

jQuery Reference Guide

A Comprehensive Exploration of the Popular
JavaScript Library

Jonathan Chaffer
Karl Swedberg

 BIRMINGHAM - MUMBAI

jQuery Reference Guide

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2007

Production Reference: 1240707

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-81-0

www.packtpub.com

Cover Image by Karl Swedberg (karl@learningjquery.com)

Credits

Authors

Jonathan Chaffer

Karl Swedberg

Reviewers

Jörn Zaefferer

Dave Methvin

Mike Alsup

Paul Bakaus

Dan Bravender

Senior Acquisition Editor

Douglas Paterson

Development Editor

Nikhil Bangera

Technical Editor

Bansari Barot

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Authors

Jonathan Chaffer is the Chief Technology Officer of Structure Interactive,
an interactive agency located in Grand Rapids, Michigan. There he oversees
web development projects using a wide range of technologies, and continues to
collaborate on day-to-day programming tasks as well.

In the open-source community, Jonathan has been very active in the Drupal CMS
project, which has adopted jQuery as its JavaScript framework of choice. He is the
creator of the Content Construction Kit, a popular module for managing structured
content on Drupal sites. He is responsible for major overhauls of Drupal’s menu
system and developer API reference.

Jonathan lives in Grand Rapids with his wife, Jennifer.

I would like to thank Jenny, who thinks this is wonderful even if it bores her to tears. I’d
also like to thank Karl for sharing my love for linguistics, producing a book that hopefully is
grammatically immaculate enough to cover up any technical sins.

Karl Swedberg is a web developer at Structure Interactive in Grand Rapids,
Michigan, where he spends much of his time implementing design with a focus on
web standards—semantic HTML, well-mannered CSS, and unobtrusive JavaScript.

Before his current love affair with web development, Karl worked as a copy editor,
a high-school English teacher, and a coffee house owner. His fascination with
technology began in the early 1990s when he worked at Microsoft in Redmond,
Washington, and it has continued unabated ever since.

Karl’s other obsessions include photography, karate, English grammar, and
fatherhood. He lives in Grand Rapids with his wife, Sara, and his two children,
Benjamin and Lucia.

I wish to thank my wife, Sara, for her steadfast love and support during my far-flung
adventures into esoteric nonsense. Thanks also to my two delightful children, Benjamin
and Lucia. Jonathan Chaffer has my deepest respect and gratitude for his willingness
to write this book with me and to explain the really difficult aspects of programming in a
gentle manner when I just don’t get it. Finally, I wish to thank John Resig for his brilliant
JavaScript library and his ongoing encouragement for the book, as well as Rey Bango,
Brandon Aaron, Klaus Hartl, Jörn Zaefferer, Dave Methvin, Mike Alsup, Yehuda Katz,
Stefan Petre, Paul Bakaus, Michael Geary, Glen Lipka, and the many others who have
provided help and inspiration along the way.

About the Reviewers

Jörn Zaefferer is a software developer and a consultant from Köln, Germany. He is
currently working at Maxence Integration Technologies GmbH. His work is centered
on developing web-based applications as JSR-168 portlets in JEE environments,
mostly Websphere Portal 5.1 based. He is currently working on a project based on
JSF and Spring.

Dave Methvin has more than 25 years of software development experience in
both the Windows and UNIX environments. His early career focused on embedded
software in the fields of robotics, telecommunications, and medicine. Later, he
moved to PC-based software projects using C/C++ and web technologies.

Dave also has more than 20 years of experience in computer journalism. He was
Executive Editor at PC Tech Journal and Windows Magazine, covering PC and Internet
issues; his how-to columns on JavaScript offered some of the first cut-and-paste
solutions to common web page problems. He was also a co-author of the book
Networking Windows NT (John Wiley & Sons, 1997).

Currently, Dave is Chief Technology Officer at PC Pitstop, a website that helps
users fix and optimize the performance of their computers. He is also active in the
jQuery community.

Mike Alsup is a Senior Software Developer at ePlus where he works on J2EE and
web development projects. He is a graduate from Potsdam College and has been
serving the software industry since 1989. Mike lives in Palmyra, NY with his wife,
Diane, and their three sons.

His jQuery plug-ins can be found at http://malsup.com/jquery/.

Paul Bakaus is a programmer and core developer living in Germany. His work
with jQuery has been focused on transforming jQuery into a high-speed library
capable of handling difficult large-scale rich interface operations. He was largely
responsible for creating the jQuery Dimensions plug-in and he now works together
with Stefan Petre on the rich effects and components library Interface. Paul is
currently involved in creating a JavaScript multiplayer game featuring jQuery.

Dan Bravender has been working with open-source software for over 10 years. His
fondest memories are of staying up all night to install and compile Linux in college
with his roommate. He has collected a massive collection of German board games.
When not playing board games, he enjoys playing soccer and hockey and studying
Korean and Chinese etymology. He misses working with Karl and Jon and is very
proud of all the hard work that they put into this book.

Table of Contents
Preface 1
Chapter 1: Anatomy of a jQuery Script 5

A Dynamic Table of Contents 5
Obtaining jQuery 7
Setting Up the HTML Document 7
Writing the jQuery Code 10

Script Dissection 11
Selector Expressions 11
DOM Traversal Methods 11
DOM Manipulation Methods 12
Event Methods 12
Effect Methods 13
AJAX Methods 13
Miscellaneous Methods 13
Plug-In API 14

Summary 14
Chapter 2: Selector Expressions 17

CSS Selectors 17
Element: T 17
ID: #myid 17
Class: .myclass 18
Descendant: E F 19
Child: E > F 19
Adjacent Sibling: E + F 20
General Sibling: E ~ F 21
Multiple Elements: E,F,G 22
Nth Child (:nth-child(n)) 22
First Child (:first-child) 23

Table of Contents

[ii]

Last Child (:last-child) 23
Only Child :only-child 24
Not :not(s) 24
Empty :empty 24
Universal: * 25

XPath Selectors 25
Descendant: E//F 25
Child: E/F 26
Parent: E/.. 26
Contains: [F] 27

Attribute Selectors 27
Has Attribute: [@foo] 28
Attribute Value Equals: [@foo=bar] 28
Attribute Value Does Not Equal: [@foo!=bar] 29
Attribute Value Begins: [@foo^=bar] 29
Attribute Value Ends: [@foo$=bar] 30
Attribute Value Contains: [@foo*=bar] 30

Form Selectors 30
Custom Selectors 31

Even Element (:even) Odd Element (:odd) 31
Nth Element (:eq(n), :nth(n)) 32
Greater Than :gt(n) 32
Less Than : lt(n) 33
First :first 33
Last :last 33
Parent :parent 34
Contains :contains(text) 34
Visible :visible 35
Hidden :hidden 35

Chapter 3: DOM Traversal Methods 37
The jQuery Factory Function 37
$() 38
Filtering Methods 40

.filter() 40

.not() 42

.contains() 43

.eq() 44

.lt() 45

.gt() 46
Tree Traversal Methods 47

Table of Contents

[iii]

.find() 47

.children() 48

.parents() 50

.parent() 51

.siblings() 52

.prev() 53

.next() 54
Miscellaneous Traversal Methods 55

.add() 55

.is() 57

.end() 58
Chapter 4: DOM Manipulation Methods 61

General Attributes 61
.attr(attribute) 61
.attr() 63
.removeAttr() 64

Style Properties 65
.css(property) 65
.css() 66
.height() 67
.height(value) 67
.width() 68
.width(value) 68

Class Attribute 69
.addClass() 69
.removeClass() 69
.toggleClass() 70

DOM Replacement 71
.html() 71
.html(HTML) 72
.text() 72
.text(text) 73
.val() 74
.val(value) 74

DOM Insertion, Inside 75
.prepend() 75
.prependTo() 76
.append() 78
.appendTo() 80

DOM Insertion, Outside 81

Table of Contents

[iv]

.before() 81

.insertBefore() 83

.after() 84

.insertAfter() 86
DOM Insertion, Around 88

.wrap() 88
DOM Copying 89

.clone() 89
DOM Removal 91

.empty() 91

.remove() 93
Chapter 5: Event Methods 95

Event Handler Attachment 95
.bind() 95
.unbind() 99
.one() 101
.trigger() 102

Document Loading 103
$() 103
.load() 105
.unload() 106
.error() 106

Mouse Events 107
.mousedown() 107
.mouseup() 109
.click() 110
.dblclick() 111
.toggle() 112
.mouseover() 113
.mouseout() 114
.hover() 115
.mousemove() 116

Form Events 118
.focus() 118
.blur() 119
.change() 120
.select() 122
.submit() 123

Keyboard Events 124
.keydown() 124

Table of Contents

[v]

.keypress() 126

.keyup() 127
Browser Events 128

.resize() 129

.scroll() 129
Chapter 6: Effect Methods 131

Pre-Packaged Effects 131
.show() 131
.hide() 133
.toggle() 135
.slideDown() 137
.slideUp() 138
.slideToggle() 139
.fadeIn() 141
.fadeOut() 143
.fadeTo() 144

Customized Effects 146
.animate() 146

Chapter 7: AJAX Methods 149
Low-Level Interface 149

$.ajax() 149
$.ajaxSetup() 153

Shorthand Methods 154
$.get() 154
$.getIfModified() 155
.load() 156
.loadIfModified() 157
$.post() 157
$.getJSON() 158
$.getScript() 159

Global AJAX Event Handlers 160
.ajaxComplete() 161
.ajaxError() 162
.ajaxSend() 163
.ajaxStart() 164
.ajaxStop() 165
.ajaxSuccess() 166

Helper Function 167
.serialize() 167

Table of Contents

[vi]

Chapter 8: Miscellaneous Methods 169
Setup Methods 169

$.browser 169
$.noConflict() 170

DOM Element Methods 171
.length 171
.size() 172
.get() 172
.index() 173

Collection Manipulation 174
.each() 174
$.grep() 176
$.map() 177
$.merge() 179
$.unique() 180
$.extend() 181
$.trim() 182

Chapter 9: Plug-In API 183
Using a Plug-in 183
Developing a Plug-in 184

Object Method 184
Global Function 186
Selector Expression 188
Easing Style 189

Example: Maintaining Multiple Event Logs 192
Summary 194

Chapter 10: Dimensions Plug-In 195
Size Methods 195

.height() 196

.width() 197

.innerHeight() 199

.innerWidth() 200

.outerHeight() 201

.outerWidth() 202
Position Methods 203

.scrollTop() 204

.scrollTop(value) 204

.scrollLeft() 205

Table of Contents

[vii]

.scrollLeft(value) 206

.offset() 207

.position() 212
Chapter 11: Form Plug-In 215

AJAX Form Submission 215
.ajaxSubmit() 215
.ajaxForm() 217
.ajaxFormUnbind() 223

Retrieving Form Values 223
.formToArray() 223
.formSerialize() 224
.fieldSerialize() 225
.fieldValue() 226

Form Manipulation 228
.clearForm() 228
.clearFields() 229
.resetForm() 230

Appendix A: Online Resources 233
jQuery Documentation 233
JavaScript Reference 234
JavaScript Code Compressors 235
(X)HTML Reference 235
CSS Reference 235
XPath Reference 236
Useful Blogs 236
Web Development Frameworks Using jQuery 238

Appendix B: Development Tools 239
Tools for Firefox 239
Tools for Internet Explorer 240
Tools for Safari 241
Other Tools 241

Index 243

Preface
jQuery is a powerful, yet easy-to-use JavaScript library that helps web developers
and designers add dynamic, interactive elements to their sites, smoothing out
browser inconsistencies and greatly reducing development time. In jQuery Reference
Guide, you can investigate this library's features in a thorough, accessible format.

This book offers an organized menu of every jQuery method, function, and selector.
Entries are accompanied by detailed descriptions and helpful recipes that will assist
you in getting the most out of jQuery and avoiding the pitfalls commonly associated
with JavaScript and other client-side languages. If you're still hungry for more,
the book shows you how to cook up your own extensions with jQuery's elegant
plug-in architecture.

You'll discover the untapped possibilities that jQuery makes available and hone your
skills as you return to this guide time and again.

Demos of examples in this book are available at:
http:\\book.learningjquery.com.

What This Book Covers
In Chapter 1 we'll begin by dissecting a working jQuery example. This script will
serve as a roadmap for this book, directing you to the chapters containing more
information on particular jQuery capabilities.

The heart of the book is a set of reference chapters that allow you to quickly look up
the details of any jQuery method. Chapter 2 lists every available selector for finding
page elements.

Chapter 3 builds on the previous chapter with a catalog of jQuery methods for finding
page elements.

Preface

[2]

Chapter 4 describes every opportunity for inspecting and modifying the HTML
structure of a page.

Chapter 5 details each event that can be triggered and reacted to by jQuery.

Chapter 6 defines the range of animations built into jQuery, as well as the toolkit
available for building your own.

Chapter 7 lists the ways in which jQuery can initiate and respond to server
communication without refreshing the page.

Chapter 8 covers the remaining capabilities of the jQuery library that don't neatly fit
into the other categories.

In the final three chapters, you'll dive into the extension mechanisms jQuery makes
available. Chapter 9 reveals four major ways to enhance jQuery's already robust
capabilities using a plug-in.

Chapter 10 walks you through the advanced measurement tools available in the
popular Dimensions plug-in.

Chapter 11 empowers you to bring AJAX technology and HTML forms together, a
process which is made easy by the Form plug-in.

Appendix A provides a handful of informative websites on a wide range of topics
related to jQuery, JavaScript, and web development in general.

Appendix B recommends a number of useful third-party programs and utilities for
editing and debugging jQuery code within your personal development environment.

Who is This Book For?
This book is for web designers who want to create interactive elements for their
designs, and for developers who want to create the best user interface for their
web applications.

The reader will need the basics of HTML and CSS, and should be comfortable with
the syntax of JavaScript. No knowledge of jQuery is assumed, nor is experience with
any other JavaScript libraries required.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "Taken
together, $() and .addClass() are enough for us to accomplish our goal of
changing the appearance of the poem text."

A block of code will be set as follows:

$(document).ready(function() {
 $('span:contains(language)').addClass('emphasized');
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

$(document).ready(function() {
 $('a[@href$=".pdf"]').addClass('pdflink');

});

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"The next step is to run those tests by clicking the All button".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

Preface

[4]

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Anatomy of a jQuery Script
He's got a brand new start
Now he's a happy guy
 —Devo,
 "Happy Guy"

A typical jQuery script uses a wide assortment of the methods that the library
offers. Selectors, DOM manipulation, event handling, and so forth come into play
as required by the task at hand. In order to make the best use of jQuery, we need to
keep in mind the wide range of capabilities it provides.

This book will itemize every method and function found in the jQuery library. Since
there are many methods and functions to sort through, it will be useful to know what
the basic categories of methods are, and how they come into play within a jQuery
script. Here we will see a fully functioning script, and examine how the different
aspects of jQuery are utilized in each part of the script.

A Dynamic Table of Contents
As an example of jQuery in action, we'll build a small script that will dynamically
extract the headings from an HTML document and assemble them into a table of
contents for that page.

Anatomy of a jQuery Script

[6]

Our table of contents will be nestled on the top right corner of the page:

We'll have it collapsed initially as shown above, but a click will expand it to
full height:

Chapter 1

[7]

At the same time, we'll add a feature to the main body text. The introduction of the
text on the page will not be initially loaded, but when the user clicks on the word
Introduction, the introductory text will be inserted in place from another file:

Before we reveal the script that performs these tasks, we should walk through the
environment in which the script resides.

Obtaining jQuery
The official jQuery website (http://jquery.com/) is always the most up-to-date
resource for code and news related to the library. To get started, we need a copy
of jQuery, which can be downloaded right from the home page of the site. Several
versions of jQuery may be available at any given moment; the latest uncompressed
version will be most appropriate for us.

No installation is required for jQuery. To use jQuery, we just need to place it on
our site in a public location. Since JavaScript is an interpreted language, there is
no compilation or build phase to worry about. Whenever we need a page to have
jQuery available, we will simply refer to the file's location from the HTML document.

Setting Up the HTML Document
There are three sections to most examples of jQuery usage— the HTML document
itself, CSS files to style it, and JavaScript files to act on it. For this example, we'll use a
page containing the text of a book:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>

Anatomy of a jQuery Script

[8]

 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <title>Doctor Dolittle</title>
 <link rel="stylesheet" href="dolittle.css" type="text/css" />
 <script src="jquery.js" type="text/javascript"></script>
 <script src="dolittle.js" type="text/javascript"></script>
 </head>
 <body>
 <div id="container">
 <h1>Doctor Dolittle</h1>
 <div class="author">by Hugh Lofting</div>
 <div id="introduction">
 <h2>Introduction</h2>
 </div>
 <div id="content">
 <h2>Puddleby</h2>
 <p>ONCE upon a time, many years ago when our grandfathers
 were little children--there was a doctor; and his name was
 Dolittle-- John Dolittle, M.D. "M.D." means
 that he was a proper doctor and knew a whole lot.
 </p>

 <!-- More text follows... -->

 </div>
 </div>
 </body>
</html>

The actual layout of files on the server does not matter. References from
one file to another just need to be adjusted to match the organization
we choose. In most examples in this book, we will use relative paths to
reference files (../images/foo.png) rather than absolute paths (/
images/foo.png). This will allow the code to run locally without the
need for a web server.

The stylesheet is loaded immediately after the standard <head> elements. Here are
the portions of the stylesheet that affect our dynamic elements:

/* -----------------------------------
 Page Table of Contents
-------------------------------------- */
#page-contents {
 position: absolute;
 text-align: left;

Chapter 1

[9]

 top: 0;
 right: 0;
 width: 15em;
 border: 1px solid #ccc;
 border-top-width: 0;
 border-right-width: 0;
 background-color: #e3e3e3;
}
#page-contents h3 {
 margin: 0;
 padding: .25em .5em .25em 15px;
 background: url(arrow-right.gif) no-repeat 0 2px;
 font-size: 1.1em;
 cursor: pointer;
}
#page-contents h3.arrow-down {
 background-image: url(arrow-down.gif);
}
#page-contents a {
 display: block;
 font-size: 1em;
 margin: .4em 0;
 font-weight: normal;
}
#page-contents div {
 padding: .25em .5em .5em;
 display: none;
 background-color: #efefef;
}

/* -----------------------------------
 Introduction
-------------------------------------- */
.dedication {
 margin: 1em;
 text-align: center;
 border: 1px solid #555;
 padding: .5em;
}

After the stylesheet is referenced, the JavaScript files are included. It is important that
the script tag for the jQuery library be placed before the tag for our custom scripts;
otherwise, the jQuery framework will not be available when our code attempts to
reference it.

Anatomy of a jQuery Script

[10]

Writing the jQuery Code
Our custom code will go in the second, currently empty, JavaScript file which
we included from the HTML using <script src="dolittle.js" type="text/
javascript"></script>. Despite how much it accomplishes, the script is
fairly short:

jQuery.fn.toggleNext = function() {
 this.toggleClass('arrow-down')
 .next().slideToggle('fast');
};

$(document).ready(function() {
 $('<div id="page-contents"></div>')
 .prepend('<h3>Page Contents</h3>')
 .append('<div></div>')
 .prependTo('body');

 $('#content h2').each(function(index) {
 var $chapterTitle = $(this);
 var chapterId = 'chapter-' + (index + 1);
 $chapterTitle.attr('id', chapterId);
 $('<a>').text($chapterTitle.text())
 .attr({
 'title': 'Jump to ' + $chapterTitle.text(),
 'href': '#' + chapterId
 })
 .appendTo('#page-contents div');
 });

 $('#page-contents h3').click(function() {
 $(this).toggleNext();
 });

 $('#introduction > h2 a').click(function() {
 $('#introduction').load(this.href);
 return false;
 });
});

We now have a dynamic table of contents that brings users to the relevant portion of
the text, and an introduction that is loaded on demand.

Chapter 1

[11]

Script Dissection
This script has been chosen specifically because it illustrates the widespread
capabilities of the jQuery library. Now that we've seen the code as a whole, we can
identify the categories of methods used therein.

We will not discuss the operation of this script in much detail here, but a
similar script is presented as a tutorial on the Learning jQuery web log:
http://www.learningjquery.com/2007/06/
automatic-page-contents.

Selector Expressions
Before we can act on an HTML document, we need to locate the relevant portions. In
our script, we sometimes use a simple approach to finding an element:

$('#introduction')

This expression creates a new jQuery object that references the element with the ID
introduction. On the other hand, sometimes we require a more intricate selector:

$('#introduction > h2 a')

Here we produce a jQuery object potentially referring to many elements. Elements
are included if they are anchor tags, but only if they are descendants of <h2>
elements that are themselves children of an element with the ID introduction.

These selector expressions can be as simple or complex as we need. Chapter 2 will
enumerate all of the selectors available to us and how they can be combined.

DOM Traversal Methods
Sometimes we have a jQuery object that already references a set of DOM elements,
but we need to perform an action on a different, related set of elements. In these
cases, DOM traversal methods are useful. We can see this in part of our script:

this.toggleClass('arrow-down')
 .next()

 .slideToggle('fast');

Anatomy of a jQuery Script

[12]

Because of the context of this piece of code, the keyword this refers to a jQuery
object (it often refers instead to a DOM element). In our case, this jQuery object is
in turn pointing to the <h3> heading of the table of contents. The .toggleClass
method call manipulates this heading element. The subsequent .next()
operation changes the element we are working with, though, so that the following
.slideToggle method call acts on the <div> containing the table of contents rather
than its header. The methods that allow us to freely move about the DOM tree like
this are listed in Chapter 3.

DOM Manipulation Methods
Finding elements is not enough; we want to be able to change them as well. Such
changes can be as straightforward as changing a single attribute:

$chapterTitle.attr('id', chapterId);

Here we modify the ID of the matched element on the fly.

Sometimes the changes are further-reaching, on the other hand:

$('<div id="page-contents"></div>')
 .prepend('<h3>Page Contents</h3>')
 .append('<div></div>')
 .prependTo('body');

This part of the script illustrates that the DOM manipulation methods can not only
alter elements in place, but also remove, shuffle, and insert them. These lines add a
new heading at the beginning of <div id="page-contents">, insert another <div>
container at the end of it, and place the whole thing at the beginning of the document
body. Chapter 4 will detail these and many more ways to modify the DOM tree.

Event Methods
Even when we can modify the page at will, our pages will sit in place, unresponsive.
We need event methods to react to user input, making our changes at the
appropriate time:

$('#introduction > h2 a').click(function() {
 $('#introduction').load(this.href);
 return false;
});

In this snippet we register a handler that will execute each time the selected anchor
tag is clicked. The click event is one of the most common ones observed, but there are
many others; the jQuery methods that interact with them are discussed in Chapter 5.

Chapter 1

[13]

Chapter 5 also discusses a very special event method, .ready:

$(document).ready(function() {
 // ...
});

This method allows us to register behavior that will occur immediately when the
structure of the DOM is available to our code—even before the images have loaded.

Effect Methods
The event methods allow us to react to user input; the effect methods let us do this
with style. Instead of immediately hiding and showing elements, we can do so with
an animation:

this.toggleClass('arrow-down')
 .next()
 .slideToggle('fast');

This method performs a fast sliding transition on the element, alternately hiding and
showing it with each invocation. The built-in effect methods are listed in Chapter 6,
as is the way to create new ones.

AJAX Methods
Many modern websites employ techniques to load content when requested without
a page refresh; jQuery allows us to accomplish this with ease. The AJAX Methods
initiate these content requests and allow us to monitor their progress:

$('#introduction > h2 a').click(function() {
 $('#introduction').load(this.href);

 return false;
});

Here the .load method allows us to get another HTML document from the server
and insert it in the current document, all with one line of code. This and more
sophisticated mechanisms of retrieving information from the server are listed
in Chapter 7.

Miscellaneous Methods
Some methods are harder to classify than others. The jQuery library incorporates
several miscellaneous methods that serve as shorthand for common
JavaScript idioms.

Anatomy of a jQuery Script

[14]

Even basic tasks like iteration are simplified by jQuery:

$('#content h2').each(function(index) {
 // ...
});

The .each method seen here steps through the matched elements in turn,
performing the enclosed code on all of matched elements. In this case, the method
helps us to collect all of the headings on the page so that we can assemble a complete
table of contents. More helper functions such as this can be found in Chapter 8.

Plug-In API
We need not confine ourselves to built-in functionality either. The plug-in API that
is part of jQuery allows us to augment the capabilities already present with new ones
that suit our needs. Even in the small script we've written here, we've found the use
for a plug-in:

jQuery.fn.toggleNext = function() {
 this.toggleClass('arrow-down')
 .next().slideToggle('fast');
};

This code defines a new .toggleNext jQuery method that slides the following
element open and shut. We can now call our new method later when needed:

$('#page-contents h3').click(function() {
 $(this).toggleNext();
});

Whenever code could be reused outside the current script, it might do well as a
plug-in. Chapter 9 will cover the plug-in API used to build these extensions.

Chapter 1

[15]

Summary
We've now seen a complete, functional jQuery-powered script. This example,
though small, brings a significant amount of interactivity and usability to the page.
The script has illustrated the major types of tools offered by jQuery, as well. We've
observed how the script finds items in the DOM and changes them as necessary.
We've witnessed response to user action, and animation to give feedback to the user
after the action. We've even seen how to pull information from the server without a
page refresh, and how to teach jQuery brand new tricks in the form of plug-ins.

We'll be stepping through each function, method, and selector expression in the
jQuery library now, chapter by chapter. In illustrating many of them, a customized
logging function will aid our examples. This .log method prints text to the screen in
a useful context; we'll dissect it as an example of a plug-in at the end of Chapter 9.

Each method will be introduced with a summary of its syntax and a list of its
parameters and return value. Then we will offer a discussion, which will provide
examples where applicable. For further reading about any method, consult the online
resources listed in Appendix A.

Selector Expressions
You got me lookin' up high
You got me searchin' down low
 —Devo,
 "Jerkin' Back 'n' Forth"

Borrowing from CSS 1–3 and basic XPath, and then adding its own, jQuery offers a
powerful set of selector expressions for matching a set of elements in a document. In
this chapter, we'll examine every selector expression that jQuery makes available
in turn.

CSS Selectors
The following selectors are based on the CSS 1–3, as outlined by the W3C. For more
information about the specifications, visit http://www.w3.org/Style/CSS/#specs.

Element: T
All elements that have a tag name of T.

Example
1. $('div'): selects all elements with a tag name of div in the document
2. $('em'): selects all elements with a tag name of em in the document

Description
jQuery uses JavaScript's getElementsByTagName() function for tag-name selectors.

ID: #myid
The unique element with an ID equal to myid.

Selector Expressions

[18]

Examples
1. $('#myid'): selects the unique element with id='myid', regardless of its

tag name
2. $('p#myid'): selects a single paragraph with an id of 'myid'; in other

words, the unique element <p id='myid'>

Description
Each id value must be used only once within a document. If more than one element
has been assigned the same id, queries that use that id will only select the first
matched element in the DOM.

It might not be immediately clear why someone might want to specify a tag name
associated with a particular id, since that id needs to be unique anyway. However,
some situations in which parts of the DOM are user-generated may require a more
specific expression to avoid false positives. Furthermore, when the same script is run
on more than one page, it might be necessary to identify the id's element, since the
pages could be associating the same id with different elements. For example, Page A
might have <h1 id='title'> while Page B has <h2 id='title'>.

For a plain id selector such as example 2 above, jQuery uses the JavaScript function
getElementById(). If the script's execution speed is paramount, the plain id selector
should be used.

Class: .myclass
All elements that have a class of myclass.

Examples
1. $('.myclass'): selects all elements that have a class of myclass
2. $('p.myclass'): selects all paragraphs that have a class of myclass
3. $('.myclass.otherclass'): selects all elements that have a class of

myclass and otherclass

Description
In terms of speed, example 2 is generally preferable to example 1 (if we can limit
the query to a given tag name) because it first uses the native JavaScript function
getElementsByTagName() to filter its search, and then looks for the class within
the matched subset of DOM elements. Conversely, there is currently no native
getElementsByClassName() for jQuery to use, so using a bare class name forces
jQuery to match it against every element in the DOM. The difference in speed varies,
however, with the complexity of the page and the number of DOM elements.

Chapter 2

[19]

As always, remember that development time is typically the most valuable resource.
Do not focus on optimization of selector speed unless it is clear that performance
needs to be improved.

As a CSS selector, the multiple-class syntax of example 3 is supported by all modern
web browsers, but not by Internet Explorer versions 6 and below, which makes the
syntax especially handy for applying styles cross-browser through jQuery.

Descendant: E F
All elements matched by F that are descendants of an element matched by E.

Examples
1. $('#container p'): selects all elements matched by <p> that are

descendants of an element that has an id of container
2. $('a img'): selects all elements matched by that are descendants of an

element matched by <a>

Description
A descendant of an element could be a child, grandchild, great-grandchild,
and so on, of that element. For example, in the following HTML, the
element is a descendant of the , <p>, <div id="inner">, and
<div id="container"> elements:

<div id="container">
 <div id="inner">
 <p>

 </p>
 </div>
</div>

Child: E > F
All elements matched by F that are children of an element matched by E.

Examples
1. $('li > ul'): selects all elements matched by that are children of an

element matched by
2. $('p > code'): selects all elements matched by <code> that are children of an

element matched by <p>

Selector Expressions

[20]

Description
As a CSS selector, the child combinator is supported by all modern web browsers
including Safari, Mozilla/Firefox, and Internet Explorer 7, but notably not by
Internet Explorer versions 6 and below. Example 1 is a handy way to select all nested
unordered lists (i.e. excepting the top level).

The child combinator can be thought of as a more specific form of the (single-space)
descendant combinator in that it selects only first-level descendants. Therefore, in the
following HTML, the element is a child only of the element.

<div id="container">
 <div id="inner">
 <p>

 </p>
 </div>
</div>

Adjacent Sibling: E + F
All elements matched by F that immediately follow, and have the same parent as, an
element matched by E.

Examples
1. $('ul + p'): selects all elements by <p> (paragraph) that immediately follow

a sibling element matched by (unordered list)
2. $('strong + em'): selects all elements matched by that immediately

follow a sibling element matched by

Description
One important point to consider with both the + combinator and the ~ combinator
(covered next) is that they only select siblings. Consider the following HTML:

<div id="container">

 <p>

 </p>
</div>

Chapter 2

[21]

$('ul + p') selects <p> because it immediately follows and the two elements
share the same parent, <div id="container">.

$('ul + img') selects nothing because (among other reasons) is one level
higher in the DOM tree than .

$('li + img') selects nothing because, even though and are on the same
level in the DOM tree, they do not share the same parent.

General Sibling: E ~ F
All elements matched by F that follow, and have the same parent as, an element
matched by E.

Examples
1. $('p ~ ul'): selects all elements matched by that follow a sibling

element matched by <p>
2. $('code ~ code'): selects all elements matched by <code> that follow a

sibling element matched by <code>

Description
One important point to consider with both the + combinator and the ~ combinator
is that they only select siblings. The notable difference between the two is their
respective reach. While the + combinator reaches only to the immediately following
sibling element, the ~ combinator extends that reach to all following sibling elements.

Consider the following HTML:

 <li class="first">
 <li class="second">
 <li class="third>

 <li class="fourth">
 <li class="fifth">
 <li class="sixth">

$('li.first ~ li') selects <li class="second"> and <li class="third">.

$('li.first + li') selects <li class="second">.

Selector Expressions

[22]

Multiple Elements: E,F,G
Selects all elements matched by selector expressions E, F, or G.

Examples
1. $('code, em, strong'): selects all elements matched by <code> or or

2. $('p strong, .myclass'): selects all elements matched by that
are descendants of an element matched by <p> as well as all elements that
have a class of myclass

Description
This comma (,) combinator is an efficient way to select disparate elements. An
alternative to this combinator is the .add() method described in Chapter 3.

Nth Child (:nth-child(n))
All elements that are the nth child of their parent.

Examples
1. $('li:nth-child(2)'): selects all elements matched by that are the

second child of their parent
2. $('p:nth-child(5)'): selects all elements matched by <p> that are the fifth

child of their parent

Description
Because jQuery's implementation of :nth-child(n) is strictly derived from the CSS
specification, the value of n is 1-based, meaning that the counting starts at 1. For all
other selector expressions, however, jQuery follows JavaScript's "0-based" counting.
Therefore, given a single containing two s, $('li:nth-child(1)') selects
the first while $('li:nth(1)') selects the second.

