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0  Preface
0.0  Introduction

What good is a theory of programming?  Who wants one?  Thousands of programmers program 
every day without any theory.  Why should they bother to learn one?  The answer is the same as for 
any other theory.  For example, why should anyone learn a theory of motion?  You can move 
around perfectly well without one.  You can throw a ball without one.  Yet we think it important 
enough to teach a theory of motion in high school.

One answer is that a mathematical theory gives a much greater degree of precision by providing a 
method of calculation.  It is unlikely that we could send a rocket to Jupiter without a mathematical 
theory of motion.  And even baseball pitchers are finding that their pitch can be improved by hiring 
an expert who knows some theory.  Similarly a lot of mundane programming can be done without 
the aid of a theory, but the more difficult programming is very unlikely to be done correctly without 
a good theory.  The software industry has an overwhelming experience of buggy programs to 
support that statement.  And even mundane programming can be improved by the use of a theory.

Another answer is that a theory provides a kind of understanding.  Our ability to control and predict 
motion changes from an art to a science when we learn a mathematical theory.  Similarly 
programming changes from an art to a science when we learn to understand programs in the same 
way we understand mathematical theorems.  With a scientific outlook, we change our view of the 
world.  We attribute less to spirits or chance, and increase our understanding of what is possible 
and what is not.  It is a valuable part of education for anyone.

Professional engineering maintains its high reputation in our society by insisting that, to be a 
professional engineer, one must know and apply the relevant theories.  A civil engineer must know 
and apply the theories of geometry and material stress.  An electrical engineer must know and apply 
electromagnetic theory.  Software engineers, to be worthy of the name, must know and apply a 
theory of programming.

The subject of this book sometimes goes by the name “programming methodology”, “science of 
programming”, “logic of programming”, “theory of programming”, “formal methods of 
program development”, or “verification”.  It concerns those aspects of programming that are 
amenable to mathematical proof.  A good theory helps us to write precise specifications, and to 
design programs whose executions provably satisfy the specifications.  We will be considering the 
state of a computation, the time of a computation, the memory space required by a computation, and 
the interactions with a computation.  There are other important aspects of software design and 
production that are not touched by this book:  the management of people, the user interface, 
documentation, and testing.

The first usable theory of programming, often called “Hoare's Logic”, is still probably the most 
widely known.  In it, a specification is a pair of predicates:  a precondition and postcondition (these 
and all technical terms will be defined in due course).  A closely related theory uses Dijkstra's 
weakest precondition predicate transformer, which is a function from programs and postconditions 
to preconditions, further advanced in Back's Refinement Calculus.  Jones's Vienna Development 
Method has been used to advantage in some industries;  in it, a specification is a pair of predicates 
(as in Hoare's Logic), but the second predicate is a relation.  There are theories that specialize in 
real-time programming, some in probabilistic programming, some in interactive programming.



The theory in this book is simpler than any of those just mentioned.  In it, a specification is just a 
boolean expression.  Refinement is just ordinary implication.  This theory is also more general than 
those just mentioned, applying to both terminating and nonterminating computation, to both 
sequential and parallel computation, to both stand-alone and interactive computation.  All at the 
same time, we can have variables whose initial and final values are all that is of interest, variables 
whose values are continuously of interest, variables whose values are known only probabilistically, 
and variables that account for time and space.  They all fit together in one theory whose basis is the 
standard scientific practice of writing a specification as a boolean expression whose (nonlocal) 
variables represent whatever is considered to be of interest.

There is an approach to program proving that exhaustively tests all inputs, called model-checking.  
Its advantage over the theory in this book is that it is fully automated.  With a clever representation 
of boolean expressions (see Exercise 6), model-checking currently boasts that it can explore up to 
about  1060  states.  That is more than the estimated number of atoms in the universe!  It is an 
impressive number until we realize that  1060  is about  2200 , which means we are talking about  
200  bits.  That is the state space of six 32-bit variables.  To use model-checking on any program 
with more than six variables requires abstraction, and each abstraction requires proof that it 
preserves the properties of interest.  These abstractions and proofs are not automatic.  To be 
practical, model-checking must be joined with other methods of proving, such as those in this book.

The emphasis throughout this book is on program development with proof at each step, rather than 
on proof after development.
                                                                                                                                   End of Introduction

0.1  Current Edition

Since the first edition of this book, new material has been added on space bounds, and on 
probabilistic programming.  The for-loop rule has been generalized.  The treatment of concurrency 
has been simplified.  And for cooperation between parallel processes, there is now a choice:  
communication (as in the first edition), and interactive variables, which are the formally tractable 
version of shared memory.  Explanations have been improved throughout the book, and more 
worked examples have been added.

As well as additions, there have been deletions.  Any material that was usually skipped in a course 
has been removed to keep the book short.  It's really only 147 pages;  after that is just exercises and 
reference material.

Lecture slides and solutions to exercises are available to course instructors from the author.
                                                                                                                                End of Current Edition

0.2  Quick Tour

All technical terms used in this book are explained in this book.  Each new term that you should 
learn is underlined.  As much as possible, the terminology is descriptive rather than honorary 
(notable exception: “boolean”).  There are no abbreviations, acronyms, or other obscurities of 
language to annoy you.  No specific previous mathematical knowledge or programming experience 
is assumed.  However, the preparatory material on booleans, numbers, lists, and functions in 
Chapters 1, 2, and 3 is brief, and previous exposure might be helpful.
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The following chart shows the dependence of each chapter on previous chapters.

1         2         3         4         6         7

8         9

5

Chapter 4, Program Theory, is the heart of the book.  After that, chapters may be selected or omitted 
according to interest and the chart.  The only deviations from the chart are that Chapter 9 uses 
variable declaration presented in Subsection 5.0.0, and small optional Subsection 9.1.3 depends on 
Chapter 6.  Within each chapter, sections and subsections marked as optional can be omitted 
without much harm to the following material.

Chapter 10 consists entirely of exercises grouped according to the chapter in which the necessary 
theory is presented.  All the exercises in the section “Program Theory” can be done according to 
the methods presented in Chapter 4;  however, as new methods are presented in later chapters, those 
same exercises can be redone taking advantage of the later material.

At the back of the book, Chapter 11 contains reference material.  Section 11.0, “Justifications”, 
answers questions about earlier chapters, such as:  why was this presented that way?  why was this 
presented at all?  why wasn't something else presented instead?  It may be of interest to teachers and 
researchers who already know enough theory of programming to ask such questions.  It is 
probably not of interest to students who are meeting formal methods for the first time.  If you find 
yourself asking such questions, don't hesitate to consult the justifications.

Chapter 11 also contains an index of terminology and a complete list of all laws used in the book.  
To a serious student of programming, these laws should become friends, on a first name basis.  The 
final pages list all the notations used in the book.  You are not expected to know these notations 
before reading the book;  they are all explained as we come to them.  You are welcome to invent 
new notations if you explain their use.  Sometimes the choice of notation makes all the difference in 
our ability to solve a problem.
                                                                                                                                     End of Quick Tour
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1  Basic Theories
1.0  Boolean Theory

Boolean Theory, also known as logic, was designed as an aid to reasoning, and we will use it to 
reason about computation. The expressions of Boolean Theory are called boolean expressions.  We 
call some boolean expressions theorems, and others antitheorems.

The expressions of Boolean Theory can be used to represent statements about the world;  the 
theorems represent true statements, and the antitheorems represent false statements.  That is the 
original application of the theory, the one it was designed for, and the one that supplies most of the 
terminology.  Another application for which Boolean Theory is perfectly suited is digital circuit 
design.  In that application, boolean expressions represent circuits;  theorems represent circuits with 
high voltage output, and antitheorems represent circuits with low voltage output.  In general, 
Boolean Theory can be used for any application that has two values.

The two simplest boolean expressions are  †  and  ƒ .  The first  one,  † , is a theorem, and the 
second  one,  ƒ , is an antitheorem.  When Boolean Theory is being used for its original purpose, 
we pronounce  †  as “true” and  ƒ  as “false” because the former represents an arbitrary true 
statement and the latter represents an arbitrary false statement.  When Boolean Theory is being 
used for digital circuit design, we pronounce  †  and  ƒ  as “high voltage” and “low voltage”, or 
as “power” and “ground”.  Similarly we may choose words from other application areas.  Or, to 
be independent of application, we may call them “top” and “bottom”.  They may also be called 
the zero-operand boolean operators because they have no operands.

There are four one-operand boolean operators, of which only one is interesting.  Its symbol is  ¬ , 
pronounced “not”.  It is a prefix operator (placed before its operand).  An expression of the form  
¬x  is called a negation.  If we negate a theorem we obtain an antitheorem;  if we negate an 
antitheorem we obtain a theorem.  This is depicted by the following truth table.

† ƒ
                     

¬ ⎪ ƒ †

Above the horizontal line,  †  means that the operand is a theorem, and  ƒ  means that the operand 
is an antitheorem.  Below the horizontal line,  †  means that the result is a theorem, and  ƒ  means 
that the result is an antitheorem.

There are sixteen two-operand boolean operators.  Mainly due to tradition, we will use only six of 
them, though they are not the only interesting ones.  These operators are infix (placed between their 
operands).  Here are the symbols and some pronunciations.

∧ “and”
∨ “ o r ”
⇒ “implies”,  “is equal to or stronger than”
⇐ “follows from”, “is implied by”,  “is weaker than or equal to”
= “equals”, “if and only if”
+ “differs from”, “is unequal to”, “exclusive or”, “boolean plus”

An expression of the form  x∧y  is called a conjunction, and the operands  x  and  y  are called 
conjuncts.  An expression of the form  x∨y  is called a disjunction, and the operands are called 
disjuncts.  An expression of the form  x⇒y  is called an implication,  x  is called the antecedent, and  
y  is called the consequent.  An expression of the form  x⇐y  is also called an implication, but now  



x  is the consequent and  y  is the antecedent.  An expression of the form  x=y  is called an equation, 
and the operands are called the left side and the right side.  An expression of the form  x+y  is 
called an unequation, and again the operands are called the left side and the right side.

The following truth table shows how the classification of boolean expressions formed with two-
operand operators can be obtained from the classification of the operands.  Above the horizontal 
line, the pair  ††  means that both operands are theorems;  the pair  †ƒ  means that the left 
operand is a theorem and the right operand is an antitheorem;  and so on.  Below the horizontal line,  
†  means that the result is a theorem, and  ƒ  means that the result is an antitheorem.

†† †ƒ ƒ† ƒƒ
                                         

∧ ⎪  † ƒ ƒ ƒ

∨ ⎪  † † † ƒ

⇒ ⎪  † ƒ † †

⇐ ⎪  † † ƒ †

= ⎪  † ƒ ƒ †

+ ⎪  ƒ † † ƒ

Infix operators make some expressions ambiguous.  For example,  ƒ ∧ † ∨ †  might be read as 
the conjunction  ƒ ∧ † , which is an antitheorem, disjoined with  † , resulting in a theorem.  Or it 
might be read as  ƒ  conjoined with the disjunction  † ∨ † , resulting in an antitheorem.  To say 
which is meant, we can use parentheses:  either  (ƒ ∧ †) ∨ †  or  ƒ ∧ († ∨ †) .  To prevent a 
clutter of parentheses, we employ a table of precedence levels, listed on the final page of the book.  
In the table,  ∧  can be found on level 9, and  ∨  on level 10;  that means, in the absence of 
parentheses, apply  ∧  before  ∨ .  The example  ƒ ∧ † ∨ †  is therefore a theorem.

Each of the operators  =  ⇒  ⇐  appears twice in the precedence table.  The large versions  =  ⇒  
⇐  on level 16 are applied after all other operators.  Except for precedence, the small versions and 
large versions of these operators are identical.  Used with restraint, these duplicate operators can 
sometimes improve readability by reducing the parenthesis clutter still further.  But a word of 
caution:  a few well-chosen parentheses, even if they are unnecessary according to precedence, can 
help us see structure.  Judgement is required.

There are 256 three-operand operators, of which we show only one.  It is called conditional 
composition, and written  if x then y else z .  Here is its truth table.

††† ††ƒ †ƒ† †ƒƒ ƒ†† ƒ†ƒ ƒƒ† ƒƒƒ
                                                                                                                                 
if then else  ⎪ † † ƒ ƒ † ƒ † ƒ

For every natural number  n , there are  22n  operators of  n  operands, but we now have quite 
enough.

When we stated earlier that a conjunction is an expression of the form  x∧y , we were using  x∧y  to 
stand for all expressions obtained by replacing the variables  x  and  y  with arbitrary boolean 
expressions.  For example, we might replace  x  with  (ƒ ⇒ ¬(ƒ ∨ †))  and replace  y  with  
(ƒ ∨ †)  to obtain the conjunction

(ƒ ⇒ ¬(ƒ ∨ †)) ∧ (ƒ ∨ †)
Replacing a variable with an expression is called substitution or instantiation.  With the 
understanding that variables are there to be replaced, we admit variables into our expressions, being 
careful of the following two points.
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• We sometimes have to insert parentheses around expressions that are replacing variables in 
order to maintain the precedence of operators.  In the example of the preceding paragraph, 
we replaced a conjunct  x  with an implication  ƒ ⇒ ¬(ƒ ∨ †) ;  since conjunction comes 
before implication in the precedence table, we had to enclose the implication in parentheses.  
We also replaced a conjunct  y  with a disjunction  ƒ ∨ † , so we had to enclose the 
disjunction in parentheses.

• When the same variable occurs more than once in an expression, it must be replaced by the 
same expression at each occurrence.  From  x ∧ x  we can obtain  † ∧ † , but not  † ∧ ƒ .  
However, different variables may be replaced by the same or different expressions.  From  
x∧y  we can obtain both  †∧†  and  † ∧ ƒ .

As we present other theories, we will introduce new boolean expressions that make use of the 
expressions of those theories, and classify the new boolean expressions.  For example, when we 
present Number Theory we will introduce the number expressions  1+1  and  2 , and the boolean 
expression  1+1=2 , and we will classify it as a theorem.  We never intend to classify a boolean 
expression as both a theorem and an antitheorem.  A statement about the world cannot be both true 
and (in the same sense) false;  a circuit's output cannot be both high and low voltage.  If, by 
accident, we do classify a boolean expression both ways, we have made a serious error.  But it is 
perfectly legitimate to leave a boolean expression unclassified.  For example,  1/0=5  will be neither 
a theorem nor an antitheorem.  An unclassified boolean expression may correspond to a statement 
whose truth or falsity we do not know or do not care about, or to a circuit whose output we cannot 
predict.  A theory is called consistent if no boolean expression is both a theorem and an 
antitheorem, and inconsistent if some boolean expression is both a theorem and an antitheorem.  A 
theory is called complete if every fully instantiated boolean expression is either a theorem or an 
antitheorem, and incomplete if some fully instantiated boolean expression is neither a theorem nor 
an antitheorem.

1.0.0  Axioms and Proof Rules

We present a theory by saying what its expressions are, and what its theorems and antitheorems 
are.  The theorems and antitheorems are determined by the five rules of proof.  We state the rules 
first, then discuss them after.

Axiom Rule If a boolean expression is an axiom, then it is a theorem.  If a boolean 
expression is an antiaxiom, then it is an antitheorem.

Evaluation Rule If all the boolean subexpressions of a boolean expression are classified, then it 
is classified according to the truth tables.

Completion Rule If a boolean expression contains unclassified boolean subexpressions, and all 
ways of classifying them place it in the same class, then it is in that class.

Consistency Rule If a classified boolean expression contains boolean subexpressions, and only 
one way of classifying them is consistent, then they are classified that way.

Instance Rule If a boolean expression is classified, then all its instances have that same 
classification.

5 1  Basic Theories



An axiom is a boolean expression that is stated to be a theorem.  An antiaxiom is similarly a 
boolean expression stated to be an antitheorem.  The only axiom of Boolean Theory is  †  and the 
only antiaxiom is  ƒ .  So, by the Axiom Rule,  †  is a theorem and  ƒ  is an antitheorem.  As we 
present more theories, we will give their axioms and antiaxioms;  they, together with the other rules 
of proof, will determine the new theorems and antitheorems of the new theory.

Before the invention of formal logic, the word “axiom” was used for a statement whose truth was 
supposed to be obvious.  In modern mathematics, an axiom is part of the design and presentation of 
a theory.  Different axioms may yield different theories, and different theories may have different 
applications.  When we design a theory, we can choose any axioms we like, but a bad choice can 
result in a useless theory.

The entry in the top left corner of the truth table for the two-operand operators does not say  
†∧† = †  .  It says that the conjunction of any two theorems is a theorem.  To prove that  
†∧† = †  is a theorem requires the boolean axiom (to prove that  †  is a theorem), the first entry 
on the  ∧  row of the truth table (to prove that  †∧†  is a theorem), and the first entry on the  =  row 
of the truth table (to prove that  †∧† = †  is a theorem).

The boolean expression
† ∨ x

contains an unclassified boolean subexpression, so we cannot use the Evaluation Rule to tell us 
which class it is in.  If  x  were a theorem, the Evaluation Rule would say that the whole expression 
is a theorem.  If  x  were an antitheorem, the Evaluation Rule would again say that the whole 
expression is a theorem.  We can therefore conclude by the Completion Rule that the whole 
expression is indeed a theorem.  The Completion Rule also says that

x ∨ ¬x
is a theorem, and when we come to Number Theory, that

1/0 = 5  ∨  ¬ 1/0 = 5
is a theorem.  We do not need to know that a subexpression is unclassified to use the Completion 
Rule.  If we are ignorant of the classification of a subexpression, and we suppose it to be 
unclassified, any conclusion we come to by the use of the Completion Rule will still be correct.

In a classified boolean expression, if it would be inconsistent to place a boolean subexpression in 
one class, then the Consistency Rule says it is in the other class.  For example, suppose we know 
that  expression0  is a theorem, and that  expression0 ⇒ expression1  is also a theorem.  Can we 
determine what class  expression1  is in?  If  expression1  were an antitheorem, then by the 
Evaluation Rule  expression0 ⇒ expression1  would be an antitheorem, and that would be 
inconsistent.  So, by the Consistency Rule,  expression1  is a theorem.  This use of the Consistency 
Rule is traditionally called “detachment” or “modus ponens”.  As another example, if  
¬expression  is a theorem, then the Consistency Rule says that  expression  is an antitheorem.

Thanks to the negation operator and the Consistency Rule, we never need to talk about antiaxioms 
and antitheorems.  Instead of saying that  expression  is an antitheorem, we can say that  
¬expression  is a theorem.  But a word of caution:  if a theory is incomplete, it is possible that 
neither  expression  nor  ¬expression  is a theorem.  Thus “antitheorem” is not the same as “not a 
theorem”.  Our preference for theorems over antitheorems encourages some shortcuts of speech.  
We sometimes state a boolean expression, such as  1+1=2 , without saying anything about it;  when 
we do so, we mean that it is a theorem.  We sometimes say we will prove something, meaning we 
will prove it is a theorem.
                                                                                                                     End of Axioms and Proof Rules
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With our two axioms ( †  and  ¬ƒ ) and five proof rules we can now prove theorems.  Some 
theorems are useful enough to be given a name and be memorized, or at least be kept in a handy list.  
Such a theorem is called a law.  Some laws of Boolean Theory are listed at the back of the book.  
Laws concerning  ⇐  have not been included, but any law that uses  ⇒  can be easily rearranged 
into one using  ⇐ .  All of them can be proven using the Completion Rule, classifying the variables 
in all possible ways, and evaluating each way.  When the number of variables is more than about 2, 
this kind of proof is quite inefficient.  It is much better to prove new laws by making use of already 
proven old laws.  In the next subsection we see how.

1.0.1  Expression and Proof Format

The precedence table on the final page of this book tells how to parse an expression in the absence 
of parentheses.  To help the eye group the symbols properly, it is a good idea to leave space for 
absent parentheses.  Consider the following two ways of spacing the same expression.

a∧b  ∨  c
a  ∧  b∨c

According to our rules of precedence, the parentheses belong around  a∧b , so the first spacing is 
helpful and the second misleading.

An expression that is too long to fit on one line must be broken into parts.  There are several 
reasonable ways to do it;  here is one suggestion.  A long expression in parentheses can be broken 
at its main connective, which is placed under the opening parenthesis.  For example,

( first part
∧ second part    )

A long expression without parentheses can be broken at its main connective, which is placed under 
where the opening parenthesis belongs.  For example,

first part
= second part

Attention to format makes a big difference in our ability to understand a complex expression.

A proof is a boolean expression that is clearly a theorem.  One form of proof is a continuing 
equation with hints.

expression0 hint 0
= expression1 hint 1
= expression2 hint 2
= expression3

This continuing equation is a short way of writing the longer boolean expression
expression0 = expression1

∧ expression1 = expression2
∧ expression2 = expression3

The hints on the right side of the page are used, when necessary, to help make it clear that this 
continuing equation is a theorem.  The best kind of hint is the name of a law.  The “hint 0” is 
supposed to make it clear that  expression0 = expression1  is a theorem.  The “hint 1” is supposed 
to make it clear that  expression1 = expression2  is a theorem.  And so on.  By the transitivity of  = , 
this proof proves the theorem  expression0 = expression3 .
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Here is an example.  Suppose we want to prove the first Law of Portation
a ∧ b ⇒ c  =  a ⇒ (b ⇒ c)

using only previous laws in the list at the back of this book.  Here is a proof.
a ∧ b ⇒ c Material Implication

= ¬(a ∧ b) ∨ c Duality
= ¬a ∨ ¬b ∨ c Material Implication
= a ⇒ ¬b ∨ c Material Implication
= a ⇒ (b ⇒ c)

From the first line of the proof, we are told to use “Material Implication”, which is the first of the 
Laws of Inclusion.  This law says that an implication can be changed to a disjunction if we also 
negate the antecedent.  Doing so, we obtain the second line of the proof.  The hint now is 
“Duality”, and we see that the next line is obtained by replacing  ¬(a ∧ b)  with  ¬a ∨ ¬b  in 
accordance with the first of the Duality Laws.  By not using parentheses on that line, we silently use 
the Associative Law of disjunction, in preparation for the next step.  The next hint is again 
“Material Implication”;  this time it is used in the opposite direction, to replace the first disjunction 
with an implication.  And once more, “Material Implication” is used to replace the remaining 
disjunction with an implication.  Therefore, by transitivity of  = , we conclude that the first Law of 
Portation is a theorem.

Here is the proof again, in a different form.
(a ∧ b ⇒ c  =  a ⇒ (b ⇒ c)) Material Implication, 3 times

= (¬(a ∧ b) ∨ c  =  ¬a ∨ (¬b ∨ c)) Duality
= (¬a ∨ ¬b ∨ c  =  ¬a ∨ ¬b ∨ c) Reflexivity of  =
= †

The final line is a theorem, hence each of the other lines is a theorem, and in particular, the first line 
is a theorem.  This form of proof has some advantages over the earlier form.  First, it makes proof 
the same as simplification to  † .  Second, although any proof in the first form can be written in the 
second form, the reverse is not true.  For example, the proof

(a⇒b = a∧b) = a Associative Law for =
= (a⇒b = (a∧b = a)) a Law of Inclusion
= †

cannot be converted to the other form.  And finally, the second form, simplification to  † , can be 
used for theorems that are not equations;  the main operator of the boolean expression can be 
anything, including  ∧ ,  ∨ , or  ¬ .

Sometimes it is clear enough how to get from one line to the next without a hint, and in that case no 
hint will be given.  Hints are optional, to be used whenever they are helpful.  Sometimes a hint is too 
long to fit on the remainder of a line.  We may have

expression0 short hint
= expression1 and now a very long hint, written just as this is written,

 on as many lines as necessary, followed by
= expression2

We cannot excuse an inadequate hint by the limited space on one line.
                                                                                                              End of Expression and Proof Format
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1.0.2  Monotonicity and Antimonotonicity

A proof can be a continuing equation, as we have seen;  it can also be a continuing implication, or a 
continuing mixture of equations and implications.  As an example, here is a proof of the first Law 
of Conflation, which says

(a ⇒ b) ∧ (c ⇒ d)  ⇒  a ∧ c ⇒ b ∧ d
The proof goes this way:  starting with the right side,

a ∧ c ⇒ b ∧ d distribute  ⇒  over second  ∧
= (a ∧ c ⇒ b) ∧ (a ∧ c ⇒ d) antidistribution twice
= ((a⇒b) ∨ (c⇒b)) ∧ ((a⇒d) ∨ (c⇒d)) distribute  ∧  over  ∨  twice
= (a⇒b)∧(a⇒d) ∨ (a⇒b)∧(c⇒d) ∨ (c⇒b)∧(a⇒d) ∨ (c⇒b)∧(c⇒d) generalization
⇐ (a⇒b) ∧ (c⇒d)

From the mutual transitivity of  =  and  ⇐ , we have proven
a ∧ c ⇒ b ∧ d  ⇐  (a⇒b) ∧ (c⇒d)

which can easily be rearranged to give the desired theorem.

The implication operator is reflexive  a⇒a , antisymmetric  (a⇒b) ∧ (b⇒a) = (a=b) , and 
transitive  (a⇒b) ∧ (b⇒c) ⇒ (a⇒c) .  It is therefore an ordering (just like  ≤  for numbers).  We 
pronounce  a⇒b  either as “ a  implies  b ”, or, to emphasize the ordering, as “ a  is stronger than 
or equal to  b ”.  The words “stronger” and “weaker” may have come from a philosophical 
origin;  we ignore any meaning they may have other than the boolean order, in which  ƒ  is stronger 
than  † .  For clarity and to avoid philosophical discussion, it would be better to say “falser” rather 
than “stronger”, and to say “truer” rather than “weaker”, but we use the standard terms.

The Monotonic Law  a⇒b  ⇒  c∧a ⇒ c∧b  can be read (a little carelessly) as follows:  if  a  is 
weakened to  b , then  c∧a  is weakened to  c∧b .  (To be more careful, we should say “weakened or 
equal”.)  If we weaken  a , then we weaken  c∧a .  Or, the other way round, if we strengthen  b , 
then we strengthen  c∧b .  Whatever happens to a conjunct (weaken or strengthen), the same 
happens to the conjunction.  We say that conjunction is monotonic in its conjuncts.

The Antimonotonic Law  a⇒b  ⇒  (b⇒c) ⇒ (a⇒c)  says that whatever happens to an antecedent 
(weaken or strengthen), the opposite happens to the implication.  We say that implication is 
antimonotonic in its antecedent.

Here are the monotonic and antimonotonic properties of boolean expressions.
¬a  is antimonotonic in  a
a∧b  is monotonic in  a  and monotonic in  b
a∨b  is monotonic in  a  and monotonic in  b
a⇒b  is antimonotonic in  a  and monotonic in  b
a⇐b  is monotonic in  a  and antimonotonic in  b
if a then b else c  is monotonic in  b  and monotonic in  c

These properties are useful in proofs.  For example, in Exercise 2(k), to prove  ¬(a ∧ ¬(a∨b)) , we 
can employ the Law of Generalization  a ⇒ a∨b  to strengthen  a∨b  to  a .  That weakens  ¬(a∨b)  
and that weakens  a ∧ ¬(a∨b)  and that strengthens  ¬(a ∧ ¬(a∨b)) .

¬(a ∧ ¬(a∨b)) use the Law of Generalization
⇐ ¬(a ∧ ¬a) now use the Law of Noncontradiction
= †

We thus prove that  ¬(a ∧ ¬(a∨b)) ⇐ † , and by an identity law, that is the same as proving  
¬(a ∧ ¬(a∨b)) .  In other words,  ¬(a ∧ ¬(a∨b))  is weaker than or equal to  † , and since there is 
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nothing weaker than  † , it is equal to  † .  When we drive toward  † , the left edge of the proof can 
be any mixture of  =  and  ⇐  signs.

Similarly we can drive toward  ƒ , and then the left edge of the proof can be any mixture of  =  and  
⇒  signs.  For example,

a ∧ ¬(a∨b) use the Law of Generalization
⇒ a ∧ ¬a now use the Law of Noncontradiction
= ƒ

This is called “proof by contradiction”.  It proves  a ∧ ¬(a∨b) ⇒  ƒ , which is the same as 
proving  ¬(a ∧ ¬(a∨b)) .  Any proof by contradiction can be converted to a proof by simplification 
to  †  at the cost of one  ¬  sign per line.
                                                                                                    End of Monotonicity and Antimonotonicity

1.0.3  Context

A proof, or part of a proof, can make use of local assumptions.  A proof may have the format
assumption

⇒ ( expression0
= expression1
= expression2
= expression3  )

for example.  The step  expression0 = expression1  can make use of the  assumption  just as 
though it were an axiom.  So can the step  expression1 = expression2 , and so on.  Within the 
parentheses we have a proof;  it can be any kind of proof including one that makes further local 
assumptions.  We thus can have proofs within proofs, indenting appropriately.  If the subproof is 
proving  expression0 = expression3 , then the whole proof is proving

assumption ⇒ (expression0 = expression3)
If the subproof is proving  expression0 , then the whole proof is proving

assumption ⇒ expression0
If the subproof is proving  ƒ , then the whole proof is proving

assumption ⇒ ƒ
which is equal to  ¬assumption .  Once again, this is “proof by contradiction”.

We can also use  if then else  as a proof, or part of a proof, in a similar manner.  The format is
if possibility
then  ( first subproof

assuming  possibility
as a local axiom  )

else  ( second subproof
assuming  ¬possibility
as a local axiom  )

If the first subproof proves  something  and the second proves  anotherthing , the whole proof 
proves

if possibility then something else anotherthing
If both subproofs prove the same thing, then by the Case Idempotent Law, so does the whole proof, 
and that is its most frequent use.
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Consider a step in a proof that looks like this:
expression0 ∧ expression1

= expression0 ∧ expression2
When we are changing  expression1  into  expression2 , we can assume  expression0  as a local 
axiom just for this step.  If  expression0  really is a theorem, then we have done no harm by 
assuming it as a local axiom.  If, however,  expression0  is an antitheorem, then both  
expression0 ∧ expression1  and  expression0 ∧ expression2  are antitheorems no matter what  
expression1  and  expression2  are, so again we have done nothing wrong.  Symmetrically, when 
proving

expression0 ∧ expression1
= expression2 ∧ expression1

we can assume  expression1  as a local axiom.  However, when proving
expression0 ∧ expression1

= expression2 ∧ expression3
we cannot assume  expression0  to prove  expression1=expression3  and in the same step assume  
expression1  to prove  expression0=expression2 .  For example, starting from  a ∧ a , we can 
assume the first  a  and so change the second one to  † ,

a ∧ a assume first  a  to simplify second  a
= a ∧ †

or we can assume the second  a  and so change the first one to  † ,
a ∧ a assume second  a  to simplify first  a

= † ∧ a
but we cannot assume both of them at the same time.

a ∧ a this step is wrong
= † ∧ †

In this paragraph, the equal signs could have been implications in either direction.

Here is a list of context rules for proof.
In  expression0 ∧ expression1 , when changing  expression0 , we can assume  expression1 .
In  expression0 ∧ expression1 , when changing  expression1 , we can assume  expression0 .
In  expression0 ∨ expression1 , when changing  expression0 , we can assume  ¬expression1 .
In  expression0 ∨ expression1 , when changing  expression1 , we can assume  ¬expression0 .
In  expression0 ⇒ expression1 , when changing  expression0 , we can assume  ¬expression1 .
In  expression0 ⇒ expression1 , when changing  expression1 , we can assume  expression0 .
In  expression0 ⇐ expression1 , when changing  expression0 , we can assume  expression1 .
In  expression0 ⇐ expression1 , when changing  expression1 , we can assume  ¬expression0 .
In  if expression0 then expression1 else expression2 , when changing  expression1 ,

we can assume  expression0 .
In  if expression0 then expression1 else expression2 , when changing  expression2 ,

we can assume  ¬expression0 .

In the previous subsection we proved Exercise 2(k):  ¬(a ∧ ¬(a∨b)) .  Here is another proof, this 
time using context.

¬(a ∧ ¬(a∨b)) assume  a  to simplify  ¬(a∨b)
= ¬(a ∧ ¬(†∨b)) Symmetry Law and Base Law for  ∨
= ¬(a ∧ ¬†) Truth Table for  ¬
= ¬(a ∧ ƒ) Base Law for  ∧
= ¬ƒ Boolean Axiom, or Truth Table for  ¬
= †

                                                                                                                                         End of Context
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1.0.4  Formalization

We use computers to solve problems, or to provide services, or just for fun.  The desired computer 
behavior is usually described at first informally, in a natural language (like English), perhaps with 
some diagrams, perhaps with some hand gestures, rather than formally, using mathematical 
formulas (notations).  In the end, the desired computer behavior is described formally as a program.  
A programmer must be able to translate informal descriptions to formal ones.

A statement in a natural language can be vague, ambiguous, or subtle, and can rely on a great deal of 
cultural context.  This makes formalization difficult, but also necessary.  We cannot possibly say 
how to formalize, in general;  it requires a thorough knowledge of the natural language, and is 
always subject to argument.  In this subsection we just point out a few pitfalls in the translation 
from English to boolean expressions.

The best translation may not be a one-for-one substitution of symbols for words.  The same word 
in different places may be translated to different symbols, and different words may be translated to 
the same symbol.  The words “and”, “also”, “but”, “yet”, “however”, and “moreover” might 
all be translated as  ∧ .  Just putting things next to each other sometimes means  ∧ .  For example, 
“They're red, ripe, and juicy, but not sweet.” becomes  red ∧ ripe ∧ juicy ∧ ¬sweet .

The word “or” in English is sometimes best translated as  ∨ , and sometimes as  + .  For example, 
“They're either small or rotten.” probably includes the possibility that they're both small and rotten, 
and should be translated as  small ∨ rotten .  But “Either we eat them or we preserve them.” 
probably excludes doing both, and is best translated as  eat + preserve .

The word “if” in English is sometimes best translated as  ⇒ , and sometimes as  = .  For example, 
“If it rains, we'll stay home.” probably leaves open the possibility that we might stay home even if 
it doesn't rain, and should be translated as  rain ⇒ home .  But “If it snows, we can go skiing.” 
probably also means “and if it doesn't, we can't”, and is best translated as  snow = ski .
                                                                                                                                 End of Formalization

                                                                                                                               End of Boolean Theory

1.1  Number Theory

Number Theory, also known as arithmetic, was designed to represent quantity.  In the version we 
present, a number expression is formed in the following ways.

a sequence of one or more decimal digits
∞ “infinity”
+ x “plus  x ”
– x “minus  x ”
x + y “ x  plus  y ”
x – y “ x  minus  y ”
x × y “ x  times  y ”
x / y “ x  divided by  y ”
xy “ x  to the power  y ”
if a then x else y

where  x  and  y  are any number expressions, and  a  is any boolean expression.  The infinite 
number expression  ∞  will be essential when we talk about the execution time of programs.  We 
also introduce several new ways of forming boolean expressions:
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x < y “ x  is less than  y ”
x ≤ y “ x  is less than or equal to  y ”
x > y “ x  is greater than  y ”
x ≥ y “ x  is greater than or equal to  y ”
x = y “ x  equals  y ”, “ x  is equal to  y ”
x + y “ x  differs from  y ”, “ x  is unequal to  y ”

The axioms of Number Theory are listed at the back of the book.  It's a long list, but most of them 
should be familiar to you already.  Notice particularly the two axioms

–∞ ≤ x ≤ ∞ extremes
–∞ < x  ⇒  ∞+x = ∞ absorption

Number Theory is incomplete.  For example, the boolean expressions  1/0 = 5  and  0 < (–1)1/2  
can neither be proven nor disproven.
                                                                                                                                End of Number Theory

1.2  Character Theory

The simplest character expressions are written as a prequote followed by a graphical shape.  For 
example,  `A  is the “capital A” character,  `1  is the “one” character,  `   is the “space” character, 
and  ``  is the “prequote” character.  Character Theory is trivial.  It has operators  succ   
(successor),  pred  (predecessor), and  = + < ≤ > ≥ if then else  .  We leave the details of this 
theory to the reader's inclination.
                                                                                                                             End of Character Theory

All our theories use the operators  = + if then else  , so their laws are listed at the back of the book 
under the heading “Generic”, meaning that they are part of every theory.  These laws are not 
needed as axioms of Boolean Theory;  for example,  x=x   can be proven using the Completion and 
Evaluation rules.  But in Number Theory and other theories, they are axioms;  without them we 
cannot even prove  5=5 .

The operators  < ≤ > ≥  apply to some, but not all, types of expression.  Whenever they do apply, 
their axioms, as listed under the heading “Generic” at the back of the book, go with them.
                                                                                                                                End of Basic Theories

We have talked about boolean expressions, number expressions, and character expressions.  In the 
following chapters, we will talk about bunch expressions, set expressions, string expressions, list 
expressions, function expressions, predicate expressions, relation expressions, specification 
expressions, and program expressions;  so many expressions.  For brevity in the following 
chapters, we will often omit the word “expression”, just saying boolean, number, character, bunch, 
set, string, list, function, predicate, relation, specification, and program, meaning in each case a type 
of expression.  If this bothers you, please mentally insert the word “expression” wherever you 
would like it to be.
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2  Basic Data Structures
A data structure is a collection, or aggregate, of data.  The data may be booleans, numbers, 
characters, or data structures.  The basic kinds of structuring we consider are packaging and 
indexing.  These two kinds of structure give us four basic data structures.

unpackaged, unindexed: bunch
packaged, unindexed: set
unpackaged, indexed: string
packaged, indexed: list

2.0  Bunch Theory

A bunch represents a collection of objects.  For contrast, a set represents a collection of objects in a 
package or container.  A bunch is the contents of a set.  These vague descriptions are made precise 
as follows.

Any number, character, or boolean (and later also set, string of elements, and list of elements) is an 
elementary bunch, or element.  For example, the number  2  is an elementary bunch, or 
synonymously, an element.  Every expression is a bunch expression, though not all are elementary.

From bunches  A  and  B  we can form the bunches
A , B “ A  union  B ”
A ‘ B “ A  intersection  B ”

and the number
¢A “size of  A ”, “cardinality of  A ”

and the boolean
A: B “ A  is in  B ”, “ A  is included in  B ”

The size of a bunch is the number of elements it includes.  Elements are bunches of size  1 .
¢2  =  1
¢(0, 2, 5, 9)  =  4

Here are three quick examples of bunch inclusion.
2:  0, 2, 5, 9
2:  2
2, 9:  0, 2, 5, 9

The first says that  2  is in the bunch consisting of  0, 2, 5, 9 .  The second says that  2  is in the 
bunch consisting of only  2 .  Note that we do not say “a bunch contains its elements”, but rather 
“a bunch consists of its elements”.  The last example says that both  2  and  9  are in  0, 2, 5, 9 , or 
in other words, the bunch  2, 9  is included in the bunch  0, 2, 5, 9 .

Here are the axioms of Bunch Theory.  In these axioms,  x  and  y  are elements (elementary 
bunches), and  A , B ,  and  C  are arbitrary bunches.

x: y   =   x=y elementary axiom
x: A,B   =   x: A  ∨  x: B compound axiom
A,A = A idempotence
A,B = B,A symmetry



A,(B,C) = (A,B),C associativity
A‘A = A idempotence
A‘B = B‘A symmetry
A‘(B‘C) = (A‘B)‘C associativity
A,B: C   =   A: C  ∧  B: C antidistributivity
A: B‘C   =   A: B  ∧  A: C distributivity
A: A,B generalization
A‘B: A specialization
A: A reflexivity
A: B  ∧  B: A   =   A=B antisymmetry
A: B  ∧  B: C   ⇒   A: C transitivity
¢x = 1 size
¢(A, B) + ¢(A‘B) = ¢A + ¢B size
¬ x: A  ⇒  ¢(A‘x) = 0 size
A: B  ⇒  ¢A ≤ ¢B size

From these axioms, many laws can be proven.  Among them:
A,(A‘B)  =  A absorption
A‘(A,B)  =  A absorption
A: B   ⇒   C,A: C,B monotonicity
A: B   ⇒   C‘A: C‘B monotonicity
A: B   =   A,B = B   =   A = A‘B inclusion
A,(B,C)  =  (A,B),(A,C) distributivity
A,(B‘C)  =  (A,B)‘(A,C) distributivity
A‘(B,C)  =  (A‘B), (A‘C) distributivity
A‘(B‘C)  =  (A‘B)‘(A‘C) distributivity
A: B  ∧  C: D   ⇒   A,C: B,D conflation
A: B  ∧  C: D   ⇒   A‘C: B‘D conflation

Here are several bunches that we will find useful:
null the empty bunch
bool = †, ƒ the booleans
nat = 0, 1, 2, ... the natural numbers
int = ..., –2, –1, 0, 1, 2, ... the integer numbers
rat = ..., –1, 0, 2/3, ... the rational numbers
real = ..., 21/2, ... the real numbers
xnat = 0, 1, 2, ..., ∞ the extended naturals
xint = –∞, ..., –2, –1, 0, 1, 2, ..., ∞ the extended integers
xrat = –∞, ..., –1, 0, 2/3, ..., ∞ the extended rationals
xreal = –∞, ..., ∞ the extended reals
char = ..., `a, `A, ... the characters

In these equations, whenever three dots appear they mean “guess what goes here”.  This use of 
three dots is informal, so these equations cannot serve as definitions, though they may help to give 
you the idea.  We define these bunches formally in a moment.
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The operators  , ‘ ¢ : = + if then else   apply to bunch operands according to the axioms already 
presented.  Some other operators can be applied to bunches with the understanding that they apply 
to the elements of the bunch.  In other words, they distribute over bunch union.  For example,

–null  =  null
–(A, B)  =  –A, –B
A+null  =  null+A  =  null
(A, B)+(C, D)  =  A+C, A+D, B+C, B+D

This makes it easy to express the positive naturals  (nat+1) , the even naturals  (nat×2) , the squares  
(nat2) , the powers of two  (2nat) , and many other things.  (The operators that distribute over bunch 
union are listed on the final page.)

We define the empty bunch,  null , with the axioms
null: A
¢A = 0   =   A = null

This gives us three more laws:
A, null  =  A identity
A ‘ null  =  null base
¢ null  =  0 size

The bunch  bool  is defined by the axiom
bool = †, ƒ

The bunch  nat  is defined by the two axioms
0, nat+1: nat construction
0, B+1: B  ⇒  nat: B induction

Construction says that 0, 1, 2, and so on, are in  nat .  Induction says that nothing else is in  nat  by 
saying that of all the bunches  B  satisfying the construction axiom,  nat  is the smallest.  In some 
books, particularly older ones, the natural numbers start at  1 ;  we will use the term with its current 
and more useful meaning, starting at  0 .  The bunches  int ,  rat ,  xnat ,  xint , and  xrat  can be 
defined as follows.

int   =   nat, –nat
rat   =   int/(nat+1)
xnat   =   nat, ∞
xint   =   –∞, int, ∞
xrat   =   –∞, rat, ∞

The definition of  real  is postponed until the next chapter (functions).  Bunch  real  won't be used 
before it is defined, except to say

xreal   =   –∞, real, ∞
We do not care enough about the bunch  char  to define it.

We also use the notation
x,..y “ x  to  y ”  (not “ x  through  y ”)

where  x  is an integer and  y  is an extended integer and  x≤y .  Its axiom is
i: x,..y   =   x≤i<y

where  i  is an extended integer.  The notation  ,..  is asymmetric as a reminder that the left end of 
the interval is included and the right end is excluded.  For example,

0,..∞  =  nat
5,..5  =  null
¢(x,..y)  =  y–x

The  ,..  notation is formal.  We have an axiom defining it, so we don't have to guess what is 
included.
                                                                                                                                 End of Bunch Theory
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2.1  Set Theory optional

Let  A  be any bunch (anything).  Then
{A} “set containing  A ”

is a set.  Thus  {null}  is the empty set, and the set containing the first three natural numbers is 
expressed as  {0, 1, 2}  or as  {0,..3} .  All sets are elements;  not all bunches are elements;  that is 
the difference between sets and bunches.  We can form the bunch  1, {3, 7}  consisting of two 
elements, and from it the set  {1, {3, 7}}  containing two elements, and in that way we build a 
structure of nested sets.

The powerset operator  2  is a one-operand prefix operator that takes a set as operand and yields a 
set of sets as result.  Here is an example.

2{0, 1}  =  {{null}, {0}, {1}, {0, 1}}

The inverse of set formation is also useful.  If  S  is any set, then
~S “contents of  S ”

is its contents.  For example,
~{0, 1}  =  0, 1

We “promote” the bunch operators to obtain the set operators $ [ 1 ' 9 = . Here are the axioms.
{A}  +  A structure
{~S}  =  S set formation
~{A}  =  A “contents”
${A} = ¢A “size”, “cardinality”
A [ {B}   =   A: B “elements”
{A} 1 {B}   =   A: B “subset”
{A} [  2{B}   =   A: B “powerset”
{A} ' {B}  =  {A, B} “union”
{A} 9 {B}  =  {A ‘ B} “intersection”
{A} = {B}   =   A = B “equation”

                                                                                                                                     End of Set Theory

Bunches are unpackaged collections and sets are packaged collections.  Similarly, strings are 
unpackaged sequences and lists are packaged sequences.  There are sets of sets, and lists of lists, 
but there are neither bunches of bunches nor strings of strings.

2.2  String Theory

The simplest string is
nil the empty string

Any number, character, boolean, set, (and later also list and function) is a one-item string, or item.  
For example, the number  2  is a one-item string, or item.  A nonempty bunch of items is also an 
item.  Strings are catenated (joined) together by semicolons to make longer strings.  For example,

4; 2; 4; 6
is a four-item string.  The length of a string is obtained by the  ±  operator.

±(4; 2; 4; 6)  =  4
We can measure a string by placing it along a string-measuring ruler, as in the following picture.

4 ; 2 ; 4 ; 6

0                1               2                3               4                5               6             
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Each of the numbers under the ruler is called an index.  When we are considering the items in a 
string from beginning to end, and we say we are at index  n , it is clear which items have been 
considered and which remain because we draw the items between the indexes.  (If we were to draw 
an item at an index, saying we are at index  n  would leave doubt as to whether the item at that index 
has been considered.)

The picture saves one confusion, but causes another:  we must refer to the items by index, and two 
indexes are equally near each item.  We adopt the convention that most often avoids the need for a 
“+1” or “–1” in our expressions:  the index of an item is the number of items that precede it.  In 
other words, indexing is from  0 .  Your life begins at year  0 , a highway begins at mile  0 , and so 
on.  An index is not an arbitrary label, but a measure of how much has gone before.  We refer to the 
items in a string as “item 0”, “item 1”, “item 2”, and so on;  we never say “the third item” due 
to the possible confusion between item 2 and item 3.  When we are at index  n , then  n  items have 
been considered, and item  n  will be considered next.

We obtain an item of a string by subscripting.  For example,
(3; 5; 7; 9)2  =  7

In general,  Sn  is item  n  of string  S .  We can even pick out a whole string of items, as in the 
following example.

(3; 5; 7; 9)2; 1; 2  =  7; 5; 7
If  n  is an extended natural and  S  is a string, then  n*S  means  n  copies of  S  catenated together.

3 * (0; 1)  =  0; 1; 0; 1; 0; 1
Without any left operand,  *S  means all strings formed by catenating any number of copies of  S .

*(0; 1)  =  nil , 0;1 , 0;1;0;1 , ...

Strings can be compared for equality and order.  To be equal, strings must be of equal length, and 
have equal items at each index.  The order of two strings is determined by the items at the first 
index where they differ.  For example,

3; 6; 4; 7  <  3; 7; 2
If there is no index where they differ, the shorter string comes before the longer one.

3; 6; 4  <  3; 6; 4; 7
This ordering is known as lexicographic order;  it is the ordering used in dictionaries.

Here is the syntax of strings.  If  i  is an item,  S  and  T  are strings, and  n  is an extended natural 
number, then

nil the empty string
i an item
S;T “ S  catenate  T ”
ST “ S  sub  T ”
n*S “ n  copies of  S ”

are strings,
*S “copies of  S ”

is a bunch of strings, and
±S “length of  S ”

is an extended natural number.  The order operators  < ≤ > ≥  apply to strings.

Here are the axioms of String Theory.  In these axioms,  S ,  T , and  U  are strings,  i  and  j  are 
items, and  n  is an extended natural number.

2  Basic Data Structures 18



nil; S   =   S; nil   =  S identity
S; (T; U)  =  (S; T); U associativity
±nil  =  0 base
±i  =  1 base
±(S; T)  =  ±S + ±T
Snil  =  nil
±S<∞   ⇒   (S; i; T)±S  =  i
ST; U  =  ST; SU
S(TU)  =  (ST)

U
0*S  =  nil
(n+1)*S  =  n*S; S
±S<∞   ⇒   nil  ≤  S  <  S; i; T
±S<∞   ⇒   (i<j   =   S; i; T  <  S; j; U)
±S<∞   ⇒   (i=j   =   S; i; T  =  S; j; T)

We also use the notation
x;..y “ x  to  y ”  (same pronunciation as  x,..y )

where  x  is an integer and  y  is an extended integer and  x≤y .  As in the similar bunch notation,  x  
is included and  y  excluded, so that

±(x;..y)  =  y–x
Here are the axioms.

x;..x  =  nil
x;..x+1  =  x
(x;..y)  ;  (y;..z)  =  x;..z

We allow string catenation to distribute over bunch union:
A; null; B  =  null
(A, B); (C, D)  =  A;C, A;D, B;C, B;D

So a string of bunches is equal to a bunch of strings.  Thus, for example,
0; 1; 2:   nat; 1; (0,..10)

because  0: nat  and  1: 1  and  2: 0,..10 .  A string is an element (elementary bunch) just when all its 
items are elements;  so  0;1;2  is an element, but  nat; 1; (0,..10)  is not.  Progressing to larger 
bunches,

0; 1; 2:   nat; 1; (0,..10):   3*nat:   *nat
The  *  operator distributes over bunch union in its left operand only.

null*A  =  null
(A, B) * C  =  A*C, B*C

Using this left-distributivity, we define the one-operand  *  by the axiom
*A  =  nat*A

The strings we have just defined may be called “extended natural strings” because their lengths 
and indexes are extended natural numbers.  With only a small change to a few axioms, we can have 
“natural strings”, excluding strings of infinite length.  By adding a new operator, the inverse of 
catenation, we obtain “negative strings”;  natural strings and negative strings together are “integer 
strings”.  We leave these developments as Exercise 46.
                                                                                                                                 End of String Theory

Our main purpose in presenting String Theory is as a stepping stone to the presentation of List 
Theory.
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2.3  List Theory

A list is a packaged string.  For example,
[0; 1; 2]

is a list of three items.  List brackets  [ ]  distribute over bunch union.
[null]  =  null
[A, B]  =  [A], [B]

Because  0: nat  and  1: 1  and  2: 0,..10  we can say
[0; 1; 2]:   [nat; 1; (0,..10)]

On the left of the colon we have a list of integers;  on the right we have a list of bunches, or 
equivalently, a bunch of lists.  A list is an element (elementary bunch) just when all its items are 
elements;  [0; 1; 2]  is an element, but  [nat; 1; (0,..10)]  is not.  Progressing to larger bunches,

[0; 1; 2]:   [nat; 1; (0,..10)]:   [3*nat]:   [*nat]

Here is the syntax of lists.  Let  S  be a string,  L  and  M  be lists,  n  be a natural number, and  i  be 
an item.  Then

[S] “list containing  S ”
L M “ L M ”  or  “ L  composed with  M ”
L+M “ L catenate  M ”
n→i | L “ n  maps to  i  otherwise  L ”

are lists,
L “contents of  L ”

is a string,
#L “length of  L ”

is an extended natural number, and
L n “ L n ”  or  “ L  at index  n ”

is an item.  Of course, parentheses may be used around any expression, so we may write  L(n)  if 
we want.  If the index is not simple, we must enclose it in parentheses.  When there is no danger of 
confusion, we may write  Ln  without a space between, but when we use multicharacter names, we 
must put a space between.

The contents of a list is the string of items it contains.
[3; 5; 7; 4]  =  3; 5; 7; 4

The length of a list is the number of items it contains.
#[3; 5; 7; 4]  =  4

List indexes, like string indexes, start at  0 .  An item can be selected from a list by juxtaposing 
(sitting next to each other) a list and an index.

[3; 5; 7; 4] 2  =  7
A list of indexes gives a list of selected items.  For example,

[3; 5; 7; 4] [2; 1; 2]  =  [7; 5; 7]
This is called list composition.  List catenation is written with a small raised plus sign  + .

[3; 5; 7; 4]+[2; 1; 2]  =  [3; 5; 7; 4; 2; 1; 2]
The notation  n→i | L  gives us a list just like  L  except that item  n  is  i .

2→22 | [10;..15]  =  [10; 11; 22; 13; 14]
2→22 | 3→33 | [10;..15]  =  [10; 11; 22; 33; 14]

Let  L  =  [10;..15] .  Then
2→L3 | 3→L2 | L  =  [10; 11; 13; 12; 14]

The order operators  < ≤ > ≥  apply to lists;  the order is lexicographic, just like string order.
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Here are the axioms.  Let  L  be a list,  let  S  and  T  be strings, let  n  be a natural number, and let  i  
and  j  be items.

[S]  +  S structure
[ L]  =  L list formation

[S]  =  S contents
#[S]  =  ±S length
[S]+[T]  =  [S; T] catenation
[S] n  =  Sn indexing
[S] [T]  =  [ST] composition
±S<∞   ⇒   (±S) → i | [S; j; T]   =   [S; i; T] modification
[S] = [T]   =   S = T equation
[S] < [T]   =   S < T order

We can now prove a variety of theorems, such as for lists  L ,  M ,  N , and natural  n , that
(L M) n  =  L (M n)
(L M) N  =  L (M N) associativity
L (M+N)  =  L M + L N distributivity

When a list is indexed by a list, we get a list of results.  For example,
[1; 4; 2; 8; 5; 7; 1; 4] [1; 3; 7]  =  [4; 8; 4]

We say that list  M  is a sublist of list  L  if  M  can be obtained from  L  by a list of increasing 
indexes.  So  [4; 8; 4]  is a sublist of  [1; 4; 2; 8; 5; 7; 1; 4] .  If the list of indexes is not only 
increasing but consecutive  [i;..j] , then the sublist is called a segment.

If the index is a list, the result is a list.  More generally, the index can be any structure, and the result 
will have the same structure.

L null  =  null
L (A, B)  =  L A, L B
L {A}  =  {L A}
L nil  =  nil
L (S; T)  =  L S; L T
L [S]  =  [L S]

Here is a fancy example.  Let  L = [10; 11; 12] .  Then
L [0, {1, [2; 1]; 0}]  =  [L 0, {L 1, [L 2; L 1]; L 0}]  =  [10, {11, [12; 11]; 10}]

The text notation is an alternative way of writing a list of characters.  A text begins with a double-
quote, continues with any natural number of characters (but a double-quote must be repeated), and 
concludes with a double-quote.  Here is a text of length  15 .

"Don't say ""no""."   =   [`D; `o; `n; `'; `t; ` ; `s; `a; `y; ` ; `"; `n; `o; `"; `.]
Composing a text with a list of indexes, we obtain a subtext.  For example,

"abcdefghij" [3;..6]  =  "def"

Here is a self-describing expression (self-reproducing automaton).
"""[0;0;2*(0;..17)]"[0;0;2*(0;..17)]

Perform the indexing and see what you get.
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2.3.0  Multidimensional Structures

Lists can be items in a list.  For example, let
A  =  [ [6; 3; 7; 0] ;

[4; 9; 2; 5] ;
[1; 5; 8; 3] ]

Then  A  is a 2-dimensional array, or more particularly, a 3×4 array.  Formally,  A: [3*[4*nat]] .  
Indexing  A  with one index gives a list

A 1  =  [4; 9; 2; 5]
which can then be indexed again to give a number.

A 1 2  =  2
Warning:  The notations  A(1,2)  and  A[1,2]  are used in several programming languages to index a 
2-dimensional array.  But in this book,

A (1, 2)  =  A 1, A 2  =  [4; 9; 2; 5], [1; 5; 8; 3]
A [1, 2]  =  [A 1, A 2]  =  [ [4; 9; 2; 5], [1; 5; 8; 3] ]  =  [[4; 9; 2; 5]], [[1; 5; 8; 3]]

We have just seen a rectangular array, a very regular structure, which requires two indexes to give a 
number.  Lists of lists can also be quite irregular in shape, not just by containing lists of different 
lengths, but in dimensionality.  For example, let

B  =  [ [2; 3]; 4; [5; [6; 7] ] ]
Now  B 0 0 = 2  and  B 1 = 4 , and  B 1 1  is undefined.  The number of indexes needed to obtain a 
number varies.  We can regain some regularity in the following way.  Let  L  be a list, let  n  be an 
index,  and let  S  and  T  be strings of indexes.  Then

L@nil  =  L
L@n  =  L n
L@(S; T)  =  L@S@T

Now we can always “index” with a single string, called a pointer, obtaining the same result as 
indexing by the sequence of items in the string.  In the example list,

B@(2; 1; 0)  =  B 2 1 0  =  6

We generalize the notation  S→i | L  to allow  S  to be a string of indexes.  The axioms are
nil→i | L  =  i
(S;T) → i | L  =  S→(T→i | L@S) | L

Thus  S→i | L  is a list like  L  except that  S  points to item  i .  For example,
(0;1) → 6 | [ [0; 1; 2] ;

[3; 4; 5] ]  =  [ [0; 6; 2] ;
[3; 4; 5] ]

                                                                                                               End of Multidimensional Structures

                                                                                                                                    End of List Theory

                                                                                                                         End of Basic Data Structures
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3  Function Theory
We are always allowed to invent new syntax if we explain the rules for its use.  A ready source of 
new syntax is names (identifiers), and the rules for their use are most easily given by some axioms.  
Usually when we introduce names and axioms we want them for some local purpose.  The reader is 
supposed to understand their scope, the region where they apply, and not use them beyond it.  
Though the names and axioms are formal (expressions in our formalism), up to now we have 
introduced them informally by English sentences.  But the scope of informally introduced names 
and axioms is not always clear.  In this chapter we present a formal notation for introducing a local 
name and axiom.

A variable is a name that is introduced for the purpose of instantiation (replacing it).  For example, 
the law  x×1=x  uses variable  x  to tell us that any number multiplied by  1  equals that same 
number.  A constant is a name that is not intended to be instantiated.  For example, we might 
introduce the name  pi  and the axiom  3.14 < pi < 3.15 , but we do not mean that every number is 
between  3.14  and  3.15 .  Similarly we might introduce the name  i  and the axiom  i2=–1  and we 
do not want to instantiate  i .

The function notation is the formal way of introducing a local variable together with a local axiom to 
say what expressions can be used to instantiate the variable.

3.0  Functions

Let  v  be a name, let  D  be a bunch of items (possibly using previously introduced names but not 
using  v ), and let  b  be any expression (possibly using previously introduced names and possibly 
using  v ).  Then

〈v: D→b〉 “map  v  in  D  to  b ”, “local  v  in  D  maps to  b ”
is a function of variable  v  with domain  D  and body  b .  The inclusion  v: D  is a local axiom 
within the body  b .  The brackets  〈 〉  indicate the scope of the variable and axiom.  For example, 

〈n: nat→n+1〉
is the successor function on the natural numbers.  Here is a picture of it.

0       0
1       1
2       2
3       3
         4::

::

If  f  is a function, then
Δ f “domain of  f ”

is its domain.  The Domain Axiom is
Δ 〈v: D→b〉   =   D

We say both that  D  is the domain of function  〈v: D→b〉  and that within the body  b ,  D  is the 
domain of variable  v .  The range of a function consists of the elements obtained by substituting 
each element of the domain for the variable in the body.  The range of our successor function is  
nat+1 .



A function introduces a variable, or synonymously, a parameter.  The purpose of the variable is to 
help express the mapping from domain elements to range elements.  The choice of name is 
irrelevant as long as it is fresh, not already in use for another purpose.  The Renaming Axiom says 
that if  v  and  w  are names, and neither  v  nor  w  appears in  D , and  w  does not appear in  b , 
then

〈v: D→b〉   =   〈w: D→(substitute  w  for  v  in  b )〉
The substitution must replace every occurrence of  v  with  w .

If  f  is a function and  x  is an element of its domain, then
f x “ f  applied to  x ”  or  “ f  of  x ”

is the corresponding element of the range.  This is function application, and  x  is the argument.  Of 
course, parentheses may be used around any expression, so we may write  f(x)  if we want.  If either 
the function or the argument is not simple, we will have to enclose it in parentheses.  When there is 
no danger of confusion, we may write  fx  without a space between, but when we use multicharacter 
names, we must put a space between the function and the argument.  As an example of application, 
if  suc = 〈n: nat→n+1〉 , then

suc 3  =  〈n: nat→n+1〉 3  =  3+1  =  4
Here is the Application Axiom.  If element  x: D , then

〈v: D→b〉 x  =  (substitute  x  for  v  in  b )
Operators and functions are similar;  just as we apply operator  –  to operand  x  to get  –x , we 
apply function  f  to argument  x  to get  f x .

A function of more than one variable is a function whose body is a function.  Here are two 
examples.

max  =  〈x: xrat→〈y: xrat→if x≥y then x else y〉〉
min  =  〈x: xrat→〈y: xrat→if x≤y then x else y〉〉

If we apply  max  to an argument we obtain a function of one variable,
max 3  =  〈y: xrat→if 3≥y then 3 else y〉

which can be applied to an argument to obtain a number.
max 3 5  =  5

A predicate is a function whose body is a boolean expression.  Two examples are
even  =  〈i: int→i/2: int〉
odd  =  〈i: int→¬ i/2: int〉

A relation is a function whose body is a predicate.  Here is an example:
divides  =  〈n: nat+1→〈i: int→i/n: int〉〉
divides 2  =  even
divides 2 3  =  ƒ

One more operation on functions is selective union.  If  f  and  g  are functions, then
f | g “ f  otherwise  g ”, “the selective union of  f  and  g ”

is a function that behaves like  f  when applied to an argument in the domain of  f , and otherwise 
behaves like  g .  The axioms are

Δ(f | g)  =  Δf, Δg
(f | g) x  =  if x: Δf then f x else g x

All the rules of proof apply to the body of a function with the additional local axiom that the new 
variable is an element of the domain.

3  Function Theory 24



3.0.0  Abbreviated Function Notations

We allow some variations in the notation for functions partly for the sake of convenience and partly 
for the sake of tradition.  The first variation is to group the introduction of variables.  For example,

〈x, y: xrat→if x≥y then x else y〉
is an abbreviation for the  max  function seen earlier.

We may omit the domain of a function (and preceding colon) if the surrounding explanation 
supplies it.  For example, the successor function may be written  〈n→n+1〉  in a context where it is 
understood that the domain is  nat .

We may omit the variable (and following colon) when the body of a function does not use it.  In 
this case, we also omit the scope brackets  〈 〉 .  For example,  2→3  is a function that maps  2  to  
3 , which we could have written  〈n: 2→3〉  with an unused variable.

Some people refer to any expression as a function of its variables.  For example, they might write
x+3

and say it is a function of  x .  They omit the formal variable and domain introduction, supplying 
them informally.  There are problems with this abbreviation.  One problem is that there may be 
variables that don't appear in the expression.  For example,

〈x: int→〈y: int→x+3〉〉
which introduces two variables, would have the same abbreviation as

〈x: int→x+3〉
Another problem is that there is no precise indication of the scope of the variable(s).  And another is 
that we do not know the order of the variable introductions, so we cannot apply such an abbreviated 
function to arguments.  We consider this abbreviation to be too much, and we will not use it.  We 
point it out only because it is common terminology, and to show that the variables we introduced 
informally in earlier chapters are the same as the variables we introduce formally in functions.
                                                                                                          End of Abbreviated Function Notations

3.0.1  Scope and Substitution

A variable is local to an expression if its introduction is inside the expression (and therefore 
formal).  A variable is nonlocal to an expression if its introduction is outside the expression 
(whether formal or informal).  The words “local” and “nonlocal” are used relative to a particular 
expression or subexpression.

If we always use fresh names for our local variables, then a substitution replaces all occurrences of 
a variable.  But if we reuse a name, we need to be more careful.  Here is an example in which the 
gaps represent uninteresting parts.

〈x→ x 〈x→ x 〉 x 〉 3
Variable  x  is introduced twice:  it is reintroduced in the inner scope even though it was already 
introduced in the outer scope.  Inside the inner scope, the  x  is the one introduced in the inner 
scope.  The outer scope is a function, which is being applied to argument  3 .  Assuming  3  is in its 
domain, the Application Axiom says that this expression is equal to one obtained by substituting  3  
for  x .  The intention is to substitute  3  for the  x  introduced by this function, the outer scope, not 
the one introduced in the inner scope.  The result is

= ( 3 〈x→ x 〉 3 )
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Here is a worse example.  Suppose  x  is a nonlocal variable, and we reintroduce it in an inner 
scope.

〈y→ x y 〈x→ x y 〉 x y 〉 x
The Application Axiom tells us to substitute  x  for all occurrences of  y .  All three uses of  y  are 
the variable introduced by the outer scope, so all three must be replaced by the nonlocal  x  used as 
argument.  But that will place a nonlocal  x  inside a scope that reintroduces  x , making it look local.  
Before we substitute, we must use the Renaming Axiom for the inner scope.  Choosing fresh name  
z , we get

= 〈y→ x y 〈z→ z y 〉 x y 〉 x
by renaming, and then substitution gives

= ( x x 〈z→ z x 〉 x x )

The Application Axiom (for element  x: D )
〈v: D→b〉 x  =  (substitute  x  for  v  in  b )

provides us with a formal notation for substitution.  It is one of only two axioms (this one concerns 
variable introduction;  the other, in Chapter 5, concerns variable removal) that we express informally, 
because formalizing it is equivalent to writing a program to perform substitution.  The Renaming 
Axiom can be written formally as follows:

〈v: D→b〉   =   〈w: D→〈v: D→b〉 w〉
And it needn't be an axiom, because it is an instance of the Axiom of Extension

f   =   〈w: Δf→f w〉
When the domain is obvious, or when it is obvious that we intend a domain that includes  x , we 
write  〈v→b〉x  for “replace  v  in  b  by  x ”.  For example, applying each side of the Renaming 
Axiom to argument  x

〈v→b〉x   =   〈w→〈v→b〉w〉x
says that repacing  v  by  x  is the same as replacing  v  by  w  and then replacing  w  by  x .
                                                                                                                      End of Scope and Substitution

                                                                                                                                      End of Functions

3.1  Quantifiers

A quantifier is a one-operand prefix operator that applies to functions.  Any two-operand symmetric 
associative operator can be used to define a quantifier.  Here are four examples:  the operators  
∧ ∨ + ×  are used to define, respectively, the quantifiers  ∀ ∃ Σ Π  .  If  p  is a predicate, then 
universal quantification  ∀p  is the boolean result of applying  p  to all its domain elements and 
conjoining all the results.  Similarly, existential quantification  ∃p  is the boolean result of applying  
p  to all its domain elements and disjoining all the results.  If  f  is a function with a numeric result, 
then  Σf  is the numeric result of applying  f  to all its domain elements and adding up all the results;  
and  Πf  is the numeric result of applying  f  to all its domain elements and multiplying together all 
the results.  Here are four examples.

∀〈r : rat→r<0 ∨ r=0 ∨ r>0〉 “for all  r  in  rat ...”
∃〈n: nat→n=0〉 “there exists  n  in  nat  such that ...”
Σ〈n: nat+1→1/2n〉 “the sum, for  n  in  nat+1 , of ...”
Π〈n: nat+1→(4×n2)/(4×n2–1)〉 “the product, for  n  in  nat+1 , of ...”

For the sake of convenience and tradition, we allow two abbreviated quantifier notations.  First, we 
allow the scope brackets  〈 〉  following a quantifier to be omitted;  now we have to change the arrow 
to a raised dot to avoid ambiguity.  For example we write

∀r: rat· r<0 ∨ r=0 ∨ r>0
Σn: nat+1· 1/2n
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Second, we can group the variables in a repeated quantification.  In place of
∀x: rat· ∀y: rat· x = y+1  ⇒  x > y

we can write
∀x, y: rat· x = y+1  ⇒  x > y

and in place of
Σn: 0,..10· Σm: 0,..10· n×m

we can write
Σn, m: 0,..10· n×m

These abbreviated quantifier notations make the scope of variables less clear, and they complicate 
the precedence rules, but the mathematical tradition is strong, and so we will use them.

The axioms for these quantifiers fall into two patterns, depending on whether the operator on which 
it is based is idempotent.  The axioms are as follows ( v  is a name,  A  and  B  are bunches,  b  is a 
boolean expression,  n  is a number expression,  and  x  is an element).

∀v: null· b   =   †
∀v: x· b   =   〈v: x→b〉 x
∀v: A,B· b   =   (∀v: A· b) ∧ (∀v: B· b)

∃v: null· b   =   ƒ
∃v: x· b   =   〈v: x→b〉 x
∃v: A,B· b   =   (∃v: A· b) ∨ (∃v: B· b)

Σv: null· n   =   0
Σv: x· n   =   〈v: x→n〉 x
(Σv: A,B· n) + (Σv: A‘B· n)   =   (Σv: A· n) + (Σv: B· n)

Πv: null· n   =   1
Πv: x· n   =   〈v: x→n〉x
(Πv: A,B· n) × (Πv: A‘B· n)   =   (Πv: A· n) × (Πv: B· n)

Care is required when translating from the English words “all” and “some” to the formal 
notations  ∀  and  ∃ .  For example, the statement “All is not lost.” should not be translated as  
∀x· ¬ lost x , but as  ∃x· ¬ lost x  or as  ¬∀x· lost x  or as ¬∀lost .  Notice that when a quantifier is 
applied to a function with an empty domain, it gives the identity element of the operator it is based 
on.  It is probably not a surprise to find that the sum of no numbers is  0 , but it may surprise you 
to learn that the product of no numbers is  1 .  You probably agree that there is not an element in the 
empty domain with property  b  (no matter what  b  is), and so existential quantification over an 
empty domain gives the result you expect.  You may find it harder to accept that all elements in the 
empty domain have property  b , but look at it this way:  to deny it is to say that there is an element 
in the empty domain without property  b .  Since there isn't any element in the empty domain, there 
isn't one without property  b , so all (zero) elements have the property.

We can also form quantifiers from functions that we define ourselves.  For example, functions  min  
and  max  are two-operand symmetric associative idempotent functions, so we can define 
corresponding quantifiers  MIN  and  MAX  as follows.

MIN v: null· n   =   ∞
MIN v: x· n   =   〈v: x→n〉 x
MIN v: A,B· n   =   min (MIN v: A· n) (MIN v: B· n)
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MAX v: null· n   =   –∞
MAX v: x· n   =   〈v: x→n〉 x
MAX v: A,B· n   =   max (MAX v: A· n) (MAX v: B· n)

Our final quantifier applies to predicates.  The solution quantifier  §  (“solutions of”, “those”) 
gives the bunch of solutions of a predicate.  Here are the axioms.

§v: null· b   =   null
§v: x· b   =   if 〈v: x→b〉 x then x else null
§v: A,B· b   =   (§v: A· b), (§v: B· b)

We have all practiced solving equations, and we are comfortable with
§i: int· i2 = 4   =   –2, 2 “those  i  in  int  such that ... ”

Equations are just a special case of boolean expression;  we can just as well talk about the solutions 
of any predicate.  For example,

§n: nat· n<3   =   0,..3

There are further axioms to say how each quantifier behaves when the domain is a result of the  §  
quantifier;  they are listed at the back of the book, together with other laws concerning 
quantification.  These laws are used again and again during programming;  they must be studied 
until they are all familiar.  Some of them can be written in a nicer, though less traditional, way.  For 
example, the Specialization and Generalization laws at the back of the book say that if  x: D , 

∀v: D· b   ⇒   〈v: D→b〉 x
〈v: D→b〉 x   ⇒   ∃v: D· b

Together they can be written as follows:  if  x: Δf
∀f   ⇒   f x   ⇒   ∃f

If  f  results in  †  for all its domain elements, then  f  results in  †  for domain element  x .  And if  f  
results in  †  for domain element  x , then there is a domain element for which  f  results in  † .

The One-Point Laws say that if  x: D , and  v  does not appear in  x , then
∀v: D· v=x ⇒ b   =   〈v: D→b〉 x
∃v: D· v=x ∧ b   =   〈v: D→b〉 x

For instance, in the universal quantification  ∀n: nat· n=3 ⇒ n<10 , we see an implication whose 
antecedent equates the variable to an element.  The One-Point Law says this can be simplified by 
getting rid of the quantifier and antecedent, keeping just the consequent, but replacing the variable 
by the element.  So we get  3<10 , which can be further simplified to  † .  In an existential 
quantification, we need a conjunct equating the variable to an element, and then we can make the 
same simplification.  For example,  ∃n: nat· n=3 ∧ n<10  becomes  3<10 , which can be further 
simplified to  † .  If  P  is a predicate that does not mention nonlocal variable  x , and element  y  is 
in the domain of  P , then the following are all equivalent:

∀x: ΔP· x=y ⇒ Px
= ∃x: ΔP· x=y ∧ Px
= 〈x: ΔP→Px〉 y
= Py

Some of the laws may be a little surprising;  for example, we can prove
MIN n: nat· 1/(n+1)  =  0

even though  0  is never a result of the function  〈n: nat→1/(n+1)〉 .
                                                                                                                                     End of Quantifiers
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3.2  Function Fine Points optional

Consider a function in which the body is a bunch:  each element of the domain is mapped to zero or 
more elements of the range.  For example,

〈n: nat→n, n+1〉
maps each natural number to two natural numbers.

0       0
1       1
2       2
3       3
         4::

::

Application works as usual:
〈n: nat→n, n+1〉 3   =   3, 4

A function that sometimes produces no result is called “partial”.  A function that always produces 
at least one result is called “total”.  A function that always produces at most one result is called 
“deterministic”.  A function that sometimes produces more than one result is called 
“nondeterministic”.  The function  〈n: nat→0,..n〉  is both partial and nondeterministic.

A union of functions applied to an argument gives the union of the results:
(f, g) x   =   fx, gx

A function applied to a union of arguments gives the union of the results:
f null  =  null
f (A, B)  =  f A, f B
f (§g)  =  §y: f (Δg)· ∃x: Δg· fx=y ∧ gx

In other words, function application distributes over bunch union.  The range of function  f  is  
f (Δf) .

In general, we cannot apply a function to a non-elementary bunch using the Application Law.  For 
example, if we define  double  =  〈n: nat→n+n〉  we can say

double (2, 3) this step is right
= double 2, double 3
= 4, 6

but we cannot say
double (2, 3) this step is wrong

= (2, 3) + (2, 3)
= 4, 5, 6

Suppose we really do want to apply a function to a collection of items, for example to report if there 
are too many items in the collection.  Then the collection must be packaged as a set to make it an 
elementary argument.

If the body of a function uses its variable exactly once, and in a distributing context, then the 
function can be applied to a non-elementary argument because the result will be the same as would 
be obtained by distribution.  For example,

〈n: nat→n×2〉 (2, 3) this step is ok
= (2, 3)×2
= 4, 6
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3.2.0  Function Inclusion and Equality optional

A function  f  is included in a function  g  according to the Function Inclusion Law:
f: g    =    Δg: Δf  ∧  ∀x: Δg· fx: gx

Using it both ways round, we find function equality is as follows:
f = g    =    Δf = Δg  ∧  ∀x: Δf· fx = gx

We now prove  suc: nat→nat .  Function  suc  was defined earlier as  suc  =  〈n: nat→n+1〉 .  
Function  nat→nat  is an abbreviation of  〈n: nat→nat〉 , which has an unused variable.  It is a 
nondeterministic function whose result, for each element of its domain  nat , is the bunch  nat .  It is 
also the bunch of all functions whose domain includes  nat  and whose result is included in  nat .

suc: nat→nat use Function Inclusion Law
= nat: Δsuc  ∧  ∀n: nat· suc n: nat definition of  suc
= nat: nat  ∧  ∀n: nat· n+1: nat reflexivity, and  nat  construction axiom
= †

We can prove similar inclusions about other functions defined in the first section of this chapter.
max: xrat→xrat→xrat
min: xrat→xrat→xrat
even: int→bool
odd: int→bool
divides: (nat+1)→int→bool

And, more generally,
f: A→B    =    A: Δf  ∧  fA: B

                                                                                                           End of Function Inclusion and Equality

We earlier defined  suc  by the axiom
suc  =  〈n: nat→n+1〉

This equation can be written instead as
Δsuc = nat   ∧   ∀n: nat· suc n = n+1

We could have defined  suc  by the weaker axiom
nat: Δsuc   ∧   ∀n: nat· suc n = n+1

which is almost as useful in practice, and allows  suc  to be extended to a larger domain later, if 
desired.  A similar comment holds for  max ,  min ,  even ,  odd , and  divides .

