

Beginning
Lua Programming

01_069172 ffirs.qxp 1/2/07 7:52 PM Page i

01_069172 ffirs.qxp 1/2/07 7:52 PM Page ii

Beginning
Lua Programming

Kurt Jung and Aaron Brown

01_069172 ffirs.qxp 1/2/07 7:52 PM Page iii

Beginning Lua Programming
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-06917-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/SS/QR/QX/IN

Library of Congress Cataloging-in-Publication Data
Jung, Kurt, 1956-
Beginning Lua programming / Kurt Jung and Aaron Brown.

p. cm.
ISBN-13: 978-0-470-06917-2 (pbk.)
ISBN-10: 0-470-06917-1 (pbk.)
1. Lua (Computer program language) I. Brown, Aaron, 1973- II. Title.
QA76.73.L82J96 2007
005.13’3--dc22

2006036460

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Cen-
ter, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Lua 5.0 Copyright © 1994-2006, Lua.org, PUC-Rio

Lua 5.1 Copyright © 2006, Lua.org

The Lua logo was designed by Alexandre Nakonechnyj.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

01_069172 ffirs.qxp 1/2/07 7:52 PM Page iv

www.wiley.com

About the Authors
Between his first programs submitted to a Burroughs 5500 on Hollerith punch cards and his latest programs
tapped into a Palm Pilot, Kurt Jung has been the principal programmer on various projects ranging from
airline yield management to state machine–driven workflow.

Aaron Brown began programming in elementary school on a Commodore 64. He plays various musical
instruments and speaks Esperanto.

01_069172 ffirs.qxp 1/2/07 7:52 PM Page v

01_069172 ffirs.qxp 1/2/07 7:52 PM Page vi

Credits
Acquisitions Editor
Kit Kemper

Development Editor
Maryann Steinhart

Technical Editor
Adam Dumas

Production Editor
Rachel Meyers

Copy Editor
Kathryn Duggan

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Denny Hager
Shane Johnson
Barry Offringa
Heather Ryan

Quality Control Technician
John Greenough
Jessica Kramer

Project Coordinator
Erin Smith

Proofreading and Indexing
Techbooks

Anniversary Logo Design
Richard Pacifico

01_069172 ffirs.qxp 1/2/07 7:52 PM Page vii

01_069172 ffirs.qxp 1/2/07 7:52 PM Page viii

Acknowledgments

This project has had strong and capable guidance from Kit Kemper and Maryann Steinhart at Wiley
Publishing. Maryann was remarkably responsive in making sure our questions were answered promptly.
May Kit and Maryann land leading roles when Hollywood makes Beginning Lua Programming into a
major motion picture.

Laurels and commendations go to Adam Dumas, the best technical editor a book could possibly have.
Adam’s thoroughness and attention to detail uncovered a humbling number of issues with the manuscript,
all of which were brought to our attention in the most courteous and constructive way and often with
insightful corrections.

The Lua community provided much help and many answers. Thanks go to Roberto Ierusalimschy,
Waldemar Celes, and Luiz Henrique de Figueiredo for creating a remarkable language about which
it is easy to remain enthusiastic. Roberto and Luiz Henrique also answered some specific questions
related to this book. The following people were very helpful in answering questions about their respec-
tive projects: André Carregal (LuaForge and the Kepler Project), Mark Hamburg (Adobe Lightroom),
Asko Kauppi (LuaSDL and LuaX), and Kein-Hong Man (ChunkSpy and the No-Frills Introduction to
Lua 5.1 VM Instructions).

From Kurt Jung: Collaborating with an individual as gifted and inventive as Aaron has been an entirely
rewarding experience. It’s with great pleasure that I look forward to future projects together. Multajn
dankojn, mia bonamiko.

The encouragement of my mother and other family members has been greatly appreciated. Although
writing this book may have given me a great excuse to delay various chores (most notably the one
involving a lawn mower) and household repairs, it never interfered with the frequent, pleasurable, and
bonding walks I take with my wife Maura, daughter Laura, and our bundle of canine energy, Brilla.
I owe the greatest thanks to Maura for her support during this endeavor.

From Aaron Brown: Apart from being my programming mentor, inviting me to collaborate on this book
with him, and being an all-around nice guy, Kurt Jung is one of the few true kindred spirits I have
encountered. Mia teraplano estas plena je angiloj!

Cathy Lewis gave advice on the writing process at a pivotal moment. She (in her capacity as my girlfriend),
my bandmates, and family also deserve thanks for their understanding of my reduced availability while
slaving in the book mines.

Special thanks to Mom (a.k.a. Marty Brown), who bought me that first computer so long ago.

01_069172 ffirs.qxp 1/2/07 7:52 PM Page ix

01_069172 ffirs.qxp 1/2/07 7:52 PM Page x

Contents

Acknowledgments ix
Introduction xxiii

Chapter 1: Getting Situated 1

Choosing How to Install Lua 1
Building Lua Yourself 2
Selecting Prebuilt Lua 3

Finding Your System’s Shell 3
Windows Shells 3
Shells on Unix and Unix-Like systems 3
Shell Features 4
The Environment 4

Environment Variables on Unix-Like Systems 4
Environment Variables on Windows 5

Dealing with Tarballs and Zip Files 6
Compiling Lua 7

The Lua Source Tarball 7
Compiling Lua on Linux and Other Unix-Like Systems 8
Compiling Lua on Windows 12

Building Lua with Microsoft Visual C++ 13
Building Lua with the Tiny C Compiler 14
Building Lua with MinGW 16

Binary Packages 18
Selecting a Prebuilt Binary Package 18
Installing a Prebuilt Binary Package on a Unix-Type System 19
Installing a Prebuilt Binary Package on Windows 20

Additional Tools 21
Programmer’s Editor 21
Revision Control System 22

Summary 22

Chapter 2: First Steps 23

Numbers and Arithmetic Operations: Basic Interpreter Usage 23
Addition, Subtraction, Multiplication, Division, and Exponentiation 24
Interacting with the Interpreter 24
Other Notations for Numbers 25

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xi

xii

Contents

Interpreter Know-How 26
Quitting the Interpreter 26
Interpreter Shortcuts 26

Numerical Gotchas 27
Division by Zero and Overflow 27
Floating-Point Rounding 28

Variables and Assignment 28
Assignment Basics 29
Multiple Assignment 31
Variables on the Right Side of Assignments 32

Strings 32
Quoting Strings 32

Quoting Strings with Double Quotes 32
Quoting Strings with Single Quotes 33
Quoting Strings with Square Brackets 33

Backslash Escaping 35
Relational Operators and Boolean Values 37

Comparing Numbers 37
Comparing Strings 38

The nil Value 40
Boolean Operators 41

The and Operator 42
The or Operator 43
The not Unary Operator 44

The Concatenation, Length, and Modulo Operators 45
The String Concatenation Operator 45
The Length Operator 46
The Modulo Operator 47

Automatic Conversion of Operands 48
Precedence and Associativity 49
Variables and Values 51
Comments 52
Expressions and Statements 53
Compound Statements 54

The if Statement 55
The while Loop 58
The for Loop 60
The repeat Loop 62
The break and do Statements 63

Summary 66
Exercises 66

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xii

xiii

Contents

Chapter 3: Extending Lua with Functions 69

Return Values 72
Using a Function that Returns a Value 72
Defining a Function that Returns a Value 73
Using return to Alter Control Flow 74
Returning Nothing 76
Returning Multiple Values 77
Adjusting Value Lists 78

Using Multiple-Valued Functions in Value Lists 78
Using Valueless Functions in Value Lists 79

Chunks as Functions 81
Variable Scope 84

Actual and Formal Arguments 84
Local Variables 85

Understanding Side Effects 91
Ordering Side Effects 91
Short-Circuit Evaluation 93

Functions Calling Functions 95
The Call Stack 95
Recursion 97
Stack Overflow 98
Tail Calls 99

Functions as Values 102
Replacing Built-In Functions 102
Comparing and Printing Functions 103
Function Definitions as Assignments 103
Local Functions 105

Whitespace, Semicolons, and Function Calls 106
Upvalues and Closures 108

Defining Functions that Create Functions 108
Defining Functions with Private State 110
Figuring Out Tricky Scope Situations 111

Summary 113
Exercises 114

Chapter 4: Working with Tables 117

Tables Introduced 117
A Shorter Way to Write Some Keys 119
Altering a Table’s Contents 120
Tables as Arrays 121
Array Length 123

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xiii

xiv

Contents

Looping through Tables 124
Tables of Functions 128

The Table Library 128
table.sort 128
table.concat 131
table.remove 132
table.maxn 132

Object-Oriented Programming with Tables 133
Functions with Variable Numbers of Arguments 136

Defining Vararg Functions 136
Scripts as Vararg Functions 140

Keyword Arguments 143
Different but the Same 144

Table Equality 144
Avoiding Bugs by Understanding Mutability 145
Variables and Mutable Values 145
Tables and Functions 147
Copying Tables 148

Building Other Data Structures from Tables 152
Custom-Made Loops 158
Global Variable Environments 163
Summary 168
Exercises 169

Chapter 5: Using Strings 171

Basic String Conversion Functions 171
String Length 173
Converting Between Characters and Character Codes 173
Formatting Strings and Numbers with string.format 174
Input/Output 180

Writing to and Reading from a File 181
Pattern-Matching 185

Searching for a Specific String 186
Matching Any of Several Characters 186
Matches of Varying Lengths 193
Captures 198
Matching Balanced Delimiters 202
More on string.find, string.match, and string.gsub 202
Iterating Through All Matches 204
Tricks for the Tricky 207
Magic Characters Chart 209

Summary 210
Exercises 210

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xiv

xv

Contents

Chapter 6: Handling and Avoiding Errors 213

Kinds of Errors 213
Syntax Errors 213
Runtime Errors 217

Handling Errors 218
Default Error Behavior 218
Checking Assumptions 219

Code Errors 220
Data Errors 220
The assert and error Functions 220
Defining Your Own Error Condition 221

Anticipating Error Conditions 222
Working with Return Values 222
Structuring Code 224
Error-Containment Functions 227

The pcall Function 227
The xpcall Function 229
User-Written Scripts 230

Locating Errors 230
Summary 230
Exercises 231

Chapter 7: Using Modules 233

Interfaces and Implementations 233
The require Function 234
Where to Put Modules 235

Creating a Module Directory 235
Setting Lua’s Environment Variable 236

Preserving a Module’s Interface 236
Module Bookkeeping 240
Bytecode 241
Namespaces 242

Creating and Reusing Namespaces 242
Avoiding Global Variables 244

Using the strict Module 244
Reporting All Global Assignments 244

The module Function 245
C Modules 247
Summary 247
Exercises 247

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xv

xvi

Contents

Chapter 8: Extending Lua’s Behavior with Metamethods 249

Using Concatenation and Arithmetical Operators on Tables 249
Relational Metamethods 257
Indexing and Call Metamethods 258
Non-Tables with Metamethods 265
Non-Syntactical Metamethods 267
Metamethod Applicability 268
Summary 268
Exercises 269

Chapter 9: Handling Events Naturally with Coroutines 271

Coroutines and Program Control 271
Coroutines Are Not Functions 272
How Coroutines Are Like Programs 272

Coroutines Transfer Control 273
Wrapping a Coroutine 273

Coroutines Are Cooperative 273
Outside Looking In 275

Coroutines Have Status 278
Rules of Conduct 279

Work Shoulder-to-Shoulder 279
Trust the Dispatcher 280
Expect the Best, Prepare for the Worst 280
Play on Your Side of the Fence 280
Avoid the Deep End 281

Managing Concurrent Tasks 281
Retaining State 282

Exercising a Coroutine’s Memory 282
Iterating with Coroutines 286

Handling Events Simply 287
The Event Loop 288
Yielding to Another Coroutine 296

Summary 297
Exercises 297

Chapter 10: Looking Under the Hood 299

Bytecode and luac 299
Garbage Collection 303
The Implementation of Tables and Strings 307

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xvi

xvii

Contents

The Debug Library 308
Inspecting and Manipulating Running Code 308
Hooks 315
Other Functions in the Debug Library 321

Summary 321
Exercises 322

Chapter 11: Exploring Lua’s Libraries 325

Core Library 325
Environment Functions 326
Metatable Functions 326
Chunk-Loading Functions 328
Error-Containment Functions 330
Module Functions 331
The Garbage-Collection Function 332
Type and Conversion Functions 333
Basic Output 333
Error-Condition Functions 333
Table Traversal Functions 334
Vararg-Related Functions 335

Coroutine Library 336
Package Library 338
String Library 340

Pattern-Based String Functions 340
String-Conversion Functions 342

Table Library 344
Math Library 345

Trigonometric Functions 345
Inverse Trigonometric Functions 348
Hyperbolic Functions 351
Exponent Functions 354
Logarithm Functions 356
Adjustment Functions 358
Floating Point Representation 360
Angle Conversion Functions 361
Pseudo-Random Number Functions 362
Modulus Functions 362
Minimum and Maximum Functions 363
Constants 363

Input/Output Library 364

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xvii

xviii

Contents

Operating System Library 368
CPU Timing 368
Time and Date Functions 368
Filesystem Functions 369
Other Operating System Functions 370

Debugging Library 370
Summary 373

Chapter 12: Using Community Libraries 375

Library Overview 375
Dynamically Linked Libraries 376

Resolving External References 376
Configuration Options 376

Libraries Built from Source Code 377
Building Libraries on Unix-Like Systems 378
Building Libraries on Windows 378

Limits to Portability 379
How Lua Interacts with Libraries 379

The Variable Registration Process 379
Calling a C Function from Lua 380

The pack Binary Structuring Library 383
Building the pack Library on Unix-type Systems 383
Building and Installing the pack Library on Windows 384
Testing the pack Library 384
Installing the pack Library 385
Using the pack Library 385

The cURL File Transfer Library 389
Building libcurl 389

Building libcurl on Unix-Like Systems 390
Building libcurl on Windows 391

Building luacurl 392
Building luacurl on Unix-Like Systems 392
Building luacurl on Windows 393

Using luacurl 393
The gd Graphics Library 395

Building gd 395
Building gd on Unix-Like Systems 396
Installing gd on Windows 396

Building lua-gd 397
Building lua-gd on Unix-Like Systems 397
Building lua-gd on Windows 398

Using lua-gd 399

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xviii

xix

Contents

The SQLite Database Library 405
Building SQLite3 405

Building SQLite3 on Unix-Like Systems 405
Building SQLite3 on Windows 406

Building lua-sqlite3 407
Building lua-sqlite3 on Unix-Like Systems 407
Building lua-sqlite3 on Windows 408

Using lua-sqlite3 409
Summary 411
Exercises 412

Chapter 13: Interfacing Lua with Other Languages 413

How C Programs Use Lua 413
Embedding Lua 414
Extending Lua 414
Embedding or Extending: Which Is Best? 414

Communicating Between Lua and C 415
Calling Lua from C 421

Obtaining a Lua Function 421
Calling a Lua Function 421
Protected Calls 422

Working with Userdata 423
Indexing Values in C 436

Retrieving Indexed Values 436
Setting Indexed Values 437

Retaining Values in C 438
The Registry 438
C Function Environments 439
Upvalues in C 439
Referencing Values 440
The Thread Environment 441

Layering Your Extension Library 441
Summary 447
Exercises 448

Chapter 14: Managing Information with Databases 449

Some Basic Relational Database Concepts 449
SQL, LuaSQL, and MySQL 458
Summary 466
Exercises 466

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xix

xx

Contents

Chapter 15: Programming for the Web 467

A Web Server Primer 467
Dynamic Web Content 468

Embedded Web Server 468
Extended Web Server 469
Creating Content at Run Time with Lua 469

Executing CGI Scripts 469
CGI Scripts on Unix-Type Systems 470
CGI Scripts on Windows 470

Installing a Web Server 471
Apache 471
TinyWeb 472

Testing Your Web Server with Static Content 474
Serving Dynamic Web Content 474

Problems with CGI Scripts 475
Asynchronous Calls to the Server 476
Producing a Calendar Dynamically 478
Producing Charts Dynamically 481

Interactive CGI Applications 489
CGI Helper Routines 489
Developing CGI Scripts 498
Security Issues 498

The Kepler Project 498
CGI the Kepler Way 499
Lua Pages 500

Summary 501
Exercises 501

Chapter 16: Connecting to a Larger World 503

Installing LuaSocket 503
Compiling LuaSocket 504

Compiling on Linux and Other Unix-Like Systems 504
Compiling on Windows 504

Installing Windows Binaries 505
Network Overview 506

Routed Packets 506
Addresses 507
Domain Names 507
Identifying Internet Resources 508
Transport Protocols 509
Sockets: Streams and Datagrams 510
TCP Socket Sociology 511

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xx

xxi

Contents

Using LuaSocket for Network Communication 512
Handling Multiple Persistent Connections 518

Using Lua Coroutines with the select Function 518
Multiple Connections on the Server Side 522
Setting Timeout Values for the Server Socket 523

The Application Protocols 524
Filtering the Flow of Data 524
Accessing Web Pages 527
Sending and Receiving E-mail Messages 529

Networking with Lua and Streams 536
On the Server Side: inetd and Friends 536
On the Client Side: ssh and Friends 538

Summary 541
Exercises 542

Chapter 17: Programming Games with Lua 543

Understanding Why and When to Use Lua 543
Simple 2-D Action Game Using SDL 544

Installing SDL and LuaCheia 544
Using SDL 546

Summary 562
Exercise 562

Chapter 18: Carrying Lua with You 565

Getting Started with Plua 565
Obtaining Plua 566
Examining the Distribution Contents 566

Exploring Plua’s Features 567
Running the Plua Application 567
Saving Plua Programs 569
Reading the Online Documentation 570
Using Palm OS Streams 571
Compiling Applications 572
Compiling Libraries 573

Plua on the Mothership 576
The Command-Line Compiler 576
The Palm OS Emulator 577

Obtaining the Emulator 577
Installing on Windows 578
Configuring POSE 578
Running Plua in the Emulator 578

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xxi

xxii

Contents

Compiling a Program in the Emulator 580
Exiting the Emulator 580

The Palm OS Simulator 581
Obtaining the Simulator 581
Using the Simulator 581

Programming with Plua 581
Generating Graphics 582
Programming the User Interface 583
Accessing Databases 590

Summary 592
Exercises 593

Chapter 19: Fitting into the Lua Community 595

The Lua Web Site 596
The Lua Reference Manual 596
Framing Questions 597
The Lua Mailing List 597

Viewing and Searching the Archives 597
Downloading the Archives 598
Using a Web Browser to Access the List 599
Using a Newsreader to Access the List 599
Subscribing to the List Server 599
Posting Messages 600

The Lua Chat Room 601
Forums 601
The Lua Wiki 601
LuaForge 602
Annual Workshops 603
Summary 603

Appendix A: Answers 605

Index 629

02_069172 ftoc.qxp 1/2/07 7:52 PM Page xxii

Introduction

Perhaps you need one or more of these things:

❑ A way to present dynamic information, both textual and graphical, on your website

❑ A means to transfer legacy data to a modern database

❑ Nonprogrammers or end users to augment your application with additional functionality

❑ A custom program for your handheld device that you can use in the field

❑ Scripts to drive the user interface and business logic of an enterprise-level application

❑ An engine to run gaming scripts

❑ An interface language for scientific instrumentation

❑ A scripted way to monitor the health of a computer network

❑ A robust mechanism to allow end users to set application options in an easy-to-understand con-
figuration file

If so, you’ll find this versatile and fast programming language called Lua to be the perfect tool. Lua has a
gentle learning curve that will enable you to write effective programs after only a short introduction.
With it, simple programs look simple—there is no extraneous baggage you need to add to your programs
or peculiar syntax to which you need to conform to make them run. From the examples in the preceding
list, you can see that Lua is quite appropriate for use by technically adept individuals who aren’t neces-
sarily programmers.

At the other end of the continuum, Lua has features that support advanced program requirements.
It imposes very few conventions on the way you write your programs, instead providing mechanisms
with which you can construct clear and maintainable solutions to your programming tasks. Even experi-
enced software developers find novel and powerful ways of using Lua to extend and simplify their
applications.

Lua is robust, yet its mild entry curve makes it quite suitable as a first programming language. In combi-
nation, these make Lua an attractive language for students and professionals alike.

The Facets of Lua
Lua is, first and foremost, a tool for creating software. You can use the standalone interpreter that is
packaged with the Lua distribution to great advantage, and fit it seamlessly into your applications.

03_069172 flast.qxp 1/2/07 7:52 PM Page xxiii

xxiv

Introduction

Lua Is a Programming Language
Lua as a language has its own grammar and idioms. Like all languages, it is a means to communicate,
and like all programming languages, it can be used to convey instructions to a computer. But this con-
nection to hardware isn’t essential. In fact, Edsger Dijkstra, one of the towering figures of computer
science, emphasized the importance of programming without a computer to really understand and
verify programs. Lua’s syntax—the rules that dictate how its language pieces may fit together correctly—
is small, clean, and straightforward. This syntax includes ways to convey instructions as well as to
describe data.

Lua Is an Implementation
Lua is also a functioning software system. A part of what we call Lua is an actual computer application
that can interpret programs written in the Lua programming language. The Lua interpreter is written in
ANSI C, which because of its wide support, allows Lua to run on a vast spectrum of devices from high-
end network servers to small devices.

Both Lua’s language and its interpreter are mature, small, and fast. Both have been synthesized from
some of the best ideas and practices in computer science. The smallness of Lua is by design, and has
advantages well beyond Lua’s capability to run on tiny hardware. A few visits to Lua’s mailing list will
assure you that there are enthusiasts who understand every nook and cranny of this language and its
implementation. Its source code has been scrutinized. It can be argued that these insights, and the sug-
gestions for refinements that these insights foster, would be much less likely with a larger language and
implementation.

Lua Is Fast
Traditionally, programming language ease-of-use has come at the cost of performance. The C program-
ming language is known for its speed and extensive library support, but it is rarely categorized as easy
to use. Lua alters the playing field somewhat by being both easy to use and fast, and it has the ability to
interface smoothly with C libraries. How fast is Lua? In a word: very. A visit to the programming language
shootout site (shootout.alioth.debian.org) should convince you that with Lua, speed and expres-
sivity are not mutually exclusive.

Lua Is Free and Open
Lua is open-source software. You can use it in personal, academic, and commercial applications at no
cost. Your essential requirements when using Lua are to properly ascribe its copyright (Lua.org, PUC-
Rio) and to not hold its authors or copyright holders liable if anything goes wrong. You can read its
license at www.lua.org. Be aware that some of the libraries you will use with Lua are licensed under
different terms. Please understand and adhere to these licenses. A lot of hard work and ingenuity goes
into the creation of software, and your respect for its authors’ intentions helps keep the open software
community vibrant and active.

03_069172 flast.qxp 1/2/07 7:52 PM Page xxiv

xxv

Introduction

Who This Book Is For
This book is for students and professionals who are intrigued by the prospect of learning and using a
powerful language that provides a rich infrastructure for creating programs. No programming knowl-
edge is necessary to benefit from this book except for the section on Lua bindings, which requires some
familiarity with the C programming language. A certain comfort level with command-line operations,
text editing, and directory structures is assumed.

Software developers who have experience with functions, strings, and associative arrays can skim
Chapters 2 through 5 with the caveat that certain Lua colloquialisms are introduced there along with
programming concepts.

Throughout the text, sections pertaining to a particular operating system are clearly marked and can be
skipped by readers working on a different platform.

How This Book Is Structured
This book is organized to guide you through the basics of using Lua. Its structure is as follows:

❑ Installing Lua on your system (Chapter 1)

❑ Learning the fundamentals of programming in Lua (Chapters 2 through 10)

❑ Reviewing standard Lua functions (Chapter 11)

❑ Exploring application development with Lua using packages contributed by the community
(Chapters 12 through 18)

❑ Using Lua’s many community resources (Chapter 19)

Chapters 2 through 10 each build on concepts that are presented in its predecessors, so a sequential read-
ing of this part of the book is advised. The summary of Lua’s built-in libraries contains examples that
assume you have a good grasp of the materials presented in the first 10 chapters.

Some of the libraries and techniques presented in Chapters 12 and 13 are needed in the remaining chap-
ters of the book. Chapters 14 through 19 are relatively independent of one another and can be read out of
sequence.

What You Need to Use This Book
You need surprisingly little in the way of computer resources to learn and use Lua. This book focuses on
Windows and Unix-like (including Linux) systems, but any operating system that supports a command
shell should be suitable. You’ll need a text editor to prepare and save Lua scripts.

03_069172 flast.qxp 1/2/07 7:52 PM Page xxv

xxvi

Introduction

If you choose to extend Lua with libraries written in a programming language like C, you’ll need a suit-
able software development kit. Many of these kits are freely available on the Internet but, unlike Lua,
they can consume prodigious amounts of disk space and memory.

Chapter 18 discusses using Lua on a Palm Pilot. Even if you don’t own or have access to one of these
devices, this chapter shows how you can simulate one on the major desktop systems.

Conventions
To help you get the most from the text and keep track of what’s happening, a number of conventions are
used throughout the book.

Try It Out
This is an exercise you should work through, following the text in the book.

1. A Try It Out usually consists of a set of steps.

2. Each step has a number.

3. Complete all the steps, sequentially, to produce the intended results.

How It Works
After each Try It Out, the code you’ve typed is explained in detail.

Boxes like this one hold important, not-to-be forgotten information that is directly relevant to the sur-
rounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ New terms and important words are highlighted when they’re introduced.

❑ Keyboard strokes look like this: Ctrl+A.

❑ Filenames, URLs, and code within the text look like so: persistence.properties.

❑ Code is presented in two different ways:

In code examples, new and important code is highlighted with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Some of the code examples are mixtures of your input and Lua’s output:

> In such examples, your input is bold
and Lua’s output is not.

03_069172 flast.qxp 1/2/07 7:52 PM Page xxvi

xxvii

Introduction

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. On this site, you can simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN. This book’s ISBN is
978-0-470-06917-2.

Alternatively, you can go to the main Wrox code download page at http://wrox.com/dynamic/
books/download.aspx to see the code available for this book and all other Wrox books.

After you download the code, just decompress it with your favorite compression tool.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time, you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you found. We’ll check the information and,
if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of
the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

03_069172 flast.qxp 1/2/07 7:52 PM Page xxvii

xxviii

Introduction

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but to post your own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe To This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to questions
about how the forum software works as well as many common questions specific to P2P and Wrox books.
To read the FAQs, click the FAQ link on any P2P page.

03_069172 flast.qxp 1/2/07 7:52 PM Page xxviii

1
Getting Situated

The first order of business in learning to program in Lua is to acquire and install the necessary
tools. For your initial steps, all you need is the Lua interpreter, a small program that enables you to
type Lua commands and have them executed immediately. As you advance through this book,
you will need additional tools such as a text editor and the Lua compiler.

If you want to write web applications, you’ll need access to a web server such as Kepler (a versa-
tile Lua-based web server) or Apache (an industry-wide standard). These and other web servers
are freely available on the Internet.

If you want to extend Lua with low-level libraries or to embed Lua into your application, you’ll
need a software development kit (often referred to as SDK) with a compiler that is compatible with
Lua’s application program interface (referred to as API).

Lua is written in the C programming language, and a C compiler turns a program written in this
language into something that can run on your computer. Most C compilers work fine, as do
Delphi and the cross-platform Free Pascal Compiler.

This chapter is unlike the others in this book, because it has little to do with Lua and much to do
with setting up programs on your system. Although Lua doesn’t have a setup program that han-
dles installation details, you’ll find the steps are straightforward. In addition to guiding you
through the process, this chapter briefly explores programming editors and revision control sys-
tems — tools that can enhance your productivity as you become proficient in Lua.

Choosing How to Install Lua
Lua can be installed on a wide variety of platforms and, after it is installed, it will function simi-
larly on all of them. Unlike most of the material that follows in this book, this chapter necessarily
delves into some platform-specific details. Basically, there are two categories that are covered here:
Windows desktop systems (including Windows 95 and up) and Unix-type systems, including
GNU/Linux, Mac OS X, AIX, BSD, and Solaris. (The many other operating systems and hardware
platforms capable of running Lua are outside the scope of this book.)

04_069172 ch01.qxp 1/2/07 7:53 PM Page 1

There are two excellent open-source packages for Windows that blur the Windows-Unix distinction
somewhat. One of them, the Cygwin system, provides many GNU and Linux tools (including various
shells and development tools) for Windows platforms. It is available at www.cygwin.com. Applications
that you build with this environment will run only on systems that have Cygwin installed. If you want
to install Lua in this environment, follow the directions for building Lua on Unix-type systems.

The other package is the MinGW system, which enables you to use standard Unix-like tools to build
applications that run on all 32-bit desktop versions of Windows without any extra support libraries. This
first-rate system is available at www.mingw.org.

As you read this chapter, section headers will indicate whether a Unix-like system or Windows is being
discussed. You can skip the sections that don’t apply to your platform.

The Lua interpreter, typically named lua.exe in Windows and lua in Unix and friends, is a small com-
mand-line program that executes your scripts either interactively or noninteractively. You’ll become
familiar with the Lua interpreter and both of these modes in the first chapters of this book.

A note about these names: In this book, Lua refers to the Lua programming language or implementation,
and lua refers to the Lua interpreter.

To install Lua, you can download a package that has been compiled for your particular operating system
platform, or download the source code and compile it yourself. There are the advantages and disadvan-
tages to each approach, as the following sections discuss.

Building Lua Yourself
Compiling Lua is straightforward. Lua, including the language processor and its core libraries, is written
in plain vanilla C so that it can be built on a wide variety of platforms with any ANSI-compliant C com-
piler. The advantage is that the resulting libraries and interpreter program are compatible with the sys-
tem on which it’s built. This is one of the principal advantages of open-source software in general. As
long as the target platform supports the tools and libraries needed to compile the source code — in Lua’s
case, this is a standard C compiler — the resulting binary program is compatible with the platform.

2

Chapter 1: Getting Situated

Lua Versions
In the instructions that follow, you’ll see references to version 5.1.1. A later version of
Lua may be available as you read this. As Lua evolves, some improvements are made
that require changes to existing scripts. Your decision is either to install a version of
Lua later than 5.1.1 and encounter possible instances where you have to modify the
scripts and libraries in this book, or to install version 5.1.1 and forgo any improve-
ments that may have been made to Lua. The Lua manual includes a section at the end
named “Incompatibilities with Previous Versions” that can help you decide. If you
install a later version, you’ll need to make corresponding changes to the commands
and directory names used in this chapter.

04_069172 ch01.qxp 1/2/07 7:53 PM Page 2

The disadvantage of compiling Lua is that the system you intend to build it on must have a complete C
development environment. That is generally not a problem on Unix and Unix-like operating systems
where such development tools are part of a long-standing tradition. However, on platforms such as
Windows, a C compiler and its related tools and files are not installed by default. Such a development
package can require a surprisingly large amount of disk space and present a bewildering number of
options. One refreshingly small exception to this rule is the Tiny C Compiler (TCC), which runs on Linux
and Windows on the 80 × 86 platform. Building Lua with TCC is described later in this chapter.

Selecting Prebuilt Lua
Besides being able to skip the compilation step, an advantage of selecting a prebuilt version of Lua is
that it will be compatible with a number of libraries that conform to its dependency conventions. These
conventions involve issues such as which runtime libraries are used and whether those libraries are safe
to use with multiple threads of execution.

If you are a Windows user and don’t have a C development environment set up on your system,
installing the appropriate binary Lua package may be your best option. You’ll see how to do that in
the section on installing binary packages later in this chapter.

Finding Your System’s Shell
Most computer systems have a shell, also known as a command-line interface. This is a program you can
use to type commands to the computer. These commands can tell the computer to copy, move, delete,
and otherwise manipulate files, and to start programs, including (of course) Lua programs and Lua
itself. In several places in this book, you’ll need to access your system’s shell; in particular, everything in
this chapter that you need to type, you need to type into the shell. You can perform some of the opera-
tions, such as creating directories and moving files, using visual tools (such as Explorer on the Windows
platform). Only the shell commands are presented here, but feel free to use whatever tools you are most
comfortable with to accomplish the task at hand.

Windows Shells
To access your shell on Windows XP or Windows 2000, select Start➪Run, type cmd, and press Enter. On
Windows Me, Windows 98, or Windows 95, select Start➪Run, type command, and press Enter (Return on
some keyboards — just substitute “Return” for “Enter” whenever it’s mentioned in this book).

Shells on Unix and Unix-Like systems
On Mac OS X, open your Applications folder (on your startup disk). Inside it, open the Utilities folder;
inside that, open Terminal. On other systems with a graphical user interface (GUI), look in the menu that
you start programs from for a program with a name like xterm, Konsole, or Terminal. On systems
without a graphical user interface, you are already at the shell, as you are if you use a program such as
ssh, telnet, or PuTTY to connect to a remote Unix(-like) server.

3

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 3

Shell Features
Shells vary greatly in appearance and functionality, but each of them presents some form of a prompt to
let you know that it’s waiting for you to issue a command. In general, you type a command following the
prompt and press the Enter key to submit the command to the shell. When you are working in a shell,
there is always one directory that is considered your current working directory. Most shell prompts con-
tain that directory to make it easier for you to keep your bearings as you move from directory to directory.
For example, a typical prompt in Windows shells may look something like the following:

C:\Program Files>

and in Unix-type shells, something like the following:

mozart maryann /usr/local/bin>

To exit the shell, type exit and press Enter.

The Environment
Each shell also has a pool of variables, known as the environment, available to programs. The environ-
ment typically holds information about where the system should look for programs and libraries, what
the shell prompt should look like, and so forth. You can view this information by issuing the following
command at the shell prompt:

set

Regardless of the platform you use, you will want to modify the shell environment to let Lua know
where to find extension modules. Additionally, if you intend to compile Lua or libraries, you’ll need to
set up environment variables that your SDK will look for.

Environment Variables on Unix-Like Systems
On Unix-like systems, you generally modify the shell environment in one of the shell startup scripts. For
example, if you use the bash shell, it will process /etc/bashrc and, in your home directory, .bashrc
when it starts. The first file is used for system-wide settings, and the second is used for your own private
settings. You’ll need root privileges to modify the first. Within these files, you set an environment vari-
able by including a line that looks like the following:

export LUA_DIR=/usr/local/lib/lua/5.1

When you reference environment variables in shell scripts, you precede the name with $, as in echo
$LUA_DIR.

In this book, the following environment variables are recommended for Unix-like systems:

LUA_DIR=/usr/local/lib/lua/5.1
LUA_CPATH=?.so;$LUA_DIR/?.so
LUA_PATH=?.lua;$LUA_DIR/?.lua

Restart the shell for changes to take effect.

4

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 4

Now create the actual directory that LUA_DIR identifies. Do this, as root, with the following command:

mkdir -p /usr/local/lib/lua/5.1

Environment Variables on Windows
Depending on which version of Windows you use, you modify the shell environment either through the
autoexec.bat file (Window 95, 98 and ME) or, for later versions, through a dedicated dialog box that
you get to through the System Properties dialog box. If you use autoexec.bat, you set environment
variables with lines that look like the following:

SET LUA_DIR=”c:\program files\lua\5.1”

If you use the dedicated dialog box, you’ll need to choose between system variables and user variables.
In this window, you can add a new variable, edit an existing variable, or delete an existing variable.
When you add or edit a variable, there are separate input fields for the variable name and its value.

Within a shell script, surround an environment variable name with the % character, as in —echo
%LUA_DIR%.

The Windows Search Path
On a Windows system, whether you compile Lua or acquire a precompiled package, you’ll want to put
the Lua interpreter, compiler, and dynamic link library in a location that makes them easy to use. From a
shell prompt, the system should launch the interpreter when you execute the lua command. There are
two practical approaches you can take: using aliases or using the search path.

When you’re at the shell prompt, Windows enables you to use a simple alias —lua, for example — as a
replacement for a more complicated command, such as c:\program files\utility\lua.exe. It
implements aliases like these, in addition to command-line editing and history, using doskey. This
method may locate the aliased program slightly faster, but you cannot use the alias in a batch script.
Consult the output of the following to read more about this utility:

doskey /?

You can also use the Windows search path mechanism. When a command is invoked that is not internal
(such as dir or del) and is not qualified with path information, Windows examines the search path,
looking for a matching executable. To see the current search path from the shell, execute this command:

path

In the following steps, you work with files and directories so you can use Windows Explorer if you like.
Complete these steps to move the Lua executables to a directory that is included in the Windows search
path:

1. If your current search path does not include a directory where you store utilities, create one
now (the directory c:\program files\utility is assumed for this example, but the choice is
yours). Note that quotes are necessary when specifying names with spaces:

mkdir “c:\program files\utility”

5

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 5

2. Add this directory to the Windows search path. On older versions of Windows, use the
autoexec.bat file in the root directory of the boot drive. (More recent versions of Windows
still support this, but they also provide a graphical environment editor that you by opening the
System applet from the Control Panel.)

If the text field containing the path variable is too small to see the entire value, cut and paste the
value to your text editor, make the appropriate change, and then cut and paste the modified
value back to the path edit field.

3. The new search path applies only to shells that are opened after the change, so exit and restart
your shell.

Recommended Settings for Windows
For this book, the following environment variables are recommended on Windows systems:

UTIL_DIR=c:\program files\utility
LUA_DIR=c:\program files\lua\5.1
LUA_CPATH=?.dll;%LUA_DIR%\?.dll
LUA_PATH=?.lua;%LUA_DIR%\?.lua

The UTIL_DIR variable identifies the utility directory you created in the preceding section. Additionally,
if you have a software development kit and intend to compile Lua and possibly libraries for Lua, set the
following environment variables:

SDK_DIR=c:\program files\msc
INCLUDE=%SDK_DIR%\include;%SDK_DIR%\include\usr
LIB=%SDK_DIR%\lib;%SDK_DIR%\lib\usr

The SDK_DIR depends on where you installed your SDK.

Restart your shell for environment changes to take effect. Then use Windows Explorer or the command
shell to create the various directories that these environment variables identify.

Dealing with Tarballs and Zip Files
Whether you install Lua using precompiled packages or compile it from a source code package, you will
be dealing with a packaging form colloquially known as a tarball. Files of this type have the extension
.tar.gz or .tgz. A tarball bundles a group of files that can be distributed over one or more directories.
The contents, owners, permissions, and timestamps of the bundled files are preserved using the tar util-
ity, whose name derives from its original purpose of transferring files to and from a tape archive. The
amalgamated file is then compressed using the gzip utility or, for tarballs with the .tar.bz2 extension,
using the slower and more aggressive bzip2 compression utility. Although tarballs are part of the Unix
tradition, tools for managing them on Windows are freely available. In particular, one versatile open-
source utility for Windows that handles any type of package you are likely to encounter is 7z. Both
graphical and shell-oriented versions are available from www.7-zip.org. Whichever version you use,
make sure the directory in which you install 7-zip is included in your system search path. Extracting the

6

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 6

contents of a tarball in Windows is a two-step process. Here’s how to do it from the shell. First, unzip the
embedded tarball using a command like the following:

7z x somefile.tar.gz

In a standard package, this creates the file somefile.tar. Extract the contents of this tarball with a com-
mand like the following:

7z x somefile.tar

Another packaging format, more common for Windows-based projects, is the zip file, which has a .zip
extension. The zip and unzip utilities on Unix-style systems manage files of this type. On Windows,
you can extract the contents of a zip file using 7z with a command like the following:

7z x somefile.zip

Compiling Lua
In the general sense, compiling an application refers to the process of building an executable program
from source components. The executable program comprises processor instructions that a computer can
follow. It may also contain certain resources such as embedded icons and copyright notices. Source code
is the text that is created in a programming language by a programmer. Strictly speaking, compilation is
the intricate step that translates a source-code text file to a machine-code object file. Object files usually
contain references to other object files that may or may not be part of the same package. A linker gener-
ates an executable program by combining all required object files and resolving their references to one
another. Sometimes the compilation and linking steps are combined by a wrapper program.

The Lua Source Tarball
The contents of the Lua tarball are organized as follows:

lua-5.1.1
doc
etc
src
test

In the first level of this directory, you can read various text documents prepared by the Lua authors. The
README file explains what Lua is, the terms by which it is available, how to install it, and its origin. The
HISTORY file tracks the changes to the Lua language, its application programming interface (API), and
its implementation. Read the relevant portion of that file when upgrading to a new version of Lua to
understand the changes that have been made. The INSTALL file has information about building Lua.

You can read these files using a text viewer or editor. If you are using a Unix-type system, the less com-
mand is convenient for scanning text files. The lynx character-mode web browser is great for exploring

7

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 7

the distribution: use the arrow keys to drill into and out of directories and the contents of text and
HTML files. Press Q to exit less or lynx when you are ready to return to the shell itself. If you are a
Windows user, note that the files have Unix-style line endings that will not be properly handled by
Windows Notepad, so you should use a programmer’s editor or a web browser to read them.

With your web browser, you can explore the hyperlinked Lua manual in the doc subdirectory. The src
subdirectory contains all of the source code for the Lua interpreter, compiler, and core libraries. The etc
subdirectory contains miscellaneous files such as the Lua icon and the source code for an especially
small interpreter with reduced functionality. The test subdirectory contains a number of Lua scripts
that provide an excellent survey of Lua’s capabilities. Some of these scripts push at the far reaches of
Lua’s domain, so don’t be dismayed if some appear rather dense at first.

Compiling Lua on Linux and Other Unix-Like Systems
One of the first things you should do at your shell is to check whether you have a functioning C com-
piler. To do so, execute the following command:

cc -v

If version and configuration information is displayed, then it’s likely that you’ve got everything you
need to successfully build Lua. If you receive a message indicating that the command cc could not be
found, try executing gcc -v instead. If neither of these commands work, you need to find out if either
the C development tools have not been installed or some configuration setting is simply keeping them
from being available to you.

Where you build Lua depends on your purposes. If you intend for Lua to be used by other users on your
system, and you have the appropriate privileges, you’ll want to select a standard location for source
code such as /usr/local/src. Otherwise, your home directory is a logical choice. In the shell, change
your default working directory with the following command:

cd /usr/local/src

Alternatively, simply use cd to go to your home directory.

Assuming you are connected to the Internet, acquire the source package as follows:

wget http://www.lua.org/ftp/lua-5.1.1.tar.gz

The program wget is a standard tool for retrieving Internet resources such as web pages and other files.
If your system doesn’t have it, you can try curl or an interactive web browser. The file you download
will be in the form of a tarball that has the extension .tar.gz. Extract the contents as follows:

tar xzvf lua-5.1.1.tar.gz

The tar utility will recreate the same directory structure that the Lua authors used to package the source
materials. Drop into the newly created directory by executing the following command:

cd lua-5.1.1

8

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 8

You’ll use the make utility to control the build process. This utility reads a script, typically named
makefile, that describes the dependency relationships between the various source files and intermedi-
ate and final targets. For example, one of the lines in Lua’s makefile is as follows:

lua.o: lua.c lua.h luaconf.h lauxlib.h lualib.h

Here, lua.o is the object file that corresponds to lua.c, the main source file of the Lua interpreter. The
other files that have the extension .h are header files that contain definitions and prototypes. This line
is interpreted as: If lua.o is missing or if its timestamp is older than any of the timestamps of lua.c,
lua.h, luaconf.h, lauxlib.h, or lualib.h, then invoke the appropriate rule to generate lua.o. The
make utility is indispensable for keeping track of this kind of dependency and for automating the build
process.

If you type make by itself, as shown in the following line, you get a list of the various platforms on
which you can build Lua:

make

The output looks like this:

Please do
make PLATFORM

where PLATFORM is one of these:
aix ansi bsd generic linux macosx mingw posix solaris

Select the platform that you’re on. For example, if you are compiling on Linux, execute the following
command:

make linux

You’ll see the commands displayed on the console as they are executed.

If you are familiar with building other open-source packages, you’ll notice that Lua’s approach is a little
different. There is no configuration stage to identify the characteristics of the system and create a tailor-
made makefile. Instead, the platform argument you provide is all the information make needs to select
the correct commands and parameters.

Because Lua has such standard requirements, it is unlikely that you will encounter any problems build-
ing it. If errors do occur at this stage, they are likely to be related to an incomplete installation of the C
development tools or incorrectly configured search paths for header files or libraries. If that happens,
read the documentation for your operating system distribution to install and configure the development
tools properly.

With the default settings used here, make will generate the Lua interpreter (lua) and the Lua byte-code
compiler (luac). These will be created in the src subdirectory. No shared libraries will be created — all
of the Lua internals required by each of these executables will be statically linked. For example, compo-
nents such as the parser will be embedded into both lua and luac, but the byte-code interpreter will be
embedded only into lua.

9

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 9

After make completes, your shell prompt is displayed. If no error messages were encountered during the
building process, you can test the Lua interpreter by executing the following command:

make test

That should result in output that looks like

Hello world, from Lua 5.1!

In the unlikely event that you don’t get this response, the probable culprit is the unavailability of one or
more runtime libraries. Although the Lua internals are statically linked into lua, other libraries are
expected to be available for dynamic linking when lua is actually run. These runtime dependencies
include the math library, the general purpose C library, and, depending on your platform, libraries that
support screen formatting and text input editing and recall. List the shared library dependencies with
the following ldd command:

ldd src/lua

The result is a series of lines such as this:

libm.so.6 => /lib/libm.so.6 (0x40024000
libdl.so.2 => /lib/libdl.so.2 (0x40047000)

If, in the output, you see one or more “not found” lines such as the following, you’ll know that the refer-
enced library is not present on your system or that the dynamic loader is unable to find it:

libncurses.so.5 => not found

In this case, consult your operating system documentation to guide you through the process of installing
the missing library. Alternatively, you can rebuild lua with fewer dependencies with the command make
clean generic.

If you have root privileges on your system and would like lua and luac to be available for other users,
you should become root at this point. Do this with the following command:

su –

Alternatively, you can use the sudo command to elevate your privilege level for particular commands.
In this case, prefix the command requiring root authority with sudo. In general, using sudo requires
some configuration using the visudo command.

The hyphen tells the command that you want the root’s environment, including its search paths, to be
loaded. Doing so will likely change your default working directory, so you may need to return to the
lua directory by using the cd command. For example:

cd /usr/local/src/lua-5.1.1

10

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 10

You’re now ready to install the Lua executables, static library, header files, and manual pages. To do so,
execute the following command:

make install

Then execute the following command to return to your nonroot session:

exit

The following command should present the lua manual page:

man lua

You can scroll up and down through the document by using the standard navigation keys. Press Q to
return to the shell itself.

Now enter following command:

lua -v

This should present you with a version statement like the following:

Lua 5.1.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio

Any problem at this point indicates an issue that you can clarify with the following which command:

which lua

The response should be a line like this:

/usr/local/bin/lua

A response like the following means that lua was installed into a directory that is not in your search path,
which is an ordered list of directories that the operating system examines to resolve external commands:

which: no lua in (/usr/local/bin:/usr/bin)

You can remedy this by editing the PATH variable in your shell startup script to include the directory in
which lua and luac were installed. You need to exit and restart the shell for these changes to take effect.

If you don’t have root privileges or simply want to test the installation locally, you can execute the fol-
lowing command:

make local

This creates several additional directories such as bin and man beneath the current directory.

11

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 11

Alternatively, you can specify some other location for the installation. For example, if you want to install
in /tmp/lua-5.1.1, execute the following command:

make INSTALL_TOP=/tmp/lua-5.1.1 install

In these last cases, you’ll need to specify a full or relative path to lua, luac, and the man pages because
the default search path won’t include them. For example, to read the man page installed with the last
example, execute the following:

man /tmp/lua-5.1.1/man/man1/lua.1

Then, to test lua, execute the following command:

/tmp/lua-5.1.1/bin/lua -v

This section led you through a basic build of Lua on Unix-like systems. Many options exist for configur-
ing Lua in different ways. For example, you can configure Lua to use a primitive data type other than
double for numbers. The curious can examine src/luaconf.h to see the configurable options. Your
best approach at this point is to leave them at their default settings. This book assumes that you are
using Lua with its default options.

Compiling Lua on Windows
Although Lua compiles cleanly on Windows, the makefile that comes with the Lua source package is
oriented toward Unix-style systems. Unless you are using a Unix emulation layer such as Cygwin, you’ll
need to craft your own approach to the task of creating the Lua interpreter and byte-code compiler.

A lot of C/C++ compilers exist for Windows, and many of them are available for free. The tools in these
SDKs generally have their own particular set of command line switches, configuration conventions, and
system dependencies, making it impractical to cover more than one Windows SDK in this book. The
instructions in this book assume you are using the Microsoft Visual C++ 6.0 SDK. Later versions of this
kit have been released, but Visual C++ 6.0 is still widely used in the industry because of its support for a
broad range of Windows versions. You can configure it to generate programs that use MSVCRT.DLL, a
system library that is available on all 32-bit desktop versions of Windows. An effort has been made in
this book to provide instructions that will generate applications and libraries that are compatible with
the Lua binaries for Windows available on LuaForge. These binaries are easy to deploy, because they
depend only on libraries that come with Windows.

If you have a later version of Visual C++ or are using another SDK (such as a product from Pelles C or
Borland) you will need to consult the appropriate documentation to find how to build and deploy appli-
cations and libraries. Recent versions of the Microsoft C++ SDK require manifest files to be deployed
along with applications and libraries.

The directions that follow create the Lua interpreter and compiler. Three approaches are shown. The first
works well with Visual C++ 6.0. If you are some other large-scale C development system, follow these
directions with the understanding that you may need to make toolkit-specific changes. The second
approach is suitable for users of TCC, and the third applies to the MinGW SDK.

12

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 12

Building Lua with Microsoft Visual C++
First, make sure that the SDK’s bin directory has been included in your system’s search path. Under the
SDK’s include directory, make a subdirectory named usr. Similarly, under the SDK’s lib directory,
make a subdirectory named usr. Additionally, as covered in the environment section, you should set the
LIB environment variable to the SDK’s lib and lib\usr directories, and the INCLUDE environment
variable to the SDK’s include and include\usr directories. Your SDK may include a batch file named
vcvars32.bat that can help with this. If you modify these environment variables, exit and restart the
shell to have your changes take effect.

Create a directory in which to build Lua. The following lines assume that this will be c:\dev:

c:
cd \
mkdir dev
cd dev

Download lua-5.1.1.tar.gz and place it in this directory. Extract the contents. Here are the com-
mands you would use with 7-zip:

7z x lua-5.1.1.tar.gz
7z x lua-5.1.1.tar

This creates a subdirectory named lua-5.1.1. Delete lua-5.1.1.tar at this point, like this:

del lua-5.1.1.tar

Drop into the src subdirectory like this:

cd lua-5.1.1\src

Create a new text file and add the following lines:

cl /MD /O2 /W3 /c /DLUA_BUILD_AS_DLL *.c
del *.o
ren lua.obj lua.o
ren luac.obj luac.o
ren print.obj print.o
link /DLL /IMPLIB:lua5.1.lib /OUT:lua5.1.dll *.obj
link /OUT:lua.exe lua.o lua5.1.lib
lib /out:lua5.1-static.lib *.obj
link /OUT:luac.exe luac.o print.o lua5.1-static.lib

Save the file as build.bat in the current directory (c:\dev\lua-5.1.1\src).

While you’re still in the src subdirectory, run the newly created batch script from the shell:

build

13

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 13

This compiles each of the source files into a corresponding object file. Prior to linking these object files
into a dynamic link library, three object files are renamed to keep them from being included in the
library. These are the interpreter, the compiler, and a support file for the compiler. Finally, the interpreter
and compiler executables are created. The Lua interpreter is quite small, because its main functionality
comes from the dynamic link library. To test the Lua interpreter, execute the following command:

.\lua ..\test\hello.lua

This should result in the following output:

Hello world, from Lua 5.1!

Copy the import library and header files associated with the dynamic-link library to standard develop-
ment directories where your compiler and linker can find them. The approach taken here is to place
them in the usr subdirectory beneath the SDK’s lib and include directories. These subdirectories can
then hold third-party files where they won’t be confused with toolkit files.

To install Lua, create a file with the following contents:

xcopy lua5.1.lib “%SDK_DIR%\lib\usr*.*” /y
xcopy lua5.1-static.lib “%SDK_DIR%\lib\usr*.*” /y
xcopy lua.exe “%UTIL_DIR%*.*” /y
xcopy luac.exe “%UTIL_DIR%*.*” /y
xcopy lua5.1.dll “%UTIL_DIR%*.*” /y
xcopy lua.h “%SDK_DIR%\include\usr*.*” /y
xcopy luaconf.h “%SDK_DIR%\include\usr*.*” /y
xcopy lualib.h “%SDK_DIR%\include\usr*.*” /y
xcopy lauxlib.h “%SDK_DIR%\include\usr*.*” /y

Save this file as install.bat in the src directory. Copy the files by executing this batch script:

install

Building Lua with the Tiny C Compiler
The Tiny C Compiler (TCC) is a freely available C development system that you can use to build Lua on
both Linux and Windows. It is discussed here because it is an excellent way for Windows users who
don’t have a C toolkit to familiarize themselves with developing programs in C. The TCC web site
(http://fabrice.bellard.free.fr/tcc) contains a link to the Window binary distribution in the
form of a zip file that includes everything you need to compile Lua.

TCC is perfectly suitable for building Lua itself, but you may want to consider a more full-featured SDK
if you intend to build extension libraries for Lua.

Download the zip file and place it in the directory above the point where you want to install TCC.
Assuming you are using the 7-zip utility and the version of the file is 0.9.23, extract the contents of the
file as follows:

7z x tcc-0.9.23.zip

14

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 14

This creates the following subdirectory structure:

tcc-0.9.23
doc
examples
include
sys
winapi

lib
tcc

With this particular version of TCC, you need to make two small adjustments before proceeding. In the
include/winapi directory, open the winnt.h file with your text editor. On lines 1814 and 2288, change
the occurrences of Value to _Value.

Change your working directory to Lua’s source directory. For example, if you extracted the Lua tarball
in c:\dev, use the following shell commands:

c:
cd \dev\lua-5.1.1\src

TCC requires a change to the file ldo.c. Open this file with your text editor and find line 487, which
reads as follows:

static void f_parser (lua_State *L, void *ud) {

Just beneath it, add the following line:

typedef Proto* (* load_func) (lua_State*, ZIO*, Mbuffer*, const char*);

Several lines lower, find the line that includes

((c == LUA_SIGNATURE[0]) ? luaU_undump : luaY_parser)

and replace

luaU_undump

with

(load_func) luaU_undump

and

luaY_parser

with

(load_func) luaY_parser.

15

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 15

Use your text editor to prepare the following batch file. Adjust the first line if necessary to specify
the directory in which you installed TCC. The second line begins with SET TCCCMD and ends with
-lkernel32— make sure it is all on one line. (The ; symbol indicates that the code line is too long to
print on one line in the book; the code that follows is a continuation of the first line. In other words, ;
tells you to keep typing on the same line.)

SET TCCDIR=c:\program files\tcc-0.9.23
SET TCCCMD=”%TCCDIR%\tcc\tcc” -D_WIN32 -I”%TCCDIR%\include” ;
-I”%TCCDIR%\include\winapi” -L”%TCCDIR%\lib” -lkernel32

ren luac.c luac.c0
ren print.c print.c0
%TCCCMD% -o lua.exe *.c
ren lua.c lua.c0
ren luac.c0 luac.c
ren print.c0 print.c
%TCCCMD% -o luac.exe *.c
ren lua.c0 lua.c
SET TCCDIR=
SET TCCCMD=
SET TCCIMP=

Save this file as build.bat in the current directory. Build Lua by running this batch script:

.\build

Although TCC can generate dynamic link libraries, the code that is shown here builds statically linked
versions of lua.exe and luac.exe. Copy these to your utility directory as follows:

xcopy lua.exe “%UTIL_DIR%*.*” /y
xcopy luac.exe “%UTIL_DIR%*.*” /y

Building Lua with MinGW
The MinGW package provides you with all the command-line tools you need to develop Windows
applications. An optional related package, MSYS, includes a Unix-like shell and, among other tools, awk,
bzip2, find, grep, sed, tar, vi, and which. The instructions that follow cover only the use of MinGW,
but MSYS is definitely worth investigating if you want the power and flexibility of working in a Unix-
like development environment. The MinGW website has an excellent FAQ (Frequently Asked Questions)
page as well as a comprehensive wiki to help you use the MinGW and MSYS systems to their fullest.

The following instructions show you how to install the MinGW system. You need about 50MB of space
available on your disk. Obtain the following files (or more recent versions if they are available) from the
current section of download page of the MinGW site, www.mingw.org:

binutils-2.15.91-20040904-1.tar.gz
w32api-3.6.tar.gz
mingw-utils-0.3.tar.gz
gcc-core-3.4.2-20040916-1.tar.gz
mingw-runtime-3.9.tar.gz

16

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 16

Create a directory for the MinGW files as follows:

These instructions assume you will install MinGW in c:\mingw, but you can choose another location
if you like. If you do, make the appropriate changes in the following lines.

c:
mkdir \mingw
cd \mingw

Extract the contents of the tarballs as follows, changing all occurrences of \path\to to the directory
where you placed the downloaded files:

The 7-zip tool is used in this example; remember that its directory must be in the Windows search path.
If you have downloaded more recent versions of any of these files, be sure to make the appropriate file-
name changes. .

7z x \path\to\binutils-2.15.91-20040904-1.tar.gz
7z x \path\to\w32api-3.6.tar.gz
7z x \path\to\mingw-utils-0.3.tar.gz
7z x \path\to\gcc-core-3.4.2-20040916-1.tar.gz
7z x \path\to\mingw-runtime-3.9.tar.gz
7z x -y *.tar
del *.tar

Place c:\mingw\bin in your Windows search path. (See “The Windows Search Path” earlier in this
chapter for more details on setting this.)

Create a directory in which to build Lua. The following lines assume that this will be c:\dev:

c:
mkdir \dev
cd \dev

Extract the contents. Here’s how to do this if you are using the 7-zip tool:

7z x \path\to\lua-5.1.1.tar.gz
7z x lua-5.1.1.tar
del lua-5.1.1.tar

Drop into the src subdirectory as follows:

cd lua-5.1.1\src

With your Windows text editor, create a new file with the following contents:

gcc -O2 -Wall -c *.c
ren lua.o lua.obj
ren luac.o luac.obj
ren print.o print.obj
gcc -shared -Wl,--export-all-symbols -o lua5.1.dll *.o
strip --strip-unneeded lua5.1.dll
gcc -o lua.exe -s lua.obj lua5.1.dll -lm
gcc -o luac.exe -s -static luac.obj print.obj *.o -lm

17

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 17

Save the file as build.bat in the c:\dev\lua-5.1.1\src directory. While you’re still in Lua’s src
directory, invoke this batch file to build Lua:

.\build

The batch script generates three files: lua.exe, luac.exe, and lua5.1.dll. You can verify that they
use only standard Windows libraries as follows:

If you have installed the MSYS tools, replace find with grep.

objdump -x lua.exe | find “DLL Name”

This will print the following import references:

DLL Name: KERNEL32.dll
DLL Name: msvcrt.dll
DLL Name: lua5.1.dll

You can repeat this for luac.exe and lua5.1.dll. Notice that luac.exe does not depend on
lua5.1.dll.

Install the three files in your utility directory as follows:

xcopy lua.exe “%UTIL_DIR%*.*” /y
xcopy luac.exe “%UTIL_DIR%*.*” /y
xcopy lua5.1.dll “%UTIL_DIR%*.*” /y

Binary Packages
Unlike source code that can conform to a wide spectrum of environments, binary applications (that is,
those that have already been compiled) function only in a particular niche. Binary packages need to dis-
tinguish a number of factors, including the following:

❑ Operating system (such as AIX, Solaris, Linux, or Windows)

❑ Hardware architecture (such as 32-bit versus 64-bit or Intel versus PowerPC)

❑ Required C runtime library (such as the various versions of the Microsoft Visual C runtime
library)

These are mostly issues that you don’t have to be concerned with when compiling Lua from source code,
but you do need to pay attention to when the packages are precompiled. Despite the plethora of different
platforms, there is a good chance that you can find a binary package for your particular environment.

Selecting a Prebuilt Binary Package
To acquire a Lua package precompiled for your platform, visit LuaForge (http://luaforge.net/), a web
site devoted to open-source projects created and maintained by members of the growing Lua community.

18

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 18

One of the most popular packages maintained at LuaForge is LuaBinaries, a set of ready-made Lua pack-
ages (http://luaforge.net/projects/luabinaries/). In the file download section of the LuaBinaries
site is a list of files that includes entries like these:

lua5_1_Win32_bin.tar.gz 82060 1,376 Intel x86 .gz
lua5_1_Linux26_bin.tar.gz 127132 80 Intel x86 .gz

The names of these files include abbreviated information about their contents. For more detailed infor-
mation about each of the packages, read the packaging file (apackaging_lua5.1.html) located in the
same directory. It will help you select the appropriate package for your platform.

Installing a Prebuilt Binary Package
on a Unix-Type System

After you have selected the appropriate tarball from the LuaBinaries site, download it and place it in
the /tmp directory. The following commands assume you have selected lua5_1_Linux24g3_bin.tar
.gz— make the appropriate changes if necessary. Unpack it as follows:

cd /tmp
tar xzvf lua5_1_Linux24g3_bin.tar.gz

This creates the following directory structure:

lua5.1
bin
Linux24g3

In the Linux24g3 subdirectory are three files: the interpreter (lua5.1), the byte-code compiler
(luac5.1), and a utility that helps with embedding Lua scripts into C programs (bin2c5.1). Make sure
the interpreter works with your system, as follows:

lua5.1/bin/Linux24g3/lua5.1 -v

This should result in the following output:

Lua 5.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio

You should get the same response when invoking the compiler with the -v switch. If you don’t get this,
you’ve likely selected a binary package that is incompatible with your operating system.

If the interpreter and compiler work with your system, move them to a location in your search path. If
you have root privileges and want to make Lua available to all users of your system, the location /usr/
local/bin is traditional. If you lack sufficient privileges or are interested only in using Lua yourself, the
bin directory beneath your home directory is a good location. In this last case, you may need to create
the bin subdirectory and set it as part of your PATH environment variable.

19

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 19

Assuming you have root privileges and want to make Lua available to all users of your system, execute
these commands:

su -
cd /tmp/lua5.1/bin/Linux24g3
mv lua5.1 /usr/local/bin/lua
mv luac5.1 /usr/local/bin/luac
chown root.root /usr/local/bin/{lua,luac}
chmod u=rwx,go=rx /usr/local/bin/{lua,luac}
cd /tmp
rm -fr lua5.1
exit

Now you should be able to execute lua without any path qualification, like this:

lua -v

Installing a Prebuilt Binary Package on Windows
If you are installing onto a 32-bit version of Windows, a safe bet is to select the package named
lua5_1_Win32_bin.tar.gz. This package uses the C runtime library MSVCRT.DLL, which is available
on all recent versions of Windows.

After you download one of the tarballs, you need to extract the package contents to a suitable location
using a utility such as Winzip or 7-zip. The following instructions assume you have downloaded the
package lua5_1_Win32_bin.tar.gz and are using the 7-zip command-line utility — make the appro-
priate changes if you have selected a different package or are using a different extraction utility. Place
the package in the directory of your choice, and then execute the following commands at a shell prompt:

7z x lua5_1_Win32_bin.tar.gz
7z x lua5_1_Win32_bin.tar
del lua5_1_Win32_bin.tar

The following directory structure will be created:

lua5.1
bin
Win32

Four files are included in the Win32 subdirectory: the interpreter (lua5.1.exe), the byte-code compiler
(luac5.1.exe), the Lua core in dynamic link library form (lua5.1.dll), and an embedding tool
(bin2c5.1.exe). Change your default working directory to Win32 with the following command:

cd lua5.1\bin\Win32

Install the dynamic link library and executables as follows:

copy /b lua5.1.exe “%UTIL_DIR%\lua.exe”
copy /b luac5.1.exe “%UTIL_DIR%\luac.exe”
copy /b lua5.1.dll “%UTIL_DIR%\”
copy /b bin2c5.1.exe “%UTIL_DIR%\bin2c.exe”

20

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 20

You do not rename the library, lua5.1.dll, because references to it are embedded in the interpreter and
compiler.

Type lua -v and luac -v from any working directory to make sure the two programs are accessible on the
search path.

An additional nicety is to add the Lua icon to this directory. You can copy the icon named lua.ico in
the etc directory of the Lua source package to the utility directory.

Additional Tools
While on the topic of getting situated with Lua, a few notes about programming editors and script man-
agement are appropriate. Although these tools and methods are not required to create programs, their
use definitely makes you more productive.

Programmer’s Editor
One tool you want to choose carefully is your text editor. You’ll use it not only to create Lua scripts, but
also to read and search through them. A vast number of free and commercial text editors are available
for all mainstream platforms. Wikipedia has a comprehensive summary of their availability and features
at http://en.wikipedia.org/wiki/Comparison_of_text_editors. Programmer’s editors provide
features well beyond the basic editing of text including features such as the following:

❑ Advanced search and replace using regular expressions, a powerful form of recognizing pat-
terns in text

❑ Syntax highlighting that gives you visual confirmation that your script is properly structured

❑ Multiple undoing and redoing

❑ Bracket matching

❑ The capability to automatically hide portions of text and code

❑ Macros to automatically repeat time-consuming or error-prone operations

❑ The capability to filter selected portions of text through an external program (that is, one written
in Lua) to process text in ways that might be awkward or complicated using the editor’s own
commands

Most programmer’s editors enable you to configure syntax highlighting for various programming lan-
guages, and syntax highlighting for Lua is provided as part of many editor packages. An editor’s high-
lighting mechanism might have trouble with Lua’s novel way of handling multiline comments and
strings, but you can usually configure it to handle those constructions at least gracefully if not perfectly.

21

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 21

Revision Control System
Organizing your Lua scripts in a directory or directory tree makes it easier to reuse code that you have
written. It also simplifies your managing those scripts with a revision control system such as CVS or
Subversion. A revision control system enables you to do the following:

❑ Recover an earlier revision of a script

❑ Review the history of a script’s progress in the form of commit log entries

❑ Safely develop scripts from more than one machine

❑ Back up your work easily because only the repository needs to be backed up

❑ Create and merge multiple sets of files — known as branches — to distinguish between the
installed and developmental versions of your scripts

One advanced system, Monotone, uses distributed repositories with Lua as a scripting language.
Revision control is usually associated with collaborative team efforts, but it has many benefits for the
independent programmer as well. The usual cycle is to edit and test your script until you reach some
sort of milestone, and then commit the script with a note to the revision control system’s repository.

Many well-written books and how-to guides exist for setting up and using open-source revision control
systems.

Summary
You now have a working Lua interpreter and compiler on your system.

In this chapter, you learned about the following:

❑ Lua’s package structure

❑ How to build Lua from scratch

❑ How to install a precompiled Lua package

❑ The advantages of a programmer’s editor

❑ The advantages of a revision control system for your source code

You’ll use the various shell operations you learned about in the chapters ahead. When you extend Lua’s
functionality with libraries, you’ll use the same techniques to obtain and install the libraries as you did
in this chapter for Lua itself.

22

Chapter 1: Getting Situated

04_069172 ch01.qxp 1/2/07 7:53 PM Page 22

2
First Steps

This chapter and the next two lay the foundation you need to understand the rest of the book. As
such, they cover a great deal of material, although they’re still very basic. If you’ve never pro-
grammed before, you’ll learn a lot of new concepts; if you’re an experienced programmer, you’ll
see a lot of things that you already know. In the latter case, you are encouraged to skim, but be
warned: Some of the Lua building blocks covered in these three chapters may have no counterpart
in the languages you are familiar with.

This chapter explains the:

❑ Arithmetic operations

❑ Variables and assignment

❑ Strings

❑ true, false, and nil values

❑ if statements and while, for, and repeat loops

Numbers and Arithmetic Operations:
Basic Interpreter Usage

The Lua interpreter —lua— is a program that can execute Lua code that you type right after you
type it.

This is how the term interpreter is used in this chapter, but it can also refer to a particular inter-
nal component of the Lua implementation — more on this in the next chapter and Chapter 10.

In this section, you explore the basics of using lua.

05_069172 ch02.qxp 1/2/07 7:53 PM Page 23

Addition, Subtraction, Multiplication,
Division, and Exponentiation

Start with something simple — adding two and two. Access your system’s shell, as described in Chapter
1. When you’re there, type lua and press Enter (Return on some keyboards). You should see something
like the following:

Lua 5.1.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio
>

Typing lua starts the Lua interpreter. When it starts, it prints its version number and copyright informa-
tion, and then it prints the following:

>

This Lua prompt tells you it’s waiting for you to give it something to do.

Now type the following (the part you type is bold):

> print(2 + 2)

Then press Enter. You should see the following:

4
>

Lua looked between the parentheses, saw 2 + 2, added two and two, and followed the print command
and output the result to the screen. It then displayed another prompt to tell you it was ready for more.

Lua can handle subtraction, negative numbers, numbers with decimal points, multiplication (using *),
division (using /), exponentiation (using ^), and combinations of these. Here are some examples:

> print(2 - 2)
0
> print(-2 + -2)
-4
> print(2.5 + 2.75)
5.25
> print(3 * 3)
9
> print(100 / 4)
25
> print(3 ^ 2)
9
> print(5 * -5 + 1 + 1 + 0.5)
-22.5

Interacting with the Interpreter
The interpreter knows how to respond when you type Lua code that either contains a mistake or is
incomplete. Sooner or later, you’ll type something that makes no sense to Lua. In case you haven’t

24

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 24

already done this accidentally, now is the time to do it on purpose to see what happens. Type print (2 +
+ 2) and press Enter. Here’s what you get:

> print(2 + + 2)
stdin:1: unexpected symbol near ‘+’
>

Lua sees something that doesn’t make sense (two plus signs next to each other), so it prints a short
explanation of why it doesn’t make sense. The explanation is also known as an error message.

Because Lua is only a computer program, its explanations aren’t always easy to understand at first, but
this one (unexpected symbol near ‘+’) is fairly straightforward. Next to a plus sign, Lua found some-
thing it wasn’t expecting — in this case another plus sign.

After printing the error message, Lua displayed another prompt to let you know it was ready for more.

You’ll get similar error messages if you leave out print or its parentheses, like this:

> 2 + 2
stdin:1: unexpected symbol near ‘2’
> print 2 + 2
stdin:1: ‘=’ expected near ‘2’

If you type something that makes sense except that it’s incomplete, Lua lets you finish it on another line.
For example, press Enter before the close parenthesis, type the close parenthesis, and press Enter again,
like this:

> print(2 + 2
>>)
4

Lua sees that the first line you typed was incomplete, so it printed >>. This is a continuation prompt, Lua’s
way of letting you know that it’s waiting for you to finish what you started. When Lua got the close
parenthesis on the next line, it was able to print the result.

Other Notations for Numbers
You can also write numbers using scientific notation, where the part before the upper- or lowercase e is
multiplied by 10 to the power after the e. For example, 5e2 means 5 times 10 to the 2nd power, or 500.
Scientific notation is normally used to write extremely large or extremely small numbers, or for Lua to
print them. Here are some examples:

> print(5e2)
500
> print(5e-2)
0.05
> print(1.2193263111264E17 / 987654321)
123456789
> print(123456789 * 987654321)
1.2193263111264e+17
> print(2.3283064365387e-10 * 4294967296)
1

25

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 25

The numbers you use in daily life (and have used so far in this chapter) are decimal, or base 10. This
means that there are 10 digits, 0-9. Lua also understands hexadecimal (base 16) numbers, using the letters
a-f (or A-F) to represent 10 through 15. Hexadecimal numbers should start with 0x or 0X. (That’s a zero
before the x, not a letter O.) They have to be integers (whole numbers). Take a look at these examples:

> print(0x1)
1
> print(0x10)
16
> print(0xff)
255
> print(0XA)
10
> print(0x03e8)
1000
> print(-0xf000)
-61440
> print(0xff.ff)
stdin:1: ‘)’ expected near ‘.’

Lua 5.0 did not understand hexadecimal numbers.

Interpreter Know-How
Before learning any more about the Lua language, you should know a couple things about the interpreter.

Quitting the Interpreter
Sooner or later, you’ll want to take a break. There are three ways to get out of the interpreter:

❑ Press Ctrl+C. This sends the interpreter what is called an interrupt signal. If the interpreter is
waiting for you to type something, this will exit the interpreter. If the interpreter is stuck, doing
something (or nothing) over and over without stopping, then this same key combination will
get you back to the state where the interpreter is waiting for you to type something.

❑ Press Ctrl+Z (or on Unix-like platforms, including Mac OS X, press Ctrl+D) at the beginning of
an empty line and press Enter. This sends an end-of-file (EOF). It’s a signal to Lua that it should
give up trying to get input from you.

❑ The most typing-intensive way to stop the interpreter is to type the following line:

os.exit()

Interpreter Shortcuts
Depending on your system, you may be able to scroll through an editable history of previous lines
you’ve typed by using the up- and down-arrow keys on your keyboard.

26

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 26

On Windows XP and Windows 2000, this history feature is handled by the cmd shell. On Windows 95,
98, and Me, it is handled by the doskey utility (if it’s running). On Unix-like systems, it’s handled by
the GNU Readline and History libraries, if they were linked to when your copy of Lua was compiled.

Here’s another typing saver. When the interpreter sees a line that starts with =, such as the following, it
treats the rest of the line as though it came between the parentheses of a print:

> =2 + 2
4

This is not part of the Lua language proper — it only works when you’re typing something into the inter-
preter interactively. This means it’s not to be confused with the use of the equal sign that is part of Lua
proper, which you’ll learn about in the next section. You can substitute this typing-saver use of = for
print() in some of the examples in this chapter, but not all of them. Roughly speaking, you can only use
it if what you’re typing is a line unto itself, and not part of one of the multiline structures you’ll learn
about later. For consistency, this book generally uses print(), but you should substitute = when possible.

If you can access the history of what you’ve typed with the arrow keys, you may (depending on your
system) see that lines that start with = have been transformed into lines that start with return. You’ll
learn about return in the next chapter.

Numerical Gotchas
At the intersection of the elegant world of mathematics and the sometimes rough-and-ready world of
computers, nonintuitive things may happen. This section explains the major ones.

Division by Zero and Overflow
In arithmetic, dividing a number by zero is undefined. It’s also undefined in Lua, which in practice
means that what happens when you divide by zero depends on the C compiler used to compile your
copy of Lua. To find out what happens on your own system, simply divide something by zero and
observe the result. Here is an incomplete list of the possibilities:

❑ Lua may abruptly exit (with no error message).

❑ Lua may freeze and your operating system may display an error message. (If necessary, use
Ctrl+C to get out of Lua.)

❑ The calculation may succeed and give a result. This result may not be a regular number but may
instead look like -1.#IND, 1.#INF, Inf, or NaN.

If you do get a pseudo-number like NaN, beware: These generally have unusual behavior, sometimes to
the extent of not being equal to themselves.

Unless you’re prepared for the results, never divide by zero.

27

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 27

On most systems, the highest and lowest possible numbers have more than 300 digits (when written in
regular base-10 notation). If you happen to go beyond these limits, the same division-by-zero warnings
discussed in this section apply.

Floating-Point Rounding
Decimal-point notation cannot accurately express fractions unless they can be expressed in tenths, hun-
dredths, and so on. For instance, 1⁄2 is 5⁄10, or 0.5; 1⁄4 is 25⁄100 or 0.25; but 1⁄3 is somewhere between 0.33333333 and
0.33333334. Most computer hardware stores numbers in base-2 format, which has a similar problem —
numbers not expressible as halves, quarters, eighths, and so on must be rounded to the nearest such frac-
tion before they can be stored. This means that even a seemingly simple number like 0.1 cannot be accu-
rately represented.

Another type of rounding takes place when a number is printed — if it would have an absurdly long
number of decimal places, it is rounded to a nearby number. The following example demonstrates both
types of rounding:

This example uses some things you won’t learn until later in this chapter. It’s shown here for reference
purposes only.

> AlmostOne = 0.1 + 0.1 + 0.1 + 0.1 + 0.1 +
>> 0.1 + 0.1 + 0.1 + 0.1 + 0.1
> print(AlmostOne < 1)
true
> print(AlmostOne)
1

Don’t let this scare you off — in most situations problems like this don’t arise. However, if you do run
into two numbers that look alike but are not equal to each other, you now know a possible cause.

If you want to know more about these issues, go to the library or the web. One standard reference is
David Goldberg’s paper “What Every Computer Scientist Should Know About Floating-Point
Arithmetic,” which is available at http://docs.sun.com/source/806-3568/ncg_goldberg.html.

By default, Lua uses what are known as double-precision floating-point numbers. It’s possible to
recompile Lua to use another representation for numbers. Unless you’re using special hardware, doing
this will not avoid the problems just discussed (or it will trade them for another set of problems).

Variables and Assignment
Like almost all programming languages, Lua has variables. For now, you can think of these as named
cubbyholes or storage containers for values. (Numbers are the only values you’ve encountered so far,
but you’ll learn about other types later in the chapter.) After you put a value into a variable, you can
refer to it using the variable’s name.

28

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 28

Assignment Basics
Putting a value into a variable is called assignment. Here are two examples of assignment (along with
some prints that show what’s going on):

> NumberA = 2
> print(NumberA)
2
> NumberB = 2 + 2
> print(NumberB)
4
> print(NumberA + NumberB)
6

An equal sign assigns a value to a variable. In these examples, the value 2 is assigned to the variable
NumberA, and the value 4 (the result of 2 + 2) is assigned to the variable NumberB.

After a value has been assigned to a variable, you can access the value again using the variable’s name,
such as print(NumberA) or print(NumberA + NumberB).

Notice that Lua’s equal sign means a different thing than the one in algebra. The algebraic equal sign is a
statement of fact indicating that two things are equal. Lua’s equal sign is a command to Lua to make two
things equal, so that the one on the left can be used in place of the one on the right. Because of this, a
particular variable may contain different values at different points in a program. Here’s an example:

> Sum = 2 + 2
> print(Sum)
4
> Sum = 2 + 5000
> print(Sum)
5002

There are rules for variable names, or identifiers: An identifier has to start with a letter or an underscore.
It can’t contain anything other than letters, underscores, or digits. Nor can it be one of Lua’s reserved
words or keywords, which are and, break, do, else, elseif, end, false, for, function, if, in, local,
nil, not, or, repeat, return, then, true, until, and while. The following are all valid identifiers:

❑ a

❑ A

❑ ABC

❑ _xyz

❑ something_55

❑ AnotherThing

❑ _____

29

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 29

None of the following are valid identifiers:

❑ function (a keyword)

❑ this-var (contains something other than a letter, number, or underscore)

❑ 1stThing (starts with something other than a letter or underscore)

Lua is case-sensitive, which means that NUM, Num, and num are all different identifiers:

> NUM = 1
> Num = 2
> num = 3
> print(NUM)
1
> print(Num)
2
> print(num)
3

This also means that FUNCTION, Function, and fUnCtIoN are all valid identifiers, because none of them
is the keyword function.

There are various styles for identifiers:

❑ totalsales

❑ total_sales

❑ totalSales

❑ TotalSales

Some programmers even use different styles for different types of variables. If you’re working on some-
one else’s code, use the style used by that code. In your own code, pick a style and stick to it. This book
uses the style TotalSales. Lua itself generally uses the totalsales style, so in this book, you can tell
by looking whether a variable is defined in an example or built into Lua.

Lua has a few special variables that start with an underscore followed by capital letters (and possibly a
number), such as _G or _PROMPT2. Avoid using names like that so that your variables don’t clash with
them.

A single underscore (_) is often used as a variable for junk values — values that need to be assigned, but
won’t be used. (You see this in Chapter 4 and elsewhere in the book.)

30

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 30

Multiple Assignment
You can assign multiple values to multiple variables at the same time. You can also print multiple values
at the same time. The comma is used for both. Here’s how you use the comma for multiple assignment,
and for printing multiple values at the same time:

> Sum, Product, Exponent = 10 + 10, 10 * 10, 10 ^ 10
> print(Sum, Product, Exponent)
20 100 10000000000

In this example, three values were generated by adding 10 to itself, multiplying it by itself, and raising it
to the 10th power. These three values were assigned respectively to the three variables Sum, Product,
and Exponent. These three variables (more specifically, the values in these variables) were then printed.

You can also use multiple assignment to swap, rotate, or otherwise interchange the contents of variables.
Here’s an example:

> A, B = 1, 2
> print(A, B)
1 2
> A, B = B, A
> print(A, B)
2 1
> John, Jane, Jolene = “chips”, “lemonade”, “egg salad”
> print(John, Jane, Jolene)
chips lemonade egg salad
> John, Jane, Jolene = Jane, Jolene, John
> print(John, Jane, Jolene)
lemonade egg salad chips

Notice that without multiple assignment, swapping the contents of two variables would require a third
variable for temporary storage:

> A = 1
> B = 2
> print(A, B)
1 2
> Tmp = A
> A = B
> B = Tmp
> print(A, B)
2 1

31

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 31

Variables on the Right Side of Assignments
As you may have noticed in some the previous examples, and as shown in the following example, the
thing to the right of the equal sign can also be a variable:

> A = 10
> B = A
> print(B)
10

Even if a variable got its value from another variable, the two variables are independent. For example:

> A = 10
> B = A
> print(A, B)
10 10
> A = 555
> print(A, B)
555 10

This is because once the assignment gets the value of a variable that’s on its right side, it forgets what
variable the value came from (or even that it came from a variable at all).

