it was declared
// inside the same set of curly braces.
...

}
function displayGraph() {

alert(“Here’s the graph for “ + firstName) // Error!
// firstName wasn’t defined inside this
// function’s curly braces!
...

}

As you can see from the comments in the this code fragment, it’s perfectly
okay to use the firstName variable inside the displayReport() func-
tion because the firstName variable is in scope anywhere inside the
displayReport() function. It’s not okay, however, to use firstName inside
displayGraph(). As far as displayGraph() is concerned, no such animal
as firstName has been declared inside its scope!

57Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 57

Putting It All Together: Building
JavaScript Expressions and Statements

In “JavaScript Syntax,” earlier in this chapter, you get familiar with the nuts
and bolts of the JavaScript language. In this section, I demonstrate how to
string these components together to create JavaScript expressions and
statements.

JavaScript scripts are made up of JavaScript statements, which in turn are made
up of JavaScript expressions. A JavaScript expression is any combination of
variables, operators, literals (nonvarying values), and keywords that can be
evaluated by the JavaScript interpreter.

For example, the following are all valid JavaScript expressions:

new Date()

numberSold * salesPrice

“Thanks for visiting my site, “ + document.myForm.yourName.value

These three examples are each slightly different, but they all have one thing in
common: They can all be evaluated to something. The first example evaluates
to the current date; the second, to a number; the third, to a string. (A string is
a group of characters that you manipulate as a single block.)

58 Part I: Building Killer Web Pages for Fun and Profit

Literally speaking
Sometimes you want to use a number, a string, or some other value that you know for a fact will
never change. For example, suppose that you want to write a script that uses pi in some calculation.
Instead of creating a pi variable and assigning it the value of 1.31415, you can use the number
1.31415 directly in your calculations. Values that aren’t stored in variables are called literals.

Here are a few examples of using literals in JavaScript:

alert(“Sorry, you entered your e-mail address incorrectly.”)//string literal
x = 1.31415 * someVariable // floating-point literal
if (theAnswer == true) // boolean literal
document.write(“The total number of users is “ + 1234)//integer literal

07_576593 ch03.qxd 10/12/04 9:57 PM Page 58

To create a JavaScript statement, all you need to do is put together one or more
JavaScript expressions (shown in bold in the following code). For example:

var todays_date = new Date();

calculateTotal(numberSold * salesPrice);

alert(“Thanks for visiting my site, “ + document.myForm.yourName.value);

In the first statement shown here, the current date is assigned to a variable
called todays_date. In the second statement, the number produced by
multiplying the numberSold and salesPrice variables is passed to the
calculateTotal() function. And in the third example statement, the
“Thanks for visiting my site “ string appears in a dialog box.

The difference between a JavaScript expression and a JavaScript statement
might seem esoteric at first, but understanding this difference pays big divi-
dends in the long run. It might help if you think of a JavaScript expression
as a sentence fragment and a JavaScript statement as a complete sentence.
Although an interoffice memo composed entirely of sentence fragments
might not cause you any problems (unless your vocation happens to be
teaching English), a JavaScript script composed of expressions does cause
problems — in the form of runtime errors.

To prevent these errors (and to save the time you’d spend debugging them),
you need to construct complete JavaScript statements. In the following sec-
tions, I use three useful scripts to demonstrate how to do just that.

The browser-detection script
Back in the old days, before the Web came along, developers knew exactly
what hardware and software their audience would use to run their applications
before they wrote a lick of code. (In other words, these developers knew their
applications’ target platforms in advance.) Using this information, developers
could implement their applications with confidence, secure in the knowledge
that their application code would behave in the field just as it did in their
testing labs.

Not so on the Web. Users can choose to view Web pages with whatever target
platform they choose. They might, for instance, use a Mac, a PC, a UNIX box,
or a hand-held device running some version of Netscape Navigator, Internet
Explorer, or any of the other dozens of Web browsers that are available on
the market. Unfortunately, your users’ choices affect their ability to run your
JavaScript-enabled Web pages, as you see in this chapter.

59Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 59

The two latest versions of the most popular Web browsers — Internet Explorer
and Netscape Navigator — do support JavaScript. But despite their creators’
claims of support for something called the ECMA standard (created by the
European Computer Manufacturers Association) both browsers support
slightly different versions of the following elements:

� The JavaScript language

� The document object model that the JavaScript language was designed
to access

60 Part I: Building Killer Web Pages for Fun and Profit

Can’t we all just get along? The ECMA standard
Netscape (with some help from Sun Micro-
systems) invented JavaScript clear back in the
early 1990s, so it’s no surprise that JavaScript
support first appeared in Netscape’s browser
(Netscape Navigator 2.0, if you’re a history buff).

Soon after, Microsoft released version 3.0 of
Internet Explorer, which featured support for their
own JavaScript-compatible scripting language —
called JScript. Minor differences existed between
these two browsers’ scripting implementations,
however, and as each successive version
appeared, those differences continued to grow.

In 1998, Netscape decided to hand over the task
of creating a formal JavaScript standard to the
ECMA, an international standards body com-
prising companies from all over the world. (Both
Netscape and Microsoft are ECMA members.)
In theory, this was a great thing. It allowed a rel-
atively impartial group of folks to decide the best,
most efficient way to implement a cross-browser
Web scripting language. Unfortunately — in
software as in life — the reality of real-world
implementation hasn’t quite yet achieved the
perfection promised by the standard.

The ECMAScript language specification, called
ECMA-262, describes how a scripting language
should be implemented in an ECMA-compliant
browser, not how it is implemented. So even
though ECMAScript has the potential to unify
JavaScript implementations and guarantee devel-
opers a consistent, cross-browser JavaScript
execution platform, the differences in JavaScript
support still exist between the latest Navigator
and Internet Explorer browsers. One reason for
these differences is the inevitable lag time
between creating a standard and then scurry-
ing to implement and release it. Another reason
is the inherent tendency of software companies
to embellish standards with additional, propri-
etary features. (The same tendency that led to
the need for a standard in the first place!)

The bottom line is this: Although ECMAScript
offers the potential for increased consistency
across browsers, the final word on JavaScript
implementation comes from the browsers them-
selves — not the specification.

07_576593 ch03.qxd 10/12/04 9:57 PM Page 60

Unfortunately, no single up-to-date source exists that describes which
JavaScript features are supported in which version of which browser. Your
best bet is to visit Netscape’s and Microsoft’s JavaScript documentation
pages for the latest in feature support:

� http://channels.netscape.com/ns/browsers/default.jsp

� www.microsoft.com/windows/ie/default.htm

What this means is that if you want to use a JavaScript feature that Internet
Explorer supports (but that Netscape Navigator doesn’t), you face three
choices:

� Assume that everyone who visits your Web site is running Internet
Explorer. This assumption might be correct if you’re creating an
intranet application (an application targeted for use on a company’s
private network); in this case, you might know that all the company’s
employees have Internet Explorer installed. However, if you want to
make your pages available on the World Wide Web, this assumption
isn’t a good one. When you make it, you risk alienating the visitors
who surf to your page with Netscape or some other non-Microsoft
browser.

� Don’t use the feature. You can choose to use only those JavaScript fea-
tures that are truly cross-platform; that is, JavaScript features that work
the same way in both Internet Explorer and Netscape Navigator. (In most
cases, this is the easiest approach, assuming that you can keep up with
the rapidly changing JavaScript support provided in each new browser
version.) In some cases, however, avoiding a feature might not be an
option (for example, if you’re creating a page for your boss or a client).

� Create a script that detects which browser your visitors are running
and tailor your pages on-the-fly accordingly. This option gives you the
best of both worlds: You get to use the specialized browser features that
you want, and yet you don’t alienate users running different browsers.
(You do, however, have to create multiple pages to support multiple
browsers, which increases your workload.)

In Listing 3-3, I demonstrate the final option in the preceding list: a script that
recognizes whether a user is running Internet Explorer, Netscape Navigator,
or some other browser. The script then displays an appropriate Web page.
Figure 3-1 shows you how the script appears when loaded into Netscape 7.1,
and Figure 3-2 shows you how it appears when it’s loaded into Internet
Explorer 6.0.

61Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 61

Figure 3-2:
The

browser-
detection

script as it
appears in

Internet
Explorer 6.0.

Figure 3-1:
The

browser-
detection

script as it
appears in
Netscape
Navigator

7.1.

62 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 62

You can experiment with the code shown in Listing 3-3: Just load the file
list0302.htm, which you find on the companion CD.

Listing 3-3: The Browser-Detection Script

<HTML>
<HEAD><TITLE>Simple browser detection script</TITLE>
<SCRIPT LANGUAGE=”JavaScript” “TYPE=”text/javascript”>
<!-- Hide from browsers that do not support JavaScript

// If the user is running IE, automatically load the
// HTML file ie_version.htm
// Beginning of an if/else statement:
// “Microsoft Internet Explorer” is a string literal
// == is a comparison operator
if (navigator.appName == “Microsoft Internet Explorer”) {

// “ie_version.htm” is a string literal
window.location = “ie_version.htm”
// = is a comparison operator

}

// Otherwise, if the user is running Netscape, load the
// HTML file netscape_version.htm
else {

Nested if/else statement:
if (navigator.appName == “Netscape”) {
// == is a comparison operator

window.location = “netscape_version.htm”
// = is a comparison operator

}

// If the user is running some other browser,
// display a message and continue loading this generic
// Web page.

else {
document.write(“You’re not running Microsoft IE or Netscape.”)

}
}

// --> Finish hiding
</SCRIPT>
</HEAD>
<BODY>
This is the generic version of my Web page.
</BODY>
</HTML>

The code that you see in Listing 3-3 combines comments, conditionals, and
operators to create two complete JavaScript statements.

63Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 63

As you read through the code, notice the following:

� The appName property of the built-in navigator object is preloaded
with one of two text strings: “Microsoft Internet Explorer” (if the loading
browser is Internet Explorer) or “Netscape” (if the loading browser is
Netscape Navigator).

� Setting the window property of the location object equal to a new Web
page causes that new Web page to load automatically.

Determining which brand of browser a user runs is relatively easy, as you can
see by the code in Listing 3-3. However, determining the browser version is
much trickier — and beyond the scope of this book. (Although the built-in
navigator object does indeed contain useful properties such as appCodeName,
appName, appVersion, userAgent, language, and platform — all of which
you can display on-screen by using the alert() method — the contents of
these properties are neither intuitive nor consistent between browsers.) For
more information on browser-version detection, visit http://developer.
netscape.com/docs/examples/javascript/browser_type_oo.html.

The date-formatting script
In Chapter 2, I introduce a simple date-and-time-stamp script that captures
the current date and time and displays it on a Web page, like so:

Sat May 22 19:46:47 CDT 2004

In this section, I demonstrate how to combine comments, conditionals, opera-
tors, and variables into JavaScript statements that not only capture the current
date and time but format the date and time so that they appear in a more
human-friendly format, like the following:

Good evening! It’s May 22, 2004 - 8:24 p.m.

To see how, take a look at the code in Listing 3-4.

You can find the code shown in Listing 3-4 on the companion CD by loading
up the list0303.htm file.

Listing 3-4: The Date-Formatting Script

<HTML>
<HEAD>
<TITLE>Displaying the current date and time (formatted example)</TITLE>

64 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 64

<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>

<!-- Hide from browsers that do not support JavaScript

// Comments begin with //
// Get the current date
// The following statements declare variables
var today = new Date();

// Get the current month
var month = today.getMonth();

// Declare a variable called displayMonth
var displayMonth=””;

// The following is a switch statement
// Attach a display name to each of 12 possible month numbers
switch (month) {

case 0 :
displayMonth = “January”
break

case 1 :
displayMonth = “February”
break

case 2 :
displayMonth = “March”
break

case 3 :
displayMonth = “April”
break

case 4 :
displayMonth = “May”
break

case 5 :
displayMonth = “June”
break

case 6 :
displayMonth = “July”
break

case 7 :
displayMonth = “August”
break

case 8 :
displayMonth = “September”
break

case 9 :
displayMonth = “October”
break

(continued)

65Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 65

Listing 3-4 (continued)

case 10 :
displayMonth = “November”
break

case 11 :
displayMonth = “December”
break

default: displayMonth = “INVALID”
}

// Set some more variables to make the JavaScript code
// easier to read

var hours = today.getHours();
var minutes = today.getMinutes();
var greeting;
var ampm;

// We consider anything up until 11 a.m. “morning”

if (hours <= 11) {
greeting = “Good morning!”;
ampm=”a.m.”;

// JavaScript reports midnight as 0, which is just
// plain crazy; so we want to change 0 to 12.

if (hours == 0) {
hours = 12;

}
}

// We consider anything after 11:00 a.m. and before
// 6 p.m. (in military time, 18) to be “afternoon”

else if (hours > 11 && hours < 18) {
greeting = “Good afternoon!”;
ampm = “p.m.”;

// We don’t want to see military time, so subtract 12
if (hours > 12) {

hours -= 12;
}

}

66 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 66

// We consider anything after five p.m. (17 military) but
// before nine p.m. (21 in military time) “evening”
else if (hours > 17 && hours < 21) {

greeting = “Good evening!”;
ampm = “p.m.”;
hours -= 12;

}

// We consider nine o’clock until midnight “night”
else if (hours > 20) {

greeting = “Good night!”;
ampm = “p.m.”;
hours -= 12;

}

// We want the minutes to display with “0” in front
// of them if they’re single-digit. For example,
// rather than 1:4 p.m., we want to see 1:04 p.m.

if (minutes < 10) {
minutes = “0” + minutes;

}

// + is a concatenation operator
var displayGreeting = displayMonth + “ “

+ today.getDate() + “, “
+ today.getYear()
+ “ - “ + hours + “:” + minutes + “ “ + ampm

document.writeln(displayGreeting)

// --> Finish hiding
</SCRIPT>
</HEAD>
</HTML>

The code that you see in Listing 3-4 is a bit long, but understandable when
you break it down bit by bit.

First off, the code captures the current date and time in the today variable.
Then the code calls the getMonth() method associated with the Date object
to capture the current month (a number between 0 and 11).

The switch statement examines the contents of the month variable and
assigns an appropriate text string (“January”, “February”, and so on, up
through “December”) to the displayMonth variable.

67Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 67

Several if-then statements examine the hours variable to determine the
appropriate time of day (“a.m.” or “p.m.”) and the appropriate greeting
(“Good morning!”, “Good afternoon!”, “Good evening!”, or “Good
night!”).

The second-to-last statement composes a message called displayGreeting
and finally, the very last statement writes displayGreeting to the Web
page.

The data-gathering script
Gathering information from the folks who visit your Web site is one of the
more useful things that you can do with JavaScript. In Listing 3-5, I show you
how to combine comments, conditionals, functions, loops, operators, and
variables into JavaScript statements that capture user input. The statements
then make calculations based on that input.

Figure 3-3, Figure 3-4, and Figure 3-5 show you the data-gathering script in
action.

Figure 3-4:
The script

allows users
to specify as
many differ-

ent t-shirt
sizes as

they want.

Figure 3-3:
The data-
gathering

script allows
users to
specify

t-shirt size.

68 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 68

You can find the code shown in Listing 3-5 on the companion CD. Just load up
the list0304.htm file.

Listing 3-5: The Data-Gathering Script

<HTML>
<HEAD>
<TITLE>Data gathering example using a custom function</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!-- Hide from browsers that do not support JavaScript

// The following statements declare variables.
// = is an assignment operator.
var article = “a”;
var numShirts = 0;
var smallShirts = 0;
var medShirts = 0;
var largeShirts = 0;

(continued)

Figure 3-5:
When

users finish
ordering,

JavaScript
calculates

the total
number

ordered.

69Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 69

Listing 3-5 (continued)

// The following is a function declaration.
function calc_shirts(sizeShirt) {

// Add 1 to the number of sized shirts ordered, as well
// as to the number of total shirts ordered

if (sizeShirt == “S” || sizeShirt == “s”) {
// ++ is a unary increment operator.
smallShirts++;
numShirts++;

}
// == is a comparison operator.
else if (sizeShirt == “M” || sizeShirt == “m”) {

medShirts++;
numShirts++;

}

else if (sizeShirt == “L” || sizeShirt == “l”) {
largeShirts++;
numShirts++;

}
}

// The following is a do-while loop.
do {

// The following line of code pops up a JavaScript
// prompt.
// The ‘answer’ variable is set to null if the user
// clicks ‘Cancel’

var answer = prompt(“Would you like to purchase “
+ article
+ “ t-shirt? If so, enter the size (S,M,L) and click OK. When you
finish, click Cancel”, “M”)

// Change ‘a’ to ‘ANOTHER’ to make the display message
// grammatically correct the second (and subsequent)
// time around.
article = “ANOTHER”

if (answer != null) {
calc_shirts(answer);

}

}
while (answer != null)

70 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 70

document.writeln(“You ordered “ + numShirts + “ shirts: “
+ smallShirts + “ small “
+ medShirts + “ medium “
+ largeShirts + “ large”);

// --> Finish hiding
</SCRIPT>
</HEAD>
</HTML>

The heart of the script you see in Listing 3-5 is the do-while loop — the code
you see in bold. The first line inside the do-while loop calls the prompt()
method, which displays the user prompt shown in Figure 3-3. If the user clicks
Cancel, the answer variable receives a value of null, and the JavaScript inter-
preter exits the do-while loop.

If the user enters a t-shirt size and clicks OK, however, the answer variable
receives a non-null value and the do-while loop calls the calc_shirts()
function.

The calc_shirts() function uses conditional if-then statements to calcu-
late the number of sized shirts (as well as the number of total shirts) ordered.
Then calc_shirts() returns control to the do-while loop, and the process
begins all over again, with a call to the prompt() method. Each time the user
clicks OK, the do-while loop calls the calc_shirts() function.

When at last the user clicks Cancel, the answer variable receives a value of
null, and code execution drops out of the do-while loop and passes to the
final JavaScript statement, which constructs a message and writes to the Web
page by using the writeln() method associated with the document object.

71Chapter 3: JavaScript Language Basics

07_576593 ch03.qxd 10/12/04 9:57 PM Page 71

72 Part I: Building Killer Web Pages for Fun and Profit

07_576593 ch03.qxd 10/12/04 9:57 PM Page 72

Chapter 4

JavaScript-Accessible Data:
Getting Acquainted with the

Document Object Model
In This Chapter
� Understanding how object models work

� Exploring properties and methods

� Adding text to a Web page dynamically

� Positioning text on a Web page

� Changing Web page appearance on-the-fly

� Getting familiar with Netscape Navigator’s object model

� Getting familiar with Internet Explorer’s object model

To create powerful scripts, you need to be familiar with two things:
JavaScript syntax (which I discuss in Chapter 3) and the document

object model.

The document object model, or DOM, refers to the Web page components, or
objects, that you can access and manipulate by using JavaScript. Examples of
objects that you can work with in JavaScript include the window that a Web
page appears in, the Web page itself, embedded images and text, and much,
much more.

In this chapter, I demonstrate how to find out which objects you can access
in JavaScript, including those objects’ properties and methods. First, I discuss
the nuts and bolts of the DOM; then, I present three scripts that use document
objects to change the appearance of a Web page on-the-fly.

08_576593 ch04.qxd 10/12/04 9:57 PM Page 73

Object Models Always Pose Nude
Because JavaScript is object-based, when you program in JavaScript you get
to take advantage of a predefined object model. Object-based programming
languages package, or encapsulate, data and functionality into useful units
called objects. (Collectively, the objects that you work with in an object-based
programming language are called the object model.) Encapsulation is a good
thing because it hides nitty-gritty programming details — allowing you, the
programmer, to write code with the least amount of hassle possible.

Human beings tend to think in terms of object models naturally, so object-
based languages like JavaScript are typically much easier to handle than their
procedural counterparts. (Examples of procedural languages include BASIC, C,
and COBOL.)

Here’s a real-world example of an object model. If I tell you my friend Ralph
works in an office, you might reasonably assume that Ralph has a boss, a few
co-workers, sits at a desk, and does some kind of work. How do you know all
this without me telling you? Because you’ve seen or heard of other offices;
perhaps you’ve even worked in one yourself. In other words, you’re familiar
with the office model — so even though you don’t know anything about
Ralph’s particular office just yet, you can correctly guess a great deal. In fact,
all I have to do is fill in a few specific details (the names of Ralph’s co-workers,
what kind of work he does, and so on) for you to have a complete picture of
how Ralph spends his day.

The beauty of an object model is that it helps people communicate clearly
and efficiently.

JavaScript’s object model (called the document object model, or DOM) is no
exception. Specifically, it helps you clearly and efficiently communicate what
you want your script to do to the JavaScript interpreter. (The JavaScript
interpreter is the part of a Web browser that executes a script. You can see
the JavaScript interpreter in action in Chapter 2.)

The DOM performs this oh-so-useful task by describing

� All the objects that go into making up a Web page, such as forms, links,
images, buttons, and text.

� The descriptive properties associated with each of the DOM objects.
For example, an image object can be associated with specific properties
describing its height and width.

� The behaviors, or methods, associated with each of the DOM objects.
For example, the window object supports a method called alert() that
allows you to display an alert message on a Web page.

74 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 74

� The special built-in methods, called event handlers, associated with
automatic and user-initiated events. For instance, loading a Web page
into a browser is considered an event; so is clicking a button. The event
handlers that you use to trigger some JavaScript code when these
events occur are called onLoad and onClick, respectively.

In the following sections, I give you an in-depth look at each of these four cat-
egories and how you can use them to create your own powerful JavaScript
scripts!

Conceptually, the DOM is the same whether you’re viewing a Web page in
Internet Explorer, Netscape Navigator, or another browser entirely. In prac-
tice, however, the versions of the DOM implemented for Internet Explorer
and Netscape Navigator differ — and you must pay attention to these differ-
ences or risk creating scripts that some users can’t view. See “Browser Object
Models” later in this chapter for details.

Object-ivity
In nerd-talk, an object is a software representation of a real-world thing.
Theoretically, any person, place, thing, or can be represented as an object.

In practice, however, most of the objects that you work with in JavaScript fall
into the first three of the following four categories:

� Objects defined by using HTML tags. This category includes docu-
ments, links, applets, text fields, windows, and so on. For the purposes
of this book, JavaScript scripts are always attached to HTML documents.
By using JavaScript, you can access any object defined in the HTML
document to which a script is attached. (To see an example of a script
accessing HTML objects, check out Listing 4-3 later in this chapter.)

� Objects defined automatically by Web browsers. One example is the
navigator object, which, despite its name, holds configuration and ver-
sion information about whichever browser is currently in use, even if
that browser happens to be Internet Explorer. (To see an example of a
script accessing a browser object, check out Chapter 3.)

� Objects that are built into JavaScript, such as Date and Number.
(To see an example of a script accessing built-in JavaScript objects,
take a look at Chapter 3.)

� Objects you yourself have created by using the JavaScript new operator.
(To see an example of how you can create and access your own objects
using JavaScript, check out Chapter 3.)

Just like their real-world counterparts, software objects are typically associ-
ated with specific characteristics and behaviors. Because this is a computer

75Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 75

topic, though, programmers can’t call these bits of information characteristics
and behaviors. No, that would take all the fun out of it. Programmers call
characteristics properties (or attributes), and they call behaviors methods —
except for certain event-related behaviors whose names begin with on, such
as onLoad, onResize, and onSubmit. Programmers call these special on
methods event handlers.

Properties and attributes are really the same thing, but some JavaScript pro-
grammers tend to differentiate between the following:

� Properties (which belong to JavaScript objects)

� Attributes (which are associated with HTML objects)

Because most of the JavaScript code that you write involves objects, proper-
ties, methods, and event handlers, understanding what these object-oriented
terms mean is essential for folks planning to write their own scripts.

You can think of it this way:

� Objects are always nouns.

� Properties are adjectives.

� Methods are verbs.

� Event handlers are verbs with on tacked to their fronts.

Got it? Take a look at Table 4-1 to see examples of some common object
definitions.

Table 4-1 Sample Object Definitions
Kind of Object Property Method Event Handler
Object (Noun) (Adjective) (Verb) (“on” + Verb)

HTML button Such as click() onClick
name, type,
and value

HTML link Such as (none) Such as
href, port, onClick,
protocol, onMouseOver,
and so on onKeyPress,

and so on

HTML form Such as Such as reset() Such as
action, and submit() onReset and
elements, onSubmit
length,
and so on

76 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 76

Kind of Object Property Method Event Handler
Object (Noun) (Adjective) (Verb) (“on” + Verb)

Browser Navigator Such as javaEnabled() (none)
appVersion,
appName,
language,
and platform

JavaScript Number Such as toString() (none)
MAX_VALUE
and MIN_VALUE

Programmer- customer Such as name, Such as change- (none)
defined address, Address(),

and credit- changeName(),
History and placeOrder()

For sale by owner: Object properties
Properties are attributes that describe an object. Most of the objects available
in JavaScript have their own set of properties. (Appendix C contains a listing
of JavaScript properties arranged alphabetically.)

An image object, for example, is usually associated with the properties
shown in Table 4-2.

Table 4-2 Properties Associated with the Image Object
Image Property Description

border The thickness of the border to display around the image, in pixels

complete Whether or not the image loaded successfully (true or false)

height The height of the image, in pixels

hspace The number of pixels to pad the sides of the image with

lowsrc The filename of a small image to load first

name The internal name of the image (the one you reference by using
JavaScript code)

src The filename of the image to embed in an HTML document

vspace The number of pixels to pad the top and bottom of the image with

width The width of the image, in pixels

77Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 77

At runtime, all object properties have a corresponding value, whether it’s
explicitly defined or filled in by the Web browser. For example, consider an
image object created with the HTML code in Listing 4-1.

Listing 4-1: Creating an Image Object with the HTML Tag

<BODY>
...

...
</BODY>

Assuming that you have a file on your computer named myPicture.jpg, at
runtime, when you load the HTML snippet into your Web browser and query
the Image properties, the corresponding values appear as shown in Table 4-3.

You can query the properties by calling the alert() method; for example,
alert(document.companyLogo.src).

Table 4-3 Accessing Image Properties
Property Name Value

document.companyLogo.src file:///C:/myPicture.jpg

document.companyLogo.name companyLogo

document.companyLogo.height 200

document.companyLogo.width 500

document.companyLogo.border 1

document.companyLogo.complete true

To see an example of this HTML and JavaScript code in action, take a look at
the ch4_properties.htm file located on the companion CD.

In the code snippets shown in Table 4-3, the name of each object property is
fully qualified. If you’ve ever given a friend from another state driving direc-
tions to your house, you’re familiar with fully qualifying names — even if
you’ve haven’t heard it called that before now. It’s the old narrow-it-down
approach:

“Okay, as soon as you hit Texas, start looking for the signs for Austin. On the
south side of Austin, you’ll find our suburb, called Travis Heights. When you
hit Travis Heights, start looking for Sledgehammer Street. As soon as you turn
onto Sledgehammer, you can start looking for 111 Sledgehammer. That’s our
house.”

78 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 78

The JavaScript interpreter is like that out-of-state friend. It can locate and
provide you with access to any property — but only if you describe that
property by beginning with the most basic description (in most cases, the
document object) and narrowing it down from there.

In Listing 4-1, the document object (which you create by using the HTML
<BODY> and </BODY> tags) contains the image called companyLogo. The
companyLogo image, in turn, contains the properties src, name, height,
width, border, and complete. That’s why you type document.company
Logo.src to identify the src property of the image named companyLogo; or
type document.companyLogo.width to identify the width property; and so on.

Note, too, that in the HTML code in Listing 4-1, the values for src, name,
height, width, and border are taken directly from the HTML definition for
this object. The value of true that appears for the complete property, how-
ever, appears courtesy of your Web browser. If your browser couldn’t find and
successfully load the myPicture.jpg file, the value of the complete property
associated with this object would have been automatically set to false.

In JavaScript as in other programming languages, success is represented by
true or 1; failure is represented by false or 0.

There’s a method to this madness!
A method by any other name (some programmers call them behaviors or
member functions) is a function that defines a particular behavior that an
object can exhibit.

Take, for example, your soon-to-be-old friend the HTML button. Because you
can click an HTML button, the button object has an associated method called
the click() method. When you invoke a button’s click() method by using
JavaScript, the result is the same as though a user clicked that button.

Unlike objects, properties, and event handlers, methods in JavaScript are
always followed by parentheses, like this: click(). This convention helps
remind programmers that methods often (but not always) require parameters.
A parameter is any tidbit of information that a method needs in order to do
its job. For example, the alert() method associated with the window object
allows you to create a special kind of pop-up window (an alert window) to
display some information on the screen. Because creating a blank pop-up
window is pretty useless, the alert() method requires you to pass it a param-
eter containing the text that you want to display:

function checkTheEmailAddress () {
...
window.alert(“Sorry, the e-mail address you entered is not complete. Please

try again.”)
}

79Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 79

Some objects, like the built-in window object, are associated with scads of
methods. You can open a window by using the open() method; display some
text on a window by using the write() and writeln() methods; scroll a
window up or down by using the scroll(), scrollBy(), and scrollTo()
methods; and so on.

Just as you do when referring to an object, a property, or an event handler,
when you refer to a method in JavaScript you must preface that method with
the specific name of the object to which it belongs. Table 4-4 shows you
examples of how to call an object’s methods.

Table 4-4 Calling Object Methods
JavaScript Code Snippet What It Does

annoyingText.blink() Calls the blink() method associated with
the string object. Specifically, it causes
the string object called annoyingText to
blink on and off.

self.frame1.focus() Calls the focus() method associated with
the frame object. Specifically, it sets the
input focus to a frame called frame1
(which itself is associated with the primary
document window).

document.infoForm.request Calls the click() method associated with
ForFreeInfoButton.click() the button object. Specifically, this code

clicks the button named requestForFree
InfoButton, which is contained in the
form called infoForm. (The infoForm
form is contained in the primary HTML
document.)

80 Part I: Building Killer Web Pages for Fun and Profit

Why use methods?
Many of the methods defined in JavaScript’s
DOM are things that users can do simply by
clicking a mouse: for example, stopping a
window from loading (the stop() method);
focusing on a particular input field (the focus()
method); printing the contents of a window (the
print() method); and so on. Why go to the
trouble of including method calls in your script?

In a word, automation. Say you want to create a
Web page that does several things in response
to a single event. For example, when a user
loads your Web page, you might want to set
focus to a particular input field, open a small
What’s New window, and display today’s date
automatically. By using methods, you can do all
this — and the user doesn’t have to do a thing!

08_576593 ch04.qxd 10/12/04 9:57 PM Page 80

To see an example of a method call in JavaScript, take a look at the
ch3_methods.htm file located on the companion CD.

You see another example of methods in action in Chapter 2, and Appendix C
lists the methods that are available to you in JavaScript’s DOM.

How do you handle a hungry event?
With event handlers!
An event handler is a special kind of method that a JavaScript-enabled Web
browser triggers automatically when a specific event occurs. Event handlers
give you, the JavaScript programmer, the ability to perform whatever instruc-
tions you like — from performing calculations to displaying messages —
based on events such as

� A user loading a Web page into a browser

� A user stopping a Web page from loading

� A user entering or changing some information in an input field

� A user clicking an image, button, or link

� A user submitting or resetting a form

For example, when a user loads a Web page into a browser, the onLoad event
handler associated with that page (or document) executes; when a user clicks
an HTML button, that HTML button’s onClick event handler executes; and
so on.

Here’s an example of how you call a built-in event handler:

<BODY
onLoad=”window.alert(‘Hello!’);”
onUnload=”window.alert(‘Goodbye!’);”

>
...
</BODY>

To see an example of calling event handlers in JavaScript, check out the
ch3_events.htm file located on the companion CD.

Take a look at the code snippet in this section. Two event handlers are asso-
ciated with the document object. (The document object is defined in HTML
using the <BODY> and </BODY> tags.) One of the event handlers is named
onLoad; the other, onUnload.

As you might guess, loading this code into a Web page causes a Hello!
message to appear. Loading another page, or closing the browser altogether,

81Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 81

causes a Goodbye! message to appear. Event handling is a wonderful thing.
With it you can figure out when and precisely how a user interacts with any
part of your Web page, and you can respond to that action as you see fit.

Appendix C contains a list of all the event handlers that JavaScript supports.
To see additional examples of JavaScript event handlers in action, check out
Chapter 2.

Company functions
Like methods, functions are behaviors — but that’s where the similarity ends.

� Functions are standalone bits of JavaScript code that can be reused over
and over again.

� Unlike methods, functions aren’t associated with a particular object.

The JavaScript language provides a handful of built-in functions, but you can
create your own, as well — as many as you need.

Here’s an example. Say you want to create an HTML form that asks the user to
enter her age and the number of pets she owns. You could create a JavaScript
function that examines a number and makes sure that it’s between certain rea-
sonable parameters — say, 0 and 100. After you create such a function, you can
call it twice: once to validate the age that the user types in and once to validate
the number of pets the user owns. This ability to create reusable functions can
save you quite a bit of time if you plan to create a lot of JavaScript-enhanced
Web sites.

Listing 4-2 shows you how you define and use a function in JavaScript.

Listing 4-2: Defining and Calling a Custom Function in JavaScript

<SCRIPT LANGUAGE=”JavaScript”>

function checkNumber(aNumber) {

if (aNumber > 0 && aNumber < 100) {

//
// If the number is greater than 0 and less than
// 100, pop up a “congratulations” message and return
// a value indicating success.
//

alert(“The number you specified is valid (it is between 0 and 100).”)
return true

}

82 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 82

//
// Otherwise, the number is negative or over 100,
// so return a value indicating failure.
//

else {
alert(“The number you specified is invalid (not between 0 and 100).

\nPlease try again.”)
return false

}
}

...
<FORM NAME=”myForm”>

...
Please type in a number: <INPUT TYPE=”text” SIZE=”5” NAME=”inputNumber”>
...
<INPUT TYPE=”button” VALUE=”Push to validate number”

onClick=”checkNumber(document.myForm.inputNumber.value);”>

</FORM>

Don’t worry if you see some unfamiliar symbols inside the checkNumber()
function definition, like > and &&; you find out what these symbols mean in
Chapter 3.

To see the checkNumber() function example in action, check out the file
ch3_functions.htm located on the companion CD.

For now, take a look at the penultimate line in the code snippet, the one
where the checkNumber() function is being called:

<INPUT TYPE=”button” VALUE=”Push to validate number”
onClick=”checkNumber(document.myForm.inputNumber.value);”>

Notice that checkNumber() is being called with a single argument (document.
myForm.inputNumber.value)? That single argument represents the number
that a user typed into the HTML form. (“For sale by owner: Object properties,”
earlier in this chapter, explains why you must fully qualify a property this way.)
When a user clicks the Push to Validate Number button, the checkNumber()
function then

1. Springs into action

2. Takes a look at the input number passed to it

3. Pops up a message telling the user whether the number is valid (that is,
whether the number falls inside the range of 0 to 100)

Because functions are so useful in JavaScript, you see lots of examples of
them in this book. For now, just remember that

83Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 83

� You define a function inside the <SCRIPT> and </SCRIPT> tags, which I
explain in detail in Chapter 2.

� You let the JavaScript interpreter know a function declaration is coming
by starting it with the special JavaScript keyword function, followed by
a pair of curly braces {}.

� Between the curly braces you put any JavaScript statements you like.

Appendix C lists a handful of built-in JavaScript functions. For additional
examples of creating and calling your own functions, see Chapter 2.

Anatomy of an Object: Properties,
Methods, Event Handlers,
and Functions in Action

In this section, I demonstrate how to work with the most commonly used
objects in JavaScript to perform three cool interactive effects:

� Adding text to a Web page dynamically

� Positioning text on a Web page dynamically

� Changing other aspects of Web page’s appearance (background, text
color, and so on) on-the-fly

Because these particular examples use cascading style sheets, or CSS, to per-
form their magic — a common (and highly useful) approach referred to as
dynamic HTML, or DHTML — I first describe cascading style sheets and how
you use them in JavaScript.

Dynamic objects: The least you need
to know about CSS and DHTML
If you’ve ever tried to make the text on your Web page look spiffy by using
plain old HTML, you might have been sorely disappointed. Why? Because
HTML was designed to allow you to add content to your Web page — not to
control precisely how that content is represented.

Recognizing the need for a way to control Web page layout, the good folks at
the World Wide Web Consortium came up with a standard called cascading

84 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 84

style sheets, or CSS. And fortunately, browser makers took heed: Both
Navigator and Internet Explorer support CSS.

CSS allows you to describe how you want the text elements on your Web
page to appear. For example, you might decide you want all level-one head-
ings to appear in blue, all level-two headings to appear in red, and every
other paragraph to be italicized. To accomplish this goal, you simply

� Add special CSS descriptors to your HTML code.

� Reference your special CSS descriptors by using JavaScript.

The combination of CSS and a scripting language is often referred to as DHTML.

CSS is a fairly broad topic. This book is devoted to JavaScript, so I don’t go
into the nitty-gritty details of CSS here. Instead, in the following sections I
give you the nuts-and-bolts information that you need to create CSS objects
and access those objects by using JavaScript. For an in-depth look at CSS, I
suggest a book such as Cascading Style Sheets by Example, by Steve Callihan
(Que). Or check out the World Wide Web Consortium’s cascading style sheets
specification by pointing your browser to www.w3.org/Style/CSS.

Defining CSS objects
When it comes to defining CSS objects, you have two choices:

� Associate a style with an HTML tag by using the HTML <STYLE> tags.
Here’s an example:

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
H1 {color: red;}
</STYLE>
</HEAD>
...
<BODY>
<H1>This heading is red!</H1>
<H2>This heading is plain old black</H2>
</BODY>
</HTML>

This code associates the color red with every occurrence of the <H1>
tag that appears in the body of the document.

� Define a custom-named CSS object by using the ID property of another
HTML tag. For example:

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>

85Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 85

#blueHeading {color: blue;}
</STYLE>
</HEAD>
<BODY>
<H1 ID=”blueHeading”>My blue heading<H1>

In this case, the name of the CSS object is blueHeading — and you can
easily use this name to access the CSS object using JavaScript. This is
the approach I demonstrate in the example scripts that you find in this
chapter.

No matter how you define CSS objects, you can access those objects by using
JavaScript and the DOM. To minimize the amount of CSS expertise you need —
this is a book on JavaScript, after all — I demonstrate the second approach.

Accessing CSS objects by using JavaScript
After you define a CSS object, you can access that object by using JavaScript.
The following code shows you how:

document.getElementById(“blueheading”).style.fontStyle=”italic”;

The JavaScript code you see here uses the getElementById() method to set
the fontStyle property of the blueheading element to italic — effectively
displaying the heading in italics.

In addition to the fontStyle property, you can access a variety of CSS prop-
erties (such as background-color, background-image, font-weight, font-size,
text-align, text-indent, and much more) using a variety of methods.

In the example scripts that you find in the next three sections, I introduce
you to several different CSS properties and methods. For an ultracomplete
list, however, consult your favorite browser’s DOM reference. (One good
online reference is http://msdn.microsoft.com/library/default.
asp?url=/workshop/author/dhtml/reference/objects.asp.)

Example DHTML script: Adding
text dynamically
Using plain HTML, what you see is what you get: When the text for a page is
loaded, that’s the text the user sees. Not so when you add JavaScript and CSS to
the mix! Using this powerful combination, you can create a script that adds or
changes the appearance of text on a Web page after that page has been loaded.

To see what I mean, take a look at Figures 4-1, 4-2, and 4-3.

86 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 86

Figure 4-2:
Deselecting
the second
check box

causes the
second

paragraph to
disappear.

Figure 4-1:
This Web
page lets

users
display (or

hide) the
first two

paragraphs.

87Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 87

To see the code responsible for Figures 4-1, 4-2, and 4-3, take a look at
Listing 4-3.

You can experiment with the example script you find in Listing 4-3 by loading
the file list0403.htm¸which you find on the companion CD.

Listing 4-3: Allowing a User to Add or Change Text Dynamically
on a Web Page

<HTML>
<HEAD>
<TITLE>Adding text dynamically</TITLE>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- Hide from browsers that do not support JavaScript

function displayText() {

// Store the heading elements in local variables
// so we can work with them easily
var firstGraf = document.getElementById(“graf1”);
var secondGraf = document.getElementById(“graf2”);

Figure 4-3:
Replacing

the third
paragraph

with the
user-

supplied
text.

88 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 88

// If graf1 is selected, change visibility to visible;
// if graf1 is NOT selected, change visibility to hidden

firstGraf.style.visibility=(document.myForm.graf1box.checked) ? “visible” :
“hidden”;

// if graf2 is selected, change visibility to visible;
// if graf2 is NOT selected, change visibility to hidden
secondGraf.style.visibility=(document.myForm.graf2box.checked) ? “visible” :

“hidden”;

}

function changeText() {

// Store the new text in a variable called newText
var newText = document.myForm.changeableText.value;

// Get the existing element text and store it in
// “oldText”
var oldText = document.getElementById(“graf3”);

// Swap old text with new text.
// Replace oldText with newText
oldText.firstChild.nodeValue = newText;

}

// --> Finish hiding
</SCRIPT>
</HEAD>
<BODY>

// Defining three named paragraphs
<P ID=”graf1”>1. This is the first paragraph. By taking advantage of cascading
style sheets, you can assign unique IDs to all sorts of document elements: not
just paragraphs, but headings, lists, styles - virtually any document element.
And once you have a unique ID assigned to a document element, you can display or
hide that document element using a coding technique similar to the one shown
here.</P>
<P ID=”graf2”>2. This is the second paragraph.</P>
<P ID=”graf3”>3. This is the third paragraph. You can dynamically change the
content this paragraph contains by entering your own text in the form field
below.</P>

<H2>You can choose to display or hide the paragraphs on this page dynamically
using the checkboxes below. You can also choose to change paragraph #3.</H2>

(continued)

89Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 89

Listing 4-3 (continued)

<FORM name=”myForm”>
// The displayText() function is called when the user checks or unchecks the
// checkbox.

<INPUT TYPE=”checkbox” NAME=”graf1box” CHECKED onClick=”displayText();”>
Display first paragraph

<INPUT TYPE=”checkbox” NAME=”graf2box” CHECKED onClick=”displayText();”>
Display second paragraph

Change third paragraph

<INPUT TYPE=”text” NAME=”changeableText” defaultValue=”Type here” SIZE=”35”>

// The changeText() function is called when the user clicks the “Click to change
// text” button.
<INPUT TYPE=”button” VALUE=”Click to change text” onClick=”changeText();”>

</FORM>

</BODY>
</HTML>

The code in Listing 4-3 defines three CSS paragraphs named graf1, graf2,
and graf3, respectively. When a user selects one of the HTML check boxes,
the displayText() function is called. The displayText() function changes
the visibility property associated with graf1 and graf2 to display (or
hide) each paragraph according to the user’s selection.

When the user enters text in the text field and clicks the Click to Change Text
button, the JavaScript interpreter calls the changeText() function. The
changeText() function uses DOM methods to access paragraph text and
replace that text with the user-supplied text.

Example DHTML script: Positioning
text dynamically
You can change the way Web page elements are positioned at runtime by
using a combination of JavaScript and CSS.

To accomplish this task, you first create named elements by using CSS; then,
you access and move those elements by using JavaScript. Figures 4-4 and 4-5
show you an example of a text element that can be moved in response to a
user’s clicking a button.

90 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 90

Figure 4-5:
Clicking the

Move Left
button

moves the
text element

to the left.

Figure 4-4:
At the click
of a button,

this text
element can

be moved
left, right,

up, or down.

91Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 91

You can experiment with the example script you find in Listing 4-4 by loading
the file list0404.htm you find on the companion CD.

As you skim through the code in Listing 4-4, pay particular attention to the
HTML <DIV> tag and the JavaScript move() function.

Listing 4-4: Allowing a User to Change the Position of a Web Page
Element

<HTML>
<HEAD>
<TITLE>Positioning content dynamically</TITLE>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- Hide from browsers that do not support JavaScript

function move(direction) {

var layerText = document.getElementById(“myLayer”);

switch(direction) {
// If move() is called with an argument of “left,” reposition text
// layer so that it is now 50 pixels from the left-hand side of the
// window.

case “left”:
layerText.style.left = 50;
break;

case “right”:
layerText.style.left = 150;
break;

case “up”:
layerText.style.top = 50;
break;

case “down”:
layerText.style.top = 150;
break;

}
}

// --> Finish hiding
</SCRIPT>
</HEAD>

92 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 92

<BODY>
// Creating a CSS layer object named myLayer and positioning it 100 pixels from
// the top of the window and 100 pixels from the left-hand side of the window.

<DIV ID=”myLayer” STYLE=”position:absolute; left:100; top:100;”>
<P>This is a positionable layer.</P>
</DIV>

<FORM>
// Clicking any of the four buttons calls the move() function with a different
// argument.
<INPUT TYPE=”button” NAME=”moveLayer” VALUE=”Move left” onClick=”move(‘left’);”>
<INPUT TYPE=”button” NAME=”moveLayer” VALUE=”Move right”

onClick=”move(‘right’);”>
<INPUT TYPE=”button” NAME=”moveLayer” VALUE=”Move up” onClick=”move(‘up’);”>
<INPUT TYPE=”button” NAME=”moveLayer” VALUE=”Move down” onClick=”move(‘down’);”>

</FORM>

</BODY>
</HTML>

In the example code you see in Listing 4-4, a positionable layer is created and
displayed on-screen by using the HTML <DIV> tag. When a user clicks one of
the buttons — say, the Move Left button — the JavaScript interpreter calls
the move() function, passing in the value left.

Inside the move() function, the JavaScript interpreter first identifies the posi-
tionable layer by name, and then it uses the switch conditional statement to
determine which direction to move the layer.

Example DHTML script: Changing page
appearance on-the-fly
Here you find out how to change overall Web page characteristics such as
background and text color. First, take a look at Figures 4-6 and 4-7; then, take
a peek at the code in Listing 4-5.

93Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 93

Figure 4-7:
Choosing

a theme
background,

paragraph,
and heading

text color.

Figure 4-6:
This Web

page offers
users a

choice of
themes.

94 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 94

You can experiment with the example script that you find in Listing 4-5 by
loading up the file list0405.htm you find on the companion CD.

Listing 4-5: Using DHTML to Change Page Appearance on-the-Fly

<HTML>
<HEAD>
<TITLE>Changing page appearance on-the-fly with DHTML</TITLE>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- Hide from browsers that do not support JavaScript

function changeTheme() {

switch(document.myForm.themes.selectedIndex) {

case 0:
// Changing the background and foreground (text) color.
document.bgColor = “blue”;
document.fgColor = “yellow”;

// Changing the heading color.
document.getElementById(“heading1”).style.color=”pink”;

break;

case 1:
document.bgColor = “pink”;
document.fgColor = “green”;
document.getElementById(“heading1”).style.color=”red”;
break;

case 2:
document.bgColor = “green”;
document.fgColor = “red”;

document.getElementById(“heading1”).style.color=”pink”;
document.getElementById(“graf1”).style.fontWeight=”bold”;
break;

}
}

// --> Finish hiding
</SCRIPT>
</HEAD>
<BODY>
// Creating a named heading element.
<H1 ID=”heading1”>Choose a theme:</H1>
// Creating a named paragraph element.
<P ID=”graf1”>Using DHTML (a combination of JavaScript and cascading style

sheets) you can
let your users change the way your Web pages appear.</P>

(continued)

95Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 95

Listing 4-5 (continued)

<FORM NAME=”myForm” >
// When a user selects a new theme, the changeTheme() function is called.
<select name=”themes” onChange=”changeTheme();”>
<option value=”theme1”>Theme 1</option>
<option value=”theme2”>Theme 2</option>
<option value=”theme3”>Theme 3</option>

</select>
</FORM>

</BODY>
</HTML>

As you glance over the code in Listing 4-5, notice that two CSS objects are cre-
ated in the body of the document: heading1 and graf1. When a user selects a
theme, the JavaScript interpreter calls the changeTheme() function, which uses
the switch conditional statement to determine which theme the user selected.

The appearance of the page — the background color, foreground color, heading
color, and font weight of the paragraph text — is set based on which theme
the user selected.

Browser Object Models
Conceptually, Web pages are all the same: They’re displayed in browser win-
dows, contain text and images, and so on. And, in fact, the World Wide Web
Consortium (the W3C), an industry group responsible for many Web-related
standards, has hammered out a standard document object model — a blue-
print, if you will, that browser manufacturers can follow. (You can find a copy
of the W3C’s DOM specification at www.w3.org/DOM.)

In reality, however, each browser manufacturer performs slightly different
behind-the-scenes magic when it comes to implementing the DOM (and pro-
viding JavaScript support). What this means is that the browser models you
work with in JavaScript — Microsoft’s Internet Explorer DOM and Netscape’s
DOM — are similar but not identical.

Netscape Navigator
Netscape Navigator’s DOM describes all the objects you can access in
JavaScript to create cool scripts that execute flawlessly in Netscape
Navigator.

96 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 96

When you want to reference any of the following objects in your script, you
use that object’s fully qualified name, as shown in the Syntax column of the
following list. The window object is the only exception to this rule. By default,
every Web page contains one all-encompassing, granddaddy window, no
matter how many additional windows you choose to include. Because this
overall window is a given, you don’t have to mention it specifically when you
refer to one of the objects that it contains.

For example, the following two JavaScript code snippets both set the src
property of an Image object named myImage equal to “happycat.jpg”:

window.document.myForm.myImage.src=”happycat.jpg”

document.myForm.myImage.src=”happycat.jpg”

The following is a short list of the basic objects that you work with in
Netscape Navigator. You can find a list of all the objects in the DOM imple-
mentation for Navigator 7.1, including associated properties, methods, and
event handlers, in Appendix C. Or check out Netscape’s exhaustive DOM ref-
erence at www.mozilla.org/docs/dom/domref/dom_shortTOC.html.

Object Syntax

window window (optional)
document document

applet document.applets[0]
anchor document.someAnchor
area document.someArea
classes document.classes

form document.someForm
button document.someForm.someButton

checkbox document.someForm.someCheckbox
fileUpload document.someForm.someFileElement
hidden document.someForm.someHidden
image document.someForm.someImage
password document.someForm.somePassword
radio document.someForm.someRadio
reset document.someForm.someReset
select document.someForm.someSelect
submit document.someForm.someSubmit
text document.someForm.someText
textarea document.someForm.someTextarea

ids document.ids
layers document.layers
link document.someLink

(continued)

97Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 97

Object Syntax

object document.someObject
plugin docment.embeds[0]
tags document.tags

frame, parent, self, top (all of these are also synonyms for window)
history history
location location
locationbar locationbar
menubar menubar

navigator navigator
personalbar personalbar
scrollbar scrollbar
statusbar statusbar
toolbar toolbar

JavaScript data types
Much of what you want to do with a JavaScript script involves programmer-
defined objects, such as the values that a user types into your HTML form,
some calculations that you make based on those values, and so on.

Most programming languages require you to declare special placeholders,
called variables, to hold each piece of data you want to work with. Not only
that, but most programming languages require you to specify — up front —
what type of data you expect those variables to contain. (This requirement
makes it easy for those languages’ compilers but tough on us programmers!)

JavaScript expects you to declare variables to represent bits of data, too. But
because JavaScript is a loosely typed language, you don’t necessarily have to
declare the type of a variable up front, nor do you have to perform cumber-
some type conversions the way you do in languages like C and C++. Here’s an
example:

var visitor // Defines a variable called “visitor” of
// no particular type

var visitor = “george” // Resets “visitor” to a text string

var visitor = 3 // Resets “visitor” to a numeric value

var visitor = null // Resets “visitor” to null

You can get away without specifying string or numeric data types explicitly,
as shown in this code snippet, because the JavaScript interpreter takes care
of figuring out what type of value is associated with any given variable at
runtime.