Because the two look so similar, the :nth-child(n) pseudo-class is easily confused
with :nth(n), even though, as we have just seen, the two can result in dramatically
different matched elements. With :nth-child(n), all children are counted,
regardless of what they are, and the specified element is selected only if it matches
the selector attached to the pseudo-class. With :nth(n) only the selector attached
to the pseudo-class is counted, not limited to children of any other element, and the
nth one is selected. To demonstrate this distinction, let's examine the results of a few
selector expressions given the following HTML:

<div>
 <h2></h2>

Chapter 2

[23]

 <p></p>
 <h2></h2>
 <p></p>
 <p></p>
</div>

$('p:nth(1)') selects the second <p>, because numbering for :nth(n) starts with 0.

$('p:nth-child(1)') selects nothing, because there is no <p> element that is the
first child of its parent.
$('p:nth(2)') selects the third <p>.
$('p:nth-child(2)') selects the first <p>, because it is the second child of its parent.

In addition to taking an integer, :nth-child(n) can take even or odd. This makes it
especially useful for table-row striping solutions when more than one table appears
in a document. Again, given the HTML snippet above:

$('p:nth-child(even)') selects the first and third <p>, because they are children 2
and 4 (both even numbers) of their parent.

First Child (:first-child)
All elements that are the first child of their parent:

Examples
1. $('li:first-child'): selects all elements matched by that are the

first child of their parent
2. $(strong:first-child'): selects all elements matched by that

are the first child of their parent

Description
The :first-child pseudo-class is shorthand for :nth-child(1). For more
information on :X-child pseudo-classes, see the discussion for :nth-child(n).

Last Child (:last-child)
All elements that are the last child of their parent.

Examples
1. $('li:last-child'): selects all elements matched by that are the last

child of their parent
2. $('code:last-child'): selects all elements matched by <code> that are the

last child of their parent

Selector Expressions

[24]

Description
For more information on :X-child pseudo-classes, see the discussion for
:nth-child(n).

Only Child :only-child
All elements that are the only child of their parent.

Examples
1. $(':only-child'): selects all elements that are the only child of their parent
2. $('code:only-child'): selects all elements matched by <code> that are the

only child of their parent

Not :not(s)
All elements that do not match selector s.

Examples
1. $('li:not(.myclass)'): selects all elements matched by that do not

have class="myclass"
2. $('li:not(:last-child)'): selects all elements matched by that are

not the last child of their parent element

Empty :empty
All elements that have no children (including text nodes).

Examples
1. $(':empty'): selects all elements that have no children
2. $('p:empty'): selects all elements matched by <p> that have no children

Description
The W3C recommends that the <p> element have at least one child node, even if
that child is merely text (see http://www.w3.org/TR/html401/struct/text.
html#edef-P). Some other elements, on the other hand, are empty (i.e. have no
children) by definition: <input>, ,
, and <hr>, for example.

One important thing to note with :empty (and :parent) is that child elements include
text nodes.

Chapter 2

[25]

Universal: *
All elements.

Examples
1. $('*'): selects all elements in the document
2. $('p > *'): selects all elements that are children of a paragraph element

Description
The * selector is especially useful when combined with other elements to form a
more specific selector expression.

XPath Selectors
Modeled after a file system's directory-tree navigation, XPath selector expressions
provide an alternative way to access DOM elements. Although XPath was developed
as a selector language for XML documents, jQuery makes a basic subset of its
selectors available for use in XML and HTML documents alike.

For more information about XPath 1.0, visit the specification at the W3C:
http://www.w3.org/TR/xpath.

Descendant: E//F
All elements matched by F that are descendants of an element matched by E.

Examples
1. $('div//code'): selects all elements matched by <code> that are

descendants of an element matched by <div>
2. $('//p//a'): selects all elements matched by <a> that are descendants of an

element matched by <p>

Description
This XPath descendant selector works the same as the corresponding CSS descendant
selector ($('E F')) except that the XPath version can specify that it is to start at the
document root, which could be useful when querying an XML document.

In example 2, the initial //p tells jQuery to start at the document root and match
all <p> elements that are descendants of it. Keep in mind that if this selector
expression follows a DOM traversal method such as .find(), this syntax will not
select anything because the document root cannot be a child of anything else. Since
jQuery allows free mixing of CSS and XPath selectors, the initial // is redundant and,
therefore, can be omitted.

Selector Expressions

[26]

Child: E/F
All elements matched by F that are children of an element matched by E.

Examples
1. $('div/p'): selects all elements matched by <p> that are children of an

element matched by <div>
2. $('p/a'): selects all elements matched by <a> that are children of an element

matched by <p>
3. $('/docroot/el'): selects all elements matched by <el> that are children

of an element matched by <docroot>, as long as <docroot> is actually at the
document root

Description
The XPath child selector, $('E/F'), is an alternative to the CSS child selector,
$('E > F'). If the selector expression begins with a single slash, as is the case in
example 3, the selector immediately following the slash must be at the document
root. Beginning with a single slash is not recommended in HTML documents, since
it always must be followed with body for the expression to match any elements on
the page. For XML documents, however, it might be useful to identify a particular
element or attribute at the document root.

Parent: E/..
All elements that are parents of an element matched by E.

Examples
1. $('.myclass/..'): selects the parent element of all elements that have a

class of myclass
2. $('.myclass/../'): selects all elements that are children of the parent of

an element that has a class of myclass. In other words, it selects all elements
that have a class of myclass, along with their sibling elements

3. $('.myclass/../p'): selects all elements matched by <p> that are children
of the element that has a class of myclass

Description
Let's look at some sample HTML to help understand this one:

<div>
 <p id="firstp"></p>
 <div id="subdiv"></div>
 <p id="secondp">

Chapter 2

[27]

 </p>
</div>
<div>
 <p></p>
</div>

$('span.myclass/..') selects <p id="secondp">, because it is the parent of <span
class="myclass">.

$('#firstp/../') selects <p id="firstp">, <div id="subdiv">, and <p
id="secondp">, because the selector (a) starts with <p id="firstp">, (b) traverses
up one level in the DOM tree (to the first top-level <div> element), and (c) selects all
children of that <div>.

$('.myclass/../../p') selects <p id="firstp"> and <p id="secondp">, because
the selector (a) starts with , (b) traverses up two levels in
the DOM tree (to the first top-level <div> element), and (c) selects all <p> elements
that are children of that <div>.

Contains: [F]
All elements that contain an element matched by F.

Examples
1. $('div[p]'): selects all elements matched by <div> that contain an element

matched by <p>
2. $('p[.myclass]'): selects all elements matched by <p> that contain an

element with a class of myclass

Description
This selector is like the reverse of the descendant selector (either E//F or E F), in that
it selects all elements that have a descendant element matched by F instead of all
elements matched by F that are descendants of some other element.

The XPath contains selector is not to be confused with the CSS attribute selector,
which shares this syntax. jQuery uses the XPath-style expression for attribute
selectors too, as discussed in the Attribute Selectors section below.

Attribute Selectors
Because jQuery supports both CSS and XPath-style expressions and the two conflict
in their use of square brackets, jQuery adopts the XPath notation for attribute
selectors, beginning them with the @ symbol.

Selector Expressions

[28]

When using any of the following attribute selectors, we should account for attributes
that have multiple, space-separated values. Since these selectors see attribute values
as a single string, this selector, for example, $('[a@rel=nofollow]'), will select
Some text but not
Some text.

Attribute values in selector expressions can be written as bare words or surrounded
by quotation marks. Therefore, the following variations are equally correct:

bare words: $('[a@rel=nofollow self]')
double quotes inside single quotes: $('[a@rel="nofollow self"]')
single quotes inside double quotes: $("[a@rel='nofollow self']")
escaped single quotes inside single quotes:
$('[a@rel=\'nofollow self\']')
escaped double quotes inside double quotes:
$("[a@rel=\"nofollow self\"]")

The variation we choose is generally a matter of style or convenience.

Has Attribute: [@foo]
All elements that have the foo attribute.

Examples
1. $('a[@rel]'): selects all elements matched by <a> that have a rel attribute
2. $('p[@class]'): selects all elements matched by <p> that have a

class attribute

Description
For more information on this attribute selector, see the introduction to Attribute
Selectors above.

Attribute Value Equals: [@foo=bar]
Elements that have the foo attribute with a value exactly equal to bar.

Examples
1. $('a[@rel=nofollow]'): selects all elements matched by <a> that have a

rel value exactly equal to nofollow
2. $('input[@name=myname]'): selects all elements matched by <input> that

have a name value exactly equal to myname

•
•
•
•

•

Chapter 2

[29]

Description
For more information on this attribute selector, see the introduction to Attribute
Selectors above.

Attribute Value Does Not Equal: [@foo!=bar]
All elements that do not have the foo attribute with a value exactly equal to bar.

Examples
1. $('a[@rel!=nofollow]'): selects all elements matched by <a> that do not

have a rel attribute with a value exactly equal to nofollow
2. $('input[@name!=myname]'): selects all elements matched by <input> that

do not have a name attribute with a value exactly equal to myname

Description
Since these selectors see attribute values as a single string, $('[a@rel!=nofollow]')
we will select Some text.

If we need to select only <a> elements that do not have nofollow anywhere within
their rel attribute, we can use the following selector expression instead:
$('a:not([@rel*=nofollow])').

Attribute Value Begins: [@foo^=bar]
All elements that have the foo attribute with a value beginning exactly with the
string bar.

Examples
1. $('a[@rel^=no]'): selects all elements matched by <a> that have a rel

attribute value beginning with no
2. $('input[@name^=my]'): selects all elements matched by <input> that have

a name value beginning with my

Description
Since these selectors see attribute values as a single string, $('[a@rel^=no]') will
select Some text but not
Some text.

Selector Expressions

[30]

Attribute Value Ends: [@foo$=bar]
All elements that have the foo attribute with a value ending exactly with the
string bar.

Examples
1. $('a[@href$=index.htm]'): selects all elements matched by <a> that have

an href value ending with index.htm
2. $('a[@rel$=self]'): selects all elements matched by <p> that have a class

value ending with bar

Description
Since these selectors see attribute values as a single string, $('[a@rel$=self]')
will select Some text but not
Some text.

Attribute Value Contains: [@foo*=bar]
All elements that have the foo attribute with a value containing the substring bar.

Examples
1. $('p[@class*=bar]'): selects all elements matched by <p> that have a

class value containing bar
2. $('a[@href*=example.com]'): selects all elements matched by <a> that

have an href value containing example.com

Description
This is the most generous selector of the jQuery attribute selectors that match
against a value. It will select an element if the selector's string appears anywhere
within the element's attribute value. Therefore, $('p[@class*=my]') will
select <p class="yourclass myclass">Some text</p>, <p class="myclass
yourclass">Some text</p>, and <p class="thisismyclass">Some text</p>.

Form Selectors
The following selectors can be used to access form elements in a variety of states.
When using any of the form selectors other than :input, providing a tag name as
well is recommended (for example, input:text, rather than :text).

All form elements (<input> (all types), <select>, <textarea>, <button>)
All text fields (<input type="text">)

•

•

Chapter 2

[31]

All password fields (<input type="password">)
All radio fields (<input type="radio">)
All checkbox fields (<input type="checkbox">)
All submit inputs and button elements (<input type="submit">, <button>)
All image inputs (<input type="image">)
All reset buttons (<input type="reset">)
All button elements and input elements with a type of button (<button>,
<input type="button">)
All user interface elements that are enabled
All user interface elements that are disabled
All user interface element—checkboxes and radio buttons—that are checked
All elements, including <input type="hidden" />, that are hidden

For more information, see the discussion on :hidden in the Custom Selectors
section below.

Custom Selectors
The following selectors were added to the jQuery library as an attempt to address
common DOM traversal needs not met by either CSS or basic XPath.

Even Element (:even) Odd Element (:odd)
All elements with an even index:
 :even
All elements with an odd index:
 :odd

Examples
1. $('li:even'): selects all elements matched by that have an even

index value
2. $('tr:odd'): selects all elements matched by <tr> that have an odd

index value

•

•

•

•

•

•

•

•

•

•

•

Selector Expressions

[32]

Description
Because the custom :even and :odd pseudo-classes match elements based on their
index, they use JavaScript's native zero-based numbering.

Somewhat counter-intuitively, therefore, :even selects the first, third, fifth (and so
on) elements while :odd selects the second, fourth, sixth (and so on) elements.

The one exception to this rule is the :nth-child(n) selector, which is one-based. So,
:nth-child(even) selects the second, fourth, sixth (and so on) child element of its
parent. Also worth noting is the lack of a colon preceding even or odd when used
with :nth-child().

Nth Element (:eq(n), :nth(n)):eq(n), :nth(n)))
The element with index value equal to n.

Examples
1. $('li:eq(2)'): selects the third element
2. $('p:nth(1)'): selects the second <p> element

Description
Because the JavaScript index is zero-based, :eq(0) and :nth(0) select the first
matched element, :eq(1) and :nth(1) select the second, and so on.

Greater Than :gt(n)
All elements with index greater than N.

Examples
1. $('li:gt(1)'): selects all elements matched by after the second one
2. $('a:gt(2)'): selects all elements matched by <a> after the third one

Description
Because the JavaScript index is zero-based, :gt(1) selects all matched elements
beginning with the third one, :gt(2) selects all matched elements beginning with
the fourth, and so on. Consider the following HTML:

 <li id="first">index 0
 <li id="second">index 1
 <li id="third">index 2
 <li id="fourth">index 3

Chapter 2

[33]

$('li:gt(1)') selects <li id="third"> and <li id="fourth">, because their
indexes are greater than 1.

$(li:gt(2)') selects <li id="fourth">, because its index is greater than 2.

Less Than : lt(n)
All elements with index less than N.

Examples
1. $('li:lt(2)'): selects all elements matched by element before the

third one; in other words, the first two elements
2. $('p:lt(3)'): selects all elements matched by <p> elements before the

fourth one; in other words the first three <p> elements

Description
Because the JavaScript index is zero-based, :lt(2) selects the first two matched
elements, or all matched element before the third one; :lt(3) selects the first three
matched elements, or all matched elements before the fourth; and so on.

First :first
The first instance of an element.

Examples
1. $('li:first'): selects the first element
2. $('a:first'): selects the first <a> element

Discussion
The :first pseudo-class is shorthand for :eq(0). It could also be written as :lt(1).

Last :last
The last instance of an element.

Examples
1. $('li:last): selects the last element
2. $('#container .myclass:last): selects the last element that has a class

of myclass and is a descendant of the element with an id of container

Selector Expressions

[34]

Description
While :first has equivalent selectors (nth(0) and eq(0)) the :last
pseudo-class is unique in its ability to select only the last element in the set of
matched elements.

Parent :parent
All elements that are the parent of another element, including text.

Examples
1. $(':parent'): selects all elements that are the parent of another element,

including text
2. $(td:parent'): selects all elements matched by <td> that are the parent of

another element, including text

Description
The W3C recommends that the <p> element have at least one child node, even if
that child is merely text (see http://www.w3.org/TR/html401/struct/text.
html#edef P). For example, some elements, on the other hand, are empty (i.e. have
no children) by definition: <input>, ,
, and <hr>.

One important thing to note with :parent (and :empty) is that child elements
include text nodes.

Contains :contains(text)
All elements that contain the specified text.

Examples
1. $('p:contains(nothing special)'): selects all elements matched by <p>

that contain the text nothing special
2. $('li:contains(second)'): selects all elements matched by that

contain the text second

Description
The matching text can appear in the selector element or in any of that element's
descendants. Therefore, example 1 would still select the following paragraph:

<p>This paragraph is nothing special
 </p>

Chapter 2

[35]

As with attribute value selectors, text inside the parentheses of :contains() can be
written as bare words or surrounded by quotation marks. Also, the text must have
matching case to be selected.

Visible :visible
All elements that are visible.

Examples
1. $('li:visible'): selects all elements matched by that are visible
2. $('input:visible'): selects all elements matched by <input> that are visible

Discussion
The :visible selector includes items that have a display of block or inline (or any
other value other than none) and a visibility of visible. Form elements that have
type="hidden" are excluded.

It's important to note that elements will be selected by the :visible pseudo-class
even if their parent (or other ancestor) element has a display of none, as long as
they themselves have a display of block or inline (or any other value other than
none). Therefore, it's possible for an element to be hidden from view but still be
selected by :visible.

Consider the following HTML:

<div id="parent" style="display:none">
 <div id="child" style="display:block">
 </div>
</div>

Although <div id="child"> is not visible on the web page because of its parent
<div>'s display property, it is still selected by $('div:visible').

Hidden :hidden
All elements that are hidden

Examples
1. $('li:hidden): selects all elements matched by that are hidden
2. $('input:hidden): selects all elements matched by <input> that are hidden

Selector Expressions

[36]

Description
The :hidden selector includes elements that have a CSS declaration of display:
none or visibility:hidden, as well as form elements with type="hidden".

If an element is hidden from view only because its parent (or other ancestor) element
has a display of none or visibility of hidden, it will not be selected by :hidden when
its own display property isn't none and its visibility property isn't hidden.

Consider the following HTML:

<div id="parent" style="display:none">
 <div id="child" style="display:block">
 </div>
</div>

Although the child <div> is not visible on the web page because of its parent <div>'s
display property, $('div:hidden') only selects <div id="parent">.

DOM Traversal Methods
Cause there's a train coming into the station
But it's heading for a new destination
 —Devo,
 "It Doesn't Matter to Me"

In addition to the selector expressions described in Chapter 2, jQuery has a variety
of DOM traversal methods to help us select elements in a document. These methods
offer a great deal of flexibility, even allowing us to act upon multiple sets of elements
in a single chain, like so:

$('div.section > p').addClass('lit').lt(1).addClass('profound');

At times the choice between a selector expression and a corresponding DOM
traversal method is simply a matter of taste, but there is no doubt that the combined
set of expressions and methods makes for an extremely powerful toolset for getting
anything we want.

As of jQuery 1.1, DOM traversal methods do not modify the jQuery object they are
sent to. Instead, a new jQuery object is constructed, which contains a reference to the
original object. The original objec t can be retrieved with the .end method.

The jQuery Factory Function
The following function underpins the entire jQuery library as it allows us to create
the jQuery objects that all of the other methods are attached to.

DOM Traversal Methods

[38]

$()
Creates a new jQuery object matching elements in the DOM.
 $(selector[, context])
 $(element)
 $(elementArray)
 $(object)
 $(html)

Parameters (first version)
selector: A string containing a selector expression
context (optional): The portion of the DOM tree within which to search

Parameters (second version)
element: A DOM element to wrap in a jQuery object

Parameters (third version)
elementArray: An array containing a set of DOM elements to wrap in a
jQuery object

Parameters (fourth version)
object: An existing jQuery object to clone

Parameters (fifth version)
html: A string containing an HTML snippet describing new DOM elements
to create

Return Value
The newly constructed jQuery object.

Description
In the first formulation listed above, $() searches through the DOM for any element
that match the provided selector and creates a new jQuery object that references
these elements:

$('div.foo');

In Chapter 2 we explored the range of selector expressions that can be used within
this string.

•

•

•

•

•

•

Chapter 3

[39]

Selector Context
By default, selectors perform their searches within the DOM starting at the document
root. However, an alternative context can be given for the search by using the
optional second parameter to the $() function. For example, if within a callback
function we wish to do a search for an element, we can restrict that search:

$('div.foo').click(function() {
 $('span', this).addClass('bar');
});

Since we've restricted the span selector to the context of this, only spans within the
clicked element will get the additional class.

Selector context is also useful for XML documents, as they do not form part of the
default DOM tree. For example, if an AJAX call has returned an XML structure in the
variable data, then we can perform searches within that structure:

$('//foo/bar', data)

Internally, selector context is implemented with the .find method, so $(selector,
context) is equivalent to $(context).find(selector).

While the jQuery API only specifies DOM elements, arrays of DOM
elements, and jQuery objects as valid contexts, in practice selectors and
HTML snippets can be used here as well.

Wrapping DOM elements
The second and third formulations of this function allow us to create a jQuery object
using a DOM element or elements that we have already found in some other way.
A common use of this facility is to perform jQuery methods on an element that has
been passed to a callback function in the keyword this:

$('div.foo').click(function() {
 $(this).slideUp();
});

This example causes elements to be hidden with a sliding animation when clicked.
An element must be wrapped in a jQuery object before we call jQuery methods on
it because the handler receives the clicked item in the keyword this as a bare
DOM element.

DOM Traversal Methods

[40]

Cloning jQuery Objects
When a jQuery object is passed as a parameter to the $(), a new jQuery object
is created that references the same DOM elements. The initial object can then be
modified without affecting the new one.

Creating New Elements
If a string is passed as the parameter to $(), jQuery examines the string to see
if it looks like HTML. If not, the string is interpreted as a selector expression, as
explained above. But if the string appears to be an HTML snippet, jQuery attempts
to create new DOM elements as described by the HTML. Then a jQuery object is
created and returned that refers to these elements. We can perform any of the usual
jQuery methods on this object:

$('<p>My new paragraph</p>').appendTo('body');

The actual creation of the elements is handled by the browser's innerHTML
mechanism. Specifically, jQuery creates a new <div> element and sets the
innerHTML property of the element to the HTML snippet that was passed in. This
means that to ensure cross-platform compatibility, the snippet must be well-formed.
Tags that can contain other elements should always be paired with a closing tag:

$('<a>');

Tags that cannot contain elements should be quick-closed:

$('');

Filtering Methods
These methods remove elements from the set matched by a jQuery object.

.filter()
Reduces the set of matched elements to those that match the selector or pass the
function's test.
 .filter(selector)

 .filter(function)

Parameters (first version)
selector: A string containing a selector expression to match elements against•

Chapter 3

[41]

Parameters (second version)
function: A function used as a test for each element in the set

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .filter method
constructs a new jQuery object from a subset of the matching elements. The supplied
selector is tested against each element; all elements matching the selector will be
included in the result.

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5
 list item 6

We can apply this method to the set of list items:

$('li').filter(':even')

The result of this call is a jQuery object wrapping items 1, 3, and 5 as they match the
selector (recall that :even and :odd use 0-based indexing).

Using a Filter Function
The second form of this method allows us to filter elements against a function rather
than a selector. Suppose we have a more involved HTML snippet:

 list item 1 - one strong
 list item 2 - two
 strongs
 list item 3
 list item 4
 list item 5
 list item 6

•

DOM Traversal Methods

[42]

We can select the list items, and then filter them based on their contents:

$('li').filter(function(index) {
 return $("strong", this).length == 1;
})

The result of this expression will be the first list item only, as it contains exactly one
 tag. Within the filter function, this refers to each DOM element in turn.
The parameter passed to the function tells us the index of that DOM element within
the set matched by the jQuery object.

We can also take advantage of the index passed through the function:

$('li').filter(function(index) {
 return index % 3 == 2;
})

The result of this expression will be the third and sixth list items, as it uses the
modulus operator (%) to select every item with an index value that, when divided by
3, has a remainder of 2.

.not()

Removes elements from the set of matched elements.
 .not(selector)

 .not(elements)

Parameters (first version)
selector: A string containing a selector expression to match elements against

Parameters (second version)
elements: One or more DOM elements to remove from the matched set

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .not method
constructs a new jQuery object from a subset of the matching elements. The supplied
selector is tested against each element; the elements that don't match the selector will
be included in the result.

•

•

Chapter 3

[43]

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5

We can apply this method to the set of list items:

$('li').not(':even')

The result of this call is a jQuery object wrapping items 2 and 4, as they do not match
the selector (recall that :even and :odd use 0-based indexing).

Removing Specific Elements
The second version of the .not method allows us to remove elements from the
matched set, assuming we have found those elements previously by some other
means. For example, suppose our list had an identifier applied to one of its items:

 list item 1
 list item 2
 <li id="notli">list item 3
 list item 4
 list item 5

We can fetch the third list item using the native JavaScript getElementById function,
then remove it from a jQuery object:

$('li').not(document.getElementById('notli'))

This expression yields a jQuery object matching items 1, 2, 4, and 5. We could have
accomplished the same thing with a simpler jQuery expression, but this technique
can be useful when other libraries provide references to plain DOM nodes.

.contains()
Reduces the set of matched elements to those containing the specified text.
 .contains(text)

DOM Traversal Methods

[44]

Parameters
text: A string of text to search for

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .contains method
constructs a new jQuery object from a subset of the matching elements. The supplied
text is searched for in each element; all elements containing the text (even within a
descendant element) will be included in the result.

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5

We can apply this method to the set of list items:

$('li').contains('item 2')

The result of this call is a jQuery object wrapping item 2, as it contains the specified
text. The search is performed using jQuery's .text method, so the search text can be
located anywhere within the concatenation of the text strings in the matched set of
elements or any of their descendants.

.eq()
Reduces the set of matched elements to the one at the specified index.
 .eq(index)

Parameters
index: An integer indicating the 0-based position of the element

Return Value
The new jQuery object.

•

•

Chapter 3

[45]

Description
Given a jQuery object that represents a set of DOM elements, the .eq method
constructs a new jQuery object from one of the matching elements. The supplied
index identifies the position of this element in the set.

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5

We can apply this method to the set of list items:

$('li').eq(2)

The result of this call is a jQuery object wrapping item 3. Note that the supplied
index is 0-based, and refers to the position of the element within the jQuery object, not
within the DOM tree.

.lt()
Reduces the set of matched elements to the ones before the specified index.
 .lt(index)

Parameters
index: An integer indicating the 0-based position before which the elements
are selected

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .lt method
constructs a new jQuery object from a subset of the matching elements. The supplied
index identifies the position of one of the elements in the set; all elements before this
one will be included in the result.

•

DOM Traversal Methods

[46]

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5

We can apply this method to the set of list items:

$('li').lt(2)

The result of this call is a jQuery object wrapping items 1 and 2. Note that the
supplied index is 0-based, and refers to the position of elements within the jQuery
object, not within the DOM tree.

.gt()
Reduces the set of matched elements to the ones after the specified index.
 .gt(index)

Parameters
index: An integer indicating the 0-based position after which the elements
are selected

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .gt method
constructs a new jQuery object from a subset of the matching elements. The supplied
index identifies the position of one of the elements in the set; all elements after this
one will be included in the result.

Consider a page with a simple list on it:

 list item 1
 list item 2
 list item 3

•

Chapter 3

[47]

 list item 4
 list item 5

We can apply this method to the set of list items:

$('li').gt(2)

The result of this call is a jQuery object wrapping items 4 and 5. Note that the
supplied index is 0-based, and refers to the position of elements within the jQuery
object, not within the DOM tree.

Tree Traversal Methods
These methods use the structure of the DOM tree to locate a new set of elements.

.find()
Gets the descendants of each element in the current set of matched elements,
filtered by a selector.
 .find(selector)

Parameters
selector: A string containing a selector expression to match elements against

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .find method
allows us to search through the descendants of these elements in the DOM tree
and construct a new jQuery object from the matching elements. The .find and
.children methods are similar, except that the latter only travels a single level down
the DOM tree.

The method accepts a selector expression of the same type that we can pass to
the $() function. The elements will be filtered by testing whether they match
this selector.

•

DOM Traversal Methods

[48]

Consider a page with a basic nested list on it:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at item II, we can find list items within it:

$('li.item-ii').find('li')

The result of this call is a jQuery object wrapping items A, B, 1, 2, 3, and C. Even
though item II matches the selector expression, it is not included in the results; only
descendants are considered candidates for the match.

As discussed in the section The jQuery Factory Function, selector context is
implemented with the .find method; therefore, $('li.item-ii').find('li') is
equivalent to $('li', 'li.item-ii').

Unlike in the rest of the tree traversal methods, the selector expression is
required in a call to .find(). If we need to retrieve all of the descendant
elements, we can pass in the selector * to accomplish this.

.children()
Gets children of each element in the set of matched elements, optionally filtered
by a selector.
 .children([selector])

Chapter 3

[49]

Parameters
selector (optional): A string containing a selector expression to match
elements against

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .children method
allows us to search through the immediate children of these elements in the DOM
tree and construct a new jQuery object from the matching elements. The .find and
.children methods are similar, except that the latter only travels a single level down
the DOM tree.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be filtered by
testing whether they match the selector.

Consider a page with a basic nested list on it:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at the level-2 list, we can find its children:

$('ul.level-2').children()

The result of this call is a jQuery object wrapping items A, B, and C. Since we do
not supply a selector expression, all of the children are part of the object. If we had
supplied one, only the matching items among these three would be included.

•

DOM Traversal Methods

[50]

.parents()
Gets the ancestors of each element in the current set of matched elements,
optionally filtered by a selector.
 .parents([selector])

Parameters
selector (optional): A string containing a selector expression to match
elements against

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .parents method
allows us to search through the ancestors of these elements in the DOM tree and
construct a new jQuery object from the matching elements. The .parents() and
.parent() methods are similar, except that the latter only travels a single level up
the DOM tree.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be filtered by
testing whether they match the selector.

Consider a page with a basic nested list on it:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

•

Chapter 3

[51]

If we begin at item A, we can find its ancestors:

$('li.item-a').parents()

The result of this call is a jQuery object wrapping the level-2 list, item ii, and the
level-1 list (and on up the DOM tree all the way to the <html> element). Since we
do not supply a selector expression, all of the ancestors are part of the object. If we
had supplied one, only the matching items among these would be included.

.parent()
Gets the parent of each element in the current set of matched elements,
optionally filtered by a selector.
 .parent([selector])

Parameters
selector (optional): A string containing a selector expression to match
elements against.

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .parent method
allows us to search through the parents of these elements in the DOM tree and
construct a new jQuery object from the matching elements. The .parents and
.parent methods are similar, except that the latter only travels a single level up the
DOM tree.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be filtered by
testing whether they match the selector.

Consider a page with a basic nested list on it:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">

•

DOM Traversal Methods

[52]

 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at item A, we can find its parents:

$('li.item-a').parent()

The result of this call is a jQuery object wrapping the level-2 list. Since we do not
supply a selector expression, the parent element is unequivocally included as part of
the object. If we had supplied one, the element would be tested for a match before it
was included.

.siblings()
Gets the siblings of each element in the set of matched elements, optionally
filtered by a selector.
 .siblings([selector])

Parameters
selector (optional): A string containing a selector expression to match
elements against

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .siblings method
allows us to search through the siblings of these elements in the DOM tree and
construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be filtered by
testing whether they match the selector.

•

Chapter 3

[53]

Consider a page with a simple list on it:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can find its siblings:

$('li.third-item').siblings()

The result of this call is a jQuery object wrapping items 1, 2, 4, and 5. Since we do
not supply a selector expression, all of the siblings are part of the object. If we had
supplied one, only the matching items among these four would be included.

The original element is not included among the siblings, which is important to
remember when we wish to find all elements at a particular level of the DOM tree.

.prev()
Gets the immediately preceding sibling of each element in the set of matched
elements, optionally filtered by a selector.
 .prev([selector])

Parameters
selector (optional): A string containing a selector expression to match against
the elements

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .prev method
allows us to search through the predecessors of these elements in the DOM tree and
construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be filtered by
testing whether they match the selector.

•

DOM Traversal Methods

[54]

Consider a page with a simple list on it:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can find the element that comes just before it:

$('li.third-item').prev()

The result of this call is a jQuery object wrapping item 2. Since we do not supply a
selector expression, this preceding element is unequivocally included as part of the
object. If we had supplied one, the element would be tested for a match before it
was included.

.next()
Gets the immediately following sibling of each element in the set of matched
elements, optionally filtered by a selector.
 .next([selector])

Parameters
selector (optional): A string containing a selector expression to match against
the elements

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .next method
allows us to search through the successors of these elements in the DOM tree and
construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be filtered by
testing whether they match the selector.

•

Chapter 3

[55]

Consider a page with a simple list on it:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can find the element that comes just after it:

$('li.third-item').next()

The result of this call is a jQuery object wrapping item 4. Since we do not supply a
selector expression, this following element is unequivocally included as part of the
object. If we had supplied one, the element would be tested for a match before it
was included.

Miscellaneous Traversal Methods
These methods provide other mechanisms for manipulating the set of matched DOM
elements in a jQuery object.

.add()
Adds elements to the set of matched elements.
 .add(selector)

 .add(elements)

 .add(html)

Parameters (first version)
selector: A string containing a selector expression to match additional
elements against

Parameters (second version)
elements: one or more elements to add to the set of matched elements

Parameters (third version)
html: An HTML fragment to add to the set of matched elements

•

•

•

DOM Traversal Methods

[56]

Return Value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .add method
constructs a new jQuery object from the union of those elements and the ones
passed into the method. The argument to .add can be pretty much anything that $()
accepts, including a jQuery selector expression, references to DOM elements, or an
HTML snippet.

Consider a page with a simple list and a paragraph following it:

 list item 1
 list item 2
 list item 3

<p>a paragraph</p>

We can select the list items and then the paragraph by using either a selector or a
reference to the DOM element itself as the .add method's argument:

$('li').add('p') or
$('li').add(document.getElementsByTagName('p')[0])

The result of this call is a jQuery object wrapping all four elements.

