o

The Seasoned Schemer

B 7 '/) il
TR *iﬁ i ,J;-‘ i
] F %ltrh tw\ I*"ll-':‘m-;_ .

Daniel P. Friedman and Matthias Felleisen

Foreword and Afterword by Guy L. Steele Jr.

I Contents)

(Foreword ix)

(Preface xi)

((11.

Welcome Back to the Show) 2)

((12.
((13.
(14.

Take Cover) 16)
Hop, Skip, and Jump) 36)
Let There Be Names) 62)

(

((15.
((16.
((17.
((18.
((19.
((20.

The Difference Between Men and Boys ...) 90)
Ready, Set, Bang!) 106) |
We Change, Therefore We Are!) 126)

We Change, Therefore We Are the Same!) 142)
Absconding with the Jewels) 154)

What's in Store?) 178)

(Welcome to the Show 204)
(Afterword 207)
(Index 209))

Foreword

If you give someone a fish, he can eat for a day.
If you teach someone to fish, he can eat for a lifetime.

This familiar proverb applies also to data structures in programming languages.

If you have read The Little Lisper (recently revised and retitled: The Little Schemer), the
predecessor to this book, you know that lists of things are at the heart of Lisp. Indeed, “LISP”
originally stood for “LISt Processing.” By the same token, I suppose that the C programming
language could have been called CHAP (for “CHAracter Processing”) and Fortran could have
been FLOP (for “FLOating-point Processing”).

Now C without characters or Fortran without its floating-point numbers would be almost
unthinkable. They would be completely different languages, perhaps almost useless. What
about Lisp without lists? Well, Lisp has not only lists but functions that perform computations.
And we have learned, slowly and sometimes laboriously over the years, that while lists are the
heart of Lisp, functions are the soul.

Lisp must, of course, have lists; yet functions are enough. Dan and Matthias will show you
the way. The Little Lisper was truly a feast; but, as vou will see, there is more to life than food.

Have you eaten? Very good. Now vou are prepared for the real journey.

Come, learn to fish!
—Guy L. Steele Jr.

Foreword ix

Preface

To celebrate the twentieth anniversary of Scheme we revised The Little LISPer a
third time, gave it the more accurate title The Little Schemer, and wrote a sequel:
The Seasoned Schemer.

The goal of this book is to teach the reader to think about the nature of computation. Our first
task is to decide which language to use to communicate this concept. There are three obvious
choices: a natural language, such as English; formal mathematics; or a programming language.
Natural languages are ambiguous, imprecise, and sometimes awkwardly verbose. These are all
virtues for general communication, but something of a drawback for communicating concisely
as precise a concept as the power of recursion, the subtlety of control, and the true role of state.
The langnage of mathematics is the opposite of natural language: it can express powerful formal
ideas with only a few symbols. We could, for example, describe the semantic content of this book
in less than a page of mathematics, but conveying how to harness the power of functions in the
presence of state and control is nearly impossible. The marriage of technology and mathematics
presents us with a third, almost ideal choice: a programming langnage. Programming langnages
seem the best way to convey the nature of computation. They share with mathematics the
ability to give a formal meaning to a set of symbols. But unlike mathematics, programming
langnages can be directly experienced—you can take the programs in this book, observe their
behavior, modify them, and experience the effect of these modifications.

Perhaps the best programming language for teaching about the nature of computation is
Scheme. Scheme is symbolic and numeric—the programmer does not have to make an explicit
mapping between the symbols and numerals of his own language and the representations in
the computer. Scheme is primarily a functional langunage, but it also provides assignment, set!,
and a powerful control operator, letce (or call-with-current-continuation), so that programmers
can explicitly characterize the change of state. Since our only concerns are the principles
of computation, our treatment is limited to the whys and wherefores of just a few language
constructs: car, cdr, cons, eq?, atom?, null?, zero?, add1, subl, number?, lambda, cond, define,
or, and, quote, letrec, letce (or call-with-current-continuation), let, set!, and if. Our language is
an idealized Scheme.

The Little Schemer and The Seasoned Schemer will not directly introduce you to the
practical world of programming, but a mastery of the concepts in these books provides a start
toward understanding the nature of computation.

Acknowledgments

We particularly want to thank Bob Filman for contributing to the TgXery and Dorai
Sitaram for his incredibly clever Scheme program SIATgX. Kent Dybvig's Chez Scheme made
programming in Scheme a most pleasant experience. We gratefully acknowledge criticisms and
suggestions from Steve Breeser, Eugene Byon, Corky Cartwright, Richard Cobbe, David Combs,
Kent Dybvig, Rob Friedman, Gustavo Gomez-Espinoza-Martinez, Dmitri Gusev, Chris Haynes,
Erik Hilsdale, Eugene Kohlbecker, Shriram Krishnamurthi, Julia Lawall, Shinnder Lee, Collin
McCurdy, Suzanne Menzel, John Nienart, Jon Rossie, David Roth, Jonathan Sobel, George
Springer, Guy Steele, John David Stone, Vikram Subramaniam, Perry Wagle, Mitch Wand,
Peter Weingartner, Melissa Wingard-Phillips, Beata Winnicka, and John Zuckerman.

Preface xi

Hints for the Reader

Do not rush through this book. Read carefully; valuable hints are scattered throughout the
text. Do not read the book in fewer than five sittings. Read systematically. If you do not fully
understand one chapter, you will understand the next one even less. The questions are ordered
by increasing difficulty; it will be hard to answer later ones if you cannot solve the earlier ones.

The book is a dialogue between you and us about interesting examples of Scheme programs.
Try the examples while you read. Schemes and Lisps are readily available. While there are
minor syntactic variations between different implementations (primarily the spelling of particular
names and the domain of specific functions), Scheme is basically the same throughout the world.
To work with Scheme, you will need to define atom?, sub1, and add1, which we introduced in
The Little Schemer:

(define atom?
(lambda (x)
(and (not (pair? x)) (mot (null? x)))))

Those readers who have read The Little LISPer need to understand that the empty list, (), is
no longer an atom. To find out whether your Scheme has the correct definition of atom?, try
(atom? (quote ())) and make sure it returns #f. To work with Lisp, you will also have to add
the function atom?: '

(defun atom? (x)
(not (listp x)))

Moreover, you may need to modify the programs slightly. Typically, the material requires
only a few changes. Suggestions about how to try the programs in the book are provided in the
framenotes. Framenotes preceded by “S:” concern Scheme, those by “L:" concern Common Lisp.
The framenotes in this book, especially those concerning Common Lisp, assume knowledge of
the framenotes in The Little Schemer or of the basics of Common Lisp.

We do not give any formal definitions in this book. We believe that you can form your own
definitions and will thus remember them and understand them better than if we had written
each one for you. But be sure you know and understand the Commandments thoroughly before
passing them by. The key to programming is recognizing patterns in data and processes. The
Commandments highlight the patterns. Early in the book, some concepts are narrowed for
simplicity; later, they are expanded and qualified. You should also know that, while everything
in the book is Scheme (chapter 19 is not Lisp), the language incorporates more than needs to
be covered in a text on the nature of computation.

We use a few notational conventions throughout the text, primarily changes in typeface
for different classes of symbols. Variables and the names of primitive operations are in italic.
Basic data, including numbers and representations of truth and falsehood, is set in sans serif.
Keywords, i.e., letree, letee, let, if, set!, define, lambda, cond, else, and, or, and quote
are in boldface. When you try the programs, you may ignore the typefaces but not the related
framenotes. To highlight this role of typefaces, the programs in framenotes are completely set
in a typewriter face. The typeface distinctions can be safely ignored until chapter 20, where
we treat programs as data.

xii Preface

Finally, Webster defines “punctuation” as the act of punctuating; specifically, the act,
practice, or system of using standardized marks in writing and printing to separate sentences
or sentence elements or to make the meaning clearer. We have taken this definition literally
and have abandoned some familiar uses of punctuation in order to make the meaning clearer.
Specifically, we have dropped the use of punctuation in the left-hand column whenever the item
that precedes such punctuation is a term in our programming language.

Once again, food appears in many of our examples, and we are no more health conscious
than we were before. We hope the food provides you with a little distraction and keeps you
from reading too much of the book at one sitting.

Ready to start? Good luck!

We hope you will enjoy the challenges waiting for you on the following pages.
Bon appétit!

Daniel P. Friedman
Matthias Felleisen

Preface xiii

The Seasoned Schemer

BEEIR o

~

5151,
VHEPS N 0w,

Welcome back.

It’s a pleasure.

Have you read The Little LISPer?! #f.

1 Or The Little Schemer.

Are you sure you haven't read Well, ...
The Little LISPer?

Do you know about Lambda the Ultimate? #t.

Are you sure you have read that much of Absolutely.!

The Little LISPer?

Uy you are familiar with recursion and know that functions
are values, you may continue Anyway.

Are you acquainted with member?

(define member?
(lambda (a lat)
(cond
((null? lat) #f)
(else (or (eg¥ a (car lat))
(member? a (cdr lat)))))))

Sure, member? is a good friend.

What is the value of (member? a lat)
where a is sardines
and

lat is (Italian sardines spaghetti parsley)

#t, but this is not interesting.

What is the value of (two-in-a-row? lat)
where
lat is (ltalian sardines spaghetti parsley)

#f.

Welcome Back to the Show

Are two-in-a-row? and member? related?

Yes, both visit each element of a list of atoms
up to some point. One checks whether an
atom is in a list, the other checks whether
any atom occurs twice in a row.

What is the value of (two-in-a-row? lat)
where
lat is (Italian sardines sardines
spaghetti parsley)

#t.

What is the value of (two-in-a-row? lat)
where
lat is (ltalian sardines more
sardines spaghetti)

H1.

Explain precisely what two-in-a-row? does.

Easy.
It determines whether any atom occurs
twice in a row in a list of atoms.

Is this close to what two-in-a-row? should
look like?

(define two-in-a-row?
(lambda (lat)
(cond
((null? lat) ...)
(else ...
(two-in-a-row? (edr lat))

)

That looks fine. The dots in the first line
should be replaced by #f.

What should we do with the dots in the
second line?

We know that there is at least one element
in lat. We must find out whether the next
element in lat, if there is one, is identical to
this element.

Chapter 11

Doesn’t this sound like we need a function to
do this? Define it.

(define is-first?
(lambda (a lat)
(cond

((null? lat) #f)
(else (eq? (car lat) a)))))

Can we now complete the definition of
two-in-a-row?

Yes, now we have all the pieces and we just
need to put them together:

(define two-in-a-row?
(lambda (lat)
(cond
((null? lat) #f)
(else
(or (is-first? (car lat) (cdr lat))
(two-in-a-row? (edr lat)))))))

There is a different way to accomplish the
same task.

We have seen this before: most functions can
be defined in more than one way.

What does two-in-a-row? do when is-first?
returns #f

It continues to search for two atoms in a row
in the rest of laf.

Is it true that (és-first? a lat) may respond
with #f for two different situations?

Yes, it returns #f when lat is empty or when
the first element in the list is different from a.

In which of the two cases does it make sense
for two-in-a-row? to continue the search?

In the second one only, because the rest of
the list is not empty.

Should we change the definitions of
two-in-a-row? and is-first? in such a way
that two-in-a-row? leaves the decision of
whether continuing the search is useful to the
revised version of is-first?

That's an interesting idea.

Welcome Back to the Show

Here is a revised version of two-in-a-row?

(define two-in-a-row?
(lambda (lat)
(cond
((null? lat) #f)
(else
(is-first-b? (car lat) (cdr lat))))))

Can you define the function is-first-b¥ which
is like is-first? but uses two-in-a-row? only
when it is useful to resume the search?

That's easy. If lat is empty, the value

of (is-first-b¥ a lat) is #f. If lat is non-empty
and if (eg? (car lat) a) is not true, it
determines the value of (two-in-a-row? lat).

(define is-first-b¥
(lambda (a lat)
(cond
((null? lat) #f)
(else (or (eq? (car lat) a)
(two-in-a-row? lat))))))

Why do we determine the value of
(two-in-a-row? lat) in is-first-b¥

If lat contains at least one atom and if the
atom is not the same as a, we must seareh
for two atoms in a row in lat. And that's the
job of twe-in-a-row?.

When is-first-b¥ determines the value of
(two-in-a-row? lat) what does two-in-a-row?
actually do?

Since lat is not empty, it will request the
value of (is-first-b¥? (car lat) (edr lat)).

Does this mean we could write a function
like is-first-b? that doesn’t use two-in-a-row?
at all?

Yes, we could. The new function would recur
directly instead of through two-in-a-row?.

Let's use the name two-in-a-row-b¥ for the
new version of is-first-b¥

That sounds like a good name.

How would two-in-a-row-b¥ recur?

With (twe-in-a-row-b¥ (car lat) (edr lat)),
because that'’s the way two-in-a-row? used
is-first-b¥, and two-in-a-row-b¥ is used in
its place now.

So what i1s o when we are asked to determine
the value of (two-in-a-row-b¥ a lat)

It is the atom that precedes the atoms in la¢
in the original list.

Chapter 11

Can you fill in the dots in the following
definition of twe-in-a-row-b¥

(define two-in-a-row-b?
(ll}mhtzln (preceding lat)
((null? lat) #f)
(else ...
(two-in-a-row-b¥ (car lat)
(edr lat))
)

That’s easy. It is just like is-first? except
that we know what to do when (car lat) is
not equal to preceding:

(define two-in-a-row-b¥
(lambda (preceding lat)
(cond
((null? lat) #f)
(else (or (eq? (car lat) preceding)
(two-in-a-row-b¥ (car lat)

(edr lat)))))))

What is the natural recursion in
two-in-a-row-b?

The natural recursion is
(two-in-a-row-b? (car lat) (edr lat)).

Is this unusual?

Definitely: both arguments change even
though the function asks questions about its
second argument only.

Why does the first argument to
two-in-a-row-b? change all the time?

As the name of the argument says, the first
argument is always the atom that precedes
the current lat in the list of atoms that
two-in-a-row? received.

Now that we have two-in-a-row-b¥ can you
define two-in-a-row¥ a final time?

Trivial:

(define two-in-a-row?
{lambda (lat)
(cond
((null? lat) #f)
(else (two-in-a-row-b? (car lat)
(edr lat))))))

Let's see one more time how two-in-a-row ¥
works.

Okay.

Welcome Back to the Show

(two-in-a-row? lat)
where
latis(bdeiiag)

This looks like a good example. Since lat is
not empty, we need the value of
(two-in-a-row-b¥ preceding lat)
where preceding is b
and
latis(deiiag)

(null? lat) #.
where
latis(deiiag)
(eq? (car lat) preceding) #,
where preceding is b because d is not b.

and
latis (deiiag)

And now?

Next we need to determine the value of
(two-in-a-row-b¥ preceding lat) where
preceding is d
and

lat is (eiiag).

Does it stop here?

No, it doesn’t. After determining that lat is
not empty and that (eg? (car lat) preceding)
is not true, we must determine the value of
(two-in-a-row-b¥ preceding lat)
where preceding is e
and

lat is (i i a g).

Enough?

Not yet. We also need to determine the value
of (two-in-a-row-b? preceding lat)
where preceding is i
and
lat is (i a g).

Chapter 11

And?

Now (eq? (car lat) preceding) is true
because preceding is i
and

lat is (i a g).

So what is the value of (two-in-a-row? lat)
where
latis(bdeiiag)

#t.

Do we now understand how two-in-a-row?
works?

Yes, this is clear.

What is the value of (sum-of-prefizes tup) (231229 29).
where

tup is (21917 0)
(sum-of-prefires tup) (12345).

where

tupis (11111)

Should we try our usual strategy again?

We could. The function visits the elements of
a tup, so it should follow the pattern for such
functions:

(define sum-of-prefizes
(lambda (tup)
(cond
((null? tup) ...)
(else ...
{ sum-of-prefives (edr tup))
)

What is a good replacement for the dots in

the first line?

The first line is easy again. We must replace
the dots with (quote ()), because we are
building a list.

Welcome Back to the Show

Then how about the second line?

The second line is the hard part.

Why? The answer should be the sum of all the
numbers that we have seen so far consed
onto the natural recursion.

Let's do it! The function does not know what all these

numbers are. So we can’t form the sum of
the prefix.

How do we get around this?

The trick that we just saw should help.

Which trick?

Well, two-in-a-row-b? receives two arguments
and one tells it something about the other.

What does two-in-a-row-b¥s first argument
say about the second argument.

Easy: the first argument, preceding, always
occurs just before the second argument, lat,

in the original list.

So how does this help us with sum-of-prefizes

We could define sum-of-prefizes-b, which
receives tup and the sum of all the numbers
that precede tup in the tup that
sum-of-prefizes received.

Let's do it!

(define sum-of-prefives-b
(lambda (sonssf tup)
(cond
((null? tup) (quote ()))
(else (cons (+ sonssf (cer tup))
(sum-of-prefives-b
(4 sonssf (car tup))

(cdr tup)))))))

Isn’t sonssf a strange name?

It is an abbreviation. Expanding it helps a
lot: sum of numbers seen so far.

10

Chapter 11

What is the value of
(sum-of-prefizes-b sonssf tup)
where sonssf is 0
and
tupis (111)

Since tup is not empty, we need to determine
the value of

(cons 1 (sum-of-prefizes-b 1 tup))
where

tup is (1 1).

And what do we do now?

We cons 2 onto the value of
(sum-of-prefizes-b 2 tup)
where
tup is (1).

Next?

We need to remember to cons the value 3
onto (sum-of-prefives-b 3 tup)
where

tup is ().

What is left to do?

We need to:
a. cons 3 onto ()
b. cons 2 onto the result of a
c. cons 1 onto the result of b.
And then we are done.

Is sonssf a good name?

Yes, every natural recursion with
sum-of-prefires-b uses the sum of all the
numbers preceding tup.

Define sum-of-prefires using
sum-of-prefives-b

Obviously the first sum for sonssf must be 0:

(define sum-of-prefizes
(lambda (tup)
(sum-of-prefives-b 0 tup)))

The Eleventh Commandment

Use additional arguments when a function
needs to know what other arguments to the
function have been like so far.

Welcome Back to the Show

11

Do you remember what a tup is?

A tup is a list of numbers.

Is(1113421192)a tup?

Yes, because it is a list of numbers.

What is the value of (scramble tup)
where
tupis (1113421192)

(11111411109).

(scramble tup)
where
tupis (123456789)

(111111111).

(seramble tup)
where

tup is (123123418210)

(11111111282),

Have vou figured out what it does vet?

It’s okay if you haven’t. It’s kind of crazy.
Here's our explanation:

“The function seramble takes a non-empty
tup in which no number is greater than its
own index, and returns a tup of the same
length. Each number in the argument is
treated as a backward index from its own
position to a point earlier in the tup. The
result at each position is found by
counting backward from the current
position according to this index.”

Iflis(1113421192)

what is the prefix of (421192)in !

(1113 4),
because the prefix contains the first
element, too.

Andif lis(1113421192)
what is the prefix of (2119 2)in

(111342).

12

Chapter 11

Is it true that (scramble tup) must know
something about the prefix for every element
of tup

We said that it needs to know the entire
prefix of each element so that it can use the
first element of tup as a backward index to
pick the corresponding number from this
prefix.

Does this mean we have to define another
function that does most of the work for
scramble

Yes, because scramble needs to collect
information about the prefix of each element
in the same manner as sum-of-prefizes.

What is the difference between scramble and
sum-of-prefives

The former needs to know the actual prefix,
the latter needs to know the sum of the
numbers in the prefix.

What is (pick n lat) 1.
where n is 4
and
latis (43111)
What is (pick n lat) 4,

where n is 2

and
latis (243111)

Do vou remember pick from chapter 47

If you do, have an ice cream. If vou don’t,
here it is:

(define pick
(lambda (n lat)

(cond
({one? n) (ecar lat))

(else (pick (subl n) (edr lat))))))

Welcome Back to the Show

13

Here is scramble-b A better question is: how does it work?