98 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 98

There are two data types that JavaScript requires you to explicitly specify:
the Array and Date data types. You must declare variables of type Array
and Date explicitly because the JavaScript interpreter needs to know certain
extra details about these types of values in order to store them properly.

JavaScript supports the following data types:

� Array An ordered collection. For example:

var animals = new Array(“cat”, “dog”, “mouse”) //
load array

var firstAnimal = animals[0] // access first array
element

var secondAnimal = animals[1] // access second element

var thirdAnimal = animals[2] // access third element

� Boolean True/false data type (values of true or false only). For example:

var cookieDetected = false

var repeatVisitor = true

� Date Time and date data type. For example:

var today = new Date() // current time/date via
system clock

var newYearsDay = new Date(2001, 01, 01) // specific
date

� null A special data type denoting nonexistence. For example:

if (emailAddress == null) { // check for null

alert(“Please enter an e-mail address”)

}

Null is not the same as 0 (zero).

� Number Numerical data type. For example:

var numberHits = 1234 // implied numeric data type

var numberHits = new Number(1234) // explicit

� String String (text) data type. For example:

alert(“This is a string”) // implied string with
double quotes

alert(‘So is this’) // implied string with single
quotes

var myString = new String(“Yet another string”) //
explicit

99Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 99

JavaScript supports additional data types, including the Function and RegExp
data types. Because these data types aren’t often used, I don’t describe them
here. For details on how to use these data types, check out http://devedge.
netscape.com/library/manuals/2000/javascript/1.5/guide.

Leftovers: The Math object
JavaScript provides a utility object for you to use in your script endeavors.
This object — the Math object — isn’t part of the DOM proper (that is, it
doesn’t represent a conceptual component of a Web page). It isn’t a data
type, either. It’s simply a standalone object provided for you to use whenever
you need mathematical constants or functions. Here are a few examples:

var x = Math.PI // assigns “x” the value of pi

var y = Math.round(158.32) // assigns “y” the result of rounding 158.32

var z = Math.sqrt(49) // assigns “z” the square root of 49

Check out Appendix C for a full list of all the properties and methods associ-
ated with the Math object.

Microsoft Internet Explorer
Microsoft’s document object model is often referred to as the DHTML DOM,
which is alphabet-soup-ese for dynamic Hypertext Markup Language document
object model. Although Microsoft’s DHTML DOM is based on the same standard
that Netscape Navigator’s is based on — the World Wide Web Consortium’s
DOM specification — it varies a bit from Netscape’s implementation. This
variation is important to keep in mind because if your script references objects
that exist in one DOM and not another, your script will run in just that one
object-supporting browser. (Flip to Chapter 5 to find tips for creating cross-
platform scripts that work in both browsers.)

Microsoft’s DHTML DOM describes all the objects you can access with
JavaScript to create cool scripts that execute flawlessly in Internet Explorer.
The following is a short list of the basic objects that you work with in Internet
Explorer.

Object Syntax

window window (optional)
document document

applet document.applets[0]
anchor document.someAnchor
area document.someArea

100 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 100

Object Syntax

form document.someForm
button document.someForm.someButton
checkbox document.someForm.someCheckbox
file document.someForm.someFileElement
hidden document.someForm.someHidden
image document.someForm.someImage
password document.someForm.somePassword
radio document.someForm.someRadio
reset document.someForm.someReset
select document.someForm.someSelect
submit document.someForm.someSubmit
text document.someForm.someText
textarea document.someForm.someTextarea
link document.someLink

object document.someObject
plugin document.embeds[0] (no, this isn’t a typo!)

embed document.embeds[0]
frame someFrame

frameset someFrameset

history history
location location

navigator navigator

clientInformation clientInformation

You can find a list of the objects in the DOM implementation for Internet
Explorer 6.0, including associated properties, methods, and event handlers,
in Appendix C. Or check out Microsoft’s own exhaustive DHTML DOM refer-
ence at

http://msdn.microsoft.com/workshop/author/dhtml/reference/objects.asp

101Chapter 4: Getting Acquainted with the Document Object Model

08_576593 ch04.qxd 10/12/04 9:57 PM Page 101

102 Part I: Building Killer Web Pages for Fun and Profit

08_576593 ch04.qxd 10/12/04 9:57 PM Page 102

Part II
Creating Dynamic

Web Pages

09_576593 pt02.qxd 10/12/04 10:01 PM Page 103

In this part . . .

In this part, you find practical ways to create Web pages
that appear differently to different users. Chapter 5

shows you how to modify the way your pages appear auto-
matically based on which browser your users are running.
Chapter 6 describes how you can create Web pages that
remember visitors, and Chapter 7 demonstrates how to
manipulate browser frames and windows to create sophis-
ticated navigational schemes.

Best of all, you see real working examples of all the tech-
niques presented in Part II. (The examples are also included
on the CD-ROM at the back of this book, so you don’t even
have to type the code.)

09_576593 pt02.qxd 10/12/04 10:01 PM Page 104

Chapter 5

Detecting Your Users’ Browser
Environments

In This Chapter
� Understanding how (and why) JavaScript support differs among browsers

� Applying strategies for cross-platform script creation

� Taking advantage of advanced JavaScript features with a browser-detection script

The biggest challenge facing Web developers today isn’t hardware- or
software-based: It’s wetware-based. (Wetware — a term that refers to the

supposed squishiness of the human brain — is geek-speak for human beings.)
And that challenge is trying to get the companies that create Web browsers
to agree on a single, standard implementation of browser-supported tech-
nologies like JavaScript!

With the current situation, the brand of browser that someone has installed,
the browser’s version, and the underlying operating system all affect that
person’s ability to view your JavaScript-enabled Web pages. As a JavaScript
developer, you need to be aware of the differences in JavaScript implementa-
tions among browsers and write your scripts accordingly. If you don’t, you
might end up creating a whiz-bang script that runs only on your computer.

Whacking Your Way through
the Browser Maze

From the latest reports, both Microsoft and Netscape have promised to sup-
port the ECMAScript standard (which I discuss in detail in Chapter 3) in
future versions of their respective browsers.

10_576593 ch05.qxd 10/12/04 10:00 PM Page 105

Even if Internet Explorer and Netscape Navigator were fully ECMAScript-
compliant (and offered no additional features), the same JavaScript script
still might not execute identically in both browsers. Why? For JavaScript to
be a true cross-browser language, both the syntax and the document object
model (DOM) would have to be consistent.

ECMA-262 takes JavaScript halfway to cross-browser nirvana by defining a
standard language specification, but it doesn’t define the DOM. As you see in
Chapter 4, the DOMs for the two browsers are far from identical, despite the
efforts of the World Wide Web Consortium to define a unified standard.

Fortunately, as you see in the next section, you don’t have to depend on dif-
ferences between JavaScript implementation and object models to write
great cross-browser scripts. All you need to do is identify the differences at
runtime and display customized Web pages accordingly.

Detecting Features
By using JavaScript, you can detect what make and version of Web browser a
user is using to view your pages — useful information that lets you customize
Web pages on-the-fly to provide your users with the best possible viewing
experience. But make and version aren’t the only bits of browser-related
information that you can detect by using JavaScript. You can also determine
which Java applets and browser plug-ins a user has installed, which Web
page your user visited directly before surfing to yours (called the referring
page), and even user preferences. Read on to find out how!

Browser make and version
The most reliable way to figure out which browsers are loading your script is
to ask. You ask programmatically, using JavaScript, by adding a bit of code to
the beginning of your script, querying the DOM for browser-specific details.
When you determine which make, model, and version of browser is attempt-
ing to load your JavaScript-enabled Web page, you can display your page
accordingly.

The easiest way to implement this functionality is to use the <MARQUEE> tag,
which is an HTML tag (and corresponding scripting object) supported by
Internet Explorer (beginning with version 3.x). The trouble is that some ver-
sions of Navigator don’t support the <MARQUEE> tag. When a non-marquee-
supporting browser loads a Web page containing the <MARQUEE> tag, it might
do one of three things:

106 Part II: Creating Dynamic Web Pages

10_576593 ch05.qxd 10/12/04 10:00 PM Page 106

� Display the scrolling text statically or not at all

� Ignore your marquee-related JavaScript code

� Generate a JavaScript error

One way to ensure that your viewers see what you want them to see is to use
JavaScript to see whether the browser loading your script is Internet
Explorer.

� If it is, you can use the <MARQUEE> tag with confidence.

� If the browser isn’t Internet Explorer, you can display the scrolled infor-
mation in an alternate eye-catching fashion — for example, as a bolded,
centered heading.

Listing 5-1 shows the code for a “sniffer” script that examines (sniffs out)
browser settings and displays a string of text as either a scrolling marquee or
as a bolded, centered heading, depending on whether the browser loading
the script is Internet Explorer.

107Chapter 5: Detecting Your Users’ Browser Environments

A custom fit, every time
Creating different versions of each of your Web
pages for each and every different browser
version in existence ensures an optimum expe-
rience for all of your users. It also represents a
maintenance nightmare!

A good design approach to follow is this:

1. Provide absolutely essential information
(such as contact information) in the form of
plain old, every-browser-supports-it text —
rather than, say, a scrolling JavaScript
marquee.

2. Provide additional information and effects by
using cross-browser techniques wherever
possible. For example, layers aren’t imple-
mented in all browsers, but depending on the
effect that you want to achieve, you might
be able to make do by using an image-
swapping technique (like the one you see in

Chapter 8) or an animated GIF file instead.
(GIF stands for graphics interchange format.)
You can find more information on animated
GIFs, including links to free animation soft-
ware, at http://animation.about.
com/arts/animation/msubgif.htm.

3. If you want to take advantage of the latest
and greatest Web effects (and who doesn’t,
from time to time?), implement them in con-
junction with a browser sniffer script — a
script that “sniffs” out which browser a
user is running — like the one shown in this
chapter. For example, you can create a
JavaScript-enabled Web page that draws a
viewer’s attention by scrolling a line of text,
and you can allow the user to stop (and
restart) the scrolling action.

10_576593 ch05.qxd 10/12/04 10:00 PM Page 107

Take a quick peek at Listing 5-1, and then check out Figures 5-1 and 5-2, which
show how this script appears in Netscape Navigator 7.0. Also see Figures 5-3
and 5-4, which show how the same script appears in Microsoft Internet
Explorer 6.0. I spend the remainder of this section describing exactly how the
script in Listing 5-1 works, step by step, so you can apply the principles you
see here to your own browser-sniffing scripts.

You can find the code shown in Listing 5-1 in the file list0501.htm, which is
located on the companion CD. Check it out in your own browser!

Listing 5-1: Sniffing Out Browser Versions

<SCRIPT LANGUAGE=”JavaScript” TYPE=”javascript/text”>
<!-- Hide from browsers that do not support JavaScript

if (navigator.appName == “Microsoft Internet Explorer”) {

// Create a MSIE-specific Web page
document.write(“You’re running Microsoft IE, which supports MARQUEE

scrolling.”)
var builtInScroll = ‘<FORM NAME=”myForm”><MARQUEE ID=abc DIRECTION=LEFT

BEHAVIOR=SCROLL SCROLLAMOUNT=4>JavaScript For
Dummies...</MARQUEE><INPUT TYPE=”button” VALUE=”Start scrolling”
NAME=”startscroll” onClick=”document.all.abc.start()”><INPUT
TYPE=”button” VALUE=”Stop scrolling” NAME=”stopScroll”
onClick=”document.all.abc.stop()”></FORM>’;

}
else {

// Create a Web page that doesn’t use MSIE-specific features
var builtInScroll = ‘<CENTER><H1>JavaScript For Dummies...</H1></CENTER>’

if (navigator.appName == “Netscape”) {
document.write(“You’re running Netscape, which doesn’t provide

consistent support for MARQUEE scrolling.”)
}

else {
document.write(“You’re not running Microsoft IE or Netscape”)

}
}

// Display the contents of two important navigator properties
alert(“navigator.appName is: “ + navigator.appName

+ “\navigator.appVersion is: “ + navigator.appVersion)

// Display the appropriate Web page
document.write(builtInScroll)

// --> Finish hiding
</SCRIPT>

108 Part II: Creating Dynamic Web Pages

10_576593 ch05.qxd 10/12/04 10:00 PM Page 108

Figure 5-2:
Because

this script is
running in
Navigator,
the text is
displayed
centered

and bolded.

Figure 5-1:
The

browser
sniffer

script as it
appears in
Navigator

7.0. Notice
the values

of appName
and

appVersion.

109Chapter 5: Detecting Your Users’ Browser Environments

10_576593 ch05.qxd 10/12/04 10:00 PM Page 109

Figure 5-4:
This script is

running in
the browser,

so the text
is scrolled
and user-

controlled.

Figure 5-3:
The

browser
sniffer

script as
it appears
in Internet

Explorer 6.0.
Notice the

value of
appName

and
appVersion.

110 Part II: Creating Dynamic Web Pages

10_576593 ch05.qxd 10/12/04 10:00 PM Page 110

The code that you see in Listing 5-1 uses the if-else statement to examine
the contents of the built-in navigator.appName property and determine
whether the user is running Internet Explorer. (A navigator.appName value
of “Microsoft Internet Explorer” means that the user is running
Internet Explorer.)

� If the user is running Internet Explorer, the JavaScript code

• Writes a message to the screen, which you see in Figure 5-1.
(You’re running Microsoft IE, which supports MARQUEE
scrolling.)

• Creates a variable named builtInScroll that contains all the
HTML code necessary to display scrolling text — along with but-
tons that a user can use to turn scrolling on and off.

� If the user is not running Internet Explorer, the JavaScript code

• Creates a variable called builtInScroll that contains all the
HTML necessary to display centered, bolded text.

• Examines the navigator.appName property again to determine
whether the user is running Netscape Navigator or another browser.

• Displays an appropriate message based on the value of the
navigator.appName property.

Regardless of the make of browser the user is running, the JavaScript code

� Displays a pop-up message describing the contents of the
navigator.appName and navigator.appVersion properties.

� Writes the contents of the builtInScroll variable to the screen.

The built-in navigator object stores many different browser details. You can
examine the contents of the navigator.appVersion property to determine
which version of a particular make of browser a user is running (for example,
6.0 or 7.0). Unfortunately, however, no standard approach to version naming
exists. For example, notice in Figure 5-1, the value of appVersion is 5.0 —
even though the actual version of Navigator running is 7.0. Notice also that
in Figure 5-3, the value of appVersion is listed as 4.0, not 6.0 as you might
expect (although the string MSIE 6.0, the actual version of Internet Explorer
running, also appears as part of the appVersion value.) The upshot is that to
determine the correct version of browser running, you need to perform the
following two steps:

1. Check with each browser manufacturer to find out what appVersion
value to expect for each browser version. For example,

• You can find out all about the navigator object that Internet
Explorer supports (including the appVersion property) by visiting
http://msdn.microsoft.com/library/default.asp?url=/
workshop/author/dhtml/reference/objects.asp.

111Chapter 5: Detecting Your Users’ Browser Environments

10_576593 ch05.qxd 10/12/04 10:00 PM Page 111

• To see how Netscape describes the built-in navigator object,
check http://devedge.netscape.com/library/manuals/
2000/javascript/1.5/reference/ix.html.

2. If necessary, use a String method, such as indexOf(), to extract the
value of the appVersion property. The indexOf() method returns one
of two values: –1 if a given string isn’t found, or the position of a string if
that string is found. (Note: JavaScript begins counting string positions at
0, not 1.) For example, the following JavaScript code searches the con-
tents of the appVersion property to determine whether it contains the
string “6.0”:

if (navigator.appVersion.indexOf(“6.0”) == -1) {
alert(“The string ‘6.0’ was not found in the value for appVersion)

}
else {

alert(“The string ‘6.0’ was found in the value for appVersion”)
}

Embedded objects
Netscape Navigator and Internet Explorer both support embedded objects —
specialized applications that run inside Web pages.

Embedded objects allow users to view non-HTML content. For example, a
Flash embedded object allows Navigator users to load Web pages containing
animations created with Macromedia Flash, a RealPlayer embedded object
allows Navigator users to load Web pages containing RealAudio clips, and
so on.

By using JavaScript, you can determine at runtime whether a user has a spe-
cific embedded object installed and display your Web page accordingly. For
example, you might want to begin playing a QuickTime movie as soon as a
user loads your page — but only if that user has QuickTime capability
already installed.

Internet Explorer supports embedded objects through Microsoft’s ActiveX
components. Netscape Navigator supports embedded objects through a tech-
nology called plug-ins. Both browsers support specialized embedded objects
called Java applets.

How do you determine whether a user has specific plugged-in content?
JavaScript offers two different ways:

112 Part II: Creating Dynamic Web Pages

10_576593 ch05.qxd 10/12/04 10:00 PM Page 112

� Both Navigator and Internet Explorer: The document.embeds[] array
contains a list of all the objects embedded in a document via the <OBJECT>
tag (Internet Explorer) and the <EMBED> tag (Netscape Navigator). The
document.applets[] array contains a list of all the applets embedded
in a document via the <APPLET> tag.

� Navigator: The navigator.plugins[] array contains a list of all the
plug-ins that Navigator supports. (Popular plug-ins include Adobe
Acrobat and Apple QuickTime.) The navigator.mimeTypes[] array
contains a list of all of the MIME types supported by Navigator. (MIME,
or Multipurpose Internet Mail Extension, refers to the file types that
Navigator can understand and display. Examples of popular MIME types
include Adobe’s portable document framework (.pdf) and RealNetworks’
RealAudio (.ram).

The <APPLET> tag was deprecated in HTML 4.0, which means that program-
mers are encouraged to use the <OBJECT> or <EMBED> tag (instead of the
<APPLET> tag) to embed Java applets in Web pages. Future browsers might
not support the <APPLET> tag. I demonstrate detecting Java applets via the
document.applets[] array, however, because many <APPLET>-tag-containing
Web pages still exist.

In IE, the navigator.plugins[] and navigator.mimeTypes[] arrays are
always null because IE implements embedded ActiveX objects in place of
plug-ins. To detect embedded content in documents viewed in Internet
Explorer, access the document.embeds[] array.

Detecting plugged-in content can be a little tricky. Fortunately, the code that
you see in Listing 5-2 helps you understand the differences between embed-
ded objects and plug-ins.

Before scanning the code listing, though, take a look at Figures 5-5 through
5-8, which show the code in Listing 5-2 loaded in Netscape Navigator. Then
see Figures 5-9 through 5-12, which show the same code loaded in IE.

You can experiment with the code in Listing 5-2 by loading the file list0502.
htm from the companion CD into your own Web browser. To duplicate the
example shown in this chapter, you can download a copy of Apple QuickTime
at www.apple.com/quicktime/download.

Figure 5-6 shows how clicking the Detect Embedded Objects button displays
the total number of <EMBED> and <OBJECT> tags in this document. Clicking
the Detect Plug-Ins button, as shown in Figure 5-7, displays the number of
downloaded and installed browser plug-ins; clicking the Detect Applets button,
as shown in Figure 5-8, displays the number of Java applets embedded in the
document using the <APPLET> tag.

113Chapter 5: Detecting Your Users’ Browser Environments

10_576593 ch05.qxd 10/12/04 10:00 PM Page 113

Figure 5-8:
Detecting
applets: 1

Java applet.

Figure 5-7:
Detecting

plug-ins: 25
browser
plug-ins.

Figure 5-6:
Detecting
objects: 1

embedded
object.

Figure 5-5:
Checking for

embedded
objects in
Netscape
Navigator.

114 Part II: Creating Dynamic Web Pages

10_576593 ch05.qxd 10/12/04 10:00 PM Page 114

The same code — Listing 5-2 — executed in Internet Explorer behaves a bit
differently, as you can see in Figures 5-9, 5-10, 5-11, 5-12, and 5-13. When you
click the Detect Plug-Ins button, the number of plug-ins detected is always
none because Internet Explorer doesn’t recognize or implement plug-ins.

Figure 5-11:
. . . and a

Java applet.

Figure 5-10:
Detecting

an
embedded
QuickTime
object . . .

Figure 5-9:
Checking for

embedded
objects in IE.

115Chapter 5: Detecting Your Users’ Browser Environments

10_576593 ch05.qxd 10/12/04 10:00 PM Page 115

Take a look at Listing 5-2. As you skim through the code, notice the similari-
ties in detecting different kinds of embedded content. In each case, you exam-
ine the length property associated with a built-in array (the navigator.
plugins.length, document.embeds.length, and document.applets.
length properties detect plug-ins, embedded objects, and embedded applets,
respectively).

Listing 5-2: Detecting Embedded Objects

<HTML>
<HEAD><TITLE>Detecting embedded objects (applets, plug-ins, etc.)</TITLE>

<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- Hide from browsers that do not support JavaScript

///
// The detectPlugins() function detects
// Navigator browser plug-ins (software “cartridges”
// that have previously been downloaded and
// installed in the Netscape Navigator browser).
///
function detectPlugins() {

if (navigator.plugins.length > 0) {
var pluginDescription = “”;

Figure 5-13:
In IE,

applets
aren’t

differenti-
ated from
any other

embedded
objects.

Figure 5-12:
IE doesn’t

support
plug-ins.

116 Part II: Creating Dynamic Web Pages

10_576593 ch05.qxd 10/12/04 10:00 PM Page 116

for (var numPlugins = 0; numPlugins < navigator.plugins.length;
numPlugins++) {

pluginDescription = pluginDescription + “ “ +
navigator.plugins[numPlugins].name

}

alert(navigator.plugins.length + “ browser plug-ins detected: “
+ pluginDescription);

}
else {

alert(“No browser plug-ins detected. (Remember, IE doesn’t support
plug-ins.)”)

}

}

///
// The detectApplets() function detects Java
// applets embedded in a Web page via the
// APPLET tag - but for Netscape Navigator only.
// To detect applets in a page running in
// Microsoft Internet Explorer, you need to have
// knowledge of the applet: for example,
// document.applets[‘nameOfApplet’].someMethod();
//
// The length of the document.applets array
// represents the number of objects embedded
// in a Web page.
//
// The existence of additional applets[]
// properties and methods depends on the
// implementation of each individual applet.
///
function detectApplets() {

if (document.applets.length > 0) {
alert(document.applets.length + “ Java applets detected. (Rememember, IE

counts applets as embedded objects.)”)

}
else {

alert(“No Java applets detected.”)
}

}

(continued)

117Chapter 5: Detecting Your Users’ Browser Environments

10_576593 ch05.qxd 10/12/04 10:00 PM Page 117

Listing 5-2 (continued)

///
// The detectEmbeds() function detects content
// embedded in a Web page via the EMBED
// or OBJECT tag.
//
// The length of the document.embeds array
// represents the number of objects embedded
// in a Web page.
//
// The existence of additional embeds[]
// properties depends on the implementation
// of each embedded object.
///
function detectEmbeds() {

if (navigator.appName == “Microsoft Internet Explorer”) {
// The user is running IE, so check for objects
// embedded using the OBJECT tag.
//
// The readyState property of an object embedded

// using the OBJECT property can contain one of 3
// values:
// 0 = uninitialized
// 1 = loading
// 4 = finished loading and ready to go

if (document.QTsample.readyState == 4) {
alert(“Detected the QTsample embedded object”);

}

if (document.clock.readyState == 4) {
alert(“Detected the clock embedded object”);

}

}
else {

if (navigator.appName == “Netscape”) {
// The user is running Navigator, so check
// for objects
// embedded using the EMBED tag.

if (document.embeds.length > 0) {
alert(document.embeds.length

+ “ embedded object(s) detected.”)

118 Part II: Creating Dynamic Web Pages

10_576593 ch05.qxd 10/12/04 10:00 PM Page 118

}
else {

alert(“No embedded objects detected.”);
}

}
}

}

// --> Finish hiding
</SCRIPT>

</HEAD>
<BODY>
Two embedded objects appear below:

A sample movie provided free by QuickTime (Sample.mov).
Note: IE identifies applets as objects. IE does not recognize browser plug-ins.

(IE supports
ActiveX objects instead of plug-ins.)
A sample Java applet provided free by Sun Microsystems

(JavaClock.class)
Note: Navigator identifies applets as applets.

<!--
You use the OBJECT tag to embed an ActiveX component into a
page meant for MSIE; you use the EMBED tag to embed a plug-in into a page meant
for Navigator.
Notice the difference between the way the value of the SRC
variable must be specified.
// -->

<OBJECT CLASSID=”clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”
WIDTH=”320”HEIGHT=”250”

ID=”QTsample”
CODEBASE=”http://www.apple.com/qtactivex/qtplugin.cab”>
<PARAM name=”SRC” VALUE=”c:\Program Files\QuickTime\Sample.mov”>
<PARAM name=”AUTOPLAY” VALUE=”true”>
<PARAM name=”CONTROLLER” VALUE=”true”>

<EMBED SRC=”file://c:\Program Files\QuickTime\Sample.mov” WIDTH=”320”
HEIGHT=”250” AUTOPLAY=”true” CONTROLLER=”true”
PLUGINSPAGE=”http://www.apple.com/quicktime/download/”>

</EMBED>

</OBJECT>

(continued)

119Chapter 5: Detecting Your Users’ Browser Environments

10_576593 ch05.qxd 10/12/04 10:00 PM Page 119

Listing 5-2 (continued)

<!--

This Java applet is freely available from Sun Microsystems.
For more info,
visit http://java.sun.com/openstudio/applets/clock.html

Note: The APPLET tag was deprecated in HTML 4.0, which
means that programmers are encouraged to use the OBJECT tag
(instead of the APPLET tag) to embed Java applets
in Web pages. Future browsers might not support the APPLET tag.
// -->

<APPLET ID=”clock” CODEBASE=”classes” CODE=”JavaClock.class” WIDTH=”150”
HEIGHT=”150”>

<PARAM NAME=”bgcolor” VALUE=”FFFFFF”>
<PARAM NAME=”border” VALUE=”5”>
<PARAM NAME=”ccolor” VALUE=”dddddd”>
<PARAM NAME=”cfont” VALUE=”TimesRoman|BOLD|18”>
<PARAM NAME=”delay” VALUE=”100”>
<PARAM NAME=”hhcolor” VALUE=”0000FF”>
<PARAM NAME=”link” VALUE=”http://java.sun.com/”>
<PARAM NAME=”mhcolor” VALUE=”00FF00”>
<PARAM NAME=”ncolor” VALUE=”000000”>
<PARAM NAME=”nradius” VALUE=”80”>
<PARAM NAME=”shcolor” VALUE=”FF0000”>
</APPLET>

<P>
<FORM>
<INPUT TYPE=”button” VALUE=”detect embedded objects” onClick=”detectEmbeds()”>

<INPUT TYPE=”button” VALUE=”detect plug-ins” onClick=”detectPlugins()”>

<INPUT TYPE=”button” VALUE=”detect applets” onClick=”detectApplets()”>
</FORM>
</BODY>
</HTML>

Keep in mind that you can use two ways to detect Netscape Navigator plug-
ins: by examining the navigator.plugins[] array and by examining the
navigator.mimeTypes[] array, as shown in Listing 5-2. Because Internet
Explorer doesn’t support plug-ins, however, these two arrays are always
empty in Internet Explorer.

Objects embedded by using either the <EMBED> or <OBJECT> tag are added to
the document.embeds[] array.

120 Part II: Creating Dynamic Web Pages

10_576593 ch05.qxd 10/12/04 10:00 PM Page 120

The document.plugins[] array is a synonym for the document.embeds[]
array, but because the document.plugins[] array appears so similar to the
navigator.plugins[] array — an array that holds an entirely different kind
of object — I suggest sticking with the document.embeds[] array when you
want to determine the number of embedded <OBJECT> and <EMBED> tags in a
document.

The referrer page
A referrer page is the Web page that a user loaded directly before loading
your Web page. You can use JavaScript to determine the referring page at
runtime — which is useful if you’re keeping track of statistics. (Some pro-
grammers enjoy knowing precisely what links users follow to get to their
Web pages.)

To identify the referring page, you examine the referrer property of the
document object, as shown in the following JavaScript code:

if (document.referrer == “”) {
document.writeln(“You pulled this page up fresh in a browser.”);

}

else {
document.writeln(“You were referred to this page by “ + document.referrer);

}

The above code snippet determines the following:

� If the value of document.referrer is blank (blank is denoted by “” in
the code snippet), the user typed the name of the Web page directly into
the browser address field.

� If the value of document.referrer isn’t blank, document.referrer
contains the name of the referring page.

The files detecting_referrer_base.htm and detecting_referrer.htm,
which you find on the companion CD, allow you to test the code that I
describe in this section. To use these files, upload them to a Web server, load
the file detecting_referrer_base.htm in your Web browser, and click the
link that appears.

You must upload your HTML files to a Web server in order to test the code
that you see in this section; the value of document.referrer is always blank
when tested locally.

121Chapter 5: Detecting Your Users’ Browser Environments

10_576593 ch05.qxd 10/12/04 10:00 PM Page 121

User preferences
Wouldn’t it be great if your users could choose they way they’d prefer to see
your Web pages? Well, if you use JavaScript, they can! You can use JavaScript
to present your users with a series of options right away, before your Web
page loads — and then use that feedback to display your page the way your
users want to see it.

In Figures 5-14 and 5-15, for example, you see prompts asking users which
color they prefer for background and text color, respectively. Figure 5-16
shows the result: a Web page containing the user’s preferred color scheme.

The code in Listing 5-3 is available on the companion CD: just load the file
list0503.htm.

Listing 5-3: Detecting User Preferences

<HTML>
<HEAD>
<TITLE>Detecting user preferences (and customizing display)</TITLE>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- Hide from browsers that do not support JavaScript

// Ask the user for color preferences
var displayColor = prompt(“What BACKGROUND color would you like? (red, green,

white, yellow, etc.)”, “pink”);

Figure 5-15:
Your users
can enter

the text
color.

Figure 5-14:
Asking

users
for their

preferences.

122 Part II: Creating Dynamic Web Pages

10_576593 ch05.qxd 10/12/04 10:00 PM Page 122

var textColor = prompt(“What TEXT color would you like? (red, green, white,
yellow, etc.)”, “blue”);

// Display page content
document.writeln(“<BODY BGCOLOR=” + displayColor + “ TEXT=” + textColor + “>You

chose “ + textColor + “ text on a “ + displayColor + “
background.</BODY>”)

// --> Finish hiding
</SCRIPT>
</HEAD>
</HTML>

As you skim through the JavaScript code in Figure 5-3, notice that it defines
two variables:

� displayColor, containing the user’s choice of background color

� textColor, containing the user’s choice of text color

After these two variables are defined, the JavaScript code uses them — along
with the writeln() method — to define and display the <BODY> section of
the Web page.

Figure 5-16:
A cus-

tomized
display
based

on user
preferences.

123Chapter 5: Detecting Your Users’ Browser Environments

10_576593 ch05.qxd 10/12/04 10:00 PM Page 123

124 Part II: Creating Dynamic Web Pages

10_576593 ch05.qxd 10/12/04 10:00 PM Page 124

Chapter 6

That’s How the Cookie Crumbles
In This Chapter
� Taking a close look at cookies

� Understanding the benefits and limitations of cookies

� Setting and retrieving cookie values

� Creating a script to recognize previous visitors to your site

Unlike a traditional client/server configuration, in which the client and
the server have to agree to begin and end every conversation, the Web

is stateless. Stateless means that, by default, neither Web browsers nor Web
servers keep track of their conversations for later use. Like two ships that
pass in the night, browsers and servers interact only when a user downloads
a Web page, and then they immediately forget the other ever existed!

Cookies — tiny text files that a Web server can store on a client’s computer
via a Web browser — were designed to change all that. By using cookies to
keep track of browser-to-server interactions, Web developers can create intel-
ligent Web sites that remember details about each and every user who visits
them. You can even create cookies with built-in expiration dates so that infor-
mation stored as cookies is maintained for only a limited period of time —
say, a week or a month.

Cookie Basics
You can use JavaScript, Perl, VBScript, or any other Web-savvy language to
store small text files called cookies on your site visitor’s computer. Because
the whole point of using cookies is for server-side applications to keep track
of client information, however, cookies are typically created and set by CGI
programs rather than by JavaScript scripts. (CGI stands for Common Gateway
Interface. CGI programs, which are usually written in Perl or C/C++, live on

11_576593 ch06.qxd 10/12/04 10:00 PM Page 125

Web servers; their job in life is to transmit data back and forth between a Web
server and a Web client.) But because this book is devoted to JavaScript, later
in this chapter I show you how to create and interact with cookies by using
JavaScript instead of C/C++, Perl, or some other, more traditional cookie-
manipulation language.

Before I dive into the code, however, I explain exactly what cookies are and
how they work.

Why use cookies?
Cookies allow you to store information about a user’s visit on that user’s
computer and retrieve it when the user revisits your site. Two of the most
common reasons Web developers use cookies are

� To identify visitors: You can detect when a user has previously visited
your site and customize what that user sees on subsequent visits. For
example, you can greet visitors by name, tell them what’s changed on
your site since their last visits, display customized pages based on their
previous purchasing, their site navigation habits, and so on.

� To save transaction state: You can store the status of any lengthy trans-
actions between your site and your visitors’ browsers to safeguard against
interruptions. For example, imagine that I’m filling out a lengthy form
on your Web site when all of a sudden my dog chases my cat under my
desk. They scuffle, and before I know what’s happening, my computer
plug comes sailing out of the wall socket! If your site uses cookies, I can
throw my beasts out in the backyard, plug my machine back in, reload
your Web page, and pick up right where I left off. If your site doesn’t use
cookies, I have to start filling out the form from the beginning.

Cookie security issues
Cookies have been used safely for a few years now, and because their use is
strictly governed by Web browsers, they rank mighty low on the list of poten-
tial security threats. Still, they are highly controversial in some programmer
circles for two reasons:

� Cookies jump the traditional bounds of a Web browser by storing
information directly on users’ hard drives. Some folks fear that cookies
can damage their computers by infecting their computers with viruses
or by storing such huge amounts of data on their hard drives that their
computers no longer work properly.

126 Part II: Creating Dynamic Web Pages

11_576593 ch06.qxd 10/12/04 10:00 PM Page 126

Fortunately, cookies come with built-in safeguards against both these
threats. No matter whether you use JavaScript or some other language,
you can’t get past the following common-sense limits that Web browsers
impose:

• Where cookies are placed: Internet Explorer 6.x running on
Windows XP, for example, stores cookies as individual text files
and places them in the following directory:

C:\Documents and Settings\Owner\Cookies

Netscape Navigator 7.0 running on Windows XP bunches cookies
together in a single file, called cookies.txt, and places that file in
a random-generated directory name similar to the following:

C:\Documents and Settings\Owner\Application Data\Mozilla\profiles\default\
klambsdn.slt

• How large cookie files can be: Both Internet Explorer and
Netscape Navigator limit cookie files to 4K.

• How many cookies any given Web site can place on a user’s hard
drive: Both Internet Explorer and Netscape Navigator set the limit
at 20 cookies per site and set an overall total of 300 cookies per
browser.

• Which sites have access to cookies: Cookie visibility is configurable.
(You see how to configure cookie access in the “Configuring cookie
support” section in this chapter.)

� Cookies enable Web developers to gather detailed marketing informa-
tion about users without those users’ knowledge or consent. Using
cookies in conjunction with client-side applications like CGI programs
and Java applets, Web developers can save, examine, and interpret virtu-
ally every interaction between a user and a Web site. Every click, every
keystroke, every credit card purchase can be used to customize what a
user sees the next time he visits a cookie-enabled Web site.

Fortunately, users who feel uncomfortable with the Big Brother–like aspect of
cookies have a choice: They can configure their browsers to limit cookie sup-
port or turn it off altogether. (You see an example of configuring cookies in
the very next section.)

Looking at cookies from
a user’s perspective
One of the best ways to understand how cookies work is to take a look at
them from a user’s perspective. In this section, I show you how to configure
cookie support in your browser, visit a cookie-enabled site, and examine an

127Chapter 6: That’s How the Cookie Crumbles

11_576593 ch06.qxd 10/12/04 10:00 PM Page 127

actual cookie file. When you finish, you have all the background you need to
be able to jump right into making cookies with JavaScript code.

Configuring cookie support
Netscape Navigator and Internet Explorer both allow users to specify a level
of cookie support.

In Netscape Navigator 7.x, you configure cookie support by following these
steps:

1. Choose Edit➪Preferences➪Privacy & Security➪Cookies.

2. Select one of the following options in the Cookies dialog box that
appears, as shown in Figure 6-1:

• Disable Cookies.

• Enable Cookies for the Originating Web Site Only (as opposed to
any server in the originating domain).

• Enable Cookies Based on Customizable Privacy Settings. (Click the
View button to set privacy settings based on the published privacy
policies of cookie-setting sites.)

• Enable All Cookies.

Figure 6-1:
Configuring

cookie
support in
Netscape
Navigator

7.x.

128 Part II: Creating Dynamic Web Pages

11_576593 ch06.qxd 10/12/04 10:00 PM Page 128

Click the Manage Stored Cookies button in the Cookies dialog box to view the
cookies stored on your computer.

As you might guess, users who disable cookie support can’t benefit from the
cookie-accessing scripts that you create with JavaScript. One way to alert
users that they need to turn on cookie support to get the most out of your
site is to tell them! Just include the following sentence at the top of your
cookie-enabled Web pages: This Web site requires you to turn on
cookie support.

To configure cookie support in Internet Explorer, follow these steps:

1. Choose Tools➪Internet Options.

2. In the Internet Options dialog box that appears, click the Privacy tab.

3. Move the slider on the left side of the Privacy tab from all the way up
(the Block All Cookies option, as shown in Figure 6-2) to all the way
down (the Accept All Cookies option).

The interim options are High, Medium High, Medium, and Low. You can
customize any option by clicking the Advanced button.

Figure 6-2:
Configuring

cookie
support in

Internet
Explorer.

129Chapter 6: That’s How the Cookie Crumbles

11_576593 ch06.qxd 10/12/04 10:00 PM Page 129

Visiting a cookie-enabled site
When your browser is configured to accept cookies, you can surf to cookie-
enabled sites with impunity. Figure 6-3 shows how a cookie can be used to
recognize visitors and present them with custom greetings and options.
(You find out how to create a similar custom greeting later in this chapter, in
“Displaying content based on cookie contents: The repeat-visitor script.”)

Exploring a cookie file
This section shows you what goes on underneath the covers when you visit a
cookie-enabled site.

In Netscape Navigator 7.1, you can examine the cookie file by choosing
Edit➪Preferences➪Privacy & Security➪Cookies and clicking the Manage
Stored Cookies button. The resulting Cookie Manager dialog box appears,
as shown in Figure 6-4.

You can get your hands on the raw cookie file that Netscape Navigator gener-
ates by loading the file C:\Documents and Settings\Owner\Application
Data\Mozilla\profiles\defalt\klambsdn.slt\cookies.txt (which is
the text file in which Netscape Navigator 7.1 stores cookies) into your favorite
editor.

Figure 6-3:
The results
of a cookie:

a cus-
tomized
greeting
from the

folks
at Amazon.

com.

130 Part II: Creating Dynamic Web Pages

11_576593 ch06.qxd 10/12/04 10:00 PM Page 130

Internet Explorer stores individually generated cookie files in the following
directory: C:\Documents and Settings\userName\Cookies. Cookie file-
names take the form of userName@domain[timesAccessed].txt. For exam-
ple, on my machine, the following file exists after a visit to Amazon.com:

C:\Documents and Settings\Owner\Cookies\owner@amazon[1].txt

You can also type JavaScript:alert(document.cookie); in the Address bar of
Internet Explorer or Netscape Navigator after you load a Web page. When you
click Go, you see a pop-up window containing all the cookies associated with
that page.

Saving and Retrieving User Information
Working with cookies involves two distinct operations: creating, or setting, a
cookie; and accessing the created cookie. Typically, you create a cookie only
once, the first time a user visits your site. After that, you can access the cookie
every time the user revisits your site or as often as you like. The following
sections show you how.

Figure 6-4:
Taking a

look inside
one of the

cookies set
by the www.

amazon.
com

domain.

131Chapter 6: That’s How the Cookie Crumbles

11_576593 ch06.qxd 10/12/04 10:00 PM Page 131

Setting a cookie
The cookie property of the document object holds all the cookies associated
with a document.

To create and set a cookie, you must define a variable/value pair that repre-
sents the name of the cookie and the cookie’s content (name=value).
Because cookie values can’t contain semicolons, commas, or white space, I
recommend using the built-in JavaScript escape() function when storing a
cookie’s value and using the built-in JavaScript unescape() function when
retrieving a cookie’s value. (The escape() function encodes any semicolons,
commas, and white space that exist in a string, and the unescape() function
reconstitutes them.) Other than this restriction, a cookie value can contain
just about anything you like! (Some programmers come up with fancy encryp-
tion schemes, but others stick with simple text-based strings.)

In addition to the mandatory name and value, you might define optional,
semicolon-delimited attributes for a cookie (see Table 6-1).

Table 6-1 JavaScript Cookie Attributes
Attribute Description

expires=expirationDate; The date, in milliseconds, after which the
cookie expires (and is deleted by the Web
browser). Expiration dates are normally
stored in the standard Greenwich Mean
Time format. (You format a date in GMT by
using the toGMTString() method of the
Date object.)

path=path; The path of the CGI program to which the
cookie contents can be transmitted. The
default is the root path of the originating
server.

domain=domain; The domain (for example, www.acme.com)
to which a cookie can be transmitted.
Restricted by default. (See the “Cookie
security issues” section for details.)

secure Specifies that this cookie can be transmitted
only by a secure protocol such as https.

132 Part II: Creating Dynamic Web Pages

11_576593 ch06.qxd 10/12/04 10:00 PM Page 132

To create a cookie and store it on the user’s hard drive, all you need to do is
set the document.cookie property equal to a string containing the required
name/value pair and any optional, semicolon-delimited cookie attributes, as
shown in the following code snippet (taken from Listing 6-1, which appears
later in this chapter):

document.cookie = name + “=” + escape(value) +
((expires == null) ? “” : (“; expires=” + expires.toGMTString())) +
((path == null) ? “” : (“; path=” + path)) +
((domain == null) ? “” : (“; domain=” + domain)) +
((secure == true) ? “; secure” : “”);

The cryptic, odd-looking syntax — (condition) ? something :
somethingElse — is JavaScript shorthand for “if this condition is true,
then add something. Otherwise, add somethingElse.”

For example, here’s how the JavaScript interpreter sees the JavaScript
phrase:

((expires == null) ? “” : (“; expires=” + expires.toGMTString()))

It thinks to itself “If the value for expires is null, add “” to
the document.cookie property. Otherwise, add the string
expires=someGMTFormattedDate to the document.cookie property.”

You can find out more about the conditional ?: operator in Chapter 3.

Accessing a cookie
You can set attributes for a cookie by using JavaScript (specifically, the
expires, path, domain, and secure attributes, as I describe in the section
“Setting a cookie”), but you can’t access those attributes by using JavaScript.
In contrast, you can access a cookie’s value.

This seemingly odd state of affairs — being able to set attributes that you
can’t retrieve — actually makes sense when you think about it. All these
attributes are security-related, and preventing them from being altered helps
maintain cookies’ integrity and safety. After you give out your cookies, only
the Web browser is privy to cookie attributes.

To access a cookie’s value, you query the cookie property associated with
the document object. (You see how to set the cookie property in “Setting a
cookie,” earlier in this chapter.)

133Chapter 6: That’s How the Cookie Crumbles

11_576593 ch06.qxd 10/12/04 10:00 PM Page 133

Check out the following JavaScript code snippet:

var endstr = document.cookie.indexOf(“;”, offset);
...

return unescape(document.cookie.substring(offset, endstr));

This code contains two statements:

� The first statement uses the indexOf() method to identify the portion
of the myCookie=userName; string between the = and the ; (in other
words, to identify the stored value of the userName string).

� The second statement unescapes the stored value of the userName
string. (Unescaping is computerese for decoding any special characters
encoded when the cookie was set.)

You can find a working copy of this code snippet in Listing 6-1, later in this
chapter.

Displaying content based on cookie
contents: The repeat-visitor script
You can create a script that registers a user by saving the user’s name to the
user’s hard drive by using a cookie. On subsequent visits to the site, the
script accesses the cookie from the user’s hard drive, recognizes the user’s
name, and uses the information to display a custom greeting. Figure 6-5
shows stage one of the repeat-visitor script where users must first register
their names.

In many real-life applications, you want to create and access cookies by using
a server-side technology, such as a CGI script. Because CGI scripting is
beyond the scope of this book, in this chapter I show you how to create and
access cookies with JavaScript instead. (The syntax between CGI scripting
languages and JavaScript differs, but the basic ways that you interact with
cookies are the same.)

After users register their names, as shown in Figure 6-5, they never see the
registration form again. Users can close their browsers, turn off their machines,
and go away on vacation for a week. When they return and attempt to access
the registration page again, the script recognizes that they’ve already regis-
tered and loads the For Registered Users Only page with a customized greeting
(see Figure 6-6).

134 Part II: Creating Dynamic Web Pages

11_576593 ch06.qxd 10/12/04 10:00 PM Page 134

Figure 6-6:
Escorting

your
registered
guest to a
reserved

page.

Figure 6-5:
Registering

user input
with

cookies.

135Chapter 6: That’s How the Cookie Crumbles

11_576593 ch06.qxd 10/12/04 10:00 PM Page 135

I implemented the repeat-visitor script in two parts based on the two actions
in Figure 6-5 and Figure 6-6:

� Cookie Example I (For Unregistered Users page): This script registers
a user’s name, stores a cookie on that user’s machine, and loads the For
Registered Users Only page.

� Cookie Example II (For Registered Users Only page): This script
accesses the cookie and displays a custom greeting.

When you create a cookie, you specify an expiration date. After the specified
expiration date, the cookie can no longer be accessed. An expiration of the
null value marks a cookie as transient. (Transient cookies stay around in
memory only as long as the user’s browser session lasts; they aren’t saved to
the user’s hard drive.) In the example in Listing 6-1, you see an expiration
date of one year from the time the cookie is created.

The Cookie Example I and Cookie Example II scripts are shown in Listings 6-1
and 6-2, respectively. You can find them in the list0601.htm and
list0602.htm files on the companion CD-ROM.

Listing 6-1: Cookie Example I: The Registration Form

<HTML>
<HEAD><TITLE>Cookie Example I: The Registration Page (From JavaScript For

Dummies, 4th Edition)</TITLE>

<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>

<!-- Begin hiding

function getCookieVal (offset) {

// This function returns the portion of the
// “myCookie=userName” string
// between the = and the ;
var endstr = document.cookie.indexOf (“;”, offset);

if (endstr == -1) {
endstr = document.cookie.length;

}

return unescape(document.cookie.substring(offset, endstr));
}

function getCookie (cookieName) {

// You have to pick apart the cookie text. To do this,
// You start by figuring out how many characters are
// in the string “myCookie=”

136 Part II: Creating Dynamic Web Pages

11_576593 ch06.qxd 10/12/04 10:00 PM Page 136

var arg = cookieName + “=”;
var argLength = arg.length;

// Now find out how long the entire cookie string is
var cookieLength = document.cookie.length;

// If cookies were stored as objects,
// life would be much easier!
// As it is, you must step through the contents
// of a cookie character
// by character to retrieve what is stored there.

var i = 0;

// While the “i” counter is less than the number
// of characters in the cookie . . .
while (i < cookieLength) {

// Offset the “j” counter by the number of characters
// in “myCookie=”.
var j = i + argLength;

// If you find “myCookie=” in the cookie contents
if (document.cookie.substring(i, j) == arg) {

// return the value associated with “myCookie=”
return getCookieVal(j)

}
if (i == 0) {

break
}

}
return null;

}
function setCookie(name, value) {

// Capture all the arguments passed to the
// setCookie() function.

var argv = setCookie.arguments;

// Determine the number of arguments passed into
// this function
var argc = setCookie.arguments.length;

// You expect the third argument passed in to
// be the expiration date.
// If there isn’t a third argument, set the expires
// variable to null.
// (An expiration date of null marks a cookie as
// transient. Transient cookies are not saved to the
// user’s hard drive.)
var expires = (argc > 2) ? argv[2] : null;

(continued)

137Chapter 6: That’s How the Cookie Crumbles

11_576593 ch06.qxd 10/12/04 10:00 PM Page 137

Listing 6-1 (continued)

// You expect the fourth argument passed in to be
// the path.
// If there isn’t a fourth argument, set the
// path variable to null.
var path = (argc > 3) ? argv[3] : null;

// You expect the fifth argument passed in to be
// the domain.
// If there isn’t a fifth argument, set the
// domain variable to null.
var domain = (argc > 4) ? argv[4] : null;

// You expect the sixth argument passed in to be
// true or false,
// depending on whether this cookie is secure
// (can be transmitted
// only to a secure server via https) or not.
// If there isn’t a sixth argument, set the
// secure variable to false.
var secure = (argc > 5) ? argv[5] : false;

// Set the cookie.
document.cookie = name + “=” + escape(value) +

((expires == null) ? “” : (“; expires=” + expires.toGMTString())) +
((path == null) ? “” : (“; path=” + path)) +
((domain == null) ? “” : (“; domain=” + domain)) +
((secure == true) ? “; secure” : “”);

}

function register(userName, value) {

if (userName == “” || userName == null) {
// The name is missing, so register this user as “Unknown User.”
userName = “Unknown User”

}

// If no cookie called ‘MyCookie’ exists . . .
if(getCookie(‘myCookie’) == null) {

// Set the expiration date to today.
var expdate = new Date()

// Set the expiration date (which JavaScript
// stores as milliseconds)
// to a date exactly one year in the future.
expdate.setTime(expdate.getTime() + (1000 * 60 * 60 * 24 * 365));

setCookie(‘myCookie’, userName, expdate);
alert (“Thank you for registering, “ + userName + “! Click OK to enter

the registered portion of my site.”);

138 Part II: Creating Dynamic Web Pages

11_576593 ch06.qxd 10/12/04 10:00 PM Page 138

// Whisk the user to the page reserved
// for registered users.
location.href = “list0602.htm”

}
}

///
// This code checks to see whether a cookie named ‘myCookie’
// exists on the user’s machine.
//
// If it does, the user has already registered, so whisk
// the user to registered-users-only portion of the site.
//
// If no cookie called ‘myCookie’ exists on the user’s
// machine, ask the user to register.
//

// If the “myCookie” cookie exists . . .

if(getCookie(‘myCookie’) != null) {

// Then redirect the user’s browser to the
// password-protected page called “list0602.htm”

location.href=”list0602.htm”
}

// End hiding -->
</SCRIPT>
</HEAD>

<BODY>
//#2 (from here to the closing </BODY> tag)
<H1>Cookie Example I</H1>

<FORM NAME=”loginForm”>
You must register before you can visit the rest of my site. To register, enter

your full name; then click the Register button.
<P>
<INPUT TYPE=”text” NAME=”fullName” SIZE=35>

<INPUT TYPE=”button” VALUE=”Register”

onClick=”register(loginForm.fullName.value)”>
</FORM>
</BODY>
</HTML>

139Chapter 6: That’s How the Cookie Crumbles

11_576593 ch06.qxd 10/12/04 10:00 PM Page 139

Here’s a quick run-down on how the JavaScript interpreter handles the code
in Listing 6-1:

1. The interpreter first checks to see whether a cookie named myCookie
exists. If such a cookie does exist, the interpreter — understanding that
this user has previously registered — loads list0602.htm.