Using an HTML snippet as the .add method's argument (as in the third version) we
can create additional elements on the fly and add those elements to the matched set
of elements. Let's say, for example, that we want to add a class foo to the list items,
the paragraph, and a newly created paragraph:

$('li').add('p').add('<p id="new">new paragraph</p>').addClass('foo')

Although the new paragraph has been created and its foo class added, it still does
not appear on the page. To place it on the page, we can add one of the insertion
methods to the chain.

For more information about the insertion methods please refer to Chapter 4.

Chapter 3

[57]

.is()

Checks the current matched set of elements against a selector and returns true
if at least one of these elements matches the selector.
 .is(selector)

Parameters
selector: A string containing a selector expression to match elements against

Return Value
A boolean indicating whether an element matches the selector.

Description
Unlike the rest of the methods in this chapter, .is() does not create a new
jQuery object. Instead, it allows us to test the contents of a jQuery object without
modification. This is often useful in callbacks, such as event handlers.

Suppose we have a list, with two of its items containing a child element:

 list item 1
 list item 2
 list item 3

We can attach a click handler to the element, and then limit the code to be
triggered only when a list item itself, not one of its children, is clicked:

$('ul').click(function(event) {
 if ($(event.target).is('li')) {
 $(event.target).remove();
 }
});

Now, when the user clicks on the word list in the first item or anywhere in the
third item, the clicked list item will be removed from the document. However,
when the user clicks on item 1 in the first item or anywhere in the second item,
nothing will occur, because for those target of the event would be and
 respectively.

•

DOM Traversal Methods

[58]

.end()

Ends the most recent filtering operation in the current chain and returns the set
of matched elements to its previous state.
 .end()

Parameters
None.

Return Value
The previous jQuery object.

Description
Most of the methods in this chapter operate on a jQuery object and produce a new
one, matching a different set of DOM elements. When this happens, it is as if a new
set of elements is pushed onto a stack that is maintained inside the object. Each
successive filtering method pushed a new element set onto the stack. If we need an
older element set, we can use .end() to pop the sets back off of the stack.

Suppose we have a couple of short lists on a page:

<ul class="first">
 <li class="foo">list item 1
 list item 2
 <li class="bar">list item 3

<ul class="second">
 <li class="foo">list item 1
 list item 2
 <li class="bar">list item 3

The .end method is useful primarily when exploiting jQuery's chaining properties.
When not using chaining, we can usually just call up a previous object by variable
name, so that we don't need to manipulate the stack. With .end(), though, we can
string all the method calls together:

$('ul.first').find('.foo').addClass('some-class').end()
 .find('.bar').addClass('another-class');

Chapter 3

[59]

This chain searches for items with the class foo within the first list only and adds the
class some-class to them. Then .end() returns the object to its state before the call
to .find(), so the second .find() looks for .bar inside <ul class="first">, not
just inside that list's <li class="foo">, and adds the class another-class to the
matching element. The result is that items 1 and 3 of the first list have a class added
to them, and none of the items from the second list do.

A long jQuery chain can be visualized as a structured code block, with filtering
methods providing the openings of nested blocks and .end methods closing them:

$('#example-traversing-end ul.first').find('.foo')
 .addClass('some-class')
 .end()
 .find('.bar')
 .addClass('another-class');
.end();

The last .end() is unnecessary, as we are discarding the jQuery object immediately
thereafter. However, when the code is written in this form the .end() provides
visual symmetry and closure—making the program, at least to the eyes of some
developers, more readable.

DOM Manipulation Methods
Washed his hands of a deadly fate
He put himself in an altered state
 —Devo,
 "Mecha-mania Boy"

All of the methods in this chapter manipulate the DOM in some manner. A few
of them simply change one of the attributes of an element, while others set an
element's style properties. Still others modify entire elements (or groups of elements)
themselves—inserting, copying, removing, and so on.

A few of these methods such as .attr(), .html(), and .val() also act as getters,
retrieving information from DOM elements for later use.

General Attributes

.attr(attribute)
Gets the value of an attribute for the first element in the set of matched elements.
 .attr(attribute)

Parameters
attribute: The name of the attribute to get

Return Value
A string containing the attribute value.

•

DOM Manipulation Methods

[62]

Description
We can get any attribute of an element rather easily without jQuery, by using the
native JavaScript function getAttribute. Additionally, most of these attributes are
available through JavaScript as DOM node properties. Some of the more common
properties are:

className

tagName

id

href

title

rel

src

Let's consider the following link:

<a id="myid" href="/archives/jquery-links.htm" title="A few jQuery
 links from long ago">old jQuery links

Using jQuery's .attr method to get an element's attribute has two main advantages:

1. Convenience: it can be chained to a jQuery object.
2. Cross-browser consistency: The .attr method always gets the actual

attribute text, regardless of which browser is being used. On the other hand,
when using getAttribute() with attributes such as href, src, and cite,
some browsers (correctly) get the attribute text, while others get the absolute
URL, regardless of whether the attribute has an absolute URL or a
relative one.

In order to use getAttribute() or any of an element's properties as a substitute for
.attr(), we need to make sure that we are working with a DOM node rather than a
jQuery object. To convert the first element represented in a jQuery object to a DOM
node, we can use either [0] or .get(0).

All of the following use getAttribute('title') to get its title attribute:

1. document.getElementById('myid').getAttribute('title')

2. $('#myid').get(0).getAttribute('title')
3. $('#myid')[0].getAttribute('title')

With any of these options, we could replace .getAttribute('title') with .title.

•

•

•

•

•

•

•

Chapter 4

[63]

.attr()
Sets one or more attributes for the set of matched elements.
 .attr(attribute, value)
 .attr(map)

 .attr(attribute, function)

Parameters (first version)
attribute: The name of the attribute to set
value: A value to set for the attribute

Parameters (second version)
map: A map of attribute-value pairs to set

Parameters (third version)
attribute: The name of the attribute to set
function: A function returning the value to set

Return Value
The jQuery object, for chaining purposes.

Description
The .attr method is a convenient and powerful way to set the value of attributes
especially when setting multiple attributes or values returned by a function. Let's
consider the following image:

.attr(attribute, value)
We change the alt attribute by putting 'alt' followed by a comma and the new
value inside the .attr method's parentheses:

$('#greatphoto').attr('alt', 'Beijing Brush Seller');

We can add an attribute in the same way:

$('#greatphoto').attr('title', 'Beijing Brush Seller – photo
 by Kelly Clark');

•

•

•

•

•

DOM Manipulation Methods

[64]

.attr({map})
To change the alt attribute and add the title attribute at the same time, we can
pass both sets of names and values into the method at once using a map (JavaScript
object syntax). We join each attribute to its value with a colon and separate each pair
with a comma:

$('#greatphoto').attr({alt:'Beijing Brush Seller', title:
 'Beijing Brush Seller – photo by Kelly Clark'});

When setting multiple attributes, the quotation marks around the attribute names are
optional.

.attr(attribute, function)
By using a function to set attributes, we can concatenate a new value with an
existing value:

$('#greatphoto').attr({alt: function() {return 'Beijing ' +
 this.alt}, title: function() {return 'Beijing ' +
 this.alt + ' – photo by Kelly Clark'}});

This use of a function can be even more useful when we apply the attributes to
multiple elements.

.removeAttr()
Removes an attribute from each element in the set of matched elements.
 .removeAttr(attribute)

Parameters
attribute: An attribute

Return Value
The jQuery object, for chaining purposes.

Description
The .removeAttr method uses the JavaScript removeAttribute function, but it has
the advantage of being able to be chained to a jQuery selector expression.

•

Chapter 4

[65]

Style Properties

.css(property)
Gets the value of a style property for the first element in the set of
matched elements.
 .css(property)

Parameters
property: A CSS property

Return Value
A string containing the CSS property value.

Description
The .css method is a convenient way to get a style property from the first
matched element, especially in the light of the different terms browser's use for
certain properties. For example, Internet Explorer's DOM implementation refers
to the float property as styleFloat, while Mozilla-based browsers refer to it as
cssFloat. The .css method accounts for such differences, producing the same result
no matter which term we use. For example, an element that is floated left will return
the string left for each of the following three lines:

1. $('div.left').css('float');

2. $('div.left').css('cssFloat');

3. $('div.left').css('styleFloat');

Also, jQuery can equally interpret the CSS and DOM formatting of multiple-word
properties. For example, jQuery understands and returns the correct value for both
.css('background-color') and .css('backgroundColor').

•

DOM Manipulation Methods

[66]

.css()
Sets one or more CSS properties for the set of matched elements.
 .css(property, value)
 .css(map)

 .css(property, function)

Parameters (first version)
property: A CSS property name
value: A value to set for the property

Parameters (second version)
map: A map of property-value pairs to set

Parameters (third version)
property: A CSS property name
function: A function returning the value to set

Return Value
The jQuery object, for chaining purposes.

Description
As with the .attr method, the .css method makes setting properties of elements
quick and easy. This method can take either a comma-separated key-value pair or a
map of colon-separated key-value pairs (JavaScript object notation).

Also, jQuery can equally interpret the CSS and DOM formatting of multiple-word
properties. For example, jQuery understands and returns the correct value for both
.css({'background-color':'#ffe', 'border-left': '5px solid #ccc'}) and
.css({backgroundColor:'#ffe', borderLeft: '5px solid #ccc'}). Notice that
with the DOM notation, quotation marks around the property names are optional,
but with CSS notation they're required due to the hyphen in the name.

Since the .css method calls the .attr method internally, we can also pass a function
as the property value:

$('div.example').css('width', function(index) {
 return index * 50;
});

This example sets the widths of the matched elements to incrementally larger values.

•

•

•

•

•

Chapter 4

[67]

.height()
Gets the current computed height for the first element in the set of
matched elements.
 .height()

Parameters
None.

Return Value
The height of the element, in pixels.

Description
The difference between .css('height') and .height() is that the latter returns
a unit-less pixel value (for example, 400) while the former returns a value with
units intact (for example, 400px). The .height method is recommended when an
element's height needs to be used in a mathematical calculation.

.height(value)
Sets the CSS height of each element in the set of matched elements.
 .height(value)

Parameters
value: An integer representing the number of pixels, or an integer with an
optional unit of measure appended

Return Value
The jQuery object, for chaining purposes.

Description
With .height('value'), unlike with .css('height','value'), the value can be
either a string (number and unit) or a number. If only a number is provided for the
value, jQuery assumes a pixel unit.

•

DOM Manipulation Methods

[68]

.width()
Gets the current computed width for the first element in the set of
matched elements.
 .width()

Parameters
None.

Return Value
The width of the element, in pixels.

Description
The difference between .css(width) and .width() is that the latter returns a
unit-less pixel value (for example, 400) while the former returns a value with units
intact (for example, 400px). The .width method is recommended when an element's
width needs to be used in a mathematical calculation.

.width(value)
Sets the CSS width of each element in the set of matched elements.
 .width(value)

Parameters
value: An integer representing the number of pixels, or an integer along with
an optional unit of measure appended

Return Value
The jQuery object, for chaining purposes.

Description
With .width('value'), unlike with .css('width','value'), the value can be
either a string (number and unit) or a number. If only a number is provided for the
value, jQuery assumes a pixel unit.

•

Chapter 4

[69]

Class Attribute

.addClass()
Adds one or more classes to each element in the set of matched elements.
 .addClass(class)

Parameters
class: One or more class names to be added to the class attribute of each
matched element

Return Value
The jQuery object, for chaining purposes.

Description
It's important to note that this method does not replace a class; it simply adds
the class.

More than one class may be added at a time, separated by a space, to the set of
matched elements, like so: $('p').addClass('myclass yourclass').

This method is often used with .removeClass() to switch elements' classes from
one to another, like so:

$('p').removeClass('myclass noclass').addClass('yourclass')

Here, the myclass and noclass classes are removed from all paragraphs, while
yourclass is added.

.removeClass()
Removes one or all classes from each element in the set of matched elements.
 .removeClass([class])

Parameters
class (optional): A class name to be removed from the class attribute of each
matched element

•

•

DOM Manipulation Methods

[70]

Return Value
The jQuery object, for chaining purposes.

Description
If a class name is included as a parameter, then only that class will be removed from
the set of matched elements. If no class names are specified in the parameter, all
classes will be removed.

More than one class may be removed at a time, separated by a space, from the set of
matched elements, like so: $('p').removeClass('myclass yourclass').

This method is often used with .addClass() to switch elements' classes from one to
another, like so:

$('p').removeClass('myclass').addClass('yourclass')

Here, the class myclass is removed from all the paragraphs, while yourclass
is added.

To replace all existing classes with another class, use .attr('class','new-class')
instead.

.toggleClass()
If the class is present, .toggleClass() removes it from each element in the set
of matched elements; if it is not present, it adds the class.
 .toggleClass(class)

Parameters
class: A class name to be toggled in the class attribute of each element in the
matched set

Return Value
The jQuery object, for chaining purposes.

Description
This method takes one or more class names as its parameter. If an element in the
matched set of elements already has the class, then it is removed; if an element does
not have the class, then it is added. For example, we can apply .toggleClass() to a
simple <div>:

<div class="tumble">Some text.</div>

•

Chapter 4

[71]

The first time we apply $('div.tumble').toggleClass('bounce'), we get
the following:

<div class="tumble bounce">Some text.</div>

The second time we apply $('div.tumble').toggleClass('bounce'), the <div>
class is returned to the single tumble value:

<div class="tumble">Some text.</div>

Applying .toggleClass('bounce spin') to the same <div> alternates between
<div class="tumble bounce spin'> and <div class="tumble'>.

DOM Replacement

.html()
Gets the HTML contents of the first element in the set of matched elements.
 .html()

Parameters
None.

Return Value
A string containing the HTML representation of the element.

Description
This method is not available on XML documents.

In an HTML document, we can use the .html method to get the contents of any
element. If our selector expression matches more than one element, only the first
one's HTML content is returned. Consider this code:

$('div.demo-container').html();

In order for the following <div> tag's content to be retrieved, it would have to be the
first one in the document:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

DOM Manipulation Methods

[72]

The result would look like this:

<div class="demo-box">Demonstration Box</div>

.html(HTML)
Sets the HTML contents of each element in the set of matched elements.
 .html(HTML)

Parameters
HTML: A string of HTML to set as the content of each matched element

Return Value
The jQuery object, for chaining purposes.

Description
The .html(HTML) is not available in XML documents.

When we use .html(HTML) to set elements' contents, any contents that were in those
elements is completely replaced by the new contents. Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

We can set the HTML contents of <div class="demo-container"> like so:

$('div.demo-container'>.html('<p>All new content.
 You bet!');

That line of code will replace everything inside <div class="demo-container">:

<div class="demo-container"><p>All new content.
 You bet!</div>

.text()
Gets the combined text contents of each element in the set of matched elements,
including their descendants.
 .text()

•

Chapter 4

[73]

Parameters
None.

Return Value
A string containing the combined text contents of the matched elements.

Description
Unlike the .html method, the .text method can be used in both XML and HTML
documents. The result of the .text method is a string containing the combined text
of all matched elements. Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>

 list item 1
 list item 2

</div>

The code $('div.demo-container').text() would produce the following result:

Demonstration Boxlist item 1list item 2

.text(text)
Sets the content of each element in the set of matched elements to the
specified text.
 .text(text)

Parameters
text: A string of text to set as the content of each matched element

Return Value
The jQuery object, for chaining purposes.

Description
Unlike the .html(html) method, .text(text) can be used in both XML and
HTML documents.

•

DOM Manipulation Methods

[74]

We need to be aware that this method replaces < and > with < and >,
respectively. Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>

 list item 1
 list item 2

</div>

The code $('div.demo-container').text('<p>This is a test.</p>') will
produce the following HTML:

<div class="demo-container"><p>This is a test.</p></div>

It will appear on a rendered page as though the tags were exposed, like this:

<p>This is a test</p>

.val()
Gets the current value of the first element in the set of matched elements.
 .val()

Parameters
None.

Return Value
A string containing the value of the element.

Description
The .val method is primarily used to get the value of form elements.

.val(value)
Sets the value of each element in the set of matched elements.
 .val(value)

Chapter 4

[75]

Parameters
value: A string of text to set as the value property of each matched element

Return Value
The jQuery object, for chaining purposes.

Description
This method is typically used to set the value of form fields.

DOM Insertion, Inside

.prepend()

Inserts content, specified by the parameter, at the beginning of each element in
the set of matched elements.
 .prepend(content)

Parameters
content: An element, HTML string, or jQuery object to insert at the beginning
of each element in the set of matched elements

Return Value
The jQuery object, for chaining purposes.

Description
The .prepend and .prependTo methods perform the same task. The only difference
is in the syntax—specifically, in the placement of the content and target. With
.prepend(), the selector expression preceding the method is the container into
which the content is inserted. With .prependTo(), on the other hand, the content
precedes the method, either as a selector expression or as markup created on the fly,
and it is inserted into the target container.

Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

•

•

DOM Manipulation Methods

[76]

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

We can insert an HTML structure into the beginning of <div class="demo-box">
like so:

$('div.demo-box').prepend('<div class="insertion">This text was
 inserted</div>');

The new <div> and elements as well as the text nodes are created on
the fly and added to the DOM. The result is a new <div> positioned just before the
Demonstration Box text:

An element (or array of elements) that already exists on the page could be moved to
the beginning of <div class="demo-box"> as well. The following code, for example,
moves the document's first paragraph by using a jQuery object:

$('div.demo-box').prepend($('p:eq(0)'));

.prependTo()

Inserts every element in the set of matched elements at the beginning of
the target.
 .prependTo(target)

Chapter 4

[77]

Parameters
target: A selector, element, HTML string, or jQuery object; the matched set of
elements will be inserted at the beginning of the element(s) specified by
this parameter

Return Value
The jQuery object, for chaining purposes.

Description
The .prepend and .prependTo methods perform the same task. The only difference
is in the syntax—specifically, in the placement of the content and target. With
.prepend(), the selector expression preceding the method is the container into
which the content is inserted. With .prependTo(), on the other hand, the content
precedes the method, either as a selector expression or as markup created on the fly,
and it is inserted into the target container.

Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

Using .prependTo(), we can insert an HTML structure into the beginning of <div
class="demo-box"> like so:

$('<div class="insertion">This text was inserted
 </div>').prependTo('div.demo-box');

•

DOM Manipulation Methods

[78]

The new <div> and elements, as well as the text nodes, are created on
the fly and added to the DOM. The result is a new <div> positioned just before the
Demonstration Box text:

An element (or array of elements) that already exists on the page could be moved to
the beginning of <div class="demo-box"> as well. The following code, for example,
moves the document's first paragraph by using a selector expression both for the
content to be inserted and for the target:

$('p:eq(0)').prependTo('div.demo-box');

.append()

Inserts content specified by the parameter at the end of each element in the set of
matched elements.
 .append(content)

Parameters
content: A selector, element, HTML string, or jQuery object to insert at the
end of each element in the set of matched elements.

Return Value
The jQuery object, for chaining purposes.

Description
The .append and .appendTo methods perform the same task. The only difference
is in the syntax—specifically, in the placement of the content and target. With
.append(), the selector expression preceding the method is the container into which
the content is inserted. With .appendTo(), on the other hand, the content precedes
the method, either as a selector expression or as markup created on the fly, and it is
inserted into the target container.

•

Chapter 4

[79]

Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

We can insert an HTML structure into the end of <div class="demo-box"> like so:

$('div.demo-box').append('<div class="insertion">This text
 was inserted</div>');

The new <div> and elements, as well as the text nodes, are created on
the fly and added to the DOM. The result is a new <div> positioned just after the
Demonstration Box text:

An element (or array of elements) that already exists on the page could be moved
to the end of <div class="demo-box"> as well. The following code, for example,
moves the document's first paragraph by using a jQuery object:

$('div.demo-box').append($('p:eq(0)'));

DOM Manipulation Methods

[80]

.appendTo()

Inserts every element in the set of matched elements at the end of the target.
 .appendTo(target)

Parameters
target: A selector, element, HTML string, or jQuery object; the matched set
of elements will be inserted at the end of the element(s) specified by
this parameter

Return Value
The jQuery object, for chaining purposes.

Description
The .append and .appendTo methods perform the same task. The only difference
is in the syntax—specifically, in the placement of the content and target. With
.append(), the selector expression preceding the method is the container into which
the content is inserted. With .appendTo(), on the other hand, the content precedes
the method, either as a selector expression or as markup created on the fly, and it is
inserted into the target container.

Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

•

Chapter 4

[81]

Using .appendTo(), we can insert an HTML structure into the end of <div
class="demo-box"> like so:

$('<div class="insertion">This text was inserted
 </div>').appendTo('div.demo-box');

The new <div> and elements, as well as the text nodes, are created on
the fly and added to the DOM. The result is a new <div> positioned just after the
Demonstration Box text:

An element (or array of elements) that already exists on the page could be moved
to the end of <div class="demo-box"> as well. The following code, for example,
moves the document's first paragraph by using a selector expression both for the
content to be inserted and for the target:

$('p:eq(0)').appendTo('div.demo-box');

DOM Insertion, Outside

.before()

Inserts content specified by the parameter before each element in the set of
matched elements.
 .before(content)

Parameters
content: An element, HTML string, or jQuery object to insert before each
element in the set of matched elements

Return Value
The jQuery object, for chaining purposes.

•

DOM Manipulation Methods

[82]

Description
The .before and .insertBefore methods perform the same task. The only
difference is in the syntax—specifically, in the placement of the content and target.
With .before(), the selector expression preceding the method is the container into
which the content is inserted. With .insertBefore(), on the other hand, the content
precedes the method, either as a selector expression or as markup created on the fly,
and it is inserted before the target container.

Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

We can insert an HTML structure before <div class="demo-box"> like so:

$('div.demo-box').before('<div class="insertion">This text
 was inserted</div>');

The new <div> and elements, as well as the text nodes, are created on
the fly and added to the DOM. The result is a new <div> positioned outside of, just
before, <div class="demo-box">:

Chapter 4

[83]

An element (or array of elements) that already exists on the page could be moved to
the DOM position just before <div class="demo-box"> as well. The following code,
for example, moves the document's first paragraph by using a jQuery object:

$('div.demo-box').before($('p:eq(0)'));

.insertBefore()

Inserts every element in the set of matched elements before the set of elements
specified in the parameter.
 .insertBefore(content)

Parameters
content: A selector or element before which the matched set of elements will
be inserted

Return Value
The jQuery object, for chaining purposes.

Description
The .before and .insertBefore methods perform the same task. The only
difference is in the syntax—specifically, in the placement of the content and target.
With .before(), the selector expression preceding the method is the container into
which the content is inserted. With .insertBefore(), on the other hand, the content
precedes the method, either as a selector expression or as markup created on the fly,
and it is inserted before the target container.

Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

•

DOM Manipulation Methods

[84]

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

We can insert an HTML structure just before <div class="demo-box"> like so:

$('<div class="insertion">This text was inserted
 </div>').insertBefore('div.demo-box');

The new <div> and elements, as well as the text nodes, are created on
the fly and added to the DOM. The result is a new <div> positioned outside of, just
before, <div class="demo-box">:

An element (or array of elements) that already exists on the page could be moved to
the DOM position just before <div class="demo-box"> as well. The following code,
for example, moves the document's first paragraph by using a jQuery object:

$('p:eq(0)').insertBefore('div.demo-box');

.after()

Inserts content specified by the parameter after each element in the set of
matched elements.
 .after(content)

Chapter 4

[85]

Parameters
content: An element, HTML string, or jQuery object to insert after each
element in the set of matched elements.

Return Value
The jQuery object, for chaining purposes.

Description
The .after and .insertAfter methods perform the same task. The only difference
is in the syntax—specifically, in the placement of the content and target. With
.after(), the selector expression preceding the method is the container after
which the content is inserted. With .insertAfter(), on the other hand, the content
precedes the method, either as a selector expression or as markup created on the fly,
and it is inserted after the target container.

Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

We can insert an HTML structure after <div class="demo-box"> like so:

$('div.demo-box').after('<div class="insertion">This text
 was inserted</div>');

•

DOM Manipulation Methods

[86]

The new <div> and elements, as well as the text nodes, are created on the
fly and added to the DOM. The result is a new <div> positioned outside of, just after,
<div class="demo-box">:

An element (or array of elements) that already exists on the page could be moved to
the DOM position just after <div class="demo-box"> as well. The following code,
for example, moves the document's first paragraph by using a jQuery object:

$('div.demo-box').after($('p:eq(0)'));

.insertAfter()
Inserts every element in the set of matched elements after the set of elements
specified in the parameter.
 .insertAfter(content)

Parameters
content: A selector or element after which the matched set of elements will
be inserted

Return Value
The jQuery object, for chaining purposes.

Description
The .after and .insertAfter methods perform the same task. The only difference
is in the syntax—specifically, in the placement of the content and target. With
.after(), the selector expression preceding the method is the container after
which the content is inserted. With .insertAfter(), on the other hand, the content
precedes the method, either as a selector expression or as markup created on the fly,
and it is inserted after the target container.

•

Chapter 4

[87]

Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

Using .insertAfter(), we can insert an HTML structure after <div class="demo-
box"> like so:

$('<div class="insertion">This text was inserted
 </div>').insertAfter('div.demo-box');

The new <div> and elements, as well as the text nodes, are created on the
fly and added to the DOM. The result is a new <div> positioned outside of, just after,
<div class="demo-box">:

An element (or array of elements) that already exists on the page could be moved to
the DOM position just after <div class="demo-box"> as well. The following code,
for example, moves the document's first paragraph by using a jQuery object:

$('p:eq(0)').insertAfter('div.demo-box');

DOM Manipulation Methods

[88]

DOM Insertion, Around

.wrap()
Wraps a structure of elements around each element in the set of matched
elements.
 .wrap(html)

 .wrap(element)

Parameters (first version)
html: A string of HTML tags to wrap around the set of matched elements

Parameters (second version)
element: An existing element to wrap around the set of matched elements

Return Value
The jQuery object, for chaining purposes.

Description
Note: The HTML must include only well-formed, valid element structures. If any
text is included, or if any tags are left unclosed, the .wrap() will fail.

Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

•

•

Chapter 4

[89]

Using .wrap(), we can insert an HTML structure around <div class="demo-box">
like so:

$('div.demo-box').wrap('<div class="insertion"> </div>');

The new <div> element is created on the fly and added to the DOM. The result is a
new <div> wrapped around <div class="demo-box">:

Using a DOM node as our parameter instead, we could wrap the new <div> around
an element with id="demo-box1" like so:

$(document.getElementById('demo-box1')).wrap('

 <div class="insertion"> </div>');

DOM Copying

.clone()

Creates a copy of the set of matched elements.
 .clone([deep])

Parameters
deep (optional): A Boolean. Default is true. If set to false, the .clone
method copies only the matched elements themselves, excluding any child/
descendant elements and text.

Return Value
A new jQuery object, referencing the created elements.

•

DOM Manipulation Methods

[90]

Description
The .clone method, when used in conjunction with one of the insertion methods, is
a convenient way to duplicate elements on a page. Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

To copy <div class="demo-box"> and paste that copy after the original, we could
write the following:

$('div.demo-box:last').clone().insertAfter('div.demo-box:last');

Now we have Demonstration Box twice:

Notice that we use the :last selector here so that we are sure to only copy
(.clone()) and paste (.insertAfter()) a single copy. We need to be aware of
the potential to inadvertently clone or insert more than we intend, and take the
necessary precautions to prevent that from occurring.

Chapter 4

[91]

With the .clone method, we can modify the cloned elements or their
contents before inserting them into the document.

The optional deep parameter accepts a Boolean—true or false. Since in most cases
we want to clone child nodes as well, and since the default is true, the parameter
is rarely used. However, imagine that we wanted to copy the Demonstration Box
without its text and then append a paragraph to every <div class="demo-box">.
We could make this happen with the following code:

$('div.demo-box:last').clone(false).insertAfter('div.demo-box:last');
$('div.demo-box').append('<p>New Message</p>);

Now the two boxes look like this:

The first box now has both the original Demonstration Box text and the additional
New Message text while the new, cloned box has only the additional text.

DOM Removal

.empty()

Removes all child nodes of the set of matched elements from the DOM.
 .empty()

Parameters
None.

Return Value
The jQuery object, for chaining purposes.

DOM Manipulation Methods

[92]

Description
This method removes not only child (and other descendant) elements, but also any
text within the set of matched elements. This is because, according to the DOM, any
string of text within an element is considered a child node of that element. Consider
the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

If we apply $('div.demo-box').empty(); to it, the Demonstration Box text string
is removed:

If we had any number of nested elements inside <div class="demo-box">, they
would be removed, too.

Chapter 4

[93]

.remove()

Removes the set of matched elements from the DOM.
 .remove([selector])

Parameters
selector (optional): A selector that filters the set of matched elements to
be removed

Return Value
The jQuery object, for chaining purposes.

Description
Similar to.empty, the .remove method takes elements out of the DOM. We use
.remove() when we want to remove the element itself, as well as everything inside
it. Consider the following HTML:

<div class="demo-container">
 <div class="demo-box">Demonstration Box
 </div>
</div>

The two <div>s, with a little CSS, are rendered on the right side of the page
as follows:

•

DOM Manipulation Methods

[94]

If we apply $('div.demo-box').remove() to it, the entire <div class="demo-box>
along with everything in it is removed:

We can also include a selector as an optional parameter. For example, we could
rewrite the previous DOM removal code as follows: $('div').remove('.demo-
box'). Or, if we had multiple elements with the same class name and wanted to
remove only the first one the one with id="temporary-demo-box", we could write
the following:

$('div.demo-box').remove('#temporary-demo-box ').

Event Methods
Woman, I am bound to you
What will I do?
 —Devo,
 "The Rope Song"

In this chapter, we'll closely examine each of the available event methods in turn.
These methods are used to register behaviors to take effect when the user interacts
with the browser, and to further manipulate those registered behaviors.

Event Handler Attachment
The following methods are the building blocks of jQuery's event handling module.

.bind()

Attaches a handler to an event for the elements
 .bind(eventType[, eventData], handler)

Event Methods

[96]

Parameters
eventType: A string containing a JavaScript event type, such as
click or submit
eventData (optional): A map of data that will be passed to the event handler
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
The .bind() method is the primary means of attaching behavior to a document. All
JavaScript event types are allowed for eventType; the following are cross-platform
and recommended:

blur

change

click

dblclick

error

focus

keydown

keypress

keyup

load

mousedown

mousemove

mouseout

mouseover

mouseup

resize

scroll

select

submit

unload

The jQuery library provides shortcut methods for binding each of these event types,
such as .click() for .bind('click'). Descriptions of each event type can be found
in the description of its shortcut method.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 5

[97]

When an event reaches an element, all handlers bound to that event type for
the element are fired. If there are multiple handlers registered, they will always
execute in the order in which they were bound. After all handlers have
executed, the event continues along the normal event propagation path. For a full
discussion of event propagation, see Learning jQuery or the W3C specification at
http://www.w3.org/TR/DOM-Level-2-Event/. A basic usage of .bind() is:

$('#foo').bind('click', function() {
 alert('User clicked on "foo."');
});

This code will cause the element with an ID of foo to respond to the click event;
when a user clicks inside this element thereafter, the alert will be shown.

Event Handlers

The handler parameter takes a callback function, as shown; within the handler, the
keyword this is set to the DOM element to which the handler is bound. To make use
of the element in jQuery, it can be passed to the normal $() function. For example:

$('#foo').bind('click', function() {
 alert($(this).text());
});

After this code is executed, when the user clicks inside the element with an ID of foo,
its text contents will be shown as an alert.

The Event Object

The callback function takes a single parameter; when the handler is called the
JavaScript event object will be passed through it.

The event object is often unneccessary and the parameter is omitted, as sufficient
context is usually available when the handler is bound to know exactly what needs
to be done when the handler is triggered. However, at times it becomes necessary
to gather more information about the user's environment at the time the event was
initiated. JavaScript provides information such as .shiftKey (whether the shift key
was held down at the time), .offsetX (the x coordinate of the mouse cursor within
the element), and .type (the kind of event this is).

Some of the event object's attributes and methods are not available on every
platform. If the event is handled by a jQuery event handler, however, the library
standardizes certain attributes so that they can be safely used on any browser.
In particular:

.target: This attribute represents the DOM element that initiated the event.
It is often useful to compare event.target to this in order to determine if
the event is being handled due to event bubbling.