Strings
Numbers are nice, but most programs need to deal with strings, which are sequences of characters
(a letter, digit, space, or punctuation mark) or control characters (such a newline or formfeed).

Quoting Strings
A string can contain any text — even something that itself looks like Lua code — so it needs to be sepa-
rated from the actual Lua code that comes before and after it. This is called quoting the string.

There are three ways to quote strings: with double quotes, with single quotes, and with square brackets.

Quoting Strings with Double Quotes
The double quote characters (“) mark the beginning and end of the string. Marking the beginning and
end is all they do; they are not actually part of the string, which is why print doesn’t print them, as in
this example:

> print(“This is a string!”)
This is a string!

32

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 32

Like numbers, strings are values, which means they can be assigned to variables. Here’s an example:

> Name, Phone = “Jane X. Doe”, “248-555-5898”
> print(Name, Phone)
Jane X. Doe 248-555-5898

The same variable can contain both a string and a number at different times, as shown here:

> Var = 42
> print(Var)
42
> Var = “forty-two”
> print(Var)
forty-two

You can also have an empty string, which contains no characters between the quote marks. For example:

> print(“”)

>

Quoting Strings with Single Quotes
You can also quote strings by using the single quote (or apostrophe) character (‘), like this:

> print(‘This is also a string.’)
This is also a string.

Single quotes work exactly like double quotes except that a single-quoted string can contain a double
quote (without that double quote marking the end of the string). Similarly, a double-quoted string can
contain a single quote (without that single quote marking the end of the string). Here are some exam-
ples:

> print(‘Cry “Havoc,” and let slip the dogs of war’)
Cry “Havoc,” and let slip the dogs of war
> print(“Cry ‘Havoc,’ and let slip the dogs of war”)
Cry ‘Havoc,’ and let slip the dogs of war

Other than how they treat embedded double and single quotes, single and double quotes work exactly
the same, and you can use either one. The best practice is to pick one and stick with it in all cases except
those in which the other is more convenient.

Quoting Strings with Square Brackets
You can also quote strings with pairs of square brackets. Square brackets are used mainly for strings that
would be too unwieldy to quote with double or single quotes, like this one:

> print([[There are some
>> funky “\’ characters
>> in this string.]])
There are some
funky “\’ characters
in this string.

33

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 33

If you mark the beginning of a string with two open square brackets ([[), then you mark the end with
two close square brackets (]]). Inside such a string, no characters have any special meaning — a double
quote represents a double quote, a newline (the invisible character that marks the end of a line, as when
you press Enter) represents a newline, a backslash represents a backslash, a backslash followed by a let-
ter n represents a backslash followed by a letter n, and so on. Strings quoted this way are sometimes
called long strings, because they can be spread out over several lines, but they work fine on one line too.

If the first character of a square-bracket string is a newline, it is ignored. This allows you to write multi-
line square-bracket strings in an easier-to-read way. The following two prints print exactly the same
thing, but the second looks more like its result:

> print([[+-----+
>> | Lua |
>> +-----+
>>]])
+-----+
| Lua |
+-----+

> print([[
>> +-----+
>> | Lua |
>> +-----+
>>]])
+-----+
| Lua |
+-----+

What if you wanted to print two close square brackets inside a long string? For example:

> print([[Here]] are some square brackets.]])
stdin:1: ‘)’ expected near ‘are’

The square brackets are interpreted by Lua as the end of the string. A backslash (the Lua escape charac-
ter, discussed in the following section) won’t prevent this from happening, because backslashes have no
special meaning inside square-bracket strings. Instead, put an equal sign between the string’s opening
square brackets, and another between the closing square brackets:

> print([=[Here]] are some square brackets.]=])
Here]] are some square brackets.

If you need to, you can use multiple equal signs — the same number at the beginning and the end — like
this:

> print([=[babble]=] burble]=])
stdin:1: ‘)’ expected near ‘burble’
> print([==[babble]=] burble]==])
babble]=] burble
> print([====[babble]=]==]===] burble]====])
babble]=]==]===] burble

34

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 34

In other words, a square-bracket string starts with an open square bracket, zero or more equal signs, and
another open square bracket, and it ends with a close square bracket, the same number of equal signs,
and another close square bracket.

Lua 5.0 had a slightly different quoting method for long strings: The beginning was always [[(never
[=[or [==[), and the end was always]] (never]=]or]==]). Also, matching sets of bracket pairs
could nest —[[[[]]]] was legal and equivalent to “[[]]”. The equivalent Lua 5.1 long string
would be [=[[[]]]=].

Backslash Escaping
You can use the backslash character (\)inside double- and single-quoted strings to do things that would
otherwise be inconvenient or impossible.

When the double quote character occurs within a double-quoted string, it has a special meaning: end of
string. As you saw earlier, one way to avoid this special meaning (so that a double quote can be part of a
string) is to quote the string with single quotes. Here’s another way, using the backslash:

> print(“Cry \”Havoc\””)
Cry “Havoc”

When a double quote is preceded by a backslash, the double quote’s end-of-string meaning is taken
away (escaped), and it becomes a part of the string. The backslash itself is not part of the string (in the
same way that the quotes at the beginning and end of the string aren’t part of it).

In other words, a backslash followed by a double quote represents a double quote. In the same way, a
backslash followed by a single quote represents a single quote. For example:

> print(‘Ain\’t nobody\’s business if you do!’)
Ain’t nobody’s business if you do!

A backslash followed by a backslash represents a backslash (just one):

> print(“1 backslash: \\ 2: \\\\ 3: \\\\\\”)
1 backslash: \ 2: \\ 3: \\\

And a backslash followed by a newline represents a newline:

> print(“one\
>> two”)
one
two

Different systems have different conventions for what character or character sequence is used to mark
the end of a line. Lua accounts for this automatically — if any of the common end-of-line characters or
character sequences occur in Lua code, inside or outside of string quotes, they are silently translated to
newlines.

35

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 35

Normally, breaking a string into two lines would result in an error such as this:

> print(“one
>> two”)
stdin:1: unfinished string near ‘“one’

In addition to letting double quotes, single quotes, backslashes, and newlines represent themselves, the
backslash also gives special meanings to some characters. For example, a backslash followed by a lower-
case letter n represents a newline:

> print(“one\ntwo”)
one
two

These sequences of characters that start with a backslash are called escape sequences, because they tem-
porarily escape from the normal interpretation of characters. Here are all of them:

Escape Sequence Meaning

\a \Bell (in certain circumstances, printing this character
causes the computer to beep —a stands for “alert”)

\b Backspace

\f Formfeed

\n Newline

\r Carriage return (some operating systems use this by itself
or in combination with newline to represent the end of a
line)

\t Tab (used to format text in columns)

\v Vertical tab

\\ Backslash

\” Double quote

\’ Single quote (apostrophe)

\99 The character whose numeric representation is 99
(described next)

\ Newline (a backslash followed by a literal newline repre-
sents a newline)

A backslash followed by one, two, or three decimal digits represents the character whose numeric repre-
sentation (inside the computer’s memory or on a disk) is that number. This varies from system to sys-
tem, but on most systems “\99” is the same as “c”— of course, in most circumstances it would make
more sense to use the latter form rather than the former.

36

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 36

Lua’s escape sequences are similar to those of the C language. The most important difference is that
numeric escapes like \123 are interpreted as decimal (base 10), not octal (base 8).

Lua strings can include any character, including the null byte: the (invisible) character whose numeric
representation is 0. However, parts of Lua that depend on the C language to handle strings will consider
that character to mark the end of the string. For example:

> EmbeddedNull = “BEFORE\0after”
> print(EmbeddedNull)
BEFORE

Relational Operators and Boolean Values
+, -, *, /, and ^ are called operators, or more specifically, arithmetic operators. Arithmetic operators ask
“how much” questions. In this section you learn about relational operators, which ask yes-or-no questions.

Comparing Numbers
The operators in this section are relational because they ask about the relation between two values:
whether one value is less than the other, greater than it, equal to it, and so on.

Here’s how to ask Lua whether one number is less than another:

> print(4 < 5)
true
> print(5 < 4)
false

You’ve learned about two types of values so far: numbers and strings. The less-than operator always
gives true or false as a result. true and false look like strings at first glance, but actually they are a
new type, called Boolean values (named after the 19th-century mathematician George Boole). There are
lots of numbers (1, -300, 3.14159) and lots of strings (“Hello there!”, “apple”, “asdfjkl;”), but
true and false are the only Booleans. Because they are values, they can be assigned to variables. To
hard-code a Boolean value into a program, just type true or false (with no quotes), like this:

> Boolean1, Boolean2, Boolean3 = true, false, 1 < 2
> print(Boolean1, Boolean2, Boolean3)
true false true

There are six relational operators:

❑ A < B Is A less than B?

❑ A > B Is A greater than B?

❑ A <= B Is A less than or equal to B?

37

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 37

❑ A >= B Is A greater than or equal to B?

❑ A == B Is A equal to B?

❑ A ~= B Is A not equal to B?

Of these six, <, >, <=, and >= determine what order two values are in. == and ~= just determine whether
two values are equal. For example:

> print(1 > 1)
false
> print(1 > 2)
false
> print(1 >= 1)
true
> print(1 >= 2)
false
> print(1 == 1)
true
> print(1 == 2)
false
> print(1 ~= 1)
false
> print(1 ~= 2)
true

Here are a couple common errors:

> Num == 42
stdin:1: ‘=’ expected near ‘==’
> print(Num = 42)
stdin:1: ‘)’ expected near ‘=’

A single equal sign is used for assignment and a double equal sign is used for equality comparison. It’s
very common to mix these up, but Lua always spots the error.

Comparing Strings
If two strings have the same characters in them (in the same order), then they are considered the same
string, which means they are equal to each other (because a value is always equal to itself). For example:

> Str1 = “Jane X. Doe”
> Str2 = “Jane X. Doe”
> print(Str1 == Str2)
true

Two values of different types are never considered equal, even if they look similar.
So the number 1 is not equal to the string “1”, and the string “true” is not equal to
the Boolean true. Also, unlike some other languages, the number 0 is not equal to
either the empty string “” or the Boolean false, and the number 1 is not equal to
the Boolean true.

38

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 38

<, >, <=, and >= can be used on strings as well. Single-character strings compare based on their collation
(sorting) order in the current locale. In the simplest case, this is their order in your system’s character set.
(Locale is a system setting that determines, among other things, the appropriate alphabetization order
for the language being used.) Here are some examples:

> print(“a” < “b”)
true
> print(“a” < “a”)
false
> print(“a” <= “a”)
true
> print(“A” < “a”)
true
> print(“ “ > “\n”)
true

Multiple-character strings compare based on the first character that is different, like this:

> print(“abcd” < “abce”)
true

The absence of a character is considered less than any character, as these examples illustrate:

> print(“” < “A”)
true
> print(“” < “\0”)
true
> print(“abc” < “abcd”)
true

Although == and ~= can be used with values of any type, even values of two different types, the <, >, <=,
and >= operators can only be used with two numbers or two strings. Anything else causes an error, as
these examples show:

> print(false < true)
stdin:1: attempt to compare two boolean values
stack traceback:

stdin:1: in main chunk
[C]: ?

> print(42 >= “41”)
stdin:1: attempt to compare string with number
stack traceback:

stdin:1: in main chunk
[C]: ?

The rule that <, >, <=, and >= can only be used to compare two strings or two numbers is not strictly
true. You’ll learn how to bypass this rule — and several other rules given in this chapter — with metata-
bles in Chapter 8.

39

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 39

The nil Value
Assigning an initial value to a variable is called initializing it. A variable that has had no value assigned
to it is said to be uninitialized. You’ve learned about three types of value (also known as datatypes) so far:
numbers, strings, and Booleans. There’s one more type to learn about in this chapter, and you’ll see it if
you print the value of an uninitialized variable such as the following:

> print(Asdf)
nil

This is the value nil. Its type is also named nil; in fact it is the only value whose type is nil. It is used
mainly to represent the absence of any other value. Any uninitialized variable has nil as its value.

You can also explicitly assign nil to a variable, which you might do if you want Lua to forget about the
variable’s previous value. For example:

> Password = “$xa(yb`y”
> print(Password)
$xa(yb`y
> Password = nil
> print(Password)
nil

nil also comes into play when an assignment is made that has more variables on its left side than values
on its right side. Here’s an example:

> C, D = 3, 4
> A, B, C, D = 1, 2
> print(A, B, C, D)
1 2 nil nil

If there are more variables on the left side of an assignment than there are values on the right side, the
list of values is adjusted to the correct length by adding nils to the end. So the line where A and B are
assigned as follows:

> A, B, C, D = 1, 2

acts just as though it had been written like this:

> A, B, C, D = 1, 2, nil, nil

This means that extra variables (C and D in this example) are set to nil, even if they already have been
set to another value.

40

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 40

If there are more values on the right than variables on the left, the list of values is adjusted by throwing
away the extra values, like this:

> A, B = 1, 2, 3, 4
> print(A, B)
1 2

nil is different from false, 0, and the string “nil”. But, like all values, it’s equal to itself:

> print(nil ~= false)
true
> print(nil ~= 0)
true
> print(nil ~= “nil”)
true
> print(nil == nil)
true

If a nil turns up where you don’t expect it, a typo is usually the cause. In the following example, the
variable LoginCount is initialized, but then its name is miscapitalized as LogInCount, which is a differ-
ent variable:

> MaxLoginCount = 100
> LoginCount = 50
> print(LogInCount > MaxLoginCount)
stdin:1: attempt to compare number with nil
stack traceback:

stdin:1: in main chunk
[C]: ?

Because LogInCount is uninitialized, its value is nil, which can’t be compared to a number.

In the next example, Joe and Mike were intended as strings, but because they are not quoted, they’re
treated as (uninitialized) variables:

> FirstNameA, FirstNameB = Joe, Mike
> print(FirstNameA < FirstNameB)
stdin:1: attempt to compare two nil values
stack traceback:

stdin:1: in main chunk
[C]: ?

Boolean Operators
The three Boolean operators —and, or, and not— are handy for working with Boolean values. However,
as you will see, they can also be given non-Boolean values, and two of them (and and or) don’t always
even give Boolean results.

41

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 41

The and Operator
Like the other operators you’ve seen so far, the and operator takes two values, one to its left and one to
its right. The values given to an operator are called operands. The simple explanation of and is that it
gives a true result only if both of its operands are true, as follows:

> print(false and false)
false
> print(false and true)
false
> print(true and false)
false
> print(true and true)
true

One way that you can use this is to check if a number is within a range. In the following example Num >
10 is true and Num < 20 is true, so the result is true:

> Num = 15
> print(Num > 10 and Num < 20)
true

If you use operands that aren’t Booleans, the behavior of and is a bit more subtle. Here are some
examples — see if you can figure out what rules and is following in them:

> print(false and nil)
false
> print(nil and false)
nil
> print(false and 1)
false
> print(1 and false)
false
> print(nil and 1)
nil
> print(1 and nil)
nil
> print(nil and true)
nil
> print(true and nil)
nil
> print(true and 1)
1
> print(1 and true)
true
> print(“a” and 1)
1
> print(1 and “a”)
a

42

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 42

The more complicated explanation of the and operator is that if its first operand is false or nil, then
the first operand is used as the result; otherwise the second operand is used as the result. Mentally apply
that rule to the preceding examples to see if you come up with the same answer as Lua.

Notice that the complicated explanation is the same as the simple explanation if you consider both
false and nil to be false values and everything else to be true values. There’s a distinction here
between true and false, which are proper names for specific values in Lua, and “true” and “false,”
which are adjectives. In this book, the adjectives will always be in the same typeface as the surrounding
text, and the names will be in this typeface, like so:

false and nil are false. true and “Jane Doe” are true.

The or Operator
The or operator gives a false result only if both its operands are false, as follows:

> print(false or false)
false
> print(false or true)
true
> print(true or false)
true
> print(true or true)
true

Like and, the result of or is always one of its operands. If its first operand is something other than false
or nil, then the first operand is used as the result; otherwise the second operand is used as the result.
For example:

> print(42 or nil)
42
> print(nil or 42)
42
> print(false or nil)
nil
> print(nil or false)
false
> print(“first” or “second”)
first
> print(false or “second”)
second

Remember, false and nil are the two false values, and every other value is a true
value. This means that, unlike some other languages, the number 0 and the empty
string are both true.

43

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 43

This behavior comes in handy in the following example.

> print(FavoriteFruit or “apple”)
apple
> FavoriteFruit = “kiwi”
> print(FavoriteFruit or “apple”)
kiwi

The print line (which occurs twice in the example) is the interesting one here. If there’s a favorite fruit,
that line prints it. If, however, FavoriteFruit is uninitialized (and therefore is nil), there’s no favorite
fruit, and the default (“apple”) is printed.

There can be chains of these, in which case, the result is the first value that is true. Here’s an example:

> Choice1, Choice2, Choice3 = nil, “pencil”, “pen”
> print(Choice1 or Choice2 or Choice3)
pencil

Mathematicians consider the or operator to be the Boolean equivalent of addition, and the and operator
to be the Boolean equivalent of multiplication.

The not Unary Operator
Most of the operators you’ve learned about so far are binary; that is, they take two operands, one to the
left of the operator and one to the right. (This meaning of binary is not to be confused with the base-two
number system.) You’ve seen one unary (a one-operand) operator as well, although you may not have
realized it. It’s the so-called unary minus, and you’ve already used it to make negative numbers, like
this:

> print(-50)
-50
> print(-2 + -2)
-4

You can also use it to make any positive value negative, or make a negative value positive. :

> Two = 2
> print(-Two)
-2
> MinusTwo = -Two
> print(-MinusTwo)
2

- is both a binary and a unary operator, but Lua never gets these two uses confused, because it’s always
visible from the context which one you intended:

> print(-13 - -2)
-11

44

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 44

and and or are both binary, but the remaining Boolean operator, not, is unary. As with -, the not
operand goes to its right. If that operand is false or nil, then the result of not is true; otherwise, it’s
false:

> print(not false)
true
> print(not nil)
true
> print(not true)
false
> print(not 50)
false
> print(not “Hello”)
false

If a true value is preceded by two nots, the result is true; if a false value (that is, false or nil) is pre-
ceded by two nots, the result is false:

> print(not not true)
true
> print(not not 50)
true
> print(not not “Hello”)
true
> print(not not false)
false
> print(not not nil)
false

The Concatenation, Length,
and Modulo Operators

There are three other operators you need to know about: concatenation, length, and modulo. You’ll
examine all three in the following sections.

The String Concatenation Operator
The string concatenation operator is written like this: .. (two periods, with no spaces between them). It
takes two strings as operands and concatenates them, or splices them together. Here are some examples:

> print(“App” .. “le”)
Apple
> print(“a” .. “b” .. “c” .. “d”)
abcd
> Name = “dear reader”
> print(“Hello, “ .. Name .. “, how are you?”)
Hello, dear reader, how are you?

45

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 45

The .. operator creates a new string by putting its two operands together with no space between them.
If you want a space (or some other separator), explicitly include it in the concatenation, like this:

> print(“Jane” .. “Doe”)
JaneDoe
> print(“Jane” .. “ “ .. “Doe”)
Jane Doe

As mentioned previously, two strings with the same characters in the same order are the same string.
This means that two different concatenations can have equal results. For example:

> OneAndTwoThree, OneTwoAndThree = “1” .. “23”, “12” .. “3”
> print(OneAndTwoThree, OneTwoAndThree)
123 123
> print(OneAndTwoThree == OneTwoAndThree)
true

Concatenating a string to the empty string gives the same string:

> print(“abcd” .. “” == “abcd”)
true

The Length Operator
The length operator #, like not and one version of -, is a unary operator. It measures the length of a
string. (It also measures the length of a table, which you’ll learn about in Chapter 4.) Take a look at these
examples:

> print(#””)
0
> print(#”!”)
1
> print(#”\n”)
1
> print(#”abcd”)
4
> VerbForms = “see saw seen”
> print(#VerbForms)
12

The length of a string is simply the number of characters in it. (Notice that “\n” is a single character,
even though it is typed as two.)

Lua considers a character to be exactly one byte — a small chunk of memory just big enough to be able to
take on one of 256 different values. (To be pedantic, Lua considers a character a C char, but that will be

46

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 46

one byte on any system you’re likely to use.) This makes a difference if you’re using a character encod-
ing (UTF-8, for example) in which some characters take up more than one byte; the following word
looks like it’s four characters long, but Lua sees it as five:

> print(#”fi_o”)
5

Lua counts the null byte just like any other character:

> NullByte = “\0”
> NullBytes = NullByte .. NullByte .. NullByte
> print(#NullByte)
1
> print(#NullBytes)
3
> print(#”before\0between\0behind”)
21

Lua 5.0 didn’t have the length operator #. To get the length of a string, use the function string.len;
to get the length of a table, use the function table.getn.

The Modulo Operator
Imagine the hour hand of a clock. If it’s pointed at 3 and you turn it two hours forward, it’s now pointed
at 5. This can be modeled by addition: 3 plus 2 equals 5. But what if, when it’s pointed at 5, you turn it
144 hours forward? The answer is that it will still be pointed at 5 because 144 is divisible by 12. After the
hour hand passes 12, the addition model breaks down (in this case giving the answer 149). The modulo
operator, %, is good for modeling cyclical things like hours in a day, days in a week, or musical pitches in
an octave.

Try It Out Using % to Model a Clock Face
The following example models setting an hour hand to 3, moving it two hours forward, moving it 144
hours forward, and moving it 149 hours backward. For this example, pretend that the top of the clock
says 0 instead of 12 (the fact that real clocks go from 1 to 12 rather than 0 to 11 could be adjusted for by
adding and subtracting 1 at the appropriate points, but that would needlessly complicate this example).

> Hour = 3
> Hour = Hour + 2
> Hour = Hour % 12
> print(Hour)
5
> Hour = Hour + 144
> Hour = Hour % 12
> print(Hour)
5
> Hour = Hour - 149
> Hour = Hour % 12
> print(Hour)
0

47

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 47

How It Works
The lines where addition or subtraction is done represent turning the hour hand, but they can leave
Hour either too high (greater than or equal to 12) or too low (negative). The lines where % is used adjust
for this. Hour % 12 is pronounced “hour modulo twelve” or “hour mod twelve,” and it means “What
would Hour be if I added or subtracted enough 12s so that it was less than 12 and greater than or equal
to zero?”

For positive numbers (even fractional ones), this is the same as the remainder of a division. For example,
35 % 12 is 11 because 12 goes into 35 two times with a remainder of 11. This can be used to check
whether a number is divisible by another number. For instance, if X is even, then X % 2 will be 0.

In other languages, the modulo operators and functions treat negative numbers differently than the Lua
% operator does. The Lua operator follows the definition of modulo most commonly used by mathemati-
cians. One way of stating this definition is as follows:

To find X % Y, add Y to (or subtract it from) X as many times as necessary until a
number between 0 and Y is reached. (This number can be exactly equal to 0, but it
cannot be exactly equal to Y.)

This definition allows the clock-face example to work even when Hour briefly becomes negative.

As with division by zero, using zero as the second operand of % is undefined.

Lua 5.0 didn’t have the % operator. Use the function math.mod instead, but be warned that it has dif-
ferent behavior with negative numbers.

Automatic Conversion of Operands
Some operators (such as ==) can take operands of any type. Other operators (such as <) expect operands
of a certain type and produce an error message if given the wrong type. The arithmetical operators (+, -,
*, /, ^, and %) fall into this second category, except that they will attempt to convert string operands into
numbers, like this:

> print(“2” + “2”)
4

The result is still a number, not a string. If the conversion attempt fails, an error message like the follow-
ing results:

> print(“x” + “y”)
stdin:1: attempt to perform arithmetic on a string value
stack traceback:

stdin:1: in main chunk
[C]: ?

48

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 48

If the string is a hexadecimal number, it must be positive. (Negative hexadecimal numbers may be con-
verted correctly, but this is not guaranteed — it depends on the C library used to compile Lua.)

The string concatenation operator also does an automatic conversion, from number to string. For example:

> print(111 .. 999)
111999

Precedence and Associativity
You may remember from math class that both 5 * 5 + 1 and 1 + 5 * 5 give the same result — multiplication
is done before addition even if it comes later. Multiplication is therefore said to have a higher precedence
than addition. However, if you want to do a lower-precedence operation before a higher-precedence one,
you can surround the lower-precedence one in parentheses.

The following shows that, no matter what the left-to-right order, multiplication will always be done
before addition, unless the addition is wrapped in parentheses, in which case it will be done first:

> print(5 * 5 + 1)
26
> print(1 + 5 * 5)
26
> print(5 * (5 + 1))
30
> print((1 + 5) * 5)
30

Notice that parentheses are being put to two different uses here — to override precedence and to wrap
the thing being printed. These two uses are completely unrelated, but in both cases each open parenthe-
sis must have a corresponding close parenthesis. If the open and close parentheses don’t match up,
you’ll get either an error message or a continuation prompt telling you to finish what you started:

> print((1 + 5) * 5))
stdin:1: unexpected symbol near ‘)’
> print(5 * (5 + 1)
>>

What about two operators that have the same precedence? In some cases, it doesn’t matter what order
they’re done in: (2 + 3) + 4 and 2 + (3 + 4) are both 9. But how about 2 - 3 + 4? This will give a differ-
ent answer depending on whether the subtraction or the addition is done first, and precedence can’t be
used to decide this because addition and subtraction have the same precedence. In this case, the subtrac-
tion is done first because it’s on the left, and + and - are both left-associative operators. Anytime two
operators are the same precedence, they are done from left to right if they’re left associative, and right to
left if they’re right associative. Lua only has two right-associative operators: .. (string concatenation)
and ^ (exponentiation). (That’s not counting unary operators, which are done from right to left because
that’s the only way that makes sense.)

49

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 49

The following chart lists all of Lua’s operators, from highest precedence to lowest. (All operators are
binary unless marked as unary, and all binary operators are left associative unless marked as right
associative.)

^ (exponentiation; right-associative)

not (Boolean negation; unary), - (unary minus), # (length; unary)

* (multiplication), / (division), % (modulo)

+ (addition), - (subtraction)

.. (string concatenation; right-associative)

< (less than), > (greater than), ~= (not equal to), <= (less than or equal to), == (equal to), >= (greater
than or equal to)

and (Boolean “multiplication”)

or (Boolean “addition”)

Most experienced programmers do not memorize this whole chart, nor do they check it every time they
can’t remember a precedence. Rather, they memorize a handful of the most commonly used precedences
and use parentheses for anything they’re not sure of. It doesn’t hurt to add parentheses even if they’re
not strictly necessary according to the precedence chart, and it often makes your code easier for you and
others to understand.

On the other hand, Lua’s precedence chart is well thought out, and many common idioms do not require
parentheses. For example, relational operators have comparatively low precedence, which means that
arithmetic results don’t need to be wrapped in parentheses before being compared:

> CreditA, DebitA, CreditB, DebitB = 1000, 150, 500, 25
> print(CreditA - DebitA == CreditB - DebitB)
false
> print(CreditA - DebitA > CreditB - DebitB)
true

and and or both have very low precedence, so you don’t need to wrap comparisons in parentheses
before using and or or:

> CreditA, DebitA, CreditB, DebitB = 1000, 150, 500, 505
> print(CreditA >= DebitA and CreditB >= DebitB)
false
> print(CreditA >= DebitA or CreditB >= DebitB)
true

and has higher precedence than or, so you can use A and B or C to mean “if A, then B, otherwise C.”

50

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 50

Here’s the A and B or C trick in action:

> B, C = “B was chosen”, “C was chosen”
> A = true
> print(A and B or C)
B was chosen
> A = false
> print(A and B or C)
C was chosen

A is anded with B and the result (A if A is false, otherwise B) is ored with C. The upshot is that whether A
is true or false determines whether the result is B or C. This would have worked the same if A had been
set to any true value instead of true, or nil instead of false. It would not have worked, though, if B
had been nil or false:

> B, C = false, “C was chosen”
> A = true
> print(A and B or C)
C was chosen

This is a limitation of this idiom — the middle value must be true.

Variables and Values
Earlier you read that variables are like named cubbyholes or containers for values. This means that the
following assignment finds the three cubbyholes Number, Greeting1, and Greeting2 (creating them if
they don’t already exist) and puts 123 in Number, “Hello” in Greeting1, and “Hello” in Greeting2:

Number, Greeting1, Greeting2 = 123, “Hello”, “Hello”

This is illustrated in Figure 2-1.

Figure 2-1

For everything you’ve done and will do in this chapter, that’s a perfectly accurate mental model, but
later you’ll run into situations where it would lead you astray. Before you get it too ingrained in your
head, a somewhat more accurate model is that the following finds the three names Number, Greeting1,

Number

123

Greeting1

"Hello"

Greeting2

"Hello"

51

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 51

and Greeting2 (creating them if they don’t already exist) and points Number’s arrow at 123 and
Greeting1’s and Greeting2’s arrows at “Hello”:

Number, Greeting1, Greeting2 = 123, “Hello”, “Hello”

This is illustrated in Figure 2-2.

Figure 2-2

The difference is that instead of Greeting1 and Greeting2 each containing “Hello”, they only point to
it. Chapter 4 explains why this is important.

Comments
If Lua sees two consecutive hyphens outside of a string, it considers everything until the end of that line
a comment and ignores it. For example:

> print(“Hello”) -- This is a comment.
Hello
> print(“Goodbye”) -- So is this.
Goodbye

Comments are useful to explain your code’s purpose to other programmers (or to remind yourself when
you return to the code after a few months). Whenever you change your code, make certain you update
your comments appropriately.

Comments can also be used to temporarily comment out code that you want Lua to ignore but don’t
want to delete entirely, like this:

> -- print(“Hello”)
>

If the two hyphens are immediately followed by an open square bracket, zero or more equal signs, and
another open square bracket, then Lua uses the rules described previously for long strings (square

Number

123

Greeting1

"Hello"

Greeting2

52

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 52

bracket strings) to ignore the following text (including the rule about nested sets of square brackets
needing different numbers of equal signs). This is most often used for multiline comments such as the
following:

> --[[This is
>> a multi-line
>> comment.]]
>

It can also be used to temporarily comment out code in the middle of a line, like this:

> print(2 + --[[2 +]] 2)
4

Or to temporarily comment out multiple lines of code, like this:

> --[[
>> print(“Multiple”)
>> print(“lines.”)
>> --]]
>

Notice that the closing brackets have -- in front of them. This lets you add a single - in front of the
opening brackets (turning that line into a single-line comment rather than the start of a multiline com-
ment) without the closing brackets causing an error:

> ---[[
> print(“Multiple”)
Multiple
> print(“lines.”)
lines.
> --]]
>

That looks pretty silly typed into the interpreter, but you’ll find it useful for debugging when you start
saving code to (and executing it from) files.

Even though code typed directly into the interpreter is normally short-lived and not commented, much
of the following example code is commented for your benefit.

Expressions and Statements
For most of this chapter, you’ve been using expressions and statements. For the rest of the chapter to
make sense, these terms need to be defined.

53

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 53

An expression is something that has a value. As you’ve used print, you’ve been putting expressions
(separated by commas when there is more than one) between its parentheses. An expression can be a lit-
eral value, such as a quoted string, true, false, or nil. Literal means that you can tell just by looking at
it what it is. For example, a variable named Count may contain a number (and probably does, given its
name), but it’s not a literal number, like 42 is.

An expression can also be a variable name, like Count. It can also be an expression preceded by a unary
operator, an expression wrapped in parentheses, or two expressions separated by a binary operator. For
example, -Count is an expression because Count is an expression, and an expression preceded by a
unary operator is also an expression. 2 + 3 is an expression because 2 and 3 are expressions, and separat-
ing two expressions with a binary operator makes another expression. Take a look at the following
example:

Count > 5 and #(FirstNameStr .. LastNameStr) <= 20

Even a complicated expression like this can be explained as the literals 5 and 20 and the variable names
Count, FirstNameStr, and LastNameStr combined according to the preceding rules.

There are other rules for making expressions, but these are the only ones relevant to this chapter.

A statement is the smallest complete unit of Lua code. A Lua program is simply one or more statements
(actually zero or more, because if you enter an empty line into the interpreter, you’re executing a valid
program that does nothing). Lua doesn’t know what to do with an expression unless it’s wrapped in a
statement such as the following:

> 2 + 2
stdin:1: unexpected symbol near ‘2’
> print(2 + 2)
4

As this example implies, print(...) is a statement. Assignment is also a statement, and these are the only
two types of statement you’ve learned about so far in this chapter. You’ll learn more in the next section.

For the most part, expressions and statements are two different things. There is one type of expression
that can be used as a statement, and you’ll learn about it next chapter.

Compound Statements
Compound statements are statements that can contain other statements. The following sections describe
five of Lua’s compound statements: the if statement; the while, for, and repeat loops; and the do statement.

At any time during the execution of a program, a certain part of the program is in control. By default,
control flows from each statement to the one after it, but most compound statements are control
structures, so-named because they are structures (with multiple parts), and they alter the flow of control.
The if statement is one of these control structures.

54

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 54

The if Statement
Say you have two strings, Str1 and Str2, and you want to concatenate them in (the < operator’s ver-
sion of) alphabetical order. To do so, you need to test whether Str1 comes before Str2 and, if it does,
concatenate them with Str1 first, but otherwise concatenate them with Str2 first. You already know
enough to do this, if you use the A and B or C trick described earlier. Give it a try.

You should come up with the following:

> Str1, Str2 = “aardvark”, “zebra”
> print(Str1 < Str2 and Str1 .. Str2 or Str2 .. Str1)
aardvarkzebra
>
> Str1, Str2 = “zebra”, “aardvark”
> print(Str1 < Str2 and Str1 .. Str2 or Str2 .. Str1)
aardvarkzebra

There’s another way to do this, using the if control structure.

Try It Out Using if to Make a Choice
The if version is a bit wordier but, at least in this case, it’s easier to read, and it scales up more easily to
more complicated things. Here’s the code:

> Str1, Str2 = “aardvark”, “zebra”
> if Str1 < Str2 then
>> print(Str1 .. Str2)
>> else
>> print(Str2 .. Str1)
>> end
aardvarkzebra
> -- Do it again with the strings swapped:
> Str1, Str2 = “zebra”, “aardvark”
> if Str1 < Str2 then
>> print(Str1 .. Str2)
>> else
>> print(Str2 .. Str1)
>> end
aardvarkzebra

How It Works
In English: If the two strings are in the right order, then print them; otherwise, print them in reverse
order.

55

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 55

The if control structure has the following form:

if an expression then
zero or more statements

else
zero or more statements

end

The expression is evaluated, that is, its value is checked. If the value is true (that is, something other than
false or nil), then only the statements between the then and the else are executed; if the expression
is false (that is, false or nil) then only the statements between the else and the end are executed.

An if statement doesn’t have to be spread out across several lines. If it’s not too long, you can fit it on
one line. If you do spread it across several lines, indent the statements before and after the else, as the
preceding example shows. Lua doesn’t care about indentation, but humans find it much easier to read
properly indented code.

If you have no statements to put in the else clause (the part between the else and the end), just leave
the else out. For example:

if not Asdf then print(“Asdf is false”) end

if “X” .. “Y” .. “Z” == “XYZ” then
Name = “Virginia”
print(“Yes, “ .. Name .. “, it’s \”XYZ\””)

end

It’s possible to rewrite the alphabetical concatenation example with no else clause. Give it a try before
you look at the following example. (Hint: the print statement needs to come after the end.)

> Str1, Str2 = “aardvark”, “zebra”
> if Str1 > Str2 then
>> Str1, Str2 = Str2, Str1
>> end
> print(Str1 .. Str2)
aardvarkzebra
> -- Do it again with the strings swapped:
> Str1, Str2 = “zebra”, “aardvark”
> if Str1 > Str2 then
>> Str1, Str2 = Str2, Str1
>> end
> print(Str1 .. Str2)
aardvarkzebra

In English: If the two strings are in the wrong order, swap them. Then print them (whether they were
swapped or not).

This code does one thing if Str1 is greater than Str2 and does something else if Str1 is less than or
equal to Str2. Similarly, the first version does one thing if Str1 is less than Str2 and something else if
Str1 is greater than or equal to Str2. Because an if structure is a statement, it can be put inside a then

56

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 56

clause or an else clause. This fact can be used to do one thing if Str1 is less than Str2, another thing if
Str1 is greater than Str2, and yet another if they are equal. Write a version that concatenates Str1 and
Str2 in order as before if they are inequal, but only prints one of them if they are equal. This means that
the following:

Str1, Str2 = “aardvark”, “aardvark”

should result in this:

aardvark

After you’ve written your code, test it and make sure it works. Testing it in this case means trying it out
with all three cases: two strings in the right order, two strings in the wrong order, and two identical
strings.

There are several correct ways to write this code. Here’s one:

if Str1 == Str2 then
-- Str2 is a duplicate of Str1; replace it with the
-- empty string:
Str2 = “”

else
if Str1 > Str2 then
-- They’re in the wrong order; swap ‘em:
Str1, Str2 = Str2, Str1

end
end
print(Str1 .. Str2)

Because the inner if doesn’t have an else, the strings are only executed if one of the two tests turns out
true; if not, none of the statements except the final print is executed.

Notice that the contents of the outer if statement’s then and else clauses are indented one level (which
is two spaces in this book), and the inner if statement’s then clause is indented one more level.

If an if statement is nested inside the else clause of another if statement, Lua allows them to be com-
bined into one if statement using the keyword elseif.

Here’s the nested-if version of alphabetical concatenation rewritten using elseif:

if Str1 == Str2 then
-- Str2 is a duplicate of Str1; replace it with the
-- empty string:
Str2 = “”

elseif Str1 > Str2 then
-- They’re in the wrong order; swap ‘em:
Str1, Str2 = Str2, Str1

end
print(Str1 .. Str2)

57

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 57

The elseif test (to see if the strings are in the wrong order) is only done if the if test (to see if the
strings are equal) turned out false.

An if statement can have zero or more elseifs, and zero or one else. If there is an else, it has to be
the last part of the if:

if N == 1 then
print(“N is one”)

elseif N == 2 then
print(“N is two”)

elseif N == 3 then
print(“N is three”)

else
print(“N is neither one nor two nor three”)

end

In an if like this, the test expressions (right before then) are evaluated from the first one downward,
until the first true one is found, at which point the next statement block (the part between the then and
the next elseif, else, or end) is executed, and the if is exited. The statement block after the else is
only executed if none of the test expressions are true. In this example, you can tell at a glance that only
one of the prints will be executed.

The while Loop
The if control structure gives a program the power to decide whether something gets executed. Lua’s
other control structures —while, repeat, and for— give a program the power to decide how many times
something gets executed. They are called loops, and the simplest is while, whose form is as follows:

while an expression do
zero or more statements

end

The expression is evaluated. If it’s true, the statements between do and end are executed, and then the
expression is evaluated again. If it is still true, the statements are executed again, and the cycle contin-
ues. If the expression evaluates as false at any time (including the first time it’s evaluated), the while
statement is exited, which means that the statements are not executed and the expression is not evalu-
ated again. For example, the following code does nothing:

while false do
print(“This will”)
print(“never print.”)

end

On the other hand, here’s an example that will run forever — (or until you stop it by pressing Ctrl+C):

while true do
print(“It keeps”)
print(“going and going.”)

end

58

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 58

More interesting cases are those where the expression starts out true, and then becomes false, like in the
following example, which uses while to count to 10:

> Counter = 1
> while Counter <= 10 do
>> print(Counter)
>> Counter = Counter + 1
>> end
1
2
3
4
5
6
7
8
9
10
>

Here, Counter is set to 1, and as long as it’s less than or equal to 10, it is printed and then incremented
(increased by one). At the end of the tenth time through the loop, Counter is set to 11. The test —
whether Counter is less than or equal to 10 — is done an eleventh time, this time with a false result,
which means the loop is done.

A factorial is a number formed by multiplying a sequence of consecutive integers starting with 1. For
example, the factorial of 5 (notated by mathematicians as “5!”) is 1×2×3×4×5, or 120. (Apart from their
use in the mathematical field of combinatorics, factorials are quite handy for writing examples in pro-
gramming books.)

The following code prints all the factorials less than 100:

> N, F = 1, 1
> while F < 100 do
>> print(N .. “! is “ .. F)
>> N = N + 1
>> -- Compute the factorial of the new N based on
>> -- the factorial of the old N:
>> F = F * N
>> end
1! is 1
2! is 2
3! is 6
4! is 24

The first line initializes (gives initial values to) N and F, setting N to 1 and F to the factorial of 1, which
also happens to be 1. The expression after while makes sure that F is less than 100. Inside the loop’s
body, N and F are printed, N is incremented, and the factorial of the new value of N is computed, using
the fact that n! equals (n - 1)!×n.

59

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 59

The for Loop
One difference between the factorial loop and the 1-to-10 loop is that you knew the 1-to-10 loop’s body
would be executed 10 times, but you didn’t know how many times the factorial loop’s body would be
executed (unless you figured the factorials out in your head). To know when to exit the loop, Lua had to
compute 4!, see that it was less than 100, and then compute 5! and see that it was not less than 100. The
while loop is for situations where you don’t know how many times you want the loop to repeat. When
you do know how many times you want the loop to repeat, use Lua’s for loop. (It’s called for because
it does things for a certain number of times.)

Here’s the 1-to-10 loop rewritten with for:

> for Counter = 1, 10 do
>> print(Counter)
>> end
1
2
3
4
5
6
7
8
9
10

Notice how much simpler it is than the first version. The for loop has the following form:

for variable = start number, end number, step do
zero or more statements

end

The value start number is assigned to variable, the zero or more statements are executed, step
is added to variable (step is optional and usually left out, in which case 1 is used), and if variable is
still less than or equal to end number, then the loop body is executed again.

If Lua sees that the variable will never either reach or go beyond end number, then the body is never
executed:

> for N = 1, 0 do
>> print(N)
>> end
>

The right thing is done for negative and fractional values and cases where the difference between the
start number and the end number is not divisible by the step value:

60

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 60

> for N = 3, 1, -1 do
>> print(N)
>> end
3
2
1
> for N = -50, -45.25, 2.5 do
>> print(N)
>> end
-50
-47.5
> for N = 2, 5, 2 do
>> print(N)
>> end
2
4

The start number, end number, and step value don’t need to be, and often aren’t, literal numbers — they
can be any expressions that evaluate to numbers. This evaluation takes place once, at the beginning of
the loop (unlike a while loop’s test expression, which is evaluated over and over as the loop loops).
That’s why the following example loops five times, even though End gets lower and lower:

> End = 5
> for I = 1, End do
>> End = End - 1 -- The loop doesn’t care that End is being
>> -- changed.
>> print(“I is “ .. I .. “ and End is “ .. End)
>> end
I is 1 and End is 4
I is 2 and End is 3
I is 3 and End is 2
I is 4 and End is 1
I is 5 and End is 0

for loops can be nested inside each other. For example:

> for Outer = 1, 3 do
>> for Inner = 1, 3 do
>> print(“Outer: “ .. Outer .. “; Inner: “ .. Inner)
>> end
>> end
Outer: 1; Inner: 1
Outer: 1; Inner: 2
Outer: 1; Inner: 3
Outer: 2; Inner: 1
Outer: 2; Inner: 2
Outer: 2; Inner: 3
Outer: 3; Inner: 1
Outer: 3; Inner: 2
Outer: 3; Inner: 3

61

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 61

Another way to say something loops is to say that it iterates. Looping in general is called iteration, but
each time the body of a loop is executed is called an iteration.

On each iteration of a for loop, there’s an implicit assignment to the loop variable (the variable named
right after for). This variable has a behavior that you might not expect. In the following example, N is
used both outside the loop and as a loop variable:

> N = “outside”
> for N = 1, 3 do
>> print(N)
>> end
1
2
3
> print(N)
outside

The outside value of N was unaffected by the numbers that were assigned to N inside the loop. A for
loop’s variable is only visible inside the loop — if you look at it outside the loop, you’ll get any value it
was given outside the loop (nil if it hasn’t been given a value outside the loop). This is because the N
inside the loop and the N outside the loop are actually two different variables — they’re in two different
scopes. (You learn more about this in the next chapter.)

The repeat Loop
The repeat loop is different in three ways from the while loop:

❑ Its expression is tested after its body (the statements between do and end), which means that the
body is always executed at least once.

❑ The sense of the test is reversed — the while loop keeps going while the expression is true; the
repeat loop, whose expression comes after the keyword until, keeps going until the expres-
sion is true.

❑ A repeat loop, unlike a while (or any other compound statement for that matter), does not end
with the keyword end.

A common mistake is to forget the do after a for or while, or the then after an if or
elseif. If you do this, you’ll get an error message:

> for N = 1, 10
>> print(N)

stdin:2: ‘do’ expected near ‘print’

62

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 62

Here’s the factorial example rewritten to use a repeat loop:

> N, F = 1, 1
> repeat
>> print(N .. “! is “ .. F)
>> -- Compute the next N and its factorial:
>> N = N + 1
>> F = F * N
>> until F >= 100
1! is 1
2! is 2
3! is 6
4! is 24

There’s sort of an incipient bug in this version. It is that if you had wanted to see all factorials less than 1,
then the while version would have given you the correct answer (none), but the repeat version would
have incorrectly printed like this:

1! is 1

That’s why you only use repeat when you know that you want the loop’s body to be executed at least
one time.

The repeat loop is the least commonly used control structure. There are a few examples of it in
Chapter 18.

The break and do Statements
The break statement exits a while, for, or repeat loop prematurely. For example:

> for N = 1, 10 do
>> if N > 5 then
>> break
>> end
>> print(N)
>> end
1
2
3
4
5
>

63

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 63

If a break is inside more than one loop, it only breaks out of the innermost one as follows:

> for Outer = 1, 3 do
>> for Inner = 101, 103 do
>> print(“Outer: “ .. Outer .. “; Inner: “ .. Inner)
>> if Inner == 102 then
>> print(“Breaking out of inner loop; 103 won’t be reached.”)
>> break
>> end
>> end
>> end
Outer: 1; Inner: 101
Outer: 1; Inner: 102
Breaking out of inner loop; 103 won’t be reached.
Outer: 2; Inner: 101
Outer: 2; Inner: 102
Breaking out of inner loop; 103 won’t be reached.
Outer: 3; Inner: 101
Outer: 3; Inner: 102
Breaking out of inner loop; 103 won’t be reached.

Use break with caution; sometimes it’s the simplest way to do what you want, but more often it makes
code hard to understand. If the following loop has no breaks in it, you can tell at a glance that it will
execute 10 times:

for Times = 1, 10 do
A bunch
of code
goes here.

end

But if the line if Times == 5 then break end is in the middle, the loop will execute 41⁄2 times, which is a
bit harder to hold in your head while you’re looking for a bug.

A break must be the last statement in a block. A block is a group of statements between the following:

❑ do and end

❑ repeat and until

❑ then and elseif, else, or end

❑ elseif and end

❑ else and end

In other words, a block is a do block (more about these in a moment), a loop, or a branch of an if state-
ment. There are other blocks too, but these are the ones relevant to break. The following example demon-
strates the error caused by trying to use break as something other than the last statement in a block:

> while true do
>> break
>> print(“Never reached”)
stdin:3: ‘end’ expected (to close ‘while’ at line 1) near ‘print’

64

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 64

This limitation is not a hardship, because even if you could put statements after a break, they would
never get executed. During debugging, however, it can be convenient to break out of the middle of a
block, and you can do this by wrapping the break in its own block. Lua’s final compound statement, the
do block, is useful for this, as you can see in the following example:

> for N = 1, 10 do
>> print(“Before”)
>> do break end
>> print(“After”)
>> end
Before
>

The do block has the following form:

do
zero or more statements

end

It can also be used to force code typed directly into the interpreter to be executed as one unit, as in the
second of the following examples, which, unlike the first, has all of its output in the same place, instead
of it being interleaved with the code:

> print(“\nHere are some numbers:”)

Here are some numbers:
> for N = 1, 5 do
>> print(N)
>> end
1
2
3
4
5
> print(“There were some numbers.”)
There were some numbers.

> do
>> print(“\nHere are some numbers:”)
>> for N = 1, 5 do
>> print(N)
>> end
>> print(“There were some numbers.”)
>> end

Here are some numbers:
1
2
3
4
5
There were some numbers.

65

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 65

Summary
This chapter introduced you to the most fundamental elements of the Lua programming language. Most
of the examples were given as typed into lua, the Lua interpreter. In this chapter, you learned the fol-
lowing:

❑ Numbers, strings, Booleans, and nil are different types of values.

❑ To print a value, use print and parentheses.

❑ You can use operators to do math, compare values, concatenate strings, and do various other
things with values.

❑ Operators are applied in order of their precedence, but you can use parentheses to control this.

❑ You use a single equal sign to assign a value to a variable.

❑ Variable names (identifiers) must include only letters, digits, and underscores, and begin with a
letter or an underscore. You cannot use keywords such as and, true, and if as variable names.

❑ Comments start with two dashes.

❑ Literal values and variables are expressions. You can build more complex expressions from less
complex ones with operators and parentheses.

❑ Statements are the smallest complete unit of Lua code.

❑ To determine whether to do something, or how many times to do something, you use the con-
trol structures if, for, while, and repeat.

Often in this chapter, you have given names to values using assignment. It’s possible to give names to
pieces of code too. For example, you can write a big if structure and give it a name, and then when you
want to use it, you don’t have to type the whole thing in again, you just need to type the name. Pieces of
code that are nameable like this are called functions, and they’re the subject of the next chapter. Before
leaving this chapter, though, take some time to do the exercises and test your understanding of what
you’ve learned so far. You’ll find answers in the appendix.

Exercises
1. Why does the following code give an error message rather than printing “Hello”?

> Print(“Hello”)
stdin:1: attempt to call global ‘Print’ (a nil value)
stack traceback:

stdin:1: in main chunk
[C]: ?

2. Assuming X is true and Y is nil, what is the value of the following expression?

(X and “ABC”) .. (Y and “DEF” or 123)

66

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 66

3. The expression from the previous exercise does not have a value if X is false. Why is that?

4. Consider the following if statement:

if N < 10 then
print(“x”)

elseif N > 0 then
print(“x”)

end

If N is 5, how many x’s will be printed?

5. Write a for loop that prints out the even numbers between 2 and 10, inclusive, in reverse order.

67

Chapter 2: First Steps

05_069172 ch02.qxp 1/2/07 7:53 PM Page 67

05_069172 ch02.qxp 1/2/07 7:53 PM Page 68

3
Extending Lua with

Functions

One of the key concepts in programming is abstraction, which means ignoring unimportant details.
Consider the following set of instructions:

1. Get two slices of bread, a jar of peanut butter, a jar of jelly, and a butter knife.

2. Using the butter knife, spread a thin layer of peanut butter on one side of one piece of bread.

3. Using the butter knife, spread a thin layer of jelly on one side of the other piece of bread.

4. Attach the two pieces of bread together by pressing the peanut-buttered side of the one to
the jellied side of the other.

Now compare those instructions with the following:

1. Make a peanut-butter-and-jelly sandwich.

The first set of instructions is less abstract than the second, because it contains details that would
only be helpful to someone naïve in the ways of sandwich preparation. The second set of instruc-
tions abstracts away these details. Consider the following code:

print(1)
print(2)
print(3)
print(4)
print(5)
print(6)
print(7)
print(8)
print(9)
print(10)

06_069172 ch03.qxp 1/2/07 7:54 PM Page 69

This is less abstract than the following code:

for I = 1, 10 do
print(I)

end

Both examples do the same thing, but the second one takes advantage of the fact that Lua knows how to
count. This demonstrates one of the benefits of abstraction — there’s less to type! A related benefit is that
it makes code easier to understand: When you know how for loops work, you can tell at a glance that
the second example prints the numbers from 1 to 10, whereas you’d only know that for sure about the
first one if you were to proofread it and make sure that (for instance) it doesn’t print two sixes in a row.

Functions are the most important means of abstraction in Lua. You’ve already used one function in the
previous chapter: print. In the following example, the print function is being told to do its thing with
two pieces of data — the string “The answer is” and the number 42:

print(“The answer is”, 42)

Another way of saying this is that print is being called with two arguments. print is only one of many
built-in functions that Lua has, but almost any program you write will involve you defining your own
functions.

Take a look at the following example:

> function Greet(Name)
>> print(“Hello, “ .. Name .. “.”)
>> end
> Greet(“John”)
Hello, John.
> Greet(“Jane”)
Hello, Jane.
> Greet(“Aloysius”)
Hello, Aloysius.

The first line (“function Greet(Name)”) tells Lua that you’re defining a function, that the function’s
name will be Greet, and that it will take one argument, whose value will be placed into the variable
Name. When the function is called, the second line concatenates the string “Hello, “ with (the contents
of) Name and a period, and prints the result. The last line of the function tells Lua that you’re done defin-
ing the function. A function definition like this is a statement.

The function is then called three times, each time with a different name as an argument, and prints a
greeting customized for a person with that name. Because the details of how to greet someone are only in
one place, you only need to make any change you want once, rather than every time you greet someone.

The inside of a function definition is executed only when or if the function is called. In the preceding
example, because the call to print is inside Greet, nothing is printed when Greet is defined, but some-
thing is printed each time Greet is called. This point may seem obvious, but if you’re a beginning pro-
grammer, you might find yourself forgetting it when confronted with more complex pieces of code.

70

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 70

Functions can have more than one line of code inside them. In fact, they can include all the things cov-
ered in the preceding chapter. Here’s one that includes assignment and an if control structure:

function Greet(Name)
if Name == “Joe” then
MsgStr = “Whaddya know, Joe?”

else
MsgStr = “Hello, “ .. Name .. “.”

end
print(MsgStr)

end

For that matter, functions can even contain no lines of code, in which case they do nothing. Functions
can also take any number of arguments, or none, as in the following example:

> function NoNameGreet()
>> print(“Hello.”)
>> end
> NoNameGreet()
Hello.
> function TwoNameGreet(Name1, Name2)
>> print(“Hello, “ .. Name1 .. “ and “ .. Name2 .. “.”)
>> end
> TwoNameGreet(“Mutt”, “Jeff”)
Hello, Mutt and Jeff.

If a function is called with more arguments than it was written for, the extra arguments are thrown away,
like this:

> NoNameGreet(“Cathy”)
Hello.
> TwoNameGreet(“Larry”, “Moe”, “Curly”, “Shemp”)
Hello, Larry and Moe.

If a function is called with fewer arguments than it was written for, the remaining arguments are (inside
the function) set to nil as follows:

> function Print2Args(Arg1, Arg2)
>> print(Arg1, Arg2)
>> end
> Print2Args(“1st argument”, “2nd argument”)
1st argument 2nd argument
> Print2Args(“1st argument”)
1st argument nil
> Print2Args()
nil nil

71

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 71

Notice that this behavior (discarding extra arguments and setting missing ones to nil) exactly parallels
the behavior of multiple assignment (described in Chapter 2):

> Var1, Var2 = “1st value”, “2nd value”, “3rd value”
> print(Var1, Var2)
1st value 2nd value
> Var1, Var2 = “1st value”
> print(Var1, Var2)
1st value nil

This chapter is all about functions. It explains how to do the following:

❑ Give names to pieces of code and refer to them by those names (this is one of the most impor-
tant methods used to structure a program)

❑ Execute a file that contains Lua code

❑ Use variables that are only valid in limited parts of a program

❑ Use the same variable name to refer to different variables in different parts of a program

Return Values
Functions — both ones built into Lua and ones that you define — can return values. This means that a
function call can result in a value that you can then pass to another function, use in a variable assign-
ment, or otherwise operate on. In other words, function calls are actually expressions that, like print
and Greet, you can use as statements.

Using a Function that Returns a Value
You can return values from functions that you’ve defined. But first, you should see how to get a return
value from a function that’s already built into Lua.

Lua’s built-in type function is a good example of a function that returns a value. Here are some exam-
ples of this function:

> print(type(42))
number
> print(type(“Hello, Aloysius.”))
string
> print(type(true))
boolean
> print(type(type(true)))
string
> print(type(nil) .. type(false))
nilboolean
> SomeType = type(42)
> print(SomeType)
number

72

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 72

The type function takes one argument, which can be any value. It always returns a string that names the
datatype of its argument, which will be — one of the following eight strings: “boolean”, “function”,
“nil”, “number”, “string”, “table”, “thread”, or “userdata”. So, when type is called with a
number as an argument, it returns the string “number”; when type is called with nil as an argument, it
returns the string “nil”; and so on.

These eight strings represent all eight Lua types. Booleans, nils, numbers, and strings were covered last
chapter. Right now you’re learning about functions. Tables, threads, and userdata will be explained in
Chapter 4, Chapter 9, and Chapter 13, respectively.

As the preceding examples show, a call to type is an expression and can be used wherever an expression
is legal. You can use it as the argument to another function:

print(type(type(true)))

Or as an operator’s operand:

print(type(nil) .. type(false))

Or in an assignment:

SomeType = type(42)

If you call type in the interpreter without doing anything with its value, nothing happens (the value is
thrown away):

> type(42)
>

This is why the type result has been passed to print in the preceding examples.

Defining a Function that Returns a Value
Unsurprisingly, Lua makes it easy to define your own functions that have return values. You use the
return statement.

The following function, Average, uses return to return the average of its two arguments:

> function Average(Num1, Num2)
>> return (Num1 + Num2) / 2
>> end
> Average(0, 10)
> print(Average(0, 10))
5
> print(Average(Average(10, 20), Average(30, 40)))
25

73

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 73

The first time Average is called, nothing is done with the result, so the result is thrown away, and you
never see it. The second time it is called, the result (5) is passed to print, so you do see it. On the next
line, Average is called twice, and the results are passed to a third call of Average. This is equivalent to
the following:

Avg1, Avg2 = Average(10, 20), Average(30, 40)
print(Average(Avg1, Avg2))

Using the return values of function calls as arguments to other function calls is very common. If carried
to an extreme, it can get a bit hard to read, in which case assigning intermediate results to variables (like
Avg1) can make things more legible.

This Average function can only average two numbers. In the next chapter, you’ll learn how to write a
function that can average however many numbers you give it.

Using return to Alter Control Flow
Functions, just like the break statement and the if, for, and while control structures, alter the flow of
control through a program. The return statement also alters the flow of control.

In the following example, return is used to jump past the bottom of the function:

> -- Returns true if Str has an even number of characters;
> -- otherwise returns false:
> function EvenLen(Str)
>> if #Str % 2 == 0 then
>> return true
>> else
>> return false
>> end
>> print(“This will never get printed!”)
>> end
> print(EvenLen(“Jane”))
true
> print(EvenLen(“Joe”))
false
>

The if tests whether the length of Str is evenly divisible by 2. If it is, the function immediately returns
true, which means that the rest of the function (in this case, the final print call) never gets executed. If
the length is not evenly divisible by 2, the function immediately returns false, and the print is again
not reached.

74

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 74

If this sounds familiar, it’s because return is very similar to break, which you learned about in the last
chapter. In fact, there are two differences:

❑ break exits the innermost loop; return exits the innermost function (functions, like loops, can
be nested).

❑ Because loops don’t return values, break cannot be followed by an expression like return can.

Like break, return must be the last statement in a block. In the last chapter, an incomplete list of blocks
was given (do blocks; for, while, and repeat loops; branches of if statements). The only other blocks
are functions and chunks. A chunk is a piece of code executed as a unit, such as the following:

❑ A complete file

❑ A single line typed into the Lua interpreter without causing the continuation prompt to appear

❑ Multiple lines typed into the Lua interpreter, of which all but the last cause the continuation
prompt to appear

Again as with break, if you want (for debugging purposes) to return from the middle of a block, just use
a dummy do block like this:

> function ReturnFromMiddle()
>> print(“Does get printed”)
>> do return true end
>> print(“Doesn’t get printed”)
>> end
> ReturnFromMiddle()
Does get printed
>

In the last chapter, you saw how break can sometimes make loops, especially long ones, harder to
understand. For similar reasons, returning from the middle of functions, particularly long ones, can
make them harder to understand. To verify that the last line of EvenLen will never be executed, you
need to examine the whole function, a small hardship which would be greater with a larger function.

This book often has you write functions like this:

function EvenLen(Str)
if #Str % 2 == 0 then
Ret = true

else
Ret = false

end
return Ret

end

75

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 75

The return value is assigned to Ret in the middle of the function, but Ret is only returned at the very
end, so the function has only one exit point, while the earlier version of EvenLen had two. (There’s actu-
ally something wrong with this example —Ret is visible outside the function, when it really should be
the function’s own private variable. You’ll learn how to avoid this later in this chapter.)

The practice of having only one exit point from each block is part of what is known as structured pro-
gramming, a school of thought most identified with programming pioneer Edsger Dijkstra (1930-2002).
Structured programming is much less controversial now than when it was first introduced in the
1960s, but it is by no means universally regarded as correct. We, the authors of this book, think of it as a
rule of thumb to which exceptions can be made.

Returning Nothing
Before you learned about return, you saw how to write functions that don’t include return. What do
such functions return? It’s easy enough to find out. When print is called with no arguments, it just
prints an empty line, like this:

> print()

>

If you create a function that does nothing and has no return statement, and print its result, you get an
empty line as shown here:

> function DoNothing()
>> end
> print(DoNothing())

>

If functions like this returned nil, you would see it here. This is a strong hint that functions that don’t
use return really do not return a value. You can verify this by trying to print the following DoNothing
return value, which results in type complaining that it wasn’t given a value:

> print(type(DoNothing()))
stdin:1: bad argument #1 to ‘type’ (value expected)
stack traceback:

[C]: in function ‘type’
stdin:1: in main chunk
[C]: ?

To explicitly return no value, use return with no value. The following version of DoNothing behaves
exactly the same as the previous version:

function DoNothing()
return

end

76

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 76

And the following function also does nothing and returns nothing:

function DoNothing()
do return end
print(“This will never print.”)

end

Not having a return statement at the end of a function has exactly the same effect as having a return
that returns no values.

Returning Multiple Values
So far, you’ve seen functions that return one value and functions that return no values. Functions can
also return more than one value, and this turns out to be a particularly handy feature of Lua.

Here’s a function that takes three arguments and returns all of them.

> function ReturnArgs(Arg1, Arg2, Arg3)
>> return Arg1, Arg2, Arg3
>> end
> print(ReturnArgs(1, 2, 3))
1 2 3
> print(ReturnArgs(ReturnArgs(1, 2, 3)))
1 2 3
> A, B, C = ReturnArgs(“alpha”, “bravo”, “charlie”)
> print(A, B, C)
alpha bravo charlie

To return multiple values, simply separate the values with commas. Just from reading the following line,
you might think that print is being given only one argument:

print(ReturnArgs(1, 2, 3))

But it actually gets three arguments — the three values returned by ReturnArgs. The next line is just a
generalization of this. ReturnArgs is given three arguments; it returns three values; those three values
are given to another call of ReturnArgs, which itself returns three values; and those values are given to
print (which prints them):

print(ReturnArgs(ReturnArgs(1, 2, 3)))

You can also use a call to a function that returns multiple values as the right side of an assignment, like
this:

A, B, C = ReturnArgs(“alpha”, “bravo”, “charlie”)

77

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 77

Adjusting Value Lists
You just saw that you can use a function that returns multiple values as the first and only argument to
another function (in which case it’s as though the function was called with multiple arguments) or as the
entire right-hand side of an assignment (in which case it’s as though multiple values were assigned).
What if you use a function that returns multiple values as one of several arguments to another function,
or as only part of the right side of an assignment? As you know, if you call a function with more than
one argument, then the arguments are separated with commas. The same applies to assignment state-
ments that assign more than one value and return statements that return more than one value. These
lists of zero or more (in the case of functions and return) or one or more (in the case of assignment) val-
ues are called value lists.

When you call functions in value lists, their return values are adjusted. This is similar to the process of
adjustment (described in Chapter 2) that happens in assignment statements.

Using Multiple-Valued Functions in Value Lists
Here’s how multiple-valued functions work in various positions in value lists of various lengths, using
the ReturnArgs function defined in the previous section:

> print(1, ReturnArgs(“a”, “b”, “c”))
1 a b c
> print(ReturnArgs(1, 2, 3), “a”)
1 a
> print(ReturnArgs(1, 2, 3), ReturnArgs(“a”, “b”, “c”))
1 a b c

The rule that Lua follows it this:

This explains why the following:

print(ReturnArgs(1, 2, 3), ReturnArgs(“a”, “b”, “c”))

printed this:

1 a b c

If a function call returning multiple values is the last (or only) expression in a value
list, then all the function’s return values are used. If a function call returning multi-
ple values is in a value list but is not the last expression, then only its first return
value is used; its remaining return values are discarded.

78

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 78

ReturnArgs(1, 2, 3) was not the last expression in the print list of arguments, so only its first return
value (1) was used, and its second and third values were thrown away. The ReturnArgs(“a”, “b”,
“c”) was the last expression in print’s argument list, so all three of its return values (“a”, “b”, and
“c”) were passed as (the second, third, and fourth) arguments to print.

The rule also applies to value lists with more than two expressions in them, such as these:

> print(
>> ReturnArgs(1, 2, 3),
>> ReturnArgs(4, 5, 6),
>> ReturnArgs(7, 8, 9),
>> ReturnArgs(10, 11, 12))
1 4 7 10 11 12

Although these examples were given using the print function, the value lists in return and assign-
ment statements work the same way:

> function Test()
>> return ReturnArgs(1, 2, 3), ReturnArgs(4, 5, 6)
>> end
> print(Test())
1 4 5 6
> A, B, C, D = ReturnArgs(1, 2, 3), ReturnArgs(4, 5, 6)
> print(A, B, C, D)
1 4 5 6

Using Valueless Functions in Value Lists
What about functions that return no values, such as the following:

> function DoNothing()
>> end
> print(1, DoNothing())
1
> print(DoNothing(), 2)
nil 2
> print(DoNothing(), DoNothing())
nil

This is just an application of the same rule: When the call to DoNothing is the last expression in the
value list, no adjustment is made and no corresponding value is passed to print, and when the call to
DoNothing is not the last expression in the value list, it is adjusted from no values to one value, namely
nil. Here’s the rule rephrased to cover functions that return no values:

If a function call is the last (or only) expression in a value list, then all (if any) values
returned by the function are used. If a function call is in a value list but is not the
last expression, then its first return value (or nil, if it returns nothing) is used and
any remaining return values are discarded.

79

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 79

This rule (adjust every expression except the last to one value) may seem more complicated than neces-
sary, but there is good reasoning behind it. If every expression in a value list were adjusted to one value,
there would need to be a special way to override this, which would make the ability of Lua functions to
return multiple values harder to use. If no expressions in a value list were adjusted to one value, then
any function returning less or more than one value would throw off the positioning of everything that
came after it in the value list.

As you saw with type, a function call used as a statement is adjusted to no return values, because
there’s nowhere for those values to go.

As covered in the previous chapter and earlier in this one, the whole value list involved in an assign-
ment or a function call is adjusted to the right size by discarding values or adding nils. That adjustment
happens after the adjustment of individual expressions in the value list that this section has been
describing:

> A, B = DoNothing(), 1, 2
> print(A, B)
nil 1
> A, B, C = ReturnArgs(1, 2, 3), 4
> print(A, B, C)
1 4 nil

To force a function call at the end of a value list to be adjusted to one value, surround the whole function
call (including its parentheses) with parentheses:

> print(“a”, (ReturnArgs(“b”, “c”, “d”)))
a b
> print(“a”, (DoNothing()))
a nil

You’ve seen three uses for parentheses: function calls, controlling precedence in expressions, and function
definitions. It may seem as though adjusting to one value is yet another use of parentheses, but in Lua,
these are the same type of parentheses used to control precedence. You can use a function to return less or
more than one value only when a call to it is the last expression in a value list. Wrapping such a call in
parentheses has no effect on precedence, because there are no operators and therefore no precedence to con-
trol, but it does cause the last expression in the value list to no longer be a function call (even though it
contains one), and to therefore no longer be eligible for multiple- or zero-value treatment.

return is not a function. This means that you should not surround whatever comes after it in parenthe-
ses, unless you want to force adjustment to one value as shown in the following example:

> -- This example requires the ReturnArgs function used
> -- earlier.
> function Test()
>> return (ReturnArgs(1, 2, 3))
>> end
> print(Test())
1

80

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 80

Chunks as Functions
Earlier in this chapter, a chunk was defined as a piece of code executed as a unit. The simplest example is
code typed into the interpreter. When you enter a line into the interpreter, it checks whether you typed
any complete statements. If so, it executes those statements as a chunk. If not, it prints a continuation
prompt so you can finish. After it has amassed a whole number of statements, it compiles (converts) them
into bytecode — an internal representation much more efficient than the text that you type in (which is
also known as source code). This bytecode is meant for the internal component of Lua also known as the
interpreter, which is the second meaning of the term interpreter mentioned in the previous chapter. When
there is a possibility for confusion, the first interpreter can be called lua or the command-line interpreter,
and the second can be called the bytecode interpreter.

The command-line interpreter and the bytecode interpreter are not two independent things. Rather, the
command-line interpreter uses (and depends on) the bytecode interpreter.

After a chunk has been compiled into bytecode, it is a function (albeit one without a name). This means
that chunks, including those typed into the interpreter, can be returned from the following:

> return
>

The return can even come from deep within a chunk, like this:

> for I = 1, 10 do
>> print(I)
>> if I == 5 then return end
>> end
1
2
3
4
5
>

If values are returned, lua passes them to print so you can see them, as shown here:

> return nil, “Hello”, nil
nil Hello nil

This is how the equal-sign typing saver described in the last chapter works. When the interpreter sees a
chunk that starts with an equal sign, it replaces the equal sign with “return “ before compiling the
chunk like this:

> =nil, “Hello”, nil
nil Hello nil

81

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 81

When a chunk typed into the interpreter is executed as a function, no arguments are passed to it.

Another important type of chunk is a file containing Lua code. Such a file is often called a script.

Try It Out Writing Your First Lua Script
Unlike code typed directly into the interpreter, scripts are self-contained programs, which you can run
repeatedly without having to type them in again. The following very simple script gives a greeting that
is traditional in programming examples.

1. Create a file with the following contents and name it hello.lua:

-- This is the first file-based example in the book.
print(“Hello, world!”)

2. Access your system’s shell, and make sure you’re in the same directory as the file you just cre-
ated (as described in Chapter 1). Then type the following and press Enter:

lua hello.lua

You should see the following:

Hello, world!

How It Works
When lua is started with a filename, it loads that file as a chunk and executes it. As with any chunk, a
file can be returned from it, and values can be returned from it, but if the file is executed as shown in this
example, these values will simply be thrown away. Arguments can be given to a file, as you’ll learn in
the next chapter.

From here on, many of the examples will be presented as scripts to be executed by giving the filename
to lua.

If you don’t want to have to type lua every time you run a file like this, you can make it directly executable.
On Unix-like platforms this is done by making its first line something like #!/usr/local/bin/lua or
#!/usr/bin/env lua, and marking the file as executable with chmod a+x followed by the file’s
name. (If Lua saw #! in the middle of a script, it would complain, but if it sees # as the very first char-
acter, it just skips to the second line.)

There are several ways to do it on Windows. Ussing hello.lua as an example, one method is to make
a file called hello.cmd that consists of a line like this:

@lua “C:\Your\Dirs\Here\hello.lua” %*

Or if that doesn’t work because you are running an earlier version of Windows, you can use the follow-
ing method, which limits the number of command-line arguments to nine (replace
“C:\Your\Dirs\Here\” with the full path to the Lua file):

@lua “C:\Your\Dirs\Here\hello.lua” %1 %2 %3 %4 %5 %6 %7 %8 %9

82

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 82

The .cmd file must be in a directory in your system’s search path. After you do this, typing hello will
run the file.

You can also execute a string as a chunk. First use the built-in function loadstring to convert it to a
function, and then call the function like this:

> Fnc = loadstring(“print(‘Hello!’)”)
> Fnc()
Hello!

loadstring is an excellent example of the usefulness of multiple return values. If it succeeds in convert-
ing the string to a function, it returns that function; otherwise, it returns nil and an error message.
That’s demonstrated by the following example, which also shows that loadstring takes an optional
second argument — a a string used as a name for the chunk in any error messages:

> Fnc, ErrStr = loadstring(“print(2 + + 2)”, “A STRING CHUNK”)
> if Fnc then
>> Fnc()
>> else
>> print(ErrStr)
>> end
[string “A STRING CHUNK”]:1: unexpected symbol near ‘+’

You can use the vararg mechanism described in the next chapter to access any arguments given to the
function returned by loadstring (although not in Lua 5.0).

Like all chunks, a chunk compiled by loadstring has no access to local variables from other chunks.
For example:

> Test = “global”
> do
>> local Test = “local”
>> Fnc = loadstring(“print(Test)”)
>> Fnc() -- This prints Test’s global value.
>> end
global

loadstring may seem like a very powerful function, but it’s seldom necessary. If
you feel a need to use it, chances are that what you want to do should be done
another way instead (with the closures described later in this chapter, for example,
or with the getfenv and setfenv functions described in the next chapter). An
exception to this is a program that (like the Lua interpreter) accepts code while it’s
running, and runs that code. That type of thing is the ideal use of loadstring.

83

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 83

Variable Scope
In the last chapter, you saw that the variable created by a for loop is only visible inside the loop, and that
a variable outside the loop can have the same name without them affecting each other. (Visible here means
that it can be assigned to and its value can be read.) This is possible because Lua, like most modern pro-
gramming languages, has variable scopes, which are regions within which certain variables are visible.

In early computer languages, all variables were in the same scope, which made it hard to write large
programs, because you needed to make sure that the same name wasn’t used for two different things.

The first step in understanding scopes is learning the distinction between a function’s actual arguments
and its formal arguments. This is explained by the next section.

Actual and Formal Arguments
In the following example, what is PrintArg’s argument?

> -- Prints its one argument:
> function PrintArg(Arg)
>> print(Arg)
>> end
> PrintArg(true)
true

There are two answers to that question. The argument PrintArg is defined with is Arg, but the argu-
ment it’s called with is true. The arguments that a function is defined to take are called formal arguments;
the arguments that it is called with are called actual arguments.

This terminology is not totally standardized. For instance, some people call formal arguments parame-
ters and reserve the word argument for actual arguments.

Formal arguments are just the names by which actual arguments are referred to inside a function when
it is called. This is why using something other than a name as a formal argument is an error, such as the
following:

> function Oops(true)
stdin:1: <name> or ‘...’ expected near ‘true’

84

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 84

Local Variables
A function’s formal arguments are only visible inside the function, and any variable from outside the
function is only visible if it does not share a name with a formal argument. For example:

> Arg, NotShadowed = “Outside 1”, “Outside 2”
>
> -- Prints its one argument and the value of NotShadowed:
> function ScopeTest(Arg)
>> print(Arg, NotShadowed)
>> end
>
> ScopeTest(true)
true Outside 2
> print(Arg)
Outside 1

When ScopeTest is called, a new variable is created, named Arg, and the actual argument for
ScopeTest is assigned to it. Because this variable is only visible inside the function, it is called a local
variable. When the value of Arg is printed, it’s the local Arg (whose value is true) that gets printed, and
not the outer Arg (whose value is “Outside 1”). For this reason, the local Arg is said to shadow the outer
Arg. On the other hand, NotShadowed, which does not share a name with any variable local to the func-
tion, is not shadowed, and is therefore accessible in the normal way.

After ScopeTest returns, the outer Arg is unaffected.

Scopes can be nested inside each other, as shown in this rather contrived example:

> function ScopeTest2(LclA)
>> print(“LclA is “ .. LclA)
>> for LclB = 1, 5 do
>> print(“LclB is “ .. LclB)
>> LclA = LclA + 1
>> end
>> print(“LclA is now “ .. LclA)
>> end
>
> ScopeTest2(100)
LclA is 100
LclB is 1
LclB is 2
LclB is 3
LclB is 4
LclB is 5
LclA is now 105

The scope of LclA is the whole function. The scope of LclB is just the loop. The example also shows that
you can assign to local variables from containing scopes.

Functions and for loops create their own local variables, but you can create local variables too.

85

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 85

This example introduces the keyword local:

> function ScopeTest3(Lcl)
>> for I = 1, 5 do
>> Lcl = Lcl .. “a”
>> print(Lcl)
>> local Lcl = “”
>> Lcl = Lcl .. “z”
>> print(Lcl)
>> end
>> print(“The loop is done.”)
>> print(Lcl)
>> end
>
> ScopeTest3(“”)
a
z
aa
z
aaa
z
aaaa
z
aaaaa
z
The loop is done.
aaaaa

local Lcl = “” is a statement that creates a new local variable named Lcl and initializes it to the empty
string. This new local variable’s scope starts on the statement after the local statement. Because it’s
inside the scope of another variable also named Lcl (the function’s formal argument), it shadows that
outer variable.

Every time the local statement is executed, a new local variable is created and initialized. That’s why
the outer Lcl becomes a longer and longer string of a’s, whereas the inner Lcl is never longer than one
z, because it keeps getting recreated and hence doesn’t remember its previous value.

The scope of a local variable created with the local statement has to end somewhere. In this example, it
ends at the end of the loop (the same place that the scope of the loop variable I ends). You can see that
this is true, because when the value of Lcl is printed after the loop is done, it’s the outer Lcl whose
value get printed.

Figure 3-1 shows all the scopes in ScopeTest3, and clearly illustrates why the two Lcls are called outer
and inner. The scope of the outer Lcl starts at the top of the function’s body and ends at the bottom of
the function’s body; the scope of the I loop variable starts at the top of the loop body and ends at the

A local variable’s scope extends to the end of the innermost block that encloses it. A
block is a do block, the body of a while or for loop, the body of a repeat loop plus
its until expression, a branch of an if statement, a function, or a chunk.

86

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 86

bottom of the loop body; the scope of the inner starts right after the local statement and ends at the bot-
tom of the loop body.

Figure 3-1

Variables from outer scopes are always visible in inner scopes, unless they are shadowed. This is easier
to show using the following do blocks to delimit scopes without altering control flow:

> do
>> local A = “A1”
>> do
>> local B = “B1”
>> do
>> local A = “A2”
>> do
>> local B = “B2”
>> B = “still B2”
>> end
>> do
>> local C = “C1”
>> print(A, B, C)
>> end
>> end
>> end
>> end
A2 B1 C1

function ScopeTest3 (Lcl)

The scope of the
outer Lcl

The scope of I

The scope of the
inner Lcl

for I = 1, 5 do

Lcl = Lcl .. "a"

print (Lcl)

local Lcl = ""

Lcl = Lcl .. "z"

print (Lcl)

end

print ("The loop is done.")

print (Lcl)

end

87

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 87

The inner A is printed because it shadows the outer one, but the first B is printed because the second B is
not in a containing scope. By the time C’s scope starts, the second B scope has already ended. Figure 3-2
illustrates this:

Figure 3-2

One of the benefits of indenting by block is that it makes scopes easier to see. To find out where the inner
Lcl’s scope ends in ScopeTest3, all you need to do is find the first line below the local line that’s far-
ther to the left —Lcl’s scope includes everything up to that line:

function ScopeTest3(Lcl)
for I = 1, 5 do
Lcl = Lcl .. “a”
print(Lcl)
local Lcl = “”
Lcl = Lcl .. “z”

The first
A’s scope

The first
B’s scope

The second
A’s scope

The second
B’s scope

C’s scope

do

local A = "A1"

local B = "B1"

do

local A = "A2"

do

local B = "B2"

local C = "C1"

print (A, B, C)

B = "still B2"

do

do

end

end

end

end

end

88

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 88

print(Lcl)
end
print(“The loop is done.”)
print(Lcl)

end

As mentioned earlier (and illustrated by the positioning of the boxes in Figures 3-1 and 3-2), the scope
of a variable created by a local statement doesn’t begin until the following statement. This means that
if a variable name appears on both sides of a local statement’s equal sign, the one on the left names the
variable whose scope is about to begin, and the one on the right names a variable in a containing scope:

> do
>> local Lcl = “aardvark”
>> -- The first Lcl’s scope starts here.
>> local Lcl = Lcl .. “zebra”
>> -- The second Lcl’s scope starts here.
>> print(Lcl)
>> -- Both scopes end here.
>> end
aardvarkzebra

A chunk is a block, which means that if a local variable is not contained within any other blocks, its scope
ends when the chunk ends. This means that a local variable is never visible in two different files. It also
means that a local variable is never visible in two different chunks of interpreter input. Here’s an example:

> City = “New York”
> local City = “London”
> print(City)
New York

In this example, the first line gives a value to the variable City, which is not a local variable. The second
line creates and initializes a local variable, also named City, which is forgotten about as soon as the line
is done executing. The third line prints the value of a variable named City. Because there is no contain-
ing block with a local variable of that name, the City from the first line is used.

Variables that aren’t local are called global variables. They are called this because they are visible globally,
everywhere in the program, even across different chunks. Their scopes begin and end at the beginning
and end of the program. Not counting for loop variables, all the variables you used in the previous
chapter were global.