3.2.1  Higher-Order Functions optional

Here is a predicate whose parameter is a function.
〈f: ((0,..10)→int) → ∀n: 0,..10· even (f n)〉

This predicate checks whether a function, when applied to each of the first  10  natural numbers, 
produces only even integers.  Let us call this predicate  check .  Since its parameter  f  is used 
exactly once in the body of  check , and in a distributing context ( even  distributes over bunch 
union), we can apply  check  to a functional argument (even though functions are not elements).  An 
argument for  check  must be a function whose domain includes  0,..10  because  check  will be 
applying its argument to all elements in  0,..10 .  An argument for  check  must be a function whose 
results, when applied to the first  10  natural numbers, are included in  int  because they will be 
tested for evenness.  An argument for  check  may have a larger domain (extra domain elements will 
be ignored), and it may have a smaller range.  If  A: B  and  f: B→C  and  C: D  then  f: A→D .  
Therefore  suc: (0,..10)→int .  We can apply  check  to  suc  and the result will be  ƒ .
                                                                                                                     End of Higher-Order Functions
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3.2.2  Function Composition optional

Let  f  and  g  be functions such that  f  is not in the domain of  g  ( ¬ f: Δg ).  Then  g f  is the 
composition of  g  and  f , defined by the Function Composition Axioms:

Δ(g f)  =  §x: Δf· fx: Δg
(g f) x  =  g (f x)

For example, since  suc  is not in the domain of  even ,
Δ(even suc)   =   §x: Δsuc· suc x: Δeven   =   §x: nat· x+1: int   =   nat
(even suc) 3  =  even (suc 3)  =  even 4  =  †

Suppose  x, y: int  and  f, g: int→int  and  h: int→int→int .  Then
h f x g y juxtaposition is left-associative

= (((h f) x) g) y use function composition on  h f
= ((h (f x)) g) y use function composition on  (h (f x)) g
= (h (f x)) (g y) drop superfluous parentheses
= h (f x) (g y)

The Composition Axiom says that we can write complicated combinations of functions and 
arguments without parentheses.  They sort themselves out properly according to their functionality.  
(This is called “Polish prefix” notation.)

Composition and application are closely related.  Suppose  f: A→B  and  g: B→C  and  ¬ f: Δg  so 
that  g  can be composed with  f .  Although  g  cannot be applied to  f , we can change  g  into a 
function  g′: (A→B)→(A→C)  that can be applied to  f  to obtain the same result as composition:  
g′ f = g f .  Here is an example.  Define

double  =  〈n: nat→n+n〉
We can compose  double  with  suc .

(double suc) 3 use composition
= double (suc 3) apply  double  to  suc 3
= suc 3 + suc 3

From  double  we can form a new function
double′  =  〈f→〈n→f n + f n〉〉

which can be applied to  suc
(double′ suc) 3   =   〈n→suc n + suc n〉 3   =   suc 3 + suc 3

to obtain the same result as before.  This close correspondence has led people to take a notational 
shortcut:  they go ahead and apply  double  to  suc  even though it does not apply, then distribute 
the next argument to all occurrences of  suc .  Beginning with

(double suc) 3 they “apply”  double  to  suc
(suc + suc) 3 then distribute  3  to all occurrences of  suc
suc 3 + suc 3 and get the right answer.

As in this example, the shortcut usually works, but beware:  it can sometimes lead to 
inconsistencies.  (The word “apposition” has been suggested as a contraction of “application” 
and “composition”, and it perfectly describes the notation, too!)

Like application, composition distributes over bunch union.
f (g, h)  =  f g, f h
(f, g) h  =  f h, g h
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Operators and functions are similar;  each applies to its operands to produce a result.  Just as we 
compose functions, we can compose operators, and we can compose an operator with a function.  
For example, we can compose  –  with any function  f  that produces a number to obtain a new 
function.

(–f) x  =  –(f x)
In particular,

(–suc) 3  =  –(suc 3)  =  –4
Similarly if  p  is a predicate, then

(¬p) x  =  ¬(p x)
We can compose  ¬  with  even  to obtain  odd  again.

¬even  =  odd
We can write the Duality Laws this way:

¬∀f  =  ∃¬f
¬∃f  =  ∀¬f

or even this way:
¬∀  =  ∃¬
¬∃  =  ∀¬

                                                                                                                      End of Function Composition

                                                                                                                        End of Function Fine Points

3.3  List as Function

For most purposes, a list can be regarded as a kind of function;  the domain of list  L  is  0,..#L .  
And conversely, a function whose domain is  0,..n  for some natural  n , and whose body is an item, 
can be regarded as a kind of list.  Indexing a list is the same as function application, and the same 
notation  L n  is used.  List composition is the same as function composition, and the same notation  
L M   is used.  It is handy, and not harmful, to mix lists and functions in a composition.  For 
example,

suc [3; 5; 2]  =  [4; 6; 3]
We can also mix lists and functions in a selective union.  With function  1→21  as left operand, and 
list  [10; 11; 12]  as right operand, we get

1→21 | [10; 11; 12]  =  [10; 21; 12]
just as we defined it for lists.

We can apply quantifiers to lists.  Since list  L  corresponds to the function  〈n: 0,..#L→Ln〉 , then  
ΣL  can be used to mean  Σn: 0,..#L· Ln , and conveniently expresses the sum of the items of the 
list.

In some respects, lists and functions differ.  Catenation and length apply to lists, not to functions.  
Order is defined for lists, not for functions.  List inclusion and function inclusion do not coincide.
                                                                                                                               End of List as Function

3.4  Limits and Reals optional

Let  f: nat→rat  so that  f0; f1; f2; ...  is a sequence of rationals.  The limit of the function (limit of 
the sequence) is expressed as  LIM f .  For example, 

LIM n: nat· (1 + 1/n)n

is the base of the natural logarithms, often denoted  e , approximately equal to  2.718281828459 .  
We define the  LIM  quantifier by the following Limit Axiom:

(MAX m· MIN n· f(m+n))  ≤  (LIM f)  ≤  (MIN m· MAX n· f(m+n))
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with all domains being  nat .  This axiom gives a lower bound and an upper bound for  LIM f .  
When those bounds are equal, the Limit Axiom tells us  LIM f  exactly.  For example,

LIM n· 1/(n+1)  =  0
For some functions, the Limit Axiom tells us a little less.  For example,

–1 ≤  (LIM n→(–1)n)  ≤  1
In general,

(MIN f) ≤ (LIM f) ≤ (MAX f)
For monotonic (nondecreasing)  f ,  LIM f  = MAX f  .  For antimonotonic (nonincreasing)  f ,  
LIM f = MIN f .

Now we can define the extended real numbers.
x: xreal   =   ∃f: nat→rat· x = LIM f

We take the limits of all functions with domain  nat  and range  rat .  Now the reals:
r: real   =   r: xreal  ∧  –∞ < r <∞

Exploration of this definition is a rich subject called real analysis, and we leave it to other books.

Let  p: nat→bool  so that  p  is a predicate and  p0; p1; p2; ...  is a sequence of booleans.  The limit 
of predicate  p  is defined by the axiom

∃m· ∀n· p(m+n)   ⇒   LIM p   ⇒   ∀m· ∃n· p(m+n)
with all domains being  nat .  The limit axiom for predicates is very similar to the limit axiom for 
numeric functions.  One way to understand it is to break it into two separate implications, and 
change the second variable as follows.

∃m· ∀i· i≥m ⇒ pi   ⇒   LIM p
∃m· ∀i· i≥m ⇒ ¬pi   ⇒   ¬ LIM p

For any particular assignment of values to (nonlocal) variables, the first implication says that  LIM p  
is  †  if there is a point  in the sequence  p0 p1 p2 ...  past which  p  is always  † , and the second 
implication says that  LIM p  is  ƒ  if there is a point in the sequence past which  p  is always  ƒ .  
For example,

¬ LIM n· 1/(n+1) = 0
Even though the limit of  1/(n+1)  is  0 , the limit of  1/(n+1) = 0  is  ƒ .

If, for some particular assignment of values to variables, the sequence never settles on one boolean 
value, then the axiom does not determine the value of  LIM p  for that assignment of values.
                                                                                                                              End of Limits and Reals

The purpose of a function is to introduce a local variable.  But we must remember that any 
expression talks about its nonlocal variables.  For example,

∃n: nat· x = 2×n
says that  x  is an even natural.  The local variable  n , which could just as well have been  m  or any 
other name, is used to help say that  x  is an even natural.  The expression is talking about  x , not 
about  n .
                                                                                                                              End of Function Theory
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4  Program Theory
We begin with a very simple model of computation.  A computer has a memory, and we can 
observe its contents, or state.  Our input to a computation is to provide an initial state, or prestate.  
After a time, the output from the computation is the final state, or poststate.  Although the memory 
contents may physically be a sequence of bits, we can consider it to be a list of any items;  we only 
need to group the bits and view them through a code.  A state  σ  (sigma) may, for example, be 
given by

σ  =  [–2;  15;  `A;  3.14]
The indexes of the items in a state are usually called “addresses”.  The bunch of possible states is 
called the state space.  For example, the state space might be

[int; (0,..20); char; rat]
If the memory is in state  σ , then the items in memory are  σ 0 ,  σ 1 ,  σ 2 , and so on.  Instead of 
using addresses, we find it much more convenient to refer to items in memory by distinct names 
such as  i , n , c , and x .  Names that are used to refer to components of the state are called state 
variables.  We must always say what the state variables are and what their domains are, but we do 
not bother to say which address a state variable corresponds to.  A state is then an assignment of 
values to state variables.

Our example state space in the previous paragraph is infinite, and this is unrealistic;  any physical 
memory is finite.  We allow this deviation from reality as a simplification;  the theory of integers is 
simpler than the theory of integers modulo  232 , and the theory of rational numbers is much 
simpler than the theory of 32-bit floating-point numbers.  In the design of any theory we must 
decide which aspects of the world to consider and which to leave to other theories.  We are free to 
develop and use more complicated theories when necessary, but we will have difficulties enough 
without considering the finite limitations of a physical memory.

To begin this chapter, we consider only the prestate and poststate of memory to be of importance.  
Later in this chapter we will consider execution time, and changing space requirements, and in a 
later chapter we will consider communication during the course of a computation.  But to begin we 
consider only an initial input and a final output.  The question of termination of a computation is a 
question of execution time;  termination just means that the execution time is finite.  In the case of a 
terminating computation, the final output is available after a finite time;  in the case of a 
nonterminating computation, the final output is never available, or to say the same thing differently, 
it is available at time infinity.  All further discussion of termination is postponed until we discuss 
execution time.

4.0  Specifications

A specification is a boolean expression whose variables represent quantities of interest.  We are 
specifying computer behavior, and (for now) the quantities of interest are the prestate  σ  and the 
poststate  σ′ .  We provide a prestate as input.  A computation then delivers (computes) a poststate 
as output.  To satisfy a specification, a computation must deliver a satisfactory poststate.  In other 
words, the given prestate and the computed poststate must make the specification true.  We have an 
implementation when the specification describes (is true of) every computation.  For a specification 
to be implementable, there must be at least one satisfactory output state for each input state.



Here are four definitions based on the number of satisfactory outputs for each input.
Specification  S  is unsatisfiable for prestate  σ : ¢(§σ′· S)  <  1
Specification  S  is satisfiable for prestate  σ : ¢(§σ′· S)  ≥  1
Specification  S  is deterministic for prestate  σ : ¢(§σ′· S)  ≤  1
Specification  S  is nondeterministic for prestate  σ : ¢(§σ′· S)  >  1

We can rewrite the definition of satisfiable as follows:
Specification  S  is satisfiable for prestate  σ : ∃σ′· S

And finally, 
Specification  S  is implementable: ∀σ· ∃σ′· S

For convenience, we prefer to write specifications in the initial values  x ,  y , ...  and final values  
x′ ,  y′ , ...  of some state variables (we make no typographic distinction between a state variable and 
its initial value).  Here is an example.  Suppose there are two state variables  x  and  y  each with 
domain  int .  Then

x′ = x+1  ∧  y′ = y
specifies the behavior of a computer that increases the value of  x  by  1  and leaves  y  unchanged.  
Let us check that it is implementable.  We replace  ∀σ  by either  ∀x, y  or ∀y, x  and we replace  
∃σ′  by either  ∃x′, y′  or  ∃y′, x′ ;  according to the Commutative Laws, the order does not matter.  
We find

∀x, y· ∃x′, y′· x′ = x+1  ∧  y′ = y One-Point Law twice
= ∀x, y· † Identity Law twice
= †

The specification is implementable.  It is also deterministic for each prestate.

In the same state variables, here is a second specification.
x′ > x

This specification is satisfied by a computation that increases  x  by any amount;  it may leave  y  
unchanged or may change it to any integer.  This specification is nondeterministic for each initial 
state.  Computer behavior satisfying the earlier specification  x′ = x+1  ∧  y′ = y  also satisfies this 
one, but there are many ways to satisfy this one that do not satisfy the earlier one.  In general, 
weaker specifications are easier to implement;  stronger specifications are harder to implement.

At one extreme, we have the specification  † ;  it is the easiest specification to implement because all 
computer behavior satisfies it.  At the other extreme is the specification  ƒ , which is not satisfied by 
any computer behavior.  But  ƒ  is not the only unimplementable specification.  Here is another.

x≥0  ∧  y′=0
If the initial value of  x  is nonnegative, the specification can be satisfied by setting variable  y  to  0 .  
But if the initial value of  x  is negative, there is no way to satisfy the specification.  Perhaps the 
specifier has no intention of providing a negative input;  in that case, the specifier should have 
written

x≥0  ⇒  y′=0
For nonnegative initial  x , this specification still requires variable  y  to be assigned  0 .  If we never 
provide a negative value for  x  then we don't care what would happen if we did.  That's what this 
specification says:  for negative  x  any result is satisfactory.  It allows an implementer to provide an 
error indication when  x  is initially negative.  If we want a particular error indication, we can 
strengthen the specification to say so.  We can describe the acceptable inputs as  x≥0 , but not the 
computer behavior.  We can describe the acceptable inputs and the computer behavior together as  
x≥0 ∧ (x≥0 ⇒  y′=0) , which can be simplified to  x≥0 ∧ y′=0 .  But  x≥0 ∧ y′=0  cannot be 
implemented as computer behavior because a computer cannot control its inputs.
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There is an unfortunate clash between mathematical terminology and computing terminology that 
we have to live with.  In mathematical terminology, a variable is something that can be instantiated, 
and a constant is something that cannot be instantiated.  In computing terminology, a variable is 
something that can change state, and a constant is something that cannot change state.  A computing 
variable is also known as a “state variable”, and a computing constant is also known as a “state 
constant”.  A state variable  x  corresponds to two mathematical variables  x  and  x′ .  A state 
constant is a single mathematical variable;  it is there for instantiation, and it does not change state.

4.0.0  Specification Notations

For our specification language we will not be definitive or restrictive;  we allow any well understood 
notations.  Often this will include notations from the application area.  When it helps to make a 
specification clearer and more understandable, a new notation may be invented and defined by new 
axioms.

In addition to the notations already presented, we add two more.
ok = σ′=σ

= x′=x  ∧  y′=y  ∧ ...

x:= e = (substitute  e  for  x  in  ok )
= x′=e  ∧  y′=y  ∧ ...

The notation  ok  specifies that the final values of all variables equal the corresponding initial values.  
A computer can satisfy this specification by doing nothing.  The assignment  x:= e  is pronounced 
“ x  is assigned  e ”, or “ x  gets  e ”, or “ x  becomes  e ”.  In the assignment notation,  x  is any 
unprimed state variable and  e  is any unprimed expression in the domain of  x .  For example, in 
integer variables  x  and  y ,

x:= x+y    =   x′=x+y  ∧  y′=y
So  x:= x+y  specifies that the final value of  x  should be the sum of the initial values of  x  and  y , 
and the value of  y  should be unchanged.

Specifications are boolean expressions, and they can be combined using any operators of Boolean 
Theory.  If  S   and  R  are specifications, then  S∧R  is a specification that is satisfied by any 
computation that satisfies both  S  and  R .  Similarly,  S∨R  is a specification that is satisfied by any 
computation that satisfies either  S  or  R .  Similarly,  ¬S  is a specification that is satisfied by any 
computation that does not satisfy  S .  A particularly useful operator is  if b then S else R  where  b  
is a boolean expression of the initial state;  it can be implemented by a computer that evaluates  b , 
and then, depending on the value of  b , behaves according to either  S   or  R  .  The  ∨   and  
if then else  operators have the nice property that if their operands are implementable, so is the 
result;  the operators  ∧  and  ¬  do not have that property.

Specifications can also be combined by dependent composition, which describes sequential 
execution.  If  S  and  R  are specifications, then  S.R  is a specification that can be implemented by a 
computer that first behaves according to  S , then behaves according to  R , with the final state from  
S  serving as initial state for  R .  (The symbol for dependent composition is pronounced “dot”.  
This is not the same as the raised dot used in the abbreviated form of quantification.)  Dependent 
composition is defined as follows.

S. R =   ∃σ′′·  〈σ′→S〉σ′′  ∧  〈σ→R〉σ′′
=   ∃x′′, y′′, ...·  〈x′, y′, ...→S〉 x′′ y′′ ...  ∧  〈x, y, ...→R〉 x′′ y′′ ...
=   ∃x′′, y′′, ...· (substitute  x′′, y′′, ...  for  x′, y′, ...  in  S )

∧ (substitute  x′′, y′′, ...  for  x, y, ...  in  R )
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Here's an example.  In one integer variable  x , the specification  x′=x ∨ x′=x+1  says that the final 
value of  x  is either the same as the initial value or one greater.  Let's compose it with itself.

x′=x ∨ x′=x+1 .  x′=x ∨ x′=x+1
= ∃x′′·  (x′′=x ∨ x′′=x+1)  ∧  (x′=x′′ ∨ x′=x′′+1) distribute   ∧  over   ∨
= ∃x′′·  x′′=x ∧ x′=x′′  ∨  x′′=x+1 ∧ x′=x′′  ∨  x′′=x ∧ x′=x′′+1  ∨  x′′=x+1 ∧ x′=x′′+1

distribute   ∃  over   ∨
= (∃x′′· x′′=x ∧ x′=x′′)  ∨  (∃x′′· x′′=x+1 ∧ x′=x′′)

∨ (∃x′′· x′′=x ∧ x′=x′′+1)  ∨  (∃x′′· x′′=x+1 ∧ x′=x′′+1) One-Point, 4 times
= x′=x ∨ x′=x+1 ∨ x′=x+2

If we either leave  x  alone or add  1  to it, and then again we either leave  x  alone or add  1  to it, the 
net result is that we either leave it alone, add  1  to it, or add  2  to it.

Here is a picture of the same example.  In the picture, an arrow from  a  to  b  means that the 
specification allows variable  x  to change value from  a  to  b .  We see that if  x  can change from  
a  to  b  in the left operand of a dependent composition, and from  b  to  c  in the right operand, then 
it can change from  a  to  c  in the result.

x x′ x x′ x x′′ x′ x x′

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

2 2      . 2 2        =      ∃x′′· 2 2 2         = 2 2

3 3 3 3 3 3 3 3 3

4 4 4 4 4 4

5 5 5::
::

::

::
::

::

:: ::

::

We need to be clear on what is meant by  (substitute  x′′, y′′, ...  for  x′, y′, ...  in  S )  and  (substitute  
x′′, y′′, ...  for  x, y, ...  in  R )  in the definition of  S.R .  To begin with, you should not conclude that 
substitution is impossible since the names  S  and  R  do not mention any state variables;  
presumably  S  and  R  stand for, or are equated to, expressions that do mention some state 
variables.  And second, when  S  or  R  is an assignment, the assignment notation should be replaced 
by its equal using mathematical variables  x ,  x′ ,  y ,  y′ , ...  before substitution.  Finally, when  S  or  
R  is a dependent composition, the inner substitutions must be made first.   Here is an example, 
again in integer variables  x  and  y .

x:= 3.  y:= x+y eliminate assignments first
= x′=3 ∧ y′=y.  x′=x ∧ y′=x+y then eliminate dependent composition
= ∃x′′, y′′: int· x′′=3 ∧ y′′=y  ∧  x′=x′′ ∧ y′=x′′+y′′ use One-Point Law twice
= x′=3  ∧  y′ = 3+y

                                                                                                                     End of Specification Notations

4.0.1  Specification Laws

We have seen some of the following laws before.  For specifications  P ,  Q  ,  R , and  S , and 
boolean  b ,

ok. P   =   P. ok   =   P Identity Law
P. (Q. R)   =   (P. Q). R Associative Law
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if b then P else P   =   P Idempotent Law
if b then P else Q   =   if ¬b then Q else P Case Reversal Law
P   =   if b then b ⇒ P else ¬b ⇒ P Case Creation Law
if b then S else R   =   b∧S ∨ ¬b∧R Case Analysis Law
if b then S else R   =   (b⇒S)  ∧  (¬b⇒R) Case Analysis Law
P∨Q. R∨S   =   (P. R) ∨ (P. S) ∨ (Q. R) ∨ (Q. S) Distributive Law
(if b then P else Q)∧R   =   if b then P∧R else Q∧R Distributive Law
x:= if b then e else f   =   if b then x:= e else x:= f Functional-Imperative Law

In the second Distributive Law, we can replace  ∧  with any other boolean operator.  We can even 
replace it with dependent composition with a restriction:  If  b  is a boolean expression of the 
prestate (in unprimed variables),

(if b then P else Q). R   =   if b then (P. R) else (Q. R) Distributive Law
And finally, if  e  is any expression of the prestate (in unprimed variables),

x:= e. P   =   〈x→P〉e Substitution Law

The Substitution Law says that an assignment followed by any specification is the same as the 
specification but with the assigned variable replaced by the assigned expression.  Exercise 97 
illustrates all the difficult cases, so let us do the exercise.  The state variables are  x  and  y .

(a) x:= y+1.  y′>x′
Since  x  does not occur in  y′>x′ , replacing it is no change.

= y′>x′

(b) x:= x+1.  y′>x ∧ x′>x
Both occurrences of  x  in  y′>x ∧ x′>x  must be replaced by  x+1 .

= y′ > x+1  ∧  x′ > x+1

(c) x:= y+1.  y′ = 2×x
Because multiplication has precedence over addition, we must put parentheses around  y+1  when 
we substitute it for  x  in  y′ = 2×x .

= y′ = 2×(y+1)

(d) x:= 1.  x≥1  ⇒  ∃x· y′ = 2×x
In  x≥1  ⇒  ∃x· y′ = 2×x , the first occurrence of  x  is nonlocal, and the last occurrence is local.  It is 
the nonlocal  x  that is being replaced.  The local  x  could have been almost any other name, and 
probably should have been to avoid any possible confusion.

= 1≥1  ⇒  ∃x· y′ = 2×x
= even y′

(e) x:= y.  x≥1  ⇒  ∃y· y′ = x×y
Now we are forced to rename the local  y  before making the substitution, otherwise we would be 
placing the nonlocal  y  in the scope of the local  y .

= x:= y.  x≥1  ⇒  ∃k· y′ = x×k
= y≥1  ⇒  ∃k· y′ = y×k

(f) x:= 1.  ok
The name  ok  is defined by the axiom  ok  =  x′=x ∧ y′=y , so it depends on  x .

= x:= 1.  x′=x ∧ y′=y
= x′=1 ∧ y′=y
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(g) x:= 1.  y:= 2
Although  x  does not appear in  y:= 2 , the answer is not  y:= 2 .  We must remember that  y:= 2  is 
defined by an axiom, and it depends on  x .

= x:= 1.  x′=x ∧ y′=2
= x′=1 ∧ y′=2

(It is questionable whether  x′=1 ∧ y′=2  is a “simplification” of  x:= 1.  y:= 2 .)

(h) x:= 1.  P  where  P = y:= 2
This one just combines the points of parts (f) and (g).

= x′=1 ∧ y′=2

(i) x:= 1.  y:= 2.  x:= x+y
In part (g) we saw that  x:= 1.  y:= 2  =  x′=1 ∧ y′=2 .  If we use that, we are then faced with a 
dependent composition  x′=1 ∧ y′=2.  x:= x+y  for which the Substitution Law does not apply.  In a 
sequence of assignments, it is much better to use the Substitution Law from right to left.

= x:= 1.  x′ = x+2  ∧  y′=2
= x′=3 ∧ y′=2

(j) x:= 1.  if y>x then x:= x+1 else x:= y
This part is unremarkable.  It just shows that the Substitution Law applies to ifs.

= if y>1 then x:= 2 else x:=y

(k) x:= 1.  x′>x.  x′ = x+1
We can use the Substitution Law on the first two pieces of this dependent composition to obtain

= x′>1.  x′ = x+1
Now we have to use the axiom for dependent composition to get a further simplification.

= ∃x′′, y′′· x′′>1  ∧  x′ = x′′+1
= x′>2

The error we avoided in the first step is to replace  x  with  1  in the last part of the composition  
x′ = x+1 .
                                                                                                                           End of Specification Laws

4.0.2  Refinement

Two specifications  P  and  Q  are equal if and only if each is satisfied whenever the other is.  
Formally,

∀σ, σ′· P=Q
If a customer gives us a specification and asks us to implement it, we can instead implement an 
equal specification, and the customer will still be satisfied.

Suppose we are given specification  P  and we implement a stronger specification  S .  Since  S  
implies  P , all computer behavior satisfying  S  also satisfies  P , so the customer will still be 
satisfied.  We are allowed to change a specification, but only to an equal or stronger specification.

Specification  P  is refined by specification  S  if and only if  P  is satisfied whenever  S  is satisfied.
∀σ, σ′· P⇐S

Refinement of a specification  P  simply means finding another specification  S  that is everywhere 
equal or stronger.  We call  P  the “problem” and  S  the “solution”.  In practice, to prove that  P  
is refined by  S , we work within the universal quantifications and prove  P ⇐ S .  In this context, we 
can pronounce  P ⇐ S  as “ P  is refined by  S ”.
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Here are some examples of refinement.
x′>x  ⇐  x′=x+1 ∧ y′=y
x′=x+1 ∧ y′=y  ⇐  x:= x+1
x′≤x  ⇐  if x=0 then x′=x else x′<x
x′>y′>x  ⇐  y:= x+1.  x:= y+1

In each, the problem (left side) is refined by (follows from, is implied by) the solution (right side) 
for all initial and final values of all variables.
                                                                                                                                    End of Refinement

4.0.3  Conditions optional

A condition is a specification that refers to at most one state.  A condition that refers to (at most) the 
initial state (prestate) is called an initial condition or precondition, and a condition that refers to (at 
most) the final state (poststate) is called a final condition or postcondition.  In the following two 
definitions let  P  and  S  be specifications.

The exact precondition for  P  to be refined by  S  is  ∀σ′· P⇐S .
The exact postcondition for  P  to be refined by  S  is  ∀σ· P⇐S .

For example, although  x′>5  is not refined by  x:= x+1 , we can calculate (in one integer variable)
(the exact precondition for  x′>5  to be refined by  x:= x+1 )

= ∀x′· x′>5 ⇐ (x:= x+1)
= ∀x′· x′>5 ⇐ x′=x+1 One-Point Law
= x+1 > 5
= x > 4

This means that a computation satisfying  x:= x+1  will also satisfy  x′>5  if and only if it starts with  
x>4 .  If we are interested only in prestates such that  x>4 , then we should weaken our problem with 
that antecedent, obtaining the refinement

x>4 ⇒ x′>5  ⇐  x:= x+1

There is a similar story for postconditions.  For example, although  x>4  is unimplementable,
(the exact postcondition for  x>4  to be refined by  x:= x+1 )

= ∀x· x>4 ⇐ (x:= x+1)
= ∀x· x>4 ⇐ x′=x+1 One-Point Law
= x′–1 > 4
= x′ > 5

This means that a computation satisfying  x:= x+1  will also satisfy  x>4  if and only if it ends with  
x′>5 .  If we are interested only in poststates such that  x′>5 , then we should weaken our problem 
with that antecedent, obtaining the refinement

x′>5 ⇒ x>4  ⇐  x:= x+1
For easier understanding, it may help to use the Contrapositive Law to rewrite the specification  
x′>5 ⇒ x>4  as the equivalent specification  x≤4 ⇒ x′≤5 .

We can now find the exact pre- and postcondition for  P  to be refined by  S .  Any precondition 
that implies the exact precondition is called a sufficient precondition.  Any precondition implied by 
the exact precondition is called a necessary precondition.  Any postcondition that implies the exact 
postcondition is called a sufficient postcondition.  Any postcondition implied by the exact 
postcondition is called a necessary postcondition.  The exact precondition is therefore the necessary 
and sufficient precondition, and similarly for postconditions.
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Exercise 112(c) asks for the exact precondition and postcondition for  x:= x2  to move integer 
variable  x  farther from zero.  To answer, we must first state formally what it means to move  x  
farther from zero:  abs x′ > abs x  (where  abs  is the absolute value function;  its definition can be 
found in Chapter 11).  We now calculate

(the exact precondition for  abs x′ > abs x  to be refined by  x:= x2 )
= ∀x′· abs x′ > abs x  ⇐  x′ = x2 One-Point Law
= abs (x2) > abs x by the arithmetic properties of  abs x  and  x2

= x+–1 ∧ x+0 ∧ x+1

(the exact postcondition for  abs x′ > abs x  to be refined by  x:= x2 )
= ∀x· abs x′ > abs x  ⇐  x′ = x2 after several steps including domain splitting and

 variable change and using the arithmetic properties of  abs x  and  x2

= x′+0 ∧ x′+1
If  x  starts anywhere but  –1 ,  0 , or  1 , we can be sure it will move farther from zero;  if  x  ends 
anywhere but  0  or  1 , we can be sure it did move farther from zero.

Let  P  and  Q  be any specifications, and let  C  be a precondition, and let  C′  be the corresponding 
postcondition (in other words,  C′  is the same as  C  but with primes on all the state variables).  
Then the following are laws.

C ∧ (P. Q)   ⇐   C∧P. Q
C ⇒ (P.Q)   ⇐   C⇒P. Q
(P.Q) ∧ C′   ⇐   P. Q∧C′
(P.Q) ⇐ C′   ⇐   P. Q⇐C′
P. C∧Q    ⇐   P∧C′. Q
P. Q   ⇐   P∧C′.  C⇒Q

Precondition Law:
C  is a sufficient precondition for  P  to be refined by  S
if and only if  C⇒P  is refined by  S .

Postcondition Law:
C′  is a sufficient postcondition for  P  to be refined by  S
if and only if  C′⇒P  is refined by  S .

                                                                                                                                     End of Conditions

4.0.4  Programs

A program is a description or specification of computer behavior.  A computer executes a program 
by behaving according to the program, by satisfying the program.  People often confuse programs 
with computer behavior.  They talk about what a program “does”;  of course it just sits there on the 
page or screen;  it is the computer that does something.  They ask whether a program “terminates”;  
of course it does;  it is the behavior that may not terminate.  A program is not behavior, but a 
specification of behavior.  Furthermore, a computer may not behave as specified by a program for a 
variety of reasons:  a disk head may crash, a compiler may have a bug, or a resource may become 
exhausted (stack overflow, number overflow), to mention a few.  Then the difference between a 
program and the computer behavior is obvious.

A program is a specification of computer behavior;  for now, that means it is a boolean expression 
relating prestate and poststate.  Not every specification is a program.  A program is an implemented 
specification, that is, a specification for which an implementation has been provided, so that a 
computer can execute it.  In this chapter we need only a very few programming notations that are 
similar to those found in many popular programming languages.  We take the following:
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(a) ok  is a program.
(b) If  x  is any state variable and  e  is an implemented expression of the initial values, then  

x:= e  is a program.
(c) If  b  is an implemented boolean expression of the initial values, and  P   and  Q   are 

programs, then  if b then P else Q  is a program.
(d) If  P  and  Q  are programs then  P.Q  is a program.
(e) An implementable specification that is refined by a program is a program.

For the “implemented expressions” referred to in (b) and (c), we take booleans, numbers, 
characters, and lists, with all their operators.  We omit bunches, sets, and strings because we have 
lists, and we omit functions and quantifiers because they are harder to implement.  All these 
notations, and others, are still welcome in specifications.

Part (e) states that any implementable specification  P  is a program if a program  S  is provided 
such that  P ⇐  S  is a theorem.  To execute  P , just execute  S .  The refinement acts as a 
procedure (void function, method) declaration;  P  acts as the procedure name, and  S   as the 
procedure body;  use of the name  P  acts as a call.  Recursion is allowed;  calls to  P  may occur 
within  S .

Here is an example refinement in one integer variable  x .
x≥0 ⇒ x′=0    ⇐   if x=0 then ok else (x:= x–1.  x≥0 ⇒ x′=0)

The problem is  x≥0 ⇒ x′=0 .  The solution is  if x=0 then ok else (x:= x–1.  x≥0 ⇒ x′=0) .  In the 
solution, the problem reappears.  According to (e), the problem is a program if its solution is a 
program.  And the solution is a program if  x≥0 ⇒ x′=0  is a program.  By saying “recursion is 
allowed” we break the impasse and declare that  x≥0 ⇒ x′=0  is a program.  A computer executes it 
by behaving according to the solution, and whenever the problem is encountered again, the behavior 
is again according to the solution.

We must prove the refinement, so we do that now.
if x=0 then ok else (x:= x–1.  x≥0 ⇒ x′=0) Replace  ok ;  Substitution Law

= if x=0 then x′=x else x–1≥0 ⇒ x′=0 use context  x=0  to modify the then-part
and use context  x+0  and  x: int  to modify the else-part

= if x=0 then x≥0 ⇒ x′=0 else x≥0 ⇒ x′=0 Case Idempotence
= x≥0 ⇒ x′=0

                                                                                                                                       End of Programs

A specification serves as a contract between a client who wants a computer to behave a certain way 
and a programmer who will program a computer to behave as desired.  For this purpose, a 
specification must be written as clearly, as understandably, as possible.  The programmer then 
refines the specification to obtain a program, which a computer can execute.  Sometimes the 
clearest, most understandable specification is already a program.  When that is so, there is no need 
for any other specification, and no need for refinement.  However, the programming notations are 
only part of the specification notations:  those that happen to be implemented.  Specifiers should 
use whatever notations help to make their specifications clear, including but not limited to 
programming notations.
                                                                                                                                 End of Specifications
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4.1  Program Development

4.1.0  Refinement Laws

Once we have a specification, we refine it until we have a program.  We have only five programming 
notations to choose from when we refine.  Two of them,  ok  and assignment, are programs and 
require no further refinement.  The other three solve the given refinement problem by raising new 
problems to be solved by further refinement.  When these new problems are solved, their solutions 
will contribute to the solution of the original problem, according to the first of our refinement laws.

Refinement by Steps  (Stepwise Refinement) (monotonicity, transitivity)
If  A  ⇐  if b then C else D  and  C ⇐ E  and  D ⇐ F  are theorems,

then  A  ⇐  if b then E else F  is a theorem.
If  A  ⇐  B.C  and  B ⇐ D  and  C ⇐ E  are theorems, then  A  ⇐  D.E  is a theorem.
If  A ⇐ B  and  B ⇐ C  are theorems, then  A ⇐ C  is a theorem.

Refinement by Steps allows us to introduce one programming construct at a time into our ultimate 
solution.  The next law allows us to break the problem into parts in a different way.

Refinement by Parts (monotonicity, conflation)
If  A  ⇐  if b then C else D  and  E  ⇐  if b then F else G  are theorems,

then  A∧E  ⇐  if b then C∧F else D∧G  is a theorem.
If  A  ⇐  B.C  and  D  ⇐  E.F  are theorems, then  A∧D  ⇐  B∧E. C∧F  is a theorem.
If  A ⇐ B  and  C ⇐ D  are theorems, then  A∧C  ⇐  B∧D  is a theorem.

When we add to our repertoire of programming operators in later chapters, the new operators must 
obey similar Refinement by Steps and Refinement by Parts laws.  Our final refinement law is

Refinement by Cases
P  ⇐  if b then Q else R  is a theorem if and only if
P  ⇐  b ∧ Q  and  P  ⇐  ¬b ∧ R  are theorems.

As an example of Refinement by Cases, we can prove
x′≤x  ⇐  if x=0 then x′=x else x′<x

by proving both
x′≤x  ⇐  x=0 ∧ x′=x

and
x′≤x  ⇐  x+0 ∧ x′<x

                                                                                                                             End of Refinement Laws

4.1.1  List Summation

As an example of program development, let us do Exercise 142:  write a program to find the sum of 
a list of numbers.  Let  L  be the list of numbers, and let  s  be a number variable whose final value 
will be the sum of the items in  L .  Now  s  is a state variable, so it corresponds to two mathematical 
variables  s  and  s′ .  Our solution does not change list  L , so  L  is a state constant (which is a 
mathematical variable).
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The first step is to express the problem as clearly and as simply as possible.  One possibility is
s:= ΣL

We are assuming the expression to the right of the assignment symbol is not implemented, so this 
specification is not a program until we refine it.  This specification says not only that  s  has the 
right final value, but also that all other variables are unchanged, and that makes it a little difficult to 
implement.  So let's choose a weaker specification that is easier to implement.

s′ = ΣL

The algorithmic idea is obvious:  consider each item of the list in order, accumulating the sum.  To 
do so we need an accumulator variable, and we may as well use  s  for that.  We also need a variable 
to serve as index in the list, saying how many items have been considered;  let us take natural 
variable  n  for that.  We must begin by assigning  0  to both  s  and  n  to indicate that we have 
summed zero items so far.  We complete the task by adding the remaining items (which means all 
of them) to the sum.

s′ = ΣL    ⇐   s:= 0.  n:= 0.  s′ = s + Σ L [n;..#L]
(Remember:  list indexes start at  0 , and the list  [n;..#L]  includes  n  and excludes  #L .)  This 
theorem is easily proven by two applications of the Substitution Law.  We consider that we have 
solved the original problem, but now we have a new problem to solve:  s′ = s + Σ L [n;..#L] .  When 
we refine this new problem, we must ignore the context in which it arose;  in particular, we ignore 
that  s=0 ∧ n=0 .  The new specification represents the problem when  n  items have been summed 
and the rest remain to be summed, for arbitrary  n .  One of the possible values for  n  is  #L , which 
means that all items have been summed.  That suggests that we use Case Creation next.

s′ = s + Σ L [n;..#L]   ⇐ if n=#L then n=#L  ⇒  s′ = s + Σ L [n;..#L]
else n+#L  ⇒  s′ = s + Σ L [n;..#L]

Now we have two new problems, but one is trivial.
n=#L  ⇒  s′ = s + Σ L [n;..#L]   ⇐   ok

In the other problem, not all items have been summed  (n+#L) .  That means there is at least one 
more item to be added to the sum, so let us add one more item to the sum.  To complete the 
refinement, we must also add any remaining items.

n+#L  ⇒  s′ = s + Σ L [n;..#L]   ⇐   s:= s+Ln.  n:= n+1.  s′ = s + Σ L [n;..#L]
This refinement is proven by two applications of the Substitution Law.  The final specification has 
already been refined, so we have finished programming.

One point that deserves further attention is our use of  n+#L  to mean that not all items have been 
summed.  We really need  n<#L  to say that there is at least one more item.  The specification in 
which this appears

n+#L  ⇒  s′ = s + Σ L [n;..#L]
also uses the notation  n;..#L , which is defined only for  n≤#L .  We may therefore consider that  
n≤#L  is implicit in our use of the notation;  this, together with  n+#L , tells us  n<#L  as required.

In our first refinement, we could have used a weaker specification to say that  n  items have been 
summed and the rest remain to be added.  We could have said

s′ = ΣL   ⇐   s:= 0.  n:= 0.  0≤n≤#L  ∧  s = Σ L [0;..n]  ⇒  s′ = s + Σ L [n;..#L]
For those who were uncomfortable about the use of implicit information in the preceding paragraph, 
the first part of the antecedent  (0≤n≤#L)  makes the needed bound on  n  explicit.  The second part 
of the antecedent  (s = Σ L [0;..n])  is not used anywhere.
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When a compiler translates a program into machine language, it treats each refined specification as 
just an identifier.  For example, the summation program looks like

A   ⇐   s:= 0.  n:= 0.  B
B   ⇐   if n=#L then C else D
C   ⇐   ok
D   ⇐   s:= s+Ln.  n:= n+1.  B

to a compiler.  Using the Law of Refinement by Steps, a compiler can compile the calls to  C  and  
D  in-line (macro-expansion) creating

B   ⇐   if n=#L then ok else (s:= s+Ln.  n:= n+1.  B)
So, for the sake of efficient execution, there is no need for us to put the pieces together, and we 
needn't worry about the number of refinements we use.

If we want to execute this program on a computer, we must translate it to a programming language 
that is implemented on that computer.  For example, we can translate the summation program to C 
as follows.

void B (void) {if (n == sizeof(L)/sizeof(L[0])) ; else { s = s + L[n];  n = n+1;  B( ); }}
s = 0;  n = 0;  B( );

A call that is executed last in the solution of a refinement, as  B  is here, can be translated as just a 
branch (jump) machine instruction.  Many compilers do a poor job of translating calls, so we might 
prefer to write “go to”, which will then be translated as a branch instruction.

s = 0;  n = 0;
B: if (n == sizeof(L)/sizeof(L[0])) ; else { s = s + L[n];  n = n+1;  goto B; }

Most calls can be translated either as nothing (in-line), or as a branch, so we needn't worry about 
calls, even recursive calls, being inefficient.
                                                                                                                               End of List Summation

4.1.2  Binary Exponentiation

Now let's try Exercise 149:  given natural variables  x  and  y , write a program for  y′ = 2x  without 
using exponentiation.  Here is a solution that is neither the simplest nor the most efficient.  It has 
been chosen to illustrate several points.

y′=2x   ⇐   if x=0 then x=0 ⇒ y′=2x else x>0 ⇒ y′=2x

x=0 ⇒ y′=2x   ⇐   y:= 1.  x:= 3
x>0 ⇒ y′=2x   ⇐   x>0 ⇒ y′=2x–1.  y′=2×y
x>0 ⇒ y′=2x–1   ⇐   x′=x–1.  y′=2x 

y′=2×y   ⇐   y:= 2×y.  x:= 5
x′=x–1   ⇐   x:= x–1.  y:= 7

The first refinement divides the problem into two cases;  in the second case  x+0 , and since  x  is 
natural,  x>0 .  In the second refinement, since  x=0 , we want  y′=1 , which we get by the assignment  
y:= 1 .  The other assignment  x:= 3  is superfluous, and our solution would be simpler without it;  
we have included it just to make the point that it is allowed by the specification.  The next 
refinement makes  y′=2x  in two steps:  first  y′=2x–1  and then double  y .  The antecedent  x>0  
ensures that  2x–1  will be natural.  The last two refinements again contain superfluous assignments.  
Without the theory of programming, we would be very worried that these superfluous assignments 
might in some way make the result wrong.  With the theory, we only need to prove these six 
refinements, and we are confident that execution will not give us a wrong answer.
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This solution has been constructed to make it difficult to follow the execution.  You can make the 
program look more familiar by replacing the nonprogramming notations with single letters.

A   ⇐   if x=0 then B else C
B   ⇐   y:= 1.  x:= 3
C   ⇐   D.  E
D   ⇐   F.  A
E   ⇐   y:= 2×y.  x:= 5
F   ⇐   x:= x–1.  y:= 7

You can reduce the number of refinements by applying the Stepwise Refinement Law.
A   ⇐   if x=0 then (y:= 1.  x:= 3) else (x:= x–1.  y:= 7.  A.  y:= 2×y.  x:= 5)

You can translate this into a programming language that is available on a computer near you.  For 
example, in C it becomes

int x, y;
void A (void) {if (x==0) {y = 1;  x = 3;} else {x = x–1;  y = 7;  A ( );  y = 2*y;  x = 5;}}

You can then test it on a variety of  x  values.  For example, execution of
x = 5;  A ( );  printf ("%i", y);

will print  32 .  But you will find it easier to prove the refinements than to try to understand all 
possible executions of this program without any theory.
                                                                                                                      End of Binary Exponentiation

                                                                                                                       End of Program Development

4.2  Time

So far, we have talked only about the result of a computation, not about how long it takes.  To talk 
about time, we just add a time variable.  We do not change the theory at all;  the time variable is 
treated just like any other variable, as part of the state.  The state  σ = [t; x; y; ...]  now consists of a 
time variable  t  and some memory variables  x , y , ... .  The interpretation of  t  as time is justified 
by the way we use it.  In an implementation, the time variable does not require space in the 
computer's memory;  it simply represents the time at which execution occurs.

We use  t  for the initial time, the time at which execution starts, and t′  for the final time, the time at 
which execution ends.  To allow for nontermination we take the domain of time to be a number 
system extended with  ∞ .  The number system we extend can be the naturals, or the integers, or the 
rationals, or the reals, whichever we prefer.

Time cannot decrease, therefore a specification  S  with time is implementable if and only if
∀σ· ∃σ′· S ∧ t′≥t

For each initial state, there must be at least one satisfactory final state in which time has not 
decreased.

There are many ways to measure time.  We present just two:  real time and recursive time.

4.2.0  Real Time

In the real time measure, the time variable  t  is of type  xreal .  Real time has the advantage of 
measuring the actual execution time;  for some applications, such as the control of a chemical or 
nuclear reaction, this is essential.  It has the disadvantage of requiring intimate knowledge of the 
implementation (hardware and software).
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To obtain the real execution time of a program, modify the program as follows.
• Replace each assignment  x:= e  by

t:= t+ (the time to evaluate and store  e ).  x:= e
• Replace each conditional  if b then P else Q  by

t:= t+ (the time to evaluate  b  and branch).  if b then P else Q

• Replace each call  P  by
t:= t+ (the time for the call and return).  P

For a call that is implemented “in-line”, this time will be zero.  For a call that is executed 
last in a refinement solution, it may be just the time for a branch.  Sometimes it will be the 
time required to push a return address onto a stack and branch, plus the time to pop the 
return address and branch back.

• Each refined specification can include time.  For example, let  f  be a function of the initial 
state  σ .  Then

t′ = t + f σ
specifies that  f σ  is the execution time,

t′ ≤ t + f σ
specifies that  f σ  is an upper bound on the execution time, and

t′ ≥ t + f σ
specifies that  f σ  is a lower bound on the execution time.

We could place the time increase after each of the programming notations instead of before.  By 
placing it before, we make it easier to use the Substitution Law.

In Subsection 4.0.4 we considered an example of the form
P   ⇐   if x=0 then ok else (x:= x–1.  P)

Suppose that the  if , the assignment, and the call each take time  1 .  The refinement becomes
P   ⇐   t:= t+1.  if x=0 then ok else (t:= t+1.  x:= x–1.  t:= t+1.  P)

This refinement is a theorem when
P   =   if x≥0 then x′=0  ∧  t′ = t+3×x+1 else t′=∞

When  x  starts with a nonnegative value, execution of this program sets  x  to  0, and takes time  
3×x+1  to do so;  when  x  starts with a negative value, execution takes infinite time, and nothing is 
said about the final value of  x .  This is a reasonable description of the computation.

The same refinement
P   ⇐   t:= t+1.  if x=0 then ok else (t:= t+1.  x:= x–1.  t:= t+1.  P)

is also a theorem for various other definitions of  P , including the following three:
P   =   x′=0
P   =   if x≥0 then t′=t+3×x+1 else t′=∞
P   =   x′=0  ∧  if x≥0 then t′=t+3×x+1 else t′=∞

The first one ignores time, and the second one ignores the result.  If we prove the refinement for the 
first one, and for the second one, then the Law of Refinement by Parts says that we have proven it 
for the last one also.  The last one says that execution of this program always sets  x  to  0 ;  when  x  
starts with a nonnegative value, it takes time  3×x+1  to do so;  when  x  starts with a negative value, 
it takes infinite time.  It is strange to say that a result such as  x′=0  is obtained at time infinity.  To 
say that a result is obtained at time infinity is really just a way of saying that the result is never 
obtained.  The only reason for saying it this strange way is so that we can divide the proof into two 
parts, the result and the timing, and then we get their conjunction for free.  So we just ignore 
anything that a specification says about the values of variables at time infinity.
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Even stranger things can be said about the values of variables at time infinity.  Consider
Q   ⇐   t:= t+1.  Q

Three implementable specifications for which this is a theorem are
Q   =   t′=∞
Q   =   x′=2 ∧ t′=∞
Q   =   x′=3 ∧ t′=∞

The first looks reasonable, but according to the last two we can show that the “final” value of  x  is  
2 , and also  3 .  But since  t′=∞ , we are really saying in both cases that we never obtain a result.
                                                                                                                                      End of Real Time

4.2.1  Recursive Time

The recursive time measure is more abstract than the real time measure;  it does not measure the 
actual execution time.  Its advantage is that we do not have to know any implementation details.  In 
the recursive time measure, the time variable  t  has type  xint , and
• each recursive call costs time  1 ;
• all else is free.
This measure neglects the time for “straight-line” and “branching” programs, charging only for 
loops.

In the recursive measure, our earlier example becomes
P   ⇐   if x=0 then ok else (x:= x–1.  t:= t+1.  P)

which is a theorem for various definitions of  P , including the following two:
P   =   if x≥0 then x′=0  ∧  t′ = t+x else t′=∞
P   =   x′=0  ∧  if x≥0 then t′ = t+x else t′=∞

The execution time, which was  3×x + 1  for nonnegative  x  in the real time measure, has become 
just  x  in the recursive time measure.  The recursive time measure tells us less than the real time 
measure;  it says only that the execution time increases linearly with  x , but not what the 
multiplicative and additive constants are.

That example was a direct recursion:  problem  P  was refined by a solution containing a call to  P .  
Recursions can also be indirect.  For example, problem  A  may be refined by a solution containing 
a call to  B , whose solution contains a call to  C , whose solution contains a call to  A .  In an 
indirect recursion, which calls are recursive?  All of them?  Or just one of them?  Which one?  The 
answer is that for recursive time it doesn't matter very much;  the constants may be affected, but the 
form of the time expression is unchanged.  The general rule of recursive time is that
• in every loop of calls, there must be a time increment of at least one time unit.
                                                                                                                                End of Recursive Time

Let us prove a refinement with time (Exercise 119(b)):
R ⇐   if x=1 then ok else (x:= div x 2.  t:= t+1.  R)

where  x  is an integer variable, and
R =   x′=1  ∧  if x≥1 then t′ ≤ t + log x else t′=∞

In order to use Refinement by Parts even more effectively, we rewrite the  if then else  as a 
conjunction.

R =   x′=1  ∧  (x≥1  ⇒  t′ ≤ t + log x) ∧ (x<1  ⇒  t′=∞)
This exercise uses the functions  div  (divide and round down) and  log  (binary logarithm).  
Execution of this program always sets  x  to  1 ;  when  x  starts with a positive value, it takes 
logarithmic time;  when  x  starts nonpositive, it takes infinite time.  Thanks to Refinement by Parts, 
it is sufficient to verify the three conjuncts of  R  separately:
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x′=1   ⇐   if x=1 then ok else (x:= div x 2.  t:= t+1.  x′=1)
x≥1  ⇒  t′ ≤ t + log x   ⇐ if x=1 then ok

else (x:= div x 2.  t:= t+1.  x≥1 ⇒ t′ ≤ t + log x)
x<1  ⇒  t′=∞   ⇐   if x=1 then ok else (x:= div x 2.  t:= t+1.  x<1  ⇒  t′=∞)

We can apply the Substitution Law to rewrite these three parts as follows:
x′=1   ⇐   if x=1 then x′=x ∧ t′=t else x′=1
x≥1  ⇒  t′ ≤ t + log x   ⇐ if x=1 then x′=x ∧ t′=t

else div x 2 ≥ 1  ⇒  t′ ≤ t + 1 + log (div x 2)
x<1  ⇒  t′=∞   ⇐   if x=1 then x′=x ∧ t′=t else div x 2 < 1  ⇒  t′=∞

Now we break each of these three parts in two using Refinement by Cases.  We must prove
x′=1   ⇐   x=1 ∧ x′=x ∧ t′=t
x′=1   ⇐   x+1 ∧ x′=1

x≥1  ⇒  t′ ≤ t + log x   ⇐   x=1 ∧ x′=x ∧ t′=t
x≥1  ⇒  t′ ≤ t + log x   ⇐   x+1 ∧ (div x 2 ≥ 1  ⇒  t′ ≤ t + 1 + log (div x 2))

x<1  ⇒  t′=∞   ⇐   x=1 ∧ x′=x ∧ t′=t
x<1  ⇒  t′=∞   ⇐   x+1 ∧ (div x 2 < 1  ⇒ t′=∞)

We'll prove each of these six implications in turn.  First,
(x′=1   ⇐   x=1 ∧ x′=x ∧ t′=t) by transitivity and specialization

= †

Next,
(x′=1   ⇐   x+1 ∧ x′=1) by specialization

= †

Next,
(x≥1  ⇒  t′ ≤ t + log x   ⇐   x=1 ∧ x′=x ∧ t′=t) use the first Law of Portation to

move the initial antecedent over to the solution side where it becomes a conjunct
= t′ ≤ t + log x  ⇐  x=1 ∧ x′=x ∧ t′=t and note that  log 1 = 0
= †

Next comes the hardest one of the six.
(x≥1  ⇒  t′ ≤ t + log x   ⇐   x+1 ∧ (div x 2 ≥ 1  ⇒  t′ ≤ t + 1 + log (div x 2)))

Again use the first Law of Portation to move the initial
antecedent over to the solution side where it becomes a conjunct.

= t′ ≤ t + log x  ⇐  x>1 ∧ (div x 2 ≥ 1  ⇒  t′ ≤ t + 1 + log (div x 2))
Since  x  is an integer,  x>1  =  div x 2 ≥ 1 , so by the first Law of Discharge,

= t′ ≤ t + log x   ⇐   x>1  ∧  t′ ≤ t + 1 + log (div x 2)
By the first Law of Portation, move  t′ ≤ t + 1 + log (div x 2)  over to the left side.

= (t′ ≤ t + 1 + log (div x 2) ⇒ t′ ≤ t + log x)   ⇐   x>1
By a Connection Law,  (t′≤a ⇒ t′≤b)   ⇐   a≤b .

⇐ t + 1 + log (div x 2) ≤ t + log x   ⇐   x>1 subtract  1  from each side
= t + log (div x 2) ≤ t + log x – 1   ⇐   x>1 law of logarithms
= t + log (div x 2) ≤ t + log (x/2)   ⇐   x>1 log  and  +  are monotonic for  x>0
⇐ div x 2 ≤ x/2 div  is  /  and then round down
= †
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The next one is easier.
(x<1  ⇒  t′=∞   ⇐   x=1 ∧ x′=x ∧ t′=t) Law of Portation

= t′=∞  ⇐  x<1 ∧ x=1 ∧ x′=x ∧ t′=t Put  x<1 ∧ x=1  together, and first Base Law
= t′=∞  ⇐  ƒ last Base Law
= †

And finally,
(x<1  ⇒  t′=∞   ⇐   x+1 ∧ (div x 2 < 1  ⇒ t′=∞)) Law of Portation

= t′=∞  ⇐  x<1 ∧ (div x 2 < 1  ⇒  t′=∞) Discharge
= t′=∞  ⇐  x<1 ∧ t′=∞ Specialization
= †

And that completes the proof.

4.2.2  Termination

A specification is a contract between a customer who wants some software and a programmer who 
provides it.  The customer can complain that the programmer has broken the contract if, when 
executing the program, the customer observes behavior contrary to the specification.

Here are four specifications, each of which says that variable  x  has final value  2 .
(a) x′=2
(b) x′=2  ∧  t′<∞
(c) x′=2  ∧  (t<∞ ⇒ t′<∞)
(d) x′=2 ∧ t′≤t+1

Specification (a) says nothing about when the final value is wanted.  It can be refined, including 
recursive time, as follows:

x′=2   ⇐   t:= t+1.  x′=2
This infinite loop provides a final value for  x  at time  ∞ ;  or, to say the same thing in different 
words, it never provides a final value for  x .  It may be an unkind refinement, but the customer has 
no ground for complaint.  The customer is entitled to complain when the computation delivers a 
final state in which  x′+2 , and it never will.

In order to rule out this unkind implementation, the customer might ask for specification (b), which 
insists that the final state be delivered at a finite time.  The programmer has to reject (b) because it is 
unimplementable:  (b) ∧ t′≥t  is unsatisfiable for  t=∞ .  It may seem strange to reject a specification 
just because it cannot be satisfied with nondecreasing time when the computation starts at time  ∞  .  
After all, the customer doesn't want to start at time  ∞ .  But suppose the customer uses the software 
in a dependent (sequential) composition following an infinite loop.  Then the computation does start 
at time  ∞  (in other words, it never starts), and we cannot expect it to stop before it starts.  An 
implementable specification must be satisfiable with nondecreasing time for all initial states, even 
for initial time  ∞ .

So the customer tries again with specification (c).  This says that if the computation starts at a finite 
time, it must end at a finite time.  This one is implementable, but surprisingly, it can be refined with 
exactly the same construction as (a)!  Including recursive time,

x′=2 ∧ (t<∞ ⇒ t′<∞)   ⇐   t:= t+1.  x′=2 ∧ (t<∞ ⇒ t′<∞)
The customer may not be happy, but again there is no ground for complaint.  The customer is 
entitled to complain if and only if the computation delivers a final state in which  x′+2  or it takes 
forever.  But there is never a time when the customer can complain that the computation has taken 
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forever, so the circumstances for complaint are exactly the same for (c) as for (a).  This fact is 
accurately reflected in the theory, which allows the same refinement constructions for (c) as for (a).

Finally, the customer changes the specification to (d), measuring time in seconds.  Now the 
customer can complain if either  x′+2  or the computation takes more than a second.  An infinite 
loop is no longer possible because

x′=2 ∧ t′≤t+1   ⇐   t:= t+1.  x′=2 ∧ t′≤t+1
is not a theorem.  We refine

x′=2 ∧ t′≤t+1   ⇐   x:= 2
Specification (d) gives a time bound, therefore more circumstances in which to complain, therefore 
fewer refinements.  Execution provides the customer with the desired result within the time bound.

One can complain about a computation if and only if one observes behavior contrary to the 
specification.  For that reason, specifying termination without a practical time bound is worthless.
                                                                                                                                   End of Termination

4.2.3  Soundness and Completeness optional

The theory of programming presented in this book is sound in the following sense.  Let  P  be an 
implementable specification.  If we can prove the refinement

P   ⇐   (something possibly involving recursive calls to  P )
then observations of the corresponding computation(s) will never (in finite time) contradict  P .

The theory is incomplete in the following sense.  Even if  P  is an implementable specification, and 
observations of the computation(s) corresponding to

P   ⇐   (something possibly involving recursive calls to  P )
never (in finite time) contradict  P , the refinement might not be provable.  But in that case, there is 
another implementable specification  Q  such that the refinements

P   ⇐   Q
Q   ⇐   (something possibly involving recursive calls to  Q )

are both provable, where the  Q  refinement is identical to the earlier unprovable  P  refinement 
except for the change from  P  to  Q .  In that weaker sense, the theory is complete.  There cannot be 
a theory of programming that is both sound and complete in the stronger sense.
                                                                                                              End of Soundness and Completeness

4.2.4  Linear Search

Exercise 153:  Write a program to find the first occurrence of a given item in a given list.  The 
execution time must be linear in the length of the list.

Let the list be  L  and the value we are looking for be  x  (these are not state variables).  Our 
program will assign natural variable  h  (for “here”) the index of the first occurrence of  x  in  L  if  
x  is there.  If  x  is not there, its “first occurrence” is not defined;  it will be convenient to indicate 
that  x  is not in  L  by assigning  h  the length of  L .  The specification is

¬ x: L (0,..h′)  ∧  (Lh′=x ∨ h′=#L)  ∧  t′ ≤ t+#L 
First, let us consider just the part of the specification that talks about  h′  and leave the time for later.  
The idea, of course, is to look at each item in the list, in order, starting at item  0 , until we either find  
x  or run out of items.  To start at item  0  we refine as follows:

¬ x: L (0,..h′)  ∧  (Lh′=x ∨ h′=#L)   ⇐
h:= 0.  h≤#L  ⇒  ¬ x: L (h,..h′)  ∧  (Lh′=x ∨ h′=#L)
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The new problem is like the original problem except that it describes a linear search starting at index  
h , for any  h  such that  0≤h≤#L , not just at index  0 .  Since  h  is a natural variable, we did not 
bother to write  0≤h , but we could have written it.  We needed to generalize the starting index to 
describe the remaining problem as the search progresses.  We can satisfy  ¬ x: L (h,..h′)  by doing 
nothing, which means  h′=h  and the list segment is empty.  To obtain  Lh′=x ∨ h′=#L , we need to 
test either  Lh=x  or  h=#L .  To test  Lh=x  we need to know  h<#L , so we have to test  h=#L  first.

h≤#L  ⇒  ¬ x: L (h,..h′)  ∧  (Lh′=x ∨ h′=#L)   ⇐
if h=#L then ok else h<#L  ⇒  ¬ x: L (h,..h′)  ∧  (Lh′=x ∨ h′=#L)

In the remaining problem we are able to test  Lh=x .
h<#L  ⇒  ¬ x: L (h,..h′)  ∧  (Lh′=x ∨ h′=#L)   ⇐

if Lh=x then ok else (h:= h+1.  h≤#L  ⇒  ¬ x: L (h,..h′)  ∧  (Lh′=x ∨ h′=#L))

Now for the timing:
t′ ≤ t+#L   ⇐   h:= 0.  h≤#L ⇒ t′ ≤ t+#L–h
h≤#L ⇒ t′ ≤ t+#L–h   ⇐   if h=#L then ok else h<#L ⇒ t′ ≤ t+#L–h
h<#L ⇒ t′ ≤ t+#L–h   ⇐ if Lh=x then ok

else (h:= h+1.  t:= t+1.  h≤#L ⇒ t′ ≤ t+#L–h)

Refinement by Parts says that if the same refinement structure can be used for two specifications, 
then it can be used for their conjunction.  If we add  t:= t+1  to the refinements that were not 
concerned with time, it won't affect their proof, and then we have the same refinement structure for 
both  ¬ x: L (0,..h′)  ∧  (Lh′=x ∨ h′=#L)  and  t′ ≤ t+#L , so we know it works for their conjunction, 
and that solves the original problem.  We could have divided  ¬ x: L (0,..h′)  ∧  (Lh′=x ∨ h′=#L)  
into parts also.  And of course we should prove our refinements.

It is not really necessary to take such small steps in programming.  We could have written
¬ x: L (0,..h′)  ∧  (Lh′=x ∨ h′=#L)  ∧  t′ ≤ t+#L   ⇐

h:= 0.  h≤#L  ⇒  ¬ x: L (h,..h′)  ∧  (Lh′=x ∨ h′=#L)  ∧  t′ ≤ t+#L–h
h≤#L  ⇒  ¬ x: L (h,..h′)  ∧  (Lh′=x ∨ h′=#L)  ∧  t′ ≤ t+#L–h   ⇐

if h = #L then ok
else if L h = x then ok
else (h:= h+1.  t:= t+1.  h≤#L  ⇒  ¬ x: L (h,..h′) ∧ (Lh′=x ∨ h′=#L) ∧ t′ ≤ t+#L–h)

But now, suppose we learn that the given list  L  is known to be nonempty.  To take advantage of 
this new information, we rewrite the first refinement

¬ x: L (0,..h′)  ∧  (Lh′=x ∨ h′=#L)  ∧  t′ ≤ t+#L   ⇐
h:= 0.  h<#L  ⇒  ¬ x: L (h,..h′)  ∧  (Lh′=x ∨ h′=#L)  ∧  t′ ≤ t+#L–h

and that's all;  the new problem is already solved if we haven't made our steps too large.  (Using the 
recursive time measure, there is no advantage to rewriting the first refinement this way.  Using the 
real time measure, there is a small advantage.)  As a habit, we write information about constants 
once, rather than in every specification.  Here, for instance, we should say  #L>0  once so that we 
can use it when we prove our refinements, but we did not repeat it in each specification.

We can sometimes improve the execution time (real measure) by a technique called the sentinel.  
We need list  L  to be a variable so we can catenate one value to the end of it.  If we can do so 
cheaply enough, we should begin by catenating  x .  Then the search is sure to find  x , and we can 
skip the test  h=#L  each iteration.  The program, ignoring time,  becomes

¬ x: L (0,..h′)  ∧  (Lh′=x ∨ h′=#L)   ⇐   L:= L+[x].  h:= 0.  Q
Q   ⇐   if Lh=x then ok else (h:= h+1.  Q)

where  Q   =   L (#L–1) = x ∧ h<#L   ⇒  L′=L  ∧  ¬ x: L (h,..h′)  ∧  Lh′=x .
                                                                                                                                  End of Linear Search
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4.2.5  Binary Search

Exercise 154:  Write a program to find a given item in a given nonempty sorted list.  The execution 
time must be logarithmic in the length of the list.  The strategy is to identify which half of the list 
contains the item if it occurs at all, then which quarter, then which eighth, and so on.

As in the previous subsection, let the list be  L  and the value we are looking for be  x  (these are not 
state variables).  Our program will again assign natural variable  h  the index of an occurrence of  x  
in  L  if  x  is there.  But this time, let's indicate whether  x  is present in  L  by assigning boolean 
variable  p  the value  †  if it is and  ƒ  if not.  Ignoring time for the moment, the problem is

x: L (0,..#L)  =  p′  ⇒  Lh′ = x

As the search progresses, we narrow the segment of the list that we need to search;  let us introduce 
natural variables  i  and  j  and specification  R  to describe the search within the segment  h,..j .

R  =  (x: L (h,..j)  =  p′  ⇒  Lh′ = x)

0                      h                   i                     j                   #L

search in here

We can now solve the problem.
(x: L (0,..#L)  =  p′  ⇒  Lh′ = x)   ⇐   h:= 0.  j:= #L.  h<j ⇒ R

h<j ⇒ R   ⇐   if j–h = 1 then p:= Lh=x else j–h≥2 ⇒ R

j–h≥2 ⇒ R   ⇐ j–h≥2  ⇒  h′=h<i′<j=j′.
if Li≤x then h:= i else j:= i.
h<j ⇒ R

To get the correct result, it does not matter how we choose  i  as long as it is properly between  h  
and  j .  If we choose  i:= h+1 , we have a linear search.  To obtain the best execution time in the 
worst case, we should choose  i  so it splits the segment  h;..j  into halves.  To obtain the best 
execution time on average, we should choose  i  so it splits the segment  h;..j  into two segments in 
which there is an equal probability of finding  x .  In the absence of further information about 
probabilities, that again means splitting  h;..j  into two segments of equal size.

j–h≥2  ⇒  h′=h<i′<j=j′   ⇐   i:= div (h+j) 2

After finding the mid-point  i  of the segment  h;..j , it is tempting to test whether  Li=x ;  if  Li  is 
the item we seek, we end execution right there, and this might improve the execution time.  
According to the recursive measure, the worst case time is not improved at all, and the average time 
is improved slightly by a factor of  (#L)/(#L+1)  assuming equal probability of finding the item at 
each index and not finding it at all.  And according to the real time measure, both the worst case and 
average execution times are a lot worse because the loop contains three tests rather than two.

For recursive execution time, put  t:= t+1  before the final, recursive call.  We will have to prove
T   ⇐   h:= 0.  j:= #L.  U

U   ⇐   if j–h = 1 then p:= Lh=x else V

V   ⇐ i:= div (h+j) 2.
if Li≤x then h:= i else j:= i.
t:= t+1.  U
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for a suitable choice of timing expressions  T ,  U ,  V .  If we do not see a suitable choice, we can 
always try executing the program a few times to see what we get.  The worst case occurs when the 
item sought is larger than all items in the list.  For this case we get

#L = 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 ...
t′–t = 0  1  2  2  3  3  3  3  4   4    4    4    4    4    4    4    5    5  ...

from which we define
T   =   t′ ≤ t + ceil (log (#L))
U   =   h<j ⇒ t′ ≤ t + ceil (log (j–h))
V   =   j–h≥2 ⇒ t′ ≤ t + ceil (log (j–h))

where  ceil  is the function that rounds up.

We can identify three levels of care in programming.  At the lowest level, one writes programs 
without bothering to write clear specifications and refinements.  At the next level, one writes clear 
and precise specifications and refinements as we have just done for binary search;  with practice, 
one can quickly see the correctness of the refinements without bothering to write formal proofs.  At 
the highest level of care, one proves each refinement formally;  this level is best done with the aid of 
an automated theorem prover.

Here are the proofs of the seven refinements in this subsection.  For the first refinement
(x: L (0,..#L)  =  p′  ⇒  Lh′ = x)   ⇐   h:= 0.  j:= #L.  h<j ⇒ R

we start with the right side.
h:= 0.  j:= #L.  h<j ⇒ R replace  R  and then use Substitution Law twice

= 0<#L ⇒ (x: L (0,..#L)  =  p′  ⇒  Lh′ = x) we are given that  L  is nonempty
= (x: L (0,..#L)  =  p′  ⇒  Lh′ = x)

The second refinement
h<j ⇒ R   ⇐   if j–h = 1 then p:= Lh=x else j–h≥2 ⇒ R

can be proven by cases.  And its first case is
(h<j ⇒ R   ⇐   j–h = 1  ∧  (p:= Lh=x)) portation

= j–h = 1  ∧  (p:= Lh=x)   ⇒   R expand assignment and  R
= j–h = 1  ∧  p′=(Lh=x)  ∧  h′=h  ∧  i′=i  ∧ j′=j   ⇒   (x: L (h,..j)  =  p′  ⇒  Lh′ = x)

use the antecedent as context to simplify the consequent
= j–h = 1  ∧  p′=(Lh=x)  ∧  h′=h  ∧  i′=i  ∧ j′=j   ⇒   (x=Lh  =  Lh=x  ⇒  Lh=x)

Symmetry and Base and Reflexive Laws
= †

The second case of the second refinement is
(h<j ⇒ R   ⇐   j–h + 1  ∧  (j–h≥2  ⇒  R)) portation

= j–h≥2 ∧ (j–h≥2  ⇒  R)  ⇒  R discharge
= j–h≥2 ∧ R  ⇒  R specialization
= †

The next refinement
j–h≥2 ⇒ R   ⇐ j–h≥2  ⇒  h′=h<i′<j=j′.

if Li≤x then h:= i else j:= i.
h<j ⇒ R

can be proven by cases.  Using the distributive laws of dependent composition, its first case is
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(j–h≥2 ⇒ R   ⇐   j–h≥2  ⇒  h′=h<i′<j=j′.  Li≤x ∧ (h:= i.  h<j ⇒ R)) Condition
⇐ (j–h≥2 ⇒ R   ⇐   j–h≥2  ⇒  (h′=h<i′<j=j′.  Li≤x ∧ (h:= i.  h<j ⇒ R))) Portation
= j–h≥2 ∧ (j–h≥2  ⇒  (h′=h<i′<j=j′.  Li≤x ∧ (h:= i.  h<j ⇒ R))) ⇒ R

discharge  j–h≥2  and specialize
⇐ (h′=h<i′<j=j′.  Li≤x ∧ (h:= i.  h<j ⇒ R)) ⇒ R expand first  R  and use Substitution
= (h′=h<i′<j=j′.  Li≤x ∧ (i<j ⇒ (x: L (i,..j)  =  p′  ⇒  Lh′ = x))) ⇒ R

dependent composition
=      (∃h′′, i′′, j′′, p′′·      h′′=h<i′′<j=j′′ ∧ Li′′≤x

                                ∧ (i′′<j′′ ⇒ (x: L (i′′,..j′′)  =  p′  ⇒  Lh′ = x)))
⇒ R eliminate  p′′ ,  h′′ , and  j′′  by one-point, and rename  i′′  to  i

= (∃i· h<i<j ∧ Li≤x ∧ (i<j ⇒ (x: L (i,..j)  =  p′  ⇒  Lh′ = x))) ⇒ R
use context  i<j  to discharge

= (∃i· h<i<j ∧ Li≤x ∧ (x: L (i,..j)  =  p′  ⇒  Lh′ = x)) ⇒ R
If  h<i  and  Li≤x  and  L  is sorted,  then  x: L (i,..j)  =  x: L (h,..j)

= (∃i· h<i<j ∧ Li≤x ∧ (x: L (h,..j)  =  p′  ⇒  Lh′ = x)) ⇒ R
note that  x: L (h,..j)  =  p′  ⇒  Lh′ = x  is  R

since it doesn't use  i , bring it outside the scope of the quantifier
= (∃i· h<i<j ∧ Li≤x) ∧ R ⇒ R specialize
= †

Its second case
j–h≥2 ⇒ R   ⇐   j–h≥2  ⇒  h′=h<i′<j=j′.  Li>x ∧ (j:= i.  h<j ⇒ R)

is proven just like its first case.

The next refinement is
(j–h≥2  ⇒  h′=h<i′<j=j′   ⇐   i:= div (h+j) 2) expand assignment

= (j–h≥2  ⇒  h′=h<i′<j=j′   ⇐   i′ = div (h+j) 2  ∧  p′=p  ∧  h′=h  ∧  j′=j)
use the equations in the antecedent as context to simplify the consequent

= (j–h≥2  ⇒  h = h < div (h+j) 2 < j = j   ⇐   i′ = div (h+j) 2 ∧ p′=p ∧ h′=h ∧ j′=j)
simplify  h=h  and  j=j  and use the properties of  div

= (j–h≥2  ⇒  †   ⇐   i′ = div (h+j) 2  ∧  p′=p  ∧  h′=h  ∧  j′=j) base law twice
= †

The next refinement is
(T   ⇐   h:= 0.  j:= #L.  U) replace  T  and  U

= (t′ ≤ t + ceil (log (#L))   ⇐   h:= 0.  j:= #L.  h<j ⇒ t′ ≤ t + ceil (log (j–h)))
Substitution Law twice

= (t′ ≤ t + ceil (log (#L))   ⇐   0<#L ⇒ t′ ≤ t + ceil (log (#L–0)))
= †

The next refinement
U   ⇐   if j–h = 1 then p:= Lh=x else V

can be proven by cases.  And its first case is
(U   ⇐   j–h = 1  ∧  (p:= Lh=x)) expand  U  and the assignment

= (h<j ⇒ t′ ≤ t + ceil (log (j–h))  ⇐  j–h=1 ∧ p′=(Lh=x) ∧ h′=h ∧ i′=i ∧ j′=j ∧ t′=t)
use main antecedent as context in main consequent

= (h<j ⇒ t ≤ t + ceil (log 1)  ⇐  j–h=1 ∧ p′=(Lh=x) ∧ h′=h ∧ i′=i ∧ j′=j ∧ t′=t)
Use  log 1 = 0

= (h<j ⇒ †  ⇐  j–h=1 ∧ p′=(Lh=x) ∧ h′=h ∧ i′=i ∧ j′=j ∧ t′=t) base law twice
= †
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Its second case is
(U   ⇐   j–h + 1  ∧  V) expand  U  and  V

= (h<j ⇒ t′ ≤ t + ceil (log (j–h))  ⇐  j–h+1 ∧ (j–h≥2 ⇒ t′ ≤ t + ceil (log (j–h))))
portation

= h<j ∧ j–h+1 ∧ (j–h≥2 ⇒ t′ ≤ t + ceil (log (j–h)))  ⇒  t′ ≤ t + ceil (log (j–h))
simplify

= j–h≥2 ∧ (j–h≥2 ⇒ t′ ≤ t + ceil (log (j–h)))  ⇒  t′ ≤ t + ceil (log (j–h)) discharge
= j–h≥2  ∧  t′ ≤ t + ceil (log (j–h))   ⇒   t′ ≤ t + ceil (log (j–h)) specialization
= †

Before we prove the next refinement, we prove two little theorems first.
if even (h+j)
then ( div (h+j) 2 < j

= (h+j)/2 < j
= j–h > 0
⇐ j–h ≥ 2 )

else ( div (h+j) 2 < j
= (h+j–1)/2 < j
= j–h > –1
⇐ j–h ≥ 2 )

if even (h+j)
then 1 + ceil (log (j – div (h+j) 2))

= ceil (1 + log (j – (h+j)/2))
= ceil (log (j–h))

else 1 + ceil (log (j – div (h+j) 2))
= ceil (1 + log (j – (h+j–1)/2))
= ceil (log (j–h+1))       If  h+j  is odd then  j–h  is odd and can't be a power of  2
= ceil (log (j–h))

Finally, the last refinement
V   ⇐   i:= div (h+j) 2.  if Li≤x then h:= i else j:= i.  t:= t+1.  U

can be proven in two cases.  First case:
(V   ⇐   i:= div (h+j) 2.  Li≤x  ∧  (h:= i.  t:= t+1.  U)) drop  Li≤x  and replace  U

⇐ (V   ⇐   i:= div (h+j) 2.  h:= i.  t:= t+1.  h<j ⇒ t′ ≤ t + ceil (log (j–h)))
then use Substitution Law three times

= (V   ⇐   div (h+j) 2 < j  ⇒  t′ ≤ t + 1 + ceil (log (j – div (h+j) 2)))
use the two little theorems

⇐ (V   ⇐   j–h ≥ 2  ⇒  t′ ≤ t + ceil (log (j–h))) definition of  V , reflexive Law
= †

And the second case
V   ⇐   i:= div (h+j) 2.  Li>x  ∧  (j:= i.  t:= t+1.  U)

is proven just like the first.
                                                                                                                                 End of Binary Search
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4.2.6  Fast Exponentiation

Exercise 151:  Given rational variables  x  and  z  and natural variable  y , write a program for  
z′ = xy  that runs fast without using exponentiation.

This specification does not say how fast the execution should be;  let's make it as fast as we can.  
The idea is to accumulate a product, using variable  z  as accumulator.  Define

P   =   z′ = z×xy

We can solve the problem as follows, though this solution does not give the fastest possible 
computation.

z′=xy    ⇐    z:= 1.  P
P    ⇐    if y=0 then ok else y>0 ⇒ P
y>0 ⇒ P    ⇐    z:= z×x.  y:= y–1.  P

To speed up the computation, we change our refinement of  y>0 ⇒ P  to test whether  y  is even or 
odd;  in the odd case we make no improvement but in the even case we can cut  y  in half.

y>0 ⇒ P    ⇐    if even y then even y ∧ y>0 ⇒ P else odd y ⇒ P
even y ∧ y>0 ⇒ P    ⇐     x:= x×x.  y:= y/2.  P
odd y ⇒ P    ⇐     z:= z×x.  y:= y–1.  P

Each of these refinements is easily proven.