•

Event Methods

[98]

.pageX: This attribute contains the x coordinate of the mouse cursor relative
to the left edge of the page.
.pageY: This attribute contains the y coordinate of the mouse cursor relative
to the top edge of the page.
.preventDefault(): If this method is called, the default action of the event
will not be triggered. For example, clicked anchors will not take the browser
to a new URL.
.stopPropagation(): This method prevents the event from bubbling up the
DOM tree looking for more event handlers to trigger.

Returning false from a handler is equivalent to calling both .preventDefault()
and .stopPropagation() on the event object.

Using the event object in a handler looks like this:

$(document).ready(function() {
 $('#foo').bind('click', function(event) {
 alert('The mouse cursor is at (' + event.pageX + ', ' +
 event.pageY + ')');
 });
});

Note the parameter added to the anonymous function. This code will cause a click
on the element with ID foo to report the page coordinates of the mouse cursor at the
time of the click.

Passing Event Data
The optional eventData parameter is not commonly used. When provided, this
argument allows us to pass additional information to the handler. One handy use
of this parameter is to work around the issues caused by closures. For example,
suppose we have two event handlers where both refer to the same external variable:

var message = 'Spoon!';
$('#foo').bind('click', function() {
 alert(message);
});
message = 'Not in the face!';
$('#bar').bind('click', function() {
 alert(message);
});

Because the handlers are closures that both have message in their environment, both
will display the message Not in the face! when triggered. The variable's value
has changed. To sidestep this, we can pass the message in eventData:

•

•

•

•

Chapter 5

[99]

var message = 'Spoon!';
$('#foo').bind('click', {msg: message}, function(event) {
 alert(event.data.msg);
});
message = 'Not in the face!';
$('#bar').bind('click', {msg: message}, function(event) {
 alert(event.data.msg);
});

This time the variable is not referred to directly within the handlers; instead, the
value is passed in through eventData, which fixes the value at the time the event
is bound. The first handler will now display Spoon! while the second will alert Not
in the face!

If eventData is present, it is the second argument to the .bind() method; if no
additional data needs to be sent to the handler, then the callback is passed as the
second and final argument.

See the .trigger() method reference for a way to pass data to a handler
at the time the event happens rather than when the handler is bound.

.unbind()

Removes a previously attached event handler from the elements.
 .unbind([eventType[, handler]])

 .unbind(event)

Parameters (First Version)
eventType: A string containing a JavaScript event type,
such as click or submit
handler: The function that is no longer to be executed

Parameters (Second Version)
event: A JavaScript event object as passed to an event handler

Return Value
The jQuery object, for chaining purposes.

•

•

•

Event Methods

[100]

Description
Any handler that has been attached with .bind() can be removed with .unbind().
In the simplest case, with no arguments, .unbind() removes all handlers attached to
the elements:

$('#foo').unbind();

This version removes the handlers regardless of type. To be more precise, we can
pass an event type:

$('#foo').unbind('click');

By specifying the "click" event type, only handlers for that event type will be
unbound. This approach can still have negative ramifications if other scripts might
be attaching behaviors to the same element, however. Robust and extensible
applications typically demand the two-argument version for this reason:

var handler = function() {

 alert('The quick brown fox jumps over the lazy dog.');

};

$('#foo').bind('click', handler);

$('#foo').unbind('click', handler);

By naming the handler, we can be assured that no other functions are caught in the
crossfire. Note that the following will not work:

$('#foo').bind('click', function() {
 alert('The quick brown fox jumps over the lazy dog.');
});

$('#foo').unbind('click', function() {
 alert('The quick brown fox jumps over the lazy dog.');
});

Even though the two functions are identical in content, they are created separately
and so JavaScript is free to keep them as distinct function objects. To unbind a
particular handler, we need a reference to that function and not to a different one
that happens to do the same thing.

Using the Event Object
The second form of this method is used when we wish to unbind a handler from
within itself. For example, suppose we wish to trigger an event handler only
three times:

Chapter 5

[101]

var timesClicked = 0;
$('#foo').bind('click', function(event) {
 alert('The quick brown fox jumps over the lazy dog.');
 timesClicked++;
 if (timesClicked >= 3) {
 $(this).unbind(event);
 }
});

The handler in this case must take a parameter, so that we can capture the event
object and use it to unbind the handler after the third click. The event object contains
the context necessary for .unbind() to know which handler to remove.

This example is also an illustration of a closure. Since the handler refers to the
timesClicked variable, which is defined outside the function, incrementing the
variable has an effect even between invocations of the handler.

.one()

Attaches a handler to an event for the elements. The handler is executed at
most once.
 .one(eventType[, eventData], handler)

Parameters
eventType: A string containing a JavaScript event type, such as
click or submit
eventData (optional): A map of data that will be passed to the event handler
handler: A function to execute at the time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This method is identical to .bind(), except that the handler is unbound after its first
invocation. For example:

$('#foo').one('click', function() {
 alert('This will be displayed only once.');
});

•

•

•

Event Methods

[102]

After the code is executed, a click on the element with ID foo will display the alert.
Subsequent clicks will do nothing.

This code is equivalent to:

$('#foo').bind('click', function(event) {
 alert('This will be displayed only once.');
 $(this).unbind(event);
});

In other words, explicitly calling .unbind() from within a regularly bound handler
has exactly the same effect.

.trigger()

Executes all handlers attached to an element for an event.
 .trigger(eventType[, extraParameters])

Parameters
eventType: A string containing a JavaScript event type, such as
click or submit
extraParameters: An array of additional parameters to pass along to the
event handler

Return Value
The jQuery object, for chaining purposes.

Description
Any event handlers attached with .bind() or one of its shortcut methods are
triggered when the corresponding event occurs. They can be fired manually,
however, with the .trigger() method. A call to .trigger() executes the handlers
in the same order they would be if the event were triggered naturally by the user:

$('#foo').bind('click', function() {
 alert($(this).text());
});
$('#foo').trigger('click');

•

•

Chapter 5

[103]

While .trigger() simulates an event activation, complete with a synthesized event
object, it does not perfectly replicate a naturally-occurring event. No event bubbling
occurs, so the .trigger() call must be made on the element that actually has the
event handlers attached. Default behaviors are also not reliably invoked, so must be
called manually with methods such as .submit() on the DOM elements themselves.

When we define a custom event type using the .bind() method, the second
argument to .trigger() can become useful. For example, suppose we have bound a
handler for the custom event to our element instead of the built-in click event as we
did previously:

$('#foo').bind('custom', function(event, param1, param2) {
 alert(param1 + "\n" + param2);
});
$('#foo').trigger('custom', ['Custom', 'Event']);

The event object is always passed as the first parameter to an event handler, but if
additional parameters are specified during a .trigger() call as they are here, these
parameters will be passed along to the handler as well.

Note the difference between the extra parameters we're passing here and the
eventData parameter to the .bind() method. Both are mechanisms for passing
information to an event handler, but the extraParameters argument to .trigger()
allows information to be determined at the time the event is triggered while the
eventData argument to .bind() requires the information to be already computed at
the time the handler is bound.

Document Loading
These events deal with the loading of a page into the browser.

$()
Specifies a function to execute when the DOM is fully loaded.
 $(document).ready(handler)

 $().ready(handler)

 $(handler)

Parameters
handler: A function to execute after the DOM is ready•

Event Methods

[104]

Return Value
The jQuery object, for chaining purposes.

Description
While JavaScript provides the load event for executing code when a page is
rendered, this event does not get triggered until all assets such as images have
been completely received. In most cases, the script can be run as soon as the DOM
hierarchy has been fully constructed. The handler passed to .ready() is guaranteed
to be executed after the DOM is ready, so this is usually the best place to attach all
other event handlers and run other jQuery code.

In cases where code relies on loaded assets (for example, if the dimensions of
an image are required), the code should be placed in a handler for the load
event instead.

The .ready() method is generally incompatible with the <body onload="">
attribute. If load must be used, either do not use .ready() or use jQuery's .load()
method to attach load event handlers to the window or to more specific items,
like images.

All three syntaxes provided are equivalent. The .ready() method can only be called
on a jQuery object matching the current document, so the selector can be omitted.

The .ready() method is typically used with an anonymous function:

$(document).ready(function() {
 alert('Ready event was triggered.');
});

With this code in place, an alert will be displayed when the page is loaded.

When using another JavaScript library, we may wish to call $.noConflict() to
avoid namespace difficulties. When this function is called, the $ shortcut is no
longer available, forcing us to write jQuery each time we would normally write $.
However, the handler passed to the .ready() method can take an argument, which
is passed the global jQuery object. This means we can rename the object within the
context of our .ready() handler without affecting other code:

jQuery(document).ready(function($) {
 // Code using $ as usual goes here.
});

If .ready() is called after the DOM has been initialized, the new handler passed in
will be executed immediately.

Chapter 5

[105]

.load()

Binds an event handler to the load JavaScript event.
 .load(handler)

Parameters
handler: A function to execute when the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('load', handler).

The load event is sent to an element when it and all sub-elements have been
completely loaded. This event can be sent to any element associated with a
URL—images, scripts, frames, and the body of the document itself.

For example, consider the HTML:

The event handler can be bound to the image:

$('.target').load(function() {
 $(this).log('Load event was triggered.');
});

Now as soon as the image has been loaded, the message is displayed.

In general, it is not necessary to wait for all images to be fully loaded. If code
can be executed earlier, it is usually best to place it in a handler sent to the
.ready() method.

The AJAX module also has a method named .load(). Which one is fired
depends on the set of arguments passed.

•

Event Methods

[106]

.unload()

Binds an event handler to the unload JavaScript event.
 .unload(handler)

Parameters
handler: A function to execute when the event is triggered.

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('unload', handler).

The unload event is sent to the window element when the user has navigated away
from the page. This could mean one of many things. The user could have clicked on
a link to leave the page, or typed in a new URL in the address bar. The forward and
back buttons will trigger the event. Closing the browser window will cause the event
to be triggered. Even a page reload will first create an unload event.

Any unload event handler should be bound to the window object:

$(window).unload(function() {
 alert('Unload event was triggered.');
});

After this code executes, the alert will be displayed whenever the browser leaves the
current page.

It is not possible to cancel the unload event with .preventDefault(). This event is
available so that scripts can perform cleanup when the user leaves the page.

.error()

Binds an event handler to the error JavaScript event.
 .error(handler)

•

Chapter 5

[107]

Parameters
handler: A function to execute when the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('error', handler).

The error event is sent to the same elements that can receive the load event. It is
called if the element was not loaded correctly.

For example, consider the HTML:

<img class="target" src="missing.gif" width="80" height="54"
 alt="Missing Image" />

The event handler can be bound to the image:

$('.target').error(function() {
 $(this).log('Error event was triggered.');
});

If the image cannot be loaded (for example, because it is not present at the supplied
URL), the message is displayed.

This event may not be correctly fired when the page is served locally. Since error
relies on normal HTTP status codes, it will generally not be triggered if the URL uses
the file: protocol.

Mouse Events
These events are triggered by mouse movement and button presses.

.mousedown()
Binds an event handler to the mousedown JavaScript event, or triggers that
event on an element.
 .mousedown(handler)

 .mousedown()

•

Event Methods

[108]

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('mousedown', handler) in the first variation,
and .trigger('mousedown') in the second.

The mousedown event is sent to an element when the mouse pointer is over the
element, and the mouse button is pressed. Any HTML element can receive this event.

For example, consider the HTML:

<div class="target button">Click Here</div>
<div class="trigger button">Trigger</div>

The event handler can be bound to the target button:

$('.target').mousedown(function() {
 $(this).log('Mousedown event was triggered.');
});

Now if we click on the target button, the message is displayed. We can also trigger
the event when the second button is clicked:

$('.trigger').click(function() {
 $('.target').mousedown();
});

After this code executes, clicks on the trigger button will also display the message.

The mousedown event is sent when any mouse button is clicked. To act only on
specific buttons, we can use the event object's which property in Mozilla browsers
(1 for left button, 2 for middle button, 3 for right button), or the button property
in Internet Explorer (1 for left button, 4 for middle button, 2 for right button). This
is primarily useful for ensuring that the primary button was used to begin a drag
operation; if ignored, strange results can occur when the user attempts to use a
context menu. While the middle and right buttons can be detected with these
properties, this is not reliable. In Opera and Safari, for example, right mouse button
clicks are not detectable by default.

•

Chapter 5

[109]

If the user clicks on an element, then drags the mouse pointer away from it or
releases the button, this is still counted as a mousedown event. This sequence of
actions is treated as a canceling of the button press in most user interfaces, so it is
usually better to use the click event unless we know that the mousedown event is
preferable for a particular situation.

.mouseup()
Binds an event handler to the mouseup JavaScript event, or triggers that event
on an element.
 .mouseup(handler)

 .mouseup()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('mouseup', handler) in the first variation, and
.trigger('mouseup') in the second.

The mouseup event is sent to an element when the mouse pointer is over the element,
and the mouse button is released. Any HTML element can receive this event.

For example, consider the HTML:

<div class="target button">Click Here</div>
<div class="trigger button">Trigger</div>

The event handler can be bound to the target button:

$('.target').mouseup(function() {
 $(this).log('Mouseup event was triggered.');
});

Now if we click on the target button, the message is displayed. We can also trigger
the event when the second button is clicked:

$('.trigger').click(function() {
 $('.target').mouseup();
});

•

Event Methods

[110]

After this code executes, clicking the Trigger button will also display the message.

If the user clicks outside an element, drags onto it, and releases the button, this is still
counted as a mouseup event. This sequence of actions is not treated as a button press
in most user interfaces, so it is usually better to use the click event unless we know
that the mouseup event is preferable for a particular situation.

.click()
Binds an event handler to the click JavaScript event, or triggers that event on
an element.
 .click(handler)

 .click()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('click', handler) in the first variation, and
.trigger('click') in the second.

The click event is sent to an element when the mouse pointer is over the element,
and the mouse button is pressed and released. Any HTML element can receive
this event.

For example, consider the HTML:

<div class="target button">Click Here</div>
<div class="trigger button">Trigger</div>

The event handler can be bound to the target button:

$('.target').click(function() {
 $(this).log('Click event was triggered.');
});

Now if we click on the target button, the message is displayed. We can also trigger
the event when the second button is clicked:

$('.trigger').click(function() {
 $('.target').click();
});

•

Chapter 5

[111]

After this code executes, clicking the trigger button will also display the message.

The click event is only triggered after this exact series of events:

The mouse button is depressed while the pointer is inside the element.
The mouse button is released while the pointer is inside the element.

This is usually the desired sequence before taking an action. If this is not required,
the mousedown or mouseup event may be more suitable.

.dblclick()
Binds an event handler to the dblclick JavaScript event, or triggers that event
on an element.
 .dblclick(handler)

 .dblclick()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('dblclick', handler) in the first variation,
and .trigger('dblclick') in the second.

The dblclick event is sent to an element when the element is double-clicked. Any
HTML element can receive this event.

For example, consider the HTML:

<div class="target button">Click Here</div>
<div class="trigger button">Trigger</div>

The event handler can be bound to the target button:

$('.target').dblclick(function() {
 $(this).log('Dblclick event was triggered.');
});

Now if we double-click on the target button, the message is displayed. We can also
trigger the event when the second button is clicked:

•

•

•

Event Methods

[112]

$('.trigger').click(function() {
 $('.target').dblclick();
});

After this code executes, clicking the Trigger button will also display the message.

The dblclick event is only triggered after this exact series of events:

The mouse button is depressed while the pointer is inside the element.
The mouse button is released while the pointer is inside the element.
The mouse button is depressed again while the pointer is inside the element,
within a time window that is system-dependent.
The mouse button is released while the pointer is inside the element.

It is inadvisable to bind handlers to both the click and dblclick events for the
same element. The sequence of events triggered varies from browser to browser,
with some receiving two click events and others only one. If an interface that
reacts differently to single and double clicks cannot be avoided, then the dblclick
event should be simulated within the click handler. We can achieve this by saving
a timestamp in the handler, and then comparing the current time to the saved
timestamp on subsequent clicks. If the difference is small enough, we can treat the
click as a double-click.

.toggle()

Binds two event handlers to the matched elements, to be executed on
alternate clicks.
 .toggle(handlerEven, handlerOdd)

Parameters
handlerEven: A function to execute every even time the element is clicked.
handlerOdd: A function to execute every odd time the element is clicked.

Return Value
The jQuery object, for chaining purposes.

Description
The .toggle() method binds a handler for the click event, so the rules outlined for
the triggering of click apply here as well.

•

•

•

•

•

•

Chapter 5

[113]

For example, consider the HTML:

<div class="target button">Click Here</div>

The event handlers can be bound to this button:

$('.target').toggle(function() {
 $(this).log('Toggle event was triggered (handler 1).');
}, function() {
 $(this).log('Toggle event was triggered (handler 2).');
});

The first time the button is clicked, the first handler will be executed. The second
time, the second handler will execute. Subsequent clicks will cycle between the
two handlers.

The .toggle() method is provided for convenience. It is relatively straightforward
to implement the same behavior by hand, and this can be necessary if the
assumptions built into .toggle() prove limiting. For example, .toggle() is not
guaranteed to work correctly if applied twice to the same element. Since .toggle()
internally uses a click handler to do its work, we must unbind click to remove
a behavior attached with .toggle(), so other click handlers can be caught in the
crossfire. The implementation also calls .preventDefault() on the event, so links
will not be followed and buttons will not be clicked if .toggle() has been called on
the element.

.mouseover()
Binds an event handler to the mouseover JavaScript event, or triggers that event
on an element.
 .mouseover(handler)
 .mouseover()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('mouseover', handler) in the first variation,
and .trigger('mouseover') in the second.

•

Event Methods

[114]

The mouseover event is sent to an element when the mouse pointer enters the
element. Any HTML element can receive this event.

For example, consider the HTML:

<div class="target button">Move Here</div>
<div class="trigger button">Trigger</div>

The event handler can be bound to the target button:

$('.target').mouseover(function() {
 $(this).log('Mouseover event was triggered.');
});

Now when the mouse pointer moves over the target button, the message is
displayed. We can also trigger the event when the second button is clicked:

$('.trigger').click(function() {
 $('.target').mouseover();
});

After this code executes, clicking the Trigger button will also display the message.

This event type can cause many headaches due to event bubbling. When the mouse
pointer moves over a nested element, a mouseover event will be sent to that,
then trickle up the hierarchy. This can trigger our bound mouseover handler at
inopportune times. By using the .hover() method instead, we can avoid
this problem.

.mouseout()
Bind an event handler to the mouseout JavaScript event, or trigger that event on
an element.
 .mouseout(handler)

 .mouseout()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

•

Chapter 5

[115]

Description
This handler is a shortcut for .bind('mouseout', handler) in the first variation,
and .trigger('mouseout') in the second.

The mouseout event is sent to an element when the mouse pointer leaves the
element. Any HTML element can receive this event.

For example, consider the HTML:

<div class="target button">Move Here</div>
<div class="trigger button">Trigger</div>

The event handler can be bound to the target button:

$('.target').mouseout(function() {
 $(this).log('Mouseout event was triggered.');
});

Now when the mouse pointer moves out of the target button, the message is
displayed. We can also trigger the event when the second button is clicked:

$('.trigger').click(function() {
 $('.target').mouseout();
});

After this code executes, clicking the Trigger button will also display the message.

This event type can cause many headaches due to event bubbling. When the
mouse pointer moves out of a nested element, a mouseout event will be sent to
that, then trickle up the hierarchy. This can trigger our bound mouseout handler
at inopportune times. By using the .hover() method instead, we can avoid
this problem.

.hover()

Binds two event handlers to the matched elements, to be executed when the
mouse pointer enters and leaves the elements.
 .hover(handlerIn, handlerOut)

Parameters
handlerIn: A function to execute when the mouse pointer enters the element
handlerOut: A function to execute when the mouse pointer leaves the element

•

•

Event Methods

[116]

Return Value
The jQuery object, for chaining purposes.

Description
The .hover() method binds handlers for both mouseover and mouseout events.
We can use it to simply apply behavior to an element during the time the mouse is
within the element. Consider the HTML:

<div class="target button">Move Here</div>

Now we can bind handlers to both entering the element and leaving it with a single
method call:

$('.target').hover(function() {
 $(this).log('Hover event was triggered (entering).');
}, function() {
 $(this).log('Hover event was triggered (leaving).');
});

Now the first message will be displayed when the mouse pointer enters the element,
and the second will be displayed when the mouse pointer leaves.

With the mouseover and mouseout events, it is common to receive false positives
due to event bubbling. When the mouse pointer crosses over a nested element,
the events are generated and will bubble up to the parent element. The .hover()
method incorporates code to check for this situation and do nothing, so we can safely
ignore this problem when using the .hover() shortcut.

.mousemove()
Binds an event handler to the mousemove JavaScript event, or triggers that event
on an element.
 .mousemove(handler)

 .mousemove()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

•

Chapter 5

[117]

Description
This handler is a shortcut for .bind('mousemove', handler) in the first variation,
and .trigger('mousemove') in the second.

The mousemove event is sent to an element when the mouse pointer moves inside the
element. Any HTML element can receive this event.

For example, consider the HTML:

<div class="target button">Move Here</div>
<div class="trigger button">Trigger</div>

The event handler can be bound to the target button:

$('.target').mousemove(function() {
 $(this).log('Mousemove event was triggered.');
});

Now when the mouse pointer moves within the target button, the message is
displayed. We can also trigger the event when the second button is clicked:

$('.trigger').click(function() {
 $('.target').mousemove();
});

After this code executes, clicking the Trigger button will also display the message.

When tracking the mouse movement, we usually clearly need to know the actual
position of the mouse pointer. The event object that is passed to the handler contains
some information about the mouse coordinates. Properties such as .clientX,
.offsetX, and .pageX are available, but support for them differs between browsers.
Fortunately, jQuery normalizes the .pageX and .pageY attributes so that they can be
used in all browsers. These attributes provide the X and Y coordinates of the mouse
pointer relative to the top-left corner of the page.

We need to remember that the mousemove event is triggered whenever the mouse
pointer moves, even for a pixel. This means that hundreds of events can be generated
over a very small amount of time. If the handler has to do any significant processing,
or if multiple handlers for the event exist, this can be a serious performance drain on
the browser. It is important, therefore, to optimize mousemove handlers as much as
possible, and to unbind them as soon as they are no longer needed.

Event Methods

[118]

A common pattern is to bind the mousemove handler from within a mousedown
hander, and to unbind it from a corresponding mouseup handler. If implementing
this sequence of events, remember that the mouseup event might be sent to a different
HTML element than the mousemove event was. To account for this, the mouseup
handler should typically be bound to an element high up in the DOM tree, such
as <body>.

Form Events
These events refer to <form> elements and their contents.

.focus()
Binds an event handler to the focus JavaScript event, or triggers that event on
an element.
 .focus(handler)

 .focus()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('focus', handler) in the first variation, and
.trigger('focus') in the second.

The focus event is sent to an element when it gains focus. Originally, this event was
only applicable to form elements, such as <input>. In recent browsers, the domain of
the event has been extended to include all element types. An element can gain focus
via keyboard commands, such as the Tab key, or by mouse clicks on the element.

Elements with focus are usually highlighted in some way by the browser, for
example with a dotted line surrounding the element. The focus is used to determine
which element is the first to receive keyboard-related events.

For example, consider the HTML:

<form>
 <input class="target" type="text" value="Field 1" />

•

Chapter 5

[119]

 <input type="text" value="Field 2" />
</form>
<div class="trigger button">Trigger</div>

The event handler can be bound to the first input field:

$('.target').focus(function() {
 $(this).log('Focus event was triggered.');
});

Now if we click on the first field, or Tab to it from another field, the message is
displayed. We can trigger the event when the button is clicked:

$('.trigger').click(function() {
 $('.target').focus();
});

After this code executes, clicking the Trigger button will also display the message.

Triggering the focus on hidden elements causes an error in Internet
Explorer. Take care to only call .focus() without parameters on
elements that are visible.

.blur()
Binds an event handler to the blur JavaScript event, or triggers that event on
an element.
 .blur(handler)

 .blur()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('blur', handler) in the first variation, and
.trigger('blur') in the second.

•

Event Methods

[120]

The blur event is sent to an element when it loses focus. Originally, this event was
only applicable to form elements, such as <input>. In recent browsers, the domain of
the event has been extended to include all element types. An element can lose focus
via keyboard commands, such as the Tab key, or by mouse clicks elsewhere on
the page.

For example, consider the HTML:

<form>
 <input class="target" type="text" value="Field 1" />
 <input type="text" value="Field 2" />
</form>
<div class="trigger button">Trigger</div>

The event handler can be bound to the first input field:

$('.target').blur(function() {
 $(this).log('Blur event was triggered.');
});

Now if we click on the first field, then click or tab away, the message is displayed.
We can trigger the event when the button is clicked:

$('.trigger').click(function() {
 $('.target').blur();
});

After this code executes, clicking the Trigger button will also display the message.

.change()
Binds an event handler to the change JavaScript event, or triggers that event on
an element.
 .change(handler)

 .change()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

•

Chapter 5

[121]

Description
This handler is a shortcut for .bind('change', handler) in the first variation, and
.trigger('change') in the second.

The change event is sent to an element when its value changes. This event is limited
to <input type="text"> fields, <textarea> boxes, and <select> elements. For
select boxes, the event is fired immediately when the user makes a selection with the
mouse, but for the other element types the event is deferred until the element loses
focus.

For example, consider the HTML:

<form>
 <input class="target" type="text" value="Field 1" />
 <select class="target">
 <option value="option1" selected="selected">Option 1</option>
 <option value="option2">Option 2</option>
 </select>
</form>
<div class="trigger button">Trigger</div>

The event handler can be bound to the text input and the select box:

$('.target').change(function() {
 $(this).log('Change event was triggered.');
});

Now when the second option is selected from the dropdown, the message is
displayed. It is also displayed if we change the text in the field and then click away.
If the field loses focus without the contents having changed, though, the event is not
triggered. We can trigger the event manually when the button is clicked:

$('.trigger').click(function() {
 $('.target').change();
});

After this code executes, clicks on the trigger button will also display the message.
The message will be displayed twice, because the handler has been bound to the
change event on both of the form elements.

Event Methods

[122]

.select()
Binds an event handler to the select JavaScript event, or triggers that event on
an element.
 .select(handler)

 .select()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('select', handler) in the first variation, and
.trigger('select') in the second.

The select event is sent to an element when the user makes a text selection inside it.
This event is limited to <input type="text"> fields and <textarea> boxes.

For example, consider the HTML:

<form>
 <input class="target" type="text" value="The quick brown fox jumps
 over the lazy dog." />
</form>
<div class="trigger button">Trigger</div>

The event handler can be bound to the text input:

$('.target').select(function() {
 $(this).log('Select event was triggered.');
});

Now when any portion of the text is selected, the message is displayed. Merely
setting the location of the insertion point will not trigger the event. We can trigger
the event manually when the button is clicked:

$('.trigger').click(function() {
 $('.target').select();
});

•

Chapter 5

[123]

After this code executes, clicking the Trigger button will also display the message. In
addition, the default select action on the field will be fired, so the entire text field
will be selected.

.submit()
Binds an event handler to the submit JavaScript event, or triggers that event on
an element.
 .submit(handler)

 .submit()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('submit', handler) in the first variation, and
.trigger('submit') in the second.

The submit event is sent to an element when the user is attempting to submit a
form. It can only be attached to <form> elements. Forms can be submitted either by
clicking an explicit <input type="submit"> button, or by pressing Enter when a
form element has focus.

Depending on the browser, the Enter key may only cause a form
submission if the form has exactly one text field, or only when there is
a submit button present. The interface should not rely on a particular
behavior for this key unless the issue is forced by observing the
keypress event for presses of the Enter key.

For example, consider the HTML:

<form class="target" action="foo.html">
 <input type="text" />
 <input type="submit" value="Go" />
</form>
<div class="trigger button">Trigger</div>

•

Event Methods

[124]

The event handler can be bound to the form:

$('.target').submit(function() {
 $(this).log('Submit event was triggered.');
});

Now when the form is submitted, the message is displayed. This happens
prior to the actual submission, so we can cancel the submit action by calling
.preventDefault() on the event or by returning false from our handler. We can
trigger the event manually when the button is clicked:

$('.trigger').click(function() {
 $('.target').submit();
});

After this code executes, clicking the Trigger button will also display the message. In
addition, the default submit action on the form will be fired, so the form will
be submitted.

Keyboard Events
These events are triggered by the keys on the keyboard.

.keydown()
Binds an event handler to the keydown JavaScript event, or triggers that event
on an element.
 .keydown(handler)

 .keydown()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('keydown', handler) in the first variation, and
.trigger('keydown') in the second.

•

Chapter 5

[125]

The keydown event is sent to an element when the user first presses a key on the
keyboard. It can be attached to any element, but the event is only sent to the element
that has the focus. Focusable elements can vary between browsers, but form elements
can always get focus so are reasonable candidates for this event type.

For example, consider the HTML:

<form>
 <input class="target" type="text" />
</form>
<div class="trigger button">Trigger</div>

The event handler can be bound to the input field:

$('.target').keydown(function() {
 $(this).log('Keydown event was triggered.');
});

Now when the insertion point is inside the field and a key is pressed, the message is
displayed. We can trigger the event manually when the button is clicked:

$('.trigger').click(function() {
 $('.target').keydown();
});

After this code executes, clicking the Triggers button will also display the message.

If key presses anywhere need to be caught (for example, to implement global
shortcut keys on a page), it is useful to attach this behavior to the document object.
Because of event bubbling, all key presses will make their way up the DOM to the
document object unless explicitly stopped.

To determine which key was pressed, we can examine the event object that is passed
to the handler function. The .keyCode attribute typically holds this information, but
in some older browsers .which stores the key code. JavaScript's String object has a
.fromCharCode() method that can be used to convert this numeric code into a string
containing the character for further processing.

The fix_events.js plug-in further standardizes the event object across different
browsers. With this plug-in, we can use .which in all browsers to retrieve the
key code.

Event Methods

[126]

.keypress()
Binds an event handler to the keypress JavaScript event, or triggers that event on
an element.
 .keypress(handler)

 .keypress()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('keypress', handler) in the first variation,
and .trigger('keypress') in the second.

The keypress event is sent to an element when the browser registers keyboard
input. This is similar to the keydown event, except in the case of key repeats. If
the user presses and holds a key, a keydown event is triggered once, but separate
keypress events are triggered for each inserted character. In addition, modifier keys
(such as Shift) cause keydown events but not keypress events.

A keypress event handler can be attached to any element, but the event is only sent
to the element that has the focus. Focusable elements can vary between browsers, but
form elements can always get focus so are reasonable candidates for this event type.

For example, consider the HTML:

<form>
 <input class="target" type="text" />
</form>
<div class="trigger button">Trigger</div>

The event handler can be bound to the input field:

$('.target').keypress(function() {
 $(this).log('Keypress event was triggered.');
});

Now when the insertion point is inside the field and a key is pressed, the message
is displayed. The message repeats if the key is held down. We can trigger the event
manually when the button is clicked:

•

Chapter 5

[127]

$('.trigger').click(function() {
 $('.target').keypress();
});

After this code executes, clicks on the Trigger button will also display the message.

If key presses anywhere need to be caught (for example, to implement global
shortcut keys on a page), it is useful to attach this behavior to the document object.
All key presses will make their way up the DOM to the document object unless
explicitly stopped because of event bubbling.

To determine which key was pressed, we can examine the event object that is passed
to the handler function. The .keyCode attribute typically holds this information, but
in some older browsers .which stores the key code. JavaScript's String object has a
.fromCharCode() method that can be used to convert this numeric code into a string
containing the character for further processing.

Note that keydown and keyup provide a code indicating which key is pressed, while
keypress indicates which character was entered. For example, a lowercase "a" will
be reported as 65 by keydown and keyup, but as 97 by keypress. An uppercase "A"
is reported as 97 by all events. This can be the primary motivator for deciding which
event type to use.

.keyup()
Binds an event handler to the keyup JavaScript event, or triggers that event on
an element.
 .keyup(handler)

 .keyup()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('keyup', handler) in the first variation, and
.trigger('keyup') in the second.

•

Event Methods

[128]

The keyup event is sent to an element when the user releases a key on the keyboard.
It can be attached to any element, but the event is only sent to the element that has
the focus. Focusable elements can vary between browsers, but form elements can
always get focus so are reasonable candidates for this event type.

For example, consider the HTML:

<form>
 <input class="target" type="text" />
</form>
<div class="trigger button">Trigger</div>

The event handler can be bound to the input field:

$('.target').keyup(function() {
 $(this).log('Keyup event was triggered.');
});

Now when the insertion point is inside the field and a key is pressed and released,
the message is displayed. We can trigger the event manually when the button is
clicked:

$('.trigger').click(function() {
 $('.target').keyup();
});

After this code executes, clicking the Trigger button will also display the message.