2. If no such cookie exists, the interpreter loads the registration page, com-
plete with an input text box and a Register button.

3. When a user clicks the Register button, the interpreter begins executing
the register() function, which in turn invokes the setCookie() method
to store a cookie on the user’s machine. The cookie contains the user’s
name and an expiration date.

4. After the register() function stores the cookie, the register() func-
tion loads the For Registered Users Only page.

Check out Listing 6-2 to see an example of how to access a cookie to create
and display a custom greeting.

Listing 6-2: Cookie Example II: Displaying the Custom Greeting

<HTML>
<HEAD><TITLE>Cookie Example II: The Custom Greeting (From JavaScript For

Dummies, 4th Edition)</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

<!-- Begin hiding

function getCookieVal (offset) {
var endstr = document.cookie.indexOf (“;”, offset);
if (endstr == -1) {

endstr = document.cookie.length;
}

return unescape(document.cookie.substring(offset, endstr));
}

function getCookie (name) {

var arg = name + “=”;

var argLength = arg.length;
var cookieLength = document.cookie.length;

140 Part II: Creating Dynamic Web Pages

11_576593 ch06.qxd 10/12/04 10:00 PM Page 140

var i = 0;
while (i < cookieLength) {

var j = i + argLength;
if (document.cookie.substring(i, j) == arg) {

return getCookieVal(j)
}
if (i == 0) {

break
}

}
return null;

}

//
// This code checks to see whether a cookie named
// ‘myCookie’ exists on the user’s machine.
//
// If it does, the user has already logged in with a valid
// userID and password, so display the site; otherwise,
// display an error.
//

// If the “myCookie” cookie exists . . .

// #1 (down to document.write(documentText)

var nameOfVisitor = getCookie(‘myCookie’)

insert // #2 (down to closing brace associated with if statement)
if(nameOfVisitor != null) {

var documentText = “<BODY><H1>Cookie Example II</H1>Welcome to the
registered portion of my site, “

documentText += nameOfVisitor
documentText += “!</BODY>”

}

insert // #3 (down to closing brace associated with else statement)
else {

var documentText = “<BODY><H1>Cookie Example II</H1>Sorry! Only registered
users can access this page.</BODY>”

}

document.write(documentText)

// End hiding -->
</SCRIPT>
</HEAD>
</HTML>

141Chapter 6: That’s How the Cookie Crumbles

11_576593 ch06.qxd 10/12/04 10:00 PM Page 141

In Listing 6-2, here’s what’s going on:

1. The JavaScript interpreter looks for a cookie named myCookie on the
user’s machine.

2. If a cookie named myCookie exists, the JavaScript interpreter constructs
and displays a custom greeting with the registered user’s name.

3. If no such cookie exists, the JavaScript interpreter constructs an error
message.

142 Part II: Creating Dynamic Web Pages

You can’t expire me . . . I quit!
You can’t delete a cookie directly by using JavaScript for the simple reason that only browsers can
actually write to the visitor’s hard drive. (It’s this security measure that prevents cookies from being
able to wreak havoc on users’ hard drives.)

What you can do in JavaScript is to alter a cookie’s expiration date to a date far in the past. Doing
so causes the Web browser to delete the newly expired cookie automatically.

function deleteCookie () {
var expired = new Date();
// You can’t delete a cookie file directly from the user’s
// machine using JavaScript, so mark it as expired by
// setting the expiration date to a date in the past.

// First, set the exp variable to a date in the past . . .
expired.setTime (expired.getTime() - 1000000000);

// Then, get the cookie
var cookieValue = getCookie (‘myCookie’);

// Finally, set the cookie’s expiration date to the long-past date.
document.cookie = ‘myCookie’ + “=” + cookieValue + “;

expires=” + expired.toGMTString();
}

11_576593 ch06.qxd 10/12/04 10:00 PM Page 142

Chapter 7

Working with Browser Windows
and Frames

In This Chapter
� Using JavaScript to open and close pop-up windows

� Positioning content inside windows

� Sharing information between frames with JavaScript

Browser windows and frames are the lenses through which your users
view your Web page content.

As a Web page designer, you can choose to create Web pages that open in a
single browser window, which is the standard approach. But with JavaScript,
you can do much more. You can display content in separate windows and
close those windows automatically. You can even display multiple HTML
documents inside a single browser window by using frames, and then share
information between those frames by using JavaScript.

By using JavaScript, you can create all kinds of sophisticated window and
frame effects. This chapter shows you how.

Whether to include HTML frames in your Web site is a personal design decision.
Some folks love frames because they not only allow you to create effective
navigation structures, they also allow you to provide hyperlinks to other
sites while discouraging users from surfing away to those hyperlinked sites
and abandoning your site. The downside? Frames can be complicated to
implement, and some people dislike the fact that they hide URL information.
(Basically, the URL for a link that’s open in a frame doesn’t appear in the
Address bar of the browser.) To see the URL for a link opened in a frame,
for example, you can’t just click the link; you must right-click and select
Properties (Internet Explorer) or This Frame➪View Page Info (Navigator).
If you do decide to implement frames, however, JavaScript can help you
make the most effective use of them.

12_576593 ch07.qxd 10/12/04 10:00 PM Page 143

Working with Browser Windows
One browser window per Web page is the basic, bare-bones approach to Web
development — and for many applications, this approach works just fine. But
sometimes you want to display more than one window. For example, imagine
you’re a teacher creating a language-arts Web site. You might want to include
hyperlinks to vocabulary words so that when your visitors click one of the
hyperlinks, the dictionary definition of the hyperlinked word appears in a
separate pop-up window.

If you do decide to create a Web page that displays more than one browser
window, you need to know how to manipulate the extra windows. For exam-
ple, you need to know how to position content within the extra windows and
close the extra windows. In this section, I show you how to open and manipu-
late multiple windows from a single Web page.

Displaying new windows — called pop-up windows or just plain pop-ups — can
be annoying to your users, so use this skill very sparingly. Also, keep in mind
that many users purchase or download free third-party pop-up-blocker soft-
ware (such as the Google utility that you can find for free at http://toolbar.
google.com) or turn off JavaScript support in their browsers to avoid pop-
ups. When they surf to your site, these users don’t see your handiwork.

Opening and closing new browser windows
One popular school of thought when it comes to Web design is to do every-
thing you can (within reason, of course) to keep visitors at your site after
they find it. For example, adding hypertext links that lead to other sites —
although useful — might backfire by scooting your visitors off to other people’s
Web sites before they’ve really looked at yours. After all, who knows when
(or whether) your visitors will return?

One remedy for this situation is to make your page’s HTML links open the
next site in a new browser window. Visitors get to surf freely from your site
to others, as appropriate, but without ever leaving your site. It’s a win-win
situation! Take a look at Figures 7-1 and 7-2 to see what I mean.

In Figure 7-2, you see how creating a new window leaves the original browser
window intact. (Clicking the Close the Window button causes the newly
opened window to disappear.)

144 Part II: Creating Dynamic Web Pages

12_576593 ch07.qxd 10/12/04 10:00 PM Page 144

Figure 7-2:
Loading a
URL into a

separate
window

keeps your
visitor close

to home.

Figure 7-1:
Clicking the

Open a
Window

button
opens a

window you
can prefill

with a link.

145Chapter 7: Working with Browser Windows and Frames

12_576593 ch07.qxd 10/12/04 10:00 PM Page 145

Creating such a new window is mighty easy in JavaScript. Listing 7-1 shows
you how.

To experiment with the code in Listing 7-1 in your own browser, open the
list0701.htm file that you find on the companion CD.

Listing 7-1: Creating (And Destroying) a New Browser Window

<SCRIPT LANGUAGE=”JavaScript”>

var newWindow = null;

function popItUp() {
newWindow = open(“list0702.htm”, “secondWindow”,

“scrollbars,resizable,width=500,height=400”);
}

function shutItDown() {
if (newWindow && !newWindow.closed) {

newWindow.close();
}

}

</SCRIPT>

To create a new browser window and load it with a new document automati-
cally, you need to use the open() method associated with the window object,
as shown in Listing 7-1. As you can see, the open() method accepts three
parameters:

� The URL that you want to load into the new window (in this case,
list0702.htm)

� The name for this new window (in this example, secondWindow)

� A string of configuration options

In this example, the window that you create has scroll bars, has a user-
resizing option, and appears with initial dimensions of 500 x 400 pixels. (A
quick peek at Figure 7-1 shows you the visible scroll bars. You can verify the
other characteristics by loading the file list0701.htm from the companion
CD in your own browser.)

To close an open window, all you need to do is invoke the window.close()
method by using the name of the open window, like so: newWindow.close();.

146 Part II: Creating Dynamic Web Pages

12_576593 ch07.qxd 10/12/04 10:00 PM Page 146

To see a full description of the open() method, check out the following
Web site:

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/
reference/methods/open_0.asp

Controlling the appearance
of browser windows
In this section, I show you how to customize the windows that you create —
specifically, how to create multiple windows and how to position new windows
with respect to existing windows.

Creating multiple windows
Creating multiple windows by using JavaScript is almost as easy as creating a
single window. The only difference? To create multiple windows, you want to
create a custom function that allows you to “rubber-stamp” as many windows
as you want. The code in Listing 7-2 shows you how.

Listing 7-2: Using a Custom Function to Create Multiple Browser
Windows

<SCRIPT LANGUAGE=”JavaScript”>

var newWindow = null;

function popItUp(win) {
var windowFile = win + “.htm”
newWindow = open(windowFile, win,

“scrollbars,resizable,width=500,height=400”);
}

</SCRIPT>

</HEAD>
<BODY>

<H2>Opening multiple browser windows is easy when you use a function that takes
a parameter.</H2>

<FORM>
<INPUT TYPE=”button” VALUE=”Open window #1” onClick=”popItUp(‘one’)”>
<INPUT TYPE=”button” VALUE=”Open window #2” onClick=”popItUp(‘two’)”>
<INPUT TYPE=”button” VALUE=”Open window #3” onClick=”popItUp(‘three’)”>
</FORM>

147Chapter 7: Working with Browser Windows and Frames

12_576593 ch07.qxd 10/12/04 10:00 PM Page 147

The code in Listing 7-2 defines a function called popItUp() that takes a
single parameter. When a user clicks the Open Window #1 button, the ‘one’
string is sent to the popItUp() function. The popItUp() function uses this
incoming parameter to identify the name of the window (one) as well as the
HTML file to open in the window (one.htm).

You can experiment with the code in Listing 7-2 in your own browser by
opening the list0702.htm file, which you find on the companion CD.

Positioning new windows
When you open a new browser window, the browser decides where to place
that window, as shown previously in Figure 7-2. However, you can tell the
browser exactly where to put it — by using JavaScript, of course!

The following code shows you one way to do just that:

var leftPosition = screen.width/2

var newWindow = window.open(“one.htm”, “secondWindow”,
“width=225,height=200,left=” + leftPosition + “,top=0”)

The window placement positions that you can control are left and top. The
JavaScript code that you see here calculates the value for the left position —
in this case, the calculation is equal to half the screen width. The calculated
value is stored in the variable leftPosition and used as the value of the
left attribute expected by the window.open() function. The upshot? The
left side of the newly displayed window appears exactly halfway across the
screen.

Working with Frames
Scripted frames are a valuable addition to any Web developer’s tool belt. By
using a combination of HTML frames and JavaScript, you can present a static,
clickable table of contents on one side of a page; then, on the other side of
the page, you can present the text that corresponds with each table of con-
tents entry.

Check out Figure 7-5 to see an example of a simple framed table of contents
on the left side of the page and content on the right.

One of the benefits of frames is that they allow you to display different HTML
files independently from one another. So, for example, as Figure 7-3 shows,
the left frame stays visible — even if the user scrolls the right frame. Plus,
clicking a link in the frame on the left automatically loads the appropriate
content in the frame you see on the right.

148 Part II: Creating Dynamic Web Pages

12_576593 ch07.qxd 10/12/04 10:00 PM Page 148

This approach, which I explain in the following sections, helps users navigate
through the site quickly and is very useful for organizing small sites — or
even larger sites that contain mostly text.

Creating HTML frames
Because this book doesn’t focus on HTML, I don’t go into great detail on cre-
ating HTML frames. Instead, I show you the basic syntax you need to know to
understand how JavaScript and the document object model fit into the picture.
(If you want to know more about creating HTML frames, you might want to
pick up a copy of HTML 4 For Dummies, 4th Edition, by Ed Tittel and Natanya
Pitts and published by Wiley Publishing, Inc.) Listing 7-3 shows you an
excerpt of the code you need to create frames, using the HTM files to hold
the frames together. The list0703.htm file pulls together the pub_l.htm file
(left frame’s table of contents) and the pub_c.htm file (right frame’s content).

You can view the complete working example of the code presented in this
section by opening these files, which you can find on the companion CD:
list0703.htm, pub_l.htm, and pub_c.htm.

Figure 7-3:
Using

frames to
show a site

index and
the related

content.

149Chapter 7: Working with Browser Windows and Frames

12_576593 ch07.qxd 10/12/04 10:00 PM Page 149

Listing 7-3: HTML Syntax for Creating Index and Content Frames

. . .
<FRAMESET COLS=”125, *”

BORDER=”0”
FRAMESPACING=”0”
FRAMEBORDER=”NO”>

// Defining the source file, name, and display details
// for the left frame
<FRAME SRC=”pub_l.htm”

NAME=”leftnav”
SCROLLING=”AUTO”
NORESIZE MARGINHEIGHT=”0”
MARGINWIDTH=”0”
LEFTMARGIN=”0”
TOPMARGIN=”0”
TARGET=”body”>

// Defining the source file, name, and display details
// for the right frame
<FRAME SRC=”pub_c.htm”

NAME=”content”
SCROLLING=”AUTO”
NORESIZE
MARGINHEIGHT=”0”
MARGINWIDTH=”0”
LEFTMARGIN=”0”
TOPMARGIN=”0”
TARGET=”body”>

</FRAMESET>
. . .

Take a good look at the HTML code in Listing 7-3 to find the two frame
definitions:

� leftnav (which corresponds to the HTML file pub_l.htm)

� content (which corresponds to the HTML file pub_c.htm)

The file pub_l.htm contains a list of content links (in other words, a table of
contents), and the file pub_c.htm contains corresponding text. Figures 7-4
and 7-5 show you what these two files look like when loaded separately into
Internet Explorer. (Refer to Figure 7-3 to see what they look like connected.)

Looking at pages separately, before you put them into frames, helps you
understand how to combine them for the best effect.

150 Part II: Creating Dynamic Web Pages

12_576593 ch07.qxd 10/12/04 10:00 PM Page 150

Figure 7-5:
The text that
correspond

s to the
table of

contents
shown in

Figure 7-4.

Figure 7-4:
The table of
contents as

it appears
by itself.

151Chapter 7: Working with Browser Windows and Frames

12_576593 ch07.qxd 10/12/04 10:00 PM Page 151

Sharing data between frames
In the example in this section, the content in the frame on the right reloads
based on what a user clicks in the left frame. So, naturally, the code that’s
responsible for the text reload can be found in the source code for the left
frame, pub_l.htm. Take a look at the pertinent syntax shown in Listing 7-4.
This code snippet, from pub_l.htm, connects the table of contents links to
the appropriate content.

Listing 7-4: Connecting the Index Links to the Content Headings

// When a user clicks the Introduction link,
// the anchor located at pro_c.htm#top loads into the
// frame named content

<A HREF=”pro_c.htm#top” TARGET=”content”
>Introduction

. . .

// When a user clicks the Why Can’t I Get Published? link,
// the anchor located at pro_c.htm#cantget loads into the
// frame named content

<A HREF=”pub_c.htm#cantget” TARGET=”content”
>Why can’t I get published?
. . .
<A HREF=”pub_c.htm#rescue” TARGET=”content”
>E-publishing to the rescue!
. . .
<A HREF=”pub_c.htm#types” TARGET=”content”
>The 3 types of e-publishers
. . .
<A HREF=”pub_c.htm#choose” TARGET=”content”
>Choosing an e-publisher
. . .
<A HREF=”pub_c.htm#epubGuide” TARGET=”content”
>What Every Writer MUST Know About E-Publishing
. . .
// When a user clicks the “emilyv.com home” link, a
// new page (home.htm) replaces the current page

<A HREF=”home.htm” TARGET=”_top”
>emilyv.com home

Each of the links that I define in Listing 7-4 contains a value for the TARGET
attribute. Except for the last link, the TARGET attribute is set to content — the
name of the frame on the right, which is defined in Listing 7-3, shown earlier
in this chapter. Assigning the name of a frame to the TARGET attribute of a
link causes that link to load in the named frame, just as you see in Figure 7-3,
shown previously.

152 Part II: Creating Dynamic Web Pages

12_576593 ch07.qxd 10/12/04 10:00 PM Page 152

You might want to handle the final link in the listing a bit differently. At the
bottom of Listing 7-4, you see that the last defined link assigns a value of
_top to the TARGET attribute. When a user clicks the emily.com Home link,
the page changes to the contents of home.htm.

_top is a built-in value that translates to “whatever the top-level window in
this window/frame hierarchy happens to be.” (The sidebar “Right on target”
in this chapter describes all the built-in values that you can specify for the
TARGET attribute.)

If you specify a value for TARGET that doesn’t match either a previously
defined frame name or one of the built-in values that you see in the sidebar
“Right on target,” the associated link loads into a brand-new window. So if
you expect a link to open in a frame and it pops up in a new window instead,
check your source code. Odds are you made a typo!

The example in this section shows you how to load the contents of one frame
based on a user’s clicking a link in another. To load two frames based on a
user’s clicking a link, you can create a JavaScript function similar to the
following:

function loadTwoFrames(leftURL, contentURL) {

// Loads the first passed-in URL
// into the container frame previously defined
// as “leftNav” in an HTML file such as the one
// you see in Listing 7-3

parent.leftNav.location.href=leftURL

153Chapter 7: Working with Browser Windows and Frames

Right on target
When you create a link (or an anchor, area,
base, or form) in HTML, you have the option of
specifying a value for the TARGET attribute
associated with these HTML elements. Valid
values for the TARGET attribute include any
previously named frame or window or one of
the following built-in values. (See Chapter 11 for
an example of specifying the _top value for the
TARGET attribute associated with a link.)

Value What Does It Mean?

_blank Open the link in a brand-new
window

_parent Open the link in this window or
frame’s parent window/frame

_self Open the link in this window or
frame

_top Open the link in the root window or
frame

12_576593 ch07.qxd 10/12/04 10:00 PM Page 153

// Loads the second passed-in URL
// into the container frame previously defined
// as “content”

parent.content.location.href=contentURL
}

Then pass the loadTwoFrames() function two URL strings. For example:

or

<INPUT TYPE=”button” VALUE=”Load Two Frames” onClick=”loadTwoFrames(‘some.htm’,
‘another.htm’)”>

154 Part II: Creating Dynamic Web Pages

Don’t fence me in!
Just as you can display other folks’ Web pages inside your frames, so those folks can display your
Web pages inside their frames.

But in some cases, you might want to prevent your site from being framed. For example, say you
spend weeks creating a beautiful, graphics-rich site optimized for a particular monitor size and
screen resolution. Then, say I come along and add a link to your site from mine — but I choose to
display your fabulous, pixel-perfect site by squeezing it into a tiny 2-x-2-inch frame! (Worse yet,
I’m a cat lover, so I surround the 2-x-2-inch frame with an image of my beloved Fifi — so your site
appears to be peeking out of my cat’s mouth.)

To prevent other sites from displaying your document in a frame, you can add the following short
script to your document’s head:

<HEAD>
. . .
<SCRIPT LANGUAGE=”JavaScript”>
<!-- Start hiding from non-JavaScript-support browsers

// If this page has been loaded into a frame...
if (top != self) {

// Replace the original framing page with the framed page
top.location.href = location.href;

}
// Stop hiding -->
</SCRIPT>
. . .
</HEAD>

12_576593 ch07.qxd 10/12/04 10:00 PM Page 154

Part III
Making Your Site

Easy For Visitors to
Navigate and Use

13_576593 pt03.qxd 10/12/04 9:59 PM Page 155

In this part . . .

In this part, you find practical ways to make your Web
pages easy for visitors to navigate and use. Chapter 8

shows you how to create rollovers, hotspots, and navigation
bars (fancy terms for graphic images that respond when
users click on or roll their mouses over those images). In
Chapter 9, you see how to create spiffy pull-down and slid-
ing menus. Chapter 10 demonstrates how you can describe
the contents of your site by adding a JavaScript site map,
and Chapter 11 rounds out this part by showing you how to
create tooltips — helpful hints that appear to your visitors
when they mouse over a designated area of your site.

13_576593 pt03.qxd 10/12/04 9:59 PM Page 156

Chapter 8

Creating Interactive Images
In This Chapter
� Creating slideshows and other simple animated effects

� Making images clickable by using JavaScript

� Combining clickable images to create interactive navigation bars

� Exploring JavaScript mouse event handlers

As anyone who’s surfed the Web can tell you, a good picture is worth a
thousand words. Images add visual punch to your site. They also let

you incorporate information that would be downright impossible to present
in any other way. (Can you imagine trying to describe a collection of antique
lamps without using photo images?)

Because images are represented as programmable objects in JavaScript, you
can go above and beyond the static image by creating interactive images —
images that respond appropriately when a user clicks or drags a mouse over
them. Read on for all the juicy details!

Creating Simple Animations
Typically, when you see a cool animation on a Web page, you’re looking at
one of the following:

� A Java applet: Java applets are small software applications written in
the Java programming language that your browser downloads from a
Web server to your machine when you load a page.

� A plug-in: A plug-in is special software that you can download that plugs
in to your browser and allows an application to execute inside a Web
page. Flash is one popular animation plug-in (from the good folks at
Macromedia).

14_576593 ch08.qxd 10/12/04 9:59 PM Page 157

� An animated GIF: GIF stands for graphics interchange format, and it
describes a special way of compressing image files. Regular GIF files are
used to transfer images on the Web. Animated GIFs are a bunch of regular
GIFs packaged together — much like those cartoon flipbooks that you
might have had as a child, where each page contains a separate drawing.
When you flip the flipbook pages (or load an animated GIF), those sepa-
rate images flow from one to another to create an animated effect.

Animated GIFs are a popular choice for Web-based animations because

• Most browsers support them.

• No separate download is required (unlike plug-ins).

• They don’t hog a lot of client resources (unlike some Java applets).

You can create simple animations with JavaScript, as well. You might want to
do so for two very good reasons:

� Creating JavaScript animations saves your users time. (JavaScript ani-
mations don’t require any downloads, either upfront like plug-ins or
during animation execution like applets.)

� Creating JavaScript animations saves you the trouble of figuring out
another programming language, such as Java, or figuring out how to
use an animation construction tool, such as Macromedia’s Fireworks.

The downside? Because JavaScript wasn’t designed specifically to create ani-
mations, it isn’t optimized for this purpose — meaning that specially built
functions and the compression techniques necessary for hard-core animation
execution don’t exist in JavaScript. In other words, JavaScript animations are
best kept simple. Fortunately, many times, simple animations are all you need!

In this section, I demonstrate the basis of all animations: the humble image.

You add an image to a Web page by including the HTML tag into your
HTML source code, like this:

For example, take a look at the HTML snippet shown in Listing 8-1, which
appears in full on the CD as the file list0801.htm.

Listing 8-1: Creating an Image Object with the HTML Tag

. . .
<IMG SRC=”splash.jpg” WIDTH=241 HEIGHT=208

TITLE=”Essential resources for the professional and aspiring writer”
ALT=”Writing for the Web splash image”

>

158 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 158

The code you see in Listing 8-1 accomplishes the following tasks:

� Inserts an image file named splash.jpg into a space 241 pixels wide by
208 pixels high using the SRC, HEIGHT, and WIDTH attributes of the
tag, respectively.

� Defines a tooltip message by using the TITLE attribute of the tag.

The contents of the TITLE attribute appear automatically when a user
running Microsoft Internet Explorer 6.x or Netscape Navigator 7.x
mouses over this image.

� Defines an alternative text description for the image by using the ALT
attribute of the tag.

The contents of the ALT attribute appear in browsers that can’t display
images, in browsers that have been configured not to display images,
and in situations where an image just plain doesn’t exist. Figure 8-1
shows you how the code in Listing 8-1 appears in Internet Explorer 6.0
with image loading turned off.

Figure 8-1:
Users who

disable
image

loading in
their

browsers
see the

contents of
the image’s

ALT or TITLE
attribute

instead of a
picture.

159Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 159

Check out Figure 8-1 to see how the line of HTML code in Listing 8-1 appears
in Internet Explorer 6.0. Placing your mouse cursor over an image in Internet
Explorer 6.0 or Netscape Navigator 7.1 displays the contents of the image’s
TITLE attribute.

As you can see from Figures 8-1 and 8-2, the TITLE attribute that you define
as part of the HTML tag provides a bit of interactivity. It displays a
helpful message automatically when a user running Internet Explorer 6.0 or
Netscape Navigator 7.1 mouses over the defined image.

But what if you want more interactivity? What if you want to display your
helpful message more discreetly — say, at the bottom of the window? (Some
professional Web designers consider this approach less confusing to Web
novices than creating a message that temporarily obscures everything
around the mouse pointer.) What if you want different parts of an image to
pop up different messages or respond to different mouse clicks?

160 Part III: Making Your Site Easy for Visitors to Navigate and Use

Picture this
One thing to keep in mind when you create
interactive images with JavaScript is that users
have the ability to turn off image loading in their
browsers. If you rely on an image to convey the
bulk of your page’s information and interactiv-
ity, and your users have configured their
browsers so that images don’t appear, your
page will be ineffective, to say the least!

If you’re wondering why a Web surfer would
choose not to see images, it’s because image
files are relatively large and take a long time to
download at modest connection speeds. Not
every user has a cable modem; plenty of users
are making do with 56K dial-up connections that
are subject to occasional cutoffs. Because
images are often gratuitous (yours won’t be, I’m
sure!), users without a lot of time to spend might
choose to turn off image loading to get their
online tasks accomplished in the shortest
amount of time.

These are the steps your users take to turn off
image loading:

Navigator users

1. Choose Edit➪Preferences.

2. Click the Privacy & Security option.

3. Click the Images option.

4. Select the Do Not Load Any Images check
box.

Internet Explorer users

1. Choose Tools➪Internet Options.

2. Click the Advanced tab.

3. Scroll down to Multimedia and deselect
the Show Pictures check box.

14_576593 ch08.qxd 10/12/04 9:59 PM Page 160

Well, you’re in luck: Those scenarios are tailor-made for JavaScript! As you
see in the following sections, making plain old HTML images interactive is a
simple matter of adding a few JavaScript event handlers.

Now you see it, now you don’t:
Turning images on and off
The simplest animation of all is an image that changes from its original view
and then changes back again. Take a look at Figures 8-3 and 8-4 to see how
my smiley face changes, thanks to the recursive invocation of the built-in
JavaScript function setTimeout().

The relevant code responsible for this simple animation is shown in Listing 8-2.
Check out the simple on/off animation by using image manipulation and the
built-in JavaScript setTimeout() function. If you want to load and experi-
ment with the animation example, use the file list0802.htm from the com-
panion CD.

Figure 8-2:
Displaying

an image by
using HTML.

161Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 161

Figure 8-4:
. . . changes

into a
surprised

face every
second.

Figure 8-3:
The neutral

face . . .

162 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 162

Listing 8-2: Creating a Simple Animation with JavaScript’s
setTimeout() Function

. . .
//Global variable declarations
var whichImg = 1
var nextImage

///
// The swap() function replaces the image
// associated with the first input
// parameter (id) with the image specified
// for the second input parameter (newSrc).
///

function swap(id, newSrc) {
var theImage = findImage(document, id, 0);
if (theImage) {

theImage.src = newSrc;
}

}

///
// This function swaps the current image
// for the incoming parameter newImage;
// then it calls itself every second,
// passing itself a different newImage
// each time. The result is a simple
// on/off animation.
///
function animate(newImage) {

swap(‘animatedFace’, newImage);

if (whichImg == 1) {
nextImage = “surprised.gif”
whichImg = 0

}
else {

nextImage = “neutral.gif”
whichImg = 1

}
//setTimeout() sets up the continuous swap
// that creates the animation.

setTimeout(“animate(nextImage)”, 1000)
}
. . .
// stop hiding -->
</SCRIPT>
</HEAD>

(continued)

163Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 163

Listing 8-2 (continued)

//The animate() function is called as soon as the page loads.
<BODY onLoad=”animate(‘surprised.gif’)”>
. . .
//The animation (image) dimensions are defined.

</BODY>
</HTML>

The JavaScript code in Listing 8-2 depends on two image files to create the
animation:

� neutral.gif: This image of a yellow square contains two black eyes
and a straight line for a mouth for the neutral look.

� surprised.gif: The image is the surprised face. (Okay, okay, it’s just a
smiley face with a big circle for a mouth instead of a straight line. It’s an
artist’s rendition!)

Here’s the order in which JavaScript interpreter steps through the code in
Listing 8-2 — a peek inside the interpreter’s mind, as it were:

1. The HTML tag names and defines the animation placeholder frame
(the spot on the page where the images appear alternately during the
animation).

In the tag, the name is animatedFace, and the dimensions are
104 x 80 pixels.

2. As soon as the page loads, the onLoad event handler executes the ani-
mate() function and sends it the name of a source file (surprised.gif,
to be exact).

3. The animate() function calls the swap() function to swap out the
source file associated with the animatedFace placeholder frame.

Now, instead of the original neutral.gif, the animatedFace place-
holder holds surprised.gif.

4. By using the globally defined variables whichImg and nextImage, the
animate() function logs which image it just swapped out and queues
up the next image by calling the setTimeout() function.

The setTimeout() function calls the animate() function every second,
alternately passing animate() the neutral.gif and surprised.gif
filenames.

164 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 164

Slideshow Bob: Displaying
a series of images
Sometimes you want to set up a slideshow by using JavaScript: a way for your
users to click a button and see a different image, or slide, without necessarily
popping to another Web page.

Figures 8-5 through 8-7 show you the process of clicking a button to change
the image from one view to another.

Figure 8-5:
A neutral

face
appears by

default as
soon as the
page loads.

165Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 165

Figure 8-7:
Keep

clicking the
buttons to

cycle
through the

images.

Figure 8-6:
Clicking the

Picture #1
button

automatic-
ally displays

the #1
image.

166 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 166

The JavaScript code that’s necessary to create the simple slideshow example
appears in Listing 8-3.

The code in Listing 8-3 is located on the companion CD in the list0803.htm
file.

Listing 8-3: Creating a User-Activated Slideshow

. . .

///
// This swap() function constructs a filename
// based on the input parameter and then sets
// the slideshow image’s source to that
// filename.
//
// Note: The initial image determines the size
// of the slideshow “frame”. Swapping to
// a larger image causes that larger image to
// be squeezed to fit the initial image “frame”.
///
function swap(newImage) {

var fileName = newImage.toString() + “.gif”
document.slideshow.src = fileName

}
// stop hiding -->
</SCRIPT>
</HEAD>

<BODY>
<H1>Slide show</H1>
This example shows you how to access and manipulate the source file associated

with an image using the onClick event handler and the
src property of a named image.

...

<!-- The initial image (a face) to display is specified here. -->

<P>

<!-- These three onClick event handlers call the swap() function to display the
user-selected image -->

<INPUT TYPE=”button” VALUE=”Picture #1” onClick=”swap(‘1’)”>
<INPUT TYPE=”button” VALUE=”Picture #2” onClick=”swap(‘2’)”>
<INPUT TYPE=”button” VALUE=”Picture #3” onClick=”swap(‘3’)”>
..

167Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 167

See the tag near the bottom of the Listing 8-3 code listing? That
tag defines the initial image that displays when this page first appears,
as shown in Figure 8-5, and names the placeholder for that initial image
slideshow.

When a user clicks any of the buttons — Picture #1, Picture #2, or Picture
#3 — that button’s onClick event handler springs into action and calls the
swap() function, passing the swap() function the appropriate number: 1, 2,
or 3. Inside the swap() function are just two lines of JavaScript code:

var fileName = newImage.toString() + “.gif”
document.slideshow.src = fileName

The first line creates a variable called fileName and then assigns to fileName
a string based on the parameter sent to swap() from the onClick event han-
dler. (You must use the toString() method to convert the value of newImage
to a string before you can tack on the .gif.) After the JavaScript interpreter
interprets this first line, fileName contains one of the following string values:
1.gif, 2.gif, or 3.gif. (These filenames correspond to actual GIF files located
on the companion CD.) The second line of the swap() function assigns this
new fileName to the built-in src property of the slideshow placeholder.
(You specify a particular image placed in a document by navigating from the
document object to the all object to the named Image object.)

Creating Rollovers, Hotspots,
and Navigation Bars

Interactive images help you communicate with your users quickly and easily.
Three of the most popular approaches to creating interactive images on the
Web are

� Rollovers: A rollover is an image that changes appearance when a user
rolls the cursor over it. Rollovers are typically associated with links, so
that when a user clicks a rollover, the user’s browser loads a new Web
page.

� Hotspots: A hotspot is similar to a rollover except that a hotspot refers
to an interactive portion of an image. You can carve up a single image to
create multiple hotspots.

� Navigation bars: Finally, a navigation bar is a group of links — typically
displayed as rollovers or as hotspots — that allow your users to surf to
all the pages of your Web site.

168 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 168

The following sections show you how to create these cool effects with
JavaScript.

Creating a simple rollover
The term rollover describes an image that changes color, font, size, or some
other aspect when a user rolls over it with the mouse pointer. Figure 8-8
shows the E-Publishing button as it appears (white) when first loaded into
Internet Explorer.

As you can see in Figure 8-9, rolling the mouse over a navigation button that
you implement as a rollover provides a visual cue that helps users recognize
what they can expect when they click the mouse button. (The change in text
color from white to purple lets users know in no uncertain terms that they’re
hovering over a button!)

Rollovers are most often used to create navigation bars, but you can use
rollovers to make any graphic portion of your Web site respond to mouse
events.

Figure 8-8:
Using white

images for
the initial

version of
the button.

169Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 169

Creating a mouse rollover is fairly simple. Just follow this plan:

1. Select two images of precisely the same size: one to display by default,
and one to display in response to a mouseOver event.

One way to keep the two versions straight is to use on/off terminology.
From now on I refer to these images as the off image and the on image,
respectively, because one appears when your mouse is resting some-
where off the image and one when your mouse is on it.

You can get images one of two ways:

• You can use predesigned images. Many graphics tools come com-
plete with a library of predesigned images; you can also find images
online — some free, some for purchase.

• You can create your own images by using an image-creation tool,
such as Paint Shop Pro 6 or later. (You can find a trial copy of Paint
Shop Pro 6 on the companion CD-ROM.)

One popular approach is to create a navigation button that you like and
save it as the off image — then change the color of the button and imme-
diately save another copy as the on image.

Figure 8-9:
Contrasting

colors
respond

when
the mouse

rolls by.

170 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 170

Not graphically inclined? GoGraph offers freely downloadable icons and
graphics at www.gograph.com.

2. Create two JavaScript functions, one attached to the onMouseOver
event handler and one attached to the onMouseOut event handlers.

The following are two examples that use the custom swap() function to
swap the image named mkt_pic from the white version (mkt_w.gif) to
the purple version (mkt_p.gif).

<A HREF=”mkt.htm”
...

// Example #1: Swapping from white to purple on mouseOver
onMouseOver=”swap(‘mkt_pic’,’mkt_p.gif’);

// Example #2: Swapping from purple to white on mouseOut
onMouseOut=”swap(‘mkt_pic’,’mkt_w.gif’);
displayMsg(‘’); return true”

...
IMG NAME=”mkt_pic” SRC=”mkt_w.gif” WIDTH=”72”
HEIGHT=”12” BORDER=”0”>

You can find a working version of the code responsible for Figures 8-8
and 8-9 — which includes the swap() function as well as the following
JavaScript code — on the companion CD, in the file rollover.htm.

3. Add an optional (but recommended) JavaScript function that preloads
all of the images.

Preloading images helps ensure that when users mouse over images for
the first time, they don’t have to wait while additional images download
from the Web server one at a time.

I show you how these three steps work together in the following section,
where you see how to construct a typical navigation bar with rollover effects
step by step.

Creating navigation bars by
putting rollovers together
Navigation bars, such as the one shown previously in Figures 8-8 and 8-9, are
wonderful tools for helping your users find their way around your Web site.
Fortunately — because navigation bars are nothing more than a collection of
rollovers combined with links to different Web pages — they’re also pretty
easy to put together, as you see in the following sections.

The approach to navigation bar creation that I demonstrate in this chapter is
the old-fashioned, code-by-hand approach. Point-and-click visual tools, such
as Macromedia Dreamweaver, make the process of creating navigation bars
even more straightforward and painless.

171Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 171

Preloading images
You aren’t required to preload your rollover images, but doing so is a good idea.
Using preloaded images makes your rollovers work much more smoothly,
which in turn gives your visitors a much better impression of your site.

So, why is preloading images a good idea? By default, browsers fetch images
only when they’re needed for display the first time. So, by default, browsers
don’t bother to fetch on images until a user mouses onto a rollover for the
very first time. Unfortunately, if the user’s connection is slow or the Web
server is overloaded, that fetched image can take quite a while to arrive. In
the meantime, the browser display doesn’t change, and the user doesn’t get
to see the rollover effect.

Preloading all images helps ensure that users see your rollover effects right
away. To preload images, you simply create instances of the Image object by
using JavaScript, and then you fill those instances with the names of the image
files that you want to preload. You do all this as soon as the page loads; that
way, while the user is busy reading the text on your Web page, the images are
quietly loading in the background. By the time the user is ready to click an
image, all the on images are loaded in memory and ready to go!

I break down this next example in three chunks to help clarify what’s happen-
ing. Listing 8-4 shows you how to preload images by using a custom function
called, appropriately enough, preloadImages(). Watch the comments for
the stages of the process, which I outline following the listing.

Listing 8-4: Preloading Images as Soon as the Web Page Loads

function preloadImages() {

// See Step 1 in the following text

if (document.images) {

// See Step 2 in the following text

var imgFiles = preloadImages.arguments;

// See Step 3 in the following text

var preloadArray = new Array();

// See Step 4 in the following text

for (var i=0; i < imgFiles.length; i++) {

// Create a new Image object in the
// preloadArray array and associate it
// with a source file, thus loading

172 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 172

// that image into memory.

preloadArray[i] = new Image;
preloadArray[i].src = imgFiles[i];

}
}

}
. . .

</SCRIPT>
</HEAD>

<BODY BGCOLOR=”#000000” TEXT=”#FFFFFF” LINK=”#FFFFFF” VLINK=”#CCCCFFF”
ALINK=”#CCCCFFF”>

// This second script calls the preloadImages() function
// defined in the first script.

<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!--
// Preload all the images used in this file
// (the logo, plus all white and purple
// navigation buttons).

// See Step 5 in the following text

preloadImages(‘logo.jpg’,
‘pro_p.gif’, ‘pub_p.gif’, ‘mkt_p.gif’, ‘crs_p.gif’,
‘res_p.gif’, ‘who_p.gif’, ‘pro_w.gif’, ‘pub_w.gif’,
‘mkt_w.gif’, ‘crs_w.gif’, ‘res_w.gif’, ‘who_w.gif’);
//-->
</SCRIPT>

The code in Listing 8-4 begins with the definition of the preloadImages()
function.

Here’s how the JavaScript interpreter steps through this function:

1. The interpreter checks the document.images property to see whether
any image placeholders (tags) appear for this document.

2. If one or more tags exist in this document, the interpreter creates
a variable called imgFiles containing all the arguments sent to the
preloadImages() function.

The arguments property is automatically available for every function
that you create.

3. The interpreter creates a new variable, called preloadArray, by calling
the new operator in conjunction with the built-in JavaScript Array()
constructor.

The result is an empty array.

173Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 173

4. The interpreter fills the empty preloadArray array and preloads all the
images necessary for this Web page.

The interpreter creates new instances of the Image object and then
immediately associates them with the names of the image files passed
into the preloadImages() function.

5. The second script that you see in Listing 8-4 — the one placed between
the document <BODY> and </BODY> tags — executes as soon as users
load the Web page into their browsers.

This script calls the preloadImages() function, passing to it all of the
image files necessary for this page. The upshot? As soon as the page
loads, JavaScript immediately begins preloading all the navigation bar
images.

You might find it helpful to distinguish your on/off image files by using a
simple tagging system in the filenames. The filenames in this example
containing _w represent white navigation buttons; _p indicates the purple
navigation buttons. So, in this example, pro_p.gif is the name of the off
image for the E-Promotion navigation button, and pro_w.gif is the name of
the corresponding on image for the E-Promotion navigation button.

Swapping images on rollover
As soon as the user’s browser loads your rollover images into memory by
using a scheme like the one that you see in the preceding section, you need
some way to swap those images out in response to a mouseOver event. You
do this by using the onMouseOver event handler associated with each naviga-
tion button. A detailed explanation follows the listing.

Listing 8-5: Using the mouseOver Event to Swap Images

<HEAD>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>

// Defining the swap() function
function swap(id, newsrc) {

var theImage = locateImage(id);
if (theImage) {

theImage.src = newsrc;
}

}

//
// The locateImage() function accepts the name of an
// image and returns the Image object associated
// with that name.
//

function locateImage(name) {

174 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 174

var theImage = false;
if (document.images) {

theImage = document.images[name];
}
if (theImage) {

return theImage;
}
return (false);

}
</SCRIPT>
</HEAD>

<BODY>

. . .

<A HREF=”pro.htm”
onMouseOut=”swap(‘promo_pic’,’pro_w.gif’)”
//Calling the swap() function from an onMouseOver event handler
onMouseOver=”swap(‘promo_pic’,’pro_p.gif’)” ><IMG NAME=”promo_pic”

SRC=”pro_w.gif” WIDTH=”81” HEIGHT=”12” BORDER=”0”>
. . .

To help you wade through the code in Listing 8-5, I explain how the swap()
function works first; then, I explain what happens when you call the swap()
function from the onMouseOut and onMouseOver event handlers.

Defining the swap() function
The swap() function that you see defined in Listing 8-5 accepts two arguments:

� id, which represents the name of the image that you want to swap

� newsrc, which represents the filename of the new image that you want
to display

Here’s what’s going on inside the body of the swap() function:

First, a variable called theImage is created and assigned the preloaded Image
object that you want to swap out. (To create theImage, the locateImage()
function is used. I explain the inner workings of locateImage() in the next
section.)

Second, the filename of theImage is changed, which causes the browser to
display the new image. Image swap complete, as shown here:

function swap(id, newsrc) {
var theImage = locateImage(id);
if (theImage) { // if an image was found

theImage.src = newsrc; // swap it out
}

}

175Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 175

Creating the locateImage() function
If you’re interested in how the locateImage() function works, you’ve come
to the right place. As you see in the preceding section, the swap() function
uses locateImage() to, well, to locate the image it needs to swap out.

Here’s the code for the locateImage() function:

function locateImage(name) {
//Start with a blank variable called theImage

var theImage = false;

// If there are images defined for this document . . .
if (document.images) {

// Assign the image we’re looking for to theImage.
theImage = document.images[name];

}
// If theImage exists, return it to the calling function.

if (theImage) {
return theImage;

}
// Otherwise, return false (0) to the calling function.

return (false);
}

Calling the swap() function
To perform a rollover, you must swap out images two different times: when a
user mouses onto an image, and when a user mouses off again. You do this by
calling the swap() function from both the onMouseOver and onMouseOut
event handlers, as shown in the following Listing 8-5 excerpt:

// Because the image is implemented as a link, clicking
// the image automatically loads the pro.htm file.

<A HREF=”pro.htm”
onMouseOut=”swap(‘promo_pic’,’pro_w.gif’)”
onMouseOver=”swap(‘promo_pic’,’pro_p.gif’)” >

Notice in this code that the initial value for the E-Promotion image source is
pro_w.gif (the white button); the name of the image is promo_pic. (You
know these things because the SRC attribute of the tag is set to
pro_w.gif and the NAME attribute of the tag is set to promo_pic.)

Now take a look at the onMouseOver event handler. This statement swaps the
promo_pic image from the white version to pro_p.gif (the purple version).

176 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 176

When the onMouseOut event handler fires, the promo_pic image changes
back again to pro_w.gif (back to the white version). Thanks to the HTML
<A> tag, when the user clicks the image, the user’s browser loads a new Web
page devoted to all things promotional: pro.htm.

Carving up a single image
into multiple hotspots
HTML areas (and their associated event handlers) let you carve up images into
multiple image hotspots, areas of an image that correspond with a message or
action (see Listing 8-6). Mousing over the section of the image marked Publish,
as shown in Figure 8-10, causes a publishing-related message to appear in the
status bar. Figure 8-11 shows a similar trick for a different section of the image.
And, you can designate a larger area for a more general message on the status
bar (see Figure 8-12). Note: If you’re running Internet Explorer and don’t see the
status bar, choose View➪Status Bar.

Figure 8-10:
The status

bar
message

corresponds
to the

location of
the mouse
on a page.

177Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 177

Figure 8-12:
A standard

message
appears on

the status
bar when

the user
mouses

anywhere
on the
image.

Figure 8-11:
Mousing
over the

section of
the image

marked
Promote
causes a

promotion-
related

message to
appear on
the status

bar.

178 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 178

Listing 8-6 (list0806.htm) shows you how to create a customized message
to display on the status bar when a user mouses over a specific area of an
image.

Listing 8-6: Designating Image Hotspots

<HTML>
<HEAD>

<TITLE>Attaching multiple event handlers to a single image (from JavaScript For
Dummies, 4th Edition)</TITLE>

</HEAD>
<BODY BGCOLOR=”black” TEXT=”white”>
<H1>One image, multiple event handlers</H1>
Rolling your mouse pointer over the different parts of this image causes

different messages to display at the bottom of the window (in a
property of the window called the status bar).

<P>
<HR>
<P>
<CENTER>
<!--
The HTML areas “carve” up a single image. Defining separate event handlers for

each area lets you display a different message in the window’s
status bar depending on where a user’s mouse moves or clicks.

-->

<IMG height=208 src=”splash.jpg” width=241
useMap=#newsplash border=0>

<MAP name=newsplash>

<AREA
onMouseOver=”window.status=’Writing for the Web’; return true”
onMouseOut=”window.status=’’; return true”
shape=POLY target=_top
coords=1,2,1,46,78,48,80,197,240,201,239,18,93,12,94,2
>

<AREA
onMouseOver=”window.status=’SELL your writing’; return true”
onMouseOut=”window.status=’’; return true” shape=RECT target=_top
coords=216,0,241,16
>

<AREA
onMouseover=”window.status=’PROMOTE your writing’; return true”
onMouseout=”window.status=’’; return true” shape=RECT target=_top
coords=149,0,209,15
>
<AREA
onMouseOver=”window.status=’PUBLISH your writing’; return true”

(continued)

179Chapter 8: Creating Interactive Images

14_576593 ch08.qxd 10/12/04 9:59 PM Page 179

Listing 8-6 (continued)

onMouseOut=”window.status=’’; return true” shape=RECT target=_top
coords=94,0,140,14
>

</MAP>

</CENTER>
</BODY>
</HTML>

HTML areas are the constructs that let you carve an image into separate
pieces. The image itself stays where it is, and the areas that you define just
let you define arbitrary ways of interacting with that image.

You can define as many areas for an image as you want, sized and shaped
however you like (courtesy of the coords attribute). You define an area by
using the HTML <AREA> and <MAP> tags, as shown in Listing 8-6. Each area
gets to define its own event handlers.

Four separate areas are defined in Listing 8-6:

� The portion of the image that says Publish. The onMouseOver event
handler associated with this area displays the message PUBLISH your
writing.

� The portion of the image that says Promote. The onMouseOver event
handler associated with this area displays the message PROMOTE your
writing.

� The portion of the image that says Sell. The onMouseOver event handler
associated with this area displays the message SELL your writing.

� The rest of the image not described by the preceding areas. The
onMouseOver event handler associated with this leftover area displays
the generic message Writing for the Web.

To add a link to a hotspot, all you need to do is define a value for the HREF
attribute of the <AREA> tag, as the following code shows:

<AREA
onMouseover=”window.status=’PROMOTE your writing’; return true”
onMouseout=”window.status=’’; return true” shape=RECT target=_top
coords=149,0,209,15 href=”http://www.somePromotionPage.com”
>

To create distinct areas within an image, you need to know the x,y coordinates
that describe that area. Most graphic-manipulation tools on the market today,
including Macromedia Fireworks and Adobe ImageReady, allow you to import
a picture, outline which areas you want to create, and then — boom! — they
generate the necessary coordinates for you.

180 Part III: Making Your Site Easy for Visitors to Navigate and Use

14_576593 ch08.qxd 10/12/04 9:59 PM Page 180

Chapter 9

Creating Menus
In This Chapter
� Using DHTML to create pull-down menus

� Creating dynamic sliding menus

� Taking advantage of third-party DHTML menu tools

Dynamic HTML, or DHTML, refers to the collection of client-side lan-
guages and standards that you use to create Web pages that change

appearance dynamically after they’re loaded into a user’s Web browser.

The languages and standards that contribute to DHTML include

� HTML

� JavaScript

� Cascading style sheets

� The document object model (DOM)

My focus in this chapter is on JavaScript and the document object model and
how they combine to contribute to DHTML — in short, how you can use
JavaScript to access and manipulate the DOM and create cool dynamic
effects, including pull-down and sliding menus. I also steer you toward a
handful of third-party menu components (in case you’d rather purchase and
customize menus than code them yourself).

Although the examples in this chapter include HTML and cascading style sheet
code, I don’t spend a lot of time describing these two languages in depth. If
you’re interested in finding out more about DHTML, including HTML and cas-
cading style sheets, you might want to check out a good book devoted to these
subjects. One worth checking out is Dynamic HTML: The Definitive Reference,
2nd Edition, by Danny Goodman (O’Reilly & Associates).

Chapter 4 describes the document object model (DOM) and shows you how
to access it. Appendix C presents both Internet Explorer’s and Netscape
Navigator’s DOMs.

15_576593 ch09.qxd 10/12/04 9:59 PM Page 181

Getting Acquainted with Menus
A menu in Web-speak is much the same as a menu in a restaurant: a collection
of options. Menus help you organize your content attractively — and help
your users find what they’re looking for quickly and easily. Figure 9-1 shows
you an example of a simple menu.

Because menus typically involve dynamic content positioning and hiding, you
don’t create menus by using JavaScript alone; instead, you use DHTML — a
combination of HTML, cascading style sheets, JavaScript, and the DOM. In the
following sections, I demonstrate two types of menus: pull-down menus and
sliding menus.

Pull-down menus
If your computer runs Windows, you might be familiar with pull-down menus:
Click a menu item, and additional items appear.

Figure 9-1:
This DHTML
menu makes

a great
navigational

tool.

182 Part III: Making Your Site Easy for Visitors to Navigate and Use

15_576593 ch09.qxd 10/12/04 9:59 PM Page 182

Pull-down menus, such as the one that you see in Figure 9-2, are useful because
they allow you to organize your Web content efficiently — and because they’re
user-directed. In other words, the menu display doesn’t change until a user
clicks her mouse. Because many users are familiar with pull-down menus —
and because many users prefer Web page interfaces that don’t change until
they direct it to change by clicking something — pull-down menus are a popu-
lar approach to menu creation.

The code in Listing 9-1 creates the pull-down menu that you see in Figure 9-2.
As you peruse the code, notice that much of the code is HTML and style
sheet code. The only JavaScript code that you see consists of:

� The custom function displayMenu()

� Two calls to displayMenu() associated with the onClick event han-
dlers for the two expandable menu options, Resources and Books

You can find the working code in Listing 9-1 on the companion CD under the
filename list0901.htm.