We have made the major improvement, but there are still several minor speedups.  We make them 
partly as an exercise in achieving the greatest speed possible, and mainly as an example of program 
modification.  To begin, if  y  is even and greater than  0 , it is at least  2 ;  after cutting it in half, it is 
at least  1 ;  let us not waste that information.  We re-refine

even y ∧ y>0 ⇒ P    ⇐    x:= x×x.  y:= y/2.  y>0 ⇒ P

If  y  is initially odd and  1  is subtracted, then it must become even;  let us not waste that 
information.  We re-refine

odd y ⇒ P    ⇐    z:= z×x.  y:= y–1.  even y ⇒ P
even y ⇒ P    ⇐    if y = 0 then ok else even y ∧ y>0 ⇒ P

And one more very minor improvement:  if the program is used to calculate  x0  less often than  x  to 
an odd power (a reasonable assumption), it would be better to start with the test for evenness rather 
than the test for zeroness.  We re-refine

P    ⇐    if even y then even y ⇒ P else odd y ⇒ P

Program modification, whether to gain speed or for any other purpose, can be dangerously error-
prone when practiced without the proper theory.  Try writing this program in your favorite standard 
programming language, starting with the first simple solution, and making the same modifications.  
The first modification introduces a new case within a loop;  the second modification changes one of 
the cases into an inner loop;  the next modification changes the outer loop into a case within the 
inner loop, with an intermediate exit;  the final modification changes the loop entry-point to a choice 
of two entry-points.  The flow chart looks like this.

z:= 1          even y                                         y=0                                      even yz:= z×x
y:= y–1

x:= x×x
y:= y/2

† †

†

ƒ ƒ
ƒ
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Without the theory, this sort of program surgery is bound to introduce a few bugs.  With the theory 
we have a better chance of making the modifications correctly because each new refinement is an 
easy theorem.

Before we consider time, here is the fast exponentiation program again.
z′=xy    ⇐    z:= 1.  P
P    ⇐    if even y then even y ⇒ P else odd y ⇒ P
even y ⇒ P    ⇐    if y=0 then ok else even y ∧ y>0 ⇒ P
odd y ⇒ P    ⇐    z:= z×x.  y:= y–1.  even y ⇒ P
even y ∧ y>0 ⇒ P    ⇐    x:= x×x.  y:= y/2.  y>0 ⇒ P
y>0 ⇒ P    ⇐    if even y then even y ∧ y>0 ⇒ P else odd y ⇒ P

In the recursive time measure, every loop of calls must include a time increment.  In this program, a 
single time increment charged to the call  y>0 ⇒ P  does the trick.

even y ∧ y>0 ⇒ P    ⇐    x:= x×x.  y:= y/2.  t:= t+1.  y>0 ⇒ P
To help us decide what time bounds we might try to prove, we can execute the program on some 
test cases.  We find, for each natural  n , that  y: 2n,..2n+1  ⇒   t′ = t+n , plus the isolated case  
y=0  ⇒  t′=t .  We therefore propose the timing specification

if y=0 then t′=t else t′ = t + floor (log y)
where  floor  is the function that rounds down.  We can prove this is the exact execution time, but it 
is easier to prove the less precise specification  T  defined as

T   =   if y=0 then t′=t else t′ ≤ t + log y
To do so, we need to refine  T  with exactly the same refinement structure that we used to refine the 
result  z′=xy  so that we can conjoin the result and timing specifications according to Refinement by 
Parts.  We can prove

T    ⇐    z:= 1.  T
T    ⇐    if even y then T else y>0 ⇒ T
T    ⇐    if y=0 then ok else y>0 ⇒ T
y>0 ⇒ T    ⇐    z:= z×x.  y:= y–1.  T
y>0 ⇒ T    ⇐    x:= x×x.  y:= y/2.  t:= t+1.  y>0 ⇒ T
y>0 ⇒ T    ⇐    if even y then y>0 ⇒ T else y>0 ⇒ T

It does not matter that specifications  T  and  y>0 ⇒ T  are refined more than once.  When we 
conjoin these specifications with the previous result specifications, we find that each specification is 
refined only once.

The timing can be written as a conjunction
(y=0 ⇒ t′=t) ∧ (y>0 ⇒ t′ ≤ t + log y)

and it is tempting to try to prove those two parts separately.  Unfortunately we cannot prove the 
second part of the timing by itself.  Separating a specification into parts is not always a successful 
strategy.
                                                                                                                         End of Fast Exponentiation
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4.2.7  Fibonacci Numbers

In this subsection, we tackle Exercise 217.  The definition of the Fibonacci numbers
fib 0  =  0
fib 1  =  1
fib (n+2)  =  fib n + fib (n+1)

immediately suggests a recursive function definition
fib =   0→0 | 1→1 | 〈n: nat+2→fib (n–2) + fib (n–1)〉

=   〈n: nat→if n<2 then n else fib (n–2) + fib (n–1)〉
We did not include functions in our programming language, so we still have some work to do.  
Besides, the functional solution we have just given has exponential execution time, and we can do 
much better.

For  n ≥ 2 , we can find a Fibonacci number if we know the previous pair of Fibonacci numbers.  
That suggests we keep track of a pair of numbers.  Let  x ,  y , and  n  be natural variables.  We 
refine

x′ = fib n   ⇐   P
where  P  is the problem of finding a pair of Fibonacci numbers.

P   =   x′ = fib n  ∧  y′ = fib (n+1)
When  n=0 , the solution is easy.  When  n≥1 , we can decrease it by  1 , find a pair of Fibonacci 
numbers at that previous argument, and then move  x  and  y  along one place.

P   ⇐   if n=0 then (x:= 0.  y:= 1) else (n:= n–1.  P.  x′=y  ∧  y′ = x+y)
To move  x  and  y  along we need another variable.  We could use a new variable, but we already 
have  n ;  is it safe to use  n  for this purpose?  The specification  x′=y  ∧  y′ = x+y  clearly allows  n  
to change, so we can use it if we want.

x′=y  ∧  y′ = x+y   ⇐   n:= x.  x:= y.  y:= n+y
The time for this solution is linear.  To prove it, we keep the same refinement structure, but we 
replace the specifications with new ones concerning time.  We replace  P  by  t′ = t+n  and add  
t:= t+1 in front of its use;  we also change  x′=y  ∧  y  = x+y  into  t′=t .

t′ = t+n   ⇐   if n=0 then (x:= 0.  y:= 1)  else (n:= n–1.  t:= t+1.  t′ = t+n.  t′=t)
t′=t   ⇐   n:= x.  x:= y.  y:= n+y

Linear time is a lot better than exponential time, but we can do even better.  Exercise 217 asks for a 
solution with logarithmic time.  To get it, we need to take the hint offered in the exercise and use the 
equations

fib(2×k + 1)  =  fib k 2 + fib(k+1) 2
fib(2×k + 2)  =  2 × fib k × fib(k+1)  +  fib(k+1) 2

These equations allow us to find a pair  fib(2×k + 1), fib(2×k + 2)  in terms of a previous pair  
fib k, fib(k+1)  at half the argument.  We refine

P   ⇐ if n=0 then (x:= 0.  y:= 1)
else if even n then even n ∧ n>0 ⇒ P
else odd n ⇒ P

Let's take the last new problem first.  If  n  is odd, we can cut it down from  2×k + 1  to  k  by the 
assignment  n:= (n–1)/2 , then call  P  to obtain  fib k  and  fib(k+1) , then use the equations to 
obtain  fib(2×k + 1)  and  fib(2×k + 2) .

odd n ⇒ P   ⇐   n:= (n–1)/2.  P.  x′ = x2 + y2  ∧  y′ = 2×x×y + y2

The case  even n  ∧  n>0  is a little harder.  We can decrease  n   from  2×k + 2  to  k  by the  
assignment  n:= n/2 – 1 , then call  P  to obtain  fib k  and  fib(k+1) , then use the equations to obtain  
fib(2×k + 1)  and  fib(2×k + 2)  as before, but this time we want  fib(2×k + 2)  and  fib(2×k + 3) .  
We can get  fib(2×k + 3)  as the sum of  fib(2×k + 1)  and  fib(2×k + 2) .
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even n ∧ n>0 ⇒ P   ⇐   n:= n/2 – 1.  P.  x′ = 2×x×y + y2  ∧  y′ = x2 + y2 + x′

The remaining two problems to find  x′  and  y′  in terms of  x  and  y  require another variable as 
before, and as before, we can use  n .

x′ = x2 + y2  ∧  y′ = 2×x×y + y2   ⇐   n:= x.  x:= x2 + y2.  y:= 2×n×y + y2

x′ = 2×x×y + y2  ∧  y′ = x2 + y2 + x′   ⇐   n:= x.  x:= 2×x×y + y2.  y:= n2 + y2 + x

To prove that this program is now logarithmic time, we define time specification
T   =   t′ ≤ t + log (n+1)

and we put  t:= t+1  before calls to  T .  We must now prove
T   ⇐   if n=0 then (x:= 0.  y:= 1) else if even n then even n ∧ n>0 ⇒ T else odd n ⇒ T
odd n ⇒ T   ⇐   n:= (n–1)/2.  t:= t+1.  T.  t′=t
even n ∧ n>0 ⇒ T   ⇐   n:= n/2 – 1.  t:= t+1.  T.  t′=t
t′=t   ⇐   n:= x.  x:= x2 + y2.  y:= 2×n×y + y2

t′=t   ⇐   n:= x.  x:= 2×x×y + y2.  y:= n2 + y2 + x
The first one and last two are easy.  Here are the other two.

(odd n ⇒ t′ ≤ t + log (n+1))   ⇐   (n:= (n–1)/2.  t:= t+1.  t′ ≤ t + log (n+1).  t′=t)
= (odd n ⇒ t′ ≤ t + log (n+1))   ⇐   t′ ≤ t +1 + log ((n–1)/2+1)

note that  (a ⇒ b) ⇐ c   =  a ⇒ (b ⇐ c)
= odd n ⇒ (t′ ≤ t + log (n+1)  ⇐  t′ ≤ t +1 + log ((n–1)/2+1)) connection law
⇐ odd n  ⇒  1 + log ((n–1)/2+1) ≤ log (n+1) logarithm law
= odd n  ⇒  log (n–1+2) ≤ log (n+1) arithmetic
= odd n  ⇒  log (n+1) ≤ log (n+1) reflexivity and base
= †

(even n ∧ n>0 ⇒ t′ ≤ t + log (n+1)) ⇐ (n:= n/2 – 1. t:= t+1. t′ ≤ t + log (n+1). t′=t)
by the same steps

= even n ∧ n>0  ⇒  1 + log (n/2 – 1+1) ≤ log (n+1)
= even n ∧ n>0  ⇒  log n ≤ log (n+1)
= †

                                                                                                                           End of Fibonacci Numbers

Finding the execution time of any program can always be done by transforming the program into a 
function that expresses the execution time.  To illustrate how, we do Exercise 216 (roller coaster), 
which is a famous program whose execution time is considered to be unknown.  Let  n  be a natural 
variable.  Then, including recursive time,

n′=1   ⇐ if n=1 then ok
else if even n then (n:= n/2.  t:= t+1.  n′=1)
else (n:= 3×n + 1.  t:= t+1.  n′=1)

It is not even known whether the execution time is finite for all  n>0 .

We can express the execution time as  f n , where function  f  must satisfy
t′=t+fn   ⇐ if n=1 then ok

else if even n then (n:= n/2.  t:= t+1.  t′=t+fn)
else (n:= 3×n + 1.  t:= t+1.  t′=t+fn)

which can be simplified to
f n    = if n=1 then 0

else if even n then 1 + f (n/2)
else 1 + f (3×n + 1)
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Thus we have an exact definition of the execution time.  So why is the execution time considered to 
be unknown?

If the execution time of some program is  n2 , we consider that the execution time of that program is 
known.  Why is  n2  accepted as a time bound, and  f n  as defined above not accepted?  Before 
answering, we suggest several non-reasons.  The reason is not that  f  is defined recursively;  the 
square function is defined in terms of multiplication, and multiplication is defined recursively.  The 
reason cannot be that  n2  is well behaved (finite, monotonic, and smooth), while  f  jumps around 
wildly;  every jump and change of value in  f  is there to fit the original program's execution time 
perfectly, and we shouldn't disqualify  f  just because it is a perfect bound.  One might propose the 
length of time it takes to compute the time bound as a reason to reject  f .  Since it takes exactly as 
long to compute the time bound  f n   as to run the program, we might as well just run the original 
program and look at our watch and say that's the time bound.  But  log log n  is accepted as a time 
bound even though it takes longer than  log log n  to compute  log log n .

The reason seems to be that function  f  is unfamiliar;  it has not been well studied and we don't 
know much about it.  If it were as well studied and familiar as square, we would accept it as a time 
bound.

We earlier looked at linear search in which we have to find the first occurrence of a given item in a 
given list.  Suppose now that the list  L  is infinitely long, and we are told that there is at least one 
occurrence of the item  x  in the list.  The desired result can be simplified to

¬ x: L (0,..h′)  ∧  Lh′=x
and the program can be simplified to

¬ x: L (0,..h′)  ∧  Lh′=x   ⇐   h:= 0.  ¬ x: L (h,..h′)  ∧  Lh′=x
¬ x: L (h,..h′)  ∧  Lh′=x   ⇐   if Lh=x then ok else (h:= h+1.  ¬ x: L (h,..h′)  ∧  Lh′=x)

Adding recursive time, we can prove
t′=t+h′   ⇐   h:= 0.  t′=t+h′–h
t′=t+h′–h   ⇐   if Lh=x then ok else (h:= h+1.  t:= t+1.  t′=t+h′–h)

The execution time is  h′ .  Is this acceptable as a time bound?  It gives us no indication of how long 
to wait for a result.  On the other hand, there is nothing more to say about the execution time.  The 
defect is in the given information:  that  x  occurs somewhere, with no indication where.
                                                                                                                                             End of Time

4.3  Space

Our example to illustrate space calculation is Exercise 212:  the problem of the Towers of Hanoi.  
There are  3  towers and  n  disks.  The disks are graduated in size;  disk  0  is the smallest and disk  
n–1  is the largest.  Initially tower A holds all  n  disks, with the largest disk on the bottom, 
proceding upwards in order of size to the smallest disk on top.  The task is to move all the disks 
from tower A to tower B, but you can move only one disk at a time, and you must never put a larger 
disk on top of a smaller one.  In the process, you can make use of tower C as intermediate storage.
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Our solution is  MovePile  "A"  "B"  "C"  where we refine  MovePile  as follows.
MovePile from to using  ⇐ if n=0 then ok

else ( n:= n–1.
MovePile from using to.
MoveDisk from to.
MovePile using to from.
n:= n+1 )

Procedure  MovePile  moves all  n  disks, one at a time, never putting a larger disk on top of a 
smaller one.  Its first parameter  from  is the tower where the  n  disks are initially;  its second 
parameter  to  is the tower where the  n  disks are finally;  its last parameter  using  is the tower used 
as intermediate storage.  It accomplishes its task as follows.  If there are any disks to move, it starts 
by ignoring the bottom disk ( n:= n–1 ).  Then a recursive call moves the remaining pile (all but the 
bottom disk, one at a time, never putting a larger disk on top of a smaller one) from the  from  tower 
to the using tower (using the to tower as intermediate storage).  Then  MoveDisk  causes a robot 
arm to move the bottom disk.  If you don't have a robot arm, then  MoveDisk  can just print out what 
the arm should do:

"Move disk " + nat2text n + " from tower " + from + " to tower " + to
Then a recursive call moves the remaining pile (all but the bottom disk, one at a time, never putting a 
larger disk on top of a smaller one) from the using tower to the to tower (using the from tower as 
intermediate storage).  And finally  n  is restored to its original value.

To formalize  MovePile  and  MoveDisk  and to prove that the rules are obeyed and the disks end in 
the right place, we need to describe formally the position of the disks on the towers.  But that is not 
the point of this section.  Our concern is just the time and space requirements, so we will ignore the 
disk positions and the parameters  from ,  to , and  using .  All we can prove at the moment is that if  
MoveDisk  satisfies  n′=n , so does  MovePile .

To measure time, we add a time variable  t , and use it to count disk moves.  We suppose that  
MoveDisk  takes time  1 , and that is all it does that we care about at the moment, so we replace it by  
t:= t+1 .  We now prove that the execution time is  2n – 1  by replacing  MovePile  with the 
specification  t:= t + 2n – 1 .  We prove

t:= t + 2n – 1  ⇐ if n=0 then ok
else ( n:= n–1.

t:= t + 2n – 1.
t:= t+1.
t:= t + 2n – 1.
n:= n+1 )

by cases.  First case, starting with its right side:
n=0 ∧ ok expand  ok

= n=0 ∧ n′=n ∧ t′=t arithmetic
⇒ t:= t + 2n – 1

Second case, starting with its right side:
n>0 ∧ (n:= n–1.  t:= t + 2n – 1.  t:= t+1.  t:= t + 2n – 1.  n:= n+1)

drop conjunct  n>0 ;  expand final assignment
⇒ n:= n–1.  t:= t + 2n – 1.  t:= t+1.  t:= t + 2n – 1.  n′=n+1 ∧ t′=t

use substitution law repeatedly from right to left
= n′=n–1+1 ∧ t′=t+2n–1–1+1+2n–1–1 simplify
= n′=n ∧ t′=t+2n–1
= t:= t + 2n – 1
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To talk about the memory space used by a computation, we just add a space variable  s .  Like the 
time variable  t ,  s  is not part of the implementation, but only used in specifying and calculating 
space requirements.  We use  s  for the space occupied initially at the start of execution, and  s′  for 
the space occupied finally at the end of execution.  Any program may be used as part of a larger 
program, and it may not be the first part, so we cannot assume that the initial space occupied is  0 , 
just as we cannot assume that a computation begins at time  0 .  In our example, the program calls 
itself recursively, and the recursive invocations begin at different times with different occupied space 
from the main (nonrecursive) invocation.

To allow for the possibility that execution endlessly consumes space, we take the domain of space 
to be the natural numbers extended with  ∞ .  Wherever space is being increased, we insert  
s:= s+(the increase)  to adjust  s  appropriately, and wherever space is being decreased, we insert  
s:= s–(the decrease) .  In our example, the recursive calls are not the last action in the refinement;  
they require that a return address be pushed onto a stack at the start of the call, and popped off at 
the end.  Considering only space, ignoring time and disk movements, we can prove

s′=s  ⇐ if n=0 then ok
else ( n:= n–1.

s:= s+1.  s′=s.  s:= s–1.
ok.
s:= s+1.  s′=s.  s:= s–1.
n:= n+1 )

which says that the space occupied is the same at the end as at the start.

It is comforting to know there are no “space leaks”, but this does not tell us much about the space 
usage.  There are two measures of interest:  the maximum space occupied, and the average space 
occupied.

4.3.0  Maximum Space

Let  m  be the maximum space occupied at the start of execution, and  m′  be the maximum space 
occupied by the end of execution.  Wherever space is being increased, we insert  m:= max m s  to 
keep  m  current.  There is no need to adjust  m  at a decrease in space.  In our example, we want to 
prove that the maximum space occupied is  n .  However, in a larger context, it may happen that the 
starting space is not  0 , so we specify  m′ = s+n .  We can assume that at the start  m≥s , since  m  
is supposed to be the maximum value of  s , but it may happen that the starting value of  m  is 
already greater than  s+n , so the specification becomes  m≥s ⇒ (m:= max m (s+n)) .

m≥s ⇒ (m:= max m (s+n))  ⇐
if n=0 then ok
else ( n:= n–1.

s:= s+1.  m:= max m s.  m≥s ⇒ (m:= max m (s+n)).  s:= s–1.
ok.
s:= s+1.  m:= max m s.  m≥s ⇒ (m:= max m (s+n)).  s:= s–1.
n:= n+1 )
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Before proving this, let's simplify the long line that occurs twice.
s:= s+1.  m:= max m s.  m≥s ⇒ (m:= max m (s+n)).  s:= s–1

Use a Condition Law, and expand final assignment
⇒ s:= s+1.  m:= max m s.  m≥s ⇒ (m:= max m (s+n).  s′=s–1 ∧ m′=m  ∧  n′=n)

Use Substitution Law
= s:= s+1.  m:= max m s.  m≥s  ⇒  s′=s–1  ∧  m′ = max m (s+n)  ∧  n′=n

Use Substitution Law
= s:= s+1.  (max m s)≥s  ⇒  s′=s–1  ∧  m′ = max (max m s) (s+n)  ∧  n′=n

Simplify antecedent to  † .  Also  max  is associative
= s:= s+1.  s′=s–1  ∧  m′ = max m (s+n)  ∧  n′=n use Substitution Law
= s′=s  ∧  m′ = max m (s+1+n)  ∧  n′=n
= m:= max m (s+1+n)

The proof of the refinement proceeds in the usual two cases.  First,
n=0 ∧ ok

= n′=n=0  ∧  s′=s  ∧  m′=m
⇒ m≥s ⇒ (m:= max m (s+n))

And second,
n>0 ∧ ( n:= n–1.

s:= s+1.  m:= max m s.  m≥s ⇒ (m:= max m (s+n)).  s:= s–1.
ok.
s:= s+1.  m:= max m s.  m≥s ⇒ (m:= max m (s+n)).  s:= s–1.
n:= n+1 ) Drop n>0 and ok . Simplify long lines. Expand final assignment.

⇒ n:= n–1.  m:= max m (s+1+n).  m:= max m (s+1+n).  n′=n+1 ∧ s′=s ∧ m′=m
use Substitution Law three times

= n′=n  ∧  s′=s  ∧  m′ = max (max m (s+n)) (s+n) associative and idempotent laws
= n′=n  ∧  s′=s  ∧  m′ = max m (s+n
⇒ m≥s ⇒ (m:= max m (s+n))

                                                                                                                              End of Maximum Space

4.3.1  Average Space

To find the average space occupied during a computation, we find the cumulative space-time 
product, and then divide by the execution time.  Let  p  be the cumulative space-time product at the 
start of execution, and  p′  be the cumulative space-time product at the end of execution.  We still 
need variable  s , which we adjust exactly as before.  We do not need variable  t ;  however, an 
increase in  p  occurs where there would be an increase in  t , and the increase is  s  times the 
increase in  t .  In the example, where  t  was increased by  1 , we now increase  p  by  s .  We prove

p:= p + s×(2n – 1) + (n–2)×2n + 2  ⇐
if n=0 then ok
else ( n:= n–1.

s:= s+1.  p:= p + s×(2n – 1) + (n–2)×2n + 2.  s:= s–1.
p:= p+s.
s:= s+1.  p:= p + s×(2n – 1) + (n–2)×2n + 2.  s:= s–1.
n:= n+1 )

In the specification  p:= p + s×(2n – 1) + (n–2)×2n + 2 , the term  s×(2n – 1)  is the product of the 
initial space  s  and total time  2n – 1 ;  it is the increase in the space-time product due to the 
surrounding computation (which is  0  if  s  is  0 ).  The additional amount  (n–2)×2n + 2  is due to 
our computation.  The average space due to our computation is this additional amount divided by 
the execution time.  Thus the average space occupied by our computation is  n + n/(2n – 1) – 2 .
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space

time

s, s′
p

t t′

s×(2n – 1)

(n–2)×2n + 2

The proof, as usual, in two parts:
n=0 ∧ ok expand  ok

= n=0 ∧ n′=n ∧ s′=s ∧ p′=p arithmetic
⇒ n′=n  ∧  s′=s  ∧  p′ = p + s×(2n – 1) + (n–2)×2n + 2
= p:= p + s×(2n – 1) + (n–2)×2n + 2

n>0 ∧ ( n:= n–1.  s:= s+1.  p:= p + s×(2n – 1) + (n–2)×2n + 2.  s:= s–1.  n:= n+1.
p:= p+s.
n:= n–1.  s:= s+1.  p:= p + s×(2n – 1) + (n–2)×2n + 2.  s:= s–1.  n:= n+1 )

drop conjunct  n>0 ; expand final assignment
⇒ n:= n–1.  s:= s+1.  p:= p + s×(2n – 1) + (n–2)×2n + 2.  s:= s–1.  n:= n+1. p:= p+s.

n:= n–1. s:= s+1. p:= p + s×(2n–1) + (n–2)×2n + 2. s:= s–1. n′=n+1 ∧ s′=s ∧ p′=p
use substitution law 10 times from right to left

= n′=n ∧ s′=s
      ∧ p′ = p + (s+1)×(2n–1–1) + (n–3)×2n–1 + 2 + s + (s+1)×(2n–1–1) + (n–3)×2n–1 + 2

simplify
= n′=n  ∧  s′=s  ∧  p′ = p + s×(2n – 1) + (n–2)×2n + 2
= p:= p + s×(2n – 1) + (n–2)×2n + 2

Instead of proving that the average space is exactly  n + n/(2n – 1) – 2 , it is easier to prove that the 
average space is bounded above by  n .  To do so, instead of proving that the space-time product is  
s×(2n–1) + (n–2)×2n + 2 , we would prove it is at most  (s+n)×(2n–1) .  But we leave that as 
Exercise 212(f).

Putting together all the proofs for the Towers of Hanoi problem, we have
MovePile  ⇐ if n=0 then ok

else ( n:= n–1.
s:= s+1.  m:= max m s.  MovePile.  s:= s–1.
t:= t+1.  p:= p+s.  ok.
s:= s+1.  m:= max m s.  MovePile.  s:= s–1.
n:= n+1 )

where  MovePile  is the specification
n′=n

∧ t′ = t + 2n – 1
∧ s′=s
∧ (m≥s ⇒ m′ = max m (s+n))
∧ p′ = p + s×(2n – 1) + (n–2)×2n + 2

                                                                                                                                 End of Average Space

                                                                                                                                            End of Space

                                                                                                                               End of Program Theory
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5  Programming Language
We have been using a very simple programming language consisting of only  ok , assignment,  
if then else  , dependent (sequential) composition, and refined specifications.  In this chapter we 
enrich our repertoire by considering some of the notations found in some popular languages.  We 
will not consider concurrency (independent composition) and interaction (input and output) just yet;  
they get their own chapters later.

5.0  Scope

5.0.0  Variable Declaration

The ability to declare a new state variable within a local scope is so useful that it is provided by 
every decent programming language.  A declaration may look something like this:

var x: T
where  x  is the variable being declared, and  T , called the type, indicates what values  x  can be 
assigned.  A variable declaration applies to what follows it, according to the precedence table on the 
final page of the book.  In program theory, it is essential that each of our notations apply to all 
specifications, not just to programs.  That way we can introduce a local variable as part of the 
programming process, before its scope is refined.

We can express a variable declaration together with the specification to which it applies as a boolean 
expression in the initial and final state.

var x: T· P     =     ∃x, x′: T· P
Specification  P  is an expression in the initial and final values of all nonlocal (already declared) 
variables plus the newly declared local variable.  Specification  var x: T· P  is an expression in the 
nonlocal variables only.  For a variable declaration to be implementable, its type must be nonempty.  
As a simple example, suppose the nonlocal variables are integer variables  y  and  z .  Then

var x: int·  x:= 2.  y:= x+z
= ∃x, x′: int·  x′=2  ∧  y′ = 2+z  ∧  z′=z
= y′ = 2+z  ∧  z′=z

According to our definition of variable declaration, the initial value of the local variable is an 
arbitrary value of its type.

var x: int·  y:= x
= ∃x, x′: int·  x′=x ∧ y′=x ∧ z′=z
= z′=z

which says that  z  is unchanged.  Variable  x  is not mentioned because it is a local variable, and 
variable  y  is not mentioned because its final value is unknown.  However

var x: int·  y:= x–x
= y′=0 ∧ z′=z

In some languages, a newly declared variable has a special value called “the undefined value” 
which cannot participate in any expressions.  To write such declarations as boolean expressions, we 
introduce the expression  undefined  but we do not give any axioms about it, so nothing can be 
proven about it.  Then

var x: T· P     =     ∃x: undefined· ∃x′: T, undefined· P
For this kind of variable declaration, it is not necessary for the type to be nonempty.



An initializing assignment is easily defined in the same way.
var x: T := e·  P     =     ∃x: e· ∃x′: T· P

assuming  e  is of type  T .

If we are accounting for space usage, a variable declaration should be accompanied by an increase 
to the space variable  s  at the start of the scope of the declaration, and a corresponding decrease to  
s  at the end of the scope.

As in many programming languages, we can declare several variables in one declaration.  For 
example,

var x, y, z: T· P     =     ∃x, x′, y, y′, z, z′: T· P
                                                                                                                         End of Variable Declaration

It is a service to the world to make variable declarations as local as possible.  That way, the state 
space outside the local scope is not polluted with unwanted variables.  Inside the local scope, there 
are all the nonlocal variables plus the local ones;  there are more variables to keep track of locally.

5.0.1  Variable Suspension

We may wish, temporarily, to narrow our focus to a part of the state space.  If the part is  x  and  y , 
we indicate this with the notation

frame x, y
It applies to what follows it, according to the precedence table on the final page of the book, just like  
var .  The  frame  notation is the formal way of saying “and all other variables (even the ones we 
cannot say because they are covered by local declarations) are unchanged”.  This is similar to the 
“import” statement of some languages, though not identical.  If the state variables not included in 
the frame are  w  and  z , then

frame x, y· P    =   P ∧ w′=w ∧ z′=z
Within  P  the state variables are  x  and  y .  It allows  P  to refer to  w  and  z , but only as local 
constants (mathematical variables, not state variables;  there is no  w′  and no  z′ ).  Time and space 
variables are implicitly assumed to be in all frames, even though they may not be listed explicitly.

The definitions of  ok  and assignment using state variables
ok = x′=x ∧ y′=y ∧ ...
x:= e = x′=e ∧ y′=y ∧ ...

were partly informal, using three dots to say “and other conjuncts for other state variables”.  If we 
had defined  frame  first, we could have defined them formally as follows:

ok = frame· †
x:= e = frame x· x′=e

                                                                                                                         End of Variable Suspension

We specified the list summation problem in the previous chapter as  s′ = ΣL .  We took  s  to be a 
state variable, and  L  to be a constant.  We might have preferred the specification  s:= ΣL  saying 
that  s  has the right final value and that all other variables are unchanged, but our solution included 
a variable  n  which began at  0  and ended at  #L .  We now have the formal notations needed.

s:= ΣL   =   frame s·  var n: nat·  s′ = ΣL
First we reduce the state space to  s ;  if  L  was a state variable, it is now a constant.  Next we 
introduce local variable  n .  Then we proceed as before.
                                                                                                                                           End of Scope
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5.1  Data Structures

5.1.0  Array

In most popular programming languages there is the notion of subscripted variable, or indexed 
variable, usually called an array.  Each element of an array is a variable.  Element  2  of array  A  can 
be assigned the value  3  by a notation such as

A(2):= 3
Perhaps the brackets are square;  let us dispense with the brackets.  We can write an array element 
assignment as a boolean expression in the initial and final state as follows.  Let  A  be an array 
name, let  i  be any expression of the index type, and let  e  be any expression of the element type.  
Then

Ai:= e     =     A′i=e  ∧  (∀j· j+i ⇒ A′j=Aj)  ∧  x′=x  ∧  y′=y  ∧ ...
This says that after the assignment, element  i  of  A  equals  e , all other elements of  A  are 
unchanged, and all other variables are unchanged.  If you are unsure of the placement of the primes, 
consider the example

A(A2):= 3
= A′(A2) = 3  ∧  (∀j· j+A2 ⇒ A′j=Aj)  ∧  x′=x  ∧  y′=y  ∧ ...

The Substitution Law
x:= e. P   =   (for  x  substitute  e  in  P )

is very useful, but unfortunately it does not work for array element assignment.  For example,
A2:= 3.  i:= 2.  Ai:= 4.  Ai=A2

should equal  † , because  i=2  just before the final boolean expression, and  A2=A2  certainly  
equals † .  If we try to apply the Substitution Law, we get

A2:= 3.  i:= 2.  Ai:= 4.  Ai=A2 invalid use of substitution law
= A2:= 3.  i:= 2.  4=A2 valid use of substitution law
= A2:= 3.  4=A2 invalid use of substitution law
= 4=3
= ƒ

Here is a second example of the failure of the Substitution Law for array elements.
A2:= 2.   A(A2):= 3.   A2=2

This should equal  ƒ    because   A2=3  just before the final boolean expression.  But the 
Substitution Law says

A2:= 2.   A(A2):= 3.   A2=2 invalid use of substitution law
= A2:= 2.   A2=2 invalid use of substitution law
= 2=2
= †

The Substitution Law works only when the assignment has a simple name to the left of  := .  
Fortunately we can always rewrite an array element assignment in that form.

Ai:= e
= A′i=e   ∧  (∀j· j+i ⇒ A′j=Aj)  ∧  x′=x  ∧  y′=y  ∧ ...
= A′ = i→e | A  ∧  x′=x  ∧  y′=y  ∧ ...
= A:= i→e | A
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Let us look again at the examples for which the Substitution Law did not work, this time using the 
notation  A:= i→e | A .

A:= 2→3 | A.  i:= 2.  A:= i→4 | A.  Ai =A2
= A:= 2→3 | A.  i:= 2.  (i→4 | A)i = (i→4 | A)2
= A:= 2→3 | A.  (2→4 | A)2 = (2→4 | A)2
= A:= 2→3 | A.  †
= †

A:= 2→2 | A.   A:= A2→3 | A.   A2=2
= A:= 2→2 | A.   (A2→3 | A)2 = 2
= ((2→2 | A)2→3 | 2→2 | A) 2 = 2
= (2→3 | 2→2 | A) 2 = 2
= 3 = 2
= ƒ

The only thing to remember about array element assignment is this:  change  Ai:= e  to  A:= i→e | A  
before applying any programming theory.  A two-dimensional array element assignment  Aij:= e  
must be changed to  A:= (i;j)→e | A , and similarly for more dimensions.
                                                                                                                                            End of Array

5.1.1  Record

Without inventing anything new, we can already build records, also known as structures, similar to 
those found in several languages.  Let us define  person  as follows.

person   = "name" → text
| "age" → nat

We declare
var p: person

and assign  p  as follows.
p:= "name" → "Josh" | "age" → 17

In languages with records (or structures), a component (or field) is assigned the same way we make 
an array element assignment.  For example,

p "age":= 18
Just as for array element assignment, the Substitution Law does not work for record components.  
And the solution is also the same;  just rewrite it like this:

p:= "age" → 18 | p
No new theory is needed for records.
                                                                                                                                          End of Record

                                                                                                                                End of Data Structures

5.2  Control Structures

5.2.0  While Loop

The while-loop of several languages has a syntax similar to
while b do P

where  b  is boolean and  P  is a specification.  To execute it, evaluate  b , and if its value is  ƒ  then 
you're done, but if its value is  †  then execute  P  and start over.  We do not define the while-loop 
as a specification the way we have defined previous programming notations.  Instead, if  W  is an 
implementable specification, we consider
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W   ⇐   while b do P
to be an abbreviation of

W   ⇐   if b then (P.  W) else ok
For example, to prove

s′ = s + Σ L [n;..#L]  ∧  t′ = t + #L – n   ⇐
while n+#L do (s:= s + Ln.  n:= n+1.  t:= t+1)

prove instead
s′ = s + Σ L [n;..#L]  ∧  t′ = t + #L – n   ⇐

if n+#L then (s:= s + Ln.  n:= n+1.  t:= t+1.  s′ = s + Σ L [n;..#L]  ∧  t′ = t+#L–n)
else ok

During programming, we may happen to refine a specification  W  by  if b then (P.  W) else ok  .  
If so, we may abbreviate the refinement using a while-loop.  This is particularly valuable when the 
implementation of call is poor, and does not use a branch instruction in this situation.

This account of while-loops is adequate for practical purposes:  it tells us how we can use them in 
programming.  But it does not allow us to prove as much as we might like;  for example, we cannot 
prove

while b do P   =   if b then (P.  while b do P) else ok
A different account of while-loops is given in Chapter 6.

Exercise 265:  Consider the following program in natural variables  x  and  y .
while ¬ x=y=0 do

if y>0 then y:= y–1
else (x:= x–1.  var n: nat· y:= n)

This loop decreases  y  until it is  0 ;  then it decreases  x  by  1  and assigns an arbitrary natural 
number to  y ;  then again it decreases  y  until it is  0 ;  and again it decreases  x  by  1  and assigns 
an arbitrary natural number to  y ;  and so on until both  x  and  y  are  0 .  The problem is to find a 
time bound.  So we introduce time variable  t , and rewrite the loop in refinement form.

P   ⇐ if x=y=0 then ok
else if y>0 then (y:= y–1.  t:= t+1.  P)
else (x:= x–1.  (∃n· y:= n).  t:= t+1.  P)

The execution time depends on  x  and on  y  and on the arbitrary values assigned to  y .  That 
means we need  n  to be nonlocal so we can refer to it in the specification  P .  But a nonlocal  n  
would have a single arbitrary initial value that would be assigned to  y  every time  x  is decreased, 
whereas in our computation  y  may be assigned different arbitrary values every time  x   is 
decreased.  So we change  n  into a function  f  of  x .  (Variable  x  never repeats a value;  if it did 
repeat, we would have to make  f  be a function of time.)

Let  f: nat→nat .  We say nothing more about  f , so it is a completely arbitrary function from  nat  
to  nat .  Introducing  f  gives us a way to refer to the arbitrary values, but does not say anything 
about when or how those arbitrary values are chosen.  Let  s = Σf[0;..x] , which says  s  is the sum 
of the first  x  values of  f .  We prove

t′ = t+x+y+s   ⇐ if x=y=0 then ok
else if y>0 then (y:= y–1.  t:= t+1.  t′ = t+x+y+s)
else (x:= x–1.  y:= fx.  t:= t+1.  t′ = t+x+y+s)
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The proof is in three cases.
x=y=0 ∧ ok

⇒ x=y=s=0 ∧ t′=t
⇒ t′ = t+x+y+s

y>0 ∧ (y:= y–1.  t:= t+1.  t′ = t+x+y+s) substitution law twice
= y>0  ∧  t′ = t+1+x+y–1+s
⇒ t′ = t+x+y+s

x>0 ∧ y=0 ∧ (x:= x–1.  y:= fx.  t:= t+1.  t′ = t+x+y+s) substitution law 3 times
= x>0  ∧  y=0  ∧  t′ = t+1+x–1+f(x–1)+Σf[0;..x–1]
⇒ t′ = t+x+y+s

The execution time of the program is  x + y + (the sum of  x  arbitrary natural numbers) .
                                                                                                                                    End of While Loop

5.2.1  Loop with Exit

Some languages provide a command to jump out of the middle of a loop.  The syntax for a loop in 
such a language might be

loop P end
with the additional syntax

exit when b
allowed within  P , where  b  is boolean.  Sometimes the word “break” is used instead of “exit”.  
As in Subsection 5.2.0, we consider refinement by a loop with exits to be an alternative notation.  
For example, if  L  is an implementable specification, then

L   ⇐ loop
A.
exit when b.
C

end
means

L   ⇐   A.  if b then ok else (C.  L)

Programmers who use loop constructs sometimes find that they reach their goal deep within several 
nested loops.  The problem is how to get out.  A boolean variable can be introduced for the purpose 
of recording whether the goal has been reached, and tested at each iteration of each level of loop to 
decide whether to continue or exit.  Or a go to can be used to jump directly out of all the loops, 
saving all tests.  Or perhaps the programming language provides a specialized go to  for this 
purpose:  exit n when b  which means exit  n  loops when  b  is satisfied.  For example, we may 
have something like this:

P   ⇐ loop
A.
loop

B.
exit 2 when c.
D

end.
E

end
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The refinement structure corresponding to this loop is
P   ⇐   A.  Q
Q   ⇐   B.  if c then ok  else (D.  Q)

for some appropriately defined  Q .  It has often been suggested that every loop should have a 
specification, but the loop construct does not require it.  The refinement structure does require it.

The preceding example had a deep exit but no shallow exit, leaving  E  stranded in a dead area.  
Here is an example with both deep and shallow exits.

P   ⇐ loop
A.
exit 1 when b.
C.
loop

D.
exit 2 when e.
F.
exit 1 when g.
H

end.
I

end
The refinement structure corresponding to this loop is

P   ⇐   A.  if b then ok else (C. Q)
Q   ⇐   D.  if e then ok  else (F.  if g then (I. P) else (H. Q))

for some appropriately defined  Q .

Loops with exits can always be translated easily to a refinement structure.  But the reverse is not 
true;  some refinement structures require the introduction of new variables and even whole data 
structures to encode them as loops with exits.
                                                                                                                                      End of Exit Loop

5.2.2  Two-Dimensional Search

To illustrate the preceding subsection, we can do Exercise 157:  Write a program to find a given 
item in a given 2-dimensional array.  The execution time must be linear in the product of the 
dimensions.

Let the array be  A , let its dimensions be  n  by  m , and let the item we seek be  x .  We will indicate 
the position of  x  in  A  by the final values of natural variables  i  and  j .  If  x  occurs more than 
once, any of its positions will do.  If it does not occur, we will indicate that by assigning  i  and  j  
the values  n  and  m  respectively.  The problem, except for time, is then  P  where

P   =   if x: A (0,..n) (0,..m) then x = A i′ j′ else i′=n ∧ j′=m
We may as well search row  0  first, then row  1 , and so on.  Accordingly, we define  Q  to specify 
the search from row  i  onward:

Q   =   if x: A (i,..n) (0,..m) then x = A i′ j′ else i′=n ∧ j′=m
Within each row, we search the columns in order, and so we define  R  to specify the search from 
row  i  column  j  onward:

R   =   if x: A i (j,..m), A (i+1,..n) (0,..m) then x = A i′ j′ else i′=n ∧ j′=m
The expression  A i (j,..m), A (i+1,..n) (0,..m)  represents the items in the bottom region of the 
following picture:
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x  is not here
0
0

n

m

i

j

search here
i+1

We now solve the problem in five easy pieces.

P   ⇐   i:= 0.  i≤n ⇒ Q

i≤n ⇒ Q   ⇐   if i=n then j:= m else i<n ⇒ Q

i<n ⇒ Q   ⇐   j:= 0.  i<n ∧ j≤m ⇒ R

i<n ∧ j≤m ⇒ R   ⇐   if j=m then (i:= i+1.  i≤n ⇒ Q) else i<n ∧ j<m ⇒ R

i<n ∧ j<m ⇒ R   ⇐   if A i j = x then ok else (j:= j+1.  i<n ∧ j≤m ⇒ R)

It is easier to see the execution pattern when we retain only enough information for execution.  The 
non-program specifications are needed for understanding the purpose, and for proof, but not for 
execution.  To a compiler, the program appears as follows:

P ⇐ i:= 0.  L0
L0 ⇐ if i=n then j:= m else (j:= 0.  L1)
L1 ⇐ if j=m then (i:= i+1.  L0)

else if A i j = x then ok
else (j:= j+1.  L1)

In C, this is
i = 0;

L0: if (i==n) j = m;
else { j = 0;

   L1: if (j==m) {i = i+1;  goto L0;}
else if (A[i][j]==x) ;
else {j = j+1;  goto L1;}

}

To add recursive time, we put  t:= t+1  just after  i:= i+1  and after  j:= j+1 .  Or, to be a little more 
clever, we can get away with a single time increment placed just before the test  j=m .  We also 
change the five specifications we are refining to refer to time.  The time remaining is at most the 
area remaining to be searched.

t′ ≤ t + n×m   ⇐   i:= 0.  i≤n  ⇒  t′ ≤ t + (n–i)×m

i≤n  ⇒  t′ ≤ t + (n–i)×m   ⇐   if i=n then j:= m else i<n  ⇒  t′ ≤ t + (n–i)×m

i<n  ⇒  t′ ≤ t + (n–i)×m   ⇐   j:= 0.  i<n ∧ j≤m  ⇒  t′ ≤ t + (n–i)×m – j

i<n ∧ j≤m  ⇒  t′ ≤ t + (n–i)×m – j   ⇐
t:= t+1.
if j=m then (i:= i+1.  i≤n  ⇒  t′ ≤ t + (n–i)×m)
else i<n ∧ j<m  ⇒  t′ ≤ t + (n–i)×m – j
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i<n ∧ j<m  ⇒  t′ ≤ t + (n–i)×m – j   ⇐
if A i j = x then ok
else (j:= j+1.  i<n ∧ j≤m  ⇒  t′ ≤ t + (n–i)×m – j)

                                                                                                                   End of Two-Dimensional Search

5.2.3  For Loop

Let us use the syntax
for i:= m;..n do P

where  i  is a fresh name,  m   and  n  are integer expressions such that  m≤n , and  P   is a 
specification, as an almost-typical notation for controlled iteration.  The difference from popular 
languages is just that iteration continues up to but excluding  i=n .  To avoid some thorns, let us say 
also that  i  is not a state variable (so it cannot be assigned within  P ), and that the initial values of  
m  and  n  control the iteration (so the number of iterations is  n–m ).

As with the previous loop constructs, we will not define the for-loop as a specification, but instead 
show how it is used in refinement.  Let  F  be a function of two integer variables whose result is an 
implementable specification.  Then

Fmn   ⇐   for i:= m;..n do P
is an abbreviation of the three refinements

Fii   ⇐   m≤i≤n ∧ ok
Fi(i+1)   ⇐   m≤i<n ∧ P
Fik   ⇐   m≤i<j<k≤n ∧ (Fij. Fjk)

If  m=n  there are no iterations, and specification  Fmn  must be satisfied by doing nothing  ok .  
The body of the loop has to do one iteration  Fi(i+1) .  Finally,  Fmn  must be satisfied by first 
doing the iterations from  m  to an intermediate index  j , and then doing the rest of the iterations 
from  j  to  n .

For example, let the state consist of integer variable  x , and let  F  be defined as
F   =   〈i, j: nat→x′ = x×2j–i〉

Then we can solve the exponentiation problem  x′=2n  in two refinements:
x′=2n   ⇐   x:= 1.  F0n
F0n   ⇐   for i:= 0;..n do x:= 2×x

The first refinement is proven by the Substitution Law.  To prove the second, we must prove three 
theorems

Fii   ⇐   0≤i≤n  ∧ ok
Fi(i+1)   ⇐   0≤i<n ∧ (x:= 2×x)
Fik   ⇐   0≤i<j<k≤n ∧ (Fij. Fjk)

all of which are easy.

The recursive time measure requires each loop to contain a time increment of at least one time unit.  
In general, the time taken by the body of a for loop may be a function  f  of the iteration  i .  Using  
t′ = t + Σi: m,..n· fi  as for-loop specification  Fmn , the for-loop rule tells us

t′ = t + Σi: m,..n· fi   ⇐   for i:= m;..n do t′ = t+fi
When the body takes constant time  c , this simplifies to

t′ = t + (n–m)×c   ⇐   for i:= m;..n do t′ = t+c
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A typical use of the for-loop rule is to do something to each item in a list.  For example, Exercise 
268  asks us to add  1  to each item in a list.  The specification is

#L′=#L  ∧  ∀i: 0,..#L· L′i=Li+1
Now we need a specification  Fik  that describes an arbitrary segment of iterations:  adding  1  to 
each item from index  i  to index  k .

Fik   =   #L′=#L ∧ (∀j: i,..k· L′j=Lj+1) ∧ (∀j: (0,..i), (k,..#L)· L′j=Lj)
To prove

F 0 (#L)   ⇐   for i:= 0;..#L do L:= i→Li+1 | L
we must prove three theorems:

Fii   ⇐   0≤i≤#L ∧ ok
Fi(i+1)   ⇐   0≤i<#L ∧ (L:= i→Li+1 | L)
Fik   ⇐   0≤i<j<k≤#L ∧ (Fij. Fjk)

Sometimes the for-loop specification  Fmn  has the form  Im⇒I′n , where  I  is a function of one 
variable whose result is a precondition, and  I′  is the function whose result is the corresponding 
postcondition.  When  I  is applied to the for-loop index, condition  Ii  is called an invariant.  An 
advantage of this form of specification is that both  Fii ⇐  ok   and  Fik  ⇐  (Fij. Fjk)  are 
automatically satisfied.  Not all for-loop specifications can be put in this form;  neither the timing 
nor the previous example (add  1  to each item) can be.  But the earlier exponential example can be 
put in this form.  Define

I   =   〈i: nat→x=2i〉
Then the solution is

x′=2n   ⇐   x:= 1.  I0⇒I′n
I0⇒I′n   ⇐   for i:= 0;..n do Ii⇒I′(i+1)
Ii⇒I′(i+1)   ⇐   x:= 2×x

As another example of the invariant form of the for-loop rule, here is Exercise 186(a):  Given a list 
of integers, possibly including negatives, write a program to find the minimum sum of any segment 
(sublist of consecutive items).  Let  L  be the list.  Formally, the problem is  P  where

P   =   s′  =  MIN i, j· Σ L [i;..j]
where  0 ≤ i ≤ j ≤ #L .  The condition  I k  will say that  s  is the minimum sum of any segment up 
to index  k .  For  k=0  there is only one segment, the empty segment, and its sum is  0 .  When  
k=#L  all segments are included and we have the desired result.  To go from  I k   to  I (k+1)  we 
have to consider those segments that end at index  k+1 .  We could find the sum of each new 
segment, then take the minimum of those sums and of  s  to be the new value of  s .  But we can do 
better.  Each segment ending at index  k+1  is a one-item extension of a segment ending at index  k  
with one exception:  the empty segment ending at  k+1 .

[  4  ;  –2  ;  –8  ;  7  ;  3  ;  0  ;  –1  ]
k      k+1

If we know the minimum sum  c  of any segment ending at  k , then  min (c + L k) 0  is the 
minimum sum of any segment ending at  k+1 .  So we define, for  0 ≤ k ≤ #L ,

I k   = s  =  (MIN i: 0,..k+1· MIN j: i,..k+1· Σ L [i;..j])
               ∧ c  =  (MIN i: 0,..k+1· Σ L [i;..k])

Now the program is easy.
P   ⇐   s:= 0.  c:= 0.  I 0 ⇒ I′(#L)
I 0 ⇒ I′(#L)   ⇐   for k:= 0;..#L do I k ⇒ I′(k+1)
I k ⇒ I′(k+1)   ⇐   c:= min (c + L k) 0.  s:= min c s

                                                                                                                                       End of For Loop
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5.2.4  Go To

Programming texts often warn that the  go to  is harmful, and should be avoided, but it causes no 
more problem for proof than loop constructs.  For example, suppose the fast exponentiation 
program  z′=xy  of Subsection 4.2.6 were written as follows (using colon for labeling).

A:  z:= 1. if even y then go to C
else B: ( z:= z×x.  y:= y–1.

C: if y=0 then go to E
else D: (x:= x×x.  y:= y/2.  if even y then go to D else go to B)).

E:
Straight from the program, what needs to be proven is the following:

A    ⇐    z:= 1.  if even y then C else B
B    ⇐    z:= z×x.  y:= y–1.  C
C    ⇐    if y=0 then E else D
D    ⇐    x:= x×x.  y:= y/2.  if even y then D else B

for appropriate formalizations of the labels  (specifically,  A = z′=xy ,  B = odd y ⇒  z′=z×xy ,  
C = even y ⇒ z′=z×xy ,  D = even y  ∧ y>0 ⇒ z′=z×xy , and  E = ok ).  The difficulty with  go to , 
as with loop constructs, is inventing the specifications.
                                                                                                                                           End of Go To

                                                                                                                            End of Control Structures

5.3  Time and Space Dependence

Some programming languages provide a clock, or a delay, or other time-dependent features.  Our 
examples have used the time variable as a ghost, or auxiliary variable, never affecting the course of a 
computation.  It was used as part of the theory, to prove something about the execution time.  Used 
for that purpose only, it did not need representation in a computer.  But if there is a readable clock 
available as a time source during a computation, it can be used to affect the computation.  The 
assignment  deadline:= t + 5  is allowed, as is  if t ≤ deadline then ... else ... .  But the assignment  
t:= 5  is not allowed.  We can look at the clock, but not reset it arbitrarily;  all clock changes must 
correspond to the passage of time (according to some measure).  (A computer operator may need to 
set the clock sometimes, but that is not part of the theory of programming.)

We may occasionally want to specify the passage of time.  For example, we may want the 
computation to “wait until time  w ”.  Let us invent a notation for it, and define it formally as

wait until w     =     t:= max t w
Because we are not allowed to reset the clock,  t:= max t w   is not acceptable as a program until we 
refine it.  Letting time be an extended integer and using recursive time,

wait until w   ⇐   if t≥w then ok else (t:= t+1.  wait until w)
and we obtain a busy-wait loop.  We can prove this refinement by cases.  First,

t≥w ∧ ok
= t≥w ∧ (t:= t)
⇒ t:= max t w

And second,
t<w ∧ (t:= t+1.  t:= max t w)

In the left conjunct, use  t: xint .  In the right conjunct, use the Substitution Law.
= t+1 ≤ w ∧ (t:= max (t+1) w)
= t+1 ≤ w ∧ (t:= w)
= t<w ∧ (t:= max t w)
⇒ t:= max t w
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In programs that depend upon time, we should use the real time measure, rather than the recursive 
time measure.  We also need to be more careful where we place our time increments.  And we need 
a slightly different definition of  wait until w , but we leave that as Exercise 275(b).

Our space variable  s , like the time variable  t , has so far been used to prove things about space 
usage, not to affect the computation.  But if a program has space usage information available to it, 
there is no harm in using that information.  Like  t ,  s  can be read but not written arbitrarily.  All 
changes to  s  must correspond to changes in space usage.
                                                                                                                End of Time and Space Dependence

5.4  Assertions optional

5.4.0  Checking

As a safety check, some programming languages include the notation
assert b

where  b  is boolean, to mean something like “I believe  b  is true”.  If it comes at the beginning of 
a procedure or method, it may use the word  precondition ;  if at the end, it may use the word  
postcondition ;  if it comes at the start or end of a loop, it may use the word  invariant ;  these are 
all the same construct.  It is executed by checking that  b  is true;  if it is, execution continues 
normally, but if not, an error message is printed and execution is suspended.  The intention is that in 
a correct program, the asserted expressions will always be true, and so all assertions are redundant.  
All error checking requires redundancy, and assertions help us to find errors and prevent 
subsequent damage to the state variables.  But it's not free;  it costs execution time.

Assertions are defined as follows.
assert b    =    if b then ok else (print "error".  wait until ∞)

If  b  is true,  assert b  is the same as  ok .  If  b  is false, execution cannot proceed in finite time to 
any following actions.  Assertions are an easy way to make programs more robust.
                                                                                                                                       End of Checking

5.4.1  Backtracking

If  P  and  Q  are implementable specifications, so is  P∨Q .  The disjunction can be implemented 
by choosing one of  P  or  Q  and satisfying it.  Normally this choice is made as a refinement, either  
P∨Q  ⇐  P   or  P∨Q ⇐ Q .  We could save this programming step by making disjunction a 
programming connective, perhaps using the notation  or .  For example,

x:= 0 or x:= 1
would be a program whose execution assigns either  0  or  1  to  x .  This would leave the choice of 
disjunct to the programming language implementer.

The next construct radically changes the way we program.  We introduce the notation
ensure b

where  b  is boolean, to mean something like “make  b  be true”.  We define it as follows.
ensure b =    if b then ok else b

=    b ∧ ok
Like  assert b ,  ensure b  is equal to  ok  if  b  is true.  But when  b  is false, there is a problem:  it 
is unsatisfiable.  By itself, this construct is unimplementable (unless  b  is identically true).  
However, in combination with other constructs, the whole may be implementable.  Consider the 
following example in variables  x  and  y .
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x:= 0 or x:= 1.   ensure x=1
= ∃x′′, y′′· (x′′=0 ∧ y′′=y  ∨  x′′=1 ∧ y′′=y)  ∧  x′′=1 ∧ x′=x′′ ∧ y′=y′′
= x′=1 ∧ y′=y
= x:= 1

Although an implementation is given a choice between  x:= 0  and  x:= 1 , it must choose the right 
one to satisfy a later condition.  It can do so by making either choice (as usual), and when faced 
with a later  ensure  whose condition is false, it must backtrack and make another choice.  Since 
choices can be nested within choices, a lot of bookkeeping is necessary.

Several popular programming languages, such as Prolog, feature backtracking.  They may state that 
choices are made in a particular order (we have omitted that complication).  Two warnings should 
accompany such languages.  First, it is the programmer's responsibility to show that a program is 
implementable;  the language does not guarantee it.  Alternatively, the implementation does not 
guarantee that computations will satisfy the program, since it is sometimes impossible to satisfy it.  
The second warning is that the time and space calculations do not work.
                                                                                                                                  End of Backtracking

                                                                                                                                     End of Assertions

5.5  Subprograms

5.5.0  Result Expression

Let  P  be a specification and  e  be an expression in unprimed variables.  Then
P result e

is an expression of the initial state.  It expresses the result of executing  P  and then evaluating  e .  
For example, the following  expresses an approximation to the base of the natural logarithms.

var term, sum: rat := 1· 
for i:= 1;..15 do (term:= term/i.  sum:= sum+term)
result sum

The axiom for the  result  expression is
x′ = (P result e)  =  P.  x′=e

where  x  is any state variable of the right type.

The example introduces local variables  term  and  sum , and no other variables are reassigned.  So 
clearly the nonlocal state is unchanged.  But consider

y:= y+1 result y
The result is as if the assignment  y:= y+1  were executed, then  y  is the result, except that the value 
of variable  y  is unchanged.

x:= (y:= y+1 result y)
= x′ = (y:= y+1 result y)  ∧  y′=y
= (y:= y+1.  x′=y)  ∧  y′=y
= x′ = y+1  ∧  y′=y
= x:= y+1

The expression  P result e  can be implemented as follows.  Replace each nonlocal variable within  
P  and  e  that is assigned within  P  by a fresh local variable initialized to the value of the nonlocal 
variable.  Then execute  P  and evaluate  e .  In the implementation of some programming languages, 
the introduction of fresh local variables for this purpose is not done, so the evaluation of an 
expression may cause a state change.  State changes resulting from the evaluation of an expression 
are called “side-effects”.  With side-effects, mathematical reasoning is not possible.  For example, 
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we cannot say  x+x = 2×x , nor even  x=x , since  x  might be  (y:= y+1 result y) , and each 
evaluation results in an integer that is  1  larger than the previous evaluation.  Side effects are easily 
avoided;  a programmer can introduce the necessary local variables if the language implementation 
fails to do so.  Some programming languages forbid assignments to nonlocal variables within 
expressions, so the programmer is required to introduce the necessary local variables.

If a programming language allows side-effects, we have to get rid of them before using any theory.  
For example,

x:= (P result e)   becomes   (P.  x:= e)
after renaming local variables within  P  as necessary to avoid clashes with nonlocal variables, and 
allowing the scope of variables declared in  P  to extend through  x:= e .  For another example,

x:= y + (P result e)   becomes   (var z:= y·  P.  x:= z+e)
with similar provisos.

The recursive time measure that we have been using neglects the time for expression evaluation.  
This is reasonable in some applications for expressions consisting of a few operations implemented 
in computer hardware.  For expressions using operations not implemented in hardware (perhaps list 
catenation) it is questionable.  For  result  expressions containing loops, it is unreasonable.  But 
allowing a  result  expression to increase a time variable would be a side-effect, so here is what we 
do.  We first include time in the  result  expression for the purpose of calculating a time bound.  
Then we remove the time variable from the result expression (to get rid of the side-effect) and we 
put a time increment in the program that uses the  result  expression.
                                                                                                                            End of Result Expression

5.5.1  Function

In many popular programming languages, a function is a combination of assertion about the result, 
name of the function, parameters, scope control, and result expression.  It's a “package deal”.  For 
example, in C, the binary exponential function looks like this:

int bexp (int n)
{ int r = 1;

int i;
for (i=0;  i<n;  i++) r = r*2;
return r; }

In our notations, this would be
bexp   = 〈 n: int→

var r: int := 1· 
for i:= 0;..n do r:= r×2.
assert r: int
result r 〉

We present these programming features separately so that they can be understood separately.  They 
can be combined in any way desired, as in the example.  The harm in providing one construct for 
the combination is its complexity.  Programmers trained with these languages may be unable to 
separate the issues and realize that naming, parameterization, assertions, local scope, and result 
expressions are independently useful.

Even the form of function we are using in this book could be both simplified and generalized.  
Stating the domain of a parameter is a special case of axiom introduction, which can be separated 
from name introduction (see Exercise 90).
                                                                                                                                        End of Function
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5.5.2  Procedure

The procedure (or void function, or method), as it is found in many languages, is a “package deal” 
like the function.  It combines name declaration, parameterization, and local scope.  The comments 
of the previous subsection apply here too.  There are also some new issues.

To use our theory for program development, not just verification, we must be able to talk about a 
procedure whose body is an unrefined specification, not yet a program.  For example, we may want 
a procedure  P  with parameter  x  defined as

P   =   〈x: int→a′ < x < b′〉
that assigns variables  a   and  b  values that lie on opposite sides of a value to be supplied as 
argument.  We can use procedure  P  before we refine its body.  For example,

P 3   =   a′ < 3 < b′
P (a+1)   =   a′ < a+1 < b′

The body is easily refined as
a′ < x < b′   ⇐   a:= x–1.  b:= x+1

Our choice of refinement does not alter our definition of  P ;  it is of no use when using  P .  The 
users don't need to know the implementation, and the implementer doesn't need to know the uses.

A procedure and argument can be translated to a local variable and initial value.
〈p: D→B〉 a   =   (var p: D := a·  B)            if  B  doesn't use  p′  or  p:=

This translation suggests that a parameter is really just a local variable whose initial value will be 
supplied as an argument.  In many popular programming languages, that is exactly the case.  This is 
an unfortunate confusion of specification and implementation.  The decision to create a parameter, 
and the choice of its domain, are part of a procedural specification, and are of interest to a user of 
the procedure.  The decision to create a local variable, and the choice of its domain, are normally 
part of refinement, part of the process of implementation, and should not be of concern to a user of 
the procedure.  When a parameter is assigned a value within a procedure body, it is acting as a local 
variable and no longer has any connection to its former role as parameter.

Another kind of parameter, usually called a reference parameter or var parameter, stands for a 
nonlocal variable to be supplied as argument.  Here is an example, using  〈* 〉  to introduce a 
reference parameter.

〈*x: int→a:= 3.  b:= 4.  x:= 5〉 a
= a:= 3.  b:= 4.  a:= 5
= a′=5 ∧ b′=4

Reference parameters can be used only when the body of the procedure is pure program, not using 
any other specification notations.  For the above example, if we had written

〈*x: int→a′=3 ∧ b′=4 ∧ x′=5〉 a
we could not just replace  x  with  a , nor even  x′  with  a′ .  Furthermore, we cannot do any 
reasoning about the procedure body until after the procedure has been applied to its arguments.  
The following example has a procedure body that is equivalent to the previous example,

〈*x: int→x:= 5.  b:= 4.  a:= 3〉 a
= a:= 5.  b:= 4.  a:= 3
= a′=3 ∧ b′=4

but the result is different.  Reference parameters prevent the use of specification, and they prevent 
any reasoning about the procedure by itself.  We must apply our programming theory separately 
for each call.  This contradicts the purpose of procedures.
                                                                                                                                       End of Procedure

                                                                                                                                  End of Subprograms
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5.6  Alias optional

Many popular programming languages present us with a model of computation in which there is a 
memory consisting of a large number of individual storage cells.  Each cell contains a value.  Via 
the programming language, cells have names.  Here is a standard sort of picture.

r, i 2
p address of A[1]

 4
A[0] 1

*p, A[1] 3
A[i], A[2] 2

A[3] 3

In the picture,  p  is a pointer variable that currently points to array element  A[1] , and  *p  is  p  
dereferenced;  so  *p  and  A[1]  refer to the same memory cell.  Since variable  i  currently has 
value  2 ,  A[i]  and  A[2]  refer to the same cell.  And  r  is a reference parameter for which variable  
i  has been supplied as argument, so  r  and  i  refer to the same cell.  We see that a cell may have 
zero, one, two, or more names.  When a cell has two or more names that are visible at the same time, 
the names are said to be “aliases”.

As we have seen with arrays and with reference parameters, aliasing prevents us from applying our 
theory of programming.  Some programming languages prohibit aliasing.  Unfortunately, aliasing 
is difficult to detect, especially during program construction before a specification has been fully 
refined as a program.  To most people, prohibitions and restrictions are distasteful.  To avoid the 
prohibition, we have a choice:  we can complicate our theory of programming to handle aliasing, or 
we can simplify our model of computation to eliminate it.  If we redraw our picture slightly, we see 
that there are two mappings:  one from names to cells, and one from cells to values.

i
p

*p
r

A[0]
A[1]
A[2]
A[3]
A[i]

0
1
2
3
4
5
:
:

address of A[1]
:

An assignment such as  p:= address of A[3]  or  i:= 4  can change both mappings at once.  An 
assignment to one name can change the value indirectly referred to by another name.  To simplify 
the picture and eliminate the possibility of aliasing, we eliminate the cells and allow a richer space of 
values.  Here is the new picture.
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i
p
A

0
1
2
3
4
:
:

[1; 3; 2; 3]
:

Pointer variables can be replaced by index variables dedicated to one structure so that they can be 
implemented as addresses.  A procedure with reference parameters can be replaced by a function 
that returns a structured value (not shown).  The simpler picture is perfectly adequate, and the 
problem of aliasing disappears.
                                                                                                                                            End of Alias

5.7  Probabilistic Programming optional

A specification tells us whether an observation is acceptable or unacceptable.  We now consider 
how often the various observations occur.  For the sake of simplicity, we observe only boolean and 
integer variables in this section, although the story is not very different for rational and real variables 
(summations become integrals).

Probability Theory has been developed using the arbitrary convention that a probability is a real 
number between  0  and  1  inclusive

prob  =  §r: real· 0≤r≤1
with  1  representing “certainly true”,  0  representing  “certainly false”,  1/2  representing 
“equally likely true or false”, and so on.  Accordingly, for this section only, we add the axioms

† = 1
ƒ = 0

A distribution is an expression whose value (for all assignments of values to its variables) is a 
probability, and whose sum (over all assignments of values to its variables) is  1 .  For example, if  
n: nat+1 , then  2–n  is a distribution because

(∀n: nat+1· 2–n: prob)  ∧  (Σn: nat+1· 2–n)=1
A distribution is used to tell the frequency of occurrence of values of its variables.  For example,  
2–n  says that  n  has value  3  one-eighth of the time.  If we have two variables  n, m: nat+1 , then  
2–n–m  is a distribution because

(∀n, m: nat+1· 2–n–m: prob)  ∧  (Σn, m: nat+1· 2–n–m)=1
Distribution  2–n–m  says that the state in which  n  has value  3  and  m  has value  1  occurs one-
sixteenth of the time.

If we have a distribution of several variables and we sum over some of them, we get a distribution 
describing the frequency of occurrence of the values of the other variables.  For example, if  
n, m: nat+1  are distributed as  2–n–m , then  Σm : nat+1· 2–n–m , which is  2–n , tells us the 
frequency of occurrence of values of  n .

If a distribution of several variables can be written as a product whose factors partition the variables, 
then each of the factors is a distribution describing the variables in its part, and the parts are said to 
be independent.  For example, we can write  2–n–m  as  2–n × 2–m , so  n  and  m  are independent.
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The average value of number expression  e  as variables  v  vary over their domains according to 
distribution  p  is

Σv· e × p
For example, the average value of  n2  as  n  varies over  nat+1  according to distribution  2–n  is  
Σn: nat+1· n2 × 2–n , which is  6 .  The average value of  n–m  as  n  and  m  vary over  nat+1  
according to distribution  2–n–m  is  Σn, m: nat+1· (n–m) × 2–n–m , which is  0 .

Let  S  be an implementable deterministic specification.  Let  p  be the distribution describing the 
initial state  σ .  Then the distribution describing the final state  σ′  is

Σσ· S × p
which is a generalization of the formula for average.  Here is an example in two integer variables  x  
and  y .  Suppose  x  starts with value  7  one-third of the time, and starts with value  8  two-thirds of 
the time.  Then the distribution of  x  is

(x=7) × 1/3  +  (x=8) × 2/3
The probability that  x  has value  7  is therefore

(7=7) × 1/3  +  (7=8) × 2/3
= † × 1/3  +  ƒ × 2/3
= 1 × 1/3  +  0 × 2/3
= 1/3

Similarly, the probability that  x  has value  8  is  2/3 , and the probability that  x  has value  9  is  0 .  
Let  X  be the preceding distribution of  x .  Suppose that  y  also starts with value  7  one-third of 
the time, and starts with value  8  two-thirds of the time, independently of  x .  Then its distribution  
Y  is given by

Y   =   (y=7) / 3  +  (y=8) × 2/3
and the distribution of initial states is  X × Y .  Let  S  be

if x=y then (x:= 0.  y:= 0) else (x:= abs(x–y).  y:= 1)
Then the distribution of final states is

Σx, y· S × X × Y
= Σx, y· (x=y ∧ x′=y′=0  ∨  x+y ∧ x′=abs(x–y) ∧ y′=1)

× ((x=7) / 3  +  (x=8) × 2/3)
× ((y=7) / 3  +  (y=8) × 2/3)

= (x′=y′=0) × 5/9  +  (x′=y′=1) × 4/9
We should see  x′=y′=0  five-ninths of the time, and  x′=y′=1  four-ninths of the time.

Suppose we have one natural variable  n .  The specification  ok  is not a distribution of  n  and  n′  
because there are many pairs of values that give  n′=n  the value  †  or  1 , and

Σn, n′· n′=n  =  ∞
But

Σn′· n′=n  =  1
so for any fixed value of  n ,  ok  is a distribution of  n′ , telling us that  n′  always has the value  n .  
Similary  n′=n+1  is a distribution telling us that, for any given initial value of  n ,  n′  always has 
the value  n+1 .  An implementable deterministic specification is a distribution of the final state.

Suppose we have one natural variable  n   whose initial value is  5 .  After executing the 
nondeterministic specification  ok ∨ (n:= n+1) , we can say that the final value of  n  is either  5  or  
6 .  Now suppose this specification is executed many times, and the distribution of initial states is  
n=5  ( n  always starts with value  5 ).  What is the distribution of final states?  Nondeterminism is a 
freedom for the implementer, who may refine the specification as  ok , which always gives the 
answer  n′=5 , or as  n:= n+1 , which always gives the answer  n′=6 , or as

if even t then ok else n:= n+1
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which gives  n′=5  or  n′=6  unpredictably.  In general, we cannot say the distribution of final states 
after a nondeterministic specification.  If we apply the formula  Σσ· S × p  to a specification  S  that 
is unimplementable or nondeterministic, the result may not be a distribution.  For example, the 
nondeterministic specification  ok ∨ (n:= n+1)  is not a distribution, not even when the initial value 
of  n  is fixed, because

Σn′·  ok ∨ (n:= n+1)  =  2
which is the degree of nondeterminism.  Nondeterministic choice is equivalent to deterministic 
choice in which the determining expression is a variable of unknown value.

P ∨ Q   =   ∃b: bool· if b then P else Q
Thus we can always eliminate nondeterminism by introducing a new variable.

We now generalize conditional composition and dependent composition to apply to probabilistic 
specifications as follows.  If  b  is a probability, and  P  and  Q  are distributions of final states,

if b then P else Q   =   b × P  +  (1–b) × Q
P.Q   =   Σσ′′·  〈σ′→P〉σ′′ × 〈σ→Q〉σ′′

are distributions of final states.  For example, in one integer variable  x , suppose we start by 
assigning  0  with probability  1/3  or  1  with probability  2/3 ;  that's

if 1/3 then x:= 0 else x:= 1
Subsequently, if  x=0  then we add  2  with probability  1/2  or  3  with probability  1/2 , otherwise 
we add  4  with probability  1/4  or  5  with probability  3/4 ;  that's

if x=0 then if 1/2 then x:= x+2 else x:= x+3 else if 1/4 then x:= x+4 else x:= x+5
Notice that the programmer's  if  gives us conditional probability.  Our calculation

if 1/3 then x:= 0 else x:= 1.
if x=0 then if 1/2 then x:= x+2 else x:= x+3
else if 1/4 then x:= x+4 else x:= x+5

= Σx′′· ((x′′=0)/3 + (x′′=1)×2/3)
× ( (x′′=0) × ((x′=x′′+2)/2 + (x′=x′′+3)/2)

+ (x′′+0) × ((x′=x′′+4)/4 + (x′=x′′+5)×3/4))
= (x′=2)/6 + (x′=3)/6 + (x′=5)/6 + (x′=6)/2

says that the result is  2  with probability  1/6 ,  3  with probability  1/6 ,  5  with probability  1/6 , 
and  6  with probability  1/2 .

We earlier used the formula  Σσ · S  × p  to calculate the distribution of final states from the 
distribution  p  of initial states and an operation specified by  S .  We can now restate this formula 
as  (p′. S)  where  p′  is the same as  p  but with primes on the variables.

Various distribution laws are provable from probabilistic sequential composition.  Let  n   be a 
number, and let  P ,  Q , and  R  be probabilistic specifications.  Then

n×P. Q   =   n×(P. Q)   =   P. n×Q
P+Q. R   =   (P. R) + (Q. R)
P. Q+R   =   (P. Q) + (P. R)

Best of all, the Substitution Law still works.

5.7.0  Random Number Generators

Many programming languages provide a random number generator (sometimes called a “pseudo-
random number generator”).  The usual notation is functional, and the usual result is a value whose 
distribution is uniform (constant) over a nonempty finite range.  If  n: nat+1 , we use the notation  
rand n   for a generator that produces natural numbers uniformly distributed over the range  0,..n .  
So  rand n  has value  r  with probability  (r: 0,..n) / n .
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Functional notation for a random number generator is inconsistent.  Since  x=x  is a law, we should 
be able to simplify  rand n = rand n  to  † , but we cannot because the two occurrences of  rand n  
might generate different numbers.  Since  x+x = 2×x  is a law, we should be able to simplify  
rand n + rand n   to  2 × rand n  , but we cannot.  To restore consistency, we replace each use of  
rand n  with a fresh integer variable  r  whose value has probability  (r: 0,..n) / n  before we do 
anything else.  Or, if you prefer, we replace each use of  rand n  with a fresh variable  r: 0,..n   
whose value has probability  1/n .  (This is a mathematical variable, or in other words, a state 
constant;  there is no  r′ .)  For example, in one state variable  x ,

x:= rand 2.  x:= x + rand 3 replace the two  rands with  r  and  s
= Σr: 0,..2· Σs: 0,..3· (x:= r.  x:= x + s) × 1/2 × 1/3 Substitution Law
= Σr: 0,..2· Σs: 0,..3· (x′ = r+s) / 6 sum
= ((x′ = 0+0) + (x′ = 0+1) + (x′ = 0+2) + (x′ = 1+0) + (x′ = 1+1) + (x′ = 1+2)) / 6
= (x′=0) / 6  +  (x′=1) / 3 + (x′=2) / 3  +  (x′=3) / 6

which says that  x′  is  0  one-sixth of the time,  1  one-third of the time,  2  one-third of the time, 
and  3  one-sixth of the time.

Whenever  rand  occurs in the context of a simple equation, such as  r = rand n  , we don't need to 
introduce a variable for it, since one is supplied.  We just replace the deceptive equation with  
(r: 0,..n) / n .  For example, in one variable  x ,

x:= rand 2.  x:= x + rand 3 replace assignments
= (x′: 0,..2)/2.  (x′: x+(0,..3))/3 dependent composition
= Σx′′· (x′′: 0,..2)/2 × (x′: x′′+(0,..3))/3 sum
= 1/2 × (x′: 0,..3)/3  +  1/2 × (x′: 1,..4)/3
= (x′=0) / 6  +  (x′=1) / 3 + (x′=2) / 3  +  (x′=3) / 6

as before.  And  if rand 2 then A else B  can be replaced by  if 1/2 then A else B .

Although  rand  produces uniformly distributed natural numbers, it can be transformed into many 
different distributions.  We just saw that  rand 2 + rand 3  has value  n  with distribution  
(n=0 ∨ n=3) / 6  +  (n=1 ∨ n=2) / 3 .  As another example,  rand 8 < 3  has boolean value  b  with 
distribution

Σr: 0,..8· (b = (r<3)) / 8
= (b=†) × 3/8  +  (b=ƒ) × 5/8
= 5/8 – b/4

which says that  b  is  †  three-eighths of the time, and  ƒ  five-eighths of the time.