(define scramble-b
(lambda (tup rev-pre)
(cond

((null? tup) (quote ()))
(else
(cons (pick (car tup)
(cons (car tup) rev-pre))
(seramble-b (cdr tup)
(cons (car tup) rev-pre)))))))

How do we get scramble-b started?

What does rev-pre abbreviate? That is always the key to these functions.
Apparently, rev-pre stands for reversed
prefix.

If It is the result of consing (car tup) onto

tupis (1113421192) rev-pre: (1).
and :
rev-pre is ()
what is the reversed prefix of
(cdr tup)
If Since (ecar tup) is 2, it is
tup is (2119 2) (243111).
and

rev-pre is (4311 1)

what is the reversed prefix of
(1192)

which is (edr tup)

Do we need to know what No, because we know the result of
rev-pre is when (scramble tup rev-pre)
tup is () when tup is the empty list.

14 Chapter 11

How does seramble-b work?

The function seramble-b receives a tup and
the reverse of its proper prefix. If the tup is
empty, it returns the empty list. Otherwise,
it constructs the reverse of the complete
prefix and uses the first element of tup as a
backward index into this list. It then
processes the rest of the tup and conses the
two results together.

How does scramble get scramble-b started?

Now, it's no big deal. We just give scramble-b
the tup and the empty list, which represents
the reverse of the proper prefix of the tup:

(define scramble
(lambda (tup)
(scramble-b tup (quote ()))))

Let’s try it.

That’s a good idea.

The function seramble is an unusual
example. You may want to work through it a
few more times before we have a snack.

Okay.

Tea time,

Don’t eat too much. Leave some room for
dinner.

Welcome Back to the Show

15

,. o
e LN\ e
) = ‘ N~
! : %
* 7 g
v

What is (multirember a lat)
where a is tuna
and
lat is (shrimp salad tuna salad and tuna)

(shrimp salad salad and),
but we already knew that from chapter 3.

Does a change as multirember traverses lat

No, a always stands for tuna.

Well, wouldn’t it be better if we did not have
to remind multirember for every natural
recursion that a still stands for tuna

Yes, it sure would be a big help in reading
such functions, especially if several things
don’t change.

That’s right. Do you think the following
definition of multirember is correct?

(define multirember
(lambda (a lat)
((Y (lambda (mr)
(lambda (lat)
(cond

((null? lat) (quote ()))
((eg? a (car lat))
(mr (edr lat)))
(else (cons (car lat)

Whew, the ¥ combinator in the middle looks
difficult.

(mr (cdr lat))))))))
lat)))
What is this function? It is the function length in the style of
chapter 9, using Y.
(define #¢¢
((lambda (le) (define length
((lambda (f) (f f)) (Y (lambda (length)

(lambda (f)
(le (lambda (z) ((f f) z))))))
(lambda (length)
(lambda ([}
(cond
((null? 1) 0)
(else
(addl (length (edr 1))))))))

(lambda (1)
(cond
((null? 1) 0)
(else
(add! (length (cdr 1)))))))))

Take Cover

17

And what is special about it?

We do not use (define ...) to make length
recursive. Using ¥ on a function that looks
like length creates the recursive function.

So is Y a special version of (define ...)

Yes, that's right. But we also agreed that the
definition with (define ...) is easier to read
than the definition with Y.

That’s right. And we therefore have another
way to write this kind of definition.

But if all we want is a recursive function mr,
why don’t we use this?

(define multirember
(lambda (a lat)
((letrec!
((mr (lambda (lat)
(cond

(define mr
{lambda (lat)
(cond
((null? lat) (quote ()))
((eq? a (car lat))

((null? lat) (quote ())) (mr (edr lat)))
((eg? a (car lat)) (else
(mr (edr lat))) (cons (car lat)
(else (mr (edr lat)))))))
(cons (car lat)
(mr (cdr lat)))))))) (define multirember
mr) (lambda (a lat)
lat))) (mr lat)))
1 1. (labels ((mr (lat) ...)) (fumction mr))
Because (define ...) does not work here. Why not?

The definition of mr refers to a which stands
for the atom that multirember needs to
remove from lat

Okay, that’s true, though obviously a refers
to the first name in the definition of the
function multirember.

Do yvou remember that names don't matter?

Yes, we said in chapter 9 that all names are
equal. We can even change the names, as
long as we do it consistently.

18

Chapter 12

Correct. If we don’t like lat, we can use a-lat
in the definition of multirember as long as we
also re-name all occurrences of lat in the
body of the (lambda ...).

Yes, we could have used the following
definition and nothing would have changed:

(define multirember
(lambda (a a-lat)
(mr a-lat)))

Correct again. And this means we should
also be able to use b instead of a because

Yet if we used b in the definition of
multirember

(define id
(lambda (a)

a))

(define multirernber
(lambda (b a-lat)
(mr a-lat)))

is the same as

(define id
(lambda (b)

b))

the a in mr would no longer make any sense.

Yes: the name a makes sense only inside the
definition of multirember. In general, the
names for a function’s arguments make sense
only inside of (lambda ...).

Okay, that explains things.

And that is precisely why we need
(letrec ...)

What do vou think is the purpose of the

nested box?

It separates the two parts of a (letrec ...):
the naming part, which is the nested box,
and the value part, which is mr.

Is the nested box important otherwise?

No, the nested box is merely an annotation
that we use to help distinguish the two parts
of (letrec ...). Once we get accustomed to
the shape of (letrec ...), we will stop
drawing the inner box.

Take Cover

19

What do we use the naming part for?

The naming part defines a recursive function
though unlike defined functions; a function
defined in the naming part of (letrec ...)
knows all the arguments of all the
surrounding (lambda ...) expressions.

And the value part?

It tells us what the result of the (letrec...)
is. It may refer to the named recursive
function.

Does this mean that

(letrec ((mr ...)) mr)
defines and returns a recursive function?

Precisely. Isn't that a lot of parentheses for
saying just that?

Yes, but they are important.

Okay, let’s go on.

What is the value of
((letrec ((mr ...)) mr) lat)

It is the result of applying the recursive

function mr to lat.

What is the value of (multirember a lat)
where a is pie
and

lat is (apple custard pie linzer pie torte)

(apple custard linzer torte),
but we already knew this.

How can we determine this value?

That’s more interesting.

The first line in the definition of multirember
is no longer (cond ...) but

((letrec ((mr ...)) mr) lat)
What does this mean?

We said that it defines the recursive function
mr and applies it to lat.

What is the first line in mr

It is something we are quite familiar with:
(eond ...). We now ask questions the way
we did in chapter 2.

20

Chapter 12

What is the first question?

(null? lat), which is false.

And the next question?

(eq? (car lat) a), which is false.

Why?

Because a still stands for pie, and (car lat) is
apple.

That’s correct: mr always knows about a
which doesn’t change while we look through
lat

Yes,

Iz it as if multirember had defined a function
M pie and had used it on lat

(define M7 pie
(lambda (lat)
(cond
((null? lat) (quote ()))

((eq? (car lat) (quote pie))
{mrpie (edr lat)))

(else (cons (car lat)
(mrpie (cdr lat)))))))

Correct, and the good thing is that no other
function can refer to mrpie-

Why is define underlined?

~ We use (define ...) to express that the

underlined definition does not actually exist,
but imagining it helps our understanding,.

Is it all clear now?

This is easy as apple pie.

Take Cover

21

Would it make any difference if we changed The difference between this and the previous
the definition a little bit more like this? definition isn’t that big.
(Look at the third and last lines.)

(define multirember
(lambda (a lat)
(letrec
((mr (lambda (lat)
(cond
((null? lat) (gquote ()))
((eq? a (car lat))
(mr (edr lat)))
(else
(cons (car lat)

(mr (cdr lat))))))))

(mr lat))))

The first line in (lambda (a lat) ...) is now Yes, so multirember first defines the recursive
of the shape function mr that knows about a.
(letrec ((mr ...)) (mr lat))

And then? The value part of (letrec ...) uses mr on
lat, so from here things proceed as before.

That's correct. Isn't (letrec ...) easy as pie? We prefer (linzer torte).

Is it clear now what (letrec ...) does? Yes, and it is better than Y.

The Twelfth Commandment

Use (letrec ...) to remove arguments that do not
change for recursive applications.

How does rember relate to multirember The function rember removes the first
occurrence of some given atom in a list of
atoms; multirember removes all occurrences.

22 Chapter 12

Can rember also remove numbers from a list

of numbers or S-expressions from a list of
S-expressions?

Not really, but in The Little Schemer we

defined the function rember-f, which given
the right argument could create those
functions:

(define rember-f
(lambda (test?)
(lambda (a I)
(cond
((null? 1) (quote ()))
((test? (car 1) a) (edr 1))
(else (cons (car I)
((rember-f test?) a

(edr 1))))))))

Give a name to the function returned by
(rember-f test?)

where
test? is eq?

(define rember-eq? (rember-f test?))

where
test? is eq?.

Is rember-eq? really rember

It is, but hold on tight; we will see more of
this in a moment.

Can you define the function multirember-f
which relates to multirember in the same way
rember-f relates to rember

That is not difficult:

(define multirember-f
(lambda (test?)
(lambda (a lat)
(cond
((null? lat) (quote ()))
((test? (car lat) a)
((multirember-f test?) a
(edr lat)))
(else (cons (car lat)
({ multirember-f test?) a
(cdr lat))))))))

Take Cover

23

Explain in yvour words what multirember-f
does.

Here are ours:

“The function multirember-f accepts a
function test? and returns a new function.
Let us call this latter function m-f. The
function m-f takes an atom a and a list of
atoms lat and traverses the latter. Any
atom b in lat for which (test? b a) is true,
is removed.”

Is it true that during this traversal the result
of (multirember-f test?) is always the same?

Yes, it is always the function for which we
just used the name m-f.

Perhaps multirember-f should name it m-f

Could we use (letrec ...) for this purpose?

Yes, we could define multirember-f with

(letrec ...) so that we don't need to

re-determine the value of
(multirember-f test¥)

(define multirember-f
(lambda (fest?)
(letrec
((m-f
(lambda (a lat)
(cond
((null? lat) (quote ()))
((test? (car lat) a)
(m-f a (edr lat)))
(else
(cons (car lat)

(m-f a (cdr lat))))))))

m-f)))

Is this a new use of (letrec ...)?

No, it still just defines a recursive function
and returns it.

True enough.

Chapter 12

What is the value of (multirember-f test?)
where
test? is eq?

It is the function multirember:

(define multirember
(letrec
((mr (lambda (a lat)
(cond
((null? lat) (quote ()))
((eq? (car lat) a)
(mr a (cdr lat)))
(else
(cons (car lat)
(mr _a (cdr lat))))))))
mr))

Did you notice that no (lambda ...)
surrounds the (letrec ...)

It looks odd, but it is correct!

Could we have used another name for the
function named in (letrec ...)

Yes, mr is multirember.

Is this another way of writing the definition?

(define multirember
(letrec
((multirember
(lambda (a lat)
{cond
((null? lat) (quote ()))
((eq? (car lat) a)
(multirember a (edr lat)))
(else
(cons (car lat)
(multirember a

(edr lat))))))))

multirember)

Yes, this defines the same function.

Take Cover

25

Since (letrec ...) defines a recursive
function and since (define ...) pairs up
names with values, we could eliminate
(letrec ...) here, right?

Yes, we could and we would get back our old

friend multirember.

(define multirember
(lambda (a lat)

(cond
((null? lat) (quote ()
((eq? (car lat) a)
(multirember a (cdr lat)))
(else

(cons (car lat)
(multirember a (cdr lat)))))))

Here is member? again:

(define member?
(lambda (a lat)
(cond
((null? lat) #f)
((eq? (car lat) a) #t)
(else (memberf a (cdr lat))))))

So?

What is the value of (member? a lat)
where a is ice
and
lat is (salad greens with pears brie cheese
frozen yogurt)

#f,
ice cream is good, too.

Is it true that a remains the same for all
natural recursions while we determine this
value?

Yes, a is always ice. Should we use The
Twelfth Commandment?

Chapter 12

Yes, here is one way of using (letrec ...)
with this function:

Here is an alternative:

(define member?
(lambda (a lat)
((letrec
((yes? (lambda (1)
(cond

((null? 1) #£)
((eq? (car 1) a) #t)
(else (yes? (cdr 1)))))))

yes?)

lat)))

(define member?
(lambda (a lat)

(letrec
((yes? (lambda (I)
(cond
((nudl? 1) #f)
((eq? (car 1) a) #t)
(else (yes? (cdr 1)))))))

(yes? lat))))

Do you also like this version?

Did you notice that we no longer use nested
boxes for (letrec ...)

Yes. We are now used to the shape of
(letrec ...) and won't confuse the naming
part with the value part anymore.

Do these lists represent sets?
(tomatoes and macaroni)
(macaroni and cheese)

Yes, they are sets because no atom occurs
twice in these lists.

Do you remember what (union setl set2) is
where

setl is (tomatoes and macaroni casserole)
and

set? is (macaroni and cheese)

(tomatoes casserole macaroni and cheese).

Write union

(define union
(lambda (set] set?)
(cond
((null? setl) set2)
((member? (car setl) set2)
(union (edr setl) set2))
(else (cons (car setl)
(union (cdr setl) set2))))))

Take Cover

27

Is it true that the value of set? always stays
the same when determining the value of
(union setl set2)

Yes,
because union is like rember and member?
in that it takes two arguments but only
changes one when recurring.

Is it true that we can rewrite union in the
same way as we rewrote rember

Yes, and it is easy now.

(define union
(lambda (set! set?)
(letrec
((U (lambda (set)
(cond
((null? set) set?)
((member? (car set) set2)
(U (edr set)))
(else (cons (car set)
(U (cdr set))))))))
(U set1))))

Could we also have written it like this?

(define union
(lambda (setl set2)
(letrec
((A (lambda (set)
(cond
((null? set) set2)
((member? (car set) set2)
(A (edr set)))
(else (cons (car set)

(A (cdr set))))))))
(A setl))))

Yes.,

Correct: A is just a name like U
Does it matter what name we use?

Absolutely not, but choose names that
matter to you and everyone else who wants .
to enjoy your definitions.

So why do we choose the name U/~

To keep the boxes from getting too wide, we
use single letter names within (letrec ...)
for such minor functions.

28

Chapter 12

Can you think of a better name for U

This should be an old shoe by now.

Now, does it work?

It should.

Explain in your words how the new version
of union works.

Our words:

“First, we define another function [/ that
cdrs down set, consing up all elements
that are not a member of set2. Eventually
[will cons all these elements onto sef2.
Second, union applies U to setl.”

How does U7 know about set?

Since [J is defined using (letrec ...) inside
of union, it knows about all the things that
union knows about.

And does it have to pass around set2

No, it does not.

How does U know about member?

Everyone knows the function member?.

Does it mean that the definition of union
depends on the definition of member?

It does, but member? works, so this is no
problem.

Suppose we had defined member? as follows.

(define member?
(lambda (lat a)
(cond
((null? lat) $#f)
((eg¥ (car lat) a) #t)
(else (member? (edr lat) a)))))

But this would confuse union!

Why?

Because this member? takes its arguments in
a different order.

Take Cover

29

What changed?

Now member? takes a list first and an atom
second.

Does member? work?

It works in that we can still use this new
definition of member? to find out whether or
not some atom is in a list.

But? With this new definition, union will no
longer work.
Oh? Yes,

because union assumes that member?
takes its arguments in a certain order.

Perhaps we should avoid this. How?

Well, (letrec ...) can define more than just Nobody said so.
a single function.

Didn’t you notice the extra pair of Yes.

parentheses around the function definitions
in (letrec ...)

With (letrec ...) we can define more than
just one function by putting more than one
function definition between the extra pair of
parentheses.

This could help with union.

30

Chapter 12

Here is a skeleton:

(define union
(lambda (set] set2)
(letrec

(U sett))))

Fill in the dots.

({(U (lambda (set)
(cond

((null? set) set2)

((member? (car set) set2)

(U (edr set)))

(else (cons (car set)

(U (edr set)))))))

(member?

(lambda (a lat)
(cond
((null? lat) #f)
((eq? (car lat) a) #t)
(else (member? a (cdr lat)))))))

The Thirteenth Commandment
Use (letrec ...) to hide and to protect functions.

Could we also have written this?

(define union
(lambda (setl set2)
(letrec
((U (lambda (set)
(cond
((null? set) set2)
((M? (car set) set2)
(U (edr set)))
(else (cons (car set)
(U (cdr set)))))))
(M¥? (lambda (a lat)
(cond
((null? lat) #f)
((eq? (car lat) a) #t)
(else
' (M? a (cdr lat)))))))
(U set1))))

Presumably.

Take Cover

31

Are we happy now?

Well, almost.

Almost? The definition of member? inside of union
ignores The Twelfth Commandment.
It does? Yes, the recursive call to member? passes

along the parameter a.

And its value does not change?

No, it doesn’t!

So we can write something like this?

Yes, and here is how we fill in the dots:

(define union
(lambda (setl set?)
(letrec
((U (lambda (set)
(cond
((null? set) set?)
((M? (car set) set2)
(U (cdr set)))
(else (cons (car set)
(U (edr set)))))))
(M?...))
(U setl))))

(lambda (a lat)
(letrec
((N? (lambda (lat)
(cond

((null? lat) #f)
((eq? (car lat) a) #t)
(else (N? (cdr lat)))))))

(N? lat)))

Now we are happy, right?

Yes!

Did you notice that set? is not an argument
of U

It doesn’t have to be becanse union knows
about set? and U is inside of union.

Do we know enough about union now?

Yes, we do!

Do we deserve a break now?

We deserve dinner or something equally
substantial.

32

Chapter 12

True, but hold the dessert. Why?

We need to protect a few more functions. Which ones?

Do you remember two-in-a-row? Sure, it is the function that checks whether
some atom occurs twice in a row in some list.
It is a perfect candidate for protection.

Yes, it is. Can you explain why? Here are our words:

“Auxiliary functions like two-in-a-row-b¥
are always used on specific values that
make sense for the functions we want to
define. To make sure that these minor
functions always receive the correct values,
we hide such functions where they belong.”

So how do we hide two-in-a-row-b¥ The same way we hide other functions:

(define two-in-a-row?
(lambda (lat)
(letrec
((W (lambda (a lat)
(cond
((null? lat) #F)
(else (or (eq? (car lat) a)
(W (car lat)
(edr lat))))))))
(cond
((null? lat) #f)
(else (W (car lat) (edr lat)))))))

Does the minor function W need to know No, W also takes lat as an argument.
the argument lat of two-in-a-row?

Take Cover 33

Is it then okay to hide two-in-a-row-b¥ like
this:

(define two-in-a-row?
(letrec
((W (lambda (a lat)
(cond
((null? lat) #f)
(else (or (eq? (car lat) a)
(W (car lat)
(edr lat))))))))
(lambda (lat)
(cond
((null? lat) #f)
(else (W (car lat) (edr lat)))))))

Yes, it is a perfectly safe way to protect the
minor function W. It is still not visible to
anybody but two-in-e-row? and works

perfectly.

Good, let’s look at another pair of functions.

Let’s guess: it's sum-of-prefires-b and
sum-of-prefizes.

Protect sum-of-prefizes-b

(define sum-of-prefizes
(lambda (tup)
(letrec
((S (lambda (sss tup)
(cond
((null? tup) (quote ()))
(else
(cons (4 sss (car tup))
(8 (4 sss (car tup))
(edr tup))))))))
(S 0 tup))))

Is S similar to W in that it does not rely on
sum-of-prefires’s argument?

It is. We can also hide it without putting it
inside (lambda ...) but we don’t need to

practice that anymore.