Listing 9-1: Creating a Simple Pull-Down Menu

<HTML>
<HEAD>
<TITLE>Using DHTML to Create Pull-down Menus (From JavaScript For Dummies, 4th

Edition)</TITLE>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- Hide from older browsers

function displayMenu(currentMenu) {

var thisMenu = document.getElementById(currentMenu).style

(continued)

Figure 9-2:
A simple

pull-down
menu

allows users
to choose
additional

menu items.

183Chapter 9: Creating Menus

15_576593 ch09.qxd 10/12/04 9:59 PM Page 183

Listing 9-1 (continued)

// Custom JavaScript function that expands/contracts menus as
// appropriate
// If the menu is expanded, contract it
if (thisMenu.display == “block”) {

thisMenu.display = “none”
}
else {

// If the menu is contracted, expand it
thisMenu.display = “block”

}
return false

}

// End hiding-->
</SCRIPT>

<STYLE TYPE=”text/css”>
<!--

// Style definition of the “menu” class
.menu {display:none; margin-left:20px}

-->
</STYLE>

</HEAD>

<BODY BGCOLOR=”#FFFFFF”>

<H1>Help With JavaScript</H1>
<H2>(Click to expand/contract a category)</H2>

<H3>
// Call to display resource menu.
Resources
</H3>

JavaScript doc

(Nav)

JavaScript doc

(IE)

DOM

(Nav)

DOM (IE)

ScriptSearch

<H3>

184 Part III: Making Your Site Easy for Visitors to Navigate and Use

15_576593 ch09.qxd 10/12/04 9:59 PM Page 184

// Call to display book menu.
Books
</H3>

Dummies

Powells

Amazon

eBay

Barnes & Noble

</BODY>
</HTML>

Unless you’re an HTML and CSS guru, the code in Listing 9-1 might seem
daunting. Not to worry! Taken a step at a time, the code unravels. The follow-
ing four items (which are boldface in the code in Listing 9-1) are the most
important:

� The JavaScript displayMenu() function. The displayMenu() function
accepts a single parameter representing the current menu.

1. The JavaScript code inside the displayMenu() function gets the
document object associated with the current menu and stores it in
the variable called thisMenu.

2. The code uses the thisMenu object’s display property to deter-
mine whether the current menu is expanded or contracted.

3. If the current menu is expanded, the code contracts it; if the cur-
rent menu is contracted, the code expands it.

� The cascading style sheet definition of the menu class. The HTML
<STYLE> tags define a class of style sheet called menu. Every HTML com-
ponent associated with the menu class (see the last bullet in this list)
shares the display characteristics defined between the <STYLE> tags.

� The JavaScript calls to the displayMenu() functions that are associ-
ated with each of the onClick event handlers: one for the Resources
hyperlink and one for the Books hyperlink. When users click either the
Resources or Books hyperlink shown in Figure 9-2, the JavaScript code
associated with the onClick event handler for each of these hyperlinks
sends the current menu to the displayMenu() function, causing the
current menu to contract (if it’s already expanded) or expand (if it’s
contracted).

� The HTML definition of the resMenu and bookMenu layers. Each of
these layers, which are defined using the HTML tag, associates
the layer itself with the CSS menu class. The result?

185Chapter 9: Creating Menus

15_576593 ch09.qxd 10/12/04 9:59 PM Page 185

• The browser displays both the resMenu and bookMenu layers by
using the same menu class definition.

• Both the resMenu and bookMenu layers are stored as document
objects whose display property is accessible (and manipulable)
via JavaScript.

The first item in this list has more information on the display property.

HTML and CSS are broad, complex topics. If you’d like more in-depth info on
these topics than I present here, WebDeveloper.com offers a wealth of free
HTML and CSS resources. Check them out at http://webdeveloper.com/
html and http://webdeveloper.com/html/html_css_links.html,
respectively.

Sliding menus
Sliding menus differ from pull-down menus in one important way: In a sliding
menu, menu options appear dynamically in response to a mouseOver event.
In other words, when it comes to sliding menus, users don’t have to click a
menu item to see additional menu items; all they have to do is move their
mouses over an item, and bingo! More items appear, as if by magic.

The menu shown previously in Figure 9-1 is a sliding menu, and so is the
menu that you see in Figure 9-3.

Take a peek at the code in Listing 9-2, which creates the sliding menu shown
in Figure 9-3. (It’s a bit ugly, but I describe the important parts in detail in the
remainder of this section.) As you glance through the code, notice a single
JavaScript function — displayMenu() — as well as calls to displayMenu()
associated with the onMouseOver and onMouseOut event handlers.

Figure 9-3:
Mousing

over a
sliding menu

causes the
menu to
display

additional
menu items.

186 Part III: Making Your Site Easy for Visitors to Navigate and Use

15_576593 ch09.qxd 10/12/04 9:59 PM Page 186

I’ve included the working code in Listing 9-2 on the companion CD under the
filename list0902.htm.

Listing 9-2: Creating a Sliding Menu

<HTML>
<HEAD>
<TITLE>Using DHTML to Create Sliding Menus (From JavaScript For Dummies, 4th

Edition)</TITLE>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- Hide from older browsers

// Custom JavaScript function displayMenu()
function displayMenu(currentPosition,nextPosition) {

// Get the menu object located at the currentPosition
// on the screen.
var whichMenu = document.getElementById(currentPosition).style;

if (displayMenu.arguments.length == 1) {
// Only one argument was sent in, so we need to
// figure out the value for “nextPosition”

if (parseInt(whichMenu.top) == -5) {
// Only two values are possible: one
// for mouseOver
// (-5) and one for mouseOut (-90). So we want
// to toggle from the existing position to the
// other position: for example, if the position
// is -5, set nextPosition to -90...
nextPosition = -90;

}
else {

// Otherwise, set nextPosition to -5
nextPosition = -5;

}
}

// Redisplay the menu using the value of “nextPosition”
whichMenu.top = nextPosition + “px”;

}

// End hiding-->
</SCRIPT>

// Style sheet definition
<STYLE TYPE=”text/css”>
<!--

(continued)

187Chapter 9: Creating Menus

15_576593 ch09.qxd 10/12/04 9:59 PM Page 187

Listing 9-2 (continued)

.menu {position:absolute; font:12px arial, helvetica, sans-serif; background-
color:#CCCCCC; layer-background-color:#CCCCCC; top:-90px}

#resMenu {left:10px; width:130px}
#bookMenu {left:145px; width:160px}
A {text-decoration:none; color:#000000}
A:hover {background-color:pink; color:blue}

-->

</STYLE>
</HEAD>

<BODY BGCOLOR=”white”>

// Associating the call to displayMenu() with the onMouseOver and onMouseOut
// event handlers.
<div id=”resMenu” class=”menu” onMouseOver=”displayMenu(‘resMenu’,-5)”

onMouseOut=”displayMenu(‘resMenu’,-90)”>

JavaScript doc

(Nav)

JavaScript doc

(IE)

DOM

(Nav)

<a

href=”http://msdn.microsoft.com/workshop/author/dhtml/reference/ob
jects.asp”>DOM (IE)

ScriptSearch

JavaScript Resources
</div>

// Associating the call to displayMenu() with the onMouseOver and onMouseOut
// event handlers.
<div id=”bookMenu” class=”menu” onMouseOver=”displayMenu(‘bookMenu’,-5)”

onMouseOut=”displayMenu(‘bookMenu’,-90)”>

Dummies

Powells

Amazon

eBay

Barnes & Noble

JavaScript Books
</div>

</BODY>
</HTML>

188 Part III: Making Your Site Easy for Visitors to Navigate and Use

15_576593 ch09.qxd 10/12/04 9:59 PM Page 188

Sliding menus rely heavily on three items:

� Cascading style sheets: When you create a sliding menu, you use a style
sheet to define such display characteristics as how you want the browser
to display the menu before a user mouses over it and after a user mouses
over it and what color you want the hyperlinks to be.

� Display screen (monitor) properties: You use screen properties to spec-
ify where you want the browser to display the menu initially, as well as
after a user mouses over the menu.

� JavaScript: You use JavaScript to tie the menu display (the first bullet
in this list) and positioning (the second bullet) to the onMouseOver and
onMouseOut event handlers associated with the menu options. When
users mouse over a menu option, as shown in Figure 9-3, the menu auto-
matically appears — and then disappears after the mouse pointer moves
away.

As you examine the code shown in Listing 9-2, pay special attention to the fol-
lowing three callouts, which implement the preceding three points:

� The custom JavaScript function displayMenu(). The displayMenu()
function accepts up to two parameters: currentPosition and
nextPosition. The JavaScript code uses these parameters to deter-
mine where on the screen to display the menu. If only one parameter
was sent to the displayMenu() function, the code calculates the
value of the second parameter by determining whether the menu is
currently expanded or contracted — and then the code displays it the
opposite way.

� The style sheet definition describing how the browser should display
menus. All the code between the <STYLE> and </STYLE> tags consti-
tutes the cascading style sheet definition:

• Display characteristics common to both menus appear next to the
.menu keyword.

• Display characteristics specific to the Resources menu appear next
to the #resMenu keyword.

• Display characterstics specific to the Books menu appear next to
the #bookMenu keyword.

• Display characteristics for the hyperlink menu items — as well as
the hyperlinks when a mouse is positioned over them — appear
next to the A and A:hover keywords, respectively.

189Chapter 9: Creating Menus

15_576593 ch09.qxd 10/12/04 9:59 PM Page 189

� The JavaScript calls to displayMenu() associated with the onMouseOut
and onMouseOver event handlers. The HTML <div> and </div> tags
specify how the browser is to display the Resources and Books menus ini-
tially — but it’s the JavaScript calls to the displayMenu() function, asso-
ciated with both the Resource hyperlink’s onMouseOut and onMouseOver
event handlers and the Books hyperlink’s onMouseOut and onMouseOver
event handlers, that cause the menus to slide open and closed.

Taking Advantage of Third-Party
DHTML Menu Components

As you might notice if you peruse Listings 9-1 and 9-2, creating DHTML menus
from scratch takes quite a bit of programming savvy, not just with respect to
JavaScript but to HTML and cascading style sheets, as well. If you don’t want
to invest the time and trouble in coding DHTML menus by hand (and not
everyone does), you’re in luck: Several companies offer tools that you can
use to get cool menu effects with a minimum of effort. The following list rep-
resents just a handful of the products available. (Many are low cost or offer
free trial versions.)

� OpenCube’s Visual QuickMenu Pro is a point-and-click tool you can use
to create customized menus quickly and easily. You must be running
Windows to create your menus using Visual QuickMenu Pro, but the
menus you create run on multiple browsers. You can find a free trial
version of this product at www.opencube.com.

� Milonic Solutions’ industrial-strength DHTML Menu works with
Navigator, Internet Explorer, and other Web browsers, and is available
in professional and corporate versions. Find out more at www.milonic.
com.

� Apycom Software offers DHTML Menu, as well as a ton of online exam-
ples demonstrating how to use their product to create customized
menus. You can download a free trial version of DHTML Menu from
http://dhtml-menu.com.

� SmartMenus DHTML menu is a shareware product you can download
and use for a minimal fee. Check out SmartMenus on the Web at www.
smartmenus.org for details.

190 Part III: Making Your Site Easy for Visitors to Navigate and Use

15_576593 ch09.qxd 10/12/04 9:59 PM Page 190

Chapter 10

Creating Expandable Site Maps
In This Chapter
� Using DHTML to create expandable site maps

� Positioning a site map inside a frameset

� Tying a site map to content by using targeted hyperlinks

� Taking advantage of third-party site map scripts

In Chapter 9, I demonstrate creating a simple pull-down menu by using
Dynamic HTML, or DHTML. (DHTML, as you see in Chapter 9, combines

HTML, JavaScript, the document object model, and cascading style sheets
into a powerful approach to creating interactive Web pages.)

Although the examples in this chapter include HTML and cascading style
sheet code, I don’t spend a lot of time describing these two languages. If
you’re interested in finding out more about DHTML, including HTML and cas-
cading style sheets, you might want to check out a good book devoted to
these subjects. One worth checking out is Dynamic HTML: The Definitive
Reference, 2nd Edition, by Danny Goodman (O’Reilly).

In this chapter, I show you one way to transform the simple pull-down menu
that you see in Chapter 9 into a useful site navigation tool called an expandable
site map. Expandable site maps — similar to those used in popular software
applications such as Microsoft Windows (see Figure 10-1) — can help the folks
who visit you on the Web find information on your site quickly and easily.

Site Map Basics
A site map, such as the one you see in Figure 10-1, is a menu that organizes
the contents of your Web site in a nice, neat, user-friendly order.

16_576593 ch10.qxd 10/12/04 10:03 PM Page 191

Because the purpose of a site map is to help visitors find content quickly, site
maps are best designed as no-frills lists of organized links. If you think of site
content as a book, the site map is the table of contents.

Typically, you add a site map link, such as the one shown in the top-right
corner of Figure 10-1, to each and every Web page in your site. When users
click the site map link, a page containing a drop-down list (similar to the one
in Figure 10-1) appears.

Only large, complex Web sites need site maps. If your Web site contains fewer
than 25 pages, you probably don’t need to add a site map — although you
certainly can if you’d like!

A site map — no matter how cleverly designed — can’t make up for poorly
organized content. Think of a site map as an additional navigational tool, not
a substitute for an orderly, well-planned-out site.

Many approaches to creating site maps exist. In the following sections, I
demonstrate one popular approach: combining pull-down menus with frames
to create a site map that stays visible on one side of the page while displaying
content on the other side of the page.

Figure 10-1:
Site maps

display
multiple
levels of

content at a
glance.

192 Part III: Making Your Site Easy for Visitors to Navigate and Use

16_576593 ch10.qxd 10/12/04 10:03 PM Page 192

The pull-down menu revisited
In Chapter 9, you see an example of a simple pull-down menu for a fictitious
knitting site created by using a combination of HTML, JavaScript, and cascad-
ing style sheets. In this chapter, I show you how to adapt that pull-down
menu — by using frames, which I discuss in Chapter 7 — to create the site
map shown in Figure 10-2.

Creating the site map shown in Figure 10-2 involves three steps, which I explain
further in this section and in the following two sections:

1. Creating a pull-down menu

2. Adding a frameset

3. Adding targeted hyperlinks

You use a combination of HTML, JavaScript, and cascading style sheets to
create a site map. The code that you see in Listing 10-1 is responsible for the
site map shown in Figure 10-2.

Figure 10-2:
Clicking a

bolded
selection

expands or
contracts

the site
map.

193Chapter 10: Creating Expandable Site Maps

16_576593 ch10.qxd 10/12/04 10:03 PM Page 193

The code shown in Listing 10-1 is on the companion CD under the filename
sitemap.htm.

Listing 10-1: A Simple Pull-Down Menu

<HTML>
<HEAD>
<TITLE>Using DHTML to Create a Site Map (From JavaScript For Dummies, 4th

Edition)</TITLE>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- Hide from older browsers

function displayMenu(currentMenu) {

var thisMenu = document.getElementById(currentMenu).style

// If the menu is expanded, contract it.
if (thisMenu.display == “block”) {

thisMenu.display = “none”
}
else {

// If the menu is contracted, expand it.
thisMenu.display = “block”

}
return false

}

// End hiding-->
</SCRIPT>

<STYLE TYPE=”text/css”>
<!--

.menu {display:none; margin-left:20px;}

-->
</STYLE>

</HEAD>

<BODY BGCOLOR=”#FFFFFF”>

<H3>
Knitting

Basics
</H3>

Planning a

project

194 Part III: Making Your Site Easy for Visitors to Navigate and Use

16_576593 ch10.qxd 10/12/04 10:03 PM Page 194

<a>Choosing yarn

<a>Swatching

<a>The knit stitch

<a>The purl stitch

<H3>
Advanced Topics
</H3>

<a>Circular needles

<a>Cables

<a>Felting

<a>Finishing

</BODY>
</HTML>

To understand how the code in Listing 10-1 works, take a better look at the
following code elements (each of which appears bold in the code):

1. The JavaScript displayMenu() function. The displayMenu() function
accepts a single parameter representing the current menu. First, the
JavaScript code inside the displayMenu() function gets the document
object associated with the current menu and stores it in the variable
called thisMenu. Then the code uses the thisMenu object’s display
property to determine whether the current menu is expanded or con-
tracted. If the current menu is expanded, the code contracts it; if the
current menu is contracted, the code expands it.

2. The cascading style sheet definition of the menu class. The HTML
<STYLE> tags define a class of style sheet called menu. Every HTML com-
ponent associated with the menu class (see Step 4) shares the display
characteristics defined between the <STYLE> tags.

3. The JavaScript calls to displayMenu() associated with each of the
onClick event handlers: one for the Knitting Basics hyperlink and
one for the Advanced Topics hyperlink. When users click either the
Knitting Basics or Advanced Topics hyperlink shown in Figure 10-2, the
JavaScript code associated with the onClick event handler for each of
these hyperlinks sends the current menu to the displayMenu() func-
tion, causing the current menu to contract (if it’s already expanded) or
expand (if it’s contracted).

195Chapter 10: Creating Expandable Site Maps

16_576593 ch10.qxd 10/12/04 10:03 PM Page 195

4. The HTML definition of the basicMenu and resMenu layers. Each of
these layers, which are defined using the HTML tag, associates
the layer itself with the CSS menu class defined in Step 2. The result: The
browser displays both the basicMenu, subMenu, and advMenu layers
using the same menu class definition — and the basicMenu, subMenu,
and advMenu layers are stored as document objects whose display
property is accessible (and manipulable) through JavaScript. (Check
out Step 1 for more information on the display property.)

Adding frames to the pull-down menu
As you might notice, the site map shown previously in Figure 10-2 consists of
two frames. One frame (the one on the left) contains the expandable pull-down
menu. The other (the frame on the right) contains the site content. When a
user clicks a pull-down menu selection in the left frame, the appropriate con-
tent displays in the frame on the right.

In the preceding section, I show you how to create a pull-down menu. In this
section, I show you how to create a frameset — and add the pull-down menu
to the left frame. (Note: For additional scoop on how frames work, check out
Chapter 7.)

First, take a look at the code in Listing 10-2.

Experimenting with frames helps you understand how they work. Check out
the frame code in Listing 10-2 by loading the file list1002.htm, located on
the companion CD, into your Web browser.

Listing 10-2: Creating a Frameset Containing Two Frames

<HTML>
<HEAD><TITLE>Site navigation example (from JavaScript For Dummies, 4th

Edition)</TITLE></HEAD>
<FRAMESET COLS=”170, *” BORDER=”0” FRAMESPACING=”15”

FRAMEBORDER=”YES” FRAMEBORDER=”0”>
<FRAME SRC=”sitemap.htm” NAME=”sitemap” SCROLLING=”AUTO”

NORESIZE MARGINHEIGHT=”15” MARGINWIDTH=”5” LEFTMARGIN=”0”
TOPMARGIN=”0” TARGET=”body”>
<FRAME SRC=”content.htm” NAME=”content” SCROLLING=”AUTO” NORESIZE

MARGINHEIGHT=”0” MARGINWIDTH=”0” LEFTMARGIN=”0” TOPMARGIN=”0”
TARGET=”body”>

</FRAMESET>
</HTML>

196 Part III: Making Your Site Easy for Visitors to Navigate and Use

16_576593 ch10.qxd 10/12/04 10:03 PM Page 196

As you read through the code in Listing 10-2, pay special attention to the
HTML tags <FRAMESET>, </FRAMESET>, and <FRAME>. (I’ve bolded these tags
so you can find them easily.)

The <FRAMESET> and </FRAMESET> tags create a holder for two frames,
named sitemap and content, respectively, which are created by the two
<FRAME> tags. The source for the left frame is sitemap.htm, and the source
for the right frame is content.htm. If you take a look at the sitemap.htm file
(located on the companion CD), you find it contains the code in Listing 10-1. If
you take a look at the content.htm file (also located on the companion CD)
you find it contains the heading shown previously in Figure 10-2, Welcome to
my knitting site!

The upshot? When you load the file list1002.htm into a Web browser, the
<FRAMESET>, </FRAMESET>, and <FRAME> tags display the pull-down menu
(stored as sitemap.htm) in the left frame and the initial content (stored as
content.htm) in the right frame. Check out the following section for details.

Putting it all together: Adding
targeted hyperlinks
A site map isn’t much good without hyperlinks; after all, the whole point of a
site map is to direct users to different Web pages in your site.

You add a hyperlink by using the HTML <A> tag, like so:

When you use frames, however, you need to define the TARGET attribute as
well as the HREF attribute. When you define the TARGET attribute, you specify
the value of the frame in which you want the hyperlinked content to appear,
like this:

If you’ve had a chance to glance through Listing 10-2, you notice that the
name of the frame on the right is content. So to add a targeted hyperlink to
the code in Listing 10-1, you define TARGET=”content.htm”, as shown here:

Choosing yarn

Swatching

...

The knit stitch

The purl stitch

...
Circular needles

197Chapter 10: Creating Expandable Site Maps

16_576593 ch10.qxd 10/12/04 10:03 PM Page 197

Cables

Felting

Finishing

As you see from this code, clicking the Choosing Yarn link causes the HTML
file yarn.htm to appear in the content frame (the right frame, which Listing
10-2 describes.) Clicking the Swatching link causes the HTML file swatching.
htm to appear in the content frame; and so on.

Listing 10-3 shows you the updated site map code containing all eight targeted
hyperlinks. Together with the code in Listing 10-2, the code in Listing 10-3 and
the referenced content files (yarn.htm, swatching.htm, knit.htm, purl.htm,
circular.htm, cables.htm, feling.htm, and finishing.htm) represent a
complete, frame-enhanced site map.

You can test the site map code for yourself by loading the file list1002.htm
that you find on the companion CD.

Listing 10-3: Putting It All Together: The Site Map Code Updated to
Reflect Targeted Hyperlinks

<HTML>
<HEAD>
<TITLE>Using DHTML to Create a Site Map (From JavaScript For Dummies, 4th

Edition)</TITLE>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- Hide from older browsers

function displayMenu(currentMenu) {

var thisMenu = document.getElementById(currentMenu).style

// If the menu is expanded, contract it.
if (thisMenu.display == “block”) {

thisMenu.display = “none”
}
else {

// If the menu is contracted, expand it.
thisMenu.display = “block”

}
return false

}

// End hiding-->
</SCRIPT>

<STYLE TYPE=”text/css”>
<!--

.menu {display:none; margin-left:20px;}

198 Part III: Making Your Site Easy for Visitors to Navigate and Use

16_576593 ch10.qxd 10/12/04 10:03 PM Page 198

-->
</STYLE>

</HEAD>

<BODY BGCOLOR=”#FFFFFF”>

<H3>
Knitting

Basics
</H3>

<a href=”dummy3.htm” onclick=”return displayMenu(‘subMenu’)”

TARGET=”content”>Planning a project

Choosing yarn

Swatching

The knit stitch

The purl stitch

<H3>
Advanced

Topics
</H3>

Circular needles

Cables

Felting

Finishing

</BODY>
</HTML>

Taking Advantage of Third-Party
Site-Mapping Tools

No doubt about it: Creating DHTML site maps from scratch takes quite a bit
of programming know-how — not just with respect to JavaScript but to HTML
and cascading style sheets, as well. If you don’t want to invest the time and
trouble in figuring out everything you need to know to code DHTML site
maps by hand, you might find a third-party site-mapping tool is just what the

199Chapter 10: Creating Expandable Site Maps

16_576593 ch10.qxd 10/12/04 10:03 PM Page 199

doctor ordered. Third-party site-mapping tools — some of which you can find
for low or even no cost on the Web — allow you to create customized site
maps with a minimum of effort. (The downside, of course, is that these scripts
might not look or behave quite the same as one you create yourself.)

The following list — which represents just a fraction of the tools available —
is a good place to begin looking for the perfect third-party site-map script:

� Download Likno Software’s menu-creation product AllWebMenus (for
free) and get instant access to an easy-to-use site-map generator. For
details, check out Likno Software on the Web at www.likno.com.

� Good for large Web sites, Xtreeme’s SiteXpert 7 allows you to automate
site-map creation and updates. (If you frequently add or delete pages
from your site, you might find automatic updating to be indispensable.)
Find out more at www.xtreeme.com/sitexpert.

� CDR’s Site Map Pro 2.1 uses a wizard (an easy-to-use, walk-you-through-it
interface) to make creating cross-browser site maps as simple as possi-
ble. You can get the latest version from www.sitemappro.com.

200 Part III: Making Your Site Easy for Visitors to Navigate and Use

16_576593 ch10.qxd 10/12/04 10:03 PM Page 200

Chapter 11

Creating Pop-Up Help (Tooltips)
In This Chapter
� Exploring plain HTML tooltips

� Breaking DHTML tooltips down into bite-sized chunks

� Getting acquainted with active areas and mouse events

� Using third-party tooltips scripts

If you use Internet Explorer or Netscape Navigator to surf the Web, you
might be familiar with the helpful messages that pop up when you move

your mouse over important areas of some Web pages. These helpful messages,
called tooltips, are designed to give users extra information — anything from
the definition of the word that the mouse pointer is over to a fancy scholarly
citation. Because tooltips can make navigating a Web site easier and more
enjoyable, they’re worth adding to your own Web pages.

You can add basic tooltips to a Web page by using plain old HTML tags.
The problem is that Internet Explorer supports one tag attribute (ALT) and
Netscape Navigator supports another (TITLE). (Beginning with version 6.x,
Internet Explorer 6.x now supports TITLE, too, but some users may have
earlier versions of Internet Explorer installed.) And if you want to customize
your tooltips — add an image, for example, or display large-size text over an
eye-catching yellow background — you’re out of luck. The HTML ALT and
TITLE tag attributes don’t allow for such customization.

Does that mean you have to give up your hopes of customized tooltips? No! As
I demonstrate in this chapter, you can add customized tooltips that appear the
same in both Internet Explorer and Navigator (as well as other browsers) by
using dynamic HTML.

Dynamic HTML, or DHTML, refers to the combination of HTML, JavaScript,
and cascading style sheets — a collection of client-side languages and stan-
dards you use to create Web pages that change appearance dynamically, after
they’re loaded into a user’s Web browser.

17_576593 ch11.qxd 10/12/04 10:03 PM Page 201

Although the examples in this chapter include HTML and cascading style
sheet code, I don’t spend a lot of time describing these two languages. (This
is a JavaScript book, after all!) If you’re interested in finding out more about
DHTML, including HTML and cascading style sheets, you might want to check
out a good book devoted to these subjects. One worth checking out is
Dynamic HTML: The Definitive Reference, 2nd Edition, by Danny Goodman
(O’Reilly).

Creating Plain HTML Tooltips
In the example in Figures 11-1 and 11-2, you see a DHTML tooltip and a plain
HTML tooltip.

As you can see in Figure 11-1, the DHTML tooltip — the one that says “Left
cousin” — appears in large print. The HTML tooltip (“Sarah”), in contrast, is
small. Moving the mouse pointer to another part of the image causes the
tooltips to disappear. Other tooltips appear as appropriate; for example,
moving the mouse pointer over the girl on the right displays the “Right
cousin” DHTML tooltip.

Figure 11-1:
You can

customize
DHTML
tooltips,

which is a
distinct

advantage
over plain

HTML
tooltips.

202 Part III: Making Your Site Easy for Visitors to Navigate and Use

17_576593 ch11.qxd 10/12/04 10:03 PM Page 202

To create the plain HTML tooltip shown in Figure 11-1, you specify a value for
the ALT attribute associated with the <AREA> tag as shown below :

<MAP name=”PicMap” id=”PicMap”>
...

<AREA SHAPE=”rect” COORDS=”112,91,136,315” HREF=”#” ALT=”Sarah”>
<AREA SHAPE=”rect” COORDS=”180,81,200,320” HREF=”#” ALT=”Mary” />

</MAP>
...

This code displays a 289 x 289 pixel image overlaid by a map (named PicMap)
that defines two rectangular areas. When a user mouses over one area (whose
coordinates happen to be 112,91,136,315), the HTML tooltip Sarah appears.
When a user mouses over another area of the picture (defined by the coordi-
nates 180,81,200,320) the tooltip Mary appears.

To create a tooltip that appears in Netscape Navigator, you use the TITLE
attribute in place of the ALT attribute: for example, TITLE=”Mary”.

As you see in the following section, the code required to create a DHTML
tooltip is a bit more involved.

Figure 11-2:
Moving the

mouse
pointer over
another part
of the photo

displays
different
tooltips.

203Chapter 11: Creating Pop-Up Help (Tooltips)

17_576593 ch11.qxd 10/12/04 10:03 PM Page 203

Building DHTML Tooltips
Creating tooltips by using DHTML involves four separate steps. I describe
these four steps here, and in the following sections I provide you with the
example code responsible for Figures 11-1 and 11-2.

1. Create an HTML map containing one or more designated areas.

This step is identical to the step you use to create plain HTML tooltips.

2. Define a style for the tooltip using the HTML <STYLE> and </STYLE>
tags.

Defining a style for the tooltip automatically creates a JavaScript-accessible
object for that tooltip.

3. Create custom JavaScript functions to access and change the tooltip
object.

The purposes of the JavaScript functions are to display the tooltip if it’s
not already visible and hide it if it is visible.

4. Include two calls to the custom JavaScript functions (see Step 2): one
call associated with the onMouseOver event handler (to display the
tooltip), and one call associated with the onMouseOut event handler
(to hide the tooltip).

These calls cause the tooltip to appear when the mouse pointer enters
the designated area and disappear when the mouse pointer leaves the
designated area.

Creating an HTML map and
designating active areas
The first thing you need to do when you create DHTML tooltips is define which
areas of your Web page you want to be active — that is, which areas of your
Web page you want to display tooltips in response to a user’s mouse pointer.
After you decide which areas of your page you want to be active, you use
HTML to create a map and one or more active areas, as shown in Listing 11-1.

Listing 11-1: Defining an HTML Map and Designating Active Areas

...
// From <MAP> to </MAP> defines an HTML and active areas.
<MAP NAME=”PicMap” ID=”PicMap”>

<AREA SHAPE=”rect” COORDS=”112,91,136,315” HREF=”#” ALT=”Sarah” />
<AREA SHAPE=”rect” COORDS=”180,81,200,320” HREF=”#” ALT=”Mary” />

204 Part III: Making Your Site Easy for Visitors to Navigate and Use

17_576593 ch11.qxd 10/12/04 10:03 PM Page 204

<AREA SHAPE=”rect” COORDS=”59,26,208,64” HREF=”#” ALT=”bougainvillea” />
<AREA SHAPE=”rect” COORDS=”226,25,303,82” HREF=”#” ALT=”needs paint” />

</MAP>
...

// Overlaying a map on top of an image
<IMG SRC=”cousins.jpg” USEMAP=”#PicMap” HEIGHT=”289” WIDTH=”289” BORDER=”0”

ALT=”Two cousins” />

You can use a graphics program such as Paint, which comes installed with
Windows, to get the upper-left and lower-right x,y coordinates for each
active area.

The code in Listing 11-1 defines a map named PicMap and four separate rec-
tangular areas. Then, near the bottom of Listing 11-1, you see the HTML
 tag, which places an image on the page and overlays that image with
the PicMap map.

After you define your active areas, you’re ready to define a style for the
tooltip, which I demonstrate in the following section.

Defining a style for the tooltip
You define a style for a Web page object by using the HTML <STYLE> and
</STYLE> tags. Defining a style for your tooltips accomplishes two important
tasks:

� It allows you to specify how you want your tooltips to appear: bolded,
large font, and so on.

� It allows you to create a named, JavaScript-accessible tooltip object that
you can make visible and invisible.

In Listing 11-2, you see an example of the <STYLE> and </STYLE> tags in
action.

Because cascading style sheets are so powerful and flexible, they’re also rela-
tively complex. You might want to check out a book, such as Designing CSS
Web Pages, by Christopher Schmitt (New Riders). Alternatively, you could
pick up a good HTML book — many devote a chapter or two to the <STYLE>
and </STYLE> tags and cascading style sheet syntax.

205Chapter 11: Creating Pop-Up Help (Tooltips)

17_576593 ch11.qxd 10/12/04 10:03 PM Page 205

Listing 11-2: Using the <STYLE> and </STYLE> Tags to Define
a Tooltip Style

<STYLE type=”text/css”>
<!--

.tooltipStyle {background-color: pink; border: pink 1px solid; layer-
background-color: pink; width: 100px; font: 20px arial, helvetica,
sans-serif; padding: 5px; position: absolute; visibility: hidden}

-->
</STYLE>

The code you see in Listing 11-2 defines a tooltip style called, appropriately
enough, tooltipStyle. The code specifies that tooltip text should appear as
a relatively large 20 pixels on a nice bright-pink background.

Creating custom JavaScript functions
to display and hide tooltips
You use JavaScript to access the correct tooltip and then to display that
tooltip (as a user’s mouse pointer moves into the active area) or hide it
(if a user’s mouse pointer moves away from the active area).

In Listing 11-3, you see two JavaScript functions defined: displayTip()
and hideTip(). Take a peek at the code, and then see the human-readable
description that follows.

Listing 11-3: The displayTip() and hideTip() Functions

...

function displayTip(theEvent,currentElement) {

if (latestBrowser) {
tooltip = document.getElementById(currentElement).style

}
else {

tooltip = eval(“document.” + currentElement)
}

if (document.all) {
tooltip.pixelTop = parseInt(theEvent.y)+2
tooltip.pixelLeft = Math.max(2,parseInt(theEvent.x)-

75)
}

206 Part III: Making Your Site Easy for Visitors to Navigate and Use

17_576593 ch11.qxd 10/12/04 10:03 PM Page 206

else {
if (latestBrowser) {

tooltip.top = parseInt(theEvent.pageY)+2 + “px”
tooltip.left = Math.max(2,parseInt(theEvent.pageX)-75) + “px”

}
else {

tooltip.top = parseInt(theEvent.pageY)+2
tooltip.left = Math.max(2,parseInt(theEvent.pageX)-75)

}
}
tooltip.visibility = “visible”

}

function hideTip(currentElement) {
if (latestBrowser) {

tooltip = document.getElementById(currentElement).style
}
else {

tooltip = eval(“document.” + currentElement)
}
tooltip.visibility = “hidden”

}

The displayTip() function accepts two parameters: theEvent (the value
of which at runtime is either the mouseOver or mouseOut object) and
currentElement (the value of which at runtime is the name of the tooltip
to manipulate).

The first if-else statement in displayTip() obtains the tooltip style
object. The second if-else statement sets the x,y coordinates for the tooltip.
Finally, the third if-else statement turns the visibility of the tooltip on.

The hideTip() function is much shorter than the displayTip() function.
The hideTip() function simply obtains the tooltip to manipulate and then
hides it.

The displayTip() and hideTip() functions don’t execute unless they’re
attached to event handlers. Fortunately, the following section demonstrates
how to do just that.

Calling custom functions in response to the
onMouseOver and onMouseOut events
For tooltips to be effective, they must appear when a user mouses over
something on a page and disappear when the mouse pointer moves away.
Fortunately, accomplishing this feat is easy with JavaScript, as the code in
Listing 11-4 shows.

207Chapter 11: Creating Pop-Up Help (Tooltips)

17_576593 ch11.qxd 10/12/04 10:03 PM Page 207

Listing 11-4: Attaching the displayTip() and hideTip() Calls
to Mouse Events

<MAP name=”PicMap” id=”PicMap”>
<AREA SHAPE=”rect” COORDS=”112,91,136,315” HREF=”#”

onMouseOut=”hideTip(‘tooltip1’)”
onMouseOver=”displayTip(event,’tooltip1’)” ALT=”Sarah” />

<AREA SHAPE=”rect” COORDS=”180,81,200,320” HREF=”#”
onMouseOut=”hideTip(‘tooltip2’)”
onMouseOver=”displayTip(event,’tooltip2’)” ALT=”Mary” />

<AREA SHAPE=”rect” COORDS=”59,26,208,64” HREF=”#”
onMouseOut=”hideTip(‘tooltip3’)”
onMouseOver=”displayTip(event,’tooltip3’)” ALT=”bougainvillea” />

<AREA SHAPE=”rect” COORDS=”226,25,303,82” HREF=”#”
onMouseOut=”hideTip(‘tooltip4’)”
onMouseOver=”displayTip(event,’tooltip4’)” ALT=”needs paint” />

</MAP>
Left cousin
Right cousin
Tree
Shutters

Much of the code in Listing 11-4 also appears in Listing 11-1 earlier in this
chapter. The new parts of the code added here are the onMouseOut and
onMouseOver definitions. (See the bold portions of the code.)

As you can see from Listing 11-4, the JavaScript function displayTip() is
attached to the onMouseOver event handlers for the each of the active areas,
and the JavaScript function hideTip() is attached to the onMouseOut event
handlers for those same active areas. (To check out the JavaScript code for
the displayTip() and hideTip() functions, flip to Listing 11-3.)

If you’re interested in finding out more about events and event handlers,
including onMouseOut and onMouseOver, flip to Chapter 13, which is devoted
to these topics.

What all this means is that at runtime, when a user mouses over one of the
active areas (active areas are defined using the <AREA> tag) the JavaScript
interpreter calls the displayTip() function, sending the following two
parameters:

1. The appropriate event, which is mouseOver

2. The name of the tooltip to display: tooltip1, tooltip2, tooltip3,
or tooltip4. (The tooltip names and content are defined by using the
 and tags, as shown in Listing 11-4.)

Then, when a user mouses away from the active area, the JavaScript inter-
preter calls the hide() function, sending the name of the tooltip to hide.

208 Part III: Making Your Site Easy for Visitors to Navigate and Use

17_576593 ch11.qxd 10/12/04 10:03 PM Page 208

Putting it all together: Using DHTML
code to create simple tooltips
Sometimes you find it useful to experiment with a working script containing
all the necessary elements for DHTML tooltips: HTML code that defines the
active areas for which you want to create tooltips, style sheet code that
defines how you want your tooltips to appear, and JavaScript code that tells
the Web browser to display (or hide) the appropriate tooltips depending on
mouse pointer position.

In Listing 11-5, a complete, working script is exactly what you find. Listing 11-5
pulls together the code you see in Listings 11-1 through 11-4 to demonstrate
how each piece fits together.

You can find the code in Listing 11-5 on the companion CD under the filename
list1105.htm.

Listing 11-5: The Whole Enchilada: A Working Tooltip Script

<HTML>
<HEAD>
<TITLE>Tooltip Example from JavaScript For Dummies, 4th Edition</TITLE>
<SCRIPT type=”text/javascript” language=”Javascript”>
<!-- Hide script from older browsers

if (document.getElementById) {
latestBrowser = true

}
else {

latestBrowser = false
}

function displayTip(theEvent,currentElement) {
if (latestBrowser) {

tooltip = document.getElementById(currentElement).style
}

else {
tooltip = eval(“document.” + currentElement)

}

if (document.all) {
tooltip.pixelTop = parseInt(theEvent.y)+2

tooltip.pixelLeft = Math.max(2,parseInt(theEvent.x)-75)
}
else {

if (latestBrowser) {
tooltip.top = parseInt(theEvent.pageY)+2 + “px”

(continued)

209Chapter 11: Creating Pop-Up Help (Tooltips)

17_576593 ch11.qxd 10/12/04 10:03 PM Page 209

Listing 11-5 (continued)

tooltip.left = Math.max(2,parseInt(theEvent.pageX)-75) +
“px”

}
else {
tooltip.top = parseInt(theEvent.pageY)+2
tooltip.left = Math.max(2,parseInt(theEvent.pageX)-75)

}
}
tooltip.visibility = “visible”

}

function hideTip(currentElement) {
if (latestBrowser) {

tooltip = document.getElementById(currentElement).style
}
else {

tooltip = eval(“document.” + currentElement)
}
tooltip.visibility = “hidden”

}

// End hiding script -->

</SCRIPT>

<STYLE type=”text/css”>
<!--

.tooltipStyle {background-color: pink; border: pink 1px solid;
layer-background-color: pink; width: 100px; font: 20px arial,
helvetica, sans-serif; padding: 5px; position: absolute;
visibility: hidden}

-->
</STYLE>

</HEAD>

<BODY>

<MAP name=”PicMap” id=”PicMap”>
<AREA SHAPE=”rect” COORDS=”112,91,136,315” HREF=”#”
onMouseOut=”hideTip(‘tooltip1’)”
onMouseOver=”displayTip(event,’tooltip1’)” alt=”Sarah” />

<AREA SHAPE=”rect” COORDS=”180,81,200,320” HREF=”#”
onMouseOut=”hideTip(‘tooltip2’)”
onMouseOver=”displayTip(event,’tooltip2’)” alt=”Mary” />

<AREA SHAPE=”rect” COORDS=”59,26,208,64” HREF=”#”
onMouseOut=”hideTip(‘tooltip3’)”
onMouseOver=”displayTip(event,’tooltip3’)” alt=”bougainvillea” />

210 Part III: Making Your Site Easy for Visitors to Navigate and Use

17_576593 ch11.qxd 10/12/04 10:03 PM Page 210

<AREA SHAPE=”rect” COORDS=”226,25,303,82” HREF=”#”
onMouseOut=”hideTip(‘tooltip4’)”
onMouseOver=”displayTip(event,’tooltip4’)” alt=”needs paint” />

</MAP>

Left cousin
Right cousin
Tree
Shutters

<DIV align=”center”>
<IMG SRC=”cousins.jpg” USEMAP=”#PicMap” HEIGHT=”289” WIDTH=”289”
BORDER=”0” alt=”Two cousins” />

</DIV>

</BODY>
</HTML>

Taking Advantage of Third-Party
Tooltips Scripts

Creating DHTML tooltips from scratch, as you see from Listing 11-5, takes not
just JavaScript expertise but expertise in HTML and CSS programming, too. If
your heart is set on adding custom tooltips to your site but you don’t want
to invest the time and trouble in finding out everything you need to know to
code them by hand, you’re in luck: Third-party scripts are available, and they
take most of the hard work out of creating custom tooltips.

Lots of shareware tooltips scripts are available for download over the Web. If
you’re interested, you might want to start your search for the perfect tooltips
tool by checking out the following two sites:

� With Walter Zorn’s DHTML Tooltips you can create cross-platform, cross-
browser tooltips containing images as well as text. More information
about this cool shareware tool is available at www.walterzorn.com/
tooltip/tooltip_e.htm.

� Dan Allen’s DOM Tooltip is a shareware tool you can use to create tooltips
that work not just in Internet Explorer and Navigator but also in other
browsers, such as Opera. You can find download instructions and tons of
examples at www.mojavelinux.com/cooker/demos/domTT/index.html.

211Chapter 11: Creating Pop-Up Help (Tooltips)

17_576593 ch11.qxd 10/12/04 10:03 PM Page 211

212 Part III: Making Your Site Easy for Visitors to Navigate and Use

17_576593 ch11.qxd 10/12/04 10:03 PM Page 212

Part IV
Interacting
with Users

18_576593 pt04.qxd 10/12/04 10:02 PM Page 213

In this part . . .

Part IV is jam-packed with information for making pro-
fessional-looking Web pages that are so cool you just

might shock yourself! Chapter 12 shows you how to gather
and verify input from the folks who visit your Web site —
including time-tested tips to help you design user-friendly
Web pages and communicate effectively with your users.
In Chapter 13, you see how to turn a simple Web page
into a Web-based application by hooking your script to a
user-initiated event, such as key press or a mouse click.
And finally, Chapter 14 introduces you to JavaScript error-
handling techniques that you can use to replace generic
error messages (which can frustrate your visitors) with
specific, appropriate, user-friendly error messages.

18_576593 pt04.qxd 10/12/04 10:02 PM Page 214

Chapter 12

Handling Forms
In This Chapter
� Getting information from your users

� Verifying user input

� Giving your users helpful feedback

If you’re familiar with HTML fill-in forms, you know how useful they can be.
Adding an HTML form to your Web page lets your visitors communicate

with you quickly and easily. Users can enter comments, contact information,
or anything else into an HTML form. Then that information is transmitted
automatically to you (okay, technically, to your Web server) the instant your
users submit the form.

Although HTML forms are great all by themselves, JavaScript makes them even
better! By using JavaScript, you can create intelligent forms — forms that
instantly correct user input errors, calculate numeric values, and provide
feedback. In developer-talk, what JavaScript gives you is a way to perform
client-side data validation (sometimes referred to as data scrubbing), which is
an essential component of any well-designed piece of software, from simple
Web page to full-blown online application.

Capturing User Input by Using
HTML Form Fields

JavaScript adds two very useful features to plain old HTML forms:

� JavaScript lets you examine and validate user input instantly, right on
the client.

� JavaScript lets you give users instant feedback.

19_576593 ch12.qxd 10/12/04 10:02 PM Page 215

I explain both of these features in the following two sections.

Creating an input-validation script
Back in the old days, Web developers had to write server-side Common
Gateway Interface (CGI) programs to process user input. That approach,
which is still in use, is effective — but inefficient.

For example, imagine that you want to allow your visitors to sign up for your
monthly e-newsletter, so you create an HTML form containing a single input
field called E-mail Address. Then imagine that a visitor accidentally types XYZ
into that field (instead of a valid e-mail address such as janedoe@aol.com).
The contents of the E-mail Address field have to travel all the way from that
user’s Web browser to your Web server before your CGI program can examine
the information and determine that XYZ is invalid.

By using JavaScript, on the other hand, you can instantly determine whether an
input value is valid, right inside the user’s browser — saving the user valuable
time. (And saving yourself the trouble of having to figure out how to create a
CGI program in C, C++, or Perl!)

216 Part IV: Interacting with Users

Different strokes for different folks:
Data validation using regular expressions

Writing scripts is like anything else in life: Usually,
more than one way exists to approach any given
problem. Some JavaScript programmers like to
spell things out much the way I demonstrate in
the code that you see in this chapter — in other
words, to use as many lines of script as neces-
sary to create a human-readable, working script.
Other JavaScript programmers sacrifice human
readability for brevity, reasoning that fewer lines
of code means fewer lines to debug.

For those of you in the latter camp, regular
expressions can come in mighty handy. A regu-
lar expression is a special kind of pattern that
you can use to specify text strings. For example,
here’s a regular expression that describes a
somebody@someplace.some_suffix
e-mail address:

/^\w+@\w+(\.\w{3})$/

Scary stuff! But when you break it down into little
pieces, you understand how it works, as you
can see in Table 12-1.

19_576593 ch12.qxd 10/12/04 10:02 PM Page 216

Input validation generally falls somewhere in one of the following three
categories:

� Existence: Tests whether a value exists.

� Numeric: Ensures that the information is numbers only.

� Pattern: Tests for a specific convention, such as the punctuation in a
phone number, an e-mail address, a Social Security number, or a date.

In Listing 12-1, you see the JavaScript code required to validate the oh-so-
common pattern category: an e-mail address. (The order form script section
in this chapter demonstrates examples of existence and numeric validation,
as well as pattern validation.)

Figure 12-1 shows you this code in action. You can experiment with these
techniques by loading the list1201.htm file from the companion CD into
your Web browser.

Figure 12-1:
Hey, that’s

not an
e-mail

address!

217Chapter 12: Handling Forms

19_576593 ch12.qxd 10/12/04 10:02 PM Page 217

Listing 12-1: A Script That Validates the E-Mail Address Pattern

<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>

//
// This function tests for the punctuation characters
// (. and @) found in a valid e-mail address.
//

function isAValidEmail(inputValue) {

var foundAt = false
var foundDot = false
var atPosition = -1
var dotPosition = -1

// Step through each character of the e-mail
// address and set a flag when (and if) an
// @ sign and a dot are detected.

for (var i=0; i<=inputValue.length; i++) {
if (inputValue.charAt(i) == “@”) {

foundAt = true
atPosition = i

}
else if (inputValue.charAt(i) == “.”) {

foundDot = true
dotPosition = i

}
}

// If both an @ symbol and a dot were found, and
// in the correct order (@ must come first)...

if ((foundAt && foundDot) && (atPosition < dotPosition)) {

// It’s a valid e-mail address.

alert(“Thanks for entering a valid e-mail address!”)
return true

}
else {

// The e-mail address is invalid.

alert(“Sorry, you entered an invalid e-mail address. Please try again.”)
return false

}
}

218 Part IV: Interacting with Users

19_576593 ch12.qxd 10/12/04 10:02 PM Page 218

In Listing 12-1, you see that the isAValidEmail() function accepts a single
parameter, called inputValue. (I show you an example of calling this function
in Listing 12-2.)

Inside isAValidEmail(), the for loop steps through each character of the
input e-mail address, one character at a time, looking for an at symbol (@) and
a dot (.). If the interpreter finds both of these characters in the input e-mail
address — and if the @ symbol appears before the . — that e-mail address
passes the test as valid.

If you want to perform additional checks — for example, a check to ensure that
at least one character precedes both the @ and the . or one to ensure that the
last three characters are com, org, edu, or net — you can add the additional
JavaScript statements to isAValidEmail() to do so. As a developer, the cri-
teria that define a valid pattern are solely up to you. Whether the additional
JavaScript statements necessary to catch all conceivable errors are worth
the trouble and complexity is your decision, as well. In this example, I figure
that the most likely mistake users make is forgetting to type an @ or a period,
so the code in Listing 12-1 fits the bill nicely.

Table 12-1 Examining a Few Regular Expression Symbols
Regular Expression Symbol Meaning

/ Beginning of the pattern

^ Beginning of a string

\w+ One or more letters, numbers, or underscores

@ The @ symbol

\w+ One or more letters, numbers, or underscores

(\.\w{3}) A dot followed by three letters, numbers, or
underscores

$ Ending of a string

/ Ending of the pattern

Listing 12-2 puts it all together to show how you can use a regular expression
to validate an e-mail address in JavaScript. (Note how many fewer lines this
e-mail validation script uses than the one I offer in Listing 12-1 earlier in this
chapter.)

219Chapter 12: Handling Forms

19_576593 ch12.qxd 10/12/04 10:02 PM Page 219

Listing 12-2: Using a Regular Expression to Validate an E-Mail Address

function validateEmail(input) {
// JavaScript recognizes regular expressions and automatically
// designates the variable “emailPattern” as a RegExp object.
var emailPattern = /^\w+@\w+(\.\w{3})$/

// test() is a built-in method of the RegExp object.
if (emailPattern.test(input)) {

alert(“This is a valid e-mail address.”)
}
else {

alert(“Error: this is NOT a valid e-mail address”)
}

}
...
<BODY>
<FORM>
Please enter an e-mail address and click somewhere else on the page:
<INPUT TYPE=”text” SIZE=”25” onBlur=”validateEmail(this.value);”>

Regular expressions are fairly complex animals, and I can’t go into all the
nitty-gritty details of them here. Fortunately, Microsoft maintains a great
primer on regular expressions (and the built-in JScript object RegExp) at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/jscript7/html/jsreconIntroductionToRegularExpressions.asp

220 Part IV: Interacting with Users

Oh, no! Everything’s blurry!
The name for the onBlur event handler relates
to the concept of focus. An object is said to
receive focus when you click it. So, by default, the
object becomes blurry when you click some-
thing else, and that object loses focus.

Here’s a quick rundown of when the JavaScript
interpreter executes a few common blur-related
event handlers:

� onFocus executes when an element
receives focus (a user tabs to it or clicks it).

� onBlur executes when a user clicks an
element (the element gets focus) and then

clicks somewhere else without changing
anything (the element loses focus, or blurs).

� onChange executes when an element
loses focus and its contents are modified.