Exercise 281 is a simplified version of blackjack.  You are dealt a card from a deck;  its value is in 
the range  1  through  13  inclusive.  You may stop with just one card, or have a second card if you 
want.  Your object is to get a total as near as possible to  14 , but not over  14 .  Your strategy is to 
take a second card if the first is under  7 .  Assuming each card value has equal probability (actually, 
the second card drawn has a diminished probability of having the same value as the first card drawn, 
but let's ignore that complication), we represent a card as  (rand 13) + 1 .  In one variable  x , the 
game is

x:= (rand 13) + 1.  if x<7 then x:= x + (rand 13) + 1 else ok
replace  rand  and  ok

= (x′: (0,..13)+1)/13.  if x<7 then (x′: x+(0,..13)+1)/13 else x′=x replace  .  and  if
= Σx′′· (x′′: 1,..14)/13 × ((x′′<7)×(x′: x′′+1,..x′′+14)/13 + (x′′≥7)×(x′=x′′))

by several omitted steps
= ((2≤x′<7)×(x′–1) + (7≤x′<14)×19 + (14≤x′<20)×(20–x′)) / 169
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That is the distribution of  x′  if we use the “under  7 ” strategy.  We can similarly find the 
distribution of  x′  if we use the “under  8 ” strategy, or any other strategy.  But which strategy is 
best?  To compare two strategies, we play both of them at once.  Player  x  will play “under  n ” 
and player  y  will play “under  n+1 ” using exactly the same cards  c  and  d  (the result would be 
no different if they used different cards, but it would require more variables).  Here is the new game, 
followed by the condition that  x  wins:

c:= (rand 13) + 1.  d:= (rand 13) + 1.
if c < n then x:= c+d else x:= c.  if c < n+1 then y:= c+d else y:= c.
y<x≤14 ∨ x≤14<y Replace  rand  and use the functional-imperative law twice.

= (c′: (0,..13)+1  ∧  d′: (0,..13)+1  ∧  x′=x  ∧  y′=y) / 13 / 13.
x:= if c < n then c+d else c.  y:= if c < n+1 then c+d else c.
y<x≤14 ∨ x≤14<y Use the substitution law twice.

= (c′: (0,..13)+1  ∧  d′: (0,..13)+1  ∧  x′=x  ∧  y′=y) / 169.
    (if c < n+1 then c+d else c) < (if c < n then c+d else c) ≤ 14
∨  (if c < n then c+d else c) ≤ 14 < (if c < n+1 then c+d else c)

= (c′: (0,..13)+1  ∧  d′: (0,..13)+1  ∧  x′=x  ∧  y′=y) / 169.  c=n ∧ d>14–n
= Σc′′, d′′, x′′, y′′· 

     (c′′: (0,..13)+1  ∧  d′′: (0,..13)+1  ∧  x′′=x  ∧  y′′=y) / 169 × (c′′=n ∧ d′′>14–n)
= Σd′′: 1,..14· (d′′>14–n)/169
= (n–1) / 169

The probability that  x  wins is  (n–1) / 169 .  By similar calculations we can find that the probability 
that  y  wins is  (14–n) / 169 , and the probability of a tie is  12/13 .  For  n<8 , “under  n+1 ” beats 
“under  n  ”.  For  n≥ 8 , “under  n  ” beats “under  n+1 ”.  So “under  8 ” beats both 
“under  7 ” and “under  9 ”.

Exercise 282 asks:  If you repeatedly throw a pair of six-sided dice until they are equal, how long 
does it take?  The program is

R   ⇐   u:= (rand 6) + 1.  v:= (rand 6) + 1.  if u=v then ok else (t:= t+1.  R)
for an appropriate definition of  R .

Each iteration, with probability  5/6  we keep going, and with probability  1/6  we stop.  So we offer 
the hypothesis that (for finite  t ) the execution time has the distribution

(t′≥t) × (5/6)t′–t × 1/6
To prove it, let's start with the implementation.

u:= (rand 6) + 1.  v:= (rand 6) + 1. replace  rand  and
if u=v then t′=t else (t:= t+1.  (t′≥t) × (5/6)t′–t × 1/6) Substitution Law

= (u′: 1,..7  ∧  v′=v  ∧  t′=t)/6.  (u′=u  ∧  v′: 1,..7  ∧  t′=t)/6. replace first .
if u=v then t′=t else (t′≥t+1) × (5/6)t′–t–1 / 6 and simplify

= (u′, v′: 1,..7  ∧  t′=t)/36. replace remaining  .
if u=v then t′=t else (t′≥t+1) × (5/6)t′–t–1 / 6 and replace  if

= Σu′′, v′′: 1,..7· Σt′′· (t′′=t)/36 × ( (u′′=v′′) × (t′=t′′)
+ (u′′+v′′) × (t′≥t′′+1) × (5/6)t′–t′′–1 / 6) sum

= (6 × (t′=t)  +  30 × (t′≥t+1) × (5/6)t′–t–1 / 6) / 36 combine
= (t′≥t) × (5/6)t′–t × 1/6

which is the probabilistic specification, and that completes the proof.

The average value of  t′  is
Σt′· t′ × (t′≥t) × (5/6)t′–t × 1/6   =   t+5

so on average it takes  5  additional throws of the dice (after the first) to get an equal pair.
                                                                                                                End of Random Number Generators
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Probability problems are notorious for misleading even professional mathematicians.  Informal 
reasoning to arrive at a probability distribution, as is standard in studies of probability, is essential 
to forming a reasonable hypothesis.  But hypotheses are sometimes wrong.  We write the 
hypothesis as a probabilistic specification, we refine it as a program, and we prove our refinements 
exactly as we did with boolean specifications.  Sometimes wrong hypotheses can be traced to a 
wrong understanding of the problem.  Formalization as a program makes one's understanding clear.  
Proof shows that a hypothesized probability distribution is correct for the program.  Informal 
arguments are replaced by formal proof.

Probabilistic specifications can also be interpreted as “fuzzy” specifications.  For example,  
(x′=0)/3 + (x′=1)×2/3  could mean that we will be one-third satisfied if the result  x′  is  0 , two-
thirds satisfied if it is  1 , and completely unsatisfied if it is anything else.

5.7.1  Information optional

There is a close connection between information and probability.  If a boolean expression has 
probability  p  of being true, and you evaluate it, and it turns out to be true, then the amount of 
information in bits that you have just learned is  info p , defined as

info p   =   – log p
where  log  is the binary (base  2 ) logarithm.  For example,  even (rand 8)  has probability  1/2  of 
being true.  If we evaluate it and find that it is true, we have just learned

info (1/2)   =   – log (1/2)   =   log 2   =   1
bit of information;  we have learned that the rightmost bit of the random number we were given is  
0 .  If we find that  even (rand 8)  is false, then we have learned that  ¬ even (rand 8)  is true, and 
since it also has probability  1/2 , we have also gained one bit;  we have learned that the rightmost bit 
of the random number is  1 .  If we test  rand 8 = 5 , which has probability  1/8  of being true, and 
we find that it is true, we learn

info (1/8)   =   – log (1/8)   =   log 8   =   3
bits, which is the entire random number in binary.  If we find that  rand 8 = 5  is false, we learn

info (7/8)   =   – log (7/8)   =   log 8 – log 7   =   3 – 2.80736  =  0.19264  approximately
bits;  we learn that the random number isn't  5 , but it could be any of  7  others.  Suppose we test  
rand 8 < 8 .  Since it is certain to be true, there is really no point in making this test;  we learn

info 1   =   – log 1   =   –0   =   0

When an  if b then P else Q  occurs within a loop,  b  is tested repeatedly.  Suppose  b  has 
probability  p  of being true.  When it is true, we learn  info p   bits, and this happens with 
probability  p .  When it is false, we learn  info (1–p)  bits, and this happens with probability  (1–p) .  
The average amount of information gained, called the entropy, is

entro p   =   p × info p  +  (1–p) × info (1–p)
For example,  entro (1/2)  =  1 , and  entro (1/8)  =  entro (7/8)  =  0.54356  approximately.  Since  
entro p  is at its maximum when  p=1/2 , we learn most on average, and make the most efficient use 
of the test, if its probability is near  1/2 .  For example, in the binary search problem of Chapter 4, 
we could have divided the remaining search interval anywhere, but for the best average execution 
time, we split it into two parts having equal probabilities of finding the item we seek.  And in the fast 
exponentiation problem, it is better on average to test  even y  rather than  y=0  if we have a choice.
                                                                                                                                    End of Information

                                                                                                                End of Probabilistic Programming
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5.8  Functional Programming optional

Most of this book is about a kind of programming that is sometimes called “imperative”, which 
means that a program describes a change of state (or “commands” a computer to change state in a 
particular way).  This section presents an alternative:  a program is a function from its input to its 
output.  More generally, a specification is a function from possible inputs to desired outputs, and 
programs (as always) are implemented specifications.  We take away assignment and dependent 
composition from our programming notations, and we add functions.

To illustrate, we look once again at the list summation problem (Exercise 142).  This time, the 
specification is  〈L: [*rat]→ΣL〉 .  Assuming  Σ  is not an implemented operator, we still have some 
programming to do.  We introduce variable  n  to indicate how much of the list has been summed;  
initially  n  is  0 .

ΣL  =  〈n: 0,..#L+1→Σ L [n;..#L]〉 0
It saves some copying to write “ ΣL = ... ” rather than “ 〈L: [*rat]→ΣL〉 = ... ”, but we must 
remember the domain of  L .  At first sight, the domain of  n  is annoying;  it seems to be one 
occasion when an interval notation that includes both endpoints would be preferable.  On second 
look, it's trying to tell us something useful:  the domain is really composed of two parts that must be 
treated differently.

0,..#L+1    =    (0,..#L), #L
We divide the function into a selective union

〈n: 0,..#L+1→Σ L [n;..#L]〉    =   〈n: 0,..#L→Σ L [n;..#L]〉 | 〈n: #L→Σ L [n;..#L]〉
and continue with each part separately.  In the left part, we have  n<#L , and in the right part  n=#L .

〈n: 0,..#L→Σ L [n;..#L]〉     =     〈n: 0,..#L→Ln + Σ L [n+1;..#L]〉
〈n: #L→Σ L [n;..#L]〉     =     〈n: #L→0〉

This time we copied the domain of  n  to indicate which part of the selective union is being 
considered.  The one remaining problem is solved by recursion.

Σ L [n+1;..#L]     =     〈n: 0,..#L+1→Σ L [n;..#L]〉 (n+1)

In place of the selective union we could have used  if then else ;  they are related by the law
〈v: A→x〉 | 〈v: B→y〉   =   〈v: A, B→if v: A then x else y〉

When we are interested in the execution time rather than the result, we replace the result of each 
function with its time according to some measure.  For example, in the list summation problem, we 
might decide to charge time  1  for each addition and  0  for everything else.  The specification 
becomes  〈L: [*rat]→#L〉 , meaning for any list, the execution time is its length.  We now must 
make exactly the same programming steps as before.  The first step was to introduce variable  n ;  
we do the same now, but we choose a new result for the new function to indicate its execution time.

#L  =  〈n: 0,..#L+1→#L–n〉 0
The second step was to decompose the function into a selective union;  we do so again.

〈n: 0,..#L+1→#L–n〉    =   〈n: 0,..#L→#L–n〉 | 〈n: #L→#L–n〉
The left side of the selective union became a function with one addition in it, so our timing function 
must become a function with a charge of  1  in it.  To make the equation correct, the time for the 
remaining summation must be adjusted.

〈n: 0,..#L→#L–n〉     =     〈n: 0,..#L→1 + #L–n–1〉
The right side of the selective union became a function with a constant result;  according to our 
measure, its time must be  0 .

〈n: #L→#L–n〉     =     〈n: #L→0〉
The remaining problem was solved by a recursive call;  the corresponding call solves the remaining 
time problem.
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#L–n–1     =     〈n: 0,..#L+1→#L–n〉 (n+1)
And that completes the proof that execution time (according to this measure) is the length of the list.

In the recursive time measure, we charge nothing for any operation except recursive call, and we 
charge  1  for that.  Let's redo the timing proof with this measure.  Again, the time specification is  
〈L: [*rat]→#L〉 .

#L  =  〈n: 0,..#L+1→#L–n〉 0
〈n: 0,..#L+1→#L–n〉    =   〈n: 0,..#L→#L–n〉 | 〈n: #L→#L–n〉
〈n: 0,..#L→#L–n〉     =     〈n: 0,..#L→#L–n〉
〈n: #L→#L–n〉     =     〈n: #L→0〉
#L–n     =     1 + 〈n: 0,..#L+1→#L–n〉 (n+1)

5.8.0  Function Refinement

In imperative programming, we can write a nondeterministic specification such as  x′: 2, 3, 4  that 
allows the result to be any one of several possibilities.  In functional programming, a 
nondeterministic specification is a bunch consisting of more than one element.  The specification  
2, 3, 4  allows the result to be any one of those three numbers.

Functional specifications can be classified the same way as imperative specifications, based on the 
number of satisfactory outputs for each input.

Functional specification  S  is unsatisfiable for domain element  x : ¢ Sx  <  1
Functional specification  S  is satisfiable for domain element  x : ¢ Sx  ≥  1
Functional specification  S  is deterministic for domain element  x : ¢ Sx  ≤  1
Functional specification  S  is nondeterministic for domain element  x : ¢ Sx  >  1

Functional specification  S  is satisfiable for domain element  x : ∃y· y: Sx
Functional specification  S  is implementable: ∀x· ∃y· y: Sx

( x  is quantified over the domain of  S , and  y  is quantified over the range of  S .)  Implementability 
can be restated as  ∀x· Sx + null .

Consider the problem of searching for an item in a list of integers.  Our first attempt at specification 
might be

〈L: [*int]→〈x: int→§n: 0,..#L· Ln = x〉〉
which says that for any list  L  and item  x , we want an index of  L  where  x  occurs.  If  x  occurs 
several times in  L , any of its indexes will do.  Unfortunately, if  x  does not occur in  L , we are left 
without any possible result, so this specification is unimplementable.  We must decide what we 
want when  x  does not occur in  L ;  let's say any natural that is not an index of  L  will do.

〈L: [*int]→〈x: int→if x: L (0,..#L) then §n: 0,..#L· Ln = x else #L,..∞〉〉
This specification is implementable, and often nondeterministic.

Functional refinement is similar to imperative refinement.  An imperative specification is a boolean 
expression, and imperative refinement is reverse implication.  Functional specification is a function, 
and functional refinement is the reverse of the function ordering.  Functional specification  P  (the 
problem) is refined by functional specification  S  (the solution) if and only if  S: P .  To refine, we 
can either decrease the choice of result, or increase the domain.  Now we have a most annoying 
notational problem.  Typically, we like to write the problem on the left, then the refinement symbol, 
then the solution on the right;  we want to write  S: P  the other way round.  Inclusion is 
antisymmetric, so its symbol should not be symmetric, but unfortunately it is.  Let us write  ::  for 
“backwards colon”, so that “ P  is refined by  S ” is written  P:: S .
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To refine our search specification, we create a linear search program, starting the search with index  
0  and increasing the index until either  x  is found or  L  is exhausted.  First we introduce the index.

(if x: L (0,..#L) then §n: 0,..#L· Ln = x else #L,..∞)::
〈i: nat→if x: L (i,..#L) then §n: i,..#L· Ln = x else #L,..∞〉 0

The two sides of this refinement are equal, so we could have written  =  instead of  :: .  We could 
have been more precise about the domain of  i , and then we probably would decompose the 
function into a selective union, as we did in the previous problem.  But this time let's use an  
if then else .

(if x: L (i,..#L) then §n: i,..#L· Ln = x else #L,..∞)::
if i = #L then #L
else if x = Li then i
else 〈i: nat→if x: L (i,..#L) then §n: i,..#L· Ln = x else #L,..∞〉 (i+1)

The timing specification, recursive measure, is  〈L→〈x→0,..#L+1〉〉 , which means that the time is 
less than  #L+1 .  To prove that this is the execution time, we must prove

0,..#L+1::   〈i: nat→0,..#L–i+1〉 0
and

0,..#L–i+1:: if i = #L then 0
else if x = Li then 0
else 1 + 〈i: nat→0,..#L–i+1〉 (i+1)

As this example illustrates, the steps in a functional refinement are the same as the steps in an 
imperative refinement for the same problem, including the resolution of nondeterminism and timing.  
But the notations are different.
                                                                                                                        End of Function Refinement

Functional and imperative programming are not really competitors;  they can be used together.  We 
cannot ignore imperative programming if ever we want to pause, to stop computing for a while, and 
resume later from the same state.  Imperative programming languages all include a functional 
(expression) sublanguage, so we cannot ignore functional programming either.

At the heart of functional programming we have the Application Axiom
〈v: D→b〉 x   =   (for  v  substitute  x  in  b )

At the heart of imperative programming we have the Substitution Law
x:= e. P   =   (for  x  substitute  e  in  P )

Functional programming and imperative programming differ mainly in the notation they use for 
substitution.
                                                                                                                   End of Functional Programming

                                                                                                                     End of Programming Language
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91

6  Recursive Definition
6.0  Recursive Data Definition

In this section we are concerned with the definition of infinite bunches.  Our first example is nat , 
the natural numbers.  It was defined in Chapter 2 using axioms called construction and induction.  
Now we take a closer look at these axioms.

6.0.0  Construction and Induction

To define  nat , we need to say what its elements are.  We can start by saying that  0  is an element
0: nat

and then say that for every element of  nat , adding  1  gives an element
nat+1: nat

These axioms are called the  nat  construction axioms, and  0  and  nat+1  are called the  nat  
constructors.  Using these axioms, we can “construct” the elements of  nat  as follows.

† by the axiom,  0: nat
⇒ 0: nat add  1  to each side
⇒ 0+1: nat+1 by arithmetic,  0+1 = 1 ;  by the axiom,  nat+1: nat
⇒ 1: nat add  1  to each side
⇒ 1+1: nat+1 by arithmetic,  1+1 = 2 ;  by the axiom,  nat+1: nat
⇒ 2: nat

and so on.

From the construction axioms we can prove  2: nat  but we cannot prove  ¬ –2: nat .  That is why 
we need the induction axiom.  The construction axioms tell us that the natural numbers are in  nat , 
and the induction axiom tells us that nothing else is.  Here is the  nat  induction axiom.

0: B  ∧  B+1: B   ⇒   nat: B
We have introduced  nat  as a constant, like  null  and  0 .  It is not a variable, and cannot be 
instantiated.  But  B  is a variable, to be instantiated at will.

The two construction axioms can be combined into one, and induction can be restated, as follows:
0, nat+1: nat nat  construction
0, B+1: B  ⇒  nat: B nat  induction

There are many bunches satisfying the inclusion  0, B+1: B , such as:  the naturals, the integers, the 
integers and half-integers, the rationals.  Induction says that of all these bunches,  nat  is the 
smallest.

We have presented  nat  construction and  nat  induction using bunch notation.  We now present 
equivalent axioms using predicate notation.  We begin with induction.

In predicate notation, the  nat  induction axiom can be stated as follows:  If  P: nat→bool ,
P0 ∧ ∀n: nat· Pn ⇒ P(n+1)   ⇒   ∀n: nat· Pn

We prove first that the bunch form implies the predicate form.
0: B  ∧  B+1: B   ⇒   nat: B Let  B = §n: nat· Pn .  Then  B: nat ,

⇒ 0: B  ∧ (∀n: nat· n: B  ⇒  n+1: B)  ⇒  ∀n: nat· n: B and  ∀n: nat· (n: B)=Pn .
= P0 ∧ (∀n: nat· Pn ⇒ P(n+1))   ⇒   ∀n: nat· Pn



The reverse is proven similarly.
P0 ∧ (∀n: nat· Pn ⇒ P(n+1))   ⇒   ∀n: nat· Pn

For arbitrary bunch  B , let  P = 〈n: nat→n: B〉 .  Then again  ∀n: nat· Pn=(n: B) .
⇒ 0: B  ∧  (∀n: nat· n: B  ⇒  n+1: B)  ⇒  ∀n: nat· n: B
= 0: B  ∧  (∀n: nat‘B· n+1: B)  ⇒  ∀n: nat· n: B
= 0: B  ∧  (nat‘B)+1: B  ⇒  nat: B
⇒ 0: B  ∧  B+1: B   ⇒   nat: B

Therefore the bunch and predicate forms of  nat  induction are equivalent.

The predicate form of  nat  construction can be stated as follows:  If  P: nat→bool ,
P0 ∧ ∀n: nat· Pn ⇒ P(n+1)   ⇐   ∀n: nat· Pn

This is the same as induction but with the main implication reversed.  We prove first that the bunch 
form implies the predicate form.

∀n: nat· Pn domain change using nat construction, bunch version
⇒ ∀n: 0, nat+1· Pn axiom about ∀
= (∀n: 0· Pn) ∧ (∀n: nat+1· Pn) One-Point Law and variable change
= P0 ∧ ∀n: nat· P(n+1)
⇒ P0 ∧ ∀n: nat· Pn ⇒ P(n+1)

And now we prove that the predicate form implies the bunch form .
P0 ∧ (∀n: nat· Pn ⇒ P(n+1))   ⇐   ∀n: nat· Pn Let  P = 〈n: nat→n: nat〉

⇒ 0: nat ∧ (∀n: nat· n: nat   ⇒  n+1: nat)   ⇐   ∀n: nat· n: nat
= 0: nat ∧ (∀n: nat· n+1: nat)   ⇐   †
= 0: nat  ∧  nat+1: nat

A corollary is that  nat  can be defined by the single axiom
P0 ∧ ∀n: nat· Pn ⇒ P(n+1)   =   ∀n: nat· Pn

There are other predicate versions of induction;  here is the usual one again plus three more.
P0 ∧ ∀n: nat· Pn ⇒ P(n+1)   ⇒   ∀n: nat· Pn
P0 ∨ ∃n: nat· ¬Pn ∧ P(n+1)   ⇐   ∃n: nat· Pn
∀n: nat· Pn ⇒ P(n+1)   ⇒   ∀n: nat· P0 ⇒ Pn
∃n: nat· ¬Pn ∧ P(n+1)   ⇐   ∃n: nat· ¬P0 ∧ Pn

The first version says that to prove  P  of all naturals, prove it of  0 , and assuming it of natural  n , 
prove it of  n+1 .  In other words, you get to all naturals by starting at  0  and repeatedly adding  1 .  
The second version is obtained from the first by the duality laws and a renaming.  The next is the 
prettiest;  it says that if you can “go” from any natural to the next, then you can “go” from  0  to 
any natural.

Here are two laws that are consequences of induction.
∀n: nat· (∀m: nat· m<n ⇒ Pm) ⇒ Pn   ⇒   ∀n: nat· Pn
∃n: nat· (∀m: nat· m<n ⇒ ¬Pm) ∧ Pn   ⇐   ∃n: nat· Pn

The first is like the first version of induction, except that the base case  P0  is not explicitly stated, 
and the step uses the assumption that all previous naturals satisfy  P , rather than just the one 
previous natural.  The last one says that if there is a natural with property  P  then there is a first 
natural with property  P  (all previous naturals don't have it).
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Proof by induction does not require any special notation or format.  For example, Exercise 288 
asks us to prove that the square of an odd natural number is  8×m  + 1  for some natural  m  .  
Quantifying over  nat ,

∀n· ∃m· (2×n + 1)2  =  8×m + 1 various number laws
= ∀n· ∃m· 4×n×(n+1) + 1 =  8×m + 1 various number laws
= ∀n· ∃m→n×(n+1)  =  2×m the usual predicate form of induction
⇐     (∃m· 0×(0+1) = 2×m) generalization and

∧  (∀n· (∃m· n×(n+1) = 2×m)  ⇒  (∃l· (n+1)×(n+2) = 2×l)) distribution
⇐     0×(0+1) = 2×0 arithmetic and

∧  (∀n, m· n×(n+1) = 2×m  ⇒  (∃l· (n+1)×(n+2) = 2×l)) generalization
⇐ ∀n, m· n×(n+1) = 2×m  ⇒  (n+1)×(n+2) = 2×(m+n+1) various number laws
= †

Now that we have an infinite bunch, it is easy to define others.  For example, we can define  pow  to 
be the powers of  2  either by the equation

pow  =  2nat

or by using the solution quantifier
pow  =  §p: nat· ∃m: nat· p = 2m

But let us do it the same way we defined  nat .  The  pow  construction axiom is
1, 2×pow: pow

and the  pow  induction axiom is
1, 2×B: B  ⇒  pow: B

Induction is not just for  nat .  In predicate form, we can define  pow  with the axiom
P1  ∧  ∀p: pow· Pp ⇒ P(2×p)   =   ∀p: pow· Pp

We can define the bunch of integers as
int   =   nat, –nat

or equivalently we can use the construction and induction axioms
0, int+1, int–1: int
0, B+1, B–1: B   ⇒   int: B

or we can use the axiom
P0 ∧ (∀i: int· Pi ⇒ P(i+1)) ∧ (∀i: int· Pi ⇒ P(i–1))   =   ∀i: int· Pi

Whichever we choose as axiom(s), the others are theorems.

Similarly we can define the bunch of rationals as
rat  =  int/(nat+1)

or equivalently by the construction and induction axioms
1, rat+rat, rat–rat, rat×rat, rat/(§r: rat· r+0): rat
1, B+B, B–B, B×B, B/(§b: B· b+0): B   ⇒   rat: B

or with the axiom (quantifying over  rat , of course)
   P1
∧ (∀r, s· Pr ∧ Ps ⇒ P(r+s))
∧ (∀r, s· Pr ∧ Ps ⇒ P(r–s))
∧ (∀r, s· Pr ∧ Ps ⇒ P(r×s))
∧ (∀r, s· Pr ∧ Ps ∧ s+0 ⇒ P(r/s))

= ∀r· Pr
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As the examples suggest, we can define a bunch by construction and induction axioms using any 
number of constructors.  To end this subsection, we define a bunch using zero constructors.  In 
general, we have one construction axiom per constructor, so there aren't any construction axioms.  
But there is still an induction axiom.  With no constructors, the antecedent becomes trivial and 
disappears, and we are left with the induction axiom

null: B
where  null  is the bunch being defined.  As always, induction says that, apart from elements due to 
construction axioms, nothing else is in the bunch being defined.  This is exactly how we defined  
null  in Chapter 2.
                                                                                                                 End of Construction and Induction

6.0.1  Least Fixed-Points

We have defined  nat  by a construction axiom and an induction axiom
0, nat+1: nat nat  construction
0, B+1: B  ⇒  nat: B nat  induction

We now prove two similar-looking theorems:
nat  =  0, nat+1 nat  fixed-point construction
B = 0, B+1  ⇒  nat: B nat  fixed-point induction

A fixed-point of a function  f  is an element  x  of its domain such that  f  maps  x  to itself:  x = fx .  
A least fixed-point of  f  is a smallest such  x .  Fixed-point construction has the form

name = (expression involving  name )
and so it says that  name  is a fixed-point of the expression on the right.  Fixed-point induction tells 
us that  name  is the smallest bunch satisfying fixed-point construction, and in that sense it is the 
least fixed-point of the constructor.

We first prove  nat  fixed-point construction.  It is stronger than  nat  construction, so the proof will 
also have to use  nat  induction.  Let us start there.

† nat  induction axiom
= 0, B+1: B  ⇒  nat: B replace  B  with  0, nat+1
⇒ 0, (0, nat+1)+1: 0, nat+1  ⇒  nat: 0, nat+1 strengthen the antecedent by

cancelling the “0”s and “+1”s from the two sides of the first “:”
⇒ 0, nat+1: nat  ⇒  nat: 0, nat+1 the antecedent is the  nat  construction axiom,

so we can delete it, and use it again to strengthen the consequent
= nat  =  0, nat+1

We prove  nat  fixed-point induction just by strengthening the antecedent of  nat  induction.

In similar fashion we can prove that  pow ,  int , and  rat  are all least fixed-points of their 
constructors.  In fact, we could have defined  nat  and each of these bunches as least fixed-points of 
their constructors.  It is quite common to define a bunch of strings by a fixed-point construction 
axiom called a grammar.  For example,

exp  =  "x",  exp; "+"; exp
In this context, union is usually denoted by  |  and catenation is usually denoted by nothing.  The 
other axiom, to say that  exp  is the least of the fixed-points, is usually stated informally by saying 
that only constructed elements are included.
                                                                                                                           End of Least Fixed-Points
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6.0.2  Recursive Data Construction

Recursive construction is a procedure for constructing least fixed-points from constructors.  It 
usually works, but not always.  We seek the smallest solution of

name = (expression involving  name )
Here are the steps of the procedure.

0.  Construct a sequence of bunches  name0 name1 name2 ...  beginning with
name0  =  null

and continuing with
namen+1  =  (expression involving  namen )

We can thus construct a bunch  namen  for any natural number  n .

1.  Next, try to find an expression for  namen  that may involve  n  but does not involve  name .
namen  =  (expression involving  n  but not  name )

2.  Now form a bunch  name∞  by replacing  n  with  ∞ .
name∞  =  (expression involving neither  n  nor  name )

3.  The bunch  name∞  is usually the least fixed-point of the constructor, but not always, so we must 
test it.  First we test to see if it is a fixed-point.

name∞  =  (expression involving  name∞ )

4.  Then we test  name∞  to see if it is the least fixed-point.
B = (expression involving  B )   ⇒   name∞: B

We illustrate recursive construction on the constructor for  pow , which is  1, 2×pow .

0.  Construct the sequence
pow0 =  null
pow1 =  1, 2×pow0

=  1, 2×null
=  1, null
=  1

pow2 =  1, 2×pow1
=  1, 2×1
=  1, 2

pow3 =  1, 2×pow2
=  1, 2×(1, 2)
=  1, 2, 4

The first bunch  pow0 tells us all the elements of the bunch  pow  that we know without looking at 
its constructor.  In general,  pown  represents our knowledge of  pow   after  n   uses of its 
constructor.
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1.  Perhaps now we can guess the general member of this sequence
pown =  20,..n

We could prove this by  nat  induction, but it is not really necessary.  The proof would only tell us 
about  pown  for  n: nat  and we want  pow∞ .  Besides, we will test our final result.

2.  Now that we can express  pown , we can define  pow∞  as
pow∞ =  20,..∞

=  2nat

and we have found a likely candidate for the least fixed-point of the  pow  constructor.

3.  We must test  pow∞  to see if it is a fixed-point.
2nat  =  1, 2×2nat

= 2nat  =  20, 21×2nat

= 2nat  =  20, 21+nat

= 2nat  =  20, 1+nat

⇐ nat  =  0, nat+1 nat  fixed-point construction
= †

4.  We must test  pow∞  to see if it is the least fixed-point.
2nat: B

= ∀n: nat· 2n: B use the predicate form of  nat  induction
⇐ 20: B  ∧  ∀n: nat· 2n: B  ⇒  2n+1: B change variable
= 1: B  ∧  ∀m: 2nat· m: B  ⇒  2×m: B increase domain
⇐ 1: B  ∧  ∀m: nat· m: B  ⇒  2×m: B Domain Change Law
= 1: B  ∧  ∀m: nat‘B· 2×m: B increase domain
⇐ 1: B  ∧  ∀m: B· 2×m: B
= 1: B  ∧  2×B: B
⇐ B = 1, 2×B

Since  2nat  is the least fixed-point of the  pow  constructor, we conclude  pow = 2nat .

In step 0, we start with  name0 = null , which is usually the best starting bunch for finding a 
smallest solution.  But occasionally that starting bunch fails and some other starting bunch 
succeeds in producing a solution to the given fixed-point equation.

In step 2, from  namen  we obtain a candidate  name∞  for a fixed-point of a constructor by 
replacing  n  with  ∞ .  This substitution is simple to perform, and the resulting candidate is usually 
satisfactory.  But the result is sensitive to the way  namen  is expressed.  From two expressions for  
namen  that are equal for all finite  n , we may obtain expressions for  name∞  that are unequal.  
Another candidate, one that is not sensitive to the way  namen  is expressed, is

§x· LIM n· x: namen
But this bunch is sensitive to the choice of domain of  x  (the domain of  n  has to be  nat ).  
Finding a limit is harder than making a substitution, and the result is still not guaranteed to produce 
a fixed-point.  We could define a property, called “continuity”, which, together with monotonicity, 
is sufficient to guarantee that the limit is the least fixed-point, but we leave the subject to other 
books.
                                                                                                               End of Recursive Data Construction
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Whenever we add axioms, we must be careful to remain consistent with the theory we already have.  
A badly chosen axiom can cause inconsistency.  Here is an example.  Suppose we make

bad   =   §n: nat· ¬ n: bad
an axiom.  Thus  bad  is defined as the bunch of all naturals that are not in  bad .  From this axiom 
we find

0: bad
= 0: §n: nat· ¬ n: bad
= ¬ 0: bad

is a theorem.  From the Completion Rule we find that  0: bad  =  ¬ 0: bad  is also an antitheorem.  
To avoid the inconsistency, we must withdraw this axiom.

Sometimes recursive construction does not produce any answer.  For example, the fixed-point 
equation of the previous paragraph results in the sequence of bunches

bad0 =  null
bad1 =  nat
bad2 =  null

and so on, alternating between  null  and  nat .  We cannot say what  bad∞  is because we cannot 
say whether  ∞  is even or odd.  Even the Limit Axiom tells us nothing.  We should not blame 
recursive construction for failing to find a fixed-point when there is none.  However, it sometimes 
fails to find a fixed-point when there is one (see Exercise 314).
                                                                                                                  End of Recursive Data Definition

6.1  Recursive Program Definition

Programs, and more generally, specifications, can be defined by axioms just as data can.  For our 
first example, let  x  and  y  be integer variables.  The name  zap  is introduced, and the fixed-point 
equation

zap   =   if x=0 then y:= 0 else (x:= x–1.  t:= t+1.  zap)
is given as an axiom.  The right side of the equation is the constructor.  Here are six solutions to 
this equation.
(a) x≥0  ⇒  x′=y′=0 ∧ t′ = t+x
(b) if x≥0 then x′=y′=0 ∧ t′ = t+x else t′=∞
(c) x′=y′=0 ∧ (x≥0 ⇒ t′ = t+x)
(d) x′=y′=0 ∧ if x≥0 then t′ = t+x else t′=∞
(e) x′=y′=0 ∧ t′ = t+x
(f) x≥0 ∧ x′=y′=0 ∧ t′ = t+x
Solution (a) is the weakest and solution (f) is the strongest, although the solutions are not totally 
ordered.  We can express their order by the following picture.

⇒

⇒

⇒

⇒

⇒

⇒

⇒

(a)

(b) (c)

(d) (e)

(f)

Solutions (e) and (f) are so strong that they are unimplementable.  Solution (d) is implementable, 
and since it is also deterministic, it is a strongest implementable solution.
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From the fixed-point equation defining  zap , we cannot say that  zap  is equal to a particular one of 
the solutions.  But we can say this:  it refines the weakest solution

x≥0 ⇒ x′=y′=0 ∧ t′ = t+x   ⇐   zap
so we can use it to solve problems.  And it is refined by its constructor

zap   ⇐   if x=0 then y:= 0 else (x:= x–1.  t:= t+1.  zap)
so we can execute it.  For all practical purposes, that is all we need.

6.1.0  Recursive Program Construction

Recursive program construction is similar to recursive data construction, and serves a similar 
purpose.  We illustrate the procedure using the example  zap .  We start with  zap0  describing the 
computation as well as we can without looking at the definition of  zap .  Of course, if we don't look 
at the definition, we have no idea what computation  zap  is describing, so let us start with a 
specification that is satisfied by every computation.

zap0 =  †
We obtain the next description of  zap  by substituting  zap0  for  zap  in the constructor, and so 
on.

zap1 =   if x=0 then y:= 0 else (x:= x–1.  t:= t+1.  zap0)
=   x=0  ⇒  x′=y′=0 ∧ t′=t

zap2 =   if x=0 then y:= 0 else (x:= x–1.  t:= t+1.  zap1)
=   0≤x<2  ⇒  x′=y′=0 ∧ t′ = t+x

In general,  zapn  describes the computation as well as possible after  n  uses of the constructor.  
We can now guess (and prove using  nat  induction if we want)

zapn =   0≤x<n  ⇒  x′=y′=0 ∧ t′ = t+x
The next step is to replace  n  with  ∞ .

zap∞ =   0≤x<∞  ⇒  x′=y′=0 ∧ t′ = t+x
Finally, we must test the result to see if it satisfies the axiom.

(right side of equation with  zap∞  for  zap )
= if x=0 then y:= 0 else (x:= x–1.  t:= t+1.  0≤x  ⇒  x′=y′=0 ∧ t′ = t+x)
= if x=0 then x′=y′=0 ∧ t′=t else 0≤x–1  ⇒  x′=y′=0 ∧ t′ = t+x
= 0≤x  ⇒  x′=y′=0 ∧ t′ = t+x
= (left side of equation with  zap∞  for  zap )

It satisfies the fixed-point equation, and in fact it is the weakest fixed-point.

If we are not considering time, then  †  is all we can say about an unknown computation, and we 
start our recursive construction there.  With time, we can say more than just  † ;  we can say that 
time does not decrease.  Starting with  t′ ≥ t  we can construct a stronger fixed-point.

zap0 =   t′ ≥ t
zap1 =   if x=0 then y:= 0 else (x:= x–1.  t:= t+1.  zap0)

=   if x=0 then x′=y′=0 ∧ t′=t else t′ ≥ t+1
zap2 =   if x=0 then y:= 0 else (x:= x–1.  t:= t+1.  zap1)

=   if x=0 then x′=y′=0 ∧ t′=t else if x=1 then x′=y′=0 ∧ t′=t+1 else t′ ≥ t+2
=   if 0≤x<2 then x′=y′=0 ∧ t′ = t+x else t′ ≥ t+2

In general,  zapn  describes what we know up to time  n .  We can now guess (and prove using  nat  
induction if we want)

zapn =  if 0≤x<n then x′=y′=0 ∧ t′=t+x else t′ ≥ t+n
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We replace  n  with  ∞
zap∞ =    if 0≤x then x′=y′=0 ∧ t′=t+x else t′=∞

and test the result
(right side of equation with  zap∞  for  zap )

= if x=0 then y:= 0 else (x:= x–1.  t:= t+1.  if 0≤x then x′=y′=0 ∧ t′=t+x else t′=∞)
= if x=0 then x′=y′=0 ∧ t′=t else if 0≤x–1 then x′=y′=0 ∧ t′=t+x else t′=∞
= if 0≤x then x′=y′=0 ∧ t′ = t+x else t′=∞
= (left side of equation with  zap∞  for  zap )

Beginning our recursive construction with  t ′  ≥ t , we have constructed a stronger but still 
implementable fixed-point.  In this example, if we begin our recursive construction with  ƒ  we 
obtain the strongest fixed-point, which is unimplementable.

We obtained a candidate  zap∞  for a fixed-point by replacing  n  with  ∞ .  An alternative candidate 
is  LIM n· zapn .  In this example, the two candidates are equal, but in other examples the two ways 
of forming a candidate may give different results.
                                                                                                          End of Recursive Program Construction

6.1.1  Loop Definition

Loops can be defined by construction and induction.  The axioms for the while-loop are
t′≥t   ⇐   while b do P
if b then (P.  t:= t+inc.  while b do P) else ok   ⇐   while b do P

∀σ, σ′· (t′≥t ∧ (if b then (P.  t:= t+inc.  W) else ok)  ⇐  W)
⇒ ∀σ, σ′· (while b do P  ⇐  W)

where  inc  is the time increment according to our chosen measure ( 1  in the recursive measure).  
These three axioms are closely analogous to the axioms

0: nat
nat+1: nat
0, B+1: B   ⇒   nat: B

that define  nat .  The first while-loop axiom is a base case saying that at least time does not 
decrease.  The second construction axiom takes a single step, saying that  while b do P  refines 
(implements) its first unrolling;  then by Stepwise Refinement we can prove it refines any of its 
unrollings.  The last axiom, induction, says that it is the weakest specification that refines its 
unrollings.

From these axioms we can prove theorems called fixed-point construction and fixed-point 
induction.  For the while-loop they are

while b do P   =   t′≥t ∧ (if b then (P.  t:= t+inc.  while b do P) else ok)
∀σ, σ′· (W  =  t′≥t ∧ (if b then (P.  t:= t+inc.  W) else ok))

⇒ ∀σ, σ′· (while b do P  ⇐  W)

This account differs from that presented in Chapter 5;  we have gained some theorems, and also lost 
some theorems.  For example, from this definition, we cannot prove

x′≥x   ⇐   while b do x′≥x
                                                                                                                              End of Loop Definition

                                                                                                             End of Recursive Program Definition

                                                                                                                         End of Recursive Definition
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7 Theory Design and Implementation
Programmers use the formalisms, abstractions, theories, and structures that have been created for 
them by the designers and implementers of their programming languages.  With every program 
they write, with every name they introduce, programmers create new formalisms, abstractions, 
theories, and structures.  To make their creations as elegant and useful as possible, programmers 
should be aware of their role as theory designers and implementers, as well as theory users.

The stack, the queue, and the tree are standard data structures used frequently in programming.  It is 
not the purpose of the present chapter to show their usefulness in applications;  we leave that to 
books devoted to data structures.  They are presented here as case studies in theory design and 
implementation.  Each of these data structures contains items of some sort.  For example, we can 
have stacks of integers, stacks of lists of booleans, even stacks of stacks.  In this chapter,  X  is the 
bunch (or type) of items in a data structure.

7.0  Data Theories

7.0.0  Data-Stack Theory

The stack is a useful data structure for the implementation of programming languages.  Its 
distinguishing feature is that, at any time, the item to be inspected or deleted next is always the 
newest remaining item.  It is the structure with the motto:  the last one in is the first one out.

We introduce the syntax  stack ,  empty ,  push ,  pop , and  top .  Informally, they mean the 
following.

stack a bunch consisting of all stacks of items of type  X
empty a stack containing no items (an element of bunch  stack )
push a function that, given a stack and an item, gives back the stack containing the same 

items plus the one new item
pop a function that, given a stack, gives back the stack minus the newest remaining 

item
top a function that, given a stack, gives back the newest remaining item

Here are the first four axioms.
empty: stack
push: stack→X→stack
pop: stack→stack
top: stack→X

We want  empty  and  push  to be  stack  constructors.  We want a stack obtained by  pop  to be one 
that was constructed from  empty  and  push , so we do not need  pop  to be a constructor.  A 
construction axiom can be written in either of the following two ways:

empty, push stack X: stack
P empty ∧ ∀s: stack· ∀x: X· Ps ⇒ P(push s x)   ⇐   ∀s: stack· Ps

where  push  is allowed to distribute over bunch union, and  P: stack→bool .  To exclude anything 
else from being a stack requires an induction axiom, which can be written in many ways;  here are 
two:

empty, push B X: B   ⇒   stack: B
P empty ∧ ∀s: stack· ∀x: X· Ps ⇒ P(push s x)   ⇒   ∀s: stack· Ps

According to the axioms we have so far, it is possible that all stacks are equal.  To say that the 
constructors always construct different stacks requires two more axioms.  Let  s, t: stack  and  



x, y: X ;  then
push s x + empty
push s x = push t y   =   s=t ∧ x=y

And finally, two axioms are needed to say that stacks behave in “last in, first out” fashion.
pop (push s x) = s
top (push s x) = x

And that completes the data-stack axioms.
                                                                                                                            End of Data-Stack Theory

Data-stack theory allows us to declare as many stack variables as we want and to use them in 
expressions according to the axioms.  We can declare variables  a  and  b  of type stack , and then 
write the assignments  a:= empty  and  b:= push a 2 .

7.0.1  Data-Stack Implementation

If you need a stack and stacks are not provided in your programming language, you will have to 
build your stack using the data structures that are provided.  Suppose that lists and functions are 
implemented.  Then we can implement a stack of integers by the following definitions.

stack   =   [*int]
empty   =   [nil]
push   =   〈s: stack→〈x: int→s+[x]〉〉
pop   =   〈s: stack→if s=empty then empty else s [0;..#s–1]〉
top   =   〈s: stack→if s=empty then 0 else s (#s–1)〉

To prove that a theory is implemented, we prove
(the axioms of the theory) ⇐ (the definitions of the implementation)

In other words, the definitions must satisfy the axioms.  According to a distributive law, this can be 
done one axiom at a time.  For example, the last axiom becomes

top (push s x) = x replace  push
= top (〈s: stack→〈x: int→s+[x]〉〉 s x) = x apply function
= top (s+[x]) = x replace  top
= 〈s: stack→if s=empty then 0 else s (#s–1)〉 (s+[x]) = x

apply function and replace  empty
= (if s+[x]=[nil] then 0 else (s+[x]) (#(s+[x])–1)) = x simplify the  if  and the index
= (s+[x]) (#s) = x index the list
= x = x reflexive law
= †

                                                                                                                End of Data-Stack Implementation

Is stack theory consistent?  Since we implemented it using list theory, we know that if list theory is 
consistent, so is stack theory.  Is stack theory complete?  To show that a boolean expression is 
unclassified, we must implement stacks twice, making the expression a theorem in one 
implementation, and an antitheorem in the other.  The expressions

pop empty = empty
top empty = 0

are theorems in our implementation, but we can alter the implementation as follows
pop   =   〈s: stack→if s=empty then push empty 0 else s [0;..#s–1]〉
top   =   〈s: stack→if s=empty then 1 else s (#s–1)〉

to make them antitheorems.  So stack theory is incomplete.
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Stack theory specifies the properties of stacks.  A person who implements stacks must ensure that 
all these properties are provided.  A person who uses stacks must ensure that only these properties 
are relied upon.  This point deserves emphasis:  a theory is a contract between two parties, an 
implementer and a user (they may be one person with two hats, or two corporations).  It makes clear 
what each party's obligations are to the other, and what each can expect from the other.  If 
something goes wrong, it makes clear who is at fault.  A theory makes it possible for each side to 
modify their part of a program without knowing how the other part is written.  This is an essential 
principle in the construction of large-scale software.  In our small example, the stack user must not 
use  pop empty = empty  even though the stack implementer has provided it;  if the user wants it, it 
should be added to the theory.

7.0.2  Simple Data-Stack Theory

In the data-stack theory just presented, we have axioms  empty: stack  and  pop: stack→stack ;  
from them we can prove  pop empty: stack .  In other words, popping the empty stack gives a stack, 
though we do not know which one.  An implementer is obliged to give a stack for  pop empty , 
though it does not matter which one.  If we never want to pop an empty stack, then the theory is too 
strong.  We should weaken the axiom  pop: stack→stack  and remove the implementer's obligation 
to provide something that is not wanted.  The weaker axiom

s+empty  ⇒  pop s: stack
says that popping a nonempty stack yields a stack, but it is implied by the remaining axioms and so 
is unnecessary.  Similarly from  empty: stack  and  top: stack→X  we can prove  top empty: X ;  
deleting the axiom  top: stack→X  removes an implementer's obligation to provide an unwanted 
result for  top empty .

We may decide that we have no need to prove anything about all stacks, and can do without  stack  
induction.  After a little thought, we may realize that we never need an empty stack, nor to test if a 
stack is empty.  We can always work on top of a given (possibly non-empty) stack, and in most 
uses we are required to do so, leaving the stack as we found it.  We can delete the axiom  
empty: stack  and all mention of  empty .  We must replace this axiom with the weaker axiom  
stack + null  so that we can still declare variables of type  stack .  If we want to test whether a stack 
is empty, we can begin by pushing some special value, one that will not be pushed again, onto the 
stack;  the empty test is then a test whether the top is the special value.

For most purposes, it is sufficient to be able to push items onto a stack, pop items off, and look at 
the top item.  The theory we need is considerably simpler than the one presented previously.  Our 
simpler data-stack theory introduces the names  stack ,  push ,  pop , and  top  with the following 
four axioms:  Let  s: stack  and  x: X ;  then

stack + null
push s x: stack
pop (push s x) = s
top (push s x) = x

                                                                                                                  End of Simple Data-Stack Theory

For the purpose of studying stacks, as a mathematical activity, we want the strongest axioms 
possible so that we can prove as much as possible.  As an engineering activity, theory design is the 
art of excluding all unwanted implementations while allowing all the others.  It is counter-productive 
to design a stronger theory than necessary;  it makes implementation harder, and it makes theory 
extension harder.
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7.0.3  Data-Queue Theory

The queue data structure, also known as a buffer, is useful in simulations and scheduling.  Its 
distinguishing feature is that, at any time, the item to be inspected or deleted next is always the 
oldest remaining item.  It is the structure with the motto:  the first one in is the first one out.

We introduce the syntax  queue ,  emptyq ,  join ,  leave , and  front  with the following informal 
meaning:

queue a bunch consisting of all queues of items of type  X
emptyq a queue containing no items (an element of bunch  queue )
join a function that, given a queue and an item, gives back the queue containing the 

same items plus the one new item
leave a function that, given a queue, gives back the queue minus the oldest remaining 

item
front a function that, given a queue, gives back the oldest remaining item

The same kinds of considerations that went into the design of stack theory also guide the design of 
queue theory.  Let  q, r: queue  and  x, y: X .  We certainly want the construction axioms

emptyq: queue
join q x: queue

If we want to prove things about the domain of  join , then we must replace the second construction 
axiom by the stronger axiom

join: queue→X→queue
To say that the constructors construct distinct queues, with no repetitions, we need

join q x + emptyq
join q x = join r y   =   q=r ∧ x=y

We want a queue obtained by  leave  to be one that was constructed from  emptyq  and  join , so we 
do not need 

leave q: queue
for construction, and we don't want to oblige an implementer to provide a representation for  
leave emptyq , so perhaps we will omit that one.  We do want to say

q+emptyq   ⇒   leave q: queue
And similarly, we want

q+emptyq   ⇒   front q: X
If we want to prove something about all queues, we need  queue  induction:

emptyq, join B X: B   ⇒   queue: B
And finally, we need to give queues their “first in, first out” character:

leave (join emptyq x)  =  emptyq
q+emptyq   ⇒   leave (join q x) = join (leave q) x
front (join emptyq x)  =  x
q+emptyq   ⇒   front (join q x) = front  q

If we have decided to keep the  queue  induction axiom, we can throw away the two earlier axioms
q+emptyq   ⇒   leave q: queue
q+emptyq   ⇒   front q: X

since they can now be proven.
                                                                                                                           End of Data-Queue Theory

After data-stack implementation, data-queue implementation raises no new issues, so we leave it as 
Exercise 340.
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7.0.4  Data-Tree Theory

We introduce the syntax
tree a bunch consisting of all finite binary trees of items of type  X
emptree a tree containing no items (an element of bunch  tree )
graft a function that, given two trees and an item, gives back the tree with the item at the 

root and the two given trees as left and right subtree
left a function that, given a tree, gives back its left subtree
right a function that, given a tree, gives back its right subtree
root a function that, given a tree, gives back its root item

For the purpose of studying trees, we want a strong theory.  Let  t, u, v, w: tree  and  x, y: X .
emptree: tree
graft: tree→X→tree→tree
emptree, graft B X B: B   ⇒   tree: B
graft t x u + emptree
graft t x u = graft v y w   =   t=v ∧ x=y ∧ u=w
left (graft t x u) = t
root (graft t x u) = x
right (graft t x u) = u

where, in the construction axiom,  graft  is allowed to distribute over bunch union.

For most programming purposes, the following simpler, weaker theory is sufficient.
tree + null
graft t x u: tree
left (graft t x u) = t
root (graft t x u) = x
right (graft t x u) = u

As with stacks, we don't really need to be given an empty tree.  As long as we are given some tree, 
we can build a tree with a distinguished root that serves the same purpose.  And we probably don't 
need  tree  induction.
                                                                                                                             End of Data-Tree Theory

7.0.5  Data-Tree Implementation

Suppose lists and recursive data definition are implemented.  Then we can implement a tree of 
integers by the following definitions:

tree  =  emptree, graft tree int tree
emptree  =  [nil]
graft  =  〈t: tree→〈x: int→〈u: tree→[t; x; u]〉〉〉
left  =  〈t: tree→t 0〉
right  =  〈t: tree→t 2〉
root  =  〈t: tree→t 1〉

The procedure  graft  makes a list of three items;  two of those items are lists themselves.  A 
reasonable implementation strategy for lists is to allocate a small space, one capable of holding an 
integer or data address, for each item.  If an item is an integer, it is put in its place;  if an item is a 
list, it is put somewhere else and a pointer to it (data address) is put in its place.  In this 
implementation of lists, pointers are provided automatically when needed.  For example, the tree

[[[nil]; 2; [[nil]; 5; [nil]]]; 3; [[nil]; 7; [nil]]]
looks like
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[     ; 3 ;     ]

[     ; 2 ;     ]       [     ; 7 ;     ]

[ nil ]  [     ; 5 ;     ]  [ nil ]  [ nil ]

         [ nil ]      [ nil ]

Here is another implementation of data-trees.
tree  =  emptree, graft tree int tree
emptree  =  0
graft  =  〈t: tree→〈x: int→〈u: tree→("left"→t | "root"→x | "right"→u)〉〉〉
left  =  〈t: tree→t "left"〉
right  =  〈t: tree→t "right"〉
root  =  〈t: tree→t "root"〉

With this implementation, a tree value looks like this:
  "left" → ("left" → 0

| "root" → 2
| "right" → ("left" → 0

| "root" → 5
| "right" → 0 ) )

| "root" → 3
| "right" → ("left" → 0

| "root" → 7
| "right" → 0 )

If the implementation you have available does not include recursive data definition, you will have to 
build the pointer structure yourself.  For example, in C you can code the implementation of binary 
trees as follows:

struct tree { struct tree *left;  int root;  struct tree *right; };
struct tree *emptree = NULL;
struct tree *graft (struct tree *t, int x, struct tree *u)

{ struct tree *g;  g = malloc (sizeof(struct tree));
(*g).left = t;  (*g).root = x;  (*g).right = u;
return g;

}
struct tree *left (struct tree *t) { return (*t).left; }
int root (struct tree *t) { return (*t).root; }
struct tree *right (struct tree *t) { return (*t).right; }

As you can see, the C code is clumsy.  It is not a good idea to apply Program Theory directly to the 
C code.  The use of pointers (data addresses) when recursive data definition is unimplemented is 
just like the use of  go to   (program addresses) when recursive program definition is 
unimplemented or implemented badly.
                                                                                                                  End of Data-Tree Implementation

                                                                                                                                  End of Data Theories
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A data theory creates a new type, or value space, or perhaps an extension of an old type.  A program 
theory creates new programs, or rather, new specifications that become programs when the theory is 
implemented.  These two styles of theory correspond to two styles of programming:  functional and 
imperative.

7.1  Program Theories

In program theories, the state is divided into two kinds of variables:  the user's variables and the 
implementer's variables.  A user of the theory enjoys full access to the user's variables, but cannot 
directly access (see or change) the implementer's variables.  A user gets access to the implementer's 
variables only through the theory.  On the other side, an implementer of the theory enjoys full 
access to the implementer's variables, but cannot directly access (see or change) the user's variables.  
An implementer gets access to the user's variables only through the theory.  Some programming 
languages have a “module” or “object” construct exactly for this purpose.  In other languages we 
just forbid the use of the wrong variables on each side of the boundary.

If we need only one stack or one queue or one tree, we can obtain an economy of expression and of 
execution by leaving it implicit.  There is no need to say which stack to push onto if there is only 
one, and similarly for the other operations and data structures.  Each of the program theories we 
present will provide only one of its type of data structure to the user, but they can be generalized by 
adding an extra parameter to each operation.

7.1.0  Program-Stack Theory

The simplest version of program-stack theory introduces three names:  push  (a procedure with 
parameter of type  X ),  pop  (a program), and  top  (of type  X ).  In this theory,  push 3  is a 
program (assuming  3: X );  it changes the state.  Following this program, before any other pushes 
and pops,  print top  will print  3 .  The following two axioms are sufficient.

top′=x   ⇐   push x
ok   ⇐   push x.  pop

where  x: X .

The second axiom says that a pop undoes a push.  In fact, it says that any natural number of pushes 
are undone by the same number of pops.

ok use second axiom
⇐ push x.  pop ok  is identity for dependent composition
= push x.  ok.  pop Refinement by Steps reusing the axiom
⇐ push x.  push y.  pop.  pop

We can prove things like
top′=x   ⇐   push x.  push y.  push z.  pop.  pop

which say that when we push something onto the stack, we find it there later at the appropriate time.  
That is all we really want.
                                                                                                                       End of Program-Stack Theory

7.1.1  Program-Stack Implementation

To implement program-stack theory, we introduce an implementer's variable  s: [*X]  and define
push   =   〈x: X→s:= s+[x]〉
pop   =   s:= s [0;..#s–1]
top   =   s (#s–1)
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And, of course, we must show that these definitions satisfy the axioms.  We'll do the first axiom, 
and leave the other as Exercise 342.

( top′=x   ⇐   push x ) use definition of  push  and  top
= ( s′(#s′–1)=x   ⇐   s:= s+[x] ) List Theory
= †

                                                                                                           End of Program-Stack Implementation

7.1.2  Fancy Program-Stack Theory

The program-stack theory just presented corresponds to the simpler data-stack theory presented 
earlier.  A slightly fancier program-stack theory introduces two more names:   mkempty  (a program 
to make the stack empty) and  isempty  (a condition to say whether the stack is empty).  Letting  
x: X ,  the axioms are

top′=x  ∧  ¬isempty′   ⇐   push x
ok   ⇐   push x.  pop
isempty′   ⇐  mkempty

                                                                                                              End of Fancy Program-Stack Theory

Once we implement program-stack theory using lists, we know that program-stack theory is 
consistent if list theory is consistent.  Program-stack theory, like data-stack theory, is incomplete.  
Incompleteness is a freedom for the implementer, who can trade economy against robustness.  If we 
care how this trade will be made, we should strengthen the theory.  For example, we could add the 
axiom

print "error"   ⇐   mkempty.  pop

7.1.3  Weak Program-Stack Theory

The program-stack theory we presented first can be weakened and still retain its stack character.  
We must keep the axiom

top′=x   ⇐   push x
but we do not need the composition  push x . pop  to leave all variables unchanged.  We do require 
that any natural number of pushes followed by the same number of pops gives back the original 
top.  The axioms are

top′=top   ⇐   balance
balance   ⇐   ok
balance   ⇐   push x.  balance.  pop

where  balance  is a specification that helps in writing the axioms, but is not an addition to the 
theory, and does not need to be implemented.  To prove an implementation is correct, we must 
propose a definition for  balance  that uses the implementer's variables, but it doesn't have to be a 
program.  This weaker theory allows an implementation in which popping does not restore the 
implementer's variable  s  to its pre-pushed value, but instead marks the last item as “garbage”.

A weak theory can be extended in ways that are excluded by a strong theory.  For example, we can 
add the names  count  (of type  nat ) and  start  (a program), with the axioms

count′ = 0   ⇐   start
count′ = count+1   ⇐   push x
count′ = count+1   ⇐   pop

so that  count  counts the number of pushes and pops.
                                                                                                               End of Weak Program-Stack Theory
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7.1.4  Program-Queue Theory

Program-queue theory introduces five names:  mkemptyq  (a program to make the queue empty),  
isemptyq  (a condition to say whether the queue is empty),  join  (a procedure with parameter of 
type  X ),  leave (a program),  and  front  (of type  X ).  The axioms are

isemptyq′   ⇐   mkemptyq
isemptyq ⇒ front′=x ∧ ¬isemptyq′   ⇐   join x
¬isemptyq ⇒ front′=front ∧ ¬isemptyq′   ⇐   join x
isemptyq ⇒ (join x.  leave   =   mkemptyq)
¬isemptyq ⇒ (join x.  leave   =   leave.  join x)

                                                                                                                      End of Program-Queue Theory

7.1.5  Program-Tree Theory

As usual, there is more than one way to do it.  Imagine a tree that is infinite in all directions;  there 
are no leaves and no root.  You are standing at one node in the tree facing one of the three directions  
up  (towards the parent of this node),  left  (towards the left child of this node), or  right  (towards 
the right child of this node).  Variable  node  (of type  X ) tells the value of the item where you are, 
and it can be assigned a new value.  Variable  aim  tells what direction you are facing, and it can be 
assigned a new direction.  Program  go  moves you to the next node in the direction you are facing, 
and turns you facing back the way you came.  For example, we might begin with

aim:= up.  go
and then look at  aim  to see where we came from.  For later use, we might then assign

node:= 3
The axioms use an auxiliary specification that helps in writing the axioms, but is not an addition to 
the theory, and does not need to be implemented:   work  means “Do anything, wander around 
changing the values of nodes if you like, but do not  go  from this node (your location at the start of  
work ) in this direction (the value of variable  aim  at the start of  work ).  End where you started, 
facing the way you were facing at the start.”.  Here are the axioms.

(aim=up) = (aim′+up)   ⇐   go
node′=node ∧ aim′=aim   ⇐   go.  work.  go
work   ⇐   ok
work   ⇐   node:= x
work   ⇐   a=aim+b ∧ (aim:= b.  go.  work.  go.  aim:= a)
work   ⇐   work.  work

Here is another way to define program-trees.  Let  T   (for tree) and  p   (for pointer) be 
implementer's variables.  The axioms are

tree   =   [tree; X; tree]
T: tree
p: *(0, 1, 2)
node   =   T@(p; 1)
change   =   〈x: X→T:= (p; 1)→x | T〉
goUp   =   p:= p0;..±p–1
goLeft   =   p:= p;0
goRight   =   p:= p;2

If strings and the  @  operator are implemented, then this theory is already an implementation.  If 
not, it is still a theory, and should be compared to the previous theory for clarity.
                                                                                                                        End of Program-Tree Theory

                                                                                                                             End of Program Theories
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7.2  Data Transformation

A program is a specification of computer behavior.  Sometimes (but not always) a program is the 
clearest kind of specification.  Sometimes it is the easiest kind of specification to write.  If we write 
a specification as a program, there is no work to implement it.  Even though a specification may 
already be a program, we can, if we like, implement it differently.  In some programming languages, 
implementer's variables are distinguished by being placed inside a “module” or “object”, so that 
changing them is not visible outside the object or module.  Perhaps the implementer's variables were 
chosen to make the specification as clear as possible, but other implementer's variables might be 
more storage-efficient, or provide faster access on average.  Since a theory user has no access to the 
implementer's variables except through the theory, an implementer is free to change them in any 
way that provides the same theory to the user.  Here's one way.

We can replace the implementer's variables  v  by new implementer's variables  w  using a data 
transformer, which is a boolean expression  D  relating  v  and  w  such that

∀w· ∃v· D
Here,  v  and  w  represent any number of variables.  Let  D′  be the same as  D  but with primes on 
all the variables.  Then each specification  S  in the theory is transformed to

∀v· D ⇒ ∃v′· D′ ∧ S
Specification  S  talks about its nonlocal variables  v  (and the user's variables), and the transformed 
specification talks about its nonlocal variables  w  (and the user's variables).

Data transformation is invisible to the user.  The user imagines that the implementer's variables are 
initially in state  v , and then, according to specification  S , they are finally in state  v′ .  Actually, the 
implementer's variables will initially be in state  w  related to  v  by  D ;  the user will be able to 
suppose they are in a state  v  because  ∀w· ∃v· D .  The implementer's variables will change state 
from  w  to  w′  according to the transformed specification  ∀v· D ⇒ ∃v′· D′ ∧ S .  This says that 
whatever related initial state  v  the user was imagining, there is a related final state  v′  for the user to 
imagine as the result of  S , and so the fiction is maintained.  Here is a picture of it.

w′

v v′

w

D′D

S

∀v· D ⇒ ∃v′· D′ ∧ S

Implementability of  S  in its variables  (v, v′)  becomes, via the transformer  (D, D′) , the new 
specification in the new variables  (w, w′) .

Our first example is Exercise 363(a).  The user's variable is  u: bool  and the implementer's variable 
is  v: nat .  The theory provides three operations, specified by

zero   =   v:= 0
increase   =   v:= v+1
inquire   =   u:= even v

Since the only question asked of the implementer's variable is whether it is even, we decide to 
replace it by a new implementer's variable  w: bool  according to the data transformer  w = even v .  
The first operation  zero  becomes
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∀v· w = even v  ⇒  ∃v′· w′ = even v′  ∧  (v:= 0)
The assignment refers to a state consisting of  u  and  v .

= ∀v· w = even v  ⇒  ∃v′· w′ = even v′  ∧  u′=u  ∧  v′=0 One-Point law
= ∀v· w = even v  ⇒  w′ = even 0  ∧  u′=u change of variable law, simplify
= ∀r: even nat· w=r  ⇒  w′=†  ∧  u′=u One-Point law
= w′=†  ∧  u′=u The state now consists of  u  and  w .
= w:= †

Operation  increase  becomes
∀v· w = even v  ⇒  ∃v′· w′ = even v′  ∧  (v:= v+1)

= ∀v· w = even v  ⇒  ∃v′· w′ = even v′  ∧  u′=u  ∧  v′=v+1 One-Point law
= ∀v· w = even v  ⇒  w′ = even (v+1)  ∧  u′=u change of variable law, simplify
= ∀r: even nat· w=r  ⇒  w′ = ¬r  ∧  u′=u One-Point law
= w′ = ¬w  ∧  u′=u
= w:= ¬w

Operation  inquire  becomes
∀v· w = even v  ⇒  ∃v′· w′ = even v′  ∧  (u:= even v)

= ∀v· w = even v  ⇒  ∃v′· w′ = even v′  ∧  u′ = even v  ∧  v′=v One-Point law
= ∀v· w = even v  ⇒  w′ = even v  ∧  u′ = even v change of variable law
= ∀r: even nat· w=r  ⇒  w′=r  ∧  u′=r One-Point law
= w′=w  ∧  u′=w
= u:= w

In the previous example, we replaced a bigger state space by a smaller state space.  Just to show that 
it works both ways, here is Exercise 364(a).  The user's variable is  u: bool  and the implementer's 
variable is  v: bool .  The theory provides three operations, specified by

set   =   v:= †
flip   =   v:= ¬v
ask   =   u:= v

We decide to replace the implementer's variable by a new implementer's variable  w: nat  (perhaps 
for easier access on some computers) according to the data transformer  v = even w  .  The first 
operation  set  becomes

∀v· v = even w  ⇒  ∃v′· v′ = even w′  ∧  (v:= †) One-Point law twice
= even w′  ∧  u′=u
⇐ w:= 0

Operation  flip  becomes
∀v· v = even w  ⇒  ∃v′· v′ = even w′  ∧  (v:= ¬v) One-Point law twice

= even w′ + even w  ∧  u′=u
⇐ w:= w+1

Operation  ask  becomes
∀v· v = even w  ⇒  ∃v′· v′ = even w′  ∧  (u:= v) One-Point law twice

= even w′ = even w = u′
⇐ u:= even w

A data transformation does not have to replace all the implementer's variables, and the number of 
variables being replaced does not have to equal the number of variables replacing them.  A data 
transformation can be done by steps, as a sequence of smaller transformations.  A data 
transformation can be done by parts, as a conjunction of smaller transformations.  The next few 
subsections are examples to illustrate these points.
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7.2.0  Security Switch

Exercise 367 is to design a security switch.  It has three boolean user's variables  a ,  b , and  c .  
The users assign values to  a  and  b  as input to the switch.  The switch's output is assigned to  c .  
The output changes when both inputs have changed.  More precisely, the output changes when both 
inputs differ from what they were the previous time the output changed.  The idea is that one user 
might flip their input indicating a desire for the output to change, but the output does not change 
until the other user flips their input indicating agreement that the output should change.  If the first 
user changes back before the second user changes, the output does not change.

We can implement the switch with two boolean implementer's variables:
A  records the state of input  a  at last output change
B  records the state of input  b  at last output change

There are two operations:
a:= ¬a.  if a+A ∧ b+B then (c:= ¬c.  A:= a.  B:= b) else ok
b:= ¬b.  if a+A ∧ b+B then (c:= ¬c.  A:= a.  B:= b) else ok

In each operation, a user flips their input variable, and the switch checks if this input assignment 
makes both inputs differ from what they were at last output change;  if so, the output is changed, 
and the current input values are recorded.  This implementation is a direct formalization of the 
problem, but it can be simplified by data transformation.

We replace implementer's variables  A  and  B  by nothing according to the transformer
A=B=c

To check that this is a transformer, we check
∃A, B· A=B=c generalization, using  c  for both  A  and  B

⇐ †

There are no new variables, so there was no universal quantification.  The transformation does not 
affect the assignments to  a  and  b , so we have only one transformation to make.

∀A, B· A=B=c
              ⇒ ∃A′, B′· A′=B′=c′

               ∧ if a+A ∧ b+B then (c:= ¬c.  A:= a.  B:= b) else ok
expand assignments and  ok

= ∀A, B· A=B=c
              ⇒ ∃A′, B′· A′=B′=c′

               ∧ if a+A ∧ b+B then (a′=a ∧ b′=b ∧ c′=¬c ∧ A′=a ∧ B′=b)
else (a′=a ∧ b′=b ∧ c′=c ∧ A′=A ∧ B′=B)

one-point for  A′  and  B′
= ∀A, B· A=B=c  ⇒ if a+A ∧ b+B then (a′=a ∧ b′=b ∧ c′=¬c ∧ c′=a ∧ c′=b)

else (a′=a ∧ b′=b ∧ c′=c ∧ c′=A ∧ c′=B)
one-point for  A  and  B

= if a+c ∧ b+c then (a′=a ∧ b′=b ∧ c′=¬c ∧ c′=a ∧ c′=b)
else (a′=a ∧ b′=b ∧ c′=c ∧ c′=c ∧ c′=c)

use  if-part as context to change  then-part
= if a+c ∧ b+c then (a′=a ∧ b′=b ∧ c′=¬c ∧ c′=¬c ∧ c′=¬c)

else (a′=a ∧ b′=b ∧ c′=c ∧ c′=c ∧ c′=c)
= if a+c ∧ b+c then c:= ¬c else ok
= c:= (a+c ∧ b+c) + c

Output  c  becomes the majority value of  a ,  b , and  c .  (As a circuit, that's three “exclusive or” 
gates and one “and” gate.)
                                                                                                                               End of Security Switch
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7.2.1  Take a Number

The next example is Exercise 370 (take a number):  Maintain a list of natural numbers standing for 
those that are “in use”.  The three operations are:
• make the list empty (for initialization)
• assign to variable  n a number that is not in use, and add this number to the list (now it is in use)
• given a number  n  that is in use, remove it from the list (now it is no longer in use, and it can be 

reused later)
The user's variable is  n: nat .  Although the exercise talks about a list, we see from the operations 
that the items must always be distinct, and their order is irrelevant;  we may as well use a set  
s 1 {nat}  as our implementer's variable.  (There is no nesting structure so we could use a bunch 
variable, but we will need to quantify over this variable, so we need it to be an element.)  The three 
operations are

start   =   s′={null}
take   =   ¬ n′[s  ∧  s′ = s'{n′}
give   =   n[s  ⇒  ¬ n[s′  ∧  s′'{n} = s

Here is a data transformation that replaces set  s  with natural  m  according to the transformer
s 1 {0,..m}

Instead of maintaining the exact set of numbers that are in use, we will maintain a possibly larger 
set.  We will still never give out a number that is in use.  We transform  start  as follows.

∀s· s1{0,..m}  ⇒  ∃s′· s′1{0,..m′} ∧ s′={null} one-point and identity
= †

⇐ ok
The transformed specification is just  † , which is most efficiently refined as  ok .  Since  s  is only 
a subset of  {0,..m} , not necessarily equal to  {0,..m} , it does not matter what  m  is;  we may as 
well leave it alone.  Operation  take  is transformed as follows.

∀s· s1{0,..m}  ⇒  ∃s′· s′1{0,..m′}  ∧  ¬ n′[s  ∧  s′ = s'{n′}
several omitted steps

= m ≤ n′ < m′
⇐ n:= m.  m:= m+1

Operation  give  is transformed as follows.
∀s· s1{0,..m}  ⇒  ∃s′· s′1{0,..m′}  ∧  (n[s  ⇒  ¬ n[s′  ∧  s′'{n} = s)

several omitted steps
= (n+1 = m ⇒ n ≤ m′) ∧ (n+1 < m ⇒ m ≤ m′)
⇐ ok

Thanks to the data transformation, we have an extremely efficient solution to the problem.  One 
might argue that we have not solved the problem at all, because we do not maintain a list of numbers 
that are “in use”.  But who can tell?  The only use made of the list is to obtain a number that is not 
currently in use, and that service is provided.

Our implementation of the “take a number” problem corresponds to the “take a number” 
machines that are common at busy service centers.  Now suppose we want to provide two “take a 
number” machines that can operate independently.  We might try replacing  s  with two variables  
i, j: nat  according to the transformer  s 1 {0,..max i j} .  Operation  take  becomes

∀s· s1{0,..max i j}  ⇒  ∃s′· s′1{0,..max i′ j′}  ∧  ¬ n′[s  ∧  s′ = s'{n′}
several omitted steps

= max i j ≤ n′ < max i′ j′
⇐ n:= max i j.  if i≥j then i:= i+1 else j:= j+1
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From the program on the last line we see that this data transformation does not provide the 
independent operation of two machines as we were hoping.  Perhaps a different data transformation 
will work better.  Let's put the even numbers on one machine and the odd numbers on the other.  
The new variables are  i: 2×nat  and  j: 2×nat+1 .  The transformer is

∀k: ~s·  even k ∧ k<i  ∨  odd k ∧ k<j
Now  take  becomes

∀s· (∀k: ~s·  even k ∧ k<i  ∨  odd k ∧ k<j)
        ⇒ ∃s′·  (∀k: ~s′·  even k ∧ k<i′  ∨  odd k ∧ k<j′)  ∧  ¬ n′[s  ∧  s′ = s'{n′}

several omitted steps
= even n′  ∧  i ≤ n′ < i′   ∨   odd n′  ∧  j ≤ n′ < j′
⇐ (n:= i.  i:= i+2)  ∨  (n:= j.  j:= j+2)

Now we have a “distributed” solution to the problem:  we can take a number from either machine 
without disturbing the other.  The price of the distribution is that we have lost all fairness between 
the two machines;  a recently arrived customer using one machine may be served before an earlier 
customer using the other machine.
                                                                                                                                 End of Take a Number

7.2.2  Parsing

Exercise 362 (parsing):  Define  E  as a bunch of strings of texts satisfying the fixed-point equation
E   =   "x",   "if"; E; "then"; E; "else"; E

Given a string of texts, write a program to determine if the string is in the bunch  E .

For the problem to be nontrivial, we assume that recursive data definition and bunch inclusion are 
not implemented.  The solution will have to be a search, so we need a variable to represent the bunch 
of strings still in contention, beginning with all the strings in  E , eliminating strings as we go, and 
ending either when the given string is found or when none of the remaining strings is the given 
string.

Let the given string be  s  (a constant).  Our first decision is to parse from left to right, so we 
introduce natural variable  n , increasing from  0  to at most  ±s , indicating how much of  s  we 
have parsed.  (Reminder:   ±  is string length.)  Let  A  be a variable whose values are bunches of 
strings of texts.  Bunch  A  will consist of all strings in  E  that might possibly be  s  according to 
what we have seen of  s .  We can express the result as the final value of boolean variable  q .

To reduce the number of cases that we have to consider, we will use two sentinels.  We assume that  
s  ends with the sentinel  "eos"  ("end of string");  this is an item that cannot appear anywhere  
except at the end of  s  (some programming languages provide this sentinel automatically).  And 
when we initialize variable  A , we will add the sentinel  "eog"  ("end of grammar") to the end of 
every string, and assume that  "eog"  cannot appear anywhere except at the end of strings in  A  .  
The problem and its refinement are as follows:

q′ = (s0;..± s–1 : E)   ⇐   A:= E;"eog".  n:= 0.  P

where   P   =   n≤±s  ∧  A0;..n = s0;..n  ⇒  q′ = (s0;..± s–1;"eog" : A) .  In words, the new problem  
P  says that if the strings in  A  look like  s  up to index  n , then the question is whether  s  is in  A  
(with a suitable adjustment of sentinels).  The proof of this refinement uses the fact that  E  is a 
nonempty bunch, but we will not need the fact that  E  is a bunch of nonempty strings.  Here is the 
refinement of the remaining problem.
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P   ⇐ if sn: An then (A:= (§a: A· an = sn).  n:= n+1.  P)
else q:=  "eog": An  ∧  sn="eos"

From  P  we know that all strings in  A  are identical to  s  up to index  n .  If there are strings in  A  
that agree with  s  at index  n , then we reduce bunch  A  to just those strings, and move along one 
index.  If not, then either we have run out of candidates and we should assign  ƒ  to  q , or we have 
come to the end of  s  and also to the end of one of the candidates and we should assign  †  to  q .  
We omit the proofs of these refinements in order to pursue our current topic, data transformation.

We now replace variable  A  with variable  b  whose value is a single string of texts.  We represent 
bunch  E  with the text  "〈E〉" , which we assume cannot be in the given string  s . (In parsing theory  
"〈E〉"  is called a “nonterminal”.)  For example, the string of texts

"if"; "x"; "then"; "〈E〉"; "else"; "〈E〉"
represents the bunch of strings of texts

"if"; "x"; "then"; E; "else"; E
The data transformer is, informally,

A  =  ( b  with all occurrences of item  "〈E〉"  replaced by bunch  E )
The result of the transformation is as follows ( Q  is the result of transforming  P ).

q′ = (s0;..± s–1 : E)   ⇐   b:= "〈E〉";"eog".  n:= 0.  Q

Q   ⇐ if sn=bn then (n:= n+1.  Q)
else if bn="〈E〉"  ∧  sn="x" then (b:= b0;..n;"x";bn+1;..±b.  n:= n+1.  Q)
else if bn="〈E〉"  ∧  sn="if"
       then (b:= b0;..n;"if";"〈E〉";"then";"〈E〉";"else";"〈E〉";bn+1;..± b.  n:= n+1.  Q)
else q:=  bn="eog" ∧ sn="eos"

We can make a minor improvement by changing the representation of  E  from  "〈E〉"  to  "x" ;  
then one of the cases disappears, and we get

q′ = (s0;..± s–1 : E)   ⇐   b:= "x";"eog".  n:= 0.  Q

Q   ⇐ if sn=bn then (n:= n+1.  Q)
else if bn="x"  ∧  sn="if"

then (b:= b0;..n;"if";"x";"then";"x";"else";"x";bn+1;..±b.  n:= n+1.  Q)
else q:=  bn="eog" ∧ sn="eos"

Our next improvement is to notice that we don't need the initial portion of  b , which is identical to 
the initial portion of  s .  So we transform again, replacing  b  with  c  using the transformer

b  =  s0;..n;c
The result of the transformation is as follows ( R  is the result of transforming  Q ).

q′ = (s0;..± s–1 : E)   ⇐   c:= "x";"eog".  n:= 0.  R

R   ⇐ if sn=c0 then (c:= c1;..±c.  n:= n+1.  R)
else if c0="x"  ∧  sn="if" then (c:= "x";"then";"x";"else";c.  n:= n+1.  R)
else q:=  c0="eog" ∧ sn="eos"

Variable  c  behaves as a stack, so we could replace it by stack operations.
                                                                                                                                         End of Parsing
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7.2.3  Limited Queue

The next example, Exercise 371, transforms a limited queue to achieve a time bound that is not met 
by the original implementation.  A limited queue is a queue with a limited number of places for 
items.  Let the limit be positive natural  n , and let  Q: [n*X]  and  p: nat  be implementer's variables.  
Then the original implementation is as follows.

mkemptyq  =  p:= 0
isemptyq  =  p=0
isfullq  =  p=n
join x  =  Qp:= x.  p:= p+1
leave  =  for i:= 1;..p do Q(i–1):= Qi.  p:= p–1
front  =  Q0

A user of this theory would be well advised to precede any use of  join  with the test  ¬isfullq , and 
any use of  leave  or  front  with the test  ¬isemptyq .