Chapter 12

We should also protect secramble-b. Here is
the skeleton:

(define scramble
(lambda (tup)
(letrec
((P...))
(P tup (quote ())))))

Fill in the dots.

(lambda (tup)
(cond
((null? tup) (quote ()))
(else (cons (pick (car tup)
(eons (car tup) rp))
(P (edr tup)
(cons (car tup) rp))))))

Can we define scramble using the following
skeleton?

(define seramble
(letrec
((P...))
(lambda (tup)

(P tup (quote ())))))

Yes, but can’t this wait?

Yes, it can. Now it is time for dessert.

How about black currant sorbet?

Take Cover

35

e

1 2 1@o, SIREay, Euac] & fwgssyy

[L4
a“‘ag’fl‘fc\'tﬁ
e T S o
“q\:
C— &4,
¥
o
— %ot
- s

What is the value of (intersect setl set2)
where

setl is (tomatoes and macaroni)
and

set2 is (macaroni and cheese)

(and macaroni).

Is intersect an old acquaintance?

Yes, we have known intersect for as long as
we have kﬂ.D‘WD UNLON.

Write intersect

Sure, here we go:

(define intersect
(lambda (set! set2)
(cond
((null? setl) (quote ()))
((member? (car setl) set?)
(cons (car setl)
(intersect (cdr setl) set2)))

(else (intersect (edr setl) set2)))))

What would this definition look like if we
hadn’t forgotten The Twelfth
Commandment?

(define intersect
(lambda (setl set2)
(letrec
({I (lambda (set)
(cond
((null? set) (quote ()))
((member? (car set) set2)
(cons (car set)
(1 (edr set))))
(else (I (cdr set)))))))

(I setl))))

Hop, Skip, and Jump

37

Do you also recall intersectall

Isn’t that the function that intersects a list
of sets?

(define intersectall
(lambda (lset)
(cond
((null? (cdr Iset)) (car lset))
(else (intersect (car Iset)
(intersectall (cdr Iset)))))))

Why don't we ask (null? lset)

There is no need to ask this question because
The Little Schemer assumes that the list of
sets for intersectall is not empty.

How could we write a version of intersectall
that makes no assumptions about the list of
sets?

That's easy: We ask (null? Iset) and then
just use the two cond-lines from the earlier
intersectall:

(define intersectall
{lambda (lset)
(cond

((nult? Iset) (quote ()))

((null? (edr lset)) (ecar lset))

(else (intersect (car lset)

(intersectall

(cdr Lset)))))))

Are you sure that this definition is okay?

Yes? Nao?

Are there two base cases for just one
argument”’

No, the first question is just to make sure
that lset is not empty before the function
goes through the list of sets.

But once we know it isn't empty we never
have to ask the question again.

Correct, because intersectall does not recur
when it knows that the edr of the list is
empty.

Chapter 13

What should we do then?

Ask the question once and use the old
version of intersectall if the list is not empty.

And how would you do this?

- Could we use another function?

Where do we place the function?

Should we use (letrec ...)?

Yes, the new version of intersectall could
hide the old one inside a (letrec ...)

Sure, intersectall is just a better name,
though a bit long for these boxes.

(define intersectall
(lambda (lset)
(letrec
((intersectall
(lambda (lset)
(cond
((null? (edr lset))
(car lset))
(else (intersect (car lset)
(intersectall

(edr Iset))))))))
(cond

((null? Iset) (quote ()))
(else (intersectall Iset))))))

Could we have used A as the name of the
function that we defined with (letrec ...)

(define intersectall
(lambda ([set)
(letrec
((A (lambda (Iset)
(cond
((null? (edr lset))
(car lset))
(else (intersect (car lset)

(A (cdr Iset))))))))
(cond

((null? lset) (quote ()))
(else (A lset))))))

Great! We are pleased to see that vou are
comfortable with (letrec ...).

One more time: we can use whatever name
we want for such a minor function if nobody
else relies on it.

Yes, because (letrec ...) hides definitions,
and the names matter only inside of
(letrec ...).

Is this similar to (lambda (z y) M)

Yes, it is. The names # and y matter only

inside of M, whatever M is. And in
(letrec ((z F) (y G)) M)

the names r and y matter only inside of F,

G, and M, whatever F, G, and M are.

Hop, Skip, and Jump

39

Why do we ask (null? lset) before we use A

The question (null? Iset) is not a part of A.
Once we know that the list of sets is
non-empty, we need to check for only the list
containing a single set.

What is (intersectall lset)
where
lset is ((3 mangos and)
(3 kiwis and)
(3 hamburgers))

(3).

What is (intersectall Iset)
where
lset is ((3 steaks and)
(no food and)
(three baked potatoes)
(3 diet hamburgers))

().

What is (intersectall lset)
where
Iset is ({3 mangoes and)

(0
(3 diet hamburgers))

0-

Why is this?

The intersection of (3 mangos and), (), and
(3 diet hamburgers) is the empty set.

Why is this?

When there is an empty set in the list of
sets, (intersectall lset) returns the empty set.

But this does not show how intersectall
determines that the intersection is empty.

No, it doesn’t. Instead, it keeps intersecting
the empty set with some set until the list of
sets is exhausted.

Wouldn't it be better if intersectall didn't
have to intersect each set with the empty set
and if it could instead say “This is it: the
result is () and that's all there is to it.”

That would be an improvement. It could
save us a lot of work if we need to determine
the result of (intersect lset).

40

Chapter 13

Well, there actually is a way to say such
things.

There is?

Yes, we haven't shown you (letec ...) yet.

Why haven’'t we mentioned it before?

Because we did not need it until now.

How would intersectall use (letec ...)?

That’s simple. Here we go:

(define intersectall
(lambda (lset)
(letee! hop
(letrec
((A (lambda (lset)
(cond
((null? (car Iset))
(hop (quote ()))?)
((null? (cdr lset))
(ecar Iset))
(else
(intersect (car lset)
(A (cdr Iset))))))))
(cond
((null? lset) (quote ()))
(else (A Iset)))))))

1L {cateh "hep ...)

? L {throw *hop (quote i]-';]-

Alonzo Church (1903-1995) would have
written:

(define intersectall
(lambda (lset)
(call-with-current-continuation’
(lambda (hop)
(letrec
((A (lambda (lset)
(cond
((null? (car lset))
(hop (quote ())))
((null? (edr lset))
(car lset))
(else
(intersect (car lset)
(A (cdr Iset))))))))
(cond
((null? lset) (quote ()))
(else (A Iset))))))))

1 5. This is Scheme.

Doesn’t this look easy?

We prefer the (letec ...) version. It only has
two new lines.

‘es, we added one line at the beginning and
one cond-line inside the minor function A

It really looks like three lines.

Hop, Skip, and Jump

41

A line in a (cond ...) is one line, even if we
need more than one line to write it down.
How do you like the first new line?

The first line with (letcc ... looks pretty
mysterious.

But the first cond-line in A should be
obvious: we ask one extra question

(null? (car lset))
and if it is true, A uses hop as if it were a
function.

Correct: A will hop to the right place. How
does this hepping work?

Now that is a different question. We could
just try and see.

Why don’t we try it with an example?

What is the value of (intersectall lset)
where
Iset is ((3 mangoes and)

()
(3 diet hamburgers))

Yes, that is a good example. We want to
know how things work when one of the sets
is empty.

So how do we determine the answer for
(intersectall lset)

Well, the first thing in intersectall is
(letec hop ...
which looks mysterious.

Since we don’t know what this line does, it is
probably best to ignore it for the time being,
What next?

We ask (null? L:et}, which in this case is not
true.

And so we go on and . ..

... determine the value of (A Iset) where Iset
is the list of sets.

What is the next question?

(null? (car Iset)).

Is this true?

No, (car Iset) is the set
(3 mangos and).

42

Chapter 13

Is this why we ask (null? (cdr lset))

Yes, and it is not true either.

else

Of course.

And now we recur?

Yes, we remember that (car lset) is
(3 mangos and), and that we must intersect

this set with the result of (A (edr Iset)).

How do we determine the value of (A Iset)
where

Iset is (()
(3 diet hamburgers))

We ask (null? (car lset)).

Which is true.

And now we need to know the value of
(hop (quote ())).

Recall that we wanted to intersect the set
{3 mangos and) with the result of the natural
recursion?

Yes.

And that there is
(letec hop ...
which we ignored earlier?

Yes, and (hop (quote (})) seems to have
something to do with this line.

It does. The two lines are like a compass
needle and the North Pole. The North Pole
attracts one end of a compass needle,
regardless of where in the world we are,

What does that mean?

It basically means:
“Forget what we had remembered to do
after leaving behind (letcc hop
and before encountering (hop M) And then
act as if we were to determine the value of
(letee hop M) whatever M is.”

But how do we forget something?

Hop, Skip, and Jump

43

Easy: we do not do it. You mean we do not intersect the set
(3 mangos and) with the result of the natural

recursion?

Yes. And even better, when we need to The answer should be (), shouldn't it?

determine the value of something that looks

like

(letcc hop (quote ()))

we actually know its answer.

Yes, it is () That's what we wanted.

And it is what we got. Amazing! We did not do any intersecting at
all.

That's right: we said hop and arrived at the This is neat. Let’s hop some more!
right place with the result.

The Fourteenth Commandment

Use (letcc ...) to return values abruptly and promptly.

|

How about determining the value of We ignore (letec hop.
(intersectall lset)
where
Iset is ((3 steaks and)
{no food and)
(three baked potatoes)
(3 diet hamburgers))

And then? We determine the value of (A Iset) because
lset is not empty.

44 Chapter 13

What do we ask next?

(null? (car lset)), which is false.

And next?

(null? (edr lset)), which is false.

And next?

We remember to intersect (3 steaks and)
with the result of the natural recursion:
(A (cdr lset))
where
lset is ((3 steaks and)
(no food and)
(three baked potatoes)
(3 diet hamburgers)).

What happens now?

We ask the same questions as above and find
out that we need to intersect the set
(no food and) with the result of (A Iset)
where
Iset is ((three baked potatoes)
(3 diet hamburgers)).

And afterward?

We ask the same questions as above and find
out that we need to intersect the set
(three baked potatoes) with the result of
(A lset)
where
Iset is ((3 diet hamburgers)).

And then?

We ask (null? (car lset)), which is false.

And then?

We ask (null? (edr lset)), which is true.

And so we know what the value of (A Iset) is
where
Iset is ((3 diet hamburgers))

Yes, it is (3 diet hamburgers).

Hop, Skip, and Jump

45

Are we done now?

No! With (3 diet hamburgers) as the value,
we now have three intersects to go back and
pick up.
We need to:
a. intersect (three baked potatotes) with
(3 diet hamburgers);
b. intersect (no food and) with
the value of a;
c. intersect (3 steaks and) with
the value of b.
And then, at the end, we must not forget
about (letce hop.

Yes, so what is (intersect setl set2)
where

set] is (three baked potatoes)
and

set? is (3 diet hamburgers)

()

So are we done?

No, we need to intersect this set with
(no food and).

Yes, so what is (intersect setl set2)
where

setl is (no food and)
and

set2 is ()

0.

So are we done now?

No, we still need to intersect this set with
(3 steaks and).

But this is also empty.

Yes, it is.

So are we done?

Almost, but there is still the mysterious
(letce hop
that we ignored initially.

46

Chapter 13

Oh, ves. We must now determine the value of
(letee hop (quote ()))

That's correct. But what does this line do
now that we did not use hop?

Nothing.

What do you mean, nothing?

When we need to determine the value of

(letce hop (quote ()))
there is nothing left to do. We know the
value.

You mean, it is () again?

Yes, it is () again.

That’s simple.

Isn’t it?

Except that we needed to intersect the
empty set several times with a set before we
could say that the result of intersectall was
the empty set.

Is it a mistake of intersectall

Yes, and it is also a mistake of intersect.

In what sense?

We could have defined intersect so that it
would not do anything when its second
argument is the empty set.

Why its second argument?

When set! is finally empty, it could be
because it is always empty or because
intersect has looked at all of its arguments.
But when set2 is empty, intersect should not
look at any elements in set! at all; it knows
the result!

Hop, Skip, and Jump

47

Should we have defined intersect with an
extra question about set?

(define intersect
(lambda (set] set2)
(letrec
((I (lambda (set!)
(cond
((null? setl) (quote ()))
((member? (car setl)
set2)
(cons (car setl)
(I (edr setl))))
(else (I (cdr set1)))))))
{cond
((null? set2) (quote ()))
(else (1 setl))))))

Yes, that helps a bit.

Would it make you happy?

Actually, no.

You are not easily satisfied.

Well, intersect would immediately return the
correct result but this still does not work
right with #ntersectall.

Why not?

When one of the intersects returns () in
intersectall, weé know the result of
intersectall.

And shouldn’t intersectall say so?

Yes, absolutely.

Well, we could build in a question that looks
at the result of intersect and hops if
necessary”’

But somehow that looks wrong.

Why wrong?

Because intersect asks this very same
question. We would just duplicate it.

48

Chapter 13

Got it. You mean that we should have a
version of intersect that hops all the way
over all the intersects in intersectall

Yes, that would be great.

We can have this.

Can (letcc ...) do this? Can we skip and
jump from intersect?

Yes, we can use hop even in intersect if we
want to jump.

But how would this work? How can intersect
know where to hop to when its second set is
empty?

Try this first: make intersect a minor

function of intersectall using I as its name.

(define intersectall
(lambda (Iset)
(letee hop
(letrec
((4...)
(I...))

(cond
((null? lset) (quote ()))
(else (A lset)))))))

((A (lambda (lset)
(cond

((null? (car lset))

(hop (quote (})))

((null? (cdr lset))

(car Iset))

(else (I (car lset)

(A (edr Iset)))))))

(I (lambda (s1 s2)

(letrec
((J (lambda (s1)
(cond
((null? s1) (quote ()))
((member? (car s1) s2)
(J (edr 1))
(else (cons (car si)
(J (edr 51))))))))
(cond

((null? 52) (quote ()))
(else (J s1)))))))

What can we do with minor functions?

We can do whatever we want with the minor
version of intersect. As long as it does the
right thing, nobody cares because it is
protected.

Hop, Skip, and Jump

49

Like what?

We could have it check to see if the second
argument is the empty set. If it is, we could
use hop to return the empty set without
further delay.

Did you imagine a change like this:

(I (lambda (s1 s2)
(letrec
((J (lambda (s1)
(cond
((null? s1) (quote ()))
((member? (car s1) s2)
(J (edr s1)))
(else (cons (car s1)
(J (edr s1))))))))
(cond

((null? s2) (hop (quote (})))
(else (J s1))))))

Yes.,

What is the value of (intersectall lset)
where
Iset is ((3 steaks and)
{no food and)
{three baked potatoes)
(3 diet hamburgers))

We know it is ().

Should we go through the whole thing again?

We could skip the part when A looks at all
the sets until Iset is almost empty. It is
almost the same as before.

What is different?

Every time we recur we need to remember
that we must use the minor function I on
(car lset) and the result of the natural

recursion.

a0

Chapter 13

So what do we have to do when we reach the
end of the recursion?

With (3 diet hamburgers) as the value, we
now have three I's to go back and pick up.
We need to determine the value of
a. I of (three baked potatotes)
and (3 diet hamburgers);
b. I of (no food and)
and the value of a;
c. I of (3 steaks and)
and the value of b.

Are there any alternatives?

Correct: there are none.

Okay, let’s go. What is the first question?

(null? s2)
where
52 is (3 diet hamburgers).

Which is not true.

No, it is not.

Which means we ask for the minor function
J inside of I

Yes, and we get () because
(three baked potatoes)
and
(3 diet hamburgers)
have no common elements.

What is the next thing to do?

We determine the value of (I s1 52)
where

sl is (no food and)
and

82 is ().

What is the first question that we ask now?

(null? s2)

where 52 is ().

And then?

We determine the value of
(letce hop (quote ())).

Hop, Skip, and Jump

al

Why?

Because (hop (quote ())) is like a compass
needle and it is attracted to the North Pole
where the North Pole is (letce hop.

And what is the value of this?

(-

Done.

Huh? Done?

Yes, all done.

That's quite a feast.

Satisfied?

Yes, pretty much.

Do you want to go hop, skip, and jump
around the park before we consume some
more food?

That's not a bad idea.

Perhaps it will clear up your mind.

And use up some calories.

Can you write rember with (letrec ...)

Sure can:
(define rember
(lambda (a lat)
(letrec
((R (lambda (lat)
(cond
((null? lat) (quote ()))
((eq? (car lat) a) (cdr lat))
(else (cons (car lat)
(R (edr lat))))))))
(R lat))))

Chapter 13

What is the value of
(rember-beyond-first a lat)
where a is roots
and
lat is (noodles
spaghetti spétzle bean-thread
roots
potatoes yam
others
rice)

(noodles spaghetti spitzle bean-thread).

And (rember-beyond-first (quote others) lat)
where
lat is (noodles
spaghetti spatzle bean-thread
roots
potatoes yam
others
rice)

(noodles
spaghetti spétzle bean-thread
roots
potatoes yam).

And (rember-beyond-first a lat)
where a is sweetthing
and
lat is (noodles
spaghetti spatzle bean-thread
roots
potatoes yam
others
rice)

(noodles

spaghetti spitzle bean-thread
roots

potatoes yam

others

rice).

Hop, Skip, and Jump

And
(rember-beyond-first (quote desserts) lat)
where
lat is (cookies
chocolate mints

caramel delight ginger snaps
desserts

chocolate mousse

vanilla ice cream

German chocolate cake

more desserts

gingerbreadman chocolate
chip brownies)

(cookies
chocolate mints
caramel delight ginger snaps).

Can vou describe in one sentence what
rember-beyond-first does?

As always, here are our words:

“The function rember-beyond-first takes an
atom a and a lat and, if @ occurs in the
lat, removes all atoms from the lat beyond
and including the first occurrence of a.”

Is this rember-beyond-first

(define rember-beyond-first
(lambda (a lat)
(letrec
((R (lambda (lat)
(cond
((null? lat) (quote ()))
((eg? (car lat) a)
(quote ()))
(else (cons (car lat)
(R (cdr lat))))))))
(R lat)}))

Yes, this is it. And it differs from rember in
only one answer.

54

Chapter 13

What is the value of (rember-upto-last a lat)

(potatoes yam

where a is roots others
and rice).
lat is (noodles
spaghetti spitzle bean-thread
roots
potatoes yam
others
rice)
And (rember-upto-last a lat) (noodles
where a is sweetthing spaghetti spatzle bean-thread
and roots
lat is (noodles potatoes yam
spaghetti spitzle bean-thread others
roots rice).
potatoes yam
others
rice)

Yes, and what is (rember-upto-last a lat)
where a is cookies
and
lat is (cookies
chocolate mints

caramel delight ginger snaps
desserts

chocolate mousse

vanilla ice cream

German chocolate cake

more cookies

gingerbreadman chocolate
chip brownies)

(gingerbreadman chocolate
chip brownies).

Can vou describe in two sentences what
rember-upto-last does?

Here are our two sentences:

“The function rember-upto-last takes an
atom a and a lat and removes all the
atoms from the lat up to and including the
last occurrence of a. If there are no
occurrences of a, rember-upto-last returns
the lat.”

Hop, Skip, and Jump

(3]
(1]

Does this sound like yet another version of
rember

Yes, it does.

How would you change the function R in
rember or rember-beyond-first to get
rember-upto-last

Both functions are the same except that
upon discovering the atom a, the new version
would not stop looking at elements in lat but
would also throw away everything it had seen
so far.

You mean it would forget some computation
that it had remembered somewhere?

Yes, it would.

Does this sound like intersectall

It sounds like it: it knows that the first few
atoms do not contribute to the final result.
But then again it sounds different, too.

Different in what sense?