If key presses anywhere need to be caught (for example, to implement global
shortcut keys on a page), it is useful to attach this behavior to the document object.
All key presses will make their way up the DOM to the document object unless
explicitly stopped because of event bubbling.

To determine which key was pressed, we can examine the event object that is passed
to the handler function. The .keyCode attribute typically holds this information, but
in some older browsers .which stores the key code. JavaScript's String object has a
.fromCharCode() method that can be used to convert this numeric code into a string
containing the character for further processing.

Browser Events
These events are related to the entire browser window.

Chapter 5

[129]

.resize()
Binds an event handler to the resize JavaScript event, or triggers that event on
an element.
 .resize(handler)
 .resize()

Parameters (First Version)
handler: A function to execute each time the event is triggered

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('resize', handler) in the first variation, and
.trigger('resize') in the second.

The resize event is sent to the window element when the size of the browser
window changes:

$(window).resize(function() {
 alert('Resize event was triggered.');
});

Now whenever the browser window's size is changed, the message is displayed.

The code in a resize handler should never rely on the number of times the handler
is called. Depending on implementation, resize events can be sent continuously as
the resizing is in progress (typical behavior in Internet Explorer), or only once at the
end of the resize operation (typical behavior in FireFox).

.scroll()
Binds an event handler to the scroll JavaScript event, or triggers that event on
an element.
 .scroll(handler)

 .scroll()

Parameters (First Version)
handler: A function to execute each time the event is triggered

•

•

Event Methods

[130]

Return Value
The jQuery object, for chaining purposes.

Description
This handler is a shortcut for .bind('scroll', handler) in the first variation, and
.trigger('scroll') in the second.

The scroll event is sent to an element when the user scrolls to a different place in
the element. It applies not only to window objects, but also to scrollable frames and
elements with the overflow: scroll CSS property.

For example, consider the HTML:

<div class="target" style="overflow: scroll; width: 200px;
 height: 100px;">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
 eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
 ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
 aliquip ex ea commodo consequat. Duis aute irure dolor in
 reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
 pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
 culpa qui officia deserunt mollit anim id est laborum.
</div>
<div class="trigger button">Trigger</div>

The style definition is present to make the target element small enough to be
scrollable. The scroll event handler can be bound to this element:

$('.target').scroll(function() {
 $(this).log('Scroll event was triggered.');
});

Now when the user scrolls the text up or down, the message is displayed. We can
trigger the event manually when the button is clicked:

$('.trigger').click(function() {
 $('.target').scroll();
});

After this code executes, clicking the Trigger button will also display the message.

A scroll event is sent whenever the element's scroll position changes, regardless
of the cause. A mouse click or drag on the scroll bar, dragging inside the element,
pressing the arrow keys, or using the mouse scroll wheel could cause this event.

Effect Methods
It's got style, it's got class
 —Devo,
 “Uncontrollable Urge"

In this chapter, we'll closely examine each of the effect methods, revealing all of the
mechanisms jQuery has for providing visual feedback to the user.

Pre-Packaged Effects
These methods allow us to quickly apply commonly used effects with a
minimum configuration.

.show()
Displays the matched elements.
 .show([speed][, callback])

Parameters
speed (optional): A string or number determining how long the animation
will run
callback (optional): A function to call once the animation is complete

•

•

Effect Methods

[132]

Return Value
The jQuery object, for chaining purposes.

Description
With no parameters, the .show() method is the simplest way to display an element:

$('.target').show();

The matched elements will be revealed immediately, with no animation. This is
roughly equivalent to calling .css('display', 'block'), except that the display
property is restored to whatever it was initially. If an element is given a display
value of inline, then it is hidden and shown, it will once again be displayed inline.

When a speed is provided, .show() becomes an animation method. The
.show() method animates the width, height, and opacity of the matched
elements simultaneously.

Speeds are given in millisecond durations of the animation; higher values indicate
slower animations, not faster ones. The strings fast, normal, and slow can be
supplied to indicate speed values of 200, 400, and 600 respectively. If the speed
parameter is omitted, normal is assumed.

If supplied, the callback is fired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. The callback is
executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple <div> containing an image:

<div class="content">
 <div class="trigger button">Trigger</div>
 <div class="target"><img src="hat.gif" width="80" height="54"
 alt="Hat" /></div>
 <div class="log"></div>
</div>

With the element initially hidden, we can show it slowly:

$('.trigger').click(function() {
 $('.target').show('slow', function() {
 $(this).log('Effect complete.');
 });
});

Chapter 6

[133]

.hide()
Hides the matched elements.
 .hide([speed][, callback])

Parameters
speed (optional): A string or number determining how long the animation
will run
callback (optional): A function to call once the animation is complete

Return Value
The jQuery object, for chaining purposes.

Description
With no parameters, the .hide() method is the simplest way to hide an element:

$('.target').hide();

The matched elements will be hidden immediately, with no animation. This is
roughly equivalent to calling .css('display', 'none'), except that the value of the
display property is saved as another property of the element so that display can
later be restored to its initial value. If an element is given a display value as inline,
then it is hidden and shown, it will once again be displayed inline.

When a speed is provided, .hide() becomes an animation method. The
.hide() method animates the width, height, and opacity of the matched
elements simultaneously.

•

•

Effect Methods

[134]

Speeds are given in millisecond durations of the animation; higher values indicate
slower animations, not faster ones. The strings fast, normal, and slow can be
supplied to indicate speed values of 200, 400, and 600 respectively. If the speed
parameter is omitted, normal is assumed.

If supplied, the callback is fired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. The callback is
executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple <div> containing an image:

<div class="content">
 <div class="trigger button">Trigger</div>
 <div class="target"><img src="hat.gif" width="80" height="54"
 alt="Hat" /></div>
 <div class="log"></div>
</div>

With the element initially displayed, we can hide it slowly:

$('.trigger').click(function() {
 $('.target').hide('slow', function() {
 $(this).log('Effect complete.');
 });
});

Chapter 6

[135]

.toggle()
Displays or hides the matched elements.
 .toggle([speed][, callback])

Parameters
speed (optional): A string or number determining how long the animation
will run
callback (optional): A function to call once the animation is complete

Return Value
The jQuery object, for chaining purposes.

Description
With no parameters, the .toggle() method simply toggles the visibility of elements:

$('.target').toggle();

The matched elements will be revealed or hidden immediately, with no animation.
If the element is initially displayed, it will be hidden; if hidden, it will be shown. The
display property is saved and restored as needed. If an element is given a display
value of inline, then it is hidden and shown, it will once again be displayed inline.

When a speed is provided, .toggle() becomes an animation method. The
.toggle() method animates the width, height, and opacity of the matched
elements simultaneously.

Speeds are given in millisecond durations of the animation; higher values indicate
slower animations, not faster ones. The strings fast, normal, and slow can be
supplied to indicate speed values of 200, 400, and 600 respectively. If the speed
parameter is omitted, normal is assumed.

If supplied, the callback is fired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. The callback is
executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple <div> containing an image:

<div class="content">
 <div class="trigger button">Trigger</div>
 <div class="target"><img src="hat.gif" width="80" height="54"
 alt="Hat" /></div>
 <div class="log"></div>
</div>

•

•

Effect Methods

[136]

With the element initially displayed, we can hide and show it slowly:

$('.trigger').click(function() {
 $('.target').toggle('slow', function() {
 $(this).log('Effect complete.');
 });
});

Chapter 6

[137]

.slideDown()
Displays the matched elements with a sliding motion.
 .slideDown([speed][, callback])

Parameters
speed (optional): A string or number determining how long the animation
will run
callback (optional): A function to call once the animation is complete

Return Value
The jQuery object, for chaining purposes.

Description
The .slideDown() method animates the height of the matched elements. This causes
lower parts of the page to slide down, making way for the revealed items.

Speeds are given in millisecond durations of the animation; higher values indicate
slower animations, not faster ones. The strings fast, normal, and slow can be
supplied to indicate speed values of 200, 400, and 600 respectively. If the speed
parameter is omitted, normal is assumed.

If supplied, the callback is fired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. The callback is
executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple <div> containing an image:

<div class="content">
 <div class="trigger button">Trigger</div>
 <div class="target"><img src="hat.gif" width="80" height="54"
 alt="Hat" /></div>
 <div class="log"></div>
</div>

With the element initially hidden, we can show it slowly:

$('.trigger').click(function() {
 $('.target').slideDown('slow', function() {
 $(this).log('Effect complete.');
 });
});

•

•

Effect Methods

[138]

.slideUp()
Hides the matched elements with a sliding motion.
 .slideUp([speed][, callback])

Parameters
speed (optional): A string or number determining how long the animation
will run
callback (optional): A function to call once the animation is complete

Return Value
The jQuery object, for chaining purposes.

Description
The .slideUp() method animates the height of the matched elements. This causes
lower parts of the page to slide up, appearing to conceal the items.

Speeds are given in millisecond durations of the animation; higher values indicate
slower animations, not faster ones. The strings fast, normal, and slow can be
supplied to indicate speed values of 200, 400, and 600 respectively. If the speed
parameter is omitted, normal is assumed.

•

•

Chapter 6

[139]

If supplied, the callback is fired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. The callback is
executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple <div> containing an image:

<div class="content">
 <div class="trigger button">Trigger</div>
 <div class="target"><img src="hat.gif" width="80" height="54"
 alt="Hat" /></div>
 <div class="log"></div>
</div>

With the element initially visible, we can hide it slowly:

$('.trigger').click(function() {
 $('.target').slideUp('slow', function() {
 $(this).log('Effect complete.');
 });
});

.slideToggle()
Displays or hides the matched elements with a sliding motion.
 .slideToggle([speed][, callback])

Effect Methods

[140]

Parameters
speed (optional): A string or number determining how long the animation
will run
callback (optional): A function to call once the animation is complete

Return Value
The jQuery object, for chaining purposes.

Description
The .slideToggle() method animates the height of the matched elements. This
causes lower parts of the page to slide up or down, appearing to conceal or reveal
the items.

Speeds are given in millisecond durations of the animation; higher values indicate
slower animations, not faster ones. The strings fast, normal, and slow can be
supplied to indicate speed values of 200, 400, and 600 respectively. If the speed
parameter is omitted, normal is assumed.

If supplied, the callback is fired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. The callback is
executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple <div> containing an image:

<div class="content">
 <div class="trigger button">Trigger</div>
 <div class="target"><img src="hat.gif" width="80" height="54"
 alt="Hat" /></div>
 <div class="log"></div>
</div>

With the element initially displayed, we can hide and show it slowly:

$('.trigger').click(function() {
 $('.target').slideToggle('slow', function() {
 $(this).log('Effect complete.');
 });
});

•

•

Chapter 6

[141]

.fadeIn()
Displays the matched elements by fading them to opaque.
 .fadeIn([speed][, callback])

Parameters
speed (optional): A string or number determining how long the animation
will run
callback (optional): A function to call once the animation is complete

•

•

Effect Methods

[142]

Return Value
The jQuery object, for chaining purposes.

Description
The .fadeIn() method animates the opacity of the matched elements.

Speeds are given in millisecond durations of the animation; higher values indicate
slower animations, not faster ones. The strings fast, normal, and slow can be
supplied to indicate speed values of 200, 400, and 600 respectively. If the speed
parameter is omitted, normal is assumed.

If supplied, the callback is fired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. The callback is
executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple <div> containing an image:

<div class="content">
 <div class="trigger button">Trigger</div>
 <div class="target"><img src="hat.gif" width="80" height="54"
 alt="Hat" /></div>
 <div class="log"></div>
</div>

With the element initially hidden, we can show it slowly:

$('.trigger').click(function() {
 $('.target').fadeIn('slow', function() {
 $(this).log('Effect complete.');
 });
});

Chapter 6

[143]

.fadeOut()
Hides the matched elements by fading them to transparent.
 .fadeOut([speed][, callback])

Parameters
speed (optional): A string or number determining how long the animation
will run
callback (optional): A function to call once the animation is complete

Return Value
The jQuery object, for chaining purposes.

Description
The .fadeOut() method animates the opacity of the matched elements.

Speeds are given in millisecond durations of the animation; higher values indicate
slower animations, not faster ones. The strings fast, normal, and slow can be
supplied to indicate speed values of 200, 400, and 600 respectively. If the speed
parameter is omitted, normal is assumed.

If supplied, the callback is fired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. The callback is
executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple <div> containing an image:

<div class="content">
 <div class="trigger button">Trigger</div>
 <div class="target"><img src="hat.gif" width="80" height="54"
 alt="Hat" /></div>
 <div class="log"></div>
</div>

With the element initially displayed, we can hide it slowly:

$('.trigger').click(function() {
 $('.target').fadeOut('slow', function() {
 $(this).log('Effect complete.');
 });
});

•

•

Effect Methods

[144]

.fadeTo()
Adjusts the opacity of the matched elements.
 .fadeTo(speed, opacity[, callback])

Parameters
speed: A string or number determining how long the animation will run
opacity: A number between 0 and 1 denoting the target opacity
callback: (optional): A function to call once the animation is complete

Return Value
The jQuery object, for chaining purposes.

Description
The .fadeTo() method animates the opacity of the matched elements.

Speeds are given in millisecond durations of the animation; higher values indicate
slower animations, not faster ones. The strings fast, normal, and slow can be
supplied to indicate speed values of 200, 400, and 600 respectively. Unlike the other
effect methods, .fadeTo() requires that the speed should be explicitly specified.

If supplied, the callback is fired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. The callback is
executed once per matched element, not once for the animation as a whole.

•

•

•

Chapter 6

[145]

We can animate any element, such as a simple <div> containing an image:

<div class="content">
 <div class="trigger button">Trigger</div>
 <div class="target"><img src="hat.gif" width="80" height="54"
 alt="Hat" /></div>
 <div class="log"></div>
</div>

With the element initially displayed, we can dim it slowly:

$('.trigger').click(function() {
 $('.target').fadeTo('slow', 0.5, function() {
 $(this).log('Effect complete.');
 });
});

With speed set to 0, this method just changes the opacity CSS property, so
.fadeTo(0, opacity) is the same as .css('opacity', opacity).

In jQuery versions prior to 1.1.3, .fadeTo() sets the display property
of the element to block. This can lead to strange layout renderings when
used with non-block items such as table rows and inline elements. As of
jQuery 1.1.3, fades can be used safely for these elements.

Effect Methods

[146]

Customized Effects
This section describes how to create effects that are not provided out-of-the-box
by jQuery.

.animate()
Performs a custom animation of a set of CSS properties.
 .animate(properties[, speed][, easing][, callback])

Parameters
properties: A map of CSS properties that the animation will move toward
speed (optional): A string or number determining how long the animation
will run
easing (optional): A string indicating which easing function to use for
the transition
callback (optional): A function to call once the animation is complete

Return Value
The jQuery object, for chaining purposes.

Description
The .animate() method allows us to create animation effects on any numeric CSS
property. The only required parameter is a map of CSS properties. This map is
similar to the one that can be sent to the .css() method, except that the range of
properties is more restrictive.

All animated properties are treated as a number of pixels. If the property was
initially specified in different units, such as ems or percent, this can produce
strange results.

In addition to numeric values, each property can take the strings show, hide, and
toggle. These shortcuts allow for custom hiding and showing animations that take
into account the display type of the element.

Speeds are given in millisecond durations of the animation; higher values indicate
slower animations, not faster ones. The strings fast, normal, and slow can be
supplied to indicate speed values of 200, 400, and 600 respectively. If the speed
parameter is omitted, normal is assumed.

•

•

•

•

Chapter 6

[147]

If supplied, the callback is fired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. The callback is
executed once per matched element, not once for the animation as a whole.

We can animate any element, such as a simple <div> containing an image:

<div class="content">
 <div class="trigger button">Trigger</div>
 <div class="target"><img src="hat.gif" width="80" height="54"
 alt="Hat" /></div>
 <div class="log"></div>
</div>

We can animate several properties at once:

$('.trigger').click(function() {
 $('.target').animate({
 'width': 300,
 'left': 100,
 'opacity': 0.25
 }, 'slow', function() {
 $(this).log('Effect complete.');
 });
});

The position attribute of the element must not be fixed if we wish to animate the
left property as we do in the example.

A more sophisticated version of the .animate() method can be found
in the Interface plug-in. It handles some non-numeric styles such as colors,
and also handles animating classes rather than individual attributes.

The remaining parameter of .animate() is a string naming an easing function to
use. An easing function specifies the speed at which the animation progresses at
different points within the animation. The only easing implementation in the jQuery
library is the default, linear. More easing functions are available with the use of
plug-ins, such as Interface.

AJAX Methods
She's out of sync
She entered through the exit
And never stopped to think
 —Devo
 "Out of Sync"

The AJAX capabilities in jQuery help us to load data from the server without a
browser page refresh. In this chapter, we'll examine each of the available AJAX
methods and functions. We'll see various ways of initiating an AJAX request, as well
as several methods that can observe the requests that are in progress at any time.

Low-Level Interface
These methods can be used to make arbitrary AJAX requests.

$.ajax()
Perform an asynchronous HTTP (AJAX) request.
 $.ajax(settings)

AJAX Methods

[150]

Parameters
settings: A map of options for the request can contain the following items:

url: A string containing the URL to which the request is sent.
type (optional): A string defining the HTTP method to use for
the request (GET or POST). The default value is GET.
dataType (optional): A string defining the type of data
expected back from the server (xml, html, json, or script).
ifModified (optional): A Boolean indicating whether the
server should check if the page is modified before responding
to the request.
timeout (optional): Number of milliseconds after which the
request will time out in failure.
global (optional): A Boolean indicating whether global AJAX
event handlers will be triggered by this request. The default
value is true.
beforeSend (optional): A callback function that is executed
before the request is sent.
error (optional): A callback function that is executed if the
request fails.
success (optional): A callback function that is executed if the
request succeeds.
complete (optional): A callback function that executes
whenever the request finishes.
data (optional): A map or string that is sent to the server with
the request.
processData (optional): A Boolean indicating whether to
convert the submitted data from an object form into a query-
string form. The default value is true.
contentType (optional): A string containing a MIME content
type to set for the request. The default value is application/
x-www-form-urlencoded.
async (optional): A Boolean indicating whether to perform
the request asynchronously. The default value is true.

Return Value
The XMLHttpRequest object that was created.

•

°

°

°

°

°

°

°

°

°

°

°

°

°

°

Chapter 7

[151]

Description
The $.ajax() function underlies all AJAX requests sent by jQuery. This function is
seldom directly called as several higher-level alternatives like $.post() and .load()
are available and are easier to use. If less common options are required, though,
$.ajax() can be used for more flexibility.

At its simplest, the $.ajax() function must atleast specify a URL from which the
data is to be loaded:

$.ajax({
 url: 'ajax/test.html',
});

Even this sole required parameter can be made optional by setting a
default using the $.ajaxSetup() function.

This example, using the only required option, loads the contents of the specified
URL, but does nothing with the result. To use the result, we can implement one of
the callback functions. The beforeSend, error, success, and complete options take
callback functions that are invoked at the appropriate times:

beforeSend: called before the request is sent; the XMLHttpRequest object is
passed as a parameter to it.
error: called if the request fails. The XMLHttpRequest object is passed as a
parameter as a string indicating the error type, and an exception object
if applicable.
success: called if the request succeeds. The returned data is passed as the
parameter to it.
complete: called when the request finishes, whether in failure or success.
The XMLHttpRequest object as well as a string containing the success or error
code are passed as a parameters to it.

To make use of the returned HTML, we can implement a success handler:

$.ajax({
 url: 'ajax/test.html',
 success: function(data) {
 $('.result').html(data);
 $().log('Load was performed.');
 },
});

•

•

•

•

AJAX Methods

[152]

Such a simple example would generally be better served by using .load() or
$.get().

The $.ajax() function relies on the server to provide information about the
retrieved data. If the server reports the return data as XML, the result can be
traversed using normal XML methods or jQuery's selectors. If another type is
detected, such as HTML in the example above, the data is treated as text.

Different data handling can be achieved by using the dataType option. Besides plain
xml, the dataType can be html, json, or script. If html is specified, any embedded
JavaScript inside the retrieved data is executed before the HTML is returned as a
string. Similarly, script will execute the JavaScript that is pulled back from the
server and return the script itself as textual data. The json option uses eval() to
parse the fetched data file as a JavaScript object, and return the constructed object as
the result data.

We must ensure that the MIME type that is reported by the web server
matches our choice of dataType. In particular, xml must be declared by
the server as text/xml for consistent results.

By default, AJAX requests are sent using the GET HTTP method. If the POST method
is required, the method can be specified by setting a value for the type option. This
option affects how the contents of the data option are sent to the server.

The data option can contain either a query string of the form
key1=value1&key2=value2, or a map of the form {key1: 'value1', key2:
'value2'}. If the latter form is used, the data is converted into a query string
before it is sent. This processing can be prevented by setting processData to false.
The processing might be undesirable if we wish to send an XML object to the
server; in this case, we would also want to change the contentType option from
application/x-www-form-urlencoded to a more appropriate MIME type.

The remaining options—ifModified, timeout, global, and async—are rarely
required. For information on ifModified, please refer to the $.getIfModified()
function. Request timeouts can usually be set as a global default using
$.ajaxSetup() rather than for specific requests with the timeout option. The
global option prevents registered handlers that use .ajaxSend(), .ajaxError(),
or similar methods from firing when triggered by this request. This can be useful to,
for example, suppress a loading indicator that we implemented with .ajaxSend() if
the requests are frequent and brief. Lastly, the default value for async option is true,
indicating that the code execution can be continued after the request is made.
Setting this option to false is strongly discouraged as it can cause the browser to
become unresponsive.

Chapter 7

[153]

Rather than making requests synchronous using this option, better results
can be achieved using the blockUI plug-in..

The $.ajax() function returns the XMLHttpRequest object that it creates. This can
generally be discarded, but it does provide a lower-level interface for observing and
manipulating the request. In particular, calling .abort() on the object will halt the
request before it completes.

$.ajaxSetup()
Sets default values for future AJAX requests.
 $.ajaxSetup(settings)

Parameters
settings: A map of options for future requests. Same possible items as in
$.ajax().

Return Value
None.

Description
For details on the settings available for $.ajaxSetup(), please refert to $.ajax().
All subsequent AJAX calls using any function will use the new settings, unless
overridden by the individual calls, until the next invocation of $.ajaxSetup().

For example, we could set a default value for the URL parameter before pinging the
server repeatedly:

$.ajaxSetup({
 url: 'ping.php',
});

Now each time an AJAX request is made, this URL will be used automatically:

$.ajax({});
$.ajax({
 data: {'date': Date()},
});

•

AJAX Methods

[154]

Shorthand Methods
These methods perform the more common types of AJAX requests in less code.

$.get()
Loads data from the server using a GET HTTP request.
 $.get(url[, data][, success])

Parameters
url: A string containing the URL to which the request is sent
data: (optional): A map of data that is sent with the request
success: (optional): A function that is executed if the request succeeds

Return Value
The XMLHttpRequest object that was created.

Description
This is a shorthand AJAX function, which is equivalent to:

$.ajax({
 url: url,
 data: data,
 success: success
});

The callback is passed the returned data, which will be an XML root element or a text
string depending on the MIME type of the response.

Most implementations will specify a success handler:

$.get('ajax/test.html', function(data) {
 $('.result').html(data);
 $().log('Load was performed.');
});

This example fetches the requested HTML snippet and inserts it on the page.

•

•

•

Chapter 7

[155]

$.getIfModified()
Loads data from the server using a GET HTTP request if it has changed since
the last request.
 $.getIfModified(url[, data][, success])

Parameters
url: A string containing the URL to which the request is sent
data: (optional): A map of data that is sent with the request
success: (optional): A function that is executed if the request succeeds

Return Value
The XMLHttpRequest object that was created.

Description
This is a shorthand AJAX function, which is equivalent to:

$.ajax({
 url: url,
 data: data,
 success: success,
 ifModified: true
});

The callback is passed the returned data, which will be an XML root element or a text
string depending on the MIME type of the response.

Most implementations will specify a success handler:

$.getIfModified('ajax/test.html', function(data) {
 if (data) {
 $('.result').html(data);
 }
 $().log('Load was performed.');
});

This example fetches the requested HTML snippet and inserts it on the page.

When the AJAX request is sent, an If-Modified-Since HTTP header is added. Web
servers are supposed to honor this and omit the data if the file is unchanged. This
can be exploited to save bandwidth when refreshing data from within a page.

•

•

•

AJAX Methods

[156]

A response that the page is not modified is still treated as a success. In this case the
callback will still be executed, but no data will be available. The callback should trap
for this to avoid discarding previously-fetched data.

.load()
Loads data from the server and places the returned HTML into the matched element.
 .load(url[, data][, success])

Parameters
url: A string containing the URL to which the request is sent
data (optional): A map of data that is sent with the request
success (optional): A function that is executed if the request succeeds

Return Value
The jQuery object, for chaining purposes.

Description
This method is the simplest way to fetch data from the server. It is roughly
equivalent to $.get(url, data, success) except that it is a method rather than a
global function and it has an implicit callback function. When a successful response
is detected, .load() sets the HTML contents of the matched element to the returned
data. This means that most uses of the method can be quite simple:

$('.result').load('ajax/test.html');

The provided callback, if any, is executed after this post-processing has
been performed:

$('.result').load('ajax/test.html', function() {
 $(this).log('Load was performed.');
});

The POST method is used if data is provided; otherwise, GET is assumed.

The event handling suite also has a method named .load(). Which one
is fired depends on the set of arguments passed.

•

•

•

Chapter 7

[157]

.loadIfModified()
Loads data from the server, if it has changed since the last request, and places the
returned HTML into the matched element.
 .loadIfModified(url[, data][, success])

Parameters
url: A string containing the URL to which the request is sent
data: (optional): A map of data that is sent with the request
success: (optional): A function that is executed if the request succeeds

Return Value
The jQuery object, for chaining purposes.

Description
This method is roughly equivalent to $.getIfModified(url, data, success)
except that it is a method rather than a global function and it has an implicit callback
function. When a successful response is detected, .loadIfModified() sets the
HTML contents of the matched element to the returned data. This means that most
uses of the method can be quite simple:

$('.result').loadIfModified('ajax/test.html');

The provided callback, if any, is executed after this post-processing has
been performed:

$('.result').loadIfModified('ajax/test.html', function() {
 $(this).log('Load was performed.');
});

The POST method is used if data is provided; otherwise, GET is assumed.

For more information on how the modification date checking works,
see $.getIfModified().

$.post()
Loads data from the server using a POST HTTP request.
 $.post(url[, data][, success])

•

•

•

AJAX Methods

[158]

Parameters
url: A string containing the URL to which the request is sent
data: (optional): A map of data that is sent with the request
success: (optional): A function that is executed if the request succeeds

Return Value
The XMLHttpRequest object that was created.

Description
This is a shorthand AJAX function, which is equivalent to:

$.ajax({
 type: 'POST',
 url: url,
 data: data,
 success: success
});

The callback is passed the returned data, which will be an XML root element or a text
string depending on the MIME type of the response.

Most implementations will specify a success handler:

$.post('ajax/test.html', function(data) {
 $('.result').html(data);
 $().log('Load was performed.');
});

This example fetches the requested HTML snippet and inserts it on the page.

Pages fetched with POST are never cached, so the ifModified option has no effect on
these requests.

$.getJSON()
Loads JSON-encoded data from the server using a GET HTTP request.
 $.getJSON(url[, data][, success])

Parameters
url: A string containing the URL to which the request is sent
data: (optional): A map of data that is sent with the request
success: (optional): A function that is executed if the request succeeds

•

•

•

•
•
•

Chapter 7

[159]

Return Value
The XMLHttpRequest object that was created.

Description
This is a shorthand AJAX function, which is equivalent to:

$.ajax({
 url: url,
 dataType: 'json',
 data: data,
 success: success
});

The callback is passed the returned data, which will be a JavaScript object or array as
defined by the JSON structure and parsed using the eval() function.

For details on the JSON format, see http://json.org/.

Most implementations will specify a success handler:

$.getJSON('ajax/test.json', function(data) {
 $('.result').html('<p>' + data.foo + '</p><p>' + data.baz[1]
 + '</p>');
 $().log('Load was performed.');
});

This example, of course, relies on the structure of the JSON file:

{
 “foo": “The quick brown fox jumps over the lazy dog.",
 “bar": “How razorback-jumping frogs can level six piqued gymnasts!",
 “baz": [52, 97]
}

Using this structure, the example inserts the first string and second number from the
file onto the page. If there is a syntax error in the JSON file, the request will usually
fail silently; avoid frequent hand-editing of JSON data for this reason.

$.getScript()
Loads a JavaScript from the server using a GET HTTP request, and executes it.
 $.getScript(url[, success])

AJAX Methods

[160]

Parameters
url: A string containing the URL to which the request is sent
success: (optional): A function that is executed if the request succeeds

Return Value
The XMLHttpRequest object that was created.

Descritpion
This is a shorthand AJAX function, which is equivalent to:

$.ajax({
 url: url,
 type: 'script',
 success: success
});

The callback is passed the returned JavaScript file. This is generally not useful as the
script will already have run at this point.

The script is executed in the global context, so it can refer to other variables and use
jQuery functions. Included scripts should have some impact on the current page:

$('.result').html('<p>Lorem ipsum dolor sit amet.</p>');

The script can then be included and run by referencing the file name:

$.getScript('ajax/test.js', function() {
 $().log('Load was performed.');
});

In Safari, the script is not guaranteed to execute before the success callback is
invoked. Practically speaking, this means that the code in the callback should not
call functions or reference variables defined in the external script without at least a
small delay.

Global AJAX Event Handlers
These methods register handlers to be called when certain events take place for any
AJAX request on the page.

•

•

Chapter 7

[161]

.ajaxComplete()
Registers a handler to be called when AJAX requests complete.
 .ajaxComplete(handler)

Parameters
handler: The function to be invoked

Return Value
The jQuery object, for chaining purposes.

Description
Whenever an AJAX request completes, jQuery triggers the ajaxComplete event.
All the handlers that have been registered with the .ajaxComplete() method are
executed at this time.

To observe this method in action, we can set up a basic AJAX load request:

<div class="trigger button">Trigger</div>
<div class="result"></div>
<div class="log"></div>

We can attach our event handler to any element:

$('.log').ajaxComplete(function() {
 $(this).log('Triggered ajaxComplete handler.');
});

Now, we can make an AJAX request using any jQuery method:

$('.trigger').click(function() {
 $('.result').load('ajax/test.html');
});

When the user clicks the button and the AJAX request completes, the log message
is displayed.

All ajaxComplete handlers are invoked, regardless of what AJAX request was
completed. If we must differentiate between the requests, we can use the parameters
passed to the handler. Each time an ajaxComplete handler is executed, it is passed
the event object, the XMLHttpRequest object, and the settings object that was used in
the creation of the request. For example, we can restrict our callback to only handling
events dealing with a particular URL:

•

AJAX Methods

[162]

$('.log').ajaxComplete(function(e, xhr, settings) {
 if (settings.url == 'ajax/test.html') {
 $(this).log('Triggered ajaxComplete handler for
 “ajax/test.html".');
 }
});

.ajaxError()
Registers a handler to be called when AJAX requests complete with an error.
 .ajaxError(handler)

Parameters
handler: The function to be invoked

Return Value
The jQuery object, for chaining purposes.

Description
Whenever an AJAX request completes with an error, jQuery triggers the ajaxError
event. All the handlers that have been registered with the .ajaxError() method are
executed at this time.

To observe this method in action, we can set up a basic AJAX load request:

<div class="trigger button">Trigger</div>
<div class="result"></div>
<div class="log"></div>

We can attach our event handler to any element:

$('.log').ajaxError(function() {
 $(this).log('Triggered ajaxError handler.');
});

Now, we can make an AJAX request using any jQuery method:

$('.trigger').click(function() {
 $('.result').load('ajax/missing.html');
});

When the user clicks the button and the AJAX request fails, because the requested
file is missing, the log message is displayed.

•

Chapter 7

[163]

All ajaxError handlers are invoked, regardless of what AJAX request was
completed. If we must differentiate between the requests, we can use the parameters
passed to the handler. Each time an ajaxError handler is executed, it is passed the
event object, the XMLHttpRequest object, and the settings object that was used in the
creation of the request. If the request failed because JavaScript raised an exception,
the exception object is passed to the handler as a fourth parameter. For example, we
can restrict our callback to only handling events dealing with a particular URL:

$('.log').ajaxError(function(e, xhr, settings, exception) {
 if (settings.url == 'ajax/missing.html') {
 $(this).log('Triggered ajaxError handler for
 “ajax/missing.html".');
 }
});

.ajaxSend()
Registers a handler to be called when AJAX requests begins.
 .ajaxSend(handler)

Parameters
handler: The function to be invoked

Return Value
The jQuery object, for chaining purposes.