You can shadow global variables by local variables as follows:

> Var = “global”
> do
>> local Var = “local”
>> print(Var)
>> Var = “still local”
>> print(Var)
>> end
local
still local
> print(Var)
global

89

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 89

You can create and initialize multiple local variables at the same time. Other than creating new local
variables, you follow the same rules as for multiple assignment (for example, nils are used if the list of
values is too short):

> do
>> local A, B = 1, 2
>> print(A, B)
>> local A, B = 1
>> print(A, B)
>> local A, B = 1, 2, 3
>> print(A, B)
>> end
1 2
1 nil
1 2

You can create local variables without initializing them. This is exactly like initializing them to nil:

> do
>> local A
>> print(A)
>> local B, C
>> print(B, C)
>> end
nil
nil nil

Whether you make the nil implicit (local A) or explicit (local A = nil) is a stylistic choice. Generally,
you shouldn’t use the explicit version if the nil will never be seen because it will be replaced with
another value. An example of this is the following rewritten version of the EvenLen function:

Remember that the second version of EvenLen given earlier (the one with only one exit point) had a
problem. The problem was that, before returning its return value, it stored it in the global variable Ret,
which means that if Ret was used as a global anywhere else, calling EvenLen would rudely overwrite
its value. (You can verify this by calling EvenLen and then printing Ret.) This is exactly the problem
that local variables are meant to solve. Here, EvenLen is rewritten so that the Ret it uses is only visi-
ble inside it.

function EvenLen(Str)
local Ret
if #Str % 2 == 0 then
Ret = true

else
Ret = false

end
return Ret

end

90

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 90

Understanding Side Effects
If a statement or expression causes something to change, this is called a side effect, such as when the
print function changes what’s on the screen. For example, the following function changes the value of
the global variable Gl:

The Val variable created in this example is not part of the side effect, because creating a new local vari-
able doesn’t change the value of a variable that already exists.

function SetGl(Val)
Gl = Val

end

On the other hand, the type function has no side effects — all it does is return a value. However, this
value may then be used by another function or statement that does have a side effect.

Ordering Side Effects
If two functions are free of side effects, it doesn’t matter which order they’re called in. In the following
example, it is impossible to tell whether the type on the left was called before or after the one on the
right, but that’s okay, because all that matters is that the left one’s return value was used as the first
print argument (and the right return value as the second):

> print(type(1), type(“a”))
number string

If two functions do have side effects, though, you can see which order they’re called in. This will be easi-
est to demonstrate with a function that has both a return value and a side effect:

-- Prints a message with Val, then returns Val:
function PrintReturn(Val)
print(“Returning: “ .. tostring(Val))
return Val

end

Don’t make the mistake of thinking that regular assignment (an equal sign but no
local keyword) is for assigning to global variables and the local keyword is for
assigning to local variables. Rather, regular assignment assigns to either globals or
locals (whichever is visible, scopewise), and the local keyword creates new locals
and optionally assigns initial values to those very locals.

91

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 91

PrintReturn takes a single argument. It prints a message that it is about to return this argument, and
then it does so. It uses the built-in Lua function tostring to convert the argument to a string (otherwise
the concatenation operator would choke on nil and Booleans):

> print(PrintReturn(1), PrintReturn(2), PrintReturn(3))
Returning: 1
Returning: 2
Returning: 3
1 2 3

This example showed that the three calls to PrintReturn are made from left to right, but don’t rely on
this — the order is actually undefined and only happens to be left to right in the current implementation.
If you want to make sure that function calls are made in a particular order, make them part of different
statements like this:

> do
>> local Val1 = PrintReturn(1)
>> local Val2 = PrintReturn(2)
>> local Val3 = PrintReturn(3)
>> print(Val1, Val2, Val3)
>> end
Returning: 1
Returning: 2
Returning: 3
1 2 3

This holds for function calls used in expressions, too — they’re done left to right, but don’t rely on it:

> print(PrintReturn(1) + PrintReturn(2))
Returning: 1
Returning: 2
3

Similarly, the current implementation of Lua assigns from right to left, but this behavior shouldn’t be
relied on:

> A, A = 1, 2
> print(A)
1

What is guaranteed is that all function calls to the right of an assignment will be made before any of the
variables to the left are assigned to. This is just a special case of the rule that all expressions to the right
of an assignment are evaluated before any assigning is done. (If it weren’t for that rule, you couldn’t use
multiple assignment to swap values, which was demonstrated in the previous chapter.) In the following
example, when 1 is added to B, the initial value of B is used, and when 1 is added to A, the initial value
of A is used. Only after both calls to PrintReturn are made (with these incremented values) do A and B
get new values:

> A, B = 1, 10
> A, B = PrintReturn(B + 1), PrintReturn(A + 1)
Returning: 11
Returning: 2

92

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 92

> print(A, B)
11 2

It’s also guaranteed that any function call used as an argument (or part of an argument) to another func-
tion will be made before the other function is called. So, the innermost PrintReturn is called before the
one whose parentheses it is inside (which would be true even if the outer PrintReturn never did any-
thing with its argument):

> print(PrintReturn(PrintReturn(1) + 1))
Returning: 1
Returning: 2
2

Functions that don’t have side effects are easier to decipher than those that do because you don’t have to
think about how many times or in what order they’re executed. Side effects that are only visible within a
small part of the program (that is, assigning to a local variable) are easier to decipher than those visible
throughout the whole program, because you don’t have to consider them while thinking about the rest
of the program. This doesn’t mean that you should completely avoid side effects. It does mean that,
when faced with the choice of writing a function with side effects or without, you should write it with-
out side effects unless there’s a good reason to write it with them. It also means that, unless a variable
needs to be visible throughout the entire program, it should be made local with as narrow a scope as
possible.

The and and or operators have a special behavior regarding side effects. This behavior is called short-
circuit (or shortcut) evaluation, and it is demonstrated next.

Short-Circuit Evaluation
Remember that the length operator # gets the length of a string. If it’s given something that doesn’t have
a length (a Boolean in the following example), it will error out, but notice that there is no error when Len
is given a Boolean, even though Len returns an expression that includes an attempt to get its argument’s
length:

> print(#true)
stdin:1: attempt to get length of a boolean value
stack traceback:

stdin:1: in main chunk
[C]: ?

>
> -- Returns Val’s length, or false if Val isn’t a string:
> function Len(Val)
>> return type(Val) == “string” and #Val
>> end
>
> print(Len(“”))
0
> print(Len(“abc”))
3
> print(Len(true))
false

93

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 93

In the previous chapter, you learned that and uses its second operand as its result only if its first operand
is true. However, if its first operand is false, then not only does it not use its second operand as its
result, but it doesn’t even evaluate the second operand, so any side effects the second operand might
have had will not happen. This also applies to errors; giving a Boolean to the # operator causes an error,
but in the previous example, Val is only given to # if it’s a string. The following examples, which use the
PrintReturn function, will make this clearer:

> print(PrintReturn(1) and PrintReturn(2))
Returning: 1
Returning: 2
2
> print(PrintReturn(1) and PrintReturn(false))
Returning: 1
Returning: false
false
> print(PrintReturn(nil) and PrintReturn(2))
Returning: nil
nil
> print(PrintReturn(nil) and PrintReturn(false))
Returning: nil
nil

The first operand of an and is always evaluated (which means any side effects it has will happen). The
second operand is only evaluated if it needs to be — if the first operand is false (false or nil), then
that’s the result of the and, which means that there’s no need to evaluate the second operand.

This also applies to or— if the first operand of or is true (anything other than false or nil), then
that’s the result, and the second operand is not evaluated. For example:

> print(PrintReturn(1) or PrintReturn(2))
Returning: 1
1
> print(PrintReturn(1) or PrintReturn(false))
Returning: 1
1
> print(PrintReturn(nil) or PrintReturn(2))
Returning: nil
Returning: 2
2
> print(PrintReturn(nil) or PrintReturn(false))
Returning: nil
Returning: false
false

Every function, even a supposedly side effect-free function like type, has the side effect of taking awhile
to execute. Normally, this can be ignored, but not if a function takes a particularly long time to execute,
or if it’s in a time-critical section of a program. To see what this has to do with short-circuit evaluation,
imagine that you have a function called Search that always returns some true value and takes a long
time to run. It may or may not have been run earlier in the program. If it was run, its result will be in the
variable SearchResult. In this situation, the following statement is a concise way of printing the search
result while making sure that Search is not called unnecessarily:

print(SearchResult or Search(SearchStr))

94

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 94

Short-circuit evaluation doesn’t do anything that couldn’t be done with if statements — and vice versa,
for that matter. Use whichever one is easier to understand in a given case.

Functions Calling Functions
From within many of the preceding functions, you called print. You can also call your own functions
from within functions.

The Call Stack
When a function calls another function, the calling function gets put on hold while the called one is
doing its thing. Lua keeps track of which function is active and which ones are on hold with something
called the call stack. Explaining how the call stack works will require an example (given in the following
Try It Out) in which function calls are nested within other function calls.

Try It Out Use Creating Nested Function Calls
1. Save the following code under the filename nestedcalls.lua:

-- A demonstration of functions calling functions.

function A()
print(“ About to enter B”)
B()
print(“ Just exited B”)

end

function B()
print(“ About to enter C”)
C()
print(“ Just exited C”)

end

function C()
print(“ Inside C”)

end

print(“About to enter A”)
A()
print(“Just exited A”)

2. As you did with hello.lua earlier, run it by typing this into your shell:

lua nestedcalls.lua

You should see this:

About to enter A
About to enter B
About to enter C
Inside C

Just exited C

95

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 95

Just exited B
Just exited A

How It Works
Lua keeps a stack of information about all currently running functions. It’s called a stack because things
are only put onto or taken off of the top. When a function is called, information about it is put on the top
of the stack (making the stack taller), and when a function returns, that function’s information is
removed from the top of the stack (making the stack shorter). Because this stack grows every time a
function is called, it’s called the call stack. The information about one function call is said to occupy one
stack frame.

A stack is also used to keep track of C function calls. This type of stack is called the C stack, and it’s
separate from Lua’s call stack. Functions written in C also use a stack to interact with Lua, called the
Lua API stack, and it is actually a little window on part of the call stack. This glosses over some
details, but if you really want to know how it works, look at Lua’s source code.

In this example, the prints are formatted so as to be more and more indented as the stack gets taller. At
the stack’s tallest point — the line where Inside C is printed — the stack frame at the top of the stack
(not counting print’s stack frame) contains (among other things) the current location inside C. (Location
here means the location of control: which statement is being executed and which expression is being
evaluated.) The stack frame underneath that contains the current location inside the function that called
C, namely B. This is the point to which control will return when C returns. The next stack frame contains
the current location inside A, and the bottom one contains the current location inside the function that
called A, which is the whole file. (Remember that files are chunks, which are executed as functions.) All
of these locations are highlighted here:

-- A demonstration of functions calling functions.

function A()
print(“ About to enter B”)
B()
print(“ Just exited B”)

end

function B()
print(“ About to enter C”)
C()
print(“ Just exited C”)

end

function C()
print(“ Inside C”)

end

print(“About to enter A”)
A()
print(“Just exited A”)

96

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 96

These locations will be listed (in stack order) if an error happens inside C. For instance, if two nils are
added together like this:

function C()
print(nil + nil)
print(“ Inside C”)

end

then the result will be three About to enter messages, followed by the error message, followed by a
stack traceback, which is a multiline message showing the current location of control in each function on
the stack, from the top down:

About to enter A
About to enter B
About to enter C

lua: nestedcalls.lua:16: attempt to perform arithmetic on a nil value
stack traceback:

nestedcalls.lua:16: in function `C’
nestedcalls.lua:11: in function `B’
nestedcalls.lua:5: in function `A’
nestedcalls.lua:21: in main chunk
[C]: ?

The bottom of the stack is [C]: ?. This just means that the main chunk was called by a C program (the
Lua interpreter).

You’ll learn more about stack tracebacks in Chapter 6. The reason for introducing the concept of the call
stack now is that it makes it much easier to explain the concepts of recursion, stack overflow, and tail calls.

Recursion
If a function calls itself, it is said to be recursive. Lua uses the call stack to store local variables, which
means that multiple calls to the same function can be active at the same time without one call’s local
variables stomping on those of another call.

Recursion is most often used when the problem to be solved is defined in terms of itself. The factorials in
the previous chapter are an example of this: a number’s factorial is defined as that number times the fac-
torial of that number minus one (for example, the factorial of 5 is 5 times the factorial of 4). By itself, this is
a circular definition and hence useless. Circularity is avoided by defining the factorial of 0 to be 1. This is
easily translated into a Lua function. One branch of an if statement handles the base case — the part of the
definition that isn’t self-referential. The if’s other branch handles the self-referential, or recursive, case:

> -- Returns the factorial of N:
> function Fact(N)
>> local Ret
>> if N == 0 then
>> -- Base case:
>> Ret = 1
>> else

97

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 97

>> -- Recursive case:
>> Ret = N * Fact(N - 1)
>> end
>> return Ret
>> end
>
> for N = 0, 5 do
>> print(N .. “! is “ .. Fact(N))
>> end
0! is 1
1! is 1
2! is 2
3! is 6
4! is 24
5! is 120

A step-by-step breakdown of the call Fact(2) would look like this:

1. N is 2. Because it is not equal to 0, Fact is called recursively with 1 as an argument.

2. This recursive call to Fact creates a new variable N (local to this call) and sets it to 1. This N is
completely independent of the N from the previous call. Because it’s not 0, Fact is called yet
again, with 0 as an argument.

3. At this point, the call stack is at its tallest — three stack frames taller than before the first call to
Fact was made. This third call does take the base case, returning 1.

4. Control returns to the second call, which receives the 1 returned by the third call. It multiplies
this 1 by N, which is also 1, and returns the result (also 1).

5. The first call receives this 1, multiplies it by 2, and returns the result (also 2). After the return,
the stack will be back to the height it started at.

If you’ve worked with recursion before, this will all be old news to you. If you haven’t worked with
recursion before and you’re having trouble wrapping your head around it, try going step-by-step
through another call or two to Fact with slightly higher numbers. You’ll find that, to keep track of each
call’s location of control and value of N, you need to simulate a stack (mentally or on paper).

Stack Overflow
If the call stack gets too tall, it can run out of space. This is called stack overflow, and it is an error.

Fact only works on non-negative integers. If it’s given a negative or fractional number, a stack overflow
occurs, as shown in the following example:

> print(Fact(-1))
stdin:8: stack overflow
stack traceback:

stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’

98

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 98

stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
...
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:8: in function ‘Fact’
stdin:1: in main chunk
[C]: ?

A negative or fractional number is handled with the recursive case, but the base case is never reached,
which means that the stack gets taller and taller (which takes awhile) until it overflows, or tries to go
beyond its maximum size. The stack traceback in the error message only shows the top and bottom of
the stack (the dots represent the middle).

For most purposes, you are not likely to run out of stack space if your program isn’t buggy. Stack over-
flow is usually a sign of an infinite recursion, as the previous example shows. If you do want to keep the
stack from growing unnecessarily, there are two ways to do it. One is to use iteration (a loop) instead of
recursion, like this:

-- Returns the factorial of N (iteratively):
function Fact(N)
local Ret = 1
for I = 1, N do
Ret = Ret * I

end
return Ret

end

The other way is to make sure that a recursive call is a tail call, which means it has a certain form
explained in the next section.

If for some reason you need to change how big the stack gets before it overflows, edit the value of
LUAI_MAXCALLS in src/luaconf.h before compiling Lua. Due to the way the stack is grown, this
value should be twice the maximum number of stack frames you need to use.

Tail Calls
In the recursive version of Fact, there’s still more work to be done after the recursive call returns. You
need to multiply the recursive call’s result by N, and assign that value to Ret, which you must then
return. Here’s how:

-- Returns the factorial of N:
function Fact(N)

99

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 99

local Ret
if N == 0 then
-- Base case:
Ret = 1

else
-- Recursive case:
Ret = N * Fact(N - 1)

end
return Ret

end
If there were nothing left to do but return the recursive call’s result after it returned, you wouldn’t need
to make a new stack frame for it. Instead, you could overwrite the current function’s stack frame (the
information in it no longer being necessary).

This type of function call whose result is immediately returned by the calling function is called a tail call.
When Lua sees a tail call, it does the preceding optimization, reusing the calling function’s stack frame
rather than making a new one. Therefore, the following function will run forever (or until interrupted),
continually calling itself but never consuming more than one stack frame:

function ForeverTail()
return ForeverTail()

end

When you do interrupt it, it looks like the stack is big, but it isn’t really. Lua keeps track of how many
tail calls have happened and shows them in the traceback, but they don’t take up any space in the actual
call stack:

> ForeverTail()
stdin:2: interrupted!
stack traceback:

stdin:2: in function ‘ForeverTail’
stdin:2: in function <stdin:1>
(tail call): ?
(tail call): ?
(tail call): ?
(tail call): ?
(tail call): ?
(tail call): ?
(tail call): ?
(tail call): ?
...
(tail call): ?
(tail call): ?
(tail call): ?
(tail call): ?
(tail call): ?
(tail call): ?
(tail call): ?
(tail call): ?
stdin:1: in main chunk
[C]: ?

100

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 100

In the following function, it may seem that there is nothing left to do after the call, and that the call is
therefore a tail call:

function ForeverNotTail()
ForeverNotTail() -- Is this a tail call?

end

This is not a tail call, though, because there is something left to do before returning: the list of
ForeverNotTail return values must be adjusted to zero. Therefore, ForeverNotTail, unlike
ForeverTail, will overflow the stack.

None of the following are tail calls — the first because there’s no return, the rest because the return’s
expression is something other than a single function call:

Fun()

return Fun() + 1

return X and Fun()

return (Fun()) -- This expression is a single function call
-- surrounded in parentheses, which is different than the
-- required single function call (the parentheses adjust
-- Fun to one return value).

return Fun(), Fun()

A recursive function that uses a tail call to call itself is said to be tail recursive. The recursive version of
Fact is not tail recursive, but you can rewrite it to be tail recursive by introducing an accumulator — a
variable that keeps track of all the multiplications done so far:

-- Returns the factorial of N (tail-recursively). Calls
-- itself with two arguments, but when you call it, you need
-- supply only one argument (like the other Fact functions).
function Fact(N, Acc)
-- Initialize the accumulator to 1:
Acc = Acc or 1
if N == 0 then
-- Base case:
return Acc

else
-- Recursive case:
return Fact(N - 1, N * Acc)

end
end

A tail call is always a return statement whose expression is a single function call.

101

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 101

This version of Fact will recurse forever (instead of overflowing the stack) if you give it a negative or
fractional number.

Although none of the preceding examples show it, a tail call is still a tail call even if it’s not a recursive call.

Functions as Values
Functions are values (as are numbers, strings, Booleans, and nil). For example, take a look at the following:

print(type(“Hello”))

This operates by looking in the global variable type, finding a function there, calling that function with
the value “Hello”, looking in the global variable print, finding a function there, and calling that func-
tion with the value returned by the function in type.

If you call type with a function as an argument, it returns the string “function”:

> print(type(print))
function

Replacing Built-In Functions
You can demonstrate that functions are values by replacing the print function with your own function:

> -- Give the print function another name, so it’ll still be
> -- accessible:
> RealPrint = print
>
> -- Prints a message and its one argument:
> function FakePrint(Val)
>> RealPrint(“Inside FakePrint:”, Val)
>> end
>
> -- Replace print with FakePrint:
> print = FakePrint
> -- Use print:
> print(“Hello”)
Inside FakePrint: Hello
> print(true)
Inside FakePrint: true
> -- Undo the damage:
> print = RealPrint
> -- Back to normal:
> print(“Hello”)
Hello
> print(true)
true

102

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 102

There are two reasons that you need to assign the real print function to RealPrint before assigning
the FakePrint function to print. One is to give FakePrint some way to print things; the other is to
allow the real print function to be put back in its rightful place afterwards.

If you play around a bit, you’ll find that the Lua interpreter actually uses whatever function it finds in
the global variable print to print any values returned from interpreted chunks, like this:

> print = FakePrint
> return “abc”
Inside FakePrint: abc

Comparing and Printing Functions
You can compare functions for equality (or inequality), like this:

> print = RealPrint
> print(print == RealPrint)
true
> print(print == type)
false

If you print a function (or convert it to a string with tostring), it will appear as the word function, fol-
lowed by a colon, a space, and a number (a hexadecimal number on most systems):

> print(print)
function: 0x481720

The only thing you need to know about this number is that two different functions that exist at the same
time will have different numbers.

Under the hood, this number represents the function’s location in memory.

Function Definitions as Assignments
Because functions are values and function names are variable names, it could be deduced that the func-
tion statement is a type of assignment. This is indeed true. Take a look at the function statement:

function name(formal arguments)
statements

end

This does exactly the same thing as the following assignment statement of the form:

name = function(formal arguments)
statements

end

To the right of the equal sign (and spilling out onto the next two lines) is a function expression — an
expression whose value is a newly created function.

103

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 103

You can use a function expression wherever you can use any other expression. You can print it, pass it to
another function, assign it, compare it, and so on. In the following example, function() end is a func-
tion expression representing a function that takes no arguments, does nothing, and returns nothing:

> print(function() end)
function: 0x493888
> print(type(function() end))
function

As this example shows, you do not need to give a function a name. A function without a name is called
an anonymous function. You can call an anonymous function by wrapping the function expression that
created it in parentheses (and following that with the usual parentheses used in function calls), like this:

> (function(A, B)
>> print(A + B)
>> end)(2, 3)
5

Calling an anonymous function (or anything that doesn’t look like the part of a function call before the
arguments) is yet another use for parentheses, but as far as Lua is concerned, these are the same paren-
theses used to control precedence and to adjust to a single value.

Every time a function expression is evaluated, a new function is created. That’s why DoNothing1 and
DoNothing2 are not equal in the following example, even though the expressions that created them look
alike:

> DoNothing1, DoNothing2 = function() end, function() end
> print(DoNothing1, DoNothing2)
function: 0x493f20 function: 0x493f38
> print(DoNothing1 == DoNothing2)
false

For the same reason, both times MakeDoNothing is called in the following example, it returns a different
function, even though each of those functions is created by literally the same function expression:

> -- Returns a do-nothing function:
> function MakeDoNothing()
>> return function() end
>> end
>
> print(MakeDoNothing() == MakeDoNothing())
false

Two different function expressions or function statements will always create two
different functions, even if the text of the expressions or statements is the same. A
single function expression or statement will create two different functions if it is
executed twice.

104

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 104

As shown by the MakeDoNothing example, you can return functions just like other values. In Lua,
unlike in some other languages, there are no arbitrary limits on what can be done with functions (as
compared with other values). For this reason, Lua functions are said to be first-class values.

Local Functions
You can also assign functions to local variables. This can be done either with a function expression, like
this:

> do
>> local LclAverage = function(Num1, Num2)
>> return (Num1 + Num2) / 2
>> end
>> print(LclAverage(10, 20))
>> end
15
> -- This will print the global variable LclAverage, which
> -- will be nil:
> print(LclAverage)
nil

Or with a local form of the function statement, like this:

> do
>> local function LclAverage(Num1, Num2)
>> return (Num1 + Num2) / 2
>> end
>> print(LclAverage(10, 20))
>> end
15
> -- This will print the global variable LclAverage, which
> -- will be nil:
> print(LclAverage)
nil

Because they can be hidden from the rest of a program, local functions have the same benefits as local
variables of other types. More specifically, a function is a good candidate for localization if it only makes
sense in one small part of a program — especially if it’s a closure that will be recreated several times as a
program runs.

Another use of local functions is to speed up time-critical loops. This works because access to local vari-
ables is faster than access to global variables. For example, if you use the (global) type function inside a
loop that needed to run as quickly as possible, you could precede the loop with the following:

local type = type

However, optimizations like this should be done only if they’re necessary, as discussed in Chapter 4.

Because the scope of a variable created by a local statement starts on the next statement, creating a
recursive local function like the following will not work because the F referred to inside the function is a
global variable (or possibly a local in a containing scope):

105

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 105

local F = function()
code that does something or other
F() -- A failed attempt at a recursive call -- the local F
-- is not visible here.

more code that does something or other
end

Instead, you need to create the local first, and then assign the function:

local F
F = function()
something or other
F() -- This really is a recursive call.
more something or other

end

Conveniently, the local function statement does exactly that for you behind the scenes:

local function F()
something or other
F() -- This, too, really is a recursive call, because the
-- “local function” statement arranges for the body of
-- the function to be within the scope of the function’s
-- name.

more something or other
end

In the same way that an assignment such as A = 5 assigns to either a local variable or a global one
(depending on whether a local variable named A is visible), a function statement such as function F()
creates either a local function or a global one, depending on whether a local named F is visible.

Whitespace, Semicolons,
and Function Calls

This is a convenient time to cover some topics that aren’t all directly related to functions.

Characters that have no visual appearance other than moving other characters farther apart (such as the
space and newline characters) are called whitespace. Outside of strings, Lua is very tolerant of different
uses of whitespace. It treats the following pieces of code the same:

for I=1,10 do local X=I*7 print(I,X)end--Cramped!

for

I
= 1

, 10 do
local X

106

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 106

= I * 7
print (
I , X)
end -- Spacy!!

The first example is cramped and hard to read, and the second is just silly, but in between these two
extremes, you’ll see variation from programmer to programmer. In your own code, you should pick a
whitespace style that is not too far from the mainstream, but you should also cultivate an eye for varia-
tions, so that if you work with other people on a project that has a consistent whitespace style, you can
pick it up easily. For instance, did you notice that the comment markers in this book have spaces separat-
ing them from any code before or comments after them? Did you notice that commas in this book have
spaces after (but not before) them?

Another point of variation among Lua programmers is the use of the semicolon. You can follow any
statement by a semicolon if you want. For example:

> print(“Test”);
Test

Semicolons can ease the transition for programmers used to languages where semicolons are required.
Most Lua programmers do not use semicolons, or if they do, they use them only to separate multiple
statements on the same line, like this:

function Avg(A, B) local Sum = A + B; return Sum / 2; end

There is a situation where a semicolon is required, and it’s related to a situation where a newline is pro-
hibited. For example, Lua reads the following in a single chunk:

Fun1()
(function() return Fun2 end)()

But Lua doesn’t know whether this is supposed to be one statement (call Fun1 with no arguments, call
its return value with the anonymous function as an argument, and call that function’s return value with
no arguments) or two statements (call Fun1, and then call the anonymous function). For this reason, Lua
doesn’t allow a newline before the open parenthesis of a function call, as in the following example:

> print
>> (“Lua”)
stdin:2: ambiguous syntax (function call x new statement) near ‘(‘

If you follow this rule, and you still get the ambiguous syntax message, you’ll need to put a semicolon at
the end of the statement before the line where the error occurs, like this:

> do
>> print(“2 plus 3 is:”)
>> (function(A, B)
stdin:3: ambiguous syntax (function call x new statement) near ‘(‘
> do
>> print(“2 plus 3 is:”);
>> (function(A, B)

107

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 107

>> print(A + B)
>> end)(2, 3)
>> end
2 plus 3 is:
5

A function call variant that you’ll run into is this: When a function is called with one argument, and that
argument is a literal string, the parentheses can be left out. For example:

> print “with a space”
with a space
> print”or without”
or without

Upvalues and Closures
You saw earlier that if the same function statement or expression is executed twice, it creates two dif-
ferent functions. The reason for this is that two functions created by the same source code can act differ-
ently from each other if they have upvalues and are therefore closures. Definitions of these terms will have
to wait until after the following example.

Defining Functions that Create Functions
You’ve already seen one function that created (and returned) other functions: MakeDoNothing. That was
a bit boring, though, because even though it created a unique function each time it was called, all those
functions did the same thing (which was nothing). The following function, MakeLessThan, creates less-
than functions, each of which tests whether its argument is less than a particular number:

> -- Returns a function that tests whether a number is
> -- less than N:
> function MakeLessThan(N)
>> return function(X)
>> return X < N
>> end
>> end
>
> LessThanFive = MakeLessThan(5)
> LessThanTen = MakeLessThan(10)
> print(LessThanFive(4))
true
> print(LessThanTen(4))
true
> print(LessThanFive(5))
false
> print(LessThanTen(5))
true
> print(LessThanFive(9))
false
> print(LessThanTen(9))

108

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 108

true
> print(LessThanFive(10))
false
> print(LessThanTen(10))
false

Remember that when you call a function, a new local variable is created for each of its arguments. So
when MakeLessThan is called with 5 as an argument, a local variable N is created and initialized to 5.
Normally, this N would no longer be visible after MakeLessThan returns, but because there’s a function
(the anonymous one after return) in N’s scope that uses N, N will last as long as the function does.
MakeLessThan returns the function and assigns it to LessThanFive.

Next, MakeLessThan is called with 10 as an argument. At this point, a local variable N is created and ini-
tialized to 10. This is a newly created variable — it’s different from the other N created for the previous
call. MakeLessThan returns a function that uses this new N, and this function is assigned to LessThan
Ten. Calling LessThanFive and LessThanTen with various values shows that they live up to the names
given to them. LessThanFive tests whether its argument is less than 5, and LessThanTen does the
same with 10.

When a function uses a variable that is local to a containing scope (such as N in this example), that variable
is called an external local variable or an upvalue. The term “upvalue” is somewhat misleading, because an
upvalue is not a value, but a variable used in a certain context. (The term dates back to Lua 3.1, when it
was more accurate.) Despite this, it is used in this book because it’s in common use among Lua program-
mers, and it’s much shorter than the more accurate “external local variable.” A function that has one or
more upvalues is called a closure. (All functions, even those with no upvalues, are represented in the same
way internally. For this reason, “closure” is sometimes used as a synonym for “function.”)

Earlier it was said that local variables reside on the stack, but the stack is not a good place for long-term
storage; when a function returns, its stack frame is abandoned, and when a function does a tail call, its
stack frame is overwritten. Lua handles this by making sure that an upvalue is migrated from the stack
to a safe place elsewhere in memory whenever the block it was created in is exited. Knowing that Lua
initially stores local variables on the stack and migrates them elsewhere only if needed is good back-
ground information, but it is not strictly necessary for an understanding of either local variables or
upvalues. An implementation of Lua could be written that always kept local variables somewhere other
than the stack. It would act the same as the real implementation of Lua, except that it would be slower.
(Actually, it would be different in one other way — it would not impose a limit on the number of local
variables visible at one time. In practice, though, this limit in the real implementation is high enough
that it is seldom if ever reached.)

You can call a function returned by another function directly, without giving it a name first. In the fol-
lowing example, MakeLessThan is called with 10 as an argument. The function it returns is then called
with 5 as an argument. Because 5 is less than 10, true is printed:

> print(MakeLessThan(10)(5))
true

Two closures can share an upvalue, and upvalues can be assigned to. Both of these facts are demon-
strated by the following example.

109

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 109

Defining Functions with Private State
The following MakeGetAndInc example makes and returns two functions: one that gets a value, and
another that increments that value. These functions have private state — ”state” because there’s change-
able data that’s remembered in between calls, and “private” because this data is stored in a local variable
visible to only these functions.

> -- Returns two functions: a function that gets N’s value,
> -- and a function that increments N by its argument.
> function MakeGetAndInc(N)
>> -- Returns N:
>> local function Get()
>> return N
>> end
>>
>> -- Increments N by M:
>> local function Inc(M)
>> N = N + M
>> end
>>
>> return Get, Inc
>> end
>
> -- Make two pairs of get and increment functions, one
> -- pair initialized to 0 and the other initialized to 100:
> GetA, IncA = MakeGetAndInc(0)
> GetB, IncB = MakeGetAndInc(100)
> -- Try them out:
> print(GetA())
0
> print(GetB())
100
> IncA(5)
> print(GetA())
5
> IncA(5)
> print(GetA())
10
> IncB(1)
> print(GetB())
101
> IncA(1)
> print(GetA())
11

As you can see, GetA and IncA both refer to the same N, but GetB and IncB both refer to another N.
GetA and IncA refer to the N created by the first call to MakeGetAndInc. The initial value of this N is 0,
but it gets a new value every time IncA is called, and that new value is visible to GetA. GetB and IncB
act the same way, except their value is stored in the N created by the second call to MakeGetAndInc.

This is also a good example of local functions. The names Get and Inc are only visible inside MakeGet
AndInc. Because there’s no need to make them globally visible, it would have been a programming
no-no to do so, because then MakeGetAndInc would not be usable in a program that already used one
or both of those names for global variables.

110

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 110

Figuring Out Tricky Scope Situations
Every iteration of a for loop creates a new local loop variable. This is demonstrated by the following
example:

> for I = 1, 2 do
>> if I == 1 then
>> function One()
>> return I
>> end
>> else
>> function Two()
>> return I
>> end
>> end
>> end
> print(One())
1
> print(Two())
2

Both One and Two return variables named I, but they are different variables — if they were the same I,
then One and Two would return the same value.

for loops in Lua 5.0 actually did use the same loop variable for each iteration. If this example is tried in
Lua 5.0, both One and Two return 2 because they refer to the same I, whose value when the loop ends is 2.
Additionally, assigning to the loop variable (which is fine in Lua 5.1) has undefined behavior in Lua 5.0.

If you are ever in doubt about the scope of a variable, start from the statement where the variable’s name
is used and search upwards for the following:

❑ A local statement that creates a variable of this name, or a local function statement that cre-
ates a function of this name

❑ A function definition (a function statement, local function statement, or function expres-
sion) that uses this name as a formal argument

❑ A for loop that uses this name as a loop variable

The first one of these that you run into whose scope extends to the statement where you started search-
ing is the place where your (local) variable was created. (Remember that the scope of a variable created
with local extends to the end of the innermost block that encloses it; this also applies to the scope of a
function created with a local function statement.) If your search hits the top of the file without find-
ing anything, the variable is global.

There are two ways to accidentally use a global when a local was intended. One is to
misspell the name of a local variable. The other is to forget the local keyword. Both
of these are common sources of bugs.

111

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 111

If your program is properly indented, this is a simple up-and-out search. You never need to look at a line
that is indented further (to the right) than any line you have already looked at.

In the following example, PrintStr prints “Inside first do block” even though the call to it is in the
scope of a local Str whose value is “Inside second do block”:

> do
>> local Str = “Inside first do block”
>>
>> function PrintStr()
>> print(Str)
>> end
>> end
> do
>> local Str = “Inside second do block”
>> PrintStr()
>> end
Inside first do block

It doesn’t matter where the call is. What matters is where Str is actually named, and that’s inside the
definition of PrintStr (which is inside the first do block). A function cannot see local variables from the
scope that called it (unless that happens to be the same scope in which it’s defined). This means that you
can tell everything you need to know about a variable’s scope by looking at the program’s source code,
without having to figure out which functions call which. In the same way, Lua itself can tell everything it
needs to know about a variable’s scope when it compiles source code into bytecode, rather than having
to wait till runtime (when the program is running).

Because variable scope is determined by the structure of a program’s source code, Lua is said to have
lexical scope (The term “lexical” here means “based on source code.”)

Actually, although whether a variable is global or local is determined lexically, Lua global variables are
not lexically scoped. In most cases they can be treated as if they are; the exception happens when the
function setfenv is used. You’ll learn about setfenv in the next chapter.

Lua’s scoping rules allow arbitrarily complex combinations of global variables, local variables, closures
with upvalues from multiple scopes, closures that share some upvalues but not others, upvalues that
themselves contain closures, and so on. But the rules themselves are relatively simple, considering their
power. Here they are:

❑ Each time a local or local function statement is executed, a new local variable (or possibly
several, in the case of local) is created. Its scope extends downward to the end of the inner-
most enclosing block.

❑ Each time a for loop iterates, a new local variable (or possibly several, in the case of the generic
for loop you’ll learn about next chapter) is created. Its scope extends to the end of the loop.

❑ Each time a function is called, a new local variable is created for each formal argument. The
scope of these variables extends to the end of the function.

❑ If a variable was not created in any of the three aforementioned ways, it’s global.

112

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 112

❑ Each time a function or local function statement is executed, or a function expression is
evaluated, a new function is created.

❑ There is no limitation on reading from or assigning to a visible local variable from within a func-
tion. (In other words, closures are possible.)

So if you find yourself not understanding why a program is doing what it’s doing, and you think it may
be a scoping issue, ask yourself these questions:

❑ Is this a global or local variable?

❑ Where and when was this local variable created?

❑ Where and when was this function created?

Summary
In this chapter, you learned almost everything you need to know about functions. Namely:

❑ Functions allow complexity to be compartmentalized, and let you use the same code in different
places in a program.

❑ A chunk is treated by Lua as a function.

❑ To run a Lua script, give lua a filename when you start it.

❑ Functions can take zero or more arguments and return zero or more values.

❑ When a function is called, a local variable is created for each of its formal arguments. These local
variables are only visible inside the function.

❑ The local keyword and the for loop also create local variables.

❑ A function can call itself, which is called recursion. During recursion, or in any case where two
calls are made to the same function, each call has its own local variables.

❑ A stack is used to keep track of function calls. You can us tail calls to avoid exhausting the large
but finite space available for this stack.

❑ A function is a type of value (as are numbers, strings, Booleans, and nil). You can create func-
tions at runtime, pass them as arguments, return them, assign them, compare them, used them
without naming them, and so on.

❑ A function has full access to all local variables that are visible where the function is defined. A
function that takes advantage of this is called a closure, and the variables from outer scopes that it
accesses are called upvalues. You can use upvalues to create (from the same definition, at runtime)
functions with different behavior, as well as to create functions that retain state between calls.

There are a couple remaining facts about functions that weren’t covered in this chapter. For example,
how do you create a function that (like print) can take an indefinite number of arguments? You’ll learn
this and more in the next chapter, which is about tables, Lua’s tool for combining multiple pieces of data
into one. When you complete the next chapter, you’ll understand all of the basic elements of Lua, and
you’ll be ready to start applying that knowledge in the chapter after that. This chapter ends with some
exercises to test your understanding of functions. The answers are in the appendix.

113

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 113

Exercises
1. Write a TypedToString function that converts a value to a string and prefixes that string with

the value’s type. (You don’t have to deal specially with the fact that a function converted to a
string already has its type prefixed to it.)

> print(TypedToString(“abc”))
string: abc
> print(TypedToString(42))
number: 42
> print(TypedToString(true))
boolean: true
> print(TypedToString(function() end))
function: function: 0x485a10

2. Write a function SumProd that returns both the sum and the product of two numbers:

> print(SumProd(1, 1))
2 1
> print(SumProd(2, 2))
4 4
> print(SumProd(3, 5))
8 15

3. Using SumProd from the previous exercise, what will the following print?

print(SumProd(3, 3), SumProd(5, 5))

4. What does the following print?

Continent = “North America”

function F(Continent)
Continent = “Australia”

end

F(Continent)
print(Continent)

5. The following MakeDotter function is intended to return a function that appends N dots to its
argument (and returns the result). It almost works, but every time it’s used to make a new dot-
ter function, the old ones stop working right. Why does this happen, and what one-line change
can be made to make it work right?

> function MakeDotter(N)
>> Dots = “”
>> for I = 1, N do
>> Dots = Dots .. “.”
>> end
>> return function(Str)
>> return Str .. Dots
>> end
>> end
>
> -- Make a function that appends one dot to its argument:

114

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 114

> OneDotter = MakeDotter(1)
> print(OneDotter(“A”))
A.
> print(OneDotter(“B”))
B.
> -- Make a function that appends three dots to its argument:
> ThreeDotter = MakeDotter(3)
> print(ThreeDotter(“C”))
C...
> print(ThreeDotter(“D”))
D...
> -- OneDotter now appends three dots instead of one:
> print(OneDotter(“E”))
E...

115

Chapter 3: Extending Lua with Functions

06_069172 ch03.qxp 1/2/07 7:54 PM Page 115

06_069172 ch03.qxp 1/2/07 7:54 PM Page 116

4
Working with Tables

This chapter explores a new data type called a table. It’s a data structure, which means that it lets
you combine other values. Because of its flexibility, it is Lua’s only data structure. (It is possible to
create other, special-purpose data structures in C.)

In this chapter, you learn how to do the following:

❑ Create and modify tables

❑ Loop through the elements of tables

❑ Use Lua’s built-in table library

❑ Write programs in an object-oriented style

❑ Write functions that take variable numbers of arguments

Tables Introduced
The following example creates a table and assigns it to the variable NameToInstr, and then looks
around inside the table:

> NameToInstr = {[“John”] = “rhythm guitar”,
>> [“Paul”] = “bass guitar”,
>> [“George”] = “lead guitar”,
>> [“Ringo”] = “drumkit”}
> print(NameToInstr[“Paul”])
bass guitar
> A = “Ringo”
> print(NameToInstr[A])
drumkit
> print(NameToInstr[“Mick”])
nil

07_069172 ch04.qxp 1/2/07 8:07 PM Page 117

A table is a collection of key-value pairs. In this example, the expression that starts and ends with { and }
(curly braces) is a table constructor that creates a table that associates the key “John” with the value
“rhythm guitar”, the key “Paul” with the value “bass guitar”, and so on. Each key is surrounded in
[and] (square brackets) and is separated from its value by an equal sign. The key-value pairs are sepa-
rated from each other by commas.

After the table is created and assigned to NameToInstr, square brackets are used to retrieve the values
for particular keys. When NameToInstr[“Paul”] is evaluated, the result is “bass guitar”, which is
the value associated with the key “Paul” in the NameToInstr table.

The term “value” is used here to mean “the second half of a key-value pair.” Both this sense and the
broader sense used in Chapters 2 and 3 are used in this chapter; which sense is intended should be clear
from the context. A “key” is a value in the broader (but not the narrower) sense.

As the line with NameToInstr[A] shows, the expression in between the square brackets doesn’t have to
be a literal string. Here it is a variable, but it can be any expression. (This also applies to the square
brackets inside table constructors — if an expression inside square brackets is a function call, it is
adjusted to one value.)

If you ask a table for the value of a key it doesn’t contain, it gives you nil:

> print(NameToInstr[“Mick”])
nil

This means that nil cannot be a value in a table. Another way of saying this is that there is no difference
between a key not existing in a table, and that key existing but having nil as its value. Keys cannot be
nil, although if the value of a nil key is asked for, the result will be nil:

> Tbl = {}
> print(Tbl[nil])
nil

Both keys and values can be any type other than nil. For example:

> T = {[print] = “The print function”,
>> [“print”] = print,
>> [0.1] = 0.2}
> print(T[print]) -- Function key, string value.
The print function
> print(T[“print”]) -- String key, function value.
function: 0x481720
> print(T[0.1]) -- Number key, number value.
0.2

The association between a key and a value is one-way. NameToInstr[“Ringo”] is “drumkit”, but
NameToInstr[“drumkit”] is nil. A given value can be associated with multiple keys, but a given key
can only have one value at a time. For example:

> T = {[“a”] = “duplicate value”,
>> [“b”] = “duplicate value”,
>> [“duplicate key”] = “y”,

118

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 118

>> [“duplicate key”] = “z”}
> print(T[“a”])
duplicate value
> print(T[“b”])
duplicate value
> print(T[“duplicate key”])
z

Keys follow the same equality rules as other values, so (in the following example, 1 and “1” are two dis-
tinct keys:

> T = {[1] = “number”, [“1”] = “string”}
> print(T[1], T[“1”])
number string

A Shorter Way to Write Some Keys
A key is often called an index to a table, and accessing a key’s value (like T[X]) is called indexing the
table.

The word “index” has other uses too. For example, getting the nth character of a string is “indexing”
that string, and a loop variable, particularly one with an integer value, can be called an index (which is
why some of the loop variables in this book are named I).

The value of a particular index of a particular table is often called a field, and the index itself is called a
field name. This terminology is used especially when the field name is a valid identifier. If a field name is
a valid identifier, you can use it in a table constructor without the square brackets or quotes. The follow-
ing is another way to write the constructor for NameToInstr:

NameToInstr = {John = “rhythm guitar”,
Paul = “bass guitar”,
George = “lead guitar”,
Ringo = “drumkit”}

That doesn’t work with any of the following tables, because none of the keys are valid identifiers (notice
that the error messages are different, because the keys are invalid identifiers for different reasons):

> T = {1st = “test”}
stdin:1: malformed number near ‘1st’
> T = {two words = “test”}
stdin:1: ‘}’ expected near ‘words’
> T = {and = “test”}
stdin:1: unexpected symbol near ‘and’

You can also access fields in an existing table (if the field names are valid identifiers) by using . (a dot)
instead of square brackets and quotes, like this:

> print(NameToInstr.George)
lead guitar

119

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 119

You can index a table within a table in one step, as follows:

> Tbl1 = {Tbl2 = {Bool = true}}
> print(Tbl1.Tbl2.Bool)
true
> print(Tbl1[“Tbl2”].Bool)
true
> print(Tbl1.Tbl2[“Bool”])
true
> print(Tbl1[“Tbl2”][“Bool”])
true

This works for tables within tables within tables, as deep as you want to go. If there are enough nested
tables, then Tbl.Think.Thank.Thunk.Thenk.Thonk is perfectly valid.

Don’t let the flexibility of tables and the variety of methods for accessing them confuse you. In particu-
lar, remember that NameToInstr[“John”] and NameToInstr.John both mean “get the value for the
“John” key,” and NameToInstr[John] means “get the value for whatever key is in the variable John.”
If you find yourself getting a nil when you don’t expect to, make sure you’re not mixing these up.

Altering a Table’s Contents
After you create a table, you can modify or remove the values already in it, and you can add new values
to it. You do these things with the assignment statement.

Try It Out Assigning to Table Indexes
Type the following into the Lua interpreter:

> Potluck = {John = “chips”, Jane = “lemonade”,
>> Jolene = “egg salad”}
> Potluck.Jolene = “fruit salad” -- A change.
> Potluck.Jayesh = “lettuce wraps” -- An addition.
> Potluck.John = nil -- A removal.
> print(Potluck.John, Potluck.Jane, Potluck.Jolene,
>> Potluck.Jayesh)

Here’s the result:

nil lemonade fruit salad lettuce wraps

How It Works
In this exercise, you create a table with three people and their foods. You then use assignment to change
one person’s food, to add a new person-food pair to the table, and to remove an existing person-food pair.

Potluck.Jolene = “fruit salad” overwrites the previous value of Potluck.Jolene (“egg salad”).

Potluck.Jayesh = “lettuce wraps” adds a new key (and its value) to the table. The value of
Potluck.Jayesh before this line would have been nil.

120

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 120

Potluck.John = nil overwrites the previous value of Potluck.John with nil. This is another way of
saying that it removes the key “John” from the table (because there’s no difference between a nil-val-
ued key and a nonexistent key).

Notice that, except in the line with the table constructor, the variable Potluck is never assigned to.
Rather, individual fields of the table in Potluck are being assigned to. This is called indexing assignment.

The Lua reference manual actually calls table fields a third type of variable (after globals and locals).
This usage makes some things clearer, but it isn’t widespread, so it isn’t followed in this book.

Often the most convenient way to populate a table is to start with an empty table and add things to it
one at a time. Here’s an example of creating a table of the first five perfect squares and then printing it:

> Squares = {} -- A table constructor can be empty.
> for I = 1, 5 do
>> Squares[I] = I ^ 2
>> end
> for I = 1, 5 do
>> print(I .. “ squared is “ .. Squares[I])
>> end
1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25

You can assign to nested tables in one step, as in Tbl.Think[Thank].Thunk = true.

Here are a couple of other table constructor tidbits. You can optionally follow the final value in a table
constructor by a comma: {A = 1, B = 2, C = 3,}. This is convenient for automatically generated table
constructors, and for frequently edited ones (so you don’t have to always make sure to delete a comma if
a value becomes the last one). And instead of commas, you can use semicolons (or a mixture of commas
and semicolons): {A = 1; B = 2; C = 3}.

Tables as Arrays
It’s common for the keys of a table to be consecutive integers, starting at 1. For example:

> Months = {[1] = “January”, [2] = “February”, [3] = “March”,
>> [4] = “April”, [5] = “May”, [6] = “June”, [7] = “July”,
>> [8] = “August”, [9] = “September”, [10] = “October”,
>> [11] = “November”, [12] = “December”}
> print(Months[11])
November

A table used in this way is sometimes called an array (or a list). To emphasize that a table is not being
used as an array, it can be called an associative table.

121

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 121

You can write table constructors that build arrays in a more concise, less error-prone way that doesn’t
require writing out each integer key. For example:

> Months = {“January”, “February”, “March”, “April”, “May”,
>> “June”, “July”, “August”, “September”, “October”,
>> “November”, “December”}
> print(Months[11])
November

Inside a table constructor, the first value that doesn’t have a key (and an equal sign) in front of it is asso-
ciated with the key 1. Any subsequent such values are given a key one higher than that given to the pre-
vious such value. This rule applies even if key-value pairs with equal signs are intermixed, like this:

> T = {A = “x”, “one”, B = “y”, “two”, C = “z”, “three”}
> print(T[1], T[2], T[3])
one two three

Usually this sort of mixed table constructor is easier to read if the consecutive-integer values are all
together and the other key-value pairs are all together.

If a function call is used as the value of an explicit key ({K = F()}, for example), it’s adjusted to one
return value. If it’s used as the value of an implicit integer key, it’s only adjusted to one return value if
it’s not the last thing in the table constructor; if it is the last thing, no adjustment is made:

> function ReturnNothing()
>> end
>
> function ReturnThreeVals()
>> return “x”, “y”, “z”
>> end
>
> TblA = {ReturnThreeVals(), ReturnThreeVals()}
> print(TblA[1], TblA[2], TblA[3], TblA[4])
x x y z
> TblB = {ReturnNothing(), ReturnThreeVals()}
> -- The following nil is the result of adjustment:
> print(TblB[1], TblB[2], TblB[3], TblB[4])
nil x y z
> TblC = {ReturnThreeVals(), ReturnNothing()}
> -- The following three nils are not the result of adjustment;
> -- they’re there because TblC[2] through TblC[4] were not
> -- given values in the constructor:
> print(TblC[1], TblC[2], TblC[3], TblC[4])
x nil nil nil
> TblD = {ReturnNothing(), ReturnNothing()}
> -- The first nil that follows is the result of adjustment; the
> -- second is there because TblD[2] was not given a value
> -- in the constructor:
> print(TblD[1], TblD[2])
nil nil

122

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 122

Array Length
The # (length) operator can be used to measure the length of an array. Normally, this number is also the
index of the last element in the array, as in the following example:

> Empty = {}
> One = {“a”}
> Three = {“a”, “b”, “c”}
> print(#Empty, #One, #Three)
0 1 3

Apart from arrays with gaps (discussed shortly), the length operator gives the same result whether a
table got the way it is purely because of its constructor (as previously shown) or because of assignments
made to it after it was created like this:

> Empty = {“Delete me!”}
> Empty[1] = nil
> Three = {“a”}
> Three[2], Three[3] = “b”, “c”
> print(#Empty, #Three)
0 3

It also doesn’t matter whether the constructor uses implicit or explicit integer indexing, as shown here:

> print(#{[1] = “a”, [2] = “b”})
2

Noninteger indexes (or nonpositive integer indexes, for that matter) do not count — the length operator
measures the length of a table as an array as follows:

> Two = {“a”, “b”, Ignored = true, [0.5] = true}
> print(#Two)
2

An array is said to have a gap if there are is a nil somewhere between element 1 and the highest posi-
tive integer element with a value that is not nil. Here is an example of a gap in an array:

T1 = {nil, “b”, “c”} -- Gap between beginning and
-- element 2.

T2 = {“a”, “b”, nil, nil, “e”} -- Gap between element 2 and
-- element 5.

T3 = {“a”, “b”, “c”, nil} -- No gap! (Element 3 is the last
-- element in the array.)

Arrays with gaps cause the length operator to behave unpredictably. The only thing you can be sure of is
that it will always return the index of a non-nil value that is followed by a nil, or possibly 0 if element 1
of the array is nil. For example:

> T = {“a”, “b”, “c”, nil, “e”}
> print(#T)
5

123

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 123

> -- Equivalent table; different result:
> T = {}
> T[1], T[2], T[3], T[4], T[5] = “a”, “b”, “c”, nil, “e”
> print(#T)
3

For this reason, it’s generally a good idea to avoid having gaps in your arrays. However, an array is just
a table used in a certain way, not a separate datatype, so this warning about avoiding gaps only applies
if you’re planning to use a table as an array. This means there’s nothing wrong with the following table:

-- Considered as an array, this would have gaps, but it’s
-- obviously intended as an associative table:
AustenEvents = {[1775] = “born”,
[1811] = “Sense and Sensibility published”,
[1813] = “Pride and Prejudice published”,
[1814] = “Mansfield Park published”,
[1816] = “Emma published”,
[1817] = “died”,
[1818] = “Northanger Abbey and Persuasion published”}

You can define # operator to always give either the first element followed by nil or the last, but both of
these approaches require searches through the table much more time-consuming than the way that #
actually works.

Lua 5.0 dealt with array length differently. In addition to the nonexistence of the # operator, the main
differences were that the functions table.getn and table.setn were used to get and set the length
of an array, and a table’s “n” field could be used to store its array length.

Looping through Tables
Printing a table gives similar results to printing a function:

> print({})
table: 0x493bc0

This means that to see what’s inside a table, you need to look at each key-value pair in turn. In the previ-
ous Squares example, this was done with a for loop hardcoded to run to 5 (the length of Squares).
You could improve this by using the # operator, so that if the array’s length is changed, you only need to
it in one place:

> Squares = {}
> for I = 1, 5 do
>> Squares[I] = I ^ 2
>> end
> for I = 1, #Squares do
>> print(I .. “ squared is “ .. Squares[I])
>> end
1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25

124

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 124

This is better, but there’s an even better way to loop through an array, as you’ll see in the following Try It
Out.

Try It Out Using ipairs to Loop through an Array
Type the following into the interpreter. The first of the two loops is the for loop you already know from
Chapter 2. The second is still a for loop, but it looks and works a bit differently.

> Squares = {}
> for I = 1, 5 do
>> Squares[I] = I ^ 2
>> end
> for I, Square in ipairs(Squares) do
>> print(I .. “ squared is “ .. Square)
>> end
1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25

How It Works
The first for loop in this example loops through a series of numbers. The second one is a new type of
for loop that loops (in this case) through an array. It’s called the generic for loop because, as you will
see soon, it is able to iterate through anything at all (including tables that aren’t arrays and even things
other than tables). The for loop you learned about in Chapter 2 is called the numeric for loop. You can
tell the difference between them because the generic for will always include the keyword in.

The thing that makes this example’s generic for treat Squares as an array is the use of the function
ipairs in the line:

for I, Square in ipairs(Squares) do

This line means “loop (in order) through each key-value pair in the array Squares, assigning the key
and value to (respectively) the loop variables I and Square.” To write your own similar loop, replace
Squares with the array you want to loop through, and replace I and Square with the names you want
to give to its keys and values. (As you’ll soon see, ipairs can be replaced when you don’t want to treat
the thing being looped through as an array.)

Squares itself never needs to be indexed in the body of the loop, because Square is available.

If you use a generic for loop with ipairs to loop through an array that has gaps, it will stop when it
reaches the first gap, as follows:

> for Number, Word in ipairs({“one”, “two”, nil, “four”}) do
>> print(Number, Word)
>> end
1 one
2 two

125

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 125

That means that, if an array has gaps, looping through it with a generic for and ipairs will not necessarily
give the same results as looping through it with a numeric for whose end value is the length of the array.

A generic for loop that uses ipairs after the in keyword is often called an ipairs loop for short. If pairs
is used instead of ipairs, then all key-value pairs, not just the array ones, are looped through.

A pairs loop has the same form as an ipairs loop:

for Key, Val in ipairs(Tbl) do

for Key, Val in pairs(Tbl) do

Try this pairs loop:

> NameToInstr = {John = “rhythm guitar”,
>> Paul = “bass guitar”,
>> George = “lead guitar”,
>> Ringo = “drumkit”}
> for Name, Instr in pairs(NameToInstr) do
>> print(Name .. “ played “ .. Instr)
>> end
Ringo played drumkit
George played lead guitar
John played rhythm guitar
Paul played bass guitar

This is similar to an ipairs loop in that on each iteration, the first loop variable (Name) is set to a key in
the table given to pairs, and the second loop variable (Instr) is set to that key’s value. One difference
is that the first value no longer has to be a positive integer (although it could be, if there happened to be
any positive integer keys in NameToInstr).

The second difference is that the key-value pairs are looped through in an arbitrary order. The order in
which pairs occur in the table constructor does not matter. Nor is there any significance to the order in
which keys are added or removed after a table is constructed. The only guarantee is that each pair will
be visited once and only once. Tables in general have no intrinsic order (other than the arbitrary order
shown by a pairs loop). Even the order shown by an ipairs loop is only a result of adding 1 to each
index to get the next one. pairs often visits integer keys all together and in the correct order, but it’s not
guaranteed to do so. For example:

> T = {A = “a”, B = “b”, C = “c”}
> T[1], T[2], T[3] = “one”, “two”, “three”
> for K, V in pairs(T) do
>> print(K, V)
>> end
A a
1 one
C c
B b
3 three
2 two

Both ipairs loops and pairs loops have the property that neither loop variable is ever nil. (This can
be deduced from what has been said about nil keys and nil values.)

126

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 126

Like the loop variable in a numeric for, the loop variables in a generic for are local to each iteration.
They can be assigned to, although because of their limited scope, there’s seldom a reason to do this:

> T = {Gleep = true, Glarg = false}
> for Fuzzy, Wuzzy in pairs(T) do
>> Fuzzy, Wuzzy = Fuzzy .. “ing”, #tostring(Wuzzy)
>> print(Fuzzy, Wuzzy)
>> end
Gleeping 4
Glarging 5
> -- The table itself is unchanged:
> print(T.Gleep, T.Glarg)
true false
> print(T.Gleeping, T.Glarging)
nil nil

Because the assignments are made to the loop variables, and not to fields in the table itself, they do not
alter the table’s contents. If you do want to alter the table’s contents, do an indexing assignment on the
table itself, like this:

> T = {“apple”, “banana”, “kiwi”}
> for I, Fruit in ipairs(T) do
>> T[I] = Fruit .. “s”
>> end
> print(T[2])
bananas

Adding a previously nonexistent key to a table while looping over it with pairs has undefined results.
If you need to do this, save a list of the changes you need to make in another table and apply them after
the loop is over. You can remove a key (by setting its value to nil) and change a key’s value during a
pairs loop.

You can use loop variables as upvalues to closures. As shown in the previous chapter (with a numeric
for), each iteration means a new upvalue:

> -- A table that maps numbers to their English names:
> Numbers = {“one”, “two”, “three”}
> -- A table that will contain functions:
> PrependNumber = {}
> for Num, NumName in ipairs(Numbers) do
>> -- Add a function to PrependNumber that prepends NumName
>> -- to its argument:
>> PrependNumber[Num] = function(Str)
>> return NumName .. “: “ .. Str
>> end
>> end
> -- Call the second and third functions in PrependNumber:
> print(PrependNumber[2](“is company”))
two: is company
> print(PrependNumber[3](“is a crowd”))
three: is a crowd

127

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 127

In this example, each time the loop iterates, a new function is created that prepends (appends to the front)
a spelled-out number name to its argument and returns the result. These functions are placed, by num-
ber, into the PrependNumber table, so that when, for example, PrependNumber[2] is called, it prepends
“two: “ to its argument.

The notes about Lua 5.0’s numeric for in the previous chapter also apply to the generic for.
Assigning to the first (that is, leftmost) loop variable has undefined results, and the scope of the loop
variables extends over the entire loop (not each individual iteration). This means that if you tried the
PrependNumber example on Lua 5.0, you would get “attempt to concatenate a nil value”
errors because both loop variables are set to nil when the end of the table is reached.

To loop through a table in a way not supported by either ipairs or pairs, use either while or the
numeric for (along with some extra bookkeeping), or structure your data differently. An example of the
latter is the following loop, which is a rewrite of the earlier pairs loop through NameToInstr that goes
in the order specified by the table (it also serves as an example of tables within tables):

> NamesAndInstrs = {
>> {Name = “John”, Instr = “rhythm guitar”},
>> {Name = “Paul”, Instr = “bass guitar”},
>> {Name = “George”, Instr = “lead guitar”},
>> {Name = “Ringo”, Instr = “drumkit”}}
> for _, NameInstr in ipairs(NamesAndInstrs) do
>> print(NameInstr.Name .. “ played “ .. NameInstr.Instr)
>> end
John played rhythm guitar
Paul played bass guitar
George played lead guitar
Ringo played drumkit

Yet another option is to write your own function to use instead of ipairs or pairs. This is covered later
in this chapter.

Tables of Functions
Using tables that contain functions is a handy way to organize functions, and Lua keeps many of its
built-in functions in tables, indexed by strings. For example, the table found in the global variable table
contains functions useful for working with tables. If you assign another value to table, or to one of the
other global variables used to store built-in functions, the functions won’t be available anymore unless
you put them somewhere else beforehand. If you do this accidentally, just restart the interpreter.

The Table Library
The functions contained in table are known collectively as the table library.

table.sort
One function in the table library is table.sort. Here is an example of how you use this function:

> Names = {“Scarlatti”, “Telemann”, “Corelli”, “Purcell”,
>> “Vivaldi”, “Handel”, “Bach”}

128

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 128

> table.sort(Names)
> for I, Name in ipairs(Names) do
>> print(I, Name)
>> end
1 Bach
2 Corelli
3 Handel
4 Purcell
5 Scarlatti
6 Telemann
7 Vivaldi

The table.sort function takes an array and sorts it in place. This means that, rather than returning a
new array that’s a sorted version of the one given to it, table.sort uses indexing assignment (a side
effect) on the given array itself to move its values to different keys. (See Chapter 3 for an explanation of
side effects.)

table.sort uses the < operator to decide whether an element of the array should come before another
element. To override this behavior, give a comparison function as a second argument to table.sort. A
comparison function takes two arguments and returns a true result if and only if its first argument
should come before its second argument.

table.sort only looks at a table as an array. It ignores any noninteger keys and any integer keys less
than 1 or greater than the table’s array length. To sort a table that isn’t an array, you need to put its con-
tents into an array and sort that array. The following Try It Out demonstrates this, as well as the use of a
comparison function.

Try It Out Sorting the Contents of an Associative Table
1. Save the following as sortednametoinstr.lua:

-- A demonstration of sorting an associative table.

NameToInstr = {John = “rhythm guitar”,
Paul = “bass guitar”,
George = “lead guitar”,
Ringo = “drumkit”}

-- Transfer the associative table NameToInstr to the
-- array Sorted:
Sorted = {}
for Name, Instr in pairs(NameToInstr) do
table.insert(Sorted, {Name = Name, Instr = Instr})

end
-- The comparison function sorts by Name:
table.sort(Sorted, function(A, B) return A.Name < B.Name end)
-- Output:
for _, NameInstr in ipairs(Sorted) do
print(NameInstr.Name .. “ played “ .. NameInstr.Instr)

end

2. Run sortednametoinstr.lua by typing lua sortednametoinstr.lua into your shell.

The output is as follows (in alphabetical order by the player’s name):

129

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 129

George played lead guitar
John played rhythm guitar
Paul played bass guitar
Ringo played drumkit

How It Works
The contents of NameToInstr are transferred, one-by-one, into Sorted using the table.insert func-
tion. This function, like table.sort, works by side-effecting the table given to it rather than by return-
ing a value. Specifically, it puts its second argument at the end of the array given as the first argument.
For example, if the first argument is a fifteen-element array, it will be given a sixteenth element (the sec-
ond argument). Take a look at the following argument:

table.insert(Arr, Val)

This has the same effect as the following:

Arr[#Arr + 1] = Val

Both table.sort and table.insert could be rewritten to have no side effect on the tables they are
given, but they would then need to spend time making independent copies of those tables to return.

After Sorted has been populated, it can be passed to table.sort, but because each of its elements is
itself a table, a comparison function needs to be given as well (otherwise table.sort would use < to
compare the subtables, which would cause an error). The comparison function is quite simple. It just
asks whether the Name element of its first argument is less than that of its second argument. It would be
very easy to change it to sort by Instr instead, or (by using >) to have it sort in reverse order.

The comparison function accepted by table.sort is an example of a callback. A callback is a function
that you write to be called by a library function. It gets its name from the fact that it allows a library to
call back into code you have written (reversing the normal situation, in which you call a function in the
library).

For efficiency, table.sort performs an unstable sort, which means that two elements that are consid-
ered equal by the comparison function may end up in a different order than they started in.

If you need a stable sort, one solution is to record all the elements’ original positions and have the com-
parison function use that as a tiebreaker.

If you’re using table.sort with a comparison function, and you’re getting errors that you can’t make sense
of within your comparison function or within table.sort itself, your comparison function may be at fault.
table.sort relies on a comparison function having consistent results — it should always return false for
things that it considers equal, it should never say that A is less than B if it’s already said that B is less than A,
it should say that A is less than C if it’s already said that A is less than B and B is less than C, and so on.

In the following example, the comparison function returns inconsistent results. It says that, for sorting
purposes, 5 is less than 5. This confuses table.sort, hence the following error:

> T = {5, 5, 10, 15}
> table.sort(T,

130

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 130

>> function(A, B)
>> return not (A < B) -- BAD COMPARISON FUNCTION!
>> end)
stdin:3: attempt to compare nil with number
stack traceback:

stdin:3: in function <stdin:2>
[C]: in function ‘sort’
stdin:1: in main chunk
[C]: ?

The desired effect of not (A < B) was presumably to sort in reverse order. Either A > B or B < A would
have had that effect.

table.concat
The function table.concat takes an array of strings (or numbers) and concatenates them all into one
string, as follows:

> print(table.concat({“a”, “bc”, “d”}))
abcd

If given a second argument, it puts it in between the elements of the array like this:

> -- Returns a string showing an array’s elements separated by
> -- commas (and spaces):
> function CommaSeparate(Arr)
>> return table.concat(Arr, “, “)
>> end
>
> print(CommaSeparate({“a”, “bc”, “d”}))
a, bc, d

Normally, all elements from the first to the last will be concatenated. To start concatenating at a different
element, give its index as the third argument of table.concat; to stop concatenating at a different ele-
ment, give its index as the fourth argument of table.concat:

> Tbl = {“a”, “b”, “c”, “d”}
> -- Concatenate the second through last elements:
> print(table.concat(Tbl, “”, 2))
bcd
> -- Concatenate the second through third elements:
> print(table.concat(Tbl, “”, 2, 3))
bc

If any of the second through fourth arguments are nil, the defaults of (respectively) the empty string, 1,
and the length of the array are used, as follows:

> print(table.concat(Tbl, nil, nil, 3))
abc

If the third argument is greater than the fourth argument, the empty string is returned, like this:

> print(table.concat(Tbl, “-”, 4, 1) == “”)
true

131

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 131

table.remove
The table.insert function (seen in the most recent Try It Out) has a counterpart that removes ele-
ments from an array, table.remove. By default, both work on the last element of the array (or the top
element when viewing the array as a stack). table.remove works by side effect like table.insert
does, but it also returns a useful value — the element it just removed — as follows:

The following examples use the CommaSeparate function defined in the previous example.

> T = {}
> table.insert(T, “a”)
> table.insert(T, “b”)
> table.insert(T, “c”)
> print(CommaSeparate(T))
a, b, c
> print(table.remove(T))
c
> print(CommaSeparate(T))
a, b
> print(table.remove(T))
b
> print(CommaSeparate(T))
a
> print(table.remove(T))
a
> -- T is now empty again:
> print(#T)
0

Both of these functions take an optional second argument that specifies the position at which to insert or
remove an element. (In the case of table.insert, this means that the thing to be inserted is either the
second or the third argument, depending on whether a position argument is given.) Any elements above
that inserted or removed are shifted up or down to compensate, like this:

> T = {“a”, “b”, “c”}
> table.insert(T, 2, “X”)
> -- C is now the fourth element:
> print(CommaSeparate(T))
a, X, b, c
> print(table.remove(T, 2))
X
> -- C is the third element again:
> print(CommaSeparate(T))
a, b, c

table.maxn
The function table.maxn looks at every single key-value pair in a table and returns the highest positive
number used as a key, or 0 if there are no positive numbers used as keys. For example:

> print(table.maxn({“a”, nil, nil, “c”}))
4
> print(table.maxn({[1.5] = true}))
1.5

132

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 132

> print(table.maxn({[“1.5”] = true}))
0

One possible use for table.maxn is to find the length of arrays with gaps, but keep in mind both that it
is time-consuming in proportion to the size of the table (including nonnumeric keys) and that it consid-
ers fractional keys as well as integers.

That covers all the functions in Lua’s built-in table library. Among Lua’s other built-in libraries are the
string library (whose functions are found in the string table), the mathematical library (in the math
table), the input/output library (in the io table), and the basic or base library (functions like print,
tostring, and pairs). You’ll learn about these and other built-in libraries throughout the book. In par-
ticular, the next chapter will discuss the string library in detail.

Object-Oriented Programming with Tables
Another use for tables is in what is known as object-oriented programming. In this style of programming,
functions that deal with a particular type of value are themselves part of that value. Such a value is
called an object, and its functions are called methods.

The term “object” is also sometimes used in a more general sense, to mean a value (such as a table or
function) that is not equal to any other value created at a different time.

It’s quite easy to rewrite the MakeGetAndInc example from Chapter 3 to return a two-method object
rather than two functions. Here’s how:

-- Returns a table of two functions: a function that gets
-- N’s value, and a function that increments N by its
-- argument.
function MakeGetAndInc(N)
-- Returns N:
local function Get()
return N

end

-- Increments N by M:
local function Inc(M)
N = N + M

end

return {Get = Get, Inc = Inc}
end

An object is created and used like so:

> -- Create an object:
> A = MakeGetAndInc(50)
> -- Try out its methods:
> print(A.Get())
50
> A.Inc(2)
> print(A.Get())
52

133

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 133

This is an improvement on the previous technique in that only the newly created object needs to be
given a name (rather than both functions), and in that the functions are bundled up into an object (so
that the whole object can be passed around the program as a unit).

Both of these advantages are greater the more methods there are, and this is an acceptable way of imple-
menting objects. But it has two disadvantages: each time an object is created (or instantiated), a closure
needs to be created for each method, and an object’s state is stored in multiple places (as an upvalue in
each method) rather than in one place.

The creation of a closure for each method is really only a disadvantage for efficiency reasons. In a pro-
gram that instantiates several new multiple-method objects a second, creating all those closures could
have a noticeable speed impact.

The second point, about state being stored as an upvalue within each method, means that you can use a
method apart from its object, as shown here:

> A = MakeGetAndInc(50)
> Inc, Get = A.Inc, A.Get
> A = nil
> -- The methods are still usable even though A is no longer
> -- accessible:
> Inc(2)
> print(Get())
52

This might occasionally be convenient, but it’s usually just confusing.

A technique that avoids these problems is to store the object’s state in the object (table) itself, and have
the methods be, rather than closures, just regular functions that take the object as an argument:

-- Returns Obj.N:
function Get(Obj)
return Obj.N

end

-- Increments Obj.N by M:
function Inc(Obj, M)
Obj.N = Obj.N + M

end

-- Creates an object:
function MakeGetAndInc(N)
return {N = N}

end

The Inc method of an object A would then be called like Inc(A, 5), which means you’d need to keep
track of which methods go with which objects. You wouldn’t need to keep track of this if the methods
were (as in an earlier example) fields of their objects, but you’d still need to type the object’s name twice:
A.Inc(A, 5).

To get around this problem, Lua offers a bit of syntactic sugar. Syntax just means grammar — the rules of
how operators, variable names, parentheses, curly braces, and so on can fit together to make a valid Lua

134

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 134

program. And syntactic sugar just means an extension to Lua’s syntax that doesn’t give Lua any new
powers, but does make programs easier to type or read. For example, the equivalence between a func-
tion statement and an assignment statement with a function expression as a value (which you learned
about in the previous chapter) is due to the former being syntactic sugar for the latter.

Similarly, when Lua sees something that looks like A:Inc(5) (note the colon), it treats it as though it
were A.Inc(A, 5). A is used both as the source for the Inc function and as the first argument to that
function. Because the methods in the previous example are written to expect their first argument to be
the object, the only change you need to make in order to use colon syntax is to include Get and Inc in
the object that MakeGetAndInc returns. (Get and Inc are also made local below this, because they no
longer need to be used anywhere but inside MakeGetAndInc.) Now the methods are called right from
the object, just as in the example at the beginning of this section, but with a colon substituted for the dot:

> do -- Local scope for Get and Inc.
>> -- Returns Obj.N:
>> local function Get(Obj)
>> return Obj.N
>> end
>>
>> -- Increments Obj.N by M:
>> local function Inc(Obj, M)
>> Obj.N = Obj.N + M
>> end
>>
>> -- Creates an object:
>> function MakeGetAndInc(N)
>> return {N = N, Get = Get, Inc = Inc}
>> end
>> end
>
> -- Create an object:
> A = MakeGetAndInc(50)
> -- Try out its methods:
> print(A:Get())
50
> A:Inc(2)
> print(A:Get())
52

There’s also syntactic sugar for defining methods: function T:F(X) is equivalent to function
T.F(self, X), which itself is equivalent to T.F = function(self, X). You can rewrite the preceding
example to use this if you make a table in which you can put Get and Inc, and if you have them use
self instead of Obj as a name for their (now implicit) first argument. Here’s how:

do -- Local scope for T.
-- A table in which to define Get and Inc:
local T = {}

-- Returns self.N:
function T:Get()
return self.N

end

-- Increments self.N by M:

135

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 135

function T:Inc(M)
self.N = self.N + M

end

-- Creates an object:
function MakeGetAndInc(N)
return {N = N, Get = T.Get, Inc = T.Inc}

end
end

Note the following about this example:

❑ If the colon syntax is used to define a function, Lua itself will take care of inserting the formal
self argument. If you forget this and try do to it yourself by typing function T:Get(self), then Lua
will treat that as though it were function T.Get(self, self), which is not what you want.

❑ Get and Inc are neither local nor global — they are fields of a (local) table. local function
T:Get() would be wrong for the same reason that local T.Get = function(self) would be
wrong — the local keyword is for creating new local variables, but T.Get is not a variable
name (it’s the name of a table field).

❑ Because the colon syntaxes for function calls and function definitions are just syntactic sugar,
you can mix and match them. You can use the dot syntax to call a function defined with the
colon syntax, and you can use the colon syntax to call a function defined with the dot syntax
(assuming, of course, that the actual arguments correspond with the formal arguments after
translating from colon syntax to dot syntax).

❑ T is only used as a container for Get and Inc up to the point they’re put into a real object. If
there were something else that all objects needed to have in common (for instance, a default
value for N), T would be a good place to put it.

Later in this chapter, you’ll see an extended example that uses the colon syntax for something more
interesting than incrementing numbers.

Functions with Variable
Numbers of Arguments

Functions that accept variable numbers of arguments are called vararg functions and, as promised in the
previous chapter, you’ll now learn how to write them.

Defining Vararg Functions
The Average function returns the average of all its arguments. It also introduces the built-in function
assert, which does nothing if its first argument is true and triggers an error if it’s false. (The second
argument is used as the error message.) Here’s an example of how you use the Average function:

> -- Returns the average of all its arguments:
> function Average(...)
>> local Ret, Count = 0, 0
>> for _, Num in ipairs({...}) do

136

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 136

>> Ret = Ret + Num
>> Count = Count + 1
>> end
>> assert(Count > 0, “Attempted to average zero numbers”)
>> return Ret / Count
>> end
>
> print(Average(1))
1
> print(Average(41, 43))
42
> print(Average(31, -41, 59, -26, 53))
15.2
> print(Average())
stdin:7: Attempted to average zero numbers
stack traceback:

[C]: in function ‘assert’
stdin:7: in function ‘Average’
stdin:1: in main chunk
[C]: ?

The Average function’s formal argument list consists only of ... (three dots), which tells Lua that
Average is a vararg function. Within a vararg function, three dots can be used as an expression, which is
called a vararg expression. A vararg expression, like a function call, can evaluate to zero or more values.
The vararg expression in Average is inside a table constructor. When Average is called with 1 as an
argument, it is as though the table constructor looked like {1}. When it’s called with 41 and 43 as argu-
ments, it’s as though the table constructor looked like {41, 43}. When it’s called with 31, -41, 59, -26,
and 53 as arguments, it’s as though the table constructor looked like {31, -41, 59, -26, 53}. And
when it’s called with no arguments, it’s as though the table constructor looked like {}.

You can use a vararg expression anywhere any other expression can be used. It follows exactly the same
adjustment rules as a function call. For example, the vararg expression in the following assignment
would be adjusted to two values:

Var1, Var2 = ...

Both vararg expressions in the following return statement would be adjusted to one value:

return ..., (...)

And the one in the following function call would not be adjusted at all — all of its zero or more values
would be passed along to print:

print(“args here:”, ...)

A vararg expression includes any nil passed to the function, as follows:

> function F(...)
>> print(...)
>> end
>
> F(nil, “b”, nil, nil)
nil b nil nil

137

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 137

A vararg function can also have regular (named) formal arguments, in which case the three dots come
last and catch any actual arguments that are left over after the leftmost ones are assigned to the named
formal arguments. Here’s an example that makes that clearer:

> function F(Arg1, Arg2, ...)
>> print(“Arg1 and Arg2:”, Arg1, Arg2)
>> print(“The rest:”, ...)
>> end
>
> F()
Arg1 and Arg2: nil nil
The rest:
> F(“a”)
Arg1 and Arg2: a nil
The rest:
> F(“a”, “b”)
Arg1 and Arg2: a b
The rest:
> -- Now there will be arguments left over after Arg1 and
> -- Arg2 have been taken care of:
> F(“a”, “b”, “c”)
Arg1 and Arg2: a b
The rest: c
> F(“a”, “b”, “c”, “d”)
Arg1 and Arg2: a b
The rest: c d

A vararg expression cannot be used as an upvalue. Again, this will make more sense with an example.
Let’s say you want to write a MakePrinter function. MakePrinter will return a function that takes no
arguments and prints all the arguments given to MakePrinter. The obvious way to write this is like this:

function MakePrinter(...)
return function()
print(...) -- THIS DOESN’T WORK!

end
end

But if you type that in, Lua will complain partway through:

> function MakePrinter(...)
>> return function()
>> print(...) -- THIS DOESN’T WORK!
stdin:3: cannot use ‘...’ outside a vararg function near ‘...’

The anonymous function is not a vararg function. The vararg expression used in it is local to
MakePrinter, which makes it an upvalue in the anonymous function, and because vararg expressions
can’t be used as upvalues, another way needs to be found to make the MakePrinter arguments avail-
able inside the anonymous function. That part is actually quite easy — just put the vararg expression
inside a table constructor, and use the variable holding that table as the upvalue. The hard part is calling
print with each of the table’s values as arguments. That’s easy to do with the unpack function, which
takes an array as its first argument and returns, in order, all of the elements of that array (up to the
array’s length). For example:

138

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 138

> function MakePrinter(...)
>> local Args = {...}
>> return function()
>> print(unpack(Args))
>> end
>> end
>
> Printer = MakePrinter(“a”, “b”, “c”)
> Printer()
a b c

Because unpack uses its argument’s length, it may not act right with an array that has gaps, which Args
will if MakePrinter is given any nil arguments. The fix for this involves extra arguments to unpack, as
well as a new built-in function, select.

The first select argument is a positive integer. If it’s 1, select will return all its additional arguments;
if it’s 2, select will return all its additional arguments except for the first; and so on:

> print(select(1, “a”, “b”, “c”))
a b c
> print(select(2, “a”, “b”, “c”))
b c
> print(select(3, “a”, “b”, “c”))
c
> -- This returns nothing:
> print(select(4, “a”, “b”, “c”))

>

As a special case, if the first select argument is the string “#”, then it returns how many additional
arguments it received, as follows:

> print(select(“#”))
0
> print(select(“#”, “a”))
1
> print(select(“#”, “a”, “b”))
2
> print(select(“#”, “a”, “b”, “c”))
3

It’s this “#” usage that lets you find out how many values (including nils) are in a vararg expression (or
in any expression that can have multiple values, for that matter):

> function F(...)
>> print(select(“#”, ...))
>> end
>
> F(nil, “b”, nil, nil)
4

You might think that #... would get the length of a vararg expression, but all it really does is get the
length of the first element of the vararg expression (which, being used as an operand, is not eligible for
multiple-value treatment and so is adjusted to one value).

139

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 139

unpack takes a second and third argument specifying where it starts and stops, getting values out of the
table given to it:

If these arguments are not given, they default to 1 and the length of the table.

> -- Get elements 2 through 4 (inclusive):
> print(unpack({“a”, “b”, “c”, “d”, “e”}, 2, 4))
b c d

Here’s the rewritten version of MakePrinter that handles nils properly. It uses select(“#”, ...) to
count MakePrinter’s arguments, and when it calls unpack, it unpacks all elements from the first up to
however many arguments it counted:

> function MakePrinter(...)
>> local Args = {...}
>> local ArgCount = select(“#”, ...)
>> return function()
>> print(unpack(Args, 1, ArgCount))
>> end
>> end
>
> Printer = MakePrinter(nil, “b”, nil, nil)
> Printer()
nil b nil nil

If a vararg function doesn’t contain any vararg expressions, then a local arg variable is created and ini-
tialized to a table of all the extra arguments. arg.n is the number of extra arguments. It is as though the
first lines of the function were as follows:

local arg = {...}
arg.n = select(“#”, ...)

This is done so that vararg functions written for Lua 5.0 will run on Lua 5.1. Lua 5.0 had no vararg
expression, so vararg arguments were always put in such an arg table.

In addition to the lack of the vararg expression and use of arg, Lua 5.0 did not have the select func-
tion, and its unpack function took only one argument.

Scripts as Vararg Functions
You already know that chunks are functions. In this section, you’ll see that they are vararg functions. In
particular, Lua scripts are vararg functions and they can be given arguments on the command line.