� onSelect executes when a user selects
some or all text (inside a textor textarea
element). The behavior of onSelect is
similar to onFocus except that onSelect
occurs when the element receives focus
and the user selects text.

19_576593 ch12.qxd 10/12/04 10:02 PM Page 220

You can find the regular expression code from Listing 12-2 on the companion
CD. Just look for the file regexp.htm.

Calling a validation script
To someone surfing the Web, few things are more annoying than typing a
bunch of information into a form, clicking the form’s Submit button, and then
— after a lengthy wait — seeing a generic error message that says something
like You filled something out incorrectly.

JavaScript lets you check each individual input field, if you like, and pop up
instant feedback to let your users know (before they tab clear down to the
end of a long form) that they need to make a correction.

In the JavaScript code shown in Listing 12-3, the isAValidEmail() function
(which I define in Listing 12-1) is called from the HTML text element’s onBlur
event handler. The result? Entering an e-mail address into the text element
and clicking elsewhere on the Web page causes the isAValidEmail() func-
tion to execute (refer to Figure 12-1).

Listing 12-3: Calling the isAValidEmail() Function from an onBlur Event
Handler

<BODY>
<H1>Data scrubbing/feedback example</H1>

Type an invalid e-mail address (such as <I>XYZ</I>) into the input field

below. When you’re finished, click here.
<P>
Then, type a valid e-mail address (such as <I>emily@emilyv.com</I>) into the

field, and click here.

<P>
<FORM NAME=”myForm”>

E-mail address:

//Calling isAValidEmail() with the value typed into the emailAddress text field.
<INPUT TYPE=”text” SIZE=”25” NAME=”emailAddress”

onBlur=”isAValidEmail(this.value)”>
</FORM>

</BODY>

221Chapter 12: Handling Forms

19_576593 ch12.qxd 10/12/04 10:02 PM Page 221

Putting It All Together: The Order
Form Validation Script

In the example in this section, you see how to create an intelligent form that
validates user data two different ways:

� At the field level: You can validate independent fields as soon as the
user tabs away from them. An independent field is one that you require
(such as a credit card number for a credit card purchase), regardless of
what a user types for any other field. (You see an example of field-level
validation in “Creating an input-validation script” earlier in this chapter.)

� At the form level: You want to validate dependent fields when the user
finishes filling out a form and clicks the form’s Submit button. A depen-
dent field is one that you might or might not validate, depending on
what a user types for one or more other fields. For example, you might
not require an e-mail address unless your users specify that they want
to receive your e-mail newsletter.

222 Part IV: Interacting with Users

Numerical assistance
JavaScript offers a handful of built-in functions
that help you identify whether a value is numeric:

� parseInt(): Tries to turn a value into an
integer; returns either the integer value or
false (if the value can’t be turned into a
number). These two lines illustrate:

var result = parseInt(“123”)

The result variable is set to the numeric
value 123.

var result = parseInt(“Emily”)

The result variable is set to NaN (Not a
Number).

� parseFloat(): Tries to turn a value into
a floating-point (decimal) number; returns
either the floating-point value or false (if
the value can’t be turned into a number).
These example show you how:

var result = parseFloat(“45.6”)

The result variable is set to the numeric
value 45.6.

var result = parseInt(“grumpy”)

The result variable is set to NaN.

� isNaN(): This function, which stands for
is Not a Number, returns true if the value
passed to it is not a number and false if
the value passed to it is a number. (Yeah, I
know — double negatives are confusing,
aren’t they?) Here are two examples:

var result = isNaN(3)

The result variable is set to false
because 3 is a number.

var result = isNaN(“George Clooney”)

The result variable is set to truebecause
a string value is not a number.

19_576593 ch12.qxd 10/12/04 10:02 PM Page 222

The example that you see in this chapter is for a fictitious Web design company
called Webmeister. To allow visitors to request a personalized quote for Web
design services, the company decided to create an HTML form and attach
JavaScript scripts to meet these design goals:

� Validate the existence of entries in required fields: To submit a success-
ful quote request, Webmeister’s visitors must enter a service category, a
first and last name, and at least one contact method (telephone or e-mail).
In the code in the following section, the exists() function implements
these validation checks. Existence validation takes place in this example
at both the field and form levels.

� Validate two pattern fields: The scripts must check the phone number
and e-mail address to ensure they’re valid. The isAValidPhoneNumber()
and isAValidEmail() functions implement these validation checks,
respectively, on a form level.

� Validate numeric fields: The generic isANumber() function assists in
validating phone numbers on a form level.

Figure 12-2 shows you what the completed quote request example looks like.

To see the code responsible for Figure 12-2, list1207.htm, in its entirety,
open the file from the companion CD-ROM.

Figure 12-2:
An order

form for the
fictitious

Webmeister
company.

223Chapter 12: Handling Forms

19_576593 ch12.qxd 10/12/04 10:02 PM Page 223

Testing for existence
You can require that users provide a value for an HTML form field by attach-
ing an existence-validation script to one of that field’s event handlers.

In this example, the Webmeister developers want to ensure that folks request-
ing a quote enter both their first and last names. Listing 12-4 shows you the
JavaScript code necessary to implement this common design requirement.

Listing 12-4: Testing for the Existence of an Input Value

function exists(inputValue) {

var aCharExists = false

// Step through the inputValue, using the charAt()
// method to detect non-space characters.

for (var i=0; i<=inputValue.length; i++) {
if (inputValue.charAt(i) != “ “ && inputValue.charAt(i) != “”) {

aCharExists = true
break

}
}

return aCharExists
}
...
//The value of the firstName field is sent to the exists() function as soon as

the user tabs away.
<INPUT TYPE=”TEXT” NAME=”firstName” SIZE=”25” onBlur=”if (!exists(this.value)) {

alert(‘Please enter a first name’); }”>

//The value of the lastName field is sent to the exists() function as soon as
the user tabs away.

<INPUT TYPE=”TEXT” NAME=”lastName” SIZE=”35” onBlur=”if (!exists(this.value)) {
alert(‘Please enter a last name’) }”>

The code in Listing 12-4 works on these principles: The exists() function
accepts an input value (named, appropriately enough, inputValue). As
soon as the exists() function receives this value, it checks the value to see
whether it contains a non-white-space character. Either the non-white-space
character or the default value of false is returned to the calling code.

If you look lower in the listing, you see the two input fields that call the
exists() function, including this one:

224 Part IV: Interacting with Users

19_576593 ch12.qxd 10/12/04 10:02 PM Page 224

<INPUT TYPE=”TEXT” NAME=”firstName” SIZE=”25” onBlur=”if (!exists(this.value)) {
alert(‘Please enter a first name’); }”>

The preceding JavaScript statement defines a value for the firstName field’s
onBlur event handler. When a user blurs the firstName field, the value of
the firstName field is passed to the exists() function. If exists() returns a
value of false (the ! operator is shorthand for “if this thing is false”), a pop-up
message appears to remind the user to enter a first name. Now, when the user
clicks in the Your First Name field and then tabs away without entering a value,
the code causes a reminder message to appear (see Figure 12-3).

Testing for a numeric value
You can require that users provide a valid number for an HTML form field by
attaching a numeric validation script to one of that field’s event handlers. For
an example of the JavaScript code required to perform this validation, take a
peek at Listing 12-5.

Figure 12-3:
Everybody
must have

(and enter)
a name.

225Chapter 12: Handling Forms

19_576593 ch12.qxd 10/12/04 10:02 PM Page 225

Listing 12-5: Testing to Ensure That a Value Is Numeric

//Defining the isANumber() function
function isANumber(inputValue){

// Assume everything is okay right off the bat.
var result = true

// If parseFloat() returns false, a non-numeric
// character was detected in the first position.

if (!parseFloat(inputValue)) {
result = false

}

// Otherwise, check the
// rest of the digits.

else {
for (var i=0; i<inputValue.length; i++) {

if (inputValue.charAt(i) != “ “) {
if (!parseFloat(inputValue.charAt(i))) {

result = false
break

}
}

}
}
// Return true (inputValue is a valid number) or
// false (it’s invalid).

return result
}

...

function isAValidPhoneNumber(inputValue) {
...
for (var i=0; i<=inputValue.length; i++) {

//Calling the isANumber() function from inside another custom function
if (isANumber(inputValue.charAt(i))) {

digitsFound++
}

}

The isANumber() function definition uses the built-in JavaScript function
parseFloat() to weed out all values beginning with something other than
a number. (The parseFloat() function returns a value of NaN if the first
character that it encounters can’t be converted to a number.)

226 Part IV: Interacting with Users

19_576593 ch12.qxd 10/12/04 10:02 PM Page 226

In the event that the first character is a number but subsequent characters
aren’t (for example, to catch a mistake like 5F5-1212), isANumber() steps
through all the remaining characters in inputValue to see whether it can
detect a non-numeric character.

The last few statements in Listing 12-5 show you an example of how you can
call the isANumber() function. In this example, the isAValidPhoneNumber()
function (which you get to examine in detail in the next section) calls the
isANumber() function as part of its own validation routine.

Testing for patterns
Listing 12-1, shown previously in this chapter, demonstrates how you might
go about validating a very common pattern: the e-mail address. Here, you see
an example of another common use for pattern validation: making sure a user
types a valid telephone number. Listing 12-6 shows you what I mean.

Listing 12-6: Validating a Phone Number

//Defining the isAValidPhoneNumber() function
function isAValidPhoneNumber(inputValue) {

var digitsFound = 0

// Step through the inputValue to see how
// many digits it contains.
for (var i=0; i<=inputValue.length; i++) {
if (isANumber(inputValue.charAt(i))) {

digitsFound++
}

}

// If inputValue contains at least 10
// digits, assume it is a valid phone number.
if (digitsFound >= 10) {

return true
}
else {

return false
}

}
...
//Calling the isAValidPhoneNumber() function
if (!isAValidPhoneNumber(inputValue) {

alert(“We can’t contact you via phone unless you give us your phone number
(make sure to include your area code). Thanks!”)

}

227Chapter 12: Handling Forms

19_576593 ch12.qxd 10/12/04 10:02 PM Page 227

The code you see in Listing 12-6 checks to see that a value contains at least
ten digits; if so, that value passes the test as a valid telephone number.

Sometimes you want to create more rigid patterns than this. For example,
you may want to ensure that users include parentheses and dashes in their
telephone numbers. For an example of how to accomplish this (and some
caveats), see the sidebar “An alternative approach to pattern-matching.”

Form-level validation
Sometimes you want to validate fields immediately, as soon as a user enters a
value or tabs away from the field. (Listing 12-4 shows you an example of inde-
pendent field validation.)

But sometimes you want to wait until the user finishes entering information
before you begin your validation. For example, the Webmeister form allows
users to specify whether they want to be contacted by e-mail or by telephone.
At least one option must be selected, but triggering validation the instant a
user tabs away from the e-mail field would be useless (and annoying). After
all, that user might very well be intending to select the phone number option;
you have no way of knowing until the user finishes filling out the entire form.

228 Part IV: Interacting with Users

An alternative approach to pattern-matching
If you need to define a more rigid pattern than
the telephone number example that I describe in
Listing 12-6, take a look at the JavaScript code
in this sidebar, which requires that users enter
a phone number in the following format:

(512)555-1212

As you see in the following example, the sub-
string()method associated with the built-in
JavaScript string object lets you break a
value into chunks and ensure that each chunk
is valid. For example, this code instructs the
interpreter to extract and inspect the parenthe-
ses, area code, exchange, and line portions of
the phone number separately.

The benefit of this approach? It ensures that
users type exactly what you want them to type,
which reduces the chance of miscommunication.
The drawback is that you’re expecting a user to
type a bunch of characters exactly the way you
want — a process that is difficult at best! (Keep
in mind that the Web is global, and patterns that
might be familiar to you might not be familiar at
all to folks in other parts of the world.)

A good design rule to follow is this: If you
absolutely must gather information in a specific
format, by all means adapt this example of
JavaScript code for your own purposes. But if
you can get by with fewer checks (like the
phone number validation routine that I describe
in Listing 12-6), go for it.

19_576593 ch12.qxd 10/12/04 10:02 PM Page 228

229Chapter 12: Handling Forms

function isAPhoneNumber(entry){
if (entry) {

// Set openParen = to the first character of entry.
var openParen = entry.substring(0,1)

// Set areaCode = to the next 3 characters.
var areaCode = entry.substring(1,4)

// Set closeParen = to the 5th character.
var closeParen = entry.substring(4,5)

// Set exchange = to characters 6, 7, and 8.
var exchange = entry.substring(5,8)

// Set dash = to the 9th character.
var dash = entry.substring(8,9)

// Set line = to the 10th through 13th characters.
var line = entry.substring(9,13)

// The following if statement checks all the pieces,
// like so:
// if openParen is not equal to “(“
// OR the areaCode is not a number
// OR the closeParen is not equal to “)”
// ... and so on.

if (
(openParen != “(“) ||
(!isANumber(areaCode)) ||
(closeParen != “)”) ||
(!isANumber(exchange)) ||
(dash != “-”) ||
(!isANumber(line))
){
alert(“Incorrect phone number. Please re-enter in the

following format: (123)456-7890”)
}

}
}
. . .
<FORM NAME=”feedbackForm”>

Please enter your home phone number

in the following format: (123)456-7890
<INPUT TYPE=”text” NAME=”homePhone” VALUE=”” SIZE=13
onBlur=”isAPhoneNumber(this.value)”>
. . .

19_576593 ch12.qxd 10/12/04 10:02 PM Page 229

A better approach for dependent field validation is to wait until users try
to submit their forms before executing your validation scripts, as shown
in Listing 12-7. Now, if the user attempts to submit a form without entering
either a phone number or an e-mail address, the script generates an error
and prevents the form from being submitted. To see how this code behaves
at runtime, take a look at Figure 12-4.

230 Part IV: Interacting with Users

Giving ’em a piece of your mind
Giving users appropriate, timely feedback can be
the difference between a confusing Web site and
one that is efficient and pleasant to use. The fol-
lowing are a few things to keep in mind as you
decide when and how to interact with your users.

DON’T SHOUT!! Nobody likes being yelled at,
and messages THAT ARE IN ALL UPPERCASE
LIKE THIS AND END IN EXCLAMATION POINTS
ARE YELLS! Say what you need to say; just use
normal capitalization and punctuation.

In general, be specific. Sometimes, you don’t
particularly care what a user types (for example,
if you’re asking for free-form comments on your
product). At other times, what the user types is
crucial. For the times when it’s crucial, be sure
to let the user know up front, right on the page,
what format is expected.

When you do need to pop up an error message,
make sure that it tells users precisely what’s
wrong with their input. (Invalid format.
Please retry. doesn’t count!)

Give your users a break. Just because you’re
now a card-carrying expert at validating user
input doesn’t mean you have to pop up an error
message every time you detect an error. In some

cases, you might be able to massage (geek-
speak for modify) the input data to suit yourself
without bugging the user at all. For example, just
because you’d like to see a value in uppercase
letters doesn’t mean the user has to enter it in
uppercase letters. Instead of displaying an error
and requesting that the user retype the entry, for
example, you can just as easily take the input
and change it to uppercase yourself using the
toUpperCase()method of the stringobject.

Pat your users on the back. Don’t reserve feed-
back for only those times when a user enters
something incorrectly. Reassuring users that
things are proceeding as planned is just as useful.
For example, let users know when a form passes
all validation checks.

Test ’til you drop. Make sure (and this should go
without saying, but you never know) that you test
your form carefully for every conceivable error
(and series of errors) that a user might reason-
ably be expected to make. Few things are more
frustrating to users than getting tangled in an
endless loop of errors that refuse to go away,
even after the user has figured out what’s wrong
and corrected it!

19_576593 ch12.qxd 10/12/04 10:02 PM Page 230

Listing 12-7: Implementing Dependent Validation Checks with the
validateForm() Function

<HTML>
<HEAD>
<TITLE>Order form example (from JavaScript For Dummies, 4th Edition)</TITLE>

<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
<!-- hide this script from non-javascript-enabled browsers

//
// Checks to see whether a value contains non-numeric data.
//
function isANumber(inputValue){

// Assume everything is okay.
var result = true

(continued)

Figure 12-4:
Using

form-level
validation to
ensure that
at least one

option is
filled.

231Chapter 12: Handling Forms

19_576593 ch12.qxd 10/12/04 10:02 PM Page 231

Listing 12-7 (continued)

// If parseFloat() returns false, a non-numeric
// character was detected in the first position,
if (!parseFloat(inputValue)) {

result = false
}

// Otherwise, we still have to check the rest of
// the digits, so step through the inputValue one
// character at a time and set result = false
// if any non-numeric digits are encountered.
else {
for (var i=0; i<inputValue.length; i++) {

if (inputValue.charAt(i) != “ “) {
if (!parseFloat(inputValue.charAt(i))) {

result = false
break

}
}

}
}

// Return true (inputValue is a valid number) or
// false (it’s invalid).

return result
}

//
// Checks to see whether an input value contains “@”
// and “.”
//
function isAValidEmail(inputValue) {

var foundAt = false
var foundDot = false

// Step through the inputValue looking for
// “@” and “.”

for (var i=0; i<=inputValue.length; i++) {
if (inputValue.charAt(i) == “@”) {

foundAt = true
}
else if (inputValue.charAt(i) == “.”) {

foundDot = true
}

232 Part IV: Interacting with Users

19_576593 ch12.qxd 10/12/04 10:02 PM Page 232

}

// If both “@” and “.” were found, assume
// the e-mail address is valid; otherwise,
// return false so the calling code knows
// the e-mail address is invalid.

if (foundAt && foundDot) {
return true

}
else {

return false
}

}

//
// Checks to see if an input value contains ten or more
// numbers. This approach lets users type in U.S.-
// style phone formats, such as (123)456-7890, as
// well as European-style (such as 123.456.7890).
//
function isAValidPhoneNumber(inputValue) {

var digitsFound = 0

// Step through the inputValue to see how
// many digits it contains.

for (var i=0; i<=inputValue.length; i++) {
if (isANumber(inputValue.charAt(i))) {

digitsFound++
}

}

// If inputValue contains at least 10
// digits, assume it is a valid phone number.
if (digitsFound >= 10) {

return true
}
else {

return false
}

}

//
// Check for the existence of characters.
// (Spaces aren’t counted.)
//

(continued)

233Chapter 12: Handling Forms

19_576593 ch12.qxd 10/12/04 10:02 PM Page 233

Listing 12-7 (continued)

function exists(inputValue) {

var aCharExists = false

// Step through the inputValue, using the charAt()
// method to detect non-space characters.

for (var i=0; i<=inputValue.length; i++) {
if (inputValue.charAt(i) != “ “ && inputValue.charAt(i) != “”) {

aCharExists = true
break

}
}

return aCharExists
}

//
// Perform cross-field checks that can’t be performed
// until all of the data has been entered.
//

// validateForm() performs all dependent field validation

function validateForm() {

var rc = true

// Dependent check #1: ensuring a service category is selected

///
// Visitors need to check one of the following
// choices in order to receive an accurate quote:
// whether they’re interested
// in design, maintenance, or promotion services.
///

if (!document.quoteForm.designChoice.checked &&
!document.quoteForm.maintChoice.checked &&
!document.quoteForm.promoChoice.checked) {

alert(“Please check whether you’re interested in our design,
maintenance, or promotion services so we can give you a more
accurate quote. Thanks!”)

rc = false
}

// Dependent check #2: ensuring that a company name exists if a
// user checked “employee”

234 Part IV: Interacting with Users

19_576593 ch12.qxd 10/12/04 10:02 PM Page 234

///
// If visitors are employees, they need to specify
// the name of their company.
///

if (document.quoteForm.bizChoice[1].checked) {
if (!document.quoteForm.corpName.value) {

alert(“You’ve specified that you’re an employee, so could you please
type in the name of the company you work for? Thanks!”)

rc = false

}
}

// Dependent check #3: double-checking that both first and
// last names exist

///
// Visitors need to include their first and last
// names.
///

if (!document.quoteForm.firstName.value ||
!document.quoteForm.lastName.value) {
alert(“Please type in your entire name (both first and last). Thanks!”)
rc = false

}

// Dependent check #4: ensuring that users enter either an e-mail
// address or a phone number

///
// Visitors need to specify either an e-mail
// address or a telephone number.
///
if (!document.quoteForm.emailChoice.checked &&

!document.quoteForm.phoneChoice.checked) {
alert(“Please let us know whether you’d like us to contact you by e-mail

or by phone. Thanks!”)
rc = false

}

// Dependent check #5: ensuring that an e-mail address exists
// (if a user chose the e-mail contact option)

///
// If visitors tell us they want us to contact them
// by e-mail, alert them if they haven’t put in
// their e-mail address (same with telephone).
///

(continued)

235Chapter 12: Handling Forms

19_576593 ch12.qxd 10/12/04 10:02 PM Page 235

Listing 12-7 (continued)

if (document.quoteForm.emailChoice.checked &&
!isAValidEmail(document.quoteForm.emailAddr.value)) {

alert(“We can’t contact you via e-mail unless you give us a valid
e-mail address. Thanks!”)

rc = false
}
else {

if (document.quoteForm.phoneChoice.checked &&
!isAValidPhoneNumber(document.quoteForm.phoneNumber.value)) {

alert(“We can’t contact you via phone unless you give us your phone
number (make sure to include your area code). Thanks!”)

rc = false
}

}

if (rc) {
// If the rc variable is non-zero, then the form data
// passed with flying colors!
alert(“Thanks! We’ll contact you with a quote shortly.”)

}
return rc

}

// -->
</SCRIPT>
</HEAD>

<BODY>
<H1>Order form example</H1>
<HR>

...

<P>
<HR>
<TABLE WIDTH=”100%” CELLSPACING=”10” CELLPADDING=”10” BORDER=0>
<TR>
<TD>

//Dependent validation checks execute when the user attempts to submit the form
<FORM NAME=”quoteForm” onSubmit=”return validateForm();”>
<P>
Which of our services are you interested in? (Check all that apply.)
<P>
Website design <INPUT TYPE=”CHECKBOX” NAME=”designChoice” VALUE=”design”>

Website maintenance <INPUT TYPE=”CHECKBOX” NAME=”maintChoice”

VALUE=”maint”>
Online promotion
<INPUT TYPE=”CHECKBOX” NAME=”promoChoice” VALUE=”promo”>

<P>

236 Part IV: Interacting with Users

19_576593 ch12.qxd 10/12/04 10:02 PM Page 236

Why do you want a Website? (Or, if you already have one, what do you use it
for?)

<P>
<TEXTAREA NAME=”purpose” COLS=”60” ROWS=”5” WRAP=”VIRTUAL”>
</TEXTAREA>
<P>
Do you want to incorporate photos into your site?

yes <INPUT TYPE=”RADIO” NAME=”pixChoice” VALUE=”hasPix” CHECKED>
no <INPUT TYPE=”RADIO” NAME=”pixChoice” VALUE=”hasNoPix”>
<P>
Do you have one or more products you’d like to promote/sell on your site?

yes <INPUT TYPE=”RADIO” NAME=”cdChoice” VALUE=”hasProducts” CHECKED>
no <INPUT TYPE=”RADIO” NAME=”cdChoice” VALUE=”hasNoProducts”>
<P>
Are you a small business owner, or do you work for a large corporation?

small business owner <INPUT TYPE=”RADIO” NAME=”bizChoice” VALUE=”isOwner”

CHECKED>
employee <INPUT TYPE=”RADIO” NAME=”bizChoice” VALUE=”isEmployee”>
<P>
If you work for a corporation, what’s the name?
<INPUT TYPE=”TEXT” NAME=”corpName” SIZE=”25”>
<P>
Is there anything else you think we need to know in order to give you an

accurate price quote?
<P>
<TEXTAREA NAME=”extraInfo” COLS=”60” ROWS=”5” WRAP=”VIRTUAL”>
</TEXTAREA>
<P>

<TABLE>
<TR>
<TD>

Your first name:
</TD>
<TD>

Last name:
</TD>
</TR>
<TR>
<TD>
<INPUT TYPE=”TEXT” NAME=”firstName” SIZE=”25” onBlur=”if (!exists(this.value)) {

alert(‘Please enter a first name’); }”>
</TD>
<TD>
<INPUT TYPE=”TEXT” NAME=”lastName” SIZE=”35” onBlur=”if (!exists(this.value)) {

alert(‘Please enter a last name’) }”>
</TD>

(continued)

237Chapter 12: Handling Forms

19_576593 ch12.qxd 10/12/04 10:02 PM Page 237

238 Part IV: Interacting with Users

Listing 12-7 (continued)

</TR>
<TR>
</TR>
<TR>
<TD COLSPAN=”2”>

How would you like us to contact you (e-mail, phone, or both)?

</TD>
</TR>

<TR>
<TD ALIGN=”RIGHT”>

e-mail<INPUT TYPE=”CHECKBOX” NAME=”emailChoice” VALUE=”email”>

</TD>
<TD>

<INPUT TYPE=”TEXT” NAME=”emailAddr” SIZE=”35”>
</TD>
</TR>
<TR>
<TD ALIGN=”RIGHT”>

telephone <INPUT TYPE=”CHECKBOX” NAME=”phoneChoice” VALUE=”phone”>

</TD>

<TD>
<INPUT TYPE=”TEXT” NAME=”phoneNumber” SIZE=”15”>
</TD>
</TR>
</TABLE>
<P>
<CENTER>
<INPUT TYPE=”SUBMIT” VALUE=”Submit your quote request”>
 <INPUT TYPE=”RESET” VALUE=”Clear the form”>
...
</HTML>

In the code in Listing 12-7, the validateForm() function, which performs
five dependent field validation routines, executes when the user attempts to
submit the form. (Attaching the vaidateForm() function to the quoteForm
form’s onSubmit event handler sees to that!)

19_576593 ch12.qxd 10/12/04 10:02 PM Page 238

Chapter 13

Handling User-Initiated Events
In This Chapter
� Getting acquainted with the difference between events and event handlers

� Taking a look at the events associated with different objects

� Seeing event handlers in action

JavaScript helps you transform static Web pages into interactive Web-based
applications. And what’s the feature that makes this client-side interactiv-

ity possible? The humble and lovable event handler. You can think of event
handlers as little software bungee cords that bind custom JavaScript code to
events, such as clicking a button or a link, loading a page, typing data into an
input field, and so on.

You see examples of event handlers throughout this book. For this chapter, I
focus on the event handlers that most developers find most useful — the event
handlers associated with window, mouse, form, and keyboard events. Here
you find out how to create and attach essential scripts to such user-driven
events as opening a Web page window, moving a mouse pointer, interacting
with an HTML form, and pressing keys.

The Skinny on Events and Event Handlers
In Web programming terms, an event is anything that happens to a Web page.
Examples of events include

� A window or frame opening or closing

� A mouse pointer moving onto or off of an image, a link, or an HTML form

� A mouse clicking or double-clicking anywhere on a page

� A key being pressed

20_576593 ch13.qxd 10/12/04 10:02 PM Page 239

By using JavaScript, you can perform an action in response to any event. For
example, you can play a welcoming tune when a user opens a Web page; dis-
play explanatory text when a user mouses over a certain area of a Web page;
validate form data as soon as a user enters it; and create hot keys that perform
a custom function in response to a keystroke.

Handling Events
You handle events in JavaScript by attaching event handlers to individual Web
page elements. Event handlers are simply attribute-value pairs that allow you
to capture and respond to events as they occur.

For example, the following code defines an HTML button that, when clicked,
calls a custom JavaScript function. In this sample code, the name of the event
handler is onClick, and the name of the JavaScript function is calc().

<INPUT TYPE=”button” NAME=”pushButton” VALUE=”Calculate Total” onClick=”calc()”>

Table 13-1 lists the events (in addition to click) that you can handle in both
Navigator and Internet Explorer by using JavaScript — along with the Web
page elements, or objects, that support those events.

Netscape Navigator and Internet Explorer provide different levels of support
for event handlers, as they do for so many other features of JavaScript and
HTML and HTML extensions and . . . well, you get the picture. In addition,
because event handling is inherently platform-dependent, browsers imple-
mented on Macintosh and Unix systems offer differing levels of support for
events. For additional event handling information, point your browser to

http://msdn.microsoft.com/workshop/author/dhtml/reference/events.asp

Table 13-1 Common Cross-Browser Web Page Elements
(Objects) That Support Event Handlers

Event Handler Supporting Objects Event (Event Handler
Triggered When . . .)

onAbort Image The image loading is
interrupted.

onBlur Button, Checkbox, FileUpload, The element loses input
Password, Radio, Reset focus. (Clicking out of or
Select, Submit, Text, tabbing away from an
Textarea, window (frame) element takes away that

element’s input focus.)

240 Part IV: Interacting with Users

20_576593 ch13.qxd 10/12/04 10:02 PM Page 240

Event Handler Supporting Objects Event (Event Handler
Triggered When . . .)

onChange Checkbox, FileUpload, The element changes
Password, Radio, Select, (for example, the user
Text, Textarea types text into a Text

element or clicks a
Radio button) and loses
input focus.

onClick Button, Checkbox, document, The element is clicked a
FileUpload, Image, Link, single time (combination
Password, Radio, Reset, of onMouseDown and
Select, Submit, Text, Textarea onMouseUp).

onDblClick Button, Checkbox, document, The element is clicked
FileUpload, Image, Link, twice in quick succes-
sion
Password, Radio, Reset, (double-clicked).
Select, Submit, Text, Textarea

onError Image The image doesn’t finish
loading for some reason.
(Perhaps the image file
doesn’t exist or is cor-
rupted.)

onFocus Button, Checkbox, FileUpload, The element gains input
Frame, Password, Radio, Reset, focus.
Select, Submit, Text,
Textarea, window (frame)

onKeyDown Button, Checkbox, document, The user presses a key.
FileUpload, Image, Link,
Password, Radio, Reset,
Select, Submit, Text, Textarea

onKeyPress Button, Checkbox, document, The user presses and
FileUpload, Image, Link, releases a key (which
Password, Radio, Reset, combines the
Select, Submit, Text, Textarea onKeyDown and
onKeyUp event handlers).

onKeyUp Button, Checkbox, document, The user releases a
FileUpload, Image, Link, previously pressed key.
Password, Radio, Reset,
Select, Submit, Text, Textarea

onLoad Image, window (frame) The element loads
successfully.

(continued)

241Chapter 13: Handling User-Initiated Events

20_576593 ch13.qxd 10/12/04 10:02 PM Page 241

Table 13-1 (continued)
Event Handler Supporting Objects Event (Event Handler

Triggered When . . .)

onMouseDown Button, Checkbox, The user presses a
document, FileUpload, Image mouse button (but
(and Area), Link, Password, doesn’t release it).
Radio, Reset, Select,
Submit, Text, Textarea

onMouseOut Image (and Area), Link The mouse moves off the
element.

onMouseOver Image (and Area), Link The mouse moves onto
the element.

onMouseUp Button, Checkbox, document, The user releases a
FileUpload, Image (and Area), previously clicked mouse
Link, Password, Radio, Reset, button.
Select, Submit, Text, Textarea

onMove window (frame) The user moves or resizes
the window or frame.

onReset form The form is reset; either
the user clicks a Reset
button, or the program-
mer invokes the
form.reset()method.

onResize window (frame) The user resizes the
window or frame.

onSubmit form The form is submitted;
either the user clicks a
Submit button, or the
programmer invokes the
form.submit()
method.

onUnload window The user unloads a doc-
ument (by closing the
browser or by loading
another document).

Many programmers find four categories of event handlers to be the most
useful: window-related events, mouse-related events, form-related events,
and key-related events. In the following four sections, I show you examples
of each of these four important event categories.

242 Part IV: Interacting with Users

20_576593 ch13.qxd 10/12/04 10:02 PM Page 242

Window events
One window event that most Web surfers are familiar with is the pop-up
advertisement — a tiny (or not-so-tiny) window that appears automatically
when you load certain Web pages into your browser. Pop-up ads are attached
to the onLoad event handler (and sometimes the onUnload event handler,
too, which can pelt you with additional pop-up ads as you try to surf away
from a site).

In addition to the onLoad and onUnload event handlers, windows — and
frames, which are a special type of window — support event handlers includ-
ing onBlur, onFocus, onMove, and onResize, as Table 13-2 describes.

Table 13-2 Window- and Frame-Related Event Handlers
Event Handler Event (Event Handler Triggered When . . .)

onBlur The element loses input focus. (Clicking out of or tabbing
away from an element takes away that element’s input focus.)

onFocus The element gains input focus.

onLoad The element loads successfully.

onMove The user moves or resizes the window or frame.

onResize The user resizes the window or frame.

onUnload The user unloads a document (by closing the browser or by
loading another document).

243Chapter 13: Handling User-Initiated Events

The Event’s the thing
Both Navigator and Internet Explorer support
the concept of an Event object designed for
advanced event-handling scenarios. In theory,
you can use the Event object to capture and
examine nitty-gritty details about an event that
occurs. For example, if a user clicks a mouse
button, you can use the methods and properties
associated with the Event object to determine
which mouse button the user clicks and even
the coordinates of the pointer at the time of the
click. If a user presses a key, you can use the
methods and properties associated with the

Event object to determine which key (or key
combination) your visitor presses. The possibil-
ities are numerous. However, JavaScript support
for the Event object isn’t consistent between
browsers at the time of this writing — and doc-
umentation for Navigator support is virtually
nonexistent. For more information on the Event
object and how it’s implemented in Internet
Explorer, visit

http://msdn.microsoft.com/workshop/
author/dhtml/reference/objects/obj_
event.asp

20_576593 ch13.qxd 10/12/04 10:02 PM Page 243

You trigger JavaScript code for a window event by defining a value for the
window’s event handler. For example, the following code displays a goodbye
message when a user unloads (closes or surfs away from) a Web page.

<BODY onUnload=”alert(‘Goodbye, and thank you for stopping by my Web site’);”>

Mouse events
Mouse events make cool interactive effects such as rollovers (see Chapter 8)
and tooltips (see Chapter 11) possible. No such object as mouse exists.
Rather, mouse events occur when a mouse pointer moves — or is clicked —
over some other object. For example, the following code ties two functions
(displayToolTip() and hideToolTip()) to the onMouseOver and
onMouseOut event handlers associated with an HTML-defined area.

<MAP name=”PicMap” id=”PicMap”>
<AREA SHAPE=”rect” COORDS=”226,25,303,82” HREF=”#”

onMouseOut=”hideTooltip(‘tooltip4’)”
onMouseOver=”displayTooltip(event,’tooltip4’)”/>

Table 13-3 describes additional mouse events — and the objects and event
handlers associated with those events.

Table 13-3 Mouse-Related Event Handlers
Event Handler Supporting Objects Event (Event Handler

Triggered When . . .)

onMouseDown Button, Checkbox, document, The user presses a
FileUpload, Image (and Area), mouse button (but
Link, Password, Radio, Reset, doesn’t release it).
Select, Submit, Text, Textarea

onMouseOut Image (and Area), Link The mouse moves off
the element.

onMouseOver Image (and Area), Link The mouse moves onto
the element.

onMouseUp Button, Checkbox, document, The user releases a
FileUpload, Image (and Area, previously clicked
Link, Password, Radio, Reset, mouse button.
Select, Submit, Text, Textarea

244 Part IV: Interacting with Users

20_576593 ch13.qxd 10/12/04 10:02 PM Page 244

Form events
HTML defines a handful of form elements, or controls (push buttons, radio
buttons, check boxes, and so on). Each of these elements is associated with
appropriate event handlers.

For example, in the life of a button, several events can occur. That button
can be clicked, double-clicked, receive input focus, and lose input focus, for
example. JavaScript event handlers can detect and handle each of these sepa-
rate events — click, double-click, focus, and blur. Take a look at the following
code to see what I mean:

<INPUT TYPE=”button” NAME=”pushButton” VALUE=”Push me!”
onClick=”doSomething();”>

This statement, which is a mixture of HTML syntax and inline JavaScript
code, defines an HTML button element. Along with the TYPE, NAME, and
VALUE attributes, the statement defines an onClick event handler for the
button. At runtime, when a user clicks the Push Me! button, the JavaScript
interpreter automatically calls the function doSomething(). Table 13-4 lists
additional event handlers for form elements.

Table 13-4 Event Handlers for Form Elements
Event Handler Supporting Form Elements Event (Event Handler

Triggered When . . .)

onBlur Button, Checkbox, FileUpload, The element loses input
Password, Radio, Reset, Select, focus. (Clicking out of or
Submit, Text, Textarea tabbing away from an

element takes away that
element’s input focus.)

onChange Checkbox, FileUpload, The element changes
Password, Radio, Select, Text, (for example, the user
Textarea types text into a Text

element or clicks a
Radio button) and loses
input focus.

onClick Button, Checkbox, FileUpload, The element is clicked a
Password, Radio, Reset, Select, single time (which com-
Submit, Text, Textarea bines the onMouseDown

and onMouseUp event
handlers).

(continued)

245Chapter 13: Handling User-Initiated Events

20_576593 ch13.qxd 10/12/04 10:02 PM Page 245

Table 13-4 (continued)
Event Handler Supporting Form Elements Event (Event Handler

Triggered When . . .)

onDblClick Button, Checkbox, FileUpload, The element is clicked
Password, Radio, Reset, Select, twice in quick succes-
Submit, Text, Textarea sion (double-clicked).

onFocus Button, Checkbox, FileUpload, The element gains input
Password, Radio, Reset, Select, focus.
Submit, Text, Textarea

onKeyDown Button, Checkbox, FileUpload, The user presses a key.
Password, Radio, Reset, Select,
Submit, Text, Textarea

onKeyPress Button, Checkbox, FileUpload, The user presses
Password, Radio, Reset, Select, and releases a key
Submit, Text, Textarea (which combines the

onKeyDown and
onKeyUp event
handlers).

onKeyUp Button, Checkbox, FileUpload, The user releases a
Password, Radio, Reset, Select, previously pressed key.
Submit, Text, Textarea

onMouseDown Button, Checkbox, FileUpload, The user presses a
Password, Radio, Reset, Select, mouse button (but
Submit, Text, Textarea doesn’t release it).

onMouseUp Button, Checkbox, FileUpload, The user releases a
Link, Password, Radio, Reset, previously clicked
Select, Submit, Text, Textarea mouse button.

onReset form The form is reset; either
the user clicks a Reset
button, or the program-
mer invokes the
form.reset()method.

onSubmit form The form is submitted;
either the user clicks a
Submit button, or the
programmer invokes
the form.submit()
method.

246 Part IV: Interacting with Users

20_576593 ch13.qxd 10/12/04 10:02 PM Page 246

Keyboard events
Keyboard-related events occur when a user presses a key while a Web page
is loaded. In addition to capturing the overall keyPress event, you can
separately capture (and respond to) the user’s pressing the key and then
releasing the key.

The following sample code ties a custom JavaScript function named
disallowInput() to the onKeyPress event handler associated with
the document object:

<BODY onKeyPress=”disallowInput();”>

For details on the other objects that support keyboard events, check out
Table 13-5.

Table 13-5 Keyboard-Related Event Handlers
Event Supporting Objects Event (Event Handler
Handler Triggered When . . .)

onKeyDown Button, Checkbox, document, The user presses a key.
FileUpload, Image, Link,
Password, Radio, Reset, Select,
Submit, Text, Textarea

onKeyPress Button, Checkbox, document, The user presses and
FileUpload, Image, Link, releases a key (which
Password, Radio, Reset, Select, combines the onKeyDown
Submit, Text, Textarea and onKeyUp event

handlers).

onKeyUp Button, Checkbox, document, The user releases a
FileUpload, Image, Link, previously pressed key.
Password, Radio, Reset, Select,
Submit, Text, Textarea

247Chapter 13: Handling User-Initiated Events

Using window events for good, not evil
Some folks think pop-up ads are inherently evil,
and some think they’re a legitimate use of Web
technology. Wherever you fall in the debate, be
aware that pop-up-killer software exists, which

some surfers download and install to avoid
seeing pop-up ads. Know, too, that many surfers
refuse to revisit sites which bombard them with
pop-up ads.

20_576593 ch13.qxd 10/12/04 10:02 PM Page 247

248 Part IV: Interacting with Users

20_576593 ch13.qxd 10/12/04 10:02 PM Page 248

Chapter 14

Handling Runtime Errors
In This Chapter
� Getting familiar with runtime errors and exceptions

� Taking a peek at the try, catch, and throw statements

Support for exception handling — a technique for anticipating and recov-
ering gracefully from errors that has long been supported in languages

like C++ — was finally implemented for JavaScript in Internet Explorer 5.x
and Navigator 6.x.

Exceptional Basics
Technically, an exception is any unexpected condition, good or bad, that
occurs during the processing of a script. Practically speaking, however, an
exception is virtually always an error. Exceptions can result from

� A JavaScript error

� An unanticipated user-input error

� A problem with a user’s browser, operating system, or hardware
configuration

Trying to make your code access objects (such as array elements, properties,
files, and so on) that don’t exist is a common source of exceptions that might
occur while your JavaScript code is executing in someone’s browser.

If you’re creating a commercial JavaScript application, you want to make lib-
eral use of JavaScript’s exception-handling abilities. Allowing your users to
view cryptic, system-generated errors such as File Not Found or No Such
Object is unacceptable in a commercial environment. Although anticipating

21_576593 ch14.qxd 10/12/04 10:02 PM Page 249

and handling those errors by using try and catch blocks might not prevent
the errors from occurring, it does give you the opportunity to

� Reassure users. You can use JavaScript’s exception-handling functions
to display a message telling users that an error has occurred but is being
handled appropriately. (This approach is much better than allowing a
cryptic system message or blank screen to confuse and alarm users.)

� Provide users with helpful, appropriate suggestions. You can explain
the cause of the error and provide users with tips for avoiding that error
in the future.

Handling Exceptions
You handle exceptions by creating two special JavaScript functions, or blocks:
a try block and a catch block. Then, in any statement that might generate
an error, you use the keyword throw to throw an error to the catch block.
The code in Listing 14-1 shows you how.

Look for the code in Listing 14-1 in the file list1401.htm on the compan-
ion CD.

Listing 14-1: Handling Exceptions with try-catch and throw

. . .
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>

function getMonthName (monthNumber) {

// JavaScript arrays begin with 0, not 1, so
// subtract 1.
monthNumber = monthNumber - 1

// Create an array and fill it with 12 values
var months = new Array(“Jan”,”Feb”,”Mar”,”Apr”,”May”,”Jun”,”Jul”,

“Aug”,”Sep”,”Oct”,”Nov”,”Dec”)

// If the monthNumber passed in is somewhere
// between 0 and 11, fine; return the corresponding
// month name.

if (months[monthNumber] != null) {
return months[monthNumber]

}

// Otherwise, an exception occurred, so throw
// an exception.

250 Part IV: Interacting with Users

21_576593 ch14.qxd 10/12/04 10:02 PM Page 250

else {
// This statement throws an error
// directly to the catch block.
throw “InvalidMonthNumber”

}
}

//
// The try block wraps around the main JavaScript
// processing code. Any JavaScript statement inside
// the try block that generates an exception will
// automatically throw that exception to the
// exception handling code in the catch block.
//

// The try block
try {

// Call the getMonthName() function with an
// invalid month # (there is no 13th month!)
// and see what happens.

alert(getMonthName(13))

alert(“We never get here if an exception is thrown.”)

}

// The catch block
catch (error) {

alert(“An “ + error + “ exception was encountered. Please contact the
program vendor.”)

// In a real-life situation, you might want
// to include error-handling code here that
// examines the exception and gives users specific
// information (or even tries to fix the problem,
// if possible.)

}

Take a look at Figure 14-1 to see the error that running the code in Listing 14-1
generates in Internet Explorer.

Figure 14-1:
Houston,
we have
an error.

251Chapter 14: Handling Runtime Errors

21_576593 ch14.qxd 10/12/04 10:02 PM Page 251

The first code executed in Listing 14-1 is the code that you see defined in the
try block:

alert(getMonthName(13))

Because only 12 months are defined in the months array, passing a value
of 13 to getMonthName() causes an exception (“InvalidMonthNumber”)
to be thrown, as shown here:

function getMonthName(monthNumber) {
. . .
throw “InvalidMonthNumber”

All thrown exceptions are processed automatically by whatever code exists
in the catch block, so the message that you see in Figure 14-1 (and defined in
the catch block code shown in Listing 14-1) appears automatically when the
exception is thrown.

If you want to write truly airtight JavaScript code, you need to identify all the
events that could possibly cause an exception in your particular script (such
as actions the user could take, error conditions the operating system could
generate, and so on), and implement a try-catch block for each.

Depending on your application, you might want to include more processing
code in the catch block than the simple pop-up message shown in Figure 14-1.
For example, you might want to include JavaScript statements that examine
the caught exception, determine what kind of exception it is, and process it
appropriately.

You aren’t limited to a string literal when it comes to identifying a thrown
exception. Instead of InvalidMonthNumber, you can create and throw an
elaborate custom exception object (by using the function and new opera-
tors that I describe in Chapter 3).

For more information on how Netscape implements exception handling
(including examples), visit

http://developer.netscape.com/docs/manuals/js/core/jsguide/stmtsov.htm#1011537

To see how Microsoft does the same for Internet Explorer, check out this page:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/jscript7/html/jsstmtrycatch.asp

252 Part IV: Interacting with Users

21_576593 ch14.qxd 10/12/04 10:02 PM Page 252

Part V
The Part of Tens

22_576593 pt05.qxd 10/12/04 10:06 PM Page 253

In this part . . .

Part V begins with a list of some great JavaScript-related
Web sites that are full of useful information about all

aspects of JavaScript. If you feel the need to communicate
with real people about your JavaScript scripts, Chapter 15
even provides you with a list of some user groups that
enable you to do just that.

These online resources are followed by a chapter explain-
ing the most common mistakes that people run into when
implementing Web pages (along with tips on how to avoid
them). And finally, no programming book worth its salt
would be complete without at least a few handy debugging
techniques. Chapter 17 provides you with lots of bug-related
tips that make debugging at least entirely bearable, if not
downright pleasant!

22_576593 pt05.qxd 10/12/04 10:06 PM Page 254

Chapter 15

Top Ten (Or So) Online
JavaScript Resources

In This Chapter
� Finding and using JavaScript tutorials

� Finding cool JavaScript examples online

� Taking advantage of the essential JavaScript-related newsgroups

G etting help on how to do something has never been easier than it is
right now. Why? The Internet, of course! From its roots in government

and university installations, the Internet remained a close-knit, mostly acade-
mic community until as recently as a decade ago. Inevitably, commercialism
reared its ugly head and has had a tremendous effect — and not all bad,
either — on all things Net. (For example, the commercialism of the Internet
is directly responsible for the proliferation of Web tools and languages such
as JavaScript.)

Although marketing and advertising have become common on the Internet,
the spirit of sharing and intellectual collaboration hasn’t yet been snuffed
out. Helping other people (and maybe showing off a little in the process)
is a fundamental joy. And because access to the Internet is relatively cheap
and easy, everybody and their dog indulges — as you see when you visit the
URLs and newsgroups that I list in this chapter.

Ten Web Sites to Check Out
With no further ado, then, on to the good stuff: a list of irresistible JavaScript-
related Web resources. You find tips, tricks, tutorials, examples, and up-to-the-
minute documentation. The site’s URL follows a description of the goodies
offered.

23_576593 ch15.qxd 10/12/04 10:14 PM Page 255

Netscape
The Netscape DevEdge site contains a wealth of information on getting started
with JavaScript, including a complete language reference, how-to articles, and
sample code. It also offers a downloadable JavaScript debugger.

http://devedge.netscape.com

Microsoft
Microsoft maintains an information-packed site devoted to its JavaScript-
compatible language, JScript. Documentation, tutorials, sample code, and
access to JScript-related newsgroups are just some of the great resources
that you find here.

http://msdn.microsoft.com/scripting/jscript/default.htm

Builder.com
The JavaScript section at CNET Builder.com features tips and tutorials in
addition to copy-and-paste JavaScript code.

http://builder.com.com/1200-31-5084860.html

Webmonkey
Webmonkey maintains a killer JavaScript code library containing not just a
wealth of scripts but a handy browser reference chart, cheat sheets on HTML
and CSS, and more — all free for the taking.

http://hotwired.lycos.com/webmonkey/reference/javascript_code_library

Project Cool’s JavaScript QuickStarts
Project Cool’s JavaScript QuickStarts offer hands-on JavaScript (and DHTML)
tutorials. From basic to advanced, all are organized into neat, bite-sized chunks
perfect for beginning JavaScript programmers.

www.devx.com/projectcool

256 Part V: The Part of Tens

23_576593 ch15.qxd 10/12/04 10:14 PM Page 256

EarthWeb.com
The EarthWeb.com JavaScript site offers a huge repository of cut-and-paste
scripts — scripts for everything from navigation to multimedia.

http://webdeveloper.earthweb.com/webjs

About.com
The Focus on JavaScript Web page at About.com contains articles, tutorials,
and downloadable scripts on every conceivable JavaScript-related topic —
including my personal favorite, troubleshooting.

http://javascript.about.com/compute/javascript

IRT.org
Internet Related Technologies’ JavaScript section offers an exhaustive knowl-
edge base of frequently asked (and answered) script-related questions.

http://developer.irt.org/script/script.htm

257Chapter 15: Top Ten (Or So) Online JavaScript Resources

Stop, thief!
Most of the sites that I describe in this chapter
are commercial sites, and without exception,
the JavaScript source code they offer is clearly
marked “for free download.” (You might have to
register your e-mail address before you can
download, though, so these companies can
stick you on their electronic mailing lists.)

But if you’re looking for scripts, you’re not limited
to commercial sites. You can cut and paste
embedded JavaScript source code from any site,
with or without that Webmaster’s permission,
simply by clicking View➪Source (from Internet

Explorer) or View➪Page Source (Navigator).
(This is one reason why password protection and
other highly sensitive features aren’t typically
implemented in JavaScript!)

One caveat: If you run across source that
includes a copyright notice, contact the author
or Webmaster and ask for permission before
using it. If in doubt, don’t copy a file line for line;
instead, take a look at how the programmer
solved the problem and base your solution on
the overall approach.

23_576593 ch15.qxd 10/12/04 10:14 PM Page 257

WebReference.com
WebReference.com’s homegrown JavaScript resource list contains links to
online JavaScript magazines, script archives, and much more.

www.webreference.com/programming/javascript/index.html

ScriptSearch.com
ScriptSearch.com maintains a giant database of JavaScript scripts, from ad
banners to visual effects.

http://scriptsearch.internet.com/JavaScript/

Not-to-Be-Missed Newsgroups
The Web sites listed in the preceding sections are a great source of information.
Sometimes, though, you just have to send a message to a real live person and
ask a point-blank question. Newsgroups can be a great timesaver, especially
when it comes to researching specific how-to’s and known bugs.

To access newsgroups, you need to have a news server defined. Generally,
you set up both a Web server and a news server as part of the browser instal-
lation and configuration process, but you can always add news support later.

To participate in a user group, by viewing other peoples’ messages or by
posting your own, you need to switch from surfing the Web to perusing the
news. To do this, choose Window➪Mail & Newsgroups from the Navigator
menu or Tools➪Mail and News➪Read News if you’re an Internet Explorer fan.

For detailed instructions on configuring your browser software to access news-
groups, check with your browser provider (in other words, contact technical
support at Microsoft or Netscape) or check out a good book on the topic, such
as The Internet For Dummies, 9th Edition, by John R. Levine, Carol Baroudi, and
Margaret Levine Young (Wiley Publishing, Inc.).