A new item joins the back of the queue at position  p  taking zero time (measured recursively) to do 
so.  The front item is always found instantly at position  0 .  Unfortunately, removing the front item 
from the queue takes time  p–1  to shift all remaining items down one index.  We want to transform 
the queue so that all operations are instant.  Variables  Q  and  p  will be replaced by  R: [n*X]  and  
f, b: 0,..n  with  f  and  b  indicating the current front and back.

Q
 p

R
 f b

leave from here and shift left
join here join here

leave from here

nn 00
R

 b  f

join here
leave from here

n0

The idea is that  b  and  f  move cyclically around the list;  when  f  is to the left of  b  the queue 
items are between them;  when  b  is to the left of  f  the queue items are in the outside portions.  
Here is the data transformer  D .

0 ≤ p = b–f < n  ∧  Q[0;..p] = R[f;..b]
∨ 0 < p = n–f+b ≤ n  ∧  Q[0;..p] = R[(f;..n); (0;..b)]

Now we transform.  First  mkemptyq .
∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ p′=0 ∧ Q′=Q several omitted steps

= f′=b′
⇐ f:= 0.  b:= 0

Next we transform  isemptyq .  Although  isemptyq  happens to be boolean and can be interpreted 
as an unimplementable specification, its purpose (like  front , which isn't boolean) is to tell the user 
about the state of the queue.  We don't transform arbitrary expressions;  we transform 
implementable specifications (usually programs).  So we suppose  c  is a user's variable, and 
transform  c:= isemptyq .

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ c′=(p=0) ∧ p′=p ∧ Q′=Q several omitted steps
= f<b  ∧  f′<b′  ∧  b–f = b′–f′  ∧  R[f;..b] = R′[f′;..b′]  ∧  ¬c′

∨ f<b  ∧  f′>b′  ∧  b–f = n+b′–f′  ∧  R[f;..b] = R′[(f′;..n); (0;..b′)]  ∧  ¬c′
∨ f>b  ∧  f′<b′  ∧  n+b–f = b′–f′  ∧  R[(f;..n); (0;..b)] = R′[f′;..b′]  ∧  ¬c′
∨ f>b  ∧  f′>b′  ∧  b–f = b′–f′  ∧  R[(f;..n); (0;..b)]=R′[(f′;..n); (0;..b′)]  ∧  ¬c′
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Initially  R  might be in the “inside” or “outside” configuration, and finally  R′  might be either 
way, so that gives us four disjuncts.  Very suspiciously, we have  ¬c′  in every case.  That's because  
f=b  is missing!  So the transformed operation is unimplementable.  That's the transformer's way of 
telling us that the new variables do not hold enough information to answer whether the queue is 
empty.  The problem occurs when  f=b  because that could be either an empty queue or a full queue.  
A solution is to add a new variable  m: bool  to say whether we have the “inside” mode or 
“outside” mode.  We revise the transformer  D  as follows:

m  ∧  0 ≤ p = b–f < n  ∧  Q[0;..p] = R[f;..b]
∨ ¬m  ∧  0 < p = n–f+b ≤ n  ∧  Q[0;..p] = R[(f;..n); (0;..b)]

Now we have to retransform  mkemptyq .
∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ p′=0 ∧ Q′=Q several omitted steps

= m′  ∧  f′=b′
⇐ m:= †.  f:= 0.  b:= 0

Next we transform  c:= isemptyq .
∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ c′=(p=0) ∧ p′=p ∧ Q′=Q several omitted steps

= m  ∧  f<b  ∧  m′  ∧  f′<b′  ∧  b–f = b′–f′  ∧  R[f;..b] = R′[f′;..b′]  ∧  ¬c′
∨ m  ∧  f<b  ∧  ¬m′  ∧  f′>b′  ∧  b–f = n+b′–f′

∧  R[f;..b] = R′[(f′;..n); (0;..b′)]  ∧  ¬c′
∨ ¬m  ∧  f>b  ∧  m′  ∧  f′<b′  ∧  n+b–f = b′–f′

∧  R[(f;..n); (0;..b)] = R′[f′;..b′]  ∧  ¬c′
∨ ¬m  ∧  f>b  ∧  ¬m′  ∧  f′>b′  ∧  b–f = b′–f′

∧  R[(f;..n); (0;..b)] = R′[(f′;..n); (0;..b′)]  ∧  ¬c′
∨ m  ∧  f=b  ∧  m′  ∧  f′=b′  ∧  c′
∨ ¬m ∧  f=b  ∧  ¬m′  ∧  f′=b′  ∧  R[(f;..n); (0;..b)]=R′[(f′;..n); (0;..b′)]  ∧  ¬c′

⇐ c′ = (m ∧ f=b) ∧ f′=f ∧ b′=b ∧ R′=R
= c:=  m ∧ f=b

The transformed operation offered us the opportunity to rotate the queue within  R , but we declined 
to do so.  For other data structures, it is sometimes a good strategy to reorganize the data structure 
during an operation, and data transformation always tells us what reorganizations are possible.  
Each of the remaining transformations offers the same opportunity, but there is no reason to rotate 
the queue, and we decline each time.

Next we transform  c:= isfullq ,  join x , and  leave .
∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ c′=(p=n) ∧ p′=p ∧ Q′=Q several omitted steps

⇐ c:=  ¬m ∧ f=b

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ Q′=Q[0;..p]+[x]+Q[p+1;..n] ∧ p′=p+1
several omitted steps

⇐ Rb:= x.  if b+1=n then (b:= 0.  m:= ƒ) else b:= b+1

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ Q′=Q[(1;..p); (p–1;..n)] ∧ p′=p–1 several omitted steps
⇐ if f+1=n then (f:= 0.  m:= †) else f:= f+1

Last we transform  x:= front  where  x  is a user's variable of the same type as the items.
∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ x′=Q0 ∧ p′=p ∧ Q′=Q several omitted steps

⇐ x:=  R f
                                                                                                                                 End of Limited Queue
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7.2.4  Soundness and Completeness optional

Data transformation is sound in the sense that a user cannot tell that a transformation has been 
made;  that was the criterion of its design.  But it is possible to find two programs that behave 
identically from a user's view, but for which there is no data transformer to transform one into the 
other.  In that sense, data transformation is incomplete.

Exercise 374 illustrates the problem.  The user's variable is  i  and the implementer's variable is  j , 
both of type  nat .  The operations are:

initialize  =  i′ = 0 ≤ j′ < 3
step  =  if j>0 then (i:= i+1.  j:= j–1) else ok

The user can look at  i  but not at  j .  The user can  initialize , which starts  i  at  0  and starts  j  at 
any of  3  values.  The user can then repeatedly  step  and observe that  i  increases  0  or  1  or  2  
times and then stops increasing, which effectively tells the user what value  j  started with.

If this were a practical problem, we would notice that  initialize  can be refined, resolving the 
nondeterminism.  For example,

initialize   ⇐   i:= 0.  j:= 0
We could then transform  initialize  and  step  to get rid of  j , replacing it with nothing.  The 
transformer is  j=0 .  It transforms the implementation of  initialize  as follows:

∀j· j=0 ⇒ ∃j′· j′=0 ∧ i′=j′=0
= i:= 0

And it transforms  step  as follows:
∀j· j=0 ⇒ ∃j′· j′=0  ∧  if j>0 then (i:= i+1.  j:= j–1) else ok

= ok
If this were a practical problem, we would be done.  But the theoretical problem is to replace  j  with 
boolean variable  b  without resolving the nondeterminism, so that

initialize is transformed to i′=0
step is transformed to if b ∧ i<2 then i′ = i+1 else ok

Now the transformed  initialize  starts  b  either at  † , meaning that  i  will be increased, or at  ƒ , 
meaning that  i  will not be increased.  Each use of the transformed  step  tests  b  to see if we might 
increase  i , and checks  i<2  to ensure that  i  will remain below  3 .  If  i  is increased,  b  is again 
assigned either of its two values.  The user will see  i  start at  0  and increase  0  or  1  or  2  times 
and then stop increasing, exactly as in the original specification.  The nondeterminism is 
maintained.  But there is no transformer in variables  i ,  j , and  b  to do the job.
                                                                                                              End of Soundness and Completeness

                                                                                                                         End of Data Transformation

                                                                                                      End of Theory Design and Implementation

117 7  Theory Design and Implementation



118

8  Concurrency
Concurrency, also known as parallelism, means two or more activities occurring at the same time.  
In some other books, the words “concurrency” and “parallelism” are used to mean that the 
activities occur in an unspecified sequence, or that they are composed of smaller activities that occur 
in an interleaved sequence.  But in this book they mean that there is more than one activity at a time.

8.0  Independent Composition

We define the independent composition of specifications  P  and  Q  so that  P||Q  (pronounced “ P  
parallel  Q ”) is satisfied by a computer that behaves according to  P  and, at the same time, in 
parallel, according to  Q .  The operands of  ||  are called processes.

When we defined the dependent composition of  P  and  Q , we required that  P  and  Q  have 
exactly the same state variables, so that we could identify the final state of  P  with the initial state of  
Q .  For independent composition  P||Q , we require that  P  and  Q  have completely different state 
variables, and the state variables of the composition  P||Q  are those of both  P  and  Q .  If we 
ignore time and space, independent composition is conjunction.

P||Q   =   P∧Q

When we decide to create an independent composition, we decide how to partition the variables.  
Given specification  S , if we choose to refine it as  S ⇐ P||Q , we have to decide which variables of  
S  belong to  P , and which to  Q .  For example, in variables  x ,  y , and  z , the specification

x′ = x+1  ∧  y′ = y+2  ∧  z′=z
can be refined by the independent composition

x:= x+1 || y:= y+2
if we partition the variables.  Clearly  x  has to belong to the left process for the assignment to  x  to 
make sense, and similarly  y  has to belong to the right process.  As for  z , it doesn't matter which 
process we give it to;  either way

x:= x+1 || y:= y+2   =   x′ = x+1  ∧  y′ = y+2  ∧  z′=z

If we are presented with an independent composition, and we are not told how the variables are 
partitioned, we have to determine a partitioning that makes sense.  Here's a way that usually works:  
If either  x′  or  x:=  appears in a process specification, then  x  belongs to that process, so neither  x′  
nor  x:=  can appear in the other process specification.  If neither  x′  nor  x:=  appears at all, then  x  
can be placed on either side of the partition.

In the next example
x:= y || y:= x

again  x  belongs to the left process,  y  to the right process, and  z  to either process.  In the left 
process,  y  appears, but neither  y′  nor  y:=  appears, so  y  is a state constant, not a state variable, in 
the left process.  Similarly  x  is a state constant in the right process.  And the result is

x:= y || y:= x   =   x′=y ∧ y′=x ∧ z′=z
Variables  x  and  y  swap values, apparently without a temporary variable.  In fact, an 
implementation of a process will have to make a private copy of the initial value of a variable 
belonging to the other process if the other process contains an assignment to that variable.



In boolean variable  b  and integer variable  x ,
b:= x=x  ||  x:= x+1 replace  x=x  by  †

= b:= †  ||  x:= x+1
On the first line, it may seem possible for the process on the right side to increase  x  between the 
two evaluations of  x  in the left process, resulting in the assignment of  ƒ  to  b .  And that would 
be a mathematical disaster;  we could not even be sure  x=x .  According to the last line, this does 
not happen;  both occurrences of  x  in the left process refer to the initial value of variable  x .  We 
can use the reflexive and transparent axioms of equality, and replace  x=x  by  † .

In a dependent composition as defined in Chapter 4, the intermediate values of variables are local to 
the dependent composition;  they are hidden by the quantifier  ∃x′′, y′′, ··· .  If one process is a 
dependent composition, the other cannot see its intermediate values.  For example,

(x:= x+1.  x:= x–1)  ||  y:= x
= ok || y:= x
= y:= x

On the first line, it may seem possible for the process on the right side to evaluate  x  between the 
two assignments to  x  in the left process.  According to the last line, this does not happen;  the 
occurrence of  x  in the right process refers to the initial value of variable  x .  In the next chapter we 
introduce interactive variables and communication channels between processes, but in this chapter 
our processes are not able to interact.

In the previous example, we replaced  (x:= x+1. x:= x–1)  by  ok .  And of course we can make the 
reverse replacement whenever  x  is one of the state variables.  Although  x  is one of the variables of 
the composition

ok || x:= 3
it is not one of the variables of the left process  ok  due to the assignment in the right process.  So 
we cannot equate that composition to

(x:= x+1.  x:= x–1)  ||  x:= 3

Sometimes the need for shared memory arises from poor program structure.  For example, suppose 
we decide to have two processes, as follows.

(x:= x+y.  x:= x×y)
|| (y:= x–y.  y:= x/y)

The first modifies  x  twice, and the second modifies  y  twice.  But suppose we want the second 
assignment in each process to use the values of  x  and  y  after the first assignments of both 
processes.  This may seem to require not only a shared memory, but also synchronization of the 
two processes at their mid-points, forcing the faster process to wait for the slower one, and then to 
allow the two processes to continue with the new, updated values of  x  and  y .  Actually, it requires 
neither shared memory nor synchronization devices.  It is achieved by writing

(x:= x+y  ||  y:= x–y).  (x:= x×y  ||  y:= x/y)

So far, independent composition is just conjunction, and there is no need to introduce a second 
symbol  ||  for conjunction.  But now we consider time.  The time variable is not subject to 
partitioning;  it belongs to both processes.  In  P||Q , both  P  and  Q  begin execution at time  t , but 
their executions may finish at different times.  Execution of the composition  P||Q  finishes when 
both  P  and  Q  are finished.  With time, independent composition is defined as

P||Q =   ∃tP, tQ·  〈t′→P〉tP  ∧  〈t′→Q〉tQ  ∧  t′ = max tP tQ
=   ∃tP, tQ·      (substitute  tP  for  t′  in  P )

∧  (substitute  tQ  for  t′  in  Q )
∧  t′ = max tP tQ
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8.0.0  Laws of Independent Composition

Let  x  and  y  be different state variables, let  e ,  f , and  b  be expressions of the prestate, and let  P ,  
Q ,  R , and  S  be specifications.  Then

(x:= e || y:= f).  P   =   (for  x  substitute  e  and independently for  y  substitute  f  in  P )
independent substitution

P || Q  =  Q || P symmetry
P || (Q || R)  =  (P || Q) || R associativity
P || ok  =  ok || P  =  P identity
P || Q∨R  =  (P || Q) ∨ (P || R) distributivity
P || if b then Q else R  =  if b then (P || Q) else (P || R) distributivity
if b then (P||Q) else (R||S)  =  if b then P else R || if b then Q else S  distributivity

The Associative Law says we can compose any number of processes without worrying how they 
are grouped.  As an example of the Substitution Law,

(x:= x+y || y:= x×y).  z′ = x–y   =   z′ = (x+y) – (x×y)
Note that each substitution replaces all and only the original occurrences of its variable.  This law 
generalizes the earlier Substitution Law from one variable to two, and it can be generalized further to 
any number of variables.

Refinement by Steps works for independent composition:
If  A  ⇐  B||C  and  B ⇐ D  and  C ⇐ E  are theorems, then  A  ⇐  D||E  is a theorem.

So does Refinement by Parts:
If  A  ⇐  B||C  and  D  ⇐  E||F  are theorems, then  A∧D  ⇐  B∧E || C∧F  is a theorem.

                                                                                                        End of Laws of Independent Composition

8.0.1  List Concurrency

We have defined independent composition by partitioning the variables.  For finer-grained 
concurrency, we can extend this same idea to the individual items within list variables.  In Chapter 5 
we defined assignment to a list item as

Li:= e     =     L′i=e  ∧  (∀j· j+i ⇒ L′j=Lj)  ∧  x′=x  ∧  y′=y  ∧ ...
which says not only that the assigned item has the right final value, but also that all other items and 
all other variables do not change value.  For independent composition, we must specify the final 
values of only the items and variables in one side of the partition.

As a good example of list concurrency, we do Exercise 140:  find the maximum item in a list.  The 
maximum of a list is easily expressed with the  MAX  quantifier, but we will assume  MAX  is not 
implemented.  The easiest and simplest solution is probably functional, with parallelism coming 
from the fact that the arguments of a function (operands of an operator) can always be evaluated in 
parallel.  To use our parallel operator, we present an imperative solution.  Let  L  be the list whose 
maximum item is sought.  If  L  is an empty list, its maximum is  –∞ ;  assume that  L  is 
nonempty.  Assume further that  L  is a variable whose value is not wanted after we know its 
maximum (we'll remove this assumption later).  Our specification will be  L′ 0 = MAX L  ;  at the 
end, item  0  of list  L  will be the maximum of all original items.  The first step is to generalize from 
the maximum of a nonempty list to the maximum of a nonempty segment of a list.  So define

findmax   =   〈i, j→i<j ⇒ L′ i = MAX L [i;..j]〉
Our specification is  findmax 0 (#L) .  We refine as follows.
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findmax i j   ⇐ if j–i = 1 then ok
else ( (findmax i (div (i+j) 2) || findmax (div (i+j) 2) j).

L i := max (L i) (L (div (i+j) 2)) )
If  j–i = 1  the segment contains one item;  to place the maximum item (the only item) at index  i  
requires no change.  In the other case, the segment contains more than one item;  we divide the 
segment into two halves, placing the maximum of each half at the beginning of the half.  In the 
parallel composition, the two processes  findmax i (div (i+j) 2)  and  findmax (div (i+j) 2) j   change 
disjoint segments of the list.  We finish by placing the maximum of the two maximums at the start 
of the whole segment.  The recursive execution time is  ceil ( log (j–i)) , exactly the same as for 
binary search, which this program closely resembles.

If list  L  must remain constant, we can use a new list  M  of the same type as  L  to collect our 
partial results.  We redefine

findmax   =   〈i, j→i<j ⇒ M′ i = MAX L [i;..j]〉
and in the program we change  ok  to  M i := L i  and we change the final assignment to

M i := max (M i) (M (div (i+j) 2))
                                                                                                                             End of List Concurrency

                                                                                                                  End of Independent Composition

8.1  Sequential to Parallel Transformation

The goal of this section is to transform programs without concurrency into programs with 
concurrency.  A simple example illustrates the idea.  Ignoring time,

x:= y.  x:= x+1.  z:= y
= x:= y.  (x:= x+1  ||  z:= y)
= (x:= y.  x:= x+1)  ||  z:= y

Execution of the program on the first line can be depicted as follows.

start               x:= y               x:= x+1               z:= y               finish

The first two assignments cannot be executed concurrently, but the last two can, so we transform the 
program.  Execution can now be depicted as

start               x:= y                                      finish

x:= x+1

z:= y

Now we have the first and last assignments next to each other, in sequence;  they too can be 
executed concurrently.  Execution can be

x:= y               x:= x+1

z:= y
start                                                         finish

Whenever two programs occur in sequence, and neither assigns to any variable assigned in the 
other, and no variable assigned in the first appears in the second, they can be placed in parallel;  a 
copy must be made of the initial value of any variable appearing in the first and assigned in the 
second.  Whenever two programs occur in sequence, and neither assigns to any variable appearing 
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in the other, they can be placed in parallel without any copying of initial values.  This transformation 
does not change the result of a computation, but it may decrease the time, and that is the reason for 
doing it.

Program transformation to obtain concurrency can often be performed automatically by the 
implementation.  Sometimes it can only be performed by the implementation because the result is 
not expressible as a source program.

8.1.0  Buffer

Consider two programs,  produce  and  consume , whose only common variable is  b .   produce  
assigns to  b  and  consume  uses the value of  b .

produce   =   ········b:= e········
consume   =   ········x:= b········

These two programs are executed alternately, repeatedly, forever.
control   =   produce.  consume.  control

Using  P  for  produce  and  C  for  consume , execution looks like this:

P          C P          C P          C P          C

Many programs have producer and consumer components somewhere in them.  Variable  b   is 
called a buffer;  it may be a large data structure.  The idea is that  produce  and  consume  are time-
consuming, and we can save time if we put them in parallel.  As they are, we cannot put them in 
parallel because the first assigns to  b  and the second uses  b .  So we unroll the loop once.

control   =   produce.  newcontrol
newcontrol   =   consume.  produce.  newcontrol

and  newcontrol  can be transformed to
newcontrol   =   (consume || produce).  newcontrol

In this transformed program, the implementation of  consume  will have to capture a copy of the 
initial value of  b .  Or, we could do this capture at source level by splitting  b  into two variables,  p  
and  c , as follows.

produce   =   ········p:= e········
consume   =   ········x:= c········
control   =   produce.  newcontrol
newcontrol   =   c:= p.  (consume || produce).  newcontrol

Using  B  for the assignment  c:= p , execution is

   

P

         B

P

         B

C

P

         B

C

P

         B

C

P

         B

C

P

         B

C

P

         B

C C

If one of  produce  or  consume  consistently takes longer than the other, this is the best that can be 
done.  If their execution times vary so that in some cycles  produce  takes longer while in others  
consume  takes longer, we can improve by splitting the buffer into an infinite list.  We need natural 
variable  w  to indicate how much  produce  has written into the buffer, and natural variable  r  to 
indicate how much  consume  has read from the buffer.  We initialize both  w  and  r  to  0 .  Then

produce   =   ········bw:= e.  w:= w+1········
consume   =   ········x:= br.  r:= r+1········
control   =   produce.  consume.  control
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If  w+r  then  produce  and  consume  can be executed in parallel, as follows.

P P

C

P

C

P

C

P

C

P

C

P

C

P

C

When the execution of  produce  is fast, it can get arbitrarily far ahead of the execution of  
consume .  When the execution of  consume  is fast, it can catch up to  produce  but not pass it;  the 
sequence is retained when  w=r .  The opportunity for parallel execution can be found automatically 
by the programming language implementation (compiler), or it can be told to the implementation in 
some suitable notation.  But, in this example, the resulting execution pattern is not expressible as a 
source program without additional interactive constructs (Chapter 9).

If the buffer is a finite list of length  n , we can use it in a cyclic fashion with this modification:
produce   =   ········bw:= e.  w:= mod (w+1) n········
consume   =   ········x:= br.  r:= mod (r+1) n········
control   =   produce.  consume.  control

As before,  consume  cannot overtake  produce  because  w=r  when the buffer is empty.  But now  
produce  cannot get more than  n  executions ahead of  consume  because  w=r  also when the 
buffer is full.
                                                                                                                                           End of Buffer

Programs are sometimes easier to develop and prove when they do not include any mention of 
concurrency.  The burden of finding concurrency can be placed upon a clever implementation.  
Synchronization is what remains of sequential execution after all opportunities for concurrency 
have been found.

8.1.1  Insertion Sort

Exercise 169 asks for a program to sort a list in time bounded by the square of the length of the list.  
Here is a solution.  Let the list be  L , and define

sort   =   〈n→∀i, j: 0,..n· i≤j ⇒ Li ≤ Lj〉
so that  sort n  says that  L  is sorted up to index  n .  The specification is

( L′  is a permutation of  L ) ∧ sort′ (#L) ∧ t′ ≤ t + (#L)2

We leave the first conjunct informal, and ensure that it is satisfied by making all changes to  L  
using

swap i j   =   Li:= Lj || Lj:= Li
We ignore the last conjunct;  program transformation will give us a linear time solution.  The 
second conjunct is equal to  sort 0 ⇒ sort′ (#L)  since  sort 0  is a theorem.

sort 0 ⇒ sort′ (#L)   ⇐   for n:= 0;..#L do sort n ⇒ sort′ (n+1)
To solve  sort n ⇒ sort′ (n+1) , it may help to refer to an example list.

[   L 0 ;   L 1 ;   L 2 ;   L 3 ;   L 4 ]
0 1 2 3 4 5

sort n ⇒ sort′ (n+1)   ⇐ if n=0 then ok
else if L (n–1) ≤ L n then ok
else (swap (n–1) n.   sort (n–1) ⇒ sort′ n)
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If we consider  sort n ⇒ sort′ (n+1)  to be a procedure with parameter  n  we are finished;  the final 
specification  sort (n–1) ⇒ sort′ n  calls the same procedure with argument  n–1 .  Or, we could let  
n  be a variable instead of a for-loop index, and decrease it by  1  just before the final call.  We leave 
this detail, and move on to the possibilities for parallel execution.

Let  C n  stand for the comparison  L (n–1) ≤ L n  and let  S n  stand for  swap (n–1) n .  For  
#L=5 , the worst case sequential execution is shown in the following picture.

C 1      S  1

C 2      S  2      C 1      S  1

C 3      S  3      C 2      S  2      C 1      S  1

C 4      S  4      C 3      S  3      C 2      S  2      C 1      S  1

If  i  and  j  differ by more than  1 , then  S i   and  S j   can be executed concurrently.  Under the 
same condition,  S i   can be executed and  C j  can be evaluated concurrently.  And of course, any 
two expressions such as  C i  and  C j  can always be evaluated concurrently.  Execution becomes

C 1     S 1                             C 1     S 1                             C 1     S 1                             C 1     S 1

                      C 2     S 2                             C 2     S 2                             C 2     S 2

                                             C 3     S 3                             C 3     S 3

                                                                   C 4     S 4

For the ease of writing a quadratic-time sequential sort, given a clever implementation, we obtain a 
linear-time parallel sort.
                                                                                                                                 End of Insertion Sort

8.1.2  Dining Philosophers

Exercise 384:  Five philosophers are sitting around a round table.  At the center of the table is an 
infinite bowl of noodles.  Between each pair of neighboring philosophers is a chopstick.  Whenever 
a philosopher gets hungry, the hungry philosopher reaches for the chopstick on the left and the 
chopstick on the right, because it takes two chopsticks to eat.  If either chopstick is unavailable 
because the neighboring philosopher is using it, then this hungry philosopher will have to wait until 
it is available again.  When both chopsticks are available, the philosopher eats for a while, then puts 
down the chopsticks, and goes back to thinking, until the philosopher gets hungry again.  The 
problem is to write a program whose execution simulates the life of these philosophers.  It may 
happen that all five philosophers get hungry at the same time, they each pick up their left chopstick, 
they then notice that their right chopstick isn't there, and they each decide to wait for their right 
chopstick while holding on to their left chopstick.  That's a deadlock, and the program must be 
written so that doesn't happen.  If we write the program so that only one philosopher gets hungry at 
a time, there won't be any deadlock, but there won't be much concurrency either.

This problem is a standard one, used in many textbooks, to illustrate the problems of concurrency 
in programming.  There is often one more criterion:  each philosopher eats infinitely many times.  
But we won't bother with that.  We'll start with the one-at-a-time version in which there is no 
concurrency and no deadlock.  Number the philosophers from  0  through  4  going round the 
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table.  Likewise number the chopsticks so that the two chopsticks for philosopher  i  are numbered  
i  and  i+1  (all additions in this exercise are modulo  5 ).

life = (P 0 ∨ P 1 ∨ P 2 ∨ P 3 ∨ P 4).  life
P i = up i.  up(i+1).  eat i.  down i.  down(i+1)
up i = chopstick i:= †
down i = chopstick i:= ƒ
eat i = ······chopstick i······chopstick(i+1)······

These definitions say that life is a completely arbitrary sequence of  P i   actions (choose any one, 
then repeat), where a  P i   action says that philosopher  i  picks up the left chopstick, then picks up 
the right chopstick, then eats, then puts down the left chopstick, then puts down the right chopstick.  
For these definitions to become a program, we need to decide how to make the choice among the  
P i  each iteration;  or perhaps we can leave it to the implementation to make the choice (this is 
where the criterion that each philosopher eats infinitely often would be met).  It is unclear how to 
define  eat i , except that it uses two chopsticks.  (If this program were intended to accomplish some 
purpose, we could eliminate variable  chopstick , replacing both occurrences in  eat i   by  † .  But 
the program is intended to describe an activity, and eating makes use of two chopsticks.)

Now we transform to get concurrency.
If  i+j ,  (up i. up j)  becomes  (up i || up j) .
If  i+j ,  (up i. down j)  becomes  (up i || down j) .
If  i+j ,  (down i. up j)  becomes  (down i || up j) .
If  i+j ,  (down i. down j)  becomes  (down i || down j) .
If  i+j ∧ i+1+j ,  (eat i. up j)  becomes  (eat i || up j) .
If  i+j ∧ i+j+1 ,  (up i. eat j)  becomes  (up i || eat j) .
If  i+j ∧ i+1+j ,  (eat i. down j)  becomes  (eat i || down j) .
If  i+j ∧ i+j+1 ,  (down i. eat j)  becomes  (down i || eat j) .
If  i+j ∧ i+1+j ∧ i+j+1 ,  (eat i. eat j)  becomes  (eat i || eat j) .

Different chopsticks can be picked up or put down at the same time.  Eating can be in parallel with 
picking up or putting down a chopstick, as long as it isn't one of the chopsticks being used for the 
eating.  And finally, two philosophers can eat at the same time as long as they are not neighbors.  
All these transformations are immediately seen from the definitions of  up ,  down ,  eat , and 
independent composition.  They are not all immediately applicable to the original program, but 
whenever a transformation is made, it may enable further transformations.

Before any transformation, there is no possibility of deadlock.  No transformation introduces the 
possibility.  The result is the maximum concurrency that does not lead to deadlock.  A clever 
implementation can take the initial program (without concurrency) and make the transformations.

A mistake often made in solving the problem of the dining philosophers is to start with too much 
concurrency.

life = P 0 || P 1 || P 2 || P 3 || P 4
P i = (up i || up(i+1)).  eat i.  (down i || down(i+1)).  P i

Clearly  P 0  cannot be placed in parallel with  P 1  because they both assign and use  chopstick 1 .  
Those who start this way must then try to correct the error by adding mutual exclusion devices and 
deadlock avoidance devices, and that is what makes the problem hard.  It is better not to make the 
error;  then the mutual exclusion devices and deadlock avoidance devices are not needed.
                                                                                                                        End of Dining Philosophers

                                                                                                    End of Sequential to Parallel Transformation

                                                                                                                                   End of Concurrency
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9  Interaction
We have been describing computation according to the initial values and final values of state 
variables.  A state variable declaration

var x: T· S   =   ∃x, x′: T· S
says that a state variable is really two mathematical variables, one for the initial value and one for the 
final value.  Within the scope of the declaration,  x  and  x′  are available for use in specification  S .  
There are intermediate values whenever there is a dependent (sequential) composition, but these 
intermediate values are local to the definition of dependent composition.

P. Q   =   ∃x′′, y′′, ...·  〈x′, y′, ...→P〉 x′′ y′′ ...  ∧  〈x, y, ...→Q〉 x′′ y′′ ...
Consider  (P. Q) || R .  The intermediate values between  P  and  Q  are hidden in the dependent 
composition, and are not visible to  R , so they cannot be used for process interaction.

A variable whose value is visible only initially and finally is called a boundary variable, and a 
variable whose value is visible all the time is called an interactive variable.  So far our variables have 
all been boundary variables.  Now we introduce interactive variables whose intermediate values are 
visible to parallel processes.  These variables can be used to describe and reason about interactions 
between people and computers, and between processes, during the course of a computation.

9.0  Interactive Variables

Let the notation  ivar x: T· S  declare  x  to be an interactive variable of type  T  and scope  S .  It is 
defined as follows.

ivar x: T· S   =   ∃x: time→T· S
where  time  is the domain of time, usually either the extended integers or the extended reals.  An 
interactive variable is a function of time.  The value of variable  x  at time  t  is  x t .

Suppose  a  and  b  are boundary variables,  x  and  y  are interactive variables, and  t  is time.  For 
independent composition we partition all the state variables, boundary and interactive.  Suppose  a  
and  x  belong to  P , and  b  and  y  belong to  Q .

P||Q =   ∃tP, tQ·     〈t′→P〉 tP  ∧  (∀t′′· tP≤t′′≤t′ ⇒ xt′′=x(tP))
∧  〈t′→Q〉 tQ  ∧  (∀t′′· tQ≤t′′≤t′ ⇒ yt′′=y(tQ))
∧  t′ = max tP tQ

The new part says that when the shorter process is finished, its interactive variables remain 
unchanged while the longer process is finishing.

Using the same processes and variables as in the previous paragraph, the assignment  x:= a+b+x+y  
in process  P  assigns to variable  x  the sum of four values.  Since  a  and  x  are variables of 
process  P , their values are the latest ones assigned to them by process  P , or their initial values if 
process  P  has not assigned to them.  Since  b  is a boundary variable of process  Q , its value, as 
seen in  P , is its initial value, regardless of whether  Q  has assigned to it.  Since  y  is an interactive 
variable of process  Q , its value, as seen in  P , is the latest one assigned to it by process  Q , or its 
initial value if  Q  has not assigned to it, or unknown if  Q  is in the middle of assigning to it.  Since  
x  is an interactive variable, its new value can be seen in all parallel processes.  The expression  
a+b+x+y  is an abuse of notation, since  a  and  b  are numbers and  x  and  y  are functions from 
time to numbers;  the value being assigned is actually  a+b+xt+yt , but we omit the argument  t  
when the context makes it clear.  We will similarly write  x′  to mean  xt′ , and  x′′  to mean  xt′′ .



The definition of  ok  says that the boundary variables and time are unchanged.  So in process  P  of 
the previous two paragraphs,

ok   =   a′=a  ∧  t′=t
There is no need to say  x′=x , which means  xt′=xt , since  t′=t .  We do not mention  b  and  y  
because they are not variables of process  P .

Assignment to an interactive variable cannot be instantaneous because it is time that distinguishes its 
values.  In a process where the boundary variables are  a  and  b , and the interactive variables are  x  
and  y ,

x:= e   = a′=a  ∧  b′=b  ∧  x′=e  ∧  (∀t′′· t≤t′′≤t′ ⇒ y′′=y)
∧ t′ = t+(the time required to evaluate and store  e )

interactive variable  y  remains unchanged throughout the duration of the assignment to  x .  Nothing 
is said about the value of  x  during the assignment.

Assignment to a boundary variable can be instantaneous if we wish.  If we choose to account for its 
time, we must say that all interactive variables remain unchanged during the assignment.

Dependent composition hides the intermediate values of the boundary and time variables, leaving 
the intermediate values of the interactive variables visible.  In boundary variables  a  and  b , and 
interactive variables  x  and  y , and time  t , we define

P. Q   =   ∃a′′, b′′, t′′·  〈a′, b′, t′→P〉 a′′ b′′ t′′  ∧  〈a, b, t→Q〉 a′′ b′′ t′′

Most of the specification laws and refinement laws survive the addition of interactive variables, but 
sadly, the Substitution Law no longer works.

If processes  P  and  Q  are in parallel, they have different variables.  Suppose again that boundary 
variable  a  and interactive variable  x  are the variables of process  P , and that boundary variable  b  
and interactive variable  y  are the variables of process  Q .  In specification  P , the inputs are  a , b , 
xt , and  yt′′  for  t≤t′′<t′ .  In specification  P , the outputs are  a ′ , and  xt′′  for  t<t′′≤t′ .  
Specification  P  is implementable when

∀a, b, X, y, t· ∃a′, x, t′·  P  ∧  t≤t′  ∧  ∀t′′· t<t′′≤t′  ∨  x t′′=X t′′
As before,  P  must be satisfiable with nondecreasing time;  the new part says that  P  must not 
constrain its interactive variables outside the interval from  t  to  t′ .  We do not need to know the 
context of a process specification to check its implementability;  variables  b  and  y  appear only in 
the outside universal quantification.

Exercise 385 is an example in the same variables  a ,  b ,  x ,  y , and  t .  Suppose that time is an 
extended integer, and that each assignment takes time  1 .

(x:= 2.  x:= x+y.  x:= x+y) || (y:= 3.  y:= x+y) Clearly,  x  is a variable in the left
process and  y  is a variable in the right process.

Let's put  a  in the left process and  b  in the right process.
=    (a′=a ∧ xt′=2 ∧ t′=t+1. a′=a ∧ xt′= xt+yt ∧ t′=t+1. a′=a ∧ xt′= xt+yt ∧ t′=t+1)

||  (b′=b ∧ yt′=3 ∧ t′=t+1.  b′=b ∧ yt′= xt+yt ∧ t′=t+1)
=    (a′=a ∧ x(t+1)=2 ∧ x(t+2)= x(t+1)+y(t+1) ∧ x(t+3)= x(t+2)+y(t+2) ∧ t′=t+3)

||  (b′=b ∧ y(t+1)=3 ∧ y(t+2)= x(t+1)+y(t+1) ∧ t′=t+2)
=     a′=a ∧ x(t+1)=2 ∧ x(t+2)= x(t+1)+y(t+1) ∧ x(t+3)= x(t+2)+y(t+2)

∧  b′=b ∧ y(t+1)=3 ∧ y(t+2)= x(t+1)+y(t+1) ∧ y(t+3)=y(t+2) ∧ t′=t+3
=     a′=a ∧ x(t+1)=2 ∧ x(t+2)=5 ∧ x(t+3)=10

∧  b′=b ∧ y(t+1)=3 ∧ y(t+2)=y(t+3)=5 ∧  t′=t+3
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The example gives the appearance of lock-step synchrony only because we took each assignment 
time to be  1 .  More realistically, different assignments take different times, perhaps specified 
nondeterministically with lower and upper bounds.  Whatever timing policy we decide on, whether 
deterministic or nondeterministic, whether discrete or continuous, the definitions and theory remain 
unchanged.  Of course, complicated timing leads quickly to very complicated expressions that 
describe all possible interactions.  If we want to know only something, not everything, about the 
possible behaviors, we can proceed by implications instead of equations, weakening for the purpose 
of simplifying.  Programming goes the other way:  we start with a specification of desired behavior, 
and strengthen as necessary to obtain a program.

9.0.0  Thermostat

Exercise 388:  specify a thermostat for a gas burner.  The thermostat operates in parallel with other 
processes

thermometer || control || thermostat || burner
The thermometer and the control are typically located together, but they are logically distinct.  The 
inputs to the thermostat are:
• real  temperature , which comes from the thermometer and indicates the actual temperature.
• real  desired , which comes from the control and indicates the desired temperature.
• boolean  flame , which comes from a flame sensor in the burner and indicates whether there is 

a flame.
These three variables must be interactive variables because their values may be changed at any time 
by another process and the thermostat must react to their current values.  These three variables do 
not belong to the thermostat, and cannot be assigned values by the thermostat.  The outputs of the 
thermostat are:
• boolean  gas ;  assigning it  †  turns the gas on and  ƒ  turns the gas off.
• boolean  spark ;  assigning it  †  causes sparks for the purpose of igniting the gas.
Variables  gas  and  spark  belong to the thermostat process.  They must also be interactive 
variables;  the burner needs their current values.

Heat is wanted when the actual temperature falls  ε  below the desired temperature, and not wanted 
when the actual temperature rises  ε  above the desired temperature, where  ε  is small enough to be 
unnoticeable, but large enough to prevent rapid oscillation.  To obtain heat, the spark should be 
applied to the gas for at least  1  second to give it a chance to ignite and to allow the flame to 
become stable.  But a safety regulation states that the gas must not remain on and unlit for more 
than  3  seconds.  Another regulation says that when the gas is shut off, it must not be turned on 
again for at least  20  seconds to allow any accumulated gas to clear.  And finally, the gas burner 
must respond to its inputs within  1  second.

Here is a specification:
thermostat = (gas:= ƒ || spark:= ƒ).  GasIsOff

GasIsOff = if temperature < desired – ε
then ((gas:= † || spark:= † || t+1 ≤ t′ ≤ t+3).  spark:= ƒ.  GasIsOn)
else (((frame gas, spark· ok) || t < t′ ≤ t+1).  GasIsOff)

GasIsOn = if temperature < desired + ε  ∧  flame
then (((frame gas, spark· ok) || t < t′ ≤ t+1).  GasIsOn)
else ((gas:= ƒ || (frame spark· ok) || t+20 ≤ t′ ≤ t+21).  GasIsOff)
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We are using the time variable to represent real time in seconds.  The specification  t+1 ≤ t′ ≤ t+3  
represents the passage of at least  1  second but not more than  3  seconds.  The specification  
t+20 ≤ t′ ≤ t+21  is similar.  A specification that a computation be slow enough is always easy to 
satisfy.  A specification that it be fast enough requires us to build fast enough hardware;  in this 
case it is easy since instruction times are microseconds and the time bounds are seconds.

One can always argue about whether a formal specification captures the intent of an informal 
specification.  For example, if the gas is off, and heat becomes wanted, and the ignition sequence 
begins, and then heat is no longer wanted, this last input may not be noticed for up to  3  seconds.  
It may be argued that this is not responding to an input within  1  second, or it may be argued that 
the entire ignition sequence is the response to the first input, and until its completion no response to 
further inputs is required.  At least the formal specification is unambiguous.
                                                                                                                                     End of Thermostat

9.0.1  Space

The main purpose of interactive variables is to provide a means for processes to interact.  In this 
subsection, we show another use.  We make the space variable  s  into an interactive variable in 
order to look at the space occupied during the course of a computation.  As an example, Exercise 
389 is contrived to be as simple as possible while including time and space calculations in an 
infinite computation.

Suppose  alloc  allocates  1  unit of memory space and takes time  1  to do so.  Then the following 
computation slowly allocates memory.

GrowSlow   ⇐   if t=2×x then (alloc || x:= t) else t:= t+1.  GrowSlow
If the time is equal to  2×x , then one space is allocated, and in parallel  x  becomes the time stamp of 
the allocation;  otherwise the clock ticks.  The process is repeated forever.  Prove that if the space is 
initially less than the logarithm of the time, and  x  is suitably initialized, then at all times the space is 
less than the logarithm of the time.

It is not clear what initialization is suitable for  x , so leaving that aside for a moment, we define  
GrowSlow  to be the desired specification.

GrowSlow   =   s < log t   ⇒   (∀t′′·  t′′≥t  ⇒  s′′ < log t′′)
where  s  is an interactive variable, so  s  is really  s t   and  s′′  is really  s t′′ .  We are just interested 
in the space calculation and not in actually allocating space, so we can take  alloc  to be  s:= s+1 .  
There is no need for  x  to be interactive, so let's make it a boundary variable.  To make the proof 
easier, we let all variables be extended naturals, although the result we are proving holds also for real 
time.

Now we have to prove the refinement, and to do that it helps to break it into pieces.  The body of the 
loop can be written as a disjunction.

if t=2×x then (s:= s+1 || x:= t) else t:= t+1
= t=2×x ∧ s′=s+1 ∧ x′=t ∧ t′=t+1  ∨  t+2×x ∧ s′=s ∧ x′=x ∧ t′=t+1

Now the refinement has the form
(A⇒B   ⇐   C∨D. A⇒B) .  distributes over  ∨

= (A⇒B   ⇐   (C. A⇒B) ∨ (D. A⇒B)) antidistributive law
= (A⇒B   ⇐   (C. A⇒B)) ∧ (A⇒B   ⇐   (D. A⇒B)) portation twice
= (B   ⇐   A ∧ (C. A⇒B)) ∧ (B   ⇐   A ∧ (D. A⇒B))

So we can break the proof into two cases:
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B   ⇐   A ∧ (C. A⇒B)
B   ⇐   A ∧ (D. A⇒B)

starting each time with the right side (antecedent) and working toward the left side (consequent).  
First case:

s < log t  ∧  ( t=2×x ∧ s′=s+1 ∧ x′=t ∧ t′=t+1.
s < log t  ⇒  ∀t′′·  t′′≥t  ⇒  s′′ < log t′′)

remove dependent composition, remembering that  s  is interactive
= s < log t  ∧  (∃x′′, t′′′·     t=2×x ∧ s′′′=s+1 ∧ x′′=t ∧ t′′′=t+1

∧  (s′′′ < log t′′′  ⇒  ∀t′′·  t′′≥t′′′  ⇒  s′′ < log t′′))
Use  s′′′=s+1  and drop it.  Use one-point to eliminate  ∃x′′, t′′′ .

⇒ s < log t  ∧  t=2×x  ∧  (s+1 < log(t+1)  ⇒  ∀t′′· t′′≥t+1 ⇒  s′′ < log t′′)
The next step should be discharge.  We need

s < log t  ∧  t=2×x  ⇒  s+1 < log(t+1)
= 2s < t = 2×x  ⇒  2s+1 < t+1
= 2s < t = 2×x  ⇒  2s+1 ≤ t
= 2s < t = 2×x  ⇒  2s+1 ≤ 2×x
= 2s < t = 2×x  ⇒  2s ≤ x
⇐ 2s ≤ x

This is the missing initialization of  x .  So we go back and redefine  GrowSlow .
GrowSlow   =   s < log t  ∧  x≥2s   ⇒   (∀t′′·  t′′≥t  ⇒  s′′ < log t′′)

Now we redo the proof.  First case:
s < log t  ∧  x≥2s  ∧  ( t=2×x ∧ s′=s+1 ∧ x′=t ∧ t′=t+1.

s < log t  ∧  x≥2s  ⇒  ∀t′′·  t′′≥t  ⇒  s′′ < log t′′)
remove dependent composition, remembering that  s  is interactive

=     s < log t  ∧  x≥2s

∧  (∃x′′, t′′′·      t=2×x ∧ s′′′=s+1 ∧ x′′=t ∧ t′′′=t+1
                    ∧  (s′′′ < log t′′′  ∧  x′′≥2s′′′  ⇒  ∀t′′·  t′′≥t′′′  ⇒  s′′ < log t′′))

Use  s′′′=s+1  and drop it.  Use one-point to eliminate  ∃x′′, t′′′ .
⇒     s < log t  ∧  x≥2s  ∧  t=2×x

∧  (s+1 < log(t+1)  ∧  t≥2s+1   ⇒   ∀t′′· t′′≥t+1 ⇒  s′′ < log t′′)
discharge, as calculated earlier

= s < log t  ∧  x≥2s  ∧  t=2×x  ∧  ∀t′′· t′′≥t+1 ⇒  s′′ < log t′′
when  t′′=t , then  s′′=s  and since  s < log t , the domain of  t′′  can be increased

⇒ ∀t′′·  t′′≥t  ⇒  s′′ < log t′′

The second case is easier than the first.
s < log t  ∧  x≥2s  ∧  ( t+2×x ∧ s′=s ∧ x′=x ∧ t′=t+1.

s < log t  ∧  x≥2s  ⇒  ∀t′′·  t′′≥t  ⇒  s′′ < log t′′)
remove dependent composition, remembering that  s  is interactive

=     s < log t  ∧  x≥2s

∧  (∃x′′, t′′′·      t+2×x ∧ s′′′=s ∧ x′′=x ∧ t′′′=t+1
                    ∧  (s′′′ < log t′′′  ∧  x′′≥2s′′′  ⇒  ∀t′′·  t′′≥t′′′  ⇒  s′′ < log t′′))

Use  s′′′=s  and drop it.  Use one-point to eliminate  ∃x′′, t′′′ .
⇒     s < log t  ∧  x≥2s  ∧  t+2×x

∧  (s < log t  ∧  x≥2s   ⇒   ∀t′′· t′′≥t+1 ⇒  s′′ < log t′′) discharge
= s < log t  ∧  x≥2s  ∧  t+2×x  ∧  ∀t′′· t′′≥t+1 ⇒  s′′ < log t′′

when  t′′=t , then  s′′=s  and since  s < log t , the domain of  t′′  can be increased
⇒ ∀t′′·  t′′≥t  ⇒  s′′ < log t′′

                                                                                                                                            End of Space

                                                                                                                         End of Interactive Variables
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A shared variable is a variable that can be written and read by any process.  Shared variables are 
popular for process interaction, but they present enormous problems for people who wish to reason 
about their programs, and for those who must build the hardware and software to implement them.  
For their trouble, there is no benefit.  Interactive variables are not fully shared;  all processes can 
read an interactive variable, but only one process can write it.  Interactive variables are easier to 
reason about and implement than fully shared variables.  Even boundary variables are shared a little:  
their initial values are visible to all processes.  They are easiest to reason about and implement, but 
they provide the least interaction.

Although interactive variables are tamer than shared variables, there are still two problems with 
them.  The first is that they provide too much information.  Usually, a process does not need the 
values of all interactive variables at all times;  each process needs only something about the values 
(an expression in interactive variables), and only at certain times.  The other problem is that 
processes may be executed on different processors, and the rates of execution may not be identical.  
This makes it hard to know exactly when to read the value of an interactive variable;  it certainly 
should not be read while its owner process is in the middle of writing to it.

We now turn to a form of communication between processes that does not have these problems:  it 
provides just the right information, and mediates the timing between the processes.  And, 
paradoxically, it provides the means for fully sharing variables safely.

9.1  Communication

This section introduces named communication channels through which a computation 
communicates with its environment, which may be people or other computations running in parallel.  
For each channel, only one process (person or computation) writes to it, but all processes can read 
all the messages, each at its own speed.  For two-way communication, use two channels.  We start 
the section by considering only one reading process, which may be the same process that writes, or 
may be a different process.  We consider multiple reading processes later when we come to 
Subsection 9.1.9 on broadcast.

Communication on channel  c  is described by two infinite lists  Mc  and  Tc  called the message 
script and the time script, and two extended natural variables  rc  and  wc  called the read cursor and 
the write cursor.  The message script is the list of all messages, past, present, and future, that pass 
along the channel.  The time script is the corresponding list of times that the messages were or are 
or will be sent.  The scripts are state constants, not state variables.  The read cursor is a state variable 
saying how many messages have been read, or input, on the channel.  The write cursor is a state 
variable saying how many messages have been written, or output, on the channel.  If there is only 
one channel, or if the channel is known from context, we may omit the subscripts on  M , T ,  w , 
and  r .

During execution, the read and write cursors increase as inputs and outputs occur;  more and more 
of the script items are seen, but the scripts do not vary.  At any time, the future messages and the 
times they are sent on a channel may be unknown, but they can be referred to as items in the scripts.  
For example, after  2  more reads the next input on channel  c  will be  Mc (rc+2) , and after  5  
more writes the next output will be  Mc (wc+5)  and it will occur at time  Tc (wc+5) .  Omitting 
subscripts, after  2  more reads the next input will be  M (r+2) , and after  5  more writes the next 
output will be  M (w+5)  at time  T (w+5) .
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M = [  6 ;  4 ;  7 ;  1 ;  0 ;  3 ;  8 ;  9 ;  2 ;  5 ; ... ]
T = [  3 ;  5 ;  5 ; 20 ; 25 ; 28 ; 31 ; 31 ; 45 ; 48 ; ... ]

? ?

r w
The scripts and the cursors are not programming notations, but they allow us to specify any desired 
communications.  Here is an example specification.  It says that if the next input on channel  c  is 
even, then the next output on channel  d  will be  † , and otherwise it will be  ƒ .  Formally, we may 
write

if even (Mcrc) then Mdwd = † else Mdwd = ƒ
or, more briefly,

Mdwd   =  even (Mcrc)

If there are only a finite number of communications on a channel, then after the last message, the 
time script items are all  ∞ , and the message script items are of no interest.

9.1.0  Implementability

Consider computations involving two memory variables  x   and  y  , a time variable  t , and 
communications on a single channel (no subscripts needed).  The state of a computation consists of 
the values of the memory variables, the time variable, and the cursor variables.  During a 
computation, the memory variables can change value in any direction, but time and the cursors can 
only increase.  Once an input has been read, it cannot be unread;  once an output has been written, it 
cannot be unwritten.  Every computation satisfies

t′ ≥ t  ∧  r′ ≥ r  ∧  w′ ≥ w

An implementable specification can say what the scripts are in the segment written by a 
computation, that is the segment  M [w;..w′]  and  T [w;..w′]  between the initial and final values of 
the write cursor, but it cannot specify the scripts outside this segment.  Furthermore, the time script 
must be monotonic, and all its values in this segment must be in the range from  t  to  t′ .

A specification  S  (in initial state  σ , final state  σ′ , message script  M , and time script  T ) is 
implementable if and only if

∀σ, M′′, T′′· ∃σ′, M, T·      S  ∧  t′ ≥ t  ∧  r′ ≥ r  ∧  w′ ≥ w
∧  M [(0;..w); (w′;..∞)] = M′′ [(0;..w); (w′;..∞)]
∧  T [(0;..w); (w′;..∞)] = T′′ [(0;..w); (w′;..∞)]
∧  ∀i, j: w,..w′· i≤j ⇒ t ≤ T i ≤ T j ≤ t′

If we have many channels, we need similar conjuncts for each, appropriately subscripted.  If we 
have no channels, implementability reduces to the definition given in Chapter 4.

To implement communication channels, it is not necessary to build two infinite lists.  At any given 
time, only those messages that have been written and not yet read need to be stored.  The time script 
is only for specification and proof, and does not need to be stored at all.
                                                                                                                             End of Implementability
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9.1.1  Input and Output

Here are five programming notations for communication.  Let  c  be a channel.  The notation  c! e  
describes a computation that writes the output message  e  on channel  c .  The notation  c !  
describes a computation that sends a signal on channel  c  (no message;  the act of signalling is the 
only information).  The notation  c?  describes a computation that reads one input on channel  c .  
We use the channel name  c  to denote the message that was last previously read on the channel.  
And  √c  is a boolean expression meaning “there is unread input available on channel  c ”.  Here 
are the formal definitions (omitting the obvious subscripts).

c! e =   M w = e  ∧  T w = t  ∧  (w:= w+1) “ c  output  e ”
c! =   T w = t  ∧  (w:= w+1) “ c  signal”
c? =   r:= r+1 “ c  input”
c =   M (r–1)
√c =   T r ≤ t “check  c ”

Suppose the input channel from a keyboard is named  key , and the output channel to a screen is 
named  screen .  Then execution of the program

if √key
then (key?. if key=`y then screen! "If you wish." else screen! "Not if you don't want.")
else screen! "Well?"

tests if a character of input is available, and if so, reads it and prints some output, which depends on 
the character read, and if not, prints other output.

Let us refine the specification   Mdwd = even (Mcrc)  given earlier.
Mdwd = even (Mcrc)   ⇐   c?.  d! even c

To prove the refinement, we can rewrite the solution as follows:
c?.  d! even c

= rc:= rc+1.  Mdwd = even (Mc(rc–1))  ∧  Tdwd = t  ∧ (wd:= wd+1)
= Mdwd = even (Mcrc)  ∧  Tdwd=t  ∧  rc′=rc+1  ∧  wc′=wc  ∧  rd′=rd  ∧  wd′=wd+1

which implies the problem.

A problem specification should be written as clearly, as understandably, as possible.  A programmer 
refines the problem specification to obtain a solution program, which a computer can execute.  In 
our example, the solution seems more understandable than the problem!  Whenever that is the case, 
we should consider using the program as the problem specification, and then there is no need for 
refinement.

Our next problem is to read numbers from channel  c , and write their doubles on channel  d .  
Ignoring time, the specification can be written

S   =   ∀n: nat· Md (wd+n) = 2 × Mc (rc+n)
We cannot assume that the input and output are the first input and output ever on channels  c  and  
d .  We can only ask that from now on, starting at the initial read cursor  rc  and initial write cursor  
wd , the outputs will be double the inputs.  This specification can be refined as follows.

S   ⇐   c?.  d! 2×c.  S
The proof is:

c?.  d! 2×c.  S
= rc:= rc+1.  Mdwd = 2 × Mc (rc–1)  ∧ (wd:= wd+1).  S
= Mdwd = 2 × Mcrc  ∧  ∀n: nat· Md (wd+1+n) = 2 × Mc (rc+1+n)
= ∀n: nat· Md (wd+n) = 2 × Mc (rc+n)
= S

                                                                                                                              End of Input and Output
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9.1.2  Communication Timing

In the real time measure, we need to know how long output takes, how long communication transit 
takes, and how long input takes, and we place time increments appropriately.  To be independent of 
these implementation details, we can use the transit time measure, in which we suppose that the acts 
of input and output take no time at all, and that communication transit takes  1  time unit.

The message to be read next on channel  c  is  Mcrc .  This message was or is or will be sent at time  
Tcrc .  Its arrival time, according to the transit time measure, is  Tcrc + 1 .  So input becomes

t:= max t (Tcrc + 1).  c?
If the input has already arrived,  Tcrc + 1 ≤ t , and no time is spent waiting for input;  otherwise 
execution of  c?  is delayed until the input arrives.  And the input check  √c  becomes

√c   =   Tcrc + 1 ≤ t

In some applications (called “batch processing”), all inputs are available at the start of execution; 
for these applications, we may as well leave out the time assignments for input, and we have no need 
for the input check.  In other applications (called “process control”), inputs are provided at regular 
intervals by a physical sampling device;  the time script (but not the message script) is known in 
advance.  In still other applications (called “interactive computing”), a human provides inputs at 
irregular intervals, and we have no way of saying what the time script is.  In this case, we have to 
leave out the waiting times, and just attach a note to our calculation saying that execution time will 
be increased by any time spent waiting for input.

Exercise 407(a):  Let  W  be “wait for input on channel  c  and then read it”.  Formally,
W   =   t:= max t (T r + 1).  c?

Prove  W    ⇐    if √c then c? else (t:= t+1.  W)  assuming time is an extended integer.  The 
significance of this exercise is that input is often implemented in just this way, with a test to see if 
input is available, and a loop if it is not.  Proof:

if √c then c? else (t:= t+1.  W) replace  √c  and  W
= if T r + 1 ≤ t then c? else (t:= t+1.  t:= max t (T r + 1).  c?)
= if T r + 1 ≤ t then (t:= t.  c?) else (t:= max (t+1) (T r + 1).  c?)

If  T r + 1 ≤ t , then  t = max t (T r + 1) .
If T r + 1 > t  then  max (t+1) (T r + 1)  =  T r + 1  =  max t (T r + 1) .

= if T r + 1 ≤ t then (t:= max t (T r + 1).  c?) else (t:= max t (T r + 1).  c?)
= W

                                                                                                                     End of Communication Timing

9.1.3  Recursive Communication optional; requires Chapter 6

Define  dbl  by the fixed-point construction (including recursive time but ignoring input waits)
dbl   =   c?.  d! 2×c.  t:= t+1.  dbl

Regarding  dbl  as the unknown, this equation has several solutions.  The weakest is
∀n: nat· Md (wd+n) = 2 × Mc (rc+n)  ∧  Td (wd+n) = t+n

A strongest implementable solution is
     (∀n: nat· Md (wd+n) = 2 × Mc (rc+n)  ∧  Td (wd+n) = t+n)
∧  rc′=wd′=t′=∞  ∧  wc′=wc  ∧  rd′=rd

The strongest solution is  ƒ .  If this fixed-point construction is all we know about  dbl , then we 
cannot say that it is equal to a particular one of the solutions.  But we can say this:  it refines the 
weakest solution

∀n: nat· Md (wd+n) = 2 × Mc (rc+n)  ∧  Td (wd+n) = t+n   ⇐   dbl
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and it is refined by the right side of the fixed-point construction
dbl   ⇐   c?.  d! 2×c.  t:= t+1.  dbl

Thus we can use it to solve problems, and we can execute it.

If we begin recursive construction with
dbl0  =  †

we find
dbl1 = c?.  d! 2×c.  t:= t+1.  dbl0

= rc:= rc+1.  Mdwd = 2×Mc(rc–1)  ∧  Tdwd = t  ∧ (wd:= wd+1).  t:= t+1.  †
= Mdwd = 2×Mcrc  ∧  Tdwd = t

dbl2 = c?.  d! 2×c.  t:= t+1.  dbl1
= rc:= rc+1.  Mdwd = 2×Mc(rc–1)  ∧  Tdwd = t  ∧ (wd:= wd+1).

t:= t+1.  Mdwd = 2×Mcrc  ∧  Tdwd = t
= Mdwd = 2×Mcrc  ∧  Tdwd = t  ∧  Md(wd+1) = 2×Mc(rc+1)  ∧  Td(wd+1) = t+1

and so on.  The result of the construction
dbl∞ = ∀n: nat· Md (wd+n) = 2 × Mc (rc+n)  ∧  Td (wd+n) = t+n

is the weakest solution of the  dbl  fixed-point construction.  If we begin recursive construction with  
t′≥t  ∧  rc′≥rc  ∧  wc′≥wc  ∧  rd′≥rd  ∧  wd′≥wd  we get a strongest implementable solution.
                                                                                                                  End of Recursive Communication

9.1.4  Merge

Merging means reading repeatedly from two or more input channels and writing those inputs onto 
another channel.  The output is an interleaving of the messages from the input channels.  The output 
must be all and only the messages read from the inputs, and it must preserve the order in which they 
were read on each channel.  Infinite merging can be specified formally as follows.  Let the input 
channels be  c  and  d , and the output channel be  e .  Then

merge   =   (c?.  e! c) ∨ (d?.  e! d).  merge
This specification does not state any criterion for choosing between the input channels at each step.  
To write a merge program, we must decide on a criterion for choosing.  We might choose between 
the input channels based on the value of the inputs or on their arrival times.

Exercise 411(a) (time merge) asks us to choose the first available input at each step.  If input is 
already available on both channels  c  and  d , take either one;  if input is available on just one 
channel, take that one;  if input is available on neither channel, wait for the first one and take it (in 
case of a tie, take either one).  Here is the specification.

timemerge    =      (√c  ∨  Tcrc ≤ Tdrd)  ∧  (c?.  e! c)
∨ (√d  ∨  Tcrc ≥ Tdrd)  ∧  (d?.  e! d).
timemerge

To account for the time spent waiting for input, we should insert  t:= max t (Tr + 1)  just before 
each input operation, and for recursive time we should insert  t:= t+1  before the recursive call.

In Subsection 9.1.2 on Communication Timing we proved that waiting for input can be 
implemented recursively.  Using the same reasoning, we implement  timemerge  as follows.

timemerge   ⇐ if √c then (c?.  e! c) else ok.
if √d then (d?.  e! d) else ok.
t:= t+1.  timemerge

assuming time is an extended integer.
                                                                                                                                           End of Merge
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9.1.5  Monitor

To obtain the effect of a fully shared variable, we create a process called a monitor that resolves 
conflicting uses of the variable.  A monitor for variable  x  receives on channels  x0in ,  x1in , ...  data 
from other processes to be written to the variable, whereupon it sends an acknowledgement back to 
the writing process on one of the channels  x0ack ,  x1ack , ... .  It receives on channels  x0req ,  
x1req , ...  requests from other processes to read the variable, whereupon it sends the value of the 
variable back to the requesting process on one of the channels  x0out ,  x1out , ... .

x0in
x0ack

x1in
x1ack

x0req
x0out

x1req
x1out

x

A monitor for variable  x  with two writing processes and two reading processes can be defined as 
follows.  Let  m   be the minimum of the times  Tx0inrx0in ,  Tx1inrx1in ,  Tx0reqrx0req , and  
Tx1reqrx1req  of the next input on each of the input channels.  Then

monitor   = (√x0in  ∨  Tx0inrx0in = m)  ∧  (x0in?.  x:= x0in.  x0ack!)
∨ (√x1in  ∨  Tx1inrx1in = m)  ∧  (x1in?.  x:= x1in.  x1ack!)
∨ (√x0req  ∨  Tx0reqrx0req = m)  ∧  (x0req?.  x0out! x)
∨ (√x1req  ∨  Tx1reqrx1req = m)  ∧  (x1req?.  x1out! x).
monitor

Just like  timemerge , a monitor takes the first available input and responds to it.  A monitor for 
several variables, for several writing processes, and for several reading processes, is similar.  When 
more than one input is available, an implementation must make a choice.  Here's one way to 
implement a monitor, assuming time is an extended integer:

monitor   ⇐ if √x0in then (x0in?.  x:= x0in.  x0ack!) else ok.
if √x1in then (x1in?.  x:= x1in.  x1ack!) else ok.
if √x0req then (x0req?.  x0out! x) else ok.
if √x1req then (x1req?.  x1out! x) else ok.
t:= t+1.  monitor

We earlier solved Exercise 388 to specify a thermostat for a gas burner using interactive variables  
gas ,  temperature ,  desired ,  flame , and  spark , as follows.

thermostat = (gas:= ƒ || spark:= ƒ).  GasIsOff

GasIsOff = if temperature < desired – ε
then ((gas:= † || spark:= † || t+1 ≤ t′ ≤ t+3).  spark:= ƒ.  GasIsOn)
else (((frame gas, spark· ok) || t < t′ ≤ t+1).  GasIsOff)

GasIsOn = if temperature < desired + ε  ∧  flame
then (((frame gas, spark· ok) || t < t′ ≤ t+1).  GasIsOn)
else ((gas:= ƒ || (frame spark· ok) || t+20 ≤ t′ ≤ t+21).  GasIsOff)

If we use communication channels instead of interactive variables, we have to build a monitor for 
these variables, and rewrite our thermostat specification.  Here is the result.
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thermostat = ((gasin! ƒ.  gasack?) || (sparkin! ƒ.  sparkack?)).  GasIsOff

GasIsOff = ((temperaturereq!.  temperature?) || (desiredreq!.  desired?)).
if temperature < desired – ε
then ( ((gasin! †.  gasack?) || (sparkin! †.  sparkack?) || t+1 ≤ t′ ≤ t+3).
           sparkin! ƒ.  sparkack?.  GasIsOn )
else (t < t′ ≤ t+1.  GasIsOff)

GasIsOn = ( (temperaturereq!.  temperature?) || (desiredreq!.  desired?)
|| (flamereq!.  flame?) ).
if temperature < desired + ε  ∧  flame
then (t < t′ ≤ t+1.  GasIsOn)
else (((gasin! ƒ.  gasack?) || t+20 ≤ t′ ≤ t+21).  GasIsOff)

                                                                                                                                        End of Monitor

The calculation of space requirements when there is concurrency may sometimes require a monitor 
for the space variable, so that any process can request an update, and the updates can be 
communicated to all processes.  The monitor for the space variable is also the arbiter between 
competing space allocation requests.

9.1.6  Reaction Controller

Many kinds of reactions are controlled by a feedback loop, as shown in the following picture.

sensors                           digitizer

motors                          controller

plant                              digital  data

analog
data

control
signals

The “plant” could be a chemical reactor, or a nuclear reactor, or even just an assembly plant.  The 
sensors detect concentrations or temperatures or positions in the form of analog data, and feed them 
to a digitizer.  The digitizer converts these data to digital form suitable for the controller.  The 
controller computes what should happen next to control the plant;  perhaps some rods should be 
pushed in farther, or some valves should be opened, or a robot arm should move in some direction.  
The controller sends signals to the plant to cause the appropriate change.

Here's the problem.  The sensors send their data continuously to the digitizer.  The digitizer is fast 
and uniform, sending digital data rapidly to the controller.  The time required by the controller to 
compute its output signals varies according to the input messages;  sometimes the computation is 
trivial and it can keep up with the input;  sometimes the computation is more complex and it falls 
behind.  When several inputs have piled up, the controller should not continue to read them and 
compute outputs in the hope of catching up.  Instead, we want all but the latest input to be 
discarded.  It is not essential that control signals be produced as rapidly as digital data.  But it is 
essential that each control signal be based on the latest available data.  How can we achieve this?  
The solution is to place a synchronizer between the digitizer and controller, as in the following 
picture.
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sensors                           digitizeranalog
data

control
signals

plant                               synchronizer

motors                          controller

digital  data

request        reply

The synchronizer's job is as simple and uniform as the digitizer's;  it can easily keep up.  It 
repeatedly reads the data from the digitizer, always keeping only the latest.  Whenever the controller 
requests some data, the synchronizer sends the latest.  This is exactly the function of a monitor, and 
we could implement the synchronizer that way.  But a synchronizer is simpler than a monitor in two 
respects:  first, there is only one writing process and one reading process;  second, the writing 
process is uniformly faster than the reading process.  Here is its definition.

synchronizer   = digitaldata?.
if √request then (request?  ||  reply! digitaldata) else ok.
synchronizer

If we were using interactive variables instead of channels, there would be no problem of reading old 
data;  reading an interactive variable always reads its latest value, even if the variable is written more 
often than it is read.  But there would be the problem of how to make sure that the interactive 
variable is not read while it is being written.
                                                                                                                          End of Reaction Controller

9.1.7  Channel Declaration

The next input on a channel is not necessarily the one that was last previously written on that 
channel.  In one variable  x  and one channel  c  (ignoring time),

c! 2.  c?.  x:= c
= Mw = 2  ∧  w′ = w+1  ∧  r′ = r+1  ∧  x′ = M r

We do not know that initially  w=r , so we cannot conclude that finally  x′=2 .  That's because there 
may have been a previous write that hasn't been read yet.  For example,

c! 1.  c! 2.  c?.  x:= c
The next input on a channel is always the first one on that channel that has not yet been read.  The 
same is true in a parallel composition.

c! 2  ||  (c?.  x:= c)
= Mw = 2  ∧  w′ = w+1  ∧  r′ = r+1  ∧  x′ = M r

Again we cannot say  x′=2  because there may be a previous unread output
c! 1.  (c! 2  ||  (c?.  x:= c)).  c?

and the final value of  x  may be the  1  from the earlier output, with the  2  going to the later input.  
In order to achieve useful communication between processes, we have to introduce a local channel.

Channel declaration is similar to variable declaration;  it defines a new channel within some local 
portion of a program or specification.  A channel declaration applies to what follows it, according to 
the precedence table on the final page of this book.  Here is a syntax and equivalent specification.

chan c: T· P     =     ∃Mc: [∞*T]· ∃Tc: [∞*xreal]· var rc , wc: xnat := 0·  P
The type  T  says what communications are possible on this new channel.  The declaration 
introduces two scripts, which are infinite lists;  they are not state variables, but state constants of 

9  Interaction 138



unknown value (mathematical variables).  We have let time be extended real, but we could let it be 
extended integer.  The channel declaration also introduces a read cursor  rc  with initial value  0  to 
say that initially there has been no input on this channel, and a write cursor  wc  with initial value  0  
to say that initially there has been no output on this channel.

A local channel can be used without concurrency as a queue, or buffer.  For example,
chan c: int·  c! 3.  c! 4.  c?.  x:= c.  c?.  x:= x+c

assigns  7  to  x .  Here is the proof, including time.
chan c: int· c! 3. c! 4. t:= max t (Tr + 1). c?. x:= c. t:= max t (Tr + 1). c?. x:= x+c

= ∃M: [∞*int]· ∃T: [∞*xint]·  var r, w: xnat := 0· 
Mw = 3  ∧  Tw = t  ∧  (w:= w+1).
Mw = 4  ∧  Tw = t  ∧  (w:= w+1).
t:= max t (Tr + 1).  r:= r+1.
x:= M (r–1).
t:= max t (Tr + 1).  r:= r+1.
x:= x + M (r–1)

now use the Substitution Law several times
= ∃M: [∞*int]· ∃T: [∞*xint]· ∃r, r′, w, w′: xnat· 

M0 = 3  ∧  T0 = t  ∧  M1 = 4  ∧  T1 = t  ∧  r′ = 2  ∧  w′ = 2  ∧  x′ = M0 + M1
∧ t′ = max (max t (T0 + 1)) (T1 + 1)  ∧  (other variables unchanged)

= x′=7  ∧  t′ = t+1  ∧  (other variables unchanged)

Here are two processes with a communication between them.  Ignoring time,
chan c: int· c! 2  ||  (c?.  x:= c) Use the definition of local channel declaration,

and use the previous result for the independent composition
= ∃M: [∞*int]· var r, w: xnat := 0· 

Mw = 2  ∧  w′ = w+1  ∧  r′:= r+1  ∧  x′ = M r  ∧  (other variables unchanged)
Now apply the initialization  r:= 0  and  w:= 0  using the Substitution Law

= ∃M: [∞*int]· var r, w: xnat· 
M 0 = 2  ∧  w′=1  ∧  r′=1  ∧  x′ = M 0  ∧  (other variables unchanged)

= x′=2  ∧  (other variables unchanged)
= x:= 2

Replacing  2  by an arbitrary expression, we have a general theorem equating communication on a 
local channel with assignment.  If we had included time, the result would have been

x′=2  ∧  t′ = t+1  ∧  (other variables unchanged)
= x:= 2.  t:= t+1

                                                                                                                         End of Channel Declaration

9.1.8  Deadlock

In the previous subsection we saw that a local channel can be used as a buffer.  Let's see what 
happens if we try to read first and write after.  Inserting the input wait into

chan c: int·  c?.  c! 5
gives us
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chan c: int·  t:= max t (T r + 1).  c?.  c! 5

= ∃M: [∞*int]· ∃T: [∞*xint]·  var r, w: xnat := 0· 
t:= max t (T r + 1).  r:= r+1.  M w = 5  ∧  T w = t  ∧ (w:= w+1)

We'll do this one slowly.  First, expand  var  and  w:= w+1 ,
taking  r ,  w ,  x , and  t  as the state variables.

= ∃M: [∞*int]· ∃T: [∞*xint]· ∃r, r′, w, w′: xnat· 
r:= 0.  w:= 0.  t:= max t (T r + 1).  r:= r+1.
M w = 5  ∧  T w = t  ∧  r′=r  ∧  w′ = w+1  ∧  x′=x  ∧  t′=t

Now use the Substitution Law four times.
= ∃M: [∞*int]· ∃T: [∞*xint]· ∃r, r′, w, w′: xnat· 

M 0 = 5  ∧  T 0 = max t (T 0 + 1)  ∧  r′=1  ∧  w′=1 ∧ x′=x  ∧ t′ = max t (T 0 + 1)
Look at the conjunct  T 0 = max t (T 0 + 1) .  For any start time  t > –∞  it says  T 0 = ∞ .
= x′=x  ∧  t′=∞

The theory tells us that execution takes forever because the wait for input is infinite.

The word “deadlock” is usually used to mean that several processes are waiting on each other, as 
in the dining philosophers example of Chapter 8.  But it might also be used to mean that a single 
sequential computation is waiting on itself, as in the previous paragraph.  Here's the more traditional 
example with two processes.

chan c, d: int·  (c?.  d! 6)  ||  (d?.  c! 7)
Inserting the input waits, we get

chan c, d: int·  (t:= max t (Tcrc + 1).  c?.  d! 6)  ||  (t:= max t (Tdrd + 1).  d?.  c! 7)
after a little work, we obtain

= ∃Mc, Md: [∞*int]· ∃Tc, Td: [∞*xint]· ∃rc, rc′, wc, wc′, rd, rd′, wd, wd′: xnat· 
Md0 = 6  ∧  Td0 = max t (Tc0 + 1)  ∧  Mc0 = 7  ∧  Tc0 = max t (Td0 + 1)

∧ rc′ = wc′ = rd′ = wd′ = 1 ∧ x′=x  ∧  t′ = max (max t (Tc0 + 1)) (max t (Td0 + 1))
Once again, for start time  t>–∞ , the conjuncts

Td0 = max t (Tc0 + 1)  ∧  Tc0 = max t (Td0 + 1)  tell us that  Td0 = Tc0 = ∞ .
= x′=x  ∧  t′=∞

To prove that a computation is free from deadlock, prove that all message times are finite.
                                                                                                                                       End of Deadlock

9.1.9  Broadcast

A channel consists of a message script, a time script, a read cursor, and a write cursor.  Whenever a 
computation splits into parallel processes, the state variables must be partitioned among the 
processes.  The scripts are not state variables;  they do not belong to any process.  The cursors are 
state variables, so one of the processes can write to the channel, and one (perhaps the same one, 
perhaps a different one) can read from the channel.  Suppose the structure is

P.  (Q  ||  R  ||  S).  T
and suppose  Q  writes to channel  c  and  R  reads from channel  c .  The messages written by  Q  
follow those written by  P , and those written by  T  follow those written by  Q .  The messages read 
by  R  follow those read by  P , and those read by  T  follow those read by  R .  There is no problem 
of two processes attempting to write at the same time, and the timing discipline makes sure that 
reading a message waits until after it is written.

Although communication on a channel, as defined so far, is one-way from a single writer to a single 
reader, we can have as many channels as we want.  So we can have two-way conversations between 
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all pairs of processes.  But sometimes it is convenient to have a broadcast from one process to more 
than one of the parallel processes.  In the program structure of the previous paragraph, we might 
want  Q  to write and both of  R  and  S  to read on the same channel.  Broadcast is achieved by 
several read cursors, one for each reading process.  Then all reading processes read the same 
messages, each at its own rate.  There is no harm in two processes reading the same message, even 
at the same time.  But there is a problem with broadcast:  which of the read cursors becomes the 
read cursor for  T ?  All of the read cursors start with the same value, but they may not end with the 
same value.  There is no sensible way to continue reading from that channel.  So we allow broadcast 
on a channel only when the parallel composition is not followed sequentially by a program that 
reads from that channel.