Description
Whenever an AJAX request is about to be sent, jQuery triggers the ajaxSend event.
All the handlers that have been registered with the .ajaxSend() method are
executed at this instant of time.

To observe this method in action, we can set up a basic AJAX load request:

<div class="trigger button">Trigger</div>
<div class="result"></div>
<div class="log"></div>

We can attach our event handler to any element:

$('.log').ajaxSend(function() {
 $(this).log('Triggered ajaxSend handler.');
});

•

AJAX Methods

[164]

Now, we can make an AJAX request using any jQuery method:

$('.trigger').click(function() {
 $('.result').load('ajax/test.html');
});

When the user clicks the button and the AJAX request is about to begin, the log
message is displayed.

All ajaxSend handlers are invoked, regardless of what AJAX request is to be sent. If
we must differentiate between the requests, we can use the parameters passed to the
handler. Each time an ajaxSend handler is executed, it is passed the event object, the
XMLHttpRequest object, and the settings object that was used in the creation of the
request. For example, we can restrict our callback to only handling events dealing
with a particular URL:

$('.log').ajaxSend(function(e, xhr, settings) {
 if (settings.url == 'ajax/test.html') {
 $(this).log('Triggered ajaxSend handler for “ajax/test.html".');
 }
});

.ajaxStart()
Registers a handler to be called when the first AJAX request begins.
 .ajaxStart(handler)

Parameters
handler: The function to be invoked

Return Value
The jQuery object, for chaining purposes.

Description
Whenever an AJAX request is about to be sent, jQuery checks whether there are
any other outstanding AJAX requests. If none are in progress, jQuery triggers the
ajaxStart event. All the handlers that have been registered with the .ajaxStart()
method are executed at this instant of time.

•

Chapter 7

[165]

To observe this method in action, we can set up a basic AJAX load request:

<div class="trigger button">Trigger</div>
<div class="result"></div>
<div class="log"></div>

We can attach our event handler to any element:

$('.log').ajaxStart(function() {
 $(this).log('Triggered ajaxStart handler.');
});

Now, we can make an AJAX request using any jQuery method:

$('.trigger').click(function() {
 $('.result').load('ajax/test.html');
});

When the user clicks the button and the AJAX request is sent, the log message
is displayed.

.ajaxStop()
Registers a handler to be called when all AJAX requests have completed.
 .ajaxStop(handler)

Parameters
handler: The function to be invoked

Return Value
The jQuery object, for chaining purposes.

Description
Whenever an AJAX request completes, jQuery checks whether there are any other
outstanding AJAX requests; if none are remaining, jQuery triggers the ajaxStop
event. All the handlers that have been registered with the .ajaxStop() method are
executed at this instant of time.

To observe this method in action, we can set up a basic AJAX load request:

<div class="trigger button">Trigger</div>
<div class="result"></div>
<div class="log"></div>

•

AJAX Methods

[166]

We can attach our event handler to any element:

$('.log').ajaxStop(function() {
 $(this).log('Triggered ajaxStop handler.');
});

Now, we can make an AJAX request using any jQuery method:

$('.trigger').click(function() {
 $('.result').load('ajax/test.html');
});

When the user clicks the button and the AJAX request completes, the log message
is displayed.

Because .ajaxStart(), .ajaxStop(), .ajaxSend(),
ajaxError(), and .ajaxComplete() are implemented as a methods
rather than global functions, we can use the keyword this as we do here
to refer to the selected elements within the callback function.

.ajaxSuccess()
Registers a handler to be called when AJAX requests are successfully completed.
 .ajaxSuccess(handler)

Parameters
handler: The function to be invoked

Return Value
The jQuery object, for chaining purposes.

Description
Whenever an AJAX request is successfully completed, jQuery triggers the
ajaxSuccess event. All the handlers that have been registered with the
.ajaxSuccess() method are executed at this instant of time.

To observe this method in action, we can set up a basic AJAX load request:

<div class="trigger button">Trigger</div>
<div class="result"></div>
<div class="log"></div>

•

Chapter 7

[167]

We can attach our event handler to any element:

$('.log').ajaxSuccess(function() {
 $(this).log('Triggered ajaxSuccess handler.');
});

Now, we can make an AJAX request using any jQuery method:

$('.trigger').click(function() {
 $('.result').load('ajax/test.html');
});

When the user clicks the button and the AJAX request successfully completes, the log
message is displayed.

Because .ajaxSuccess() is implemented as a method rather than a
global function, we can use the this keyword as we do here to refer to
the selected elements within the callback function.

All ajaxSuccess handlers are invoked, regardless of what AJAX request was
completed. If we must differentiate between the requests, we can use the parameters
passed to the handler. Each time an ajaxSuccess handler is executed, it is passed
the event object, the XMLHttpRequest object, and the settings object that was used in
the creation of the request. For example, we can restrict our callback only to handling
events dealing with a particular URL:

$('.log').ajaxSuccess(function(e, xhr, settings) {
 if (settings.url == 'ajax/test.html') {
 $(this).log('Triggered ajaxSuccess handler for
 “ajax/test.html".');
 }
});

Helper Function
This function assists with common idioms encountered when performing
AJAX tasks.

.serialize()
Encodes a set of form elements as a string for submission.
 .serialize(param)

AJAX Methods

[168]

Parameters
None.

Return Value
A string containing the serialized representation of the elements.

Description
The .serialize() method creates a text string in standard URL-encoded notation.
It operates on a jQuery object representing a set of form elements. The form elements
can be of several types:

<form>
 <div><input type="text" name="a" value="1" id="a" /></div>
 <div><input type="text" name="b" value="2" id="b" /></div>
 <div><input type="hidden" name="c" value="3" id="c" /></div>
 <div><textarea name="d" rows="8" cols="40">4</textarea></div>
 <div><select name="e">
 <option value="5" selected="selected">5</option>
 <option value="6">6</option>
 <option value="7">7</option>
 </select></div>
 <div><input type="checkbox" name="f" value="8" id="f" /></div>
 <div><input type="submit" name="g" value="Submit" id="g">
</form>

We can serialize all of these element types after selecting them:

$('form').submit(function() {
 $(this).log($('input, textarea, select').serialize());
 return false;
});

This produces a standard-looking query string:

a=1&b=2&c=3&f=8&g=Submit&d=4&e=5

The string is close to, but not exactly the same as, the one that would be produced
by the browser during a normal form submission. The .submit() method uses the
.name and .value properties of each element to create the string, so in cases where
these properties do not reflect the actual form values, the string can be incorrect. For
example, the checkbox in the example above always has a .value of 8, whether or
not the box is checked.

For a more robust solution, the form plug-in is available. Its methods provide an
encoding that matches the one provided by a browser.

Miscellaneous Methods
Freedom of choice is what you got
Freedom from choice is what you want
 —Devo,
 "Freedom of Choice"

In the preceding chapters, we have examined many categories of jQuery methods.
A few methods provided by the library have so far defied categorization, though.
In this chapter, we will explore methods that can be used to abbreviate common
JavaScript idioms.

Setup Methods
These functions are useful before the main code body begins.

$.browser
Contains information about the currently running browser.
 $.browser

Parameters
None.

Return Value
Boolean flags for each user agent possibility.

Miscellaneous Methods

[170]

Description
The $.browser property allows us to detect which web browser is accessing the
page, as reported by the browser itself. It contains flags for each of the four most
prevalent browser classes—Internet Explorer, Mozilla, Safari, and Opera. The
browsers can be tested independently:

$()
 .log('Safari: ' + $.browser.safari)
 .log('Opera: ' + $.browser.opera)
 .log('MSIE: ' + $.browser.msie)
 .log('Mozilla: ' + $.browser.mozilla);

When executed on a Firefox browser, the results are:

Safari: false
Opera: false
MSIE: false
Mozilla: true

This property is available immediately. It is therefore safe to use it to determine
whether or not to call $(document).ready().

Because $.browser uses navigator.useragent to determine the platform, it is
vulnerable to spoofing by the user. It is always best to avoid browser-specific code
entirely where possible. In special cases where it needs to be written for different
agents, the best alternative is to test for the presence of the JavaScript features you
want to use. If this does not differentiate the clients well enough, the $.browser
property can be used for further distinctions.

$.noConflict()
Relinquishes jQuery’s control of the $ variable.
 $.noConflict()

Parameters
None.

Return Value
The global jQuery object. This can be set to a variable to provide an alternative
shortcut to $.

Chapter 8

[171]

Description
Many JavaScript libraries use $ as a function or variable name, just as jQuery does.
In jQuery’s case, $ is just an alias for jQuery, so all functionality is available without
using $. If we need to use another JavaScript library alongside jQuery, we can return
control of $ back to the other library with a call to $.noConflict():

// Import other library
// Import jQuery
$.noConflict();
// Code that uses other library’s $ can follow here.

This technique is especially effective in conjunction with the .ready() method’s
ability to alias the jQuery object, as within the .ready() we can use $ if we wish
without fear of conflicts later:

// Import other library
// Import jQuery
$.noConflict();
jQuery(document).ready(function($) {
 // Code that uses jQuery’s $ can follow here.
});
// Code that uses other library’s $ can follow here.

DOM Element Methods
These methods help us to work with the DOM elements underlying each
jQuery object.

.length
Returns the number of DOM elements matched by the jQuery object.
 .length

Parameters
None.

Return Value
The number of elements matched.

Miscellaneous Methods

[172]

Description
Suppose we had a simple unordered list on the page:

 foo
 bar

We can determine the number of list items by calling .length:

$().log('Length: ' + $('li’).length);

.size()
Returns the number of DOM elements matched by the jQuery object.
 .size()

Parameters
None.

Return Value
The number of elements matched.

Description
Suppose we had a simple unordered list on the page:

 foo
 bar

We can determine the number of list items by calling .size():

$().log('Size: ' + $('li’).size());

.get()
Retrieves DOM elements matched by the jQuery object.
 .get([index])

Chapter 8

[173]

Parameters
index (optional): An integer indicating which element to retrieve

Return Value
A DOM element, or an array of DOM elements if the index is omitted.

Description
The .get() method grants us access to the DOM nodes underlying each jQuery
object. Suppose we had a simple unordered list on the page:

 foo
 bar

With an index specified, .get() will retrieve a single element:

$().log('Get(0): ' + $('li’).get(0));

Since the index is zero-based, the first list item is returned:

Get(0): [object HTMLLIElement]

Each jQuery object also masquerades as an array, so we can use the array
dereferencing operator to get at the list item instead:

$().log('Get(0): ' + $('li’)[0]);

Without a parameter, .get() returns all of the matched DOM nodes in a regular
array:

$().log('Get(): ' + $('li’).get());

In our example, this means that all list items are returned:

Get(): [object HTMLLIElement],[object HTMLLIElement]

.index()
Searches for a given DOM node from among the matched elements.
 .index(node)

Parameters
node: The DOM element to look for

•

•

Miscellaneous Methods

[174]

Return Value
The position of the element within the jQuery object, or -1 if not found.

Description
The complementary operation to .get(), that accepts an index and returns a DOM
node, .index() takes a DOM node and returns an index. Suppose we had a simple
unordered list on the page:

 foo
 bar

If we retrieve one of the two list items, we can store it in a variable. Then .index()
can search for this list item within the set of matched elements:

var listItem = $('li’)[1];
$().log('Index: ' + $('li’).index(listItem));

We get back the zero-based position of the list item:

Index: 1

Collection Manipulation
These helper functions manipulate arrays, maps, and strings.

.each()
Iterates over a collection, firing a callback function on each item.
 .each(callback)

 $.each(collection, callback)

Parameters (First Version)
callback: A function to execute for each matched element

Return Value (First Version)
The jQuery object, for chaining purposes.

Parameters (Second Version)
collection: An object or an array to iterate over
callback: A function to execute for each item in the collection

•

•
•

Chapter 8

[175]

Return Value (Second Version)
The collection.

Description
The .each() method and $.each() function are generic iterators designed to make
concise and less error-prone looping constructs. They operate on a collection, and
execute a callback function once for every item in that collection.

The first syntax listed above is a method of jQuery objects, and when called it
iterates over the DOM elements that are part of the object. Each time the callback
runs, it is passed the current loop iteration, beginning from 0, as a parameter. More
importantly, the callback is fired in the context of the current DOM element, so the
keyword this refers to that element.

Suppose we had a simple unordered list on the page:

 foo
 bar

We can select the list items and iterate across them:

$('li’).each(function(index) {
 $(this).log(index + ': ' + $(this).text());
});

A message is thus logged for each item in the list:

0: foo
1: bar

The second syntax is similar, but it is a global function rather than a method. The
collection is passed as the first parameter in this case, and can be either a map
(JavaScript object) or an array. In the case of an array, the callback is passed an array
index and corresponding array value as parameters each time:

$.each([52, 97], function(key, value) {
 $().log(key + ': ' + value);
});

This produces two messages:

0: 52
1: 97

Miscellaneous Methods

[176]

If a map is used as the collection, the callback is passed a key-value pair as parameter
each time:

$.each({'flammable’: 'inflammable’, 'duh’: 'no duh’}, function(index,
value) {
 $().log(index + ': ' + value);
});

Once again, this produces two messages:

flammable: inflammable
duh: no duh

$.grep()
Winnow an array down to a selected set of items.
 $.grep(array, filter[, invert])

Parameters
array: The array to search through
filter: A function to apply as a test for each item, or a string containing an
expression to use as a test
invert (optional): A Boolean indicating whether to reverse the filter condition

Return Value
The newly constructed, filtered array.

Description
The $.grep() method removes items from an array as necessary so that all
remaining items pass a provided test. The test is a function that is passed an array
item and the index of the item within the array as parameters; only if the test returns
true will the item be in the result array.

As is typical with jQuery methods, the callback function is often
defined anonymously:

var array = [0, 1, 52, 97];
$(this).log('Before: ' + array);
array = $.grep(array, function(a) {
 return (a > 50);
});
$(this).log('After: ' + array);

•

•

•

Chapter 8

[177]

All array items that are over 50 are preserved in the result array:

Before: 0,1,52,97
After: 52,97

Since filter functions tend to be very short, jQuery provides a further shortcut. Filter
functions can be defined as a single expression that is evaluated for each item a in
the array:

var array = [0, 1, 52, 97];
$(this).log('Before: ' + array);
array = $.grep(array, 'a > 50’);
$(this).log('After: ' + array);

This produces the same results as before. We can invert this test by adding the
third parameter:

var array = [0, 1, 52, 97];
$(this).log('Before: ' + array);
array = $.grep(array, 'a > 50’, true);
$(this).log('After: ' + array);

This now produces an array of items less than or equal to 50:

Before: 0,1,52,97
After: 0,1

$.map()
Transform an array into another one by using a filter function.
 $.map(array, filter)

Parameters
array: The array to convert
filter: A function to apply to each item, or a string containing an expression
to apply

Return Value
The newly constructed, transformed array.

Description
The $.map() method applies a function to each item in an array, collecting the
results into a new array. The filter is a function that is passed an array item and the
index of the item within the array as parameters.

•

•

Miscellaneous Methods

[178]

As is typical with jQuery methods, the callback function is often
defined anonymously:

var array = [0, 1, 52, 97];
$(this).log('Before: ' + array);
array = $.map(array, function(a) {
 return (a - 45);
});
$(this).log('After: ' + array);

All array items are reduced by 45 in the result array:

Before: 0,1,52,97
After: -45,-44,7,52

Since filter functions tend to be very short, jQuery provides a further shortcut. Filter
functions can be defined as a single expression that is applied to each item a in
the array:

var array = [0, 1, 52, 97];
$(this).log('Before: ' + array);
array = $.map(array, 'a - 45’);
$(this).log('After: ' + array);

This produces the same results as before. We can remove items from the array by
returning null from the filter function:

var array = [0, 1, 52, 97];
$(this).log('Before: ' + array);
array = $.map(array, 'a > 50 ? a - 45 : null’);
$(this).log('After: ' + array);

This now produces an array of the items that were greater than 50, each reduced
by 45:

Before: 0,1,52,97
After: 7,52

If the filter function returns an array rather than a scalar, the returned arrays are
concatenated together to form the result:

var array = [0, 1, 52, 97];
$(this).log('Before: ' + array);
array = $.map(array, function(a, i) {
 return [a - 45, i];
});
$(this).log('After: ' + array);

Chapter 8

[179]

Instead of a two-dimensional result array, the map forms a flattened one:

Before: 0,1,52,97
After: -45,0,-44,1,7,2,52,3

$.merge()
Merge the contents of two arrays together into the first array.
 $.merge(array1, array2)

Parameters
array1: The first array to merge
array2: The second array to merge

Return Value
An array consisting of elements from both supplied arrays.

Description
The $.merge() operation forms an array that contains all elements from the two
arrays, with duplicates removed. The order of items in the first array is preserved,
with items from the second array appended:

var array1 = [0, 1, 52];
var array2 = [52, 97];
$(this).log('Array 1: ' + array1);
$(this).log('Array 2: ' + array2);
array = $.merge(array1, array2);
$(this).log('After: ' + array);

The resulting array contains all four distinct items:

Array 1: 0,1,52
Array 2: 52,97
After: 0,1,52,97

The $.merge() function is destructive. It alters the first parameter to add the items
from the second. If you need the original first array, make a copy of it before calling
$.merge(). Fortunately, $.merge() itself can be used for this duplication:

var newArray = $.merge([], oldArray);

This shortcut creates a new, empty array and merges the contents of oldArray into
it, effectively cloning the array.

•

•

Miscellaneous Methods

[180]

$.unique()
Creates a copy of an array of objects with the duplicates removed.
 $.unique(array)

Parameters
array: An array of objects

Return Value
An array consisting of only unique objects.

Description
The $.unique() function searches through an array of objects, forming a new
array that does not contain duplicate objects. Two objects are considered distinct if
they refer to different locations in memory, even if their contents are identical. The
original array is not modified. The array may consist of any kind of JavaScript object:

var alice = {'alice’: 'alice’};
var bob = {'bob’: 'bob’};
var carol = {'carol’: 'carol’};
var ted = {'bob’: 'bob’};
var oldArray = [alice, bob, carol, bob, ted];
$(this).log('Before: ' + oldArray);
newArray = $.unique(oldArray);
$(this).log('After: ' + newArray);

The resulting array contains only the four distinct items:

Before: {alice: alice}, {bob: bob}, {carol: carol},
 {bob: bob}, {bob: bob}
After: {alice: alice, mergeNum: 52}, {bob: bob, mergeNum: 52},
 {carol: carol, mergeNum: 52}, {bob: bob, mergeNum: 52}

The second instance of the object named bob is removed from the resulting array.
However, the object named ted remains even though it has identical content, since it
was created as a separate object.

Note that $.unique() modifies the objects in the array, adding an extra property
called mergeNum to each. This property is a side effect of the implementation of the
function, and is not useful to the calling code.

•

Chapter 8

[181]

$.extend()
Merge the contents of two objects together into the first object.
 $.extend([target,]properties[, ...])

Parameters
target (optional): An object which will receive the new properties
properties: An object containing additional properties to merge in

Return Value
The target object after it has been modified.

Description
The $.extend() function merges two objects in the same way that $.merge()
merges arrays. The properties of the second object are added to the first, creating an
object with all the properties of both objects:

var object1 = {
 apple: 0,
 banana: 52,
 cherry: 97
};
var object2 = {
 banana: 1,
 durian: 100
};

$().log(object1);
$().log(object2);
var object = $.extend(object1, object2);
$().log(object);

The value for durian in the second object gets added to the first, and the value for
banana gets overwritten:

{apple: 0, banana: 52, cherry: 97, }
{banana: 1, durian: 100, }
{apple: 0, banana: 1, cherry: 97, durian: 100, }

The $.extend() function is destructive; the target object is modified in the process.
This is generally desirable behavior, as $.extend() can in this way be used to
simulate object inheritance. Methods added to the object become available to all the

•

•

Miscellaneous Methods

[182]

code that has a reference to the object. If, however, we want to preserve both of the
original objects, we can do this by passing an empty object as the target:

var object = $.extend({}, object1, object2)

We can also supply more than two objects to $.extend(). In this case, properties
from all of the objects are added to the target object.

If only one argument is supplied to $.extend(), this means the target argument
was omitted. In this case, the jQuery object itself is assumed to be the target. By
doing this, we can add new functions to the jQuery namespace. We will explore this
capability when discussing how to create jQuery plug-ins.

The merge performed by $.extend() is not recursive; if a property of the first object
is itself an object or an array, it will be completely overwritten by a property with the
same key in the second object. The values are not merged.

$.trim()
Removes whitespace from the ends of a string.
 $.trim()

Parameters
string: A string to trim

Return Value
The trimmed string.

Description
The $.trim() function removes all newlines, spaces, and tabs from the beginning
and end of the supplied string:

var string = "\tYes, no, I, this is. \n ";
$(this).log('Before: ' + string);
string = $.trim(string);
$(this).log('After: ' + string);

All of the whitespace characters are trimmed:

Before: Yes, no, I, this is.

After: Yes, no, I, this is.

•

Plug-In API
I do two at a time now
I've developed a technique
 —Devo,
 "Fräulein"

Whenever a task is to be performed two or more times, it is a good idea to apply the
DRY principle—Don't Repeat Yourself. To facilitate this, jQuery provides several
tools for developers that go beyond simple iteration and function creation. Plug-in
development is a technique that proves rewarding time and time again.

In this chapter, we'll take a brief look at the basics of using another developer's
plug-in, and then delve into the various ways of extending jQuery with plug-ins we
define ourselves.

Using a Plug-in
Taking advantage of an existing jQuery plug-in is very straightforward. A plug-in
is contained in a standard JavaScript file. There are many ways to obtain the file,
but the simplest is to browse the jQuery plug-in repository at http://jquery.com/
plugins. The latest releases of many popular plug-ins are available for download
from this site.

To make a plug-in's methods available to us, we just include it in the <head> of the
document. We must ensure that it appears after the main jQuery source file, and
before our custom JavaScript code:

<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <script src="jquery.js" type="text/javascript"></script>

Plug-In API

[184]

 <script src="jquery.plug-in.js" type="text/javascript"></script>

 <script src="custom.js" type="text/javascript"></script>
 <title>Example</title>
</head>

After that, we're ready to use any of the methods made public by the plug-in. For
example, using the Form plug-in, we can add a single line inside our custom file's
$(document).ready method to submit a form via AJAX:

$(document).ready(function() {
 $('#myForm').ajaxForm();
});

Each plug-in is independently documented. In the subsequent chapters, we will
examine a couple of the more prominent plug-ins in detail, describing each of their
methods. To find out more about other plug-ins, we can explore the documentation
linked from the jQuery plug-in repository, or read the explanatory comments found
in the source code itself.

If we can't find the answers to all of our questions in the plug-in repository, the
author's website, or the plug-in's comments, we can always turn to the jQuery
discussion list. Many of the plug-in authors are frequent contributors to the
list and are always willing to help with any problems that new users might face.
Instructions for subscribing to the discussion list can be found at
http://docs.jquery.com/Discussion.

Developing a Plug-in
As we discussed above, plug-in development is a useful technique whenever we are
going to perform a task more than once. Here we will itemize the components that
can populate a plug-in file of our own design. Our plug-ins can use any combination
of the following four types of jQuery enhancements: object methods, global functions,
selector expressions, and easing styles.

Object Method
Adds a new method to all jQuery objects created with the $() factory function.
 jQuery.fn.methodName = methodDefinition;

Chapter 9

[185]

Components
methodName: A label for the new method.
methodDefinition: A function object to execute when .methodName() is
called on a jQuery object instance.

Discussion
When a function needs to act on one or more DOM elements, creating a new jQuery
object method is usually appropriate. Object methods have access to the matched
elements that are referenced by the jQuery object, and can inspect or
manipulate them.

The jQuery object can be retrieved from within the method implementation by
referencing the keyword this. We can either call the built-in jQuery methods of this
object, or we can extract the DOM nodes to work with them directly. As we saw in
Chapter 8, we can retrieve a referenced DOM node using array notation:

jQuery.fn.showAlert = function() {
 alert('You called the method on "' + this[0] + '".');
 return this;
}

Here, we use this[0] to find one element, but we need to remember that a jQuery
selector expression can always match zero, one, or multiple elements. We must allow
room for any of these scenarios when designing a plug-in method. The easiest way
to accomplish this is to call .each() on the method context; this enforces implicit
iteration, which is important for maintaining consistency between plug-in and built-
in methods. Within the function argument of the .each() call, this refers to each
DOM element in turn:

jQuery.fn.showAlert = function() {
 return this.each(function() {
 alert('You called the method on "' + this + '".');
 });
}

Now we can apply our method to a jQuery object referencing multiple items:

$('.myClass').showAlert();

Our method produces a separate alert for each element that was matched by the
preceding selector expression.

•

•

Plug-In API

[186]

Note also that in these examples, we return the jQuery object itself (referenced by
this) when we are done with our work. This enables the chaining behavior that
jQuery users should be able to rely on. We must return a jQuery object from all plug-
in methods, unless the method is clearly intended to retrieve a different piece of
information and is documented as such.

Global Function
Makes a new function available to scripts, contained within the jQuery
namespace.
 jQuery.pluginName = fnDefinition;

 jQuery.pluginName = {

 function1: fnDefinition1,

 function2: fnDefinition2

 };

Components (First Version)
pluginName: The name of the current plug-in.
fnDefinition: A function object to execute when $.pluginName() is called.

Components (Second Version)
pluginName: The name of the current plug-in.
function1: A label for the first function.
fnDefinition1: A function object to execute when $.pluginName.
function1() is called.
function2: A label for the second function.
fnDefinition2: A function object to execute when $.pluginName.
function2() is called.

Discussion
What we call global functions here are technically methods of the jQuery function
object. Practically speaking, they are functions within a jQuery namespace. By
placing the function within the jQuery namespace, we reduce the chance of name
conflicts with other functions and variables in scripts.

•

•

•

•

•

•

•

Chapter 9

[187]

Single Functions
The first usage opposite illustrates the creation of a global function when the plug-in
needs only a single function. By using the plug-in name as the function name, we can
ensure that our function definition will not be trod on by other plug-ins (as long as
the others follow the same guideline!). The new function is assigned as a property of
the jQuery function object:

jQuery.myPlugin = function() {
 alert('This is a test. This is only a test.');
};

Now in any code that uses this plug-in, we can write:

jQuery.myPlugin();

We can also use the $ alias and write:

$.myPlugin();

This will work just like any other function call, and the alert will be displayed.

Multiple Functions
In the second usage, we see how to define global functions when more than one
is needed by the same plug-in. We encapsulate all of the plug-ins within a single
namespace, named after our plug-in:

jQuery.myPlugin = {
 foo: function() {
 alert('This is a test. This is only a test.');
 },
 bar: function(param) {
 alert('This function takes a parameter, which is "'
 + param + '".');
 }
};

To invoke these functions, we address them as members of an object named after our
plug-in, which is itself a property of the global jQuery function object:

$.myPlugin.foo();
$.myPlugin.bar('baz');

Functions are now properly protected from collisions with other functions and
variables in the global namespace.

In general, it is wise to use this second usage from the start, even if it seems that only
one function will be needed, as it makes future expansion easier.

Plug-In API

[188]

Selector Expression
Adds a new way to find DOM elements using a jQuery selector string.
 jQuery.extend(jQuery.expr[selectorType], {

 selectorName: elementTest

 });

Components
selectorType: The prefix character for the selector string, which indicates
which type of selector is being defined. In practice, the useful value for
plug-ins is ':', which indicates a pseudo-class selector.
selectorName: A string uniquely identifying this selector.
elementTest: A string containing a JavaScript expression to evaluate. If the
expression evaluates to true for an element a, that element will be included
in the resulting set; otherwise, the element will be excluded.

Discussion
Plug-ins can add selector expressions that allow scripts to find specific sets of DOM
elements using a compact syntax. Generally, the expressions that plug-ins add are
new pseudo-classes, identified by a leading ':' character.

The pseudo-classes that are supported by jQuery have the general format
:selectorName(param1(param2)). Only the selectorName portion of this format is
required; param1 and param2 are available if the pseudo-class allows parameters to
make it more specific.

The element test expression can refer to two special variables, named a and m.
The DOM element being tested is stored in a, and the components of the selector
expression are held in m. The contents of m are the result of a regular expression
match, which breaks :selectorName(param1(param2)) down as follows:

m[0] == ':selectorName(param1(param2))'
m[1] == ':'
m[2] == 'selectorName'
m[3] == 'param1(param2)'
m[4] == '(param2)'

For example, we can build a pseudo-class that tests the number of child nodes of an
element, and call this new selector expression :num-children(n):

jQuery.extend(jQuery.expr[':'], {
 'num-children': 'a.childNodes.length == m[3]'
});

•

•

•

Chapter 9

[189]

Now we can, for example, select all elements with exactly two child nodes, and
turn them red:

$(document).ready(function() {
 $('ul:num-children(2)').css('color', 'red');
});

If it is necessary to add selector expressions other than pseudo-classes,
jQuery.parse inside jquery.js should be consulted to find the relevant
regular expression matches for other selector types.

Easing Style
Defines an acceleration curve for future animations.
 jQuery.extend(jQuery.easing, {

 easingStyleName: easingFunction

 });

Components
easingStyleName: A label for the new easing style.
easingFunction: A function object that determines the animation value at
any given moment. Easing functions are passed the following arguments:

fraction: The current position of the animation, as measured
in time between 0 (the beginning of the animation) and 1 (the
end of the animation).
elapsed: The number of milliseconds that have passed since
the beginning of the animation (seldom used).
attrStart: The beginning value of the CSS attribute that is
being animated.
attrDelta: The difference between the start and end values
of the CSS attribute that is being animated.
duration: The total number of milliseconds that will pass
during the animation (seldom used).

Discussion
Most effect methods trigger an animation with a fixed easing style, called swing.
An easing style defines how the animation will speed up and slow down over time.
The .animate method gives us more flexibility; a parameter to the method allows a
custom easing style to be specified. New easing styles can be created using this plug-
in mechanism.

•

•

°

°

°

°

°

Plug-In API

[190]

An easing function must return the value of the property being animated at any
moment within the animation. Because of the arguments that are passed to an easing
function, the calculation usually takes the form:

f(fraction) * attrDelta + attrStart

In this calculation, f represents a mathematical function whose value varies from 0
to 1 as its parameter varies from 0 to 1. For example, an easing style that caused the
animation to proceed at a constant rate would require a linear function (f(x) = x):

In a plug-in, this easing style would be expressed with the following code:

jQuery.extend(jQuery.easing, {
 'linear': function(fraction, elapsed, attrStart, attrDelta,
 duration) {
 return fraction * attrDelta + attrStart;
 }
});

Chapter 9

[191]

On the other hand, if we wished our animation to begin slowly and speed up
gradually, we could use a quadratic function (f(x) = x2):

In a plug-in, this easing style would be expressed with the following code:

jQuery.extend(jQuery.easing, {
 'quadratic': function(fraction, elapsed, attrStart, attrDelta,
 duration) {
 return fraction * fraction * attrDelta + attrStart;
 }
});

With an easing plug-in such as this one installed, we can choose the new easing style
any time we invoke the .animate method:

$('.myClass').animate({
 'left': 500,
 'opacity': 0.1
}, 'slow', 'quadratic');

With this call, all elements with a class of myClass attached will move and fade to
the specified values, starting slowly and speeding up gradually until they reach
their destinations.

Plug-In API

[192]

Example: Maintaining Multiple Event
Logs
In the various examples in preceding reference chapters, we have had the need to
display log events when various events occur. JavaScript's alert function is often
used for this type of demonstration, but does not allow for the frequent, timely
messages we needed on occasion. A better alternative is the console.log function
available to Firefox and Safari, which allows printing messages to a separate log
that does not interrupt the flow of interaction on the page. As this function is not
available to Internet Explorer, however, we used a custom function to achieve this
style of message logging.

The Firebug Lite script (described in Appendix B) provides a very robust
cross-platform logging facility. The method we develop here is tailored
specifically for the examples in the preceding chapters; for general utility,
Firebug Lite is typically preferable.

A simple way to log messages would be to create a global function that appends
messages to a specific element on the page:

jQuery.log = function(message) {
 $('<div class="log-message"></div>')
 .text(message).appendTo('.log');
};

We can get a bit fancier, and have the new message appear with an animation:

jQuery.log = function(message) {
 $('<div class="log-message"></div>')
 .text(message)
 .hide()
 .appendTo('.log')
 .fadeIn();
};

Now we can call $.log('foo') to display foo in the log box on the page.