Collectively, newsgroups are known as Usenet. For more information about
newsgroups — including where to find news, how to write effective posts,
and even how to create your own — visit

http://groups.google.com

258 Part V: The Part of Tens

23_576593 ch15.qxd 10/12/04 10:14 PM Page 258

Although user groups come and go, the following have established them-
selves as the best places to be for JavaScript-related development:

� If you follow only one user group, make it the following one. This group
is very well attended and is currently the premier JavaScript information
group for newbies and advanced scripters alike:

comp.lang.javascript

(The it.comp.lang.javascript and de.comp.lang.javascript
newsgroups are high-traffic Italian- and German-language versions.)

� Get answers to HTML questions answered here:

comp.infosystems.www.authoring.html

� Microsoft’s public scripting newsgroup focuses on JScript tips and
questions:

microsoft.public.scripting.jscript

259Chapter 15: Top Ten (Or So) Online JavaScript Resources

23_576593 ch15.qxd 10/12/04 10:14 PM Page 259

260 Part V: The Part of Tens

23_576593 ch15.qxd 10/12/04 10:14 PM Page 260

Chapter 16

Ten (Or So) Most Common
JavaScript Mistakes (And

How to Avoid Them)
In This Chapter
� Catching typographical errors

� Fixing unmatched pairs

� Putting scripting statements between HTML tags

� Nesting quotes incorrectly

� Treating numbers as strings

� Treating strings as numbers

� Finding logic errors

Every JavaScript author makes mistakes. (Actually, I like to think of it in
the reverse — it’s the JavaScript interpreter that makes the mistakes by

not figuring out what the programmer means by something. Yeah! That’s it!)
Most of the time, the errors you make fall into one of the categories listed in
this chapter. The good news is that the errors are all easy to correct. The
better news is that the JavaScript interpreter tells you quickly — and in no
uncertain terms — when it encounters an error.

Check out this book’s companion CD to see the sample listings scattered
throughout this chapter. I’ve named the files after the listings so you can find
them easily. For example, you can find Listing 16-1 in the file list1601.htm.

24_576593 ch16.qxd 10/12/04 10:06 PM Page 261

Typing-in-a-Hurry Errors
Spelling and capitalization errors easily take first prize for being the most
common mistakes that all JavaScripters make, from the greenest beginner
to the most highly seasoned veteran.

The JavaScript interpreter is a stickler for correct spelling: You simply can’t
access an object, property, method, variable, or function unless you spell its
name properly. For example, the second line of the following bit of code gen-
erates an error:

var identification = “ABC”;
alert(“The id number is “ + identificatoin);

The JavaScript interpreter is also case-sensitive, which means you can’t substi-
tute uppercase letters for lowercase letters in object, property, method, vari-
able, and function names. The following example generates an error because
the correct name of the method is toLowerCase() (not TOLOWERCASE()):

alert(“Broadcast network ID = “
+ identification.TOLOWERCASE());

To detect and correct these errors:

� Be aware, as you write your JavaScript code, that consistency in spelling
and capitalization is essential to bug-free statements.

� Take advantage of any spell-checking utilities or point-and-click method
name insertion utilities that your text editor provides.

262 Part V: The Part of Tens

HTML woes
Because JavaScript statements are embedded in HTML files, some of the mistakes you might find
are actually HTML mistakes. For example, the following is an HTML error (TYE=”button” should
be TYPE=”button”):

<INPUT TYE=”button” NAME=”testButton” VALUE=”test”
onClick=’test()’>

In this case, the JavaScript interpreter doesn’t display an error message because the error doesn’t
concern it. What does happen is that your button element fails to display properly.

If your page doesn’t behave as expected and JavaScript doesn’t alert you, you’re probably deal-
ing with an HTML error. If this happens (and you can’t find the solution in this chapter), check out
a good HTML reference such as HTML For Dummies, 4th Edition, by Ed Tittel and Natanya Pitts
(Wiley Publishing, Inc.).

24_576593 ch16.qxd 10/12/04 10:06 PM Page 262

Breaking Up a Happy Pair
JavaScript scripts are typically rife with pairs: pairs of opening and closing
tags (courtesy of HTML), pairs of parentheses and curly braces, pairs of
single quotes and double quotes. The JavaScript interpreter treats the stuff
between the pairs as one entity, so if half of the pair is missing, the inter-
preter gets confused — mighty confused, in some cases!

The following are specific examples of happy couples that you don’t want to
break up in JavaScript.

Lonely angle brackets
Looking at the following code, you’d think that the display would include two
text elements: one to hold a first name and one to hold a last name. It doesn’t,
though, because a closing angle bracket is missing.

<FORM NAME=”myForm”>
. . .
First name: <INPUT TYPE=”text” NAME=”firstName” LENGTH=15
Last name: <INPUT TYPE=”text” NAME=”lastName” LENGTH=30>
. . .

If a text element doesn’t appear — no error message, no nothing, just blank
space where the element should have appeared — the likely suspect is a
missing angle bracket on the line directly before the invisible text element.

Lonely tags
The code that you see in Listing 16-1 depicts a tiny little script, perhaps a first
attempt at a JavaScript-enabled Web page. At first blush, perhaps you don’t
see anything amiss. If you were to load this script, though, you’d see that
something is definitely amiss!

Listing 16-1: HTML Source Containing a Missing Tag

. . .
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function test() {

var aString = “some text”

(continued)

263Chapter 16: Ten (Or So) Most Common JavaScript Mistakes

24_576593 ch16.qxd 10/12/04 10:06 PM Page 263

Listing 16-1 (continued)

alert(“aString is “ + aString)
}
//The closing </SCRIPT> tag that should be here is missing.
</HEAD>
<BODY>
<FORM NAME=”myForm”>
<INPUT TYPE=”button” NAME=”testButton” VALUE=”test”
onClick=’test()’>
<P>
First name: <INPUT TYPE=”text” NAME=”firstName” LENGTH=15>
Last name: <INPUT TYPE=”text” NAME=”lastName” LENGTH=30>
</FORM>
</BODY>
</HTML>

The absence of the closing </SCRIPT> tag in the preceding code snippet
causes the page to display nothing — zip, nada, zilch — instead of the button
and text elements that you expect.

Whenever elements refuse to appear, check your HTML statements to see
whether an opening half of a two-part tag, such as <TITLE>, <SCRIPT>, or
<BODY>, is missing its closing half (</TITLE>, </SCRIPT>, and </BODY>,
respectively).

Lonely parentheses
When you look closely at the body of the following test() function, you can
easily spot the missing parenthesis on line three:

function test() {
var aString = “some text”
alert(“aString is “ + aString

}

As your JavaScript skills increase, though, you might find yourself putting
together whopping long statements. Furthermore, each of the whopping long
statements might contain many pairs of parentheses, often nested a few layers
deep — and that’s when you’re most likely to make this kind of mistake.

Unless the editor that you use to create your script provides an automatic
parentheses-pair-checking utility, you need to eyeball your code to catch and
correct this mistake.

264 Part V: The Part of Tens

24_576593 ch16.qxd 10/12/04 10:06 PM Page 264

Lonely quotes
Take a good look at the following example:

<INPUT TYPE=”button” NAME=”testButton” VALUE=”test”
onClick=’test(“hello)’>

The mistake here is that no closing double quote appears after the word
hello. The preceding code doesn’t generate an error; it just disables the
testButton object’s onClick event handler.

Here’s how the corrected statement looks:

<INPUT TYPE=”button” NAME=”testButton” VALUE=”test”
onClick=’test(“hello”)’>

Putting Scripting Statements
in the Wrong Places

When you’re new to JavaScript, remembering the order of things might be a
little difficult. For example, JavaScript statements are valid only when they’re
placed between the <SCRIPT> and </SCRIPT> tags or as values assigned to
event handlers. If you forget and place them somewhere else, you’re bound to
get an unexpected result.

The good news is that you find out as soon as you load your page and take
a look at it that something is amiss — because your source code appears
right there on the page! Check out the source shown in Listing 16-2 to see
what I mean.

Listing 16-2: HTML Source Containing Misplaced Scripting Statements

<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
function test(inputValue) {

alert(“Wow, I sure do love JavaScript!” +
“\nHere’s what the public is saying about JavaScript: “ +

inputValue)
}
</SCRIPT>
// The addNumbers() function is incorrectly defined
// below the closing </SCRIPT> tag.

(continued)

265Chapter 16: Ten (Or So) Most Common JavaScript Mistakes

24_576593 ch16.qxd 10/12/04 10:06 PM Page 265

Listing 16-2 (continued)

function addNumbers(numberOne, numberTwo) {
return numberOne + numberTwo

}
</HEAD>
. . .

When you execute the code in Listing 16-2, you don’t see a JavaScript error,
but you do see the text of the addNumbers() function displayed on-screen.
(You don’t see a JavaScript error because the JavaScript interpreter can’t
access any statement outside the beginning and ending <SCRIPT> tags —
unless that statement is a value for an event handler.)

Moving the </SCRIPT> tag just after the closing brace of the addNumbers()
function fixes this script, causing the JavaScript interpreter to interpret the
addNumbers() function as JavaScript code.

Anytime that you see your well-crafted JavaScript statements displayed in
living color on your page, you can be pretty sure that the problem is that
your statements are outside the bounds of the <SCRIPT> and </SCRIPT>
tags. Move the statements back to where they belong and they should
behave.

Nesting Quotes Incorrectly
Nesting single and double quotes together, like the following lines, is per-
fectly legitimate:

onClick=”alert(‘This is an example of nested quotes.’)”

onClick=’alert(“This is another example of nested quotes.”)’

Just make sure that you don’t nest double quotes inside double quotes, or
single quotes inside single quotes, like this:

onClick=”alert(“Oops! Incorrectly nested quotes generate a syntax error!’)’

If you must include a mismatched quote, you can — as long as you escape
the mismatched quote. Escaping a quote tells the JavaScript interpreter not
to expect a matching quote. You escape a quote by preceding that quote with
a backslash, like this:

onClick=”alert(‘This escaped quote doesn\’t cause a problem.’)”

266 Part V: The Part of Tens

24_576593 ch16.qxd 10/12/04 10:06 PM Page 266

Treating Numbers as Strings
Humans tend not to make a big fuss over the difference between text and
numbers — at least, not in most contexts. For example, when you write a sen-
tence in English, you don’t need to do anything different to include a number.
(Even if you write 333 of them!)

Numbers and text strings are two very different things to most programming
languages, though, and that includes JavaScript. In JavaScript, trying to treat
a number as a string, as shown in Listing 16-3, generates an error every time.

Listing 16-3: JavaScript Source Containing Statement That Treats a
Number Like a String

. . .
<SCRIPT LANGUAGE=”JavaScript”>
function testIt(inputValue) {
// The bold() method you see in the next line is associated
// with the String object (not the Number object).

document.write(inputValue.bold())
document.close()

}
</SCRIPT>
. . .
<FORM NAME=”myForm”>
// The following onClick event handler
// sends the number 2 to the testIt() function.

<INPUT TYPE=”button” NAME=”testButton” VALUE=”test”
onClick=’testIt(2)’>

The problem occurs when the number 2 is passed from the definition of
the onClick event handler to the testIt() function, which isn’t set up to
handle numbers. If you look at the testIt() function, you can see that it’s
taking whatever the input value is (in this case, the number 2) and trying to
call the String object’s bold() method on it. And that ain’t flying. The only
thing that you can call a string function on is a string, and 2 isn’t a string!
(If you’d like more information on what a string is, take a look at Chapter 3.)

Sometimes you are going to want to send a number to a function and have
that function deal with it as a string. In these cases, all you need to do is add
lines like the following to your function:

function testIt(inputValue) {
// Set up a temporary string variable.
var aString = “”

267Chapter 16: Ten (Or So) Most Common JavaScript Mistakes

24_576593 ch16.qxd 10/12/04 10:06 PM Page 267

// Place the input value into the temporary
// string variable.
aString += inputValue

// Call the bold() method on the string version of
// the inputValue.
document.write(aString.bold())

}

Now you can send whatever value you like to the testIt() function, and
testIt()behaves nicely!

Treating Strings as Numbers
The preceding section shows what happens when you treat numbers as
strings. As you might guess, the reverse — treating strings as numbers —
also causes grief in JavaScript. Let me explain by way of the code snippet
shown in Listing 16-4.

Listing 16-4: JavaScript Source Containing Statement That Treats a
String Like a Number

function calculateTax(inputNumber) {
return inputNumber * .50

}
. . .
<INPUT TYPE=”button” NAME=”calculateTaxButton”

VALUE=”Calculate”
onClick=’alert(“The tax is “ + calculateTax(“baked”))’>
. . .

When you click the Calculate button, the baked string goes to the calculate
Tax() function, where it’s immediately multiplied by .50. Now, if you can tell
me what the result of baked times .50 is, you’re a better mathematician than
I’ll ever be. (Okay, so maybe it’s half-baked!) JavaScript doesn’t know, either,
so it displays a built-in value NaN, which is JavaScript’s way of saying “I don’t
know what the heck this is, but I do know it’s Not a Number!”

Once again, in JavaScript as in life, you can do pretty much anything you
like — if you know how to go about doing it. If you want to create a function
that expects a number but can deal gracefully with a string, all you need to
do is add a few lines to the very top of your function. Listing 16-5 shows
you how.

268 Part V: The Part of Tens

24_576593 ch16.qxd 10/12/04 10:06 PM Page 268

Listing 16-5: JavaScript Source for a Function That Expects a Number
but Deals with a String

function calculateTax(inputNumber) {
// myNumber will be false if inputNumber is a string.
var myNumber = parseFloat(inputNumber)

// If the inputNumber was, in fact, a number,
// perform the necessary calculation.
if (myNumber) {

return myNumber * .50
}
// Otherwise, display an error.
else {

alert(“A non-numeric value was passed to a function that expected a
number”)

return “unknown”
}

}
. . .
<INPUT TYPE=”button” NAME=”calculateTaxButton”
VALUE=”Calculate”
onClick=’alert(“The tax is “ + calculateTax(“baked”))’>
. . .

In this new, improved, better-tasting version, the first thing the calculate
Tax() function does is see whether it can convert whatever value it receives
into a number. If it can, it converts the value, if necessary, and then goes on
to perform its calculations on the converted value. For example, you can
pass a number or a string such as “1234.56” to calculateTax() instead of
the string baked. If the calculateTax() function can’t make a conversion
(what number does “baked” convert to?), it recognizes that it can’t convert
this value, doesn’t bother to perform any calculations, and alerts the user
instead.

Missing the Point: Logic Errors
Logic errors are the most difficult errors to track down because they don’t
generate one specific type of error message. (You never see the JavaScript
interpreter spit out a Clearly, that is not how you calculate the
interest on a 20-year loan message, for example.)

How could the JavaScript interpreter possibly know what you’re logically
trying to do? Unlike a human, it can’t read your code, analyze it, and confer
with other interpreters to figure out whether your code comes close to

269Chapter 16: Ten (Or So) Most Common JavaScript Mistakes

24_576593 ch16.qxd 10/12/04 10:06 PM Page 269

accomplishing some reasonable task. JavaScript just skims your code for
syntax errors. If you want to give your users the option to submit a form but
then not actually submit the form when they indicate Yes — that’s up to you.
JavaScript is not your mother!

The only way to track down logic errors is the old-fashioned way: by studying
your code, displaying the contents of variables, making changes, and retesting.

The alert() method, as you see in the following example, is very handy for
displaying the contents of variables throughout your code. Often, when you
see the contents of variables, you discover a logic error immediately. (For
example, a value you expect to be 1,000 displays as –3 — and so you know
that the calculations responsible for that value contain an error.)

alert(“Made it to the first if-else statement inside the calculateOrder() func-
tion and the value of someValue is “ + someValue);

Neglecting Browser Incompatibility
Few things are more frustrating than spending hours creating a fantastic,
impressive script, posting it to your Web server, and then having someone
who visits your Web site e-mail you with the bad news: It doesn’t work in my
Web browser!

JavaScript support varies not just between Internet Explorer and Navigator,
but among versions of these browsers, as well. If a script behaves as expected
in one browser but tanks in another, you’ve run into the dreaded browser
incompatibility problem. Here are four suggestions for overcoming this bane
of every Web developer’s existence:

� Forego the latest and greatest JavaScript features; stick to core features.

Don’t rush to incorporate the latest JavaScript features in each
browser version; instead; try to rely on tried-and-true, lowest-
common-denominator features whenever possible.

� Always check the documentation.

When sticking to core JavaScript features isn’t possible (or desirable),
go ahead and use proprietary features — just make sure to inspect your
target browser’s technical documentation to determine how the features
you want to use are implemented.

• Netscape’s client-side JavaScript language reference:

http://devedge.netscape.com/central/javascript

• Microsoft’s JavaScript-compatible JScript language reference:

http://msdn.microsoft.com/scripting/jscript/default.htm

270 Part V: The Part of Tens

24_576593 ch16.qxd 10/12/04 10:06 PM Page 270

� Include browser-detection code.

Chapter 3 shows you how to create a script that detects a visitor’s
browser on-the-fly and behaves differently based on different browser
capabilities.

� Always test your scripts in multiple browsers before publishing them.

Documentation can be wrong, and browser-detection code can malfunc-
tion. So before you actually post your JavaScript-enabled pages to your
Web server (thereby exposing them for all the world to see), always test
them yourself in as many browsers as possible.

Although the America Online browser has a fairly large market share, it’s
often overlooked by JavaScript developers. You can download your own free
copy of this browser from http://free.aol.com.

Rather than downloading and installing multiple browsers, you can take
advantage of an online service, such as NetMechanic, to help you spot
cross-browser bugs at this site:

www.netmechanic.com/cobrands/zdnet/browsercheck

271Chapter 16: Ten (Or So) Most Common JavaScript Mistakes

24_576593 ch16.qxd 10/12/04 10:06 PM Page 271

272 Part V: The Part of Tens

24_576593 ch16.qxd 10/12/04 10:06 PM Page 272

Chapter 17

Ten (Or So) Tips for Debugging
Your Scripts

In This Chapter
� Comparing code to design specifications

� Tracking down bugs with alerts

� Getting help from online resources

� Watching the code in process

� Breaking up functions

� Turning user errors into useful information

� Getting familiar with JavaScript debugging tools

In Chapter 16, you see some of the most common mistakes (or bugs) that
JavaScript programmers tend to make. This chapter expands on that theme

by showing you the quickest, most direct ways to pinpoint and correct any
bugs that you happen to introduce into your code. Many language compilers
and interpreters come complete with tools for debugging. Unfortunately, few
debugging tools exist for JavaScript just yet. I introduce you to those tools later
in this chapter — along with some great advice for debugging your JavaScript
code as quickly and easily as possible.

Debugging is sort of like washing dishes. Neither chore is exactly a ton of
fun, but both are necessary, and you always feel better when they’re finished.
Debugging doesn’t have to be a dreaded chore, though. You might find that,
with a little help (like the tips presented in this chapter) and a little practice,
the job gets easier and easier.

25_576593 ch17.qxd 10/12/04 10:05 PM Page 273

JavaScript Reads Your
Code, Not Your Mind!

Strangely enough, the first step in successful bug extermination involves
determining whether you’ve actually encountered one. If your JavaScript
script doesn’t behave the way that you expect it to, you could be dealing
with a bug. However, your script might be working as designed, and the
problem is in your understanding of how the script is supposed to work.

In the old days, programmers created flowcharts — pages and pages of little
symbols and lines that described how they wanted their programs to behave
at runtime. Flowcharts have fallen out of favor — not because they were a bad
idea but because they were nearly as time-intensive to create as the programs
themselves.

These days, most programmers find it helpful to write pseudocode as part of
the design process. Then, during testing, these programmers have something
to refer to — a touchstone, as it were, to help them clarify whether a poten-
tial bug lies in their JavaScript code or in their programming logic.

Pseudocode is a shorthand combination of JavaScript and the programmer’s
natural language. Because this tool is designed to be as easy and natural for
programmers as possible, no hard-and-fast rules define precisely how to
write pseudocode.

Say, for example, that your goal is to calculate the total price (including sales
tax, if any) for international orders placed through your Web site. Here’s an
example of what your pseudocode might look like:

1. The user presses the Submit button.

2. If it’s a U.S. order, calculate the tax (look up the tax rate based on
myForm.state) and store the calculated tax in totalTax

else {What to do if non-U.S. orders?!}

3. Multiply the number of widgets (myForm.numWidgets) ordered by the
price (myForm.price). . . .

As useful as writing pseudocode is to helping you clarify the requirements
of a Web page, it’s absolutely indispensable when it comes to tracking down
bugs in your logic after you finish implementing your Web page.

274 Part V: The Part of Tens

25_576593 ch17.qxd 10/12/04 10:06 PM Page 274

Isolating the Bug
If you encounter a genuine bug, you need to try to home in on it and identify
precisely which lines of code are affected. Here are some examples to help
you work backward from the clues:

� Does the problem occur the instant the page loads? If so, the problem
is probably either HTML-related or in the JavaScript code you set up to
handle the onLoad event.

� Does the problem occur when users type text in an input field? Check
the onChange and onBlur event handlers associated with that field.

� When users click a button, do things go haywire? Check that button’s
onClick event handling code.

� Does something go wrong when users close the window? The culprit is
probably lurking in your onUnload event-handling statements.

First, decide on a place to begin your search — say, with the function that’s
called from one of your onClick event handlers. (I call it buggyFunction().)
The next step is to dig a little deeper. For example, try adding a test button
to your JavaScript code that exercises that same function as the following
one does:

<INPUT TYPE=”button” NAME=”testButton” VALUE=”Test”
onClick=’buggyFunction(123, “abc”)’>

In the first line, you’re sending the buggy function numeric and string literals.
This process helps you determine whether the function itself is buggy or
whether the problem lies with the variables that your original code is passing
to the function.

275Chapter 17: Ten (Or So) Tips for Debugging Your Scripts

Don’t keep your comments to yourself
Getting into the habit of commenting on your
JavaScript code as you write it can be a great
help when it comes time to debug that code.
(You might be surprised at how much you can
forget between the time you create a script and
the time when your code misbehaves, which
can be weeks or even months down the line!)

If you create pseudocode to help you plan and
design your scripts, try using that pseudocode
as the basis for your JavaScript comments.
Doing so helps the future you (or someone else
who has to debug your script) understand pre-
cisely what the code is trying to accomplish.

25_576593 ch17.qxd 10/12/04 10:06 PM Page 275

If the function behaves incorrectly after you pass it numeric and string liter-
als, you know that the bug is in your function. If it behaves correctly, you
need to check the parameters that the original onClick is sending to the
function. (See the “Displaying Variable Values” section later in this chapter.)

One way to isolate a bug is to comment out all the code in a function except
one or two suspect statements. By using this approach, you can focus on the
statements that you want to examine in more detail. To comment out a sec-
tion of code, you place JavaScript comments before each line, like so:

// someVariable = someResult;

Make a copy of your original HTML or script file before you make any changes.
Few things are more frustrating than modifying a file beyond recognition, only
to have it perform even worse than when you started — and then forgetting
how the code originally looked! You might also want to look into a version
control tool such as CVS (www.cvshome.org). Version control tools allow
you to track different versions of files separately so that if you accidentally
goof up one version, you can always go back to an earlier, working version.

Consulting the Documentation
The JavaScript Guide and JavaScript Reference are the most up-to-date
resources available regarding the JavaScript language as Netscape imple-
ments it. Bookmarking or downloading these documents in your browser
helps ensure that they’re at your fingertips when you need them!

http://devedge.netscape.com/central/javascript

Internet Explorer implements JavaScript through the Microsoft scripting lan-
guage JScript. Check out the following URL for a complete description of all
things JScript-related:

http://msdn.microsoft.com/scripting/jscript/default.htm

Displaying Variable Values
A useful debugging technique involves displaying the values of variables at
various stages in their lives. For example, suppose that you have a function
whose job is to calculate the total cost of an order. Based on your under-
standing of the way the total should be calculated, you determine that this
function always returns an incorrect value; you just don’t know why.

276 Part V: The Part of Tens

25_576593 ch17.qxd 10/12/04 10:06 PM Page 276

Seeing what JavaScript thinks is going on at every stage in the process (from
the beginning of the function right down to the statement that calculates the
return value) is easy to do with the debugging statements that you see in
Listing 17-1.

Listing 17-1: Tracking Down a Bug with Alert Display Statements

. . .

var price=3.50

function calculatePrice(numberWidgets) {
// Examine the variable at the beginning of the function.

alert(“Inside calculatePrice, numberWidgets is “ + numberWidgets)

var totalPrice = 0

// No tax calculated on orders of 100 or less
if (numberWidgets >= 10) {

// Test to see that the if statement
// is coded correctly.
alert(“Apparently numberWidgets is 11 or higher”)
var tax = calculateTax(numberWidgets * price)
totalPrice = tax + (numberWidgets * price)

}

else {
alert(“numberWidgets is 10 or less so no tax calculated”)
totalPrice = numberWidgets * price

}

// Displaying all the values that contribute to a calculation
// helps you spot errors.

alert(“totalPrice is $” + totalPrice
+ “ based on a per-item price of $”
+ price)

return totalPrice

}

The code in Listing 17-1 contains four alert() calls. Each alert() displays
the values of variables at different points in the calculatePrice() logic, as
shown in the following series of figures:

� Alert number one shows you what the value of the numberWidgets vari-
able is at the beginning of the calculatePrice() function, as shown in
Figure 17-1.

� Alert number two, shown in Figure 17-2, helps you determine whether
your if statement is coded correctly.

� Alert number three lets you examine several values at a single point in
the code, as shown in Figure 17-3.

277Chapter 17: Ten (Or So) Tips for Debugging Your Scripts

25_576593 ch17.qxd 10/12/04 10:06 PM Page 277

Figure 17-2:
Checking

the if state-
ment’s per-
formance.

Figure 17-1:
Getting

the initial
value in

calculate-
Price().

278 Part V: The Part of Tens

25_576593 ch17.qxd 10/12/04 10:06 PM Page 278

The more knotty and complex your logic is, the more this technique can help
you pinpoint your bug. But whatever answers you find, keep one thing in mind:
After you track down the bugs in your script, make sure that you remember to
remove the alert statements. Forgetting to do so can be embarrassing!

I once worked with a programmer who thought he’d removed all his debug
statements, but he missed one. The condition causing the debug statement
to appear occurred so infrequently that he forgot all about it! Until, that is,
dozens of folks — including the programmer’s boss, his boss’s boss, and the
company’s most important clients — were evaluating the application in a
meeting. You guessed it: Up popped the debug statement! This most unfortu-
nate and embarrassing situation can be avoided if you search for all the
occurrences of the alert() method in your script by using the search/
replace function available in your text editor.

Breaking Large Blocks of Statements
into Smaller Functions

Limiting the size of the functions that you create to about a screenful of text is
good design practice. (You don’t have to take my word for it, though. A time
or two debugging a complex, monster-huge function should convince you.)

Figure 17-3:
Examining

several
values in a

block of
code.

279Chapter 17: Ten (Or So) Tips for Debugging Your Scripts

25_576593 ch17.qxd 10/12/04 10:06 PM Page 279

Limiting function size gives you these breathing-easier advantages:

� Increases your ability to reuse code. The smaller and more discrete a
function is, the more likely you are to be able to reuse that function in
another context. For example, say you write a large function called
isAPhoneNumber() to determine whether an input value is a valid
phone number. Removing the statements that deal with numeric valida-
tion and organizing those statements into a separate function, called
isANumber(), gives you a generic function that you can call not just
from isAPhoneNumber() but from any other function that requires
numeric validation (such as isAValidCreditCardNumber(),
isAValidAge(), and so on).

� Decreases your frustration level. Small functions are much easier to
debug than large functions simply because small functions are easier for
humans to step through mentally and comprehend than their outsized
counterparts.

Functions too big to fit on the average monitor display tend to be poorly
designed from a standpoint of reuse. That is, usually (and I say usually because
this is just a general rule) when a function gets that big, it’s that big because
you’re trying to make it perform more than one conceptual task. Ideally, a
function is an implementation of just one conceptual task.

Honing the Process of Elimination
When you’re chasing bugs, sometimes figuring out what isn’t causing the prob-
lem is just as important as figuring out what is. For example, if you have a bug
in your HTML code, no amount of searching and testing your JavaScript code
is going to help you correct the problem.

Although I can’t tell you exactly how to pinpoint your errors (if I could, I’d
be rich!), I can tell you that good programmers have a general pattern they
follow when they’re debugging:

1. Create several test cases.

A test case is a single, real-life scenario that describes how a user might
reasonably interact with your pages. For an educational site, for exam-
ple, your test cases might include

• A student searching for a specific piece of information

• A teacher posting lesson plans

• A parent interested in school grading policies

280 Part V: The Part of Tens

25_576593 ch17.qxd 10/12/04 10:06 PM Page 280

2. For each test case (make sure you have several), load your pages and
interact with them.

Note the way your site behaves and compare what happened to what
you expected would happen for that test case.

If you see a difference between what you expect and what actually happens,
the first thing to do is to try to figure out whether the problem is related to
your browser, JavaScript script, or HTML statements.

Debugging browser problems
A problem with your browser is unlikely to occur unless you’ve just down-
loaded and installed a new version or have been doing something in another
application that might have altered the way that your browser works.

Symptoms:

Your browser doesn’t come up, or it does come up, but you can’t get it to
load any local files (as opposed to it’s being able to load every file except
the file that you’re testing).

Home-in strategy:

If you’ve just reinstalled your browser, try reinstalling it again. If you still
have problems, browse the technical help or contact the technical support
line.

Tracking HTML bugs
If you’re new to JavaScript or HTML, you’re likely to make a few HTML errors
before you get the hang of it. Not to worry, though . . . HTML is one well-
documented animal!

Symptoms:

Your Web page displays only part of what you think it should display (for
example, buttons or other elements that you can see defined in your HTML
source are missing). Or conversely, your Web page displays more than you
expected. (For example, some of your JavaScript statements are splashed
on the screen.)

281Chapter 17: Ten (Or So) Tips for Debugging Your Scripts

25_576593 ch17.qxd 10/12/04 10:06 PM Page 281

Home-in strategy:

Note exactly what displays (or what doesn’t). If only the first two elements that
you defined appear, check the source code that defines the second element —
and every statement after that line of source code. If the second element is con-
tained within a tag set (for example, between the <BODY> and </BODY> tags),
check to see that the closing tag is placed and spelled correctly.

If JavaScript statements appear that shouldn’t, note the very first word in the
statement that’s showing. Then find that word in the HTML source file and
check the preceding line. Make sure you’ve remembered to include both
opening and closing <SCRIPT> and </SCRIPT> tags.

Checking the JavaScript code
As a JavaScript programmer, you’re likely to make most of your mistakes
in — well, in your JavaScript code.

Symptoms:

Any bug that shows its face before a form is submitted is almost certainly
a JavaScript bug. Pre-form-submittal bugs can occur in response to a user
event (clicking a button, for example, or typing text) or in the course of
calculating some numbers.

Home-in strategy:

Here’s where your skills at displaying variable values and breaking up functions
really pay off. After you trace a bug to an event or calculation, try to isolate
that event or calculation. Create a test button that exercises the functions
involved.

Exercising a function means calling it with a variety of parameters to see what
happens in each case. If a function is long, break it up and exercise each
resulting function separately.

Taking Advantage of Others’ Experience
When you hit a hard-shelled bug, you really come to appreciate the Usenet
user groups (called newsgroups) that Chapter 15 lists. Not only can you
browse the groups to see whether someone else has already encountered
the problem you’re struggling with, but you can also post a message that
contains a section of code and a description of the error. Many newsgroup

282 Part V: The Part of Tens

25_576593 ch17.qxd 10/12/04 10:06 PM Page 282

contributors pride themselves on their abilities to debug others’ code, and
technical support people (including some Netscape and Microsoft gurus)
often monitor the newsgroups as part of their jobs.

Keep in mind that no matter how frustrated you are or how urgent your prob-
lem is, you should check through the newsgroups archives for a problem
similar to your own before posting. Chances are good that some similar
problem has been posted at least once (and maybe a dozen times), and your
group mates will appreciate your adapting previous posts before making a
new post.

Exercising the Time-Honored
Trial-and-Error Approach

When all else fails, just do something — anything. Make a change to your
code, note the change, and then load the page and see what happens. The
JavaScript interpreter makes testing things quick and easy for you. If the
code change doesn’t work, put the code back the way it was and try again.
Whatever you do, don’t be afraid to try something. The worst thing you can
do is crash your browser — and believe me, browser crashes aren’t fatal.
(If they were, I sure wouldn’t be alive to write this book!)

If you tend, like me, to be on the conservative side, make a habit of copying
your source code file to a safe place as soon as it begins to behave and at
regular intervals thereafter. That way, if the unthinkable happens, and you
accidentally mangle the file while you’re editing it, you can always drop back
to your most recent good copy.

The best advice that I can give you is to enjoy yourself. The more mistakes
you make, the more you can figure things out on your own — and the easier
creating your next JavaScript-enabled Web page will be.

Just Try and Catch Me
Exception Handling!

Support for exception handling — a technique for anticipating and recovering
gracefully from errors that has long been supported in languages like C++ —
was finally implemented for JavaScript in the 5.x and 6.x versions of Internet
Explorer and Navigator, respectively.

283Chapter 17: Ten (Or So) Tips for Debugging Your Scripts

25_576593 ch17.qxd 10/12/04 10:06 PM Page 283

Technically, an exception is any unexpected condition, good or bad, that
occurs during the processing of a script. In reality, however, an exception is
virtually always an error. Exceptions can result directly from a JavaScript
error, an unanticipated user input error, or from a problem with a user’s
browser, operating system, or even hardware configuration. Trying to make
your code access objects (such as array elements, properties, files, and so
on) that don’t exist is a common source of exceptions that might occur while
your JavaScript code is executing in someone’s browser.

If you’re creating a commercial JavaScript application, you want to make lib-
eral use of JavaScript’s exception-handling abilities. Allowing your users to
view cryptic, system-generated errors such as File Not Found or No Such
Object is unacceptable in a commercial environment. Although anticipating
and handling those errors by using try and catch blocks might not prevent
the errors from occurring, it does give you the opportunity to

� Reassure users. You can use JavaScript’s exception-handling functions
to display a message telling users that an error has occurred but is being
handled appropriately. (This approach is much better than allowing a
cryptic system message or blank screen to confuse and alarm users.)

� Provide users with helpful, appropriate suggestions. You can explain
the cause of the error and provide users with tips for avoiding that error
in the future.

You handle exceptions by creating two special JavaScript functions, or
blocks: a try block and a catch block. (Because these two separate blocks
are always used together, they’re often referred to as the try-catch block.)
Then, in any statement that might possibly generate an error, you use the
keyword throw to throw an error. The code in Listing 17-2 shows you how.

Listing 17-2: Handling Exceptions with try-catch and throw

. . .
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>

function getMonthName (monthNumber) {

// JavaScript arrays begin with 0, not 1, so
// subtract 1.
monthNumber = monthNumber - 1

// Create an array and fill it with 12 values.
var months = new Array(“Jan”,”Feb”,”Mar”,”Apr”,”May”,”Jun”,”Jul”,

“Aug”,”Sep”,”Oct”,”Nov”,”Dec”)

// If a month array element corresponds to the
// number passed in, fine; return the array
// element.

if (months[monthNumber] != null) {

284 Part V: The Part of Tens

25_576593 ch17.qxd 10/12/04 10:06 PM Page 284

return months[monthNumber]
}

// Otherwise, an exception occurred, so throw
// an exception.

else {
// This statement throws an error
// directly to the catch block.
throw “InvalidMonthNumber”

}
}

//
// The try block wraps around the main JavaScript
// processing code. Any JavaScript statement inside
// the try block that generates an exception will
// automatically throw that exception to the
// exception handling code in the catch block.
//

// The try block
try {

// Call the getMonthName() function with an
// invalid month # (there is no 13th month!)
// and see what happens.

alert(getMonthName(13))

alert(“We never get here if an exception is thrown.”)

}

// The catch block
catch (error) {

alert(“An “ + error + “ exception was encountered. Please contact the
program vendor.”)

// In a real-life situation, you might want
// to include error-handling code here that
// examines the exception and gives users specific
// information (or even tries to fix the problem,
// if possible).

}

Take a look at Figure 17-4 to see the error that running the code in Listing 17-2
generates in Internet Explorer.

285Chapter 17: Ten (Or So) Tips for Debugging Your Scripts

25_576593 ch17.qxd 10/12/04 10:06 PM Page 285

The first code executed in Listing 17-2 is the code that you see defined in the
try block:

alert(getMonthName(13))

Because only 12 months are defined in the months array, passing a value of
13 to getMonthName() causes an exception (“InvalidMonthNumber”) to be
thrown, as shown here:

function getMonthName(monthNumber) {
. . .
throw “InvalidMonthNumber”

All thrown exceptions are processed automatically by whatever code exists
in the catch block, so the message that you see in Figure 17-4 appears auto-
matically when the exception is thrown.

If you want to write truly airtight JavaScript code, you need to identify all the
events that could possibly cause an exception in your particular script (such
as actions the user could take, error conditions the operating system could
generate, and so on), and implement a try-catch block for each.

Figure 17-4:
The catch

block
handles all
exceptions
generated

in the try
block.

286 Part V: The Part of Tens

25_576593 ch17.qxd 10/12/04 10:06 PM Page 286

Depending on your application, you might want to include more processing
code in the catch block than the simple pop-up message shown in Figure 17-4.
For example, you might want to include JavaScript statements that examine
the caught exception, determine what kind of exception it is, and process it
appropriately.

You aren’t limited to a string literal when it comes to identifying a thrown
exception. Instead of InvalidMonthNumber, you can create and throw an
elaborate custom exception object (by using the function and new operators
that I describe in Chapter 3).

For more information on how Netscape implements exception handling
(including examples), visit

http://developer.netscape.com/docs/manuals/js/core/jsguide/stmtsov.htm#1011537

To see how Microsoft does the same for Internet Explorer, check out this
page:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/jscript7/html/jsstmtrycatch.asp

Taking Advantage of Debugging Tools
Both Netscape and Microsoft offer free JavaScript debugging tools. They
include

� Netscape Navigator’s built-in JavaScript console (available for use
with Netscape Navigator 7.x)

� Microsoft Internet Explorer’s built-in error display

In addition to the built-in debugging tools that I describe in this section,
Netscape and Microsoft offer standalone script debuggers that you can down-
load for free. Venkman is the name of the free JavaScript debugger created
for use with Netscape Navigator 7.x. Although support for this JavaScript
debugger is spotty at best, you can get the latest documentation (and down-
load your very own copy) from www.hacksrus.com/~ginda/venkman.
Microsoft offers a script debugger that you can use to debug JScript scripts
(as well as scripts written in other scripting languages, such as Microsoft’s
own VBScript). To download a copy of Microsoft’s script debugger, point
your browser to

www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-
dffdf19ccd99&displaylang=en

287Chapter 17: Ten (Or So) Tips for Debugging Your Scripts

25_576593 ch17.qxd 10/12/04 10:06 PM Page 287

Netscape’s JavaScript console
Netscape Navigator 7.x comes complete with a JavaScript debugging tool
called the JavaScript console, which you see in Figure 17-5.

You can display the JavaScript console shown in Figure 17-5 by performing
either of the following two actions:

� Select Tools➪Web Development➪JavaScript Console from the
Netscape Navigator main menu.

� Type javascript: in Netscape Navigator’s navigation toolbar and hit
Enter.

After you display the JavaScript console, you can debug JavaScript code
two ways:

� Load an HTML file containing a script into Netscape Navigator as
usual. When you do, any errors the script generates appear in the
console, as shown in Figure 17-6.

Figure 17-5:
Navigator

comes with
a script-

debugging
tool called
the Java-

Script
Console.

288 Part V: The Part of Tens

25_576593 ch17.qxd 10/12/04 10:06 PM Page 288

As you can see in Figure 17-6, a JavaScript error was detected on line 4 of
the file error.htm.

If you take a look at error.htm (a copy of which you find on the com-
panion CD), you see this HTML/JavaScript code:

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
alert(“This is a “ + problem);
...

The JavaScript console message shown in Figure 17-6 reads Error:
problem is not defined. And sure enough, if you count down to
line 4, you see the variable problem isn’t defined before it’s used.
(You see how to define a variable in Chapter 3.)

� Enter JavaScript code directly into the console’s evaluation field. You
can type JavaScript code directly into the evaluation field that you find
on the JavaScript console and click the Evaluate button for instant feed-
back. Take a look at Figure 17-7 to see what I mean.

Figure 17-6:
JavaScript

errors
appear in

Netscape’s
JavaScript

console.

289Chapter 17: Ten (Or So) Tips for Debugging Your Scripts

25_576593 ch17.qxd 10/12/04 10:06 PM Page 289

Microsoft Internet Explorer’s
built-in error display
When you load a JavaScript error-containing Web page into Internet Explorer,
you see an icon in the status bar at the lower-left side of the screen. Double-
clicking the icon displays a pop-up window describing the JavaScript error —
along with hints for fixing that error. Check out Figure 17-8 to see what I
mean.

Figure 17-8 shows that Internet Explorer encountered an error on line 4 of the
HTML file: namely, that problem is undefined.

Sure enough, if you take a look at the following HTML code (you find a copy
of the error.htm file on the companion CD) you see that line 4 references an
undefined variable called problem. (I demonstrate how to define a variable in
Chapter 3.)

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript” TYPE=”text/javascript”>
alert(“This is a “ + problem);
...

Figure 17-7:
Entering

JavaScript
code

directly into
the console

gives you
instant

feedback.

290 Part V: The Part of Tens

25_576593 ch17.qxd 10/12/04 10:06 PM Page 290

Figure 17-8:
Double-

clicking the
status bar

icon
displays

JavaScript
errors.

291Chapter 17: Ten (Or So) Tips for Debugging Your Scripts

25_576593 ch17.qxd 10/12/04 10:06 PM Page 291

292 Part V: The Part of Tens

25_576593 ch17.qxd 10/12/04 10:06 PM Page 292

Part VI
Appendixes

26_576593 pt06.qxd 10/12/04 10:05 PM Page 293

In this part . . .

I include numerous resources to help you develop more
complex and exciting scripts. Here, you find a list of

words that you can’t use in your code, as well as plenty
of shortcuts and objects that you’re sure to incorporate.

JavaScript reserves certain words that you don’t want
to use as variable names, function names, or other user-
defined elements in your code. Appendix A lists these
special words. JavaScript also gives you a couple options
for making sure that the colors you want in your pages
appear the way you intend (or close to it), which you
can find out about in Appendix B.

Although Appendix C doesn’t include every possible
explanation for every possible object, you can find nearly
all the objects that you’re sure to need with their respec-
tive methods and properties, as well as some tips on which
ones are browser-conscious. And, finally, you can use the
special characters in Appendix D to make sure your Web
pages comply with the demands of the global marketplace
and the languages of your users.

26_576593 pt06.qxd 10/12/04 10:05 PM Page 294

Appendix A

JavaScript Reserved Words

The words listed in this appendix mean something special to the JavaScript
interpreter implemented in the current versions of Navigator and Internet

Explorer (or are reserved for future versions). If you try to use any of these
words to do anything other than what they are designed to do, the JavaScript
interpreter generates an error when you try to run the script. For example,
don’t try to use any of these words to name a variable, a function, a method,
or an object.

In addition to the reserved words listed in this appendix, names of existing
objects, properties, and methods are off-limits when it comes to naming your
own variables and functions. For example, the JavaScript interpreter ignores
a custom function named toString() — the name of an existing method.
Appendix C lists many of the existing JavaScript objects, properties, and
methods.

abstract boolean break

byte case catch

char class comment

const continue debugger

default delete do

double else enum

export extends false

final finally float

for function goto

if implements import

in instanceof int

interface label long

native new null

package private protected

27_576593 appa.qxd 10/12/04 10:05 PM Page 295

public return short

static super switch

synchronized this throw

throws transient true

try typeof var

void volatile while

with

296 Part VI: Appendixes

27_576593 appa.qxd 10/12/04 10:05 PM Page 296

Appendix B

JavaScript Color Values

This appendix offers an alphabetical listing of all predefined colors avail-
able to you in JavaScript. When you refer to a color in JavaScript code,

you can use either the human-readable color names (for example, alice
blue) or their hexadecimal equivalents (F0F8FF). For example, the following
two JavaScript statements are equivalent:

document.write(someTextString.fontcolor(“aqua”))
document.write(someTextString.fontcolor(“00FFFF”))

To be sure that your color combinations result in readable Web pages, make
sure that you test your Web pages before releasing them for all the world
to see.

Color Hexadecimal

aliceblue F0F8FF

antiquewhite FAEBD7

aqua 00FFFF

aquamarine 7FFFD4

azure F0FFFF

beige F5F5DC

bisque FFE4C4

black 000000

blanchedalmond FFEBCD

blue 0000FF

blueviolet 8A2BE2

brown A52A2A

burlywood DEB887

cadetblue 5F9EA0

(continued)

28_576593 appb.qxd 10/12/04 10:05 PM Page 297

Color Hexadecimal

chartreuse 7FFF00

chocolate D2691E

coral FF7F50

cornflowerblue 6495ED

cornsilk FFF8DC

crimson DC143C

cyan 00FFFF

darkblue 00008B

darkcyan 008B8B

darkgoldenrod B8860B

darkgray A9A9A9

darkgreen 006400

darkkhaki BDB76B

darkmagenta 8B008B

darkolivegreen 556B2F

darkorange FF8C00

darkorchid 9932CC

darkred 8B0000

darksalmon E9967A

darkseagreen 8FBC8F

darkslateblue 483D8B

darkslategray 2F4F4F

darkturquoise 00CED1

darkviolet 9400D3

deeppink FF1493

deepskyblue 00BFFF

dimgray 696969

298 Part VI: Appendixes

28_576593 appb.qxd 10/12/04 10:05 PM Page 298

Color Hexadecimal

dodgerblue 1E90FF

firebrick B22222

floralwhite FFFAF0

forestgreen 228B22

fuchsia FF00FF

gainsboro DCDCDC

ghostwhite F8F8FF

gold FFD700

goldenrod DAA520

gray 808080

green 008000

greenyellow ADFF2F

honeydew F0FFF0

hotpink FF69B4

indianred CD5C5C

indigo 4B0082

ivory FFFFF0

khaki F0E68C

lavender E6E6FA

lavenderblush FFF0F5

lawngreen 7CFC00

lemonchiffon FFFACD

lightblue ADD8E6

lightcoral F08080

lightcyan E0FFFF

lightgoldenrodyellow FAFAD2

lightgreen 90EE90

(continued)

299Appendix B: JavaScript Color Values

28_576593 appb.qxd 10/12/04 10:05 PM Page 299

Color Hexadecimal

lightgrey D3D3D3

lightpink FFB6C1

lightsalmon FFA07A

lightseagreen 20B2AA

lightskyblue 87CEFA

lightslategray 778899

lightsteelblue B0C4DE

lightyellow FFFFE0

lime 00FF00

limegreen 32CD32

linen FAF0E6

magenta FF00FF

maroon 800000

mediumaquamarine 66CDAA

mediumblue 0000CD

mediumorchid BA55D3

mediumpurple 9370DB

mediumseagreen 3CB371

mediumslateblue 7B68EE

mediumspringgreen 00FA9A

mediumturquoise 48D1CC

mediumvioletred C71585

midnightblue 191970

mintcream F5FFFA

mistyrose FFE4E1

moccasin FFE4B5

navajowhite FFDEAD

300 Part VI: Appendixes

28_576593 appb.qxd 10/12/04 10:05 PM Page 300

Color Hexadecimal

navy 000080

oldlace FDF5E6

olive 808000

olivedrab 6B8E23

orange FFA500

orangered FF4500

orchid DA70D6

palegoldenrod EEE8AA

palegreen 98FB98

paleturquoise AFEEEE

palevioletred DB7093

papayawhip FFEFD5

peachpuff FFDAB9

peru CD853F

pink FFC0CB

plum DDA0DD

powderblue B0E0E6

purple 800080

red FF0000

rosybrown BC8F8F

royalblue 4169E1

saddlebrown 8B4513

salmon FA8072

sandybrown F4A460

seagreen 2E8B57

seashell FFF5EE

sienna A0522D

(continued)

301Appendix B: JavaScript Color Values

28_576593 appb.qxd 10/12/04 10:05 PM Page 301

Color Hexadecimal

silver C0C0C0

skyblue 87CEEB

slateblue 6A5ACD

slategray 708090

snow FFFAFA

springgreen 00FF7F

steelblue 4682B4

tan D2B48C

teal 008080

thistle D8BFD8

tomato FF6347

turquoise 40E0D0

violet EE82EE

wheat F5DEB3

white FFFFFF

whitesmoke F5F5F5

yellow FFFF00

yellowgreen 9ACD32

302 Part VI: Appendixes

28_576593 appb.qxd 10/12/04 10:05 PM Page 302

Appendix C

Document Object
Model Reference

You can think of this appendix as an alphabetical cheat sheet that lists
the bulk of the objects, properties, methods, and event handlers that

make up the document object model that you interact with in JavaScript.
(The built-in functions available to you in JavaScript are also listed in the
second half of this appendix.)

The folks who implemented the document object model — Netscape and
Microsoft — surely had their reasons for beginning some, but not all, object
names with uppercase letters! JavaScript is a case-sensitive language, which
means that if an object begins with a lowercase (or uppercase) letter, you
must access it that way.

The Document Object Model
I’ve organized the document object model (DOM) alphabetically, by object. If
you need to look up a particular property or method — say, prompt() — and
don’t know what object it belongs to, take a quick peek at the index that you
find at the back of this book.

This appendix is as up-to-date as is humanly possible, but because new
browser versions appear regularly (each of which might implement a slightly
different DOM), you might find some minor differences between the DOM
that your browser supports and the one listed here. In fact, both Netscape
and Internet Explorer have pledged their intention to continue modifying
their DOM until that happy day when they both match the ECMA standard
and developers can count on the same object existing and behaving identi-
cally in both browsers — but that day hasn’t yet arrived. So for the last word
in object implementation, including detailed descriptions of any of the ele-
ments you find in this appendix, visit Netscape and Microsoft online.

29_576593 appc.qxd 10/12/04 10:05 PM Page 303

Internet Explorer’s DOM:

http://msdn.microsoft.com/workshop/author/dhtml/reference/
objects.asp

Netscape Navigator’s DOM:

http://devedge.netscape.com/library/manuals/2000/javascript/
1.5/reference

Because all the objects in the DOM derive from the Object object (try saying
that three times fast!), all JavaScript objects inherit the Object object’s prop-
erties and methods. (I tell you this, instead of listing those few properties and
methods associated with the Object object over and over again for every
other object, in the interest of saving space.)

Anchor
Description: The target of a hyperlink.

What creates it: or String.anchor(“anchorName”)

How to access it: document.anchors[i] (individual anchor) or document.
anchors.length (number of anchors in a document)

Properties: name, text, x, y

Methods: None

Event handlers: None

Applet
Description: A reference to a Java applet in a Web page.

What creates it: <APPLET NAME=”appletName”>

How to access it: document.applets[i] or document.appletName

Properties: Depends on applet.

Methods: Depends on applet (start() and stop() supported by convention).

Event handlers: None

304 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 304

Area
Description: Defines an area of an image as an image map.

(See Link.)

arguments
Description: A collection of the arguments passed into a function.

What creates it: function functionName() { functionStatements }

How to access it: arguments (from inside a function body)

Properties: callee, caller, length

Methods: None

Event handlers: None

Array
Description: A collection of objects.