We next present a broadcast example that combines communicating processes, local channel 
declaration, and dynamic process generation, in one beautiful little program.  It is also a striking 
example of the importance of good notation and good theory.  It has been “solved” before without 
them, but the “solutions” required many pages, intricate synchronization arguments, lacked proof, 
and were sometimes wrong.

Exercise 415 is multiplication of power series:  Write a program to read from channel  a  an infinite 
sequence of coefficients  a0 a1 a2 a3 ...  of a power series  a0 + a1×x + a2×x2 + a3×x3 + ...  and in 
parallel to read from channel  b  an infinite sequence of coefficients  b0 b1 b2 b3 ...  of a power 
series  b0 + b1×x + b2×x2 + b3×x3 + ...  and in parallel to write on channel  c  the infinite sequence 
of coefficients  c0 c1 c2 c3 ...  of the power series  c0 + c1×x + c2×x2 + c3×x3 + ...  equal to the 
product of the two input series.  Assume that all inputs are already available;  there are no input 
delays.  Produce the outputs one per time unit.

The question provides us with a notation for the coefficients:  an = Ma(ra+n) ,  bn = Mb(rb+n) , 
and  cn = Mc(wc+n) .  Let us use  A ,  B , and  C  for the power series, so we can express our 
desired result as

C = A×B
= (a0 + a1×x + a2×x2 + a3×x3 + ... ) × (b0 + b1×x + b2×x2 + b3×x3 + ... )
=     a0×b0 + (a0×b1 + a1×b0)×x + (a0×b2 + a1×b1 + a2×b0)×x2

+ (a0×b3 + a1×b2 + a2×b1 + a3×b0)×x3 + ...
from which we see  cn  =  Σi: 0,..n+1· ai×bn–i .  The question relieves us from concern with input 
times, but we are still concerned with output times.  The complete specification is

C = A×B  ∧  ∀n· Tc(wc+n) = t+n

Consider the problem:  output coefficient  n  requires  n+1  multiplications and  n  additions from 
2×(n+1)  input coefficients, and it must be produced  1  time unit after the previous coefficient.  To 
accomplish this requires more and more data storage, and more and more parallelism, as execution 
progresses.

As usual, let us concentrate on the result first, and leave the time for later.  Let
A1 = a1 + a2×x + a3×x2 + a4×x3 + ...
B1 = b1 + b2×x + b3×x2 + b4×x3 + ...

be the power series from channels  a  and  b  beginning with coefficient  1 .    Then
A×B

= (a0 + A1×x) × (b0 + B1×x)
= a0×b0 + (a0×B1 + A1×b0)×x + A1×B1×x2
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In place of the problem  A×B  we have five new problems.  The first is to read one coefficient from 
each input channel and output their product;  that's easy.  The next two,  a0×B1  and  A1×b0 , are 
multiplying a power series by a constant;  that's easier than multiplying two power series, requiring 
only a loop.  The next,  A1×B1 , is exactly the problem we started with, but one coefficient farther 
along;  it can be solved by recursion.  Finally, we have to add three power series together.  
Unfortunately, these three power series are not synchronized properly.  We must add the leading 
coefficients of  a0×B1  and  A1×b0  without any coefficient from  A1×B1 , and thereafter add 
coefficient  n+1  of  a0×B1  and  A1×b0  to coefficient  n  of  A1×B1 .  To synchronize, we move  
a0×B1  and  A1×b0  one coefficient farther along.  Let

A2 = a2 + a3×x + a4×x2 + a5×x3 + ...
B2 = b2 + b3×x + b4×x2 + b5×x3 + ...

be the power series from channels  a  and  b  beginning with coefficient  2 .  Continuing the earlier 
equation for  A×B ,

= a0×b0 + (a0×(b1 + B2×x) + (a1 + A2×x)×b0)×x + A1×B1×x2

= a0×b0 + (a0×b1 + a1×b0)×x + (a0×B2 + A1×B1 + A2×b0)×x2

From this expansion of the desired product we can almost write a solution directly.

One problem remains.  A recursive call will be used to obtain a sequence of coefficients of the 
product  A1×B1  in order to produce the coefficients of  A×B .  But the output channel for  A1×B1  
cannot be channel  c , the output channel for the main computation  A×B .  Instead, a local channel 
must be used for output from  A1×B1 .  We need a channel parameter, for which we invent the 
notation  〈! 〉 .  A channel parameter is really four parameters:  one for the message script, one for 
the time script, one for the write cursor, and one for the read cursor.  (The cursors are variables, so 
their parameters are reference parameters;  see Subsection 5.5.2.)

Now we are ready.  Define  P  (for product) to be our specification (ignoring time for a moment) 
parameterized by output channel.

P  =  〈!c: rat→C = A×B〉
We refine  P c  as follows.

P c   ⇐ (a? || b?).  c! a×b.
var a0: rat := a·  var b0: rat := b·  chan d: rat· 
P d  ||  ((a? || b?).  c! a0×b + a×b0.  C = a0×B + D + A×b0)

C = a0×B + D + A×b0   ⇐   (a? || b? || d?).  c! a0×b + d + a×b0.  C = a0×B + D + A×b0

That is the whole program:  4 lines!  First, an input is read from each of channels  a  and  b  and 
their product is output on channel  c ;  that takes care of  a0×b0 .  We will need these values again, 
so we declare local variables (really constants)  a0  and  b0  to retain their values.  Now that we have 
read one message from each input channel, before we read another, we call  P d  to provide the 
coefficients of  A1×B1  on local channel  d , in parallel with the remainder of the program.  Both  P d  
and its parallel process will be reading from channels  a  and  b  using separate read cursors;  there 
is no computation sequentially following them.  In parallel with  P d   we read the next inputs  a1  
and  b1  and output the coefficient  a0×b1 + a1×b0 .  Finally we execute the loop specified as  
C = a0×B + D + A×b0 , where  D  is the power series whose coefficients are read from channel  d .

The proof is completely straightforward.  Here it is in detail.  We start with the right side of the first 
refinement.
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(a? || b?).  c! a×b.
var a0: rat := a·  var b0: rat := b·  chan d: rat· 
P d  ||  ((a? || b?).  c! a0×b + a×b0.  C = a0×B + D + A×b0)

= (ra:= ra+1 || rb:= rb+1).  Mcwc = Ma(ra–1) × Mb(rb–1)  ∧  (wc:= wc+1).
∃a0, a0′, b0, b0′, Md, rd, rd′, wd, wd′· 
a0:= Ma(ra–1).  b0:= Mb(rb–1).  rd:= 0.  wd:= 0.

(∀n· Md(wd+n) = (Σi: 0,..n+1· Ma(ra+i) × Mb(rb+n–i)))
∧ ((ra:= ra+1 || rb:= rb+1). Mcwc = a0×Mb(rb–1) + Ma(ra–1)×b0 ∧ (wc:= wc+1).

  ∀n· Mc(wc+n) = a0 × Mb(rb+n) + Md(rd+n) + Ma(ra+n) × b0)
Make all substitutions indicated by assignments.

= Mcwc = Mara × Mbrb
∧ ∃a0, a0′, b0, b0′, Md, rd, rd′, wd, wd′· 

(∀n· Mdn = Σi: 0,..n+1· Ma(ra+1+i) × Mb(rb+1+n–i))
∧ Mc(wc+1) = Mara × Mb(rb+1) + Ma(ra+1) × Mbrb
∧ (∀n· Mc(wc+2+n) = Mara × Mb(rb+2+n) + Mdn + Ma(ra+2+n) × Mbrb)

Use the first universal quantification to replace  Mdn  in the second.
Then throw away the first universal quantification (weakening our expression).

Now all existential quantifications are unused, and can be thrown away.
⇒ Mcwc = Mara × Mbrb

∧ Mc(wc+1) = Mara × Mb(rb+1) + Ma(ra+1) × Mbrb
∧ ∀n· Mc(wc+2+n) = Mara × Mb(rb+2+n)

+ (Σi: 0,..n+1· Ma(ra+1+i) × Mb(rb+1+n–i))
+ Ma(ra+2+n) × Mbrb 

Now put the three conjuncts together.
= ∀n· Mc(wc+n) = Σi: 0,..n+1· Ma(ra+i) × Mb(rb+n–i)
= P c

We still have to prove the loop refinement.
(a? || b? || d?).  c! a0×b + d + a×b0.  C = a0×B + D + A×b0

= (ra:= ra+1 || rb:= rb+1 || rd:= rd+1).
Mcwc = a0 × Mb(rb–1) + Md(rd–1) + Ma(ra–1) × b0  ∧  (wc:= wc+1).
∀n· Mc(wc+n) = a0 × Mb(rb+n) + Md(rd+n) + Ma(ra+n) × b0

Make all substitutions indicated by assignments.
= Mcwc = a0 × Mbrb + Mdrd + Mara × b0

∧ ∀n· Mc(wc+1+n) = a0 × Mb(rb+1+n) + Md(rd+1+n) + Ma(ra+1+n) × b0
Put the two conjuncts together.

= ∀n· Mc(wc+n) = a0 × Mb(rb+n) + Md(rd+n) + Ma(ra+n) × b0
= C = a0×B + D + A×b0

According to the recursive measure of time, we must place a time increment before the recursive call  
P d  and before the recursive call  C = a0×B + D + A×b0 .  We do not need a time increment before 
inputs on channels  a  and  b  according to information given in the question.  We do need a time 
increment before the input on channel  d .  Placing only these necessary time increments, output  
c0 = a0×b0  will occur at time  t+0  as desired, but output  c1 = a0×b1 + a1×b0  will also occur at 
time  t+0 , which is too soon.  In order to make output  c1  occur at time  t+1  as desired, we must 
place a time increment between the first two outputs.  We can consider this time increment to 
account for actual computing time, or as a delay (see Section 5.3, “Time and Space Dependence”).  
Here is the program with time.
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Q c   ⇐ (a? || b?).  c! a×b.
var a0: rat := a·  var b0: rat := b·  chan d: rat· 
(t:= t+1.  Q d)  ||  ((a? || b?).  t:= t+1.  c! a0×b + a×b0.  R)

R   ⇐   (a? || b? || (t:= max t (Tdrd+1).  d?)).  c! a0×b + d + a×b0.  t:= t+1.  R

where  Q  and  R  are defined, as follows:

Q c  =  ∀n· Tc(wc+n) = t+n
Q d  =  ∀n· Td(wd+n) = t+n
R  =  (∀n· Td(rd+n) = t+n)  ⇒  (∀n· Tc(wc+n) = t+1+n)

Within loop  R , the assignment  t:= max t (Tdrd+1)  represents a delay of  1  time unit the first 
iteration (because  t = Tdrd ), and a delay of  0  time units each subsequent iteration (because  
t = Tdrd+1 ).  This makes the proof very ugly.  To make the proof pretty, we can replace  
t:= max t (Tdrd+1)  by  t:= max (t+1) (Tdrd+1)  and delete  t:= t+1  just before the call to  R .  
These changes together do not change the timing at all;  they just make the proof easier.  The 
assignment  t:= max ( t+1) (Tdrd+1)  increases the time by at least  1 , so the loop includes a time 
increase without the  t:= t+1 .  The program with time is now

Q c   ⇐ (a? || b?).  c! a×b.
var a0: rat := a·  var b0: rat := b·  chan d: rat· 
(t:= t+1.  Q d)  ||  ((a? || b?).  t:= t+1.  c! a0×b + a×b0.  R)

R   ⇐   (a? || b? || (t:= max (t+1) (Tdrd+1).  d?)).  c! a0×b + d + a×b0.  R

Here is the proof of the first of these refinements, beginning with the right side.
(a? || b?).  c! a×b.
var a0: rat := a·  var b0: rat := b·  chan d: rat· 
(t:= t+1.  Q d)  ||  ((a? || b?).  t:= t+1.  c! a0×b + a×b0.  R)

We can ignore  a?  and  b?  because they have no effect on timing (they are substitutions for
variables that do not appear in  Q d  and  R ).  We also ignore what messages are output,

looking only at their times.  We can therefore also ignore variables  a0  and  b0 .
⇒ Tcwc = t  ∧  (wc:= wc+1).

∃Td, rd, rd′, wd, wd′·  rd:= 0.  wd:= 0.
(t:= t+1.  ∀n· Td(wd+n) = t+n)

∧ ( t:= t+1.  Tcwc = t  ∧ (wc:= wc+1).
(∀n· Td(rd+n) = t+n) ⇒ (∀n· Tc(wc+n) = t+1+n) )

Make all substitutions indicated by assignments.
= Tcwc = t

∧ ∃Td, rd, rd′, wd, wd′· 
(∀n· Tdn = t+1+n)

∧ Tc(wc+1) = t+1
∧ ((∀n· Tdn = t+1+n) ⇒ (∀n· Tc(wc+2+n) = t+2+n))

Use the first universal quantification to discharge the antecedent.
Then throw away the first universal quantification (weakening our expression).

Now all existential quantifications are unused, and can be thrown away.
⇒ Tcwc = t  ∧  Tc(wc+1) = t+1  ∧  ∀n· Tc(wc+2+n) = t+2+n

Now put the three conjuncts together.
= ∀n· Tc(wc+n) = t+n
= Q c
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We still have to prove the loop refinement.
(R  ⇐  (a? || b? || (t:= max (t+1) (Tdrd+1).  d?)).  c! a0×b + d + a×b0.  R)

Ignore  a?  and  b?  and the output message.
⇐ ((∀n· Td(rd+n) = t+n)  ⇒  (∀n· Tc(wc+n) = t+1+n))

⇐ ( t:= max (t+1) (Tdrd+1).  rd:= rd+1.  Tcwc = t  ∧ (wc:= wc+1).
(∀n· Td(rd+n) = t+n)  ⇒  (∀n· Tc(wc+n) = t+1+n) )

Use the Law of Portation to move the first antecedent
to the right side, where it becomes a conjunct.

= (∀n· Tc(wc+n) = t+1+n)
⇐ (∀n· Td(rd+n) = t+n)

∧ ( t:= max (t+1) (Tdrd+1).  rd:= rd+1.  Tcwc = t  ∧ (wc:= wc+1).
(∀n· Td(rd+n) = t+n)  ⇒  (∀n· Tc(wc+n) = t+1+n) )

Specializing ∀n· Td(rd+n) = t+n to the case n=0,
we use Tdrd = t to simplify max (t+1) (Tdrd+1).

= (∀n· Tc(wc+n) = t+1+n)
⇐ (∀n· Td(rd+n) = t+n)

∧ ( t:= t+1.  rd:= rd+1.  Tcwc = t  ∧ (wc:= wc+1).
(∀n· Td(rd+n) = t+n)  ⇒  (∀n· Tc(wc+n) = t+1+n) )

Make all substitutions indicated by assignments.
= (∀n· Tc(wc+n) = t+1+n)

⇐ (∀n· Td(rd+n) = t+n)
∧ Tcwc = t+1
∧ ((∀n· Td(rd+1+n) = t+1+n)  ⇒  (∀n· Tc(wc+1+n) = t+2+n))

The conjunct  ∀n· Td(rd+n) = t+n  discharges the antecedent
∀n· Td(rd+1+n) = t+1+n  which can be dropped.

⇐ (∀n· Tc(wc+n) = t+1+n)
⇐ Tcwc = t+1  ∧  (∀n· Tc(wc+1+n) = t+2+n)

= †

                                                                                                                                       End of Broadcast

                                                                                                                               End of Communication

                                                                                                                                     End of Interaction

For many students, the first understanding of programs they are taught is how programs are 
executed.  And for many students, that is the only understanding they are given.  With that 
understanding, the only method available for checking whether a program is correct is to test it by 
executing it with a variety of inputs to see if the resulting outputs are right.  All programs should be 
tested, but there are two problems with testing.

One problem with testing is:  how do you know if the outputs are right?  Some programs give 
answers you do not already know (that is why you wrote the program), and testing the program 
does not tell you if it is right.  In that case, you should test to see at least if the answers are 
reasonable.  For other programs, for example, graphics programs for producing pretty pictures, the 
only way to know if the output is right is to test the program and judge the result.

The other problem with testing is:  you cannot try all inputs.  Even if all the test cases you try give 
reasonable answers, there may be errors lurking in untried cases.
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If you have read and understood this book to here, you now have an understanding of programs 
that is completely different from execution.  When you prove that a program refines a specification, 
you are considering all inputs at once, and you are proving that the outputs have the properties 
stated in the specification.  That is far more than can ever be accomplished by testing.  But it is also 
more work than trying some inputs and looking at the outputs.  That raises the question:  when is 
the extra assurance of correctness worth the extra work?

If the program you are writing is easy enough that you can probably get it right without any theory, 
and it does not really matter if there are some errors in it, then the extra assurance of correctness 
provided by the theory may not be worth the trouble.  If you are writing a pacemaker controller for 
a heart, or the software that controls a subway system, or an air traffic control program, or nuclear 
power plant software, or any other programs that people's lives will depend on, then the extra 
assurance is definitely worth the trouble, and you would be negligent if you did not use the theory.

To prove that a program refines a specification after the program is finished is a very difficult task.  
It is much easier to perform the proof while the program is being written.  The information needed 
to make one step in programming is exactly the same information that is needed to prove that step is 
correct.  The extra work is mainly to write down that information formally.  It is also the same 
information that will be needed later for program modification, so writing it explicitly at each step 
will save effort later.  And if you find, by trying to prove a step, that the step is incorrect, you save 
the effort of building the rest of your program on a wrong step.  As a further bonus, after you 
become practiced and skillful at using the theory, you find that it helps in the program design;  it 
suggests programming steps.  In the end, it may not be any extra effort at all.

In this book we have looked only at small programs.  But the theory is not limited to small 
programs;  it is independent of scale, applicable to any size of software.  In a large software project, 
the first design decision might be to divide the task into several pieces that will fit together in some 
way.  This decision can be written as a refinement, specifying exactly what the parts are and how 
they fit together, and then the refinement can be proven.  Using the theory in the early stages is 
enormously beneficial, because if an early step is wrong, it is enormously costly to correct later.

For a theory of programming to be in widespread use for industrial program design, it must be 
supported by tools.  Ideally, an automated prover checks each refinement, remaining silent if the 
refinement is correct, complaining whenever there is a mistake, and saying exactly what is wrong.  
At present there are a few tools that provide some assistance, but they are far from ideal.  There is 
plenty of opportunity for tool builders, and they need a thorough knowledge of a practical theory of 
programming.
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10  Exercises
Exercises marked with  √  have been done in previous chapters.

10.0  Preface

0 There are four cards on a table showing symbols D, E, 2, and 3 (one per card).  Each card 
has a letter on one side and a digit on the other.  Which card(s) do you need to turn over to 
determine whether every card with a D on one side has a 3 on the other?  Why?

                                                                                                                                          End of Preface

10.1  Basic Theories

1 Simplify each of the following boolean expressions.
(a) x ∧ ¬x
(b) x ∨ ¬x
(c) x ⇒ ¬x
(d) x ⇐ ¬x
(e) x = ¬x
(f) x + ¬x

2 Prove each of the following laws of Boolean Theory using the proof format given in 
Subsection 1.0.1, and any laws listed in Section 11.4.  Do not use the Completion Rule.

(a) a∧b ⇒ a∨b
(b) (a∧b) ∨ (b∧c) ∨ (a∧c)  =  (a∨b) ∧ (b∨c) ∧ (a∨c)
(c) ¬a ⇒ (a ⇒ b)
(d) a = (b ⇒ a)  =  a ∨ b
(e) a = (a ⇒ b)  =  a ∧ b
(f) (a⇒c) ∧ (b⇒¬c) ⇒ ¬(a∧b)
(g) a ∧ ¬b ⇒ a ∨ b
(h) (a⇒b) ∧ (c⇒d) ∧ (a∨c) ⇒ (b∨d)
(i) a ∧ ¬a ⇒ b
(j) (a⇒b) ∨ (b⇒a)
(k)√ ¬(a ∧ ¬(a∨b))
(l) (¬a⇒¬b) ∧ (a+b)  ∨  (a∧c ⇒ b∧c)
(m) (a⇒¬a) ⇒ ¬a
(n) (a⇒b) ∧ (¬a⇒b)  =  b
(o) (a⇒b)⇒a  =  a
(p) a=b ∨ a=c ∨ b=c
(q) a∧b ∨ a∧¬b  =  a
(r) a⇒(b⇒a)
(s) a ⇒ a ∧ b   =   a ⇒ b   =   a ∨ b ⇒ b
(t) if a then a else ¬a
(u) if b∧c then P else Q   =   if b then if c then P else Q else Q
(v) if b∨c then P else Q   =   if b then P else if c then P else Q
(w) if b then P else if b then Q else R   =   if b then P else R
(x) if if b then c else d then P else Q

= if b then if c then P else Q else if d then P else Q
(y) if b then if c then P else R else if c then Q else R

= if c then if b then P else Q else R



3 (dual)  One operator is the dual of another operator if it negates the result when applied to 
the negated operands.  The zero-operand operators  †  and  ƒ  are each other's duals.  If  
op0 (¬a) = ¬(op1 a)  then  op0  and  op1  are duals.  If  (¬a) op0 (¬b)  =  ¬(a op1 b)  
then  op0  and  op1  are duals.  And so on for more operands.

(a) Of the 4 one-operand boolean operators, there is 1 pair of duals, and 2 operators that are 
their own duals.  Find them.

(b) Of the 16 two-operand boolean operators, there are 6 pairs of duals, and 4 operators that are 
their own duals.  Find them.

(c) What is the dual of the three-operand operator  if then else ?  Express it using only the 
operator  if then else .

(d) The dual of a boolean expression without variables is formed as follows:  replace each 
operator with its dual, adding parentheses if necessary to maintain the precedence.  Explain 
why the dual of a theorem is an antitheorem, and vice versa.

(e) Let  P  be a boolean expression without variables.  From part (d) we know that every 
boolean expression without variables of the form

(dual of  P )  =  ¬P
is a theorem.  Therefore, to find the dual of a boolean expression with variables, we must 
replace each operator by its dual and negate each variable.  For example, if  a  and  b  are 
boolean variables, then the dual of  a∧b  is  ¬a ∨ ¬b .  And since

(dual of  a∧b )  =  ¬(a∧b)
we have one of the Duality Laws:

¬a ∨ ¬b  =  ¬(a ∧ b)
The other of the Duality Laws is obtained by equating the dual and negation of  a∨b .  
Obtain five laws that do not appear in this book by equating a dual with a negation.

(f) Dual operators have truth tables that are each other's vertical mirror reflections.  For 
example, the truth table for  ∧  (below left) is the vertical mirror reflection of the truth table 
for  ∨  (below right).

†† ⎪ † †† ⎪ †

∧: †ƒ ⎪ ƒ ∨: †ƒ ⎪ †

ƒ† ⎪ ƒ ƒ† ⎪ †

ƒƒ ⎪ ƒ ƒƒ ⎪ ƒ

Design symbols (you may redesign existing symbols where necessary) for the 4 one-
operand and 16 two-operand boolean operators according to the following criteria.
(i)  Dual operators should have symbols that are vertical mirror reflections (like  ∧  and  ∨ ).  
This implies that self-dual operators have vertically symmetric symbols, and all others have 
vertically asymmetric symbols.
(ii)  If  a op0 b  =  b op1 a  then  op0  and  op1  should have symbols that are horizontal 
mirror reflections (like  ⇒   and  ⇐  ).  This implies that symmetric operators have 
horizontally symmetric symbols, and all others have horizontally asymmetric symbols.

4 Truth tables and the Evaluation Rule can be replaced by a new proof rule and some new 
axioms.  The new proof rule says: “A boolean expression does not gain, lose, or change 
classification when a theorem within it is replaced by another theorem.  Similarly, a boolean 
expression does not gain, lose, or change classification when an antitheorem within it is 
replaced by another antitheorem.”.  The truth tables become new axioms;  for example, one 
truth table entry becomes the axiom  †∨†  and another becomes the axiom  †∨ƒ .  These 
two axioms can be reduced to one axiom by the introduction of a variable, giving  †∨x .  
Write the truth tables as axioms and antiaxioms as succinctly as possible.
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5 Complete the following laws of Boolean Theory
(a) †  =
(b) ƒ  =
(c) ¬a  =
(d) a∧b  =
(e) a∨b  =
(f) a=b  =
(g) a+b  =
(h) a⇒b  =

by adding a right side using only the following symbols (in any quantity)
(i) ¬ ∧ a b ( )
(ii) ¬ ∨ a b ( )
(iii) ¬ ⇒ a b ( )
(iv) + ⇒ a b ( )
(v) ¬ if then else a b ( )

6 (BDD)  A BDD (Binary Decision Diagram) is a boolean expression that has one of the 
following 3 forms:  † ,  ƒ ,  if variable then BDD else BDD .  For example,

if x then if a then † else ƒ else if y then if b then † else ƒ else ƒ
is a BDD.  An OBDD (Ordered BDD) is a BDD with an ordering on the variables, and in 
each  if then else , the variable in the if-part must come before any of the variables in its 
then- and else-parts (“before” means according to the ordering).  For example, using 
alphabetic ordering for the variables, the previous example is not an OBDD, but

if a then if c then † else ƒ else if b then if c then † else ƒ else ƒ
is an OBDD.  An LBDD (Labeled BDD) is a set of definitions of the following 3 forms:

label = †
label = ƒ
label = if variable then label else label

The labels are separate from the variables;  each label used in a then-part or else-part must 
be defined by one of the definitions;  exactly one label must be defined but unused.  The 
following is an LBDD.

true = †
false = ƒ
alice = if b then true else false
bob = if a then alice else false

An LOBDD is an LBDD that becomes an OBDD when the labels are expanded.  The 
ordering prevents any recursive use of the labels.  The previous example is an LOBDD.  An 
RBDD (Reduced BDD) is a BDD such that, in each  if then else , the then- and else-parts 
differ.  An ROBDD is both reduced and ordered;  an RLBDD is both reduced and labeled;  
an RLOBDD is reduced, labeled, and ordered.  The previous example is an RLOBDD.

(a) Express  ¬a ,  a∧b ,  a∨b ,  a⇒b ,  a=b ,  a+b , and  if a then b else c  as BDDs.
(b) How can you conjoin two OBDDs and get an OBDD?
(c) How can you determine if two RLOBDDs are equal?
(d) How can we represent an RLOBDD in order to determine efficiently if an assignment of 

values to variables satisfies it (solves it, gives it value  † )?

7 Express formally and succinctly that exactly one of three statements is true.

8 Design symbols for the 10 two-operand boolean operators that are not presented in Chapter 
1, and find laws about these operators.
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9 The Case Analysis Laws equate the three-operand operator  if a  then  b  else  c   to 
expressions using only two-operand and one-operand operators.  In each, the variable  a   
appears twice.  Find an equal expression using only two-operand and one-operand 
operators in which the variable  a  appears only once.  Hint:  use continuing operators.

10 Consider a fully parenthesized expression containing only the symbols  † ƒ = + ( )  in any 
quantity and any syntactically acceptable order.

(a) Show that all syntactically acceptable rearrangements are equivalent.
(b) Show that it is equivalent to any expression obtained from it by making an even number of 

the following substitutions:  †  for  ƒ ,  ƒ  for  † ,  =  for  + ,  +  for  = .

11 Let  p  and  q  be boolean expressions.  Suppose  p  is both a theorem and an antitheorem 
(the theory is inconsistent).

(a) Prove, using the rules of proof presented, that  q  is both a theorem and an antitheorem.
(b) Is  q=q  a theorem or an antitheorem?

12 Formalize each of the following statements as a boolean expression.  Start by staying as 
close as possible to the English, then simplify as much as possible (sometimes no 
simplification is possible).  You will have to introduce new basic boolean expressions like  
(the door can be opened)  for the parts that cannot make use of boolean operators, but for 
words like “only if” you should use boolean operators.  You translate meanings from 
words to boolean symbols;  the meaning of the words may depend on their context and even 
on facts not explicitly stated.  Formalization is not a simple substitution of symbols for 
words.

(a) The door can only be opened if the elevator is stopped.
(b) Neither the elevator door nor the floor door will open unless both of them do.
(c) Either the motor is jammed or the control is broken.
(d) Either the light is on or it is off.
(e) If you press the button, the elevator will come.
(f) If the power switch is on, the system is operating.
(g) Where there's smoke, there's fire;  and there's no smoke;  so there's no fire.
(h) Where there's smoke, there's fire;  and there's no fire;  so there's no smoke.
(i) You can't score if you don't shoot.
(j) If you have a key, only then can you open the door.
(k) No pain, no gain.
(l) No shirt?  No shoes?  No service!
(m) If it happens, it happens.

13 Formalize each of the following statements.  For each pair, either prove they are equivalent 
or prove they differ.

(a) Don't drink and drive.
(b) If you drink, don't drive.
(c) If you drive, don't drink.
(d) Don't drink and don't drive.
(e) Don't drink or don't drive.

14 Formalize and prove the following argument.  If it is raining and Jane does not have her 
umbrella with her, then she is getting wet.  It is raining.  Jane is not getting wet.  Therefore 
Jane has her umbrella with her.
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15 A sign says: NO PARKING
7-9am
4-6pm

Mon-Fri
Using variable  t  for time of day and  d  for day, write a boolean expression that says when 
there is no parking.

16 (tennis)  An advertisement for a tennis magazine says “If I'm not playing tennis, I'm 
watching tennis.  And if I'm not watching tennis, I'm reading about tennis.”.  Assuming the 
speaker cannot do more than one of these activities at a time,

(a) prove that the speaker is not reading about tennis.
(b) what is the speaker doing?

17 (maid and butler)  The maid said she saw the butler in the living room.  The living room 
adjoins the kitchen.  The shot was fired in the kitchen, and could be heard in all nearby 
rooms.  The butler, who had good hearing, said he did not hear the shot.  Given these facts, 
prove that someone lied.  Use the following abbreviations.

mtt =  (the maid told the truth)
btt =  (the butler told the truth)
blr =  (the butler was in the living room)
bnk =  (the butler was near the kitchen)
bhs =  (the butler heard the shot)

18 (knights and knaves)  There are three inhabitants of an island, named P, Q, and R.  Each is 
either a knight or a knave.  Knights always tell the truth.  Knaves always lie.  For each of the 
following, write the given information formally, and then answer the questions, with proof.

(a) You ask P: “Are you a knight?”.  P replies: “If I am a knight, I'll eat my hat.”.  Does P eat 
his hat?

(b) P says: “If Q is a knight, then I am a knave.”.  What are P and Q?
(c) P says: “There is gold on this island if and only if I am a knight.”.  Can it be determined 

whether P is a knight or a knave?  Can it be determined whether there is gold on the island?
(d) P, Q, and R are standing together.  You ask P: “Are you a knight or a knave?”.  P mumbles 

his reply, and you don't hear it.  So you ask Q: “What did P say?”.  Q replies: “P said that 
he is a knave.”.  Then R says: “Don't believe Q, he's lying.”.  What are Q and R?

(e) You ask P: “How many of you are knights?”.  P mumbles.  So Q says: “P said there is 
exactly one knight among us.”.  R says: “Don't believe Q, he's lying.”.  What are Q and 
R?

(f) P says: “We're all knaves.”.  Q says: “No, exactly one of us is a knight.”.  What are P, Q, 
and R?

19 Islands X and Y contain knights who always tell the truth, knaves who always lie, and 
possibly also some normal people who sometimes tell the truth and sometimes lie.  There is 
gold on at least one of the islands, and the people know which island(s) it is on.  You find a 
message from the pirate who buried the gold, with the following clue (which we take as an 
axiom):  “If there are any normal people on Island X, then there is gold on both islands.”.  
You are allowed to dig on only one island, and you are allowed to ask one question of one 
random person.  What should you ask in order to find out which island to dig on?
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20 (caskets)  The princess had two caskets, one gold and one silver.  Into one she placed her 
portrait and into the other she placed a dagger.  On the gold casket she wrote the inscription:  
the portrait is not in here.  On the silver casket she wrote the inscription:  exactly one of 
these inscriptions is true.  She explained to her suitor that each inscription is either true or 
false (not both), but on the basis of the inscriptions he must choose a casket.  If he chooses 
the one with the portrait, he can marry her;  if he chooses the one with the dagger, he must 
kill himself.  Assuming marriage is preferable to death, which casket should he choose?

21 (the unexpected egg)  There are two boxes, one red and one blue.  One box has an egg in it;  
the other is empty.  You are to look first in the red box, then if necessary in the blue box, to 
find the egg.  But you will not know which box the egg is in until you open the box and see 
the egg.  You reason as follows:  “If I look in the red box and find it empty, I'll know that 
the egg is in the blue box without opening it.  But I was told that I would not know which 
box the egg is in until I open the box and see the egg.  So it can't be in the blue box.  Now I 
know it must be in the red box without opening the red box.  But again, that's ruled out, so it 
isn't in either box.”.  Having ruled out both boxes, you open them and find the egg in one 
unexpectedly, as originally stated.  Formalize the given statements and the reasoning, and 
thus explain the paradox.

22 A number can be written as a sequence of decimal digits.  For the sake of generality, let us 
consider using the sequence notation with arbitrary expressions, not just digits.  For 
example,  1(2+3)4  could be allowed, and be equal to  154 .  What changes are needed to 
the number axioms?

23 (scale)  There is a tradition in programming languages to use a scale operator,  e , in the 
limited context of digit sequences.  Thus  12e3  is equal to  12×103 .  For the sake of 
generality, let us consider using the scale notation with arbitrary expressions, not just digits.  
For example,  (6+6)e(5–2)  could be allowed, and be equal to  12e3 .  What changes are 
needed to the number axioms?

24 When we defined number expressions, we included complex numbers such as  (–1)1/2 , not 
because we particularly wanted them, but because it was easier than excluding them.  If we 
were interested in complex numbers, we would find that the number axioms given in 
Subsection 11.4.2 do not allow us to prove many things we might like to prove.  For 
example, we cannot prove  (–1)1/2 × 0 = 0 .  How can the axioms be made strong enough to 
prove things about complex numbers, but weak enough to leave room for  ∞ ?

25 Express formally
(a) the absolute value of a real number  x .
(b) the sign of a real number  x , which is  –1 ,  0 , or  +1  depending on whether  x  is negative, 

zero, or positive.

26 Prove  –∞<y<∞  ∧  y+0  ⇒  (x/y=z  =  x=z×y) .

27 Show that the number axioms become inconsistent when we add the axiom
–∞<y<∞  ⇒  x/y×y = x

28 (circular numbers)  Redesign the axioms for the extended number system to make it 
circular, so that  +∞ = –∞ .  Be careful with the transitivity of  < .
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29 Is there any harm in adding the axiom  0/0=5  to Number Theory?

30 (bracket algebra)  Here is a new way to write boolean expressions.  An expression can be 
empty;  in other words, nothing is already an expression.  If you put a pair of parentheses 
around an expression, you get another expression.  If you put two expressions next to each 
other, you get another expression.  For example,

()(())((())())
is an expression.  The empty expression is bracket algebra's way of writing  † ;  putting 
parentheses around an expression is bracket algebra's way of negating it, and putting 
expressions next to each other is bracket algebra's way of conjoining them.  So the example 
expression is bracket algebra's way of saying

¬†∧¬¬†∧¬(¬¬†∧¬†)
We can also have variables anywhere in a bracket expression.  There are three rules of 
bracket algebra.  If  x ,  y , and  z  are any bracket expressions, then

((x)) can replace or be replaced by x double negation rule
x()y can replace or be replaced by () base rule
x y z can replace or be replaced by x′ y z′ context rule

where  x′  is  x  with occurrences of  y  added or deleted, and similarly  z ′  is  z  with 
occurrences of  y  added or deleted.  The context rule does not say how many occurrences 
of  y  are added or deleted;  it could be any number from none to all of them.  To prove, you 
just follow the rules until the expression disappears.  For example,

((a)b((a)b)) context rule: empty for  x ,  (a)b  for  y ,  ((a)b)  for  z
becomes ((a)b(       )) base rule:  (a)b  for  x  and empty for  y
becomes (       (       )) double negation rule
becomes
Since the last expression is empty, all the expressions are proven.

(a) Rewrite the boolean expression
¬(¬(a∧b)∧¬(¬a∧b)∧¬(a∧¬b)∧¬(¬a∧¬b))

as a bracket expression, and then prove it following the rules of bracket algebra.
(b) As directly as possible, rewrite the boolean expression

(¬a⇒¬b) ∧ (a+b)  ∨  (a∧c ⇒ b∧c)
as a bracket expression, and then prove it following the rules of bracket algebra.

(c) Can all boolean expressions be rewritten reasonably directly as bracket expressions?
(d) Can  x y  become  y x  using the rules of bracket algebra?
(e) Can all theorems of boolean algebra, rewritten reasonably directly as bracket expressions, be 

proven using the rules of bracket algebra?
(f) We interpret empty as  † , parentheses as negation, and juxtaposition as conjunction.  Is 

there any other consistent way to interpret the symbols and rules of bracket algebra?

31 Let  •  be a two-operand infix operator (let's give it precedence 3) whose operands and result 
are of some type  T .  Let  ◊  be a two-operand infix operator (let's give it precedence 7) 
whose operands are of type  T  and whose result is boolean, defined by the axiom

a ◊ b  =  a • b = a
(a) Prove if  •  is idempotent then  ◊  is reflexive.
(b) Prove if  •  is associative then  ◊  is transitive.
(c) Prove if  •  is symmetric then  ◊  is antisymmetric.
(d) If  T  is the booleans and  •  is  ∧ , what is  ◊ ?
(e) If  T  is the booleans and  •  is  ∨ , what is  ◊ ?
(f) If  T  is the natural numbers and  ◊  is  ≤ , what is  • ?
(g) The axiom defines  ◊  in terms of  • .  Can it be inverted, so that  •  is defined in terms of  ◊ ?
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32 (family theory)  Design a theory of personal relationships.  Invent person expressions such 
as  Jack , Jill , father of p  , mother of p  .  Invent boolean expressions that use person 
expressions, such as  p is male  ,  p is female  ,  p is a parent of q  , p is a son of q  , 
p is a daughter of q ,  p is a child of q ,  p is married to q  ,  p=q .  Invent axioms such as  
(p is male) + (p is female) .  Formulate and prove an interesting theorem.

                                                                                                                                End of Basic Theories

10.2  Basic Data Structures

33 Simplify
(a) (1, 7–3) + 4 – (2, 6, 8)
(b) nat×nat
(c) nat–nat
(d) (nat+1)×(nat+1)

34 Prove  ¬ 7: null .

35 We defined bunch  null  with the axiom  null: A .  Is there any harm in defining bunch  all  
with the axiom  A: all ?

36 Let  A  be a bunch of booleans such that  A = ¬A .  What is  A ?

37 Show that some of the axioms of Bunch Theory listed in Section 2.0 are provable from the 
other axioms.  How many of the axioms can you remove without losing any theorems?

38 (hyperbunch)  A hyperbunch is like a bunch except that each element can occur a number of 
times other than just zero times (absent) or one time (present).  The order of elements 
remains insignificant.  (A hyperbunch does not have a characteristic predicate, but a 
characteristic function with numeric result.)  Design notations and axioms for each of the 
following kinds of hyperbunch.

(a) multibunch:  an element can occur any natural number of times.  For example, a multibunch 
can consist of one 2, two 7s, three 5s, and zero of everything else.  (Note:  the equivalent for 
sets is called either a multiset or a bag.)

(b) wholebunch:  an element can occur any integer number of times.
(c) fuzzybunch:  an element can occur any real number of times from  0  to  1  inclusive.

39 A composite number is a natural number with  2  or more (not necessarily distinct) prime 
factors.  Express the composite numbers as simply as you can.

40 For this question only, let  #  be a two-operand infix operator (precedence 3) with natural 
operands and an extended natural result.  Informally,  n#m  means “the number of times 
that  n  is a factor of  m ”.  It is defined by the following two axioms.

m: n×nat  ∨  n#m = 0
n+0   ⇒   n#(m×n)  =  n#m + 1

(a) Make a 3×3 chart of the values of  (0,..3)#(0,..3) .
(b) Show that the axioms become inconsistent if the antecedent of the second axiom is 

removed.
(c) How should we change the axioms to allow  #  to have extended natural operands?

10  Exercises 154



41 For naturals  n  and  m , we can express the statement “ n  is a factor of  m ” formally as 
follows:

m: n×nat
(a) What are the factors of  0 ?
(b) What is  0  a factor of?
(c) What are the factors of  1 ?
(d) What is  1  a factor of?

42 Let  B  =  1, 3, 5 .  What is
(a) ¢(B + B)
(b) ¢(B × 2)
(c) ¢(B × B)
(d) ¢(B2)

43 The compound axiom says
x: A, B  =  x: A  ∨  x: B

There are 16 two-operand boolean operators that could sit where  ∨  sits in this axiom if we 
just replace bunch union (,) by a corresponding bunch operator.  Which of the 16 two-
operand boolean operators correspond to useful bunch operators?

44 (von Neumann numbers)
(a) Is there any harm in adding the axioms

0  =  {null} the empty set
n+1  =  {n, ~n} for each natural  n

(b) What correspondence is induced by these axioms between the arithmetic operations and the 
set operations?

(c) Is there any harm in adding the axioms
0  =  {null} the empty set
i+1  =  {i, ~i} for each integer  i

45 (Cantor's paradise)  Show that  $ 2S  >  $S  is neither a theorem nor an antitheorem.

46 The strings defined in Section 2.2 are “extended natural strings” because their lengths and 
indexes are extended natural numbers.  Invent suitable axioms for

(a) “natural strings”, excluding “infinite strings”.
(b) “integer strings”, including both “natural strings” and “negative strings”.

47 Prove the trichotomy for strings of numbers.  For strings  S  and  T , prove that exactly one 
of  S<T ,  S=T ,  S>T  is a theorem.

48 In Section 2.3 there is a self-describing expression.  Make it into a self-printing program.  
To do so, you need to know that  c!e  outputs the value of expression  e  on channel  c .

49 Simplify (no proof)
(a) null, nil
(b) null; nil
(c) *nil
(d) [null]
(e) [*null]
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50 What is the difference between  [0, 1, 2]  and  [0; 1; 2] ?

51 (prefix order)  Give axioms to define the prefix partial order on strings.  String  S  comes 
before string  T  in this order if and only if  S  is an initial segment of T .

52 Simplify, assuming  i: 0,..#L
(a) i→Li | L
(b) L [0;..i] + [x] + L [i+1;..#L]

53 Simplify (no proof)
(a) 0→1 | 1→2 | 2→3 | 3→4 | 4→5 | [0;..5]
(b) (4→2 | [–3;..3]) 3
(c) ((3;2)→[10;..15] | 3→[5;..10] | [0;..5]) 3
(d) ([0;..5] [3; 4]) 1
(e) (2;2)→`j | ["abc"; "de"; "fghi"]
(f) #[nat]
(g) #[*3]
(h) [3; 4]: [3*4*int]
(i) [3; 4]: [3; int]
(j) [3, 4; 5]: [2*int]
(k) [(3, 4); 5]: [2*int]
(l) [3; (4, 5); 6; (7, 8, 9)] ‘ [3; 4; (5, 6); (7, 8)]

54 Let  i  and  j  be indexes of list  L .  Express  i→Lj | j→Li | L  without using  | .
                                                                                                                         End of Basic Data Structures

10.3  Function Theory

55 In each of the following, replace  p  by
〈x: int→〈y: int→〈z: int→x≥0 ∧ x2≤y ∧ ∀z: int· z2≤y ⇒ z≤x〉〉〉

and simplify, assuming  x, y, z, u, w: int .
(a) p (x+y) (2×u + w) z
(b) p (x+y) (2×u + w)
(c) p (x+z) (y+y) (2+z)

56 Some mathematicians like to use a notation like  ∃!x: D· Px  to mean “there is a unique  x  
in  D  such that  Px  holds”.  Define  ∃!  formally.

57 Write each of the following without using  § .
(a) ¢(§x: D· Px) = 0
(b) ¢(§x: D· Px) = 1
(c) ¢(§x: D· Px) = 2

58 (cat)  Define function  cat  so that it applies to a list of lists and produces their catenation.  
For example,

cat [[0; 1; 2]; [nil]; [[3]]; [4; 5]]  =  [0; 1; 2; [3]; 4; 5]

59 Express formally that  L  is a sublist (not necessarily consecutive items) of list  M  .  For 
example,  [0; 2; 1]  is a sublist of  [0; 1; 2; 2; 1; 0] , but  [0; 2; 1]  is not a sublist of  
[0; 1; 2; 3] .
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60 Express formally that  L  is a longest sorted sublist of  M  where
(a) the sublist must be consecutive items (a segment).
(b) the sublist must be consecutive  (a segment) and nonempty.
(c) the sublist contains items in their order of appearance in  M  , but not necessarily 

consecutively (not necessarily a segment).

61 Express formally that natural  n  is the length of a longest palindromic segment in list  L .  A 
palindrome is a list that equals its reverse.

62 Using the syntax  x can fool y at time t  formalize the statements
(a) You can fool some of the people all of the time.
(b) You can fool all of the people some of the time.
(c) You can't fool all of the people all of the time.

for each of the following interpretations of the word “You”:
(i) Someone
(ii) Anyone
(iii) The person I am talking to

63 (whodunit)  Here are ten statements.
(i) Some criminal robbed the Russell mansion.
(ii) Whoever robbed the Russell mansion either had an accomplice among the servants

or had to break in.
(iii) To break in one would have to either smash the door or pick the lock.
(iv) Only an expert locksmith could pick the lock.
(v) Anyone smashing the door would have been heard.
(vi) Nobody was heard.
(vii) No one could rob the Russell mansion without fooling the guard.
(viii) To fool the guard one must be a convincing actor.
(ix) No criminal could be both an expert locksmith and a convincing actor.
(x) Some criminal had an accomplice among the servants.

(a) Choosing good abbreviations, translate each of these statements into formal logic.
(b) Taking the first nine statements as axioms, prove the tenth.

64 (arity)  The arity of a function is the number of variables (parameters) it introduces, and the 
number of arguments it can be applied to.  Write axioms to define  αf  (arity of  f ).

65 There are some people, some keys, and some doors.  Let  p holds k  mean that person  p  
holds key  k .  Let  k unlocks d   mean that key  k  unlocks door  d .  Let  p opens  d  mean 
that person  p  can open door  d .  Formalize

(a) Anyone can open any door if they have the appropriate key.
(b) At least one door can be opened without a key (by anyone).
(c) The locksmith can open any door even without a key.

66 Prove that if variables  i  and  j  do not appear in predicates  P  and  Q , then
(∀i· Pi) ⇒ (∃i· Qi)   =   (∃i, j· Pi ⇒ Qj)

67 There are four boolean two-operand associative symmetric operators with an identity.  We 
used two of them to define quantifiers.  What happened to the other two?

68 Which operator can be used to define a quantifier to give the range of a function?
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69 We have defined several quantifiers by starting with an associative symmetric operator with 
an identity.  Bunch union is also such an operator.  Does it yield a quantifier?

70 Exercise 13 talks about drinking and driving, but not about time.  It's not all right to drink 
first and then drive soon after, but it is all right to drive first and then drink soon after.  It is 
also all right to drink first and then drive 6 hours after.  Let  drink  and  drive  be predicates 
of time, and formalize the rule that you can't drive for 6 hours after drinking.  What does 
your rule say about drinking and driving at the same time?

71 Formalize each of the following statements as a boolean expression.
(a) Everybody loves somebody sometime.
(b) Every 10 minutes someone in New York City gets mugged.
(c) Every 10 minutes someone keeps trying to reach you.
(d) Whenever the altititude is below 1000 feet, the landing gear must be down.
(e) I'll see you on Tuesday, if not before.
(f) No news is good news.

72 Express formally that
(a) natural  n  is the largest proper (neither  1  nor  m ) factor of natural  m .
(b) g  is the greatest common divisor of naturals  a  and  b .
(c) m  is the lowest common multiple of naturals  a  and  b .
(d) p  is a prime number.
(e) n  and  m  are relatively prime numbers.
(f) there is at least one and at most a finite number of naturals satisfying predicate  p .
(g) there is no smallest integer.
(h) between every two rational numbers there is another rational number.
(i) list  L  is a longest segment of list  M  that does not contain item  x .
(j) the segment of list  L  from (including) index  i  to (excluding) index  j  is a segment whose 

sum is smallest.
(k) a  and  b  are items of lists  A  and  B  (respectively) whose absolute difference is least.
(l) p  is the length of a longest plateau (segment of equal items) in a nonempty sorted list  L .
(m) all items that occur in list  L  occur in a segment of length  10 .
(n) all items of list  L  are different (no two items are equal).
(o) at most one item in list  L  occurs more than once.
(p) the maximum item in list  L  occurs  m  times.
(q) list  L  is a permutation of list  M .

73 (bitonic list)  A list is bitonic if it is monotonic up to some index, and antimonotonic after 
that.  For example,  [1; 3; 4; 5; 5; 6; 4; 4; 3]  is bitonic.  Express formally that L  is bitonic.

74 Formalize and disprove the statement “There is a natural number that is not equal to any 
natural number.”.

75 (friends)  Formalize and prove the statement “The people you know are those known by all 
who know all whom you know.”.

76 (swapping partners)  There is a finite bunch of couples.  Each couple consists of a man and 
a woman.  The oldest man and the oldest woman have the same age.  If any two couples 
swap partners, forming two new couples, the younger partners of the two new couples have 
the same age.  Prove that in each couple, the partners have the same age.
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77 Express  ∀  and  ∃  in terms of  ¢  and  § .

78 Simplify
(a) Σ ((0,..n) → m)
(b) Π ((0,..n) → m)
(c) ∀ ((0,..n) → b)
(d) ∃ ((0,..n) → b)

79 Are the boolean expressions
nil→x  =  x
(S;T) → x  =  S→T→x

(a) consistent with the theory in Chapters 2 and 3?
(b) theorems according to the theory in Chapters 2 and 3?

80 (unicorns)  The following statements are made.
All unicorns are white.
All unicorns are black.
No unicorn is both white and black.

Are these statements consistent?  What, if anything, can we conclude about unicorns?

81 (Russell's barber)  Bertrand Russell stated:  “In a small town there is a barber who shaves 
all and only the people in the town who do not shave themselves.”.  Then Russell asked:  
“Does the barber shave himself?”.  If we say yes, then we can conclude from the statement 
that he does not, and if we say no, then we can conclude from the statement that he does.  
Formalize this paradox, and thus explain it.

82 (Russell's paradox)  Define  rus  =  〈f: (null→bool) → ¬ f f〉 .
(a) Can we prove  rus rus  =  ¬ rus rus ?
(b) Is this an inconsistency?
(c) Can we add the axiom  ¬  f: Δf ?  Would it help?

83 Prove that the square of an odd natural number is odd, and the square of an even natural 
number is even.

84 (Gödel/Turing incompleteness)  Prove that we cannot consistently and completely define an 
interpreter.  An interpreter is a predicate  ˆ  that applies to texts;  when applied to a text 
representing a boolean expression, its result is equal to the represented expression.  For 
example,

ˆ "∀s: [*char]· #s ≥ 0"  =  ∀s: [*char]· #s ≥ 0

85 Let  f  and  g  be functions from nat to  nat .  For what  f  do we have the theorem  g f = g ?  
For what  f  do we have the theorem  f g = g ?

86 What is the difference between  #[n*†]  and  ¢§[n*†] ?

87 Without using the Bounding Laws, prove
(a) ∀i· Li≤m   =   (MAX L) ≤ m
(b) ∃i· Li≤m   =   (MIN L) ≤ m

88 (pigeon-hole)  Prove  (ΣL) > n×#L  ⇒  ∃i: ΔL· Li>n .
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89 If  f: A→B  and  p: B→bool , prove
(a) ∃b: fA· pb  =  ∃a: A· pfa
(b) ∀b: fA· pb  =  ∀a: A· pfa

90 This question explores a simpler, more elegant function theory than the one presented in 
Chapter 3.  We separate the notion of local variable introduction from the notion of domain, 
and we generalize the latter to become local axiom introduction.  Variable introduction has 
the form  〈v→b〉  where  v  is a variable and  b  is any expression (the body;  no domain).  
There is a Renaming Axiom

〈v→b〉  =  〈w→(substitute  w  for  v  in  b )〉
and an Application Axiom

〈v→b〉 x  =  (substitute  x  for  v  in  b )
Let  a  be boolean, and let  b  be any expression.  Then  a 5b  is an expression of the same 
type as  b .  The  5  operator has precedence level 12 and is right-associating.  Its axioms 
include:

†5b   =   b
a 5b 5c  =  a∧b 5 c

The expression  a 5b  is a “one-tailed if-expression”, or “asserted expression”;  it 
introduces  a  as a local axiom within  b .  A function is a variable introduction whose body 
is an asserted expression in which the assertion has the form  v: D .  In this case, we allow 
an abbreviation:  for example, the function  〈n  →  n: nat 5  n+1〉  can be abbreviated  
〈n: nat→n+1〉 .  Applying this function to  3 , we find

〈n→n: nat 5 n+1〉 3
= 3: nat 5 3+1
= † 5 4
= 4

Applying it to  –3  we find
〈n→n: nat 5 n+1〉 (–3)

= –3: nat 5 –3+1
= ƒ 5 –2

and then we are stuck;  no further axiom applies.  In the example, we have used variable 
introduction and axiom introduction together to give us back the kind of function we had;  
but in general, they are independently useful.

(a) Show how function-valued variables can be introduced in this new theory.
(b) What expressions in the old theory have no equivalent in the new?  How closely can they be 

approximated?
(c) What expressions in the new theory have no equivalent in the old?  How closely can they be 

approximated?

91 Is there any harm in defining relation  R  with the following axioms?
∀x· ∃y· Rxy totality
∀x· ¬ Rxx irreflexivity
∀x, y, z· Rxy ∧ Ryz ⇒ Rxz transitivity
∃u· ∀x· x=u ∨ Rxu unity

92 Let  n  be a natural number, and let  R  be a relation on  0,..n .  In other words,
R: (0,..n) → (0,..n) → bool

We say that from  x  we can reach  x  in zero steps.  If  Rxy  we say that from  x  we can 
reach  y  in one step.  If  Rxy  and  Ryz  we say that from  x  we can reach  z  in two steps.  
And so on.  Express formally that from  x  we can reach  y  in some number of steps.
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93 Relation  R  is transitive if  ∀x, y, z· Rxy ∧ Ryz ⇒ Rxz .  Express formally that relation  R  is 
the transitive closure of relation  Q  ( R  is the strongest transitive relation that is implied by  
Q ).

                                                                                                                              End of Function Theory

10.4  Program Theory

94 Prove specification  S  is satisfiable for prestate  σ  if and only if  S.†  (note:  †  is the 
“true” boolean).

95 Let  x  be an integer state variable.  Which of the following specifications are 
implementable?

(a) x ≥ 0  ⇒  x′ 2 = x
(b) x′ ≥ 0  ⇒  x = 0
(c) ¬(x ≥ 0  ∧  x′ = 0)
(d) ¬(x ≥ 0  ∨  x′ = 0)

96 A specification is transitive if, for all states  a ,  b , and  c , if it allows the state to change 
from  a  to  b , and it allows the state to change from  b  to  c , then it allows the state to 
change from  a  to  c .  Prove  S  is transitive if and only if  S  is refined by  S.S .

97√ Simplify each of the following (in integer variables  x  and  y ).
(a) x:= y+1.  y′>x′
(b) x:= x+1.  y′>x ∧ x′>x
(c) x:= y+1.  y′=2x
(d) x:= 1.  x≥1 ⇒ ∃x· y′=2x
(e) x:= y.  x≥1 ⇒ ∃y· y′=x×y
(f) x:= 1.  ok
(g) x:= 1.  y:= 2
(h) x:= 1.  P  where  P  =  y:= 2
(i) x:= 1.  y:= 2.  x:= x+y
(j) x:= 1.  if y>x then x:= x+1 else x:= y
(k) x:= 1.  x′>x.  x′=x+1

98 Prove
(a) x:= x  =  ok
(b) x:= e.  x:= f x   =   x:= f e

99 Prove or disprove
(a) R.  if b then P else Q   =   if b then (R. P) else (R. Q)
(b) if b then P⇒Q else R⇒S   =  (if b then P else R) ⇒ (if b then Q else S)
(c) if b then (P. Q) else (R. S)   =   if b then P else R.  if b then Q else S

100 Prove
(a) P  and  Q  are each refined by  R  if and only if their conjunction is refined by  R .
(b) P⇒Q  is refined by  R  if and only if  Q  is refined by  P∧R .

101 (roll up)  Suppose  S  ⇐   A. A. S. Z. Z .  Can we conclude  S  ⇐  A. S. Z ?  Can we 
always roll up a loop?
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102 What is wrong with the following proof:
(R   ⇐   R. S) use context rule

= (R   ⇐   ƒ. S) ƒ  is base for  .
= (R   ⇐   ƒ) base law for  ⇐
= †

103 For which kinds of specifications  P  and  Q  is the following a theorem:
(a) ¬(P. ¬Q)   ⇐   P. Q
(b) P. Q   ⇐   ¬(P. ¬Q)
(c) P. Q   =   ¬(P. ¬Q)

104 Write a formal specification of the following problem:  “Change the value of list variable  L  
so that each item is repeated.  For example, if  L  is  [6; 3; 5; 5; 7]  then it should be changed 
to  [6; 6; 3; 3; 5; 5; 5; 5; 7; 7] .”.

105 Let  P  and  Q  be specifications.  Let  C  be a precondition and let  C′  be the corresponding 
postcondition.  Prove the condition law

P. Q    ⇐   P∧C′.  C⇒Q

106 Let  P  and  Q  be specifications.  Let  C  be a precondition and let  C′  be the corresponding 
postcondition.  Which three of the following condition laws can be turned around, switching 
the problem and the solution?

C ∧ (P. Q)   ⇐   C∧P. Q
C ⇒ (P.Q)   ⇐   C⇒P. Q
(P.Q) ∧ C′   ⇐   P. Q∧C′
(P.Q) ⇐ C′   ⇐   P. Q⇐C′
P. C∧Q    ⇐   P∧C′. Q
P. Q   ⇐   P∧C′.  C⇒Q

107 Let  S  be a specification.  Let  C  be a precondition and let  C′  be the corresponding 
postcondition.  How does the exact precondition for  C′  to be refined by  S  differ from  
(S. C) ?  Hint:  consider prestates in which  S  is unsatisfiable, then deterministic, then 
nondeterministic.

108 We have Refinement by Steps, Refinement by Parts, and Refinement by Cases.  In this 
question we propose Refinement by Alternatives:
If  A  ⇐  if b then C else D  and  E  ⇐  if b then F else G  are theorems,

then  A∨E  ⇐  if b then C∨F else D∨G  is a theorem.
If  A  ⇐  B.C  and  D  ⇐  E.F  are theorems, then  A∨D  ⇐  B∨E. C∨F  is a theorem.
If  A ⇐ B  and  C ⇐ D  are theorems, then  A∨C  ⇐  B∨D  is a theorem.
Discuss the merits and demerits of this proposed law.

109 Let  x  and  y  be real variables.  Prove that if  y=x2  is true before
x:= x+1.  y:= y + 2×x – 1

then it is still true after.

110√ In one integer variable  x ,
(a) find the exact precondition  A  for  x′>5  to be refined by  x:= x+1 .
(b) find the exact postcondition for  A  to be refined by  x:= x+1 , where  A  is your answer 

from part  (a).
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111 Let all variables be integer except  L  is a list of integers.  What is the exact precondition for
(a) x′+y′ > 8  to be refined by  x:= 1
(b) x′=1  to be refined by  x:= 1
(c) x′=2  to be refined by  x:= 1
(d) x′=y  to be refined by  y:= 1
(e) x′ ≥ y′  to be refined by  x:= y+z
(f) y′+z′ ≥ 0  to be refined by  x:= y+z
(g) x′≤1  ∨  x′≥5  to be refined by  x:= x+1
(h) x′<y′  ∧  ∃x· Lx<y′  to be refined by  x:= 1
(i) ∃y· Ly<x′  to be refined by  x:= y+1
(j) L′ 3 = 4  to be refined by  L:= i→4 | L
(k) x′=a  to be refined by  if a > b then x:= a else ok
(l) x′=y  ∧  y′=x  to be refined by  (z:= x.  x:= y.  y:= z)
(m) a×x′ 2 + b×x′ + c = 0  to be refined by  (x:= a×x + b.  x:= –x/a)
(n) f ′ = n′!  to be refined by  (n:= n+1.  f:= f×n)  where  n  is natural and  !  is factorial.
(o) 7 ≤ c′ < 28  ∧ odd c′  to be refined by  (a:= b–1.  b:= a+3.  c:= a+b)
(p) s′  =  Σ L [0;..i′]  to be refined by  (s:= s + Li.  i:= i+1)

112 For what exact precondition and postcondition does the following assignment move integer 
variable  x  farther from zero?

(a) x:= x+1
(b) x:= abs (x+1)
(c)√ x:= x2

113 For what exact precondition and postcondition does the following assignment move integer 
variable  x  farther from zero staying on the same side of zero?

(a) x:= x+1
(b) x:= abs (x+1)
(c) x:= x2

114 Prove
(a) the Precondition Law:  C  is a sufficient precondition for specification  P  to be refined by 

specification  S  if and only if  C⇒P  is refined by  S .
(b) the Postcondition Law:  C′  is a sufficient postcondition for specification  P  to be refined 

by specification  S  if and only if  C′⇒P  is refined by  S .

115 (weakest prespecification, weakest postspecification)  Given specifications  P  and  Q , find 
the weakest specification  S  (in terms of  P  and  Q ) such that  P  is refined by

(a) S. Q
(b) Q. S

116 Let  a ,  b , and  c  be integer variables.  Simplify
(a) b:= a–b.  b:= a–b
(b) a:= a+b.  b:= a–b.  a:= a–b
(c) c:= a–b–c.  b:= a–b–c.  a:= a–b–c.  c:= a+b+c

117 Let  x  and  y  be boolean variables.  Simplify
(a) x:= x=y.  x:= x=y
(b) x:= x+y.  y:= x+y.  x:= x+y
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118 Let  x  be an integer variable.  Prove the refinement
(a)√ x′=0   ⇐   if x=0 then ok else (x:= x–1.  x′=0)
(b) P   ⇐   if x=0 then ok else (x:= x–1.  t:= t+1.  P)

where  P   =   x′=0  ∧  if x≥0 then t′ = t+x else t′=∞

119 Let  x  be an integer variable.  Prove the refinement
(a) x′=1   ⇐   if x=1 then ok else (x:= div x 2.  x′=1)
(b)√ R   ⇐   if x=1 then ok else (x:= div x 2.  t:= t+1.  R)

where  R  =  x′=1  ∧  if x≥1 then t′ ≤ t + log x else t′=∞

120 In natural variables  s  and  n   prove
P   ⇐   if n=0 then ok else (n:= n–1.  s:= s+2n–n.  t:= t+1.  P)

where  P   =   s′ = s + 2n – n×(n–1)/2 – 1  ∧  n′=0  ∧  t′ = t+n .

121 Is the refinement
P   ⇐   if x=0 then ok else (x:= x–1.  t:= t+1.  P)

a theorem when
P  =  x<0 ⇒ x′=1 ∧ t′=∞

Is this reasonable?  Explain.

122 (factorial)  In natural variables  n  and  f   prove
f:= n!   ⇐   if n=0 then f:= 1 else (n:= n–1.  f:= n!.  n:= n+1.  f:= f×n)

where  n!  =  1×2×3×...×n .

123 In natural variables  n  and  m  prove
P  ⇐ n:= n+1.

if n=10 then ok
else (m:= m–1.  P)

where  P  =  m:= m+n–9.  n:= 10 .

124 Let  x  and  n  be natural variables.  Find a specification  P  such that both the following 
hold:

x = x′×2n′   ⇐   n:= 0.  P
P   ⇐  if even x then (x:= x/2.  n:= n+1.  P) else ok

125 (square)  Let  s  and  n  be natural variables.  Find a specification  P  such that both the 
following hold:

s′ = n2   ⇐   s:= n.  P
P   ⇐   if n=0 then ok else (n:= n–1.  s:= s+n+n.  P)

This program squares using only addition, subtraction, and test for zero.

126 Let  a  and  b  be positive integers.  Let  x ,  u , and  v  be integer variables.  Let
P   =   u≥0  ∧  v≥0  ∧  x = u×a – v×b  ⇒  x′=0

(a) Prove
P   ⇐ if x>0 then (x:= x–a.  u:= u–1.  P)

else if x<0 then (x:= x+b.  v:= v–1.  P)
else ok

(b) Find an upper bound for the execution time of the program in part (a).
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127 Let  i  be an integer variable.  Add time according to the recursive measure, and then find the 
strongest  P  you can such that

(a) P  ⇐ if even i then i:= i/2 else i:= i+1.
if i=1 then ok else P

(b) P  ⇐ if even i then i:= i/2 else i:= i–3.
if i=0 then ok else P

128 Find a finite function  f  of natural variables  i  and  j  to serve as an upper bound on the 
execution time of the following program, and prove

t′ ≤ t + fij   ⇐ if i=0 ∧ j=0 then ok
else if i=0 then (i:= j×j.  j:= j–1.  t:= t+1.  t′ ≤ t + fij)
else (i:= i–1.  t:= t+1.  t′ ≤ t + fij)

129 Let  P  mean that the final values of natural variables  a  and  b  are the largest exponents of  
2  and  3  respectively such that both powers divide evenly into the initial value of positive 
integer  x .

(a) Define  P  formally.
(b) Define  Q  suitably and prove

P   ⇐ a:= 0.  b:= 0.  Q
Q   ⇐ if x: 2×nat then (x:= x/2.  a:= a+1.  Q)

else if x: 3×nat then (x:= x/3.  b:= b+1.  Q)
else ok

(c) Find an upper bound for the execution time of the program in part (b).

130 Express formally that specification  R  is satisfied by any number (including  0 ) of 
repetitions of behavior satisfying specification  S .

131 (Zeno)  Here is a loop.
R   ⇐   x:= x+1.  R

Suppose we charge time  2–x  for the recursive call, so that each iteration takes half as long 
as the one before.  Prove that the execution time is finite.

132 Can we prove the refinement
P   ⇐   t:= t+1.  P

for  P  =  t′=5 ?  Does this mean that execution will terminate at time  5 ?  What is wrong?

133 Let  n  and  r  be natural variables in the refinement
P   ⇐   if n=1 then r:= 0 else (n:= div n 2.  P.  r:= r+1)

Suppose the operations  div  and  +  each take time  1  and all else is free (even the call is 
free).  Insert appropriate time increments, and find an appropriate  P   to express the 
execution time in terms of

(a) the initial values of the memory variables.  Prove the refinement for your choice of  P .
(b) the final values of the memory variables.  Prove the refinement for your choice of  P .

134 (running total)  Given list variable  L  and any other variables you need, write a program to 
convert  L  into a list of cumulative sums.  Formally,

(a) ∀n: 0,..#L· L′n  =  Σ L [0;..n]
(b) ∀n: 0,..#L· L′n  =  Σ L [0;..n+1]

135 (cube)  Write a program that cubes using only addition, subtraction, and test for zero.
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136 (cube test)  Write a program to determine if a given natural number is a cube without using 
exponentiation.

137 ( mod 2 )  Let  n  be a natural variable.  The problem to reduce  n  modulo 2  can be solved 
as follows:

n′ = mod n 2   ⇐   if n<2 then ok else (n:= n–2.  n′ = mod n 2)
Using the recursive time measure, find and prove an upper time bound.  Make it as small as 
you can.

138 (fast  mod 2 )  Let  n  and  p  be natural variables.  The problem to reduce  n  modulo 2  can 
be solved as follows:

n′ = mod n 2   ⇐   if n<2 then ok else (even n′ = even n.  n′ = mod n 2)
even n′ = even n   ⇐   p:= 2.  even p   ⇒   even p′  ∧  even n′ = even n
even p   ⇒   even p′  ∧  even n′ = even n   ⇐

n:= n–p.  p:= p+p.
if n<p then ok else even p   ⇒   even p′  ∧  even n′ = even n

(a) Prove these refinements.
(b) Using the recursive time measure, find and prove a sublinear upper time bound.

139 Given a specification  P  and a prestate  σ  with  t  as time variable, we might define “the 
exact precondition for termination” as follows:

∃n: nat· ∀σ′·  t′ ≤ t+n  ⇐  P
Letting  x  be an integer variable, find the exact precondition for termination of the following, 
and comment on whether it is reasonable.

(a) x ≥ 0  ⇒  t′ ≤ t+x
(b) ∃n: nat· t′ ≤ t+n
(c) ∃f: int→nat· t′ ≤ t + fx

140√ (maximum item)  Write a program to find the maximum item in a list.

141 (list comparison)  Using item comparison but not list comparison, write a program to 
determine whether one list comes before another in the list order.

142√ (list summation)  Write a program to find the sum of a list of numbers.

143 (alternating sum)  Write a program to find the alternating sum  L0 – L1 + L2 – L3 + ...  of 
a list  L  of numbers.

144 (combinations)  Write a program to find the number of ways to partition  a+b  things into  
a  things and  b  things.  Include recursive time.

145 (earliest meeting time)  Write a program to find the earliest meeting time acceptable to three 
people.  Each person is willing to state their possible meeting times by means of a function 
that tells, for each time  t , the earliest time at or after  t  that they are available for a meeting.  
(Do not confuse this  t  with the execution time variable.  You may ignore execution time for 
this problem.)

146 (polynomial)  You are given  n: nat , c: [n*rat] , x: rat  and variable  y: rat .  c  is a list of 
coefficients of a polynomial (“of degree  n–1”)  to be evaluated at  x .  Write a program for

y′ = Σi: 0,..n· ci×xi
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147 (multiplication table)  Given  n: nat  and variable  M: [*[*nat]] , write a program to assign to  
M  a multiplication table of size  n  without using multiplication.  For example, if  n = 4 , 
then

M′ = [ [0];
[0; 1];
[0; 2; 4];
[0; 3; 6; 9] ]

148 (Pascal's triangle)  Given  n: nat  and variable  P: [*[*nat]] , write a program to assign to  P  
a Pascal's triangle of size  n .  For example, if  n = 4 , then

P′ = [ [1];
[1; 1];
[1; 2; 1];
[1; 3; 3; 1] ]

The left side and diagonal are all 1s; each interior item is the sum of the item above it and 
the item diagonally above and left.

149√ (binary exponentiation)  Given natural variables  x  and  y , write a program for  y′ = 2x   
without using exponentiation.

150 Write a program to find the smallest power of  2  that is bigger than or equal to a given 
positive integer without using exponentiation.

151√ (fast exponentiation)  Given rational variables  x  and  z  and natural variable  y , write a 
program for  z′ = xy  that runs fast without using exponentiation.

152 (sort test)  Write a program to assign a boolean variable to indicate whether a given list is 
sorted.

153√ (linear search)  Write a program to find the first occurrence of a given item in a given list.  
The execution time must be linear in the length of the list.

154√ (binary search)  Write a program to find a given item in a given nonempty sorted list.  The 
execution time must be logarithmic in the length of the list.  The strategy is to identify which 
half of the list contains the item if it occurs at all, then which quarter, then which eighth, and 
so on.

155 (binary search with test for equality)  The problem is binary search (Exercise 154), but each 
iteration tests to see if the item in the middle of the remaining segment is the item we seek.

(a) Write the program, with specifications and proofs.
(b) Find the execution time according to the recursive measure.
(c) Find the execution time according to a measure that charges time  1  for each test.
(d) Compare the execution time to binary search without the test for equality each iteration.

156 (ternary search)  The problem is the same as binary search (Exercise 154).  The strategy 
this time is to identify which third of the list contains the item if it occurs at all, then which 
ninth, then which twenty-seventh, and so on.

157√ (two-dimensional search)  Write a program to find a given item in a given 2-dimensional 
array.  The execution time must be linear in the product of the dimensions.
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158 (sorted two-dimensional search)  Write a program to find a given item in a given 2-
dimensional array in which each row is sorted and each column is sorted.  The execution 
time must be linear in the sum of the dimensions.

159 (sorted two-dimensional count)  Write a program to count the number of occurrences of a 
given item in a given 2-dimensional array in which each row is sorted and each column is 
sorted.  The execution time must be linear in the sum of the dimensions.

160 (pattern search)  Let  subject  and  pattern  be two texts.  Write a program to do the 
following.  If  pattern  occurs somewhere within  subject , natural variable  h  is assigned to 
indicate the beginning of its first occurrence

(a) using any list operators given in Section 2.3.
(b) using list indexing, but no other list operators.

161 (fixed point)  Let  L  be a nonempty sorted list of  n  different integers.  Write a program to 
find a fixed-point of  L , that is an index  i  such that  Li = i , or to report that no such index 
exists.  Execution time should be at most  log n  where  n  is the length of the list.

162 (all present)  Given a natural number and a list, write a program to determine if every natural 
number up to the given number is an item in the list.

163 (missing number)  You are given an unsorted list of length  n  whose items are the numbers  
0,..n+1  with one number missing.  Write a program to find the missing number.

164 (text length)  You are given a text (list of characters) that begins with zero or more 
“ordinary” characters, and then ends with zero or more “padding” characters.  A padding 
character is not an ordinary character.  Write a program to find the number of ordinary 
characters in the text.  Execution time should be logarithmic in the text length.

165 (ordered pair search)  Given a list of at least two items whose first item is less than or equal 
to its last item, write a program to find an adjacent pair of items such that the first of the pair 
is less than or equal to the second of the pair.  Execution time should be logarithmic in the 
length of the list.

166 (convex equal pair)  A list of numbers is convex if its length is at least  2 , and every item 
(except the first and last) is less than or equal to the average of its two neighbors.  Given a 
convex list, write a program to determine if it has a pair of consecutive equal items.  
Execution should be logarithmic in the length of the list.

167 Define a partial order  «  on pairs of integers as follows:
[a; b] « [c; d]   =   a<c ∧ b<d

Given  n: nat+1  and  L: [n*[int; int]]  write a program to find the index of a minimal item 
in  L .  That is, find  j: 0,..#L  such that  ¬∃i· Li « Lj .  The execution time should be at most  
n × log n .

168 ( n  sort)  Given a list  L  such that  L (0,..#L)  =  0,..#L , write a program to sort  L  in linear 
time and constant space.  The only change permitted to  L  is to swap two items.

169√ ( n2  sort)  Write a program to sort a list.  Execution time should be at most  n2 where  n  is 
the length of the list.
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170 ( n × log n  sort)  Write a program to sort a list.  Execution time should be at most  n × log n  
where  n  is the length of the list.

171 (reverse)  Write a program to reverse the order of the items of a list.

172 (next sorted list)  Given a nonempty sorted list of naturals, write a program to find the next 
(in list order) sorted list having the same length and sum.

173 (next combination)  You are given a sorted list of  m  different numbers, all in the range  
0,..n .  Write a program to find the lexicographically next sorted list of  m  different 
numbers, all in the range  0,..n .

174 (next permutation)  You are given a list of the numbers  0,..n  in some order.  Write a 
program to find the lexicographically next list of the numbers  0,..n .

175 (permutation inverse)  You are given a list variable  P  of different items in  0,..#P .  Write a 
program for  P P′ = [0;..#P] .

176 (idempotent permutation)  You are given a list variable  L   of items in  0,..#L   (not 
necessarily all different).  Write a program to permute the list so that finally  L′ L′ = L′ .

177 (local minimum)  You are given a list  L  of at least  3  numbers such that  L0 ≥ L1  and  
L(#L–2) ≤ L(#L–1) .  A local minimum is an interior index  i: 1,..#L–1  such that

L(i–1) ≥ Li ≤ L(i+1)
Write a program to find a local minimum of  L .

178 (natural division)  The natural quotient of natural  n  and positive integer  p  is the natural 
number  q  satisfying

q ≤ n/p < q+1
Write a program to find the natural quotient of  n  and  p  in  log n  time without using any 
functions ( div ,  mod ,  floor ,  ceil , ... ).

179 (remainder)  Write a program to find the remainder after natural division (Exercise 178), 
using only comparison, addition, and subtraction (not multiplication or division or  mod ).

180 (natural binary logarithm)  The natural binary logarithm of a positive integer  p   is the 
natural number  b  satisfying

2b ≤ p < 2b+1

Write a program to find the natural binary logarithm of a given positive integer  p  in  log p  
time.

181 (natural square root)  The natural square root of a natural number  n  is the natural number  
s  satisfying

s2 ≤ n < (s+1)2

(a) Write a program to find the natural square root of a given natural number  n  in  log n  time.
(b) Write a program to find the natural square root of a given natural number  n  in  log n  time 

using only addition, subtraction, doubling, halving, and comparisons (no multiplication or 
division).
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182 (factor count)  Write a program to find the number of factors (not necessarily prime) of a 
given natural number.

183 (Fermat's last program)  Given natural  c , write a program to find the number of unordered 
pairs of naturals  a  and  b  such that  a2 + b2 = c2  in time proportional to  c .  (An 
unordered pair is really a bunch of size  1  or  2 .  If we have counted the pair  a  and  b , we 
don't want to count the pair  b  and  a .)  Your program may use addition, subtraction, 
multiplication, division, and comparisons, but not exponentiation or square root.