Try It Out Creating Command-Line Arguments
1. Save the following as cmdlineargs.lua:

-- This script lists (by number) all arguments given to it
-- on the command line.

local Count = select(“#”, ...)
if Count > 0 then

140

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 140

print(“Command-line arguments:”)
for I = 1, Count do
print(I, (select(I, ...))) -- The parentheses adjust
-- select to one value.

end
else
print(“No command-line arguments given.”)

end

2. Run it by typing the following into your shell:

lua cmdlineargs.lua this is a test

The output should be as follows:

Command-line arguments:
1 this
2 is
3 a
4 test

How It Works
When you type the name of a program (lua) into the shell, the words that come after it are called com-
mand-line arguments. The shell passes these arguments along to the program. In this case, lua treats the
first command-line argument, cmdlineargs.lua, as the name of a program. It compiles that program
into a function, and calls the function with the remaining command-line arguments (the strings “this”,
“is”, “a”, and “test”).

This example also shows how you can use select to access arguments without putting them into a
table first.

The shell gives special meaning to some characters. For example, it treats spaces as argument separators.
If you want to include a special character in an argument, you need to escape it or quote it. The exact
rules for escaping or quoting characters vary from shell to shell, but something like the following:

lua cmdlineargs.lua “this is a test” “” “<*>”

generally results in this:

Command-line arguments:
1 this is a test
2
3 <*>

The second argument is the empty string.

Command-line arguments are always strings, which means you don’t have to worry about a gap caused
by a nil.

lua treats some of its command-line arguments specially. These are called options, and they all start with
a hyphen. The following table lists the lua options:

141

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 141

Option Action

-e Executes the following command-line argument as Lua code.

-l Uses the require function on the library named by the following command-line
argument. (You’ll learn about require in Chapter 7.)

-i Enters interactive mode after running the script named after all the options (or exe-
cuting any -e arguments).

-v Prints version information.

-- Stops handling options (this is useful if you want to run a script whose name starts
with “-”).

- Stops handling options and executes lua’s input as a single chunk.

Here are a couple examples. Starting lua like this

lua -e “print(‘Hello’)”

prints “Hello”, but does not enter interactive mode (the Lua interpreter). Starting it like this:

lua -i sortednametoinstr.lua

runs sortednametoinstr.lua and then enters interactive mode, where you have access to any global
variables it created (which in this case are NameToInstr and Sorted):

Lua 5.1.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio
George played lead guitar
John played rhythm guitar
Paul played bass guitar
Ringo played drumkit
> print(NameToInstr.John)
rhythm guitar
> print(Sorted[4].Name)
Ringo

The options -e and -l can be combined with the command-line arguments immediately following
them. The following example of -e does exactly the same thing as the one given earlier:

lua “-eprint(‘Hello’)”

A script’s command-line arguments are also available in the global table arg, even if a vararg expression
is used in the script. This is done to give access to the script’s name (found at arg[0]) and the inter-
preter’s name and any options (found at negative indexes). If lua is started with the following:

lua -i cmdlineargs.lua this is a test

then this is the arg:

{[-2] = “lua”,
[-1] = “-i”,

142

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 142

[0] = “cmdlineargs.lua”,
[1] = “this”,
[2] = “is”,
[3] = “a”,
[4] = “test”}

Notice that, unlike the arg described in the previous section, this one doesn’t have its length in arg.n.
The length is easy enough to find out, though (for instance, with #arg, or with a loop if you want to
count the nonpositive indexes).

Keyword Arguments
In the previous chapter, you saw that a function call whose sole argument is a literal string doesn’t
require parentheses. The same applies to table constructors. For example:

> print {}
table: 0x493760
> print{}
table: 0x493978

This can be used to simulate keyword arguments — arguments that are identified not by their position, but
by being associated with an identifier. In all three of the following examples, a function called Sort is
being called with its Arr keyword argument set to T and its CompFnc keyword argument set to F (the
last example reveals that all that’s really going on is that an associative table is being passed to Sort):

Sort{Arr = T, CompFnc = F}

Sort{CompFnc = F, Arr = T}

Sort({Arr = T, CompFnc = F})

There is no special syntax for defining functions with keyword arguments — they’re just defined to take
a single table as an argument. For example, you could define Sort as follows:

-- A wrapper for table.sort that takes keyword arguments:
function Sort(KeyArgs)
local Arr = KeyArgs.Arr -- The array to be sorted.
local CompFnc = KeyArgs.CompFnc -- Comparison function.
or function(A, B) return A < B end -- Default.

if KeyArgs.Reverse then
-- Reverse the sense of the comparison function:
local OrigCompFnc = CompFnc
CompFnc = function(A, B)
return OrigCompFnc(B, A)

end
end
table.sort(Arr, CompFnc)
return Arr

end

143

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 143

The Reverse argument reverses the sense of the comparison function. When no CompFnc is given, but
Reverse is set to true, the sense of the default comparison function is reversed, which sorts the table in
reverse order:

> Letters = {“a”, “b”, “c”}
> Sort{Reverse = true, Arr = Letters}
> print(table.concat(Letters))
cba

The usual reasons for writing a function to take keyword arguments are that it has a lot of optional argu-
ments, or that it has so many arguments that it’s hard to remember what order they go in.

Different but the Same
A common problem in understanding how Lua works comes from the fact that tables are mutable, which
means they can be changed. Side-effecting a table — changing it using indexing assignment — is called
mutating the table. There’s no way to mutate a string (or a number, Boolean, or nil) — it can only be
replaced with a different value. (Strings, numbers, Booleans, and nil are therefore said to be immutable.)
But a table can be mutated, and afterward it will have different content, but it will still be the same table.

Table Equality
Because tables are mutable, there needs to be a way to tell whether two tables are really the same table or
not (so that you can tell if a mutation of one will be visible in the other). You do this with the == (equal-
ity) operator. When two tables are tested for equality, their contents are not looked at. Rather, they are
considered equal if and only if they were created by the same table constructor at the same time (and are
therefore the same table). In the following example, A and B are equal because they were created by the
same table constructor at the same time:

> A = {}
> B = A
> print(A == B)
true

In the next example, C and D are unequal because they were created by two different table constructors,
and E and F are unequal because they were created by the same table constructor at different times:

> C, D = {}, {}
> print(C == D)
false
>
> function CreateTbl()
>> return {}
>> end
>
> E, F = CreateTbl(), CreateTbl()
> print(E == F)
false

144

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 144

Functions follow the same equality rule as tables: Two functions are equal if and only if they were created
by the same function expression (or function statement) at the same time. This is because both table
constructors and function expressions create new objects (using the term “object” in the broad sense).

Avoiding Bugs by Understanding Mutability
Among other things, you can use mutability to model things in the real world, most of which are muta-
ble. For example, this book would still be the same book if you “mutated” it by writing your name in it.
But mutability can also be a source of bugs, if you don’t keep track of what’s what. In the real world, you
would never confuse having both hands on the same book with having each hand on a different book.
But in Programming Land, it’s not too tough to forget that two variables (or two table fields, or a vari-
able and a table field) both contain the same table.

For example, imagine the following variant of table.sort, which still sorts its first argument in place
but also returns it:

function TableSort(Arr, CompFnc)
table.sort(Arr, CompFnc)
return Arr

end

This would be convenient in some cases, letting you sort an array and pass it to another function in one
statement like this:

SomeFnc(TableSort(SomeArr))

instead of in two statements like this:

table.sort(SomeArr)
SomeFnc(SomeArr)

But it might also imply Sorted is sorted and SomeArr is unsorted after the following line:

local Sorted = TableSort(SomeArr)

If you write a function that side-effects a table given to it, make sure that’s clear in any documentation
you write for the function. If you’re using a function that someone else wrote, make sure you know if the
function causes side effects in any tables given to it.

Variables and Mutable Values
In Chapter 2, you saw an illustration of the cubbyhole model (shown in Figure 4-1) and the arrow model
(shown in Figure 4-2) of the association between variables and their values.

Figure 4-1

Number

123

Greeting1

"Hello"

Greeting2

"Hello"

145

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 145

Figure 4-2

Both of these models are accurate for immutable values (ignoring memory usage). But the cubbyhole
model doesn’t work for mutable values. Consider the following code:

> A, B = {}, {}
> C = B
> -- Before
> B.Test = “test”
> -- After
> print(C.Test)
test

An arrow diagram of the variables as of the Before comment (shown in Figure 4-3) reflects the fact that
B and C are the same table.

Figure 4-3

It’s an easy step from there to an accurate arrow diagram of the variables as of the After comment, as
shown in Figure 4-4.

Figure 4-4

A cubbyhole diagram as of the Before comment (see Figure 4-5) does not show that B and C are the
same table.

A

{}

B

{Test = "test"}

C

A

{}

B

{}

C

Number

123

Greeting1

"Hello"

Greeting2

146

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 146

Figure 4-5

It thus could lead to an incorrect diagram as of the After comment, as shown in Figure 4-6):

Figure 4-6

Tables and Functions
You saw earlier that functions follow the same equality rule as tables. Another thing that functions have
in common with tables is mutability. Closure functions can be mutated by calling them, as is done with
Counter in the following example:

> do
>> local Count = 0
>>
>> function Counter()
>> Count = Count + 1
>> return Count
>> end
>> end
> print(Counter())
1
> print(Counter())
2
> print(Counter())
3

A difference between tables and functions is that tables do not have upvalues. A local variable inside a
function is evaluated every time the function is called, but a local variable inside a table constructor is
evaluated only once, while the table is being constructed. That’s why, in the following code, Tbl.Str is
still “before” even after Str has been set to “after”:

> do
>> local Str = “before”
>> Fnc = function() return Str end

A

{}

B

{Test = "test"}

Wrong!

C

{}

A

{}

B

{}

C

{}

147

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 147

>> Tbl = {Str = Str}
>> Str = “after”
>> end
> print(Fnc())
after
> print(Tbl.Str)
before

It’s easy to get an upvalue-like effect by assigning to a table field instead of a local, like this:

> do
>> local Str = “before”
>> Tbl = {Str = Str}
>> Tbl.Str = “after”
>> end
> print(Tbl.Str)
after

If you want multiple tables to share state, have them share a subtable, as Tbl1 and Tbl2 share SubTbl
here:

> do
>> local SubTbl = {Str = “before”}
>> Tbl1 = {SubTbl = SubTbl}
>> Tbl2 = {SubTbl = SubTbl}
>> end
> Tbl1.SubTbl.Str = “after”
> print(Tbl2.SubTbl.Str)
after

If you’re familiar with the distinction between pass by value and pass by reference, you may think that
Lua passes immutable values by value and mutable values by reference, but that isn’t true — arguments
are always passed by value. A function’s caller can tell whether the function did an indexing assign-
ment to a table the caller gave it, but not whether the function did a regular assignment to one of its
arguments.

If you absolutely needed to use the language of values versus references to describe Lua’s treatment of
mutable values, you could say that mutable values themselves are references.

Copying Tables
Sometimes you need to make a copy of a table. For example, if you want to sort a table without altering
the unsorted table, you need to make a copy and sort that. The simplest way (which is all you need in
many circumstances) is to make a shallow copy:

-- Makes a shallow copy of a table:
function ShallowCopy(Src)
local Dest = {}
for Key, Val in pairs(Src) do
Dest[Key] = Val

end
return Dest

end

148

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 148

In this example, ShallowCopy creates a fresh table (Dest) and then loops through all key-value pairs in
Src, putting each value into Dest at the appropriate key. (Src and Dest stand for “source” and “desti-
nation.”) This is called a shallow copy because it doesn’t burrow deep into Src— if any of Src’s values
or keys are tables, those very tables will be put into Dest, not copies of them. Copying subtables as well
as the top level of a table is called making a deep copy. You can change a ShallowCopy to make a deep
copy by adding the following two lines (and the name, of course):

-- Makes a deep copy of a table. Doesn’t properly handle
-- duplicate subtables.
function DeepCopy(Src)
local Dest = {}
for Key, Val in pairs(Src) do
Key = type(Key) == “table” and DeepCopy(Key) or Key
Val = type(Val) == “table” and DeepCopy(Val) or Val
Dest[Key] = Val

end
return Dest

end

The new lines test whether a key or value is a table. If it is, they call DeepCopy recursively to make a
deep copy of it. Unlike ShallowCopy, a copy made by DeepCopy will never have any subtables in com-
mon with the original, which means that the copy can have side effects without affecting the original.
For example:

> Body1 = {Head = {“Eyes”, “Nose”, “Mouth”, “Ears”},
>> Arms = {Hands = {“Fingers”}},
>> Legs = {Feet = {“Toes”}}}
> Body2 = DeepCopy(Body1)
> print(Body1.Legs.Feet[1], Body2.Legs.Feet[1])
Toes Toes
> Body2.Legs.Feet[1] = “Piggies”
> -- If ShallowCopy had been used, this would print
> -- Piggies Piggies:
> print(Body1.Legs.Feet[1], Body2.Legs.Feet[1])
Toes Piggies
>

There are two problems with this version of DeepCopy. One is that it treats functions the same as it treats
anything else that isn’t a table — it doesn’t make copies of them. There are ways to copy functions, but
none of them is completely general, unless you use an add-on library such as Pluto. (A general solution
needs to treat upvalues correctly, including upvalues shared between functions.) Copying functions is
seldom necessary, though, so you can ignore this problem here.

Pluto is a persistence library, which means that it allows arbitrary Lua values to be saved to disk and
reloaded later, even after Lua has been restarted. It’s available at luaforge.net.

The other problem is more serious. If a table appears more than once within the table being copied, it
shows up as different tables in the copy. For example:

> SubTbl = {}
> Orig = {SubTbl, SubTbl, SubTbl}
> Copy = DeepCopy(Orig)
> -- Orig contains the same table three times:

149

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 149

> for I, SubTbl in ipairs(Orig) do
>> print(I, SubTbl)
>> end
1 table: 0x4a0538
2 table: 0x4a0538
3 table: 0x4a0538
> -- Copy contains three different tables:
> for I, SubTbl in ipairs(Copy) do
>> print(I, SubTbl)
>> end
1 table: 0x4a0a08
2 table: 0x4a0a48
3 table: 0x4a0a98

Something even more interesting happens when you pass DeepCopy a table that has a cycle. A table is
said to have a cycle if it contains any table (including itself) that directly or indirectly contains itself. In
the following example, T is such a table; to copy it, DeepCopy first needs to copy T.T, but to copy that, it
needs to copy T.T.T, and so on. Because these are all the same table, DeepCopy keeps recursing until it
runs out of stack space or you interrupt it:

> T = {}
> T.T = T
> -- The same table, within itself:
> print(T, T.T.T.T.T.T.T)
table: 0x495478 table: 0x495478
> T2 = DeepCopy(T)
stdin:3: stack overflow
stack traceback:

stdin:3: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
...
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:5: in function ‘DeepCopy’
stdin:1: in main chunk
[C]: ?

There is a general solution to this problem, and it involves keeping track of what tables have already
been copied. You use it in the following Try It Out.

150

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 150

Try It Out Copying Subtables Correctly
1. Enter this version of DeepCopy into an interpreter session:

-- Makes a deep copy of a table. This version of DeepCopy
-- properly handles duplicate subtables, including cycles.
-- (The Seen argument is only for recursive calls.)
function DeepCopy(Src, Seen)
local Dest
if Seen then
-- This will only set Dest if Src has been seen before:
Dest = Seen[Src]

else
-- Top-level call; create the Seen table:
Seen = {}

end
-- If Src is new, copy it into Dest:
if not Dest then
-- Make a fresh table and record it as seen:
Dest = {}
Seen[Src] = Dest
for Key, Val in pairs(Src) do
Key = type(Key) == “table” and DeepCopy(Key, Seen) or Key
Val = type(Val) == “table” and DeepCopy(Val, Seen) or Val
Dest[Key] = Val

end
end
return Dest

end

2. Now test it with a particularly hairy case — a table that contains itself as both a key and a value:

> T = {}
> T[T] = T
> T2 = DeepCopy(T)
> -- T2 really is cyclical:
> print(T2[T2][T2][T2][T2][T2][T2])
table: 0x703198
> -- And a side effect to it isn’t visible in the source
> -- table:
> T2.Test = “test”
> print(T2[T2][T2][T2].Test)
test
> print(T[T][T][T].Test)
nil

How It Works
This version of DeepCopy works by storing every copy it makes as a value in an associative table, the
key being that copy’s source table. That lets it avoid making more than one copy of a given table. This
mapping between already seen source and destination tables is in the second argument of DeepCopy,
which is Seen.

When you called DeepCopy, you gave it only one argument. It saw that Seen was nil and initialized it
to an empty table. It then saw that Dest was nil (because it hadn’t been found in Seen), so it created a

151

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 151

fresh destination table, assigned it to Dest, and established an association between the source table and
the destination table in Seen. Then it looped through Src. This part of DeepCopy is almost the same as
the previous version. The only difference is that recursive calls pass the Seen argument. When the first
recursive call (for Key) was made, that call saw that Seen was set, so it assigned Seen[Src] to Dest. If
Src had not been seen yet, that assignment would have done nothing, and the loop inside the next if
statement would have been entered. But in this case, a table got assigned to Dest, so the loop was
skipped. The same happened with the second recursive call (for Val).

Building Other Data Structures from Tables
In Lua, tables serve the same purposes as what other languages call tables, dictionaries, associative
arrays, or hash tables, such as the following:

Potluck = {John = “chips”, Jane = “lemonade”,
Jolene = “egg salad”}

and what other languages call arrays or vectors, such as these:

Days = {“Monday”, “Tuesday”, “Wednesday”, “Thursday”,
“Friday”, “Saturday”, “Sunday”}

You can build other data structures out of tables as well. For example, you can use table.insert and
table.remove to treat a table as a stack, and use tables within tables to represent tree-structured data —
data that branches out like a tree, as shown in Figure 4-7.

Figure 4-7

The diagram in the figure could be represented as follows:

{Person = {
Living = {“Roberto Ierusalimschy”, “Gary Larson”},

Living

Dead

Rio de Janeiro

Gary Larson

Jane Austen

Roberto Ierusalimschy

Archimedes

Person

Place

The North Pole

152

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 152

Dead = {“Jane Austen”, “Archimedes”}},
Place = {“Rio de Janeiro”, “The North Pole”}}

Special-purpose data structures like these can be accessed and manipulated like ordinary tables, but if
they behave differently enough from tables, you can write special-purpose functions that work with
them. It may be convenient to use the colon syntax to attach such functions to the data structures them-
selves. The following Try It Out is an example of this. It’s an implementation of a ring, a data structure
that is something like a stack, except the top (referred to in the exercise as the current element) can be
moved, and the top and bottom act like they’re hooked onto each other.

Try It Out Using a Table as a Ring
1. Save the following file as ring.lua:

-- A ring data structure:

-- Returns X mod Y, but one-based: the return value will
-- never be less than 1 or greater than Y. (Y is assumed to
-- be positive.)
local function OneMod(X, Y)
return (X - 1) % Y + 1

end

-- A table in which to create the methods:
local Methods = {}

-- Inserts a new element into self:
function Methods:Push(Elem)
table.insert(self, self.Pos, Elem)

end

-- Removes the current element from self; returns nil if
-- self is empty:
function Methods:Pop()
local Ret
if #self > 0 then
Ret = table.remove(self, self.Pos)
-- Keep self.Pos from pointing outside the array by
-- wrapping it around:
if self.Pos > #self then
self.Pos = 1

end
end
return Ret

end

-- Rotates self to the left:
function Methods:RotateL()
if #self > 0 then
self.Pos = OneMod(self.Pos + 1, #self)

end
end

-- Rotates self to the right:

153

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 153

function Methods:RotateR()
if #self > 0 then
self.Pos = OneMod(self.Pos - 1, #self)

end
end

-- Returns the ring’s size:
function Methods:Size()
return #self

end

-- Returns a string representation of self:
function Methods:ToString()
-- Convert the parts of self to the left and to the right
-- of self.Pos to strings:
local LeftPart = table.concat(self, “, “, 1, self.Pos - 1)
local RightPart = table.concat(self, “, “, self.Pos, #self)
-- Only put a separator between them if neither is the
-- empty string:
local Sep
if LeftPart == “” or RightPart == “” then
Sep = “”

else
Sep = “, “

end
-- RightPart’s first element is self.Pos, so put it first:
return RightPart .. Sep .. LeftPart

end

-- Instantiates a ring:
function MakeRing(Ring)
-- Make an empty ring if an array of initial ring values
-- wasn’t passed in:
Ring = Ring or {}
-- Ring.Pos is the position of the current element of the
-- ring; initialize it to 1 (all methods that expect
-- there to be a current element first make sure the ring
-- isn’t empty):
Ring.Pos = 1
-- Give the ring methods and return it:
for Name, Fnc in pairs(Methods) do
Ring[Name] = Fnc

end
return Ring

end

2. Start lua as follows (this will run ring.lua and then enter interactive mode):

lua -i ring.lua

3. Within interactive mode, use the function MakeRing to create a ring, and use that ring’s meth-
ods to manipulate it:

154

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 154

> R = MakeRing{“the”, “time”, “has”, “come”} -- Another use
> -- for the syntax from the “Keyword Arguments” section.
> print(R:ToString())
the, time, has, come
> print(R:Pop())
the
> R:Push(“today”)
> print(R:ToString())
today, time, has, come
> R:RotateL()
> print(R:ToString())
time, has, come, today
> print(R:Pop(), R:Pop(), R:Pop())
time has come
> R:Push(“here”)
> print(R:ToString(), R:Size())
here, today 2
> R:Push(“tomorrow”)
> R:Push(“gone”)
> print(R:ToString())
gone, tomorrow, here, today
> R:RotateR()
> print(R:ToString())
today, gone, tomorrow, here
> R:RotateR()
> print(R:ToString())
here, today, gone, tomorrow

How It Works
MakeRing instantiates a new ring. If you call it with no argument, it makes an empty ring, but if you call
it with an array, it uses that array’s elements as the elements of the ring (the first element is the initial
current element). A ring has the following six methods:

❑ Push— Adds a new element to the ring.

❑ Pop— Removes the current element from the ring and returns it.

❑ RotateL— Rotates the ring left by one element.

❑ RotateR— Rotates the ring right by one element.

❑ Size— Returns the size of the ring.

❑ ToString— Returns a string listing all elements of the ring, with the current one first.

When used in the context of stacks and related structures, Push and Pop mean insert and remove.

A ring is represented as an array with a Pos field that points to its current element. For example, take a
look at the ring in Figure 4-8.

155

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 155

Figure 4-8

This ring could be represented as any of the following (the methods are left out for clarity):

{“the”, “time”, “has”, “come”, Pos = 1}

{“come”, “the”, “time”, “has”, Pos = 2}

{“has”, “come”, “the”, “time”, Pos = 3}

{“time”, “has”, “come”, “the”, Pos = 4}

Rotating a ring takes the same amount of time no matter how big the ring is. But pushing or popping an
element can take an amount of time proportional to the size of the ring. More specifically, it takes an
amount of time proportional to the number of elements from Pos to the end of the array. That’s because
when table.insert and table.remove insert or remove an item into or from the middle of an array,
they need to go through every element between there and the end of the array and shift them up or
down to compensate. This implementation of rings was written that way because it’s simple and easy to
understand, and the time that it takes to push or pop is not even noticeable in most circumstances.

If pushing and popping does consume a problematic amount of time, either because of the sheer size of
a ring, or because a bunch of pushes or pops were being done in a time-critical section of code, then you
could optimize the rings — reimplementing them in a more efficient way using a different representation.
One simple optimization would be to arrange for Pos to go up on pushes and down on pops. This way,
when Pos hits the sweet spot at the end of the array, it would stay at the end unless the ring was rotated.

current

the

timecome

has

156

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 156

Another optimization would be to represent each element as a table with a Val field (that element’s
value), and Left and Right fields (the tables of the elements counterclockwise and clockwise from that
element). Doing it that way has the advantage of making pushes and pops take the same amount of time
no matter how big the ring is. It’s more complicated, though, because pushes and pops have to do the
correct relinking of the Left and Right fields of the element in question, and those of its two neighbors.
Additionally, each push creates a new table, which takes more time than simply inserting a value suffi-
ciently close to the end of an array, so for rings with less than 50 or 60 elements, this approach is actually
slower than the worst case of the version given in ring.lua.

A good rule of thumb is to first write something in as simple and clear a way as possible, test it to make
sure it’s correct, and then don’t optimize it — unless it’s slowing the whole program down enough to
detract from the program’s usability.

Here are a few more comments:

❑ Other than ToString, which expects everything in the ring to be a string or a number,
ring.lua’s rings can hold any value — except for nil. There are (at least) a couple ways to fix
this. One is to replace table.insert and table.remove with code that can handle a nil, and
use a field in self to keep track of the size instead of #. The other is to create a value that won’t
be equal to any other value that might be pushed into the ring, and use that value to represent
nil. So Push, when given a nil, would push that value instead, and Pop, when popping that
value, would return nil. You can use a do-nothing function or an empty table for the value.

❑ The size of the ring is measurable with the # operator, but that might no longer be true if the
implementation were changed. That’s why there’s a Size method: it hides the details of how
the size is kept track of.

❑ The only global variable set by ring.lua is MakeRing because it’s the only thing needed to cre-
ate a ring.

❑ The local function OneMod is there to make the rotation methods easier to read by abstracting
away a bit of arithmetic.

❑ You can use lua -i filename to write, test, and debug code. If you make a change in the file,
and you don’t want to exit the interpreter just to reload it, call dofile with the filename, such
as dofile(“ring.lua”). If you want to test a local function (such as OneMod), you can make it
global for long enough to test it and then relocalize it.

❑ The guts of this implementation are not hidden, which means that goofy fiddling like R.Pos = -
1 can be done. This is fine in a prototype, but you want to prevent it in code intended for seri-
ous use. One way would be to put nothing but methods in the tables returned by MakeRing.
There would be an upvalue containing a table whose keys would be the tables returned by
MakeRing, and whose values would be tables with Pos and the contents of the corresponding
ring. Only MakeRing and the methods would have access to that upvalue. When a method
wanted to get at the contents or position of its ring, it would index the upvalue with self.
Another way of protecting an object’s guts from fiddling is described in Chapter 11.

Because of tables’ flexibility, you often don’t need a customized data structure. Just ask yourself how you
most often want to access your data — usually an associative table or an array will do the job. For instance,
the task of finding a user’s information based on his or her username is obviously suited to an associative
table whose keys are usernames and whose values are tables of information about each user. The task of
displaying all users in alphabetical order by username is suited to a sorted array. It’s common to create ad

157

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 157

hoc tables to do something that the main table you’re using can’t do. If you were working with an associa-
tive table like the one described previously, keyed by usernames, but you wanted to do something that
grouped users by last name, you could create a table like the following, with last names as keys and arrays
of users as values:

local LastUsers = {} -- Keys: last names; vals: arrays of
-- UserInfos.

for Username, UserInfo in pairs(Users) do
-- If this last name hasn’t been seen yet, make an empty array:
LastUsers[UserInfo.LastName] = LastUsers[UserInfo.LastName] or {}
table.insert(LastUsers[UserInfo.LastName], UserInfo)

end

Custom-Made Loops
Most times when you want to loop through a table, pairs or ipairs is appropriate, but if neither is,
you can instead write and use your own function. Here, for example, is a function similar to ipairs, but
it goes through the array given to it in reverse order:

-- An iterator factory -- like ipairs, but goes through the
-- array in reverse order:
function ReverseIpairs(Arr)
local I = #Arr

local function Iter()
local Ret1, Ret2
if I > 0 then
Ret1, Ret2 = I, Arr[I]
I = I - 1

end
return Ret1, Ret2

end

return Iter
end

for I, Str in ReverseIpairs({“one”, “two”, “three”}) do
print(I, Str)

end

The output is as follows:

3 three
2 two
1 one

The Iter function is what is known in the Lua world as an iterator. In the simplest terms, an iterator is a
function that, each time you call it, returns the next element or elements from the thing you’re looping
through. The generic for expects to find an iterator to the right of the keyword in. ReverseIpairs is
not an iterator — it, like ipairs and pairs, is an iterator factory — a function that returns an iterator.

158

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 158

(This book follows that terminological distinction, but elsewhere, you may see iterator factories referred
to as iterators, when the context makes it clear what’s being talked about.) In this example, the for does
not find ReverseIpairs to the right of the in, but Iter, because that’s what the call to ReverseIpairs
returns. The for then calls Iter, puts its results into the newly created local I and Str variables, and
executes the body of the loop. It keeps on doing this until Iter’s first return value is nil, at which point
the loop is exited.

That last sentence is a rule about all iterators. That is, when an iterator returns nil as its first value (or
when it returns nothing, which for adjusts to nil), the loop is ended. For this reason, the leftmost loop
variable (which receives the iterator’s first return value) is called the loop’s control variable.

This implementation of ReverseIpairs returns what is called a stateful iterator because it includes (as
the upvalues Arr and I) the current state of the iteration. You can also write stateless iterators, which
depend on for to keep track of the current state of the iteration for them.

Try this stateless version of ReverseIpairs:

do -- Local scope for Iter.
-- ReverseIpairs’s iterator; Arr is the “invariant state”,
-- and I is the control variable’s previous value:
local function Iter(Arr, I)
if I > 1 then
I = I - 1
return I, Arr[I] -- Violates structured programming
-- (not a severe misdeed in such a small function).

end
end

-- An iterator factory -- like ipairs, but goes through
-- the array in reverse order:
function ReverseIpairs(Arr)
return Iter, Arr, #Arr + 1

end
end

for I, Str in ReverseIpairs({“one”, “two”, “three”}) do
print(I, Str)

end

It prints the same thing as the stateful version:

3 three
2 two
1 one

The generic for actually expects up to three values to the right of the in:

❑ The iterator itself

❑ An invariant state (nil in a stateful iterator, and usually the table being looped through in a
stateless iterator)

❑ A seed value for the loop’s control variable (nil in a stateful iterator and in some stateless iterators)

159

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 159

Every time for calls the iterator, it passes it two arguments: the invariant state and the value of the con-
trol variable from the previous iteration. That’s why it needs the seed value — to have something to pass
the iterator before the first iteration.

In the example, ReverseIpairs returns Iter, the array it was given (the invariant state), and the length
of the array plus one (the seed value for the control variable). for then calls Iter with the array and the
seed value. Iter doesn’t know that it’s being called on the first iteration. It just sees that its second argu-
ment is 4 and, in effect, thinks to itself: “If the last value of the control variable was 4, then it’s time for
me to return 3 and the 3rd element of my first argument.” for assigns these values to I and Str, and
executes the body of the loop. Then it calls Iter again, with the array and 3 as arguments. This process
continues until the last time Iter is called. Because its second argument is 1, it returns nothing. for
looks at Iter’s first return value and, seeing it to be (after adjustment) nil, ends the loop.

The built-in function next is a stateless iterator. It takes a table and a key in that table and returns the
“next” key-value pair in the table, like this:

> NameToInstr = {John = “rhythm guitar”,
>> Paul = “bass guitar”,
>> George = “lead guitar”,
>> Ringo = “drumkit”}
> print(next(NameToInstr, “Ringo”))
George lead guitar
> print(next(NameToInstr, “George”))
John rhythm guitar
> print(next(NameToInstr, “John”))
Paul bass guitar

If given the seed value nil, it returns the “first” key-value pair in the table, and if given the “last” key in
the table, it returns nil, like this:

> print(next(NameToInstr))
Ringo drumkit
> print(next(NameToInstr, “Paul”))
nil

“Next,” “first,” and “last” are in quotes here because the order of the table is arbitrary. But it’s the same
arbitrary order in which pairs loops through a table. In fact, all pairs does is return next, the table
given to it, and nil, so that if you write one of the following:

for Key, Val in next, Tbl, nil do

for Key, Val in next, Tbl do

it’s the same as writing this:

for Key, Val in pairs(Tbl) do

pairs has parentheses after it and next doesn’t because pairs is an iterator factory and needs to be
called, but next is an iterator and needs to be given straight to for.

160

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 160

If you check it out, you’ll see that next and the iterator returned by pairs are actually different func-
tions, but that’s just a quirk of the Lua implementation. Both are just wrappers around the same func-
tion written in C.

ipairs is similar. It returns a stateless iterator, the table given to it, and a seed value of 0. The iterator
(called IpairsIter in the following example) works by adding one to its second argument and return-
ing that key-value pair of its first argument:

> IpairsIter, Arr, Seed = ipairs({“one”, “two”, “three”})
> print(IpairsIter, Arr, Seed)
function: 0x480c68 table: 0x496230 0
> print(IpairsIter(Arr, 0))
1 one
> print(IpairsIter(Arr, 1))
2 two
> print(IpairsIter(Arr, 2))
3 three
> print(IpairsIter(Arr, 3)) -- This will return nothing.

>

IpairsIter is not a built-in function, but it’s easy to write. Here’s how:

function IpairsIter(Arr, PrevI)
local CurI = PrevI + 1
Val = Arr[CurI]
if Val ~= nil then
return CurI, Val

end
end

The behavior of the generic for is complex, but it allows for to be both flexible and efficient — flexible
because an iterator can be written for anything you want to loop through, and efficient because a stateless
iterator factory can return the same iterator every time, rather than creating a new closure each time it’s
called. If you’re writing an iterator, and you can easily tell just by looking at the control variable’s previ-
ous value what the next value should be, then write a stateless iterator; otherwise write a stateful one.

All of the iterator factories you’ve seen so far have only taken one argument, and all their iterators have
returned two values after each iteration, but that’s only because they’re all for iterating through key-
value pairs of tables. The following Subseqs iterator factory takes an array and a Len number, , and
then returns an iterator that loops through the array’s subsequences, each subsequence being Len ele-
ments long:

> -- Returns an iterator that goes through all Len-long
> -- subsequences of Arr:
> function Subseqs(Arr, Len)
>> local Pos = 0
>>
>> return function()
>> Pos = Pos + 1
>> if Pos + Len - 1 <= #Arr then

161

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 161

>> return unpack(Arr, Pos, Pos + Len - 1)
>> end
>> end
>> end
>
> Nums = {“one”, “two”, “three”, “four”, “five”, “six”}
> for Val1, Val2, Val3, Val4 in Subseqs(Nums, 4) do
>> print(Val1, Val2, Val3, Val4)
>> end
one two three four
two three four five
three four five six

Here’s an iterator (meant to be part of ring.lua) that only returns one value after each iteration — it
loops through all values in the ring, starting with the current one:

-- Returns an iterator that iterates through all self’s
-- elements.
function Methods:Elems()
local IterPos -- The position of the element the iterator
-- needs to return

return function()
local Ret
if IterPos then
if IterPos ~= self.Pos then
Ret = self[IterPos]

else
-- Back at the beginning; do nothing (which ends the
-- loop by returning nil).

end
else
-- At the beginning: initialize IterPos:
IterPos = self.Pos
Ret = self[IterPos] -- If the ring is empty, this’ll
-- end the loop by returning nil.

end
IterPos = OneMod(IterPos + 1, #self)
return Ret

end
end

Here it is in use:

> dofile(“ring.lua”)
> Days = MakeRing{“Monday”, “Tuesday”, “Wednesday”,
>> “Thursday”, “Friday”, “Saturday”, “Sunday”}
> Days:RotateR()
> for Day in Days:Elems() do
>> print(Day)
>> end
Sunday
Monday

162

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 162

Tuesday
Wednesday
Thursday
Friday
Saturday

The normal rules for adjustment apply to iterators and loop variables:

> Letters = {“a”, “b”, “c”}
> for I in ipairs(Letters) do
>> print(I)
>> end
1
2
3
> for I, Letter, Junk1, Junk2 in ipairs(Letters) do
>> print(I, Letter, Junk1, Junk2)
>> end
1 a nil nil
2 b nil nil
3 c nil nil

You can write stateless iterators that ignore their second argument (and keep track of where they are by
side-effecting the table given as the first argument), but this technique is seldom used.

You’ll learn one more method for writing iterators in Chapter 12.

Global Variable Environments
You may have noticed similarities between global variables and table keys, such as their lack of distinction
between nil and nonexistence. These similarities are not coincidental. Global variables are actually stored
in a table. This table can be found in the global variable _G, as you can see in the following example:

You can tell by looking at the numbers that print and _G.print are the same value, as are _G itself
and _G._G._G._G, because _G, being both a global variable and a table containing all the global vari-
ables, contains itself.

> print(print, _G.print)
function: 0x481720 function: 0x481720
> MyGlobal = “Hello!”
> print(MyGlobal, _G.MyGlobal)
Hello! Hello!
> print(_G, _G._G._G._G)
table: 0x4806e8 table: 0x4806e8

This means that you can access global variables whose names are strings built at run time (without
resorting to loadstring), like this:

> Abcd = “test 1”
> print(_G[“Ab” .. “cd”])

163

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 163

test 1
> _G[“Wx” .. “yz”] = “test 2”
> print(Wxyz)
test 2

For more on loadstring, see Chapter 3.

You can also loop through all global variables. Give the following code a try:

print already puts a tab character between the things it prints. The extra print in the following
example just makes it easier to read.

for Name, Val in pairs(_G) do
print(Name, “\t”, Val)

end

A table used to store global variables is called an environment, and every function has one. Usually
they’re all the same environment, but you can give a function its own environment with the function
setfenv (short for set function environment). In the following example, you create a Greet function
and give it an empty environment. This function tries to call print, but the “print” key in its environ-
ment is not set, so there’s an error:

> function Greet(Name)
>> print(“Hello, “ .. Name .. “.”)
>> end
> setfenv(Greet, {})
> Greet(“Syd”)
stdin:2: attempt to call global ‘print’ (a nil value)
stack traceback:

stdin:2: in function ‘Greet’
stdin:1: in main chunk
[C]: ?

When you give it an environment whose “print” key is set to the print function, it works as desired:

> setfenv(Greet, {print = print})
> Greet(“Syd”)
Hello, Syd.

Of course, the function could be called print but could do something different than the real print, as
in the following example:

> Env = {print = function(Str)
>> print(“<<<” .. Str .. “>>>”)
>> end}
> setfenv(Greet, Env)
> Greet(“Syd”)
<<<Hello, Syd.>>>

Earlier it was said that some closures can be side-effected by calling them. Now you see that you can
give side effects to all functions by calling setfenv on them.

164

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 164

A function’s environment can be retrieved with the getfenv (“get function environment”) function. For
example:

> PrintEnv, GreetEnv = getfenv(print), getfenv(Greet)
> -- print’s environment is different than Greet’s environment:
> print(PrintEnv, GreetEnv)
table: 0x4806e8 table: 0x493958
> -- print’s environment is the one in _G, Greet’s isn’t:
> print(PrintEnv == _G, GreetEnv == _G)
true false

Environment tables are just ordinary tables, and behave accordingly. In the previous example, because
PrintEnv is the same as _G, any changes you make to PrintEnv will show up in _G:

> PrintEnv.Test = “test”
> print(_G.Test)
test
> print(Test)
test

Function environments can be used to modularize code by making global variables not so global. An
example of this (the module function) is given in Chapter 7.

Another common use is sandboxing, which means running code with a limited or otherwise specialized
set of global variables. The environment you gave to Greet that only had print in it was a sandbox —
Greet had no way of accessing any of Lua’s other built-in functions. This sort of thing is useful if your
program needs to run code supplied by a user, but you want to limit the power of the user to mess
things up (either by assigning to global variables, or by calling functions that he or she shouldn’t be call-
ing). One way to make a sandbox is to make a table with all the globals that the sandboxed function is
supposed to have access to — this is the technique you used in the Greet example. (It may be easier to
use a function like DeepCopy to copy _G, and then remove anything you don’t want it to contain.)
Another, more flexible technique is explained in Chapter 11.

The first argument to setfenv or getfenv can be a number instead of a function. The number is treated
as a stack level, and the function at that level of the stack has its environment set or gotten. Lower num-
bers are closer to the top of the stack: 1 is the current function (the one calling setfenv or getfenv); 2 is
the function that called the current function (and hence is right below it on the stack); 3 is the function
that called the function that called the current function; and so on. (Calling getfenv with no argument
is the same as calling it with an argument of 1— it returns the current function’s environment.) For
example:

> -- Gives its caller an empty environment:
> function PwnMe()
>> setfenv(2, {})
>> end
>
> do
>> PwnMe()
>> -- Global variables are missing now:
>> print(“test”)
>> end

165

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 165

stdin:4: attempt to call global ‘print’ (a nil value)
stack traceback:

stdin:4: in main chunk
[C]: ?

> -- Since this is a new chunk now, things are back to
> -- normal. That wouldn’t be the case if this were a
> -- script, and therefore all one chunk.
> print(“test”)
test

For more on chunks, see Chapter 3.

This means that if you’re sandboxing a function to prevent it from messing with its caller’s global vari-
ables, you should not include either setfenv or getfenv in the sandbox.

When you create a function, it inherits the environment of its source function. That’s why DoNothing1
and DoNothing2 have different environments in the following code, and they’ll keep these environ-
ments until and unless you use setfenv on them:

> -- Returns a do-nothing function:
> function MakeDoNothing()
>> return function() end
>> end
>
> EmptyTbl1, EmptyTbl2 = {}, {}
> setfenv(MakeDoNothing, EmptyTbl1)
> DoNothing1 = MakeDoNothing()
> setfenv(MakeDoNothing, EmptyTbl2)
> DoNothing2 = MakeDoNothing()
> -- DoNothings 1 and 2 have the environments that
> -- MakeDoNothing had when it created them:
> print(getfenv(DoNothing1) == EmptyTbl1)
true
> print(getfenv(DoNothing2) == EmptyTbl2)
true

You cannot alter an environment of a function not written in Lua, as shown here:

> -- This causes an error because print is written in C:
> setfenv(print, {})
stdin:1: ‘setfenv’ cannot change environment of given object
stack traceback:

[C]: in function ‘setfenv’
stdin:1: in main chunk
[C]: ?

This restriction is to protect functions written in low-level languages like C (which have much more
power to mess things up) from unauthorized meddling by Lua functions.

Like many restrictions in Lua, this one can be bypassed with the debug library, described in Chapter 10.

166

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 166

There is a way, though, for you to set the environment used by the bottom frame of the stack. You’ll
learn how to do this in a moment, but first, here’s a bit of background. The bottom frame of the stack is
always in C (which is why stack tracebacks always end with “[C]: ?”). Its environment is called the
global environment. (This term is a bit confusing because all references to global variables are resolved by
looking in an environment, but even if various functions/stack frames have different environments, only
one of them is the global environment.)

If you try to change the global environment by figuring out what stack level it’s at, you’ll get the same
error given previously when you tried to give setfenv the print function:

> setfenv(2, {})
stdin:1: ‘setfenv’ cannot change environment of given object
stack traceback:

[C]: in function ‘setfenv’
stdin:1: in main chunk
[C]: ?

The way to work around this is to use the magic number 0 as the first argument to setfenv. Chunks
typed into the interpreter inherit the global environment. Then you set the global environment to a table
with nothing in it but _G (the original global environment). After you do this, every chunk inherits that
environment and thus can’t access the standard global variables under their usual names. For example:

> setfenv(0, {_G = _G})
> -- Error message won’t have tracebacks, as explained below.
> print(“This won’t work.”)
stdin:1: attempt to call global ‘print’ (a nil value)
> _G.print(“This won’t either, since print calls tostring.”)
attempt to call a nil value
> tostring = _G.tostring
> _G.print(“Now that tostring is in place, this will work.”)
Now that tostring is in place, this will work.
> -- Undo the damage by putting the original global
> -- environment back in place:
> _G.setfenv(0, _G)
> print(“This works again!”)
This works again!

Note the following in this example:

❑ Although you can’t access it with setfenv or getfenv, print has its own environment. That
environment is unaffected by changing the global environment, because it is the original global
environment, inherited by print when it was created. If print looked for tostring, it would
find it, but it looks instead in the current global environment, where tostring is nil. (There’s
no hidden meaning to print looking in the global environment rather than its own; that’s just
how it was written.)

❑ The error message has no stack traceback. That’s because the stack traceback is created by call-
ing the function debug.traceback. When the interpreter sees that this function is missing, it
doesn’t even try to call it.

setfenv returns the function whose environment it just set, or nothing if it’s used to set the global envi-
ronment, as shown here:

167

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 167

> DoNothing = function() end
> print(setfenv(DoNothing, _G) == DoNothing)
true
> print(select(“#”, setfenv(0, _G)))
0

In Lua 5.0, setfenv never returns a value.

If getfenv is passed a non-Lua function, it returns the global environment (not that function’s real envi-
ronment).

A function returned by loadstring (or by one of its cousins load and loadfile) inherits the current
global environment.

_G is just a regular global variable, with no magic behavior. When Lua starts up, it puts the global envi-
ronment into _G, but if the global environment is changed to a different table, _G is not updated, and if
you put a different table into _G, no environments are changed. _G is purely a convenience, and in the
previous examples, it saved you from having to type a lot of getfenv(0).

Summary
In this chapter, you examined tables and some other things that are easier to understand in relation to
tables. What you learned included the following:

❑ Tables are collections of key-value pairs, and they are Lua’s only data structure.

❑ Curly braces are used to create tables; square brackets and dots are used to read and assign to
table fields.

❑ There is no difference between a key not existing in a table, and that key existing but being asso-
ciated with the value nil.

❑ You can use tables as arrays by using consecutive integer keys (starting at one).

❑ You can use pairs and ipairs with the generic for to loop through tables.

❑ The table global variable contains a table, which in turn contains functions useful for dealing
with tables (as in table.sort).

❑ The colon syntax makes writing in an object-oriented style more convenient.

❑ You can access the extra arguments of a vararg function with ... (the vararg expression). You
can use the select and unpack functions when dealing with vararg functions.

❑ All chunks are compiled into functions. For example, scripts are vararg functions, which allows
access to their command-line arguments.

❑ Tables are mutable, so that when you alter a table’s contents, it is still the same table.

❑ pairs and ipairs are iterator factories. You can write iterator factories of your own.

168

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 168

❑ Global variables are stored in tables called environments. You use the getfenv and setfenv
functions to manipulate these environments.

Numeric, string, Boolean, and nil values; operators; expressions; statements; control structures; func-
tions; tables — these are the building blocks of Lua and, as now that you know them, you know Lua.

You may have noticed that through this and the previous two chapters, there were an increasing propor-
tion of examples that look like they could be useful in real programs. This trend continues in the next
chapter, which has lots of code relevant to the real world — code for searching, matching, substituting,
and otherwise manipulating strings and their characters and substrings. First, though, try the exercises
for this chapter (answers are in the appendix).

Exercises
1. In your head, figure out what the following prints:

A = {}
B = “C”
C = “B”
D = {
[A] = {B = C},
[B] = {[C] = B},
[C] = {[A] = A}}

print(D.C[“B”])

2. By default, table.sort uses < to compare array elements, so it can only sort arrays of numbers
or arrays of strings. Write a comparison function that allows table.sort to sort arrays of
mixed types. In the sorted array, all values of a given type should be grouped together. Within
each such group, numbers and strings should be sorted as usual, and other types should be
sorted in some arbitrary but consistent way.

Test the function out on an array like this:

{{}, {}, {}, “”, “a”, “b”, “c”, 1, 2, 3, -100, 1.1,
function() end, function() end, false, false, true}

3. The print function converts all its arguments to strings, separates them with tab characters,
and outputs them, along with a trailing newline. Write a function that, instead of giving that as
output, returns it as a string, so that the following:

Sprint(“Hi”, {}, nil)

returns this:

“Hi\ttable: 0x484048\tnil\n”

which, if printed, would look like this:

Hi table: 0x484048 nil

169

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 169

4. In ring.lua, the RotateL method only rotates its object one element to the left, as shown here:

-- Rotates self to the left:
function Methods:RotateL()
if #self > 0 then
self.Pos = OneMod(self.Pos + 1, #self)

end
end

Rewrite it to take an optional numeric argument (defaulting to 1) and rotate the object by that
many elements. (This requires neither a loop nor recursion.)

5. Write a stateful iterator generator, SortedPairs, that behaves just like pairs, except that it
goes through key-value pairs in order by key. Use the CompAll function from exercise 2 to sort
the keys.

170

Chapter 4: Working with Tables

07_069172 ch04.qxp 1/2/07 8:07 PM Page 170

5
Using Strings

The last chapter covered tables and the table library. You already know strings, but you don’t
know the string library, and that’s the main topic of this chapter. Among many other things, you’ll
learn about the following:

❑ Converting between uppercase and lowercase

❑ Getting individual characters and substrings out of strings

❑ Getting user input

❑ Reading from and writing to files

❑ Doing pattern matching and replacement on strings (which is very powerful, and
accounts for more than half of the chapter)

Basic String Conversion Functions
Many of the functions in the string library take a single string argument (and, in a few cases, one
or two numeric arguments) and return a single string. In the following example, string.lower
takes a string and returns a string that’s the same except that any uppercase letters have been con-
verted to lowercase:

> print(string.lower(“HELLO there!”))
hello there!

Of course, string.lower doesn’t care if the string given to it contains no uppercase letters, or no
letters at all — it just returns the same string as shown here:

> print(string.lower(“hello there!”))
hello there!
> print(string.lower(“1 2 3 4”))
1 2 3 4

08_069172 ch05.qxp 1/2/07 8:30 PM Page 171

You may occasionally find yourself doing something like the following, and wondering why Str hasn’t
been changed to “abc”:

> Str = “ABC”
> string.lower(Str)
> print(Str)
ABC

If you think about it, you’ll see that this is because strings are immutable, so it’s impossible for a func-
tion like string.lower to work by side effect the way functions like table.sort do. Instead,
string.lower (and all string functions) works by return value:

> Str = “ABC”
> Str = string.lower(Str)
> print(Str)
abc

It’s convenient to say things like “string.lower converts any uppercase characters in a string to lower-
case” (instead of the previous wordier “takes a string and returns a string” phrasing). Saying it this way
doesn’t mean that string.lower changes the characters right in the string itself, which is impossible.
Rather, the conversion process creates a new string, which is the function’s return value.

string.upper is the obvious counterpart to string.lower:

> print(string.upper(“HELLO there!”))
HELLO THERE!

Both string.lower and string.upper use the current locale to decide what characters are uppercase
or lowercase letters. There’s a short example of this later in this chapter.

string.reverse reverses a string, character by character, like this:

> print(string.reverse(“desserts”))
stressed

Lua 5.0 didn’t have string.reverse. It can be written by looping through a string backwards,
putting its characters in an array, and passing that array to table.concat.

string.rep takes a string and a number, and repeats the string that many times, like this:

> print(string.rep(“a”, 5))
aaaaa
> print(string.rep(“Hubba”, 2))
HubbaHubba

string.sub returns a substring of the string given to it. The second and third arguments of string
.sub are the (one-based) numeric positions of the desired first and last characters. For example:

> Str = “alphaBRAVOcharlie”
> print(string.sub(Str, 1, 5))
alpha
> print(string.sub(Str, 6, 10))
BRAVO

172

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 172

> print(string.sub(Str, 11, 17))
charlie

Negative numbers can be used as positions: -1 means the last character in the string, -2 means the sec-
ond-to-last, and so on:

> print(string.sub(Str, -7, -1))
charlie
> print(string.sub(Str, 6, -8))
BRAVO
> print(string.sub(Str, -17, 5))
alpha

All of the built-in functions that take character positions understand negative ones.

If string.sub’s last argument is omitted, it defaults to -1 (or, equivalently, the length of the string), as
follows:

> print(string.sub(Str, 1))
alphaBRAVOcharlie
> print(string.sub(Str, -7))
charlie

String Length
string.len (like the # operator) returns the length of the string given to it. For example:

> print(string.len(“”))
0
> print(string.len(“ABCDE”))
5

Converting Between Characters
and Character Codes

string.byte returns the numerical byte values used by your system to represent the characters of the
substring specified (string.sub-style) by its second and third arguments. For example:

> print(string.byte(“ABCDE”, 1, 5))
65 66 67 68 69
> print(string.byte(“ABCDE”, 2, -2))
66 67 68

The third argument defaults to the value of the second argument (so only one character’s byte value is
returned):

> print(string.byte(“ABCDE”, 2))
66

173

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 173

> print(string.byte(“ABCDE”, -1))
69

string.byte is often called with only one argument, in which case the second argument defaults to 1:

> print(string.byte(“ABCDE”))
65
> print(string.byte(“A”))
65

The Lua 5.0 string.byte only took two arguments and therefore never returned more than one
value.

string.char takes integers like those returned by string.byte and returns a string composed of
those characters, as follows:

> print(string.char(65))
A
> print(string.char(65, 65, 66, 66))
AABB

If called with no arguments, it returns the empty string.

The byte values used by string.byte and string.char are not necessarily the same from system to
system. Most of the examples in this book assume that ASCII characters have their ASCII values. (If this
is not true on your system, you probably know it.)

Formatting Strings and Numbers
with string.format

The code you’ve seen and written so far has formatted its output using string concatenation: tostring,
and the automatic insertion of tabs with print. A more powerful tool for formatting output is
string.format, which can do the following:

❑ Pad strings with spaces and pad numbers with spaces or zeros

❑ Output numbers in hexadecimal or in octal (base 8)

❑ Trim extra characters from a string

❑ Left- or right-justify output within columns

Try It Out Outputting Data in Columns
Imagine you have a bulletin board system, and you want a report of how many new posts and replies to
existing posts each user has made. If you wanted to read this report in a web browser, you could format
it as HTML, but if you want to read it on the command line or in a text editor, then it’ll be easier to read
if you format it in columns. (This works only with fixed-width fonts like Courier or Fixedsys, which you
should be using to read and write code anyway.)

174

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 174

1. Define the following function:

-- Prints a report of posts per user:
function Report(Users)
print(“USERNAME NEW POSTS REPLIES”)
for Username, User in pairs(Users) do
print(string.format(“%-15s %6d %6d”,
Username, User.NewPosts, User.Replies))

end
end

2. Run it as follows:

Report({
arundelo = {NewPosts = 39, Replies = 19},
kwj = {NewPosts = 22, Replies = 81},
leethax0r = {NewPosts = 5325, Replies = 0}})

The output should be this:

USERNAME NEW POSTS REPLIES
arundelo 39 19
leethax0r 5325 0
kwj 22 81

How It Works
The string.format function takes as its first argument a format string that includes format placeholders
like “%-15s” and “%6d”. It returns a string constructed by replacing the placeholders by the rest of the
string.format arguments.

All format placeholders start with the % character. A placeholder that ends in the character s inserts the
corresponding arguments as a string:

> print(string.format(“-->%s<--”, “arundelo”))
-->arundelo<--

A number that’s between the % and the s uses spaces to pad the string out to that many characters:

> print(string.format(“-->%15s<--”, “arundelo”))
--> arundelo<--

A - (minus sign) in front of the number left-justifies the string:

> print(string.format(“-->%-15s<--”, “arundelo”))
-->arundelo <--

A placeholder that ends in the character d inserts the corresponding argument as a decimal integer:

> print(string.format(“-->%d<--”, 39))
-->39<--

175

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 175

A number in between the % and the d uses spaces to pad the number out to that many characters (num-
bers can also be left-justified just like strings, but that’s not done in this example):

> print(string.format(“-->%6d<--”, 39))
--> 39<--

There should be a one-to-one correspondence between placeholders and extra arguments (“extra argu-
ments” here refer to arguments after the format string). The first placeholder corresponds to the first
extra argument, the second placeholder to the second extra argument, and so on:

> print(string.format(“%-15s %6d %6d”, “arundelo”, 39, 19))
arundelo 39 19

Apart from its ability to format strings and numbers to certain lengths, string.format is also a useful
alternative to string concatenation. Both of the following two lines insert the variables Link and LinkText
into an HTML <a> (anchor) element. The second has the disadvantage of greater length, but it’s arguably
more readable, especially after your eye gets used to picking out the two format placeholders:

Anchor = ‘’ .. LinkText .. ‘’

Anchor = string.format(‘%s’, Link, LinkText)

This readability advantage ramps up the more alternating literal strings and variables you’re dealing
with. If you find yourself using string.format a lot in a particular piece of code, you can give it a
shorter name, like this:

local Fmt = string.format

A single percent sign in string.format’s output is represented by two consecutive ones in the format
string, as in the following example. This %% pseudo-placeholder is the only exception to the one-to-one
correspondence between format placeholders and the rest of the string.format arguments:

> print(string.format(“We gave %d%%!”, 110))
We gave 110%!

When necessary, string.format converts strings to numbers and numbers to strings, but any other
conversions need to be done by hand. For example:

> print(string.format(“%d-%s”, “50”, 50))
50-50
> print(string.format(“%s”, {}))
stdin:1: bad argument #2 to ‘format’ (string expected, got table)
stack traceback:

[C]: in function ‘format’
stdin:1: in main chunk
[C]: ?

> print(string.format(“%s”, tostring({})))
table: 0x4927e8

176

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 176

The %d placeholder only works for integers. For fractional numbers, use %f as follows:

> print(string.format(“We gave %f percent!”, 99.44))
We gave 99.440000 percent!

By default, six digits are printed after the decimal point. To control this, supply a precision, which should
be an integer preceded by a dot. For example:

> print(string.format(“%.0f | %.1f | %.2f | %.3f”,
>> 99.44, 99.44, 99.44, 99.44))
99 | 99.4 | 99.44 | 99.440

If there’s a width (the number used to control column widths in the previous Try-It-Out example), put it
before the precision. The width includes any digits after the decimal point, and the decimal point itself,
if there is one. Here’s an example:

For readability, this example uses a square-bracket string, as covered in Chapter 2.

> print(string.format([[
>> -->%5.0f<-- width: 5; precision: 0
>> -->%5.1f<-- width: 5; precision: 1
>> -->%5.2f<-- width: 5; precision: 2]], 99.44, 99.44, 99.44))
--> 99<-- width: 5; precision: 0
--> 99.4<-- width: 5; precision: 1
-->99.44<-- width: 5; precision: 2

If either a string or a number is longer than the width allotted for it, it will spill over — no characters or
digits will be removed:

> -- Print some usernames in a 15-character column:
> print(string.format([[
>> -->%-15s<--
>> -->%-15s<--
>> -->%-15s<--
>> -->%-15s<--]],
>> “arundelo”, “kwj”, “leethax0r”, “reallylongusername”))
-->arundelo <--
-->kwj <--
-->leethax0r <--
-->reallylongusername<--
> -- Print various numbers in a 4-character column:
> print(string.format([[
>> -->%6.1f<--
>> -->%6.1f<--
>> -->%6.1f<--]], 1, 99.44, 123456789))
--> 1.0<--
--> 99.4<--
-->123456789.0<--

177

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 177

If you give a %s placeholder a precision, it’s treated as a maximum width — characters will be trimmed
from the end of the string to make it fit. The following strings are printed with a width (the minimum
width) of 2 and a precision (the maximum width) of 2:

> print(string.format([[
>> -->%2.2s<--
>> -->%2.2s<--
>> -->%2.2s<--]], “a”, “ab”, “abc”))
--> a<--
-->ab<--
-->ab<--

Along with the - (left-justification) character, you can place the following characters right after the per-
cent sign (that is, before the width and precision, if any):

> -- “+” -- all numbers are printed with a sign:
> print(string.format(“%+d”, 1))
+1
> -- “ “ -- use a space if a sign is omitted on a positive
> -- number:
> print(string.format(“% d”, 1))
1
> -- “0” -- pad numbers with zeros instead of spaces:
> print(string.format(“%05d”, 1))
00001
> -- “#” -- various uses -- with %f, output always has a
> -- decimal point; with %x, output always has “0x”:
> print(string.format(“%#.0f”, 1))
1.
> print(string.format(“%#x”, 31))
0x1f

These characters don’t have to be in any particular order when combined. For example:

> print(string.format(“-->%-+5d<--”, 11))
-->+11 <--
> print(string.format(“-->%+-5d<--”, 11))
-->+11 <--

The %q placeholder (“q” stands for quote) surrounds a string with double quotes, backslash-escapes any
double quotes, backslashes, or newlines in it, and converts any zero bytes to “\\000”:

> print(string.format(“%q”, [[backslash: \; double quote: “]]))
“backslash: \\; double quote: \””
> print(string.format(“%q”, “\0\n”))
“\000\
“

In other words, it converts a string into a representation of that string usable in Lua source code:

> WeirdStr = “\”\\\n\0”
> Fnc = loadstring(string.format(“return %q”, WeirdStr))

178

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 178

> print(Fnc() == WeirdStr)
true

This lets you save data for subsequent use by formatting it as a valid Lua script and putting it into a file.
When you want to retrieve the data, you load the file into a string, pass it to loadstring, and call the
resulting function. (You’ll see how to save and load files in the next section.)

This kind of data file can consist of a single return statement (like the string passed to loadstring in
the previous example). It can also be a series of function calls whose arguments are the data in question,
like this:

Record{Username = “arundelo”, NewPosts = 39, Replies = 19}
Record{Username = “kwj”, NewPosts = 22, Replies = 81}
Record{Username = “leethax0r”, NewPosts = 5325, Replies = 0}

The function called (Record in this example) is one that you define to do what’s necessary to make the
data available to the main program. If this function is given to the loadstring function by setfenv,
then there’s no need for the data file to have access to any other functions.

If you want to save a table, you need to build up a string by splicing together the table’s keys and values
with the appropriate curly braces, square brackets, commas, and so on. Chapter 7 has an example of this.

Other common placeholders include %x and %X for hexadecimal output, %o for octal output, %e and %E
for scientific notation, %g and %G for automatic selection between scientific notation and standard nota-
tion, and %i, which is just a synonym for %d. Here are some examples:

> print(string.format(“%%x: %x\t%%o: %o”, 31, 31))
%x: 1f %o: 37
> print(string.format(“%%e: %e\t%%g: %g”, 3.1, 3.1))
%e: 3.100000e+00 %g: 3.1
> print(string.format(“%%e: %e\t%%g: %g”, 11 ^ 13, 11 ^ 13))
%e: 3.452271e+13 %g: 3.45227e+13

Placeholders that come in both uppercase and lowercase differ only in the case of any letters they might
print. For example:

> print(string.format(“%x, %X”, 255, 255))
ff, FF

More detail on format strings is available in books on the C programming language, because the
string.format format placeholders are almost exactly the same as those used by the C language’s
printf family of functions.

The differences are as follows: C doesn’t understand the %q placeholder, and Lua doesn’t understand the
h, L, or l modifiers, the %n or %p placeholders, or the * character used as a width or precision. To com-
pensate for the second difference, you can build a format string in Lua at run time.

A lot of string.format’s work is actually done by the C function sprintf. This means that you should
not include any “\0” characters in strings you give to string.format (unless they’ll be formatted by %q
placeholders).

179

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 179

Input/Output
It’s time to take a brief break from the string library, and detour through the topic of input/output (I/O).
You’ve already used print for output, but print does things in addition to output data — it converts
everything to strings, separates multiple arguments with tabs, and appends a newline. This is conve-
nient for debugging because you can see what values a function returns, but a more fundamental output
function is io.write. This function expects all of its arguments to be strings or numbers, and it outputs
each of the arguments without adding anything. The > character that appears to be at the end of the fol-
lowing output is really just the Lua prompt — it didn’t get put on its own line because no newline was
outputted:

> Str1, Str2 = “Alpha”, “Bravo”
> io.write(Str1, Str2)
AlphaBravo>

Here’s the same thing, with a space and a newline:

> io.write(Str1, “ “, Str2, “\n”)
Alpha Bravo
>

And in the following, io.write is used like a print that uses neither the concatenation operator nor
table.concat; (trace its execution for a few sample arguments so that you can see how it works, espe-
cially how it builds one line of output with several iterations of io.write):

function Print(...)
local ArgCount = select(“#”, ...)
for I = 1, ArgCount do
-- Only print a separator if one argument has already
-- been printed:
if I > 1 then
io.write(“\t”)

end
io.write(tostring(select(I, ...)))

end
io.write(“\n”)

end

The function io.read reads (by default) one line of input. Call it like so:

Line = io.read()

Your cursor will move to the next line, but there’ll be no Lua prompt. Type some random text and press
Enter. The Lua prompt will reappear. Print Line and you’ll see that it contains whatever you typed.

To write to or read from a file, you need a handle to that file. A file handle is an object with methods like
write and read. Getting a handle to a file is called opening the file.

180

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 180

Writing to and Reading from a File
The following example will write to a file named test.txt in your current directory. (If you already
have a file of this name that you don’t want overwritten, move it or use a different name.) Do the follow-
ing in the interpreter:

> FileHnd, ErrStr = io.open(“test.txt”, “w”)
> print(FileHnd, ErrStr)
file (0x485ad4) nil
> FileHnd:write(“Line 1\nLine 2\nLine 3\n”)
> FileHnd:close()
> FileHnd, ErrStr = io.open(“test.txt”)
> print(FileHnd, ErrStr)
file (0x485ad4) nil
> print(FileHnd:read())
Line 1
> print(FileHnd:read())
Line 2
> print(FileHnd:read())
Line 3
> print(FileHnd:read())
nil
> FileHnd:close()
> print(os.remove(“test.txt”))
true

The first io.open argument is the name of the file to be opened. Its second argument, “w”, means that
the file will be opened in write mode, making it possible to write to it but not read from it. If the file is
successfully opened, a handle to it will be returned, but if for some reason it can’t be opened, then it
returns a nil value and an error message. (You can print the file handle and the error message in the
context of an actual program with something like “if FileHnd then”. There’s an example of this in the
next chapter.)

The file handle has a write method, which works just like io.write, but writes to the file instead of your
screen. The following line writes three lines (each one terminated with a newline character) to the file:

FileHnd:write(“Line 1\nLine 2\nLine 3\n”)

After this, calling the file handle’s close method closes the file. This ensures that all output actually
makes it to the hard drive, and that any system resources associated with the open file aren’t tied up any
longer than they need to be. After the file is closed, an attempt to use any of the handle’s methods will
cause an error.

Next, the file is reopened, but this time in read mode instead of write mode. (The second io.open argu-
ment defaults to “r”.)

The first three times FileHnd:read is called, it returns the file’s three lines, one after the other. Notice
that the newline characters marking the ends of these lines are not returned. (You can tell this because, if
they were returned, then print would appear to print an extra blank line after each line.)

181

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 181

The fourth time FileHnd:read is called, it returns nil, which means that the end of the file has been
reached. The file is then closed with FileHnd:close and removed with os.remove, whose return value
of true just means that the removal was successful. If you skip the removal step, you can look at
test.txt in your text editor.

The first character of the second io.open argument must be an r (for read mode), a w (for write mode,
which discards any contents the file may have already had), or an a (for append mode, which writes to
the end of the file, preserving any previous contents). This letter can optionally be followed by (in any
order) a “+” character and/or a “b” character. Including “+” opens the file in one of three different ver-
sions of read/write mode, depending on the first letter. Including “b” opens the file in binary mode
(specifically binary read, binary write, or binary append mode).

There’s more discussion of the distinction between binary mode and text mode (the default) in Chapter 13,
but here’s the essence. Some systems use something other than “\n” to mark the end of a line. Lua (actually,
the C I/O library that Lua uses) does a translation that lets you ignore this and always use “\n”. That’s a
good thing, but if you’re working with a file that isn’t text, and you don’t want the library messing with any
bytes that happen to look like end-of-line markers, or if you have to deal with text files that were created on
a system with a different end-of-line convention, a mode string with “b” turns off this translation.

If given no arguments, read (either io.read or the read method of a file handle) reads and returns one
line (with no trailing “\n”) or returns nil on end-of-file. If it’s given an argument, the argument should
be one of the following:

Argument Description

“*l” Reads and returns one line (with no trailing “\n”) or returns nil on
end-of-file.

“*a” Reads and returns the whole file, minus anything that’s already been read.
This will be the empty string if the whole file has already been read.

“*n” Reads and returns a number, or returns nil if a number can’t be read (pos-
sibly because there’s something other than whitespace that needs to be
read first before a number can be reached).

a number Reads and returns a string with this many characters (or less, if end-of-file
is reached). If end-of-file is reached without needing to read any characters,
nil is returned.

read can be given multiple arguments, in which case it reads and returns multiple values.

The I/O library supplies the following three pre-opened file handles to virtual files (things that act like
files, but don’t actually reside on the hard disk):

❑ io.stdin is the standard input file handle (read-only). By default, it reads from the keyboard.
io.stdin:read acts the same as io.read.

❑ io.stdout is the standard output file handle (write-only). By default, it writes to the screen.
io.stdout:write acts the same as io.write.

❑ io.stderr is the standard error file handle (write-only). By default, it too writes to the screen.

182

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 182

Now that you know the basics of I/O, you can write a script that works with files.

Try It Out Sorting and Eliminating Duplicate Lines in a File
1. Create a file with the following contents, and save it as sortuniq.lua:

-- This script outputs all unique lines of a file, sorted.
-- It does no error checking!
--
-- Usage:
--
-- lua sortuniq.lua INFILE OUTFILE
--
-- If OUTFILE is not given, standard output will be used. If
-- no arguments are given, standard input and standard output
-- will be used.

-- Like pairs, but loops in order by key. (Unlike the
-- version in Chapter 4, this only handles all-string or
-- all-numeric keys.)
function SortedPairs(Tbl)
local Sorted = {} -- A (soon to be) sorted array of Tbl’s keys.
for Key in pairs(Tbl) do
Sorted[#Sorted + 1] = Key

end
table.sort(Sorted)
local I = 0

-- The iterator itself:
return function()
I = I + 1
local Key = Sorted[I]
return Key, Tbl[Key]

end
end

function Main(InFilename, OutFilename)
-- Make the lines of the input file (standard input if no
-- name was given) keys of a table:
local Lines = {}
local Iter = InFilename and io.lines(InFilename) or io.lines()
for Line in Iter do
Lines[Line] = true

end
-- Get a handle to the output file (standard output if no
-- name was given):
local OutHnd = OutFilename
and io.open(OutFilename, “w”)
or io.stdout

-- Write each line in Lines to the output file, in order:
for Line in SortedPairs(Lines) do
OutHnd:write(Line, “\n”)

end
OutHnd:close()

end

Main(...)

183

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 183

2. Create a file with the following contents, and save it as testin.txt:

bravo
alpha
charlie
alpha
charlie
charlie
alpha

3. At your shell, type this:

lua sortuniq.lua testin.txt testout.txt

4. Open the testout.txt file in your text editor. Here’s what it should contain:

alpha
bravo
charlie

How It Works
io.lines is an iterator factory. If given a filename, it opens that file and returns an iterator that loops
through all lines in the file. If called with no argument, it returns an iterator that loops through all lines
found on standard input (by default, the lines you type).

sortuniq.lua is written to use either of these. If no input file is given as a command-line argument,
io.lines would be called with no argument and loop through standard input. In the previous example,
though, InFilename is testin.txt, each line of which is made a key in the table Lines inside the
loop. This has the effect of ignoring duplicate lines:

local Lines = {}
local Iter = InFilename and io.lines(InFilename) or io.lines()
for Line in Iter do
Lines[Line] = true

end

When the iterator hits the end of testin.txt, it closes the file right before the loop is exited. Next,
testout.txt (the file named by OutFilename) is opened. Again, the following is done so that standard
output will be used if no output file was specified on the command line:

local OutHnd = OutFilename
and io.open(OutFilename, “w”)
or io.stdout

Next, the SortedPairs function loops through Lines in order by key, and each key is written to
testout.txt, along with a newline — the io.lines iterator, like io.read, doesn’t include newlines
on the lines it returns:

for Line in SortedPairs(Lines) do
OutHnd:write(Line, “\n”)

end

Finally, testout.txt is closed and the program is exited.

184

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 184

If you don’t supply an output file at the command line, then standard output is used, which means
the output will get written right to your screen (as though io.write had been used instead of
OutHnd:write). If you also omit the input file, then standard input is used, which means you can type
the input instead of saving it in a file. (Use Ctrl+D or Ctrl+Z to send an EOF when you’re done typing.)

Omitting the filenames also lets you use your shell’s redirection operators (<, >, and |) to make standard
input come from a file or another program instead of your keyboard, and standard output go to a file or
another program instead of your screen. For example, the following code:

lua sortuniq.lua < testin.txt > testout.txt

does the same thing as this:

lua sortuniq.lua testin.txt testout.txt

except that in the version with < and >, the shell opens testin.txt and testout.txt and
sortuniq.lua just uses standard input and standard output.

This script does no error checking. If, for instance, the output file can’t be created or is read-only, then
the io.open will fail, and output will default to standard output with no explanation of why that hap-
pened. You’ll learn how to check for and handle errors in the next chapter, but for now just remember
that most I/O library functions will return nil and an error string if something unexpected happens.

For example, a file’s write function simply triggers an error when you give it bad arguments or use it
with a closed file, but when it doesn’t trigger an error, it returns true or nil depending on whether it
successfully wrote what you wanted it to write. If it returns a nil then the second return value will be
an error message. Accidentally writing to a file opened in read mode gives the cryptic “No error”, and
writing to a disk drive that has no more space might give an error message like “No space left on
device”. The former is just a programmer error, but the latter is something that the program can’t pre-
vent. If a program doesn’t check the write return values, it won’t know if something like this happens.
That’s fine for scripts where the likelihood or harmfulness of a disk drive filling up is small, for example,
but something mission-critical may merit more care.

Some functions (such as io.open), are more likely to fail in this way, so their return values should
always be checked, except in interactive use or quick-and-dirty scripts where you can spot problems and
fix them on the fly.

When an I/O function returns nil and an error message, it also returns, as an undocumented third
value, the numeric error code from C. Later in this chapter, you’ll find out about the implications of
using undocumented features.

Pattern-Matching
Other than the string.dump function (to be covered in Chapter 10), the rest of the functions in the
string library are all for finding or replacing substrings. (In some cases, the substring being searched for
is the entire string being searched.) A string being searched is called a subject. A substring to be searched
for is specified with a string called a pattern, and the substring, if found, is called a match.

185

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 185

Searching for a Specific String
A single pattern can have different matches. For example, a pattern that searched for “sequences of 1 or
more whitespace characters” would match both the “ “ and “\t\n\t\n” substrings, among others.
However, you can also use a pattern to search for one specific match. In the simplest case, such a pattern
is identical to the substring it matches, like this one:

> Str = “The rain in Spain stays mainly in the plain.”
> print(string.gsub(Str, “ai”, “oy”))
The royn in Spoyn stays moynly in the ployn. 4

string.gsub searches its first argument (the subject) for substrings that match the pattern given as its
second argument, and replaces any that it finds with its third argument. Thus every occurence of “ai”
in Str is replaced with “oy”. As a second result, string.gsub returns the number of substitutions done
(4 in this case).

gsub stands for global substitute. It’s global because all matches are replaced, not just the first one.

If there are no matches, then no substitutions are done, meaning that string.gsub returns the subject
and 0. Here’s an example:

> print(string.gsub(“A shrew in Kew glues newbies to a pew.”,
>> “ai”, “oy”))
A shrew in Kew glues newbies to a pew. 0

If a fourth argument is given, then at most that many substitutions are done (starting from the beginning
of the string), like this:

> Str = “The rain in Spain stays mainly in the plain.”
> print(string.gsub(Str, “ai”, “oy”, 2))
The royn in Spoyn stays mainly in the plain. 2
> print(string.gsub(Str, “ai”, “oy”, 999))
The royn in Spoyn stays moynly in the ployn. 4

The replacement string can be a different length than the pattern, as shown here:

> print(string.gsub(Str, “ai”, “izzai”))
The rizzain in Spizzain stays mizzainly in the plizzain. 4

In particular, replacing matches with the empty string deletes them. For example:

> print(string.gsub(Str, “ai”, “”))
The rn in Spn stays mnly in the pln. 4

Matching Any of Several Characters
How often have you been buying something online and seen a message like “when entering credit card
number, please enter only numbers without spaces or dashes”? This is bad programming — a user should
be able to enter their credit card number with separators, so they can more easily double-check it. It
takes only a few lines of code to allow this and still make sure the user didn’t type in something that
obviously isn’t a credit card number.

186

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 186

Try It Out Validating Credit Card Numbers
1. Define the following function:

-- Returns Str without any whitespace or separators, or nil
-- if Str doesn’t satisfy a simple validity test:
function ValidateCreditCard(Str)
Str = string.gsub(Str, “[/,.-]”, “”)
return string.find(Str, “^%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d$”)
and Str

end

2. Test it out like this:

> print(ValidateCreditCard(“1234123412341234”))
1234123412341234
> print(ValidateCreditCard(“1234 1234 1234 1234”))
1234123412341234
> print(ValidateCreditCard(“1234-1234-1234-1234”))
1234123412341234
> print(ValidateCreditCard(“1234-1234-1234-123”))
nil
> print(ValidateCreditCard(“221B Baker Street”))
nil

How It Works
This example introduces several new concepts. The first one is that a pattern can include bracket classes,
which are lists of characters enclosed by square brackets. The bracket class [/,.-] matches a character
if it’s a space, a slash, a comma, a dot, or a dash:

> print(string.gsub(“The rain? -- the plain!”, “[/,.-]”, “”))
Therain?theplain! 6

The user can use any of those characters as separators, anywhere in the credit card number, and
string.gsub will remove them, but leave intact any digits, letters, or other characters:

Str = string.gsub(Str, “[/,.-]”, “”)

After separators have been removed, the string will be considered valid only if it’s nothing more and
nothing less than 16 digits. %d is shorthand for the bracket class [0123456789]— it matches any decimal
digit:

> print(string.gsub(“52 pickup”, “%d”, “Digit”))
DigitDigit pickup 2
> print(string.gsub(“52 pickup”, “%d%d”, “TwoDigits”))
TwoDigits pickup 1

Patterns can include %d and other combinations of the percent sign with other characters. Although
they look the same, these are unrelated to string.format placeholders.

187

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 187

If a pattern’s first character is ^ (a caret), it means that the rest of the pattern will only match at the beginning
of the subject. In this example, not only is “ab” contained in “abc”, but “ab” is right at the beginning of
“abc”, so a substitution is made:

> print(string.gsub(“abc”, “^ab”, “XX”))
XXc 1

In the next example, “bc” is contained in “abc”, but it’s not right at the beginning, so no substitution is
made:

> print(string.gsub(“abc”, “^bc”, “XX”))
abc 0

The caret is said to anchor the pattern at the beginning. A pattern is anchored at the end if it ends with $
(a dollar sign):

> print(string.gsub(“abc”, “ab$”, “XX”))
abc 0
> print(string.gsub(“abc”, “bc$”, “XX”))
aXX 1

So the pattern “^%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d$”, anchored both at the beginning and the
end, matches a subject only if it contains 16 digits and nothing else.

The function string.find returns the positions of the first and last character of the first match, or nil if
there is no match:

> print(string.find(“duck duck goose”, “duck”))
1 4
> print(string.find(“duck duck goose”, “goose”))
11 15
> print(string.find(“duck duck goose”, “swan”))
nil

ValidateCreditCard, however, depends only on the fact that string.find’s first result will be true if
there’s a match and nil if there’s no match. When this result is anded with Str itself, the effect is that
the function returns nil if Str is something other than 16 digits, and Str if it is 16 digits:

return string.find(Str, “^%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d$”)
and Str

Characters like [, %, and ^ are called magic characters, because they have special meanings rather than
representing themselves the way a standard character does (for example, “a”). To match a magic charac-
ter, escape it with a percent sign. For example, “%[“ matches “[“, “%^” matches “^”, “%%” matches “%”,
and so on, as follows:

> -- If not for the extra %, this would give an error message:
> print(string.gsub(“90%, 100%, 110%”, “110%%”, “a lot!”))
90%, 100%, a lot! 1

188

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 188

> -- If not for the %, this would replace the zero-length
> -- string before the 3:
> print(string.gsub(“3^10”, “%^”, “ to the power of “))
3 to the power of 10 1

All magic characters are punctuation characters. This means that nonpunctuation characters — including
letters, digits, whitespace, and control characters — always represent themselves and don’t need to be
percent-escaped.

Backslash-escaping is decoded when a chunk is compiled, so the pattern-matching functions don’t even
know about it. The pattern “\\” contains only one character (the backslash), which it matches. If you
have trouble separating percent-escaping and backslash-escaping in your mind, you can quote the trou-
blesome pattern with square brackets: [[\]].

Not all punctuation characters are magic, but a punctuation character (or any nonalphanumeric charac-
ter) escaped by a percent sign always represents itself, whether it’s normally magic or not. In the follow-
ing example, both “@” and “%@” match the at-sign, which is not magic:

> print(string.gsub(“somebody@example.com”, “@”, “ AT “))
somebody AT example.com 1
> print(string.gsub(“somebody@example.com”, “%@”, “ AT “))
somebody AT example.com 1

The reasoning behind this is that anytime you want to match a punctuation character, you don’t have to
remember whether it’s magic or not, you can just go ahead and escape it. This also applies to characters
that are only magic in certain contexts. For example, the dollar sign has its magic anchoring meaning
only at the very end of a pattern, and anywhere else it represents itself, but rather than thinking about
that, you can feel free to escape it wherever it occurs if you don’t want it to be magic. Here’s how:

> print(string.gsub(“I have $5.”, “$%d”, “some money”))
I have some money. 1
> print(string.gsub(“I have $5.”, “%$%d”, “some money”))
I have some money. 1

The individual units of a pattern are called pattern items. Pattern items that produce matches that are one
character in length are called character classes. Some character classes are themselves one character long
(“a”), and some are longer (“%d”, “[/,.-]”).

In addition to character classes, you’ve seen pattern items with zero-character matches (“^” and “$”). In
the next section, you’ll see how to make pattern items whose matches are longer than one character. All
this complexity can make it hard to decode patterns, but a useful technique is to write them down on
scratch paper and break them into their elements. For example, you could diagram the “p[aeiou]t”
pattern as shown in Figure 5-1.