The function intersectall knows what the
result is; rember-upto-last knows which
pieces of the list are not in the result.

But does it know where it can find the result?

The result is the rember-upto-last of the rest
of the list.

Suppose rember-upto-last sees the atom a
should it forget the pending computations,
and should it restart the process of searching
through the rest of the list?

Yes, it should.

We can do this.

You mean we could use (letece ...) to do
this, too?

Yes.

How would it continue searching, but ignore
the atoms that are waiting to be consed onto
the result?

56

Chapter 13

How would you say, “Do this or that to the
rest of the list™?

Easy: do this or that to (edr lat).

And how would you say “Ignore something”?

With a line like (skip ...), assuming the
beginning of the function looks like
(letee skip.

Well then ...

. if we had a line like
(letee skip

at the beginning of the function, we could say
(skip (R (cdr lat)))

when necessary.

Yes, again. Can you write the function
rember-upto-last now?

Yes, this must be it:

(define rember-upto-last
(lambda (a lat)
(letce skip
(letrec
((R (lambda (lat)

(cond
((null? lat) (quote ()))
((eq? (car lat) a)
(skip (R (cdr lat))))
(else

{cons (ear lat)

(R (edr lat))))))))

(R lat)))))

Ready for an example?

Yes, let’s try the one with the sweet things.

Hop, Skip, and Jump

on
=]

You mean the one
where a is cookies

and
lat is (cookies

chocolate mints
caramel delight ginger sna
golran ght ginger snaps
chocolate mousse
vanilla ice cream
German chocolate cake
more cookies -
gingerbreadman chocolate
chip brownies)

Yes, that’s the one.

No problem. What is the first thing we do?

We see (letce skip and ignore it for a while.

Great. And then?

We ask (null? lat).

Why?

Because we use i to determine the value of
(rember-upto-last a lat).

And (null? lat) is not true.

But (eq? (car lat) a) is true.

Which means we skip and actually determine
the value of

(letee skip (R (edr lat)))
where
lat is (cookies

chocolate mints

caramel delight ginger snaps
desserts

chocolate mousse

vanilla ice cream

German chocolate cake

more cookies

gingerbreadman chocolate
chip brownies)

Yes.

Chapter 13

What next?

We ask (null? lat).

Which is not true.

And neither is (eg? (car lat) a).

So what? We recur.
How? We remember to cons chocolate onto the
result of (R (cdr lat))
where
lat is (chocolate mints
caramel delight ginger snaps
desserts
chocolate mousse
vanilla ice cream
German chocolate cake
more cookies
gingerbreadman chocolate
chip brownies).
Next? Well, this goes on for a while.

You mean it drags on and on with this
recursion.

Exactly.

Should we gloss over the next steps?

Yes, they're pretty easy.

What should we look at next?

We should remember to cons chocolate,
mints, caramel, delight, ginger, snaps, desserts,
chocolate, mousse, vanilla, ice, cream, German,
chocolate, cake, and more onto the result of
(R (edr lat))
where
lat is (more cookies
gingerbreadman chocolate
chip brownies).
And we must not forget the (letce skip ...
at the end!

Hop, Skip, and Jump

59

That’s right. And what happens then?

Well, right there we ask (eq? (car lat) a)
where
a is cookies
and
lat is (cookies
gingerbreadman chocolate
chip brownies).

Which is true.

Right, and so we should (skip (R (edr lat))).

Yes, and that works just as before.

You mean we eliminate all the pending
conses and determine the value of
(letce skip (R (edr lat)))
where
lat is (cookies
gingerbreadman chocolate
chip brownies).

Which we do by recursion,.

As always.

What do we have to do when we reach the
end of the recursion?

We have to cons gingerbreadman, chocolate,
chip, and brownies onto ().

Which is (gingerbreadman chocolate
chip brownies)

Yes, and then we need to do the (letce skip
with this value.

But we know how to do that.

Yes, once we have a value,
(letee skip
can be ignored completely.

And so the result is?

(gingerbreadman chocolate
chip brownies).

Doesn’t all this hopping and skipping and

jumping make you tired?

It sure does. We should take a break and
have some refreshments now.

60

Chapter 13

Hop, Skip, and Jump

Have you taken a tea break yet?
We’re taking ours now.

61

Do you remember the function leftmost

Is it the function that extracts the leftmost
atom from a list of S-expressions?

Yes, and here is the definition:

(define leftmost
(lambda (1)
(cond
((atom? (car 1)) (car 1))
(else (leftmost (car 1))))))

Okay.

What is the value of (leftmost [)
where

lis (((a) b) (cd))

a, of course,

And what is the value of (leftmost 1)

where

Lis (((a) ()) () (e))

It's still a.

How about this: (leftmost 1)
where

Lis (((0) a) 0))

It should still be a, but there is actually no
answer.

Why is it not a

In chapter 5, we said that the function
leftmost finds the leftmost atom in a
non-empty list of S-expressions that does not
contain the empty list.

Didn’t we just determine (leftmost) where
the list [contained an empty list?

Yes, we did: I was (((a) ()) () (e)).

Shouldn’t we be able to define a version of
leftmost that does not restrict the shape of
its argument?

We definitely should.

Let There Be Names

Which atom can occur in the leftmost
position of a list of S-expressions?

Every atom may occur as the leftmost atom
of a list of S-expressions, including #f.

Then how do we indicate that some In that case, leftmost must return a
argument for the unrestricted version of non-atom.

leftmost does not contain an atom?

What should it return?

It could return a list.

Does it matter which list it returns?

No, but () is the simplest list.

Is this a good start?

(define leftmost
(lambda ()
(cond
((null? 1) (quote ()))

((atom? (car 1)) (car 1))
(else . ..

(leftmost (car 1))
)

Yes. By adding the first line, leftmost now
looks like a real *-function.

How do we determine the value of
(leftmost 1)
where

Lis (((0 a) 0))

Using the new definition of leftmost, we
quickly determine that [isn't empty and
doesn’t contain an atom in the car position.
So we recur with (leftmost 1)

where

Lis ((() a) ())-

What happens when we recur?

We ask the same questions, we get the same
answers, and we recur with (leftmost 1)
where

lis (() a).
And then? Then we recur with (leftmost [)
where
lis ().
64 Chapter 14

What is the value of (leftmost (quote ()))

It is (), which means that we haven't found a
yet.

What do we need to do?

We also need to recur with the edr of the
list, if we can’t find an atom in the car.

How do we determine whether
(leftmost (car 1))

found an atom?

We ask (atom? (leftmost (ecar 1))), because
leftmost only returns an atom if its argument
contains one.

And when (atom? (leftmost (car 1)) is true?

Then we know what the leftmost atom is.

And how do we say it?

Easy: (leftmost (car 1)).

But if (atom? (leftmost (car 1)) is false?

Then we continue to look for an atom in the
cdr of 1.

Define leftmost

(define leftmost
(lambda (1)
(cond

((null? I) (quote (}))

((atom? (car 1)) (car [))

(else (cond
({atom? (leftmost (carl)))
(leftmost (ear l)))
(else (leftmost (cdr 1))))))))

(leftmaost 1) a.
where
l'is (((a) b) (cd))
d.

(leftmost 1)
where

Lis (((a) ()) () (e))

Let There Be Names

(leftmost 1)
where

Lis (((0a))

a, as it should be.

Does the repetition of (leftmost (car [)) seem
wrong?

Yes, we have to read the same expression
twice to understand the function. It is
almost like passing along the same argument
to a recursive function.

Isn't it?

We could try to use (letrec ...) to get rid of
such unwanted repetitions.

Right, but does (letrec ...) give names to
arbitrary things?

Well, we have only used it for functions, but
shouldn’t it work for other expressions too?

We choose to use (let ...) instead. It is like
(letrec ...) but it is used for exactly what
we need to do now.

To give a name to a repeated expression?

Yes, (let ...) also has a naming part and a
value part, just like (letrec ...) We use the
latter to name the values of expressions.

Okay, so far it looks like (letrec ...). Do we
use the value part to determine the result
with the help of these names?

As we said, it looks like (letrec ...) but it
gives names to the values of expressions.

How can we use it to name expressions?

We name the values of expressions, but
ignoring this detail, we can sketch the new
definition:

(define leftmost
(lambda (I)
(cond
((null? 1) (quote ()))
((atom? (ear 1)) (ear 1))

(else ...))))

Can vou complete this definition?

How about?

(let! ((a (leftmost (car 1))
{cond
((atom? a) a)

(else (leftmost (cdr 1))))

! Like (and ...), (let ...} is an abbreviation:

let ((zy ey} ... (zp ag)) #...)
= ((lambda (x ... #n) F...) &1 ... an)

66

Chapter 14

Isn't this much easier to read? Yes, it is.
What is the value of (rember1® a) ((Swedish rye)
where a is salad (French (mustard turkey))
and salad).
[is ((Swedish rye)
(French (mustard salad turkey))
salad)
(rember!* a l) ((pasta)
where a is meat pasta
and (noodles meat sauce)
[is ((pasta meat) meat tomatoes).
pasta

(noodles meat sauce)
meat tomatoes)

Take a close look at remberl®

(define remberi*
(lambda (a 1)
(cond
((null? 1) (quote ()))
({atom¥? (car 1))
(cond
((eq? (car 1) a) (edr 1))
(else (cons (car [)
(remberl® a (edr 1))))))
(else
(eond
((eqlist?
(remberi® a (car 1))
(car 1))
(cons (car 1)
(remberi® a (edr 1))
(else (cons (remberl® a (car l))

(edr 1))))))))

Fix remberl* using The Twelfth
Commandment.

It even has the same expressions underlined.

(define remberi*
(lambda (a [)
(letrec
((R (lambda (1)
(cond
((null? 1) (quote ()))
((atom¥ (car 1))
(cond
((eq? (car l) a) (cdr 1))
(else (cons (car 1)
(R (edr 1))))))
(else
{eond
((eqlist?
(R (carl))
(car 1)
(cons (car [)
(R (cdr 1))))
(else (cons (R (car [))
(edr D))
(R 1))

Let There Be Names

What does (remberi* a I) do?

It removes the leftmost occurrence of a in 1.

Can you describe how remberl* works?

Here is our description:

“The function remberi* goes through the
list of S-expressions. When there is a list in
the car, it attempts to remove a from the
car. If the car remains the same, a is not
in the car, and rember!* must continue.
When rember?* finds an atom in the list,
and the atom is equal to a, it is removed.”

Why do we use eglist? instead of eg to
compare (R (car 1)) with (car 1)

Because eqf compares atoms, and eglist?
compares lists.

Is rember1* related to leftmost

Yes, the two functions use the same trick:
leftmost attempts to find an atom in (car [)
when (car 1) is a list. If it doesn’t find one, it
continues its search; otherwise, that atom is
the result.

Do the underlined instances of (R (car 1))
seem wrong?

They certainly must wrong to anyone
who reads the definition. We should remove
them.

Here is a sketch of a definition of rember?*
that uses (let ...)

(define rember!*
(lambda (a 1)

(letree
((R (lambda (I)
(cond
((null? 1) (quote ()))
((atem? (car 1))
(cond
((ea? (car 1) a) (edr 1))
(else (cons (car [)
(R (edr 1))))))
(else)))))
(R 1))))

Here is the rest of the minor function R

(let ((av (R (car 1))
(cond
((eqlist? (car 1) av)
(cons (car 1) (R (edr 1))))
(else (cons av (edr 1)))))

68

Chapter 14

That's precisely what we had in mind.

Good.

The Fifteenth Commandment

(preliminary version)

Use (let ...) to name the values of repeated expressions.

Let’s do some more letting.

Good idea.

What should we try?

Any ideas?

We could try it on depth®

What is depth*?

Oh, that’s right. We haven’t told you yet.
Here it is.

(define depth*
(lambda (1)
(cond
((null¥1) 1)
({atom? (ear 1))
(depth* (cdr 1))
(else
(cond
(> (depth* (cdr 1))
(add1 (depth* (car [))))
(depth* (cdr 1)))
(else
(add1 (depth* (car 1)))))))))

It looks like a normal *-function.

Let’s try an example. Determine the value of
(depth* 1)
where

[is ((pickled) peppers (peppers pickled))

2.

Let There Be Names

69

Here is another one: (depth* I)
where
lis (margarine
((bitter butter)
(makes)
(batter (bitter)))
butter)

And here iz a truly good example: (depth* I)
where
lis (c (b (ab)a)a)

Still no problem: 3
But it is missing food.

Now let’s go back and do what we actually
wanted to do.

Yes, we should try to use (let ...).

What should we use (let ...) for?

We determine the value of (depth* (car 1))
and the value of (depth* (edr [)) at two
different places.

Do vou mean that these repeated uses of
depth* look like good opportunities for
naming the values of expressions?

Yes, they do.

Let’s see what the new function looks like.

How about this one?

(define depth*
(lambda (1)
(let ((a (addl (depth* (car 1))))
(d (depth* (cdr 1))))
(cond
((null? 1) 1)
((atom? (car 1)) d)
(else (cond
(> d a) d)
(else a)))))))

Should we try some examples?

It should be correct. Using (let ...) is
straightforward.

Chapter 14

Let’s try it anyway. What is the value of
(depth* 1)
where
lis (()
((bitter butter)
(makes)
(batter (bitter)))
butter)

It should be 4. We did something like this
before.

Let’s do this slowly.

First, we ask (null? [), which is false.

Not quite. We need to name the values of
(addl (depth® (car 1))) and (depth® (cdr [))
first!

That’s true, but what is there to it? The
names are a and d.

But first we need the values!

That's true. The first expression for which
we need to determine the value is
(addl (depth* (car 1)))
where
lis (()
((bitter butter)
{makes)
(batter (bitter)))
butter).

How do we do that?

We use depth* and check whether the
argument is null?, which is true now.

Not so fast: don't forget to name the values!

Whew: we need to determine the value of
(addl (depth* (car 1))) where [is ().

And what is the value?

There is no value: see The Law of Car.

Let There Be Names

Can you explain in your words what
happened?

Here are our words:

“A (let ...) first determines the values of
the named expressions. Then it associates
a name with each value and determines
the value of the expression in the value
part. Since the value of the named
expression in our example depends on the
value of {car) before we know whether or
not | is empty, this depth* is incorrect.”

Here is depth® again.

(define depth*
(lambda (1)
(cond
((null?) 1)
((atom? (car 1))
(depth* (edr 1))
(else
(cond
((> (depth* (edr 1)
(addl (depth* (car I))))
(depth® (cdr 1))
(else
(add1 (depth* (car 1)))))))))

Use (let ...) for the last cond-line.

(define depth*
(lambda (1)
(cond
((null? 1) 1)
((atomn? (car 1))
(depth* (edr 1))
(else
(let ((a (addl (depth* (car I))))
(d (depth* (cdr 1))))
(cond
(> d a) d)
(else a)))))))

Why does this version of depth* work?

If both (null?) and (atom? (car I)) are
false, (car [) and (cdr [) are both lists, and it
is okay to use depth*® on both lists.

Would we have needed to determine
(depth* (car 1)) and (depth* (cdr 1)) twice if
we hadn’t introduced names for their values?

We would have had to determine the value of
one of the expressions twice if we hadn't used
(let ...), depending on whether the depth of
the car is greater than the depth of the edr.

Would we have needed to determine
(leftmost (car 1)) twice if we hadn’t
introduced a name for its value?

Yes.

Chapter 14

Would we have needed to determine
(remberl® (car I)) twice if we hadn’t
introduced a name for its value?

Yes.

How should we use (let ...) in depth* if we
want to use it right after finding out whether
or not [is empty?

After we know that (null? 1) is false, we only
know that (edr [) is a list; (ear [) might still
be an atom. And because of that, we should
introduce a name for only the value of

(depth*® (edr 1)) and not for (depth* (car 1)).

Let’s do it! Here is an outline.

(define depth*
(lambda (1)
(cond
((null? 1) 1)
(else ...))))

Fill in the dots.

(let ((d (depth* (cdr 1))
(cond
((atom? (car 1)) d)
(else
{cond
((> d (add! (depth® (car 1)))) d)
(else (addl (depth* (ear 1))))))))

And when can we use (let ...) for the
repeated expression (addl (depth* (car 1))

(define depth*
(lambda (I)
(cond
((null? 1) 1)
(else))))

Fill in the dots again.

When we know that (car l) is not an atom:

(let ((d (depth® (edr 1))))

(cond

((atem? (car 1)) d)
(else

(let ((a (addl (depth* (car [)})))
(cond
(> d a) d)
(else a))))))

Would we have needed to determine
(depth* (edr 1)) twice if we hadn’t
introduced a name for its value?

No. If the first element of [is an atom,
(depth* (edr I)) is evaluated only once.

If it doesn't help to name the value of
(depth* (edr 1)) we should check whether the
new version of depth* is easier to read.

Not really. The three nested conds hide
what kinds of data the function sees.

Let There Be Names

73

. —— * i
So which version of depth* is our favorite (define depth*

version? (lambda (1)
(cond
((null? 1) 1)
((atom? (car 1))
(depth® (cdr 1)))
(else
(let ((a (addl (depth* (ear 1))))
(d (depth* (cdr 1))))
(cond
((> d a) d)
(else a)))))))

The Fifteenth Commandment.

(revised version)

Use (let ...) to name the values of repeated expressions
in a function definition if they may be evaluated twice for
one and the same use of the function.

This definition of depth* looks quite short. And it does the right thing in the right way.
It does, but this is actually unimportant. Why?
Because we just wanted to practice letting Oh, yes. And we sure did.

things be the way they are supposed to be.

Can we make depth* more enjoyable? Can we?

74 Chapter 14

We can. How do you like this variation?

(define depth®
(lambda (1)
(cond
((null? 1) 1)
((atom? (car 1))
(depth* (cdr 1))
(else
(let ((a (addl (depth*® (car 1))))
(d (depth* (edr 1))))
(if (> d a) d a))))))

This looks even simpler, but what
does (if ...) do?

The same as (cond ...)

Better, (if ...) asks only one question and
provides two answers: if the question is true,
it selects the first answer; otherwise, it
selects the second answer.

That's clever. We should have known about
this before.!

! Like (and ...), (if ...) can be abbreviated:
(ifa 3 v) = (cond [a 3) (else)]

There is a time and place for everything.

Back to depth*.

One more thing. What is a good name for
(lambda (n m)
(if (> nm) n m))

max,
because the function selects the larger of
two numbers.

Here is how to use maz to simplify depth*

Yes, no problem.

(define depth*
(lambda (I)
{cond
((mull? 1) 1)
((atom? (car 1))
(depth™ (edr 1)))
(else
(let ((a (addt (depth* (car 1))))
(d (depth* (cdr 1))))
(maz a d))))))

Can we rewrite it without (let ((a ...)) ...)

(define depth*
(lambda (I)
(cond
((null? 1) 1)
({atam? (car 1))
(depth* (ecdr 1)))
(else (maz
(addl (depth* (car 1)))
(depth* (edr 1)))))))

Let There Be Names

Here is another chance to practice letting:

do it for the protected version of seramble
from chapter 12:

(define scramble
(lambda (tup)
(letrec
(P tup (quote ())))))

((P (lambda (tup 1p)
(cond
((null? tup) (quote ()))
(else
(let ((rp (cons (car tup) rp)))
(cons (pick (car tup) rp)
(P (cdr tup) rp))))))))

How do you like seramble now?

It's perfect now.

Go have a bacon, lettuce, and tomato sandwich. And don’t forget to let the lettuce dry.

Try it with mustard or mayonnaise.

Did that sandwich strengthen you?

We hope so.

Do you recall leftmost

Sure, we talked about it at the beginning of
this chapter.

(define leftmost
(lambda (1)
(cond
((null? 1) (quote ()))
((atom? (car 1)) (ecar I))
(else
(let ((a (leftmost (car 1))))
(cond
((atom? a) a)

(else (leftmost (cdr 1)))))))))

What is (leftmost 1)
where

Lis (((a)) b (c))

It is a.