184 (flatten)  Write a program to flatten a list.  The result is a new list just like the old one but 
without the internal structure.  For example,

L  =  [ [3; 5]; 2; [5; [7]; [nil] ] ]
L′ =  [3; 5; 2; 5; 7]

Your program may employ a test  Li: int  to see if an item is an integer or a list.

185 (diagonal)  Some points are arranged around the perimeter of a circle.  The distance from 
each point to the next point going clockwise around the perimeter is given by a list.  Write a 
program to find two points that are farthest apart.

186 (minimum sum segment)  Given a list of integers, possibly including negatives, write a 
program to find

(a)√ the minimum sum of any segment (sublist of consecutive items).
(b) the segment (sublist of consecutive items) whose sum is minimum.

187 (maximum product segment)  Given a list of integers, possibly including negatives, write a 
program to find

(a) the maximum product of any segment (sublist of consecutive items).
(b) the segment (sublist of consecutive items) whose product is maximum.

188 (segment sum count)
(a) Write a program to find, in a given list of naturals, the number of segments whose sum is a 

given natural.
(b) Write a program to find, in a given list of positive naturals, the number of segments whose 

sum is a given natural.

189 (longest plateau)  You are given a nonempty sorted list of numbers.  A plateau is a segment 
(sublist of consecutive items) of equal items.  Write a program to find

(a) the length of a longest plateau.
(b) the number of longest plateaus.

190 (longest smooth segment)  In a list of integers, a smooth segment is a sublist of consecutive 
items in which no two adjacent items differ by more than  1 .  Write a program to find a 
longest smooth segment.

191 (longest balanced segment)  Given a list of booleans, write a program to find a longest 
segment (sublist of consecutive items) having an equal number of  †  and  ƒ  items.

192 (longest palindrome)  A palindrome is a list that equals its reverse.  Write a program to find 
a longest palindromic segment in a given list.
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193 (greatest subsequence)  Given a list, write a program to find the sublist that is largest 
according to list order.  (A sublist contains items drawn from the list, in the same order of 
appearance, but not necessarily consecutive items.)

194 Given a list whose items are all  0 ,  1 , or  2 , write a program
(a) to find the length of a shortest segment (consecutive items) that contains all three numbers 

in any order.
(b) to count the number of sublists (not necessarily consecutive items) that are  0  then  1  then  

2  in that order.

195 Let  L  and  M  be sorted lists of numbers.  Write a program to find the number of pairs of 
indexes  i: 0,..#L  and  j: 0,..#M  such that  Li ≤ Mj .

196 (heads and tails)  Let  L  be a list of positive integers.  Write a program to find the number 
of pairs of indexes  i  and  j  such that

Σ L [0;..i]   =   Σ L [j;..#L]

197 (pivot)  You are given a nonempty list of positive numbers.  Write a program to find the 
balance point, or pivot.  Each item contributes its value (weight) times its distance from the 
pivot to its side of the balance.  Item  i  is considered to be located at point  i + 1/2 , and the 
pivot point may likewise be noninteger.

198 (inversion count)  Given a list, write a program to find how many pairs of items (not 
necessarily consecutive items) are out of order, with the larger item before the smaller item.

199 (minimum difference)  Given two nonempty sorted lists of numbers, write a program to find 
a pair of items, one from each list, whose absolute difference is smallest.

200 (earliest quitter)  In a nonempty list find the first item that is not repeated later.  In list  
[13; 14; 15; 14; 15; 13]  the earliest quitter is  14  because the other items  13  and  15  both 
occur after the last occurrence of  14 .

201 (interval union)  A collection of intervals along a real number line is given by the list of left 
ends  L  and the corresponding list of right ends  R .  List  L  is sorted.  The intervals might 
sometimes overlap, and sometimes leave gaps.  Write a program to find the total length of 
the number line that is covered by these intervals.

202 (bit sum)  Write a program to find the number of ones in the binary representation of a 
given natural number.

203 (digit sum)  Write a program to find the sum of the digits in the decimal representation of a 
given natural number.

204 (parity check)  Write a program to find whether the number of ones in the binary 
representation of a given natural number is even or odd.

205 (approximate search)  Given a nonempty sorted list of numbers and a number, write a 
program to determine the index of an item in the list that is closest in value to the given 
number.
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206 Given two natural numbers  s  and  p , write a program to find four natural numbers  a ,  b ,  
c , and  d  whose sum is  s  and product  p , in time  s2 , if such numbers exist.

207 Given three natural numbers  n ,  s , and  p , write a program to find a list of length  n  of 
natural numbers whose sum is  s  and product  p , if such a list exists.

208 (transitive closure)  A relation  R: (0,..n)→(0,..n)→bool  can be represented by a square 
boolean array of size  n .  Given a relation in the form of a square boolean array, write a 
program to find

(a) its transitive closure (the strongest transitive relation that is implied by the given relation).
(b) its reflexive transitive closure (the strongest reflexive and transitive relation that is implied 

by the given relation).

209 (reachability)  You are given a finite bunch of places;  and a successor function  S  on places 
that tells, for each place, those places that are directly reachable from it;  and a special place 
named  h  (for home).  Write a program to find all places that are reachable (reflexively, 
directly, or indirectly) from  h .

210 (shortest path)  You are given a square extended rational array in which item  i j  represents 
the direct distance from place  i  to place  j .  If it is not possible to go directly from  i to  j , 
then item  i j  is  ∞ .  Write a program to find the square extended rational array in which 
item  i j  represents the shortest, possibly indirect, distance from place  i  to place  j .

211 (McCarthy's 91 problem)  Let  i  be an integer variable.  Let
M   =   if i>100 then i:= i–10 else i:= 91

(a) Prove  M   ⇐  if i>100 then i:= i–10 else (i:= i+11.  M.  M) .
(b) Find the execution time of  M  as refined in part (a).

212 (Towers of Hanoi)  There are  3  towers and  n  disks.  The disks are graduated in size;  
disk  0  is the smallest and disk  n–1  is the largest.  Initially tower A holds all  n  disks, with 
the largest disk on the bottom, proceding upwards in order of size to the smallest disk on 
top.  The task is to move all the disks from tower A to tower B, but you can move only one 
disk at a time, and you must never put a larger disk on top of a smaller one.  In the process, 
you can make use of tower C as intermediate storage.

(a)√ Using the command  MoveDisk from to   to cause a robot arm to move the top disk from 
tower  from  to tower  to , write a program to move all the disks from tower A to tower B.

(b)√ Find the execution time, counting  MoveDisk  as time  1 , and all else free.
(c) Suppose that the posts where the disks are placed are arranged in an equilateral triangle, so 

that the distance the arm moves each time is constant (one side of the triangle to get into 
position plus one side to move the disk), and not dependent on the disk being moved.  
Suppose the time to move a disk varies with the weight of the disk being moved, which 
varies with its area, which varies with the square of its radius, which varies with the disk 
number.  Find the execution time.

(d)√ Find the maximum memory space required by the program, counting a recursive call as  1  
location (for the return address) and all else free.

(e)√ Find the average memory space required by the program, counting a recursive call as  1  
location (for the return address) and all else free.

(f) Find a simple upper bound on the average memory space required by the program, counting 
a recursive call as  1  location (for the return address) and all else free.
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213 (Ackermann)  Function  ack  of two natural variables is defined as follows.
ack 0 0  =  2
ack 1 0  =  0
ack (m+2) 0  =  1
ack 0 (n+1)  =  ack 0 n + 1
ack (m+1) (n+1)  =  ack m (ack (m+1) n)

(a) Suppose that functions and function application are not implemented expressions;  in that 
case  n:= ack m n  is not a program.  Refine  n:= ack m n  to obtain a program.

(b) Find a time bound.  Hint:  you may use function  ack  in your time bound.
(c) Find a space bound.

214 (alternate Ackermann)  For each of the following functions  f , refine  n:= f m n , find a time 
bound (possibly involving  f ), and find a space bound.

(a) f 0 n  =  n+2
f 1 0  =  0
f (m+2) 0  =  1
f (m+1) (n+1)  =  f m (f (m+1) n)

(b) f 0 n  =  n×2
f (m+1) 0  =  1
f (m+1) (n+1)  =  f m (f (m+1) n)

(c) f 0 n  =  n+1
f 1 0  =  2
f 2 0  =  0
f (m+3) 0  =  1
f (m+1) (n+1)  =  f m (f (m+1) n)

215 Let  n  be a natural variable.  Add time according to the recursive measure, and find a finite 
upper bound on the execution time of

P   ⇐   if n ≥ 2 then (n:= n–2.  P.  n:= n+1.  P.  n:= n+1) else ok

216√ (roller-coaster)  Let  n  be a natural variable.  It is easy to prove
n′=1   ⇐ if n=1 then ok

else if even n then (n:= n/2.  n′=1)
else (n:= 3×n + 1.  n′=1)

The problem is to find the execution time.  Warning:  this problem has never been solved.

217√ (Fibonacci)  The Fibonacci numbers  fib n  are defined as follows.
fib 0 = 0
fib 1 = 1
fib (n+2) = fib n + fib (n+1)

Write a program to find  fib n  in time  log n .  Hint:  see Exercise 301.

218 (Fibolucci)  Let  a  and  b  be integers.  Then the Fibolucci numbers for  a  and  b  are
f 0 = 0
f 1 = 1
f (n+2) = a × f n + b × f (n+1)

(The Fibonacci numbers are Fibolucci numbers for  1  and  1 .)  Given natural  k , without 
using any list variables, write a program to compute

Σn: 0,..k· fn × f(k–n)
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219 (item count)  Write a program to find the number of occurrences of a given item in a given 
list.

220 (duplicate count)  Write a program to find how many items are duplicates (repeats) of 
earlier items

(a) in a given sorted nonempty list.
(b) in a given list.

221 (z-free subtext)  Given a text, write a program to find the longest subtext that does not 
contain the letter  `z .

222 (merge)  Given two sorted lists, write a program to merge them into one sorted list.

223 (arithmetic)  Let us represent a natural number as a list of naturals, each in the range  0,..b  
for some natural base  b>1 , in reverse order.  For example, if  b=10 , then  [9; 2; 7]  
represents  729 .  Write programs for each of the following.

(a) Find the list representing a given natural in a given base.
(b) Given a base and two lists representing natural numbers, find the list representing their sum.
(c) Given a base and two lists representing natural numbers, find the list representing their 

difference.  You may assume the first list represents a number greater than or equal to the 
number represented by the second list.  What is the result if this is not so?

(d) Given a base and two lists representing natural numbers, find the list representing their 
product.

(e) Given a base and two lists representing natural numbers, find the lists representing their 
quotient and remainder.

224 (machine multiplication)  Given two natural numbers, write a program to find their product 
using only addition, subtraction, doubling, halving, test for even, and test for zero.

225 (machine division)  Given two natural numbers, write a program to find their quotient using 
only addition, subtraction, doubling, halving, test for even, and test for zero.

226 (machine squaring)  Given a natural number, write a program to find its square using only 
addition, subtraction, doubling, halving, test for even, and test for zero.

227 Given a list of roots of a polynomial, write a program to find the list of coefficients.

228 (longest sorted sublist)  Write a program to find the length of a longest sorted sublist of a 
given list, where

(a) the sublist must be consecutive items (a segment).
(b) the sublist consists of items in their order of appearance in the given list, but not necessarily 

consecutively.

229 (almost sorted segment)  An almost sorted list is a list in which at most one adjacent pair of 
elements is out of order.  Write a program to find the length of a longest almost sorted 
segment of a given list.

230 (edit distance)  Given two lists, write a program to find the minimum number of item 
insertions, item deletions, and item replacements to change one list into the other.
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231 (ultimately periodic sequence)  You are given function  f: int→int  such that the sequence
x0 = 0
xn+1 = f (xn)

generated by  f  starting at  0  is ultimately periodic:
∃p: nat+1· ∃n: nat· xn = xn+p

The smallest positive  p  such that  ∃n: nat· xn = xn+p  is called the period.  Write a program 
to find the period.  Your program should use an amount of storage that is bounded by a 
constant, and not dependent on  f .

232 (partitions)  A list of positive integers is called a partition of natural number  n  if the sum of 
its items is  n .  Write a program to find

(a) a list of all partitions of a given natural  n .  For example, if  n=3  then an acceptable answer 
is  [[3]; [1; 2]; [2; 1]; [1; 1; 1]] .

(b) a list of all sorted partitions of a given natural  n .  For example, if  n=3  then an acceptable 
answer is  [[3]; [1; 2]; [1; 1; 1]] .

(c) the sorted list of all partitions of a given natural  n .  For example, if  n=3  then the answer is  
[[1; 1; 1]; [1; 2]; [2; 1]; [3]] .

(d) the sorted list of all sorted partitions of a given natural  n .  For example, if  n=3  then the 
answer is  [[1; 1; 1]; [1; 2]; [3]] .

233 (largest true square)  Write a program to find, within a boolean array, a largest square 
subarray consisting entirely of items with value  † .

234 (P-list)  Given a nonempty list  S  of natural numbers, define a P-list as a nonempty list  P  
of natural numbers such that each item of  P  is an index of  S , and

∀i: 1,..#P· P (i–1) < P i ≤ S (P (i–1))
Write a program to find the length of a longest P-list for a given list  S .

235 (J-list)  For natural number  n , a J-list of order  n  is a list of  2×n  naturals in which each  
m: 0,..n  occurs twice, and between the two occurrences of  m  there are  m  items.

(a) Write a program that creates a J-list of order  n  if there is one, for given  n .
(b) For which  n  do J-lists exist?

236 (diminished J-list)  For positive integer  n , a diminished J-list of order  n  is a list of  2×n–1  
naturals in which  0  occurs once and each  m: 1,..n  occurs twice, and between the two 
occurrences of  m  there are  m  items.

(a) Write a program that creates a diminished J-list of order  n  if there is one, for given  n .
(b) For which  n  do diminished J-lists exist?

237 (greatest common divisor)  Given two positive integers, write a program to find their greatest 
common divisor.

238 (least common multiple)  Given two positive integers, write a program to find their least 
common multiple.

239 Given two integers (not necessarily positive ones) that are not both zero, write a program to 
find their greatest common divisor.

240 (common items)  Let  A  be a sorted list of different integers.  Let  B  be another such list.  
Write a program to find the number of integers that occur in both lists.
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241 (unique items)  Let  A  be a sorted list of different integers.  Let  B  be another such list.  
Write a program to find the sorted list of integers that occur in exactly one of  A  or  B .

242 (smallest common item)  Given two sorted lists having at least one item in common, write a 
program to find the smallest item occurring in both lists.

243 Given three sorted lists having at least one item common to all three, write a program to find 
the smallest item occurring in all three lists.

244 Given three positive integers, write a program to find their greatest common divisor.  One 
method is to find the greatest common divisor of two of them, and then find the greatest 
common divisor of that and the remaining number, but there is a better way.

245 (longest common prefix)  A positive integer can be written as a sequence of decimal digits 
without leading zeros.  Given two positive integers, write a program to find the number that 
is written as their longest common prefix of digits.  For example, given  25621  and  2547 , 
the result is  25 .  Hint:  this question is about numbers, not about strings or lists.

246 (museum)  You are given natural  n , rationals  s  and  f  (start and finish), and lists  
A, D: [n*rat]  (arrive and depart) such that

∀i· s ≤ Ai ≤ Di ≤ f
They represent a museum that opens at time  s , is visited by  n  people with person  i  
arriving at time  Ai  and departing at time  Di  and closes at time  f .  Write a program to find 
the total amount of time during which at least one person is inside the museum, and the 
average number of people in the museum during the time it is open, in time linear in  n , if

(a) list  A  is sorted.
(b) list  D  is sorted.

247 (rotation test)  Given two lists, write a program to determine if one list is a rotation of the 
other.  You may use item comparisons, but not list comparisons.  Execution time should be 
linear in the length of the lists.

248 (smallest rotation)  Given a text variable  t , write a program to reassign  t  its alphabetically 
(lexicographically) smallest rotation.  You may use character comparisons, but not text 
comparisons.

249 You are given a list variable  L  assigned a nonempty list.  All changes to  L  must be via 
procedure  swap , defined as

swap  =  〈i, j: 0,..#L→L:= i→Lj | j→Li | L〉
(a) Write a program to reassign  L  a new list obtained by rotating the old list one place to the 

right (the last item of the old list is the first item of the new). 
(b) (rotate)  Given an integer  r , write a program to reassign  L  a new list obtained by rotating 

the old list  r  places to the right.  (If  r<0 , rotation is to the left  –r  places.)  Recursive 
execution time must be at most  #L .

(c) (segment swap)  Given an index  p , swap the initial segment up to  p  with the final segment 
beginning at  p .

250 (squash)  Let  L  be a list variable assigned a nonempty list.  Reassign it so that any run of 
two or more identical items is collapsed to a single item.
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251 Let  n  and  p  be natural variables.  Write a program to solve
n≥2  ⇒  p′: 22nat  ∧  n≤p′<n2

Include a finite upper bound on the execution time, but it doesn't matter how small.

252 (greatest square under a histogram)  You are given a histogram in the form of a list  H  of 
natural numbers.  Write a program to find the longest segment of  H  in which the height 
(each item) is at least as large as the segment length.

253 (long texts)  A particular computer has a hardware representation for texts less than  n  
characters long, for some constant  n .  Longer texts must be represented in software as a 
list of short texts.  (The long text represented is the catenation of the short texts.)  A list of 
short texts is called “packed” if all items except possibly the last have maximum length.  
Write a program to pack a list of short texts without changing the long text represented.

254 (Knuth, Morris, Pratt)
(a) Given list  P , find list  L  such that for every index  n  of list  P ,  Ln  is the length of the 

longest list that is both a proper prefix and a proper suffix of  P [0;..n+1] .  Here is a 
program to find  L .

A  ⇐  i:= 0.  L:= [#P*0].  j:= 1.  B
B  ⇐  if j≥#P then ok else (C.  L:= j→i | L.  j:= j+1.  B)
C  ⇐ if Pi=Pj then i:= i+1

else if i=0 then ok
else (i:= L (i–1).  C)

Find specifications  A ,  B , and  C  so that  A  is the problem and the three refinements are 
theorems.

(b) Given list  S  (subject), list  P  (pattern), and list  L  (as in part (a)), determine if  P  is a 
segment of  S , and if so, where it occurs.  Here is a program.

D  ⇐  m:= 0.  n:= 0.  E
E  ⇐  if m=#P then h:= n–#P else F
F  ⇐ if n=#S then h:= ∞

else if Pm=Sn then (m:= m+1.  n:= n+1.  E)
else G

G  ⇐  if m=0 then (n:= n+1.  F)  else (m:= L (m–1).  G)
Find specifications  D ,  E ,  F , and  G  so that  D  is the problem and the four refinements 
are theorems.

                                                                                                                               End of Program Theory

10.5  Programming Language

255 (nondeterministic assignment)  Generalize the assignment notation  x:= e  to allow the 
expression  e  to be a bunch, with the meaning that  x  is assigned an arbitrary element of the 
bunch.  For example,  x:= nat  assigns  x  an arbitrary natural number.  Show the standard 
boolean notation for this form of assignment.  Show what happens to the Substitution Law.

256 Suppose variable declaration is defined as
var x: T· P     =     ∃x: undefined· ∃x′: T· P

What are the characteristics of this kind of declaration?  Look at the example
var x: int· ok
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257 What is wrong with defining local variable declaration as follows:
var x: T· P     =     ∀x: T· ∃x′: T· P

258 Suppose variable declaration with initialization is defined as
var x: T := e·  P    =    var x: T·  x:= e. P

In what way does this differ from the definition given in Subsection 5.0.0?

259 Here are two different definitions of variable declaration with initialization.
var x: T := e·  P    =    ∃x, x′: T· x=e ∧ P
var x: T := e·  P    =    ∃x′: T· (substitute  e  for  x  in  P )

Show how they differ with an example.

260 The specification
var x: nat·  x:= –1

introduces a local variable and then assigns it a value that is out of bounds.  Is this 
specification implementable?  (Proof required.)

261 (frame problem)  Suppose there is one nonlocal variable  x , and we define  P  =  x′=0 .  
Can we prove

P   ⇐   var y: nat·  y:= 0.  P.  x:= y
The problem is that  y  was not part of the state space where  P  was defined, so does  P  
leave  y  unchanged?  Hint:  consider the definition of dependent composition.  Is it being 
used properly?

262 Let the state variables be  x ,  y , and  z .  Rewrite  frame x· †  without using  frame .  Say in 
words what the final value of  x  is.

263 In a language with array element assignment, the program
x:= i.  i:= A i.  A i:= x

was written with the intention to swap the values of  i  and  A i .  Assume that all variables 
and array elements are of type  nat , and that  i  has a value that is an index of  A .

(a) In variables  x ,  i , and  A , specify that  i  and  A i  should be swapped, the rest of  A  should 
be unchanged, but  x  might change.

(b) Find the exact precondition for which the program refines the specification of part (a).
(c) Find the exact postcondition for which the program refines the specification of part (a).

264 In a language with array element assignment, what is the exact precondition for  A′ i′ = 1  to 
be refined by  (A(A i):= 0.  A i:= 1.  i:= 2) ?

265√ (unbounded bound)  Find a time bound for the following program in natural variables  x  
and  y .

while ¬ x=y=0 do
if y>0 then y:= y–1
else (x:= x–1.  var n: nat· y:= n)

266 Let  W ⇐  while b do P  be an abbreviation of  W ⇐  if b then (P. W) else ok .  Let  
R ⇐ repeat P until b  be an abbreviation of  R ⇐ P. if b then ok else R .  Now prove

      (R ⇐ repeat P until b) ∧ (W ⇐ while ¬b do P)
⇐  (R ⇐ P. W) ∧ (W ⇐ if b then ok else R)
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267 (guarded command)  In “Dijkstra's little language” there is a conditional program with the 
syntax

if b → P [] c → Q fi
where  b  and  c  are boolean and  P  and  Q  are programs.  It can be executed as follows.  
If exactly one of  b  and  c  is true initially, then the corresponding program is executed;  if 
both  b  and  c  are true initially, then either one of  P  or  Q  (arbitrary choice) is executed;  
if neither  b  nor  c  is true initially, then execution is completely arbitrary.

(a) Express this program in the notations of this book as succinctly as possible.
(b) Refine this program using only the programming notations introduced in Chapter 4.

268√ Using a for-loop, write a program to add  1  to every item of a list.

269 Here is one way that we might consider defining the for-loop.  Let  j ,  n ,  k  and  m  be 
integer expressions, and let  i  be a fresh name.

for i:= nil do P   =   ok
for i:= j do P   =   (substitute  j  for  i  in  P )
for i:= n;..k ; k;..m do P   =   for i:= n;..k  do P.   for i:= k;..m do P

(a) From this definition, what can we prove about  for i:= 0;..n do n:= n+1  where  n  is an 
integer variable?

(b) What kinds of for-loop are in the programming languages you know?

270 (majority vote)  The problem is to find, in a given list, the majority item (the item that occurs 
in more than half the places) if there is one.  Letting  L  be the list and  m  be a variable 
whose final value is the majority item, prove that the following program solves the problem.

(a) var e: nat := 0· 
for i:= 0;..#L do

if m = L i then e:= e+1
else if i = 2×e then (m:= L i.  e:= e+1)
else ok

(b) var s: nat := 0· 
for i:= 0;..#L do

if m = L i then ok
else if i = 2×s then m:= L i
else s:= s+1

271 We defined the programmed expression  P result e  with the axiom
x′ = (P result e)  =  P.  x′=e

Why don't we define it instead with the axiom 
x′ = (P result e)  =  P ⇒ x′=e′

272 Let  a  and  b  be rational variables.  Define procedure  P  as
P   =   〈x, y: rat→if x=0 then a:= x else (a:= x×y.  a:= a×y)〉

(a) What is the exact precondition for  a′=b′  to be refined by  P a (1/b) ?
(b) Discuss the difference between “eager” and “lazy” evaluation of arguments as they affect 

both the theory of programming and programming language implementation.

273 “Call-by-value-result” describes a parameter that gets its initial value from an argument, is 
then a local variable, and gives its final value back to the argument, which therefore must be 
a variable.  Define “call-by-value-result” formally.  Discuss its merits and demerits.
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274 (call-by-name)  Here is a procedure applied to an argument.
〈x: int→a:= x.  b:= x〉 (a+1)

Suppose, by mistake, we replace both occurrences of  x  in the body with the argument.  
What do we get?  What should we get?  (This mistake is known as “call-by-name”.)

275 We defined  wait until  w   =   t:= max t w   where  t  is an extended integer time variable, 
and  w  is an integer expression.

(a)√ Prove  wait until w   ⇐   if t≥w then ok else (t:= t+1.  wait until w)
(b) Now suppose that  t  is an extended real time variable, and  w   is an extended real 

expression.  Redefine  wait until w  appropriately, and refine it using the recursive time 
measure.

276 The specification  wait w  where  w  is a length of time, not an instant of time, describes a 
delay in execution of time  w .  Formalize and implement it using the recursive time measure 
and

(a) an extended integer time variable.
(b) an extended real time variable.

277 We propose to define a new programming connective  P ♦ Q .  What properties of  ♦  are 
essential?  Why?

278 (Boole's booleans)  If  †=1  and  ƒ=0 , express
(a) ¬a
(b) a∧b
(c) a∨b
(d) a⇒b
(e) a⇐b
(f) a=b
(g) a+b

using only the following symbols (in any quantity)
(i) 0 1 a b ( ) + – ×
(ii) 0 1 a b ( ) – max min

279 Prove that the average value of
(a) n2  as  n  varies over  nat+1  according to probability  2–n  is  6 .
(b) n  as it varies over  nat  according to probability  (5/6)n × 1/6  is  5 .

280 (coin)  Repeatedly flip a coin until you get a head.  Prove that it takes  n  flips with 
probability  2–n .  With an appropriate definition of  R , the program is

R   ⇐   t:= t+1.  if rand 2 then ok else R

281√ (blackjack)  You are dealt a card from a deck;  its value is in the range  1  through  13  
inclusive.  You may stop with just one card, or have a second card if you want.  Your object 
is to get a total as near as possible to  14 , but not over  14 .  Your strategy is to take a 
second card if the first is under  7 .  Assuming each card value has equal probability, find 
the probability and average value of your total.

282√ (dice)  If you repeatedly throw a pair of six-sided dice until they are equal, how long does it 
take?
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283 (drunk)  A drunkard is trying to walk home.  At each time unit, the drunkard may go 
forward one distance unit, stay in the same position, or go back one distance unit.  After  n  
time units, where is the drunkard?

(a) At each time unit, there is  2/3  probability of going forward, and  1/3  probability of staying 
in the same position.  The drunkard does not go back.

(b) At each time unit, there is  1/4  probability of going forward,  1/2  probability of staying in 
the same position, and  1/4  probability of going back.

(c) At each time unit, there is  1/2  probability of going forward,  1/4  probability of staying in 
the same position, and  1/4  probability of going back.

284 (Mr.Bean's socks)  Mr.Bean is trying to get a matching pair of socks from a drawer 
containing an inexhaustible supply of red and blue socks.  He begins by withdrawing two 
socks at random.  If they match, he is done.  Otherwise, he throws away one of them at 
random, withdraws another sock at random, and repeats.  How long will it take him to get a 
matching pair?  Assume that a sock withdrawn from the drawer has  1/2  probability of 
being each color, and that a sock that is thrown away also has a  1/2  probability of being 
each color.

                                                                                                                     End of Programming Language

10.6  Recursive Definition

285 Prove  ¬ –1: nat .  Hint: You will need induction.

286 (Cantor's diagonal)  Prove  ¬∃f: nat→nat→nat· ∀g: nat→nat· ∃n: nat· fn = g .

287 Prove  ∀n: nat· Pn   =   ∀n: nat· ∀m: 0,..n· Pm

288√ Prove that the square of an odd natural number is  8×m + 1  for some natural  m .

289 Prove that every positive integer is a product of primes.  By “product” we mean the result 
of multiplying together any natural number of (not necessarily distinct) numbers.  By 
“prime” we mean a natural number with exactly two factors.

290 Here is an argument to “prove” that in any group of people, all the people are the same age.  
The “proof” is by induction on the size of groups.  The induction base is that in any group 
of size  1 , clearly all the people are the same age.  Or we could equally well use groups of 
size  0  as the induction base.  The induction hypothesis is, of course, to assume that in any 
group of size  n , all the people are the same age.  Now consider a group of size  n+1 .  Let 
its people be  p0,  p1,  ..., pn .  By the induction hypothesis, in the subgroup  p0,  p1,  ..., pn–1  
of size  n , all the people are the same age;  to be specific, they are all the same age as  p1 .  
And in the subgroup  p1,  p2,  ..., pn  of size  n , all the people are the same age;  again, they 
are the same age as  p1 .  Hence all  n+1  people are the same age.  Formalize this argument 
and find the flaw.

291 Here is a possible alternative construction axiom for  nat .
0, 1, nat+nat: nat

(a) What induction axiom goes with it?
(b) Are the construction axiom given and your induction axiom of part (a) satisfactory as a 

definition if  nat?
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292 Chapter 6 gives four predicate versions of  nat  induction.  Prove that they are equivalent.

293 Prove  nat  =  0,..∞ .

294 Here are a construction axiom and an induction axiom for bunch  bad .
(§n: nat· ¬ n: bad) : bad
(§n: nat· ¬ n: B) : B  ⇒  bad: B

(a)√ Are these axioms consistent?
(b) From these axioms, can we prove the fixed-point equation

bad   =   §n: nat· ¬ n: bad

295 Prove the following;  quantifications are over  nat .
(a) ¬∃i, j·  j+0  ∧  21/2 = i/j   The square root of  2  is irrational.
(b) ∀n· (Σi: 0,..n· 1)  =  n
(c) ∀n· (Σi: 0,..n· i)  =  n × (n–1) / 2
(d) ∀n· (Σi: 0,..n· i3)  =  (Σi: 0,..n· i)2

(e) ∀n· (Σi: 0,..n· 2i)  =  2n – 1
(f) ∀n· (Σi: 0,..n· i×2i)  =  (n–2)×2n + 2
(g) ∀n· (Σi: 0,..n· (–2)i)  =  (1 – (–2)n) / 3
(h) ∀n· n≥10  ⇒  2n > n3

(i) ∀n· n≥4  ⇒  3n > n3

(j) ∀n· n≥3  ⇒  2×n3 > 3×n2 + 3×n
(k) ∀a, d· ∃q, r· d+0  ⇒  r<d  ∧  a = q×d + r
(l) ∀a, b· a≤b  ⇒  (Σi: a,..b· 3i) = (3b–3a)/2

296 Show that we can define  nat  by fixed-point construction together with
(a) ∀n: nat·  0 ≤ n < n+1
(b) ∃m: nat· ∀n: nat·  m ≤ n < n+1

297√ Suppose we define  nat  by ordinary construction and induction.
0, nat+1:  nat
0, B+1:  B   ⇒   nat: B

Prove that fixed-point construction and induction
nat  =  0, nat+1
B  =  0, B+1   ⇒   nat: B

are theorems.

298 (fixed-point theorem)  Suppose we define  nat  by fixed-point construction and induction.
nat  =  0, nat+1
B  =  0, B+1   ⇒   nat: B

Prove that ordinary construction and induction
0, nat+1:  nat
0, B+1:  B   ⇒   nat: B

are theorems.  Warning:  this is hard, and requires the use of limits.

299 (rulers)  Rulers are formed as follows.  A vertical stroke  |  is a ruler.  If you append a 
horizontal stroke  —  and then a vertical stroke  |  to a ruler you get another ruler.  Thus the 
first few rulers are  | ,  |—| ,  |—|—| ,  |—|—|—| , and so on.  No two rulers formed this 
way are equal.  There are no other rulers.  What axioms are needed to define bunch  ruler  
consisting of all and only the rulers?
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300 Function  f  is called monotonic if  i ≤ j  ⇒  fi ≤ fj .
(a) Prove  f  is monotonic if and only if  fi < fj  ⇒  i < j .
(b) Let  f: int→int .  Prove  f  is monotonic if and only if  fi ≤ f(i+1) .
(c) Let  f: nat→nat  be such that  ∀n· ffn < f(n+1) .  Prove  f  is the identity function.  Hints:  

First prove  ∀n· n ≤ fn .  Then prove  f  is monotonic.  Then prove  ∀n· fn ≤ n .

301 The Fibonacci numbers  fib n  are defined as follows.
fib 0  =  0
fib 1  =  1
fib (n+2)  =  fib n + fib (n+1)

Prove
(a) fib (gcd n m)  =  gcd (fib n) (fib m)

where  gcd  is the greatest common divisor.
(b) fib n × fib (n+2)   =   fib (n+1) 2  –  (–1)n

(c) fib (n+m+1)   =   fib n × fib m  +  fib (n+1) × fib (m+1)
(d) fib (n+m+2)   =   fib n × fib (m+1)  +  fib (n+1) × fib m  +  fib (n+1) × fib (m+1)
(e) fib (2×n+1)   =   fib n 2  +  fib (n+1) 2
(f) fib (2×n+2)   =   2 × fib n × fib (n+1)  +  fib (n+1) 2

302 Let  R   be a relation of naturals  R: nat→nat→bool  that is monotonic in its second 
parameter

∀i, j· R i j ⇒ R i (j+1)
Prove

∃i· ∀j· R i j   =   ∀j· ∃i· R i j

303 What is the smallest bunch satisfying
(a) B  =  0, 2×B + 1
(b) B  =  2, B×B

304 What elements can be proven in  P  from the axiom  P  =  1, x, –P, P+P, P×P ?  Prove
2×x2–1: P

305 Bunch  this  is defined by the construction and induction axioms
2, 2×this:  this
2, 2×B:  B   ⇒   this: B

Bunch  that  is defined by the construction and induction axioms
2, that×that:  that
2, B×B:  B   ⇒   that: B

Prove  this = that .

306 Express  2int  without using exponentiation.  You may introduce auxiliary names.

307 Let  n  be a natural number.  From the fixed-point equation
ply = n, ply+ply

we obtain a sequence of bunches  plyi  by recursive construction.
(a) State  plyi  formally (no proof needed).
(b) State  plyi  in English.
(c) What is  ply∞ ?
(d) Is  ply∞  a solution?  If so, is it the only solution?
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308 For each of the following fixed-point equations, what does recursive construction yield?  
Does it satisfy the fixed-point equation?

(a) M  =  [*int], [*M]
(b) T  =  [nil], [T; int; T]
(c) A  =  bool, rat, char, [*A]

309 Let  A)B  be the difference between bunch  A  and bunch  B .  The operator  )   has 
precedence level 4, and is defined by the axiom

x: A)B   =   x: A  ∧  ¬ x: B
For each of the following fixed-point equations, what does recursive construction yield?  
Does it satisfy the fixed-point equation?

(a) Q   =   nat)(Q+3)
(b) D  =  0, (D+1))(D–1)
(c) E  =  nat)(E+1)
(d) F  =  0, (nat)F)+1

310 For each of the following fixed-point equations, what does recursive construction yield?  
Does it satisfy the fixed-point equation?

(a) P  =  §n: nat· n=0 ∧ P=null  ∨  n: P+1
(b) Q  =  §x: xnat· x=0 ∧ Q=null  ∨  x: Q+1

311 Here is a pair of mutually recursive equations.
even  =  0, odd+1
odd  =  even+1

(a) What does recursive construction yield?  Show the construction.
(b) Are further axioms needed to ensure that  even  consists of only the even naturals, and  odd  

consists of only the odd naturals?  If so, what axioms?

312(a) Considering  E  as the unknown, find three solutions of  E, E+1  =  nat .
(b) Now add the induction axiom  B, B+1  =  nat   ⇒   E: B .  What is  E ?

313 From the construction axiom  0, 1–few: few
(a) what elements are constructed?
(b) give three solutions (considering  few  as the unknown).
(c) give the corresponding induction axiom.
(d) state which solution is specified by construction and induction.

314 Investigate the fixed-point equation
strange  =  §n: nat· ∀m: strange· ¬ m+1: n×nat

315 Let  truer  be a bunch of strings of booleans defined by the construction and induction 
axioms

†, ƒ;truer;truer:  truer
†, ƒ;B;B:  B  ⇒  truer: B

Given a string of booleans, write a program to determine if the string is in  truer .

316 (strings)  If  S  is a bunch of strings, then  *S  is the bunch of all strings formed by 
catenating together any number of any strings in  S   in any order.  Define  *S   by 
construction and induction.
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317 Here are the construction and induction axioms for lists of items of type  T .
[nil], [T], list+list: list
[nil], [T], L+L: L  ⇒  list: L

Prove  list = [*T] .

318 (decimal-point numbers)  Using recursive data definition, define the bunch of all decimal-
point numbers.  These are the rationals that can be expressed as a finite string of decimal 
digits containing a decimal point.   Note:  you are defining a bunch of numbers, not a bunch 
of texts.

319 (Backus-Naur Form) Backus-Naur Form is a grammatical formalism in which grammatical 
rules are written as in the following example.

〈exp〉::= 〈exp〉 + 〈exp〉  |  〈exp〉 × 〈exp〉  |  0  |  1
In our formalism, it would be written

exp   =   exp; "+"; exp,   exp; "×"; exp,   "0",   "1"
In a similar fashion, write axioms to define each of the following.

(a) palindromes:  texts that read the same forward and backward.  Use a two-symbol alphabet.
(b) palindromes of odd length.
(c) all texts consisting of “a”s followed by the same number of “b”s.
(d) all texts consisting of “a”s followed by at least as many “b”s.

320 Section 6.1 defines program  zap  by the fixed-point equation
zap   =   if x=0 then y:= 0 else (x:= x–1.  t:= t+1.  zap)

(a) Prove  zap   ⇒   x≥0  ⇒  x′=y′=0 ∧ t′ = t+x .
(b) Prove  x≥0 ∧ x′=y′=0 ∧ t′ = t+x   ⇒   zap .
(c) What axiom is needed to make  zap  the weakest fixed-point?
(d) What axiom is needed to make  zap  the strongest fixed-point?
(e) Section 6.1 gives six solutions to this equation.  Find more solutions.  Hint:  strange things 

can happen at time  ∞ .

321 Let all variables be integer.  Add recursive time.  Using recursive construction, find a fixed-
point of

(a) skip = if i≥0 then (i:= i–1.  skip.  i:= i+1) else ok
(b) inc = ok ∨ (i:= i+1.  inc)
(c) sqr = if i=0 then ok else (s:= s + 2×i – 1.  i:= i–1.  sqr)
(d) fac = if i=0 then f:= 1 else (i:= i–1.  fac.  i:= i+1.  f:= f×i)
(e) chs = if a=b then c:= 1 else (a:= a–1.  chs.  a:= a+1.  c:= c×a/(a–b) )

322 Let all variables be integer.  Add recursive time.  Any way you can, find a fixed-point of
(a) walk = if i≥0 then (i:= i–2.  walk.  i:= i+1.  walk.  i:= i+1) else ok
(b) crawl = if i≥0 then (i:= i–1.  crawl.  i:= i+2.  crawl.  i:= i–1) else ok
(c) run = if even i then i:= i/2 else i:= i+1.

if i=1 then ok else run

323 Investigate how recursive construction is affected when we start with
(a) t′ = ∞
(b) t:= ∞
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324 Let  x  be an integer variable.  Using the recursive time measure, add time and then find the 
strongest implementable specifications  P  and  Q  that you can find for which

P   ⇐   x′ ≥ 0.  Q
Q   ⇐   if x=0 then ok else (x:= x–1.  Q)

Assume that  x′ ≥ 0  takes no time.

325 Let  x  be an integer variable.
(a) Using the recursive time measure, add time and then find the strongest implementable 

specification  S  that you can find for which
S   ⇐ if x=0 then ok

else if x>0 then (x:= x–1.  S)
else (x′ ≥ 0.  S)

Assume that  x′ ≥ 0  takes no time.
(b) What do we get from recursive construction starting with  t′ ≥ t ?

326 Prove that the following three ways of defining  R  are equivalent.
R   =   ok ∨ (R. S)
R   =   ok ∨ (S. R)
R   =   ok ∨ S ∨ (R. R)

327 Prove the laws of Refinement by Steps and Refinement by Parts for while-loops.

328 Prove that
∀σ, σ′· (t′≥t ∧ (if b then (P.  t:= t+inc.  W) else ok)  ⇐  W)

⇐ ∀σ, σ′· (while b do P  ⇐  W)
is equivalent to the  while  construction axioms, and hence that construction and induction 
can be expressed together as

∀σ, σ′· (t′≥t ∧ (if b then (P.  t:= t+inc.  W) else ok)  ⇐  W)
= ∀σ, σ′· (while b do P  ⇐  W)

329 The notation  repeat P until b  has been used as a loop construct that is executed as 
follows.  First  P  is executed;  then  b  is evaluated, and if  †  execution is finished, and if  
ƒ  execution is repeated.  Define  repeat P until b  by construction and induction axioms.

330 Using the definition of Exercise 329, prove
(a) repeat P until b   =   P.  t:= t+inc.  while ¬b do P
(b) while b do P   =   if b then repeat P until ¬b else ok
(c) (∀σ, σ′· (R = repeat P until b)) ∧ (∀σ, σ′· (W = while ¬b do P))

= (∀σ, σ′· (R = P. t:= t+inc. W)) ∧ (∀σ, σ′· (W = if b then ok else R))

331 Let  P: nat→bool .
(a) Define quantifier  FIRST  so that  FIRST m : nat· Pm  is the smallest natural  m  such that  

Pm , and  ∞  if there is none.
(b) Prove n:= FIRST m: nat· Pm  ⇐  n:= 0.  while ¬Pn do n:= n+1 .

332 Let the state consist of boolean variables  b  and  c .  Let
W  =  if b then (P. W) else ok
X  =  if b∨c then (P. X) else ok

(a) Find a counterexample to  W. X  =  X .
(b) Now let  W  and  X  be the weakest solutions of those equations, and prove  W. X  =  X .
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333 In real variable  x , consider the equation
P   =   P.  x:= x2

(a) Find  7  distinct solutions for  P .
(b) Which solution does recursive construction give starting from  †  ?  Is it the weakest 

solution?
(c) If we add a time variable, which solution does recursive construction give starting from  

t′≥t ?  Is it a strongest implementable solution?
(d) Now let  x  be an integer variable, and redo the question.

334 Suppose we define  while b do P  by ordinary construction and induction, ignoring time.
if b then (P.  while b do P) else ok   ⇐   while b do P
∀σ, σ′· (if b then (P. W) else ok  ⇐  W)  ⇒  ∀σ, σ′· (while b do P  ⇐  W)

Prove that fixed-point construction and induction
while b do P  =  if b then (P.  while b do P) else ok
∀σ, σ′· (W  =  if b then (P. W) else ok)  ⇒  ∀σ, σ′· (while b do P  ⇐  W)

are theorems.

335 Suppose we define  while b do P  by fixed-point construction and induction, ignoring time.
while b do P   =  if b then (P.  while b do P) else ok
∀σ, σ′· (W  =  if b then (P. W) else ok)  ⇒  ∀σ, σ′· (while b do P  ⇐  W)

Prove that ordinary construction and induction
if b then (P.  while b do P) else ok    ⇐   while b do P
∀σ, σ′· (if b then (P. W) else ok  ⇐  W)  ⇒  ∀σ, σ′· (while b do P  ⇐  W)

are theorems.  Warning:  this is hard, and requires the use of limits.
                                                                                                                         End of Recursive Definition

10.7  Theory Design and Implementation

336 (widgets)  A theory of widgets is presented in the form of some new syntax and some 
axioms.  An implementation of widgets is written.

(a) How do we know if the theory of widgets is consistent?
(b) How do we know if the theory of widgets is incomplete?
(c) How can we prove that the implementation of widgets is correct?

337√ Implement data-stack theory to make the two boolean expressions
pop empty = empty
top empty = 0

antitheorems.

338 Prove that the following definitions implement the simple data-stack theory.
stack  =  [nil], [stack; X] 
push  =  〈s: stack→〈x: X→[s; x]〉〉
pop  =  〈s: stack→s 0〉
top  =  〈s: stack→s 1〉

339 (weak data-stack)  In Subsection 7.1.3 we designed a program-stack theory so weak that we 
could add axioms to count pushes and pops without inconsistency.  Design a similarly 
weak data-stack theory.
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340 (data-queue implementation)  Implement the data-queue theory presented in Section 7.0.

341 (slip)  The slip data structure introduces the name  slip  with the following axioms:
slip  =  [X; slip]
B = [X; B]  ⇒  B: slip

where  X  is some given type.  Can you implement it?

342 Prove that the program-stack implementation given in Subsection 7.1.1 satisfies the 
program-stack axioms of Subsection 7.1.0.

343 Implement weak program-stack theory as follows:  the implementer's variable is a list that 
grows and never shrinks.  A popped item must be marked as garbage.

344 You are given a program-stack.  Can you write a program composed from the programs
push `A     push `B     push `C     push `D     push `E

in that order, with the programs  print top  and  pop  interspersed wherever needed as many 
times as needed, to obtain the following output?

(a) B D E C A
(b) B C D E A
(c) C A D E B
(d) A B E C D
(e) A B C D E

345 (brackets)  You are given a text  t  of characters drawn from the alphabet  `x, `(, `), `[, `] .  
Write a program to determine if  t  has its brackets properly paired and nested.

346 (limited-stack)  A stack, according to our axioms, has an unlimited capacity to have items 
pushed onto it.  A limited-stack is a similar data structure but with a limited capacity to have 
items pushed onto it.

(a) Design axioms for a limited-data-stack.  
(b) Design axioms for a limited-program-stack.
(c) Can the limit be  0 ?

347 (limited-queue)  A queue, according to our axioms, has an unlimited capacity to have items 
joined onto it.  A limited-queue is a similar data structure but with a limited capacity to have 
items joined onto it.

(a) Design axioms for a limited-data-queue. 
(b) Design axioms for a limited-program-queue.
(c) Can the limit be  0 ?

348 You are given a program-queue.  Can you write a program composed from the programs
join `A     join `B     join `C     join `D     join `E

in that order, with the programs  print front  and  leave  interspersed wherever needed as 
many times as needed, to obtain the following output?

(a) B D E C A
(b) B C D E A
(c) C A D E B
(d) A B E C D
(e) A B C D E
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349 Each of the program theories provides a single, anonymous instance of a data structure.  
How can a program theory be made to provide many instances of a data structure, like data 
theories do?

350 (circular list)  Design axioms for a circular list.  There should be operations to create an 
empty list, to move along one position in the list (the first item comes after the last, in 
circular fashion), to insert an item at the current position, to delete the current item, and to 
give the current item.

351 (resettable variable)  A resettable variable is defined as follows.  There are three new names:   
value  (of type  X ),  set  (a procedure with one parameter of type  X ), and  reset  (a 
program).  Here are the axioms:

value′=x  ⇐  set x
value′=value  ⇐  set x.  reset
reset. reset  =  reset

Implement this data structure, with proof.

352 A particular program-list has the following operations:
• the operation  mkempty  makes the list empty
• the operation  extend x  catenates item  x  to the end of the list
• the operation  swap i j  swaps the items at indexes  i  and  j
• the expression  length  tells the length of the list
• the expression  item i  tells the item at index  i

(a) Write axioms to define this program-list.
(b) Implement this program-list, with proof.

353 (linear algebra)  Design a theory of linear algebra.  It should include scalar, vector, and 
matrix sums, products, and inner products.  Implement the theory, with proof.

354 (leafy tree)  A leafy tree is a tree with information residing only at the leaves.  Design 
appropriate axioms for a binary leafy data-tree.

355 A tree can be implemented by listing its items in breadth order.
(a) Implement a binary tree by a list of its items such that the root is at index  0  and the left and 

right subtrees of an item at index  n  are rooted at indexes  2×n+1  and  2×n+2 .
(b) Prove your implementation.
(c) Generalize this implementation to trees in which each item can have at most  k  branches for 

arbitrary (but constant)  k .

356 (hybrid-tree)  Chapter 7 presented data-tree theory and program-tree theory.  Design a 
hybrid-tree theory in which there is only one tree structure, so it can be an implementer's 
variable with program operations on it, but there can be many pointers into the tree, so they 
are data-pointers (they may be data-stacks).

357 (heap)  A heap is a tree with the property that the root is the largest item and the subtrees are 
heaps.

(a) Specify the heap property formally.
(b) Write a function  heapgraft  that makes a heap from two given heaps and a new item.  It 

may make use of  graft , and may rearrange the items as necessary to produce a heap.
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358 (leaf count)  Write a program to count the number of leaves in a tree.

359 (binary search tree)  A binary search tree is a binary tree with the property that all items in 
the left subtree are less than the root item, all items in the right subtree are greater than the 
root item, and the subtrees are also binary search trees.

(a) Specify the binary search tree property formally.
(b) How many binary search trees are there with three items?
(c) How many binary search trees are there with three distinct items?
(d) Write a program to find an item in a binary search tree.
(e) Write a program to add an item to a binary search tree as a new leaf.
(f) Write a program to make a list of the items in a binary search tree in order.
(g) Write a program to determine whether two binary search trees have the same items.

360 (party)  A company is structured as a tree, with employees at the nodes.  Each employee, 
except the one at the root, has a boss represented by their parent in the tree.  Each employee 
has a conviviality rating (a number) representing how much fun they are at a party.  But no-
one will be at a party with their boss.  Write a program to find the bunch of employees to 
invite to a party so that the total convivialty is maximized.

361 (insertion list)  An insertion list is a data structure similar to a list, but with an associated 
insertion point.

[ ...;  4  ;  7  ;  1  ;  0  ;  3  ;  8  ;  9  ;  2  ;  5  ; ... ]
                          ?
                insertion point

insert  puts an item at the insertion point (between two existing items), leaving the insertion 
point at its right.  erase  removes the item to the left of the insertion point, closing up the 
list.  item  gives the item to the left of the insertion point.  forward  moves the insertion 
point one item to the right.  back  moves the insertion point one item to the left.

(a) Design axioms for a doubly-infinite data-insertion list.
(b) Design axioms for a doubly-infinite program-insertion list.
(c) Design axioms for a finite data-insertion list.
(d) Design axioms for a finite program-insertion list.

362√ (parsing)  Define  E  as a bunch of strings of texts satisfying the fixed-point equation
E   =   "x",  "if"; E; "then"; E; "else"; E

Given a string of texts, write a program to determine if the string is in the bunch  E .

363 A theory provides three names:  zero ,  increase , and  inquire .  It is presented by an 
implementation.  Let  u: bool  be the user's variable, and let  v: nat  be the implementer's 
variable.  The axioms are

zero   =   v:= 0
increase   =   v:= v+1
inquire   =   u:= even v

Use data transformation to replace  v  with  w: bool  according to the transformer
(a)√ w  =  even v
(b) †

(c) ƒ  (this isn't a data transformer, since  ∀w· ∃v· ƒ  isn't a theorem, but apply it 
anyway to see what happens)
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364 A theory provides three names:  set ,  flip , and  ask .  It is presented by an implementation.  
Let  u: bool  be the user's variable, and let  v: bool  be the implementer's variable.  The 
axioms are

set   =   v:= †
flip   =   v:= ¬v
ask   =   u:= v

(a)√ Replace  v  with  w: nat  according to the data transformer  v  =  even w .
(b) Replace  v  with  w: nat  according to the data transformer  (w=0 ⇒ v) ∧ (w=1 ⇒ ¬v) .  Is 

anything wrong?
(c) Replace  v  with  w: nat  according to  (v ⇒ w=0) ∧ (¬v ⇒ w=1) .  Is anything wrong?

365 Let  a ,  b  and  c  be boolean variables.  Variables  a  and  b  are implementer's variables, 
and  c  is a user's variable for the operations

seta   =   a:= †
reseta   =   a:= ƒ
flipa   =   a:= ¬a
setb   =   b:= †
resetb   =   b:= ƒ
flipb   =   b:= ¬b
and   =   c:= a∧b
or   =   c:= a∨b

This theory must be reimplemented using integer variables, with  0  for  ƒ  and all other 
integers for  † .

(a) What is the data transformer?
(b) Transform  seta .
(c) Transform  flipa .
(d) Transform  and .

366 Find a data transformer to transform the program of Exercise 270(a) into the program of 
Exercise 270(b).

367√ (security switch)  A security switch has three boolean user's variables  a ,  b , and  c .  The 
users assign values to  a  and  b  as input to the switch.  The switch's output is assigned to  
c .  The output changes when both inputs have changed.  More precisely, the output changes 
when both inputs differ from what they were the previous time the output changed.  The 
idea is that one user might flip their input indicating a desire for the output to change, but 
the output does not change until the other user flips their input indicating agreement that the 
output should change.  If the first user changes back before the second user changes, the 
output does not change.

(a) Implement a security switch to correspond as directly as possible to the informal 
description.

(b) Transform the implementation of part (a) to obtain an efficient implementation.

368 The user's variable is boolean  b .  The implementer's variables are natural  x  and  y .  The 
operations are:

done   =   b:= x=y=0
step   =   if y>0 then y:= y–1 else (x:= x–1.  var n: nat· y:= n)

Replace the two implementer's variables  x  and  y  with a single new implementer's variable:  
natural  z .
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369 Let  p  be a user's boolean variable, and let  m  be an implementer's natural variable.  The 
operations allow the user to assign a value  n  to the implementer's variable, and to test 
whether the implementer's variable is a prime number.

assign n   =   m:= n
check   =   p:= prime m

assuming  prime  is suitably defined.  If  prime  is an expensive function, and the  check  
operation is more frequent than the  assign  operation, we can improve the solution by 
making  check  less expensive even if that makes  assign  more expensive.  Using data 
transformation, make this improvement.

370√ (take a number)  Maintain a list of natural numbers standing for those that are “in use”.  
The three operations are:
• make the list empty (for initialization)
• assign to variable  n  a number that is not in use, and add this number to the list (now it 

is in use)
• given a number  n  that is in use, remove it from the list (now it is no longer in use, and it 

can be reused later)
(a) Implement the operations in terms of bunches.
(b) Use a data transformer to replace all bunch variables with natural variables.
(c) Use a data transformer to obtain a distributed solution.

371√ A limited queue is a queue with a limited number of places for items.  Let the limit be 
positive natural  n , and let  Q: [n*X]  and  p: nat  be implementer's variables.  Here is an 
implementation.

mkemptyq  =  p:= 0
isemptyq  =  p=0
isfullq  =  p=n
join x  =  Qp:= x.  p:= p+1
leave  =  for i:= 1;..p do Q(i–1):= Qi.  p:= p–1
front  =  Q0

Removing the front item from the queue takes time  p–1  to shift all remaining items down 
one index.  Transform the queue so that all operations are instant.

372 A binary tree can be stored as a list of nodes in breadth order.  Traditionally, the root is at 
index  1 , the node at index  n  has its left child at index  2×n  and its right child at index  
2×n+1 .  Suppose the user's variable is  x: X , and the implementer's variables are  s: [*X]  
and  p: nat+1 , and the operations are

goHome = p:= 1
goLeft = p:= 2×p
goRight = p:= 2×p + 1
goUp = p:= div p 2
put = s:= p→x | s
get = x:= s p

Now suppose we decide to move the entire list down one index so that we do not waste 
index  0 .  The root is at index  0 , its children are at indexes  1  and  2 , and so on.  Develop 
the necessary data transform, and use it to transform the operations.
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373 (sparse array)  An array  A: [*[*rat]]  is said to be sparse if many of its items are  0 .  We 
can represent such an array compactly as a list of triples  [i; j; x]  of all nonzero items  
A i j = x + 0.  Using this idea, find a data transformer and transform the programs

(a) A:= [100*[100*0]]
(b) x:= A i j
(c) A:= (i;j)→x | A

374 (transformation incompleteness)  The user's variable is  i  and the implementer's variable is  
j , both of type  nat .  The operations are:

initialize  =  i′ = 0 ≤ j′ < 3
step  =  if j>0 then (i:= i+1.  j:= j–1) else ok

The user can look at  i  but not at  j .  The user can  initialize , which starts  i  at  0  and starts  
j  at any of  3  values.  The user can then repeatedly  step  and observe that  i  increases  0  
or  1  or  2  times and then stops increasing, which effectively tells the user what value  j  
started with.

(a) Show that there is no data transformer to replace  j  with boolean variable  b   so that
initialize is transformed to i′=0
step is transformed to if b ∧ i<2 then i′ = i+1 else ok

The transformed  initialize  starts  b  either at  † , meaning that  i  will be increased, or at  ƒ , 
meaning that  i  will not be increased.  Each use of the transformed  step  tests  b  to see if 
we might increase  i , and checks  i<2  to ensure that  i  will remain below  3 .  If  i  is 
increased,  b  is again assigned either of its two values.  The user will see  i  start at  0  and 
increase  0  or  1  or  2  times and then stop increasing, exactly as in the original 
specification.

(b) Use the data transformer  b=(j>0)  to transform  initialize  and  i+j=k ⇒  step  where  
k: 0, 1, 2 .

                                                                                                      End of Theory Design and Implementation

10.8  Concurrency

375 Let  x  and  y  be natural variables.  Rewrite the following program as a program that does 
not use  || .

(a) x:= x+1  ||  if x=0 then y:= 1 else ok
(b) if x>0 then y:= x–1 else ok  ||  if x=0 then x:= y+1 else ok

376 If we ignore time, then
x:= 3.  y:= 4   =   x:= 3 || y:= 4

Some dependent compositions could be executed in parallel if we ignore time.  But the time 
for  P.Q  is the sum of the times for  P  and  Q , and that forces the execution to be 
sequential.

t:= t+1.  t:= t+2   =   t:= t+3
Likewise some independent compositions could be executed sequentially, ignoring time.  
But the time for  P||Q  is the maximum of the times for  P  and  Q , and that forces the 
execution to be parallel.

t:= t+1 || t:= t+2   =   t:= t+2
Invent another form of composition, intermediate between dependent and independent 
composition, whose execution is sequential to the extent necessary, and parallel to the extent 
possible.  Warning:  this is a research question.
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377 (disjoint composition)  Independent composition  P||Q  requires that  P  and  Q  have no 
variables in common, although each can make use of the initial values of the other's variables 
by making a private copy.  An alternative, let's say disjoint composition, is to allow both  P  
and  Q  to use all the variables with no restrictions, and then to choose disjoint sets of 
variables  v  and  w  and define

P |v|w| Q   =   (P.  v′=v) ∧ (Q.  w′=w)
(a) Describe how  P |v|w| Q  can be executed.
(b) Prove that if  P  and  Q  are implementable specifications, then  P |v|w| Q  is implementable.

378 (semi-dependent composition)  Independent composition  P||Q  requires that  P   and  Q   
have no variables in common, although each can make use of the initial values of the other's 
variables by making a private copy.  In this question we explore another kind of 
composition, let's say semi-dependent composition  P±Q .  Like dependent composition, it 
requires  P  and  Q  to have the same variables.  Like independent composition, it can be 
executed by executing the processes in parallel, but each process makes its assignments to 
local copies of variables.  Then, when both processes are finished, the final value of a 
variable is determined as follows:  if both processes left it unchanged, it is unchanged;  if 
one process changed it and the other left it unchanged, its final value is the changed one;  if 
both processes changed it, its final value is arbitrary.  This final rewriting of variables does 
not require coordination or communication between the processes;  each process rewrites 
those variables it has changed.  In the case when both processes have changed a variable, we 
do not even require that the final value be one of the two changed values;  the rewriting may 
mix the bits.

(a) Formally define semi-dependent composition, including time.
(b) What laws apply to semi-dependent composition?
(c) Under what circumstances is it unnecessary for a process to make private copies of 

variables?
(d) In variables  x ,  y , and  z , without using  ± , express

x:= z ± y:= z
(e) In variables  x ,  y , and  z , without using  ± , express

x:= y ± y:= x
(f) In variables  x ,  y , and  z , without using  ± , express

x:= y ± x:= z
(g) In variables  x ,  y , and  z , prove

x:= y ± x:= z   =   if x=y then x:= z else if x=z then x:= y else (x:= y ± x:= z)
(h) In boolean variables  x ,  y  and  z , without using  ± , express

x:= x∧z  ±  y:= y∧¬z  ±  x:= x∧¬z  ±  y:= y∧z
(i) Let  w: 0,..4  and  z: 0, 1  be variables.  Without using  ± , express

w:= 2 × max (div w 2) z  +  max (mod w 2) (1–z)
± w:= 2 × max (div w 2) (1–z)  +  max (mod w 2) z

379 Extend the definition of semi-dependent composition  P±Q  (Exercise 378) from variables 
to list items.

380 Redefine semi-dependent composition  P±Q  (Exercise 378) so that if  P  and  Q  agree on 
a changed value for a variable, then it has that final value, and if they disagree on a changed 
value for a variable, then its final value is

(a) arbitrary.
(b) either one of the two changed values.
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381 We want to find the smallest number in  0,..n  with property  p .  Linear search solves the 
problem.  But evaluating  p  is expensive;  let us say it takes time  1 , and all else is free.  
The fastest solution is to evaluate  p  on all  n  numbers concurrently, and then find the 
smallest number that has the property.  Write a program without concurrency for which the 
sequential to parallel transformation gives the desired computation.

382 Exercise 134 asks for a program to compute cumulative sums (running total).  Write a 
program that can be transformed from sequential to parallel execution with  log n  time 
where  n  is the length of the list.

383 (sieve)  Given variable  p: [n*bool] := [ƒ; ƒ; (n–2)*†] , the following program is the sieve 
of Eratosthenes for determining if a number is prime.

for i:= 2;..ceil (n1/2) do
    if p i then for j:= i;..ceil (n/i) do p:= (j×i)→ƒ | p
    else ok

(a) Show how the program can be transformed for concurrency.  State your answer by drawing 
the execution pattern.

(b) What is the execution time, as a function of  n , with maximum concurrency?

384√ (dining philosophers)  Five philosophers are sitting around a round table.  At the center of 
the table is an infinite bowl of noodles.  Between each pair of neighboring philosophers is a 
chopstick.  Whenever a philosopher gets hungry, the hungry philosopher reaches for the 
two chopsticks on the left and right, because it takes two chopsticks to eat.  If either 
chopstick is unavailable because the neighboring philosopher is using it, then this hungry 
philosopher will have to wait until it is available again.  When both chopsticks are available, 
the philosopher eats for a while, then puts down the chopsticks, and goes back to thinking, 
until the philosopher gets hungry again.  The problem is to write a program whose 
execution simulates the life of these philosophers with the maximum concurrency that does 
not lead to deadlock.

                                                                                                                                   End of Concurrency

10.9  Interaction

385√ Suppose  a  and  b  are integer boundary variables,  x  and  y  are integer interactive 
variables, and  t  is an extended integer time variable.  Suppose that each assignment takes 
time  1 .  Express the following using ordinary boolean operators, without using any 
programming notations.

(x:= 2.  x:= x+y.  x:= x+y) || (y:= 3.  y:= x+y)

386 Let  a  and  b  be boolean interactive variables.  Define
loop  =  if b then loop else ok

Add a time variable according to any reasonable measure, and then without using  || , express
b:= ƒ  ||  loop

387 The Substitution Law does not work for interactive variables.
(a) Show an example of the failure of the law.
(b) Develop a new Substitution Law for interactive variables.
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388√ (thermostat)  Specify a thermostat for a gas burner.  The thermostat operates in parallel with 
other processes

thermometer || control || thermostat || burner
The thermometer and the control are typically located together, but they are logically 
distinct.  The inputs to the thermostat are:
• real  temperature , which comes from the thermometer and indicates the actual 

temperature.
• real  desired , which comes from the control and indicates the desired temperature.
• boolean  flame , which comes from a flame sensor in the burner and indicates 

whether there is a flame.
The outputs of the thermostat are:
• boolean  gas ;  assigning it  †  turns the gas on and  ƒ  turns the gas off.
• boolean  spark ;  assigning it  †  causes sparks for the purpose of igniting the gas.
Heat is wanted when the desired temperature falls  ε  below the actual temperature, and not 
wanted when the desired temperature rises  ε  above the actual temperature, where  ε  is 
small enough to be unnoticeable, but large enough to prevent rapid oscillation.  To obtain 
heat, the spark should be applied to the gas for at least  1  second to give it a chance to ignite 
and to allow the flame to become stable.  But a safety regulation states that the gas must not 
remain on and unlit for more than  3  seconds.  Another regulation says that when the gas is 
shut off, it must not be turned on again for at least  20  seconds to allow any accumulated 
gas to clear.  And finally, the gas burner must respond to its inputs within  1  second.

389√ (grow slow)  Suppose  alloc  allocates  1  unit of memory space and takes time  1  to do so.  
Then the following computation slowly allocates memory.

GrowSlow   ⇐   if t=2×x then (alloc || x:= t) else t:= t+1.  GrowSlow
If the time is equal to  2×x , then one space is allocated, and in parallel  x  becomes the time 
stamp of the allocation;  otherwise the clock ticks.  The process is repeated forever.  Prove 
that if the space is initially less than the logarithm of the time, and  x  is suitably initialized, 
then at all times the space is less than the logarithm of the time.

390 According to the definition of assignment to an interactive variable, writing to the variable 
takes some time during which the value of the variable is unknown.  But any variables in the 
expression being assigned are read instantaneously at the start of the assignment.  Modify 
the definition of assignment to an interactive variable so that

(a) writing takes place instantaneously at the end of the assignment.
(b) reading the variables in the expression being assigned takes the entire time of the 

assignment, just as writing does.

391 (interactive data transformation)  Section 7.2 presented data transformation for boundary 
variables.  How do we do data transformation when there are interactive variables?  
Warning:  this is a research question.

392 (telephone)  Specify the control of a simple telephone.  Its inputs are those actions you can 
perform:  picking up the phone, dialing a digit, and putting down (hanging up) the phone.  
Its output is a list of digits (the number dialed).  The end of dialing is indicated by  5  
seconds during which no further digit is dialed.  If the phone is put down without waiting  5  
seconds, then there is no output.  But, if the phone is put down and then picked up again 
within  2  seconds, this is considered to be an accident, and it does not affect the output.
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393 (consensus)  Some parallel processes are connected in a ring.  Each process has a local 
integer variable with an initial value.  These initial values may differ, but otherwise the 
processes are identical.  Execution of all processes must terminate in time linear in the 
number of processes, and in the end the values of these local variables must all be the same, 
and equal to one of the initial values.  Write the processes.

394 Many programming languages require a variable for input, with a syntax such as  read x .  
Define this form of input formally.  When is it more convenient than the input described in 
Section 9.1?  When is it less convenient?

395 Write a program to print the sequence of natural numbers, one per time unit.

396 Write a program to repeatedly print the current time, up until some given time.

397 Given a finite list  L  of different characters sorted in increasing order, write a program to 
print the strings  *(L(0,..#L))  in the following order:  shorter strings come before longer 
strings;  strings of equal length are in string (alphabetical, lexicographic) order.

398 (T-lists)  Let us call a list  L: [*(`a, `b, `c)]  a T-list if no two adjacent nonempty segments 
are identical:

¬∃i, j, k· 0≤i<j<k≤#L  ∧  L [i;..j] = L [j;..k]
Write a program to output all T-lists in alphabetical order.  (The mathematician Thue proved 
that there are infinitely many T-lists.)

399 (reformat)  Write a program to read, reformat, and write a sequence of characters.  The input 
includes a line-break character at arbitrary places;  the output should include a line-break 
character just after each semicolon.  Whenever the input includes two consecutive stars, or 
two stars separated only by line-breaks, the output should replace the two stars by an up-
arrow.  Other than that, the output should be identical to the input.  Both input and output 
end with a special end-character.

400 According to the definition of  result  expression given in Subsection 5.5.0, what happens 
to any output that occurs in the program part of programmed data?  Can input be read and 
used?  What happens to it?

401 (Huffman code)  You are given a finite set of messages, and for each message, the 
probability of its occurrence.

(a) Write a program to find a binary code for each message.  It must be possible to 
unambiguously decode any sequence of 0s and 1s into a sequence of messages, and the 
average code length (according to message frequency) must be minimum.

(b) Write the accompanying program to produce the decoder for the codes produced in part (a).

402 (matrix multiplication)  Write a program to multiply two  n×n  matrices that uses  n 2   
processes, with  2×n2  local channels, with execution time  n .

403 (coin weights)  You are given some coins, all of which have a standard weight except 
possibly for one of them, which may be lighter or heavier than the standard.  You are also 
given a balance scale, and as many more standard coins as you need.  Write a program to 
determine whether there is a nonstandard coin, and if so which, and whether it is light or 
heavy, in the minimum number of weighings.
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404 How should “deterministic” and “nondeterministic” be defined in the presence of 
channels?

405 From the fixed-point equation
twos   =   c! 2.  t:= t+1.  twos

use recursive construction to find
(a) the weakest fixed-point.
(b) a strongest implementable fixed-point.
(c) the strongest fixed-point.

406 Here are two definitions.
A   = if √c ∧ √d then c? ∨ d?

else if √c then c?
else if √d then d?
else if Tcrc < Tdrd then (t:= Tcrc + 1.  c?)
else if Tdrd < Tcrc then (t:= Tdrd + 1.  d?)
else (t:= Tcrc + 1.  c? ∨ d?)

B   = if √c ∧ √d then c? ∨ d?
else if √c then c?
else if √d then d?
else (t:= t+1.  B)

Letting time be an extended integer, prove  A = B .

407 (input implementation)  Let  W  be “wait for input on channel  c  and then read it”.
(a)√ W   =   t:= max t (T r + 1).  c?

Prove  W   ⇐   if √c then c? else (t:= t+1.  W)  assuming time is an extended integer.
(b) Now let time be an extended real, redefine  W  appropriately, and reprove the refinement.

408 (input with timeout)  As in Exercise 407, let  W  be “wait for input on channel  c  and then 
read it”, except that if input is still not available by a deadline, an alarm should be raised.

W   ⇐   if t ≤ deadline then if √c then c? else (t:= t+1.  W) else alarm
Define  W  appropriately, and prove the refinement.

409 Define relation  partmerge: nat→nat→bool  as follows:
partmerge 0 0
partmerge (m+1) 0  =  partmerge m 0  ∧  Mc(wc+m) = Ma(ra+m)
partmerge 0 (n+1)  =  partmerge 0 n  ∧  Mc(wc+n) = Mb(rb+n)
partmerge (m+1) (n+1)  = partmerge m (n+1)  ∧  Mc(wc+m+n+1)=Ma(ra+m)

∨ partmerge (m+1) n  ∧  Mc(wc+m+n+1)=Mb(rb+n)
Now  partmerge m n   says that the first  m+n  outputs on channel  c  are a merge of  m  
inputs from channel  a  and  n  inputs from channel  b .  Define  merge  as

merge   =   (a?.  c! a) ∨ (b?.  c! b).  merge
Prove  merge   =   (∀m· ∃n· partmerge m n) ∨ (∀n· ∃m· partmerge m n)

410 (perfect shuffle)  Write a specification for a computation that repeatedly reads an input on 
either channel  c  or  d .  The specification says that the computation might begin with either 
channel, and after that it alternates.
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411 (time merge)  We want to repeatedly read an input on either channel  c  or channel  d , 
whichever comes first, and write it on channel  e .  At each reading, if input is available on 
both channels, read either one;  if it is available on just one channel, read that one;  if it is 
available on neither channel, wait for the first one and read that one (in case of a tie, read 
either one).

(a)√ Write the specification formally, and then write a program.
(b) Prove

Tewe   =   max t (min (Tcrc) (Tdrd) + 1)
∀m, n· Te(we+m+n+1) ≤ max (max (Tc(rc+m)) (Td(rd+n))) (Te(we+m+n)) + 1

412 (fairer time merge)  This question is the same as the time merge (Exercise 411), but if input 
is available on both channels, the choice must be made the opposite way from the previous 
read.  If, after waiting for an input, inputs arrive on both channels at the same time, the 
choice must be made the opposite way from the previous read.

413 In the reaction controller in Subsection 9.1.6, it is supposed that the synchronizer receives 
digital data from the digitizer faster than requests from the controller.  Now suppose that the 
controller is sometimes faster than the digitizer.  Modify the synchronizer so that if two or 
more requests arrive in a row (before new digital data arrives), the same digital data will be 
sent in reply to each request.

414 (Brock-Ackermann)  The following picture shows a network of communicating processes.

a! 0 b
a
choose         c?.  b! c

d c

The formal description of this network is
chan a, b, c·  a! 0  ||  choose  ||  (c?.  b! c)

Formally define  choose , add transit time, and state the output message and time if
(a) choose  either reads from  a  and outputs a  0  on  c  and  d , or reads from  b  and outputs a  

1  on  c  and  d .  The choice is made freely.
(b) As in part (a),  choose  either reads from   a  and outputs a  0  on  c  and  d , or reads from  

b  and outputs a  1  on  c  and  d .  But this time the choice is not made freely;   choose  
reads from the channel whose input is available first (if there's a tie, then take either one).

415√ (power series multiplication)  Write a program to read from channel  a  an infinite sequence 
of coefficients  a0 a1 a2 a3 ...  of a power series  a0 + a1×x + a2×x2 + a3×x3 + ...  and in 
parallel to read from channel  b  an infinite sequence of coefficients  b0 b1 b2 b3 ...  of a 
power series  b0 + b1×x + b2×x2 + b3×x3 + ...  and in parallel to write on channel  c  the 
infinite sequence of coefficients  c0 c1 c2 c3 ...  of the power series  c0 + c1×x + c2×x2 + 
c3×x3 + ...  equal to the product of the two input series.  Assume that all inputs are already 
available;  there are no input delays.  Produce the outputs one per time unit.

416 (repetition)  Write a program to read an infinite sequence, and after every even number of 
inputs, to output a boolean saying whether the second half of the input sequence is a 
repetition of the first half.
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417 (file update)  A master file of records and a transaction file of records are to be read, one 
record at a time, and a new file of records is to be written, one record at a time.  A record 
consists of two text fields:  a  "key"  field and an  "info"  field.  The master file is kept in 
order of its keys, without duplicate keys, and with a final record having a sentinel key  
"zzzzz"  guaranteed to be larger than all other keys.  The transaction file is also sorted in 
order of its keys, with the same final sentinel key, but it may have duplicate keys.  The new 
file is like the master file, but with changes as signified by the transaction file.  If the 
transaction file contains a record with a key that does not appear in the master file, that 
record is to be added.  If the transaction file contains a record with a key that does appear in 
the master file, that record is a change of the  "info"  field, unless the  "info"  text is the 
empty text, in which case it signifies record deletion.  Whenever the transaction file contains 
a repeated key, the last record for each key determines the result.

418 (mutual exclusion)  Process  P  is an endless repetition of a “non-critical section”  NP  and 
a “critical section”  CP .  Process  Q  is similar.

P   =  NP.  CP.  P
Q   =  NQ.  CQ.  Q

They are executed in parallel  (P || Q) .  Specify formally that the two critical sections are 
never executed at the same time.  Hint:  You may insert into  P  and  Q  outputs on channels 
that are never read, but help to specify the mutual exclusion of the critical sections.

419 (synchronous communication)  A synchronous communication happens when the sender is 
ready to send and the receiver(s) is(are) ready to receive.  Those that are ready must wait for 
those that are not.

(a) Design a theory of synchronous communication.  For each channel, you will need only one 
cursor, but two (or more) time scripts.  An output, as well as an input, increases the time to 
the maximum of the time scripts for the current message.

(b) Show how it works in some examples, including a deadlock example.
(c) Show an example that is not a deadlock with asynchronous communication, but becomes a 

deadlock with synchronous communication.
                                                                                                                                     End of Interaction

                                                                                                                                       End of Exercises
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11  Reference
11.0  Justifications

This section explains some of the decisions made in choosing and presenting the material in this 
book.  It is probably not of interest to a student whose concern is to learn the material, but it may be 
of interest to a teacher or researcher.

11.0.0  Notation

Whenever I had to choose between a standard notation that will do and a new notation that's perfect, 
I chose the standard notation.  For example, to express the maximum of two numbers  x  and  y , a 
function  max  is applied:  max x y  .  Since maximum is symmetric and associative, it would be 
better to introduce a symmetric symbol like  ↑  as an infix operator:  x↑y .  I always do so privately, 
but in this book I have chosen to keep the symbols few in number and reasonably traditional.  Most 
people seeing  max x y  will know what is meant without prior explanation;  most people seeing  x↑y  
would not.  In the first edition, I used  λ  notation for functions, thinking that it was standard.  Ten 
years of students convinced me that it was not standard, freeing me to use a better notation in later 
editions.

A precedence scheme is chosen on two criteria:  to minimize the need for parentheses, and to be 
easily remembered.  The latter is helped by sticking to tradition, by placing related symbols 
together, and by having as few levels as possible.  The two criteria are sometimes conflicting, 
traditions are sometimes conflicting, and the three suggestions for helping memory are sometimes 
conflicting.  In the end, one makes a decision and lives with it.  Extra parentheses can always be 
used, and should be used whenever structural similarities would be obscured by the precedence 
scheme.  For the sake of structure, it would be better to give  ∧  and  ∨  the same precedence, but I 
have stayed with tradition.  The scheme in this book has more levels than I would like.  I could 
place  ¬  with one-operand  – ,  ∧  with  × ,  ∨  with two-operand  + , and  ⇒  and  ⇐  with  =  and  
+ .  This saves four levels, but is against mathematical tradition and costs a lot of parentheses.  The 
use of large symbols  =  ⇐  ⇒  with large precedence level is a novelty;  I hope it is both 
readable and writable.  Do not judge it until you have used it awhile;  it saves an enormous number 
of parentheses.  One can immediately see generalizations of this convention to all symbols and 
many sizes (a slippery slope).
                                                                                                                                        End of Notation

11.0.1  Basic Theories

Boolean Theory sometimes goes by other names:  Boolean Algebra, Propositional Calculus, 
Sentential Logic.  Its expressions are sometimes called “propositions” or “sentences”.  
Sometimes a distinction is made between “terms”, which are said to denote values, and 
“propositions”, which are said not to denote values but instead to be true or false.  A similar 
distinction is made between “functions”, which apply to arguments to produce values, and 
“predicates”, which are instantiated to become true or false.  But slowly, the subject of logic is 
emerging from its confused, philosophical past.  I consider that propositions are just boolean 
expressions and treat them on a par with number expressions and expressions of other types.  I 
consider that predicates are just boolean functions.  I use the same equal sign for booleans as for 
numbers, characters, sets, and functions.  Perhaps in the future we won't feel the need to imagine 
abstract objects for expressions to denote;  we will justify them by their practical applications.  We 
will explain our formalisms by the rules for their use, not by their philosophy.