What creates it: arrayName = new Array(arrayLength) or arrayName =
new Array(element0, element1, . . ., elementN)

How to access it: arrayName[i]

Properties: constructor, index, input, length, prototype

Methods: concat(), join(), length(), pop(), push(), reverse(),
shift(), slice(), sort(), splice(), toSource(), toString(),
unshift(), valueOf()

Event handlers: None

305Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 305

Boolean
Description: A boolean (true/false) value.

What creates it: booleanName = new Boolean(value) (constructor) or
booleanName = Boolean(value) (conversion function)

How to access it: booleanName

Properties: constructor, prototype

Methods: toSource(), toString(), valueOf()

Event handlers: None

Button
Description: A push button included in an HTML form.

What creates it: <FORM NAME=”formName”> . . . <INPUT TYPE=
”button” NAME=”buttonName” . . . ></FORM>

How to access it: document.formName.buttonName or formName.
elements[i]

Properties: form, name, type, value

Methods: blur(), click(), focus(), handleEvent()

Event handlers: onBlur, onClick, onFocus, onMouseDown, onMouseUp

Checkbox
Description: A check box included in an HTML form. (A check box is a toggle
switch that lets the user turn a value on or off.)

What creates it: <FORM NAME=”formName”> . . . <INPUT TYPE=”checkbox”
NAME=”checkboxName” . . . ></FORM>

306 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 306

How to access it: document.formName.checkboxName or formName.
elements[i]

Properties: checked, defaultChecked, form, name, type, value

Methods: blur(), click(), focus(), handleEvent()

Event handlers: onBlur, onClick, onFocus

clientInformation
Description: Describes browser configuration details. It is supported only by
Internet Explorer. (Internet Explorer also supports the navigator object.)

What creates it: Automatically created by Internet Explorer.

How to access it: window.clientInformation (or just
clientInformation)

Properties: appCodeName, appMinorVersion, appName, appVersion,
browserLanguage, cookieEnabled, cpuClass, onLine, platform, system
Language, userAgent, userLanguage, userProfile

Methods: javaEnabled(), taintEnabled()

Event handlers: None

crypto
Description: This object defines two cryptography-related methods that
developers can use to implement digital signatures. It is supported only by
Netscape Navigator.

What creates it: Automatically created by Netscape Navigator.

How to access it: window.crypto (or just crypto)

Properties: None

Methods: random(), signText()

Event handlers: None

307Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 307

Date
Description: An object that lets you create, manipulate, and format date and
time values.

What creates it:

aDate = new Date()

aDate = new Date(milliseconds)

aDate = new Date(dateString)

aDate = new Date(yr_num, mo_num, day_num
[, hr_num, min_num, sec_num, ms_num])

How to access it: aDate

Properties: constructor, prototype

Methods: getDate(), getDay(), getFullYear(), getHours(),
getMilliseconds(), getMinutes(), getMonth(), getSeconds(),
getTime(), getTimezoneOffset(), getUTCDate(), getUTCDay(),
getUTCFullYear(), getUTCHours(), getUTCMilliseconds(),
getUTCMinutes(), getUTCMonth(), getUTCSeconds(), getYear(),
parse(), setDate(), setDay(), setFullYear(), setHours(),
setMilliseconds(), setMinutes(), setMonth(), setSeconds(),
setTime(), setUTCDate(), setUTCFullYear(), setUTCHours(),
setUTCMilliseconds(), setUTCMinutes(), setUTCMonth(),
setUTCSeconds(), setYear(), toGMTString(), toLocaleString(),
toSource(), toString(), toUTCString(), UTC(), valueOf()

Event handlers: None

document
Description: The currently loaded HTML document; provides methods for
displaying HTML output to the user.

What creates it: <BODY> . . . </BODY>

How to access it: window.document (or just document)

Properties: alinkColor, anchors[], applets[], bgColor, cookie, domain,
embeds, fgColor, formName, forms[], images[], lastModified,
linkColor, links[], plugins[], referrer, title, URL, vlinkColor

308 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 308

Netscape Navigator only: classes, height, ids, tags, width

Internet Explorer only: activeElement, all[], charset, children[],
defaultCharset, expando, parentWindow, readyState

Methods: close(), handleEvent(), open(), write(), writeln()

Netscape Navigator only: captureEvents(), contextual(),
getSelection(), releaseEvents(), routeEvent()

Internet Explorer only: elementFromPoint()

Event handlers: onClick, onDblClick, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseUp

elements[]
Description: A collection of the form elements included in an HTML document.

What creates it: <FORM NAME=”formName”> . . . </FORM>

How to access it: document.formName.elements[]

Properties: checked, defaultChecked, defaultValue, form, length, name,
options[], selectedIndex, type, value

Methods: blur(), click(), focus(), select()

Event handlers: onBlur, onChange, onClick, onFocus

event
Description: One of several predefined occurrences in JavaScript, such as
a mouse click, a text entry, or a document load. This object is passed as
an argument to an event handler automatically when an event occurs.

What creates it: Automatically created by browser.

How to access it: window.event (or just event)

Properties (Netscape Navigator only): data, height, modifiers, pageX,
pageY, screenX, screenY, target, type, which, width

309Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 309

Properties (Internet Explorer only): altKey, button, cancelBubble,
clientX, clientY, ctrlKey, fromElement, keyCode, offsetX, offsetY,
reason, returnValue, screenX, screenY, shiftKey, srcElement,
srcFilter, toElement, type, x, y

Methods: None

Event handlers: None

FileUpload
Description: A file upload element on an HTML form. (A file upload element
lets users select or specify a file as input to a Web application.)

What creates it: <FORM NAME=”formName”> . . . <INPUT TYPE=”file”
NAME=”fileUploadName” . . . ></FORM>

How to access it: document.formName.fileUploadName or formName.
elements[i]

Properties: form, name, type, value

Methods: blur(), focus(), handleEvent(), select()

Event handlers: onBlur, onChange, onFocus

Form
Description: An HTML form. HTML forms let users input text and interact
with such elements as check boxes, radio buttons, and selection lists. Forms
can be configured to post data to a Web server automatically when the user
submits the form.

What creates it: <FORM NAME=”formName”> . . . </FORM>

How to access it: document.formName

Properties: action, elements[], encoding, length, method, name, target

Methods: handleEvent(), reset(), submit()

Event handlers: onReset, onSubmit

310 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 310

Frame
Description: An HTML display frame.

What creates it: <FRAME> . . . </FRAME>

(See window.)

Function
Description: A chunk of JavaScript code to be preprocessed by the
JavaScript interpreter.

What creates it: new Function ([arg1[, arg2[, . . . argN]],]
functionBody) or function functionName([param[, param[, . . .
param]]]) { statements }

How to access it: functionName

Properties: arguments[], arity, caller, length, prototype

Methods: apply(), call(), toSource(), toString(), valueOf()

Event handlers: None

Hidden
Description: A nondisplayed HTML form field useful for holding and transmit-
ting calculated values to a Web server.

What creates it: <FORM NAME=”formName”> . . . <INPUT
TYPE=”hidden” NAME=”hiddenName” . . . ></FORM>

How to access it: document.formName.hiddenName or formName.
elements[i]

Properties: form, name, type, value

Methods: None

311Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 311

History
Description: A collection of URLs that a user has visited.

What creates it: Automatically created by browser.

How to access it: window.history, frame.history, or just history

Properties: current, length, next, previous

Methods: back(), forward(), go()

Event handlers: None

Image
Description: An image included in an HTML document.

What creates it:

How to access it:

document.imageName

document.images[i]

document.images.length

Properties: border, complete, height, hspace, lowsrc, name, src, vspace,
width

Methods: handleEvent()

Event handlers: onAbort, onError, onKeyDown, onKeyPress, onKeyUp,
onLoad

java
Description: A top-level object used to access any Java class in the package
java.*.

What creates it: Automatically created by Java-supporting browser.

(See JavaPackage.)

312 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 312

JavaArray
Description: The JavaScript representation of a Java array.

What creates it: Any Java method that returns an array.

How to access it: By calling a method defined by an individual Java applet.

Properties: length

Methods: toString()

Event handlers: None

JavaClass
Description: JavaScript representation of a Java class.

What creates it: Automatically created by Java-supporting browser.

(See JavaPackage.)

JavaObject
Description: JavaScript representation of a Java object.

What creates it: Any Java method that returns an object type.

How to access it: By calling a method defined by an individual Java applet.

Properties: Determined by individual Java applet/method.

Methods: Determined by individual Java applet/method.

Event handlers: None

JavaPackage
Description: JavaScript representation of a Java package.

What creates it: Automatically created by Java-supporting browser.

How to access it: Packages.JavaPackage

313Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 313

Properties: Determined by individual Java package.

Methods: Determined by individual Java package.

Event handlers: None

Link
Description: A hypertext link included in an HTML document.

What creates it: <A>, <AREA>, or String.link()

How to access it: document.links[i] (individual link)or document.links.
length (number of links in a document)

Properties: hash, host, hostName, href, pathname, port, protocol,
search, target, text, x, y

Methods: handleEvent()

Event handlers: onDblClick, onMouseOut, onMouseOver (<AREA>),
onClick, onDblClick, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseOut, onMouseUp, onMouseOver (<A> or String.link())

location
Description: The currently loaded URL.

What creates it: Automatically created by browser.

How to access it: window.location (or just location)

Properties: hash, host, hostname, href, pathname, port, protocol, search

Methods: reload(), replace()

Event handlers: None

Math
Description: A built-in object containing properties and methods for mathe-
matical constants and functions.

What creates it: Automatically created by browser.

314 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 314

How to access it: Math

Properties: E, LN10, LN2, LOG10E, LOG2E, PI, SQRT1_2, SQRT2

Methods: abs(), acos(), asin(), atan(), atan2(), ceil(), cos(), exp(),
floor(), log(), max(), min(), pow(), random(), round(), sin(), sqrt(),
tan()

Event handlers: None

MimeType
Description: A MIME type (Multipart Internet Mail Extension, such as .pdf)
supported by the browser.

What creates it: Automatically created by Netscape Navigator.

How to access it:

navigator.mimeTypes[i]

navigator.mimeTypes[“type”]

navigator.plugins[i].mimeTypes[j]

navigator.mimeTypes.length

Properties: description, enabledPlugin, suffixes, type

Methods: None

Event handlers: None

navigator
Description: Browser configuration details.

What creates it: Automatically created by browser.

How to access it: window.navigator (or just navigator)

Properties: appCodeName, appName, appVersion, language, mimeTypes,
platform, plugins, userAgent

315Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 315

Methods: javaEnabled(), plugins.refresh(), preference(), save
Preferences(), taintEnabled()

Event handlers: None

netscape
Description: A top-level object used to access any Java class in the package
netscape.*.

What creates it: Automatically created by Netscape Navigator.

(See JavaPackage.)

Number
Description: A JavaScript object wrapper for primitive numeric values.

What creates it: aNumber = new Number(value)

How to access it: aNumber

Properties: constructor, MAX_VALUE, MIN_VALUE, NaN, NEGATIVE_
INFINITY, POSITIVE_INFINITY, prototype

Methods: toSource(), toString(), valueOf()

Event handlers: None

Object
Description: The primitive JavaScript object type from which all other
objects derive.

What creates it:

anObject = new Object() or anotherObject = new Object(anObject)

How to access it: anObject, anotherObject

316 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 316

Properties: constructor, prototype

Methods: eval(), toSource(), toString(), unwatch(), valueOf(),
watch()

Event handlers: None

Option
Description: An option in an HTML select list.

What creates it: <FORM NAME=”formName”><SELECT NAME=”selectName”>
<OPTION></SELECT></FORM> or new Option([text[, value[,
defaultSelected[, selected]]]])

How to access it: document.formName.selectName.options[i]

Properties: defaultSelected, index, length, selected, text, value

Methods: None

Event handlers: None

Packages
Description: A top-level object that’s used to access Java classes from within
JavaScript code.

What creates it: Automatically created by Java-supporting browsers.

How to access it: Depends on Java package.

Properties: className, java, netscape, sun

Methods: Depends on Java package.

Event handlers: None

317Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 317

Password
Description: A password field included in an HTML form. When a user enters
text into a password field, asterisks (*) hide that text from view.

What creates it: <FORM NAME=”formName”> . . . <INPUT TYPE=
”password” NAME=”passwordName” . . . ></FORM>

How to access it: document.formName.passwordName or formName.
elements[i]

Properties: defaultValue, form, name, type, value

Methods: blur(), focus(), handleEvent(), select()

Event handlers: onBlur, onFocus

Plugin
Description: A plug-in application module installed in Netscape Navigator.

What creates it: Netscape Navigator (on browser plug-in install).

How to access it: navigator.plugins[i]

Properties: description, filename, length, name

Methods: None

Event handlers: None

Radio
Description: A radio button in a set of radio buttons included in an HTML
form. The user can use a set of radio buttons to choose one item from a list.

What creates it: <FORM NAME=”formName”> . . . <INPUT TYPE=”radio”
NAME=”radioName” . . . ></FORM>

How to access it: document.formName.radioName or formName.
elements[i]

318 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 318

Properties: checked, defaultChecked, form, name, type, value

Methods: blur(), click(), focus(), handleEvent()

Event handlers: onBlur, onClick, onFocus

RegExp
Description: Contains the pattern of a regular expression. This object pro-
vides properties and methods for using that regular expression to find and
replace matches in strings.

What creates it: /pattern/flags

new RegExp(“pattern”[, “flags”])

How to access it: Regular expressions are tricky animals. You use regular
expressions for pattern-matching applications. The following gives an
example:

<SCRIPT LANGUAGE=”JavaScript1.2”>
aRegularExpression = /(\w+)\s(\w+)/;
oldString = “John Smith”;
newString=oldString.replace(aRegularExpression, “$2, $1”);
document.write(newString)
</SCRIPT>

(This script displays Smith, John.)

For more information, visit this page:

http://developer.netscape.com/docs/manuals/js/client/jsref/regexp.htm

Properties: $1, . . . , $9, $_, $*, $&, $+, $`, $’, constructor, global,
ignoreCase, input, lastIndex, lastMatch, lastParen, leftContext,
multiline, prototype, rightContext, source

Methods: compile(), exec(), test(), toSource(), toString(),
valueOf()

Event handlers: None

319Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 319

Reset
Description: A Reset button on an HTML form. This button resets all ele-
ments in a form to their defaults.

What creates it: <FORM NAME=”formName”> . . . <INPUT TYPE=”reset”
NAME=”resetName” . . . ></FORM>

How to access it: document.formName.resetName or formName.
elements[i]

Properties: form, name, type, value

Methods: blur(), click(), focus(), handleEvent()

Event handlers: onBlur, onClick, onFocus

screen
Description: Contains properties describing the display screen (monitor) and
colors.

What creates it: Automatically created by browser.

How to access it: screen

Properties: availHeight, availLeft, availTop, availWidth, colorDepth,
height, pixelDepth, width

Methods: None

Event handlers: None

Select
Description: A selection list included in an HTML form. The user can choose
one or more items from a selection list, depending on how the list was
created.

What creates it: <FORM NAME=”formName”><SELECT NAME=”selectName”>
</SELECT></FORM>

How to access it: document.formName.selectName or formName.
elements[i]

320 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 320

Properties: form, length, name, options, selectedIndex, type

Methods: blur(), focus(), handleEvent()

Event handlers: onBlur, onChange, onFocus

String
Description: An object representing a series of quote-delimited characters.

What creates it: aString = new String(“value”) or aString = “value”

How to access it: aString

Properties: constructor, length, prototype

Methods: anchor(), big(), blink(), bold(), charAt(), charCodeAt(),
concat(), fixed(), fontcolor(), fontsize(), fromCharCode(),
indexOf(), italics(), lastIndexOf(), link(), match(), replace(),
search(), slice(), small(), split(), strike(), sub(), substr(),
substring(), sup(), toLowerCase(), toSource(), toString(),
toUpperCase(), valueOf()

Event handlers: None

Style
Description: An object that specifies the style of HTML elements.

What creates it: document.classes.className.tagName

document.contextual(. . .)

document.ids.elementName

document.tags.tagName

How to access it: See the following Web page:

http://developer.netscape.com/docs/manuals/communicator/dynht
ml/index.htm

321Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 321

Properties (Netscape Navigator only): backgroundColor, background
Image, borderBottomWidth, borderColor, borderLeftWidth, border
RightWidth, borderStyle, borderTopWidth, clear, color, display, font
Family, fontSize, fontStyle, fontWeight, lineHeight, listStyleType,
marginBottom, marginLeft, marginRight, marginTop, paddingBottom,
paddingLeft, paddingRight, paddingTop, textAlign, textDecoration,
textIndent, textTransform, whiteSpace

Properties (Internet Explorer only): background, background-Attachment,
backgroundColor, backgroundImage, backgroundPosition, background
PositionX, backgroundPositionY, backgroundRepeat, border, border
Bottom, borderBottomColor, borderBottomStyle, borderBottomWidth,
borderColor, borderLeft, borderLeftColor, borderLeftStyle, border
LeftWidth, borderRight, borderRightColor, borderRightStyle, border
RightWidth, borderStyle, borderTop, borderTopColor, borderTopStyle,
borderTopWidth, borderWidth, clear, clip, color, cssText, cursor,
display, filter, font, fontFamily, fontSize, fontStyle, fontVariant,
fontWeight, height, left, letterSpacing, lineHeight, listStyle, list
StyleImage, listStylePosition, listStyleType, margin, marginBottom,
marginLeft, marginRight, marginTop, overflow, paddingBottom,
paddingLeft, paddingRight, paddingTop, pageBreakAfter, pageBreak
Before, pixelHeight, pixelLeft, pixelTop, pixelWidth, posHeight,
position, posLeft, posTop, posWidth, styleFloat, textAlign, text
Decoration, textIndent, textTransform, top, verticalAlign,
visibility, width, zIndex

Methods: borderWidths(), margins(), paddings()

Event handlers: None

Submit
Description: A Submit button included in an HTML form. This button sends
the form information to be processed.

What creates it: <FORM NAME=”formName”> . . . <INPUT
TYPE=”submit” NAME=”submitName” . . . ></FORM>

How to access it: document.formName.submitName or formName.
elements[i]

Properties: form, name, type, value

Methods: blur(), click(), focus(), handleEvent()

Event handlers: onBlur, onClick, onFocus

322 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 322

sun
Description: A top-level object used to access any Java class in the package
sun.*.

What creates it: Automatically created by Java-supporting browsers.

How to access it: Packages.sun

(See Packages.)

Text
Description: A text field included in an HTML form.

What creates it: <FORM NAME=”formName”> . . . <INPUT TYPE=”text”
NAME=”textName” . . . ></FORM>

How to access it: document.formName.textName or formName.elements[i]

Properties: defaultValue, form, name, type, value

Methods: blur(), focus(), handleEvent(), select()

Event handlers: onBlur, onChange, onFocus, onSelect

Textarea
Description: A text area element (a multiline text input field) included in an
HTML form.

What creates it: <FORM NAME=”formName”><TEXTAREA NAME=”textarea
Name”> . . . </TEXTAREA></FORM>

How to access it: document.formName.textareaName or formName.
elements[i]

Properties: defaultValue, form, name, type, value

Methods: blur(), focus(), handleEvent(), select()

Event handlers: onBlur, onChange, onFocus, onSelect

323Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 323

window
Description: A browser window or frame.

What creates it:

<BODY>

<FRAMESET>

<FRAME NAME=”frameName”>

window.open(“windowName”)

How to access it:

self

window

window.frames[i]

window.frameName

Properties: closed, defaultStatus, document, frames[], history,
length, location, Math, name, navigator, offscreenBuffering, opener,
parent, screen, self, status, top, window

Netscape Navigator only: crypto, innerHeight, innerWidth, jav, location
bar, menubar, netscape, outerHeight, outerWidth, Packages, page
XOffset, pageYOffset, personalbar, screenX, screenY, scrollbars,
statusbar, sun, toolbar

Internet Explorer only: clientInformation, event

Methods: alert(), blur(), clearInterval(), clearTimeout(), close(),
confirm(), focus(), moveBy(), moveTo(), oen(), prompt(), resizeBy(),
resizeTo(), scroll(), scrollBy(), scrollTo(), setInterval(),
setTimeout()

Netscape Navigator only: atob(), back(), btoa(), captureEvents(),
disableExternalCapture(), enableExternalCapture(), find(),
forward(), handleEvent(), home(), print(), releaseEvents(),
routeEvent(), setHotkeys(), setResizable(), setZOptions(), stop()

Internet Explorer only: navigate()

Event handlers: onBlur, onDragDrop, onError, onFocus, onLoad, onMove,
onResize, onUnload

324 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 324

Global Properties
Infinity

NaN (not a number)

Undefined

Built-In JavaScript Functions

escape()
Description: Returns the hexadecimal encoding of an argument in the
ISO-Latin-1 character set. The escape() function and it’s reverse function,
unescape(), are typically used to send special characters safely from a
JavaScript script to another program, such as a Java applet. For example,
you can encode a special character by using the escape() function and
send the resulting value to another program that can then decode that char-
acter by using the equivalent of the unescape() function — and vice versa.
(Sending special characters without using this encoding process can result
in errors. You can think of the ISO-Latin-1 character set as a lowest-common-
denominator language that many programmer languages understand.)

Syntax: escape(“valueToBeEncoded”)

Example:

escape(“&”) // returns the hexadecimal equivalent of & which is “%26”

eval()
Description: Evaluates a string of JavaScript code without reference to a par-
ticular object.

Syntax: eval(“value”) where value is a string representing a JavaScript
expression, statement, or sequence of statements. The expression can
include variables and properties of existing objects.

Example:

eval(new String(“2+2”)) // returns a String object containing “2+2”

325Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 325

isFinite()
Description: Evaluates an argument to determine whether it is a finite
number. If the argument is NaN, positive infinity or negative infinity, this
method returns false; otherwise, it returns true.

Syntax: isFinite(value)

Example:

isFinite(123) // returns true

isNaN()
Description: Evaluates an argument to determine whether it is not a number.
Returns true if passed NaN and false otherwise.

Syntax: isNaN(value)

Example:

isNaN(123) // returns false

Number()
Description: Converts the specified object to a number.

Syntax: Number(anObject)

Example:

alert (Number(d)) // Displays a dialog box containing “819199440000.”

parseFloat()
Description: Parses a string argument and returns a floating point number.

Syntax: parseFloat(“value”)

Example:

var x = “3.14” // returns 3.14

326 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 326

parseInt()
Description: Parses a string argument and returns an integer of the specified
radix or base. (Base 10 is assumed if no radix is supplied.)

Syntax: parseInt(string[, radix])

Example:

parseInt(“1111”, 2) // returns 15

parseInt(“15”, 10) // returns 15

String()
Description: Converts the specified object to a string.

Syntax: string(anObject)

Example:

aDate = new Date (430054663215)
alert (String(aDate)) // displays “Thu Aug 18 04:37:43 GMT-0700 (Pacific

Daylight Time) 1983.”

taint()
Description: Adds tainting to a data element or script. (Tainting a JavaScript
element prevents that element from being passed to a server without the
end-user’s permission.)

Syntax: taint([dataElementName]) where dataElementName is the prop-
erty, variable, function, or object to taint. If omitted, taint is added to the
script itself.

Example:

taintedStatus=taint(window.defaultStatus)

327Appendix C: Document Object Model Reference

29_576593 appc.qxd 10/12/04 10:05 PM Page 327

unescape()
Description: Returns the ASCII string for the specified hexadecimal encoding
value.

Syntax: unescape(“value”) where value is a string containing characters
in the form “%xx”, xx being a 2-digit hexadecimal number.

Example:

unescape(“%26”) // returns “&”

untaint()
Description: Removes tainting from a data element or script. (Tainting a
JavaScript element prevents that element from being passed to a server
without the end-user’s permission.)

Syntax: untaint([dataElementName]) where dataElementName is the
property, variable, function, or object from which to remove tainting.

Example:

untaintedStatus=untaint(window.defaultStatus)

328 Part VI: Appendixes

29_576593 appc.qxd 10/12/04 10:05 PM Page 328

Appendix D

Special Characters

Sometimes you need to represent special characters in JavaScript strings.
Common examples of special characters include white space, currency

symbols, and non-English characters.

When you represent special characters in JavaScript, you have a choice:
You can use escape characters, octal, or hexadecimal representations of
the Web-standard character set Latin-1 (ISO 8859-1), or — for versions of
Netscape Navigator including 6.0 and later — Unicode.

Together, the ISO 8859 and Unicode standards allow for literally tens of thou-
sands of special characters: enough to represent most of the known human
languages! Although I couldn’t fit all of them in this appendix, the following
tables should cover most of your special character needs. It lists the most
commonly used special characters, along with both the hexadecimal and
octal representations JavaScript supports.

Character sets are evolving standards. To get the very latest scoop on
JavaScript internationalization and supported character sets — as well as
to find representations for special characters not listed in this appendix —
check out the section of Netscape’s JavaScript manual that describes support
for special characters at

http://devedge.netscape.com/library/manuals/2000/javascript/1.5/guide/
ident.html#1009568

For more information on the Unicode standard, check out the Unicode home
page at

www.unicode.org

The following is example of how you use special characters in JavaScript code:

alert(“\’JavaScript For Dummies\u00A9\’ costs $29.99 in the U.S., 195\xA5 in
Japan, and \24316 in Britain.”)

30_576593 appd.qxd 10/12/04 10:04 PM Page 329

Here are the most commonly used special characters:

Character JavaScript Escape Unicode
Characters

Apostrophe \’ \u0027

Backslash \\ \u005C

Backspace \b \u000b

Carriage return \r \u000D

Double quote \” \u0022

Form feed \f \u000C

New line \n \u000A

Tab \t \u0009

Octal, hexadecimal, and Unicode representations of other common special
characters appear in the following lists:

Octal Hex Unicode Description Character

\240 \xA0 \u00A0 Nonbreaking space

\241 \xA1 \u00A1 Inverted exclamation mark ¡

\242 \xA2 \u00A2 Cent sign ¢

\243 \xA3 \u00A3 Pound sign £

\244 \xA4 \u00A4 General currency sign €

\245 \xA5 \u00A5 Yen sign ¥

\246 \xA6 \u00A6 Broken vertical line _

\247 \xA7 \u00A7 Section sign §

\250 \xA8 \u00A8 Diaeresis or umlaut ¨

\251 \xA9 \u00A9 Copyright sign ©

\252 \xAA \u00AA Feminine ordinal indicator ª

\253 \xAB \u00AB Left-pointing double carets «

\254 \xAC \u00AC Logical not-sign ¬

330 Part VI: Appendixes

30_576593 appd.qxd 10/12/04 10:04 PM Page 330

Octal Hex Unicode Description Character

\255 \xAD \u00AD Soft hyphen _

\256 \xAE \u00AE Registered sign ®

\257 \xAF \u00AF Macron ¯

\260 \xB0 \u00B0 Degree sign °

\261 \xB1 \u00B1 Plus-or-minus sign ±

\262 \xB2 \u00B2 Superscript two _

\263 \xB3 \u00B3 Superscript three _

\264 \xB4 \u00B4 Acute accent ´

\265 \xB5 \u00B5 Micron sign >

\266 \xB6 \u00B6 Pilcrow ¶

\267 \xB7 \u00B7 Middle dot ·

\270 \xB8 \u00B8 Cedilla ¸

\271 \xB9 \u00B9 Superscript-one _

\272 \xBA \u00BA Masculine ordinal indicator º

\273 \xBB \u00BB Right-pointing double carets »

\274 \xBC \u00BC Fraction, one-quarter 1⁄4

\275 \xBD \u00BD Fraction, one-half 1⁄2

\276 \xBE \u00BE Fraction, three-quarters 3⁄4

\277 \xBF \u00BF Inverted question mark ¿

Uppercase Letters

\300 \xC0 \u00C0 A-grave À

\301 \xC1 \u00C1 A-acute Á

\302 \xC2 \u00C2 A-circumflex Â

\303 \xC3 \u00C3 A-tilde Ã

\304 \xC4 \u00C4 A-umlaut Ä

(continued)

331Appendix D: Special Characters

30_576593 appd.qxd 10/12/04 10:04 PM Page 331

Uppercase Letters (continued)

\305 \xC5 \u00C5 A-ring Å

\306 \xC6 \u00C6 AE Æ

\307 \xC7 \u00C7 C-cedilla Ç

\310 \xC8 \u00C8 E-grave È

\311 \xC9 \u00C9 E-acute É

\312 \xCA \u00CA E-circumflex Ê

\313 \xCB \u00CB E-umlaut Ë

\314 \xCC \u00CC I-grave Ì

\315 \xCD \u00CD I-acute Í

\316 \xCE \u00CE I-circumflex Î

\317 \xCF \u00CF I-umlaut Ï

\320 \xD0 \u00D0 D-stroke _

\321 \xD1 \u00D1 N-tilde Ñ

\322 \xD2 \u00D2 O-grave Ò

\323 \xD3 \u00D3 O-acute Ó

\324 \xD4 \u00D4 O-circumflex Ô

\325 \xD5 \u00D5 O-tilde Õ

\326 \xD6 \u00D6 O-umlaut Ö

\327 \xD7 \u00D7 Multiplication sign ×

\330 \xD8 \u00D8 O-slash Ø

\331 \xD9 \u00D9 U-grave Ù

\332 \xDA \u00DA U-acute Ú

\333 \xDB \u00DB U-circumflex Û

\334 \xDC \u00DC U-umlaut Ü

\335 \xDD \u00DD Y-acute _

\336 \xDE \u00DE THORN _

\337 \xDF \u00DF Small sharp s (

332 Part VI: Appendixes

30_576593 appd.qxd 10/12/04 10:04 PM Page 332

Lowercase Letters

\340 \xE0 \u00E0 a-grave à

\341 \xE1 \u00E1 a-acute á

\342 \xE2 \u00E2 a-circumflex â

\343 \xE3 \u00E3 a-tilde ã

\344 \xE4 \u00E4 a-umlaut ä

\345 \xE5 \u00E5 a-ring å

\346 \xE6 \u00E6 ae æ

\347 \xE7 \u00E7 c-cedilla ç

\350 \xE8 \u00E8 e-grave è

\351 \xE9 \u00E9 e-acute é

\352 \xEA \u00EA e-circumflex ê

\353 \xEB \u00EB e-umlaut ë

\354 \xEC \u00EC i-grave ì

\355 \xED \u00ED i-acute í

\356 \xEE \u00EE i-circumflex î

\357 \xEF \u00EF i-umlaut ï

\360 \xF0 \u00F0 d-stroke _

\361 \xF1 \u00F1 n-tilde ñ

\362 \xF2 \u00F2 o-grave ò

\363 \xF3 \u00F3 o-acute ó

\364 \xF4 \u00F4 o-circumflex ô

\365 \xF5 \u00F5 o-tilde õ

\366 \xF6 \u00F6 o-umlaut ö

\367 \xF7 \u00F7 Division sign ÷

\370 \xF8 \u00F8 o-slash ø

\371 \xF9 \u00F9 u-grave ù

\372 \xFA \u00FA u-acute ú

(continued)

333Appendix D: Special Characters

30_576593 appd.qxd 10/12/04 10:04 PM Page 333

Lowercase Letters (continued)

\373 \xFB \u00FB u-circumflex û

\374 \xFC \u00FC u-umlaut ü

\375 \xFD \u00FD y-acute _

\376 \xFE \u00FE thorn _

\377 \xFF \u00FF y-umlaut ÿ

334 Part VI: Appendixes

30_576593 appd.qxd 10/12/04 10:04 PM Page 334

Appendix E

About the CD

This appendix explains what’s on the CD-ROM that accompanies this book,
as well as how to install the contents and run each of the examples. Here’s

a sneak-peek at the contents for those of you who just can’t wait:

� Full working copies of each of the HTML/JavaScript listings that appear
in the book

� A wealth of useful JavaScript development tools

� Sound and image files used in the examples

Getting the Most from This CD
The best way to get familiar with JavaScript is to load scripts and interact
with them as you read through each chapter. If it’s feasible for you, I suggest
installing the contents of the CD before you pick up the book (or at least before
you’re more than about a quarter of the way through). Then, when you come
across a listing in the book, you can double-click on the corresponding HTML
file you’ve already installed and bingo! Interactive learning.

If you really want to make sure that you understand a concept, be sure you
take time not just to run each file, but to play around with it, too. Change a
line of JavaScript code and see what happens. You can’t go wrong because
you can just reinstall from the CD.

The examples are also referenced throughout the text. Some were designed
to reinforce the concepts you’re discovering; others, to be real, live, workable
scripts that you can incorporate into your own Web pages. Enjoy!

31_576593 appe.qxd 10/12/04 10:10 PM Page 335

System Requirements
Make sure that your computer meets the minimum system requirements listed
here. If your computer doesn’t match up to most of these requirements, you
may have problems in using the contents of the CD.

� A Pentium-based PC, or a Mac OS computer with a Power PC-based
processor.

� Microsoft Windows 98 or later, Windows NT4 or later, or Mac OS system
software 8.5 or later.

� A copy of either Netscape Navigator 7.0 or Microsoft Internet Explorer 6.0.
(Chapter 1 tells you how to get a copy and install it, if you haven’t already.)

� At least 16MB of total RAM installed on your computer. For best perfor-
mance, I recommend that Windows-equipped PCs and Mac OS computers
with PowerPC processors have at least 32 MB of RAM installed.

� At least 25MB of hard drive space on a Windows PC or at least 10MB
of hard drive space available on a Mac OS computer to install all the
software from this CD. (You’ll need less space if you don’t install every
program.)

� A CD-ROM drive — double-speed (2x) or faster.

� A sound card for PCs. (Mac OS computers have built-in sound support.)

� A monitor capable of displaying at least 256 colors or grayscale.

� A modem with a speed of at least 14,400 Kbps and an Internet connection
(to connect to the World Wide Web).

If you need more information on the basics, check out these books published
by Wiley Publishing, Inc.: PCs For Dummies, by Dan Gookin; Macs For Dummies,
by David Pogue; iMacs For Dummies by David Pogue; Windows 95 For Dummies,
Windows 98 For Dummies, Windows 2000 Professional For Dummies, Microsoft
Windows ME Millennium Edition For Dummies, all by Andy Rathbone.

Using the CD
1. Insert the CD into your computer’s CD-ROM drive. The license agree-

ment appears.

• Windows users: The interface won’t launch if you have autorun
disabled. In that case, click Start ➪ Run. In the dialog box that
appears, type D:\start.exe. (Replace D with the proper letter if
your CD-ROM drive uses a different letter. If you don’t know the
letter, see how your CD-ROM drive is listed under My Computer.)
Click OK.

336 Part VI: Appendixes

31_576593 appe.qxd 10/12/04 10:11 PM Page 336

• Note for Mac Users: The CD icon will appear on your desktop. Double-
click the icon to open the CD and double-click the “Start” icon.

2. Read through the license agreement, and then click the Proceed button
if you want to use the CD. After you click Proceed, the License Agreement
window won’t appear again.

The CD interface appears. The interface allows you to install the pro-
grams and run the demos with just a click of a button (or two).

JavaScript For Dummies Chapter Files
Each of the chapter listings that appear in the book is contained on the
companion CD in the CHAPTERS folder. The naming convention used is
list####.htm, where # corresponds to each specific chapter and listing
number. For example, you can find Listing 8-1 in the file named list0801.htm.

In addition to the chapter listings, the CD contains multimedia files and addi-
tional files for your review. To see a list and description of these items, please
see the text file LISTINGS.TXT, located in the CHAPTERS folder.

You may find it more convenient to copy the CHAPTERS folder to your hard
drive. To install the files, you can choose the install option from the CD-ROM
interface.

What You’ll Find
In addition to HTML files containing the JavaScript chapter listings, the fol-
lowing development tools are on the companion CD. Many of the tools are
either trial versions or shareware, which means if you like the product and
use it regularly, you need to contact the company directly and arrange to
purchase a copy of your very own.

Apycom DHTML Menu from Apycom Software, Inc. is a shareware tool you
can use to create customized DHTML menus — without coding. DHTML
Menu supports Internet Explorer, Navigator, and other browsers running
on Windows, Mac, or UNIX. For more details, point your Web browser

http://dhtml-menu.com

BBEdit (Demo). From Bare Bones Software, BBEdit text editor available for
the Macintosh that makes a great HTML editor, too. Get the skinny on BBEDut
abd Bare Bones by visiting

http://www.barebones.com/products/bbedit/index.shtml

337Appendix E: About the CD

31_576593 appe.qxd 10/12/04 10:11 PM Page 337

Dreamweaver Trial Version. Dreamweaver is an industrial-strength Web
development tool that runs on both Windows and Power Mac; it also works
hand-in-glove with Macromedia’s Web-animation development tool, Flash.
To purchase a copy of your very own — or just to get more information on
Dreamweaver — visit

http://www.macromedia.com/software/dreamweaver/

Macromedia HomeSite 30-day evaluation version. HomeSite, from
Macromedia, is an HTML editor for Windows with many features that make
Web programming a breeze. You can add and check tags, anchors, and for-
matting quickly. You can find updates at

http://www.macromedia.com/software/homesite

Paint Shop Pro Evaluation Version. JASC Inc.’s Paint Shop Pro is a share-
ware graphics viewing and editing tool available for Windows. You can find
updates at

http://www.jasc.com/products/paintshoppro

SmartMenus DHTML Menu. From SmartMenus.org comes this fast, stable
DHTML menu creation tool that’s free for use in non-commercial Web sites.
For conditions of use and sample menus, visit

http://www.smartmenus.org/forum/

Web Weaver Demo Version. McWeb Software’s Web Weaver is a professional
HTML editor for Windows platforms. The “gold” version offers spell checking
and a few other features not found in the evaluation version. For details, visit

http://www.mcwebsoftware.com/webweav.asp.

http://www.mcwebsoftware.com

If You Have Problems (Of the CD Kind)
I tried my best to find shareware programs that work on most computers
with the minimum system requirements. Alas, your computer may differ, and
some programs may not work properly for some reason.

If you have problems with the shareware on this CD-ROM, the two likeliest
problems are that you don’t have enough memory (RAM) or that you have
other programs running that are affecting installation or running of a pro-
gram. If you get an error message such as Not enough memory or Setup
cannot continue, try one or more of the following suggestions and then try
using the software again:

338 Part VI: Appendixes

31_576593 appe.qxd 10/12/04 10:11 PM Page 338

� Turn off any antivirus software running on your computer. Installation
programs sometimes mimic virus activity and may make your computer
incorrectly believe that a virus is infecting it.

� Close all running programs. The more programs that you have running,
the less memory is available to other programs. Installation programs
typically update files and programs. So if you keep other programs run-
ning, installation may not work properly.

� Have your local computer store add more RAM to your computer.
This is, admittedly, a drastic and somewhat expensive step. However,
adding more memory can really help the speed of your computer and
allow more programs to run at the same time.

If you still have trouble installing the items from the CD, please call the
Wiley, Inc. Customer Service phone number at 800-762-2974 (outside the U.S.:
317-572-3994), visit our Web site at http://www.wiley.com/techsupport.
Wiley provides technical support only for installation and other general quality-
control items; for technical support on the applications themselves, consult
the program’s vendor or author.

To place additional orders or to request information about other Wiley prod-
ucts, please call 800-225-5945.

339Appendix E: About the CD

31_576593 appe.qxd 10/12/04 10:11 PM Page 339

340 Part VI: Appendixes

31_576593 appe.qxd 10/12/04 10:11 PM Page 340

• Symbols •
+ (addition operator), 51
&& (“and” logical operator), 51
<> (angle brackets), 263
*/ (asterisk, forward slash), 37
@ (at symbol), 219
\w+ (backslash, w, plus sign), 219
() (call operator) precedence, 51
^ (carat), 219
, (comma)

functions, declaring, 42
precedence order, 51

?: (conditional operator), 51
{ } (curly braces), 38
— (decrement operator), 50
$ (dollar sign), 219
. (dot symbol), 219
==, |= (equality operator), 51
! (exclamation point), 230
/ (forward slash), 219
/* (forward slash, asterisk), 37
> (greater than sign), 263
++ (increment operator), 50
< (less than sign), 263
% (modulus operator), 50
- (negation operator), 51
|| (“or” logical operator), 51
; (semicolon)

expression, checking, 39
precedence order, 51

[] (square brackets), 38

• A •
About Focus on JavaScript Web page, 257
accessing

browser, 12
cookies, 133–134
CSS objects with JavaScript, 86
Java class (netscape), 316
multiple Java classes (packages), 317

sun.* package, 323
top-level Java class (java), 312

addition operator (+), 51
address input, validating, 216, 217–220
address, Web

accuracy of listed, 3
currently loaded (location), 314
link opened in frame, viewing, 143
visited (history), 312

advertisement, pop-up
alert, creating, 79
error messages, 230
event handlers, 243–244
software barring, 147, 247

alert window, creating, 79
Allen, Dan (DOM Tooltip creator), 211
AllWebMenus (Likno Software)

site map tool, 200
America Online browser, 16, 271
anchor hyperlink target, 304
anchor TARGET attribute, 153
“and” logical operator (&&), 51
angle brackets (<>), 263
animation

described, 19, 157–161
hotspots, 168
navigation bars, 168
rollovers, 168–171
slideshow series of images, 165–168
support, 17
turning images on and off, 161–164

appearance
Web page, 17
Web site, 18

applet
described, 157
DOM reference (applet), 304

application
attaching script to HTML file, 30–32
described, 23
HTML file, creating, 25–28
requirements, determining, 24
script, creating, 29
testing script, 32–33

Index

32_576593 bindex.qxd 10/12/04 10:10 PM Page 341

Apycom Software DHTML Menu
back-of-the-book CD, 338
described, 190

archives, newsgroup, 283
area TARGET attribute, 153
argument, string

floating point number, parsing and
returning (parseFloat()), 326

specified radix or base (parseInt()),
parsing and returning, 327

arguments
DOM, 305
function, declaring, 42

array, 305
array data, 99
ASCII string, returning for specified hexa-

decimal encoding (unescape()), 328
assignment operators

described, 52
precedence, 51

asterisk, forward slash (*/), 37
at symbol (@), 219
attributes

JavaScript cookies, 132, 133
properties versus, 76

automatic events, 18, 80

• B •
backslash, w, plus sign (\w+), 219
Baroudi, Carol (Internet For Dummies), 258
BBEdit (Bare Bones Software), 338
behaviors. See methods, DOM
binary and unary operators, 50
_blank attribute, 153
blinking text, 80
blocking

frames, 154
pop-up advertisements, 147, 247

blocks, creating exceptions with, 250–252
blur-related event handlers

focus, changing, 240, 243
user input, capturing, 220, 221

boolean value
described, 99
DOM, 306
Not a Number, judging entry

(isNAN()), 222

border, image, 77
browser. See also frame; window

accessing, 12
configuration details

(clientInformation), 307
configuration (navigator), 315–316
crashing, 283
incompatibility errors, common,

270–271
JavaScript support, 13, 16
object defined by, 75, 96
problems, debugging, 281
running, determining, 38
support, DOM, 303–304
tooltip formatting incompatibility, 201
window or frame (window), 324

browser-detection script
described, 59–64
ECMAScript standard, 105–106
embedded objects, 112–121
make and version, 106–112
user preferences, 122–123
Web page referrer page, loading, 121

bugs. See errors, debugging
button

blurring, 240, 245
clicking, 241
HTML form, 79, 306, 318–319
HTML sample error, 262
mouse, releasing, 244
onClick event handler, 11, 18
tags, 14
text, manipulating, 90–93

• C •
calculation bug, 282
call operator (()) precedence, 51
calling functions

described, 43
swapping images on rollover (swap()),

176–177
calling validation script, 221
carat (^), 219
Cascading Style Sheets. See CSS
case-sensitivity, JavaScript, 262
catch block, 250–252, 284–287
categories, DOM (Document Object Model),

75–77

342 JavaScript For Dummies, 4th Edition

32_576593 bindex.qxd 10/12/04 10:10 PM Page 342

CD, back-of-the-book
book chapter files, 338
with Mac OS, 337–338
with Microsoft Windows, 336–337
problems, handling, 340
system requirements, 336

CDR Site Map Pro 2.1 tool, 200
CGI (Common Gateway Interface)

described, 125–126
input-validation, 216
path, 132

characters
quote-delimited set of (string), 321
validating input, 219

check box in HTML form
blurring, 240
changing, 241, 245
DOM, 306–307

checking
data levels, 222
design, 223
existence, testing, 224–225
feedback etiquette, 230
full form, 228, 230–231
implementing, 231–238
numbers, checking parameters, 82–84
numeric value, testing, 225–227
pattern-matching, alternative to, 228–229
patterns, testing, 227–228
regular expressions with, 216, 219

class
accessing (netscape), 316
(JavaClass) DOM, 313
packages, accessing, 317
top-level object accessing (java), 312

client. See also frame; window
accessing, 12
configuration details

(clientInformation), 307
configuration (navigator), 315–316
crashing, 283
incompatibility errors, common, 270–271
JavaScript support, 13, 16
object defined by, 75, 96
problems, debugging, 281
running, determining, 38
support, DOM, 303–304
tooltip formatting incompatibility, 201
window or frame (window), 324

closing new windows, 144–147
CNET Builder Web site, 256
code conventions in text, 3
collection of objects, 305
color

background and text, user’s choice of, 123
JavaScript values, 297–302

comma (,)
functions, declaring, 42
precedence order, 51

comments
conditionals, 37
described, 36
errors, debugging, 275, 276
expression, checking for different values

(switch statement), 39–41
hiding, 31
JavaScript language, 36–41
lines, identifying, 29
multiple-line, 37
single-line, 36
testing condition (if-else conditional),

37–39
Common Gateway Interface. See CGI
comparison operators, 53
compiled language, 13
comp.lang.javascript newsgroup, 259
condition

execution at proper (while loop), 47–48
for loop, 44
one execution repeated when required

(do-while loop), 48
conditional operator (?:), 51
conditionals

comments, 37
defined, 36

content, quick guide to. See site map
converting

object to number (Number()), 326
value to decimal number

(parseFloat()), 222
cookie

accessing, 133–134
benefits of using, 126–127
content, displaying, 134–142
deleting by expiring, 132, 136, 142
described, 125–126
file, viewing, 130–131
security issues, 126–127

343Index

32_576593 bindex.qxd 10/12/04 10:10 PM Page 343

cookie (continued)
setting (creating), 131–133
support, configuring, 128–129
surfing sites, 130
view from user’s perspective, 127–131

cross-platform features, 61
cryptography-related digital signature

method (crypto), 307
CSS (Cascading Style Sheets)

accessing with JavaScript, 86
benefits of using, 84–85
defining, 85–86
JavaScript, 17
menu class, 185, 195
sliding menus, 189
tooltip style, defining, 205–206
use with DHTML, 9

curly braces ({ }), 38
CVS version control tool, 276

• D •
Danere StyleMaker, 339
data

frames, sharing between, 152–154
JavaScript types, 98–100
levels, order form validation script, 222
script gathering, 68–71

data, accessible. See DOM
data validation

defined, 215
regular expressions with, 216

date and time values (Date object)
cookie expiration, 136
described, 99
DOM, 308

date-and-time stamp application
HTML code, 26–27
JavaScript code, 29
script, attaching to HTML file, 30–32

date-formatting script, 64–68
debugging

browser, 281
checking, 282
comments and, 275
described, 273
documentation, consulting, 276

exception handling, 283–287
Internet Explorer tool, 287, 290–291
isolating, 275–276
Navigator tool, 287–290
newsgroups, consulting, 282–283
process of elimination, 280–282
pseudocode, clarifying requirements

with, 274
statements, breaking into smaller

functions, 279–280
trial-and-error approach, 283
variable values, displaying, 276–279

decimal
parsing string and returning

(parseFloat()), 326
turning value into (parseFloat()), 222

declaring functions, 42
decrement operator (—), 50
deleting cookies by expiring, 132, 136, 142
design

HTML map active areas, 204–205
order form validation script, 223
site map, 191–192
Web page, 17–18

Designing CSS Web Pages (Schmitt), 205
detection, browser

described, 59–64
ECMAScript standard, 105–106
embedded objects, 112–121
make and version, 106–112
user preferences, 122–123
Web page referrer page, loading, 121

development cycle, 24
DHTML (Dynamic HTML)

evolution of, 9
menus, 181
page appearance, changing on fly, 93–96
positioning text dynamically, 90–93
text, adding dynamically, 86–90
tooltips, 201
using, 17

DHTML Menu tool (Apycom Software),
190, 338

DHTML Menu tool (Milonic Solutions), 190
DHTML Menu tool (SmartMenus), 190, 339
DHTML Tooltips tool (Zorn, Walter), 211
digital signatures, 307

344 JavaScript For Dummies, 4th Edition

32_576593 bindex.qxd 10/12/04 10:10 PM Page 344

display
cookies, 134–142
missing parts, debugging, 281–282
object properties, 47
pull-down menu, 195
screen properties and colors

(screen), 320
sliding menu screen properties, 189

Document Object Model. See DOM
document unloading, 242, 243
documentation

browser, checking, 270
errors, debugging, 276
JavaScript, 21

dollar sign ($), 219
DOM (Document Object Model)

accessing class (netscape), 316
arguments, 305
array (JavaArray), 313
boolean (true/false) value, 306
browser configuration details

(clientInformation), 307
browser configuration (navigator),

315–316
browser support, 96, 303–304
categories, 75–77
check box in HTML form, 306–307
class (JavaClass), 313
class, top-level object accessing

(java), 312
classes, accessing (packages), 317
code chunk (function), 311
collection of objects (array), 305
date and time values (Date object), 308
described, 15, 73
digital signatures, cryptography-related

methods (crypto), 307
display screen properties and colors

(screen), 320
dynamic objects, 84–86
ease of use of, 11
ECMA standard and, 106
event handlers, 81–82
event, predefined, 309–310
file upload element, HTML form

(fileUpload), 310
form elements in HTML document

(elements[]), 309

functions, 82–84
functions, built-in, 325–328
global properties, 325
hidden HTML form field (hidden), 311
HTML display frame, 311
HTML document (document), 308–309
HTML form, 310
HTML select list option, 317
hyperlink target (anchor), 304
hypertext link (link), 314
image in HTML document, 312
image map, definition of (area), 305
Internet Explorer, 100–101
Java applet reference (applet), 304
Java object (JavaObject), 313
mathematical constants and functions

(math), 314–315
methods, 79–81
MIME type, browser-supported

(mimeType), 315
Netscape Navigator, 96–100
object models, 74–75
object type, 316–317
package (JavaPackage), 313–314
password in HTML form, 318
pattern of regular expression

(RegExp), 319
plug-in application, Navigator

(plugins), 318
primitive numeric values (number), 316
properties, 77–79
push button in HTML form, 306
quote-delimited characters, set of

(string), 321
radio button, HTML form, 318–319
Reset button, HTML form, 320
style of HTML elements, 321–322
Submit button, HTML form, 322
sun.* package, accessing, 323
text area element (multiline text input

element), HTML form, 323
text field, HTML form, 323
URL, currently loaded (location), 314
URL, visited (history), 312
window or frame (window), 324

DOM (Document Object Model) Tooltip tool
(Allen, Dan), 211

dot symbol (.), 219

345Index

32_576593 bindex.qxd 10/12/04 10:10 PM Page 345

Dreamweaver (Macromedia), 339
dumping property values, 47
Dynamic HTML. See DHTML
Dynamic HTML: The Definitive Reference

(Goodman), 181
dynamic objects, DOM (Document

Object Model), 84–86

• E •
EarthWeb online resource, 257
ease of use of JavaScript, 11–12
ECMA (European Computer Manufacturers

Association) script standard
browser, detecting user’s, 105–106
described, 60

effects
described, 19, 157–161
hotspots, 168
JavaScript sample, 9
navigation bars, 168
rollovers, 168, 169–171
slideshow series of images, 165–168
source code, viewing, 11
support, 17
turning images on and off, 161–164

either-or option, validating entry, 228, 230
elements, style, 321–322
e-mail address input, validating,

216, 217–220
embedded objects, 112–121
embedding JavaScript code in HTML file,

14–15
end of pattern, 219
endless or infinite loop, 45
equality operator (==, |=), 51
error handling

described, 250–252
errors, debugging, 283–287

error message, end-of-form, 221
errors, common

angle brackets, 263
browser incompatibility, 270–271
HTML, 262, 281–282
in logic, 269–270
nested quotes, misplaced, 266
numbers, treating as strings, 267–268
operators, 54
parentheses, missing, 264

quotes, missing, 265
scripting statements, misplaced, 265–266
strings, treating as numbers, 268–269
system-generated, 249–250
tags, missing, 263–264
typographical, 262

errors, debugging
browser, 281
checking, 282
comments and, 275
described, 273
documentation, consulting, 276
exception handling, 283–287
Internet Explorer tool, 287, 290–291
isolating, 275–276
Navigator tool, 287–290
newsgroups, consulting, 282–283
process of elimination, 280–282
pseudocode, clarifying requirements

with, 274
statements, breaking into smaller

functions, 279–280
trial-and-error approach, 283
variable values, displaying, 276–279

European Computer Manufacturers
Association (ECMA) script standard

browser, detecting user’s, 105–106
described, 60

event
bug tied to, 282
described, 239–240
form, 245–246
keyboard, 247
mouse, 244
Navigator and Internet Explorer

support, 243
predefined, DOM, 309–310
window, 243–244, 247

event handler
button pressing (onClick), 11
described, 75, 240
DOM, 81–82
listed, 240–242
pop-up advertisement, 243–244
sliding menus, 190

exception handling
described, 250–252
errors, debugging, 283–287

exclamation point (!), 230

346 JavaScript For Dummies, 4th Edition

32_576593 bindex.qxd 10/12/04 10:10 PM Page 346

existence, testing
described, 217
order form validation script, 224–225

expression
checking for different values

(switch statement), 39–41
function, embedding, 43
JavaScript language, 58–59

• F •
falls through, interpreter, 41
feedback

HTML form, 215
order form validation script, 230

fields, validating independent, 222
file

cookie, viewing, 130–131
external JavaScript, including, 15
local, problem loading, 281
upload element, HTML form

(fileUpload), 240, 310
file, HTML (HyperText Markup Language)

creating, 25–28
script, attaching to, 30–32

file transfer protocol (FTP), 16
filename

image, 77
on/off image files, 174

finite number, evaluating argument for
(isFinite()), 326

Flash animation plug-in, 157
floating-point number

parsing string and returning
(parseFloat()), 326

turning value into (parseFloat()), 222
form

bug prior to submitting, 282
dependent fields, validating, 222
elements in HTML document

(elements[]), 309
events, 245–246
push button, 306
radio button, 318–319
Reset button, 320
selection list (select), 320–321
submitting, 242, 322
tags, 14
TARGET attribute, 153

text field, 323
user input, capturing, 215–221

form validation
data levels, 222
design, 223
existence, testing, 224–225
feedback etiquette, 230
full form, 228, 230–231
implementing, 231–238
numbers, checking parameters, 82–84
numeric value, testing, 225–227
pattern-matching, alternative to, 228–229
patterns, testing, 227–228
regular expressions with, 216, 219

forward slash (/), 219
forward slash, asterisk (/*), 37
frame

adding to pull-down menu, site maps,
196–197

animation placeholder, 164
blocking, 154
creating, 149–151
data, sharing between, 152–154
described, 148–149
event handler, 240, 243
input focus, 80
resizing or moving, 242, 243
target attribute, 153
targeted hyperlinks, adding, 197–199

FTP (file transfer protocol), 16
full form, validating, 228, 230–231
fully qualified name, object, 97
fully qualified object property, 78
functions

calling, 43
declaring, 42
defined, 36, 42
DOM, 82–84
execution at proper condition

(while loop), 47–48
execution once then at proper condition

(do-while loop), 48
iterating through all object properties

(for-in loop), 46–47
loop behavior, changing (continue and

break statements), 49–50
loops, 44
stepping through multiple items

(for loop), 44–45
value, returning from, 43

347Index

32_576593 bindex.qxd 10/12/04 10:10 PM Page 347

functions, built-in
adding tainting to data element or script

(taint()), 327
ASCII string, returning for specified hexa-

decimal encoding (unescape()), 328
converting object to number

(Number()), 326
DOM, 325–328
finite number, evaluating argument for

(isFinite()), 326
floating point number, parsing string and

returning (parseFloat()), 326
hexadecimal encoding of argument,

returning (escape()), 325
removing tainting from data element or

script (untaint()), 328
specified radix or base, parsing string

and returning (parseInt()), 327
string, evaluating without reference to

particular object (eval()), 325

• G •
GIF (graphics interchange format),

animated, 158
global properties, DOM (Document

Object Model), 325
Goodman, Danny (Dynamic HTML:

The Definitive Reference), 181
graphics. See images
graphics interchange format (GIF),

animated, 158
greater than sign (>), 263
greeting, custom, 140–142

• H •
handler, event

button pressing (onClick), 11
described, 75, 240
DOM, 81–82
listed, 240–242
pop-up advertisement, 243–244
sliding menus, 190

handler, exception
described, 250–252
errors, debugging, 283–287

hardware, 1–2, 19, 336
height, image, 77

help, pop-up
adding to Web page (tag), 159
defining style for tooltip, 205–206
described, 18
DHTML tags, 201
HTML, 202–203
HTML map, designating active areas,

204–205
JavaScript functions to display and hide,

206–207
mouse pointer, custom functions

responding to, 207–208
simple, creating, 209–211
third-party scripts, 211

hexadecimal characters, 330–334
hexadecimal encoding of argument,

returning (escape()), 325
hidden elements

comments, 31
form field (hidden), 311

hierarchy, top-level window, 153
HomeSite (Macromedia), 339
hotspots

animation, 168
image, carving into multiple, 177–180

HTML 4 For Dummies (Tittel and Pitts), 11
HTML (HyperText Markup Language).