Chapter 14

And how do we determine this?

We have done this before.

So how do we do it?

We quickly determine that [isn't empty and
doesn’t contain an atom in the car position.
So we recur with (leftmost [)

where

lis ((a)).

What do we do next?

We quickly determine that [isn’t empty and
doesn’t contain an atom in the car position.
So we recur with (leftmost [)
where

lis (a).

And now?

Now (ear [) is a, so we are done.

Are we really done?

Well, we have the value for (leftmost 1)
where
lis (a).

What do we do with this value?

We name it a and check whether it is an
atom. Since it is an atom, we are done.

Are we really, really done?

Still not quite, but we have the value for
(leftmost 1)

where

Lis ((a))-

And what do we do with this value?

We name it a again and check whether it is
an atom. Since it is an atom, we are done.

So, are we done now?

No. We need to name a one more time, check
that it is an atom one more time, and then
we're completely done.

Let There Be Names

T

Have we been here before? Yes, we have. When we discussed
intersectall, we also discovered that we really
had the final answer long before we could say
S0.

And what did we do then? We used (letcc ...).

Here is a new definition of leftmost Wow!

(define leftmost
(lambda (1)
(letee skip
(Im 1 skip))))

(define Im
(lambda (I out)
(cond
((null? 1) (quote ()))
((atom? (car 1)) (out (car I)))
(else (let ()
(Im (car 1) out)
(Im (edr 1) out))))))

L progn also works.
S: bagin also works.

Did you notice the unusual (let ...) Yes, the (let ...) contains two expressions in
the value part. :

What are they? The first one is
(Im (car I) out).
The one after that is
(Im (edr 1) out).

78 Chapter 14

And what do you think it means to have two
expressions in the value part of a (let ...)

Here are our thoughts:

“When a (let ...) has two expressions in its
value part, we must first determine the
value of the first expression. If it has one,
we ignore it and determine the value of the
second expression'.”

1 This is also true of (letrec . ..) and (letce ...).

What is (leftmost 1)
where

lis (((3)) b (c))

It should be a.

And how do we determine this?

We will have to use the new definition of

leftmost.

Does this mean we start with (letcc skip ...)

Yes, and as before we ignore it for a while.
We just don’t forget that we have a North
Pole called skip.

So what do we do? We determine the value of (Im [out)
where
out is skip, the needle of a compass.
Next? We quickly determine that [isn't empty and

doesn’t contain an atom in the car position.
So we recur with (Im [out)
where

lis ((a))
and

out is skip, the needle of a compass.
And we also must remember that we will
need to determine the value of (Im [out)
where

lis (b (c))
and

out is skip.

Let There Be Names

What do we do next?

We quickly determine that [isn't empty and
doesn’t contain an atom in the ear position.
So we recur with (Im [out)
where

lis (a)
and

out is skip, the needle of a compass.
And we also must remember that we will
need to determine the value of

(lm | out)
where

lis ()
and

out is still skip.

What exactly are we remembering right now?

We will need to determine the values of
(Im | out)
where
lis ()
and
out is skip, the needle of a compass
as well as (Im [out)
where
lis (b (c))
and
out is skip, the needle of a compass.

Don’t we have an atom in car of | now?

We do. And that means we need to
understand
(out (car 1))
where
lis (a)
and
out is skip, the needle of a compass.

What does that mean?

We need to forget all the things we

remembered to do and resume our work with
(letece skip a)

where a is a.

‘Chapter 14

Are we done?

Yes, we have found the final value, a, and
nothing else is left to do.

Isn't this peaceful?

Yes, it is. We never need to ask again
whether a is an atom.

True or false: Im is only useful in
conjunction with leftmost

Yes, that's true. We shouldn’t forget The
Thirteenth Commandment when we use The
Fourteenth.

Here is one way to hide Im

(define leftmost
(letrec
((tm (lambda (I out)
(cond
((null? 1) (quote ()))
((atom¥ (car [))
(out (car 1)))
(else
(let ()
(Im (car 1) out)
(Im (cdr 1) out)))))))
(lambda (1)
(letce skip
(Im 1 skip)))))

Can you think of another?

In chapter 12 we usually moved the minor
function out of a (lambda ...)'s value part,
but we can also move it in:

(define leftmost
(lambda (1)
(letrec
((Im (lambda (I out)
(cond
((null? 1) (quote (})))
((atom?¥ (car 1))
(out (car 1)))
(else
(let ()
(Im (car 1) out)
(Im (edr 1) out)))))))
(letec skip

(Im 1 skip)))))

Correct! Better yet: we can move the
(letrec ...) into the value part of the
(letec ...)

(define leftmost
(lambda (1)
(letce skip
(letrec (...)

(Im [skip)))))

Can you complete the definition?

(Im (lambda (I out)
(cond
((null? 1) (quote ()))
((atom? (car 1))
(out (car 1}))
(else (let ()
(I (car 1) out)
(Im (edr 1) out))))))

This suggests that we should also use
The Twelfth Commandment.

Let There Be Names

81

Why?

The second argument of Im is always going
to refer to skip.

When an argument stays the same and when
we have a name for it in the surroundings of
the function definition, we can drop it.

Rename out to skip

Yes, all names are equal.

(define leftmost
(lambda (I)
(letee skip
(letrec (...)

(Im 1 skip)))))

(im (lambda (I skip)
(cond

((null? I) (quote ()))

((atom? (car 1))

(skip (car 1))

(else

(let ()

(lm (car 1) skip)
(Im (edr 1) skip))))))

Can we now drop skip as an argument to Im

It is always the same argument, and the
name skip is defined in the surroundings of
the (letrec ...) so that everything works:

(define leftmost
(lambda (I)
(letee skip
(letrec
((Im (lambda (1)
(cond
((null?) (quote ()))
((atom? (car 1))
(skip (car 1))
(else
(let ()
(Im (car 1))
(Im (edr 1)))))))

(im 1)))))

82

Chapter 14

Can you explain how the new leftmost
works?

Our explanation is:

“The function leftmost sets up a North Pole
in skip and then determines the value of
(tm l). The function Imn looks at every
atom in | from left to right until it finds an
atom and then uses skip to return this
atom abruptly and promptly.”

(This would be a good time to count Duane’s elephants.)

Didn’t we say that leftmost and remberi*
are related?

Yes, we did.

Is remberl* also a function that finds the
final result yet checks many times that it did?

No, in that regard rember!® is quite
different. Every time it finds that the car of
a list is a list, it works through the car and
checks right afterwards with eglist¥ whether
anything changed.

Does rember! ¥ know when it failed to
accomplish anything?

It does: every time it encounters the empty
list, it failed to find the atom that is
supposed to be removed.

Can we help rember!* by using a compass
needle when it finds the empty list?

With the help of a North Pole and a compass
needle, we could abruptly and promptly
signal that the list in the car of a list did not
contain the interesting atom.

Let There Be Names

83

Here is a sketch of the function rm which
takes advantage of this idea:

(define rm
(lambda (a [oh)
(cond
((null? 1) (oh (quote no)))
((atom? (car [))
(if (eq? (car) a)
(edr 1)
(cons (ear [)
(rm a (cdr 1) oh))))
(else ...
(letec oh
(rm a (car 1) oh))
)

What does the function do when it
encounters a list in (ear [)

It sets up a North Pole and then recurs on
the ecar also using the corresponding compass
needle. When it finds an empty list, it uses
the needle to get back to a place where it
should explore the edr of a list.

What kind of value does
(letce oh

(rm a (car l) oh))
vield when (ecar [) does not contain a

The atom no.

And what kind of value do we get when the
car of | contains a

A list with the first occurrence of a removed.

Then what do we need to check next?

We need to ask whether or not this value is
an atom:
(atom?
(letee oh
(rm a (car 1) oh))).

And then?

If it is an atom, rm must try to remove an
occurrence of a in (edr I).

How do we try to remove the leftmost
occurrence of a in (edr)

Easy: with (rm a (edr 1) oh).

Chapter 14

Is this the only thing we have to do?

No, we must not forget to add on the
unaltered (ecar [) when we succeed. We can
do this with a simple cons:

(cons (car 1) (rm a (edr 1) oh)).

And if (letee oh ...)’s value is not an atom?

Then it is a list, which means that rm
succeeded in removing the first occurrence of
a from (ear [).

How do we build the result in this case?

We cons the very value that
(letcc oh
(rm a (car 1) oh))
produced onto (edr [), which does not
change.

Which compass needle do we use to
reconstruct this value?

We don’t need one because we know rm will
succeed in removing an atom.

Does this mean we can use
(rm a (car [) Q)

Yes, any value will do, and 0 is a simple
argument.

Let's do that!

Here is a better version of rm:

(define rm
(lambda (a [oh)
(cond
((null? 1) (oh (quote no)))
((atom? (ear 1))
(if (eq? (car 1) a)
(edr 1)
(cons (car [)
(rm a (cdr 1) oh)))
(else
(if (atom?
(letce oh
(rm a (car 1) oh)))
(cons (ear 1)
(rm a (cdr 1) oh))
(cons (rm a (car 1) 0)

(edr 1)))))))

Let There Be Names

85

How can we uge rm

We need to set up a North Pole first.

Why?

If the list does not contain the atom we want
to remove, we must be able to say no.

What is the value of
(letec Say (rm a | Say))
where
a is noodles
and
l is ((food) more (food))

((food) more (food))
because this list does not contain noodles.

And how do we determine this?

Since (car [) is a list, we set up a new North
Pole, called oh, and recur with
(rm a (car 1) oh)
where
a is noodles
and
l is ((food) more (food)).

Which means?

After one more recursion, using the second
cond-line, rm is used with noodles, the
empty list, and the compass needle oh. Then
it forgets the pending cons of food onto the
result of the recursion and checks whether no
is an atom.

And no is an atom ...

Yes, it is. So we recur with

(cons (car 1) (rm a (edr 1) Say))
where

a is noodles
and

1 is ({food) more (food)).

How do we determine the value of
(rm a | Say)

where
a is noodles

and
l is (more (food))

We recur with the list ((food)) and, if we get
a result, we cons more onto it.

Chapter 14

How do we determine the value of
(rm a | Say)

where
a is noodles

and
1is ((food))

We have done something like this before. We
might as well jump to the conclusion.

Okay, so after we fail to remove an atom with
(rm a | oh)
where
I is (food)
we try
(rm a | Say)
where
a is noodles
and
lis ()

Yes, and now we use
(Say (quote no)).

And what happens?

We forget that we want to

1. cons more onto the result and
2. cons (food) onto the result of 1.

Instead we determine the value of
(letee Say (quote no)).

So we failed. Yes, we did.
But rember!* would return the unaltered No problem:
list, wouldn’t it?
(define rember!*
(lambda (a [)

(if (atom? (letcc oh (rm a [oh)))
l

(rm a I (quote ())))))

Why do we use (rm a | (quote ()))

Since rm will succeed, any value will do, and
() is another simple argument.

Let There Be Names

87

Didn’t we forget to name the values of some
expression in remberl*

We can also use (let ...) in rm:

(define rember!*
(lambda (a [)
(let ((new-l (letee oh (rm a I oh))))
(if (atom¥ new-1)
I
new-1))))

(define rm
(lambda (a [oh)
(cond
((null? 1) (oh (quote o))
((atom? (car 1))
(if (eq? (car 1) a)
(edr 1)
(cons (car 1)
(rm a (edr 1) oh))))
(else
(let ((new-car
(letec oh
(rm a (car 1) oh))))
(if (atom¥ new-car)
(cons (car 1)
(rm a (edr 1) oh))

(cons new-car (cdr 1))))))))

Do we need to make up a good example for
remberl*

We should, but aren’t we late for dinner?

Do we need to protect rm

‘We should, but aren’t we late for dinner?

Are you that hungry again?

Try some baba ghanouj followed by
moussaka. If that sounds like too much
eggplant, escape with a gyro.

88

Chapter 14

Try this hot fudge sundae with coffee ice
cream for dessert:

(define remberl*
(lambda (a [)
(try! oh (rm a | oh) 1))

1 Like (and ...}, (try ...) is an abbreviation:
(try r o 7}

{_lﬂ-bc FUCCESS
{letee
{ snccess a))

3)

The name success must not occur in o or 4.

It looks sweet, and it works, too.

And don’t forget the whipped cream and the
cherry on top.

What do you mean?

We can even simplify rm with (try ...)

(define rm
(lambda (a [oh)
(cond
((null? 1) (oh (quote no)))
((atom? (car 1))
(if (eq? (car) a)
(edr 1)
(cons (car I)
(rm a (cdr 1) oh))))
(else
(try oh2
(cons (rm a (car 1) oh2)
(edr 1))
(cons (ecar 1)

(rm a (edr 1) oh)))))))

Does this version of rember!® rely on no
being an atom?

No.

Was it a fine dessert?

Yes, but now we are oh so very full.

Let There Be Names

89

= R
« el §0F

L
aﬁt".'ﬁ':];u.,
T
et

W

S T

Wy Ty
A o f - Wy %

- 3Ny ‘%‘W
\‘}._‘-H' ! W, N ‘Q‘Jh o @;f

"'_,.—uff Al

-\'If.r

What is the value of

(define r
(eons (quote chicago)
(cons (quote pizza)

(quote ()))))

The definitions we have seen so far don't
have values. But from now on we will
sometimes have to talk about the values of
definitions, too.

What does the name z refer to?

(chicago pizza).

What is the value of

(set!! z (quote gone))

1y setq, pronounced “set quens”
5: Pronounced “set bang.”

It doesn't have a value, but the effect is as if
we had just written:

(define z (quote gone))

Did you notice that define is underlined?

We have seen it before. It means that we
never actually write this definition. We
merely imagine it. But it does replace the
two boxes on the left.

What does the name z refer to?

gone.

What is the value of

(set! z (quote skins))

Remember this doesn’t have a value.

Is (set! ...) just like (define ...)

Yes, mostly.
A (set! ...) expression always looks like
(define ...). The second item is always a
name, the last one is always an expression.

And what is £ now?

It refers to skins.

The Difference Between Men and Boys ...

91

What is the value of (gourmet y)
where y is onion
and

gourmet is

(define gourmet
(lambda (food)
(cons food
(cons = (quote ())))))

Which z do vou want?

Now what does ¢ refer to?

It still refers to skins.

So what is the value of (cons z (quote ()))

(skins).

What is the value of
(gourmet (quote onion))

(onion skins).

(set! r (quote rings))

It is as if we had written:

(define z (quote rings))

and as if we had never had any definition of z
before.

What is the value of (gourmet y)
where y is onion

Which value of x do you want?

And now, what is =

It refers to rings.

What is the value of
(gourmet (gquote onion))

It is (onion rings), since z is now rings.

Chapter 15

Look at this:

(define gourmand
(lambda (food)
(set! z food)
(cons food
(cons x :

(quote ())))))

What about it?

Is anything unusual?

Yes, the (lambda . ..) contains two
expressions in the value part.

What are they?

The first one is
(set! x food).
The one after that is
(cons food
(cons ©
(quote ()))).

Have we seen something like this before?

Yes, we just saw a (let ...) with two
expressions in the value part at the end of

the previous chapter.

So what do vou think is the value of
(gourmand (quote potato))

It is probably the value of the second
expression, just as in a (let ...) with two
expressions.

And that is?

A good guess is (potato potato).

That is correct!

It also means that the value of = is potato.

The Difference Between Men and Boys . ..

93

Yes! And how did that happen?

The first expression

(set! z food)
means that the definition of changed. It is
as if we had written:

(define = (quote potato))

and as if we had never had any definition of z
before.

Why?

Because food is potato.

What is the value of £ now?

It is still potato.

What is the value of (gourmand w)
where w is rice

Now it is easy: (rice rice).

And what is the value of r now?

rice, of course.

Does gourmand remember what food it saw
last?

Yes, z always refers to the last food that

gourmand ate.

Can vou write dinerR which is like diner but
also remembers which food it ate last?

(define diner
(lambda (food)
(cons (quote milkshake)
(cons food
(quote ())))))

No problem. We can use the same trick.

(define dinerR
(lambda (feod)
(set! = food)
(cons (quote milkshake)
(cons food

(quote ())))))

What is the value of (dinerR (quote onion))

(milkshake onion).

What does = refer to now?

onion,

94

Chapter 15

What is the value of
(dinerR (quote pecanpie))

(milkshake pecanpie).

And now what does ¢ refer to?

pecanpie.

Which do vou prefer?

Milkshake and pecan pie.

What is the value of
(gourmand (quote onion))

We have done this before:
(onion onion).

But, what happened to =

It now refers to onion.

What food did dinerR eat last?

Not onion.

How did that happen?

Both dinerR and gourmand use z to
remember the food they saw last.

Should we have chosen a different name
when we wrote dinerR

Yes, we should have chosen a new name.

Like what?

But what would have happened if gourmand
had used y to remember the food it saw last?

Well, wouldn’t we have the same problem
again?

Yes, but don’t worry: there is a way to avoid
this conflict of names.

There must be, becanse we should be able to
get around such coincidences!

Here is a new function:

(define omnivore
(let ((z (gquote minestrone)))
(lambda (food)
(set! z food)
(cons food
(cons =

(quote (}})))))

It looks like gourmand.

The Difference Between Men and Boys . ..

True, but not quite. What is the big
difference?

Didn’t you see the (let ...) that surrounds
the (lambda ...)7 Here it is:
(let ((z (quote minestrone)))
{lﬂml;;ia (food)

What is the little difference?

The names.

What is the value of

(define omnivore
(let ((x (quote minestrone)))
(lambda (food)
(set! = food)
(cons food
(cons x

(quote ()))))))

We learned that (let ...) names the value of
expressions.

What is the value of (quote minestrone)

minestrone.

And what is the value part of the (let ...)

The value part of this (let ...) is a function.

What value does emnivore stand for?

We do not know.

That is correct. We need to determine its
value.

We have never done this before,

So the definition of emnivere is almost like
writing two definitions:

(define z (quote minestrone))

(define omnivore

(lambda (food)

(set! = food)
(cons food
(cons z

(quote ())))))

But it really is this:

(define z, (quote minestrone))

(define omnivore

(lambda (food)

(set! z, food)
(cons food
(cons z,

(quote ())))))

Chapter 15

Did you notice that define is underlined?

Yes, that's old hat by now.

Did vou see the underlined name?

Yes, and that is something new.

What is z,

Z, is an imaginary name.

Has z, ever been used before with
(define .. .)

No, it has not. And it never, ever will be
used with (define . ..) again.

What does z, refer to?

e

It stands for minestrone.

So, what is z,'s value?

No answer; it is imaginary.

What is the value of emnivore

Now it is a function.

What is the value of (omnivore z)
where z is bouillabaisse

It looks like it is (bouillabaisse bouillabaisse).

What is z,'s value?

No answer,

Right?

Always no answer for imaginary names. We
just keep in mind what they represent.

What does z, refer to?

It now stands for bouillabaisse.

And why?

After determining the value of (emnivere z)
where z is bouillabaisse, z, has changed. It is
as if we had written:

(define z, (quote bouillabaisse))

and as if we had never had a definition of z,
before.

The Difference Between Men and Boys . ..

o7

Determining the value of (omnivore z) is just

like finding the value of (gourmand z)

What is the difference?

There is no answer for r,

Unlike z, z, is an imaginary name. We must
remember what value it represents, because
we cannot find out!

]
]

The Sixteenth Commandment

Use (set! ...) only with names defined in (let ...)s.

Take a really close look at this:

(define gobbler
(let ((z (quote minestrone)))
{(lambda (food)
(set! x food)
(econs food
(cons x

(quote ()))))))

This looks like omnivore.

Not quite. What is the little difference?

The names,

Is there a big difference?