If it wasn’t obvious from the pattern itself, it’s easy to see from this diagram that “p[aeiou]t” will
match any of the character sequences “pat,” “pet,” “pit,” “pot,” and “put” (wherever they may occur in
the subject, because there’s no anchoring).

189

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 189

Figure 5-1

Bracket classes have a few other features. One is that you can specify a range of characters, with the low-
est character in the range followed by a - (hyphen) character and the highest character in the range (with
“lowest” and “highest” being defined in terms of string.byte). In the following example, “[0-4]” is
equivalent to “[01234]”, and “[a-e]” is equivalent to “[abcde]”:

> print(string.gsub(“0123456789”, “[0-4]”, “n”))
nnnnn56789 5
> Str = “the quick brown fox jumps over the lazy dog”
> print(string.gsub(Str, “[a-e]”, “!”))
th! qui!k !rown fox jumps ov!r th! l!zy !og 7

Actually, although “[0-9]” is guaranteed to match all and only the decimal digits, the meaning of other
ranges is dependent on your system’s character set. Chances are, however, that your system uses the
ASCII character set or some superset of it, so that “[a-z]” matches all and only the 26 lowercase letters
of the English alphabet, and “[A-Z]” matches the 26 uppercase letters. This will be assumed in the
examples.

Because the hyphen has a magic meaning inside bracket classes, it generally needs to be escaped to be
included in a bracket class: “[a%-z]” matches the letter a, the hyphen, and the letter z. The only reason
that you didn’t need to escape the hyphen in “[/,.-]” (from the ValidateCreditCard example)
because it did not have a character to its right, so it was in a nonmagical position. Alternatively, you
could have written that bracket class as “[/,.%-]”.

matches one letter p

matches one vowel

matches one letter t

p [aeiou] t

190

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 190

You can combine ranges with other ranges, and with other things in a bracket class. “[a-emnv-z]”
matches the letters a through e, the letters m and n, and the letters v through z.

If a bracket class starts with ^ (a caret), it matches all characters that would not be matched without the
caret. “[aeiou]” matches all vowels, so “[^aeiou]” matches any character that isn’t a vowel in the fol-
lowing example:

> Str = “the quick brown fox jumps over the lazy dog”
> print(string.gsub(Str, “[^aeiou]”, “”))
euioouoeeao 32

There are other character classes that, like “%d”, use a percent sign followed by a letter and match some
predefined category of characters. A complete list is provided later in the chapter, but here is an example
that uses “%a” (letters), “%u” (uppercase letters), and “%l” (lowercase letters):

> Str = “abc Abc aBc abC ABc AbC aBC ABC”
> print(string.gsub(Str, “%u%l%l”, “Xxx”))
abc Xxx aBc abC ABc AbC aBC ABC 1
> print(string.gsub(Str, “%a%a%a”, “!!!”))
!!! !!! !!! !!! !!! !!! !!! !!! 8

Just as “%d” is another way of writing “[0-9]”, “%l” is another way of writing “[a-z]” and “%a” is
another way of writing “[A-Za-z]”. Unlike bracket classes, which are based on your system’s character
set, character classes like “%a” are based on your system’s locale settings, so they may give different
results with non-English characters.

Unfortunately, a full explanation of locales and other character-encoding issues is outside the scope of
this book, but the following example (which may not work as-is on your system) shows that the %a char-
acter class and the string.upper function use the current locale. The example uses the os.setlocale
function to manipulate the ctype locale setting, which governs the categorization of characters:

> -- Change the ctype (character type) locale, saving the
> -- current one:
> OrigCtype = os.setlocale(nil, ctype)
> print(OrigCtype)
C
> -- Set the ctype locale to Brazilian Portuguese:
> print(os.setlocale(“pt_BR”, “ctype”))
pt_BR
> -- Test [A-Za-z] versus %a:
> Str = “Pontif\237cia Universidade Cat\243lica do Rio de Janeiro”
> print(Str)
Pontifícia Universidade Católica do Rio de Janeiro
> print(string.gsub(Str, “[A-Za-z]”, “.”))
......í...ó.... 42
> print(string.gsub(Str, “%a”, “.”))
.......... 44
> -- Also test string.upper:
> print(string.upper(Str))
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

191

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 191

> -- Go back to the original ctype locale:
> print(os.setlocale(OrigCtype, “ctype”))
C
> -- Test string.upper again, with the original ctype locale
> -- which, being “C”, will not recognize the non-English
> -- characters:
> print(string.upper(Str))
PONTIFíCIA UNIVERSIDADE CATóLICA DO RIO DE JANEIRO

Locales use 8-bit character encodings, where each character is one byte. A more flexible encoding system
is Unicode. In Unicode’s UTF-8 format, ASCII characters (“regular” characters) are one byte long and
other characters are two or more bytes. Lua has no built-in support for Unicode (for example, it mea-
sures string length in bytes), but it does nothing to prevent you from using Unicode. In UTF-8, the
character í happens to be represented as “\195\173”, so if the string “Pontif\195\173cia” is
written to a file, and that file is opened with a text editor that reads it as UTF-8, then the editor will
show “Pontifícia.”

To do more complicated things with Unicode and other character encodings, try the Selene Unicode library
(slnunicode), available at luaforge.net. For more information on Unicode and other character encod-
ing issues, check out the Joel Spolsky article at joelonsoftware.com/articles/Unicode.html.

“%D” matches any character that isn’t a digit, “%L” matches any character that isn’t a lowercase letter,
and “%A” matches any character that isn’t alphabetical. In fact, any pattern item that is a percent sign
followed by a lowercase letter has a counterpart with an uppercase letter that matches all the characters
not matched by the lowercase version.

Any character class that isn’t itself a bracket class can be included in a bracket class. This includes char-
acter classes like “%d” and “%a”; both “[%d.]” and “[0-9.]” match digits and decimal points.
However, the two endpoints of a hyphen-separated range must be single characters (representing them-
selves), not longer character classes like “%d”, “%a”, “%%”, or “%]”.

The only characters that are magic inside a bracket class are “-”, “^”, “]”, and “%”, and of these, only
“%” is magic in all positions. But unless it’s the endpoint of a range, a punctuation character can be
escaped even when that’s not strictly necessary, like this:

> print(string.gsub(“!@#$%^&*”, “[%!%@%#%$]”, “.”))
....%^&* 4

As with patterns as a whole, you can understand complex bracket classes better if you diagram them.
Often, all you need to do is show how the parts are divided up. For example, Figure 5-2 is a diagram of
“[aq-z%]%d]”— it makes clear that the characters matched are the letter a, the letters q through z, the]
character, and all digits.

Figure 5-2

a %]q-z %d

192

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 192

To match any character at all, including whitespace and control characters, use the . (dot) character
class. Here are some examples:

> print(string.find(“abc”, “a.c”))
1 3
> print(string.find(“a c”, “a.c”))
1 3
> print(string.find(“a!c”, “a.c”))
1 3
> print(string.find(“a\0c”, “a.c”))
1 3
> -- It matches one and only one character:
> print(string.find(“abbc”, “a.c”))
nil
> print(string.find(“ac”, “a.c”))
nil

A pattern cannot contain the character “\0”. To match a zero, use “%z”:

> print(string.gsub(“a\0b\0c”, “%z”, “Z”))
aZbZc 2

Matches of Varying Lengths
In the previous section, you could always tell just by looking at a pattern how long its match would be.
Many patterns need to match varying quantities of characters. An example of this is squeezing whitespace,
which turns all runs of one or more whitespace characters into a single space.

Try It Out Squeezing Whitespace
1. Define the following function:

-- Squeezes whitespace:
function Squeeze(Str)
return (string.gsub(Str, “%s+”, “ “))

end

2. Run this test code:

TestStrs = {
“nospaces”,
“alpha bravo charlie”,
“ alpha bravo charlie “,
“\nalpha\tbravo\tcharlie\na\tb\tc”,
[[
alpha
bravo
charlie]]}

for _, TestStr in ipairs(TestStrs) do
io.write(“UNSQUEEZED: <”, TestStr, “>\n”)
io.write(“ SQUEEZED: <”, Squeeze(TestStr), “>\n\n”)

end

193

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 193

The output should be as follows:

UNSQUEEZED: <nospaces>
SQUEEZED: <nospaces>

UNSQUEEZED: <alpha bravo charlie>
SQUEEZED: <alpha bravo charlie>

UNSQUEEZED: < alpha bravo charlie >
SQUEEZED: < alpha bravo charlie >

UNSQUEEZED: <
alpha bravo charlie
a b c>
SQUEEZED: < alpha bravo charlie a b c>

UNSQUEEZED: < alpha
bravo
charlie>

SQUEEZED: < alpha bravo charlie>

How It Works
The %s character class matches a whitespace character (“\t”, “\n”, “\v”, “\f”, “\r”, and “ “, plus any
other whitespace characters defined by your locale). A character class followed by + (the plus sign) is a
single pattern item that matches one or more (as many as possible) of that character class. Therefore,
“%s+” matches sequences of consecutive whitespace characters in this example:

> print(string.find(“abc xyz”, “%s+”))
4 4
> print(string.find(“abc xyz”, “%s+”))
4 6

The characters do not all have to be the same, as shown here:

> print(string.find(“abc\n \txyz”, “%s+”))
4 6

Squeeze’s string.gsub call replaces any such sequences with a single space. (The parentheses around
the call are there to keep string.gsub’s second value from being returned.)

+ works with any character class. For example:

> print(string.gsub(“aaa bbb aaa ccc”, “a+”, “X”))
X bbb X ccc 2
> print(string.gsub(“aaa bbb aaa ccc”, “[ab]+”, “X”))
X X X ccc 3

Matches never overlap. When “a+” grabs all three occurrences of a at the beginning of “aaa bbb aaa
ccc”, it starts looking for the next match at the fourth character, not the second.

194

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 194

* (the asterisk, or star) is similar to +, except it matches 0 or more characters. In the following example,
“^[%a_][%w_]*$” matches Lua identifiers and keywords (%w matches “word” characters, which are letters
and numbers):

> Strs = {“Str1”, “_G”, “function”, “1st”, “splunge?”,
>> “alpha bravo charlie”, ‘“global” substitution’}
> for _, Str in ipairs(Strs) do
>> print(string.format(“%q is %sa valid identifier or keyword”,
>> Str, string.find(Str, “^[%a_][%w_]*$”) and “” or “NOT “))
>> end
“Str1” is a valid identifier or keyword
“_G” is a valid identifier or keyword
“function” is a valid identifier or keyword
“1st” is NOT a valid identifier or keyword
“splunge?” is NOT a valid identifier or keyword
“alpha bravo charlie” is NOT a valid identifier or keyword
“\”global\” substitution” is NOT a valid identifier or keyword

Figure 5-3 is a diagram of “^[%a_][%w_]*$”.

Figure 5-3

[%a_] [%w_]* $^

anchor: requires the
match to begin where

the subject begins

matches one letter
or underscore

matches zero or more
letters, numbers, or

underscores

anchor: requires the
match to end where

the subject ends

195

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 195

Notice that the * only applies to the character class right before it. This is also true of +, and of - and ?,
the two other similar magic characters you’ll soon learn.

If you know what regular expressions are, then you’ve already figured out that patterns are the Lua
equivalent. The limitation on what length modifiers like * can apply to is one of the things that keep Lua
patterns from being full-fledged regular expressions, a choice that was made intentionally, to keep the
string library small and simple. You can simulate most regular expression features through a clever use
of Lua patterns.

When string.find finds a zero-length match, the start and end positions it returns will be the posi-
tions of (respectively) the characters after and before the match. Generally, such a match is at the begin-
ning of the string, so the positions are 1 and 0. Zero-length matches can be confusing. The first of the
following string.finds matches “aa”, but the second one matches the empty string at the beginning
of “aabb”:

> print(string.find(“aabb”, “a*”))
1 2
> print(string.find(“aabb”, “b*”))
1 0

This is because searches always start at the beginning of the subject. When the pattern is “a*”, Lua tries
to find any occurrences of the letter a at the beginning of the subject string. In this example, it finds two.
When the pattern is “b*”, Lua tries to find any occurrences of b at the beginning of the subject string. In
this too, it succeeds, but only by finding zero b’s — the empty string.

string.find finds just the first match, so only if Lua fails to find a match at the beginning of the subject
does it look for one at the second character. If it fails there, it looks at the third, and so on. A string
.gsub can replace multiple matches. Some of them may be empty strings, but none of them will overlap.
Of the matches in the following example, all but the second-to-last are empty strings:

> print(string.gsub(“aabb”, “b*”, “<match>”))
<match>a<match>a<match><match> 4

Sometimes a search finds substrings that look like matches but turn out not to be. For example, this func-
tion trims (removes) any whitespace from the end of a string:

-- Trims trailing whitespace:
function TrimRight(Str)
return (string.gsub(Str, “%s+$”, “”))

end

If given “ A B C “ (that’s two spaces before and after each letter), the example returns “ A B C”. Here’s what
string.gsub needs to do behind the scenes for this to work: It grabs as many whitespace characters as it
can starting at character 1 of the subject. (This is two whitespace characters.) Then it checks whether it’s
hit the end of the subject. It hasn’t, so it tries grabbing one less whitespace character for a total of one. This
of course doesn’t get it to the end of the subject either, and because grabbing zero whitespace characters is
not an option with +, it gives up on finding a match at character 1 of the subject and goes through the same
business at character 2. This doesn’t result in a match either, so it moves on to character 3, where it can
give up immediately, because character 3 is not a whitespace character. This whole process continues
down the subject string until a match is finally found at character 10 (right after the C).

196

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 196

In the previous example, string.gsub looks at some characters more than once. Character 2 gets
looked at once as a continuation of a potential match at character 1, and again as the beginning of a
potential match. This is called backtracking.

By comparison, the Squeeze function from earlier in this chapter had a string.gsub that used the
same pattern except without the $ anchor. Given the same subject string, it would grab as many whites-
pace characters as it could starting at character 1, and because this would be a match, it could immedi-
ately jump to character 3. It knows just by looking at each character in the subject whether that character
is the start of a match or not, and it also doesn’t have to backtrack to see how long the match is.

If a pattern match seems to be a slow spot in your program, try to rewrite it to reduce or eliminate back-
tracking. The version of TrimRight given earlier is fine for short strings, but it will be noticeably slow if
used to trim a sufficiently long string (perhaps read in from a file) with lots of runs of consecutive whites-
pace in it. There are a few ways to write TrimRight to avoid backtracking. One is to look at as many char-
acters of the string as necessary, starting at the end and working towards the beginning, like this:

-- Trims trailing whitespace:
function TrimRight(Str)
-- By searching from the end backwards, find the position
-- of the last nonwhitespace character:
local I = #Str
while I > 0 and string.find(string.sub(Str, I, I), “%s”) do
I = I - 1

end
return string.sub(Str, 1, I)

end

The - (hyphen or minus sign) is just like * except that * matches as many characters as possible, and -
matches as few as possible. Both the patterns in the following example match two vertical bar characters
and the characters in between them, but the first one finds the biggest match it can, whereas the second
finds the smallest it can:

> print(string.find(“|abc|def|”, “%|.*%|”))
1 9
> print(string.find(“|abc|def|”, “%|.-%|”))
1 5

Because * and +match as many characters as possible, they are called greedy. In contrast, - is called
nongreedy.

string.find always finds the first match in the subject, no matter whether greedy or nongreedy
matching is used. In the following example, both the greedy pattern and the nongreedy matches find
“<lengthy>”, even though “<short>” has less characters:

> Str = “blah<lengthy>blah<short>blah”
> print(string.find(Str, “%<%a*%>”))
5 13
> print(string.find(Str, “%<%a-%>”))
5 13

197

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 197

Also, the greedy/nongreedy distinction controls how long a match will be, but not whether a match will
be found. If * finds a match, then - will find one too, and vice versa.

A character class followed by ? (a question mark) matches zero or one of that character class. In the fol-
lowing example, this is used to match either “Mr” or “Mr.”:

> print(string.gsub(“Mr. Smith and Mr Smythe”, “Mr%.?”, “Mister”))
Mister Smith and Mister Smythe 2

? is greedy in this example — it matched the dot in “Mr.” even though nothing after it forced it to.

*, +, -, and ? are all of the magic characters used to control the length of a match. Here’s a summary:

To Match Do

Exactly one character Use a character class by itself

Exactly n characters Use n character classes in a row

Zero or more characters, as many as possible Follow the character class with *

One or more characters, as many as possible Follow the character class with +

Zero or more characters, as few as possible Follow the character class with -

Zero or one characters, as many as possible Follow the character class with ?

These magic characters can be combined for other match lengths. For example, “%a%a%a%a?%a?%a?”
matches three to six letters, and “%a%a%a%a*” matches three or more letters.

Captures
Selected parts of a match can be captured, which means they can be separated from the rest of the match.
This allows one pattern to do the work of several.

The FriendlyDate function used in following example takes a date formatted as yyyy-mm-dd; captures
that date’s year, month, and day; and returns the same date in a more user-friendly format. First, define
the FriendlyDate helper function, Ordinal, and FriendlyDate itself, like this:

-- Returns the ordinal form of N:
function Ordinal(N)
N = tonumber(N)
local Terminator = “th”
assert(N > 0, “Ordinal only accepts positive numbers”)
assert(math.floor(N) == N, “Ordinal only accepts integers”)
if string.sub(N, -2, -2) ~= “1” then
local LastDigit = N % 10
if LastDigit == 1 then
Terminator = “st”

elseif LastDigit == 2 then
Terminator = “nd”

198

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 198

elseif LastDigit == 3 then
Terminator = “rd”

end
end
return N .. Terminator

end

-- Returns a user-friendly version of a date string. (Assumes
-- its argument is a valid date formatted yyyy-mm-dd.)
function FriendlyDate(DateStr)
local Year, Month, Day = string.match(DateStr,
“^(%d%d%d%d)%-(%d%d)%-(%d%d)$”)

Month = ({“January”, “February”, “March”, “April”, “May”,
“June”, “July”, “August”, “September”, “October”,
“November”, “December”})[tonumber(Month)]

return Month .. “ “ .. Ordinal(Day) .. “, “ .. Year
end

Then try it out like this:

> print(FriendlyDate(“1964-02-09”))
February 9th, 1964
> print(FriendlyDate(“2007-07-13”))
July 13th, 2007
> -- FriendlyDate assumes its argument is valid. It complains
> -- about some invalid arguments, but not all of them:
> print(FriendlyDate(“9999-99-99”))
stdin:7: attempt to concatenate local ‘Month’ (a nil value)
stack traceback:

stdin:7: in function ‘FriendlyDate’
stdin:1: in main chunk
[C]: ?

> print(FriendlyDate(“0000-12-99”))
December 99th, 0000

Parentheses within a pattern are used to capture parts of the match. The string.match function returns
all captures from the first match it finds, or nil if no match is found:

> Pat = “(%a)(%a*)”
> print(string.match(“123 alpha bravo charlie”, Pat))
a lpha
> print(string.match(“123”, Pat))
nil

In FriendlyDate, the pattern given to string.match captures the year, month, and day, which will be
nil if DateStr is incorrectly formatted, as shown here:

-- Returns a user-friendly version of a date string. (Assumes
-- its argument is a valid date formatted yyyy-mm-dd.)
function FriendlyDate(DateStr)
local Year, Month, Day = string.match(DateStr,
“^(%d%d%d%d)%-(%d%d)%-(%d%d)$”)

Month = ({“January”, “February”, “March”, “April”, “May”,

199

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 199

“June”, “July”, “August”, “September”, “October”,
“November”, “December”})[tonumber(Month)]

return Month .. “ “ .. Ordinal(Day) .. “, “ .. Year
end

After the year, month, and day are in hand, it’s just a matter of turning the month from a number to a
name, and turning the date from, e.g., “01” to “1st”.

string.find also returns any captures, after its first two return values. For example:

> print(string.find(“123 alpha bravo charlie”, “(%a)(%a*)”))
5 9 a lpha

Lua 5.0 didn’t have string.match. In its place, use string.find (ignoring its first two return values).

If string.match is given a pattern with no captures, it returns the entire (first) match like this:

> print(string.match(“123 alpha bravo charlie”, “%a+”))
alpha

If one capture contains another, they are ordered according to the position of the first parenthesis like this:

> print(string.match(“abcd”, “(((%a)(%a))((%a)(%a)))”))
abcd ab a b cd c d

If () is used as a capture, then the position in the subject is captured — more specifically, the position of
the next character. The position at the end of a pattern is the length of the subject plus one, as shown here:

> print(string.match(“abcd”, “()(%a+)()”))
1 abcd 5

A position capture is a number, such as the following:

> print(type(string.match(“abcd”, “ab()cd”)))
number

All other captures are strings, although they may look like numbers or be empty strings, as shown in the
following example:

> print(type(string.match(“1234”, “(%d+)”)))
string
> print(string.match(“1234”, “(%a*)”) == “”)
true

A *, +, -, or ? character must be directly after its character class, with no intervening capture parenthe-
ses. Similarly, a ^ or $ anchor character must be the very first or last character in its pattern. In the cur-
rent implementation of Lua, the patterns “(%a)*” and “(^%a)” are both valid, but they have different
meanings then you might expect. “(%a)*” means “capture a letter that is followed by a star” in the fol-
lowing example:

> print(string.match(“ab*cd”, “(%a)*”))
b

200

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 200

And “(^%a)” means “capture a caret and a letter” here:

> print(string.match(“a^z”, “(^%a)”))
^z

The equivalent patterns that give the star and the caret their magic meanings are “(%a*)” and “^(%a)”
in the following example::

> print(string.match(“ab*cd”, “(%a*)”))
ab
> print(string.match(“a^z”, “^(%a)”))
a

A percent followed by 1 through 9 represents that capture, so %1 is the first capture. This means that in
the following example, “(%a+) %1” matches two consecutive identical words separated by a space (the
pattern translates to “match and capture a word, match a space, match the first capture”):

> print(string.gsub(“Paris in the the spring”,
>> “(%a+) %1”, “WORD WORD”))
Paris in WORD WORD spring 1

A capture used within the pattern that captured it is said to be replayed. You cannot replay a capture
inside itself, because this would cause an infinite regress. If you try to do so, you get the following error:

> print(string.match(“blah”, “(%1)”))
stdin:1: invalid capture index
stack traceback:

[C]: in function ‘match’
stdin:1: in main chunk
[C]: ?

You can also access captures within a string.gsub replacement string. For example (%% represents a lit-
eral percent sign):

> Percents = “90 percent, 100 percent, 110 percent”
> print(string.gsub(Percents, “(%d+) percent”, “%1%%”))
90%, 100%, 110% 3

In a replacement string, %0 stands for the whole match, as in this example:

> Str = “alpha, bravo, charlie”
> print(string.gsub(Str, “%a+”, “<%0>”))
<alpha>, <bravo>, <charlie> 3

Lua 5.0 didn’t understand %0. The whole match, if desired, had to be explicitly captured.

Because percent signs are magic in replacement strings, any replacement string supplied by a user or
otherwise generated at run time must be percent-escaped automatically, like so:

Str = string.gsub(Str, “%%”, “%%%%”)

201

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 201

Matching Balanced Delimiters
Parentheses, curly braces, and square brackets, as used in Lua, are examples of delimiters, because they
mark the beginning and end of whatever they surround. You use them in pairs, so that each open delim-
iter has a corresponding close delimiter. Delimiters that are paired in this way are said to be balanced,
and Lua offers a pattern item that matches them. This pattern item is four characters long: the first two
characters are “%b”, and the next two are the open delimiter and the close delimiter. For example,
“%b()” matches balanced parentheses, “%b{}” matches balanced curly braces, and “%b[]” matches bal-
anced square brackets. The two characters after %b always represent themselves — any magic meaning
they might have is ignored.

Here’s an example that converts the two top-level pairs into “balanced”:

To get at the inner pairs, you’d only need to grab the top-level pairs and run “%b()” on them.

> Str = “((a b) (b c)) ((c d) (e f))”
> print(string.gsub(Str, “%b()”, “balanced”))
balanced balanced 2

For comparison, here are three attempts to do this without the %b pattern item, where the first would work
if there was only one pair of parentheses, and the second two would work if there were no nested pairs:

> print(string.gsub(Str, “%(.*%)”, “imbalanced”))
imbalanced 1
> print(string.gsub(Str, “%(.-%)”, “imbalanced”))
imbalanced imbalanced) imbalanced imbalanced) 4
> print(string.gsub(Str, “%([^()]*%)”, “imbalanced”))
(imbalanced imbalanced) (imbalanced imbalanced) 4

The %b delimiters can be any characters (other than “\0”). For example, a “%b %” pattern would match
delimited strings that begin with a space and end with a percent sign.

A string like ‘{“a”, “}”, “z”}’ would confuse “%b{}”, because it doesn’t know not to treat the
quoted “}” as a delimiter. If you run into this situation, and you can figure out which delimiter charac-
ters should be ignored, then you can use the trick of converting them to characters you know will be
unused (such as “\1” and “\2”), doing the %b matching, and then converting them back.

It might be easier to just arrange for the string you’re looking at to be a valid Lua table constructor. To do
this, you can prepend “return” to it, apply loadstring to it, give the resulting function an empty
environment with setfenv, and call the function (using pcall to guard against errors, as described in
the next chapter). The function’s return value will be the table described by the table constructor.

More on string.find, string.match, and string.gsub
There are a few more features of string.find, string.match, and string.gsub that need to be cov-
ered. After you learn them, you’ll know everything there is to know about these functions.

202

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 202

string.find and string.match both take a third argument, which is a number that specifyies which
character of the subject to start the search at. Any matches that start before this character will be ignored.
For example:

> Subj, Pat = “abc <--> xyz”, “(%a+)”
> -- Start searching at character 2 (“b”):
> print(string.match(Subj, Pat, 2))
bc
> -- Start searching at character 5 (“<”):
> print(string.match(Subj, Pat, 5))
xyz

A caret anchors the pattern at the beginning of the search, not the beginning of the subject, as follows:

> Subj, Pat = “aa ab ac”, “^(a%a)”
> -- Character 4 is an “a”, so this matches:
> print(string.match(Subj, Pat, 4))
ab
> -- Character 5 is not an “a”, so this doesn’t match:
> print(string.match(Subj, Pat, 5))
nil

Returned string positions are reckoned from the beginning of the subject (not the beginning of the
search) like this:

> Subj = “aa ab ac”
> print(string.find(Subj, “(a%a)”, 6))
7 8 ac
> print(string.match(Subj, “()(a%a)()”, 6))
7 ac 9

If the fourth string.find argument is true, it will ignore the magic meanings of characters in its second
argument, treating it as a plain old string rather than a pattern:

To give a fourth argument, you need to give a third; use 1 if you want the search to start at the begin-
ning of the subject as usual.

> -- Both of these look for a caret, an “a”, a percent sign,
> -- and another “a”:
> print(string.find(“characters: ^a%a”, “^a%a”, 1, true))
13 16
> print(string.find(“ab”, “^a%a”, 1, true))
nil

So far, the string.gsub replacement argument (the third argument) has always been a string. That
string can include captures, but sometimes that’s not enough power to do what you want to do. For
smarter replacements, the replacement argument can be a function or a table. If it’s a function, it is called

203

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 203

on each match with the match’s captures as arguments, and the match is replaced with the function’s
return value. In the following example, the first letter and the rest of the letters of each word are cap-
tured, and the first letter is capitalized:

> Str = “If it ain’t broke, don’t fix it.”
> Str = string.gsub(Str, “(%a)([%a’-]*)”,
>> function(First, Rest)
>> return string.upper(First) .. Rest
>> end)
> print(Str)
If It Ain’t Broke, Don’t Fix It.

If there are no captures, the whole match is passed to the function. If the function returns nil or false,
no replacement is done. Both these points are demonstrated by the following example, which turns
“cat” into “dog”, but makes no change to other words that contain “cat”:

> Str = “concatenate cathy ducat cat”
> Str = string.gsub(Str, “%a+”,
>> function(Match)
>> return Match == “cat” and “dog”
>> end)
> print(Str)
concatenate cathy ducat dog

In Lua 5.0, if the replacement function returned nil or false, the match was replaced with the empty
string.

If the string.gsub replacement argument is a table, then the first capture — or the whole match, if
there are no captures — is used to index the table, and the match is replaced with the value at that index,
unless it’s nil or false, in which case no replacement is done. Here’s an example:

> Str = “dog bites man”
> Str = string.gsub(Str, “%a+”, {dog = “man”, man = “dog”})
> print(Str)
man bites dog

In Lua 5.0, the replacement argument could only be a string or a function.

Iterating Through All Matches
There’s one more function in the string library: string.gmatch (where gmatch stands for global
match). string.match only sees the first match, but string.gmatch lets you get at all the matches. It
does this by iterating through the matches — like pairs and ipairs, it’s an iterator factory.

The following example of string.gmatch is an HTML tokenizer. Most computer languages are com-
posed, at one level, of tokens. These are the units in terms of which the language’s syntax is defined (Lua
tokens include literal strings, keywords, parentheses, commas, and so on.) The example separates a
string of HTML (the language used to write web pages) into tokens. Specifically, it returns a table of
HTML tags and what’s in between those tags. An HTML tag consists of characters delimited by open
and close angle brackets (<>), like <this>. (This is a crude tokenizer — an industrial-strength HTML
tokenizer would take us too far off topic.)

204

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 204

Here’s the example, which defines the string.gmatch function:

-- Turns a string of HTML into an array of tokens. (Each
-- token is a tag or a string before or after a tag; literal
-- open angle brackets cannot occur outside of tags, and
-- literal close angle brackets cannot occur inside them.)
function TokenizeHtml(Str)
local Ret = {}
-- Chop off any leading nontag text:
local BeforeFirstTag, Rest = string.match(Str, “^([^<]*)(.*)”)
if BeforeFirstTag ~= “” then
Ret[1] = BeforeFirstTag

end
-- Get all tags and anything in between or after them:
for Tag, Nontag in
string.gmatch(Rest, “(%<[^>]*%>)([^<]*)”)

do
Ret[#Ret + 1] = Tag
if Nontag ~= “” then
Ret[#Ret + 1] = Nontag

end
end
return Ret

end

Now, try it out:

> Html = “<p>Some <i>italicized</i> text.</p>”
> for _, Token in ipairs(TokenizeHtml(Html)) do print(Token) end
<p>
Some
<i>
italicized
</i>
text.
</p>

First, TokenizeHtml separates its argument into two parts: the possibly empty string before the first tag
(if there is a first tag), and the possibly empty remainder of the string:

function TokenizeHtml(Str)
local Ret = {}
local BeforeFirstTag, Rest = string.match(Str, “^([^<]*)(.*)”)
if BeforeFirstTag ~= “” then
Ret[1] = BeforeFirstTag

end

Notice that this match cannot fail, even on an empty string. Also notice that, if there’s at least one tag in
Str, the BeforeFirstTag string will be as long as it needs to be to include everything that comes before
the tag, because greedy matching is used.

205

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 205

After it saves the data before the first tag (if it’s nonempty), string.gmatch can loop through the rest of
the string. string.gmatch takes a subject and a pattern. It returns an iterator that, on each iteration,
returns the captures from the pattern’s next match in the subject. In this case, the pattern is as follows:

“(%<[^>]*%>)([^<]*)”

Figure 5-4 shows how this pattern can be diagrammed.

Figure 5-4

[^>]* [^<]*%< %>(())

0 or more of anything other
than close angle brackets

0 or more of anything other
than open angle brackets

begins the 1st capture

1 open angle bracket

1 close angle bracket

ends the 1st capture

ends the 2nd capture

begins the 2nd capture

206

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 206

The two captures returned by the iterator are given the names Tag and Nontag. In this example, the
string.gmatch function specifies that Tag will never be the empty string (at a minimum, it will be “<>”),
and if two tags are next to each other, then Nontag will be empty, in which case won’t be put into Ret:

for Tag, Nontag in
string.gmatch(Rest, “(%<[^>]*%>)([^<]*)”)

do
Ret[#Ret + 1] = Tag
if Nontag ~= “” then
Ret[#Ret + 1] = Nontag

end
end

The loop does an iteration for each match, so if there are no tags to be found, then it will do zero itera-
tions and Ret will have only one or zero elements.

In Lua 5.0, string.gmatch was named string.gfind (but was otherwise identical).

If the pattern given to string.gmatch has no captures, the iterator will return the whole match:

> for Letter in string.gmatch(“1st 2nd 3rd”, “%a”) do
>> print(Letter)
>> end
s
t
n
d
r
d

Tricks for the Tricky
Sometimes when you can’t write a pattern to match what you want to match, you can get around this by
matching a little more than you need to, and then ignoring the match if it’s a false positive. This is the
approach used in the previous cat-to-dog example:

> Str = “concatenate cathy ducat cat”
> Str = string.gsub(Str, “%a+”,
>> function(Match)
>> return Match == “cat” and “dog”
>> end)
> print(Str)
concatenate cathy ducat dog

This approach would also work for tasks such as the following:

❑ Changing “cat”, “dog”, and “bird”, but not other words, to “animal”

❑ Matching “cat” case-insensitively without using “[Cc][Aa][Tt]”

❑ Matching 3-to-10-letter words

207

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 207

Another technique is to use a modified version of the subject. In the following, the pattern “%Wcat%W”
even finds the word “cat” at the end of the subject, because the concatenated newlines ensure that it
can’t be at the very end (or the very beginning):

> Str = “concatenate cathy ducat cat”
> Count = 0
> for _ in string.gmatch(“\n” .. Str .. “\n”, “%Wcat%W”) do
>> Count = Count + 1
>> end
> io.write(“‘cat’ occurs “, Count, “ time(s)\n”)
‘cat’ occurs 1 time(s)

Another technique is to capture positions and use them to look around inside the subject, like this:

> Str = “concatenate cathy ducat cat”
> Str = string.gsub(Str, “()cat()”,
>> function(Pos1, Pos2)
>> Pos1 = Pos1 - 1 -- The character before the match.
>> -- Is the match at the beginning of the string or
>> -- preceded by a nonword character?
>> if Pos1 == 0 or string.find(Str, “^%W”, Pos1) then
>> -- Is it also at the end of the string or followed by
>> -- a nonword character?
>> if Pos2 > #Str or string.find(Str, “^%W”, Pos2) then
>> return “dog”
>> end
>> end
>> end)
> print(Str)
concatenate cathy ducat dog

In the case of matching a whole word, there’s yet another technique — the undocumented frontier pat-
tern item, which is shown here:

> Str = “concatenate cathy ducat cat”
> Str = string.gsub(Str, “%f[%w]cat%f[%W]”,
>> function(Match)
>> return Match == “cat” and “dog”
>> end)
> print(Str)
concatenate cathy ducat dog

%f is followed by a bracket class. It matches an empty string that comes after a character not in the class
and before one that is in the class, but the empty string matched can also be at the beginning or end of
the subject. The pattern “%f[a]a” matches any “a” that isn’t preceded by another “a,” and the pattern
“a%f[^a]” matches any “a” that isn’t followed by another “a.”

The fact that %f is undocumented means that it may — without notice — change or disappear altogether
in a subsequent release of Lua. It also means that there’s no explicit guarantee of its behavior, and it may
act unexpectedly when used in unusual situations such as this one:

> -- This should find the empty string at the beginning of the
> -- subject, but it doesn’t (due to an implementation quirk):
> print(string.find(“\0”, “%f[%z]”))
nil

208

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 208

Magic Characters Chart
Here’s a chart of all the magic characters and magic character sequences that patterns can contain:

Character Description

% Escapes the magic character that follows it

. Matches any character

%a Matches a letter

%c Matches a control character

%d Matches a decimal digit

%l Matches a lowercase letter

%p Matches a punctuation character

%s Matches a whitespace character

%u Matches an uppercase letter

%w Matches a word character (a letter or a number)

%x Matches a hexadecimal digit

%z Matches a “\0” character

%A, %C, %D, etc. Matches any character not matched by %a, %c, %d, etc.

[abc] Matches a, b, or c

[A-Ea-e%d] Matches A through E, a through e, or a digit

[^abc] Matches any character other than a, b, or c

* Makes the preceding character class match zero or more
characters (greedy)

+ Makes the preceding character class match one or more
characters (greedy)

- Makes the preceding character class match zero or more
characters (nongreedy)

? Makes the preceding character class match zero or one
character(s) (greedy)

^ Anchors the pattern at the beginning

$ Anchors the pattern at the end

%1, %2, etc. Matches the first capture, second capture, etc. (up to 9)

%b(), %b<>, etc. Matches balanced parentheses, angle brackets, etc.

%f[%a_], %f[^AEIOUaeiou], etc. Undocumented — matches the empty string (“frontier”) at
the transition from something not matched by the given
bracket class to something matched by it.

209

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 209

Summary
In this chapter, you learned all the functions in the string library (except for string.dump, which is cov-
ered in Chapter 10), along with a few in the I/O library. Here are the highlights:

❑ You can convert the case of strings with string.lower and string.upper.

❑ You can obtain substrings with string.sub.

❑ You can format strings with string.format, whose first argument is a format string with
placeholders (which start with a percent sign).

❑ You get more fine-grained control over output with io.write, and over standard input with
io.read.

❑ When you use io.open to open a file, it returns a file handle — an object with read, write, and
close methods.

❑ You perform pattern matching with magic characters such as %, ^, and *.

❑ Anchoring (which you do with ^ and $) forces a match to be at the beginning and/or end of the
subject string (or the searched part of the subject string, if a third argument is given to
string.find or string.match).

❑ Greedy matching (“*”, “+”, and “?”) matches as many characters as possible. Nongreedy
matching (“-”) matches as few as possible. Either way, each match will be as close to the begin-
ning of the searched part of the subject string as possible.

❑ string.gsub does substitution on all matches of a pattern.

❑ string.find finds the first match.

❑ string.match returns the captures from the first match.

❑ string.gmatch returns an iterator that loops through all matches.

At this point, you have all the tools you need to start writing real programs, except that the programs
you write may not be very robust. In the next chapter, you’ll learn how to prevent errors, or to keep
them from stopping your program cold when they do happen. To test your understanding of this chap-
ter, you can do the following exercises (answers are in the appendix).

Exercises
1. Write a function that takes an n-character string and returns an n-element array whose elements

are the string’s characters (in order).

2. Write the format string Frmt so that the following:

for _, Name in ipairs({“Lynn”, “Jeremy”, “Sally”}) do
io.write(string.format(Frmt, Name))

end

210

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 210

will print this:

Lynn
Jeremy
Sally

3. Write a comparison function that allows table.sort to sort in “dictionary order.” Specifically,
case distinctions and any characters other than letters or numbers should be ignored, unless
they are the only ways in which two strings differ.

> Names = {“Defoe”, “Deforest”, “Degas”, “de Forest”}
> table.sort(Names, DictCmp)
> for _, Name in ipairs(Names) do print(Name) end
Defoe
Deforest
de Forest
Degas

4. Write a function that starts up a subinterpreter that prints a prompt, reads a line, and prints the
result(s) of evaluating the expression(s) typed onto that line. Typing a line with nothing but the
word “quit” should exit the subinterpreter.

> ExprInterp()
expression> 2 + 2
4
expression> true, false, nil
true false nil
expression> string.gsub(“somewhere”, “[Ss]”, “%0h”)
shomewhere 1
expression> quit
>

There’s no need to check for errors in what is typed (you’ll learn how to do this in the next chap-
ter) or to special-case empty lines. (Hint: This exercise doesn’t require any pattern matching.)

5. The TrimRight function given in this chapter trims off trailing whitespace. Write its counter-
part: TrimLeft, a function that trims leading whitespace.

6. Does TrimLeft ever need to do any backtracking?

7. Write an Interpolate function that replaces dollar signs followed by identifiers with the value
of the named global variable.

> Where, Who, What =
>> “in xanadu”, “kubla khan”, “a stately pleasure-dome”
> print(Interpolate(“$Where did $Who\n$What decree”))
in xanadu did kubla khan
a stately pleasure-dome decree
> print(Interpolate(“string = $string, asdf = $asdf”))
string = table: 0x481dd0, asdf = nil

211

Chapter 5: Using Strings

08_069172 ch05.qxp 1/2/07 8:30 PM Page 211

08_069172 ch05.qxp 1/2/07 8:30 PM Page 212

6
Handling and

Avoiding Errors

Program correctness matters on every count, from user acceptance and trust to the downstream
consequences of program output. In this chapter, you learn about the following:

❑ The kinds of errors that can occur in your programs

❑ Lua’s mechanisms for handling errors

❑ Techniques to avoid program errors

❑ Techniques to locate program errors

Along the way, you’ll become familiar with Lua’s I/O library, which is included in some of the
examples.

Kinds of Errors
Some flaws can turn up before a program is executed. These are compile-time errors, which Lua
can find as it converts your source code into executable bytecode. Often these result from simple
misspellings or typing slips as you edit your source code. Other flaws are more insidious — Lua
recognizes them as syntactically correct so they make their way into the executable bytecode.
These errors await discovery at run time, preferably by you during testing rather than by someone
who’s actually using a product after it’s been released with the erroneous code.

Syntax Errors
Syntax refers to the way various language elements are allowed to fit together, completely inde-
pendent from the meaning of those elements. A programming language like Lua is necessarily
fussy about syntax, because source code expressed in it needs to translate unambiguously to byte-
code, the instructions that Lua’s virtual machine can deal with. During the 1960s (the renaissance
era of modern programming languages) computer science practitioners such as Niklaus Wirth

09_069172 ch06.qxp 1/2/07 8:07 PM Page 213

understood the importance of specifying syntactic rules that express naturally and simply the intent of a
programmer. Lua’s syntax falls neatly into this heritage. Take time to study the page in the Lua manual
that describes Lua’s complete syntax. Doing so can provide much insight into the Lua language and the
way the Lua parser operates.

Essentially, it is the job of Lua’s parser to recognize syntactically correct Lua programs and, in the case of
an incorrect program, to let you know where the problem is. Of course, the program you submit to Lua
might have more than one syntax error, but Lua will stop at the first one it encounters and print a mes-
sage that should allow you to pinpoint the location of the problem. Usually, but not always, you’ll
instantly recognize the offending construction, make a quick fix, and compile the code again.

Here is an example of a syntax error:

a = 1 + + 2

This results in an “unexpected symbol near ‘+’” message.

Here’s another example:

for do

Lua expects a variable name to follow for, so it generates a “‘<name>’ expected near ‘do’” message.

And here’s an erroneous script example:

Str = ‘hello, world

The result is the message “unfinished string near ‘’hello, world’”. When you run this as a non-
interactive Lua script, this error is generated immediately. When you type it in interactively, Lua pre-
sents you with a continuation prompt and defers the error until you provide more input. Strings that
begin with a single or double quote must end, on the same line, with a matching quote. Lua supports
multiline strings, for which you use the [[]] notation (or represent each newline with a backslash-
escaped n or backslash-escaped newline, as described in Chapter 2).

Now take a look at this example:

break

By itself, this command results in the message “no loop to break near ‘<eof>’” (where <eof> refers
to “end of file”).

Here’s a function call example:

Fnc
(42)

Lua generally allows you to put whitespace, including line endings, wherever you like. As mentioned in
Chapter 3, however, calling a function is an exception: The opening parenthesis must occur on the same
line as the function expression. The preceding construction leads to the message “ambiguous syntax
(function call x new statement) near ‘(‘.”

214

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 214

Now look at this:

Tbl:Fnc 4

This results in the message “function arguments expected near ‘4’.” When Lua sets up a method
call, it expects the usual function argument specification: a list of zero or more arguments wrapped in
parentheses, a single quoted string, or a single table constructor.

In the following example, the vararg expression ... is used inside a function whose parameter list does
not end in ...:

function Fnc() print(...) end

This results in the message “cannot use ‘...’ outside a vararg function near ‘...’.” A Lua
script, whether it is a single line entered interactively in the Lua interpreter or a complete file that has
been loaded noninteractively, has an implicit ... that contains any arguments with which it is called.

In the case of a single line entered in the Lua interpreter, there can’t be any arguments, but still you can
see that the following statement is valid:

print(...)

Unlike named parameters, the ... expression has limited visibility and cannot be used as an upvalue.

For more on upvalue, see Chapter 3

These are contrived examples — you’ll rarely, if ever, see some of these syntax error messages. Or if you do
get an error message from Lua, it may not make immediate sense. For example, if you enter the following:

string.sub9”Hello”, 1, 1)

it will return the message “unexpected symbol near ‘,’.” You can easily recognize the last problem as a
typing mistake in which “9” was typed instead of “(“, so what accounts for Lua’s error message? Recall
that Lua permits the parentheses to be omitted when calling a function with a single string argument. In
this case, Lua treats string.sub9 as a global function that, at run time, will be passed the string “Hello”.
In this context, the comma that follows “Hello” doesn’t make sense, and Lua lets you know about it.

Some programming languages require variables to be declared before use. When programs written in
these languages are compiled, any reference to an undeclared variable will be reported as an error. This
is not the case with Lua. Any variable name that does not match an in-scope local variable name is con-
sidered to be one that will be resolved at run time in the global environment.

Some very uncommon compile-time errors have to do with internal limits rather than syntax violations.
We’ve never encountered any of these in practice or heard of them occurring. But, in the spirit of inquiry
and with a hammer in hand, give it a try. The following Lua program generates another Lua program,
one that contains an impracticably large number of nested do blocks. In the first program, a routine is
called recursively to generate a text file that simulates a handwritten Lua script. Here are the contents of
the recurse.lua script:

function Recurse(Count, Indent)
Indent = Indent or “”

215

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 215

if Count > 0 then
io.write(Indent, “do\n”)
Recurse(Count - 1, Indent .. “ “)
io.write(Indent, “end\n”)

end
end

Recurse(299)

Now attempt to compile the program that this script generates:

lua recurse.lua | lua

The pipe directs the output of the first program to the input of the second. Note that, in the spirit of the
Unix tool philosophy, the Lua interpreter acts like a filter when its standard input is not a terminal. This
results in the following message:

stdin:200: chunk has too many syntax levels

Notice the line number that seems to indicate that Lua was okay with nesting blocks just up to that limit.
In practice, your nested blocks will never exceed even a small fraction of that number. But this limit and
other limits involving expression complexity are worth keeping in mind if you ever automatically gener-
ate Lua programs.

216

Chapter 6: Handling and Avoiding Errors

The Call Stack
When a function is called in Lua, space needs to be set aside to hold local variables and
certain bookkeeping information such as where program control should resume when
the function returns. Because Lua functions are reentrant (that is, there can be multiple
outstanding calls to the same function at a given time), this storage must be bound to a
particular function call rather than just to the function itself. When Lua compiles a pro-
gram, it knows how much space needs to be reserved for a particular function, but the
actual contents of that space aren’t known until the function is actually called. The sim-
plest solution that meets these requirements is a last-in first-out stack. This is a data struc-
ture in which items to be stored are pushed onto the top of the stack, increasing its size,
and items to be retrieved are popped from the top of the stack, decreasing its size. When
a function is called, its stack frame is pushed onto the call stack, and when it returns, that
frame is popped, making the vacated space available for other function calls.

The details of the call stack are hidden from general view. As a Lua programmer, you
want to keep in mind that a stack is being used behind the scenes to make sure that
function calls work as expected, but in general you won’t need to be aware of its imple-
mentation or details. For the times when you do need a window into your program’s
internal environment, Lua provides a debugging library. You can use one of its func-
tions, debug.traceback, to generate a list of pending function calls, essentially an
overview of the call stack. The debug.traceback function augments the string you
pass it with such a list.

1 function B()
2 print(debug.traceback(“B”))

09_069172 ch06.qxp 1/2/07 8:07 PM Page 216

Runtime Errors
When a Lua source file is successfully compiled into bytecode and executed by the interpreter, an error
results in a descriptive message followed by a stack traceback. Here’s an example:

function C()
print(1 + nil)

end

function B()
C()

217

Chapter 6: Handling and Avoiding Errors

3 end
4
5 function A()
6 print(debug.traceback(“A 1”))
7 B()
8 print(debug.traceback(“A 2”))
9 end
10
11 A()

The output that this program generates has a strong resemblance to the error messages
that were shown earlier:

A 1
stack traceback:

trace.lua:6: in function ‘A’
trace.lua:11: in main chunk
[C]: ?

B
stack traceback:

trace.lua:2: in function ‘B’
trace.lua:7: in function ‘A’
trace.lua:11: in main chunk
[C]: ?

A 2
stack traceback:

trace.lua:8: in function ‘A’
trace.lua:11: in main chunk
[C]: ?

Notice that the traceback doesn’t give you a history of function calls. For example, you
won’t find any reference to the print function. What it does show you is a list of func-
tions that have been called but that have not yet returned. The topmost indented line
indicates the location in the Lua script where debug.traceback was called. Each line
beneath that shows a pending function and the line number from which it was called.
These lines are shown with the most recently called functions first. The bottom line
indicates that the first function call originated in a C function for which no line number
information is available.

09_069172 ch06.qxp 1/2/07 8:07 PM Page 217

end

function A()
B()

end

A()

When this runs, Lua prints the following:

lua: err.lua:2: attempt to perform arithmetic on a nil value
stack traceback:

err.lua:2: in function ‘C’
err.lua:6: in function ‘B’
err.lua:10: in function ‘A’
err.lua:13: in main chunk
[C]: ?

In addition to the message that describes what went wrong during program execution and on which
line, there is also a stack traceback section. That portion of the output is a snapshot of pending func-
tion calls and provides you with the context of the error. It’s important to have a good grasp of how call
stacks operate in Lua, not only for reading stack tracebacks, but also for writing programs that work
well with Lua’s error-handling system.

Handling Errors
As you develop a program, there are a number of ways you can deal with the inevitable errors that crop
up. Your best course of action will be dictated by the following:

❑ How the program is to be used and its targeted user

❑ Whether the error is surmountable

❑ Whether the error is code-related or data-related

Default Error Behavior
The default behavior of the standalone Lua interpreter when it encounters an error condition is to print a
message followed by a stack traceback and then to terminate the program, like this:

local function Fnc(A, B, C)
print(A + B + C)

end

print(“Position 1”)
Fnc(1, nil, 3)
print(“Position 2”)

The output includes the expected error and also shows that “Position 2” was never reached:

Position 1
lua: err.lua:2: attempt to perform arithmetic on local ‘B’ (a nil value)

218

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 218

stack traceback:
err.lua:2: in function ‘Fnc’
err.lua:6: in main chunk
[C]: ?

For many quickly written scripts that are intended to be run by the developer, this behavior is accept-
able. In these cases, the runtime error can be treated as if it was a syntax error — that is, you can identify
the problem, correct it, and run the script again, repeating the process until the program does what you
want it to do.

In the context of a program used in the real world, Lua’s default response to errors is rather draconian. It
is bad form to abruptly terminate a program while a network connection, database connection, or file is
still open. Buffers may not have been flushed and system resources may not be freed in a timely or con-
sistent manner. In the case of a program with a user interface, it can be more than annoying to have a
program abnormally end. A considerable amount of work may be lost when a program crashes.

Checking Assumptions
When you track down the source of runtime errors, you may find that certain assumptions you made
have proved to be invalid. For example, you may have implemented a loop in which you assume the
value of some variable will never exceed a certain number, or you may have written a function that
requires a string as its first argument. The problem is that the consequences of an invalid assumption
might occur far from its source. Sometimes, errors occur with such irregularity that it is hard to even
know where to start looking. These can stem from multiple invalid assumptions that by themselves
don’t cause apparent problems, but wreak havoc in combinations that might occur infrequently. Avoid
these oblique issues by testing your assumptions directly. Lua makes this easy for you with the assert
function, as shown in this example:

local function Quote(Str)
assert(type(Str) == “string”, “Str is not a string”)
return string.format(“%q”, Str)

end

print(Quote(‘Huckleberry “Blue” Hound’))
print(Quote(1))

This outputs the following:

“Huckleberry \”Blue\” Hound”
lua: test.lua:2: Str is not a string
stack traceback:

[C]: in function ‘assert’
test.lua:2: in function ‘Quote’
test.lua:7: in main chunk
[C]: ?

The idea here is that it is far better to terminate an errant program the moment you know something has
gone wrong than to let the problem become clouded by further processing. Keep in mind that this is a
development technique that is intended to address problems with program infrastructure — that is,
things over which you as the developer have control.

219

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 219

Code Errors
View your program as comprising code on one hand and data on the other. Code is the fixed deliverable
made up of program statements and data is the material your program processes at run time. Calls to
assert are an appropriate way of dealing with code errors. The program you deliver should be free of
coding errors, and if abnormal endings and stack tracebacks get you closer to eliminating them, then
using assert is fully warranted.

Data Errors
Data errors are by their nature different than code errors. Essentially, your job here is to make your pro-
gram respond gracefully when garbage is shoveled into it, because sooner or later, intentionally or not,
your program’s input domain will be taxed grievously. Your best approach is to mistrust all data that
your program reads — the closer to the source, the better.

In the preceding example, you have control over the type of value that you pass to the Quote function.
You may not, however, have control over the string’s value, which may have been entered by the user
into a text field. If the string itself needs to conform to certain patterns for the program to function cor-
rectly, that should be checked and handled by some user-friendlier means than assert. Of course, you
may use assert to ensure that your string screening logic is working as expected, because if it isn’t,
you’ve got some code adjustments to make.

The assert and error Functions
You don’t have to leave it up to Lua to issue errors. There may be circumstances in which your program
should issue an error itself, and for these cases, Lua provides the assert and error functions. Use the
assert function to issue an error if an assumption proves to be invalid at run time. To issue an error
unconditionally, no questions asked, use the error function.

One or more values are passed to the assert function. These values may be passed in directly, but usu-
ally they are the results of an expression such as a function call. If the first argument is either false or
nil, assert generates an error and prints an error message followed by a stack traceback. If a second
argument is present, it is used as the error message; otherwise, the string “assertion failed!” is used.
If the first argument is neither false nor nil, then assert returns every argument that was passed in:

function Reflect(A)
return A, 1, 2, 3

220

Chapter 6: Handling and Avoiding Errors

Stack Tracebacks and End Users
Abnormal program termination may occur repeatedly as you develop a script and con-
sequently you can become accustomed to stack tracebacks. However, an end user who
encounters a stack traceback won’t have a clue what it means and will inevitably lose
some trust in your program. Treat stack tracebacks as a symptom of a bug that should
not make it past the development stage. To emphasize this, you may want to display
stack tracebacks with the header Programmer error. Later in this chapter, you’ll see
how to avoid the conditions that generate stack tracebacks, but first you’ll learn a tech-
nique to intentionally generate them and the circumstance in which you should.

09_069172 ch06.qxp 1/2/07 8:07 PM Page 220

end

print(assert(Reflect(0)))
print(assert(Reflect(nil)))

This displays the following:

0 1 2 3
lua: test.lua:6: 1
stack traceback:

[C]: in function ‘assert’
test.lua:6: in main chunk
[C]: ?

The assert function is a wrapper for the more general error function, which you can be use to uncon-
ditionally generate an error.

Defining Your Own Error Condition
Lua has a well-defined set of conditions under which an error will occur. Using the error function, you
can define your own as well. Here’s how:

function Answer(Question)
local Res
if Question == “no bananas” then
Res = “yes”

elseif Question == “everything” then
Res = 42

elseif Question == “Tuesday” then
Res = “Belgium”

else
error(“No answer for “ .. tostring(Question))

end
return Res

end

print(Answer(“this statement is false”))

Running this results in the following:

lua: answer.lua:10: No answer for this statement is false
stack traceback:
[C]: in function ‘error’
answer.lua:10: in function ‘Answer’
answer.lua:15: in main chunk
[C]: ?

The same error-handling mechanism is used for user-generated errors as for those originating in the Lua
core.

You can pass an integer as an optional second argument to error. Passing 0 suppresses line number infor-
mation in the error message. If you specify the value 1 (the default if the argument is missing), the line
number where error was called will be displayed. A higher value tells Lua how far down on the call stack

221

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 221

to reach to determine which line number to display. This is useful if you write an error handler that in turn
calls error. In this case, you don’t want to mislead the programmer by displaying a line in your handler;
you want to show the line where the call to your handler was made, so a value of 2 is appropriate.

Anticipating Error Conditions
One way to cope with the problem of runtime errors is to diligently check for the conditions that can
lead to an error. For example, a function that prints the sum of its three arguments could be written as
follows:

local function Fnc(A, B, C)
A, B, C = tonumber(A), tonumber(B), tonumber(C)
print(A and B and C and A + B + C
or “Three numbers expected”)

end

print(“Position 1”)
Fnc(1, “2”, 3)
print(“Position 2”)
Fnc(1, “Lua”, 3)
print(“Position 3”)

Here, where the conditions needed to calculate and print the sum of three numbers are not met, an alter-
native is printed instead:

Position 1
6
Position 2
Three numbers expected
Position 3

After reaching position 3, the program terminates normally, even though the values passed in the second
call to Fnc included a nonnumeric value.

Anticipating an error condition allows you to handle the situation appropriately. For example, in an
interactive program you could allow the user to specify an alternate course of action or to repeat an
action with different input values. If it is appropriate to terminate the program, at least this can be done
gracefully, closing open resources as needed and reporting the condition in an expected fashion.

Working with Return Values
Because the preceding example uses the print function, its use is restricted to programs that can work
with the standard output channel. Its output is directed to the user rather than the caller. In all but the
simplest cases, you’ll want to avoid this kind of restriction by making your functions independent of the
kind of program that uses them. This practice enables you to build up a library of functions that should
be portable to different platforms. The key to this is to have functions and their callers communicate by
means of parameter lists and return values. The actual input and output to the system can then be han-
dled at a higher level by the caller of the platform-independent functions.

222

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 222

One of Lua’s many distinctive features is that it allows functions to return multiple values. A convention
has evolved regarding how functions should indicate success and failure. If a function succeeds, its first
return value should be something other than false or nil. Usually this return value is the principal
value the function was called on to produce, like a file handle or string capture. This value can be fol-
lowed by other pertinent values. If the function fails, its first value should be nil. This is followed by
something that explains why the error occurred, usually an error message but possibly something else
like a table or numeric error code.

The example can be reworked to follow this convention:

local function Fnc(A, B, C)
local Sum, ErrStr
A, B, C = tonumber(A), tonumber(B), tonumber(C)
if A and B and C then
Sum = A + B + C

else
ErrStr = “Three numbers expected”

end
return Sum, ErrStr

end

print(“Position 1”)
local Sum, ErrStr = Fnc(1, “2”, 3)
print(Sum or ErrStr)
print(“Position 2”)
local Sum, ErrStr = Fnc(1, nil, 3)
print(Sum or ErrStr)
print(“Position 3”)

The output is like that of the previous example:

Position 1
6
Position 2
Three numbers expected
Position 3

You’ll occasionally see a clever use of assert that utilizes Lua’s return value convention. For example:

Hnd = assert(io.open(“index.html”, “r”))

The io.open function returns nil followed by an error message if the file cannot be opened; otherwise,
it returns the handle to the opened file. In either case, these return values are passed directly to assert.
In the event that io.open fails, the first argument to assert will be nil. This causes assert to issue a
runtime error using as its error value the second argument it receives, namely the error message
returned by io.open. If, on the other hand, io.open succeeds, assert receives as its first argument the
handle to the open file. Because this value is neither false nor nil, it simply returns this value and
does not issue an error.

The problem with using assert is that, in the event of a failed assertion, the default action is to termi-
nate the program. In the case of the example shown here, there may be good reasons why the file
index.html cannot be opened, and to bring the entire program to a halt just because the file can’t be

223

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 223

opened is especially heavy-handed. In the next section, you’ll learn about structured programming tech-
niques that let you recover gracefully and simply from conditions like this. The assert function is
extremely useful for ferreting out wrong assumptions in your code, but it’s not the best approach to han-
dle conditions that are beyond the programmer’s control.

Another convention has evolved to handle the returns values of a function that is called indirectly
through another function. Like all values in Lua, a function is a first class value and can be passed as an
argument, something you’ve already seen with the comparison function that can be optionally passed to
table.sort. In some cases, a function’s job can simply be to call another function in a modified runtime
environment. The pcall and xpcall functions (described later in this chapter) are examples of this.
However, the added indirection requires some means to distinguish between errors caused by the func-
tion that is called directly and the one that is called indirectly. Typically in this case, the directly-called
function returns true if it succeeds; this is followed by the return values of the indirectly-called function
whether it succeeds or fails. If the directly-called function fails, it returns false followed by an error
message.

Structuring Code
In the examples you’ve seen so far, the program code has been structured to visually indicate the blocks
as Lua sees them. For example, the statements following an if expression are indented to show what
gets executed if the expression evaluates to true. The benefit to this structuring is that you can tell at a
glance what state the program is in — for example, which files are open and which conditions are cur-
rently met.

Following is an example that uses Lua’s return value convention with structured programming to gener-
ate a file listing with line numbers. It shows how error handling can be integrated with block structuring
to handle errors in a predictable and robust way. As you study the example, ask yourself what happens
under different scenarios. For example, what happens to the source file handle if the destination file can-
not be opened?

local function FileCopyLineNum(SrcFileStr, DstFileStr)
local SrcHnd, DstHnd, ErrStr, Line
SrcHnd, ErrStr = io.open(SrcFileStr, “r”)
if SrcHnd then
DstHnd, ErrStr = io.open(DstFileStr, “w”)
if DstHnd then
Line = 0
for Str in SrcHnd:lines() do
Line = Line + 1
DstHnd:write(Line, “ “, Str, “\n”)

end
if Line == 0 then
ErrStr = SrcFileStr .. “: File is empty”
Line = nil

end
DstHnd:close()

end
SrcHnd:close()

end
return Line, ErrStr

224

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 224

end

local Count, ErrStr = FileCopyLineNum(“index.html”, “index.lst”)
io.write(Count and (“OK: count “ .. Count) or ErrStr, “\n”)

If index.html does not exist, this script outputs the following:

index.html: No such file or directory

If this file exists but is empty, the output is this:

index.html: File is empty

If index.html exists and has lines in it, and index.lst can be opened for writing, the output looks like
this:

OK: count 243

The general idea behind structuring your code is to place operations in their correct position. For exam-
ple, an indented block follows the conditional statement that tests whether the source file has been suc-
cessfully opened. You can bring much clarity to your code by ensuring that this condition remains valid
through the entire block, and that the condition is invalid outside of the block. In this example, that’s
done by closing the source file at the very end of the conditional block. You don’t need to check whether
the file is currently open and ready to be closed — the block structure guarantees that it is, regardless of
what happened inside the block. Whether or not the destination file is successfully opened, you know
from the visual representation of the code where the source file is open and where it needs to be closed.

Why would it be a problem to close the source file as soon as its contents have been copied? A glance at
the indentation of the code should tell you immediately: the source file would not be properly closed if
an error occurred while opening the destination file.

Lua enables you to keep your program clear by declaring local variables only where you need them, that
is, to keep their scope at a minimum. Here, the declaration of DstHnd could have been deferred to the
point after the source file has been opened. However, the declaration of Line and ErrStr need to be
where they are, because they are used as return values. Furthermore, neither should be redeclared in an
inner block because this would mask the outer values. Beginners to Lua often wish that variables would
be local by default, but doing so would make this powerful form of scope control impossible.

Notice that no assumptions about the user interface are made in the FileCopyLineNum function.
Communication with this function occur through its parameter list and its return values.

A slight visual problem occurs in the destination file when the number of digits in the line number
changes. This can be remedied with string formatting, as described in Chapter 5.

Bigger problems have to do with guarding against unintended input. What if the function is called with
nonstring arguments? What if a binary file is specified as the source file? Worse still, what if an impor-
tant system file is specified as the destination file?

225

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 225

Calling the function with nonstring arguments is a code issue, and in this case you’ll learn about the
problem when you call io.open. Like a syntax error, after you correct the problem, it won’t be an issue
anymore. If this routine merely stored the arguments for later processing, some assertions might be nec-
essary to ensure that each argument is a string.

As written, the FileCopyLineNum function assumes that the source file is a text file. In the copy loop,
you could check for the presence of unexpected characters or unexpectedly long source lines. If either of
these occurs, you could terminate the loop and proceed appropriately.

The risk of overwriting an important file is more difficult to address. The relevant question is whether
this routine is at the right level to implement a safeguard. Clearly, io.open isn’t making the check, and
it could be convincingly argued that FileCopyLineNum shouldn’t either. If it doesn’t, the burden is on
the caller to make sure that the destination file is safe to create or overwrite. The important lesson is that
you need to consider these issues and strive to cover them at the right place in your code.

Even if the block following a resource test does not itself contain nested indented blocks, it is still a good
policy to defer closing the resource until the end of the block, because as you refine the program and
possibly add new conditionals, knowing that the resource is open throughout the block is one less thing
you have to verify.

Some programmers criticize, sometimes with alarming fervor, this type of code structuring, complaining
that indentation levels can become excessive and that even small changes to a routine’s logic can necessi-
tate shifting large blocks to the left or right (something that is easy to do in a decent text editor). In prac-
tice, deep nesting indicates a need to break blocks into functions. Doing so makes your program more
modular and reduces the degree of indentation. The functions in the following example are fictitious
and, for simplicity’s sake, are called without any arguments and portrayed without error handling:

A = ResourceOpen()
if A then
B = ItemFirst()
while B do
C = ResourceOpen()
if C then
for D in E() do
if F then
DoSomething()

end
end
ResourceClose(C)

end
B = ItemNext(B)

end
ResourceClose(A)

end

This can be rewritten as follows:

function Moon(B, C)
for D in E() do
if F then
DoSomething()

226

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 226

end
end

end

function Sun(B)
C = ResourceOpen()
if C then
Moon(B, C)
ResourceClose(C)

end
end

A = ResourceOpen()
if A then
B = ItemFirst()
while B do
Sun(B)
B = ItemNext(B)

end
ResourceClose(A)

end

Error-Containment Functions
In the examples you have seen so far, runtime errors result in the termination of the entire program.
Fortunately, this can be avoided. Lua provides a mechanism — the protected environment — to contain
the damage caused by an error condition. The Lua pcall and the xpcall functions enable you to sup-
press the propagation of an error.

The pcall Function
Any Lua function, including Lua scripts loaded from disk and converted to a function by loadfile, can
be run in a protected environment. You do this by calling pcall with the function to be called as its first
argument. Additional arguments to pcall are passed as arguments to this function. The principal differ-
ence between calling a function directly and calling it through pcall is the way errors are handled. As
you’ve seen so far, if an error occurs in a function that is called directly, the Lua interpreter responds by
displaying the stack traceback and terminating the program. If, on the other hand, an error occurs in a
function that has been invoked by pcall, the error is reported as one of the return values of pcall. You
can handle the error in whatever way you consider appropriate.

Try It Out Using pcall
In this Try It Out, you’ll see the pcall function in action. The following code is a revision of the first
example from this chapter adapted to run in a protected environment.

1. With your text editor, create a new file with the following contents:

function C()
print(“C 1”)
print(1 + nil)
print(“C 2”)

227

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 227

end

function B()
print(“B 1”)
C()
print(“B 2”)

end

function A()
print(“A 1”)
B()
print(“A 2”)

end

print(“Main 1”)
local Code, ErrStr = pcall(A)
print(“Main 2”, Code and “Success” or ErrStr)

2. Save this script as err.lua.

3. Run the script with the Lua interpreter, like this:

lua err.lua

The output is as follows:

Main 1
A 1
B 1
C 1
Main 2 err.lua:3: attempt to perform arithmetic on a nil value

How It Works
The main clue to understanding what happened is the lack of “C 2”, “B 2”, and “A 2” markers. If this
gives you the notion that when the error occurred control was transferred directly back to pcall, you’re
entirely correct.

Remember, it is the call stack that allows functions to return properly. In effect, the stack is Lua’s only mem-
ory regarding where it came from and where it should return to. The pcall function effectively marks the
current position on the stack and arranges with Lua to return to that mark — the recover point — in the
event of an error. Up until the error occurred, the stack functioned as expected. You can follow this in more
detail by adding a call to debug.traceback in the print statements. For example, replace print(“A 1”)
with print(debug.traceback(“A 1”)).

A protected call will keep your program from sinking after a runtime error, but it may tilt frightfully to
starboard. Imagine that the “A 1”, “B 1”, and “C 1” markers indicate positions where resources such as
database connections and files are opened, and the markers “A 2”, “B 2”, and “C 2” indicate the posi-
tions where the resources are closed. When pcall returns with a return code indicating that an error
took place, it may be difficult to programmatically determine which resources are in need of closing.

228

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 228

Some resources — in such as userdata resources that have been specially programmed — will close them-
selves when they are no longer accessible to your program and are consequently collected as garbage.
Using Lua’s C programming interface, you can create resource handles to behave this way. However,
you should not depend on this behavior to close resources. A very large number of open resources may
accumulate between garbage collection cycles, and this can have an adverse effect on the operation of
your program.

Another method to manage dangling resources is to pass a newly constructed local table to your func-
tion by means of pcall. You can use this table to store handles for open resources, among other things.
When a resource is opened, its handle is stored in the table. After the resource is closed, its handle is set
to nil. This table would be passed as an argument to all functions in the call chain. Unfortunately, this
approach couples these functions in a way that may be undesirable. It also means that the caller of the
protected function must know, given an assortment of handles, how to close the resources. A variation
on this theme would be to store a closure that would close the resource instead of a resource handle.

The caller of a protected function must also, in the event of an error, determine the best subsequent
course of action. Should the program clean up and terminate? Should it invoke the protected function
again with different arguments? One action your program should definitely not take is to proceed as if
nothing happened.

The xpcall Function
You may have noticed that the error message returned by pcall does not have a stack traceback. After
pcall returns, all stack levels between pcall and the place where the error occurred are no longer
accessible, so no traceback can be constructed. The xpcall function is like pcall, except that you spec-
ify as its second argument an error handler that is called before Lua transfers control back to the place
where xpcall was called. This handler receives the error message and returns the new error value, usu-
ally the same error message after it has been augmented with a stack traceback. The xpcall function
differs from the pcall function in two respects:

❑ It uses an error handler.

❑ It is unable to pass arguments to the function it calls.

Here’s an example of its use:

function A()
print(1 + nil)

end

print(xpcall(A, debug.traceback))

This outputs the following:

false err.lua:2: attempt to perform arithmetic on a nil value
stack traceback:

err.lua:2: in function <err.lua:1>
[C]: in function ‘xpcall’
err.lua:5: in main chunk
[C]: ?

Here, the debug.traceback function was used as a handler, but you can write your own as well. It can
return something other than an error string if you want.

229

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 229

User-Written Scripts
Many applications employ Lua so that users can prepare and run their own extension scripts. However,
you should run these scripts in protected mode to contain any errors that may occur.

Most users have experienced programs that run fine as long as nothing unexpected occurs, but operate
erratically after they attempt to recover from an error. If your application supports the execution of user-
provided Lua scripts, you need to guard against destabilizing your entire application as a result of run-
ning an errant script. As you learned in Chapter 4, Lua provides sandboxing mechanisms to isolate these
user-written scripts from each other and from the host application. In the next chapter, you’ll see that
Lua supports a way to require that only local variables be created by a script. Doing this helps to ensure
that resources are cleaned up properly in the event of an error. Similarly, functions that could pose a risk
to the operating environment are easily made unavailable to the user-written scripts.

Locating Errors
The diagnostic message and stack traceback that Lua presents when a runtime error occurs are often suf-
ficient for you to identify exactly what went wrong. However, sometimes an error occurs long after the
source of the problem has been executed. For example, an error might indicate that arithmetic was
attempted on a nil value, and you are left wondering how a certain variable ever became nil. A good
approach when you don’t have a clue where something like this may have occurred is to use the print
function or a message box routine to temporarily display important values at various points where you
think the problem may have originated. But rather than sprinkling such calls haphazardly throughout
your code, you’ll usually do better by attempting to repeatedly divide the problem area in half.

Summary
In this chapter, you’ve learned to do the following:

❑ Look for and correct syntax errors.

❑ Handle runtime errors (both code-based and data-based).

❑ Understand Lua’s call stack.

❑ Use assert when it’s desirable to do so.

❑ Read stack tracebacks.

❑ Structure your code with an emphasis on resource lifespan.

❑ Protect a function call so that the entire application isn’t abnormally ended if it causes a runtime
error.

Any mechanism that enables you to understand the internal state of your program is valuable in ensur-
ing that it is functioning as expected or in uncovering errors. In the next chapter, you’ll learn about Lua
modules, and one of the examples shows you how to generate a tree diagram of Lua tables. A rendering
like that can provide a lot more information than a simple print statement can and is consequently a
good tool to have when tracking down program errors.

230

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 230

Exercises
1. In the Lua interpreter, issue the following statement:

> print(1 + nil)

Why doesn’t print show up in the resulting stack traceback?

2. How would you add the prefix ‘Programmer error’ to the stack traceback?

3. The pcall function accepts arguments, and the xpcall function accepts an error handler. How
can you write a protected function caller that accepts both arguments and an error handler?

231

Chapter 6: Handling and Avoiding Errors

09_069172 ch06.qxp 1/2/07 8:07 PM Page 231

09_069172 ch06.qxp 1/2/07 8:07 PM Page 232

7
Using Modules

One of the most important techniques of structured programming is partitioning a program into
subprograms that have well-defined interfaces and protected implementations. In this chapter,
you learn how to do the following:

❑ Work with interfaces and implementations

❑ Modularize Lua scripts

❑ Use Lua modules from your application scripts

As a working example, you’ll explore a Lua value inspection module that should prove useful
when you develop Lua programs.

Interfaces and Implementations
An interface is the part of a subprogram that is known to callers of the subprogram. The implemen-
tation refers to the way the subprogram works internally. If a subprogram’s interface is clearly
defined and its implementation doesn’t depend on variables that can be modified by other pro-
gram parts, then it has the desirable attribute of being reusable. This discipline is often referred to
as encapsulation or information hiding or modularization. You’ve seen already how functions in
Lua present an interface behind which local variables are protected from tampering. A function is
loosely coupled (and therefore is more easily used in a variety of contexts) to the extent that it min-
imizes the scope of the variables it uses.

These notions of interface and implementation extend to files containing Lua code. When such a
file is loaded, Lua converts it into a function, to which arguments can be passed and from which
results can be returned. In this way, a Lua file has its own interface and its own implementation.

A Lua module is simply a file that conforms to certain rules. First, it can be located and loaded at
runtime. Second, it receives one argument: the name of the module. And third, it returns at most
one result. The use of modules doesn’t guarantee reusability, but it certainly promotes this objec-
tive by providing a useful level at which to define an interface beneath which the actual workings
can be hidden.

10_069172 ch07.qxp 1/2/07 8:07 PM Page 233

Libraries written in C and other low-level languages are conventionally made available through Lua’s
module mechanism. You can also associate a namespace (a Lua table that contains the module’s func-
tions and other fields) with a module. This practice lends clarity to programs and reduces the chance of
name clashes.

The require Function
The principal high-level function that implements module conventions in Lua is require. The various
lower-level functions it uses to actually locate, load, and run modules are all available to Lua programs.
require simply codifies the way modules are handled to make the business of creating and using mod-
ules more uniform across applications.

Newcomers to Lua may confuse require with a directive, which is a direction to be heeded at compile-
time rather than runtime. In particular, C programmers may initially make the mistake of thinking
require acts like #include. Keep in mind that require is a function and that any modules that are required
need to be available at runtime. Lua does not have any preprocessor or compiler directives.

Try It Out Using Modules
There are a few interesting and clever subtleties to modules in Lua, but the basic operation is straightfor-
ward. Here’s an example that illustrates modules at their simplest. It demonstrates how you can package
Lua code into a module so that it can be used by other scripts, and how a script makes use of a module.

1. Add a temporary variable to your shell environment. In Unix-type systems, issue this command:

export LUA_PATH=’?.luac;?.lua’

2. In Windows, issue this command from a shell prompt:

set LUA_PATH=?.luac;?.lua

3. With a text editor, create a new file and add the following lines to it:

function ObjectShow(Val, Key, TruncLen)
print(Key, Val)

end

4. Save this module file as show.lua.

5. Create another file with these contents:

require(“show”)
ObjectShow(“My table”, {A = 1})

6. Save this main script file as showtest.lua in the same directory as show.lua.

7. Run the script by executing the following command:

lua showtest.lua

The response looks something like this:

My table table: 00755610

234

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 234

How It Works
Lua’s response doesn’t appear especially spectacular, but a fair amount of processing occurs behind the
scenes.

First, Lua starts up and transfers the contents of the shell environment variable LUA_PATH to its own vari-
able named package.path. Your script can modify this variable, but in this example, you leave it alone.

The script calls Lua’s built-in require function with the name of the module you want to import,
namely show.

(In many cases, the require call is followed by a string without parentheses. Remember that Lua
treats a function followed by a literal string the same as if the string had parentheses around it.

After verifying that the show module has not already been loaded, the require function traverses, in
order, the segments of the package.path variable that are delimited by semicolons. In this example,
these segments are ?.luac and ?.lua. For each segment, the function performs a simple pattern substi-
tution. It replaces each occurrence of the question mark with the name that was passed to it and checks
to see if a file by that name exists. The first substitution results in the show.luac filename. Because the
segment does not contain path information, the require function follows the usual shell semantics and
looks in the current working directory for the file. It doesn’t find this file, so it moves onto the next seg-
ment. The second substitution results in the show.lua filename, which it is able to find.

The require function loads show.lua as a chunk and calls it with a single argument, the string “show”.

The execution of show.lua results in the formation of a new global variable, an ObjectShow function.
Here, show.lua doesn’t return any value, but if it did, require would return it to the main script.

Where to Put Modules
You’ll want to create a directory to hold Lua extension modules, but you do not want that directory in
the operating system’s search path, because you want the system to locate lua, and you want lua to
locate its modules. Some of the modules are executable libraries that will be loaded and linked at run-
time. These libraries are tailored specifically to Lua, and you don’t want the operating system to inad-
vertently load one or to even waste time looking through them.

The following section summarizes what you need to do to assure that Lua can find its modules. First,
you create a directory for modules, and then you set an environment variable to be used by Lua to locate
modules.

Creating a Module Directory
The locations shown here for Lua module directories are fairly standard among Lua users, but you may
change them if you want to or if you lack sufficient system privileges to create them. On Unix-type sys-
tems, use a command like this:

mkdir –p /usr/local/lib/lua/5.1

235

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 235

Some installers of Lua use the directory /usr/local/share/lua/5.1 for Lua scripts and reserve
/usr/local/lib/lua/5.1 for shared libraries that interface with Lua’s C API.

On Windows, issue commands like these to create the module directory:

mkdir “c:\program files\lua”
mkdir “c:\program files\lua\5.1”

Setting Lua’s Environment Variable
The LUA_PATH environment variable used in the preceding Try It Out example is rather simple — it
doesn’t include any directory information. Change that now so that LUA_PATH takes into account the
new directory you have created. On Unix-type systems, where filenames look like this:

/usr/local/lib/lua/5.1/show.lua

make the following assignment:

export LUA_PATH=’?.lua;/usr/local/lib/lua/5.1/?.lua’

On Windows, where filenames that look like this:

C:\Program Files\lua\5.1\show.lua

make the following assignment:

set LUA_PATH=?.lua;C:\Program Files\lua\5.1\?.lua

If necessary, you can refer to Chapter 1 for instructions on setting environment variables. Note that on
Windows, backslashes should not be escaped and names with spaces should not be quoted.

Regardless of the form that filenames take, the simple pattern substitution that Lua uses to locate mod-
ules is the same. The particular values for LUA_PATH shown previously specify that Lua is to look for
Lua modules first in the current directory and then, if that fails, in the designated common directory.

Preserving a Module’s Interface
The preceding Try It Out example was trivial, but you will enhance it in the next Try It Out to provide
many more details about the passed-in value. The revised module will prove to be very useful when
you’re developing programs in Lua. In this example, you’ll do the revision while preserving the mod-
ule’s interface. That is, although you’ll change the implementation of show.lua dramatically, you will
not change the part that it exposes to the outside world, namely the ObjectShow function and its list
of parameters. You’ll appreciate the importance of this when you realize that you don’t have to change
showtest.lua in the slightest to benefit from the updated implementation of show.lua. This kind
of encapsulation forms the basis of a well-designed application which is partitioned into a number of
general-purpose, reusable modules.

236

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 236

Try It Out Extending the show Module
In this Try It Out, you’ll dramatically enhance the show module to display more details about the value
to be examined. In doing so, you’ll preserve the interface of the previous version.