See also frame
bugs, tracking, 281–282
creating in word processor, 25
display frame, 311
document (document), 308–309
errors, common, 262
file, 25–28, 30–32
form, 215–216, 310
hyperlinks, adding (<A> tag), 197–198
JavaScript and, 14–15, 17
knowledge required, 11
map, designating active areas, 204–205
MARQUEE tag, 106–107
newsgroup, 259
objects, defined, 75
select list option, 317
site map layers, associating

(tags), 196
style, associating, 85
tags, missing, 263–264
tooltips, formatting (<AREA> tag),

201, 202–203

348 JavaScript For Dummies, 4th Edition

32_576593 bindex.qxd 10/12/04 10:10 PM Page 348

HTML (HyperText Markup Language) form
bug prior to submitting, 282
dependent fields, validating, 222
elements in HTML document

(elements[]), 309
events, 245–246
push button, 306
radio button, 318–319
Reset button, 320
selection list (select), 320–321
submitting, 242, 322
tags, 14
TARGET attribute, 153
text field, 323
user input, capturing, 215–221

HTML (HyperText Markup Language)
form validation

data levels, 222
design, 223
existence, testing, 224–225
feedback etiquette, 230
full form, 228, 230–231
implementing, 231–238
numbers, checking parameters, 82–84
numeric value, testing, 225–227
pattern-matching, alternative to, 228–229
patterns, testing, 227–228
regular expressions with, 216, 219

hyperlink target (anchor), 304
hyperlinks

data between frames, 152–154
to hotspot, 180

hyperlinks, group of. See navigation bars
hyperlinks, organized list of. See site map
hypertext link, 314

• I •
if-else tooltip statement, 206–207
image map, 305
images. See also swapping images on

rollover
adding to Web page (tag), 158–159
carving into multiple hotspots, 177–180
in HTML document, 312
interrupting loading (onAbort), 240
mouse-related event handlers, 244
properties associated with, 77–78

rollover, 169–171
tags, 14
tooltip, 203
turning on and off (setTimeout()),

161–164
implementing order form validation script,

231–238
in scope variable, 57
increased power, 9–10
increment operator (++), 50
index

content headings, linking, 152
frames, displaying with, 149, 150

information
browser, checking, 270
errors, debugging, 276
JavaScript, 21

initial expression, 44
initializing variables, 56
input form

bug prior to submitting, 282
dependent fields, validating, 222
elements in HTML document

(elements[]), 309
events, 245–246
push button, 306
radio button, 318–319
Reset button, 320
selection list (select), 320–321
submitting, 242, 322
tags, 14
TARGET attribute, 153
text field, 323
user input, capturing, 215–221

input, user. See HTML form
input validation

data levels, 222
design, 223
existence, testing, 224–225
feedback etiquette, 230
full form, 228, 230–231
implementing, 231–238
numbers, checking parameters, 82–84
numeric value, testing, 225–227
pattern-matching, alternative to, 228–229
patterns, testing, 227–228
regular expressions with, 216, 219

instance, 54

349Index

32_576593 bindex.qxd 10/12/04 10:10 PM Page 349

integer, turning value into
(parseInt()), 222

interactive images. See animation;
mouse rollover

Internet Explorer (Microsoft)
browser-detection script, 62
cookie support, configuring, 129
cookies, storing, 131
debugging tool, 287, 290–291
documentation and technical support, 21
DOM, 100–101
effect source code, viewing, 11
event properties, 310
events support, 243
exception handling, 287
HTML tooltip formatting, 201
JavaScript support through JScript,

12, 33, 60
JScript documentation, 270, 276
software, 20
status bar, viewing, 177–178
version-specific JavaScript code, 28
writing site to meet needs of, 61

The Internet For Dummies (Levine, Baroudi,
and Young), 258

Internet hardware, 19
Internet Related Technologies JavaScript

resource, 257
interpreted language, 13
interrupting loading

of images, 240
of windows, 80

intranet application, 61
IRT (Internet Related Technologies)

JavaScript resource, 257
isolating errors, 275–276

• J •
JASC Inc. Paint Shop Pro, 339
Java

array (JavaArray), 313
JavaScript versus, 12
object (JavaObject), 313
package (JavaPackage), 313–314

Java applet
described, 157
DOM reference (applet), 304

Java class
accessing (netscape), 316
(JavaClass) DOM, 313
packages, accessing, 317
top-level object accessing (java), 312

JavaScript
animated effects, 19
bugs, checking, 282
code chunk (function), 311
color values, 297–302
customize Web site appearance, 18
data types, 98–100
documentation and technical support, 21
ease of use of, 11–12
functions to display and hide, tooltips,

206–207
hardware needed, 19
HTML and, 14–15
with HTML and CSS, 17
increased power, 9–10
name change, 12
reserved words, 295–296
sample effects, 9
as scripting language, 10–11
security, 16
software needed, 20
speed, 13
Web browser support, 13, 16
Web site navigation, 18

JavaScript application
attaching script to HTML file, 30–32
described, 23
HTML file, creating, 25–28
requirements, determining, 24
script, creating, 29
testing script, 32–33

JavaScript language
browser-detection script, 59–64
commenting, 36–41
data-gathering script, 68–71
date-formatting script, 64–68
expressions, 58–59
functions, 42–50
literals, 58
operators, 50–56
statements, 58–59
syntax, 35–36
variables, 56–57

350 JavaScript For Dummies, 4th Edition

32_576593 bindex.qxd 10/12/04 10:10 PM Page 350

JScript
debugger, 287
described, 12
documentation and technical support,

21, 270, 276
newsgroup, 259

• K •
keyboard events, 241, 246, 247

• L •
language, JavaScript

browser-detection script, 59–64
commenting, 36–41
data-gathering script, 68–71
date-formatting script, 64–68
expressions, 58–59
functions, 42–50
literals, 58
operators, 50–56
statements, 58–59
syntax, 35–36
variables, 56–57

layers, HTML (HyperText Markup
Language)

defined, 185–186
site map, associating (tags), 196

left window position, controlling, 148
legal expression, 57
less than sign (<), 263
letters, validating input, 219
Levine, John R. (Internet For Dummies), 258
Likno Software AllWebMenus site map

tool, 200
links

data between frames, 152–154
to hotspot, 180

links, group of. See navigation bars
links, organized list of. See site map
literals, 58
LiveScript, 12
loading image, 77, 241, 243
locateImage() function, 176
logical errors, 269–270

logical operators
described, 53
precedence, 51

loops
behavior, changing (continue and

break statements), 49–50
defined, 36
functions, 44

lowercase letters, 333–334

• M •
Macintosh system requirements, 2, 19
Macromedia Dreamweaver, 339
Macromedia HomeSite, 339
make, browser detection of, 106–112
maps, Web site

described, 191–192
frames, adding to pull-down menu,

196–197
pull-down menu, 193–196
targeted hyperlinks, adding, 197–199
third-party tools, 199–200

massaging input data, 230
Math object, 100
mathematics. See also numbers

constants and functions (math), 314–315
operator precedence, 51

McWeb Software Web Weaver, 339
menus

DHTML, 181
pull-down, 182–186, 193–196
sliding, 186–190
third-party components, 190

message, status bar, 179–180
methods, DOM (Document Object Model),

74, 79–81
Microsoft Internet Explorer

browser-detection script, 62
cookie support, configuring, 129
cookies, storing, 131
debugging tool, 287, 290–291
documentation and technical support, 21
DOM, 100–101
effect source code, viewing, 11
event properties, 310
events support, 243

351Index

32_576593 bindex.qxd 10/12/04 10:10 PM Page 351

Microsoft Internet Explorer (continued)
exception handling, 287
HTML tooltip formatting, 201
JavaScript support through JScript,

12, 33, 60
JScript documentation, 270, 276
software, 20
status bar, viewing, 177–178
version-specific JavaScript code, 28
writing site to meet needs of, 61

Microsoft online resources, 256
Microsoft public scripting newsgroup, 259
Microsoft Windows XT, 2
Milonic Solutions DHTML Menu, 190
MIME type, browser-supported

(mimeType), 315
mistakes, common

angle brackets, 263
browser incompatibility, 270–271
HTML, 262, 281–282
in logic, 269–270
nested quotes, misplaced, 266
numbers, treating as strings, 267–268
operators, 54
parentheses, missing, 264
quotes, missing, 265
scripting statements, misplaced, 265–266
strings, treating as numbers, 268–269
system-generated, 249–250
tags, missing, 263–264
typographical, 262

modifying input data, 230
modulus operator (%), 50
month, matching, 40
mouse

events, 242, 244
onClick event, showing, 185, 245–246
pointer, tooltips responding to, 207–208
sliding menus, 190

mouse rollover, 168, 169–171
moving element with mouse, 244
multiple items, functions stepping through

(for loop), 44–45
multiple windows, creating, 147–148
multiple-line comments, 37

• N •
name

image, 77
on/off image files, 174

name change, JavaScript, 12
navigation bars

animation, 168, 171–177
described, 18, 168, 171
preloading images, 172–174
single image, carving into multiple

hotspots, 177–180
swapping images on rollover, 174–177

Navigator (Netscape)
browser-detection script, 62
cookie support, configuring, 128–129
debugging tool, 287–290
document model reference, 209
documentation, 21, 270
DOM, 96–100
effect source code, viewing, 11
event properties, 309
event support, 243
exception handling, 252, 287
HTML tooltip formatting, 201
JavaScript support, turning on, 33
objects, listed, 97–98
software, 20
technical support, 21
version-specific JavaScript code, 28

negation operator (-), 51
nested quotes, misplaced, 266
NetMechanic online browser detection

service, 271
NetObjects ScriptBuilder, 339
Netscape DevEdge Web site, 256
Netscape, ECMA standard, 60
Netscape Navigator. See Navigator

(Netscape)
new operator, 54–56, 75
newsgroups

errors, consulting about, 282–283
online resources, 258–259

Not a Number, judging entry (isNAN()), 222
Notepad text editor, 25, 26

352 JavaScript For Dummies, 4th Edition

32_576593 bindex.qxd 10/12/04 10:10 PM Page 352

null data, 99
numbers

data type supported, 99
finite, evaluating argument for

(isFinite()), 326
parameters, checking, 82–84
treating as strings, common error

related to, 267–268
user input, identifying, 222
validating, 219, 223
value, testing in order form validation

script, 217, 225–227

• O •
object models, 74–75
object properties, iterating through all

(for-in loop), 46–47
object type, 316–317
octal character representation, 330–334
on and off, turning images

animation, 161–164
rollover, 169–171

online resources
About Focus on JavaScript Web page, 257
CNET Builder, 256
EarthWeb, 257
HTML and CSS, 186
IRT (Internet Related Technologies)

JavaScript section, 257
Microsoft, 256
Netscape DevEdge site, 256
newsgroups, 258–259
Project Cool’s JavaScript QuickStarts, 256
ScriptSearch, 258
Webmonkey, 256
WebReference, 258

OpenCube Visual QuickMenu Pro, 190
opening new windows, 144–147
Opera browser, 16, 211
operators

assignment, 52
binary and unary, 50
common confusion, 54
comparison, 53

defined, 36
listed, 50–51
logical, 53
new and this, 54–56
precedence, 51–52

“or” logical operator (||), 51
or option, validating entry, 228, 230
order form validation script

data levels, 222
design, 223
existence, testing, 224–225
feedback etiquette, 230
full form, 228, 230–231
implementing, 231–238
numeric value, testing, 225–227
pattern-matching, alternative to, 228–229
patterns, testing, 227–228

• P •
page

appearance, changing on fly, 93–96
appearance, customizing, 17
interactive, creating, 10
referrer page, loading, 121
tags, 14

page layout, controlling display. See CSS
Paint Shop Pro (JASC Inc.), 339
paragraphs, allowing users to display

or hide, 86–88
parameters, 79
_parent attribute, 153
parentheses, missing, 264
password

clicking, 241
in HTML form, 318

pattern
matching, alternative to, 228–229
of regular expression (RegExp), 319
testing, 227–228
validating, 217, 219, 223

pi variable, 58
pictures. See images
Pitts, Natanya (HTML 4 For Dummies), 11

353Index

32_576593 bindex.qxd 10/12/04 10:10 PM Page 353

placeholder frame, animation, 164
plug-in

application, Navigator (plugins), 318
described, 157
support, 15

pop-up help
adding to Web page (tag), 159
defining style for tooltip, 205–206
described, 18
DHTML tags, 201
HTML, 202–203
HTML map, designating active areas,

204–205
JavaScript functions to display and hide,

206–207
mouse pointer, custom functions

responding to, 207–208
simple, creating, 209–211
third-party scripts, 211

pop-up window
alert, creating, 79
error messages, 230
event handlers, 243–244
software barring, 147, 247

posts, adapting previous, 283
precedence, operator, 51–52
pre-form-submittal bug, 282
preloading navigation bar images,

171, 172–174
price, calculating, 274
primitive numeric values (number), 316
problems, common

angle brackets, 263
browser incompatibility, 270–271
HTML, 262, 281–282
in logic, 269–270
nested quotes, misplaced, 266
numbers, treating as strings, 267–268
operators, 54
parentheses, missing, 264
quotes, missing, 265
scripting statements, misplaced, 265–266
strings, treating as numbers, 268–269
system-generated, 249–250
tags, missing, 263–264
typographical, 262

problems, debugging
browser, 281
checking, 282

comments and, 275
described, 273
documentation, consulting, 276
exception handling, 283–287
Internet Explorer tool, 287, 290–291
isolating, 275–276
Navigator tool, 287–290
newsgroups, consulting, 282–283
process of elimination, 280–282
pseudocode, clarifying requirements

with, 274
statements, breaking into smaller

functions, 279–280
trial-and-error approach, 283
variable values, displaying, 276–279

process of elimination error debugging,
280–282

Project Cool’s JavaScript QuickStarts
online resource, 256

properties
attributes versus, 76
displaying, 47
DOM, 74, 77–79
iterating through all (for-in loop), 46–47

pseudocode, 274
pull-down menu

described, 182–186
site maps, 193–196

push button, 306

• Q •
quote-delimited characters, set of

(string), 321
quotes, missing, 265

• R •
radio button, HTML form, 318–319
radix or base string argument,

(parseInt()), parsing and
returning, 327

registration, visitor, 134–142
regular expressions, data validation with

symbols, listed, 219
user input, capturing, 216

relational operator precedence, 51
reserved words, 295–296

354 JavaScript For Dummies, 4th Edition

32_576593 bindex.qxd 10/12/04 10:10 PM Page 354

Reset button, HTML form
DOM, 320
event handler, 246–247

reusing code, 280
rollover. See mouse rollover
rubber-stamping multiple windows, 147–148
runtime errors

debugging, 283–287
described, 249–252

• S •
Schmitt, Christopher (Designing CSS

Web Pages), 205
ScriptBuilder (NetObjects), 339
scripting

language, JavaScript as, 10–11
statements, misplaced, 265–266

ScriptSearch online resource, 258
scrubbing, data. See data validation
security issues

cookies, 126–127, 132
JavaScript, 16

selection list, form (select), 320–321
_self attribute, 153
semicolon (;)

expression, checking, 39
precedence order, 51

server
accessing, 12
processing on, 17

setting cookies, 131–133
single image, carving into multiple

hotspots, 177–180
single-line comments, 36
site

appearance, customizing, 18
navigation, 18

site map
described, 191–192
frames, adding to pull-down menu, 196–197
pull-down menu, 193–196
targeted hyperlinks, adding, 197–199
third-party tools, 199–200

Site Map Pro 2.1 (CDR) tool, 200
SiteXpert 7 (Xtreeme) site map tool, 200
slideshow series of images, 165–168
sliding menus, 186–190

SmartMenus DHTML menu, 190, 339
sniffer script, 107–112
software. See also application

errors, debugging, 287–291
Internet Explorer, 20
JavaScript-specific, 20
necessary, 20
Netscape Navigator, 20
site map tools, 199–200
tooltip scripts, 211

source code, viewing, 11
special characters, 329–334
special effects

described, 19, 157–161
hotspots, 168
JavaScript sample, 9
navigation bars, 168
rollovers, 168, 169–171
slideshow series of images, 165–168
source code, viewing, 11
support, 17
turning images on and off, 161–164

speed, JavaScript, 13
spelling, JavaScript precision, 262
square brackets ([]), 38
stateless nature of Web, 125
statements

breaking into smaller functions,
debugging, 279–280

JavaScript language, 58–59
lines, identifying, 29
scripting, misplaced, 265–266

status bar
hotspots, viewing, 177–178
message, displaying custom, 179–180

stepping through multiple item (for loop),
44–45

stopping
image loading, 240
window loading, 80

string
data type supported, 99
evaluating without reference to particular

object (eval()), 325
exception handling, 287
treating as numbers errors, common,

268–269
validating, 219, 228–229

355Index

32_576593 bindex.qxd 10/12/04 10:10 PM Page 355

string argument
floating point number, parsing and

returning (parseFloat()), 326
specified radix or base (parseInt()),

parsing and returning, 327
style, 321–322. See also CSS
StyleMaker (Danere), 339
Submit button, HTML form, 322
sun.* package, accessing, 323
support

animation, 17
cookie, configuring, 128–129
DOM, 303–304
event, 243
JavaScript, 13, 16
plug-in, 15

surfing sites, 130
swapping images on rollover

calling swap() function, 176–177
described, 18, 174–175
locateImage() function, 176
swap() function, 175

syntax
book’s, importance of following exactly, 3
JavaScript language, 35–36
typographical errors, common, 262

• T •
table of contents

framed, sample, 150, 151
index, linking, 152

tags, missing, 263–264
tainting

adding to data element or script
(taint()), 327

removing from data element or script
(untaint()), 328

TARGET attribute, frames, 152–153
target platforms, 59
targeted hyperlinks, adding, 197–199
technical support, 21
telephone number, validating, 227–228
testing

condition (if-else conditional), 37–39
importance of, 13

multiple browsers, 271
script, 32–33

text
appearance, controlling with CSS, 85
dynamically adding, DHTML script, 86–90
image alternative, 159
sample application, 27

text area, 323
text editor, 25
text field, 323
third-party products

DHTML menu components, 190
site maps, 199–200
tooltip scripts, 211

this operator, 54–56
throw block, 250–252, 285–286
time stamp application

HTML code, 26–27
JavaScript code, 29
script, attaching to HTML file, 30–32

time values (Date object)
cookie expiration, 136
described, 99
DOM, 308

title
image, 160
text, 27

Tittel, Ed (HTML 4 For Dummies), 11
tooltips

adding to Web page (tag), 159
defining style for tooltip, 205–206
described, 18
DHTML tags, 201
HTML, 202–203
HTML map, designating active areas,

204–205
JavaScript functions to display and hide,

206–207
mouse pointer, custom functions

responding to, 207–208
simple, creating, 209–211
third-party scripts, 211

_top attribute, 153
top window position, controlling, 148
top-level window, frame hierarchy, 153

356 JavaScript For Dummies, 4th Edition

32_576593 bindex.qxd 10/12/04 10:10 PM Page 356

trading images on rollover
calling swap() function, 176–177
described, 18, 174–175
locateImage() function, 176
swap() function, 175

transaction state, saving. See cookie
traverse items, 44–45
trial-and-error debugging approach, 283
true/false value

described, 99
DOM, 306
Not a Number, judging entry

(isNAN()), 222
try block, 250–252, 284–285
typographical errors, common, 262

• U •
unary operator precedence, 51
underscores, validating, 219
Unicode characters, 330–334
unloading document, 242, 243
update expression, 44–45
uppercase letters, 230, 331–332
URL (Uniform Resource Locator)

accuracy of listed, 3
currently loaded (location), 314
link opened in frame, viewing, 143
visited (history), 312

Usenet newsgroups, 258–259, 282–283
user

cookies, view from perspective of, 127–131
courtesy toward, 230
feedback, providing, 17
identifying, 126
preferences, detecting, 122–123
repeat, content based on, 134–142

user input, capturing
blur-related event handlers, 220
calling validation script, 221
data-gathering script, 68–71
HTML forms, 215–216
input-validation script, 216–221
numbers, identifying, 222
regular expressions, data validation

with, 216

user-initiated event
bug tied to, 282
described, 239–240
form, 245–246
keyboard, 247
mouse, 244
Navigator and Internet Explorer

support, 243
predefined, DOM, 309–310
window, 243–244, 247

user-initiated event handler
button pressing (onClick), 11
described, 75, 240
DOM, 81–82
listed, 240–242
pop-up advertisement, 243–244
sliding menus, 190

• V •
validation

data levels, 222
design, 223
existence, testing, 224–225
feedback etiquette, 230
full form, 228, 230–231
implementing, 231–238
numbers, checking parameters, 82–84
numeric value, testing, 225–227
pattern-matching, alternative to, 228–229
patterns, testing, 227–228
regular expressions with, 216, 219

value
different, checking expression for

(switch statement), 39–41
functions, returning from, 43
variable, displaying, 276–279

variable
content, displaying (alert()

method), 270
data types, 98–100
defined, 36
JavaScript language, 56–57
values, displaying while debugging

errors, 276–279
Venkman JavaScript debugger, 287

357Index

32_576593 bindex.qxd 10/12/04 10:10 PM Page 357

version, browser, 106–112
visitor. See user
Visual QuickMenu Pro (OpenCube), 190

• W •
Web address

accuracy of listed, 3
currently loaded (location), 314
link opened in frame, viewing, 143
visited (history), 312

Web browser. See also frame; window
accessing, 12
configuration details

(clientInformation), 307
configuration (navigator), 315–316
crashing, 283
incompatibility errors, common, 270–271
JavaScript support, 13, 16
object defined by, 75, 96
problems, debugging, 281
running, determining, 38
support, DOM, 303–304
tooltip formatting incompatibility, 201
window or frame (window), 324

Web page
appearance, changing on fly, 93–96
appearance, customizing, 17
interactive, creating, 10
referrer page, loading, 121
tags, 14

Web page layout, controlling display.
See CSS

Web server
accessing, 12
processing on, 17

Web site
appearance, customizing, 18
navigation, 18

Web Weaver (McWeb Software), 339
WebDeveloper Web site, 186
Webmonkey online resource, 256
WebReference online resource, 258
width, image, 77
window

described, 143–144
event handler, 240
events, 243–244, 247
multiple, creating, 147–148
opening and closing new, 144–147
positioning, 148
resizing or moving, 242
stopping load, 80
unloading, 242

Windows XT (Microsoft), 2
word processors, 25
words, reserved, 295–296

• X •
x, y coordinates, finding, 205
Xtreeme SiteXpert 7 site map tool, 200

• Y •
Young, Margaret Levine (Internet For

Dummies), 258

• Z •
Zorn, Walter (DHTML Tooltips creator), 211

358 JavaScript For Dummies, 4th Edition

32_576593 bindex.qxd 10/12/04 10:10 PM Page 358

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book “Book”. This is a license agreement “Agreement” between you
and Wiley Publishing, Inc.“WPI”. By opening the accompanying software packet(s), you acknowl-
edge that you have read and accept the following terms and conditions. If you do not agree and do
not want to be bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license
to use one copy of the enclosed software program(s) (collectively, the “Software”) solely
for your own personal or business purposes on a single computer (whether a standard
computer or a workstation component of a multi-user network). The Software is in use on
a computer when it is loaded into temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not expressly
granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to the
compilation of the Software recorded on the disk(s) or CD-ROM “Software Media”. Copyright
to the individual programs recorded on the Software Media is owned by the author or other
authorized copyright owner of each program. Ownership of the Software and all proprietary
rights relating thereto remain with WPI and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes, or
(ii) transfer the Software to a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy or
reproduce the Software through a LAN or other network system or through any com-
puter subscriber system or bulletin- board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer
the Software and user documentation on a permanent basis, provided that the transferee
agrees to accept the terms and conditions of this Agreement and you retain no copies.
If the Software is an update or has been updated, any transfer must include the most
recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements
and restrictions detailed for each individual program in the “What’s on the CD” appendix of
this Book. These limitations are also contained in the individual license agreements recorded
on the Software Media. These limitations may include a requirement that after using the pro-
gram for a specified period of time, the user must pay a registration fee or discontinue use.
By opening the Software packet(s), you will be agreeing to abide by the licenses and restric-
tions for these individual programs that are detailed in the “What’s on the CD” appendix and
on the Software Media. None of the material on this Software Media or listed in this Book
may ever be redistributed, in original or modified form, for commercial purposes.

33_576593 bmeddis.qxd 10/12/04 10:10 PM Page 359

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in materials
and workmanship under normal use for a period of sixty (60) days from the date of
purchase of this Book. If WPI receives notification within the warranty period of
defects in materials or workmanship, WPI will replace the defective Software Media.

(b) WPI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE,
THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES
DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED
IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other rights that
vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and workman-
ship shall be limited to replacement of the Software Media, which may be returned to
WPI with a copy of your receipt at the following address: Software Media Fulfillment
Department, Attn.: JavaScript For Dummies, 4th Edition, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow
four to six weeks for delivery. This Limited Warranty is void if failure of the Software
Media has resulted from accident, abuse, or misapplication. Any replacement Software
Media will be warranted for the remainder of the original warranty period or thirty
(30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (including
without limitation damages for loss of business profits, business interruption, loss of
business information, or any other pecuniary loss) arising from the use of or inability
to use the Book or the Software, even if WPI has been advised of the possibility of such
damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for conse-
quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies and/or instrumentalities “U.S. Government”
is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the
Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, and in similar
clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modified
or amended except in a writing signed by both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other pro-
vision shall remain in full force and effect.

33_576593 bmeddis.qxd 10/12/04 10:10 PM Page 360

PERSONAL FINANCE

Also available:

Estate Planning For Dummies
(0-7645-5501-4)
401(k)s For Dummies
(0-7645-5468-9)
Frugal Living For Dummies
(0-7645-5403-4)
Microsoft Money “X” For
Dummies
(0-7645-1689-2)
Mutual Funds For Dummies
(0-7645-5329-1)

Personal Bankruptcy For
Dummies
(0-7645-5498-0)
Quicken “X” For Dummies
(0-7645-1666-3)
Stock Investing For Dummies
(0-7645-5411-5)
Taxes For Dummies 2003
(0-7645-5475-1)

Also available:

Business Plans Kit For
Dummies
(0-7645-5365-8)
Consulting For Dummies
(0-7645-5034-9)
Cool Careers For Dummies
(0-7645-5345-3)
Human Resources Kit For
Dummies
(0-7645-5131-0)
Managing For Dummies
(1-5688-4858-7)

QuickBooks All-in-One Desk
Reference For Dummies
(0-7645-1963-8)
Selling For Dummies
(0-7645-5363-1)
Small Business Kit For
Dummies
(0-7645-5093-4)
Starting an eBay Business For
Dummies
(0-7645-1547-0)

The easy way to get more done and have more fun

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct.

BUSINESS & CAREERS

Also available:

Controlling Cholesterol For
Dummies
(0-7645-5440-9)
Dieting For Dummies
(0-7645-5126-4)
High Blood Pressure For
Dummies
(0-7645-5424-7)
Martial Arts For Dummies
(0-7645-5358-5)
Menopause For Dummies
(0-7645-5458-1)

Nutrition For Dummies
(0-7645-5180-9)
Power Yoga For Dummies
(0-7645-5342-9)
Thyroid For Dummies
(0-7645-5385-2)
Weight Training For Dummies
(0-7645-5168-X)
Yoga For Dummies
(0-7645-5117-5)

HEALTH, SPORTS & FITNESS

0-7645-5231-7 0-7645-2431-3 0-7645-5331-3

0-7645-5314-3 0-7645-5307-0 0-7645-5471-9

0-7645-5167-1 0-7645-5146-9 0-7645-5154-X

34_576593 bob.qxd 10/12/04 10:10 PM Page 361

Also available:

America’s National Parks For
Dummies
(0-7645-6204-5)
Caribbean For Dummies
(0-7645-5445-X)
Cruise Vacations For
Dummies 2003
(0-7645-5459-X)
Europe For Dummies
(0-7645-5456-5)
Ireland For Dummies
(0-7645-6199-5)
France For Dummies
(0-7645-6292-4)

London For Dummies
(0-7645-5416-6)
Mexico’s Beach Resorts For
Dummies
(0-7645-6262-2)
Paris For Dummies
(0-7645-5494-8)
RV Vacations For Dummies
(0-7645-5443-3)
Walt Disney World & Orlando
For Dummies
(0-7645-5444-1)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

A world of resources to help you grow

HOME, GARDEN & HOBBIES

Also available:

Auto Repair For Dummies
(0-7645-5089-6)
Chess For Dummies
(0-7645-5003-9)
Home Maintenance For
Dummies
(0-7645-5215-5)
Organizing For Dummies
(0-7645-5300-3)
Piano For Dummies
(0-7645-5105-1)

Poker For Dummies
(0-7645-5232-5)
Quilting For Dummies
(0-7645-5118-3)
Rock Guitar For Dummies
(0-7645-5356-9)
Roses For Dummies
(0-7645-5202-3)
Sewing For Dummies
(0-7645-5137-X)

Also available:

Bartending For Dummies
(0-7645-5051-9)
Chinese Cooking For
Dummies
(0-7645-5247-3)
Christmas Cooking For
Dummies
(0-7645-5407-7)
Diabetes Cookbook For
Dummies
(0-7645-5230-9)

Grilling For Dummies
(0-7645-5076-4)
Low-Fat Cooking For
Dummies
(0-7645-5035-7)
Slow Cookers For Dummies
(0-7645-5240-6)

FOOD & WINE

TRAVEL

0-7645-5295-3 0-7645-5130-2 0-7645-5106-X

0-7645-5250-3 0-7645-5390-9 0-7645-5114-0

0-7645-5453-0 0-7645-5438-7 0-7645-5448-4

34_576593 bob.qxd 10/12/04 10:10 PM Page 362

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

Plain-English solutions for everyday challenges

COMPUTER BASICS

Also available:

PCs All-in-One Desk
Reference For Dummies
(0-7645-0791-5)
Pocket PC For Dummies
(0-7645-1640-X)
Treo and Visor For Dummies
(0-7645-1673-6)
Troubleshooting Your PC For
Dummies
(0-7645-1669-8)

Upgrading & Fixing PCs For
Dummies
(0-7645-1665-5)
Windows XP For Dummies
(0-7645-0893-8)
Windows XP For Dummies
Quick Reference
(0-7645-0897-0)

Also available:

Excel Data Analysis For
Dummies
(0-7645-1661-2)
Excel 2002 All-in-One Desk
Reference For Dummies
(0-7645-1794-5)
Excel 2002 For Dummies
Quick Reference
(0-7645-0829-6)
GoldMine “X” For Dummies
(0-7645-0845-8)

Microsoft CRM For Dummies
(0-7645-1698-1)
Microsoft Project 2002 For
Dummies
(0-7645-1628-0)
Office XP For Dummies
(0-7645-0830-X)
Outlook 2002 For Dummies
(0-7645-0828-8)

BUSINESS SOFTWARE

0-7645-0838-5 0-7645-1663-9 0-7645-1548-9

0-7645-0822-9 0-7645-0839-3 0-7645-0819-9

• Find listings of even more For Dummies titles

• Browse online articles

• Sign up for Dummies eTips™

• Check out For Dummies fitness videos and other products

• Order from our online bookstore

Get smart! Visit www.dummies.com

™

34_576593 bob.qxd 10/12/04 10:10 PM Page 363

Also available:

Adobe Acrobat 5 PDF For
Dummies
(0-7645-1652-3)
Fireworks 4 For Dummies
(0-7645-0804-0)
Illustrator 10 For Dummies
(0-7645-3636-2)

QuarkXPress 5 For Dummies
(0-7645-0643-9)
Visio 2000 For Dummies
(0-7645-0635-8)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

Helping you expand your horizons and realize your potential

INTERNET

Also available:

America Online 7.0 For
Dummies
(0-7645-1624-8)
Genealogy Online For
Dummies
(0-7645-0807-5)
The Internet All-in-One Desk
Reference For Dummies
(0-7645-1659-0)
Internet Explorer 6 For
Dummies
(0-7645-1344-3)

The Internet For Dummies
Quick Reference
(0-7645-1645-0)
Internet Privacy For Dummies
(0-7645-0846-6)
Researching Online For
Dummies
(0-7645-0546-7)
Starting an Online Business
For Dummies
(0-7645-1655-8)

Also available:

CD and DVD Recording For
Dummies
(0-7645-1627-2)
Digital Photography
All-in-One Desk Reference
For Dummies
(0-7645-1800-3)
Digital Photography For
Dummies Quick Reference
(0-7645-0750-8)
Home Recording for
Musicians For Dummies
(0-7645-1634-5)

MP3 For Dummies
(0-7645-0858-X)
Paint Shop Pro “X” For
Dummies
(0-7645-2440-2)
Photo Retouching &
Restoration For Dummies
(0-7645-1662-0)
Scanners For Dummies
(0-7645-0783-4)

DIGITAL MEDIA

GRAPHICS

0-7645-0894-6 0-7645-1659-0 0-7645-1642-6

0-7645-1664-7 0-7645-1675-2 0-7645-0806-7

0-7645-0817-2 0-7645-1651-5 0-7645-0895-4

34_576593 bob.qxd 10/12/04 10:10 PM Page 364

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

The advice and explanations you need to succeed

Also available:

Chemistry For Dummies
(0-7645-5430-1)
English Grammar For
Dummies
(0-7645-5322-4)
French For Dummies
(0-7645-5193-0)
The GMAT For Dummies
(0-7645-5251-1)
Inglés Para Dummies
(0-7645-5427-1)

Italian For Dummies
(0-7645-5196-5)
Research Papers For
Dummies
(0-7645-5426-3)
The SAT I For Dummies
(0-7645-5472-7)
U.S. History For Dummies
(0-7645-5249-X)
World History For Dummies
(0-7645-5242-2)

SELF-HELP, SPIRITUALITY & RELIGION

Also available:

The Bible For Dummies
(0-7645-5296-1)
Buddhism For Dummies
(0-7645-5359-3)
Christian Prayer For Dummies
(0-7645-5500-6)
Dating For Dummies
(0-7645-5072-1)
Judaism For Dummies
(0-7645-5299-6)

Potty Training For Dummies
(0-7645-5417-4)
Pregnancy For Dummies
(0-7645-5074-8)
Rekindling Romance For
Dummies
(0-7645-5303-8)
Spirituality For Dummies
(0-7645-5298-8)
Weddings For Dummies
(0-7645-5055-1)

Also available:

Labrador Retrievers For
Dummies
(0-7645-5281-3)
Aquariums For Dummies
(0-7645-5156-6)
Birds For Dummies
(0-7645-5139-6)
Dogs For Dummies
(0-7645-5274-0)
Ferrets For Dummies
(0-7645-5259-7)

German Shepherds For
Dummies
(0-7645-5280-5)
Golden Retrievers For
Dummies
(0-7645-5267-8)
Horses For Dummies
(0-7645-5138-8)
Jack Russell Terriers For
Dummies
(0-7645-5268-6)
Puppies Raising & Training
Diary For Dummies
(0-7645-0876-8)

PETS

EDUCATION & TEST PREPARATION

0-7645-5302-X 0-7645-5418-2 0-7645-5264-3

0-7645-5255-4 0-7645-5286-4 0-7645-5275-9

0-7645-5194-9 0-7645-5325-9 0-7645-5210-4

34_576593 bob.qxd 10/12/04 10:10 PM Page 365

WEB DEVELOPMENT

Also available:

ASP.NET For Dummies
(0-7645-0866-0)
Building a Web Site For
Dummies
(0-7645-0720-6)
ColdFusion “MX” For
Dummies (0-7645-1672-8)
Creating Web Pages
All-in-One Desk Reference
For Dummies
(0-7645-1542-X)

FrontPage 2002 For Dummies
(0-7645-0821-0)
HTML 4 For Dummies Quick
Reference
(0-7645-0721-4)
Macromedia Studio “MX”
All-in-One Desk Reference
For Dummies
(0-7645-1799-6)
Web Design For Dummies
(0-7645-0823-7)

Also available:

Beginning Programming For
Dummies
(0-7645-0835-0)
Crystal Reports “X”
For Dummies
(0-7645-1641-8)
Java & XML For Dummies
(0-7645-1658-2)
Java 2 For Dummies
(0-7645-0765-6)
JavaScript For Dummies
(0-7645-0633-1)
Oracle9i For Dummies
(0-7645-0880-6)

Perl For Dummies
(0-7645-0776-1)
PHP and MySQL For
Dummies
(0-7645-1650-7)
SQL For Dummies
(0-7645-0737-0)
VisualBasic .NET For
Dummies
(0-7645-0867-9)
Visual Studio .NET All-in-One
Desk Reference For Dummies
(0-7645-1626-4)

We take the mystery out of complicated subjects

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct.

PROGRAMMING & DATABASES

Also available:

CCNP All-in-One Certification
For Dummies
(0-7645-1648-5)
Cisco Networking For
Dummies
(0-7645-1668-X)
CISSP For Dummies
(0-7645-1670-1)
CIW Foundations For
Dummies with CD-ROM
(0-7645-1635-3)

Firewalls For Dummies
(0-7645-0884-9)
Home Networking For
Dummies
(0-7645-0857-1)
Red Hat Linux All-in-One
Desk Reference For Dummies
(0-7645-2442-9)
TCP/IP For Dummies
(0-7645-1760-0)
UNIX For Dummies
(0-7645-0419-3)

LINUX, NETWORKING & CERTIFICATION

0-7645-1643-4 0-7645-0723-0 0-7645-1630-2

0-7645-0746-X 0-7645-1657-4 0-7645-0818-0

0-7645-1545-4 0-7645-0772-9 0-7645-0812-1

34_576593 bob.qxd 10/12/04 10:10 PM Page 366

	JavaScript for Dummies 4Th Ed
	Cover

	Table Of Content
	Introduction
	System Requirements
	About This Book
	Conventions Used in This Book
	What You're Not to Read
	Foolish Assumptions
	How This Book Is Organized
	Part I: Building Killer Web Pages for Fun and Profit
	Part II: Creating Dynamic Web Pages
	Part III: Making Your Site Easy for Visitors to Navigate and Use
	Part IV: Interacting with Users
	Part V: The Part of Tens
	Part VI: Appendixes

	Icons Used in This Book
	Where to Go from Here

	Part I: Building Killer Web Pages for Fun and Profit
	Chapter 1: Hitting the Highlights: JavaScript Basics
	What Is JavaScript? (Hint: It's Not the Same Thing as Java!)
	It's easy! (Sort of)
	It's speedy!
	Everybody's doing it! (Okay, almost everybody!)

	JavaScript and HTML
	JavaScript and Your Web Browser
	What Can I Do with JavaScript That I Can't Do with Web Languages?
	Make your Web site easy for folks to navigate
	Customize the way your Web site looks on-the-fly
	Create cool, dynamic animated effects

	What Do I Need to Get Started?
	Hardware
	Software
	Documentation

	Chapter 2: Writing Your Very First Script
	From Idea to Working JavaScript Application
	Ideas?! I got a million of 'em!
	Part I: Creating an HTML file
	Part II: Creating your script
	Part III: Putting it all together by attaching a script to an HTML file

	Testing Your Script

	Chapter 3: JavaScript Language Basics
	JavaScript Syntax
	Don't keep your comments to yourself
	Fully functioning
	Operators are standing by
	Working with variables

	Putting It All Together: Building JavaScript Expressions and Statements
	The browser-detection script
	The date-formatting script
	The data-gathering script

	Chapter 4: JavaScript-Accessible Data: Getting Acquainted with the Document Object Model
	Object Models Always Pose Nude
	Object-ivity
	For sale by owner: Object properties
	There's a method to this madness!
	How do you handle a hungry event? With event handlers!
	Company functions

	Anatomy of an Object: Properties, Methods, Event Handlers, and Functions in Action
	Dynamic objects: The least you need to know about CSS and DHTML
	Example DHTML script: Adding text dynamically
	Example DHTML script: Positioning text dynamically
	Example DHTML script: Changing page appearance on-the-fly

	Browser Object Models
	Netscape Navigator
	JavaScript data types

	Microsoft Internet Explorer

	Part II: Creating Dynamic Web Pages
	Chapter 5: Detecting Your Users' Browser Environments
	Whacking Your Way through the Browser Maze
	Detecting Features
	Browser make and version
	Embedded objects
	The referrer page
	User preferences

	Chapter 6: That's How the Cookie Crumbles
	Cookie Basics
	Why use cookies?
	Cookie security issues
	Looking at cookies from a user's perspective

	Saving and Retrieving User Information
	Setting a cookie
	Accessing a cookie
	Displaying content based on cookie contents: The repeat-visitor script

	Chapter 7: Working with Browser Windows and Frames
	Working with Browser Windows
	Opening and closing new browser windows
	Controlling the appearance of browser windows

	Working with Frames
	Creating HTML frames
	Sharing data between frames

	Part III: Making Your Site Easy For Visitors to Navigate and Use
	Chapter 8: Creating Interactive Images
	Creating Simple Animations
	Now you see it, now you don't: Turning images on and off
	Slideshow Bob: Displaying a series of images

	Creating Rollovers, Hotspots, and Navigation Bars
	Creating a simple rollover
	Creating navigation bars by putting rollovers together
	Carving up a single image into multiple hotspots

	Chapter 9: Creating Menus
	Getting Acquainted with Menus
	Pull-down menus
	Sliding menus

	Taking Advantage of Third-Party DHTML Menu Components

	Chapter 10: Creating Expandable Site Maps
	Site Map Basics
	The pull-down menu revisited
	Adding frames to the pull-down menu
	Putting it all together: Adding targeted hyperlinks

	Taking Advantage of Third-Party Site-Mapping Tools

	Chapter 11: Creating Pop-Up Help (Tooltips)
	Creating Plain HTML Tooltips
	Building DHTML Tooltips
	Creating an HTML map and designating active areas
	Defining a style for the tooltip
	Creating custom JavaScript functions to display and hide tooltips
	Calling custom functions in response to the onMouseOver and onMouseOut events
	Putting it all together: Using DHTML code to create simple tooltips

	Taking Advantage of Third-Party Tooltips Scripts

	Part IV: Interacting with Users
	Chapter 12: Handling Forms
	Capturing User Input by Using HTML Form Fields
	Creating an input-validation script
	Calling a validation script

	Putting It All Together: The Order Form Validation Script
	Testing for existence
	Testing for a numeric value
	Testing for patterns
	Form-level validation

	Chapter 13: Handling User-Initiated Events
	The Skinny on Events and Event Handlers
	Handling Events
	Window events
	Mouse events
	Form events
	Keyboard events

	Chapter 14: Handling Runtime Errors
	Exceptional Basics
	Handling Exceptions

	Part V: The Part of Tens
	Chapter 15: Top Ten (Or So) Online JavaScript Resources
	Ten Web Sites to Check Out
	Netscape
	Microsoft
	Builder com
	Webmonkey
	Project Cool's JavaScript QuickStarts
	EarthWeb com
	About com
	IRT org
	WebReference com
	ScriptSearch com

	Not-to-Be-Missed Newsgroups

	Chapter 16: Ten (Or So) Most Common JavaScript Mistakes (And How to Avoid Them)
	Typing-in-a-Hurry Errors
	Breaking Up a Happy Pair
	Lonely angle brackets
	Lonely tags
	Lonely parentheses
	Lonely quotes

	Putting Scripting Statements in the Wrong Places
	Nesting Quotes Incorrectly
	Treating Numbers as Strings
	Treating Strings as Numbers
	Missing the Point: Logic Errors
	Neglecting Browser Incompatibility

	Chapter 17: Ten (Or So) Tips for Debugging Your Scripts
	JavaScript Reads Your Code, Not Your Mind!
	Isolating the Bug
	Consulting the Documentation
	Displaying Variable Values
	Breaking Large Blocks of Statements into Smaller Functions
	Honing the Process of Elimination
	Debugging browser problems
	Tracking HTML bugs
	Checking the JavaScript code

	Taking Advantage of Others' Experience
	Exercising the Time-Honored Trial-and-Error Approach
	Just Try and Catch Me Exception Handling!
	Taking Advantage of Debugging Tools
	Netscape's JavaScript console
	Microsoft Internet Explorer's built-in error display

	Part VI: Appendixes
	Appendix A: JavaScript Reserved Words
	Appendix B: JavaScript Color Values
	Appendix C: Document Object Model Reference
	The Document Object Model
	Anchor
	Applet
	Area
	arguments
	Array
	Boolean
	Button
	Checkbox
	clientInformation
	crypto
	Date
	document
	elements[]
	event
	FileUpload
	Form
	Frame
	Function
	Hidden
	History
	Image
	java
	JavaArray
	JavaClass
	JavaObject
	JavaPackage
	Link
	location
	Math
	MimeType
	navigator
	netscape
	Number
	Object
	Option
	Packages
	Password
	Plugin
	Radio
	RegExp
	Reset
	screen
	Select
	String
	Style
	Submit
	sun
	Text
	Textarea
	window

	Global Properties
	Built-In JavaScript Functions
	escape()
	eval()
	isFinite()
	isNaN()
	Number()
	parseFloat()
	parseInt()
	String()
	taint()
	unescape()
	untaint()

	Appendix D: Special Characters
	Appendix E: About the CD
	Getting the Most from This CD
	System Requirements
	Using the CD
	JavaScript For Dummies Chapter Files
	What You'll Find
	If You Have Problems (Of the CD Kind)

	Index
	Team DDU