No!

What is the value of

i (define gobbler
| (let ((x (guote minestrone)))
{lambda (food)
(set! = food)
' (cons food
[eons T

(quote ()))))))

(define r, (quote minestrone))

(define gobbler
(lambda (food)
(set! x, food)
(cons food
(cons z,

(quote ())))))

98

Chapter 15

What is z,

Z, is another imaginary name.

Has z, ever been used before with
(define ...)

No, and it never, ever will be used with

(define ...) again.

What does z, refer to?

It stands for minestrone.

What does z; refer to?

It still stands for bouillabaisse.

So, what is z,'s value?

No answer, because z, is imaginary.

What is the value of gobbler

It is a function.

What is the value of (gobbler z)
where z is gumbo

It is (gumbo gumbo).

Now, what is z,'s value?

No answer. Ever!

What does z, refer to?

It now stands for gumbo.

And why?

After determining the value of the definition,
the definition of z, has changed. It is as if
we had written:

(define z, (quote gumbo))

and as if we had never had a value for z,
before.

Determining the value of (gobbler z) is just
like finding the value of (omnivore z)

What is the difference?

The Difference Between Men and Boys ...

Here is the function glutton

(define food (quote none))

(define glutton
{(lambda (z)
(set! food x)
(cons (quote more)
(cons z
(cons (quote more)
(cons x

(quote ())))))))

Explain in your words what it does.

As you know, we use our words:

“When given a food item, say onion, it
builds a list that demands a double
portion of this item,

(more onion more onion)
in our example, and also remembers the
food item in food.”

Why does the definition of glutton disobey
The Seventeenth Commandment?

Recall that we occasionally ignore
commandments, because it helps to
explain things.

What is the value of
(glutton (quote garlic))

(more garlic more garlic).

What does food refer to

garlic.

Do you remember what x refers to?

onion. In case you forgot, = refers to what
gourmand or dinerR ate last.

Who saw the onion

gourmand.

Can you write the function chez-nous, which

swaps what = and food refer to?

If so, have a snack and join us later for the
main meal. .

How can chez-nous change food to what =
refers to?

(set! food z).

102

Chapter 15

How can the function change z to what food
refers to?

(set! = food).

How many arguments does chez-nous take?

None!

Is this the right way of putting it all together
in one definition?

(define chez-nous
(lambda ()
(set! food z)
(set! x food)))

It is worth a try, but we should check
whether it works.

What does food refer to? garlic.
What does z refer to? onion.
What is the value of (chez-nous)

Now, what does food refer to onion.

Now, what does z refer to? onion.

Did you look closely at the last answer? We hope so.

Why is the value of z still onion

After changing food to the value that z
stands for, chez-nous changes = to what food
refers to.

And what does food refer to?

onion.

The Difference Between Men and Boys . ..

103

The Eighteenth Commandment

Use (set! z ...) only when the value that z
refers to is no longer needed.

How could we save the value in foed so that With (let ...).
it is still around when we need to change z

Explain! Here is our attempt:

“(let ...) names values. If chez-nous first
names the value in food, we have two ways
to refer to its value. And we can use the
name in (let ...) to put this value into z.”

Like this? Yes, exactly like that.

(define chez-nous
(lambda ()

(let ((a food))

(set! food 1)

(set! = a))))

What is the value of (more garlic more garlic).
(glutton (quote garlic))

What does food refer to? garlic.

What is the value of (potato potato).
(gourmand (quote potato))

What does z refer to? potato.

What is the value of (chez-nous)

104 Chapter 15

And food refers to ... potato.

But this time, z refers to ... garlic.
See you later! Bye for now.
Don’t you want anything to eat? No, that was enough garlic for one day.
If you want something full of garlic, try Perhaps someday.
skordalia.
SKORDALIA

To make 3 cups:

6 cloves to 1 head garlic, peeled
2 cups mashed potatoes (approximately 4 medium potatoes)

4 or more large slices of French- or Italian-type bread,
crusts removed, soaked in water, and squeezed dry

1/2 to 3/4 cup olive oil
1/3 to 1/2 cup white vinegar
Pinch of salt

Pound the garlic cloves in a large wooden mortar with a pestle until
thoroughly mashed. Continue pounding while adding the potatoes and
bread very gradually, beating until the mixture resembles a paste. Slowly
add the oil, alternating with the vinegar, beating thoroughly after each
addition until well absorbed. Add salt, taste for seasoning, and beat until
the sauce is very thick and smooth, adding more vinegar or soaked squeezed
bread, if necessary. Then scoop into a serving bowl. Cover and refrigerate
until ready to use. Use as a dip for beets, zucchini, and eggplant.

THE Foop oF GREECE
Vilma Liacours Chentiles

Avenel Books, New York, 1975

The Difference Between Men and Boys ... 105

Here are sweet-tooth and last

(define sweet-tooth
(lambda (food)
(cons food
(cons (quote cake)

(quote ())))))

(define last (quote angelfood))

More food: did you exercise after your snack?

What is the value of (sweet-tooth x)
where z is chocolate

(chocolate cake).

What does last refer to?

angelfood.

What is the value of (sweet-tooth)
where x is fruit

(fruit cake).

Now, what does last refer to?

Still angelfood.

Can you write the function sweet-toothL
which returns the same value as sweet-tooth
and which, in addition, changes last so that
it refers to the last food that sweet-toothL

has seen?

We have used this trick twice before. Here
we go:

(define sweet-toothL
(lambda (food)
(set! last food)
(cons food
(cons (quote cake)

(quote ())))))

What is the value of
(sweet-toothL (quote chocolate))

(chocolate cake).

And the value of last is ...

chocolate.

Ready, Set, Bang!

107

What is the value of
(sweet-toothl. (gquote fruit}))

(fruit cake).

And last

It refers to fruit.

[sn't this easy?

Easy as pie!

Find the value of (sweet-toothl x)
where r 18 cheese

It is (cheese cake).

What is the value of
(sweet-toothL (quote carrot))

(carrot cake).

Do you still remember the ingredients that
went into sweet-toothL

There was chocolate, fruit, cheese, and carrot.

How did you put this list together?

By quickly glancing over the last few
questions and answers.

But couldn’t you just as easily have
memorized the list as you were reading the
questions?

Of course, but why?

Can you write a function sweet-toothR that
returns the same results as sweet-toothL but
also memorizes the list of ingredients as they
are passed to the function?

Yes, you can. Here's a hint.

(define ingredients (quote ()))

What is that hint about?

This is the name that refers to the list of
ingredients that sweet-toothR has seen.

One more hint: The Second Commandment.

Is this the commandment about using cons
to build lists?

108

Chapter 16

Did we forget about The Sixteenth
Commandment?

Sometimes it is easier to explain things when
we ignore the commandments. We will use
names introduced by (let ...) next time we
use (set! ...).

What is the value of (deep 3)

No, it is not a pizza. It is

(((pizza))).

What is the value of (deep 7)

Don't get the pizza yet. But, ves, it is
(((((((pizza)))))))-

What is the value of (deep 0)

Let’s guess:
pizza.

Good guess. This is easy: no toppings, plain pizza.
Is this deep It would give the right answers.
(define deep
(lambda (m)
(cond

((zero? m) (quote pizza))
(else (cons (deep (subl m))

(quote ()))))))

Do vou remember the value of (deep 3)

It is ({(pizza))), isn’t it?

How did you determine the answer?

Well, deep checks whether its argument is 0,
which it is not, and then it recurs.

Did you have to go through all of this to
determine the answer?

No, the answer is easy to remember.

110

Chapter 16

Is it easy to write the function deepR which

returns the same answers as deep but

remembers all the numbers it has seen?

This is trivial by now:

(define Ns (quote ()))

(define deepR
(lambda (n)
(set! Ns (cons n Ns))

(deep n)))

Great! Can we also extend deepR to
remember all the results?

This should be easy, too:

(define Rs (quote ()))

(define Ns (quote ()))

(define deepR
(lambda (n)
(set! Rs (cons (deep n) Rs))
(set! Ns (cons n Ns))

(deep n)))

Wait! Did we forget a commandment?

The Fifteenth: we say (deep n) twice.

Then rewrite it.

(define deepR
(lambda (n)
(let ((result (deep n)))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result)))

Does it work?

Let’s see.

What is the value of (deepR 3)

(((pizza))).

Ready, Set, Bang!

111

What does Ns refer to? (3).
And Rs ((((pizza)))).
Let’s do this again. What is the value of ({{{{pizza))))).
(deepR 5)
Ns refers to ... (5 3).
And Rs to ... ((((((pizza)))))
(((pizza)))).

The Nineteenth Commandment

Use (set! ...) to remember valuable things between
two distinct uses of a function.

Do it again with 3

But we just did. It is (((pizza))).

Now, what does Ns refer to? (353).

How about Rs ((((pizza)))
(((((pizza)))))
(((pizza)))).

We didn’t have to do this, did we?

No, we already knew the result. And we
could have just looked inside Ns and Rs, if
we really couldn’t remember it.

112

Chapter 16

How should we have done this?

Ns contains 3. So we could have found the
value (((pizza))) without using deep.

Where do we find (((pizza))) In Rs.
What is the value of (find 3 Ns Rs) (((pizza))).
What is the value of (find 5 Ns Rs) (((((pizza)))))-

What is the value of (find 7 Ns Rs)

No answer, since 7 does not occur in Vs,

L

Write the function find

In addition to Ns and Hs it takes a number
n which is guaranteed to occur in Ns and
returns the value in the corresponding
position of As

(define find
(lambda (n Ns Rs)
(letrec
((A (lambda (ns rs)
(cond
(= (car ns) n) (car rs))
(else
(A (edr ns) (edr 1s)))))))
(A Ns Rs))))

We are happy to see that you are truly
comfortable with (letrec ...)

No problem.

Use find to write the function deepM which
is like deepR but avoids unnecessary consing

No problem, just use (if ...):

onto Ns (define deepM
(lambda (n)
(if (member? n Ns)
(find n Ns Rs)
(deepR n))))
What is Ns (353).

Ready, Set, Bang!

113

And Rs

((((pizza)))
(((((pizza)))))
(((pizza)))).

Now that we have deepM should we remove
the duplicates from Ns and Rs

How could we possibly do this?

You forgot: we have (set! ...)

(set! Ns (edr Ns))

(set! Rs (edr Rs))

What is Ns now? (5 3).
And how about Rs (((({(pizza)))))
(((pizza)))).

Is deepM simple enough?

Sure looks simple.

Do we need to waste the name deepR

No, the function deepR is not recursive.

And deepR is used in only one place.

That’s correct.

So we can write deepM without using deepR

(define deepM
(lambda (n)
(if (member? n Ns)
(find n Ns Rs)
(let ((result (deep n)))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result))))

114

Chapter 16

This is another form of simplifying.

Which is why we did it after the function
was correct,

If we now ask one more time what the value
of (deepM 3) is

... then we use find to determine the result.

Ready? What is the value of (deepM 6)

((((((pizza))))))-

Good, but how did we get there?

We used deepM and deep, which consed onto
Ns and Rs.

But, isn't (deep 6) the same as
(cons (deep 5) (quote ()))

What kind of question is this?

When we find (deep 6) we also determine the
value of (deep 5)

Which we can already find in Rs.

That’s right.

Should we try to help deep by changing the
recursion in deep from (deep (subl m)) to
(deepM (subl m))?

Do it.

(define deep
(lambda (m)
(cond
((zero? m) (quote pizza))
(else (cons (deepM (subl m))

(quote ()))))))

What is the value of (deepM 9)

(((((((((pizza)))))))))-

What is Ns now?

(98765 3).

Ready, Set, Bang!

115

Where did the 7 and 8 come from?

The function deep asks for (deepM 8).

And that is why 8 is in the list.

(deepM 8) requires the value of (deepM 7).

Is this it? Yes, because (deepM 6) already knows the
answer.
Can we eat the pizza now? No, because deepM still disobeys The

Sixteenth Commandment.

That’s true. The names in (set! Ns ...) and
(set! Rs ...) are not introduced by (let ...)

It is easy to do that.

Here it is:

(define deepM
(let ((Rs (quote ()))
(Ns (quote ())))
(lambda (n)
(if (member? n Ns)
(find n Ns Rs)
(let ((result (deep m)))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result)))))

Two imaginary names and deepM.

What is the value of this definition?

(define Rs, (quote ()))

(define Ns, (quote ()))

(define deepM
(lambda (n)
(if (member? n Ns,)
(find n Ns, Rs,)
(let ((result (deep n)))
(set! Rs, (cons result Rs,))

(set! Ns, (cons n Ns,))
result))))

What is the value of (deepM 16)

(CCCCOOOeCeCCcccCpizzamMmmmN))-

116

Chapter 16

Why is #f a good answer in that case?

When find succeeds, it returns a list, and #f
is an atom.

Can we now replace member? with find since
the new version also handles the case when
its second argument is empty?

Yes, that's no problem now. If the answer is
#f, Ns does not contain the number we are
looking for. And if the answer is a list, then
it does.

Okay, then let’s do it.

(define deepM
(let ((Rs (quote ()))
(Ns (quote ())))
(lambda (n)
(if (atom? (find n Ns RS))
(let ((result (deep mn)))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result)
(find n Ns Rs)))))

—

That’s one way of doing it. But if we follow
The Fifteenth Commandment, the function
looks even better.

(define deepM
(let ((Rs (quote ()))
(Ns (quote ())))
(lambda (n)
(let ((exists (find n Ns RS)))
(if (atom? exists)
(let ((result (deep n)))

(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result)

exists)))))

Take a deep breath or a deep pizza, now.

Do vou remember length

Sure:

(define length
(lambda (1)
(cond
((null? 1) 0)
(else (addl (length (cdr 1)))))))

118

Chapter 16

Is this a good solution?

(define length
(let ((k (lambda (1) 0)))
(set! h
thL (lambda (arg) (h arg))))

Yes, except that (lambda (arg) (h arg))
seems to be a long way of saying h.

Why can we write
(lambda (arg) (h ary))

Because h is a function of one arﬁument.

Does h always refer to
(lambda (1) 0)

No, it is changed to the value of
(L (lambda (arg) (h arg))).

What is the value of
(lambda (arg) (h arg))

We don’t know because it depends on h.

How many times does the value of h change?

Once.

What is the value of
(L (lambda (arg) (h arg)))

It is a function:
(lambda (1)
(cond
((null? 1) 0)
(else (addl
((lambda (arg) (h arg))
(edr 1))))))-

What is the value of
(lambda (I)
(eond
((null? 1) 0)
(else (addi
((lambda (arg) (h arg))

(edr 1))))))

We don’t know because h changes. Indeed, it
changes and becomes this function.

And then?

Then the value of k is the recursive function
length.

122

Chapter 16

L]

r-|||rr.'rII|'l

Is there a (set! m ...) in the value part of
(let ((m n))...)

No. Are you asking whether we should
unname again?

We could, couldn’t we?

Yes, because now a name is replaced by a

Name.

Do it again!

(define deepM
(let ((Rs (quote ()))
(Ns (quote ()))
(lambda (n)
(let ((exists (find n Ns RS)))
(if (atom? erists)
(let ((result ...))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result)
exists)))))

{lf (zero? m)
(quote pizza)
(cons (deepM (subl n))
(quote ())))

Wouldn’'t you like to know how much help
deepM gives?

What does that mean?

Once upon a time, we wrote deepM to
remember what values deep had for given
numbers.

Oh, ves.

How many conses does deep use to build
pizza

None.

How many conses does deep use to build

(((((pizza)))))

Five, one for each topping.

How many conses does deep use to build

(((pizza)))

Three.

130

Chapter 17

How many conses does deep use to build
pizza with a thousand toppings?

1000.

How many conses does deep use to build all
possible pizzas with at most a thousand

toppings?

That’s a big number:
the conses of (deep 1000), and
the conses of (deep 999), and
..., and
the conses of (deep 0).

You mean 500,5007

Yes, thank vou, Carl F. Gauss
(1777-1855).

Yes, there is an easy way to determine this

number, but we will show you the hard way.

It is far more exciting.

Okay.

Guess what it is?

Can we write a function that determines it
for us?

Yes, we can write the function consC which
returns the same value as cons and counts
how many times it sees arguments.

This is no different from writing deepR
except that we use add! to build a number
rather than cons to build a list.

(define consC
(let ((N 0))
(lambda (z y)
(set! N (add1 N))
(cons x y))))

Don't forget the imaginary name.

(define ﬂ,i 0)

(define consC
(lambda (z y)
(set! N, (addi N,))

(cons z y)))

We Change, Therefore We Are!

131

Could we use this function to determine

500,5007

Sure, no problem.

How?

We just need to use consC instead of cons in
the definition of deep:

(define deep
(lambda (m)
(if (zero? m)
(quote pizza)
(consC (deep (subl m))
(quote ())))))

Wasn't this exciting?

Well, not really.

So let's see whether this new deep counts

COTISES

How about determining the value of
(deep 5)7

That is easy; we shouldn’t bother. What is

the value of N,

We don’t know, it is imaginary.

But that’s how we count conses

How could we possibly see something that is
imaginary?

Here is one way.

Is this as if we had written:

(define counter) (define X, 0)
(define consC (define counter
(let (N 0)) (lambda ()
(set! counter N,))
(lambda ()
N)) C
(lambda (z y) {@EMTnn?: v)
(set! N (addl N)) (set! N, (addl N,))
(cons z y)))) (cons z y)))
132 Chapter 17

But?

It changed N, to 0.

What is the value of (supercounter f) 500500.
where f is deep
Is this what we expected? Yes!

It is time to see how many conses are used
for (deepM 5)

Don’t we need to modify its definition so
that it uses consC'?

Of course! What are you waiting for?

(define deepM
(let ((Rs (quote ()))
(Ns (quote ())))
(lambda (n)
(let ((exists (find n Ns RS)))
(if (atom? exists)
(let ((result
(if (zero? m)
(quote pizza)
(consC
(deepM (subl n))
(quote ())))))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result)
exists)))))

How many conses does deepM use to build

(((((pizza)))))

Probably five?

What is the value of (counter)

500505.

Yes, but it means we forgot to initialize with
set-counter.

136

Chapter 17

What is the value of (set-counter 0)

How many conses does deepM use to build Five.
(((((pizza)))))

What is the value of (counter) 5.

What is the value of (deep 7) (((((((pizza))))))).
What is the value of (counter) Obvious: 7.

Didn’'t we need to set-counter to 0

No, we wanted to count the number of
conses that were needed to build
(deepM 5)
and
(deepM 7).

Why isn't this 12

Because that was the point of deepM.

What is (supercounter f) where

Don’'t we need to initialize?

f is deepM
No. What is (supercounter f) where 1000.
[is deepM
How many more conses does deep use to 499.500.

return the same value as deepM

“A LISP programmer knows the value of
everyvthing but the cost of nothing.”

Thank you, Alan J. Perlis
(1922-1990).

We Change, Therefore We Are!

137

But we know the value of food!

(CCCCCCCCCCCCCC((more pizza))))))))NN))
(CCCCCCCCCCC(((more: pizza))))))))))))))
(CCCCCCCCC((((more pizza))))))))))))))
(CCCCCCCCC(((more pizza)))))))))))))
((((((((((({more pizza)}))))))))))
(((((((((((more pizza)))))))))))
(((CC(((((more pizza))))))))))
(((C(((((more pizza}))))})))
((((((((more pizza))))))))
(((((((more pizza)))))))
((((((more pizza))))))
(((((more pizza)))))
((((more pizza))))

(((more pizza)))

((more pizza))

(more pizza)
more pizza)

138 Chapter 17

What is the value of (counter)

What is the value of (set-counter 0)

(rember1*C2 a l)
where

a is noodles
and

l is ((food) more (food))

((food) more (food)),
because this list does not contain noodles.