1. Replace the contents of show.lua with the following:

-- This function conditions a key or value for display

local function LclRenderStr(Obj, TruncLen)
local TpStr = type(Obj)
if TpStr == “string” then
Obj = string.gsub(Obj, “[^%w%p]”, function(Ch)
return “\\” .. string.format(“%03d”, string.byte(Ch)) end)

if TruncLen and TruncLen > 0 and string.len(Obj) > TruncLen + 3 then
-- This could misleadingly truncate numeric escape value
Obj = string.sub(Obj, 1, TruncLen) .. “...”

end
Obj = ‘“‘ .. Obj .. ‘“‘

elseif TpStr == “boolean” then
Obj = “boolean: “ .. tostring(Obj)

else
Obj = tostring(Obj)

end
return Obj

end

-- This function replaces [“x”][“y”] stubble with x.y. Keys are assumed to be
-- identifier-compatible.

local function LclShave(Str)
local Count
Str, Count = string.gsub(Str, ‘^%[%”(.+)%”%]$’, ‘%1’)
if Count == 1 then
Str = string.gsub(Str, ‘%”%]%[%”’, ‘.’)

end
return Str

end

local function LclRender(Tbl, Val, KeyStr, TruncLen, Lvl, Visited, KeyPathStr)
local VtpStr, ValStr
VtpStr = type(Val)
if Visited[Val] then
ValStr = “same as “ .. Visited[Val]

else
ValStr = LclRenderStr(Val, TruncLen)
if VtpStr == “function” then -- Display function’s environment
local Env = getfenv(Val)
Env = Visited[Env] or Env
ValStr = string.gsub(ValStr, “(function:%s*.*)$”, “%1 (env “ ..
string.gsub(tostring(Env), “table: “, “”) .. “)”)

elseif VtpStr == “table” then
ValStr = ValStr .. string.format(“ (n = %d)”, #Val)

end
end

237

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 237

KeyPathStr = KeyPathStr .. “[“ .. KeyStr .. “]”
table.insert(Tbl, { Lvl, string.format(‘[%s] %s’,
KeyStr, ValStr) })

if VtpStr == “table” and not Visited[Val] then
Visited[Val] = LclShave(KeyPathStr)
local SrtTbl = {}
for K, V in pairs(Val) do
table.insert(SrtTbl, { LclRenderStr(K, TruncLen), V, K, type(K) })

end
local function LclCmp(A, B)
local Cmp
local Ta, Tb = A[4], B[4]
if Ta == “number” then
if Tb == “number” then
Cmp = A[3] < B[3]

else
Cmp = true -- Numbers appear first

end
else -- A is not a number
if Tb == “number” then
Cmp = false -- Numbers appear first

else
Cmp = A[1] < B[1]

end
end
return Cmp

end
table.sort(SrtTbl, LclCmp)
for J, Rec in ipairs(SrtTbl) do
LclRender(Tbl, Rec[2], Rec[1], TruncLen, Lvl + 1, Visited, KeyPathStr)

end
end

end

-- This function appends a series of records of the form { level,
-- description_string } to the indexed table specified by Tbl. When this
-- function returns, Tbl can be used to inspect the Lua object specified by
-- Val. Key specifies the name of the object. TruncLen specifies the maximum
-- length of each description string; if this value is zero, no truncation will
-- take place. Keys are sorted natively (that is, numbers are sorted
-- numerically and everything else lexically). String values are displayed with
-- quotes, numbers are unadorned, and all other values have an identifying
-- prefix such as “boolean”. Consequently, all keys are displayed within their
-- type partition. This function returns nothing; its only effect is to augment
-- Tbl.

function ObjectDescribe(Tbl, Val, Key, TruncLen)
LclRender(Tbl, Val, LclRenderStr(Key, TruncLen), TruncLen or 0, 1, {}, “”)

end

-- This function prints a hierarchical summary of the object specified by Val
-- to standard out. See ObjectDescribe for more details.

function ObjectShow(Val, Key, TruncLen)
local Tbl = {}

238

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 238

ObjectDescribe(Tbl, Val, Key, TruncLen)
for J, Rec in ipairs(Tbl) do
io.write(string.rep(“ “, Rec[1] - 1), Rec[2], “\n”)

end
end

2. Save the file in the module directory you created earlier. This will be the show module’s perma-
nent home.

3. In order to avoid some possible confusion, delete the older version show.lua in your current
working directory. Now when you run showtest.lua, you’ll be presented with a richer display
of the table you pass to ObjectShow.

4. Take a look at the entire Lua global environment as follows:

require(“show”)
ObjectShow(_G, “_G”)

The output will span more lines than can fit on most screens, so you may want to pipe the out-
put through a paging filter:

lua showtest.lua | more

On Linux, the wryly named less filter will provide more scrolling and search options.

How It Works
Being able to display data structures this way is indispensable when you’re developing scripts. After
you have installed show.lua in a location included in the LUA_PATH sequence, other scripts you write
can make use of it by simply requiring it.

The Lua interpreter enables you to specify a required module on the command line using the -l switch.
For example, you view the global environment from your shell prompt as follows:

lua -l show -e “ObjectShow(_G, ‘_G’)” | more

This Try It Out illustrates Lua’s module location and loading logic. You follow steps that are similar to
the previous Try It Out, but now show.lua resides in a “permanent” location where you can put other
Lua modules.

This example also illustrates the concept of interface preservation. It can be argued that this particular
script’s interface could be improved, and you’ll soon learn techniques to do so, but the advantage of pre-
serving a module’s interface should be clear.

There are some programming techniques that this example demonstrates as well. In particular, show.lua
addresses the tree structure of Lua tables. Trees are special because any subtree (any table within a con-
taining table) s a tree itself. A function that processes a tree can be used to process a subtree. This pre-
sents a classic application of using functions recursively.

Also note the use of thin wrappers at the bottom of the script. The ObjectShow function in the revised
show.lua is simply a wrapper around the ObjectDescribe function. ObjectShow writes to the
standard output stream, but ObjectDescribe and the functions it calls do not. This means you
can use ObjectDescribe in a wider variety of contexts than ObjectShow. For example, you can call

239

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 239

ObjectDescribe by a web page generator or a graph generator. If a wrapper around ObjectDescribe
required the services of some other module, such as a graphing library, it would make sense to place this
wrapper in its own module. Requiring such a module directly in show.lua where it isn’t generally
needed would diminish the reusability of show.lua.

Module Bookkeeping
A module can in turn require modules of its own. This sets up the scenario in which the same script
might be required more than once. For example, you may require two modules, each of which requires
the same third module. How does Lua handle situations like this? As is usual with Lua, a short example
can provide all the insight you need to figure things out. With your text editor, create a file named
modload.lua with the following contents:

print(..., package.loaded[...])
Serial = (Serial or 0) + 1
return Serial

Notice the use of the three dots (the vararg expression) as a placeholder for the module name. Remember
that when Lua loads a chunk, it converts the chunk to a function. As with any Lua function, any practi-
cal number of arguments of any type can be passed to it. In this case, however, Lua has no way of know-
ing what arguments might be expected by the embedded chunk, so the arguments are passed in using
the vararg mechanism. require passes only the module name to a module, so the vararg expression
evaluates to a single string.

In the same directory, create a file named modloadtest.lua with the following contents:

local ModStr = “modload”
print(“Main, before require”, package.loaded[ModStr])
local Val = require(ModStr)
print(“Main, after 1st require”, package.loaded[ModStr], Val)
Val = require(ModStr)
print(“Main, after 2nd require”, package.loaded[ModStr], Val)
package.loaded[ModStr] = nil
Val = require(ModStr)
print(“Main, after reset”, package.loaded[ModStr], Val)

Now run the module like this:

lua modloadtest.lua

The output will look like the following:

Main, before require nil
modload userdata: 6731F6D0
Main, after 1st require 1 1
Main, after 2nd require 1 1
modload userdata: 6731F6D0
Main, after reset 2 2

240

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 240

Lua uses the table package.loaded to associate the name of a module with its return value. If the entry
for a particular module is nil, it generally means that the module has not yet been loaded. As you can
see, it might also mean that the table field has been cleared by your script to force a reload of the mod-
ule. The userdata is Lua’s way of indicating that a module is in the process of being loaded and no
return value is available. This enables Lua to recognize a recursive loading loop and raise an error. The
use of a userdata for this purpose is quintessential Lua, because it’s a value that simply cannot be mis-
taken for the return value of a module.

Note that the require function did not load the module when it was called a second time. The pack-
age.loaded example value indicated that the module was already loaded, so require simply returned
the value associated with it. This behavior suggests that you should do no more than define functions
and initialize variables when the module chunk is called.

Experiment with little variations to the modload.lua module to see how Lua responds. For example:

❑ Return nil rather than Serial.

❑ Require modload from within modload.lua.

❑ Make Serial a local variable instead of a global.

Bytecode
In the first Try It Out of this chapter, you saw the extension .luac in the LUA_PATH environment vari-
able. This is the extension conventionally given to Lua bytecode, which is code that has been generated
by the Lua compiler for subsequent use in the Lua virtual machine. Lua’s script loading mechanism can
read both Lua source code and Lua bytecode. When it reads a chunk, it distinguishes between the two
forms and in the case of bytecode, it dispenses with the compiling stage. You can use the standalone ver-
sion of the Lua compiler, named luac or luac.exe depending on your platform, to generate a bytecode
file. The topic of bytecode fits into a discussion of modules because a compiled Lua script can be placed
in the module directory.

Why would you want to execute bytecode rather than source code? Actually, for fewer reasons than you
might at first suppose.

In general, the platform and the Lua version of both the Lua compiler and the Lua interpreter must
match for bytecode to be executed properly. The instruction set used by Lua’s virtual machine has
changed over time. All bets are off when you compile Lua programs on one machine and run the result-
ing bytecode on another. Even if the two systems are running on similar hardware, it is likely that sooner
or later there will be a version discrepancy between the compiler on one machine and the interpreter on
another.

On systems such as Windows, filenames are case-insensitive. For example, Lib.lua
is considered to be the same file as lib.lua. However, the associative table lookup
mechanism that Lua uses to detect whether a file has already been loaded is
case-sensitive. This can lead to a module being inadvertently loaded twice if some-
where in your application you call require(“Lib”) and elsewhere you call
require(“lib”).

241

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 241

Lua has such a fast compiler that, in general practice, little performance is gained by skipping the com-
piling step. If you need to execute a Lua script repeatedly, it makes sense to load and compile the file
once and then repeatedly call the resulting function.

The Lua compiler has a very nice feature that lets you amalgamate more than one Lua script into one
bytecode file. To do this, simply specify the source files on the luac command line. This cannot be
accomplished by using the require function, because even with a compiled script a call to require
occurs at runtime. In fact, if you want to produce a single bytecode file that embeds Lua modules rather
than loads them at runtime, you should include the modules on the luac command line and comment
out calls to require.

If you’re looking for top-notch performance of Lua programs on the x86 platform, investigate LuaJIT, a
beautifully implemented just-in-time compiler for Lua programs created by Mike Pall. The LuaJIT pack-
age includes a replacement for lua called luajit that compiles Lua bytecode into x86 machine code as
a program runs. You can find it at luaforge.net.

Namespaces
Consider the following Util.lua module:

function Quote(Str)
return string.format(“%q”, Str)

end

Now look at the following UtilTest.lua test script, which requires Util.lua:

require(“Util”)
print(Quote(‘Natty “Pathfinder” Bumppo’))

Some programmers who use the Util module would be displeased that the variable Quote “pollutes”
the global environment. In general, you would do well to model your approach after that used with the
Lua libraries, and bundle your variables into a namespace table. For example, the string length function
is given the name len in the global table named string. There are many ways you can implement a
module with a namespace. The most common ways will be shown here, each implementing the Quote
example in a slightly different manner.

Creating and Reusing Namespaces
Usually, a module will create a namespace table and place its functions and other variables in it. Here is
the Quote example using this technique. The Util.lua module script contains the following:

Util = {}

function Util.Quote(Str)
return string.format(“%q”, Str)

end

return Util

242

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 242

The UtilTest.lua calling script contains this:

require(“Util”)
print(Util.Quote(‘Natty “Pathfinder” Bumppo’))

In this case, the namespace table Util is created as a global variable. By convention, it is also returned
from the module. If more than one module is to add fields to the namespace table, it is important not to
overwrite it. Find the following line:

Util = {}

And replace it with this:

Util = Util or {}

You need to do this in each module that adds fields to the Util table.

A module can add one or more fields into a standard library namespace. In this case, there is some merit
in conforming to the naming conventions used in the namespace. Here is the Quote example applied to
the standard string table (notice that the function is given an all-lowercase name). The Util.lua mod-
ule script now contains the following:

function string.quote(Str)
return string.format(“%q”, Str)

end

return string

The UtilTest.lua test script contains this:

require(“Util”)
print(string.quote(‘Natty “Pathfinder” Bumppo’))

A module does not have to create any global variables. Here is the Quote example using a local name-
space table. The Util.lua module script contains the following:

local Util = {}

function Util.Quote(Str)
return string.format(“%q”, Str)

end

return Util

The UtilTest.lua calling script contains this:

Utility = require(“Util”)
print(Utility.Quote(‘Natty “Pathfinder” Bumppo’))

In this case, the namespace table must be returned by the module; otherwise, it would not be accessible
to the program which requires it. Of course, nothing prevents the requiring program itself from assign-
ing the namespace table to a global variable.

243

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 243

Avoiding Global Variables
Good modularization technique requires that you channel all access to your module through its inter-
face. Creating global variables in a module exposes a part of its implementation and, because these vari-
ables are subject to modification outside the module itself, increases the chance of hard-to-track bugs.
What methods can you use to avoid inadvertently creating globals?

Using the strict Module
One technique is to use the strict.lua module, which is included in the etc directory of the Lua
source distribution. Copy this file to the module directory you set up earlier in this chapter so that it can
be loaded with a call to require. Here’s an example of its use:

require “strict”

local function Test()
A = 2
B = 3

end

A = 1
Test()

Running this script results in the following error message:

assign to undeclared variable ‘B’

The assignment to A in function Test was okay, but the assignment to B was not. When using the
strict module, global variables must be first assigned at the main level of the chunk. This is what the
line does, which makes the subsequent reassignment of A in Test work fine:

A = 1

Reporting All Global Assignments
You can use the Lua compiler to list the virtual machine instructions of your program. Here’s an exam-
ple of how to do this using the show.lua script:

luac –l –p show.lua

This results in a flurry of lines that look like the following:

6 [104] MOVE 8 2 0
7 [104] CALL 4 5 1
8 [105] GETGLOBAL 4 1 ; ipairs
9 [105] MOVE 5 3 0
10 [105] CALL 4 2 5
11 [105] TFORPREP 4 11 ; to 23

The SETGLOBAL instruction indicates the assignment of a global variable. You can simply filter out
everything except these SETGLOBAL instructions using grep, like this:

luac -l –p show.lua | grep SETGLOBAL

244

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 244

On the Windows platform where grep isn’t available by default, you can try the following command:

luac –l –p show.lua | find “SETGLOBAL”

This generates the following output, which confirms that there are no global assignments other than the
intended ones:

10 [95] SETGLOBAL 3 0 ; ObjectDescribe
12 [102] SETGLOBAL 3 1 ; ObjectShow

The module Function
You can modularize a Lua script by calling the module function. Calling this function simplifies the pro-
cess of modularizing your Lua code by creating a namespace table and effectively placing all global vari-
ables into this table.

Try It Out Using the module Function
1. Modify Util.lua so that it contains the following:

local format = string.format

module(...)

function Quote(Str)
return format(“%q”, Str)

end

2. The calling script UtilTest.lua contains:

require(“Util”)
print(Util.Quote(‘Natty “Pathfinder” Bumppo’))

3. Invoke the script in the usual way:

lua UtilTest.lua

The result is a quoted version of the specified string:

“Natty \”Pathfinder\” Bumppo”

How It Works
A number of things happen with the module function behind the scenes. Here is a summary of how it
works:

1. The require function is called with the “Util”string.

2. require resolves this by locating and loading “Util.lua” as a chunk and calling it with the
single “Util”argument.

245

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 245

3. The first statement to be executed in the module is the assignment of string.format to the
local variable format. This is needed because the subsequent call to module will make all global
variables inaccessible. Recall that Lua resolves references to global variables (that is, variables
that are not introduced with the local keyword) in the global environment. By default, every
function and chunk is associated with a common global environment, but you can change this
programmatically.

4. module is called with the “Util” string because, in this context, the vararg expression ...
holds everything that the chunk itself received when it was called by the require function.

5. module creates a namespace table with the name Util in the current global environment.

6. module changes the environment of the chunk to this newly created namespace table.

7. After module returns, the chunk creates the Quote function and gives it the name Quote
in its global environment. Because of the machinations of module, this is not the original
environment — it’s the table that has the name Util in the original environment.

8. The string formatting function is called. However, Lua is now resolving all global variables in
the new namespace table, which doesn’t contain string.format, so the local variable that
points to this function has to be used.

9. require returns with the net effect that a new global variable named Util has been created.

It would be tedious if, before calling module, you needed to make a local copy of every global variable
that you were going to access. You could instead make a local copy of the namespaces you were going to
use, like this:

local string = string
local table = table

Lua allows you to take this to the next step, and make a local copy of the entire global environment. To
do this, you add the following to the Util.lua file:

local _G = _G

module(...)

function Quote(Str)
return _G.string.format(“%q”, Str)

end

Now you can access the members of the original environment within the local table _G.

Alternatively, you can dispense with the local copy altogether and arrange to have Lua look for global
variables in the original environment by means of a metatable. (Metatables and metamethods will be
explained in Chapter 11.) The most convenient way to set this up is to pass the function
package.seeall as a second argument to module, like this:

module(..., package.seeall)

function Quote(Str)
return string.format(“%q”, Str)

end

246

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 246

The arguments to module can include, after the module name, zero or more functions. After module
creates the new namespace table, it calls each of these functions in turn with the namespace table as an
argument. package.seeall creates a metatable for the namespace table that is passed to it, and sets
the index metamethod to look for missing fields in the global environment. In the previous example,
string is missing from the module’s global environment, so Lua successfully looks for it in the original
environment.

C Modules
Lua modules are not restricted to Lua scripts. One of the defining aspects of Lua is its ability to interop-
erate smoothly with bindings written in C or some other low-level language. Bindings of this type must
be built to conform with platform-dependent library requirements and with Lua’s C programming inter-
face. This feature allows Lua to act as an intermediary between the scripts you write and a vast collec-
tion of libraries that perform tasks such as network communication, document preparation, and user
interface management. This topic is discussed in more detail in Chapters 9 and 13.

If the require function fails to locate a matching file using LUA_PATH, it uses a similar approach to
locate a compiled library. When searching for a library, require employs the same pattern substitution
method as before but uses the LUA_CPATH environment variable. If it finds a match, it calls on the operat-
ing system to load the library. If this succeeds, it then locates and calls the function with the name
formed by prepending luaopen_ to the name of the module you are requiring. The require function
has additional nuances which allow you to bundle submodules into a module and to accommodate ver-
sioned modules; these techniques are described in the Lua manual.

Summary
In this chapter, you’ve learned about the following:

❑ Program modularization

❑ The importance of adhering to an established module interface

❑ The possibility of modifying a module’s implementation without breaking the programs that
use it

❑ Lua’s support for modules using the require and module functions

❑ Lua’s method of locating and loading modules

Modules form the basis of a large number of Lua libraries and community libraries, which are discussed
in the proceeding chapters. But before you go on, try out the concepts you learned in this chapter in the
following exercises.

Exercises
1. In subsequent chapters, the show module will be used to provide insight into data structures

managed by your programs. Convert the module into one that returns a table with the functions
Describe and Show.

247

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 247

2. Imagine a Lua script named nomod.lua with the following contents:

error(“cannot find module “)

Assuming there is no file named xyz.lua in the current directory, what happens when the fol-
lowing script is run?

package.path = “?.lua;nomod.lua”

require “xyz”

print(“Here in test.lua”)

248

Chapter 7: Using Modules

10_069172 ch07.qxp 1/2/07 8:07 PM Page 248

8
Extending Lua’s Behavior

with Metamethods

You use metatables and metamethods mainly to create what can, loosely speaking, be described as
user-defined types. For example, if you have defined a table that represents a number-like value,
metamethods let you use arithmetical operators with it as though it really were a number. In this
chapter, you learn how to do the following:

❑ Use operators with types that they normally don’t work with

❑ Control what happens when a table is indexed or a table field is assigned to

❑ Customize how a value is converted to a string

Using Concatenation and Arithmetical
Operators on Tables

If you use tables as operands to the concatenation operator, you get the following error:

> A, B = {}, {}
> print(A .. B)
stdin:1: attempt to concatenate global ‘A’ (a table value)
stack traceback:

stdin:1: in main chunk
[C]: ?

There’s a way to override this, though, so the concatenation operator is handled by a function that
you define.

11_069172 ch08.qxp 1/2/07 8:19 PM Page 249

Try It Out Splicing Two Arrays with the Concatenation Operator
1. Define the function MakeSpliceArr and its upvalue SpliceMeta as follows (notice that

SpliceMeta’s field __concat starts with two underscores):

do
local SpliceMeta -- SpliceMeta needs to be in
-- SpliceMeta.__concat’s scope.

SpliceMeta = {
-- Makes a new array by splicing two arrays together:
__concat = function(ArrA, ArrB)
assert(type(ArrA) == “table” and type(ArrB) == “table”)
local Ret = setmetatable({}, SpliceMeta)
for I, Elem in ipairs(ArrA) do
Ret[I] = Elem

end
local LenA = #ArrA
for I, Elem in ipairs(ArrB) do
Ret[LenA + I] = Elem

end
return Ret

end}

-- Takes an array, returns that array after giving it a
-- metamethod that makes it “spliceable” with the
-- concatenation operator:
function MakeSpliceArr(Arr)
return setmetatable(Arr, SpliceMeta)

end
end

2. Use it to make two spliceable arrays:

-- Note -- curly braces, not parentheses:
A = MakeSpliceArr{“alpha”, “bravo”, “charlie”}
B = MakeSpliceArr{“x-ray”, “yankee”, “zulu”}

3. Concatenate them and look at the result:

C = A .. B
for I, Elem in ipairs(C) do
print(I, Elem)

end

You should see the following:

1 alpha
2 bravo
3 charlie
4 x-ray
5 yankee
6 zulu

250

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 250

How It Works
Every table in Lua (actually every value, but more on that later) can have something called a metatable.
By default, a table does not have a metatable. The built-in setmetatable function gives its first argu-
ment a metatable (its second argument), and then returns the first argument. Using setmetatable, the
MakeSpliceArr function sets the SpliceMeta table as the metatable of the array given to it:

function MakeSpliceArr(Arr)
return setmetatable(Arr, SpliceMeta)

end

A and B therefore both have the same metatable. When Lua sees you concatenating A and B, it checks to see
if they are both strings or numbers. Because they aren’t, normal string concatenation can’t be done, so it
looks to see if the first operand has a metatable, and if that metatable has a field called __concat (two
underscores), and if that field contains a function. Because this all checks out, it calls __concat with the
first and second operands as arguments, and uses __concat’s result as the result of the .. operator.

A metatable’s __concat field is an example of a metamethod.

The __concat function defined in the example splices the two arrays given to it, creating a new array
that has all elements of the first, then the second array, in order. This new array is given the SpliceMeta
metatable, so that it will have the same behavior with the concatenation operator:

> for I, Elem in ipairs(C .. C) do
>> print(I, Elem)
>> end
1 alpha
2 bravo
3 charlie
4 x-ray
5 yankee
6 zulu
7 alpha
8 bravo
9 charlie
10 x-ray
11 yankee
12 zulu

This is why local SpliceMeta and the assignment of the table to SpliceMeta are separated into two
statements. If they were one statement, then SpliceMeta’s scope wouldn’t begin until the next state-
ment, and the SpliceMeta used inside __concat would be global.

Because the first operand’s __concat metamethod is used if it has one, the second operand doesn’t have
to have one. For example:

> for I, Elem in ipairs(A .. {“delta”, “echo”, “foxtrot”}) do
>> print(I, Elem)
>> end
1 alpha
2 bravo
3 charlie

251

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 251

4 delta
5 echo
6 foxtrot

If the first operand has no __concat metamethod but the second one does, then that metamethod is
used (but the left operand is still the metamethod’s first argument), as follows:

> for I, Elem in ipairs({“uniform”, “victor”, “whiskey”} .. B) do
>> print(I, Elem)
>> end
1 uniform
2 victor
3 whiskey
4 x-ray
5 yankee
6 zulu

Only if neither operand has a __concat metamethod do you get an error for attempting to concatenate
a table.

If more than two tables are concatenated, then (assuming no parentheses are used) at least one of the last
two has to have a __concat metamethod. This works because SpliceMeta.__concat’s result itself has
a __concat metamethod. It depends on the last two operands rather than the first two because concate-
nation is right associative. Here’s an example of multiple concatenated tables:

> A, B, C, D = {“a”}, {“b”}, {“c”}, {“d”}
> Test = MakeSpliceArr(A) .. B .. C .. D
stdin:1: attempt to concatenate global ‘C’ (a table value)
stack traceback:

stdin:1: in main chunk
[C]: ?

> Test = A .. MakeSpliceArr(B) .. C .. D
stdin:1: attempt to concatenate global ‘C’ (a table value)
stack traceback:

stdin:1: in main chunk
[C]: ?

> Test = A .. B .. MakeSpliceArr(C) .. D
> Test = A .. B .. C .. MakeSpliceArr(D)

To take away a value’s metatable, give setmetatable a second argument of nil:

> A = MakeSpliceArr{“alpha”, “bravo”, “charlie”}
> setmetatable(A, nil)
> A2 = A .. A
stdin:1: attempt to concatenate global ‘A’ (a table value)
stack traceback:

stdin:1: in main chunk

To retrieve a value’s metatable, use getmetatable (it returns nil if its argument has no metatable):

> A = MakeSpliceArr{“alpha”, “bravo”, “charlie”}
> SpliceMeta = getmetatable(A)
> for K, V in pairs(SpliceMeta) do print(K, V) end
__concat function: 0x807ce78

252

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 252

Don’t make the terminological mistake of saying that a table is a metatable when you mean that it has a
metatable. (For example, MakeSpliceArr does not return a metatable — it returns a table that has a
metatable.) A table and its metatable are generally two different tables, though there’s nothing prevent-
ing a table from having itself as a metatable.

There are metamethods for all of Lua’s operators except the Boolean ones (and, or, and not). In the next
Try It Out, you use arithmetical metamethods to define a simple implementation of rational numbers.
Unlike the floating-point numbers that Lua normally uses, rational numbers can represent quantities like
ƒ1⁄3 and ƒ1⁄5 with perfect accuracy.

Try It Out Defining Rational Numbers
1. Save the following as rational.lua:

-- A basic rational number implementation.

-- Returns A and B’s greatest common divisor:
local function GetGcd(A, B)
local Remainder = A % B
return Remainder == 0 and B or GetGcd(B, Remainder)

end

-- Metamethods:

local function Add(A, B)
return MakeRat(A.Numer * B.Denom + B.Numer * A.Denom,
A.Denom * B.Denom)

end

local function Sub(A, B)
return A + -B

end

local function Mul(A, B)
return MakeRat(A.Numer * B.Numer, A.Denom * B.Denom)

end

local function Div(A, B)
assert(B.Numer ~= 0, “Divison by zero”)
return A * MakeRat(B.Denom, B.Numer)

end

local function Unm(A)
return MakeRat(-A.Numer, A.Denom)

end

local function ToString(Rat)
return Rat.Numer .. “/” .. Rat.Denom

end

local RatMeta = {
__add = Add,
__sub = Sub,
__mul = Mul,

253

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 253

__div = Div,
__unm = Unm,
__tostring = ToString,

}

-- The three global functions supplied by this library:

-- Instantiates a rational number:
function MakeRat(Numer, Denom)
Numer, Denom = tonumber(Numer), tonumber(Denom)
assert(Denom ~= 0, “Denominator must be nonzero”)
assert(Numer == math.floor(Numer) and Denom == math.floor(Denom),
“Numerator and denominator must be integers”)

-- Make sure the denominator is positive:
if Denom < 0 then
Numer, Denom = -Numer, -Denom

end
-- Reduce the fraction to its lowest terms:
local Gcd = GetGcd(Numer, Denom)
local Rat = {
Numer = Numer / Gcd,
Denom = Denom / Gcd}

return setmetatable(Rat, RatMeta)
end

-- Instantiates a rational number from a string of the form
-- “numerator/denominator”:
function r(Str)
local Numer, Denom = string.match(Str, “^(%-?%d+)%/(%-?%d+)$”)
assert(Numer, “Couldn’t parse rational number”)
return MakeRat(Numer, Denom)

end

-- Converts a rational to a (floating-point) number:
function RatToNumber(Rat)
return Rat.Numer / Rat.Denom

end

2. Require the file and multiply two rational numbers:

> require(“rational”)
> print(r”2/3” * r”1/10”)
1/15

3. Add the floating-point approximation of ƒ1⁄3 to itself 300000 times:

> FloatAcc = 0
> for I = 1, 300000 do
>> FloatAcc = FloatAcc + 1 / 3
>> end
> print(FloatAcc)
99999.999999689

254

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 254

4. Add the rational number ƒ1⁄3 to itself 300000 times:

> RatAcc = r”0/1”
> OneThird = r”1/3”
> for I = 1, 300000 do
>> RatAcc = RatAcc + OneThird
>> end
> print(RatAcc)
100000/1

5. Verify that the result is exactly 100000:

> print(RatToNumber(RatAcc) == 100000)
true

6. Print the rational number ƒ15⁄100:

> Rat = r”15/100”
> print(Rat) -- Will be reduced to lowest terms.

7. Print the negative version of the previous rational number:

> print(-Rat)
-3/20

How It Works
A rational number is just a fraction — a numerator over a denominator. It is represented as a table with
Numer and Denom fields and a metatable with __add (addition), __sub (subtraction), __mul (multiplica-
tion), __div (division), and __unm (unary minus) metamethods. (Like __concat, these and all other
metamethods start with two underscores.)

In the following part of the Try It Out, r”2/3” and r”1/10” create the rational numbers two thirds and
one tenth:

> print(r”2/3” * r”1/10”)
1/15

The function is called r to minimize the typing needed for rational “literals.” Remember also that
r”2/3” means the same thing as r(“2/3”).

When these two rational numbers are multiplied, what happens is basically the same as what happened
in the previous concatenation example: Lua sees that they are tables (rather than numbers), so it looks
for a __mul metamethod, finds one in the left operand, and calls it with both operands as arguments.
This metamethod returns the result (one fifteenth). As it does with all values, print runs this result
through tostring, which sees the __tostring metamethod and uses it to do the conversion. (More
on __tostring later.)

The FloatAcc section of the example initializes an accumulator to 0 and increments it 300000 times by the
floating-point approximation of ƒ1⁄3. The inaccuracy snowballs, as shown by the final value of FloatAcc:

> FloatAcc = 0
> for I = 1, 300000 do
>> FloatAcc = FloatAcc + 1 / 3

255

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 255

>> end
> print(FloatAcc)
99999.999999689

The RatAcc section, on the other hand, shows no loss of accuracy:

> RatAcc = r”0/1”
> OneThird = r”1/3”
> for I = 1, 300000 do
>> RatAcc = RatAcc + OneThird
>> end
> print(RatAcc)
100000/1
> print(RatToNumber(RatAcc) == 100000)
true

You may have noticed that the RatAcc loop took longer to run than the FloatAcc loop. Floating-point
numbers will always be faster than rational numbers because your computer includes dedicated hard-
ware to do floating-point math, but in the interest of simplicity, this rational number library makes no
special effort to narrow the speed gap.

The __add, __sub, __mul, and __div metamethods all handle binary operators, so they take two argu-
ments. The __unm metamethod handles a unary operator, so it takes one argument:

> Rat = r”15/100”
> print(Rat) -- Will be reduced to lowest terms.
3/20
> print(-Rat)
-3/20

The __pow, __mod, and __len metamethods define the behavior of the ^ (exponentiation), % (modulo),
and # (length) operators. All of these metamethods (the arithmetical ones, __concat, and __len) are not
for redefining behavior that already exists, but for adding new behavior. Normally, you can’t use a table
as an operand to an arithmetical operator or the concatenation operator, so you would use metamethods
to define its behavior with these operators. But a table’s behavior with the length operator is already
defined, so giving a table a __len metamethod has no effect, as shown here:

> T = {“one”, “two”, “three”, [1000] = “one thousand”}
> print(table.maxn(T))
1000
> setmetatable(T, {
>> __len = function(T) return table.maxn(T) end})
> print(#T)
3

Lua does pay attention to a __len metamethod if it belongs to a value for which the length operator is
not already defined (i.e., something other than a table or string). Giving metatables to values other than
tables will be covered later in this chapter.

256

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 256

Relational Metamethods
You can use metamethods to make rational numbers work with equality and inequality operators
(== and ~=) and other relational operators (<, >, <=, and >=). To do this, add appropriate __eq (equal)
and __lt (less than) metamethods, like this:

local function Unm(A)
return MakeRat(-A.Numer, A.Denom)

end

local function Eq(A, B)
-- This and Lt work because MakeRat always makes sure the
-- denominator is positive and reduces to lowest terms:
return A.Numer == B.Numer and A.Denom == B.Denom

end

local function Lt(A, B)
local Diff = A - B
return Diff.Numer < 0

end

local function ToString(Rat)
return Rat.Numer .. “/” .. Rat.Denom

end

local RatMeta = {
__add = Add,
__sub = Sub,
__mul = Mul,
__div = Div,
__unm = Unm,
__eq = Eq,
__lt = Lt,
__tostring = ToString,

}

Remember, to see these changes you’ll need to set package.loaded.rational to nil, or use
dofile(“rational.lua”) instead of require(“rational”), or restart Lua.

The __eq (equal) and __lt (less than) metamethods are enough to define all the relational operators.
The inequality operator produces the opposite of the __eq result, and the greater-than operator pro-
duces the __lt result after swapping the operands. For example:

> print(r”20/100” == r”2/10”)
true
> print(r”20/100” ~= r”2/10”)
false
> print(r”7/16” < r”1/2”)
true
> print(r”7/16” > r”1/2”)
false

The less-than-or-equal and greater-than-or-equal operators are also defined in terms of __lt— for
example, A <= B is defined as not (B < A)— unless there’s an __le (less than or equal) metamethod.

257

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 257

Rational numbers have what mathematicians call a total order. This means that if two rational numbers
are not equal, then one is less than the other. If you want to compare things for which this is not true,
you need to define __le in addition to __lt. For example, imagine you’re working with values that
“represent shapes on a two-dimensional surface. A handy interpretation of <= would be “is contained
within,” so that A <= B means “is every point in A also in B?” This is not a total order, because if A con-
tains points not in B and B contains points not in A, then both A <= B and B <= A are false. Therefore, such
shapes would need __le (is A contained in B), __lt (is A contained in B but not identical with it), and
__eq (is A identical with B).

The __eq metamethod is only consulted when the values being compared meet all of these criteria:

❑ They are both tables, or they are both full userdatas (discussed later in this chapter).

❑ They are not the same value

❑ They have the same __eq metamethod.

If any one of these three conditions is not true, then the values are compared as if they had no __eq
metamethods.

The rawequal function does a test for equality that bypasses any __eq metamethods that may be pre-
sent. For example:

> Rat1, Rat2 = r”22/7”, r”22/7”
> print(Rat1 == Rat2) -- __eq says they’re equal,
true
> print(rawequal(Rat1, Rat2)) -- but they’re different tables.
false

The __lt and __le metamethods are only consulted when the values being compared meet all of these
criteria:

❑ They are the same type.

❑ They are neither numbers nor strings.

❑ They have the same __lt (__le) metamethod.

If any one of these three of these conditions is not true, then an error occurs.

These conditions (for when __eq, __lt, and __le are used) are stricter than those for the other opera-
tor metamethods because the relational operators themselves are stricter. For example, all of the nonrela-
tional binary operators can, even without metamethods, be used with mixed types (strings and
numbers), but using <, >, <=, or >= to compare a string and a number is an error.

Indexing and Call Metamethods
There are metamethods that allow you to control what happens when something is indexed, when it is
on the left side of an indexing assignment, or when it is called. In the following Try It Out, you use the
indexing and indexing assignment metamethods when defining a table that considers two keys the same
if they differ only in case.

258

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 258

Try It Out Defining Case-Insensitive Tables
1. Define the MakeIgnoreCase function, along with its helper functions and metatable, as follows:

do
-- Returns Val after (if it’s a string) lowercasing it:
local function Lower(Val)
if type(Val) == “string” then
Val = string.lower(Val)

end
return Val

end

local Meta = {
__newindex = function(Tbl, Key, Val)
rawset(Tbl, Lower(Key), Val)

end,
__index = function(Tbl, Key)
return rawget(Tbl, Lower(Key))

end}

-- Returns a new table with a metatable that makes its
-- keys case-insensitive:
function MakeIgnoreCase()
return setmetatable({}, Meta)

end
end

2. Make a case-insensitive table, assign a value to its abc field, and then verify that the value is
accessible from the ABC, Abc, and abc fields:

> Tbl = MakeIgnoreCase()
> Tbl.abc = 1
> print(Tbl.ABC, Tbl.Abc, Tbl.abc)
1 1 1

3. Assign a different value to the table’s Abc field, and then verify that the new value is accessible
from the ABC, Abc, and abc fields:

> Tbl.Abc = 2
> print(Tbl.ABC, Tbl.Abc, Tbl.abc)
2 2 2

4. Assign another value to the table’s ABC field, and then verify that the new value is accessible
from the ABC, Abc, and abc fields:

> Tbl.ABC = 3
> print(Tbl.ABC, Tbl.Abc, Tbl.abc)
3 3 3

5. Loop through the table, verifying that it only has one field, not three:

> for K, V in pairs(Tbl) do print(K, V) end
abc 3

259

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 259

How It Works
The metamethod for indexing assignment (setting a key to a value) is __newindex. When Lua sees
Tbl.abc = 1, it checks to see whether Tbl already has an abc field. It doesn’t, but it does have a
__newindex metamethod, so instead of putting the abc = 1 key-value pair directly into Tbl, Lua
calls __newindex with three arguments: Tbl, “abc”, and 1. After making sure that “abc” is all lower-
case, __newindex needs to set Tbl.abc to 1. It can’t do this with a regular indexing assignment (that
would cause infinite recursion), so it uses the function rawset, which sets a table’s key to a value but
bypasses the table’s __newindex metamethod (if present).

The metamethod for indexing (getting a key’s value) is __index. When Lua sees print(Tbl.ABC), it
checks to see whether Tbl already has an ABC field. It doesn’t, but it does have an __index metamethod,
so instead of giving a result of nil, Lua calls __index with two arguments: Tbl and “ABC”. After lower-
casing “ABC”, __index gets the value of Tbl.abc (using rawget to avoid infinite recursion). This value
is what is printed.

The pairs loop shows that even after setting the “abc”, “Abc”, and “ABC” keys there’s only one key in
the table:

> for K, V in pairs(Tbl) do print(K, V) end
abc 3

pairs and ipairs both bypass a table’s __index metamethod. That’s the desired behavior here, but if
you want something different, you can write your own replacements for pairs, next (the iterator used
by pairs), and ipairs. There’s an example of this later in this chapter.

The__newindex and __index methods are only called when the given key isn’t in the table. To demon-
strate this, put the following debugging statements into them:

local Meta = {
__newindex = function(Tbl, Key, Val)
print(“__newindex:”, Tbl, Key, Val)
rawset(Tbl, Lower(Key), Val)

end,
__index = function(Tbl, Key)
print(“__index:”, Tbl, Key)
return rawget(Tbl, Lower(Key))

end}

Now you can see when the__newindex and __index methods are called:

> Tbl = MakeIgnoreCase()
> Tbl.abc = 1 -- Calls __newindex because there’s no Tbl.abc.
__newindex: table: 0x4961e8 abc 1
> Tbl.abc = 2 -- Doesn’t call __newindex since Tbl.abc exists.
> print(Tbl.ABC) -- Calls __index because there’s no Tbl.ABC.
__index: table: 0x4961e8 ABC
2
> print(Tbl.abc) -- Doesn’t call __index because Tbl.abc exists.
2

260

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 260

This is fine for the case-insensitive table, but in other situations, you might want __newindex and
__index to always be called. The way to do this is to give the metamethods to a proxy table, which is a
table that always stays empty. The next example uses this technique. It’s a table that remembers the
order in which things were put into it.

Try It Out Employing Ordered Tables
1. Save the following as orderedtbl.lua:

-- “Ordered tables” -- they remember the order in which
-- things are put into them.

local RealTbls = {} -- Keys: proxy tables; values: the real
-- tables.

local NumToKeys = {} -- Keys: proxy tables; values: arrays
-- of real tables’ keys, in order.

local KeyToNums = {} -- Keys: proxy tables; values: tables
-- mapping real tables’ keys to their (order) numbers.

-- Does the bookkeeping necessary to add a key and its order
-- to the real table (or update/delete a key):
local function __newindex(Proxy, Key, Val)
local RealTbl = RealTbls[Proxy]
local NumToKey = NumToKeys[Proxy]
local KeyToNum = KeyToNums[Proxy]
if RealTbl[Key] == nil then
-- This is a new key. Only add it if the value’s
-- non-nil:
if Val ~= nil then
-- Record the value:
RealTbl[Key] = Val
-- Record the order:
NumToKey[#NumToKey + 1] = Key
KeyToNum[Key] = #NumToKey

end
else
-- This is an already existing key.
if Val ~= nil then
-- Record the new value:
RealTbl[Key] = Val

else
-- Delete it:
RealTbl[Key] = nil
local Num = KeyToNum[Key]
KeyToNum[Key] = nil
-- table.remove will shift down anything in NumToKey
-- that’s higher than Num, but it needs to be done by
-- hand for KeyToNum:
if Num < #NumToKey then
for SomeKey, SomeNum in pairs(KeyToNum) do
if SomeNum > Num then
KeyToNum[SomeKey] = SomeNum - 1

end
end

end
table.remove(NumToKey, Num)

261

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 261

end
end

end

-- Returns Key’s value in the real table:
local function __index(Proxy, Key)
return RealTbls[Proxy][Key]

end

-- An iterator that iterates through all the real table’s
-- key-value pairs in the correct order:
local function __next(Proxy, PrevKey)
assert(type(Proxy) == “table”, “bad argument to ‘next’”)
local RealTbl = RealTbls[Proxy]
local NumToKey = NumToKeys[Proxy]
local KeyToNum = KeyToNums[Proxy]
-- This will be 0 only if PrevKey is the seed value nil:
local PrevNum = KeyToNum[PrevKey] or 0
local Key = NumToKey[PrevNum + 1]
return Key, RealTbl[Key]

end

local RealIpairs = ipairs

-- Returns an ipairs iterator for the real table:
local function __ipairs(Proxy)
return RealIpairs(RealTbls[Proxy])

end

-- The metatable:
local OrderMeta = {__newindex = __newindex, __index = __index,
__next = __next, __ipairs = __ipairs}

local RealNext = next

-- A metatable-aware replacement for next:
function next(Tbl, Key)
local Meta = getmetatable(Tbl)
if Meta and Meta.__next then
return Meta.__next(Tbl, Key)

else
return RealNext(Tbl, Key)

end
end

-- A metatable-aware replacement for pairs:
function pairs(Tbl)
-- The real pairs only needs to be replaced because it
-- returns its own copy of next unaffected by our
-- replacement.
assert(type(Tbl) == “table”, “bad argument to ‘pairs’”)
return next, Tbl, nil

end

-- A metatable-aware replacement for ipairs:

262

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 262

function ipairs(Tbl)
local Meta = getmetatable(Tbl)
if Meta and Meta.__ipairs then
return Meta.__ipairs(Tbl)

else
return RealIpairs(Tbl)

end
end

-- Returns a table that remembers the order in which keys
-- are added to it:
function MakeOrderedTbl()
local RealTbl, Proxy = {}, {}
RealTbls[Proxy] = RealTbl
-- The following two tables are two complementary ways of
-- recording the order that keys are added in:
NumToKeys[Proxy] = {}
KeyToNums[Proxy] = {}
return setmetatable(Proxy, OrderMeta)

end

2. Require the file, make an ordered table, and give it some key-value pairs:

> require(“orderedtbl”)
> Tbl = MakeOrderedTbl()
> Tbl.John = “rhythm guitar”
> Tbl.Paul = “bass guitar”
> Tbl.George = “lead guitar”
> Tbl.Ringo = “drumkit”

3. Verify that the pairs are looped through in the same order in which they were added:

> for Name, Instr in pairs(Tbl) do print(Name, Instr) end
John rhythm guitar
Paul bass guitar
George lead guitar
Ringo drumkit

4. Change one key’s value and verify that the pairs are still in the same order:

> Tbl.George = “lead guitar, sitar”
> for Name, Instr in pairs(Tbl) do print(Name, Instr) end
John rhythm guitar
Paul bass guitar
George lead guitar, sitar
Ringo drumkit

5. Remove one key and verify that the remaining pairs are still in the same order:

> Tbl.Paul = nil -- I buried Paul.
> for Name, Instr in pairs(Tbl) do print(Name, Instr) end
John rhythm guitar
George lead guitar, sitar
Ringo drumkit

263

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 263

How It Works
pairs iterates through the Tbl pairs in the same order as they were added. If you modify a key’s value,
the order is not changed, and you can delete a key by setting its value to nil. Most of the hard work is
done by __newindex. Because the proxy table is always empty, every attempt to do indexing assign-
ment on it is routed through __newindex, which keeps the following three tables for each proxy table:

❑ RealTbls[Proxy]: The real table that corresponds to the proxy table — it contains all the key-
value pairs, in the usual order.

❑ NumToKeys[Proxy]: An array of the RealTbls[Proxy] keys, in order of addition.

❑ KeyToNums[Proxy]: A mapping of all the keys to their positions in NumToKeys[Proxy].

RealTbls[Proxy] is necessary for retrieving a value given its key, NumToKeys[Proxy] is necessary for
looping through the keys in order, and KeyToNums[Proxy] is necessary for finding a given key’s posi-
tion in NumToKeys[Proxy] (for iteration, and also for modification or deletion of already existing pairs).

The __next metamethod is an iterator that uses these tables to iterate in the desired order. Lua itself knows
nothing about a __next metamethod — the only thing that knows about it is orderedtbl.lua’s replace-
ment for next (which, in turn, is what the pairs replacement returns). Similarly, Lua itself neither defines
nor looks for an __ipairs metamethod — the only thing that knows about it is the ipairs replacement.
(There’s nothing that requires __next and __ipairs to start with two underscores, but it makes it easier to
see that they’re metamethods.) These next and ipairs replacements still work with regular tables. If they
don’t find the metamethods they look for, they use the real next and ipairs (stored as upvalues).

There’s a problem with orderedtbl.lua. The tables RealTbls, NumToKeys, and KeyToNums get
bigger (consuming more memory) every time MakeOrderedTbl is called, but they never get smaller,
even when the table returned by MakeOrderedTbl is no longer in use. This is called a memory leak,
and a fix for it, using the __mode metamethod, is shown in Chapter 10.

Both __newindex and __index can be tables. As such, you can use them instead of the table being
indexed like this:

> TblA, TblB = {}, {}
> setmetatable(TblB, {__newindex = TblA, __index = TblA})
> TblB[1] = “one”
> print(TblB[1])
one
> -- It’s not really in TblB:
> print(rawget(TblB, 1))
nil
> -- It’s really in TblA:
> print(TblA[1])
one

If __newindex and/or __index are tables that themselves have indexing metamethods, these are used.
That means that one table can get some of its values from another table, which gets some of its values
from another, and so on. This is called inheritance and is illustrated in the following example:

> TblA = {“one”, “two”, “three”, “four”, “five”, “six”}
> TblB = {[3] = “III”, [4] = “IV”, [5] = “V”, [6] = “VI”}
> -- Make TblB inherit from TblA:

264

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 264

> setmetatable(TblB, {__index = TblA})
> TblC = {[5] = “*****”, [6] = “******”}
> -- Make TblC inherit from TblB:
> setmetatable(TblC, {__index = TblB})
> -- TblC thus indirectly inherits from TblA:
> for I = 1, 6 do print(I, TblC[I]) end
1 one
2 two
3 III
4 IV
5 *****
6 ******

This can twist and turn through up to 100 tables (or more if you recompile Lua with a higher value for
MAXTAGLOOP).

Other than __tostring (and the __next and __ipairs metamethods defined in orderedtbl.lua), all
of the metamethods you’ve seen so far are syntactical metamethods, which means they correspond to syn-
tactical constructs (all of the operators, plus indexing and indexing assignment). Another syntactical
metamethod yet to be covered is __call. This metamethod controls what happens when something
other than a function is called. For instance, if a table has the __call method given in the following
example, then calling it (as though it were a function) returns true if all the arguments are keys in it
with true values, and false otherwise:

> CallMeta = {
>> -- Are all of the arguments true-valued keys in Tbl?
>> __call = function(Tbl, ...)
>> for I = 1, select(“#”, ...) do
>> if not Tbl[select(I, ...)] then
>> return false -- NON-STRUCTURED EXIT: FOUND A KEY
>> -- WITH A NON-TRUE VALUE.
>> end
>> end
>> return true
>> end}
> Tbl = {John = “rhythm guitar”, Paul = “bass guitar”,
>> George = “lead guitar”, Ringo = “drumkit”}
> setmetatable(Tbl, CallMeta)
> -- Same truth-value as (Tbl.Paul and Tbl.John):
> print(Tbl(“Paul”, “John”))
true
> -- Same truth-value as (Tbl.Ringo and Tbl.Mick and Tbl.Keith):
> print(Tbl(“Ringo”, “Mick”, “Keith”))
false

Non-Tables with Metamethods
As mentioned earlier, all datatypes (not just tables) can have metatables. The setmetatable function
only works with tables. The metatables of other types must be set either from C or with the function
debug.setmetatable. Unlike tables, most other types have per-type metatables. This means that

265

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 265

giving a metatable to a number gives it to all numbers. In the following example, a __len metamethod
is given to numbers (where making the math.abs argument positive if it’s negative is called getting the
argument’s absolute value):

> print(#99)
stdin:1: attempt to get length of a number value
stack traceback:

stdin:1: in main chunk
[C]: ?

> debug.setmetatable(1, {__len = math.abs})
> print(#99)
99
> print(#-99)
99

Unlike setmetatable, debug.setmetatable returns a Boolean: true if it succeeded, false
otherwise.

By default, types have no metatable, except for strings, whose __index metamethod is the string table,
as shown here:

> StringMeta = getmetatable(“”)
> for Name, Meth in pairs(StringMeta) do print(Name, Meth)
> end
__index table: 0x8066f30
> print(StringMeta.__index == string)
true

This means that all the functions of the string library are available from any string. For example:

> SomeString = “some string”
> print(SomeString.char(65, 66, 67))
ABC

More usefully, it means that any string function that takes a string as its first argument (that’s almost all
of them) can be used in object-oriented style, with the string as the object and the function as its method.
For example:

> Greet = “Hello”
> print(Greet:upper())
HELLO
> FrmtStr = ‘%s’
> print(FrmtStr:format(“http://luaforge.net”, “LuaForge”))
LuaForge

A literal string can be used in this way, but only if it’s surrounded in parentheses like this:

> print((“a”):rep(5))
aaaaa

266

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 266

There’s one more type whose behavior with metatables needs special clarification. The userdata type will
be covered in Chapter 13, but it’s basically a way of exposing a C datatype (or a datatype of some other
language) to Lua. It comes in two varieties: full userdatas and light userdatas. Both varieties are identi-
fied by the type function as “userdata”, but their behavior with metatables is different. Metatable-
wise, full userdatas are similar to tables, and light userdatas are similar to nontables:

❑ Each full userdata can have its own metatable.

❑ Giving a metatable to a light userdata gives it to all light userdatas.

In Lua 5.0, only tables and full userdatas could have metatables.

Non-Syntactical Metamethods
As mentioned previously, __tostring is a non-syntactical metamethod, which means that it doesn’t
control the behavior of an operator or other syntactical construct. Instead, it controls the behavior of the
function tostring, which will always use a value’s __tostring metamethod, if present, to convert that
value to a string. In this way, __tostring is no different from __next and __ipairs, except that it is
consulted by a built-in Lua function and they are not.

One other metamethod consulted by a built-in function (or two functions, in this case) is __metatable.
If getmetatable sees that a value has a __metatable metamethod, it returns that metamethod instead
of the metatable itself. If setmetatable sees that a value has a __metatable metamethod, it triggers
an error rather than setting the metatable. A __metatable metamethod can be any type (except nil, of
course).

This is most commonly used to protect metatables from tampering. Here’s an example:

> T = setmetatable({}, {__metatable = false})
> print(getmetatable(T))
false
> T = setmetatable(T, nil)
stdin:1: cannot change a protected metatable
stack traceback:

[C]: in function ‘setmetatable’
stdin:1: in main chunk
[C]: ?

debug.setmetatable and debug.getmetatable both ignore __metatable.

The two remaining nonsyntactical metamethods defined by Lua both control garbage-collection, which is
the automatic process of reclaiming no-longer-used memory for reuse.

The __mode metamethod is for tables. It is explained in Chapter 10 (which contains a fix for the problem
with orderedtbl.lua mentioned earlier).

The __gc metamethod is for full userdatas. It is explained in Chapter 13.

267

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 267

Metamethod Applicability
You have seen a number of cases where metamethods are ignored. The following chart lists all the
metamethods defined by Lua’s core and its built-in libraries and shows which situations they are appli-
cable in.

Metamethod Applicability

__add __mod Only consulted if the syntactical construct they are for doesn’t already
__call __mul have a meaning for the given types.
__concat __pow
__div __sub
__len __unm

__eq Only consulted if both operands are the same type and have the same
__lt metamethod. Additionally, __eq is only consulted if the operands are
__le unequal tables or full userdatas; __lt and __le are only consulted if

the operands are not numbers or strings.

__index Not consulted if the given key exists.
__newindex

__tostring Consulted by tostring and getmetatable/setmetatable,
__metatable respectively.

__mode For tables only (“k”, “v”, or “kv”).

__gc For full userdatas only.

Summary
In this chapter, you were introduced to the concept of metamethods and to all the metamethods defined
by Lua’s core and its built-in libraries. Here are some highlights of what you’ve learned:

❑ You can use metamethods to give new behavior to all of the operators except for the Boolean
ones, and to table indexing, indexing assignment, and calls.

❑ Nonrelational binary metamethods are retrieved from the left operand or from the right
operand if the left one doesn’t have the appropriate metamethod.

❑ You can use proxy tables to increase the power of __newindex and __index.

❑ __newindex and __index can themselves be tables, and they can use their own indexing
metamethods (if they exist) to implement inheritance.

❑ You can also use metamethods to control how values are converted to strings and how they are
garbage-collected.

❑ Metamethods serve mainly to define new behavior, not to redefine existing behavior. Even the
exceptions to that rule are limited, which is why __eq only works with tables or full userdatas,
and why __newindex and __index only work with nonexistent keys.

268

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 268

The next chapter explains something new to add to your arsenal of control flow tools (alongside control
structures and functions). But before moving on, this chapter concludes with a couple of exercises
(answers are in the appendix).

Exercises
1. Write a metamethod that makes the unary minus operator give a reversed copy of an array:

> Arr = setmetatable({“one”, “two”, “three”}, Meta)
> for I, Val in ipairs(-Arr) do print(I, Val) end
1 three
2 two
3 one

2. Write a function that makes the table given to it read-only:

> Tbl = {“Hello”}
> Protect(Tbl)
> print(Tbl[1])
Hello
> Tbl[2] = “Goodbye”
stdin:14: attempt to assign to a protected table
stack traceback:

[C]: in function ‘error’
stdin:14: in function <stdin:13>
stdin:1: in main chunk
[C]: ?

> Tbl[1] = “Goodbye”
stdin:14: attempt to assign to a protected table
stack traceback:

[C]: in function ‘error’
stdin:14: in function <stdin:13>
stdin:1: in main chunk
[C]: ?

> setmetatable(Tbl, nil)
stdin:1: cannot change a protected metatable
stack traceback:

[C]: in function ‘setmetatable’
stdin:1: in main chunk
[C]: ?

269

Chapter 8: Extending Lua’s Behavior with Metamethods

11_069172 ch08.qxp 1/2/07 8:19 PM Page 269

11_069172 ch08.qxp 1/2/07 8:19 PM Page 270

9
Handling Events Naturally

with Coroutines

When you’re implementing an application, you, as a developer, should strive for simplicity and
generality. These qualities make a program easy to extend and maintain, and allow it to be reused
under a variety of platforms and circumstances. However, real-world requirements often conspire
to make these objectives hard to attain. In this chapter, you’ll learn how Lua coroutines provide you
with an elegant and powerful tool that can dramatically simplify certain kinds of problems. For
example, you can use coroutines to manage concurrent tasks, such as updating a progress bar and
responding appropriately to user input while transferring a file.

You also use coroutines to provide contextual continuity to functions. A routine that is called inter-
mittently as part of a continuing task may need to go to great lengths to reestablish the context of
the task — that is, to remember “where it left off.” For example, a tokenizing routine may be called
from various parts of a parsing application yet must, when it is invoked, pick up right where it left
off and return the next available token to the caller.

The event-driven nature of interactive programs can lead to logical discontinuities in the applica-
tion source code. For example, in the interest of clarity, a program should invoke a window and
wait until it is closed in much the same way that it calls a file reading routine. This way, directly
after the call to show a window, the program can take the suitable course of action depending on
the way the window is closed. However, most GUI development models don’t allow a window to
block like this. Instead, one or more functions are generally registered that are called in response to
events such as the closing of a window. This prevents a sequence of statements from including
both the display of a window and the action taken after its closure.

A number of attempts to tame problems such as these have evolved over the years with varying
levels of success. These will be discussed briefly and compared with the way you can use corou-
tines to tackle the same problems.

Coroutines and Program Control
A coroutine is a subroutine-like body into and out of which program control can flow repeatedly.

12_069172 ch09.qxp 1/2/07 8:08 PM Page 271

The essence of Lua coroutines is the way they use a familiar notation on top of a program control mecha-
nism that may appear unfamiliar. In this section, you’ll see some examples of coroutines and learn of the
special considerations you must make to use them effectively.

Coroutines Are Not Functions
In Chapter 3, you learned about Lua functions: how they are defined, how they are invoked, and how
they receive values from and return values to the caller. The general picture from that chapter is that a
function receives program control when it is called, and relinquishes control when it returns. When a
function is called, local variables and bookkeeping information are pushed onto a call stack for safekeep-
ing. When a function returns, these data are popped off of the call stack. This pattern of a call stack
growing and shrinking frame by frame provides a very logical basis for structuring a program. It models
to some extent the way people manage certain everyday tasks.

In Chapter 6, you learned about an error handling mechanism that allows this stack pattern to be cir-
cumvented, namely the protected call. In this case, the call stack grows and shrinks as usual, but when
an error occurs, the stack is truncated to the point where the protected call was made without going
through the usual function returns.

A coroutine is another mechanism that doesn’t quite fit into the familiar nested nature of function calls.
Like ordinary functions, coroutines are invoked with argument values and eventually they return val-
ues. But coroutines differ from functions in the following ways:

❑ Unlike a function, a coroutine must be specially prepared, or instantiated, before it can be acti-
vated. You use the coroutine.create function to do this.

❑ When a coroutine is invoked — that is, when it receives program control by means of the
coroutine.resume function — it operates on its own call stack, not that of its caller. A corou-
tine’s stack serves the usual purpose of keeping track of function calls and local variables. As
with an ordinary program, the use of this stack is transparent to the programmer. Although
invoking a coroutine seems like calling a function, it is more similar to starting a new program.

❑ In the absence of an error, a coroutine relinquishes control to its invoker either by yielding with
the coroutine.yield function, or by returning (either with a return statement or by reaching
the end of the coroutine body).

❑ After a coroutine returns control by yielding, it can be resumed — that is, it can be given pro-
gram control again — with the return of its call to coroutine.yield. A coroutine can yield and
be resumed repeatedly.

❑ After a coroutine terminates, it cannot be activated again. Returning from the main body of a
coroutine is much like returning from the main body of a program.

How Coroutines Are Like Programs
Even though coroutines look a lot like functions (in fact, you can use coroutine.wrap to put a function
wrapper around a coroutine), it’s beneficial to think of a coroutine as a separate program rather than as
an enhanced function. All of the operations available to an ordinary Lua program, such as creating vari-
ables and calling functions, are available to coroutines. Because each coroutine has its own call stack,
its particular statement path, or thread, is independent of the program’s initial statement path (the main
thread) and that of other coroutines. One and only one thread is active at any given time during the

272

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 272

execution of a program. To a limited extent, a useful analogy is a text editor that can have multiple files
open simultaneously. You can switch to any of the open files, but only one can be active. Similarly, a Lua
program can have many threads, but only one will be currently running.

The distinctive magic of coroutines centers on the coroutine.yield and coroutine.resume func-
tions. The coroutine.yield function may be used as a coroutine’s way of saying to its caller, “I don’t
know how long I’m going to have to sit around waiting for something interesting to happen, so I’ll let
you take control. When something happens that I should know about, wake me up from my nap and let
me know about it.” The coroutine.resume function, in this context, is the currently active thread’s
way of saying, “Hey, sleepy coroutine, wake up. Here’s something of interest for you. When you reach
another lull, let me know and I’ll take over again.”

Coroutines Transfer Control
There are alternate uses of coroutines. In another context, perhaps the transfer of a number of files, a
coroutine might call coroutine.yield as a way of saying, “I’m busy right now, but I know that other
threads are in need of some machine cycles too, so I’ll relinquish control to let them do some work.” In
this scenario, a dispatcher may resume a number of coroutines in turn to overlap multiple tasks.

Even though coroutine.yield and coroutine.resume look like ordinary functions, they map to
thread transfer operations that are very unlike ordinary functions. One very nice attribute of coroutines
in Lua is that, as a programmer, you can use familiar function notation to switch between threads,
exchanging values as you do so.

Wrapping a Coroutine
Coroutine usage can be simplified somewhat with coroutine.wrap. This function is used to instantiate
a coroutine just as coroutine.create does, but instead of returning the new coroutine itself, it returns
a function that resumes the coroutine. To resume the wrapped coroutine, either initially or after it has
yielded, you simply call the returned function with the arguments you want to pass to it. This function is
unprotected, so if an error occurs in the coroutine, the function will not return. By using the coroutine
.running function, you can identify the wrapped coroutine but, in general, if you need this value, you
are better off using unwrapped coroutines.

Coroutines Are Cooperative
Coroutines enable a program to multitask, which means it can interleave the execution of more than one
task over a period of time. Just like the main body of a program, the body of a coroutine gives every
appearance of being in complete control of the machine. However, the programmer of a coroutine knows
that other threads require time to execute too, so a coroutine is programmed to yield control at oppor-
tune times, knowing that in due course it will receive control again. In the following exercise, you learn
how to write a script that enables coroutines to cooperate.

Try It Out Learning to Cooperate
The following script demonstrates the use of coroutines to volley control back and forth cooperatively.

1. With your text editor, enter the following script:

local function KnightFnc()
print [[Knight:

The name of the song is called “HADDOCKS’ EYES.”

273

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 273

]]
coroutine.yield()
print [[Knight, looking a little vexed:

No, you don’t understand, that’s what the name is CALLED. The
name really IS “THE AGED AGED MAN.”
]]
coroutine.yield()
print [[Knight:

No, you oughtn’t, that’s quite another thing! The SONG is
called “WAYS AND MEANS,” but that’s only what it’s CALLED, you
know!
]]
coroutine.yield()
print [[Knight:

I was coming to that. The song really IS “A-SITTING ON A GATE”,
and the tune’s my own invention.
]]
end

local function Alice()
local Knight = coroutine.create(KnightFnc)

coroutine.resume(Knight)
print [[Alice, trying to feel interested:

Oh, that’s the name of the song, is it?
]]
coroutine.resume(Knight)
print [[Alice:

Then I ought to have said “That’s what the SONG is called”?
]]
coroutine.resume(Knight)
print [[Alice, completely bewildered:

Well, what IS the song, then?
]]
coroutine.resume(Knight)

end

Alice()

2. Save the file as looking_glass.lua.

3. Run the script using the Lua interpreter as follows:

lua looking_glass.lua
Knight:
The name of the song is called “HADDOCKS’ EYES.”

Alice, trying to feel interested:
Oh, that’s the name of the song, is it?

Knight, looking a little vexed:
No, you don’t understand, that’s what the name is CALLED. The
name really IS “THE AGED AGED MAN.”

Alice:

274

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 274

Then I ought to have said “That’s what the SONG is called”?

Knight:
No, you oughtn’t, that’s quite another thing! The SONG is
called “WAYS AND MEANS,” but that’s only what it’s CALLED, you
know!

Alice, completely bewildered:
Well, what IS the song, then?

Knight:
I was coming to that. The song really IS “A-SITTING ON A GATE”,
and the tune’s my own invention.

How It Works
In this dialog taken from Lewis Carroll’s Through the Looking-Glass (which is, incidentally, a startlingly
prescient glimpse into the realm of variable names and indirection), the main thread (Alice) and the
coroutine thread (Knight) cooperate by relinquishing control at appropriate points. Note that each
thread proceeds as if it is in charge. In fact, this is the case — each thread does have program control until
it cooperatively gives it up. This happens when the invoking thread, Alice, calls coroutine.resume
and when the coroutine Knight calls coroutine.yield. Each thread executes statements from a
sequence that are interleaved with statements from the other thread’s sequence.

When a coroutine is resumed, it is specified explicitly in the call to coroutine.resume. However, when
a coroutine yields, it always transfers control back to the thread that resumed it.

When a program without coroutines includes a function that produces something and another that con-
sumes it, either the producer function or the consumer function will be in control of the program flow.
The other function will be called repeatedly as a service and will run each time from its beginning.

Outside Looking In
An admittedly whimsical way to look at coroutines is to consider an ordinary function call as the place-
ment of program control into an ordinary bottle. When the function terminates, program control flows
out of the bottle back to the caller. This analogy emphasizes that no matter how much control a function
may have when it is active, it is constrained to eventually run its course and return to its caller. With the
inside-out nature of coroutines, the analogy to an ordinary bottle just doesn’t “hold water.” Instead,
when a coroutine yields, it places program control into a Klein bottle, the four dimensional equivalent of
a Möbius strip. If you trace the surface of such a bottle, you find the “inside” and “outside” to be one
and the same. A yielding coroutine curiously enters not a constrained enclosure, but the rest of the pro-
gram. This analogy plays on Lua’s way of making the transfer of control between coroutines look like
function calls. If you find yourself getting confused about coroutines, focus on coroutine.resume and
coroutine.yield as control transfer points rather than as functions.

The following Try It Out puts these ideas on a more familiar footing by using a classic application of
coroutines: the interaction of a producer and a consumer. In particular, pay attention to how the pro-
ducer’s call to coroutine.yield looks like an ordinary function call, but in fact, it is the mechanism by
which program control is transferred back to the consumer. Unlike a called function, the consumer can
run its course without ever transferring control back to the producer.

275

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 275

276

Chapter 9: Handling Events Naturally with Coroutines

A Word About Preemptive Multitasking
The cooperative nature of multitasking with coroutines distinguishes it from preemptive
multitasking, in which the operating system decides when control is transferred from
one thread to another, usually based on time slices. In the discussion that follows,
threads in a preemptive multitasking environment will be referred to as system threads.
Like a coroutine, a system thread has its own stack, so it is free to manipulate local
variables and call and return from functions. However, a system thread must handle
the following issues, which a coroutine does not:

❑ Explicit arrangement with the operating system needs to be made to keep cer-
tain blocks of code, such as a series of file writes that need to remain synchro-
nized, from being interrupted.

❑ Access to globally shared resources must be properly synchronized to avoid
corruption by different system threads.

❑ The termination of a system thread often needs to be specially coordinated
with other system threads. Sometimes, a system thread’s sole purpose is to
coordinate the termination of other threads.

In practice, system threads can be messy. The simplest of programs take on a whole
new level of complexity when preemptive multitasking is introduced. This occurs pri-
marily because of the need to avoid race conditions in which statements are executed
by system threads in an order that is incorrect and unexpected. Even if system threads
don’t have control over when they are preempted, they nevertheless need to exhibit a
high degree of cooperation with other system threads to manage global resource access
and proper termination issues. In light of the long history of coroutines, you may
understandably wonder why they have been overshadowed by preemptive solutions
in recent decades.

A Lua universe is the reentrant C data structure that all Lua programs are based on.
Lua supports preemptive multitasking if special care is taken to protect this structure.
To do so, follow these guidelines:

❑ If multiple system threads interact with a single Lua universe, they must be
properly regulated with locks. Lua allows you to provide a locking function
and an unlocking function that will be called by Lua when, respectively, it
enters and leaves a block of code that must not be interrupted. These functions
are not implemented within the Lua core because they in turn call operating
system-dependent functions. This solution comes with a performance penalty
due to locking overhead.

❑ More than one Lua universe can be active in a C program that embeds Lua.
You can avoid locking requirements by arranging to have each Lua universe
accessible to only one system thread. This avoids locking overhead, but
requires you to provide a system thread-safe mechanism to transfer data from
one Lua universe to another.

Preemptive multitasking is not covered any further in this book.

12_069172 ch09.qxp 1/2/07 8:08 PM Page 276

Try It Out Sharing Control
Coroutines provide a framework that puts the consumer and producer on similar footing. The script that
follows demonstrates this. In it, the producer thread generates simulated input events. The consumer
thread simply displays these events in text form.

1. Using your text editor, create a new document with the following contents:

local function LclProducer()
print(“Producer: initialize”)
-- Simulate event generation
local List = {“mouse”, “keyboard”, “keyboard”, “mouse”}
for J, Val in ipairs(List) do
local Evt = string.format(“Event %d (%s)”, J, Val)
print(“Producer: “ .. Evt)
coroutine.yield(Evt)

end
print(“Producer: finalize”)
return “end”

end

local function LclConsumer()
local GetEvent = coroutine.wrap(LclProducer)
local Evt
print(“Consumer: initialize”)
while Evt ~= “end” do
Evt = GetEvent()
print(“Consumer: “ .. Evt)

end
print(“Consumer: finalize”)

end

LclConsumer()

2. Save the file as producer_consumer.lua.

3. Run the script with the Lua interpreter as follows:

lua producer_consumer.lua
Consumer: initialize
Producer: initialize
Producer: Event 1 (mouse)
Consumer: Event 1 (mouse)
Producer: Event 2 (keyboard)
Consumer: Event 2 (keyboard)
Producer: Event 3 (keyboard)
Consumer: Event 3 (keyboard)
Producer: Event 4 (mouse)
Consumer: Event 4 (mouse)
Producer: finalize
Consumer: end
Consumer: finalize

277

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 277

How It Works
In this script, LclConsumer runs in the main thread, and LclProducer runs in its own coroutine thread.
Notice that coroutine.resume is not called explicitly in the code. That’s because the GetEvent func-
tion (the product of coroutine.wrap) does this implicitly whenever it is called. The aspect of this script
that warrants attention is how each thread transfer (GetEvent in LclConsumer and coroutine.yield
in LclProducer) occurs within a loop. This is an indication that each thread has control. Local variables
that are within the scope in the loop are preserved in the same way as if the resume and yield calls were
ordinary function calls. Writing routines from this vantage is generally more natural than writing a rou-
tine that runs to completion each time it is called.

Had this example been used in a real event-driven environment, the loop in which LclProducer visits
each array element would be replaced by a loop in which successive events are retrieved from the oper-
ating system. The fact that these events could arrive sporadically wouldn’t change the way the two
threads interact.

Coroutines Have Status
You’ve seen that a coroutine is instantiated with a call to coroutine.create. From that point on, a
coroutine always has an operational status. If you’re unsure what state a coroutine is in, you can call
coroutine.status to find out. That function returns a string with one of the following values:

Status Description

“suspended” The specified coroutine is resumable.

“running” The specified coroutine is currently running.

“normal” The specified coroutine has resumed another coroutine.

“dead” The specified coroutine has returned normally or in error.

Try It Out Examining the Status of Coroutines
1. Using your text editor, create a new file with the following contents:

local A, B, C

local function Status(Str)
io.write(string.format(“%-8s A is %-10s C is %-10s (%s)\n”,
Str, coroutine.status(A), coroutine.status(C),
tostring(coroutine.running() or “main thread”)))

end

function A()
Status(“A”)

end

function B()
Status(“B”)

end

function C()

278

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 278

Status(“C 1”)
coroutine.resume(A)
Status(“C 2”)
B()
Status(“C 3”)
coroutine.yield()
Status(“C 4”)

end

A = coroutine.create(A)
B = coroutine.wrap(B)
C = coroutine.create(C)
Status(“Main 1”)
coroutine.resume(C)
Status(“Main 2”)
coroutine.resume(C)
Status(“Main 3”)

2. Save this file as status.lua.

3. Run the script using the Lua interpreter as follows:

lua status.lua
Main 1 A is suspended C is suspended (main thread)
C 1 A is suspended C is running (thread: 00767F80)
A A is running C is normal (thread: 007659C0)
C 2 A is dead C is running (thread: 00767F80)
B A is dead C is normal (thread: 00766BD0)
C 3 A is dead C is running (thread: 00767F80)
Main 2 A is dead C is suspended (main thread)
C 4 A is dead C is running (thread: 00767F80)
Main 3 A is dead C is dead (main thread)

How It Works
In the course of this script, coroutine C assumes each possible status. Coroutine A never assumes the
“normal” status, because it never resumes another coroutine.

The return value of coroutine.wrap is a function wrapper around a coroutine, not a coroutine, so it is
not a suitable as an argument to coroutine.status. However, when B is called, its wrapped coroutine
assumes the “running” status, in this case temporarily taking that status away from C.

Rules of Conduct
The care and feeding of coroutines is quite modest in return for the coolness they lend to a program.
Here are some requirements you need to consider when welcoming coroutines into your application.

Work Shoulder-to-Shoulder
A running coroutine must explicitly yield control in a timely manner. A coroutine that runs too long
without yielding deprives other threads of the chance to execute. Selecting a point at which to yield is
usually straightforward. If the coroutine has produced one or more values to be delivered, it can yield
with them as arguments and they will be delivered as return values of the invoking thread’s resume call.

279

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 279

If the time needed to produce these values is long, the task can sometimes be partitioned into smaller
pieces. In this case, the coroutine enters a loop in which parts of the product are yielded and the resum-
ing thread reassembles them into the complete value. The resuming thread can cycle through a number
of coroutines, resuming each in turn.

Trust the Dispatcher
Another time a coroutine should yield is when it begins waiting an indeterminate time for something to
occur. The problem is that the only way a yielding coroutine will regain control is if it is resumed, so
there must be some way for the resumer to know when the coroutine’s wait is complete. This is usually
possible with message-based applications in which notifications are pulled from an event queue. In this
case, a thread (which is often the main thread) can be dedicated to dispatching these events by executing
a loop in which it repeatedly collects an event and resumes the appropriate coroutine.

Expect the Best, Prepare for the Worst
A yielding coroutine generally has no control over which other threads will be activated, or in what
order, before it is resumed. Consequently, you must pay some attention to the points at which a corou-
tine yields to prevent the possibility of unexpected modification of shared resources. For this reason, it
pays to limit the scope of variables as much as possible. Avoid yielding in critical sequences of code. For
example, if an external file and an internal Lua table need to remain synchronized, don’t yield between
the points where the update begins and where it ends.

Play on Your Side of the Fence
Coroutines face some restrictions where the C runtime stack is involved. A Lua function that is called
from a library that uses Lua’s C interface utilizes stacks on both sides of this interface. Coroutines run
properly in this circumstance, but they cannot yield across the C interface because this would cause
problems with the single stack that is used in the C code. This restriction applies to certain Lua functions
such as dofile and pcall. Consider the following script:

local function A()
coroutine.yield()

end

local function B()
print(pcall(A))

end

coroutine.wrap(B)()

This generates the following output:

false attempt to yield across metamethod/C-call boundary

In general, yields across the C interface can usually be worked around. If you encounter a situation
where they are required, investigate Coco, a Lua patchset created by Mike Pall and located on the
LuaForge site. This extension creates a C stack for each coroutine. It runs on POSIX and Windows
(including Windows 98 and above).

280

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 280

Avoid the Deep End
The Lua distribution comes with a file named sieve.lua located in the test subdirectory. This script
generates prime numbers up to a specified value (1000 by default) using, with coroutines, an algorithm
created by the brilliant Hellenistic mathematician Eratosthenes. As shown by this program, coroutines
and recursion appear to be a natural fit. Unfortunately, a known issue with Lua coroutines keeps the C
runtime stack (yes, it keeps showing up in these problem areas) from being protected against an over-
flow condition. Unless you can be sure the C runtime stack is sufficiently large to handle your particular
case, you’ll want to avoid deeply recursive coroutines. Note also that the problem, because it pertains to
the C stack, cannot be bounded with a protected call.

Managing Concurrent Tasks
You can multitask with coroutines to partition long jobs into smaller segments. If your program has some
way of detecting user input without blocking (which is not possible with ANSI C and, consequently, stan-
dard Lua), then you can use this feature to interrupt or otherwise modify the course of these jobs.

Try It Out Partitioning Longs Jobs with Coroutines
1. Using your text editor, create a new file with the following script:

local function Multitask()

local function LclWork(Id, Count) -- Simulate some work
for J = 1, Count do
io.write(Id)
io.flush()
local Stop = os.time() + 1
while os.time() < Stop do end
coroutine.yield()

end
end

local function LclContinue() -- Simulate check for user cancellation
return math.random(12) > 1

end

local WorkA = coroutine.create(function () LclWork(‘A’, 2) end)
local WorkB = coroutine.create(function () LclWork(‘B’, 4) end)
math.randomseed(os.time())
local A, B, Ok = true, true, true

while (A or B) and Ok do
Ok = LclContinue()
if Ok and A then
A = coroutine.resume(WorkA)

end
Ok = LclContinue()
if Ok and B then
B = coroutine.resume(WorkB)

end
end

281

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 281

io.write(Ok and “ done” or “ cancel”, “\n”)

end

Multitask()

2. Save this file as multitask.lua.

3. Run through the following invocations using the Lua interpreter (because user cancellation is
simulated randomly, the output you see will likely be different from what is shown here):

lua multitask.lua
ABABBB done

lua multitask.lua
ABA cancel

lua multitask.lua
AB cancel

How It Works
This example uses a number of simulations to demonstrate multitasking. For one, a bunch of cycles are
consumed repeatedly calling os.time to simulate a segment of work. In a real application, arrange to
have work performed in a coroutine, yielding after a segment of it has been completed. If user input is
needed, it must be retrieved in a nonblocking manner. That is, some mechanism like an event queue or
keypress buffer must be available for examination without actually waiting for user input.

The example presented here is just one of many variations you can use to repeatedly resume active
coroutines. A common construction is to use an array to hold a number of coroutines.

Retaining State
When you programmatically open a file, you obtain a handle that is used for subsequent operations such
as writing to the file and closing it. The handle is opaque, which means that information about the file’s
state (such as its buffers and file position and other internal details) is hidden from view. Within the file
routines themselves, the handle is mapped to a data structure that allows the internal state to be accessed
during an operation and retained between operations. The discipline of object orientation extends this
notion by bundling fields and methods while restricting access to internal data. Each approach has been
used extensively and successfully.

A Lua coroutine retains state through its dedicated stack. As you saw in the consumer and producer
example, thread transfers don’t affect the local variables in these stacks. Because of these stacks, a Lua
coroutine can yield from a function other than its main body.

Exercising a Coroutine’s Memory
One example of a body of code that must maintain its internal state is a tokenizer, a routine whose job is
to deliver on demand the next lexical unit in a sequence. The following Try It Out shows how a corou-
tine can be used to let a tokenizer keep track of its internal state.

282

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 282

Try It Out Creating a Tokenizing Coroutine
Expression analysis benefits from the use of a coroutine to collect tokens. Here, you’ll see how naturally
a coroutine-based tokenizer fits into a larger program.

1. Using your text editor, create a new file with the following contents:

local Token, Pos

local function LclToken(ExpStr)
local Len, PosStart, PosEnd, Allow
Allow = “factor”
Len = string.len(ExpStr)
Pos = 1
while Pos <= Len do
if Allow == “factor” then
PosStart, PosEnd, Token = string.find(ExpStr,
“^%s*([%+%-]?%d+%.?%d*)%s*”, Pos)

if PosStart then
Token = tonumber(Token)

else
PosStart, PosEnd, Token = string.find(ExpStr,
“^%s*(%()%s*”, Pos)

if not PosStart then
error(“expected number or ‘(‘ at position “ .. Pos)

end
end

else -- “op”
PosStart, PosEnd, Token = string.find(ExpStr,
“^%s*([%)%+%-%*%/])%s*”, Pos)

if not PosStart then
error(“expected operator at position “ .. Pos)

end
end
Allow = coroutine.yield()
Pos = PosEnd + 1

end
Token = “end”
coroutine.yield()
error(“end of expression overreached”)

end

local LclExpression

local function LclFactor()
local Val = 0
if type(Token) == “number” then
Val = Token
LclToken(“op”)

elseif Token == “(“ then
LclToken(“factor”)
Val = LclExpression()
if Token == “)” then
LclToken(“op”)

else
error(“missing ‘)’ at position “ .. Pos)

283

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 283

end
else
error(“expecting number or ‘(‘ at position “ .. Pos)

end
return Val

end

local function LclTerm()
local Val = LclFactor()
while Token == ‘*’ or Token == ‘/’ do
if Token == ‘*’ then
LclToken(“factor”)
Val = Val * LclFactor()

else
LclToken(“factor”)
Val = Val / LclFactor()

end
end
return Val

end

function LclExpression()
local Val = LclTerm()
while Token == ‘+’ or Token == ‘-’ do
if Token == ‘+’ then
LclToken(“factor”)
Val = Val + LclTerm()

else
LclToken(“factor”)
Val = Val - LclTerm()

end
end
return Val

end

local function LclEvaluate(ExpStr)
LclToken = coroutine.wrap(LclToken)
LclToken(ExpStr)
local Val = LclExpression()
if Token ~= “end” then
error(“unexpected token at position “ .. Pos)

end
return Val

end

-- Evaluates the specified expression. If successful, returns result of
-- expression. If the expression can’t be evaluated, (nil, error message, error
-- position) is returned.

function Evaluate(ExpStr)
local ErrPos
local Code, Val = pcall(LclEvaluate, ExpStr)
if Code then
Code, Val = Val, nil

284

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 284

else
Code, ErrPos = nil, Pos

end
return Code, Val, ErrPos

end

local ExpStr = arg[1] or “1 + 1”
local Result, ErrStr, ErrPos = Evaluate(ExpStr)
io.write(“Expression: “, ExpStr, “\n”)
if Result then
io.write(“Result: “, Result, “\n”)

else
io.write(string.rep(‘ ‘, ErrPos + 11), “^\n”)
io.write(“Error: “, ErrStr, “\n”)

end

2. Save the file as expr.lua.

3. Using the Lua interpreter, try the evaluator out with the following expressions:

lua expr.lua “1 + 2 * 3 / 4 * 5 - 6”
Expression: 1 + 2 * 3 / 4 * 5 - 6
Result: 2.5

lua expr.lua “(1 + 2) * 3 / 4 * (5 - 6)”
Expression: (1 + 2) * 3 / 4 * (5 - 6)
Result: -2.25

lua expr.lua “1+1”
Expression: 1+1
Result: 2

lua expr.lua “1++1”
Expression: 1++1
Result: 2

lua expr.lua “1+++1”
Expression: 1+++1

^
Error: expr.lua:75: expr.lua:18: expected number or ‘(‘ at position 3

lua expr.lua “1 1”
Expression: 1 1

^
Error: expr.lua:42: expr.lua:25: expected operator at position 3

lua expr.lua “1 % 2”
Expression: 1 % 2

^
Error: expr.lua:42: expr.lua:25: expected operator at position 3

lua expr.lua “1 + 1)”
Expression: 1 + 1)

^

285

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 285

Error: expr.lua:90: unexpected token at position 7

lua expr.lua “(1 + 1
Expression: (1 + 1

^
Error: expr.lua:49: missing ‘)’ at position 8

lua expr.lua “(((1)))”
Expression: (((1)))
Result: 1

How It Works
A parser’s job is to analyze the elements of an expression. In the four-function expression evaluator pre-
sented here, the method of recursive descent is used. The idea is to treat an expression as a series of terms
to be added or subtracted. Each term is treated similarly as a series of factors to be multiplied or divided.
And each factor is treated as either a number or as a parenthesized expression. In the last case, the same
function used to analyze the outermost expression can be called recursively to analyze the subexpres-
sion. This can be repeated to any practical depth. With this method, the precedence of the various opera-
tors is built into the structure of the parser.