Why bother with “antiaxioms” and “antitheorems”?  They are not traditional (in fact, I made up 
the words).  As stated in Chapter 1, thanks to the negation operator and the Consistency Rule, we 
don't need to bother with them.  Instead of saying that  expression  is an antitheorem, we can say 
that  ¬expression  is a theorem.  Why bother with  ƒ ?  We could instead write  ¬† .  One reason 
is just that it is shorter to say “antitheorem” than to say “negation of a theorem”.  Another reason 
is to help make clear the important difference between “disprovable” and “not provable”.  
Another reason is that some logics do not use the negation operator and the Consistency Rule.  The 
logic in this book is “classical logic”;  “constructive logic” omits the Completion Rule;  
“evaluation logic” omits both the Consistency Rule and the Completion Rule.

Some books present proof rules (and axioms) with the aid of a formal metanotation.  In this book, 
there is no formal metalanguage;  the metalanguage is English.  A formal metalanguage is helpful 
for the presentation and comparison of a variety of competing formalisms, and necessary for 
proving theorems about formalisms.  But in this book, only one formalism is presented.  The 
burden of learning another formalism first, for the purpose of presenting the main formalism, is 
unnecessary.  A formal metanotation  [ / ]  for substitution would allow me to write the function 
application rule as

〈v→b〉 a  =  b[a/v]
but then I would have to explain that  b[a/v]  means  “substitute  a  for  v  in  b ”.  I may as well 
say directly

〈v→b〉 a  =  (substitute  a  for  v  in  b )
A proof syntax (formalizing the “hints”) would be necessary if we were using an automated 
prover, but in this book it is unnecessary and I have not introduced one.

Some authors may distinguish “axiom” from “axiom schema”, the latter having variables which 
can be instantiated to produce axioms;  I have used the term “axiom” for both.  I have also used 
the term “law” as a synonym for “theorem” (I would prefer to reduce my vocabulary, but both 
words are well established).  Other books may distinguish them by the presence or absence of 
variables, or they may use “law” to mean “we would like it to be a theorem but we haven't yet 
designed an appropriate theory”.

I have taken a few liberties with the names of some axioms and laws.  What I have called 
“transparency” is often called “substitution of equals for equals”, which is longer and doesn't 
quite make sense.  Each of my Laws of Portation is historically two laws, one an implication in one 
direction, and the other an implication in the other direction.  One was called “Importation”, and 
the other “Exportation”, but I can never remember which was which.
                                                                                                                                End of Basic Theories

11.0.2  Basic Data Structures

Why bother with bunches?  Don't sets work just as well?  Aren't bunches really just sets but using a 
peculiar notation and terminology?  The answer is no, but let's take it slowly.  Suppose we just 
present sets.  We want to be able to write  {1, 3, 7}  and similar expressions, and we might describe 
these set expressions with a little grammar like this:

set  =  “{” contents “}”
contents = number

| set
| contents “,” contents

We will want to say that the order of elements in a set is irrelevant so that  {1, 2} = {2, 1} ;  the best 
way to say it is formally:  A,B = B,A  (comma is symmetric, or commutative).  Next, we want to say 
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that repetitions of elements in a set are irrelevant so that  {3, 3} = {3} ;  the best way to say that is  
A,A = A  (comma is idempotent).  What we are doing here is inventing bunches, but calling them 
“contents” of a set.  And note that the grammar is equating bunches;  the catenations (denoted by 
juxtaposition) distribute over the elements of their operands, and the alternations (the vertical bars) 
are bunch unions.

When a child first learns about sets, there is often an initial hurdle:  that a set with one element is 
not the same as the element.  How much easier it would be if a set were presented as packaging:  a 
bag with an apple in it is obviously not the same as the apple.  Just as  {2}  and  2  differ, so  {2,7}  
and  2,7  differ.  Bunch Theory tells us about aggregation;  Set Theory tells us about packaging.  
The two are independent.

We could define sets without relying on bunches (as has been done for many years), and we could 
use sets wherever I have used bunches.  In that sense, bunches are unnecessary.  Similarly we could 
define lists without relying on sets (as I did in this book), and we could always use lists in place of 
sets.  In that sense, sets are unnecessary.  But sets are a beautiful data structure that introduces one 
idea (packaging), and I prefer to keep them.  Similarly bunches are a beautiful data structure that 
introduces one idea (aggregation), and I prefer to keep them.  I always prefer to use the simplest 
structure that is adequate for its purpose.

The subject of functional programming has suffered from an inability to express nondeterminism 
conveniently.  To say something about a value, but not pin it down completely, one can express the 
set of possible values.  Unfortunately, sets do not reduce properly to the deterministic case;  in this 
context it is again a problem that a set containing one element is not equal to the element.  What is 
wanted is bunches.  One can always regard a bunch as a “nondeterministic value”.

Bunches have also been used in this book as a “type theory”.  Surely it is discouraging to others, 
as it is to me, to see type theory duplicating all the operators of its value space:  for each operation 
on values, there is a corresponding operation on type spaces.  By using bunches, this duplication is 
eliminated.

Many mathematicians consider that curly brackets and commas are just syntax, and syntax is 
annoying and unimportant, though necessary.  I have treated them as operators, with algebraic 
properties (in Section 2.1 on Set Theory, we see that curly brackets have an inverse).  This 
continues a very long, historical trend.  For example,  =  was at first just a syntax for the statement 
that two things are (in some way) the same, but now it is an operator with algebraic properties.

In many papers there is a little apology as the author explains that the notation for catenation of lists 
will be abused by sometimes catenating a list and an item.  Or perhaps there are three catenation 
notations:  one to catenate two lists, one to prepend an item to a list, and one to append an item to a 
list.  The poor author has to fight with unwanted packaging provided by lists in order to get the 
sequencing.  I offer these authors strings:  sequencing without packaging.  (Of course, they can be 
packaged into lists whenever wanted.  I am not taking away lists.)
                                                                                                                         End of Basic Data Structures
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11.0.3  Function Theory

I have used the words “local” and “nonlocal” where others might use the words “bound” and 
“free”, or “local” and “global”, or “hidden” and “visible”, or “private” and “public”.  The 
tradition in logic, which I have not followed, is to begin with all possible variables (infinitely many 
of them) already “existing”.  The function notation  〈 〉   is said to “bind” variables, and any 
variable that is not bound remains “free”.  For example,  〈x: int→x+y〉  has bound variable  x , free 
variable  y , and infinitely many other free variables.  In this book, variables do not automatically 
“exist”;  they are introduced (rather than bound) either formally using the function notation, or 
informally by saying in English what they are.

The quantifier formed from  max  is called  MAX  even though its result may not be any result of 
the function it is applied to;  the name “least upper bound” is traditional.  Similarly for  MIN , 
which is traditionally called “greatest lower bound”.

I have ignored the traditional question of the “existence” of limits;  in cases where traditionally a 
limit does not “exist”, the Limit Axiom does not tell us exactly what the limit is, but it might still 
tell us something useful.
                                                                                                                              End of Function Theory

11.0.4  Program Theory

Assignment could have been defined as
x:= e   =   defined “e” ∧ e: T  ⇒  x′=e ∧ y′=y ∧ ...

where  defined  rules out expressions like  1/0 , and  T  is the type of variable  x .  I left out  defined  
because a complete definition of it is impossible, a reasonably complete definition is as complicated 
as all of program theory, and it serves no purpose.  The antecedent  e: T  would be useful, making 
the assignment  n:= n–1  implementable when  n  is a natural variable.  But its benefit is not worth 
its trouble, since the same check is made at every dependent composition.  Even worse, we would 
lose the Substitution Law;  we want  (n:= –1.  n≥0)  to be  ƒ .

Since the design of Algol-60, sequential execution has often been represented by a semi-colon.  The 
semi-colon is unavailable to me for this purpose because I used it for string catenation.  Dependent 
composition is a kind of product, so I hope a period will be an acceptable symbol.  I considered 
switching the two, using semi-colon for dependent composition and a period for string catenation, 
but the latter did not work well.

In English, the word “precondition” means “something that is necessary beforehand”.  In many 
programming books, the word “precondition” is used to mean “something that is sufficient 
beforehand”.  In those books, “weakest precondition” means “necessary and sufficient 
precondition”, which I have called “exact precondition”.

In the earliest and still best-known theory of programming, we specify that variable  x  is to be 
increased as follows:

{x = X} S {x > X}
We are supposed to know that  x  is a state variable, that  X  is a local variable to this specification 
whose purpose is to relate the initial and final value of  x , and that  S  is also local to the 
specification and is a place-holder for a program.  Neither  X  nor  S  will appear in a program that 
refines this specification.  Formally,  X  and  S  are quantified as follows:

§S· ∀X· {x = X} S {x > X}
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In the theory of weakest preconditions, the equivalent specification looks similar:
§S· ∀X· x=X ⇒ wp S (x>X)

There are two problems with these notations.  One is that they do not provide any way of referring 
to both the prestate and the poststate, hence the introduction of  X .  This is solved in the Vienna 
Development Method, in which the same specification is

§S· {†} S {x′ > x}
The other problem is that the programming language and specification language are disjoint, hence 
the introduction of  S .  In my theory, the programming language is a sublanguage of the 
specification language.  The specification that  x  is to be increased is

x′ > x
The same single-expression double-state specifications are used in Z, but refinement is rather 
complicated.  In Z,  P  is refined by  S  if and only if

∀σ· (∃σ′· P) ⇒ (∃σ′· S) ∧ (∀σ′· P ⇐ S)
In the early theory,  §S· {P} S {Q}  is refined by  §S· {R} S {U}  if and only if

∀σ· P  ⇒  R ∧ (Q ⇐ U)
In my theory,  P  is refined by  S  if and only if

∀σ, σ′· P ⇐ S
Since refinement is what we must prove when programming, it is best to make refinement as simple 
as possible.

One might suppose that any type of mathematical expression can be used as a specification:  
whatever works.  A specification of something, whether cars or computations, distinguishes those 
things that satisfy it from those that don't.  Observation of something provides values for certain 
variables, and on the basis of those values we must be able to determine whether the something 
satisfies the specification.  Thus we have a specification, some values for variables, and two possible 
outcomes.  That is exactly the job of a boolean expression:  a specification (of anything) really is a 
boolean expression.  If instead we use a pair of predicates, or a function from predicates to 
predicates, or anything else, we make our specifications in an indirect way, and we make the task of 
determining satisfaction more difficult.

One might suppose that any boolean expression can be used to specify any computer behavior:  
whatever correspondence works.  In Z, the expression  †  is used to specify (describe) terminating 
computations, and  ƒ  is used to specify (describe) nonterminating computations.  The reasoning is 
something like this:   ƒ  is the specification for which there is no satisfactory final state;  an infinite 
computation is behavior for which there is no final state;  hence  ƒ  represents infinite computation.  
Although we cannot observe a “final” state of an infinite computation, we can observe, simply by 
waiting 10 time units, that it satisfies  t′ > t+10 , and it does not satisfy  t′ ≤ t+10 .  Thus it ought to 
satisfy any specification implied by  t′ > t+10 , including  † , and it ought not to satisfy any 
specification that implies  t′ ≤ t+10 , including  ƒ .  Since  ƒ  is not true of anything, it does not 
describe anything.  A specification is a description, and  ƒ   is not satisfiable, not even by 
nonterminating computations.  Since  †  is true of everything, it describes everything, even 
nonterminating computations.  To say that  P  refines  Q  is to say that all behavior satisfying  P  
also satisfies  Q , which is just implication.  The correspondence between specifications and 
computer behavior is not arbitrary.

As pointed out in Chapter 4, specifications such as  x′=2 ∧ t′=∞  that talk about the “final” values 
of variables at time infinity are strange.  I could change the theory to prevent any mention of results 
at time infinity, but I do not for two reasons:  it would make the theory more complicated, and I 
need to distinguish among infinite loops when I introduce interactions (Chapter 9).
                                                                                                                               End of Program Theory
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11.0.5  Programming Language

The form of variable declaration given in Chapter 5 assigns the new local variable an arbitrary value 
of its type.  Thus, for example, if  y  and  z  are integer variables, then

var x: nat· y:= x   =   y′: nat  ∧  z′=z
For ease of implementation and speed of execution, this is much better than initialization with “the 
undefined value”.  For error detection, it is no worse, assuming that we prove all our refinements.  
Furthermore, there are circumstances in which arbitrary initialization is exactly what's wanted (see 
Exercise 270 (majority vote)).  However, if we do not prove all our refinements, initialization with  
undefined  provides a measure of protection.  If we allow the generic operators ( = ,  +  ,  
if then else ) to apply to  undefined , then we can prove trivialities like  undefined = undefined .  If 
not, then we can prove nothing at all about  undefined .  Some programming languages seek to 
eliminate the error of using an uninitialized variable by initializing each variable to a standard value 
of its type.  Such languages achieve the worst of all worlds:  they are not as efficient as arbitrary 
initialization;  and they eliminate only the error detection, not the error.

The most widely known and used rule for while-loops is the Method of Invariants and Variants.  
Let  I  be a precondition (called the “invariant”) and let  I′  be the corresponding postcondition.  
Let  v  be an integer expression (called the “variant” or “bound function”) and let  v′  be the 
corresponding expression with primes on all the variables.  The Rule of Invariants and Variants 
says:

I ⇒ I′ ∧ ¬b′   ⇐   while b do I ∧ b  ⇒  I′ ∧ 0≤v′<v
The rule says, very roughly, that if the body of the loop maintains the invariant and decreases the 
variant but not below zero, then the loop maintains the invariant and negates the loop condition.  For 
example, to prove

s′ = s + Σ L [n;..#L]   ⇐   while n+#L do (s:= s + Ln.  n:= n+1)
we must invent an invariant

s + Σ L [n;..#L] = ΣL
and a variant

#L – n
and prove both

s′ = s + Σ L [n;..#L]
⇐ s + Σ L [n;..#L] = ΣL  ⇒  s′ + Σ L [n′;..#L] = ΣL  ∧  n′=#L

and
s + Σ L [n;..#L] = ΣL  ∧  n+#L  ⇒  s′ + Σ L [n′;..#L] = ΣL  ∧  0 ≤ #L – n′ < v

⇐ s:= s + Ln.  n:= n+1
The proof method given in Chapter 5 is easier and more information (time) is obtained.

Probability Theory would be simpler if all real numbers were probabilities, instead of just the reals 
in the closed interval from  0  to  1 , in which case I would add the axioms  †=∞  and  ƒ=–∞ ;  but 
it is not my purpose in this book to invent a better probability theory.  For probabilistic 
programming, my first approach was to reinterpret the types of variables as probability distributions 
expressed as functions.  If  x  was a variable of type  T , it becomes a variable of type  T→prob  
such that  Σx = Σx′ = 1 .  All operators then need to be extended to distributions expressed as 
functions.  Although this approach works, it was too low-level;  a distribution expressed as a 
function tells us about the probability of its variables by their positions in an argument list, rather 
than by their names.

The subject of programming has often been mistaken for the learning of a large number of 
programming language “features”.  This mistake has been made of both imperative and functional 
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programming.  Of course, each fancy operator provided in a programming language makes the 
solution of some problems easy.  In functional programming, an operator called “fold” or 
“reduce” is often presented;  it is a useful generalization of some quantifiers.  Its symbol might be  
/  and it takes as left operand a two-operand operator and as right operand a list.  The list 
summation problem is solved as  +/L .  The search problem could similarly be solved by the use of 
an appropriate search operator, and it would be a most useful exercise to design and implement 
such an operator.  This exercise cannot be undertaken by someone whose only programming ability 
is to find an already implemented operator and apply it.  The purpose of this book is to teach the 
necessary programming skills.

As our examples illustrate, functional programming and imperative programming are essentially the 
same:  the same problem in the two styles requires the same steps in its solution.  They have been 
thought to be different for the following reasons:  imperative programmers adhere to clumsy loop 
notations, complicating proofs;  functional programmers adhere to equality, rather than refinement, 
making nondeterminism difficult.
                                                                                                                     End of Programming Language

11.0.6  Recursive Definition

The combination of construction and induction is so beautiful and useful that it has a name 
(generation) and a notation ( ::= ).  To keep terminology and notation to a minimum, I have not used 
them.

Recursive construction has always been done by taking the limit of a sequence of approximations.  
My innovation is to substitute  ∞  for the index in the sequence;  this is a lot easier than finding a 
limit.  Substituting  ∞  is not guaranteed to produce the desired fixed-point, but neither is finding 
the limit.  Substituting  ∞  works well except in examples contrived to show its limitation.
                                                                                                                         End of Recursive Definition

11.0.7  Theory Design and Implementation

I used the term “data transformation” instead of the term “data refinement” used by others.  I 
don't see any reason to consider one space more “abstract” and another more “concrete”.  What I 
call a “data transformer” is sometimes called “abstraction relation”, “linking invariant”, “gluing 
relation”, “retrieve function”, or “data invariant”.

The incompleteness of data transformation is demonstrated with an example carefully crafted to 
show the incompleteness, not one that would ever arise in practice.  I prefer to stay with the simple 
rule that is adequate for all transformations that will ever arise in any problem other than a 
demonstration of theoretical incompleteness, rather than to switch to a more complicated rule, or 
combination of rules, that are complete.  To regain completeness, all we need is the normal 
mathematical practice of introducing local variables.  Variables for this purpose have been called 
“bound variables”, “logical constants”, “specification variables”, “ghost variables”, “abstract 
variables”, and “prophesy variables”, by different authors.
                                                                                                      End of Theory Design and Implementation
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11.0.8  Concurrency

In FORTRAN (prior to 1977) we could have a sequential composition of if-statements, but we 
could not have an if-statement containing a sequential composition.  In ALGOL the syntax was 
fully recursive;  sequential and conditional compositions could be nested, each within the other.  
Did we learn a lesson?  Apparently we did not learn a very general one:  we now seem happy to 
have a parallel composition of sequential compositions, but very reluctant to have a sequential 
composition of parallel compositions.  So in currently popular languages, a parallel composition 
can occur only as the outermost construct.

As we saw in Chapter 8, the execution pattern
A          C

B          D

can be expressed as  ((A || B).  (C || D))  without any synchronization primitives.  But the pattern
A          C

B          D

cannot be expressed using only parallel and sequential composition.  This pattern occurs in the 
buffer program.

In the first edition of this book, parallel composition was defined for processes having the same 
state space (semi-dependent composition).  That definition was more complicated than the present 
one (see Exercise 378), but in theory, it eliminated the need to partition the variables.  In practice, 
however, the variables were always partitioned, so in the present edition the simpler definition 
(independent composition) is used.
                                                                                                                                   End of Concurrency

11.0.9  Interaction

In the formula for implementability, there is no conjunct  r′ ≤ w′  saying that the read cursor must 
not get ahead of the write cursor.  In Subsection 9.1.8 on deadlock we see that it can indeed happen.  
Of course, it takes infinite time to do so.  In the deadlock examples, we can prove that the time is 
infinite.  But there is a mild weakness in the theory.  Consider this example.

chan c·  t:= max t (Tr + 1).  c?
= ∃M, T, r, r′, w, w′· t′ = max t (Tr + 1)  ∧  r′=1  ∧  w′=0
= t′ ≥ t

We might like to prove  t′=∞ .  To get this answer, we must strengthen the definition of local 
channel declaration by adding the conjunct  T w′ ≥ t′ .  I prefer the simpler, weaker theory.
                                                                                                                                     End of Interaction

We could talk about a structure of channels, and about indexed processes.  We could talk about a 
parallel for-loop.  There is always something more to say, but we have to stop somewhere.
                                                                                                                                  End of Justifications
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11.1  Sources

Ideas do not come out of nowhere.  They are the result of one's education, one's culture, and one's 
interactions with acquaintances.  I would like to acknowledge all those people who have influenced 
me and enabled me to write this book.  I will probably fail to mention people who have influenced 
me indirectly, even though the influence may be strong.  I may fail to thank people who gave me 
good ideas on a bad day, when I was not ready to understand.  I will fail to give credit to people 
who worked independently, whose ideas may be the same as or better than those that happened to 
reach my eyes and ears.  To all such people, I apologize.  I do not believe anyone can really take 
credit for an idea.  Ideally, our research should be done for the good of everyone, perhaps also for 
the pleasure of it, but not for the personal glory.  Still, it is disappointing to be missed.  Here then is 
the best accounting of my sources that I can provide.

The early work in this subject is due to Alan Turing (1949), Peter Naur (1966), Robert Floyd 
(1967), Tony Hoare (1969), Rod Burstall (1969), and Dana Scott and Christopher Strachey (1970).  
(See the Bibliography, which follows.)  My own introduction to the subject was a book by Edsger 
Dijkstra (1976);  after reading it I took my first steps toward formalizing refinement (1976).  
Further steps in that same direction were taken by Ralph Back (1978), though I did not learn of 
them until 1984.  The first textbooks on the subject began to appear, including one by me (1984).  
That work was based on Dijkstra's weakest precondition predicate transformer, and work continues 
today on that same basis.  I highly recommend the book Refinement Calculus  by Ralph Back and 
Joachim vonWright (1998).

In the meantime, Tony Hoare (1978, 1981) was developing communicating sequential processes.  
During a term at Oxford in 1981 I realized that they could be described as predicates, and published 
a predicate model (1981, 1983).  It soon became apparent that the same sort of description, a single 
boolean expression, could be used for any kind of computation, and indeed for anything else;  in 
retrospect, it should have been obvious from the start.  The result was a series of papers (1984, 
1986, 1988, 1989, 1990, 1994, 1998, 1999, 2004) leading to the present book.

The importance of format in expressions and proofs was made clear to me by Netty van Gasteren 
(1990).  The symbols  ¢  and  $  for bunch and set cardinality were suggested by Chris Lengauer.  
The word “conflation” was suggested by Doug McIlroy.  The value of indexing from  0  was 
taught to me by Edsger Dijkstra.  Joe Morris and Alex Bunkenburg (2001) found and fixed a 
problem with bunch theory.  The word “apposition” and the idea to which it applies come from 
Lambert Meertens (1986).  Alan Rosenthal suggested that I stop worrying about when limits 
“exist”, and just write the axioms describing them;  I hope that removes the last vestige of 
Platonism from the mathematics, though some remains in the English.  My Refinement by Parts 
law was made more general by Theo Norvell.  I learned the use of a timing variable from Chris 
Lengauer (1981), who credits Mary Shaw;  we were using weakest preconditions then, so our time 
variables ran down instead of up.  The recursive measure of time is inspired by the work of Paul 
Caspi, Nicolas Halbwachs, Daniel Pilaud, and John Plaice (1987);  in their language LUSTRE, each 
iteration of a loop takes time  1 , and all else is free.  I learned to discount termination by itself, with 
no time bound, in discussions with Andrew Malton, and from an example of Hendrik Boom 
(1982).  I was told the logarithmic solution to the Fibonacci number problem by Wlad Turski, who 
learned it while visiting the University of Guelph.  My incorrect version of local variable declaration 
was corrected by Andrew Malton.  Local variable suspension is adapted from Carroll Morgan 
(1990).  The for-loop rule was influenced by Victor Kwan and Emil Sekerinski.  The backtracking 
implementation of unimplementable specifications comes from Greg Nelson (1989).  Carroll 
Morgan and Annabelle McIver (1996) suggested probabilities as observable quantities, and 
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Exercise 284 (Mr.Bean's socks) comes from them.  The use of bunches for nondeterminism in 
functional programming and for function refinement is joint work with Theo Norvell (1992).  Theo 
also added the timing to the recursive definition of while-loops (1997).  The style of data-type 
theories (data-stack, data-queue, data-tree) comes from John Guttag and Jim Horning (1978).  The 
implementation of data-trees was influenced by Tony Hoare (1975).  Program-tree theory went 
through successive versions due to Theo Norvell, Yannis Kassios, and Peter Kanareitsev.  I learned 
about data transformation from He Jifeng and Carroll Morgan, based on earlier work by Tony 
Hoare (1972);  the formulation here is my own, but I checked it for equivalence with those in Wei 
Chen and Jan Tijmen Udding (1989).  Theo Norvell provided the criterion for data transformers.  
The second data transformation example (take a number) is adapted from a resource allocation 
example of Carroll Morgan (1990).  The final data transformation example showing 
incompleteness was invented by Paul Gardiner and Carroll Morgan (1993).  For an encyclopedic 
treatment of data transformers, see the book by Willem-Paul deRoever and Kai Engelhardt (1998).  
I published various formulations of independent (parallel) composition (1981, 1984, 1990, 1994);  
the one in the first edition of this book is due to Theo Norvell and appears in this edition as 
Exercise 378 (semi-dependent composition), and is used in recent work by Hoare and He (1998);  
for this edition I was persuaded by Leslie Lamport to return to my earlier (1984, 1990) version:  
simple conjunction.  Section 8.1 on sequential to parallel transformation is joint work with Chris 
Lengauer (1981);  he has since made great advances in the automatic production of highly parallel, 
systolic computations from ordinary sequential, imperative programs.  The thermostat example is a 
simplification and adaptation of a similar example due to Anders Ravn, Erling Sørensen, and Hans 
Rischel (1990).  The form of communication was influenced by Gilles Kahn (1974).  Time scripts 
were suggested by Theo Norvell.  The input check is an invention of Alain Martin (1985), which he 
called the “probe”.  Monitors were invented by Per Brinch Hansen (1973) and Tony Hoare 
(1974).  The power series multiplication is from Doug McIlroy (1990), who credits Gilles Kahn.  
Many of the exercises were given to me by Wim Feijen for my earlier book (1984);  they were 
developed by Edsger Dijkstra, Wim Feijen, Netty van Gasteren, and Martin Rem for examinations 
at the Technical University of Eindhoven;  they have since appeared in a book by Edsger Dijkstra 
and Wim Feijen (1988).  Some exercises come from a series of journal articles by Martin Rem 
(1983,..1991).  Other exercises were taken from a great variety of sources too numerous to 
mention.
                                                                                                                                         End of Sources
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11.3  Index

abstract space 207
variable 207

abstraction relation 207
Ackermann 173
algebra, bracket 153

linear 189
alias 81
all present 168
almost sorted segment 174
alternating sum 166
antecedent 3
antiaxiom 6, 202
antimonotonic 9
antitheorem 3, 202
application 24
apposition 31
approximate search 171
argument 24, 80
arithmetic 12, 174
arity 157
array 22, 68

element assignment 68
sparse 193

assertion 77
assignment 36

array element 68
initializing 67
nondeterministic 177

average 83
space 64

axiom 6
rule 5
schema 202

backtracking 77
Backus-Naur Form 185
batch processing 134
binary decision diagram 149

exponentiation 167, 45
logarithm natural 169
search 53, 167
tree 192

bit sum 171
bitonic list 158
blackjack 85, 180
body 23
Boole's booleans 180
boolean 3
booleans, Boole's 180

bound function 206
greatest lower 204
least upper 204
time 47, 61
unbounded 178
variable 204, 207

boundary variable 126, 131
bracket algebra 153
brackets 188
break 71
broadcast 141
Brock-Ackermann 199
buffer 122
bunch 14, 202

elementary 14
empty 15

busy-wait loop 76
call-by-value-result 179
Cantor's diagonal 181

paradise 155
cardinality 14
cases, refinement by 43
caskets 152
catenation 17, 156

list 20
channel 131

declaration 138
character 13, 15
check, input 133

parity 171
circular list 189

numbers 152
classical logic 202
clock 76
closure, transitive 172
code, Huffman 197
coin 180

weights 197
combination 166

next 169
command, guarded 179
common divisor, greatest 175

item, smallest 175
items 175
multiple, least 175
prefix, longest 176

communication 131
synchronous 200
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comparison list 166
compiler 45
complete 5, 101
completeness 51, 117
completion rule 5, 6
composite number 154
composition conditional 4

dependent 36, 127
disjoint 194
function 31
independent 118, 119, 126
list 20
semi-dependent 194

computing constant 36
interactive 134
variable 36

concrete space 207
concurrency 118

list 120
condition 40

final 40
initial 40

conditional composition 4
conjunct 3
conjunction 3
consensus 197
consequent 3
consistency rule 5, 6
consistent 5, 101
constant 23

computing 36
logical 207
mathematical 36
state 36

construction 16, 91
fixed-point 94
recursive data 95
recursive program 98

constructive logic 202
constructors 91
context 10
continuing 7, 9
contradiction 10
control process 134
controlled iteration 74
controller, reaction 137
convex equal pair 168

count, duplicate 174
inversion 171
item 174
segment sum 170
two-dimensional sorted 168

cube 165
test 166

cursor, read 131
write 131

data construction, recursive 95
invariant 207
refinement 207
structure 14
structures 100
transformation 109
transformation, interactive 196
transformer 109

deadlock 124, 139
decimal-point numbers 185
declaration, channel 138

variable 66
dependent composition 35, 127
detachment 6
deterministic 89

function 29
specification 35

diagonal 170
Cantor's 181

dice 86, 180
difference, minimum 171
digit sum 171
digitizer 137
diminished J-list 175
dining philosophers 124, 195
disjoint composition 194
disjunct 3
disjunction 3
distribute 15
distribution, probability 82
division, machine 174

natural 169
divisor, greatest common 175
domain 23
drunk 181
dual 148
duplicate count 174
earliest meeting time 166

quitter 171
edit distance 174
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element 14
assignment, array 68

elementary bunch 14
empty bunch 15

set 17
string 17

entropy 87
equation 4
evaluation logic 202

rule 5, 6
exact postcondition 40

precondition 40
precondition for termination 166

exclusion, mutual 200
execution, sequential 36

time 60
existence 204
existential quantification 26
exit 71
exponentiation, binary 45, 167

fast 57, 167
expression 13
extended integers 15

naturals 15
rationals 15
reals 15

factor 155
count 169

factorial 164
family theory 154
fast exponentiation 57. 167
Fermat's last program 170
Fibolucci 173
Fibonacci 59, 173, 183
file update 200
final condition 40
state 34
fixed-point 94, 168

construction 94
induction 94
least 94
theorem 182

flatten 170
follows from 3
formal 12
format, proof 7
frame 67

problem 178
free 204
friends 158

function 23, 79, 80
bound 206
composition 31
deterministic 29
higher-order 30
inclusion 30
nondeterministic 29
partial 29
refinement 89
retrieve 207
total 29

functional  programming 88, 90
fuzzybunch 154
gas burner 128, 136, 196
general recursion 76
generation 207
generator, random number 84
generic 13
ghost variables 207
gluing relation 207
go to 45, 71, 76
Gödel/Turing incompleteness 159
grammar 94
greatest common divisor 175

lower bound 204
square under a histogram 177
subsequence 171

grow slow 196
guarded command 179
heads and tails 171
heap 189
hidden variable 204
higher-order function 30
Huffman code 197
hyperbunch 154
idempotent permutation 169
imperative programming 88, 90
implementable 34, 35, 89, 132, 127
implementation, input 198
implemented specification 41
implementer's variables 106
implication 3
inclusion 14

function 30
incomplete 5
incompleteness, Gödel/Turing 159

transformation 193
inconsistent 5
independent composition 118, 119, 126

probability 82
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index 18
list 20

induction 16, 91
fixed-point 94
proof by 93

infinity 12
infix 3
information 87
initial condition 40

state 34
initializing assignment 67
input 133

check 133
implementation 198

insertion list 190
sort 123

instance rule 5
instantiation 4
integer numbers 15
integers, extended 15
interactive computing 134

data transformation 196
variable 126, 131

intersection 14
interval union 171
invariant 75, 77, 206

data 207
linking 207

inverse permutation 169
inversion count 171
item 17

count 174
maximum 120
smallest common 175

items, common 175
unique 175

iteration, controlled 74
J-list 175
knights and knaves 151
Knuth, Morris, Pratt 177
largest true square 175
law 7

substitution 38
least common multiple 175

fixed-point 94
upper bound 204

left side 4
length list 20

string 17
text 168

lexicographic order 18
limit 32
limited queue 115, 192
linear algebra 189

search 51, 167
linking invariant 207
list 14, 20

bitonic 158
catenation 20
circular 189
comparison 166
composition 20
concurrency 120
diminished J- 175
index 20
insertion 190
J- 175
length 20
next sorted 169
P- 175
summation 43, 67, 88, 166
T- 197
Thue 197

local 25
minimum 169

logarithm natural binary 169
logic 3

classical 202
constructive 202
evaluation 202

logical constants 207
long texts 177
longest balanced segment 170

common prefix 176
palindrome 170
plateau 170
smooth segment170
sorted sublist 174

loop 48, 69
busy-wait 76

lower bound, greatest 204
machine division 174

multiplication 174
squaring 174

maid and butler 151
majority vote 179
mathematical constant 36

variable 36
matrix multiplication 197

11 Reference 218



maximum item 120, 166
product segment 170
space 63

McCarthy's 91 problem 172
memory variables 46
merge 135, 174

time 199
message script 131
metalanguage 202
minimum difference 171

local 169
sum segment 170

missing number 168
model-checking 1
modification, program 57
modus ponens 6
monitor 136, 138
monotonic 9
Mr.Bean's socks 181
multibunch 154
multidimensional 22
multiple, least common 175
multiplication, machine 174

matrix 197
table 167

museum 176
mutual exclusion 200
natural binary logarithm 169

division 169
numbers 15
square root 169

naturals, extended 15
necessary postcondition 40

precondition 40
negation 3
next combination 169

permutation 169
sorted list 169

nondeterministic 89
assignment 177
function 29
specification 35

nonlocal 25
notation 201
number 12

composite 154
generator, random 84
missing 168

numbers, circular 152
decimal-point 185
Fibonacci 59
integer 15
natural 15
rational 15
real 15
von Neumann 155

one-point 28
operand 3
operator 3
order lexicographic 18

prefix 156
ordered pair search 168
output 133
P-list 175
package 14
pair search, ordered 168
palindrome, longest 170
parallelism 118
parameter 24, 79, 80

reference 80, 81
parity check 171
parking 151
parsing 113, 190
partial function 29
partition 118
partitions 175
parts, refinement by 43
party 190
Pascal's triangle 167
path, shortest 172
pattern search 168
perfect shuffle 198
periodic sequence, ultimately 175
permutation, idempotent 169

inverse 169
next 169

pigeon-hole 159
pivot 171
pointer 22, 81, 105
polynomial 166
postcondition 40, 77

exact 40
necessary 40
sufficient 40

postspecification, weakest 163
poststate 34
power series 141, 199
powerset 17
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precedence 4, 5
precondition 40, 77, 204

exact 40
necessary 40
sufficient 40
weakest 204

predecessor 13
predicate 24
prefix 3

longest common 176
order 156

prespecification, weakest 163
prestate 34
private variable 204
probability 82

distribution 82
independent 82
uniform 84

problem, frame 178
process 118

control 134
processing, batch 134
program 41

construction, recursive 98
modification 57

programming, functional 88, 90
programming, imperative 88, 90
proof 7

by induction 93
format 7
rule 5

prophesy variable 207
proposition 201
public variable 204
quantification, existential 26

universal 26
quantifier 26
queue 103, 108, 188

limited 115, 192
quitter, earliest 171
random number generator 84
range 23
rational numbers 15
rationals, extended 15
reachability 172
reaction controller 137
read cursor 131
real 33

numbers 15
time 46

reals, extended 15
record 69
recursion 42

general 76
tail 76

recursive data construction 95
program construction 98
time 48

reference parameter 80, 81
refinement 39

by cases 43
by parts 43
by steps 43
data 207
function 89
stepwise 43

reformat 197
reification 204
relation 24

abstraction 207
gluing 207
transitive 161

remainder 169
renaming 24
repetition 199
resettable variable 189
retrieve function 207
reverse 169
right side 4
roll up 161
roller coaster 60, 173
root, natural square 169
rotation, smallest 176

test 176
rule, completion 5, 6

consistency 5, 6
evaluation 5, 6
instance 5
proof 5

rulers 182
running total 165, 195
Russell's barber 159

paradox 159
satisfiable 35, 89
scale 152
schema, axiom 202
scope 23, 66
script, message 131

time 131
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search, approximate 171
binary 167, 53
linear 167, 51
ordered pair 168
pattern 168
sorted two-dimensional 168
ternary 167
two-dimensional 167
two-dimensional 72

security switch 111, 191
segment 21

almost sorted 174
longest balanced 170
longest smooth 170
maximum product 170
minimum sum 170
sum count 170

selective union 24
self-describing 21
self-reproducing 21
semi-dependent composition 194
sentence 201
sentinel 52, 113, 200
sequence, ultimately periodic 175
sequential execution 36
series, power 141, 199
set 14, 17

empty 17
shared variable 131, 136
shortest path 172
shuffle, perfect 198
side-effect 78
sieve 195
signal 133
size 14
slip 188
smallest common item 175

rotation 176
socks, Mr.Bean's 181
solution 28
sort, insertion 123

test 167
sorted list, next 169

segment, almost 174
sublist, longest 174
two-dimensional count 168
two-dimensional search 168

soundness 51, 117

space 61, 129
abstract 207
average 64
concrete 207
maximum 63
state 34

sparse array 193
specification 34

deterministic 35
implemented 41
nondeterministic 35
transitive 161
variable 207

square 164
greatest under a histogram 177
largest true 175
root, natural 169

squaring, machine 174
stack 100, 106, 187, 188
state 34

constant 36
final 34
initial 34
space 34
variable 34, 36

steps, refinement by 43
stepwise refinement 43
string 14, 17, 184

empty 17
length 17

stronger 3, 9
structure 69

data 14, 100
sublist 21

longest sorted 174
subscript 18
substitution 4, 25

law 38
successor 13, 23
sufficient postcondition 40

precondition 40
sum, alternating 166

bit 171
digit 171

summation, list 43, 67, 88, 166
suspension, variable 67
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T-list 197
tail recursion 76
take a number 192
telephone 196
tennis 151
termination 34, 50

exact precondition for 166
term 201
ternary search 167
testing 145
text 21

length 168
long 177

theorem 3
thermostat 128, 136, 196
Thue list 197
time 46

bound 47, 61
execution 60
merge 199
real 46
recursive 48
script 131
transit 134
variable 46

timeout 198
total function 29
Towers of Hanoi 61, 172
transformation, data 109

incompleteness 193
interactive data 196

transformer, data 109
transit time 134
transitive closure 172

relation 161
specification 161

tree 104, 108, 189, 190
binary 192

truth table 3, 4
two-dimensional search 72, 167

search, sorted 168
ultimately periodic sequence 175
unbounded bound 178
undefined value 66
unequation 4
unexpected egg 152
unicorn 159
uniform probability 84

union 14
interval 171
selective 24

unique items 175
universal quantification 26
unsatisfiable 35, 89
update, file 200
upper bound, least 204
user's variables 106
value, undefined 66
variable 4, 23

abstract 207
bound 204, 207
boundary 126, 131
computing 36
declaration 66
ghost 207
hidden 204
implementer's 106
interactive 126, 131
mathematical 36
memory 46
private 204
prophesy 207
public 204
resettable 189
shared 131, 136
specification 207
state 34, 36
suspension 67
time 46
user's 106
visible 204

variant 206
visible variable 204
von Neumann numbers 155
vote, majority 179
wait 76
weaker 3, 9
weakest postspecification 163

precondition 204
prespecification 163

whodunit 157
wholebunch 154
widget 187
write cursor 131
z-free subtext 174
Zeno 165

                                                                                                                                            End of Index
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11.4  Laws

11.4.0  Booleans

Let  a ,  b ,  c ,  d , and  e  be boolean.

Boolean Axioms Law of Double Negation
† ¬¬a  =  a
¬ƒ

Duality Laws (deMorgan)
Law of Excluded Middle (Tertium non Datur) ¬(a ∧ b)  =  ¬a ∨ ¬b

a ∨ ¬a ¬(a ∨ b)  =  ¬a ∧ ¬b

Law of Noncontradiction Laws of Exclusion
¬(a ∧ ¬a) a ⇒ ¬b  =  b ⇒ ¬a

a = ¬b  =  b = ¬a
Base Laws

¬(a ∧ ƒ) Laws of Inclusion
a ∨ † a ⇒ b  =  ¬a ∨ b  (Material Implication)
a ⇒ † a ⇒ b  =  (a ∧ b  =  a)
ƒ ⇒ a a ⇒ b  =  (a ∨ b  =  b)

Identity Laws Absorption Laws
† ∧ a  =  a a ∧ (a ∨ b)  =  a
ƒ ∨ a  =  a a ∨ (a ∧ b)  =  a
† ⇒ a  =  a
† = a  =  a Laws of Direct Proof

(a ⇒ b) ∧ a ⇒ b            (Modus Ponens)
Idempotent Laws (a ⇒ b) ∧ ¬b ⇒ ¬a      (Modus Tollens)

a ∧ a  =  a (a ∨ b) ∧ ¬a ⇒ b(Disjunctive Syllogism)
a ∨ a  =  a

Transitive Laws
Reflexive Laws (a ∧ b) ∧ (b ∧ c) ⇒ (a ∧ c)

a ⇒ a (a ⇒ b) ∧ (b ⇒ c) ⇒ (a ⇒ c)
a = a (a = b) ∧ (b = c) ⇒ (a = c)

(a ⇒ b) ∧ (b = c) ⇒ (a ⇒ c)
Laws of Indirect Proof (a = b) ∧ (b ⇒ c) ⇒ (a ⇒ c)

¬a ⇒ ƒ  =  a  (Reductio ad Absurdum)
¬a ⇒ a  =  a Distributive Laws (Factoring)

a ∧ (b ∧ c)  =  (a ∧ b) ∧ (a ∧ c)
Law of Specialization a ∧ (b ∨ c)  =  (a ∧ b) ∨ (a ∧ c)

a ∧ b ⇒ a a ∨ (b ∧ c)  =  (a ∨ b) ∧ (a ∨ c)
a ∨ (b ∨ c)  =  (a ∨ b) ∨ (a ∨ c)

Associative Laws a ∨ (b ⇒ c)  =  (a ∨ b) ⇒ (a ∨ c)
a ∧ (b ∧ c)  =  (a ∧ b) ∧ c a ∨ (b = c)  =  (a ∨ b) = (a ∨ c)
a ∨ (b ∨ c)  =  (a ∨ b) ∨ c a ⇒ (b ∧ c)  =  (a ⇒ b) ∧ (a ⇒ c)
a = (b = c)  =  (a = b) = c a ⇒ (b ∨ c)  =  (a ⇒ b) ∨ (a ⇒ c)
a + (b + c)  =  (a + b) + c a ⇒ (b ⇒ c)  =  (a ⇒ b) ⇒ (a ⇒ c)
a = (b + c)  =  (a = b) + c a ⇒ (b = c)  =  (a ⇒ b) = (a ⇒ c)
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Symmetry Laws (Commutative Laws) Law of Generalization
a ∧ b  =  b ∧ a a ⇒ a ∨ b
a ∨ b  =  b ∨ a
a = b  =  b = a Antidistributive Laws
a + b  =  b + a a ∧ b ⇒ c  =  (a ⇒ c) ∨ (b ⇒ c)

a ∨ b ⇒ c  =  (a ⇒ c) ∧ (b ⇒ c)
Antisymmetry Law (Double Implication)

(a ⇒ b) ∧ (b ⇒ a)  =  a = b Laws of Portation 
a ∧ b ⇒ c  =  a ⇒ (b ⇒ c)

Laws of Discharge a ∧ b ⇒ c  =  a ⇒ ¬b ∨ c
a ∧ (a ⇒ b)  =  a ∧ b
a ⇒ (a ∧ b)  =  a ⇒ b Laws of Conflation

(a ⇒ b) ∧ (c ⇒ d)  ⇒  a ∧ c ⇒ b ∧ d
Antimonotonic Law (a ⇒ b) ∧ (c ⇒ d)  ⇒  a ∨ c ⇒ b ∨ d

a ⇒ b  ⇒  (b ⇒ c) ⇒ (a ⇒ c)
Monotonic Laws

Contrapositive Law a ⇒ b  ⇒  c ∧ a ⇒ c ∧ b
a ⇒ b  =  ¬b ⇒ ¬a a ⇒ b  ⇒  c ∨ a ⇒ c ∨ b

a ⇒ b  ⇒  (c ⇒ a) ⇒ (c ⇒ b)
Law of Resolution

a ∧ c  ⇒  (a ∨ b) ∧ (¬b ∨ c)  =  (a ∧ ¬b) ∨ (b ∧ c)  ⇒  a ∨ c

Case Base Laws Case Analysis Laws
if † then a else b  =  a if a then b else c  =  (a ∧ b) ∨ (¬a ∧ c)
if ƒ then a else b  =  b if a then b else c = (a⇒b) ∧ (¬a ⇒ c)

One Case Laws Case Creation Laws
if a then b else †  =  a ⇒ b a  =  if b then b ⇒ a else ¬b ⇒ a
if a then b else ƒ  =  a ∧ b a  =  if b then b ∧ a else ¬b ∧ a

a  =  if b then b = a else b + a
Case Reversal Law

     if a then b else c Case Idempotent Law
=  if ¬a then c else b if a then b else b  =  b

Case Absorption Laws
if a then b else c  =  if a then a∧b else c
if a then b else c  =  if a then a ⇒ b else c
if a then b else c  =  if a then a = b else c
if a then b else c  =  if a then b else ¬a ∧ c
if a then b else c  =  if a then b else a ∨ c
if a then b else c  =  if a then b else a + c

Case Distributive Laws (Case Factoring)
¬ if a then b else c  =  if a then ¬b else ¬c
(if a then b else c) ∧ d  =  if a then b ∧ d else c ∧ d
and similarly replacing  ∧  by any of  ∨  =  +  ⇒  ⇐
if a then b ∧ c else d ∧ e  =  (if a then b else d) ∧ (if a then c else e)
and similarly replacing  ∧  by any of  ∨  =  +  ⇒  ⇐

                                                                                                                                       End of Booleans
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11.4.1  Generic

The operators  = + if then else  apply to every type of expression, with the axioms
x = x reflexivity
x=y  =  y=x symmetry
x=y ∧ y=z  ⇒  x=z transitivity
x=y  ⇒  f x = f y transparency
x+y  =  ¬(x=y) unequality
if † then x else y  =  x case base
if ƒ then x else y  =  y case base

The operators  < ≤ > ≥  apply to numbers, characters, strings, and lists, with the axioms
¬ x<x irreflexivity
¬(x<y ∧ x>y) exclusivity
¬(x<y ∧ x=y) exclusivity
x≤y ∧ y≤x = x=y antisymmetry
x<y ∧ y<z ⇒ x<z transitivity
x≤y  =  x<y ∨ x=y inclusivity
x>y  =  y<x mirror
x≥y  =  y≤x mirror
x<y ∨ x=y ∨ x>y totality, trichotomy

                                                                                                                                         End of Generic

11.4.2  Numbers

Let  d  be a sequence of (zero or more) digits, and let  x ,  y , and  z  be numbers.
d0+1 = d1 counting
d1+1 = d2 counting
d2+1 = d3 counting
d3+1 = d4 counting
d4+1 = d5 counting
d5+1 = d6 counting
d6+1 = d7 counting
d7+1 = d8 counting
d8+1 = d9 counting
d9+1 = (d+1)0 counting (see Exercise 22)
+x = x identity
x+0 = x identity
x+y = y+x symmetry
x+(y+z)  =  (x+y)+z associativity
–∞<x<∞ ⇒ (x+y = x+z  =  y=z) cancellation
–∞<x ⇒  ∞+x = ∞ absorption
x<∞  ⇒  –∞ + x = –∞ absorption
–x  =  0 – x negation
– –x = x self-inverse
–(x+y) = –x + –y distributivity
–(x–y) = –x – –y distributivity
–(x×y) = –x × y semi-distributivity
–(x/y) = (–x)/y associativity
x–y = –(y–x) antisymmetry
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x–y  =  x + –y subtraction
x + (y – z)  =  (x + y) – z associativity
–∞<x<∞  ⇒  (x–y = x–z  =  y=z) cancellation
–∞<x<∞  ⇒  x–x = 0 inverse
x<∞  ⇒  ∞–x = ∞ absorption
–∞<x  ⇒  –∞ – x = –∞ absorption
–∞<x<∞  ⇒  x×0 = 0 base
x×1 = x identity
x×y = y×x symmetry
x×(y+z) = x×y + x×z distributivity
x×(y×z) = (x×y)×z associativity
–∞<x<∞ ∧ x+0  ⇒  (x×y = x×z  =  y=z) cancellation
0<x  ⇒  x×∞ = ∞ absorption
0<x  ⇒  x × –∞  =  –∞ absorption
x/1 = x identity
–∞<x<∞ ∧ x+0  ⇒  x/x = 1 inverse
x×(y/z) = (x×y)/z associativity
–∞<x<∞  ⇒  x/∞ = 0 = x/–∞ annihilation
–∞<x<∞  ⇒  x0 = 1 base
x1 = x identity
xy+z = xy × xz exponents
xy×z = (xy)z exponents
–∞<0<1<∞ direction
x<y  =  –y<–x reflection
–∞<x<∞  ⇒  (x+y < x+z  =  y<z) cancellation, translation
0<x<∞  ⇒  (x×y < x×z  =  y<z) cancellation, scale
x<y ∨ x=y ∨ x>y trichotomy
–∞ ≤ x ≤ ∞ extremes

                                                                                                                                        End of Numbers

11.4.3  Bunches

Let  x  and  y  be elements (booleans, numbers, characters, sets, strings and lists of elements).
x: y  =  x=y elementary axiom
x: A,B   =   x: A  ∨  x: B compound axiom
A,A = A idempotence
A,B = B,A symmetry
A,(B,C) = (A,B),C associativity
A‘A = A idempotence
A‘B = B‘A symmetry
A‘(B‘C) = (A‘B)‘C associativity
A,B: C   =   A: C  ∧  B: C antidistributivity
A: B‘C   =   A: B  ∧  A: C distributivity
A: A,B generalization
A‘B: A specialization
A: A reflexivity
A: B  ∧  B: A   =   A=B antisymmetry
A: B  ∧  B: C   ⇒   A: C transitivity
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¢ null = 0 size
¢x = 1 size
¢(A, B) + ¢(A‘B) = ¢A + ¢B size
¬ x: A  ⇒  ¢(A‘x) = 0 size
A: B  ⇒  ¢A ≤ ¢B size
A,(A‘B)  =  A absorption
A‘(A,B)  =  A absorption
A: B  =  A,B = B  =  A = A‘B inclusion
A,(B,C)  =  (A,B),(A,C) distributivity
A,(B‘C)  =  (A,B)‘(A,C) distributivity
A‘(B,C)  =  (A‘B), (A‘C) distributivity
A‘(B‘C)  =  (A‘B)‘(A‘C) distributivity
A: B  ∧  C: D   ⇒   A,C: B,D conflation, monotonicity
A: B  ∧  C: D   ⇒   A‘C: B‘D conflation, monotonicity
null: A induction
A, null = A identity
A ‘ null = null base
¢A = 0   =   A = null size
x, i: int  ∧  y: xint  ∧  x≤y   ⇒   (i: x,..y   =   x≤i<y)
x: int  ∧  y: xint  ∧  x≤y   ⇒   ¢(x,..y)  =  y–x
–null  =  null distribution
–(A, B)  =  –A, –B distribution
A+null  =  null+A  =  null distribution
(A, B)+(C, D)  =  A+C, A+D, B+C, B+D distribution

and similarly for many other operators (see the final page of the book)
                                                                                                                                        End of Bunches

11.4.4  Sets
{A} [  2{B}  =  A: B

{~S}  =  S ${A} = ¢A
~{A}  =  A {A} ' {B}  =  {A, B}
{A}  +  A {A} 9 {B}  =  {A ‘ B}
A [ {B}  =  A: B {A} = {B}  =  A = B
{A} 1 {B}  =  A: B {A} + {B}  =  A + B

                                                                                                                                              End of Sets

11.4.5  Strings

Let  S ,  T , and  U  be strings;  let  i  and  j  be items (booleans, numbers, characters, bunch of items, 
sets, lists, functions);  let  n  be extended natural;  let  x ,  y , and  z  be integers.

nil; S   =   S; nil   =  S S; (T; U)  =  (S; T); U
±nil  =  0 ±i  =  1
±(S; T)  =  ±S + ±T Snil  =  nil
±S<∞   ⇒   (S; i; T)±S  =  i ST; U  =  ST; SU
S(TU)  =  (ST)

U 0*S  =  nil
±S<∞   ⇒   nil  ≤  S  <  S; i; T (n+1)*S  =  n*S; S
±S<∞   ⇒   (i<j   =  S; i; T  <  S; j; U) ±S<∞   ⇒   (i<j   =  S; i; T  <  S; j; U)
x;..x  =  nil (x;..y)  ;  (y;..z)  =  x;..z
x;..x+1  =  x ±(x;..y)  =  y–x

                                                                                                                                          End of Strings
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11.4.6  Lists

Let  S  and  T  be strings;  let  n  be a natural number;  let  i  and  j  be items (booleans, numbers, 
characters, bunch of items, sets, lists, functions);  let  L ,  M , and  N  be lists.

[S] n  =  Sn #[S]  =  ±S
±S<∞   ⇒   (±S) → i | [S; j; T]   =   [S; i; T] [S]+[T]  =  [S; T]
[S] = [T]  =  S = T [S] [T]  =  [ST]
[S] < [T]  =  S < T (L M) n  =  L (M n)
L null  =  null (L M) N  =  L (M N)
L (A, B)  =  L A, L B L@nil  =  L
L {A}  =  {L A} L@i  =  L i
L nil  =  nil L@(S; T)  =  L@S@T
L (S; T)  =  L S; L T nil→i | L  =  i
L [S]  =  [L S] (S;T) → i | L  =  S→(T→i | L@S) | L
L (M+N)  =  L M + L N [S]  +  S  =  [S]  =  [ S]

                                                                                                                                             End of Lists

11.4.7  Functions

Renaming Axiom — if  v  and  w  do not appear in  D  and  w  does not appear in  b
〈v: D→b〉  =  〈w: D→〈v: D→b〉w〉

Application Axiom:  if element  x: D Axiom of Extension
〈v: D→b〉x  =  (substitute  x  for  v  in  b ) f   =   〈w: Δf→f w〉

Domain Axiom Function Composition Axioms:  If  ¬ f: Δg
Δ 〈v: D→b〉   =   D Δ(g f)  =  §x: Δf· fx: Δg

(g f) x  =  g (f x)
Function Inclusion Axiom f (g h)  =  (f g) h

f: g   =   Δg: Δf  ∧ ∀x: Δg· fx: gx
Cardinality Axiom

Function Equality Law ¢A   =   Σ (A→1)
f = g   =   Δf = Δg  ∧  ∀x: Δf· fx = gx

Axioms of Functional Intersection
Axioms of Functional Union Δ(f ‘ g)  =  Δf, Δg

Δ(f, g)  =  Δf ‘ Δg (f ‘ g) x  =  (f | g) x ‘ (g | f) x
(f, g) x  =  f x, g x

Axioms and Law of Selective Union
Laws of Selective Union Δ(f | g)  =  Δf, Δg

f | f  =  f (f | g) x  =  if x: Δf then f x else g x
(g | h) f   =   g f | h f f | (g | h)  =  (f | g) | h
〈v: A→x〉 | 〈v: B→y〉   =   〈v: A, B→if v: A then x else y〉

Distributive Axioms Arrow Laws
f null  =  null f: null→A
f (A, B)  =  f A, f B A→B:  (A‘C) → (B,D)
f (§g)  =  §y: f (Δg)· ∃x: Δg· fx=y ∧ gx f: A→B   =   A: Δf  ∧  ∀a: A· fa: B
f (if b then x else y)   =  if b then f x else f y
(if b then f else g) x   =  if b then f x else g x

                                                                                                                                      End of Functions
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11.4.8  Quantifiers

Let  x  be an element, let  a ,  b  and  c  be boolean, let  n  and  m  be numeric, let  f  and  g  be 
functions, and let  P  be a predicate.

∀v: null· b  =  † ∀v: A,B· b  =  (∀v: A· b) ∧ (∀v: B· b)
∀v: x· b  =  〈v: x→b〉 x ∀v: (§v: D· b)· c  =  ∀v: D· b ⇒ c

∃v: null· b  =  ƒ ∃v: A,B· b   =   (∃v: A· b) ∨ (∃v: B· b)
∃v: x· b  =  〈v: x→b〉 x ∃v: (§v: D· b)· c  =  ∃v: D· b ∧ c

Σv: null· n  =  0 (Σv: A,B· n) + (Σv: A‘B· n)  =  (Σv: A· n) + (Σv: B· n)
Σv: x· n  =  〈v: x→n〉 x Σv: (§v: D· b)· n  =  Σv: D· if b then n else 0

Πv: null· n  =  1 (Πv: A,B· n) × (Πv: A‘B· n)  =  (Πv: A· n) × (Πv: B· n)
Πv: x· n  =  〈v: x→n〉 x Πv: (§v: D· b)· n  =  Πv: D· if b then n else 1

MIN v: null· n   =   ∞ MIN v: A,B· n   =   min (MIN v: A· n) (MIN v: B· n)
MIN v: x· n  =  〈v: x→n〉 x MIN v: (§v: D· b)· n  =  MIN v: D· if b then n else ∞

MAX v: null· n   =   –∞ MAX v: A,B· n   =   max (MAX v: A· n) (MAX v: B· n)
MAX v: x· n  =  〈v: x→n〉 x MAX v:(§v: D· b)· n  =  MAX v: D· if b then n else –∞

§v: null· b   =   null
§v: x· b   =   if 〈v: x→b〉 x then x else null
§v: A,B· b   =   (§v: A· b), (§v: B· b)
§v: A‘B· b   =   (§v: A· b) ‘ (§v: B· b)
§v: (§v: D· b)· c  =  §v: D· b ∧ c

Change of Variable Laws — if  d  does not appear in  b
∀r: fD· b   =   ∀d: D· 〈r: fD→b〉 (fd)
∃r: fD· b   =   ∃d: D· 〈r: fD→b〉 (fd)
Σr: fD· n   =   Σd: D· 〈r: fD→n〉 (fd)
Πr: fD· n   =   Πd: D· 〈r: fD→n〉 (fd)
MIN r: fD· n   =   MIN d: D· 〈r: fD→n〉 (fd)
MAX r: fD· n   =   MAX d: D· 〈r: fD→n〉 (fd)

Bunch-Element Conversion Laws Identity Axioms
V: W   =   ∀v: V· ∃w: W· v=w ∀v· †
fV: gW   =   ∀v: V· ∃w: W· fv=gw ¬∃v· ƒ

Idempotent Laws — if  D+null Distributive Axioms and Laws — if  D+null
and  v  does not appear in  b and  v  does not appear in  a
∀v: D· b   =   b a ∧ ∀v: D· b   =   ∀v: D· a ∧ b
∃v: D· b   =   b a ∧ ∃v: D· b   =   ∃v: D· a ∧ b

a ∨ ∀v: D· b   =   ∀v: D· a ∨ b
Absorption Laws — if  x: D a ∨ ∃v: D· b   =   ∃v: D· a ∨ b

〈v: D→b〉 x ∧ ∃v: D· b  =  〈v: D→b〉 x a ⇒ ∀v: D· b   =   ∀v: D· a ⇒ b
〈v: D→b〉 x ∨ ∀v: D· b  =  〈v: D→b〉 x a ⇒ ∃v: D· b   =   ∃v: D· a ⇒ b
〈v: D→b〉 x ∧ ∀v: D· b   =   ∀v: D· b a ⇐ ∃v: D· b   =   ∀v: D· a ⇐ b
〈v: D→b〉 x ∨ ∃v: D· b   =   ∃v: D· b a ⇐ ∀v: D· b   =   ∃v: D· a ⇐ b
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Specialization Law — if  x: D Generalization Law — if  x: D
∀v: D· b   ⇒   〈v: D→b〉x 〈v: D→b〉 x   ⇒   ∃v: D· b

One-Point Laws — if  x: D Splitting Laws — for any fixed domain
and  v  does not appear in  x ∀v· a ∧ b   =   (∀v· a)  ∧  (∀v· b)
∀v: D· v=x ⇒ b   =   〈v: D→b〉 x ∃v· a ∧ b   ⇒   (∃v· a)  ∧  (∃v· b)
∃v: D· v=x ∧ b   =   〈v: D→b〉 x ∀v· a ∨ b   ⇐   (∀v· a)  ∨  (∀v· b)

∃v· a ∨ b   =   (∃v· a)  ∨  (∃v· b)
Duality Laws ∀v· a ⇒ b   ⇒   (∀v· a)  ⇒  (∀v· b)

¬∀v· b   =   ∃v· ¬b  (deMorgan) ∀v· a ⇒ b   ⇒   (∃v· a)  ⇒  (∃v· b)
¬∃v· b   =   ∀v· ¬b  (deMorgan) ∀v· a = b   ⇒   (∀v· a)  =  (∀v· b)
– MAX v· n   =   MIN v· –n ∀v· a = b   ⇒   (∃v· a)  =  (∃v· b)
– MIN v· n   =   MAX v· –n

Commutative Laws
Solution Laws ∀v· ∀w· b   =   ∀w· ∀v· b

§v: D· †  =  D ∃v· ∃w· b   =   ∃w· ∃v· b
(§v: D· b):  D
§v: D· ƒ  =  null Semicommutative Laws (Skolem)
(§v· b): (§v· c)   =   ∀v· b⇒c ∃v· ∀w· b   ⇒   ∀w· ∃v· b
(§v· b), (§v· c)   =   §v· b ∨ c ∀x· ∃y· Pxy   =   ∃f· ∀x· Px(fx)
(§v· b) ‘ (§v· c)   =   §v· b ∧ c
x: §p   =   x: Δp  ∧  px Domain Change Laws
∀f  =  (§f)=(Δf) A: B  ⇒  (∀v: A· b)  ⇐  (∀v: B· b)
∃f  =  (§f)+null A: B  ⇒  (∃v: A· b)  ⇒  (∃v: B· b)

∀v: A· v: B ⇒ p   =  ∀v: A‘B· p
Bounding Axioms and Laws ∃v: A· v: B ∧ p   =  ∃v: A‘B· p

if  v  does not appear in  n
n > (MAX v: D· m)  ⇒  (∀v: D· n>m) Extreme Law
n < (MIN v: D· m)  ⇒  (∀v: D· n<m) ∀v· (MIN v· n) ≤ n ≤ (MAX v· n)
n ≥ (MAX v: D· m)  =  (∀v: D· n≥m)
n ≤ (MIN v: D· m)  =  (∀v: D· n≤m) Connection Laws (Galois)
n ≥ (MIN v: D· m)  ⇐  (∃v: D· n≥m) n≤m   =   ∀k·  k≤n ⇒ k≤m
n ≤ (MAX v: D· m)  ⇐  (∃v: D· n≤m) n≤m   =   ∀k·  k<n ⇒ k<m
n > (MIN v: D· m)  =  (∃v: D· n>m) n≤m   =   ∀k·  m≤k ⇒ n≤k
n < (MAX v: D· m)  =  (∃v: D· n<m) n≤m   =   ∀k·  m<k ⇒ n<k

Distributive Laws — if  D+null  and  v  does not appear in  n
max n (MAX v: D· m)   =   (MAX v: D· max n m)
max n (MIN v: D· m)   =   (MIN v: D· max n m)
min n (MAX v: D· m)   =   (MAX v: D· min n m)
min n (MIN v: D· m)   =   (MIN v: D· min n m)
n + (MAX v: D· m)   =   (MAX v: D· n+m)
n + (MIN v: D· m)   =   (MIN v: D· n+m)
n – (MAX v: D· m)   =   (MIN v: D· n–m)
n – (MIN v: D· m)   =   (MAX v: D· n–m)
(MAX v: D· m) – n   =   (MAX v: D· m–n)
(MIN v: D· m) – n   =   (MIN v: D· m–n)
n≥0    ⇒    n × (MAX v: D· m)   =   (MAX v: D· n×m)
n≥0    ⇒    n × (MIN v: D· m)   =   (MIN v: D· n×m)
n≤0    ⇒    n × (MAX v: D· m)   =   (MIN v: D· n×m)
n≤0    ⇒    n × (MIN v: D· m)   =   (MAX v: D· n×m)
n × (Σv: D· m)   =   (Σv: D· n×m)
(Πv: D· m)n   =   (Πv: D· mn)
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11.4.9  Limits

(MAX m· MIN n· f(m+n))  ≤  (LIM f)  ≤  (MIN m· MAX n· f(m+n))
∃m· ∀n· p(m+n)   ⇒   LIM p   ⇒   ∀m· ∃n· p(m+n)

                                                                                                                                           End of Limits

11.4.10  Specifications and Programs

For specifications  P ,  Q ,  R , and  S , and boolean  b ,
ok   =   x′=x  ∧  y′=y  ∧ ... 
x:= e   =   x′=e  ∧  y′=y  ∧ ...
P. Q   =   ∃x′′, y′′, ...·  〈x′, y′, ...→P〉 x′′ y′′ ...  ∧  〈x, y, ...→Q〉 x′′ y′′ ...
P||Q   =   ∃tP, tQ·  〈t′→P〉tP  ∧  〈t′→Q〉tQ  ∧  t′ = max tP tQ
if b then P else Q   =   b ∧ P ∨ ¬b ∧ Q
var x: T· P   =   ∃x, x′: T· P
while b do P   =   t′≥t ∧ (if b then (P.  t:= t+inc.  while b do P) else ok)

(Fmn   ⇐   m=n ∧ ok) ∧ (Fik   ⇐   m≤i<j<k≤n ∧ (Fij. Fjk))
⇒ (Fmn   ⇐   for i:= m;..n do m≤i<n ⇒ Fi(i+1))
Im⇒I′n   ⇐   for i:= m;..n do m≤i<n ∧ Ii ⇒ I′(i+1)
wait until w   =   t:= max t w
assert b   =   if b then ok else (print "error".  wait until ∞)
ensure b   =  b ∧ ok
x′ = (P result e)   =   P.  x′ = e
c?   =   r:= r+1
c   =   M (r–1)
c! e   =   M w = e  ∧  T w = t  ∧  (w:= w+1)
√c   =   T r + (transit time) ≤ t
ivar x: T· S   =   ∃x: time→T· S
chan c: T· P     =     ∃Mc: [∞*T]· ∃Tc: [∞*xreal]· var rc , wc: xnat := 0·  P
ok. P   =   P. ok   =   P identity
P. (Q. R)   =   (P. Q). R associativity
if b then P else P   =   P idempotence
if b then P else Q   =   if ¬b then Q else P case reversal
P   =   if b then b ⇒ P else ¬b ⇒ P case creation
P∨Q. R∨S   =   (P. R) ∨ (P. S) ∨ (Q. R) ∨ (Q. S) distributivity
(if b then P else Q). R   =   if b then (P. R) else (Q. R) distributivity (unprimed  b )
ok || P   =   P || ok   =   P identity
P || Q   =   Q || P symmetry
P || (Q || R)   =   (P || Q) || R associativity
P || Q∨R   =  (P || Q) ∨ (P || R) distributivity
P || if b then Q else R   =   if b then (P || Q) else (P || R) distributivity
if b then (P||Q) else (R||S)   =   if b then P else R || if b then Q else S  distributivity
x:= if b then e else f   =    if b then x:= e else x:= f functional-imperative
∀σ, σ′· (if b then (P.  W) else ok  ⇐  W)   ⇒   ∀σ, σ′· (while b do P  ⇐  W)

                                                                                                               End of Specifications and Programs
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11.4.11  Substitution

Let  x  and  y  be different boundary state variables, let  e  and  f  be expressions of the prestate, and 
let  P  be a specification.

x:= e. P   =   (for  x  substitute  e  in  P )
(x:= e || y:= f).  P   =   (for  x  substitute  e  and independently for  y  substitute  f  in  P )

                                                                                                                                   End of Substitution

11.4.12  Conditions

Let  P  and  Q  be any specifications, and let  C  be a precondition, and let  C′  be the corresponding 
postcondition (in other words,  C′  is the same as  C  but with primes on all the state variables).

C ∧ (P. Q)   ⇐   C∧P. Q
C ⇒ (P.Q)   ⇐   C⇒P. Q
(P.Q) ∧ C′   ⇐   P. Q∧C′
(P.Q) ⇐ C′   ⇐   P. Q⇐C′
P. C∧Q    ⇐   P∧C′. Q
P. Q    ⇐   P∧C′.  C⇒Q
C  is a sufficient precondition for  P  to be refined by  S

if and only if  C⇒P  is refined by  S .
C′  is a sufficient postcondition for  P  to be refined by  S

if and only if  C′⇒P  is refined by  S .
                                                                                                                                     End of Conditions

11.4.13  Refinement

Refinement by Steps  (Stepwise Refinement) (monotonicity, transitivity)
If  A  ⇐  if b then C else D  and  C ⇐ E  and  D ⇐ F  are theorems,

then  A  ⇐  if b then E else F  is a theorem.
If  A  ⇐  B.C  and  B ⇐ D  and  C ⇐ E  are theorems, then  A  ⇐  D.E is a theorem.
If  A  ⇐  B||C  and  B ⇐ D  and  C ⇐ E  are theorems, then  A  ⇐  D||E is a theorem.
If  A ⇐ B  and  B ⇐ C  are theorems, then  A ⇐ C  is a theorem.

Refinement by Parts (monotonicity, conflation)
If  A  ⇐  if b then C else D  and  E  ⇐  if b then F else G  are theorems,

then  A∧E  ⇐  if b then C∧F else D∧G  is a theorem.
If  A  ⇐  B.C  and  D  ⇐  E.F  are theorems, then  A∧D  ⇐  B∧E. C∧F  is a theorem.
If  A  ⇐  B||C  and  D  ⇐  E||F  are theorems, then  A∧D  ⇐  B∧E || C∧F is a theorem.
If  A ⇐ B  and  C ⇐ D  are theorems, then  A∧C  ⇐  B∧D  is a theorem.

Refinement by Cases
P  ⇐  if b then Q else R  is a theorem if and only if
P  ⇐  b ∧ Q  and  P  ⇐  ¬b ∧ R  are theorems.

                                                                                                                                    End of Refinement
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11.5  Names

abs:  xreal→§r: xreal· r≥0 abs r  =  if r≥0 then r else –r
bool  (the booleans) bool  =  †, ƒ
ceil:  real→int r ≤ ceil r < r+1
char  (the characters) char  =  ..., `a, `A, ...
div:  real→(§r: real· r>0)→int div x y  =  floor (x/y)
divides:  (nat+1)→int→bool divides n i   =   i/n: int
entro:  prob→§r: xreal· r≥0 entro p   =   p × info p  +  (1–p) × info (1–p)
even:  int→bool even i  =  i/2: int

even  =  divides 2
floor:  real→int floor r ≤ r < floor r + 1
info:  prob→§r: xreal· r≥0 info p   =   – log p
int  (the integers) int  =  nat, –nat
LIM  (limit quantifier) see Axioms and Laws
log:  (§r: xreal· r≥0)→xreal log (2x) = x

log (x×y)  =  log x + log y
max:  xrat→xrat→xrat max x y  =  if x≥y then x else y

– max a b  =  min (–a) (–b)
MAX  (maximum quantifier) see Axioms and Laws
min:  xrat→xrat→xrat min x y  =  if x≤y then x else y

– min a b  =  max (–a) (–b)
MIN  (minimum quantifier) see Axioms and Laws
mod:  real→(§r: real· r>0)→real 0 ≤ mod a d < d

a  =  div a d × d  +  mod a d
nat  (the naturals) 0, nat+1: nat

0, B+1: B  ⇒  nat: B
nil  (the empty string) ±nil  =  0

nil; S  =  S  =  S; nil
nil ≤ S

null  (the empty bunch) ¢null  =  0
null, A  =  A  =  A, null
null: A

odd:  int→bool odd i   =   ¬ i/2: int
odd  =  ¬even

ok  (the empty program) ok   =   σ′=σ
ok.P   =   P.ok   =   ok || P   =   P || ok   =   P

prob  (probability) prob  =  §r: real· 0≤r≤1
rand  (random number) rand n: 0,..n
rat  (the rationals) rat  =  int/(nat+1)
real  (the reals) r: real  =  r: xreal  ∧  –∞<r<∞
suc:  nat→(nat+1) suc n = n+1
xint  (the extended integers) xint  =  –∞, int, ∞
xnat  (the extended naturals) xnat  =  nat, ∞
xrat  (the extended rationals) xrat  =  –∞, rat, ∞
xreal  (the extended reals) x: xreal   =   ∃f: nat→rat· x = LIM f
                                                                                                                                           End of Names
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11.6  Symbols

† 3 true ( ) 4 parentheses for grouping
ƒ 3 false { } 17 set brackets
¬ 3 not [ ] 20 list brackets
∧ 3 and 〈 〉 23 function (scope) brackets
∨ 3 or 2 17 powerset
⇒ 3 implies ¢ 14 bunch size, cardinality
⇒ 3 implies $ 17 set size, cardinality
⇐ 3 follows from, is implied by ± 18 string size, length
⇐ 3 follows from, is implied by # 20 list size, length
= 3 equals, if and only if | 20,24 selective union, otherwise
= 3 equals, if and only if || 118 indep't (parallel) composition
+ 3 differs from, is unequal to ~ 17 contents of a set
< 13 less than 20 contents of a list
> 13 greater than * 18 repetition of a string
≤ 13 less than or equal to Δ 23 domain of a function
≥ 13 greater than or equal to → 23 function arrow
+ 12 plus [ 17 element of a set
+ 20 list catenation 1 17 subset
– 12 minus ' 17 set union
× 12 times, multiplication 9 17 set intersection
/ 12 divided by @ 22 index with a pointer
, 14 bunch union ∀ 26 for all, universal quantifier
,.. 16 union from (incl) to (excl) ∃ 26 there exists, existential quantifier
‘ 14 bunch intersection Σ 26 sum of, summation quantifier
; 17 string catenation Π 26 product of, product quantifier
;.. 19 catenation from (incl) to (excl) § 28 those, solution quantifier
: 14 is in, are in, bunch inclusion ′ 34 x′  is final value of state var  x
:: 90 includes ` 13 `A  is a character
:= 36 assignment " 21 "hello"  is a text or list of chars
. 36 dep't (sequential) composition ab 12 exponentiation
· 26 quantifier abbreviation ab 18 string indexing
! 133 output a b 20,31 indexing,application,composition
? 133 input ∞ 12 infinity
√ 133 input check

assert 77 ivar 126
chan 138 loop end 71
ensure 77 or 77
exit when 71 result 78
for do 74 var 66
frame 67 wait until 76
go to 76 while do 69
if then else 4
                                                                                                                                        End of Symbols
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11.7  Precedence

0 †   ƒ   ( )   { }   [ ]   〈 〉   loop end   numbers   characters   texts   names

1 @   juxtaposition

2 prefix+   prefix–   ¢   $   ±   #   *   ~      2   Δ   →   √   superscript   subscript

3 ×   /   9
4 infix+   infix–   +   '
5 ;   ;..   ‘
6 ,   ,..   |
7 =   +   <   >   ≤   ≥   :   ::   [   1
8 ¬
9 ∧
10 ∨
11 ⇒   ⇐
12 :=   !   ?
13 if then else   while do   exit when   for do   go to   wait until   assert   ensure   or
14 .   ||   result
15 ∀·   ∃·   Σ·   Π·   §·   LIM·   MAX·   MIN·  var·  ivar·  chan·   frame·
16 =   ⇒   ⇐

On level 2, superscripting and subscripting serve to bracket all operations within them.

Juxtaposition associates from left to right, so  a b c   means the same as  (a b) c .  The infix 
operators  @  /  –  associate from left to right.  The infix operators  *  →  associate from right to 
left.  The infix operators  ×  9   +  +  '  ;  ‘  ,  |  ∧  ∨  .  ||  are associative (they associate in both 
directions).

On levels 7, 11, and 16 the operators are continuing.  For example,  a = b = c  neither associates to 
the left nor associates to the right, but means the same as  a = b  ∧  b = c .  On any one of these 
levels, a mixture of continuing operators can be used.  For example,  a ≤ b < c  means the same as  
a ≤ b  ∧  b < c .

On levels 13 and 15, the precedence applies to the final operand (and initial operand of  or ), not to 
operands that are surrounded by the operator.

The operators   =   ⇒   ⇐   are identical to   =   ⇒   ⇐   except for precedence.
                                                                                                                                     End of Precedence

11.8  Distribution

The operators in the following expressions distribute over bunch union in any operand:
[A]    A@B    A B    +A    –A    $A    ±A    #A    ~A    A    
AB    AB    A×B    A/B    A9B    A+B    A–B    A+B    A'B    A;B    A‘B   
¬A    A∧B    A∨B   

The operator in  A*B  distributes over bunch union in its left operand only.
                                                                                                                                   End of Distribution

                                                                                                                                       End of Reference
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