And what is the value of (counter)

5,
because rember] *C2 needs five consCs to
rebuild the list ((food) more (food)).

What food are you in the mood for now?

Find a good restaurant that specializes in it
and dine there tonight.

We Change, Therefore We Are!

141

What is the value of (lots 3)

(egg egg egg).

What is the value of (lots 5)

(egg egg egg egg egg).

What is the value of (lofs 12)

(egg egE egE egE €BE €EE
egg egg egg egg egg egg).

What is the value of (lenkth (lots 3)) 3.
What is the value of (lenkth (lots 5)) 5.
What is the value of (lenkth (lots 15)) 15.

Here is lots

And this is lenkth:

(define lots
(lambda (m)
(cond
((zero? m) (quote ()))
(else (kons' (quote egg)

(lots (subl m)))))))

(define lenkth
(lambda (1)
(cond
((null? 1) 0)

(else (addl (lenkth (kdr' 1)))))))

1 L, S: This is like cons.

1 L. S: This is like cdr.

How can we create a list of four eggs from
(lots 3)

How about (kens (quote egg) (lots 3))7

We Change, Therefore We Are the Same!

143

Can we add an egg at the other end of the
list?

Of course we can.

(define add-at-end
(lambda (I)
(cond
((null? (kdr 1))
(konsC (kar')
(kons (quote egg)

(quote ()))))
(else (konsC (kar I)

(add-at-end (kdr 1)))))))

1 1., S: This is like car.

Why do we ask (null? (kdr 1))

Because we promise not to use add-at-end
with non-empty lists.

What is a non-empty list?

A non-empty list is always created with
kons. Its tail may be the empty list though.

What is konsC

konsC is to consC what kons is to cons.

What is the value of (add-at-end (lots 3))

(egg egg egg egg).

How many konsC'es did we use?

The value of (kounter) is 3.

Can we add an egg at the end without
making any new konses except for the last
one’

That would be a surprise!

144

Chapter 18

Here is one way. Are there any others?

(define add-at-end-too
(lambda (I)
(letrec
((A (lambda (Is)
(cond
((null? (kdr Is))
(set-kdr' Is
(kons (quote egg)
(quote ()))))
(else (A (kdr Is)))))))
(41)
)

L' L: This is like rplacd.
8: This is like set=cdr!.

Sure there are, but we are not interested in Okay.
them.

What is the value of (set-kounter 0)

What is the value of (keunter) 0.

What is the value of (egg egg egg egg).
(add-at-end-too (lots 3))

How many konsCes did add-at-end-too use? Can we count them?
What if we told you that the value of That's what it should be becanse
(kounter) is O add-at-end-too never uses konsC' so the value

of (kounter) should not change.

Do you remember cons It is magnificent.

We Change, Therefore We Are the Same! 145

Recall zubl eddl! and serof from
The Little Schemer. We can approximate
cons in a similar way:

(define kons
(lambda (kar kdr)
(lambda (selector)
(selector kar kdr))))

Write kar and kdr

(define kar
(lambda (c)
(¢ (lambda (a d) a))))

(define kdr
(lambda (¢)
(c (lambda (a d) d))))

Suppose we had given you the definition of
hons

They are not too different from the previous
definitions of kar and kdr.

(define bons
(lambda (kar)
(let ((kdr (quote ())))
(lambda (selector)
(selector
(lambda (z) (set! kdr z))
kar

kdr)))))

Write kar and kdr

(define kar
(lambda (¢)
(e (lambda (s a d) a))))

(define kdr
(lambda (¢)
(¢ (lambda (s a d) d))))

How can bons act like kons

Are we about to find out?

What is the value of (bons ¢)
where e is egg

It is a function that is almost like (kons e f)
where f is the empty list.

What is different?

When we determine the value of

(bons (quote egg)), we also make a new
imaginary name, kdr,. And the value that
this imaginary name refers to can change
over time.

How can we change the value that kdr,
refers to?

We could write a function that is almost like
kar or kdr. This function could use the
function (lambda (z) (set! kdr, z)).

146

Chapter 18

What is a good name for this function?

A good name is set-kdr and here is its
definition.

(define set-kdr
(lambda (¢ z)
((c (lambda (s a d) 5)) z)))

Can we use set-kdr and bons to define kons

It's a little tricky but bons creates kons-like
things whose kdr can be changed with
set-kdr.

Let's do it! Okay, this should do it:
(define kons
(lambda (a d)
(let ((c (bons a)))
(set-kdr ¢ d)
c)))
Is kons a shadow of cons It is.

Is kons different from cons

It certainly is. But don’t forget that
chapter 6 said: Beware of shadows.

Did we make any konses when we added an
egg to the end of the list?

Only for the new egg.

What is the value of

(define dozen (lots 12))

To find out, we must determine the value of
(lots 12).

How many konses did we use?

12.

What is the value of

(define bakers-dozen (add-at-end dozen))

To find out, we must determine the value of
(add-at-end dozen).

We Change, Therefore We Are the Same!

147

Does that mean that the konses in Absolutely not!
bakers-dozen are the same as the first twelve
in bakers-dozen-again

Does that mean that the konses in dozen are It sure does!
still the same as the first twelve in
bakers-dozen-too

What is the value of #t.
(eklist? bakers-dozen bakers-dozen-too)
where

(define eklist?
(lambda (Is! ls2)
(cond
((null? Is1) (null? [s2))
((null? 1s2) #f)
(else
(and (eg? (kar Is1) (kar [s2))
(eklist? (kdr Is1) (kdr 1s2)))))))

What does “the same”™ mean? That is a deep philosophical question.
Thank vou, Gottfried W. Leibniz
(1646-1716).
There is a new idea of “sameness” once we And that is?

introduce (set! ...)

Two konses are the same if changing one What does that mean?
changes the other.

How can we change a kons We defined set-kdr so that we could add a
new egg at the end of the list without
additional konses.

Suppose we changed the first kons in dozen. No.
Would it cause a change in the first kons of
bakers-dozen

We Change, Therefore We Are the Same! 149

Suppose again we changed the first kons in
dozen. Would it cause a change in the first
kons of bakers-dozen-too

Yes!

Time to define this notion of same.

(define same?
(lambda (¢l ¢2)
(let ((t1 (kdr e1))

(12 (kdr c2)))

(set-kdr ¢l 1)

(set-kdr ¢2 2)

(let ((v (= (kdr el) (kdr ¢2))))
(set-kdr cl t1)
(set-kdr c2 t2)

{ v))))

Thank you, Gerald J. Sussman
and Guy L. Steele Jr.

What is the value of
(same? bakers-dozen bakers-dozen-too)

#t.

Why?

The function same? temporarily changes the
kdrs of two konses. Then, if changing the
second kons also affects the first kons, the
two must be the same.

Could you explain this again?

If someone overate and you have a stomach
ache, you are the one who ate too much.

How many imaginary names are used to
determine the value of
(same?
(kons (quote egg) (quote ()))
(kons (quote egg) (quote ())))

Two. One for the first kons and one for the
second.

What is its value?

#1.

150

Chapter 18

How did same? determine the answer?

The function first names the values of the
kdrs. Then it changes them to different
numbers. The answer is finally determined
by comparing the values of the two kdrs.
Finally, the set-kdrs change the respective
kdrs so that they refer to their original
values.

Here is the function last-kons

(define last-kons
(lambda (Is)
(cond
((null? (kdr Is)) ls)
(else (last-kons (kdr Is))))))

Describe what it does.

The function last-kons returns the last kons
in a non-empty kons-list.

(define long (lots 12)) Fine.
What does long refer to? (egg egg egg egg egg egg
egE ege egE eE egg egg).

What would be the value of
(set-kdr (last-kons long) long)

Did vou notice the subjunctive mood?

And then, what would be the value of
(lenkth long)

No answer.

What is the value of
(set-kdr (last-kons long) (kdr (kdr long)))

What is the value of
(lenkth long)

Still no answer.

We Change, Therefore We Are the Same!

151

Here is the function finite-lenkth which
returns its argument’s length, if it has one. If
the argument doesn’t have a length, the
function returns false.

(define finite-lenkth
(lambda (p)
(letce infinite
(letrec
((C' (lambda (p ¢)

(cond

((same? p q)
(infinite #f))
((null? q) 0)
((null? (kdr q)) 1)
(else
(+ (C (sl p) (gk 7))
2)))))
(gk (lambda (z) (kdr (kdr))))
(sl (lambda (z) (kdr z))))
(cond
((null? p) 0)
(else
(addl (C p (kdr p)))))))))

Bon appétit.

Guy’s Favorite Pie

(define mongo
(kons (quote pie)
(kons (quote a)
(kons (quote la)

(quote ()))))))

(kons (quote mode)

(set-kdr (kdr (kdr (kdr mongo))) (kdr mongo))

We Change, Therefore We Are the Same!

153

We see you have arrived here.

Let's continue.

What is the value of (deep 6)

((((((pizza))))))-

Here is deep again.

(define deep
(lambda (m)
(cond
((zero? m) (quote pizza))
(else (cons (deep (subl m))

(quote ()))))))

Yes, this is our friend.

How did you determine the value of (deep 6)

The value is determined by answering the
single question asked by deep.

What is the question asked by deep

The question is (zero? m). If deep’s
argument is zero, the value of (deep m) is
pizza. If it is not, we need to determine the
value of (deep (subl m)) and cons its value
onto the null list.

What is the answer to (zero¥ 5)

Why are we doing this? We practiced this
kind of thing in chapter 2.

So do you remember these questions?

Sure do.

When (deep 0) returns the value pizza, how
many cons steps do we have to pick up to
find out what the value of (deep 6) is?

Six.

Absconding with the Jewels

155

And they are?

Simple,
we need to:

. cons the pizza onto ()

. cons the result of 1 onto ()
. cons the result of 2 onto ()
. cons the result of 3 onto ()
. cons the result of 4 onto ()
. cons the result of 5 onto ().

=T R L

And if deep's task had been to make a
mozzarella pizza, what steps would we have
had to do then?

We just use mozzarella and do whatever we
needed to do before:

cons the mozzarella onto ()
cons the result of 1 onto ()
cons the result of 2 onto ()
cons the result of 3 onto ()
cons the result of 4 onto ()
cons the result of 5 onto ().

LRl S il

How about a Neapolitan?

Perhaps we should just define the function
sir-layers and use it to create the pizzas we
want:

(define siz-layers
(lambda (p)
(econs
(cons
(cons
(cons
(cons
(cons p (quote ()))
(quote ()))
(quote ()))
(quote ()))
(quote ()))
(quote ()))))

But what if we had started with (deep 4)

Then we would have had to define
four-layers to create these special pizzas.

156

Chapter 19

That will help.

You mean what we saw isn't all there is to it?

Not even half.

Okay. Let’s see more.

That’s what we shall do. Here is a first layer:

(define toppings)

(define deepB
(lambda (m)
(cond

((zero? m)

(letee jump
(set! toppings jump)
(quote pizza)))

(else (cons (deepB (subl m))

(quote ()))))))

This use of (letce ...) is different from
anything we have seen before.!

!y Thisis impossible in Lisp, but Scheme can do it.

How is it different?

To begin with, the value part of (leteec ...)
has two parts.

Have we seen this before?

Yes, (let ...) and (letrec ...) sometimes
have more than one expression in the value
part.

What else is different about (letec ...)

We don’t seem to use jump the way we used
hop in chapter 13.

True. What does deepB do with jump

It seems to be remembering jump in
toppings.

What could it mean to “remember jump”?

We don’t even know what jump is.

What was deep when we asked for the value
of (deep 9)

Easy: deep was the name of the function that
we defined at the beginning of the chapter.

158

Chapter 19

So what was hop when we asked for the
value of (hop (gquote ())) in chapter 137

We said it was a compass needle. Could hop
also be a function?

What would be the value of (deepB 6)

No problem: ((((((pizza)))))).

And what else would have happened?

We would have remembered jump, which
appears to be some form of function, in

toppings.

So what is (siz-layers (quote mozzarella))

((({((mozzarella)))))).

What would be the value of (toppings e)
where
e is mozzarella

Yes, it would be (((({(mozzarella}))))).

And what about (toppings e)
where e is cake

((((((cake)))))).

(toppings (quote pizza)) would be

((((((pizza))))))
right?

After mozzarella on cake, nothing’s a surprise
anymore.

Just wait and see.

Why?

Let’s add another layer to the cake.

Easy as pie: just cons the result onto the
null list.

Like this: (cons (toppings m) (quote ()))
where m is cake

That should work, shouldn’t it?

You couldn’t possibly have known!

It doesn’t. Its value would be
((((((cake}))))).

Absconding with the Jewels

Let’s add three slices to the mozzarella:
(cons
(cons
(cons (toppings (quote mozzarella))

(quote ()))
(quote ()))
(quote ()))

((((((mozzarella)))))), same as above. Except
that we get mozzarella pizza instead of cake.

Can you explain what happens?

We haven't told you yet, but here is the
explanation:
“Whenever we use (toppings m) it forgets
everything surrounding it and adds exactly
six layers of parentheses.”

Suppose we had started with (deepB 4)

Then toppings would be like the function
four-layers but it would still forget.

That means
{ cons
(cons
(cons (toppings (quote mozzarella))

(quote ()))
(quote ()))
(quote ()))

would be ((((mozzarella))))

Yes!

The Twentieth Commandment

When thinking about a value created with (letcc ...),
write down the function that is equivalent but does not
forget. Then, when you use it, remember to forget.

What would be the value of
(cons (toppings (quote cake))
(toppings (quote cake)))

((((cake)))), no?

160

Chapter 19

And what is the value of ((((((pizza))))))-
(deepbico 6 (lambda (z) z))

(deepfico 2 (lambda (z) x)) ((pizza)), of course.

And how do we get there? We ask (zero? 2), which isn’t true, and then
determine the value of
(deepbico 1
(lambda (zx)
(k (cons x
(quote ())))))
where

k is (lambda (z) z).

How do we do that? We check whether the first argument is 0
again, and since it still isn’t, we recur with
(deepico 0
(lambda (=)
(k (cons
(quote ())))))
where

k is (lambda (z)
(k2 (cons =
(quote ()))))

and
k2 is (lambda (z) x).

Is there a better way to describe the Yes, it is equivalent to two-layers.
collector?

(define fwo-layers
(lambda (p)
(cons
(cons p (quote ()))
(quote ()))))

162 Chapter 19

We can replace k2 with (lambda (z) z),
which shows that k is the same as
(lambda (z)
(cons z (quote ()))).

And then we can replace k with this new
function.

Are we done now?

Yes, we just use two-layers on pizza because
the first argument is 0, and doing so gives
((pizza)).

What is the last collector when we determine
the value of (deepfco 6 (lambda (r) x))

When the first argument for deepfico finally
reaches 0, the collector is the same function
as sir-layers.

And what is the last collector when we
determine the value of
(deepbico 4 (lambda (z) z))

four-layers.

And now take a close look at the function
deepbicoB

(define deepficoB
{lambda (m k)
(cond
((zero? m)
(let ()
(set! toppings k)
(k (quote pizza))))
(else
(deeptécoB (subl m)
(lambda ()
(k (cons x (quote ())))))))))

This function remembers the collector in
toppings.

Absconding with the Jewels

163

What is toppings after we determine the
value of (deepficoB 2 (lambda (z) 7))

It is
(lambda (z)
(k (cons
(quote ()))))
where

k is (lambda (z)
(k2 (cons z
(quote ()))))
and

k2 is (lambda (z) z).

So what is it?

It is two-layers.

And what is toppings after we determine the
value of (deepticoB 6 (lambda (z) z))

It is equivalent to siz-layers.

What is the value of
(deepfcoB 4 (lambda (z) z))

((((pizza)))).

What is toppings

It is just like four-layers.

Does this mean that the final collector is
related to the function that is equivalent to
the one created with (letee ...) in deepB

Yes, it is a shadow of the value that
(letee ...) creates.

What would be the value of
(cons (toppings (quote cake))
(toppings (gquote cake)))

(((((cake)))) (((cake)))), not ((((cake)))).

Yes, this version of teppings would not forget
everything. What would be the value of
(cons (toppings (quote cake))
(cons (toppings (quote mozzarella))
(cons (toppings (quote pizza))

(quote ()))))

(((((cake)))) ((((mozzarella)))) ((((pizza)))))-

164

Chapter 19

Beware of shadows!

That's correct: shadows are close to the real
thing, but we should not forget the difference
between them and the real thing.

Do you remember the function twe-in-a-row?

Sure, we defined it in chapter 11.

What is the value of (two-in-a-row? lat) #.
where

lat is (mozzarella cake mozzarella)
What is the value of (two-in-a-row? lat) #t.

where
lat is (mozzarella mozzarella pizza)

Here is our original definition of
two-in-a-row?

(define two-in-a-row?
(lambda (lat)
(cond
((null? lat) #f)
(else (two-in-a-row-b¥ (car lat)

(edr lat))))))

(define two-in-a-row-b?
(lambda (a lat)
(cond
((null? lat) #f)
(else (or (eq? (car lat) a)
(two-in-a-row-b? (car lat)

(edr lat)))))))

Sure, and here is the better version from
chapter 12:

(define two-in-a-row?

(letrec
((W (lambda (a lat)
(cond
((null? lat) #f)
(else
(let ((nzt (car lat)))
(or (eq? nxt a)

(W nxt
(edr lat)))))))))
(lambda (lat)
(cond
((null? lat) #f£)

(else (W (car lat) (cdr lat)))))))

Explain what two-in-a-row? does.

Easy,
it determines whether any atom occurs
twice in a row in a list of atoms.

Absconding with the Jewels

What is the value of (two-in-a-row*?)
where
1 is ((mozzarella) (cake) mozzarella)

Are we going to think about “stars”?

Yes. What is the value of (two-in-a-row*? [)
where
[is ((mozzarella) (cake) mozzarella)

What is the value of (two-in-a-row*¥ [)
where
I is ((potato) (chips ((with) fish) (fish)))

#t.

What is the value of (two-in-a-row*? [)
where
I is ((potato) (chips ((with) fish) (chips)))

#f,

What is the value of (two-in-a-row*¥? [)
where

[is ((potato) (chips (chips (with) fish)})

#t.

Can yon explain what two-in-a-row*? does?

Here are our words:

“The function two-in-a-row*# processes a
list of S-expressions and checks whether
any atom occurs twice in a row, regardless
of parentheses.”

What would be the value of (walk [)
where

I is ((potato) (chips (chips (with))) fish)

We haven't seen walk yet.

166

Chapter 19

Here is the definition of walk

(define leave)

(define walk
(lambda (I)
{cond
((null? 1) (quote ()})
((atom? (car 1))
(leave (car [)))
(else
(let ()
(walk (car 1))
(walk (cdr 1)))))))

Have we seen something like this before?

Yes, walk 1s the minor function Im in

leftmost.

(define leftmost
(lambda (1)
(letce skip
(letrec
((Im (lambda (1)
(cond
((null? 1) (quote ()))
((atom¥ (car [))
(skip (car 1))
(else
(let ()
(Im (car 1))
(Im (edr 1))))))))

(Im 1)))))

And what does Im do?

It searches a list of S-expressions from left to
right for the first atom and then gives this
atom to a value created by (letee ...).

So, what would be the value of (walk [)
where
[is ((potato) (chips (chips (with))) fish)

If leave is a magnetic needle like skip, walk
uses it on the leftmost atom.

Does this mean walk is like leftmost if we put

the right kind of value into leave

Yes!

What would be the value of (start-it {)
where

[is ({potato) (chips (chips (with))) fish)
and the definition for start-it is

(define start-it

(lambda (I)

(letce here
(set! leave here)

(walk 1))))

Okay, now leave would be a needle!

Absconding with the Jewels

167

Why?

Because start-it first sets up a North Pole
and then remembers it in leave. When we
finally get to (leave (car l)), leave is a needle
that is attracted to the North Pole in start-it.