The task of parsing requires the services of a tokenizer, a routine that identifies constituent elements. The
tokenizer is called from various parts of the parser, and it must keep track of where it’s been so that it
can effectively collect the next available token. Additionally, the tokenizer is called in a context-sensitive
manner. Based on where in the parser the request for a token is made, either a factor (a number or open-
ing parenthesis) or an operator (+, -, *, /, closing parenthesis, or end of expression) is requested. This
prevents a simple loop from simply collecting all tokens and placing them into a table prior to calling the
parser. The context-sensitivity is required; for example, to recognize -3 as a number in one case, and as
the subtraction operator followed by a number in another.

Here are some aspects of this program that warrant special note:

❑ The combination of pcall and coroutines doesn’t present any problems here. The LclToken
coroutine yields repeatedly as it generates tokens, but always to a thread running in the same
protected call. Note also that there are no open resources such as files that are left unclosed
when an expression error is encountered.

❑ The coroutine.wrap is used to convert LclToken from a variable that references an ordinary
function to one that references a coroutine that can be invoked like a function — without explic-
itly using coroutine.resume.

❑ The body of LclToken is not intended to return. If LclToken is called after the “end” token
(indicating the end of the expression) has been retrieved, a descriptive error is issued. Had
LclToken returned rather than yielded after setting the “end” token, and if the coroutine was
resumed, the less helpful “cannot resume dead coroutine” message would have been displayed.

Iterating with Coroutines
In Chapter 4, you learned how to create an iterator, a mechanism that encapsulates many details of loop-
ing through sequences. Recall that behind the scenes, Lua calls your iterator function repeatedly to pro-
duce successive return values. Coroutines are useful in this context because they don’t have to be run
from their beginning at each call.

286

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 286

Try It Out Looping Backwards with a Coroutine Iterator
In this Try It Out, you’ll write a new version of the ReverseIPairs iterator factory that you first saw in
Chapter 4. This one will use a coroutine to achieve the same goal of iterating through an array in reverse
order.

1. Create a new file with your text editor and include the follow script:

local function ReverseIPairs(Arr)
local function Iter()
for J = #Arr, 1, -1 do
coroutine.yield(J, Arr[J])

end
end
return coroutine.wrap(Iter)

end

for J, Str in ReverseIPairs({“one”, “two”, “three”}) do
print(J, Str)

end

2. Save the file as co_iter.lua.

3. Run the script using the Lua interpreter as follows:

lua co_iter.lua
3 three
2 two
1 one

How It Works
The ReverseIPairs iterator factory returns only one value, a function that wraps Iter as a coroutine
body. No state information needs to be returned; that’s all contained in the coroutine itself. When the
loop within Iter is complete, nil is implicitly returned. This signals the end of the generic for loop to
Lua, and the iterator function is not called anymore.

Handling Events Simply
In the era of dumb terminals, timesharing servers and near-total disregard for user-friendliness (veteran
programmers refer to this time period as the “good old days”), interactive programs were modal — all user
input was channeled into one screen at a time. In the middle of one screen, a user simply couldn’t access
another. The advantages were all with the software developer. Programming modal screens was easy and
promoted clear code that was straightforward to follow because screen functions blocked the way a call to
open a file blocked — they simply didn’t return until the screen was either approved or cancelled. The ease
that programmers had with this model was paid for with user frustration. The limitations of this kind of
program became apparent even before the era of GUIs. The solution was for all application input events to
be centrally queued and dispatched to appropriate handlers. This new paradigm allowed users to switch
between open screens at the cost of complicated program code. Given the constraint of a single application
call stack, the event-driven approach led to a programming model that is still pervasive. The following sec-
tions describe how this model works, with the focus on the call stack.

287

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 287

The Event Loop
When an event-driven application starts, it typically takes care of some initialization work. The function
calls that take place here result in some stack activity.

At some point, usually right after a window or some other event sink is created, the application begins a
loop in which events are requested by calling a system function. In the X Window System, this is the
XNextEvent function; in Windows, it is the GetMessage function. The height of the stack at this point
indicates a “low watermark.” Until the event retrieval loop is terminated prior to the end of the program,
the call stack will not shrink below this level. It will, however, be quite active above this level as various
functions are called in response to particular events, such as keyboard presses, mouse actions, and win-
dow-drawing requests. In a well-functioning application, the processing of any event should take no
longer than a tenth of a second or so to avoid choppy window refreshes and sluggish response times.

The event retrieval function is a blocking function — it does not return until an event occurs. It is where
an interactive application yields control to the system and generally spends most its time waiting. After
handling an event, program control has to return to the event loop to retrieve the next event. This
implies that the application call stack has to return to its low watermark, meaning that the various event
handlers that are called must find some other means than local variables to retain the state needed for
continuity. Because of their integrated approach to methods and fields, object-oriented solutions abound
in event-driven systems. For example, a window object can store fields such as list contents and control
properties that persist between event notifications.

Modal windows are supported in this single call stack model, but they have the unfortunate consequence
of disabling other active windows, preventing users from switching from one window to another within
the application. The window created with a blocking call to DialogBox in the Windows API is an example
of a modal window. In order to block, such a window is implemented with its own event loop. The modal
window’s event loop allows other windows to be redrawn when needed, but only the modal window itself
is permitted to receive user input. The disabling of other windows prevents problems with variables main-
tained in the stack between the low watermark and the point at which the modal event loop is imple-
mented. After the modal window is dismissed, you wouldn’t want references to other windows that may
have been closed or altered. Any practical number of modal windows can be stacked in a chain, but the
limitation of only one window that can receive user input makes this technique suitable only for small dia-
log boxes that can be cancelled without hardship if the user needs to work in another window. In other
words, a modal window is easy for the programmer and frustrating for the user.

If you have reached the conclusion that it is the single stack model that prevents switchable, blocking
windows, you are correct. What is needed is a window event handler that has its own stack. The solu-
tion is to implement this handler as a coroutine. Giving users the flexibility of switching between win-
dows while implementing them, behind the scenes, as blocking windows is a remarkable capability of
coroutines. It dramatically simplifies the development of event-driven programs.

Try It Out Handling Events with Coroutines
In order to focus on the essential structure of a coroutine-based event handling module, the following
program uses the command line shell to simulate how windows would behave in a GUI. This not only
keeps the code free of a lot of low-level windowing code, it allows you to test it in a pure, platform-
independent Lua environment.

288

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 288

1. With your text editor, create a new file with the following contents:

As you can see, there is a lot of code here, so this is a good place to remind you that this and every other
script in this book is available from wrox.com.

local Window, Lcl = {}, {}

-- Queue of posted event messages

Lcl.MsgQueue = {}

-- Window structure
-- Parent: window object of parent
-- Id: string identifier, e.g. 1.2.5 for 5th child of 2nd child of window 1
-- Co: coroutine(Fnc) blocks until terminating event
-- ChildCount: number of active children
-- ChildSerial: used for naming new children
-- ChildList: associative array keyed by child window objects
-- Close: assigned the terminating message (usually “cancel” or “ok”)
-- User: table passed to handler to hold data that must persist from event to
-- event

-- List of window structures keyed by Id

Lcl.WindowList = {}

-- Currently active window

Lcl.WindowActive = nil

-- Value of message to indicate that associated window should be unblocked

Lcl.MsgReturn = “\000”

-- Display all active windows

function Lcl.Show()
local List = {}
for Id, Wnd in pairs(Lcl.WindowList) do
table.insert(List, Wnd.Close and (Id .. “ (pending closure)”) or Id)

end
table.sort(List)
for J, Id in ipairs(List) do
io.write(Id, “\n”)

end
end

-- This function is called when an event occurs that could result in the return
-- of a window call.

function Lcl.Destroy(Wnd)
if Wnd.Close and Wnd.ChildCount == 0 then
io.write(“Unblocking window “, Wnd.Id, “\n”)
table.insert(Lcl.MsgQueue, {Wnd, Lcl.MsgReturn})

end

289

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 289

end

-- Show some help text

function Lcl.Help()
io.write(“Type ‘show’ to see all active windows\n”)
io.write(“Type ‘window_id msg’ to send message to window\n”)
io.write(“Standard messages are ‘create’, ‘ok’ and ‘cancel’\n”)

end

-- Simulate the generation of a window event. For a windowed application, this
-- would typically originate with the graphical shell (Windows: GetMessage,
-- XLib: XNextEvent. No coroutine yielding occurs here, so this can be a
-- binding to C.

function Lcl.EventGet()
local Wnd, Msg
if Lcl.MsgQueue[1] then -- If event is queued, retrieve the first one in
local Rec = table.remove(Lcl.MsgQueue, 1)
Wnd, Msg = Rec[1], Rec[2]

else -- Wait for event from user
while not Msg do
io.write(“Cmd> “)
local Str = io.read()
Str = string.gsub(Str, “^ *(.-) *$”, “%1”)
Str = string.lower(Str)
if Str == “help” or Str == “?” then
Lcl.Help()

elseif Str == “show” then
Lcl.Show()

else -- Pass message along to designated window
local IdStr, MsgStr = string.match(Str, “(%S+)%s+(%S+)”)
if IdStr then
Wnd = Lcl.WindowList[IdStr]
if Wnd then
if not Wnd.Close then
Msg = MsgStr

else
io.write(“Window “, IdStr, “ is inactive\n”)

end
else
io.write(“Unknown window: “, IdStr, “\n”)

end
else
io.write(“Expecting ‘help’, ‘show’ or ‘window_id msg’\n”)

end
end

end
end
return Wnd, Msg

end

-- Main event loop. All coroutines are resumed from this function and yield
-- back to it.

function Lcl.EventLoop()

290

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 290

local Wnd, Msg
local Loop = true
while Loop do
Wnd, Msg = Lcl.EventGet()
if Wnd then
Lcl.WindowActive = Wnd
if Msg == Lcl.MsgReturn then
-- Resume blocking window call
if Wnd.Co then
coroutine.resume(Wnd.Co, Wnd.Close)

else
Loop = false
Msg = Wnd.Close

end
else
-- Non-terminating message was received. Notify window in new coroutine
-- rather than direct function call because a new blocking window may
-- be raised.
local Co = coroutine.create(Wnd.Fnc)
coroutine.resume(Co, Wnd.User, Msg)

end
end

end
return Msg

end

function Window.Show(Fnc)
local Parent = Lcl.WindowActive -- Nil for first window shown
local Msg, Id
if Parent then
Parent.ChildSerial = Parent.ChildSerial + 1
Id = Parent.Id .. “.” .. Parent.ChildSerial

else -- First window
Lcl.Help()
Id = “1”

end
local Co = coroutine.running()
local Wnd = {Parent = Parent, Co = Co, Id = Id, Fnc = Fnc,
ChildCount = 0, ChildSerial = 0, ChildList = {}, User = {Id = Id}}

io.write(“Creating window “, Wnd.Id, “\n”)
table.insert(Lcl.MsgQueue, {Wnd, “create”})
Lcl.WindowList[Id] = Wnd
if Parent then
assert(Co)
Parent.ChildList[Wnd] = true
Parent.ChildCount = Parent.ChildCount + 1
-- We’re running in a coroutine; yield back to event loop. The current
-- coroutine will not be resumed until the newly created window and all of
-- its descendent windows have been destroyed. This happens when a
-- Lcl.MsgReturn is posted for this window.
Msg = coroutine.yield()
Parent.ChildCount = Parent.ChildCount - 1
Parent.ChildList[Wnd] = nil
-- Close parent if it’s in pending state
Lcl.Destroy(Parent)

else

291

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 291

assert(not Co)
-- We’re running in main thread; call event loop and don’t return
-- until the loop ends
Msg = Lcl.EventLoop()

end
Lcl.WindowList[Id] = nil
return Msg

end

function Window.Close(Msg)
local Wnd = Lcl.WindowActive
Wnd.Close = Msg or “destroy”
Lcl.Destroy(Wnd)

end

return Window

2. Save this file as window.lua.

3. Create another new file with the following contents:

local Window = require(“window”)

-- Sample window message handler.

local function SampleWindow(Wnd, Msg)
Wnd.Serial = (Wnd.Serial or 0) + 1
io.write(“Window “, Wnd.Id, “, message “, Msg, “, serial “, Wnd.Serial, “\n”)
if Msg == “ok” or Msg == “cancel” then
io.write(“Calling Window.Close on “, Wnd.Id, “\n”)
Window.Close(Msg)
io.write(“Called Window.Close on “, Wnd.Id, “\n”)

elseif Msg == “button” or Msg == “new” then
local Time = os.date(“%X”)
io.write(“Calling Window.Show from “, Wnd.Id, “ (“, Time, “)\n”)
local Status = Window.Show(SampleWindow)
io.write(“Called Window.Show from “, Wnd.Id, “, child returned “,
Status, “ (“, Time, “)\n”)

end
end

-- Main statements

io.write(“Application: starting\n”)
local Status = Window.Show(SampleWindow)
io.write(“Window returned “, Status, “\n”)
io.write(“Application: ending\n”)

4. Save this script as window_app.lua.

5. Make sure that ?.lua is specified in your LUA_PATH environment variable. Invoke the
window_app.lua script and simulate a simple session in which a main window and a child
window are created and, in reverse order, closed:

lua window_app.lua
Application: starting
Type ‘show’ to see all active windows

292

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 292

Type ‘window_id msg’ to send message to window
Standard messages are ‘create’, ‘ok’ and ‘cancel’
Creating window 1
Window 1, message create, serial 1
Cmd> 1 mouse
Window 1, message mouse, serial 2
Cmd> 1 keypress
Window 1, message keypress, serial 3
Cmd> 1 new
Window 1, message new, serial 4
Calling Window.Show from 1 (09:11:25)
Creating window 1.1
Window 1.1, message create, serial 1
Cmd> show
1
1.1
Cmd> 1.1 ok
Window 1.1, message ok, serial 2
Calling Window.Close on 1.1
Unblocking window 1.1
Called Window.Close on 1.1
Called Window.Show from 1, child returned ok (09:11:25)
Cmd> 1 mouse
Window 1, message mouse, serial 5
Cmd> 1 ok
Window 1, message ok, serial 6
Calling Window.Close on 1
Unblocking window 1
Called Window.Close on 1
Window returned ok
Application: ending

6. Invoke the script again. This time, build up a window tree and experiment with closing the win-
dows in something other than reverse order, like this:

lua window_app.lua
Application: starting
Type ‘show’ to see all active windows
Type ‘window_id msg’ to send message to window
Standard messages are ‘create’, ‘ok’ and ‘cancel’
Creating window 1
Window 1, message create, serial 1
Cmd> 1 new
Window 1, message new, serial 2
Calling Window.Show from 1 (09:03:18)
Creating window 1.1
Window 1.1, message create, serial 1
Cmd> 1 new
Window 1, message new, serial 3
Calling Window.Show from 1 (09:03:20)
Creating window 1.2
Window 1.2, message create, serial 1
Cmd> 1 new
Window 1, message new, serial 4

293

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 293

Calling Window.Show from 1 (09:03:21)
Creating window 1.3
Window 1.3, message create, serial 1
Cmd> 1.1 new
Window 1.1, message new, serial 2
Calling Window.Show from 1.1 (09:03:28)
Creating window 1.1.1
Window 1.1.1, message create, serial 1
Cmd> 1.2 new
Window 1.2, message new, serial 2
Calling Window.Show from 1.2 (09:03:31)
Creating window 1.2.1
Window 1.2.1, message create, serial 1
Cmd> 1.2 new
Window 1.2, message new, serial 3
Calling Window.Show from 1.2 (09:03:33)
Creating window 1.2.2
Window 1.2.2, message create, serial 1
Cmd> 1.2.2 new
Window 1.2.2, message new, serial 2
Calling Window.Show from 1.2.2 (09:03:39)
Creating window 1.2.2.1
Window 1.2.2.1, message create, serial 1
Cmd> show
1
1.1
1.1.1
1.2
1.2.1
1.2.2
1.2.2.1
1.3
Cmd> 1.2.1 ok
Window 1.2.1, message ok, serial 2
Calling Window.Close on 1.2.1
Unblocking window 1.2.1
Called Window.Close on 1.2.1
Called Window.Show from 1.2, child returned ok (09:03:31)
Cmd> 1.3 ok
Window 1.3, message ok, serial 2
Calling Window.Close on 1.3
Unblocking window 1.3
Called Window.Close on 1.3
Called Window.Show from 1, child returned ok (09:03:21)
Cmd> show
1
1.1
1.1.1
1.2
1.2.2
1.2.2.1
Cmd> 1 ok
Window 1, message ok, serial 5
Calling Window.Close on 1

294

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 294

Called Window.Close on 1
Cmd> 1.1 ok
Window 1.1, message ok, serial 3
Calling Window.Close on 1.1
Called Window.Close on 1.1
Cmd> show
1 (pending closure)
1.1 (pending closure)
1.1.1
1.2
1.2.2
1.2.2.1
Cmd> 1.2.2 ok
Window 1.2.2, message ok, serial 3
Calling Window.Close on 1.2.2
Called Window.Close on 1.2.2
Cmd> show
1 (pending closure)
1.1 (pending closure)
1.1.1
1.2
1.2.2 (pending closure)
1.2.2.1
Cmd> 1.2.2.1 ok
Window 1.2.2.1, message ok, serial 2
Calling Window.Close on 1.2.2.1
Unblocking window 1.2.2.1
Called Window.Close on 1.2.2.1
Unblocking window 1.2.2
Called Window.Show from 1.2.2, child returned ok (09:03:39)
Called Window.Show from 1.2, child returned ok (09:03:33)
Cmd> show
1 (pending closure)
1.1 (pending closure)
1.1.1
1.2
Cmd> 1.2 ok
Window 1.2, message ok, serial 4
Calling Window.Close on 1.2
Unblocking window 1.2
Called Window.Close on 1.2
Called Window.Show from 1, child returned ok (09:03:20)
Cmd> 1.1.1 ok
Window 1.1.1, message ok, serial 2
Calling Window.Close on 1.1.1
Unblocking window 1.1.1
Called Window.Close on 1.1.1
Unblocking window 1.1
Called Window.Show from 1.1, child returned ok (09:03:28)
Unblocking window 1
Called Window.Show from 1, child returned ok (09:03:18)
Window returned ok
Application: ending

295

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 295

How It Works
There are two functions exported from the window module: Window.Show and Window.Close. The first
is used to raise a window, and the second is used to signal its closure. In a full-featured window library,
some sort of descriptive data structure would typically be passed to Window.Show that describes the
controls and parameters of the window to be displayed.

When a window is raised, it is associated with a function that acts as its event handler. For simplicity in
this example, the function SampleWindow is used for all windows, but typically you would have one
handler for each unique window. Any event message that pertains to a specific window will be sent to
its event handler. Here, the only messages that SampleWindow responds to are ok, cancel, button,
and new. In an actual event-driven application, messages would be more generic (for example, button
click rather than ok), and they would be accompanied by parameters that would provide additional
details about the message.

Each event notification in this library is sent to the handler in a new thread. That is, with each new
event, the event handler is instantiated as a coroutine and resumed with the event passed as an argu-
ment. This is done because the event dispatcher can’t know which, if any, event will result in the applica-
tion blocking in another call to Window.Show. Otherwise, it could call the event handler as a function for
each event that it knew would not block because control would return promptly and it could return to
the business of dispatching events.

A consequence of this model is that variables local to the handler are not shared between invocations.
Here is a clarification of the tradeoff that is made:

❑ On one hand, a coroutine can repeatedly yield and be resumed. In this case, local variables are
retained. The consumer-producer and expression evaluation programs are examples of this. In
this type of arrangement, an event processing loop is placed in the scope of local variables that
will be retained between yields.

❑ On the other hand, a coroutine can yield and not be resumed until a particular event occurs —
in this case, the window closure event. To allow a window event handler to behave this way, a
new coroutine needs to be created using the handler as a body for each event notification. This
approach gives you the advantage of blocking window calls, but requires you to find another
place to store persistent data. In the window example, you can simply store persistent fields in
the Wnd table argument that is passed to the handler for just this purpose.

The important aspect to note as you run this program is that the calls to Window.Show are blocking calls.
Even if Window.Close is called on a window, it will not return until all of its descendents are closed.
(Incidentally, it would be a simple matter to adjust this behavior so that, when a window is closed, all of
its active descendents are forced to close.) The capability to sequentially raise a window and wait for it
to terminate frees your application code from much of the complexity often associated with interactive,
event-driven programs.

Yielding to Another Coroutine
A coroutine in Lua always yields back to the thread that resumed it. If you would rather specify a corou-
tine to which to yield, the function Lcl.EventLoop in the previous example gives you the first of two
required steps. These steps are:

1. Implement a dispatcher that handles all resuming of coroutines.

296

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 296

2. When yielding, provide the dispatcher with enough information to resume the desired
coroutine.

In this framework, it will be the dispatcher thread to which all coroutines yield. If an argument of the
yield, say the first, always specifies the desired coroutine to resume, the dispatcher can do this transpar-
ently on behalf of the yielding coroutine.

Summary
In this chapter, you learned how to use Lua coroutines in a variety of situations to implement solutions
that would otherwise be cumbersome. These include the following:

❑ Sequentially running multiple jobs

❑ Retaining state as with an expression tokenizer

❑ Implementing an iterator

❑ Blocking on a call that returns an event

You also learned the following coroutine concepts:

❑ Their capabilities derive from transferring control between threads that each have a dedicated
call stack.

❑ Only one thread is active at a time>

❑ The transfer of control between threads is done with a natural function-like mechanism, namely
coroutine.yield and coroutine.resume, that permits the exchange of values.

In the next chapter, you’ll dust off your software development kit and learn how to extend Lua with rou-
tines that you’ll program in C. In the meantime, try your hand at the following exercises.

Exercises
1. Without actually running it, determine what the following script prints.

local function F()
local J, K = 0, 1
coroutine.yield(J)
coroutine.yield(K)
while true do
J, K = K, J + K
coroutine.yield(K)

end
end

F = coroutine.wrap(F)

for J = 1, 8 do
print(F())

end

297

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 297

2. Write a coroutine-based iterator named JoinPairs that pairs elements from parallel lists. For
example, the following loop:

for Name, Number in JoinPairs({“Sally”, “Mary”, “James”}, {12, 32, 7}) do
print(Name, Number)

end

should generate the following output:

Sally 12
Mary 32
James 7

3. In the producer-consumer example, the consumer thread resumes the producer thread. Modify
the example so that this is turned around; that is, execute the producer function in the main
thread and run the consumer as a coroutine.

298

Chapter 9: Handling Events Naturally with Coroutines

12_069172 ch09.qxp 1/2/07 8:08 PM Page 298

10
Looking Under the Hood

This chapter covers various ways of looking at the inner workings of Lua. To continue the automo-
tive metaphor of the title, you can write many useful programs without knowing the things in this
chapter, just as you can drive a car without knowing how to change the oil. However, the knowl-
edge and techniques in this chapter will help you find bugs, and let you do things with Lua that
otherwise wouldn’t be possible. You’ll learn about the following:

❑ Using bytecode

❑ Controlling Lua’s memory management

❑ Understanding the implementation of tables and strings

❑ Looking directly inside functions to see and alter their local variables

❑ Tracing the execution of your code on a call-by-call, line-by-line, or instruction-by-
instruction basis

Bytecode and luac
As mentioned in Chapter 3, before Lua can execute source code, it needs to compile it into byte-
code, which is then interpreted by the bytecode interpreter. Another name for the bytecode inter-
preter is the virtual machine, because it’s kind of like an imaginary computer (imaginary in the
sense that no one has ever built one out of silicon — it’s just simulated by your real computer). Lua
comes with two programs: the command-line interpreter lua, and the bytecode compiler luac.
The main purpose of luac is to compile Lua source code to bytecode and save that bytecode to a
file (so it can be run later), but it can also output a human-readable listing of the bytecode.

Try It Out Reading Bytecode with luac
1. Save the following as test.lua:

-- A short script (for use as a luac test).

function Greet(Name)
print(“Hello, “ .. Name .. “.”)

13_069172 ch10.qxp 1/2/07 8:08 PM Page 299

end

Greet(“whoever you are”)

2. Run luac as follows:

luac -p -l test.lua

The output should look something like this:

main <test.lua:0,0> (6 instructions, 24 bytes at 0x471410)
0+ params, 2 slots, 0 upvalues, 0 locals, 2 constants, 1 function

1 [5] CLOSURE 0 0 ; 0x471560
2 [3] SETGLOBAL 0 -1 ; Greet
3 [7] GETGLOBAL 0 -1 ; Greet
4 [7] LOADK 1 -2 ; “whoever you are”
5 [7] CALL 0 2 1
6 [7] RETURN 0 1

function <test.lua:3,5> (7 instructions, 28 bytes at 0x471560)
1 param, 5 slots, 0 upvalues, 1 local, 3 constants, 0 functions

1 [4] GETGLOBAL 1 -1 ; print
2 [4] LOADK 2 -2 ; “Hello, “
3 [4] MOVE 3 0
4 [4] LOADK 4 -3 ; “.”
5 [4] CONCAT 2 2 4
6 [4] CALL 1 2 1
7 [5] RETURN 0 1

How It Works
The -p option tells luac to only parse the file (check it for syntactical correctness) rather than actually
outputting any bytecode. The -l option tells it to print a bytecode listing. The last argument, test.lua,
names the file to be used as source code. (This filename has to be the last argument; no options can
follow it.)

The bytecode listing itself has two sections: one for the main chunk (the whole file test.lua) and one
for the Greet function definition. This chapter isn’t big enough to give anywhere close to a comprehen-
sive description of the virtual-machine instructions that bytecode is composed of, but a line-by-line
breakdown will give you at least an impression of how bytecode works.

First, the following lines give information about the main chunk (more on this in a moment):

main <test.lua:0,0> (6 instructions, 24 bytes at 0x471410)
0+ params, 2 slots, 0 upvalues, 0 locals, 2 constants, 1 function

Then the CLOSURE instruction creates a function, using the definition at 0x471560 where the [5] means
that this corresponds to line 5 of the source code (the end of Greet’s function definition):

1 [5] CLOSURE 0 0 ; 0x471560

This instruction assigns the function to the global variable Greet:

2 [3] SETGLOBAL 0 -1 ; Greet

300

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 300

This instruction gets the value (a function) of the global variable Greet:

3 [7] GETGLOBAL 0 -1 ; Greet

This instruction loads one of the main chunk’s constants (“whoever you are”) into register 1:

4 [7] LOADK 1 -2 ; “whoever you are”

The Lua virtual machine has up to 250 registers, or temporary storage locations. Here, a register is being
used to store “whoever you are” until it is passed to a function. Registers are also used to store argu-
ments and other local variables. In the example’s output, where the second line says 2 slots, that
means that the main chunk uses 2 registers. Registers reside on the call stack, so each function call gets a
fresh set.

Continuing with the line-by-line breakdown of the example, the following
instruction calls register 0 (the Greet function) with 1 argument and 0 return
values (subtract 1 from both the 2 and the 1 to get these values): 5
[7] CALL 0 2 1

Then this instruction returns from the main chunk, thereby ending the script:

6 [7] RETURN 0 1

These lines give information about the Greet function definition — it resides at 0x471560, has one argu-
ment (parameter) and three constants, and uses five registers:

function <test.lua:3,5> (7 instructions, 28 bytes at 0x471560)
1 param, 5 slots, 0 upvalues, 1 local, 3 constants, 0 functions

This instruction gets the value (a function) of the global variable print:

1 [4] GETGLOBAL 1 -1 ; print

These instructions put the constant “Hello, “, the function’s argument, and the constant “.” into regis-
ters 2, 3, and 4:

2 [4] LOADK 2 -2 ; “Hello, “
3 [4] MOVE 3 0
4 [4] LOADK 4 -3 ; “.”

And finally, these instructions concatenate registers 2 through 4, call print, and return from Greet:

5 [4] CONCAT 2 2 4
6 [4] CALL 1 2 1
7 [5] RETURN 0 1

If you want to know more about the Lua virtual machine, check out Kein-Hong Man’s “A No-Frills
Introduction to Lua 5.1 VM Instructions.” It’s available at luaforge.net, along with his ChunkSpy pro-
gram, which is a tool for analyzing bytecode.

301

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 301

You can use bytecode listings to find certain kinds of bugs, troubleshoot efficiency issues, and under-
stand the meaning of particularly hairy pieces of source code. To create a bytecode file, get rid of the -p
option (and the -l option) and supply the output filename with the -o option, or don’t supply it and
look for the output in the file luac.out. A common convention is to end bytecode files in .luac, but (as
with .lua files), you can name them anything you want and Lua won’t care. For example, this line cre-
ates a test.luac file:

luac -o test.luac test.lua

You can run this like a regular Lua file, by typing the following:

lua test.luac

The output is this:

Hello, whoever you are.

Lua can tell the difference between bytecode and source code by looking at the first byte of the file. If it’s
the character “\27”, then the file is treated as bytecode; otherwise it’s treated as normal source code.
This applies not only to the command-line interpreter, but also to loadstring and its cousins load,
loadfile, and dofile, all of which can accept either source code or bytecode.

The string.dump function converts from a Lua function to bytecode as follows:

> function Greet(Name)
>> print(“Hello, “ .. Name .. “.”)
>> end
>
> -- Convert Greet to bytecode:
> Bytecode = string.dump(Greet)
> -- Convert it back to a function and call it:
> (loadstring(Bytecode))(“Insert name here”)
Hello, Insert name here.

According to the Lua reference manual, the function given to string.dump cannot have upvalues. An
undocumented feature (which therefore may change without notice in a future version) is that a function
with upvalues may be dumped, but in the dumped version, all the upvalues will be private to the func-
tion (even if the original shared them with another function) and they’ll be nil until assigned to from
within the function. (In Lua 5.0, string.dump triggered an error if given a function with upvalues.)

luac is necessary less often than you might think. For example, you can use luac to do the following:

❑ Save the time you would otherwise spend to compile a source code file before running it.
Because Lua’s bytecode compiler is so fast, this is very seldom a big enough time saver to be
worth the hassle.

❑ Hide scripts from snooping eyes and fiddling fingers. Other than constant strings, a .luac file
looks like gobbledygook in a text editor, and this is enough to protect it from casual exploration,
but a determined person (armed with the aforementioned ChunkSpy, for example) can still read
and modify it.

❑ Save space. Because .luac files are not necessarily much smaller (or any smaller) than the cor-
responding .lua files, this is also seldom worth the hassle. One case where it can be worthwhile

302

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 302

is in embedded systems, where space is at a premium. (If source code is never used on the
embedded device itself, then the bytecode-compiler component of Lua doesn’t need to be pre-
sent, which saves more space.)

❑ Check syntax. The -p option allows you to check files for syntax errors without actually running
them.

❑ Generate bytecode listings (as discussed previously) for debugging purposes.

These last two uses are the domain of lint-type program checkers. For example, a program to find unin-
tentional global variables could create a list of all globals by looking at GETGLOBAL and SETGLOBAL
instructions in a bytecode listing.

Bytecode is not portable. A bytecode file generated on one machine can only be used on another if the sec-
ond machine has the same byte order (little-endian versus big-endian) and word size (32-bit versus 64-bit,
for example). Byte order just refers to the order in which multiple-byte numbers are laid out in memory.

Also, because the virtual machine is nothing more than a means of implementing Lua, bytecode is not
portable between different versions. Therefore, Lua 5.0 bytecode won’t work on Lua 5.1 or vice versa.

The following table lists the luac options and what they do.

Option Action

-l Prints a bytecode listing.

-o Uses the following command-line argument as the name of the output file. (The
default is luac.out.)

-p Only parses the source code — doesn’t output any bytecode.

-s Strips debugging information (making the output file smaller, but losing things
like the line numbers used in error messages).

-v Prints version information.

-- Stops handling options (this is useful if you want to compile a script whose name
starts with -).

- Treatsstandard luac input as source code (otherwise, the file named by the last
luac argument is used as source code).

Garbage Collection
If a value is of a type that uses a variable amount of space (such as a string, table, or function) or if it’s
used as an upvalue and hence may outlive its stack frame, Lua automatically sets aside the necessary
space for it in memory. If Lua subsequently notices that this value is no longer either pointed to by a
variable or is used as a key or value in a table, it marks that value’s memory as no longer occupied so
that it can be reused. This process is called garbage collection.

In the following Try It Out, you print bar charts to show how memory usage varies as strings are created
and garbage-collected.

303

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 303

Try It Out Measuring Memory Usage
1. Type the following function into the interpreter:

function GarbageTest(Len)
-- Clean up any garbage:
collectgarbage(“collect”)
for I = 0, 9 do
-- Create a Len-character string and put it in a variable
-- that will go out of scope at the end of this iteration:
local Junk = string.rep(I, Len)
-- Print a line of a bar chart showing memory usage:
print(string.rep(“#”, collectgarbage(“count”))) -- This use
-- of string.rep increases memory usage a bit too, but
-- that can be ignored.

end
end

2. Call GarbageTest with an argument of 200. The output should look something like this:

####################
####################
####################
#####################
#####################
#####################
#####################
######################
######################
######################

3. Call GarbageTest with an argument of 3000. The output should look something like this:

###########################
################################
#####################################
##
###
##############################
###################################
##
###
##

How It Works
The collectgarbage function does various things related to garbage collection, depending on the
option string given as its first argument. At the beginning of GarbageTest, it’s called with the
“collect” option, which makes Lua run a garbage-collection cycle (so that GarbageTest can run with
a clean slate). On every iteration of the loop, a new string is created, then collectgarbage is used with
the “count” option that makes it return the current memory usage (in kilobytes), and this number is
printed in bar chart form. Because Junk is local, a string created on one iteration is not accessible from
the next iteration, which means it’s eligible for garbage collection. When the strings are only 200 charac-
ters long, you can see memory usage slowly ramp up, but when they are 3000 characters long, memory
usage ramps up more quickly, until the garbage collector kicks in and frees up the memory used by
strings from previous iterations. That’s why the second bar chart has a sawtooth shape.

304

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 304

Any code that creates a lot of large strings (or other collectable objects such as tables) that immediately
become inaccessible is said to churn the memory pool. Memory churn causes the garbage collector to
kick in often and can hence slow down your program. The previous example causes memory churn on
purpose, but here are two rules of thumb for avoiding churn caused by strings:

❑ Don’t do in several string.gsub strings what can be done in one string.

❑ Instead of building up a string piece by piece by concatenating onto the end of it on every itera-
tion of a loop, put the pieces into an array and concatenate it all at once with table.concat.

These are important mainly when the strings are long; otherwise the churn is not noticeable.

collectgarbage has other options that enable you to stop and restart the garbage collector and tweak
how often it kicks in automatically and how fast it runs. These options are summarized in Chapter 11.
For more details, see the Lua reference manual.

collectgarbage did not take the same arguments in Lua 5.0 as it does in Lua 5.1, and it didn’t have
as many uses. Some of the slack was picked up by the gcinfo function.

If a table has a metatable whose __mode field is a string containing the letter “k”, and the garbage collec-
tor sees a key in that table that, if it weren’t a key in that table, would be inaccessible, then the garbage
collector will remove that key-value pair. (This doesn’t happen if the key is a string, number, or
Boolean.) For example:

> F1 = function() end
> F2 = function() end
> F3 = function() end
> WeakKeyedTbl = {[F1] = 1, [F2] = 2, [F3] = 3}
> setmetatable(WeakKeyedTbl, {__mode = “k”})
> -- Make function F2 inaccessible except via WeakKeyedTbl:
> F2 = nil
> collectgarbage(“collect”)
> -- The key-value pair [F2] = 2 is no longer in WeakKeyedTbl:
> for F, N in pairs(WeakKeyedTbl) do
>> print(F, N)
>> end
function: 0x493890 1
function: 0x493e10 3

Such a table is said to have weak keys.

Similarly, if the letter “v” is contained in the string in the __mode field of a table, and the garbage collec-
tor sees a value in that table that, if it weren’t a value in that table, would be inaccessible, then the
garbage collector will remove that key-value pair (again, only if the value is not a string, number, or
Boolean). For example:

> F1 = function() end
> F2 = function() end
> F3 = function() end
> WeakValuedTbl = {F1, F2, F3}
> setmetatable(WeakValuedTbl, {__mode = “v”})
> -- Make function F2 inaccessible except via WeakValuedTbl:

305

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 305

> F2 = nil
> collectgarbage(“collect”)
> -- The key-value pair [2] = F2 is no longer in WeakValuedTbl:
> print(WeakValuedTbl[1], WeakValuedTbl[2], WeakValuedTbl[3])
function: 0x493890 nil function: 0x493e10

Such a table is said to have weak values.

The reason this doesn’t apply to strings, numbers, and Booleans is that they are never truly inaccessible.
For example, if the string “ab” doesn’t happen to already be in a variable or a table, it can still be
obtained by concatenating “a” and “b”.

Weak keys and values are useful when you want to make an association between a function, table,
thread (coroutine), or userdata and some second value, and it’s impossible or inconvenient to make that
second value part of the first value, but you don’t want the association to stick around when you’re
done with the first value. For instance, a weak-keyed table could have functions as keys and descriptions
of those functions as values. When no other variable or table contained a particular function, it and its
description would automatically disappear from the table.

The memory leak in orderedtbl.lua that was pointed out in Chapter 8 can be fixed by giving the three
tables responsible for the leak weak keys this:

local RealTbls = {} -- Keys: proxy tables; values: the real
-- tables.

local NumToKeys = {} -- Keys: proxy tables; values: arrays
-- of real tables’ keys, in order.

local KeyToNums = {} -- Keys: proxy tables; values: tables
-- mapping real tables’ keys to their (order) numbers.

-- Prevent leakage by giving all of the above tables weak keys:
local ModeMeta = {__mode = “k”}
setmetatable(RealTbls, ModeMeta)
setmetatable(NumToKeys, ModeMeta)
setmetatable(KeyToNums, ModeMeta)

-- Does the bookkeeping necessary to add a key and its order
-- to the real table (or update/delete a key):
local function __newindex(Proxy, Key, Val)

The __mode string can contain both “k” and “v” (as in “kv”), in which case both the keys and the val-
ues of that table are weak. (Any other characters that might also be in the string are ignored.)

Don’t change a metatable’s __mode field after it has been used as a metatable; otherwise you’ll get
unpredictable results (because Lua caches this field).

One other metamethod that has to do with garbage collection is specific to userdata. The userdata type
will be covered in Chapter 13, but it’s basically a way of exposing a C datatype (or a datatype of some
other language) to Lua. When userdata that has a metatable with a __gc field is up for garbage collec-
tion, then the value of that field is called with the userdata as an argument. The __gc function should
free any memory or other resources (such as open files or network connections) that were allocated out-
side of Lua when the userdata was created. In this way, languages that are not garbage collected (such
as C) can reap the benefits of garbage collection when interfaced with Lua. (This rationale explains why
__gc has no effect on tables, which already reap said benefits.)

306

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 306

The Implementation of Tables and Strings
Tables and strings are both implemented using a technique called hashing. Imagine that you had a for-
mula for converting a person’s name into a number between one and a thousand. If this formula gives a
result of 719 for the name John Smith, then 719 is said to be the hash of John Smith. Now imagine a thou-
sand-page phone book organized by hash. Assume that there aren’t too many people in the phone book,
and assume that the hash formula is such that they are distributed more or less randomly throughout
the book (so that all the people whose last names start with S aren’t clumped together, for example).
Given these assumptions, if you turn to page 719, you’ll have only one or at most a handful of names to
look through to find John Smith.

This would be pretty impractical for a phone book meant for humans, but it turns out to be an efficient
way for a computer to store things and retrieve them. A table index like Tbl.Xyz tells Lua to hash “Xyz”
and look for its value in the same place as the other keys (if any) with the same hash.

Hashing is a good way to store key-value pairs if the keys can be any type at all. But for keys that are
consecutive integers, nothing beats storing only the values in memory one right after the other, in order
by key. Finding a particular key’s value is then just a matter of adding that key to the memory address
right before where the values start, which avoids the overhead of computing the hash and possibly
searching through other keys with the same hash. If Lua notices that an array has consecutive integer
keys starting at 1, then it lays their values out this way, in what is called the array part of the table. The
rest of the table is kept in the hash part.

This makes Lua tables more efficient for common uses, but it’s just an implementation detail — it doesn’t
alter a table’s behavior as far as what key-value pairs that table contains. For example, ipairs goes
through all consecutive integer keys whether they’re in the array part or the hash part of the table. (The
distinction between a table’s array part and hash part explains some aspects of Lua’s behavior that are
explicitly undefined, such as the unpredictable length of an array with gaps.)

Lua strings are said to be interned. This means that a new string is only created if a string does not
already exist with the same sequence of characters. On the second line of the following example, when
“X” and “YZ” are concatenated to form “XYZ”, Lua asks itself, “do I already have a string that has this
sequence of characters?” (This is the part of strings’ implementation that uses hashing, so that answering
this question doesn’t require a search through every single currently existing string.)

A = “XYZ”
B = “X” .. “YZ”

In this case, the answer is yes, so rather than setting aside a new hunk of memory to store the string, it
just assigns the string that’s already in A to B. This is why Lua strings are immutable — otherwise A
would change if B were changed. The main advantages of interning are that determining whether two
strings are equal is very quick, and it takes the same amount of time even if the strings are very long.
Another advantage is that storing lots of identical strings takes much less memory.

A disadvantage of interning is that even strings that are used only briefly need to go through the over-
head of being hashed and then being interned (if they’re not already equal to a previously interned
string). This is why the GarbageTest example caused memory churn: On every iteration, a new string
was interned, but at the end of every iteration, the just-interned string became eligible for garbage collec-
tion. The rules of thumb given for avoiding memory churn work because they avoid unnecessarily
interning long but short-lived strings.

307

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 307

The Debug Library
The debug library includes various functions for looking under the hood of Lua code. These functions
are available in the table debug.

Use the debug library with caution. Its functions violate the normal rules of what values and variables are
accessible from where. These functions can also be slow. Unless you are writing a debugging tool or some-
thing else that needs to poke around in Lua’s guts, you probably don’t want to use the debug library.

All of the functionality described in this section is also available from C. In cases where speed is impor-
tant, you may want to work from C rather than Lua.

Inspecting and Manipulating Running Code
Some of the debug library’s functions enable you to look at and alter running functions and their vari-
ables. In the following Try It Out, you use these functions to access local variables that are not in scope.

Try It Out Accessing Out-of-Scope Locals
1. Type the following into the interpreter:

I = “global”

function Inner()
local I = “inside Inner, outside loop”
for I = 1, 10 do
if I == 5 then
debug.debug()

end
print(“I (inside loop): “ .. I)

end
end

function Outer()
local I = “inside Outer”
Inner()

end

2. Call Outer. You’ll see the following:

> Outer()
I (inside loop): 1
I (inside loop): 2
I (inside loop): 3
I (inside loop): 4
lua_debug>

3. The last line (“lua_debug>”) is a debugging prompt. It’s similar to the prompt you’re already
familiar with, but less full-featured. In particular, it doesn’t accept input spread between
multiple lines, and you might also find that line-editing keys such as backspace don’t work with
it, so type the following carefully:

308

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 308

lua_debug> print(I)
global
lua_debug> local I = “this chunk”; print(debug.getlocal(1, 1))
I this chunk
lua_debug> print(debug.getlocal(2, 1))
nil
lua_debug> print(debug.getlocal(3, 1))
I inside Inner, outside loop
lua_debug> print(debug.getlocal(3, 2))
(for index) 5
lua_debug> print(debug.getlocal(3, 3))
(for limit) 10
lua_debug> print(debug.getlocal(3, 4))
(for step) 1
lua_debug> print(debug.getlocal(3, 5))
I 5
lua_debug> print(debug.getlocal(3, 6))
nil
lua_debug> print(debug.getlocal(4, 1))
I inside Outer
lua_debug> print(debug.setlocal(3, 5, “Kilroy was here!”))
I
lua_debug> cont
I (inside loop): Kilroy was here!
I (inside loop): 6
I (inside loop): 7
I (inside loop): 8
I (inside loop): 9
I (inside loop): 10

How It Works
The debug.debug function opens an “interpreter within the interpreter” — an interpreter that runs
while something else (in this case, the for loop inside of Inner) is still running. There is nothing magi-
cal about this — you could write it yourself using io.read, loadstring, and io.stderr:write.
Because each line you type is a separate chunk, you can’t access variables local to Inner and Outer in
the normal way shown here:

lua_debug> print(I)
global

Instead, you can use the debug.getlocal function, which can access variables even if they’re out of
scope. This function takes two arguments, both numbers. You use the first argument to specify which
stack frame you want to look in. In the second argument, you specify which local within that stack frame
you want. debug.getlocal itself is considered to be at stack frame 0, and the function calling debug
.getlocal is considered to be at stack frame 1, so the following means “get the first local variable in the
current function” (the current function being the chunk typed at the prompt):

lua_debug> local I = “this chunk”; print(debug.getlocal(1, 1))
I this chunk

debug.getlocal returns both the variable’s name and its value.

309

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 309

Local variables are numbered consecutively, starting at 1. In the following snippet, debug.getlocal is
asked for the first local variable in stack frame 2, which is the debug.debug function itself.
debug.debug has no local variables, so debug.getlocal returns nil:

lua_debug> print(debug.getlocal(2, 1))
nil

Because debug.debug is at stack frame 2, the function that called it (Inner) must be at stack frame 3.
Not only can debug.getlocal see both of Inner’s local variables named I, but it can also see the hid-
den variables that Lua uses to keep track of the loop. These are the ones whose names start with an open
parenthesis:

lua_debug> print(debug.getlocal(3, 1))
I inside Inner, outside loop
lua_debug> print(debug.getlocal(3, 2))
(for index) 5
lua_debug> print(debug.getlocal(3, 3))
(for limit) 10
lua_debug> print(debug.getlocal(3, 4))
(for step) 1
lua_debug> print(debug.getlocal(3, 5))
I 5
lua_debug> print(debug.getlocal(3, 6))
nil

debug.getlocal can also see inside Outer as follows:

lua_debug> print(debug.getlocal(4, 1))
I inside Outer

The debug.setlocal function is similar to debug.getlocal, except it assigns a value to the specified
local (and returns the local’s name). If the debugging prompt sees a line with nothing but the magic
word cont on it, then debug.debug returns and the code that called it continues. In this case, the loop
continues where it left off, except I has received a new value:

lua_debug> print(debug.setlocal(3, 5, “Kilroy was here!”))
I
lua_debug> cont
I (inside loop): Kilroy was here!
I (inside loop): 6
I (inside loop): 7
I (inside loop): 8
I (inside loop): 9
I (inside loop): 10

Rather than figuring out in your head what functions are at what stack frames, you can use the debug
.traceback function (introduced in Chapter 6) as shown in this example:

> Outer()
I (inside loop): 1
I (inside loop): 2
I (inside loop): 3

310

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 310

I (inside loop): 4
lua_debug> print(debug.traceback())
stack traceback:

(debug command):1: in main chunk
[C]: in function ‘debug’
stdin:5: in function ‘Inner’
stdin:3: in function ‘Outer’
stdin:1: in main chunk
[C]: ?

For more detail about a given stack frame and the function running at that stack frame, use the function
debug.getinfo, which returns either an associative table or nil if there is no frame at the requested
stack level. The table’s fields will be explained in a moment, but you can see the correspondence
between each stack frame’s short_src, currentline, and name fields in the following example and
that stack frame’s line in the previous traceback:

lua_debug> for K, V in pairs(debug.getinfo(1)) do print(K, V) end
nups 0
what main
func function: 0x495e40
lastlinedefined 0
source =(debug command)
currentline 1
namewhat
linedefined 0
short_src (debug command)
lua_debug> for K, V in pairs(debug.getinfo(2)) do print(K, V) end
source =[C]
what C
func function: 0x485730
nups 0
short_src [C]
name debug
currentline -1
namewhat field
linedefined -1
lastlinedefined -1
lua_debug> for K, V in pairs(debug.getinfo(3)) do print(K, V) end
source =stdin
what Lua
func function: 0x495918
nups 0
short_src stdin
name Inner
currentline 5
namewhat global
linedefined 1
lastlinedefined 9
lua_debug> for K, V in pairs(debug.getinfo(4)) do print(K, V) end
source =stdin
what Lua
func function: 0x496cc8
nups 0
short_src stdin

311

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 311

name Outer
currentline 3
namewhat global
linedefined 1
lastlinedefined 4
lua_debug> for K, V in pairs(debug.getinfo(5)) do print(K, V) end
nups 0
what main
func function: 0x495240
lastlinedefined 0
source =stdin
currentline 1
namewhat
linedefined 0
short_src stdin
lua_debug> for K, V in pairs(debug.getinfo(6)) do print(K, V) end
nups 0
what C
func function: 0x480d78
lastlinedefined -1
source =[C]
currentline -1
namewhat
linedefined -1
short_src [C]
lua_debug> print(debug.getinfo(7))
nil

If no second argument is given, the contents of the table default to the fields shown in the previous out-
put. If the second argument is a string, the characters in it are treated as code letters that specify which
fields to include. The following table gives the meanings of the fields. All line numbers are line numbers
of the chunk the function was defined in or -1 if no line number is available. Some of the code letters
select multiple fields.

Field name Meaning Code Letter

activelines A table whose indexes are the line numbers of those L
lines in this stack frame’s function that have code on
them. Empty lines and lines with nothing but
comments don’t count, nor do lines where nothing
actually happens on the bytecode level (such as lines
with end keywords). This is the only field not
returned if no second argument is given.

currentline The line number of the currently running line in the l (lowercase)
selected stack frame.

func This stack frame’s function. f

lastlinedefined The line number of the last line of the function’s S (uppercase)
definition.

312

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 312

Field name Meaning Code Letter

linedefined The line number of the first line of the function’s S (uppercase)
definition.

name The function’s name, or nil if Lua can’t figure out a n
meaningful name (because the function is
anonymous, for example). If the function did a tail
call, this will be the empty string.

namewhat What type of name the name field is. This can be n
“field”, “global”, “local”, “method”,
“upvalue”, or (if no name was found) “”.

nups The number of upvalues the function has. u (lowercase)

short_src An abbreviated version of source (convenient for S (uppercase)
use in error messages).

source If the chunk in which the function was defined was a S (uppercase)
file, then the source field is the character @ followed
by the filename. If the chunk was just a string,
source is that string, or the string’s chunk name if
one was given (as the second argument to
loadstring, for example). If the function is a C
function, source is “=[C]”. If the stack frame has
been reused by a tail call, then source is “=(tail
call)”.

what If the function did a tail call (and its stack frame has S (uppercase)
therefore been overwritten), what is “tail”.
Otherwise, if the function is an entire chunk, what is
“main”; or if it’s a regular Lua function or a C
function, what is “Lua” or “C”. A function written in
a language other than Lua or C is considered a C
function, because its Lua binding is in C.

When you’re figuring out the number to give functions like debug.getlocal and debug.getinfo to
specify a stack frame, you should include tail calls in your reckoning, even though they don’t really get
their own stack frames. Because tail calls reuse their callers’ stack frames, no other information is avail-
able about a function that did a tail call. For example:

> return (function() -- This whole chunk is a function that
>> -- does a tail call to an anonymous function. This
>> -- anonymous function can get its caller’s info, but
>> -- there’s not much there:
>> for K, V in pairs(debug.getinfo(2)) do
>> print(K, V)
>> end
>> end)()
source =(tail call)
what tail

313

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 313

nups 0
short_src (tail call)
name
currentline -1
namewhat
linedefined -1
lastlinedefined -1

The first argument to debug.getinfo can be a function rather than a stack level. For example:

> function Greet(Name)
>> print(“Hello, “ .. Name .. “.”)
>> end
>
> for K, V in pairs(debug.getinfo(Greet)) do
>> print(K, V)
>> end
nups 0
what Lua
func function: 0x494078
lastlinedefined 3
source =stdin
currentline -1
namewhat
linedefined 1
short_src stdin

Notice that currentline is -1 because debug.getinfo doesn’t know whether the function passed to it
is even running, or, if it is, what stack levels it’s running on. Also notice that name is not included. That’s
because as far as debug.getinfo is concerned, the function passed to it is just a value (it doesn’t know
that you got it from the global variable Greet).

The debug.getupvalue and debug.setupvalue functions are similar to debug.getlocal and
debug.setlocal, except that they are for upvalues, whereas the latter functions are only for locals
whose scope begins (and ends) within the function at the given stack frame. Also, instead of taking a
stack frame as their first argument, debug.getupvalue and debug.setupvalue can only take a func-
tion, as specified here:

> do
>> local N = 0
>>
>> -- Returns a number one higher than the last every time
>> -- it’s called:
>> function Counter()
>> N = N + 1
>> return N
>> end
>> end
> -- Print Counter’s first upvalue’s name and value:
> print(debug.getupvalue(Counter, 1))
N 0

314

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 314

> -- Counter only has one upvalue; trying to get the second
> -- returns nothing:
> print(debug.getupvalue(Counter, 2))

> print(Counter())
1
> print(Counter())
2
> print(debug.getupvalue(Counter, 1))
N 2
> -- Set the upvalue to -100; Counter will add one to this
> -- before returning it:
> debug.setupvalue(Counter, 1, -100)
> print(Counter())
-99

Because of Lua’s scoping rules, two locals in the same stack frame can have the same name, but two
upvalues in the same function cannot.

Separate threads of execution have separate stacks. debug.getinfo, debug.getlocal, debug
.setlocal, and debug.traceback work by default on the currently running thread, but take an optional
first argument of the thread to be used (shifting any other arguments over to compensate). For example:

> function FncA()
>> FncB()
>> end
>
> function FncB()
>> coroutine.yield()
>> end
>
> Thread = coroutine.create(FncA)
> coroutine.resume(Thread)
> print(debug.traceback(Thread, “Inside another thread”))
Inside another thread
stack traceback:

[C]: in function ‘yield’
stdin:2: in function ‘FncB’
stdin:2: in function <stdin:1>

None of Lua 5.0’s debug functions took this optional first argument.

Hooks
The debug library enables you to use hooks, which are functions that Lua calls automatically as other
code is running. These are useful for debugging, and you can also use them to profile code (to find out
how much time is spent in which parts of a program, for example).

In the following Try It Out, you define a hook that prints information about function calls and returns as
they happen.

315

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 315

Try It Out Tracing Function Calls with a Hook
1. Save the following as calltrace.lua:

-- Creates two global functions: a function that traces function calls
-- and returns, and another function to turn it off.
--
-- Usage:
-- require(“calltrace”)
-- Trace() -- Turns on tracing.
-- Untrace() -- Turns off tracing.

-- The current depth of the stack (nil when not tracing):
local Depth

-- Returns a string naming the function at StackLvl; this string will
-- include the function’s current line number if WithLineNum is true. A
-- sensible string will be returned even if a name or line numbers
-- can’t be found.
local function GetInfo(StackLvl, WithLineNum)
-- StackLvl is reckoned from the caller’s level:
StackLvl = StackLvl + 1
local Ret
local Info = debug.getinfo(StackLvl, “nlS”)
if Info then
local Name, What, LineNum, ShortSrc =
Info.name, Info.what, Info.currentline, Info.short_src

if What == “tail” then
Ret = “overwritten stack frame”

else
if not Name then
if What == “main” then
Name = “chunk”

else
Name = What .. “ function”

end
end
if Name == “C function” then
Ret = Name

else
-- Only use real line numbers:
LineNum = LineNum >= 1 and LineNum
if WithLineNum and LineNum then
Ret = Name .. “ (“ .. ShortSrc .. “, line “ .. LineNum
.. “)”

else
Ret = Name .. “ (“ .. ShortSrc .. “)”

end
end

end
else
-- Below the bottom of the stack:
Ret = “nowhere”

end
return Ret

316

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 316

end

-- Returns a string of N spaces:
local function Indent(N)
return string.rep(“ “, N)

end

-- The hook function set by Trace:
local function Hook(Event)
-- Info for the running function being called or returned from:
local Running = GetInfo(2)
-- Info for the function that called that function:
local Caller = GetInfo(3, true)
if Event == “call” then
Depth = Depth + 1
io.stderr:write(Indent(Depth), “calling “, Running, “ from “,
Caller, “\n”)

else
local RetType
if Event == “return” then
RetType = “returning from “

elseif Event == “tail return” then
RetType = “tail-returning from “

end
io.stderr:write(Indent(Depth), RetType, Running, “ to “, Caller,
“\n”)

Depth = Depth - 1
end

end

-- Sets a hook function that prints (to stderr) a trace of function
-- calls and returns:
function Trace()
if not Depth then
-- Before setting the hook, make an iterator that calls
-- debug.getinfo repeatedly in search of the bottom of the stack:
Depth = 1
for Info in
function()
return debug.getinfo(Depth, “n”)

end
do
Depth = Depth + 1

end
-- Don’t count the iterator itself or the empty frame counted at
-- the end of the loop:
Depth = Depth - 2
debug.sethook(Hook, “cr”)

else
-- Do nothing if Trace() is called twice.

end
end

-- Unsets the hook function set by Trace:

317

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 317

function Untrace()
debug.sethook()
Depth = nil

end

2. Type the following into the interpreter:

require(“calltrace”)

function FncA()
FncB()

end

function FncB()
FncC()

end

function FncC()
print(“Inside FncC”)

end

Trace()
FncA()
Untrace()

3. Starting from where you typed Trace(), the output should look like this:

> Trace()
returning from sethook ([C]) to Trace (./calltrace.lua, line 99)
returning from Trace (./calltrace.lua) to chunk (stdin, line 1)
returning from chunk (stdin) to C function
> FncA()
calling chunk (stdin) from C function
calling FncA (stdin) from chunk (stdin, line 1)
calling FncB (stdin) from FncA (stdin, line 2)
calling FncC (stdin) from FncB (stdin, line 2)
calling print ([C]) from FncC (stdin, line 2)
calling C function from print ([C])
returning from C function to print ([C])

Inside FncC
returning from print ([C]) to FncC (stdin, line 2)
returning from FncC (stdin) to FncB (stdin, line 2)
returning from FncB (stdin) to FncA (stdin, line 2)
returning from FncA (stdin) to chunk (stdin, line 1)
returning from chunk (stdin) to C function
> Untrace()
calling chunk (stdin) from C function
calling Untrace (./calltrace.lua) from chunk (stdin, line 1)
calling sethook ([C]) from Untrace (./calltrace.lua, line 107)

>

How It Works
When Trace is called, it measures the current depth of the stack (by calling debug.getinfo with
deeper and deeper stack levels until it returns nil), and then it uses debug.sethook(Hook, “cr”) to

318

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 318

set Hook as a hook to be called whenever a function is called (the c in “cr”) and whenever a function
returns (the r). The hook itself is called with an argument of “call”, “return”, or “tail return”,
depending on why it was called. It runs on top of the stack, which means it can get information about
the function that was running when the hook was called by using 2 as an argument to debug.getinfo,
and information about the function that called that one by using 3. The retrieval of this information is
hidden in the GetInfo function (which therefore needs to add 1 to its argument before calling debug
.getinfo). The hook prints this information, indenting it by one column per stack frame.

As soon as the hook is set, it starts tracing. These lines show control returning from debug.sethook,
through Trace and the interpreted chunk, back to the interpreter itself:

returning from sethook ([C]) to Trace (./calltrace.lua, line 99)
returning from Trace (./calltrace.lua) to chunk (stdin, line 1)
returning from chunk (stdin) to C function

Then when FncA is called, it calls FncB, which calls FncC, which calls print, which calls a C function
(tostring, if you’re curious). This C function returns, and then print prints the message given to it by
FncC:

calling chunk (stdin) from C function
calling FncA (stdin) from chunk (stdin, line 1)
calling FncB (stdin) from FncA (stdin, line 2)
calling FncC (stdin) from FncB (stdin, line 2)
calling print ([C]) from FncC (stdin, line 2)
calling C function from print ([C])
returning from C function to print ([C])

Inside FncC

Control then returns back to the main loop of the interpreter through FncC, FncB, FncA, and the chunk
where FncA was called:

returning from print ([C]) to FncC (stdin, line 2)
returning from FncC (stdin) to FncB (stdin, line 2)
returning from FncB (stdin) to FncA (stdin, line 2)
returning from FncA (stdin) to chunk (stdin, line 1)
returning from chunk (stdin) to C function

In this example, the Inside FncC message was right where you’d expect it to be, just before print
returned. Because that message was printed to standard output and the call trace was printed to stan-
dard error, your system may not output them in the right order, particularly if you use your shell’s redi-
rection operators to send the program’s output to files or other programs.

A hook is not called again until after it has returned. That’s why Hook’s call to GetInfo is not traced. (If
it were, there’d be an infinite regress and the rest of the program would never be reached.)

Untrace unsets the hook by calling debug.sethook with no arguments. (It also nils out Depth so that
future calls to Trace from different stack levels will work.)

319

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 319

Tail calls are indented as though they grew the stack, like this:

do -- local scope for Count.
local Count = 5

-- Keeps tail-calling itself until Count is 0:
function Tail()
if Count == 0 then
return

else
Count = Count - 1
return Tail()

end
end

end

The function’s call trace looks like this:

calling chunk (stdin) from C function
calling Tail (stdin) from chunk (stdin, line 1)
calling Tail (stdin) from Tail (stdin, line 10)
calling Tail (stdin) from Lua function (stdin, line 10)
calling Tail (stdin) from Lua function (stdin, line 10)
calling Tail (stdin) from Lua function (stdin, line 10)
calling Tail (stdin) from Lua function (stdin, line 10)
returning from Lua function (stdin) to overwritten stack frame
tail-returning from Lua function (stdin) to overwritten stack frame
tail-returning from Lua function (stdin) to overwritten stack frame
tail-returning from Lua function (stdin) to overwritten stack frame
tail-returning from Lua function (stdin) to overwritten stack frame
tail-returning from Tail (stdin) to chunk (stdin, line 1)
returning from chunk (stdin) to C function

Notice that a tail return is not a return from a tail call. It’s a return from a function that did a tail call.

It’s possible to write a version of Trace that takes a list of functions and only traces those functions. The
hook would still be called on every call and return, but it would check the list before printing anything.
Depending on what information you wanted to print about returns from tail calls, you might need to
manage your own stack that would grow even on tail calls.

If you use an end-of-file to exit the interpreter while calls are still being traced, you’ll see the trace hit the
left margin like this:

> ^D
returning from C function to nowhere

Because the second argument to debug.sethook was “cr”, the hook was called on calls and returns. If
that argument includes the letter “l”, the hook will be called on every line of code, not counting lines
where nothing happens (lines not counted by the activelines field of debug.getinfo’s return value).
The hook will be called with two arguments: the string “line”, and the line number.

If debug.sethook has a nonzero third argument (called the hook count), the hook will be called every time
that many bytecode instructions have been executed. It will receive the “count” string as an argument.

320

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 320

The debug.gethook function returns three values: the current hook function, the current hook mask (the
string containing zero or more of “c”, “l”, and “r”), and the current hook count. For example, if there’s
no hook set, then the following:

HookFnc, HookMask, HookCount = debug.gethook()
print(“HookFnc: “ .. tostring(HookFnc) .. “; HookMask: ‘“
.. HookMask .. “‘; HookCount: “ .. HookCount)

will print this:

HookFnc: nil; HookMask: ‘’; HookCount: 0

If the calltrace.lua hook is set, then it will print this:

HookFnc: function: 0x495e58; HookMask: ‘cr’; HookCount: 0

Hooks are a per-thread setting. When you set a hook, it only gets set (and then called) in one thread.
Like debug.getinfo, debug.getlocal, debug.setlocal, and debug.traceback, debug.sethook
and debug.gethook work by default on the currently running thread, but take the thread to be used as
an optional first argument. In debug.sethook, its other arguments are shifted over to compensate.

The Lua 5.0 versions didn’t take this optional argument.

Other Functions in the Debug Library
debug.getfenv and debug.setfenv are just like getfenv and setfenv, except that they work with
both Lua and C functions, as well as userdata and threads. (getfenv and setfenv only work with Lua
functions.)

Similarly, debug.getmetatable and debug.setmetatable are like getmetatable and setmetatable
except that they work with all values, not just tables.

debug.getregistry returns the registry table, a table that C code can use as a storage area. (See Chap-
ter 13.)

Lua 5.0 did not include any of these five functions.

Summary
In this chapter you learned the following:

❑ You can use the luac command-line program to compile source code to bytecode, or to print a
human-readable bytecode listing.

❑ Memory that is no longer used is reclaimed by the garbage collector. You can control the
garbage collector’s behavior with the collectgarbage function.

❑ You can use a technique called hashing to implement tables. If Lua thinks that part of a table is
being used as an array, it lays that part out sequentially in memory, which is more efficient than
hashing for array use.

321

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 321

❑ You can also implement strings with hashing. These strings are interned: two strings with the
same contents are the same string, and their contents are at the same memory location.

❑ The debug library enables you to examine local variables and altered them even if they’re out
of scope.

❑ The debug library also enables you set a hook that will be called on every function call, function
return, or line of source code, or every so many bytecode instructions.

The next chapter will complete this book’s treatment of the Lua language itself, by summarizing Lua’s
built-in library functions. The chapter after that discusses libraries written by members of the Lua com-
munity, then there’s a chapter on the C side of Lua, and then the rest of the book is about doing various
things in Lua (such as using databases, web programming, and more).

But first, here are a couple of exercises (with answers in the appendix) to enhance what you’ve learned
in this chapter.

Exercises
1. Imagine you have a file of Lua source code (not bytecode) that the Lua interpreter refuses to

run, giving instead the error message “bad header in precompiled chunk.” What must be wrong
with the file to cause this message? (The hint here is the word “precompiled.”)

2. Write a GetVar function that takes a variable name and returns the value of the variable in the
scope where it was called. It should follow the same scoping rules as Lua itself (locals, then
upvalues, then globals) except that it doesn’t need to find external locals that aren’t actually
upvalues (because of not being referred to as variables anywhere in the function being
searched).

The variable D in the following test code is an example of this. According to Lua’s scoping rules, the
value of D in InnerFnc should be “upvalue” and not “global”, but finding would-be upvalues like
D is actually impossible to do except in special cases.

To test your function, run the following code:

Gl = “global”
Up = “upvalue”
L = “local”
OL = “outer local”
IL = “inner local”
A, B, C, D, E = Gl, Gl, Gl, Gl, Gl

function OuterFnc()
local A, B, C, D = Up, Up, Up, Up

local function InnerFnc(A)
local A = IL
local B = L
local _ = C -- Without this, C, like D, would not be an
-- upvalue of InnerFnc.

for _, Name in ipairs({“A”, “B”, “C”, “D”, “E”}) do
print(Name, GetVar(Name))

322

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 322

end
end

InnerFnc(OL)
end

OuterFnc()

It should print the following:

A inner local
B local
C upvalue
D global
E global

323

Chapter 10: Looking Under the Hood

13_069172 ch10.qxp 1/2/07 8:08 PM Page 323

13_069172 ch10.qxp 1/2/07 8:08 PM Page 324

11
Exploring Lua’s Libraries

Up to this point in the book you’ve been learning about the fundamentals of Lua, occasionally
using some of its library functions. In this chapter, all of Lua’s standard library functions are
briefly summarized to remind you of their basic usage. Practically every function has many more
features than can be covered in detail within the scope of this book, and the examples that are
included here are mostly contrived for brevity. (For the definitive documentation of these features,
see the Lua Reference Manual.)

In this chapter, you’ll find summaries of the following:

❑ General-purpose functions in the core library

❑ Functions that manage coroutines

❑ Package functions that implement Lua’s module system

❑ String conversion and pattern matching functions

❑ Functions that help with using tables as arrays

❑ Bindings to the C runtime library’s math functions

❑ Functions for reading from and writing to files and streams

❑ Operating system functions

❑ Functions to help with debugging your Lua programs

An example is provided for each function or group of functions.

Core Library
The core library functions reside in the global environment. They have no containing namespace
table.

14_069172 ch11.qxp 1/2/07 8:08 PM Page 325

Environment Functions
The following functions let you set and retrieve a function’s environment — the table that Lua uses to
resolve global references — and get or set the global environment of the running thread when given a
stack level of 0:

❑ getfenv(optional function or stack level): Returns the environment table of the given function, or
the function running at the given stack level. The argument defaults to 1, which is the stack
level of the current function (the one calling getfenv).

❑ setfenv(function or stack level, environment table): Gives an environment table to the given func-
tion or the function at the given stack level, and returns the function.

This example demonstrates how you can set a global environment for a particular function:

Str = “Global”

function Sandbox()
print(getfenv(), Str)

end

setfenv(Sandbox, {print = print, getfenv = getfenv, Str = “Sandbox”})
Sandbox()
print(getfenv(), Str)

The output generated by the example shows how the value of the global variable Str depends on the
environment:

table: 00765740 Sandbox
table: 00760300 Global

Metatable Functions
These functions let you set, retrieve, and circumvent metatables, the mechanism by which you can mod-
ify the default behavior for various operations:

❑ getmetatable(value): Returns its argument’s __metatable metamethod, its argument’s
metatable if there is no __metatable metamethod, or nil if there is no metatable.

❑ setmetatable(table, metatable): Gives a metatable to a table. An error will be triggered if the
table has a __metatable metamethod.

❑ rawequal(first value, second value): Returns true if the two values are equal, bypassing any
metamethods.

❑ rawget(table, index): Retrieves table[index], bypassing any metamethods.

❑ rawset(table, index, value): Assigns a value to table[index], bypassing any metamethods.

This example shows how you can use the __eq metamethod to modify the way that the equality opera-
tor works for tables:

326

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 326

MtTbl = {__eq = function(T1, T2) return T1.Val == T2.Val end}
A = {Val = 10}
setmetatable(A, MtTbl)
B = {Val = 10}
setmetatable(B, MtTbl)
C = {Val = 12}
setmetatable(C, MtTbl)
print(MtTbl, getmetatable(A), getmetatable(B), getmetatable(C))
print(“A == B”, A == B)
print(“A == C”, A == C)
print(“rawequal(A, B)”, rawequal(A, B))
print(“rawequal(A, C)”, rawequal(A, C))

The example generates the following output, demonstrating that the __eq metamethod is engaged by the
equality operator and bypassed with the rawequal function:

table: 00765530 table: 00765530 table: 00765530 table: 00765530
A == B true
A == C false
rawequal(A, B) false
rawequal(A, C) false

This example illustrates how extra functionality can be attached to the assignment and retrieval of a
table’s field.

local function WindowCreate(TitleStr)

local function WindowTextGet()
-- Simulate GUI call
io.write(“ Retrieving “, TitleStr, “\n”)
return TitleStr

end

local function WindowTextSet(Str)
-- Simulate GUI call
local OldTitleStr = TitleStr
io.write(“ Setting “, Str, “\n”)
TitleStr = Str
return OldTitleStr

end

local function MtIndex(Tbl, Key)
return Key == “Title” and WindowTextGet() or Tbl[Key]

end

local function MtNewIndex(Tbl, Key, Val)
if Key == “Title” then
WindowTextSet(Val)

else
Tbl[Key] = Val

end
end

327

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 327

local Wnd, MtTbl = {}, {__index = MtIndex, __newindex = MtNewIndex}

setmetatable(Wnd, MtTbl)

return Wnd

end

local Wnd = WindowCreate(“Title 1”)
local Str = Wnd.Title
io.write(“1 “, Str, “\n”)
Wnd.Title = “Title 2”
Str = Wnd.Title
io.write(“2 “, Str, “\n”)
rawset(Wnd, “Title”, “Title 3”)
Str = rawget(Wnd, “Title”)
io.write(“3 “, Str, “\n”)
Wnd.Title = “Title 4” -- No metamethod
Str = Wnd.Title -- No metamethod
io.write(“4 “, Str, “\n”)

The output of the example shows how metamethods can define new behavior for indexing and assign-
ments operations. Note that the use of rawset creates a field named Title in the Wnd table, effectively
disabling the use of metamethods for subsequent indexing and assignments:

Retrieving Title 1
1 Title 1
Setting Title 2
Retrieving Title 2

2 Title 2
3 Title 3
4 Title 4

Chunk-Loading Functions
The chunk-loading functions generate a function from a Lua chunk. The chunk can be in either source or
precompiled form. Specifically, each of these functions does the following:

❑ dofile(optional name of file): Executes the specified Lua script, or standard input if the filename
is missing.

❑ load(loader function, optional chunk name): Repeatedly calls the loader function to build up a
Lua chunk. Each time the loader function is called it returns the next portion of the Lua script
in the form of a string. When the entire script has been loaded, the loader function must return
nil, at which point load compiles the chunk and returns the function without running it.

❑ loadfile(optional name of file): Loads the specified file as a Lua chunk and returns the com-
piled function without running it.

❑ loadstring(script string, optional name): Loads the specified string as a Lua chunk and returns
the compiled function without running it.

328

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 328

The following example demonstrates the preceding functions with a simple Lua chunk that simply
prints the arguments that are passed to it. The first iteration of the loop loads the chuck in source form,
the second in precompiled form:

local FileStr = “test.lua”

for J = 1, 2 do
local LuaStr
if J == 1 then
io.write(“=== Source chunk ===\n”)
LuaStr = “print(‘source’, ...)”

else
io.write(“=== Compiled chunk ===\n”)
LuaStr = string.dump(function(...) print(‘compiled’, ...) end)

end
local Hnd = io.open(FileStr, “wb”)
if Hnd then
Hnd:write(LuaStr)
Hnd:close()
io.write(“[dofile] “)
dofile(FileStr)
io.write(“[loadfile] “)
local Fnc, ErrStr = loadfile(FileStr)
if Fnc then
Fnc(1, 2, 3)
io.write(“[loadstring] “)
Fnc, ErrStr = loadstring(LuaStr)
if Fnc then
Fnc(1, 2, 3)
io.write(“[load] “)
local RetStr = LuaStr
local function Loader()
local Ret = RetStr
RetStr = nil
return Ret

end
Fnc, ErrStr = load(Loader)
if Fnc then
Fnc(1, 2, 3)

else
io.write(ErrStr, “\n”)

end
else
io.write(ErrStr, “\n”)

end
else
io.write(ErrStr, “\n”)

end
else
io.write(“Error opening “, FileStr, “ for writing\n”)

end
end
os.remove(FileStr)

329

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 329

The example generates the following output:

=== Source chunk ===
[dofile] source
[loadfile] source 1 2 3
[loadstring] source 1 2 3
[load] source 1 2 3
=== Compiled chunk ===
[dofile] compiled
[loadfile] compiled 1 2 3
[loadstring] compiled 1 2 3
[load] compiled 1 2 3

Note that chunks executed with dofile can’t accept arguments. Note also that all of the functions handle
source chunks and precompiled chunks correctly.

Error-Containment Functions
These functions are used to keep runtime errors from propagating toward the host program:

❑ pcall(function, optional arguments): The specified function is called with the specified argu-
ments. In the event of an error, a one-line message is generated.

❑ xpcall(function, error handler): The specified function is called. In the event of an error, the
specified error handler is invoked before the stack is reset, allowing a stack traceback to be
constructed. The handler is passed an error string and returns an augmented error string.

If the specified function runs without errors, both pcall and xpcall return true followed by the func-
tion’s own return values. If an error occurs, false is returned followed by the error message.

This example shows how a runtime error can be caught and managed within a Lua program.

io.write(“Start of tests\n”)
io.write(“-- pcall --\n”)
local BadLuaStr = “print(‘Intentional error ahead’, ...) error(‘crash’)”
Fnc, ErrStr = loadstring(BadLuaStr, “Demonstration”)
if Fnc then
local Code, ErrStr = pcall(Fnc, “pcall”)
if not Code then
io.write(“[pcall error] “, ErrStr, “\n”)

end
io.write(“-- xpcall --\n”)
local Code, ErrStr = xpcall(Fnc, debug.traceback)
if not Code then
io.write(“[xpcall error] “, ErrStr, “\n”)

end
else
io.write(“[loadstring error] “, ErrStr, “\n”)

end
io.write(“End of tests\n”)

330

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 330

The example generates the following output, showing that the script recovers from both errors:

Start of tests
-- pcall --
Intentional error ahead pcall
[pcall error] [string “Demonstration”]:1: crash
-- xpcall --
Intentional error ahead
[xpcall error] [string “Demonstration”]:1: crash
stack traceback:

[C]: in function ‘error’
[string “Demonstration”]:1: in main chunk
[C]: in function ‘xpcall’
test.lua:11: in main chunk
[C]: ?

End of tests

Module Functions
These functions are Lua’s means to modularize your programs:

❑ module(module name, zero or more preparation functions): Modularizes a script, storing all new
global variables in a namespace table. This table will be assigned to a global variable with the
specified module name. Any functions that are specified are called in turn with the namespace
table as an argument. The package.seeall function is commonly used in this capacity.

❑ require(module name): Loads and executes the specified Lua file following a well-defined
protocol.

See the package library functions for related functions.

The following example generates a little module that simply assigns a greeting to a string, and then
loads the module using Lua’s module system:

io.output(“testmod.lua”)
io.write [[module(...)

Str = “Hello from “ .. (...)
]]

io.close()
io.output(io.stdout)
package.path = “?.lua”
require(“testmod”)
io.write(testmod.Str, “\n”)

The following output from the example shows that the module is successfully loaded:

Hello from testmod

331

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 331

The Garbage-Collection Function
Garbage collection refers to the automatic reclamation of memory used by Lua values that can no longer
be accessed by your program. It has one function:

collectgarbage(“collect” or “count” or “restart” or “setpause” or “setstepmul”
or “step” or “stop”, optional extra argument)

This function performs one of actions described in the following table based on the value of the first
argument.

Action Description

“collect” Forces a garbage-collection cycle.

“count” Returns the amount (in kilobytes) of memory in use.

“restart” Restarts garbage collection (if it has been stopped).

“setpause” Sets the garbage-collection pause to the extra argument divided by 100.

“setstepmul” Sets the garbage-collection step multiplier to the extra argument
divided by 100.

“step” Runs one step of garbage collection. The bigger the extra argument is,
the bigger this step will be. (The exact relationship between the extra
argument and the step size is undefined.) collectgarbage will return
true if the triggered step was the last step of a garbage-collection cycle.

“stop” Stops garbage collection.

The following example shows the effect of collecting garbage after creating and then releasing a large
string:

local function KbUsed(Seq)
io.write(string.format(“%2d %8.2f KB\n”, Seq, collectgarbage(“count”)))

end
KbUsed(1)
Str = string.rep(“*”, 1e5)
KbUsed(2)
Str = nil
collectgarbage(“collect”)
KbUsed(3)
collectgarbage(“collect”)
KbUsed(4)
collectgarbage(“collect”)
KbUsed(5)

The example prints the following lines, showing how successive garbage collection cycles reclaim memory:

1 21.15 KB
2 324.48 KB
3 44.19 KB
4 25.88 KB
5 21.30 KB

332

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 332

Type and Conversion Functions
These functions let you identify types and convert between them:

❑ tonumber(value, optional numeric base from 2 to 36): Converts the specified value to a number
using the specified base. The value must represent an unsigned integer if the base is other than
10. For base 10, the default, the value can represent a floating point number.

❑ tostring(value): Returns a string representation of the specified value, using the __tostring
metamethod if one is registered.

❑ type(value): Returns a string representation of the specified value’s type. This will be “nil”,
“boolean”, “number”, “string”, “table”, “function”, “thread” or “userdata”.