We sometimes had multiple examples on a single page, however, and it was
convenient to be able to keep separate logs for each example. We accomplished this
by using a method rather than global function:

jQuery.fn.log = function(message) {
 return this.each(function() {
 $('<div class="log-message"></div>')

Chapter 9

[193]

 .text(message)
 .hide()
 .appendTo(this)
 .fadeIn();
 });
};

Now calling $('.log').log('foo') has the effect our global function call did
previously, but we can change the selector expression to target different log boxes.

Ideally, though, the .log method would be intelligent enough to locate the most
relevant box to use for the log message without an explicit selector. By exploiting the
context passed to the method, we can traverse the DOM to find the log box nearest
the selected element:

jQuery.fn.log = function(message) {
 return this.each(function() {
 $context = $(this);
 while ($context.length) {
 $log = $context.find('.log');
 if ($log.length) {
 $('<div class="log-message"></div>')
 .text(message).hide().appendTo($log).fadeIn();
 break;
 }
 $context = $context.parent();
 }
 });
};

This code looks for a log message box within the matched elements, and if none is
found, walks up the DOM in search of one.

Finally, at times we require the ability to display the contents of an object. Printing
out the object itself yields something barely informative like [object Object], so
we can detect the argument type and do some of our own pretty-printing in the case
that an object is passed in:

jQuery.fn.log = function(message) {
 if (typeof(message) == 'object') {
 string = '{';
 $.each(message, function(key, value) {
 string += key + ': ' + value + ', ';
 });
 string += '}';
 message = string;

Plug-In API

[194]

 }
 return this.each(function() {
 $context = $(this);
 while ($context.length) {
 $log = $context.find('.log');
 if ($log.length) {
 $('<div class="log-message"></div>')
 .text(message).hide().appendTo($log).fadeIn();
 break;
 }
 $context = $context.parent();
 }
 });
};

Now we have a method that can be used to write out both objects and strings in a
place that is relevant to the work being done on the page.

Summary
We've viewed plug-ins from two angles in this chapter: usage and development.
We've looked at four types of additions we can make to jQuery with our own
plug-ins. Plug-ins can introduce new global methods and jQuery object methods;
moreover, they can add selector expressions and easing styles.

Often, though, we'll be more interested in using plug-ins that others have created.
While we've already pointed to available documentation for many plug-ins, we will
go into more detail about two of the more popular ones in the following chapters.

Dimensions Plug-In
The symbols we believe in
Sometimes turn inside out
Reshaping each dimension
We're so sure about
 —Devo,
 "Plain Truth"

The Dimensions plug-in, co-authored by Paul Bakaus and Brandon Aaron, helps
bridge the gap between the CSS box model and developers' need to accurately
measure the height and the width of elements in a document. It also measures with
pixel accuracy the top and left offsets of elements, no matter where they are found
on the page. In this chapter, we'll explore this plug-in's various methods and discuss
their options.

Size Methods
In addition to determining the dimensions of the browser window or the document,
the following size methods form a powerful set of tools for identifying an element's
height and width, whether we want to take into account the element's padding and
border sizes or not.

We'll be using the same basic HTML for each of the examples that follow:

<body>
 <div id="container">
<!-- CODE CONTINUES -->
 <div id="content">
 <div class="dim-outer">
 <p>This is the outer dimensions box. It has the following CSS
 rule:</p>

Dimensions Plug-In

[196]

<pre><code>.dim-outer {
 height: 200px;
 width: 200px;
 margin: 10px;
 padding: 1em;
 border: 5px solid #e3e3e3;
 overflow: auto;
 font-size: 12px;
}</code></pre>
 <p>Scroll down for the inner dimensions box.</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore magna
 aliqua. Ut enim ad minim veniam, quis nostrud exercitation
 ullamco laboris nisi ut aliquip ex ea commodo consequat.
 Duis aute irure dolor in reprehenderit in voluptate velit
 esse cillum dolore eu fugiat nulla pariatur. Excepteur
 sint occaecat cupidatat non proident, sunt in culpa qui
 officia deserunt mollit anim id est laborum.</p>
 <div class="dim-inner"> This is the inner dimensions box.
 </div>
 </div>

<!-- CODE CONTINUES -->

 </div>
 </div>
</body>

.height()
Gets the height of the document or window object.
 .height()

Parameters
None.

Return Value
An integer representing the height in pixels.

Discussion
The .height method simply uses the jQuery core method of the same name when
applied to elements. Dimensions extends the use of .height() to the browser
window and the document as well.

Chapter 10

[197]

$(window).height() returns the pixel height of the browser window. If there is a
horizontal scrollbar, it is not included in the height calculation.

$(document).height() returns the pixel height of the document. If the document
has a greater height than the viewable area—in which case a vertical scrollbar is
present—$(document).height() calculates the total height, including both the
visible and the hidden parts.

The following image illustrates the difference between $(document).height() and
$(window).height():

For information on using the .height method with elements on the page,
see Chapter 4.

.width()
Gets the width of the document or window object.
 .width()

Dimensions Plug-In

[198]

Parameters
None.

Return Value
An integer representing the width in pixels.

Description
The .width method, like its .height() counterpart, simply uses the jQuery core
method of the same name when it is applied to elements. However, Dimensions
extends .width() so that we can apply it to the document and the browser window,
as well.

$(document).width() returns the pixel width of the document alone. If there is a
vertical scrollbar, $(document).width() does not include it in the calculation. If the
document has a greater width than the viewable area—in which case a horizontal
scrollbar is present—$(document).width() calcuflates the total height, including
both the visible and the hidden part of the page.

$(window).width() returns the pixel width of the browser. If there is a vertical
scrollbar, it is not included in the width calculation.

The following image illustrates the difference between $(document).width() and
$(window).width():

Chapter 10

[199]

For information on using the .width method with elements on the page,
see Chapter 4.

.innerHeight()
Gets the computed inner height for the first element in the set of matched
elements.
 .innerHeight()

Parameters
None.

Return Value
An integer representing the inner height of the element, in pixels.

Description
The .innerHeight method differs from the basic .height() in that it calculates the
height of the top and bottom padding in addition to the element itself. It does not,
however, include the border or margin in the calculation.

If used with document or window, .innerHeight() calls the Dimensions .height
method to return the value.

Given an element with a height of 200px, font size of 12px, and top and bottom
padding of 1em, .innerHeight() returns 224 (pixels), as can be seen in the
following illustration:

Dimensions Plug-In

[200]

.innerWidth()
Gets the computed inner width for the first element in the set of
matched elements.
 .innerWidth()

Parameters
None.

Return Value
An integer representing the inner width of the element, in pixels.

Description
The .innerWidth method differs from the basic .width() in that it calculates the
width of the left and right padding in addition to the element itself. It does not,
however, include the border or margin in the calculation.

If used with document or window, .innerWidth() calls the Dimensions .width
method to return the value.

Given an element with a width of 200px, font size of 12px, and left and right
padding of 1em, .innerWidth() returns 224 (pixels), as can be seen in the
following illustration:

Chapter 10

[201]

.outerHeight()
Gets the computed outer height of the first element in the set of
matched elements.
 .outerHeight()

Parameters
None.

Return Value
An integer representing the outer height of the element, in pixels.

Discussion
The .outerHeight method differs from the basic .height() in that it calculates the
height of the top and bottom padding and the top and bottom borders in addition
to the element itself. Like .height() and .innerHeight(), however, it does not
include the element's margins in the calculation.

If used with document or window, .outerHeight() calls the Dimensions .height
method to return the value.

Dimensions Plug-In

[202]

.outerWidth()
Gets the computed outer width for the first element in the set of
matched elements.
 .outerWidth()

Parameters
None.

Return Value
An integer representing the outer width of the element, in pixels.

Description
The .outerWidth method differs from the basic .width() in that it calculates the
width of the left and right padding and the left and right borders in addition to the
element itself. Like .width() and .innerWidth(), however, it does not include the
element's margins in the calculations.

If used with document or window, .outerWidth() calls the Dimensions .width
method to return the value.

Chapter 10

[203]

Position Methods
The following methods are helpful in determining the exact positioning of
elements—in relation to a positioned ancestor, the document body, or the viewable
area of the document.

As in the Size Methods section, we'll be using the same basic HTML for each of the
following examples:

<body>
 <div id="container">
<!-- CODE CONTINUES -->
 <div id="content">
 <div class="dim-outer">
 <p>This is the outer dimensions box. It has the
 following CSS rule:</p>
<pre><code>.dim-outer {
 height: 200px;
 width: 200px;
 margin: 10px;
 padding: 1em;
 border: 5px solid #e3e3e3;
 overflow: auto;
 font-size: 12px;
}</code></pre>
 <p>Scroll down for the inner dimensions box.</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore magna
 aliqua. Ut enim ad minim veniam, quis nostrud exercitation
 ullamco laboris nisi ut aliquip ex ea commodo consequat.
 Duis aute irure dolor in reprehenderit in voluptate velit
 esse cillum dolore eu fugiat nulla pariatur. Excepteur
 sint occaecat cupidatat non proident, sunt in culpa qui
 officia deserunt mollit anim id est laborum.</p>
 <div class="dim-inner"> This is the inner dimensions box.
 </div>
 </div>

<!-- CODE CONTINUES -->

 </div>
 </div>
</body>

Dimensions Plug-In

[204]

.scrollTop()

Gets the number of pixels that the window or a scrollable element within the
document has been scrolled down.
 .scrollTop()

Parameters
None.

Return Value
An integer representing the vertical scrollbar position in pixels.

Discussion
The .scrollTop method is able to return the vertical scroll position of either the
browser window or an element within the document. For example, given
<div class="dim-outer"> after it has been scrolled down 96 pixels (as shown in the
following image), $('div.dim-outer').scrollTop() returns 96:

.scrollTop(value)
Sets the number of pixels to be scrolled down in the window or or the matched
set of scrollable element within a document.
 .scrollTop(value)

Chapter 10

[205]

Parameters
value: An integer representing the number of pixels.

Return Value
The jQuery object, for chaining purposes.

Description
By passing in a numeric value to the .scrollTop method, we can move the scroll
position of the browser window or scrollable elements within the document up or
down. In the following image, the scroll position of <div class="dim-outer"> has
been set with $('div.dim-outer').scrollTop(200):

.scrollLeft()
Gets the number of pixels that the window or a scrollable element within the
document has been scrolled from left to right.
 .scrollLeft()

Parameters
None.

Return Value
An integer representing the horizontal scrollbar position in pixels.

•

Dimensions Plug-In

[206]

Description
The .scrollLeft method is able to return the horizontal scroll position of either the
browser window or an element within the document. For example, after the browser
window has been scrolled to the right 24 pixels, as shown in the following image, the
return value of $(window).scrollLeft() is 24:

.scrollLeft(value)

Sets the number of pixels to be scrolled from left to right in the window or the
matched set of scrollable elements within a document.
 .scrollLeft(value)

Parameters
value: An integer representing the number of pixels.

Return Value
The jQuery object, for chaining purposes.

Discussion
By passing in a numeric value to the .scrollLeft method, we can move the scroll
position of the browser window or scrollable elements within the document left or
right. In the following image, the scroll position of the browser window has been set
with $(window).scrollLeft(50)

•

Chapter 10

[207]

.offset()
Gets the top and left coordinates of the first element in the set of matched
elements. Also gets the matched element's scrollTop and scrollLeft offsets.
 .offset([options])
 .offset(options, returnObject)

Parameters (First Version)
options (optional): A map of settings to configure the way the offset is
calculated. Can contain the following items:

margin (optional): A Boolean indicating whether to include
the element's margin in the calculations. Default is true.
border (optional): A Boolean indicating whether to include
the element's border in the calculations. Default is false.
padding (optional): A Boolean indicating whether to include
the element's padding in the calculations. Default is false.
scroll (optional): A Boolean indicating whether to include
the scroll offsets of all ancestor elements in the calculations.
Default is true.
lite (optional): A Boolean indicating whether to use
offsetLite instead of offset. Default is false.

•

°

°

°

°

°

Dimensions Plug-In

[208]

relativeTo (optional): An HTML element representing the ancestor
element relative to which the matched element will be offset. Default is
document.body.

Parameters (Second Version)
options: A map of settings to configure the way the offset is calculated.

margin (optional): A Boolean indicating whether to include
the element's margin in the calculations. Default is true.
border (optional): A Boolean indicating whether to include
the element's border in the calculations. Default is false.
padding (optional): A Boolean indicating whether to include
the element's padding in the calculations. Default is false.
scroll (optional): A Boolean indicating whether to include
the scroll offsets of all ancestor elements in the calculations.
Default is true.
lite (optional): A Boolean indicating whether to use
offsetLite instead of offset. Default is false.
relativeTo (optional): An HTML element representing the
ancestor element relative to which the matched element will
be offset. Default is document.body.
returnObject: An object in which to store the return value.
When the second version of the method is used, the chain will
not be broken, and the result will be assigned to this object.

Return Value (First Version)
An object containing values for top, left, and optionally scrollTop
and scrollLeft.

Return Value (Second Version)
The jQuery object, for chaining purposes.

Description
The .offset method allows us to locate the top and left positions of any element
anywhere on the page, whether its position is static or relative, absolute or
fixed, and regardless of the position of scrollbars. With options for factoring margin,
border, padding, and scroll into the calculation, .offset() provides great flexibility
as well as accuracy.

The following series of images demonstrates the different values returned by
.offset() depending on how the options are set.

•

•

°

°

°

°

°

°

°

Chapter 10

[209]

Defaults

In the first example, the default settings for padding (false), border (false), and
margin (true) are used. The result:

{top: 117, left: 580, scrollTop: 0, scrollLeft: 0}

Note here that since the default for margin is true, the distance from the left edge
of the window to the matched element extends all the way to (but not including) the
element's border.

Including Border

In the second example, the border option is set to true. Since <div class="dim-
outer"> has a 5-pixel border around it, the top and left values increase by
5 pixels each:

{top: 122, left: 585, scrollTop: 0, scrollLeft: 0}

Dimensions Plug-In

[210]

Including Border and Padding

The next example sets both the border and padding options to true (remember that
the margin option's value is true by default). The result is an increase, again, of 5
pixels for the borders and another 12 pixels (1em) for the padding:

{top: 134, left: 597, scrollTop: 0, scrollLeft: 0}

Finding the Position Relative to an Ancestor

With the relativeTo option, we can find the offset distance between an element
and any one of its positioned ancestors. In the next example, we're getting the offset
between <div class="dim-outer"> and <div id="content">. Since this content
<div> is itself offset from the left side of the window due to a container's 24-pixel left
margin, the value of left is now 24 pixels less than that of the previous example:

{top: 27, left: 573, scrollTop: 0, scrollLeft: 0}

It's worth noting here that, since the relativeTo setting takes a DOM element, we
used the shorthand [0] notation to convert a jQuery object to a DOM element before
using it for the relativeTo argument.

Chapter 10

[211]

The top value of 27 is derived from the sum of the floated <div class="dim-
outer"> element's margin (12), border (5), and padding (10). If <div id="content">
had any top padding applied to it, that would be added to the total top offset as well.

Returning Scroll Offsets

The scroll option, which has a default value of true, is particularly useful when the
matched element is inside one or more elements that have the overflow property set
to auto or scroll. It adds the total scroll offsets of all ancestor elements to the total
offset and adds two properties to the returned object, scrollTop and scrollLeft.
Its usefulness can be observed in the following example showing the offset of
<div class="dim-inner"> when <div class="dim-outer"> has been scrolled
down 79 pixels:

{top: 509, left: 597, scrollTop: 79, scrollLeft: 0}

Maintaining Chainability

If we wish to pass in a return object in order to continue chaining methods, we must
still include the options map. To keep the default values intact for those options
while passing in a return object, we can simply use an empty map. For example,
$('div.dim-outer').offset({}, returnObject) obtains the same values as
$('div.dim-outer').offset(), but stores them in returnObject for later use.

Suppose we want to get the offset and scroll values of <div class="dim-outer">
while changing its background color to gray (#cccccc) at the same time. The code
would look like this:

var retObj = {};
$('div.dim-outer')
 .offset({}, retObj)
 .css('background','#ccc');
$(this).log(retObj);

Dimensions Plug-In

[212]

We start by declaring a variable for the return object (retObj). Then we chain the
.offset and .css methods to the selector. Finally, we do something with the object
returned by .offset()—in this case, log the results with our Log plug-in. The
<div>'s background color is changed and the .offset() values are logged as follows:

{top: 117, left: 580, scrollTop: 0, scrollLeft: 0}

.position()
Gets the position of the first element in the matched set of elements, relative to its
nearest relative-, absolute- or fixed-positioned ancestor.
 .position()

 .position(returnObject)

Parameters (First Version)
None.

Parameters (Second Version)
returnObject: An object in which to store the return value. When the
second version of the method is used, the chain will not be broken, and the
result will be assigned to this object.

Return Value (First Version)
An object containing values for top and left.

Return Value (Second Version)
The jQuery object, for chaining purposes.

•

Chapter 10

[213]

Description
The .position method is shorthand for the following .offset() variation:

.offset({
 margin: false,
 scroll: false,
 relativeTo: offsetParent
 },
 returnObject);

Here, only the element's top and left position—without any padding, border, or
margin—is determined in relation to its nearest positioned ancestor. For more details
on these options, see the description of .offset().

For relativeTo, the .position() method uses a variable, offsetParent, which
is set in the Dimensions code. Effectively, this code begins with the element's
immediate parent and crawls up the DOM, stopping at the first element that has a
position of relative, absolute, or fixed. The initial element's offset position is then
calculated in relation to that nearest positioned element.

Consider the following HTML:

<div id="outer">
 <div id="middle" style="position: relative">
 <div id="inner">
 <p>Use .position() for this paragraph</p>
 </div>
 </div>
</div>

Using $('p').position()calculates the top and left offsets of the paragraph in
relation to <div id="middle"> because that <div> is the nearest positioned ancestor
(note its style attribute).

Since .position() takes no parameters (except returnValue in the second version),
it is much less flexible than .offset(). In most cases, .offset(), which was
discussed above, is recommended.

Form Plug-In
You better find out
Before you fill in the blanks
 —Devo,
 "Find Out"

The Form plug-in is a terrific example of a script that makes a difficult, complex task
dead simple. It assists us in AJAX submission of forms (even if the forms contain file
upload fields), as well as inspection and manipulation of the contents of form fields.

AJAX Form Submission
These methods assist in submitting a form's contents to the server using AJAX calls.

.ajaxSubmit()
Sends a form's contents to the server without a page refresh.
 .ajaxSubmit(success)

 .ajaxSubmit(options)

Parameters (First Version)
success: A callback to execute when the server successfully responds.

Parameters (Second Version)
options: A map of options configuring the submission. Can contain the
following items:

url (optional): The URL to which the form will be submitted.
The default value is the form's action attribute value, or the
current page's URL if none is found.

•

•

°

Form Plug-In

[216]

type (optional): The method to use when submitting the form
(GET or POST). The default value is the form's method attribute
value, or GET if none is found.
beforeSubmit (optional): A callback to execute before the
request is sent.
dataType (optional): How the response data will be
interpreted. Can be 'xml', 'script', or 'json'.
target (optional): The element into which the response
HTML will be placed. Can be a selector string, jQuery object,
or DOM element reference. Only valid if dataType is omitted.
success (optional): A callback to execute when the server
successfully responds.
semantic (optional): Whether to force strict HTML ordering
of fields. The default value is false.
resetForm (optional): A Boolean indicating whether to reset
the form values to their defaults after a successful submission.
The default value is false.
clearForm (optional): A Boolean indicating whether to clear
the form values after a successful submission. The default
value is false.

Return Value
The jQuery object, for chaining purposes.

Discussion
The .ajaxSubmit method issues an AJAX request using the provided url and type
information, along with the data currently present in the form. The form contents are
encoded using the .formToArray method, and intricacies such as file uploading are
handled behind the scenes.

If a callback is provided using the beforeSubmit option, the callback will be fired
before the request is sent. This gives us an opportunity to perform last-minute
validation or cleanup. If a validation routine detects errors that the user must correct,
the routine can return false to prevent the form from being submitted. The callback
is passed the form data as returned by .formToArray(), the jQuery object that
references the form, and the options object that was provided to .ajaxSubmit().
For an example of this callback in action, see the example in the discussion of
.ajaxForm() later.

°

°

°

°

°

°

°

°

Chapter 11

[217]

When a dataType is provided, the response data is interpreted accordingly. The
processing performed is the same as with the $.ajax function for the supported data
types. Any script responses are interpreted as JavaScript and executed in the global
context, while json responses are parsed as a JavaScript object or array. Calls that
specify an xml data type do not cause any parsing to occur when the response
is received.

If no dataType is provided, then we can instead use the target option. The DOM
element referred to by the target will be filled with the response to the AJAX
request, interpreted as plain HTML. The dataType and target options are
mutually exclusive.

After any relevant processing has been performed due to the dataType or target
options, the success callback is executed. This function is given the response data to
act on. For information on ways to interpret and manipulate the response data, see
the $.ajax function discussion in Chapter 7.

The semantic flag forces strict semantic ordering at the expense of execution speed.
For more information, see the .formToArray() discussion later.

If resetForm or clearForm is set to true, the corresponding action will be taken
before the success callback (if provided) is executed. For more information on these
actions, see the .clearForm and .resetForm method discussions later.

If the form that is being submitted contains file upload fields, the file data will be
properly uploaded using the multipart/form-data MIME type. No further action
needs to be taken.

Note that the .ajaxSubmit method executes immediately. Since it is common
to issue the AJAX request when the submit button is clicked, it is typically more
convenient to use the .ajaxForm method instead. However, the direct action of
.ajaxSubmit() may be the easiest way to achieve interaction between this plug-in
and others, such as the popular Validation plug-in.

.ajaxForm()
Prepares a form for automatic AJAX submission.
 .ajaxForm(options)

Form Plug-In

[218]

Parameters
options: A map of options configuring the submission. Can contain the
following items (which are passed along intact to .ajaxSubmit()):

url (optional): The URL to which the form will be submitted.
The default value is the form's action attribute value, or the
current page's URL if none is found.
type (optional): The method to use when submitting the form
(GET or POST). The default value is the form's method attribute
value, or GET if none is found.
beforeSubmit (optional): A callback to execute before the
request is sent.
dataType (optional): How the response data will be
interpreted. Can be 'xml', 'script', or 'json'.
target (optional): The element into which the response
HTML will be placed. Can be a selector string, jQuery object,
or DOM element reference. Only valid if dataType is omitted.
success (optional): A callback to execute when the server
successfully responds.
semantic (optional): Whether to force strict HTML ordering
of fields. The default value is false.
resetForm (optional): A Boolean indicating whether to reset
the form values to their defaults after a successful submission.
The default value is false.
clearForm (optional): A Boolean indicating whether to clear
the form values after a successful submission. The default
value is false.

Return Value
The jQuery object, for chaining purposes.

Discussion
The .ajaxForm method prepares a form for later submission by AJAX. When
the form is submitted, the AJAX request will use the provided url and type
information, along with the data currently present in the form. The form contents are
encoded using the .formToArray method, and intricacies such as file uploading are
handled behind the scenes.

•

°

°

°

°

°

°

°

°

°

Chapter 11

[219]

Unlike the .ajaxSubmit method, the .ajaxForm method does not cause immediate
action. Instead, it binds handlers to the submit event of the form and the click
events of form buttons, which in turn cause the form contents to be sent as an AJAX
request. This removes some of the work in setting up an AJAX form.

In addition, the .ajaxForm method is able to simulate other aspects of a standard form
submission that the .ajaxSubmit method cannot. The name and value of the submit
button that was clicked are included with the request when .ajaxForm() does the job.
Also, when a form contains an <input> field of type image, .ajaxForm() can capture
the mouse coordinates and send them along with the request.

For best results, the Dimensions plug-in should also be present when using image
inputs. The Form plug-in will auto-detect the presence of Dimensions and use it
if possible.

The .ajaxForm method can be used with forms containing any standard field type:

<form id="test-form" name="test-form" action="submit.php"
 method="post">
 <div class="form-row">
 <label for="city">City</label>
 <input type="text" id="city" name="city" size="20" />
 </div>
 <div class="form-row">
 <label for="state">State</label>
 <input type="text" id="state" name="state" size="5" value="MI" />
 </div>
 <div class="form-row">
 <label for="comment">Comments</label>
 <textarea id="comment" name="comment" rows="8" cols="30">
 </textarea>
 </div>

 <div class="form-row">
 <label for="sacks">Villages sacked</label>
 <select name="villages" id="villages">
 <option value="0">none</option>
 <option value="5" selected="selected">1-5</option>
 <option value="10">6-10</option>
 <option value="20">11-20</option>
 <option value="50">21-50</option>
 <option value="100">51-100</option>
 <option value="more">over 100</option>
 </select>
 </div>

Form Plug-In

[220]

 <div class="form-row multi">
 Preferred tactic
 <input type="radio" name="tactic" value="loot" id="loot"
 checked="checked" /><label for="loot">loot</label>
 <input type="radio" name="tactic" value="pillage" id="pillage" />
 <label for="pillage">pillage</label>
 <input type="radio" name="tactic" value="burn" id="burn" />
 <label for="burn">burn</label>
 </div>

 <div class="form-row multi">
 Viking gear
 <input type="checkbox" name="gear[helmet]" value="yes"
 id="helmet" checked="checked" /><label for="helmet">
 horned helmet</label>
 <input type="checkbox" name="gear[longboat]" value="yes"
 id="longboat" /><label for="pillage">longboat</label>
 <input type="checkbox" name="gear[goat]" value="yes" id="goat"
 checked="checked"/><label for="goat">magic goat</label>
 </div>

 <div class="form-row buttons">
 <input type="submit" id="submit" name="submit" value="Send" />
 <input type="button" id="more" name="more" value="More Options" />
 </div>
</form>

To prepare the form for submission, we only need to call .ajaxForm() once, when
the DOM is ready:

$(document).ready(function() {
 $('#test-form').ajaxForm({
 target: '.log'
 });
});

Chapter 11

[221]

The user can then fill in the form fields:

When the Send button is later clicked, the server receives all of the form information
without a browser refresh. For testing purposes, we can use PHP's print_r function
to display the posted form contents:

Array
(
 [city] => Morton
 [state] => IL
 [comment] => Eric the Red is my hero!
 [villages] => 50
 [tactic] => pillage
 [gear] => Array
 (
 [helmet] => yes
 [longboat] => yes
)

 [submit] => Send
)

If a callback is provided using the beforeSubmit option, the callback will be fired
before the request is sent. The callback is passed the form data as returned by
.formToArray(), the jQuery object that references the form, and the options object
that was provided to .ajaxForm(). This callback is primarily useful for performing
form validation:

Form Plug-In

[222]

$(document).ready(function() {
 $('#test-form').ajaxForm({
 target: '.ajax-form .log',
 beforeSubmit: function(formData, $form, options) {
 if ($form.find('#city').val() == '') {
 alert('You must enter a city.');
 return false;
 }
 }
 });
});

If a validation routine detects errors that the user must correct, the routine can return
false to prevent the form from being submitted. In our example here, a value must
be entered in the City field, or an alert will be shown and no submission will occur.

When a dataType is provided, the response data is interpreted accordingly. The
processing performed is the same as with the $.ajax function, for the supported
data types. Any script responses are interpreted as JavaScript and executed in the
global context, while json responses are parsed as a JavaScript object or array. Calls
that specify an xml data type do not cause any parsing to occur when the response
is received.

If no dataType is provided, then we can instead use the target option. The DOM
element referred to by the target will be filled with the response to the AJAX
request, interpreted as plain HTML. The dataType and target options are
mutually exclusive.

After any relevant processing has been performed due to the dataType or target
options, the success callback is executed. This function is given the response data to
act on. For information on ways to interpret and manipulate the response data, see
the $.ajax function discussion in Chapter 7.

The semantic flag forces strict semantic ordering at the expense of execution speed.
For more information, see the .formToArray() discussion later.

If resetForm or clearForm is set to true, the corresponding action will be taken
before the success callback (if provided) is executed. For more information on these
actions, see the .clearForm and .resetForm method discussions later.

If the form being submitted contains file upload fields, the file data will be properly
uploaded using the multipart/form-data MIME type. No further action needs to
be taken.

Chapter 11

[223]

.ajaxFormUnbind()
Restores a form to its non-AJAX state.
 .ajaxFormUnbind()

Parameters
None.

Return Value
The jQuery object, for chaining purposes.

Discussion
Calling .ajaxForm() on a form binds handlers to the submit event of the form and
to the click events of any buttons and image inputs therein. If at a later time the
form should no longer submit using AJAX, we can call .ajaxFormUnbind() on the
same form to remove these handlers without disrupting any other handlers that may
have been bound to the form elements.

Retrieving Form Values
These methods allow scripts to read and transform the values of fields in web forms.

.formToArray()
Collects the values in a form into an array of objects.
 .formToArray([semantic])

Parameters
semantic (optional): Whether to force strict HTML ordering of fields. The
default value is false.

Return Value
An array of objects, each representing one field in the form.

Discussion
The .formToArray method fetches the values of a form, and organizes them
into a data structure that is appropriate for passing to the jQuery AJAX functions
such as $.ajax(), $.post(), and .load(). It can handle forms with any standard
field type.

•

Form Plug-In

[224]

Given the form, illustrated in the .ajaxFor() discussion, the .formToArray method
will return a JavaScript array of the form values:

[
 {name: city, value: Morton},
 {name: state, value: IL},
 {name: comment, value: Eric the Red is my hero!},
 {name: villages, value: 50},
 {name: tactic, value: pillage},
 {name: gear[helmet], value: yes},
 {name: gear[longboat], value: yes}
]

Each object in the array has a name and a value property. Checkbox elements that
are not checked do not get represented in the array.

If the semantic argument is set to true, then the fields listed in the array will be
guaranteed to be ordered as they are in the HTML source. If the form contains no
<input> elements of type image, then this will already be the case. Avoid using
this option unless it is needed, as the extra processing involved will slow down
the method.

.formSerialize()
Collects the values in a form into a serialized string.
 .formSerialize([semantic])

Parameters
semantic (optional): Whether to force strict HTML ordering of fields. The
default value is false.

Return Value
A string representation of the form fields, suitable for submission.

Discussion
The .formSerialize method fetches the values of a form, and converts them into a
string that is appropriate for passing as a query string for a GET request. It can handle
forms with any standard field type.

•

Chapter 11

[225]

Given the form illustrated in the .ajaxFor() discussion, the .formSerialize
method will return a string representation of the form values:

city=Morton&state=IL&comment=Eric%20the%20Red%20is%20my%20hero!
 &villages=50&tactic=pillage&gear%5Bhelmet%5D=yes
 &gear%5Blongboat%5D=yes

Each of the fields shows up as a key-value pair in the string. Checkbox elements
that are not checked do not get represented in the string. The string is URL-encoded
as necessary.

If the semantic argument is set to true, then the fields listed in the string will be
guaranteed to be ordered as they are in the HTML source. If the form contains no
<input> elements of type image, then this will already be the case. Avoid using
this option unless it is needed, as the extra processing involved will slow down
the method.

.fieldSerialize()
Collects the values of a set of fields into a serialized string.
 .fieldSerialize([successful])

Parameters
successful (optional): Whether to prune the included field values to
successful ones. The default value is true.

Return Value
A string representation of the form fields, suitable for submission.

Discussion
Like the .formSerialize method before it, the .fieldSerialize method fetches
the values of a form, and converts them into a string that is appropriate for passing
as a query string for a GET request. However, .fieldSerialize() acts on a jQuery
object that references individual fields rather than the form as a whole.

It can handle fields of any standard type, such as <select> menus:

<select name="villages" id="villages">
 <option value="0">none</option>
 <option value="5" selected="selected">1-5</option>
 <option value="10">6-10</option>
 <option value="20">11-20</option>
 <option value="50">21-50</option>

•

Form Plug-In

[226]

 <option value="100">51-100</option>
 <option value="more">over 100</option>
</select>

The user can then select any option:

The value is pulled from the currently selected option, and the .fieldSerialize
method will return a string representation of this value:

villages=50

Each of the given fields shows up as a key-value pair in the string. Checkbox
elements that are not checked do not get represented in the string. The string is URL-
encoded as necessary.

By default, fields are not represented in the string if they are not successful, as
defined in the W3C specification for HTML forms:
http://www.w3.org/TR/html4/interact/forms.html#h-17.13.2

Successful fields are the ones that are submitted to the server during a normal
form submission operation. For example, checkboxes that are currently checked
are successful; unchecked ones are not. It is rare to want the values of unsuccessful
fields, but if this is required, the successful parameter of .fieldSerialize() can
be set to false.