What would be the value of leave

It would be a function that does whatever is
left to do after the value of (start-it 1) is
determined.

And what would be the value of (start-it [)

It would be potato.

Can you explain how to determine the value
of (start-it 1)

Your words could be:

“The function start-it sets up a North Pole
in here, remembers it in leave, and then
determines the value of (walk I). The
function walk crawls over [from left to
right until it finds an atom and then uses
leave to return that atom as the value of
(start-it 1).”

Write the function waddle which is like walk
except for two small things.

What things?

First, if (leave (car I)) ever has a value,
waddle should look at the elements in (edr [)

That’s easy: we just add (waddle (cdr I))
after (leave (car 1)), ordering the two steps
using (let () ...):
(let ()

(leave (car 1))

(waddle (edr 1))
But why would we want to do this? We
know that leave always forgets.

Because of our second change.

And that is?

168

Chapter 19

Second, before determining the value of
(leave (car 1))

the function waddle should remember in fill

what is left to do.

This is similar to what we did with deepB.

(define fill)

(define waddle
(lambda (1)
(cond
((null? 1) (quote ()))
((atom? (car 1))
(let ()
(letecc rest
(set! fill rest)
(leave (car [)))
(waddle (cdr 1))))
(else (let ()
(waddle (car 1))
(waddle (cdr 1)))))))

Is it now possible that (leave (car 1)) yields a
value?

No, not really! But something similar may
occur: if fill is ever used, it will restart
waddle.

One step at a time! We need to learn to walk
before we run! What would be the value of
(start-it2 1)
where
[is ((donuts)
(cheerios (cheerios (spaghettios)))
donuts)
and

(define start-it2
(lambda (1)
(letee here
(set! leave here)
(waddle 1))))

donuts,
of course.

But?

In addition, waddle would remember rest in
fill.

Absconding with the Jewels

169

What is rest

It is a needle, just as jump in deepB.

Didn't we say that jump would be like a
function?

Yes, it would have been like a function, but
when used, it would have also forgotten what
to do afterward.

What kind of function does rest correspond
to?

I rest is to waddle what jump is to deepB,
the function ignores its argument and then it
acts like waddle for the rest of the list until it
encounters the next atom.

Why does this function ignore its argument?

Because the new North Pole creates a
function that remembers the rest of what
waddle has to do after (letcc ...) produces a
value. Since the value of the first expression
in the body of (let () ...) is ignored, the
function throws away the value of the
argument.

What does the function do afterward?

It looks for the first atom in the rest of the
list and then uses leave on it. It also
remembers what is left to do.

What is the rest of the list?

Since [is ((donuts)
(cheerios (cheerios (spaghettios)))
donuts),
the rest of the list without the first atom
is (()
(cheerios (cheerios (spaghettios)))
donuts). '

170

Chapter 19

Can you define the function that corresponds
to rest

No problem:

(define rest!
(lambda ()
(waddle 11)))

where
I is(()
(cheerios (cheerios (spaghettios)))
donuts).

Was this really no problem?

Well, z is never used but that’s no problem.

What would be the value of
(get-next (quote go))
where

(define get-next
(lambda (z)
(letee here-again
(set! leave here-again)
(fill (quote go)))))

The value would be cheerios.

Because fill is like restl, except that it
forgets what to do. Since (rest! (quote go))
would eventually determine the value of
(leave (quote cheerios)), and since leave is
just the North Pole here-again, the result of
(get-next (quote go)) would be just cheerios.

And what else would have happened?

Well, fill would now remember a new needle.

And what would this needle correspond to?

It would have corresponded to a function like
rest], except that the rest of the list would
have been smaller.

Absconding with the Jewels

171

Define this function.

(define rest2
(lambda (z)

(waddle 12)))

where
12 is (((cheerios (spaghettios)))
donuts).

Does get-next deserve its name?

Yes, it sets up a new North Pole for fill to
return the next atom to.

What else does it do?

Just before fill determines the next atom in
the list of S-expressions that was given to
start-it2, it changes itself so that it can
resume the search for the next atom when
used again.

Does this mean that the value of

{ get-next (quote go))
would be cheerios again?

Yes, if after determining the first value of
(get-next (quote go)) we asked for the value

again, we would again receive cheerios,

because the original list
was ((donuts)
(cheerios (cheerios (spaghettios)))
donuts).
And if we were to determine the value of spaghettios,
(get-next' (quote go)) a third time, what because the next atom in the list is
would we get? spaghettios.
! Thlsllu ot a nTal.hema.tictl function.
Let's imagine we asked donuts.
(get-next (quote go))
for a fourth time.
Last time: (gei-next (quote go)) Wow!

172

Chapter 19

Wow, what? Since donuts is the very last atom in [,
waddle finally reaches (null?)
where [is ().

And then? Well, the final value is ().

What is so bad about that?

If we had done all of what we intended to do,
we would be back where we originally asked
what the value of (start-it2 1) would be
where
! was ((donuts)
(cheerios (cheerios (spaghettios)))
donuts).

And from there on?

Heaven knows what would happen. Perhaps
it was a good thing that we always asked
“what would be the value of” instead of
“what is the value of.”

Why would it get back to start-it2

Once the original input list to waddle is
completely exhausted, it returns a value
without using any needle. In turn, start-it2
returns this value, too.

What should happen instead?

If get-next really deserves its name, it should
return (), so that we know that the list is
completely exhausted.

But didn't we say that get-next deserved its
name?

We did and it does most of the time. Indeed,
with the exception of the very last case,
when the original input list is exhausted,
get-next works exactly as expected.

Does this mean that start-it2 would deserve
the name get-first

No, it wouldn't. It does get the first atom,
but later it also returns () when everything is
OVer.

Absconding with the Jewels

173

Is it also true that waddle doesn't use leave
to return ()

Yes, it is.

And is it true that using (leave (quote ()))
after the list is exhausted would help things?

Yes, it would: if leave were used, then
get-next would return () eventually, and we
would know that the list was exhausted.

Does get-first deserve its name:

(define get-first
(lambda (I)
(letce here

(set! leave here)
(waddle 1)

(leave (quote ())))))

Yes!

Does (get-first 1) return () when [doesn't
contain an atom?

Yes!

And does get-nert deserve its name?

Yes!

Does (get-nert (quote go)) return () when
the latest argument of get-first didn’t contain
an atom?

Yes!

(get-first I)
where [is (donut)

donut.

(get-next (quote go))

0-

What would (get-first [) be
where

I was (fish (chips))

fish.

174

Chapter 19

Why does two-in-a-row-b*¥ check whether n
is an atom?

Returning (), a non-atom, is get-nezxt’s way
of saying that there are no more atoms in [.

Didn't we forget The Thirteenth
Commandment?

That’s easy to fix, and since get-first is only
used once, we can get rid of it, too:

(define two-in-a-row*?
(letrec

((T? (lambda (a)
(let ((n (get-next 0)))
(if (atom¥ n)
(or (eq? n a)
(T¢m))
#f))))
(get-next
(lambda (z)
(letee here-again
(set! leave here-again)
(fill (quote go)))))
(fill (lambda (z) z))
(waddle
(lambda (1)
(cond
((null? I) (quote ()))
((atom? (ear 1))
(let ()
(letee rest
(set! fill rest)
(leave (car 1))
(waddle (cdr 1))))
(else (let ()
(waddle (car 1))
(waddle (edr 1)))))))
(leave (lambda (z) x)))

(lambda (1)
(let ((fst (letce here
(set! leave here)
(waddle 1)
(leave (quote ())))))
(GF (atom? fst) (T? fst) #1)))))

176

Chapter 19

Do you remember tables from chapter 107

A table is something that pairs names with
values.

How did we represent tables?

We used lists and entries.

Could a table be anything else?

Yes, a function. A table acts like a function,
because it pairs names with values, in the
same way that functions pair arguments with
results.

So let’s use functions to make tables. Here is
a way to make an empty table:

(define the-empty-table
(lambda (name)

)

Don't fill in the dots!

In The Little Schemer we used
(car (quote ())).

What does that do?

It breaks The Law of Car.

If a table is a function, how can we extract
whatever is associated with a name?

We apply the table to the name.

Write the function lookup that does that.

(define lookup
(lambda (table name)
(table name)))

Can vou explain how extend works?

(define extend
(lambda (namel value table)
(lambda (name?2)
(cond
((eq¥ name2 namel) value)
(else (table name2))))))

Here are our words:

“It takes a name and a value together with
a table and returns a table. The new table
first compares its argument with the name.
If they are identical, the value is returned.
Otherwise, the new table returns whatever
the old table returns.”

What's in Store?

179

What is the value of No answer.
(define = 3)
What is (value e) No answer.

where
e is (define x 3)

What is value

The name is familiar from chapter 10. But,
the function value there does not handle
(define ...).

So the new value might be defined like this.

(define value
(lambda (¢)
(cond
((define? e) (*define e))
(else (the-meaning €))) ...))

Yes, this might do for a while. And don’t
bother filling in the dots, now. We will do
that later.

Should we continue with (letec ...) now?

Oh no!

Okay, we'll wait until later.

Whew!

Do we need define?

We don’t need to define it now, because it is
easy, but here it is anyway.

(define define?
(lambda (e)
(cond
((atom? e) #f)
((atom¥ (car e))
(eq? (ecar e) (quote define)))

(else #f))))

180

Chapter 20

Do we need *define

Yes, we need it. With (define ...), we can
add new definitions.

Here is *define

(define global-table
... the-empty-table ...)

(define *define
(lambda (e)
(set! global-table
(extend
(name-of €)
(boz
(the-meaning

(right-side-of €)))

global-table))))

This function looks like one of those
functions that remembers its arguments.

Yes, *define uses global-table to remember
those values that were defined.

The table appears to be empty at first.

Is it empty?

We shall soon find ont.

When *define extends a table with a name
and a value, will the name always stand for
the same value?

No, with (set! ...) we can change what a
name stands for, as we have often seen.

I= this the reason why *define puts the value
in a bor before it extends the table?

If we knew what a bor was, the answer might
be yes.

Here is the function that makes bores:

(define boz
(lambda (it)
(lambda (sel)
(sel it (lambda (new)
(set! it new))))))

Does this remind you of something we have
discussed before?

It should: bons from chapter 18 is a similar
function.

What's in Store?

181

Have we seen this before?

Remember Y) from chapter 167

Is it important that we always have the most
recent value of global-table

Yes, we will soon see why that is.

Here is meaning

(define meaning
(lambda (e table)

((ezpression-to-action ¢)

e table)))

What do vou think the function
erpression-to-action does?

It translates e to a function that knows what
to do with the expression and the table.

Do we need to define expression-to-action

No, we have seen it in chapter 10; it is easy;
and it can wait until later.

Fine, we will consider it later.

Okay.

Here is the most trivial action.

(define *quote
(lambda (e table)

(text-of €)))

Can vou define *identifier

The function *identifier is similar to *guote,
but it uses table to look up what a given
name is paired with.

And what is a name paired with?

A name is paired with a box that contains its
current value. So *identifier must unboz the
result of looking up the value.

And how does *identifier look up the value?

It’s best to have *identifier use lookup, which
finds the box that is paired with the name in
the table.

(define *identifier
(lambda (e table)
(unboz (lookup table e))))

What's in Store?

183

Okay one more:

Trivial, with that kind of name:

(define beglis
(lambda (es table)
(cond
((null? (edr es))
(meaning (car es) table))
(else ((lambda (val)
(beglis (edr es) table))

(meaning (car es) table))))))

Can vou define boz-all

(define boz-all
(lambda (vals)
(cond :
((null? vals) (quote ()))
(else (cons (box (car vals))
(boz-all (cdr vals)))))))

Take a look at beglis

What is
((lambda (val) ...)
(meaning (car es) table))

It is the same as
(let ((val (meaning (car es) table)))
)

which first determines the value of
(meaning (car es) table) and then the value
of the value part.

Why didn’t we use (let ...)

Our functions will work for all the definitions
that we need for them. And they do not need
to deal with expressions of the shape (let ...)
because we know how to do without them.

How do vou do without (let ...) in
(let ((z 1)) (+ = 10))

Like this: it's the same as
((lambda (z) (4 = 10)) 1).

Do you remember how to do without
(let ...) in

(let ((z 1) (y 10)) (+ = y))

Yes, it's the same as
((lambda (z y) (+ z ¥)) 1 10).

S0 what does
(let ((val (meaning (car es) table)))
(beglis (cdr es) table))
do for beglis

First, it determines the value of
(meaning (car es) table) and names it val.
And then, it determines the value of

(beglis (cdr es) table).

What happens to the value named val

Nothing. It is ignored.

186

Chapter 20

Why did we determine a value that is
ignored in the end?

Because the values of all but the last

expression in the value part of a
(lambda ...) are ignored.

Can you summarize now what the function
beglis does for *lambda

We summarize:
“The function beglis determines the values
of a list of expressions, one at a time, and
returns the value of the last one.”

How does *lambda work?

When given (lambda (xy ...} ...), it returns
the function that is in the inner box of
*lambda.

What does that function do?

It takes the values of the arguments and
apparently extends table, pairing each formal
name, x, y, ..., with the corresponding
argument value.

Write the function multi-extend, which takes

a list of names, a list of values, and a table
and constructs a new table with extend

No problem.

(define multi-extend
(lambda (names values table)
(cond
((null? names) table)
(else
(extend (car names) (car values)

(multi-extend

(edr names)

(edr values)

table))))))

Okay, so now that we know how table is
extended, what happens after the new table
is constructed?

The function that represents a (lambda ...)
expression uses the resulting table to
determine the value of the body of the
(lambda ...) expression, which was the first
argument to *lambda.

What's in Store?

187

Which parts of the table can change even
though the table stays the same?

Each box that the table remembers for any
given name may change its value.

That's how (set! ...) works, right?

True.

Write odd? and even? as recursive functions.

Do you mean this pair of functions?

(define odd?
(lambda (n)
(cond

((zero? n) #f)
(else (even? (subl n))))))

(define even?
(lambda (n)
(cond

((zero? n) #t.)
(else (odd? (subl n))))))

Yes, what is (value e) No answer.
where
e is (define odd?
(lambda (n)
{cond

((zero? n) #f)

(else (even? (subl n))))))
What is (value (quote odd?)) A function.

Which table does the function use when we
ask (value ¢)
where

¢ is (odd? 0)

The function extends lookup-in-global-table
by pairing n with (a box containing) 0.

And then?

Eventually we get the result: #f.

188

Chapter 20

What kind of function does *application
expect from (meaning e table)
where

e is car

It will need to be a function that takes all of
its arguments in a list and then does the
right thing.

How many values should the list contain that
(meaning (quote car) table) receives?

Exactly one.

And what kind of value should this be?

The value must be a list. And then we take
its car.

Define the function that we can use to
represent car

Let's call it :car.

(define :car
(lambda (args-in-a-list)
(car (car args-in-a-list))))

Are there other primitives for which we
should have a representation?

Yes, edr is one, and add] is another.

We should have a function that makes
representations for such functions.

Here is one:

(define a-prim
(lambda (p)
(lambda (args-in-a-list)
(p (car args-in-a-list)))))

We also need one for functions like cons that
take two arguments.

No problem: now the argument list must
contain exactly two elements, and we just do
what is necessary:

(define b-prim
(lambda (p)
(lambda (args-in-a-list)
(p (car args-in-a-list)
(car (edr args-in-a-list))))))

What’s in Store?

191

And now we can define *const

(define *const
(lambda (e table)
(cond

((number? ¢) e)
((eq? e #t) #t)
((eq? e #F) #f)
({eq? e (quote cons))
(b-prim cons))
({eq? e (quote car))
(a-prim car))
((eq? e (quote cdr))
(a-prim cdr))
((eq? e (quote eq?))
(b-prim eq¥))
((eq? e (quote atom?))
(a-prim atom¥?))
((eq? e (quote null?))
(a-prim null?))
((eq? e (quote zero?))
(a-prim zero?))
({eg¥ e (quote addl))
(a-prim addi))
((eq? e (quote subl))
(a-prim subl))
((eg? e (quote number?))
(a-prim number?)))))

Can vou rewrite *const using (let . ..

Where? Why? There are no repeated

exXpressions.

What is (value €)

We add Is to global-table and rember what it

where stands for.
e is (define Is
(cons
(cons
(cons 1 (quote ()))
(quote ()))
(quote ())))
What is (value e) 1.

where
e is (car (car (car ls)))

192

Chapter 20

How do we determine this value?

It is an application, so we need to find out
what car is and the value of the argument.

How do we determine the value of car

We use the function *const:
(*const (quote car)) tells us.

And that is?

It is the same as (a-prim ear), which is like
LOAT.

How do we determine the value of the
argument?

It is an application, so we need to find out
what car is and the value of the argument.

(value (quote car))

We use the function *eonst:
(*const (quote car)) tells us.

And?

It is the same as (a-prim car), which is like
JCAr.

How do we determine the value of the
argument?

It is an application, so we need to find out
what car is and the value of the argument.

(value (quote car))

We use the function *const:

(*const (quote car)) tells us.

How often did we have to figure out the Three times.
value of (a-prim car)
Is it the same value every time? It sure is.

Is this wasteful?

Yes: let’s name the value!

Can we really use (let ...)

We can: we just saw how to replace it.

What's in Store?

193

Where do we put the (let ...)

Around (cond ...)?

When would we determine the values in this
(let ...)

Each time *ronst determines the value of car.

So this wouldn’t help.

Let's put the (let ...) outside of

(lambda ...).
Here is *const with (let ...) d "
(define *const ((lambda (:cons :car :edr mull?
:eq? :atom?

(let ((:cons (b-prim cons))

(:car (a-prim car))

(:edr (a-prim cdr))

(null? (a-prim null?))

(-eq? (b-prim eq?))

(:atom? (a-prim atom¥?))

(:number? (a-prim number?))

(:zero? (a-prim zero?))

(:addl (a-prim addl))

(:subl (a-prim subl))

(:number? (a-prim number?)))

(lambda (e table)

{cond
((number? e) e)
((eq? e #t) #t)
((eq? e #f) #f)
((eq? e (quote cons)) :cons)
((eg? e (quote car)) :ear)
((eq? e (quote cdr)) :edr)
((eq? e (quote null?)) mull?)
((eg? e (quote eq?)) req¥)
((eq? e (quote atom?)) :atom¥)
((eg? e (quote zero?)) :zero¥)
((eq? e (quote addl)) :addl)
((eq? e (quote subl)) :subl)
((eq? e (quote number?))

number?)))))

Can you rewrite *ronst without (let ...)

:zero? :addl :subl mumber?)|
(lambda (e table)
(cond
((number?) e)
((eq? e #t) #t)
((eg? € #f) #f)
((eg? e (quote cons)) :cons)
((eg? e (quote car)) :car)
((eq? e (quote cdr)) :edr)
((eg? e (quote null?)) null?)
((eg? e (quote eq?)) :eq¥)
((eg? e (quote atom?)) :atom?)
((eg? e (quote zero?)) :zero?)
((eg? e (quote addl)) :addl)
((eg? e (quote subl)) :subl)
((eg? e (quote number?))
:number¥))))

(b-prim cons)

(a-prim car)

(a-prim cdr)

(a-prim null?)

(b-prim eq¥)

(a-prim atom?)

(a-prim zero¥)

(a-prim addl)

(a-prim subl)

(a-prim number?)))

194

Chapter 20

Ummﬂ%u%ﬁmnl‘mﬁﬁ#
Rice University. Together they have taught courses on ng
m&%mﬁmhnﬁymmdpnwmmmm&m&uh

on these topics.

The MIT Press
Massachusetts Institute of Technology

Cambridge, Massachusetts 02142

0-262-56100-X

9 ‘?BDZ&ZH

) s

56100

www-mitpress.mit.edu