Given the form illustrated in the .ajaxFor() discussion, .fieldSerializer()
includes only checked radio buttons and checkboxes when successful is set
to true:

tactic=loot&gear%5Bhelmet%5D=yes&gear%5Bgoat%5D=yes

But when successful is set to false, fieldSerializer() includes the unselected
options as well:

tactic=loot&tactic=pillage&tactic=burn&gear%5Bhelmet%5D=yes

 &gear%5Blongboat%5D=yes&gear%5Bgoat%5D=yes

.fieldValue()
Collects the values of a set of fields into an array of strings.
 .fieldValue([successful])

 $.fieldValue(element[, successful])

Chapter 11

[227]

Parameters (First Version)
successful (optional): Whether to prune the included field values to
successful ones. The default value is true.

Parameters (Second Version)
element: The form input element whose value is to be retrieved.
successful (optional): Whether to prune the included field values to
successful ones. The default value is true.

Return Value
An array of strings containing the field values.

Discussion
The .fieldValue() method and the $.fieldValue() function both fetch the values
of a form, returning them as an array of strings. The .fieldValue() method acts on
a jQuery object that references individual fields, while the $.fieldValue() function
performs the same task on the field element passed as its first parameter.

These operations can handle fields of any standard type, such as <select> menus:

<select name="villages" id="villages">
 <option value="0">none</option>
 <option value="5" selected="selected">1-5</option>
 <option value="10">6-10</option>
 <option value="20">11-20</option>
 <option value="50">21-50</option>
 <option value="100">51-100</option>
 <option value="more">over 100</option>
</select>

The user can then select any option:

The value is pulled from the currently selected option, and the .fieldValue()
method will return an array representation of this value:

[50]

Each of the given fields shows up as a string in the array. Checkbox elements that are
not checked do not get represented in the array.

•

•

•

Form Plug-In

[228]

By default, fields are not represented in the array if they are not successful, as
defined in the W3C specification for HTML forms:

http://www.w3.org/TR/html4/interact/forms.html#h-17.13.2

Successful fields are the ones that are submitted to the server during a normal
form submission operation. For example, checkboxes that are currently checked
are successful; unchecked ones are not. It is rare to want the values of unsuccessful
fields, but if this is required, the successful parameter of .fieldValue() can be set
to false.

Given the form illustrated in the .ajaxFor() discussion, .fieldValue() includes
only checked radio buttons and checkboxes when successful is set to to true:

[loot, yes, yes]

But when successful is set to false, .fieldValue() includes the unselected
options as well:

[loot, pillage, burn, yes, yes, yes]

The .fieldValue method always returns an array; if there are no values to report in
the set of elements being acted upon, the result array will be empty. In contrast,
the $.fieldValue function will return null if the field element in question is
not successful.

Form Manipulation
These methods allow scripts to easily change the current contents of a form on
the page.

.clearForm()
Clears all data in a form.
 .clearForm()

Parameters
None.

Return Value
The jQuery object, for chaining purposes.

Chapter 11

[229]

Discussion
This method finds all input fields (<input>, <select>, and <textarea> elements)
within the matched elements, and clears their values. This method is usually
applied to a <form> element, but can work with any container for fields (such as a
<fieldset>) as well.

All fields are emptied, regardless of their default values:

The fields are cleared according to their type, as follows:

Text fields and text areas have their values set to an empty string.
Select elements are set to -1, which indicates no selection.
Checkboxes and radio buttons are unchecked.
Other fields, such as submit buttons and image inputs, are not affected.

Note that hidden fields are not affected by the clearing operation, even though they
have a value.

.clearFields()
Clears all data in an input field.
 .clearFields()

•

•

•

•

Form Plug-In

[230]

Parameters
None.

Return Value
The jQuery object, for chaining purposes.

Discussion
This method clears the values of all matched elements that are input fields (<input>,
<select>, and <textarea> elements).

The .clearFields method differs from .clearForm() only in that .clearForm() is
sent to a jQuery object that has matched the form element, while .clearFields() is
sent to a jQuery object that matches the individual fields themselves:

The fields are cleared according to their type, as follows:

Text fields and text areas have their values set to an empty string.
Select elements are set to -1, which indicates "no selection."
Checkboxes and radio buttons are unchecked.
Other fields, such as submit buttons and image inputs, are not affected.

Note that hidden fields are not affected by the clearing operation, even though they
have a value.

.resetForm()
Resets a form to its initial values.
 .resetForm()

Parameters
None.

Return Value
The jQuery object, for chaining purposes.

•

•

•

•

Chapter 11

[231]

Discussion
This method returns all fields in a form to their initial values (the ones defined in the
HTML source):

This action is accomplished using the DOM API's native .reset method. For this
reason, .resetForm() can only be applied to a jQuery object that references <form>
elements, unlike .clearForm(), which can be applied to jQuery objects referencing
any containing element as well.

Online Resources
I can't remember what I used to know
Somebody help me now and let me go
 —Devo,
 "Deep Sleep"

The following online resources represent a starting point for learning more about
jQuery, JavaScript, and web development in general, beyond what is covered in
this book. There are far too many sources of quality information on the web for this
appendix to approach anything resembling an exhaustive list. Furthermore, while
other print publications can also provide valuable information, they are not noted here.

jQuery Documentation
jQuery Wiki
The documentation on jquery.com is in the form of a wiki, which means that the
content is editable by the public. The site includes the full jQuery API, tutorials,
getting started guides, a plug-in repository, and more:

http://docs.jquery.com/

jQuery API
On jQuery.com, the API is available in two locations—the documentation section
and the paginated API browser.

The documentation section of jQuery.com includes not only jQuery methods, but
also all of the jQuery selector expressions:

http://docs.jquery.com/Selectors

http://docs.jquery.com/
http://jquery.com/api

Online Resources

[234]

jQuery API Browser
Jörn Zaeferrer has put together a convenient tree-view browser of the jQuery API with
a search feature and alphabetical or category sorting:

http://jquery.bassistance.de/api-browser/

Visual jQuery
This API browser designed by Yehuda Katz is both beautiful and convenient. It also
provides quick viewing of methods for a number of jQuery plug-ins:

http://www.visualjquery.com/

Web Developer Blog
Sam Collet keeps a master list of jQuery documentation, including downloadable
versions and cheat sheets, on his blog:

http://webdevel.blogspot.com/2007/01/jquery-documentation.html

JavaScript Reference
Mozilla Developer Center
This site has a comprehensive JavaScript reference, a guide to programming with
JavaScript, links to helpful tools, and more:

http://developer.mozilla.org/en/docs/JavaScript/

Dev.Opera
While focused primarily on its own browser platform, Opera's site for web
developers includes a number of useful articles on JavaScript:

http://dev.opera.com/articles/

Quirksmode
Peter-Paul Koch's Quirksmode site is a terrific resource for understanding differences
in the way browsers implement various JavaScript functions, as well as many
CSS properties:

http://www.quirksmode.org/

JavaScript Toolbox
Matt Kruse's JavaScript Toolbox offers a large assortment of homespun JavaScript
libraries, as well as sound advice on JavaScript best practices and a collection of
vetted JavaScript resources elsewhere on the Web:

http://www.javascripttoolbox.com/

Appendix A

[235]

JavaScript Code Compressors
Packer
This JavaScript compressor/obfuscator by Dean Edwards is used to compress the
jQuery source code. It's available as a web-based tool or as a free download. The
resulting code is very efficient in file size, at a cost of a small increase in execution time:

http://dean.edwards.name/packer/

http://dean.edwards.name/download/#packer

JSMin
Created by Douglas Crockford, JSMin is a filter that removes comments and
unnecessary white space from JavaScript files. It typically reduces file size by half,
resulting in faster downloads:

http://www.crockford.com/javascript/jsmin.html

Pretty Printer
This tool prettifies JavaScript that has been compressed, restoring line breaks and
indentation where possible. It provides a number of options for tailoring the results:

http://www.prettyprinter.de/

(X)HTML Reference
W3C Hypertext Markup Language Home Page
The World Wide Web Consortium (W3C) sets the standard for (X)HTML, and the
HTML home page is a great launching point for its specifications and guidelines:

http://www.w3.org/MarkUp/

CSS Reference
W3C Cascading Style Sheets Home Page
The W3C's CSS home page provides links to tutorials, specifications, test suites, and
other resources:

http://www.w3.org/Style/CSS/

Online Resources

[236]

Mezzoblue CSS Cribsheet
Dave Shea provides this helpful CSS cribsheet in an attempt to make the design
process easier, and provide a quick reference to check when you run into trouble:

http://mezzoblue.com/css/cribsheet/

Position Is Everything
This site includes a catalog of CSS browser bugs along with explanations of how to
overcome them:

http://www.positioniseverything.net/

XPath Reference
W3C XML Path Language Version 1.0 Specification
Although jQuery's XPath support is limited, theW3C's XPath Specification may still be
useful for those wanting to learn more about the variety of possible XPath selectors:

http://www.w3.org/TR/xpath

TopXML XPath Reference
The TopXML site provides helpful charts of axes, node tests, and functions for those
wanting to learn more about XPath:

http://www.topxml.com/xsl/XPathRef.asp

MSDN XPath Reference
The Microsoft Developer Network website has information on XPath syntax
and functions:

http://msdn2.microsoft.com/en-us/library/ms256115.aspx

Useful Blogs
The jQuery Blog
John Resig, et al., the official jQuery blog posts announcements about new versions
and other initiatives among the project team, as well as occasional tutorials and
editorial pieces.

http://jquery.com/blog/

Appendix A

[237]

Learning jQuery
Karl Swedberg, Jonathan Chaffer, Brandon Aaron, et al. are running a blog for jQuery
tutorials, examples, and announcements:

http://www.learningjquery.com/

Jack Slocum's Blog
Jack Slocum, the author of the popular EXT suite of JavaScript components writes
about his work and JavaScript programming in general:

http://www.jackslocum.com/blog/

Web Standards with Imagination
Dustin Diaz blog features articles on web design and development, with an emphasis
on JavaScript:

http://www.dustindiaz.com/

Snook
Jonathan Snook's general programming/web-development blog:

http://snook.ca/

Wait Till I Come
Three sites by Christian Heilmann provide blog entries, sample code, and lengthy
articles related to JavaScript and web development:

http://www.wait-till-i.com/

http://www.onlinetools.org/
http://icant.co.uk/

DOM Scripting
Jeremy Keith's blog picks up where the popular DOM scripting book leaves off—a
fantastic resource for unobtrusive JavaScript:

http://domscripting.com/blog/

As Days Pass By
Stuart Langridge experiments with advanced use of the browser DOM:

http://www.kryogenix.org/code/browser/

Online Resources

[238]

A List Apart
A List Apart explores the design, development, and meaning of web content, with a
special focus on web standards and best practices:

http://www.alistapart.com/

Particletree
Chris Campbell, Kevin Hale, and Ryan Campbell started a blog that provides valuable
information on many aspects of web development:

http://particletree.com/

The Strange Zen of JavaScript
Scott Andrew LePera's weblog about JavaScript quirks, caveats, odd hacks, curiosities
and collected wisdom. Focused on practical uses for web application development:

http://jszen.blogspot.com/

Web Development Frameworks Using
jQuery
As developers of open-source projects become aware of jQuery, many are
incorporating the JavaScript library into their own systems. The following is a brief
list of some of the early adopters:

Drupal: http://drupal.org/
Joomla Extensions: http://extensions.joomla.org/
Pommo: http://pommo.org/
SPIP: http://www.spip.net/
Trac: http://trac.edgewall.org/

For a more complete list, visit the Sites Using jQuery page at:
http://docs.jquery.com/Sites_Using_jQuery

•

•

•

•

•

Development Tools
When a problem comes along
You must whip it
 —Devo,
 "Whip It"

Documentation can help in troubleshooting issues with our JavaScript applications,
but there is no replacement for a good set of software development tools.
Fortunately, there are many software packages available for inspecting and
debugging JavaScript code, and most of them are available for free.

Tools for Firefox
Mozilla Firefox is the browser of choice for the lion’s share of web developers, and
therefore has some of the most extensive and well-respected development tools.

Firebug
The Firebug extension for Firefox is indispensable for jQuery development:

http://www.getfirebug.com/

Some of the features of Firebug are :

An excellent DOM inspector for finding names and selectors for pieces of
the document
CSS manipulation tools for finding out why a page looks a certain way and
changing it
An interactive JavaScript console
A JavaScript debugger that can watch variables and trace code execution

•

•

•

•

Development Tools

[240]

Web Developer Toolbar
This not only overlaps Firebug in the area of DOM inspection, but also contains tools
for common tasks like cookie manipulation, form inspection, and page resizing. You
can also use this toolbar to quickly and easily disable JavaScript for a site to ensure
that functionality degrades gracefully when the user’s browser is less capable:

http://chrispederick.com/work/web-developer/

Venkman
Venkman is the official JavaScript debugger for the Mozilla project. It provides a
troubleshooting environment that is reminiscent of the GDB system for debugging
programs that are written in other languages.

http://www.mozilla.org/projects/venkman/

Regular Expressions Tester
Regular expressions for matching strings in JavaScript can be tricky to craft. This
extension for Firefox allows easy experimentation with regular expressions using an
interface for entering search text:

http://sebastianzartner.ath.cx/new/downloads/RExT/

Tools for Internet Explorer
Sites often behave differently in IE than in other web browsers, so having debugging
tools for this platform is important.

Microsoft Internet Explorer Developer Toolbar
The Developer Toolbar primarily provides a view of the DOM tree for a web page.
Elements can be located visually, and modified on the fly with new CSS rules. It also
provides other miscellaneous development aids, such as a ruler for measuring
page elements:

http://www.microsoft.com/downloads/details.
aspx?FamilyID=e59c3964-672d-4511-bb3e-2d5e1db91038

Microsoft Visual Web Developer
Microsoft’s Visual Studio package can be used to inspect and debug JavaScript code:

http://msdn.microsoft.com/vstudio/express/vwd/

To run the debugger interactively in the free version (Visual Web Developer
Express), follow the process outlined here:

http://www.berniecode.com/blog/2007/03/08/
how-to-debug-javascript-with-visual-web-developer-express/

Appendix B

[241]

DebugBar
The DebugBar provides a DOM inspector as well as a JavaScript console
for debugging:

http://www.debugbar.com/

Drip
Memory leaks in JavaScript code can cause performance and stability issues for
Internet Explorer. Drip helps to detect and isolate these memory issues:

http://Sourceforge.net/projects/ieleak/

Tools for Safari
Safari remains the new kid on the block as a development platform, but there are still
tools available for situations in which code behaves differently in this browser
than elsewhere.

Web Inspector
Nightly builds of Safari include the ability to inspect individual page elements and
collect information especially about the CSS rules that apply to each one.

http://trac.webkit.org/projects/webkit/wiki/Web%20Inspector

Drosera
Drosera is the JavaScript debugger for Safari and other WebKit-driven applications. It
enables breakpoints, variable watching, and an interactive console.

Other Tools
Firebug Lite
Though the Firebug extension itself is limited to the Firefox web browser, some of
the features can be replicated by including the Firebug Lite script on the web page.
This package simulates the Firebug console, including allowing calls to console.
log() which usually causes JavaScript errors to be thrown in other browsers:

http://www.getfirebug.com/lite.html

Development Tools

[242]

TextMate jQuery Bundle

This extension for the popular Mac OS X text editor TextMate provides syntax
highlighting for jQuery methods and selectors, code completion for methods, and a
quick API reference from within your code. The bundle is also compatible with the E
text editor for Windows:

http://www.learningjquery.com/2006/09/textmate-bundle-for-jquery

Charles
When developing AJAX-intensive applications, it can be useful to see exactly what
data is being sent between the browser and the server. The Charles web debugging
proxy displays all HTTP traffic between two points, including normal web requests,
HTTPS traffic, Flash remoting, and AJAX responses:

http://www.xk72.com/charles/

Index
Symbols
#myid 17
$() funtion

about 38
DOM elements, creating 40
DOM elements, wrapping 39
jQuery objects, cloning 40
parameters 38
return value 38
selector context 39

$() method 103
$.ajax() 150
$.ajaxComplete() 161
$.ajaxError() 162
$.ajaxSend() 163
$.ajaxSetup() 153
$.ajaxStart() 164
$.ajaxStop() 165
$.ajaxSuccess() 166
$.browser 169
$.extend() 181
$.get() 154
$.getIfModified() 155
$.getJSON() 158
$.getScript() 160
$.grep() 176
$.map() 177
$.merge() 179
$.noConflict 170
$.post() 158
$.trip() 182
$.unique() 180
(X)HTML reference

W3C HTML home page 235
*, universal selector 25

.add() 55

.addClass() 69

.after() 85

.ajaxForm() 218

.ajaxFormUnbind() 223

.ajaxSubmit() 215

.animate() 146

.append() 78

.appendTo() 80

.attr() 63

.attr(attribute) 61

.before() 81

.bind() method 96-99

.blur() method 119

.change() method 120

.children() 49

.clearFields() 230

.clearForm() 228

.click() 110

.clone() 89

.contains() 44

.css() 66

.css(property) 65

.dblclick() 111

.each() 174

.empty() 91

.end() 58

.eq() 44

.error() method 107

.fadeIn() 141

.fadeOut() 143

.fieldSerialize() 225

.fieldValue() 227

.filter() 40-42

.find() 47

.focus() method 118

[244]

.formSerialize() 224

.formToArray() 223

.get() 173

.gt() 46

.height() 67, 196

.height(value) 67

.hide() 133

.hover() 115

.html() 71

.html(HTML) 72

.innerHeight() 199

.innerWidth() 200

.insertAfter() 86-88

.insertBefore() 83

.is() 57

.keydown() method 124

.keypress() method 126

.keyup() method 127

.length 171

.load() 156

.load() method 105

.loadIfModified() 157

.lt() 45

.mousedown() 108

.mousemove() method 116

.mouseover() 113-115

.mouseup() 109

.myclass 18

.next() 54

.not() 42

.offset()
about 208
border, including 209
chainability, maintaining 211
default settings 209
padding, including 210
parameters in first version 207
parameters in second version 208
relative position, finding 210
return value in first version 208
return value in second version 208
scroll offsets, returning 211

.one() method 101

.outerHeight() 201

.outerWidth() 202

.parent() 51

.parents() 50

.position() 212

.prepend() 75

.prependTo() 77

.prev() 53

.remove() 93

.removeAttr() 64

.removeClass() 69

.resetForm() 230

.resize() method 129

.scroll() method 129

.scrollLeft() 205

.scrollLeft(value) 206

.scrollTop() 204

.scrollTop(value) 205

.select() method 122

.serialize() 168

.show() 131

.siblings() 52

.size() 172

.slideDown() 137

.slideToggle() 140

.slideUp() 138

.submit() method 123

.text() 73

.text(text) 73

.toggle() 112, 135

.toggleClass() 70

.trigger() method 102

.unbind() method 99

.unload() method 106

.vat() 74

.vat(value) 75

.width() 68, 198

.width(value) 68
[@foo!=bar] 29
[@foo$=bar] 30
[@foo*=bar] 30
[@foo=bar] 28
[@foo] 28
[@foo^=bar] 29
[F] 27

A
adjacent sibling elements 20
AJAX form submissions

.ajaxForm() 217

[245]

.ajaxFormUnbind() 223

.ajaxSubmit() 215
about 215

AJAX global event handlers 160
AJAX methods

$.ajax() 149
$.ajaxSetup() 153
$.get() 154
$.getIfModified() 155
$.getJSON() 158
$.getScript() 159
$.post() 157
.ajaxComplete() 161
.ajaxError() 162
.ajaxSend() 163
.ajaxStart() 164
.ajaxStop() 165
.ajaxSuccess() 166
.load() 156
.loadIfModified() 157
.serialize() 167
about 13
global event handlers 160
helper funtions 167
low-level interface 149
shorthand methods 154

attribute selectors
[@foo!=bar] 29
[@foo$=bar] 30
[@foo*=bar] 30
[@foo=bar] 28
[@foo] 28
[@foo^=bar] 29

attribute value begins 29
attribute value contains 30
attribute value does not equal 29
attribute value ends 30
attribute value equals 28

B
blogs

A List Apart 238
As Days Pass By 237
DOM Scripting 237
Jack Slocum’s Blog 237
jQuery Blog 236

Learning jQuery 237
Particletree 238
Snook 237
The Strange Zen of JavaScript 238
Wait Till I Come 237
Web Standards With Imagination 237

browser events
.resize() 129
.scroll() 129

C
child element 19
class attribute

.addClass() 69

.removeClass() 69

.toggleClass() 70
collection manipulation funtions

$.extend() 181
$.grep() 176
$.map() 177
$.merge() 179
$.trim() 182
$.unique() 180
.each() 174

contains 27
CSS reference

Mezzoblue CSS cribsheet 236
position is everything 236
W3C CSS home page 235

CSS selectors
#myid, ID 17
* 25
.myclass, class 18
E + F, adjacent sibling 20
E > F, child 19
E ~ F, general sibling 21
E F, descendant 19
empty 24
first-child 23
last-child 23
multiple elements 22
not(s) 24
nth-child(n) 22
only-child 24
T, element 17

customized effects
.animate() 146

[246]

D
descendant 19, 25
development tools

about 239
Charles 242
Firebug Lite 241
Firefox tools 239
Internet Explorer tools 240
Safari tools 241
TextMate jQuery bundle 242

Dimentions, plug-ins
about 195
position methods 203
size methods 195

document loading methods
$() 103
.error() 106
.load() 105
.unload() 106

DOM copying
.clone() 89
.empty() 91
.removal() 93

DOM element methods
.get() 172
.index() 173
.length 171
.size() 172

DOM elements
creating 40
wrapping 39

DOM insertion, around
.wrap() 88

DOM insertion, inside
.append() 78
.appendTo() 80
.prepend() 75
.prependTo() 76

DOM insertion, outside
.after() 84
.before() 81
.insertAfter() 86
.insertBefore() 83

DOM manipulation methods
about 12
class attribute 69

DOM copying 89
DOM insertion, around 88
DOM insertion, inside 75
DOM insertion, outside 81
DOM removal 91
DOM replacement 71
general attributes 61
style properties 65

DOM replacement
.html() 71
.html(HTML) 72
.text() 72
.text(text) 73
.val() 74
.val(value) 74

DOM traversal methods 11, 37
dynamic table of contents

HTML document, setting up 7, 9
JQuery, obtaining 7
JQuery code 10

E
E + F 20
E/.. 26
E//F 25
E > F 19
E ~ F 21
easing style

about 189
components 189

E F 19
effect methods

about 13, 131
customized effects 146
pre-packaged effects 131

empty 24
event handler attachment methods

.bind() 95

.one() 101

.trigger() 102

.unbind() 99
event methods

about 12
browser events 128
document loading methods 103
event handler attachment 95

[247]

form events 118
keyboard events 124
mouse events 107

F
filtering methods

.contains() 43

.eq() 44

.filter() 40

.gt() 46

.lt() 45

.not() 42
Firefox tools

features, Firebug 239
Firebug 239
regular expressions test 240
Venkman 240
web developer toolbar 240

first-child 23
form, manipulating

.clearFields() 229

.clearForm() 228

.resetForm() 230
Form, plug-ins

about 215
AJAX form submissions 215
form, manipulating 228
form values, retrieving 223

form events
.blur() 119
.change() 120
.focus() 118
.select() 122
.submit() 123

form selectors
about 30
button 31
checkbox 31
checked 31
disabled form element 31
enabled form element 31
form elements 30
hidden 31
image button 31
password field 31
radio 31

reset button 31
submit button 31
text field 30

form values, retrieving
.fieldSerialize() 225
.fieldValue() 226
.formSerialize() 224
.formToArray() 223

G
general attributes

.attr() 63

.attr(attribute) 61

.removeAttr() 64
general sibling elements 21
global function

about 186
components in first version 186
components in second version 186
multiple functions 187
single functions 187

H
has attribute 28

I
implicit iteration 185
Internet Explorer tools

DebugBar 241
Drip 241
MS IE developer toolbar 240
MS Visual web developer 240

J
JavaScript compressors

JSMin 235
packer 235
pretty printer 235

JavaScript reference
dev.Opera 234
JavaScript toolbox 234
Mozilla developer center 234
Quirksmode 234

[248]

JavaScript sorting
online resources 233

jQuery
blog 236
development tools 239
dynamic table of contents 5
obtaining 7
script 11

jQuery documentation
jQuery API 233
jQuery API browser 234
jQuery wiki 233
visual jQuery 234
web developer blog 234

jQuery factory funtions
$() 38
filtering methods 40
miscellaneous traversal methods 55
tree traversal methods 47

jQuery objects, cloning 40

K
keyboard events

.keydown() 124

.keypress() 126

.keyup() 127

L
last-child 23
log events

maintaining 192-194

M
miscellaneous methods 13
miscellaneous traversal methods

.add() 55

.end() 58

.is() 57
mouse events

.click() 110

.dblclick() 111

.hover() 115

.mousedown() 107

.mousemove() 116

.mouseout() 114

.mouseover() 113

.mouseup() 109

.toggle() 112
multiple elements 22
multiple event logs

maintaining 192-194

N
not(s) 24
nth-child(n) 22

O
object method

about 185
components 185
implicit iteration 185

online resources
(X)HTML reference 235
blogs 236
CSS reference 235
JavaScript compressors 235
JavaScript reference 234
jQuery documentation 233
web development frameworks, jQuery used

238
XPath reference 236

only-child 24

P
parent element 26
plug-in

about 183
developing 184
using 183

plug-in, developing
easing style 189
global function 186
object method 185
selector expression 188

plug-in API 14
plug-ins

Form 215
position methods, Dimentions

.offset() 207

.position() 212

[249]

.scrollLeft() 205

.scrollLeft(value) 206

.scrollTop() 204

.scrollTop(value) 204
about 203

pre-packaged effects
.fadeIn() 141
.fadeOut() 143
.fadeTo() 144
.hide() 133
.show() 131
.slideDown() 137
.slideToggle() 139
.slideUp() 138
.toggle() 135

R
resources. See online resources

S
Safari tools

Drosera 241
web inspector 241

script
AJAX methods 13
DOM manipulation methods 12
DOM traversal methods 11
effect methods 13
event methods 12
miscellaneous methods 13
plug-in API 14
selector expressions 11

selector expressions
about 11, 188
components 188

selectors
context 39

setup methods
$.browser() 169
$.noConflict() 170

size methods, Dimentions
.height() 196
.innerHeight() 199
.innerWidth() 200
.outerHeight() 201
.outerWidth() 202

.width() 197
about 195

style properties
.css() 66
.css(property) 65
.height() 67
.height(value) 67
.width() 68
.width(value) 68

T
T 17
tools. See development tools
tree traversal methods

.children() 48

.find() 47

.next() 54

.parent() 51

.parents() 50

.prev() 53

.siblings() 52

W
web development frameworks 238

X
XPath reference

MSDN XPath reference 236
TopXML XPath reference 236
W3C XPath specification 236

XPath selectors
[F] 27
E/.. 26
E//F 25

	jQuery Reference Guide
	Table of Contents
	Preface
	Chapter 1: Anatomy of a jQuery Script
	A Dynamic Table of Contents
	Obtaining jQuery
	Setting Up the HTML Document
	Writing the jQuery Code

	Script Dissection
	Selector Expressions
	DOM Traversal Methods
	DOM Manipulation Methods
	Event Methods
	Effect Methods
	AJAX Methods
	Miscellaneous Methods
	Plug-In API

	Summary

	Chapter 2: Selector Expressions
	CSS Selectors
	Element: T
	ID: #myid
	Class: .myclass
	Descendant: E F
	Child: E > F
	Adjacent Sibling: E + F
	General Sibling: E ~ F
	Multiple Elements: E,F,G
	Nth Child (:nth-child(n))
	First Child (:first-child)
	Last Child (:last-child)
	Only Child :only-child
	Not :not(s)
	Empty :empty
	Universal: *

	XPath Selectors
	Descendant: E//F
	Child: E/F
	Parent: E/..
	Contains: [F]

	Attribute Selectors
	Has Attribute: [@foo]
	Attribute Value Equals: [@foo=bar]
	Attribute Value Does Not Equal: [@foo!=bar]
	Attribute Value Begins: [@foo^=bar]
	Attribute Value Ends: [@foo$=bar]
	Attribute Value Contains: [@foo*=bar]

	Form Selectors
	Custom Selectors
	Even Element (:even)Odd Element (:odd)
	Nth Element (:eq(n), :nth(n))
	Greater Than :gt(n)
	Less Than : lt(n)
	First :first
	Last :last
	Parent :parent
	Contains :contains(text)
	Visible :visible
	Hidden :hidden

	Chapter 3: DOM Traversal Methods
	The jQuery Factory Function
	$()
	Filtering Methods
	.filter()
	.not()
	.contains()
	.eq()
	.lt()
	.gt()

	Tree Traversal Methods
	.find()
	.children()
	.parents()
	.parent()
	.siblings()
	.prev()
	.next()

	Miscellaneous Traversal Methods
	.add()
	.is()
	.end()

	Chapter 4: DOM Manipulation Methods
	General Attributes
	.attr(attribute)
	.attr()
	.removeAttr()

	Style Properties
	.css(property)
	.css()
	.height()
	.height(value)
	.width()
	.width(value)

	Class Attribute
	.addClass()
	.removeClass()
	.toggleClass()

	DOM Replacement
	.html()
	.html(HTML)
	.text()
	.text(text)
	.val()
	.val(value)

	DOM Insertion, Inside
	.prepend()
	.prependTo()
	.append()
	.appendTo()

	DOM Insertion, Outside
	.before()
	.insertBefore()
	.after()
	.insertAfter()

	DOM Insertion, Around
	.wrap()

	DOM Copying
	.clone()

	DOM Removal
	.empty()
	.remove()

	Chapter 5: Event Methods
	Event Handler Attachment
	.bind()
	.unbind()
	.one()
	.trigger()

	Document Loading
	$()
	.load()
	.unload()
	.error()

	Mouse Events
	.mousedown()
	.mouseup()
	.click()
	.dblclick()
	.toggle()
	.mouseover()
	.mouseout()
	.hover()
	.mousemove()

	Form Events
	.focus()
	.blur()
	.change()
	.select()
	.submit()

	Keyboard Events
	.keydown()
	.keypress()
	.keyup()

	Browser Events
	.resize()
	.scroll()

	Chapter 6: Effect Methods
	Pre-Packaged Effects
	.show()
	.hide()
	.toggle()
	.slideDown()
	slideUp()
	.slideToggle()
	fadeIn()
	.fadeOut()
	.fadeTo()

	Customized Effects
	.animate()

	Chapter 7: AJAX Methods
	Low-Level Interface
	$.ajax()
	$.ajaxSetup()

	Shorthand Methods
	$.get()
	$.getIfModified()
	.load()
	.loadIfModified()
	$.post()
	$.getJSON()
	$.getScript()

	Global AJAX Event Handlers
	.ajaxComplete()
	.ajaxError()
	.ajaxSend()
	.ajaxStart()
	.ajaxStop()
	.ajaxSuccess()

	Helper Function
	.serialize()

	Chapter 8: Miscellaneous Methods
	Setup Methods
	$.browser
	$.noConflict()

	DOM Element Methods
	.length
	.size()
	.get()
	.index()

	Collection Manipulation
	.each()
	$.grep()
	$.map()
	$.merge()
	$.unique()
	$.extend()
	$.trim()

	Chapter 9: Plug-In API
	Using a Plug-in
	Developing a Plug-in
	Object Method
	Global Function
	Selector Expression
	Easing Style

	Example: Maintaining Multiple Event Logs
	Summary

	Chapter 10: Dimensions Plug-In
	Size Methods
	.height()
	.width()
	.innerHeight()
	.innerWidth()
	.outerHeight()
	.outerWidth()

	Position Methods
	.scrollTop()
	.scrollTop(value)
	.scrollLeft()
	.scrollLeft(value)
	.offset()
	.position()

	Chapter 11: Form Plug-In
	AJAX Form Submission
	.ajaxSubmit()
	.ajaxForm()
	.ajaxFormUnbind()

	Retrieving Form Values
	.formToArray()
	.formSerialize()
	.fieldSerialize()
	.fieldValue()

	Form Manipulation
	.clearForm()
	.clearFields()
	.resetForm()

	Appendix A: Online Resources
	jQuery Documentation
	JavaScript Reference
	JavaScript Code Compressors
	(X)HTML Reference
	CSS Reference
	XPath Reference
	Useful Blogs
	Web Development Frameworks Using jQuery

	Appendix B: Development Tools
	Tools for Firefox
	Tools for Internet Explorer
	Tools for Safari
	Other Tools

	Index