The following example demonstrates the conversion of a binary number to decimal:

BinStr = “101010”
Num = tonumber(BinStr, 2)
DecStr = tostring(Num)
io.write(BinStr, “ (“, type(BinStr), “), “, Num, “ (“, type(Num), “), “,
DecStr, “ (“, type(DecStr), “)\n”)

The example prints the following:

101010 (string), 42 (number), 42 (string)

Basic Output
This category provides a quick way for Lua programs to print values to standard output. The print(zero
or more values) function writes the string equivalent of each argument to standard output. A tab is written
after each argument except the last in which case a newline is written.

This example prints an assortment of values to the standard output stream:

print(nil, 1 == 1, 1 + 1, “one”, function() end, {})

The output shows how various values are rendered by the print function:

nil true 2 one function: 003D9490 table: 003DA478

Error-Condition Functions
These functions conditionally or unconditionally cause an error to propagate toward the host program at
runtime. The most recent protected call will contain the error and prevent it from propagating further.

Here are the error-condition functions and examples of each:

❑ assert(test expression, optional error message): If the test expression evaluates to false or nil,
an error is raised with the specified error message or, if it is missing, with the text assertion
failed! For example, the following tests the assumption of a value’s type:

333

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 333

Val = 12
assert(type(Val) == “boolean”, “Expecting boolean value”)

This outputs the following stack traceback when the assertion expression evaluates to false:

lua: assert.lua:2: Expecting boolean value
stack traceback:

[C]: in function ‘assert’
assert.lua:2: in main chunk
[C]: ?

❑ error(error message, optional “skip” level): Unconditionally causes an error using the specified
message. The second argument specifies the number of stack frames to skip when reporting the
error’s origin. This is useful when writing a custom error handler. This example issues an error:

error(“Printer on fire.”)

The output of the example uses the Lua interpreter’s default error handler:

lua: err.lua:1: Printer on fire.
stack traceback:

[C]: in function ‘error’
error.lua:1: in main chunk
[C]: ?

Table Traversal Functions
These functions let you visit each key-value pair in a table:

❑ ipairs(array): Can be used in a generic for loop to visit all array fields in the specified table.
These are values whose keys are contiguous integers beginning with 1.

❑ next(table, optional seed key): Returns the next key-value pair from the table’s internally ordered
sequence. The first key and value from this sequence are returned when the key argument is
omitted. The value nil is returned when the last key in the sequence is specified.

❑ pairs(table): Can be used in a generic for loop to iterate over all key-value pairs in the table.

This example initializes a table with indexed and associative elements and iterates through the table
using the table traversal functions:

Tbl = {[0] = “zero”, “one”, “two”, Id = 100, Name = “Alexander Botts”,
“three”, [10] = “ten”}

io.write(“--- ipairs ---\n”)
for J, Val in ipairs(Tbl) do
io.write(J, “: “, tostring(Val), “\n”)

end

io.write(“--- pairs ---\n”)
for Key, Val in pairs(Tbl) do
io.write(tostring(Key), “: “, tostring(Val), “\n”)

334

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 334

end

io.write(“--- next ---\n”)
local Key, Val = next(Tbl)
while Key do
io.write(tostring(Key), “: “, tostring(Val), “\n”)
Key, Val = next(Tbl, Key)

end

The example’s output show how pairs and next can be used to visit all key-value pairs in a table, but
ipairs traverses only array elements:

--- ipairs ---
1: one
2: two
3: three
--- pairs ---
1: one
2: two
3: three
0: zero
10: ten
Name: Alexander Botts
Id: 100
--- next ---
1: one
2: two
3: three
0: zero
10: ten
Name: Alexander Botts
Id: 100

Vararg-Related Functions
The following two functions are useful for working with vararg expressions (...), vararg functions,
functions that return multiple values, and multiple assignment:

❑ select(position or “#”, zero or more extra arguments): When the first argument is “#”, this func-
tion returns the number of extra arguments. When the first argument is an integer, it returns the
extra argument specified by that integer, and all of the following extra arguments.

❑ unpack(array, optional start position, optional end position): Returns the values (in order) in the
given array. The start and end positions default (respectively) to 1 and the length of the array.

The following example demonstrates the use of select and unpack:

function Test(...)
io.write(“*** Entering Test ***\n”)
for J = 1, select(“#”, ...) do
io.write(select(J, ...))
io.write(“\n”)

335

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 335

end
end

List = {“One”, “Two”, “Three”}
Test(unpack(List))
Test(unpack(List, 1, 2))
Test(unpack(List, 2))

The example’s output shows how unpack can be used to return a contiguous range of arrayed values,
and how select can be used to obtain the elements in a vararg expression and their number:

*** Entering Test ***
OneTwoThree
TwoThree
Three
*** Entering Test ***
OneTwo
Two
*** Entering Test ***
TwoThree
Three

Coroutine Library
The following coroutine functions are used to cooperatively manage multiple threads in a Lua program:

❑ coroutine.create(function): Creates a coroutine from the specified function. The returned
value is of type thread.

❑ coroutine.resume(coroutine, optional values): Activates a coroutine with any practical number
and type of arguments. The values following the coroutine in the argument list are passed to
the coroutine as follows. When the coroutine is initially activated, the arguments are conveyed
in the coroutine body’s argument list. When the coroutine is subsequently resumed, these argu-
ments appear as return values from coroutine.yield. This function returns the values that
are passed to coroutine.yield or are explicitly returned when the coroutine ends.

❑ coroutine.running(): Returns the currently running coroutine, or nil if the main thread is
running.

❑ coroutine.status(coroutine): Returns a string with the value “running”, “suspended”,
“normal” or “dead”.

❑ coroutine.wrap(function): Creates a coroutine from the specified function and returns a func-
tion wrapper to it. The coroutine is resumed by calling the returned function directly. This can
make activating the coroutine simpler; however, runtime errors are not contained.

❑ coroutine.yield(zero or more values): Transfers control back to the caller of coroutine.resume
that activated the current coroutine. The arguments are conveyed to the caller in the form of return
values from coroutine.resume.

336

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 336

The following example shows how coroutines can be used to retain the state needed to generate a run-
ning average of numbers. Both the wrapped and unwrapped varieties of coroutines are demonstrated:

local function Average()
local Co = coroutine.running()
Val = coroutine.yield(tostring(Co) .. “ is “ .. coroutine.status(Co))
local Count, Sum = 1, Val
while true do
Sum = Sum + coroutine.yield(Sum, Sum / Count)
Count = Count + 1

end
end

local CoAve = coroutine.create(Average)
local Code, Str = coroutine.resume(CoAve)
if Code then
io.write(Str, “\n”)
local Ave = coroutine.wrap(Average)
io.write(Ave(), “\n\n”)
io.write(“Val A Sum A Ave A Val B Sum B Ave B\n”)
io.write(“----- ----- ----- ----- ----- -----\n”)
math.random() -- On some systems that shall remain nameless, the
-- first call to math.random is easy enough to predict that it
-- destroys the illusion of randomness; throw it away.

for J = 1, 6 do
local Code, ValA, SumA, AveA, ValB, SumB, AveB
ValA = math.random(0, 100)
Code, SumA, AveA = coroutine.resume(CoAve, ValA)
if Code then
ValB = math.random(0, 100)
SumB, AveB = Ave(ValB)
io.write(string.format(“%5d %5d %5.2f %5d %5d %5.2f\n”,
ValA, SumA, AveA, ValB, SumB, AveB))

end
end

end

The example’s output shows identical results calculated for identical input to the averaging coroutines:

thread: 003DAD60 is running
thread: 003DB3B0 is running

Val A Sum A Ave A Val B Sum B Ave B
----- ----- ----- ----- ----- -----

56 56 56.00 19 19 19.00
81 137 68.50 59 78 39.00
48 185 61.67 35 113 37.67
90 275 68.75 83 196 49.00
75 350 70.00 17 213 42.60
86 436 72.67 71 284 47.33

337

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 337

Package Library
The following functions, strings, and tables in this library are used with or by module and require to
implement Lua’s package system:

❑ package.loadlib(library name, function name): Loads the specified library and returns a func-
tion bound to the specified C function in the library. Because ANSI C doesn’t provide for loading
libraries dynamically, this function is implemented in a platform-specific manner and is available
only on mainstream systems. The following example demonstrates the direct loading of a shared
library:

Usually a Lua program uses the require function instead of loadlib to take advantage of Lua’s
package searching and caching conventions.

Fnc, ErrStr = package.loadlib(“./luabogo.so”, “luaopen_bogo”)
if Fnc then
Fnc(“bogo”)

else
io.write(ErrStr, “\n”)

end

❑ package.seeall(namespace table): Sets the metatable for a module namespace so that values in
the global environment can be accessed. This is used as a preparation function with the module
function. For example, the following creates a small module that specifies package.seeall as
an argument to module so that it can access to the global environment. Note that package.path
is modified so that the script looks for the module in the current directory:

io.output(“testmod.lua”)
io.write [[module(..., package.seeall)
local ModStr = (...)

function Hello()
io.write(“Hello from “, ModStr, “\n”)

end
]]

io.close()
io.output(io.stdout)
package.path = “?.lua”
require(“testmod”)
testmod.Hello()

The example’s output shows how the module is able to call io.write as a result of using
package.seeall:

Hello from testmod

❑ package.preload: Each key in this table is the name of a module, and the corresponding value
is a function that is called to load the module. Lua’s package mechanism checks this table for a
module loading function before it searches for a file-based module.

338

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 338

❑ package.loaded: Each key in this table is the name of a loaded module, and the corresponding
value is the value that was returned by the module’s loading function. Lua’s package mecha-
nism checks this table when require is called to see if the module has already been loaded. If it
has, the corresponding value is returned rather than loading the module again.

❑ package.path: This string consists of semicolon-separated segments that are used to locate a
Lua module file. It is initially assigned the value of the environment variable LUA_PATH (or a
default value from luaconf.h, if LUA_PATH is not defined). When searching for a module file,
Lua replaces each question mark with the name passed to require.

❑ package.cpath: This string consists of semicolon-separated segments that are used to locate a
compiled library. It is initially assigned the value of the environment variable LUA_CPATH (or a
default value from luaconf.h, if LUA_CPATH is not defined). When searching for a library, Lua
replaces each question mark with the name passed to require.

The following example demonstrates the use of the package.loaded and package.preloaded tables:

io.output(“a.lua”)
io.write(‘return {Str = “Module a (file).”}’)
io.close()
io.output(“b.lua”)
io.write(‘return {Str = “Module b (file).”}’)
io.close()
io.output(“c.lua”)
io.write(‘return {Str = “Module c (file).”}’)
io.close()
io.output(io.stdout)

package.cpath = “”
package.path = “./?.lua”

function package.preload.a()
return {Str = “Module a.”}

end

package.loaded.b = {Str = “Module b.”}

local function Report(ModStr)
io.write(‘package.loaded[“‘, ModStr, ‘“] = ‘,
tostring(package.loaded[ModStr]), ‘\n’)

end

Report(“a”)
Report(“b”)
Report(“c”)
local A = require(“a”)
local B = require(“b”)
local C = require(“c”)
io.write(“A: “, A.Str, “\nB: “, B.Str, “\nC: “, C.Str, “\n”)
Report(“a”)
Report(“b”)
Report(“c”)

339

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 339

Three file-based modules are created, and package.cpath and package.path are set so that Lua will
look for Lua modules only in the current working directory, and will not look for compiled libraries at
all. A loader function is associated with “a” in the package.preload table. When the “a” module is
required, Lua will call this function and return the value that it returns. A table is associated with “b” in
the package.loaded table. When the “b” module is required, Lua returns this value directly. Because the
“c” module doesn’t have an entry in either of these tables, Lua searches for a file module. It does this by
stepping through each semicolon-separated segment in package.path, replacing each ? with the name
of the module. In this example, the one segment in package.path forms the name ./c.lua, and Lua
successfully opens this file as a Lua chunk. The example outputs the following lines:

package.loaded[“a”] = nil
package.loaded[“b”] = table: 003DA7E8
package.loaded[“c”] = nil
A: Module a.
B: Module b.
C: Module c (file).
package.loaded[“a”] = table: 003DAEC8
package.loaded[“b”] = table: 003DA7E8
package.loaded[“c”] = table: 003DAFF0

String Library
The string library provides a versatile set of functions for manipulating text in Lua programs. Character
positions may be positive or negative integers. A positive value indicates a position counted from the
beginning of the string with the first character at position 1. A negative value indicates a position counted
backwards from the end of the string, with the last character at position -1.

Pattern-Based String Functions
The following string functions use Lua’s pattern matching facility to locate and extract character
sequences in a string (see “Pattern Matching” in Chapter 5 for details about matching text):

❑ string.find(subject string, pattern string, optional start position, optional plain flag): Looks for a
pattern in the specified subject string. The search is done with Lua’s pattern-matching rules
unless the optional plain flag is true, in which case a character-for-character search is done, with
none of the characters in the pattern string having their magic meaning. The search begins at the
beginning of the subject unless a start position is specified. If a match is found, the start and end
positions are returned followed by any captures that are specified in the pattern string. For
example, the following demonstrates the use of string.find with an incremented starting
position to extract all alphanumeric sequences from a string:

local Str = “/var/local/www”
local PosStart, PosEnd, MatchStr = 1
while PosStart do
PosStart, PosEnd, MatchStr = string.find(Str, “(%w+)”, PosStart)
if PosStart then
io.write(MatchStr, “\n”)
PosStart = PosEnd + 1

end
end

340

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 340

The example prints the following lines.

var
local
www

❑ string.gmatch(subject string, pattern string): Iterator factory for looping through pattern
matches in the subject string using a generic for loop. For example, the following is a more
convenient method than the one in the previous example that you can use to extract matching
character sequences from a string:

for Str in string.gmatch(“CamelbackName”, “%u%l+”) do
io.write(Str, “\n”)

end
The example prints the following string captures.Camelback
Name

❑ string.gsub(subject string, pattern string, replacement string or function or table, optional limit
count): Substitutes each pattern match found in the subject string with a replacement. The
replacement argument can be a string (which can contain captures such as “%1”), or a function
that is called for each match (with captures passed as arguments), or a table in which the value
given by a matching key is used for the replacement. The number of replacements can be limited
by specifying a numeric fourth argument. The following example shows how string.gsub can
be used to modify the contents of a string:

-- Generate list of month names in current locale
local Dt = os.date(“*t”)
Dt.day = 1
local MonthList = {}
for Month = 1, 12 do
Dt.month = Month
MonthList[Month] = os.date(“%B”, os.time(Dt))

end

function ExpandDate(Month, Day, Sep)
return (MonthList[tonumber(Month)] or “---”) .. “ “ ..
tonumber(Day) .. (Sep == “,” and “, “ or “”)

end

local Str = “0117,0211,0818”
io.write(“Before: “, Str, “\n”)
Str = string.gsub(Str, “(%d%d)(%d%d)(%,?)”, ExpandDate)
io.write(“After: “, Str, “\n”)

The example prints the following lines.

Before: 0117,0211,0818
After: January 17, February 11, August 18

❑ string.match(subject string, pattern string, optional start position): Returns the captures of the
first match found in the subject. If no match is found, nil is returned. If a match is found but no
captures are specified, the entire match is returned. For example, the following extracts the red,
green and blue hexadecimal components of a color identifier:

341

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 341

local ClrStr = “#C6EFF7”
local Red, Green, Blue = string.match(ClrStr, “%#(%x%x)(%x%x)(%x%x)”)
if Red then
io.write(“Red: “, tonumber(Red, 16), “, Green: “, tonumber(Green, 16),
“, Blue: “, tonumber(Blue, 16), “\n”)

end

The following line is printed by the example:

Red: 198, Green: 239, Blue: 247

String-Conversion Functions
Lua’s string-conversion functions return one or more values pertaining to the specified string or sub-
string, as follows:

❑ string.byte(string, optional start position, optional end position): Returns the platform-dependent
byte values associated with a range of text characters. If the start position is missing, 1 is used. If
the end position is missing, the start position is used. For example, the following returns the byte
values of the letters L, u and a:

print(string.byte(“Lua”, 1, 3))

The following values are printed by the example:

76 117 97

❑ string.char(zero or more integers): Constructs and returns a string comprising the characters
associated with the platform-dependent argument values. For example, the following converts
the specified numeric values to a string:

print(string.char(76, 117, 97))

The example prints the following string:

Lua

❑ string.dump(function): Returns a copy of the function converted to binary string form for
storage or transmission. It can be restored with one of the load functions. (Officially, the func-
tion cannot have upvalues, but Chapter 10 describes what happens if it does.) The following
example converts a simple Lua function to string form, and then creates a new function from
the string and executes it with a number of arguments:

Str = string.dump(function(...) print(...) end)
print(string.gsub(Str, “%A+”, “...”))
loadstring(Str)(1, 2, 3)

The example prints the following lines (the actual values shown in the first line may vary
between platforms):

...LuaQ...sb...lua...E...print...arg... 7
1 2 3

❑ string.format(format string, zero or more values): Returns a single formatted string. The for-
mat string specifies how the arguments that follow it are to be formatted, following conventions

342

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 342

close to those used by the printf function in the standard C library. For example, you could
use string.format to generate a hexadecimal color identifier like this:

io.write(string.format(“Color: #%02X%02X%02X\n”, 198, 239, 247))

The following line is printed by the example:

Color: #C6EFF7

❑ string.len(string): Returns the number of bytes in the specified string, including non-text
characters such as “\0”.

❑ string.lower(string): Returns a copy of the specified string in which all uppercase letters are
transformed to their lowercase values.

❑ string.rep(string, repeat count): Returns a string made up of the specified string repeated the
specified number of times.

❑ string.reverse(string): Returns a copy of the specified string in which the sequence of the
characters is reversed.

❑ string.sub(string, start position, optional end position): Returns the portion of the specified
string indicated by the start and end positions.

❑ string.upper(string): Returns a copy of the specified string in which all lower case letters are
transformed to their upper case values.

This example demonstrates a number of conversions in which the returned string is a modification of
the passed-in string:

local Str = “Lua”
io.write(string.format(“Normal: ‘%s’, reversed: ‘%s’, “ ..
“lower: ‘%s’, upper: ‘%s’\n\n”,
Str, string.reverse(Str), string.lower(Str), string.upper(Str)))

for J, TblStr in ipairs{“coroutine”, “debug”, “io”, “math”,
“os”, “package”, “string”, “table”} do
local Count = 0
for FldStr in pairs(_G[TblStr]) do
Count = Count + 1

end
io.write(string.format(“%s%s%d\n”, TblStr, string.rep(“.”,
14 - string.len(TblStr) - string.len(Count)), Count))

end

The example prints the following lines:

Normal: ‘Lua’, reversed: ‘auL’, lower: ‘lua’, upper: ‘LUA’

coroutine....6
debug.......14
io..........14
math........31
os..........11
package......8
string......15
table........9

343

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 343

Table Library
The table functions provide a means to work with tables as arrays (that is, tables with contiguous integer
indexes beginning with 1). The table library contains the following functions:

❑ table.concat(array, optional separator string, optional start position, optional end position):
Returns a single string made up of the elements in the specified table, which must be strings or
numbers. If a separator is specified, it will be used to delimit the elements. A range of elements
can be specified using the start and end positions.

❑ table.insert(array, optional position, value): Inserts a value into the specified table. If the posi-
tion is missing, the value is added to the end of the array, otherwise it’s added to the indicated
position. In either case, the number of values in the array is increased by one. If the insertion is
into before the last position, elements are moved up to make room.

❑ table.maxn(array): Effectively performs a pairs loop to determine the largest positive
numeric key in the specified table. The returned number may be larger than the value an
ipairs loop would reach, and the number may be a noninteger. If there are no positive keys,
0 is returned.

❑ table.remove(array, optional position): Removes the table element associated with the speci-
fied position and returns its value. If the position is missing, the last element in the array is
removed. Elements are moved down to fill the vacated position.

❑ table.sort(array, optional comparison function): Sorts the elements in the specified array. If a
comparison function is specified, it will be called as needed with two table elements as argu-
ments. It should return true if the first element is less than the second and false otherwise.
If this function is not specified, < will be used to compare elements.

This example demonstrates the manipulation of a table:

Tbl = {“This is line 4”, “This line is out of place”, “This is line 2”}
table.insert(Tbl, “This is line 1”)
table.remove(Tbl, 2)
table.insert(Tbl, “This is line 3”)
table.insert(Tbl, “This is line “ .. table.maxn(Tbl) + 1)
table.sort(Tbl)
io.write(table.concat(Tbl, “\n”), “\n”)

The example prints the following lines:

This is line 1
This is line 2
This is line 3
This is line 4
This is line 5

344

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 344

Math Library
The functions in the math library are closely bound to functions of the same name in the standard C library.
Plots of some of the functions are shown here — these were generated with Lua using the GD library
(which you’ll get a chance to experiment with in the “Producing a Function Plot” Try It Out in Chapter 12).

Trigonometric Functions
These functions return a numeric value corresponding to right triangle side ratios. A circle of radius 1 is
defined by the points (cos(angle), sin(angle)) for angles ranging from 0 to 2 * pi radians.

The trigonometric functions are as follows:

❑ math.sin(angle in radians): Returns the sine of the specified angle. See Figure 11-1 for a plot of
this function.

Figure 11-1

345

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 345

❑ math.cos(angle in radians): Returns the cosine of the specified angle. See Figure 11-2 for a plot
of this function.

Figure 11-2

346

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 346

❑ math.tan(angle in radians): Returns the tangent of the specified angle. See Figure 11-3 for a plot
of this function.

Figure 11-3

347

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 347

Inverse Trigonometric Functions
These functions return a numeric angle in radians that corresponds to a sine, cosine or tangent value.
Because cosine and sine values range between -1 and 1, the arcsine and arccosine functions are defined
only for arguments in this range.

The inverse trigonometric functions are as follows:

❑ math.asin(value from -1 to 1): Returns the angle in radians whose sine is specified. See Figure
11-4 for a plot of this function.

Figure 11-4

348

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 348

❑ math.acos(value from -1 to 1): Returns the angle in radians whose cosine is specified. See
Figure 11-5 for a plot of this function.

Figure 11-5

349

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 349

❑ math.atan(value): Returns the angle in radians whose tangent is specified. See Figure 11-6 for
a plot of this function.

Figure 11-6

❑ math.atan2(numerator, denominator): Returns the angle of a bidimensional vector (numerator,
denominator). The denominator may be zero.

This example runs through a range of numerators and denominators for the arctangent function:

for Y = -3, 3 do
for X = -3, 3 do
io.write(string.format(“%5.2f “, math.atan2(Y, X) / math.pi))

end
io.write(“\n”)

end

The example prints the following lines:

-0.75 -0.69 -0.60 -0.50 -0.40 -0.31 -0.25
-0.81 -0.75 -0.65 -0.50 -0.35 -0.25 -0.19
-0.90 -0.85 -0.75 -0.50 -0.25 -0.15 -0.10
1.00 1.00 1.00 0.00 0.00 0.00 0.00
0.90 0.85 0.75 0.50 0.25 0.15 0.10
0.81 0.75 0.65 0.50 0.35 0.25 0.19
0.75 0.69 0.60 0.50 0.40 0.31 0.25

350

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 350

Hyperbolic Functions
These functions are to the hyperbola what the trigonometric functions are to the circle. The right half of the
equilateral hyperbola is defined by the points (cosh(hyperbolic angle), sinh(hyperbolic angle)).

The hyperbolic functions are as follows:

❑ math.sinh(hyperbolic angle): Returns the hyperbolic sine of the specified value. See Figure 11-7
for a plot of this function.

Figure 11-7

351

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 351

❑ math.cosh(hyperbolic angle): Returns the hyperbolic cosine of the specified value. See Figure 11-8
for a plot of this function.

Figure 11-8

352

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 352

❑ math.tanh(hyperbolic angle): Returns the hyperbolic tangent of the specified value. See
Figure 11-9 for a plot of this function.

Figure 11-9

353

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 353

Exponent Functions
These functions return the value of a number raised to another:

❑ math.exp(natural exponent): Returns the value of e raised to the specified exponent. See
Figure 11-10 for a plot of this function.

Figure 11-10

354

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 354

❑ math.pow(base, exponent): Returns the specified base raised to the specified exponent. The fol-
lowing example demonstrates this function:

local Base, Exp = 0, 10
local Pow = math.pow(Base, Exp)
io.write(Base, “ ^ “, Exp, “ = “, Pow == 0 and “nothing at all” or Pow, “\n”)
-- With a friendly tip of the hat to Ian Anderson

The following line is printed by the example:

0 ^ 10 = nothing at all

❑ math.sqrt(number): Returns the square root of the specified number. See Figure 11-11 for a
plot of this function.

Figure 11-11

355

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:08 PM Page 355

Logarithm Functions
These functions are the inverse of the exponent functions:

❑ math.log(positive number): Returns the natural (base-e) logarithm of the specified number. The
number e raised to the return value equals the specified argument. See Figure 11-12 for a plot of
this function.

Figure 11-12

356

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 356

❑ math.log10(number): Returns the base-10 logarithm of the specified number. The number
10 raised to the return value equals the specified argument. See Figure 11-13 for a plot of this
function.

Figure 11-13

357

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 357

Adjustment Functions
These functions adjust the specified value by sign or value:

❑ math.abs(number): Returns the absolute value of the specified number; a non-numeric argu-
ment causes an error. See Figure 11-14 for a plot of this function.

Figure 11-14

358

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 358

❑ math.ceil(number): Returns the smallest integer greater than or equal to the specified
numeric argument. See Figure 11-15 for a plot of this function.

Figure 11-15

359

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 359

❑ math.floor(number): Returns the greatest integer less than or equal to the specified numeric
argument. See Figure 11-16 for a plot of this function.

Figure 11-16

Floating Point Representation
These functions are used in the representation of floating point numbers as the product of a mantissa
and two raised to an integer exponent:

❑ math.frexp(number): Returns the mantissa and integer exponent of the specified number. The
returned values are adjusted so that the absolute value of the mantissa is greater than or equal
to 0.5 and less than 1.0, except where the specified number is 0, in which case both return values
are 0.

❑ math.ldexp(mantissa, integer exponent): Returns the product of the specified mantissa and two
raised to the specified exponent.

This example breaks the value pi into a mantissa and exponent and then recombines them:

local Mantissa, Exp = math.frexp(math.pi)
io.write(“Pi: “, Mantissa, “ * 2 ^ “, Exp, “ = “,
math.ldexp(Mantissa, Exp), “\n”)

The following line is printed by the example:

Pi: 0.78539816339745 * 2 ^ 2 = 3.1415926535898

360

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 360

Angle Conversion Functions
These helper functions convert angle values between degrees and radians:

❑ math.deg(angle in radians): Returns the number of degrees in the specified number of radians.
For example, this converts some radian values to degrees:

io.write(“Radians Degrees\n”)
io.write(“------- -------\n”)
for Step = 0, 2, 0.25 do
local Degree = math.deg(math.pi * Step)
io.write(string.format(“%4.2f pi %7.1f\n”, Step, Degree))

end

The example prints the following table:

Radians Degrees
------- -------
0.00 pi 0.0
0.25 pi 45.0
0.50 pi 90.0
0.75 pi 135.0
1.00 pi 180.0
1.25 pi 225.0
1.50 pi 270.0
1.75 pi 315.0
2.00 pi 360.0

❑ math.rad(angle in degrees): Returns the number of radians in the specified number of degrees.
For example, this redefines math.sin to accept its angle argument in degrees rather than radians:

math._sin = math.sin

-- Redefine math.sin to accept angle in degrees

math.sin = function(degrees)
return math._sin(math.rad(degrees))

end

io.write(“ x sin(x)\n”)
io.write(“--- ------\n”)
for Deg = 0, 360, 90 do
io.write(string.format(“%3d %6.2f\n”, Deg, math.sin(Deg)))

end

The example prints the following table:

x sin(x)
--- ------
0 0.00
90 1.00
180 0.00
270 -1.00
360 -0.00

361

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 361

Pseudo-Random Number Functions
These functions are used to generate pseudo-random numbers:

❑ math.randomseed(number): Seeds the pseudo-random number generator. You can obtain iden-
tical sequences of pseudo-random numbers by calling this function with the same value.

❑ math.random(optional bound, optional bound): Returns a pseudo-random number in one of three
ways. If no argument is specified, the return value is greater than or equal to 0 and less than 1.
If one number is specified, the return value is an integer greater than or equal to 1 and less than
or equal to the specified argument. If two numbers are specified, the return value is an integer
greater than or equal to the first argument and less than or equal to the second.

This example shows how you can obtain identical sequences of pseudo-random numbers by seeding the
generator with the same value:

local Seed = os.clock()
for J = 1, 2 do
math.randomseed(Seed)
math.random() -- On some systems that shall remain nameless, the
-- first call to math.random is easy enough to predict that it
-- destroys the illusion of randomness; throw it away.

for J = 1, 10 do
io.write(math.random(100, 200), “ “)

end
io.write(“\n”)

end

The example prints identical sequences of numbers (the particular values depend on the seed value
returned from os.clock):

123 165 107 127 136 125 199 132 194 118
123 165 107 127 136 125 199 132 194 118

Modulus Functions
These functions return the remainder of a division or the fractional part of an expression:

❑ math.modf(number): Returns the integer and fractional portions of the specified number. Both
of the return values carry the same sign as the argument.

❑ math.fmod(numerator, denominator): Returns the remainder of the numerator divided by the
denominator. The return value is undefined for a denominator equal to 0.

This example shows various manipulations of rational numbers:

local function Rational(Num, Den)
local Whole, Frac = math.modf(Num / Den)
io.write(Num, “ / “, Den, “ = “, Whole, “ + “, Frac, “\n”)
io.write(Num, “ / “, Den, “ = “, Whole, “ + “,
math.fmod(Num, Den), “ / “, Den, “\n”)

end

362

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 362

Rational(5, 3)
Rational(-5, 3)
Rational(5.2, math.pi)

The example prints the following lines:

5 / 3 = 1 + 0.66666666666667
5 / 3 = 1 + 2 / 3
-5 / 3 = -1 + -0.66666666666667
-5 / 3 = -1 + -2 / 3
5.2 / 3.1415926535898 = 1 + 0.65521140815571
5.2 / 3.1415926535898 = 1 + 2.0584073464102 / 3.1415926535898

Minimum and Maximum Functions
These functions return the minimum or maximum value in a list of values:

❑ math.max(one or more numbers): Returns the greatest value in the specified list.

❑ math.min(one or more numbers): Returns the smallest value in the specified list.

This example returns the minimum and maximum values from an array:

local function Range(...)
io.write(“Count: “, select(“#”, ...), “, Min: “, math.min(...),
“, Max: “, math.max(...), “\n”)

end

Range(3, 1, 72, 5.4, math.pi)

The following line is printed by the example:

Count: 5, Min: 1, Max: 72

Constants
These are not functions, but numbers that may be useful in certain calculations:

❑ math.huge: A number greater than or equal to any other number. This is positive infinity on
systems that have a representation for infinity. The following example multiplies each number
from NumListA with its counterpart in NumListB and prints the highest product obtained. Max
is initialized to -math.huge (note the unary minus), which is guaranteed not to be greater than
any of the actual maximum products.

NumListA = {2, 5, 3}
NumListB = {5, 3, 2}
local Max = -math.huge
for I, NumA in ipairs(NumListA) do
local NumB = NumListB[I]
Max = math.max(Max, NumA * NumB)

end
io.write(“The maximum product was “, Max, “.\n”)

363

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 363

The example prints the following:

The maximum product was 15.

❑ math.pi: The ratio of a circle’s circumference to its diameter. For example, this computes a circle’s
area from its radius:

function CircleArea(Radius)
return math.pi * Radius ^ 2

end

Radius = 5
io.write(“radius: “, Radius, “ feet; area: “,
CircleArea(Radius), “ square feet\n”)

The example prints the following:

radius: 5 feet; area: 78.539816339745 square feet

Input/Output Library
The functions in the input/output (I/O) library enable your program to read from and write to files and
the standard input/output streams.

By default, the io.read and io.write functions read from and write to standard input and standard
output respectively. You can change this behavior with the io.input and io.output functions.

When working with multiple files, it is usually more convenient to obtain file handles and use their
associated methods for reading, writing and performing other file operations.

Here are all the functions in the I/O library:

❑ io.close(optional file): Closes the default output file if no argument is specified; otherwise it
closes the specified file. (See also the file handle close method.)

❑ io.flush(): Commits the default output buffer.

❑ io.input(optional file or name of file): Returns the default input file handle if called without an
argument. If it is called with a handle to an open file, the file becomes the new default input file
so that calls to io.read read from it. If the function is called with the name of a file, the file is
opened in text mode and becomes the new default input file.

❑ io.lines(optional name of file): Returns an iterator for use in a generic for loop. If a filename is
specified, the file is opened in text mode. When all lines have been read, the file is closed. If no
argument is specified, the for loop reads lines from the default input file. In this case, the file is
not closed after all lines have been read.

❑ io.open(name of file, optional open mode): Opens the specified file and returns a handle to it. (The
returned file handle’s methods are discussed later in this section.) If an error occurs, it returns nil
followed by an error message. If the open mode is missing, the file is opened in text mode for
reading. The following table lists the supported modes.

364

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 364

On platforms such as Windows, you can disable the control code processing done for text files by
appending “b” to the open mode, which opens the file in binary mode.

Mode Description

“r” Opens an existing file for reading

“w” Overwrites an existing file, or creates a new file, for writing

“a” Opens an existing file, or creates a new file, for appending

“r+” Opens an existing file for reading and writing

“w+” Overwrites an existing file, or creates a new file, for reading and writing

“a+” Opens an existing file, or creates a new file, for reading and appending

❑ io.output(optional file or name of file): Returns the default output file handle if called without
an argument. If it is called with a handle to an open file, the file becomes the new default output
file so that calls to io.write write to it. If the function is called with the name of a file, the file is
opened in “w” mode (that is, it is overwritten if it exists, or created if it doesn’t) and becomes the
new default output file.

❑ io.read(zero or more of “*a” or “*n” or “*l” or number): Returns the next line from the default
input file if no argument is specified. The argument specifies what kind and how much data is
to be read. Its meaning is summarized in the following table.

If data corresponding to the specified format cannot be read, nil is returned (but is not followed with
an error message).

Format Description

“*n” Reads and returns a number

“*a” Reads the complete remainder of file

“*l” Reads the next line, and removes the end-of-line marker

number Reads the specified number of bytes

❑ io.tmpfile(): Opens a temporary file for reading and writing and returns a handle to it.
When the program ends normally, this file will be deleted.

❑ io.type(file): Returns “file”, “closed file”, or nil depending on the argument.

❑ io.write(zero or more strings or numbers): Writes each of its arguments to the default output
file, and returns true if the write is successful. An error is issued if the default output file is
closed or a value other than a string or number is written. In certain cases (for example, if the
full disk is full), nil followed by an error message is returned.

365

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 365

❑ io.popen(shell command, optional mode): Launches the specified command and returns a handle.
If the mode is “r” or not given, this handle can be used as a file handle to read the standard out-
put of the command. If it is “w”, the handle can be used to write to the command’s standard input.
This function is not available on all platforms.

This example demonstrates the execution of a command and the capturing of its output:

Hnd, ErrStr = io.popen(“lua -h”)
if Hnd then
for Str in Hnd:lines() do
io.write(Str, “\n”)

end
Hnd:close()

else
io.write(ErrStr, “\n”)

end

The example produces the following output:

usage: lua [options] [script [args]].
Available options are:
-e stat execute string ‘stat’
-l name require library ‘name’
-i enter interactive mode after executing ‘script’
-v show version information
-- stop handling options
- execute stdin and stop handling options

The following functions are all the methods of file handles:

❑ file handle:close(): Closes the file.

❑ file handle:flush(): Commits the file’s output buffer.

❑ file handle:lines(): Like io.lines, this returns an iterator for use in a generic for loop using the
specified file for input. Unlike io.lines, it does not close file associated file after the traversal.

❑ file handle:read(zero or more of “*a” or “*n” or “*l” or number): Like io.read, this reads data
from the specified file.

❑ file handle:seek(optional “set” or “cur” or “end”, optional offset): Sets the file pointer in the
specified file and returns the new position measured from the beginning of the file. Unlike most
Lua index values, the offsets to this function are zero-based. The offset is measured from the
beginning of the file if the first argument is “set”; from the current position in the file if it’s
“cur”; or from the end of the file if it’s “end”. The default argument values are “cur” and 0,
so the current file position can be obtained by calling this function without arguments.

❑ file handle:setvbuf(“no” or “full” or “line”, optional size): Configures the buffering
used by the specified file. The size argument specifies the size of the buffer in bytes. This func-
tion returns true on success, or nil followed by an error message on failure. The following
table describes the buffering modes. (For more detail on this function, consult the documenta-
tion for the C function setvbuf.)

366

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 366

Mode Description

“no” Writes are committed without buffering.

“full” Writes are committed only when buffer is full or explicitly flushed.

“line” Writes are committed when a newline is encountered, when the buffer
is explicitly flushed, or when input from a special device is detected.

❑ file handle:write(zero or more strings or numbers): Writes each of its arguments to the file. An
error is issued if the file is closed or a value other than a string or number is written. In certain
cases (for example, if the disk is full), this function returns nil followed by an error message.

This example demonstrates full buffering with a file so that only a full buffer or explicit flush commits the
written data to the file, as well as file pointer positioning:

FileStr = “test.txt”
Hnd, ErrStr = io.open(FileStr, “w”)
if Hnd then
Hnd:setvbuf(“full”, 1024)
for K = 1, 4 do
if K == 3 then
Pos = Hnd:seek(“cur”, 0)
Hnd:write(“Special line\n”)

end
Hnd:write(string.format(“Line %02d\n”, K))

end
Hnd:flush()
Hnd:close()
Hnd, ErrStr = io.open(FileStr, “r”)
if Hnd then
for Str in Hnd:lines() do
io.write(Str, “\n”)

end
Hnd:seek(“set”, Pos)
Str = Hnd:read(“*l”)
io.write(Str, “\n”)
Hnd:close()

else
io.write(ErrStr)

end
else
io.write(ErrStr)

end

The example prints the following lines:

Line 01
Line 02
Special line
Line 03
Line 04
Special line

367

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 367

Operating System Library
These functions provide access to the operating system’s time, date, shell, and file management services.

CPU Timing
Identifying bottlenecks is sometimes as simple as monitoring the amount of time the central processing
unit spends on various parts of a Lua program. In general, you should repeat the code you want to
examine a sufficient number of times with a loop so that you have figures well above the noise level.

The operating system library includes the os.clock() timing function, which returns the approximate
number of CPU time measured in seconds used by the current program. For example, this gives a bench-
mark for adding elements to an array:

local Count = 1e7
local Tbl = {}
local Tm = os.clock()
for J = 1, Count do
table.insert(Tbl, J)

end
io.write(“table.insert: “, os.clock() - Tm, “ sec\n”)
Tbl = {}
Tm = os.clock()
for J = 1, Count do
Tbl[#Tbl + 1] = J

end
io.write(“Indexed insert: “, os.clock() - Tm, “ sec\n”)

The example prints the following lines:

table.insert: 5.328 sec
Indexed insert: 3.906 sec

Time and Date Functions
The functions in the time and date category are flexible enough to handle a wide spectrum of applications:

❑ os.date(optional format string, optional time value): Returns the current time or the specified
time either as a string or as an associative table. A table is returned if the format string is “*t”;
otherwise it uses the same format specification as strftime in the standard C library. To return
the time in Universal Coordinated Time format, prepend the format specifier with “!”. If you
don’t specify a time value, the current time is used. If you do specify it, use the format returned
by os.time.

❑ os.difftime(high time, low time): The difference is seconds between the two time arguments is
returned. Use the format returned by os.time for the arguments.

❑ os.time(optional time table): Returns the specified time as a scalar value, often the number
of seconds that have passed in a standard epoch. If you do not specify the time argument, the
current time is used. If you do specify it, do so with a table that contains the year, month and
day fields. You can include hour, min, sec and isdst in the table as well.

368

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 368

The following example calculates the number of seconds from a given moment:

TmStart = os.time{year = 2001, month = 1, day = 1, hour = 0}
TmNow = os.time()
io.write(os.difftime(TmNow, TmStart), “ seconds have passed since “,
os.date(“%d %B %Y”, TmStart), “\n”)

The following line is printed by the example:

180787215 seconds have passed since 01 January 2001

Filesystem Functions
In addition to the I/O functions, the standard C library provides paltry support for managing files.
(A number of modules for Lua remedy this deficiency.)

The filesystem functions are as follows:

❑ os.remove(name of file): Removes the specified file. If successful, this returns true; otherwise
it returns nil followed by an error message. On Unix-type systems, you can use this function to
remove an empty directory.

❑ os.rename(old name of file, new name of file): Renames a file or directory.

❑ os.tmpname(): Returns a name that can you can use to create a temporary file or directory.

This example demonstrates how a temporary file is created, written to, closed, and then read from:

FileStr = os.tmpname()
Hnd = io.open(FileStr, “w”)
if Hnd then
io.write(“Opened temporary file “, FileStr, “ for writing\n”)
Hnd:write(“Line 1\nLine 2\nLine 3\n”)
Hnd:close()
for Str in io.lines(FileStr) do
io.write(Str, “\n”)

end
os.remove(FileStr)

else
io.write(“Error opening “, FileStr, “ for writing\n”)

end

The following lines are printed by the example:

Opened temporary file /tmp/lua_a05eSj for writing
Line 1
Line 2
Line 3

369

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 369

Other Operating System Functions
The remaining functions in the os table let your Lua script interact with the operating shell and its envi-
ronment variables, and use locale settings to control language- and country-specific behavior:

❑ os.execute(optional shell command string): The specified command is passed to the shell for
execution. The code returned from the shell is in turn returned by this function. If the command
is missing, this function checks for the existence of the shell, returning a non-zero value if it is
available and zero if it is not.

❑ os.exit(optional integer code): Terminates the host program. If the exit code is missing, the library
will provide the code that indicates success for the platform on which the host is running; this is
usually zero.

❑ os.getenv(variable name string): Retrieves the value associated with the argument in the envi-
ronment of the current process. If the name doesn’t exist in the environment, nil is returned.

❑ os.setlocale(locale string, optional “all” or “collate” or “ctype” or “monetary” or
“numeric” or “time”): Queries or sets locale information for the current program. To perform
a query, specify nil as the first argument. To set the locale information, specify a locale string
such as “pt_BR” or “en_US”. The supported categories are “all”, “collate”, “ctype”,
“monetary”, “numeric”, and “time”. If the category is missing, “all” is assumed.

Here is an example of os.execute, os.getenv, os.setlocale, and os.exit in action:

print(“os.execute returned:”, os.execute(“ls -sh”)) -- “ls” is a
-- directory listing program available on Unix-like systems.

print(“HOME environment variable:”, os.getenv(“HOME”))
assert(os.setlocale(“pt_BR”, “numeric”))
print(math.pi) -- Prints with a comma!
os.exit()
print(“This will never get printed!”)

The example’s output is as follows:

total 8.0K
4.0K calltrace.lua
4.0K test.lua
os.execute returned: 0
HOME environment variable: /home/wthrall
3,1415926535898

Debugging Library
The functions in the debug namespace table are not for normal use, but for writing error handlers,
debuggers, profilers, and other things that need to do introspection (the inspection of running code).
For a more detailed discussion of these functions, see Chapter 10.

Some of these functions take an optional thread argument. Those functions work on the given thread, or
(by default) on the currently running thread. Even if the thread argument is omitted, you can specify
other arguments by shifting their positions to the left. For example, you can use the debug.getinfo

370

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 370

function or stack level argument as either its first or second argument, depending on whether the
optional thread argument was given. Arguments that are stack levels, local indexes, or upvalue indexes
are positive integers, with 1 representing the top of the stack, the first local variable, or the first upvalue.

The following functions are in the debugging library:

❑ debug.debug(): Reads and interprets lines from standard input, and returns when it reads a
line consisting of the word “cont”. Local variables visible in the scope where debug.debug is
called are only accessible using debug.getlocal, debug.setlocal, debug.getupvalue, and
debug.setupvalue.

❑ debug.getfenv(function or thread or userdata): Returns its argument’s environment table.

❑ debug.gethook(optional thread): Returns the current hook function, the current hook mask
(a string containing zero or more of “c”, “l”, and “r”), and the current hook count.

❑ debug.getinfo(optional thread, function or stack level, optional flag string): If a function is given,
this returns an associative table of information about that function; if a stack level is given, it
returns an associative table of information about the function running at that stack level, or nil
if the stack level is invalid. By default, the returned table includes the fields currentline,
func, lastlinedefined, linedefined, name, namewhat, nups, short_src, source, and
what. The letters in the flag string control which fields the table contains. For example, if the
flag string contains an “L”, then the table will include an activelines field. (For more details,
see the table in Chapter 10.)

❑ debug.getlocal(optional thread, stack level, local index): Returns the name and value of the
numerically specified local variable at the specified stack level. If the local index is higher than
the amount of local variables at the specified stack level, nil is returned. If the stack level is
higher than the amount of active stack levels, an error occurs.

❑ debug.getmetatable(value): Returns its argument’s metatable if one is present; otherwise it
returns nil. This function bypasses its argument’s __metatable metamethod if one is present.

❑ debug.getregistry(): Returns the registry table, a table that C code can use as a storage area.

❑ debug.getupvalue(function, upvalue index): Returns the name and value of the numerically
specified upvalue of the given function. If the upvalue index is higher than the function’s
amount of upvalues, nil is returned.

❑ debug.setfenv(function or thread or userdata, environment table): Gives an environment table to
a function, thread, or userdata.

❑ debug.sethook(optional thread, hook function, hook mask string with “c” and/or “r” and/or “l”,
optional instruction count): Makes the given function the hook (a function that is called by Lua
when certain events happen). The hook mask (a string) and the instruction count determine
which events trigger the hook. If the hook mask contains “c”, then on every function call
(including tail calls), the hook will be called with the “call” argument. If the hook mask
contains “r”, then on every return (including tail returns) the hook will be called with the
“return” or “tail return” argument. If the hook mask contains “l”, then on every source
code line (except for lines where nothing happens) the hook will be called with the “line”
and the line number arguments. If there is a nonzero instruction count, then every time that
many bytecode instructions have been executed, the hook will be called with the “count”
argument. If nil is given instead of a function, then any function that is currently set as the
hook is removed.

371

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 371

❑ debug.setlocal(optional thread, stack level, local index, value): Assigns the given value to the
numerically specified local variable at the specified stack level, and returns the local variable’s
name. If the local index is higher than the amount of local variables at the specified stack level,
nil is returned; if the stack level is higher than the amount of active stack levels, an error occurs.

❑ debug.setmetatable(value, metatable): Gives a metatable to the given value, even if that value
has a __metatable metamethod.

❑ debug.setupvalue(function, upvalue index, value): Assigns the given value to the numerically
specified upvalue of the given function, and returns the upvalue’s name. If the upvalue index is
higher than the function’s amount of upvalues, nil is returned.

❑ debug.traceback(optional thread, optional message string, optional level argument): Returns a
string containing the message string followed by a stack traceback. The level argument specifies
which stack frame to start the traceback from, with 1 (the default) being the function that called
debug.traceback, 2 being the function that called that function, 3 being the function that
called that function, and so on.

This example sets a hook that is called on every line and every function call and return, which then
prints information about the current line, call, or return:

function Hook(Event, LineNum)
-- Info for the currently running function (not counting this hook):
local Info = debug.getinfo(2)
if Event == “call” then
io.write(“‘“, Info.name or “???”, “‘ is being called; “)
if Info.nups == 0 then
io.write(“it has no upvalues.\n”)

else
io.write(“its upvalues are:\n”)
for I = 1, Info.nups do
local Name, Val = debug.getupvalue(Info.func, I)
io.write(“ “, Name, “\t”, tostring(Val), “\n”)

end
end

elseif Event == “return” or Event == “tail return” then
io.write(“‘“, Info.name or “???”, “‘ is being returned from.\n”)

elseif Event == “line” then
local LclCount = 0

-- An iterator that returns the names and values of the current
-- function’s local variables:
local function Locals()
LclCount = LclCount + 1
return debug.getlocal(3, LclCount)

end

local Lcls = {}
for LclName, LclVal in Locals do
-- Ignore temporary locals used by the Lua virtual machine:
if string.sub(LclName, 1, 1) ~= “(“ then
Lcls[#Lcls + 1] = LclName .. “ (“ .. tostring(LclVal) .. “)”

end
end
io.write(“line “, LineNum, “; “)

372

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 372

if #Lcls > 0 then
-- This doesn’t include upvalues:
io.write(“in-scope local(s): “, table.concat(Lcls, “, “),
“\n”)

else
io.write(“no in-scope locals.\n”)

end
end

end

local Fruit1, Fruit2 = “banana”, “kiwi”

function FncB()
return Fruit1 .. “/” .. Fruit2 -- Line 48.

end

function FncA(Fruit)
local Fruits = FncB() -- Line 52.
return Fruit .. “/” .. Fruits -- Line 53.

end

debug.sethook(Hook, “crl”)
print(“### “ .. FncA(“apple”)) -- Line 57.
debug.sethook(nil) -- Line 58.

The example gives the following output:

‘sethook’ is being returned from.
line 57; in-scope local(s): Fruit1 (banana), Fruit2 (kiwi)
‘FncA’ is being called; it has no upvalues.
line 52; in-scope local(s): Fruit (apple)
‘FncB’ is being called; its upvalues are:
Fruit1 banana
Fruit2 kiwi

line 48; no in-scope locals.
‘FncB’ is being returned from.
line 53; in-scope local(s): Fruit (apple), Fruits (banana/kiwi)
‘FncA’ is being returned from.
‘print’ is being called; it has no upvalues.
‘???’ is being called; it has no upvalues.
‘???’ is being returned from.
apple/banana/kiwi
‘print’ is being returned from.
line 58; in-scope local(s): Fruit1 (banana), Fruit2 (kiwi)
‘sethook’ is being called; it has no upvalues.

Summary
In this chapter, you’ve reviewed some of the library functions from earlier in the book, and learned
about others. Prior to this chapter, you learned about the Lua language. From this point on, you’ll be
exploring how Lua can serve as an integral component in real-world applications. The next chapter
starts this off with a small survey of open-source libraries that work well with Lua.

373

Chapter 11: Exploring Lua’s Libraries

14_069172 ch11.qxp 1/2/07 8:09 PM Page 373

14_069172 ch11.qxp 1/2/07 8:09 PM Page 374

12
Using Community Libraries

In Chapter 7, you learned how to modularize your Lua programs and why it’s a good practice to
do so. At the end of that chapter, you saw that you can write modules in languages like C as well
as Lua. Throughout the remaining chapters of this book, the term library will refer to a collection of
one or more routines that have been compiled from a lower-level language like C, C++ or Pascal.
Depending on the context, a library may or may not have anything to do with Lua. A library that
acts as an intermediary between Lua and another library is often called a binding.

This chapter extends the topic of libraries and how they interact with Lua. In it, you will become
familiar with some libraries and bindings that have been made available to the open source com-
munity. The bindings cover a small cross-section of the many ways you can enhance Lua, including
the following:

❑ Structuring binary data

❑ Constructing dynamic graphics

❑ Transferring files with various Internet protocols

❑ Interfacing with a relational database

Seeing how these libraries work with Lua should allow you to make use of a large number of
other libraries. Plan on visiting the LuaForge site to see what’s available. Chapter 13 will extend
this topic to applications and libraries that you write yourself.

Library Overview
A library is a collection of routines and variables that can be linked to an executable program such
as a web browser or the Lua interpreter. By providing a well-established interface to common
functionality, the use of libraries helps to modularize and standardize an application. For example,
the standard C runtime library used by many programs (not just those written in C) implements
a wide range of application tasks, including dynamic memory management, file handling, and
string operations.

15_069172 ch12.qxp 1/2/07 8:09 PM Page 375

Most libraries can be linked to an application either statically, in which portions of a library are directly
embedded, or dynamically, in which portions of a library are shared concurrently among applications.
An application that is statically linked to its libraries is operationally simpler, and consequently easier
to deploy, than its dynamically linked counterpart. Such an application is also larger and needs to be
relinked if it is to take advantage of updates to any of its libraries.

However, any system like Lua that uses modules loaded at runtime has its own problems with static
libraries. The problem has to do with multiple copies of certain library functions linked to the main
application and one or more of its loaded modules. In many cases, multiple copies of a statically linked
function simply waste space, but with functions that share some internal state, like dynamic memory
management functions, it is possible that synchronization problems will occur. For example, if memory
is allocated using one copy of the C library and freed using another copy, it is inevitable that unpleasant
memory bugs will result.

The solution is to make sure that only one copy of each library is used throughout an application and its
loaded modules. This is best managed though libraries that are linked dynamically.

Dynamically Linked Libraries
Modern operating systems support libraries that can be linked to multiple running processes. On Unix-
like systems, these are generally known as shared libraries; on Windows, these are usually referred to as
dynamic-link libraries. A common abbreviation for dynamic-link library is DLL.

Resolving External References
The source code in a particular file typically contains references to functions and variables that are defined
externally, such as in some other application file or in a library. It is one of the compiler’s jobs to create
object code that handles these references properly. For example, it sets up calls to external functions using
the correct calling convention and arguments. One thing the compiler doesn’t know, however, is where in
memory these functions will actually reside when the application is executed. When source code is com-
piled into an object module, enough information to resolve these unknown addresses is provided by the
compiler. It is the linker’s job to knit the related object modules and any statically linked libraries together
into a single application. While doing this, it resolves the addresses that it knows about. However, at this
stage, the linker doesn’t know the addresses of functions and variables that are part of dynamic-link
libraries.

An application can be configured to have dynamic-link addresses resolved when it is loaded by the
operating system. Alternatively, an application can explicitly assign dynamic-link addresses to variables
using a system-provided function. The first approach is used by Lua for functions such as sprintf from
the C library. The second approach is used by Lua when loading modules dynamically.

Configuration Options
You can configure the Lua interpreter (or any program that embeds it) in one of two ways so that only
one copy of a library is present when running. In the proceeding figures, the application is represented
with a bold rectangle and each dynamic-link library with a thin rectangle. Figure 12-1 shows a configu-
ration in which Lua’s core functionality is part of the application’s main file. The application reaches into
the module to run its initialization function (for example, luaopen_pack), represented here with the
right-pointing arrow. The left pointing arrow indicates that the module reaches into the application to
make use of Lua’s C interface.

376

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 376

Figure 12-1

By default, Lua is built this way on Unix-like systems. The advantage is that Lua’s executable program
file (usually named lua) is never separated from its core functionality. Windows supports this scheme,
but it has been reported that some software development kits don’t implement it well. Figure 12-2 shows
the typical configuration for Windows.

Figure 12-2

Here, Lua’s core functionality is placed into its own dynamic-link library and shared by both the appli-
cation and its modules.

Libraries Built from Source Code
If the operating system you use is mainstream, you’ll find many libraries that work very well on it. Due to
the large number of platforms that Lua runs on, libraries are typically provided in the form of source code.
As you saw in Chapter 1, this approach enables you to compile applications and libraries that are tailor-
made to your operating system and its particular configuration.

If you want to press ahead with Lua libraries, refer to Chapter 1 for instructions on setting up develop-
ment tools for your operating system. Start by following the instructions in that chapter to build Lua
itself. In general, doing this will be easier than compiling libraries and will verify that your tools are
properly configured.

In the overviews in this chapter, it will be assumed that you’re familiar with the basic tasks of compiling
an application or library. This includes downloading source packages, extracting the contents of tarballs
and zip files, invoking a compiler and linker, and copying files from one location to another. Chapter 1
covers these operations in enough detail to enable you to build the libraries discussed in this chapter.

Some of the commands shown in the proceeding sections require that your system environment have cer-
tain variables assigned. A helpful diagnostic to make sure these commands are doing what you expect
them to is to precede them with echo. For example, on Unix-like systems, do this:

echo cp *.so $LUA_DIR/

Or, if you’re on Windows, do this:

echo xcopy *.dll “%LUA_DIR%*.*”

Lua application Lua core Module

Lua application + core Module

377

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 377

If the resulting output shows that the environment variable has been properly replaced, you can recall
the command, remove the echo portion, and execute the revised command. Most shells will let you
recall a command by pressing the up arrow key.

Building Libraries on Unix-Like Systems
In general, the makefiles used to build many libraries that interface with Lua will reflect a bias toward
Unix-style systems. These makefile scripts often work with little or no fuss. Most source packages
include text files named README and INSTALL that contain essential information. Modifications to
makefiles should be minimal, although you may need to change pathnames such as the one that identi-
fies the location of the Lua header files. It is prudent to save a copy of any script that you modify.

The proceeding instructions assume the following:

❑ The LUA_DIR environment variable specifies the location where you put Lua modules, whether
they are Lua scripts or compiled libraries.

❑ The LUA_PATH environment variable has the value ?.lua;$LUA_DIR/?.lua.

❑ The LUA_CPATH environment variable has the value ?.so;$LUA_DIR/?.so.

Building Libraries on Windows
The instructions in this chapter assume you are using version 6 of Microsoft’s Visual C++ software
development kit. Other mainstream C compiler kits usually work well, too, but note the following
caveats:

❑ Make sure the SDK you use can link properly with the standard Windows library MSVCRT.DLL
that some prebuilt libraries use.

❑ You may need to adjust some of the compiler and linker commands shown here.

Unfortunately, the small TCC compiler that builds Lua so well is harder to use for compiling libraries
because of limitations with this development kit’s header file collection.

The proceeding instructions assume the following:

❑ Whatever SDK you use, it is assumed that its installation directory contains the standard bin,
lib, and include subdirectories.

❑ The SDK_DIR environment variable specifies the location of your software development kit.

❑ The LIB environment variable has the value %SDK_DIR%\lib;%SDK_DIR%\lib\usr.

❑ The INCLUDE environment variable has the value
%SDK_DIR%\include;%SDK_DIR%\include\usr.

❑ The import library for the Lua DLL, lua5.1.lib, has been copied to %SDK_DIR%\lib\usr.

❑ The public header files for Lua —lua.h, luaconf.h, lualib.h, and lauxlib.h— have been
copied to %SDK_DIR%\include\usr.

❑ The LUA_DIR environment variable specifies the location where you put Lua modules, whether
they are Lua scripts or compiled libraries.

❑ The LUA_PATH environment variable has the value ?.lua;%LUA_DIR%\?.lua.

378

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 378

❑ The LUA_CPATH environment variable has the value ?.dll;%LUA_DIR%\?.dll.

❑ The UTIL_DIR environment variable specifies the location where you keep certain applications
and dynamic-link libraries, including lua.exe, lua5.1.dll, and luac.exe.

❑ The search path includes %SDK_DIR%\bin and %UTIL_DIR%.

The commands you use to build a library in Windows include one for linking various object files. The link
command contains a /base option followed by a hexadecimal number. This number specifies the location
in the virtual address space of a process where the operating system will attempt to load the library when
it is dynamically linked. By providing a unique address to each dynamic-link library that will be loaded
together, Windows avoids address corrections when the library is loaded and paging inefficiencies when
the program is executed. Several rebasing utilities are available that will optimally assign base addresses to
dynamic-link libraries after they have been compiled. The approach shown in this book is to explicitly
assign them when a library is built, selecting unique addresses at one megabyte boundaries. Avoid using
base addresses that interfere with libraries that are larger than one megabyte.

Limits to Portability
Libraries are generally written to be as portable as possible, but sometimes there are system-imposed
limits to this. For example, some operating systems do not support signals or file system links, so they
consequently can’t support a library dealing with these features. A case in point is the lack of support for
POSIX libraries on older versions of Windows.

Additionally, some libraries, especially small ones or ones with limited distribution, may require some
modifications to build properly on platforms other than the one on which they were developed. You’ll
learn some of the things you may need to watch for in the following parts of this chapter.

How Lua Interacts with Libraries
You’re familiar with using functions like print, string.gsub and io.open. These and Lua’s other
functions are implemented in C and made available to Lua scripts by means of a program interface. To
understand how your Lua script can call these functions, first you need to know how the functions make
it into your script’s environment (the registration process), and second what happens when a call to a C
function is actually made.

The Variable Registration Process
When the standard Lua interpreter starts, it calls a function named lua_open that allocates and initial-
izes a state structure (sometimes called an instance or universe). A pointer to this structure is passed as the
first argument to all other functions in the Lua C interface (usually called the application program interface,
or API). Everything that pertains to your Lua script has its basis in this structure. It serves as a liaison
that allows a C program to manipulate a script’s environment, to be called by a script, and to call into a
script. In fact, one of the first things an application does after receiving a pointer to this structure is to
modify the initial (and, in practice, often the only) environment by placing functions and other variables
(such as print, string.rep and _VERSION) into it. This is done by calling functions with names like
luaopen_base and luaopen_string. These in turn call lower-level API functions that manipulate
tables and the Lua call stack.

379

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 379

In the context of libraries, there are a couple of things to note here:

❑ It doesn’t matter if functions like luaopen_string are embedded statically into the application
or are located in an external dynamic-link library, as long as only one copy is accessible during
execution and they are properly exported so that Lua bindings can call them.

❑ There is no difference between the way the base and standard libraries are loaded and the way
external modules written in C or some other low-level language are loaded. For example, you
could compile a Lua interpreter that doesn’t load the math library by default. The math library
could be built (with no changes to the source code) as a dynamic-link library. In this way, Lua
scripts could use the math library by simply including the following line:

require(“math”)

Conversely, if you have a module that you want to be loaded by default in your Lua interpreter,
you could load it the same way the standard libraries are usually loaded. Keep in mind that
these kinds of alterations to Lua’s default configuration can diminish the portability of Lua
scripts. Unless you are building Lua for a special application where the benefits of these changes
outweigh the portability costs, it’s probably best to stay with the standard configuration.

Calling a C Function from Lua
When you call a function from a Lua script, you don’t need to know whether it is implemented in Lua or
in a lower-level language behind the Lua API. In fact, the bytecode that Lua generates for a function call
doesn’t distinguish between these two kinds of function calls. For example, if you redefine
string.format in Lua, calls to the new function appear identical to calls to the original function, right
down to the generated bytecode.

The following Try It Out illustrates how you can use Lua to call a function written in a language like C.

Try It Out Building a Diminutive Lua
In this exercise, you’ll build an interpreter that includes Lua’s core functionality, but excludes its stan-
dard libraries. The small size of the source code makes it a great introduction to embedding and extend-
ing Lua in your own applications. (These topics are discussed in more detail in Chapter 13.)

The Lua distribution includes a file called min.c in the etc directory. This file provides an excellent
introduction to the way you can embed Lua into your own application and how you can create functions
in C that can be called from Lua. Do one of the following, depending on the type of system you’re using.

The makefile entry for this program is clearly oriented toward Unix-like platforms. However, instruc-
tions are given here for both Unix-like system users and Windows users.

If you’ve got a Unix-like system and have already built Lua successfully, follow these steps:

1. Navigate to the distribution’s etc directory and execute the following command:

make min

This will result in the following three lines:

380

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 380

gcc -O2 -Wall -I../src min.c -L../src -llua -lm
echo ‘print”Hello there!”’ | ./a.out
Hello there!

2. Verify that this handles computations and errors correctly by typing the following commands
shown in bold:

The # symbol is the shell prompt; it may appear differently on your system.

echo ‘print(1+2*3^4)’ | ./a.out
163
echo ‘print(1++2)’ | ./a.out
stdin:1: unexpected symbol near ‘+’

If you are using version 6 of the Visual C++ toolkit on the Windows platform, follow these steps:

1. Build min.exe by navigating to the etc subdirectory of the Lua source distribution and execut-
ing the following commands:

cl /MD /O2 /W3 /c /DLUA_BUILD_AS_DLL min.c
link /OUT:min.exe min.obj lua5.1.lib

2. Test the new scaled-down Lua interpreter by typing in the following commands shown in bold:

The > symbol is the shell prompt; it may appear differently on your system.

> echo print(‘Hello there!’) | min.exe
Hello there!
> echo print(1+2*3/4) | min.exe
2.5
> echo print(1++2) | min.exe
stdin:1: unexpected symbol near ‘+’

If you encounter any problems building this program, be sure that the assumptions listed previously for
application development on your system have been met.

How It Works
Examine the source code of min.c. At the top, the C library stdio.h header file is included to provide a
prototype for printf. After this, the main Lua lua.h header file is included. It contains all of the infor-
mation (including prototypes and definitions) that the C compiler needs to interface with Lua’s core C
API. Header information for Lua’s auxiliary helper library is pulled in by including lauxlib.h. Double
quotes are used to tell the preprocessor to look for the Lua header files first in the C file’s directory and,
failing this, in the standard header locations. The angle brackets indicate that the specified header file
will be found in a standard location.

Skip to the function main at the bottom of min.c. The interaction with the Lua core begins with the call
to lua_open. This function returns a pointer to an initialized record of type lua_State. This state
pointer is used in all subsequent calls to the Lua core. The call to lua_open is balanced with a call to
lua_close at the end of the program.

381

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 381

The print function defined in the middle of min.c is made available to Lua scripts with a call to
lua_register:

lua_register(L,”print”,print);

The arguments for this function, in the specified order, are as follows:

❑ The Lua state pointer originally returned by lua_open

❑ The name of the global variable that will be assigned the function

❑ The C function itself

In this case, the C function has the same name as its Lua counterpart, but this is not required.

The line below this contains the following statement:

luaL_dofile(L,NULL)

This auxiliary function loads the specified file and runs it in a protected environment. Here, the NULL
argument specifies the standard input, which is why in this exercise, you piped the Lua scripts to the
minimal interpreter.

Turn your attention to the print function in the middle of min.c. Its prototype is as follows:

static int print(lua_State *L)

Every function that you write in C to be called from Lua will look like this. It will receive a single
argument — the Lua state pointer — and return an integer.

Given such a minimal argument list, how can a function know what was passed to it from Lua? How
can it return values to Lua? The answer in both cases has to do with the Lua state pointer. With it, you
can manipulate the Lua stack frame to find the arguments with which the function was called and to
place values that will be returned to the caller.

Lua uses its own call stack to transfer values to and from functions, and to hold values for safekeeping
during nested function calls. When a call to a C function is made from Lua, each argument in turn, from
left to right, is placed on the stack and the stack count is incremented. This combination of stack opera-
tions is known as a push. A pop undoes the effect of a push — the topmost stack element is copied and the
stack count is decremented.

The purpose of print in this minimal interpreter is much like it is in the full-featured Lua interpreter: to
output a tab-delimited sequence of its arguments in textual form. It does this by first finding out the
number of arguments passed to it, like this:

int n=lua_gettop(L);

This stack is one-based, so each argument can be visited in turn with an indexed loop ranging from 1 to
the number n. Functions with names like lua_isstring and lua_isboolean are used to classify the
arguments.

382

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 382

Throughout the loop, each argument is printed in turn. After the first, each argument is preceded with a
tab character. After the loop, a newline is emitted.

Finally, print returns the value 0. This is the quantity of values that is returned to the caller of the
print function. In addition to querying the stack for values, you can remove, add, and move elements.
Values are returned by placing them at the top of the Lua stack and returning their quantity.

The pack Binary Structuring Library
Lua handles text as deftly as it handles numbers. Because strings can contain any byte value (which
makes Lua what is known as 8-bit clean), they can be safely used to hold binary data. You can use the
string.byte and string.char functions to work with string elements at the byte level. However,
many of the binary blocks that you work with comprise elements that are larger than a byte. Moreover,
the way the bytes within these elements are ordered may not correspond to the way your computing
hardware orders them. This is the so-called endian issue that has its roots in machine architecture.
Sometimes binary blocks contain embedded strings. The length of a string might be fixed or variable,
and if variable, the length might be placed as a byte or an integer value preceding the string, or the
string might be terminated with a null byte. Some binary structures are relatively straightforward,
while others may have optional or repeating components and subcomponents.

One of Lua’s three authors, Luiz Henrique de Figueiredo, has written and released a number of libraries
that extend Lua in many useful ways. One of these libraries, pack, enables you to read and write binary
structures from within Lua scripts. To obtain the source code for this library, visit Luiz Henrique’s home-
page (www.tecgraf.puc-rio.br/~lhf/) and follow the link to his libraries. An informative page
explaining how to build, install, and use his libraries is available. Download the package lpack.tar.gz
for Lua 5 and place it in the location where you want to build it.

Many of the libraries in Luiz Henrique’s collections are bindings that connect Lua to other libraries. For
example, the PDF binding allows Lua to interface with PDFLib, a well-known library that is used to gen-
erate files in portable document format (PDF). The pack library, however, is a standalone module. All of
its functionality is expressed in the lpack.c file.

Building the pack Library on Unix-type Systems
Follow these steps to build the pack module for Unix-type systems:

Skip ahead if you’re working on the Windows platform.

1. Extract the tarball as follows:

tar xzvf lpack.tar.gz

2. Drop into the pack directory with the following command:

cd pack

383

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 383

3. Build the shared library with the following command:

This command assumes that you have built Lua and installed it using the makefile provided with Lua.

cc -ansi -pedantic -Wall -O2 -o pack.so -shared lpack.c

The compiler toolkit will locate the necessary header files and libraries in a standard location.

Building and Installing the pack Library on Windows
In this section, you’ll compile the pack module for the Windows platform. Some of the steps are on the
long side. As elsewhere in this book, if you see ; symbol, it means that the line has been broken to fit on
the page. However, when you type in a command that has been broken like this, you should join the
fragments together on one line.

Follow these steps:

1. Extract the tarball as follows:

7z x lpack.tar.gz
7z x lpack.tar
del lpack.tar

2. Drop into the pack directory with the following command:

cd pack

3. Build the shared library with the following commands:

cl /c /W1 /Zl /Zd /Yd /MD /DWIN32 lpack.c
link /dll /out:pack.dll /base:0x67400000 /machine:ix86 ;
/export:luaopen_pack lpack.obj lua5.1.lib msvcrt.lib

Testing the pack Library
After building a library, it’s good policy to test it before installing it. You’ll do that now, but there is one
small wrinkle to explain. The pack library has been written so that it can be loaded directly without an
intermediate .lua file. The commands used to build the pack library make use of this fact by making the
base name of the shared library pack rather than lpack. Because of this, the loading script pack.lua that
comes with the library is rendered unnecessary. To prevent it from being inadvertently loaded, rename
this file from pack.lua to pack.lua.0 as follows:

1. On Unix-type systems, execute the following:

mv pack.lua pack.lua.0

Or on Windows, execute following:

ren pack.lua pack.lua.0

384

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 384

2. Override the value of package.cpath in the test command so that shared libraries are sought
only in the current directory. On Unix-type systems, test the library as follows:

lua -e ‘package.cpath=”./?.so” require “pack” ;
print(string.pack(“b3”, 76, 117, 97))’

On Windows, run this command:

lua -e “package.cpath=’./?.dll’ require ‘pack’ ;
print(string.pack(‘b3’, 76, 117, 97))”

If the library has been successfully built, the output should be as follows:

Lua

Installing the pack Library
To make the pack library accessible to Lua scripts on your system, copy pack.so or pack.dll to the
Lua library directory as specified by the environment variable LUA_DIR. On Unix-like systems, execute
the following:

cp pack.so $LUA_DIR/

On Windows, use this:

xcopy pack.dll “%LUA_DIR%*.*”

Using the pack Library
The pack library is made available to your Lua script with the following line:

require(“pack”)

This introduces the new functions string.pack and string.unpack.

If the symbol USE_GLOBALS was defined when you compiled lpack.c, the global functions bpack
and bunpack will be introduced instead. In this case, make the appropriate replacements to the exam-
ples that follow.

The string.pack function lets you construct a structured record from one or more elements. Its usage
is as follows:

string.pack(format string, one or more arguments)

This returns a binary record, in the form of a Lua string, based on the format specifier and the string and
number arguments that you pass it.

The string.pack function examines each character in the format specifier and takes the appropriate
action. These actions fall into three categories:

385

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 385

❑ If the character is >, <, or =, the numeric conversions are set to big-endian, little-endian, or
native-endian mode respectively. Examples of big-endian machines, in which the most signifi-
cant byte is lower in memory, are Motorola 68K, Power PC, and Sparc. Network protocols typi-
cally require numbers to be big-endian. An example of a little-endian machine is the ubiquitous
Intel x86, in which the least significant byte is lower in memory. The = character sets native-
endian mode. This character is used to reset the numeric conversion mode back to its default in
which a Lua number is converted to a form that is compatible with the underlying hardware.
The conversion mode set by any of these three characters persists until another one of them
occurs in the format specifier. The default is native-endian mode.

❑ If the character is A, a, b, c, d, f, h, H, i, I, l, L, n, p, P, or z, the next argument in the argument list
is appended to the result string in a form that is specified by the letter. See the following table
for the nature of the conversion for each of these characters. In general, the position of a letter in
the format specifier corresponds to the position of the corresponding argument after the format
specifier.

❑ If the character is a digit from 0 through 9, it and any digits after it are converted to an integer
and applied as a repetition count for the preceding conversion code. For example, the H2b4
sequence” in a format specifier is equivalent to HHbbbb. A format specifier like this would be
followed by six Lua numbers. The first two would be formatted as unsigned shorts and the
remaining four would be formatted as bytes.

Format Code Data Element Type

z Null-(zero-)-terminated string

p Byte-prefixed string

P Word-prefixed string

a size_t-prefixed string

A String

f Float

d Double

n Lua number

c Character

b Byte (unsigned char)

h Short

H Unsigned short

i Integer

I Unsigned integer

L Long

L Unsigned long

386

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 386

The string that string.pack returns is of little use within Lua. Generally, it is written to a file where it is
to be used by some other application that understands its format. When you do write it to a file, make
sure that the file is opened for writing in binary mode. This is neither required nor harmful on Unix-like
systems, but it is imperative in Windows.

The function lets you deconstruct a structured binary record into one or more Lua strings and numbers.
Its usage is as follows:

string.unpack(structure, format string, optional start position)

This returns the position just beyond the last byte read followed by the strings and numbers extracted
from the specified structure.

Here is how the string.unpack function works. You first pass the binary structure (a Lua string from
which primary elements are to be extracted) to it. Such a string will typically come from a file, and the
usual caveats about reading the file in binary mode apply. Next, you include a format specifier string
that, except for one small difference, is identical to the one used in string.pack. The difference is the
meaning of an integer that follows the A code. Such a value indicates the length of the string to unpack
rather than a repetition count. After this format specifier, you can then include a 1-based starting posi-
tion. This is optional and is used to specify a position in the structure at which to start unpacking.

The string.unpack function returns a position followed by Lua strings and numbers that correspond
positionally to codes in the format specifier. The first return value indicates the position just beyond the
last byte read — the position at which the next call to string.unpack should start. This value turns out
to be very useful in unpacking complex structures that contain repeating substructures. The remaining
return values are structure elements that have been converted to Lua values.

Try It Out Unpacking the Lua Icon Header
The Lua source distribution comes with an icon file that contains small images of the Lua logo. It is
located in the etc subdirectory and is named lua.ico. The icon file format contains little-endian num-
bers of various sizes and a repeating substructure, so it is a useful file for exercising the capabilities of
string.unpack.

1. Save the following code to a file named icotest.lua. This script uses the show module you
created in Chapter 7. If you use the version of show that was revised in an exercise at the end of
that chapter to include a namespace, you need to change ObjectShow to Object.Show.

require “pack”
require “show”

local function LclFileGet(FileStr)
local Str
local Hnd, ErrStr = io.open(FileStr, “rb”)
if Hnd then
Str = Hnd:read(“*all”)
Hnd:close()

end
return Str, ErrStr

end

387

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 387

local FileStr = arg[1] or “../lua-5.1.1/etc/lua.ico”
local IcoStr, ErrStr = LclFileGet(FileStr)
if IcoStr then
local Ico = {}
local Pos
Pos, Ico.Reserved, Ico.Type, Ico.Count = string.unpack(IcoStr, “<H3”)
Ico.List = {}
for J = 1, Ico.Count do
local Item = {}
Pos, Item.Width, Item.Height, Item.ColorCount, Item.Reserved,
Item.Planes, Item.BitCount, Item.Size, Item.Offset =
string.unpack(IcoStr, “<b4H2L2”, Pos)

table.insert(Ico.List, Item)
end
Pos, Ico.HdrSize, Ico.Width, Ico.Height, Ico.Planes, Ico.Bitcount,
Ico.Compression, Ico.ImageSize, Ico.XPixelsPerM, Ico.YPixelsPerM,
Ico.ColorsUsed, Ico.ColorsImportant = string.unpack(IcoStr, “<L3H2L6”, Pos)

ObjectShow(Ico, “Ico”)
else
io.write(ErrStr, “\n”)

end

2. As you can see by the require(“show”)line near the top, the script makes use of the show
module introduced in Chapter 7. Invoke the script with the pathname of the icon file as an argu-
ment. For example, on a Unix-like system, execute the following command, adjusting the icon
path if necessary:

lua icotest.lua /usr/local/src/lua-5.1.1/etc/lua.ico

This results in a display of the icon’s header that looks like this:

[“Ico”] table: 0x8070ee0 (n = 0)
[“Bitcount”] 4
[“ColorsImportant”] 0
[“ColorsUsed”] 0
[“Compression”] 0
[“Count”] 2
[“HdrSize”] 40
[“Height”] 64
[“ImageSize”] 512
[“List”] table: 0x8070d88 (n = 2)
[1] table: 0x8070f48 (n = 0)
[“BitCount”] 0
[“ColorCount”] 16
[“Height”] 32
[“Offset”] 38
[“Planes”] 0
[“Reserved”] 0
[“Size”] 744
[“Width”] 32

[2] table: 0x8070f70 (n = 0)
[“BitCount”] 0
[“ColorCount”] 16
[“Height”] 16
[“Offset”] 782

388

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 388

[“Planes”] 0
[“Reserved”] 0
[“Size”] 296
[“Width”] 16

[“Planes”] 1
[“Reserved”] 0
[“Type”] 1
[“Width”] 32
[“XPixelsPerM”] 0
[“YPixelsPerM”] 0

How It Works
You can retrieve the details of the icon format from various sites on the Web. From a layout that identi-
fies record elements and their data types and purpose, you have enough information to construct the
format specifier and to give meaningful names to the result values. For example, the following line indi-
cates that the first three elements are little-endian unsigned shorts:

Pos, Ico.Reserved, Ico.Type, Ico.Count = string.unpack(IcoStr, “<H3”)

The first field is reserved, the second is an icon type code, and the third is the number of icons contained
in the file. Notice that the results are assigned directly to associative table fields. This is generally a conve-
nient way to keep the structure elements organized and accessible. Because there is no inherent order to
associative table fields, however, any display of the contents will in general not match the order of the ele-
ments in the original data structure. Subsequent calls to string.unpack use the most recently returned
position as the third argument. Doing so eliminates the need to manually count bytes in the structure.

If you use Lua to work with binary data of any kind, the pack library definitely belongs in your toolkit.
Like Lua’s regular expression functions that break apart plain text data, the use of string.pack and
string.unpack becomes quite natural with a little familiarity.

The cURL File Transfer Library
The command line program cURL (a contraction of Client for URLs) is an extremely popular and
portable tool for moving files around on the Internet using protocols such as http, https, ftp, and ftps. It
hails from Sweden and is the work of hundreds of contributors, with Daniel Stenberg at the helm. One
very nice feature of this program is that its core functionality is factored into a library that can be used
by other applications as well. Additionally, the library has an interface that makes it conducive for use
by scripting languages like Lua. Visit curl.haxx.se for more information on cURL.

Building libcurl
To use cURL from a Lua script, include the following line:

require(“luacurl”)

The luacurl module binds Lua to the main cURL library. This common arrangement involves a main
library (libcurl.dll or libcurl.so) that provides functionality and a binding (which in this case is
luacurl.dll or luacurl.so) that connects lua to the main library.

389

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 389

The cURL application and library are very popular, and it is quite possible that they are already installed
on your system. You can check this by issuing the following command:

which curl

If curl is not found, you may be able to download it in the form of a package tailored to your particular
platform. Doing so saves you the trouble of building cURL.

If you’re going to build cURL, the first step is to make sure you’ve got a properly installed and up-to-date
cURL library. One decision you’ll need to make is whether you want support for file transfer protocols
based on the secure sockets layer (SSL). Including SSL allows you to use the https and ftps protocols at the
expense of more library dependencies and certificate management. The introduction in this chapter will
not support SSL.

The libcurl library can use the OpenSSL, zlib, and OpenLDAP libraries if they are available. The cURL
website can guide you to the websites where you can download these libraries if they are not already
installed on your system.

Building libcurl on Unix-Like Systems
As is the case with many libraries, libcurl builds like a dream on Linux and friends. Obtain the tarball
(curl-7.15.4.tar.gz is used here, but you’ll want the most recent version if it has been updated)
from curl.haxx.se/download.html and move it to the location where you want to build it. Then fol-
low these steps:

1. Unpack it with the following command:

tar xzvf curl-7.15.4.tar.gz

Or if you are unpacking the bzipped package (with the extension tar.bz2 instead of tar.gz),
unpack it as follows:

tar xjvf curl-7.15.4.tar.gz

2. Drop down into the newly created directory:

cd curl-7.15.4

3. Build the makefiles with the following command:

./configure

4. Make the entire package with the following command”

make

5. As root, install the package as follows:

make install

6. Test the build with the following command:

curl -V

This should result in a short version and features report.

390

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 390

Building libcurl on Windows
Follow these steps to compile the cURL library:

An alternative that saves you the trouble of building the library is to download a precompiled package.

1. After downloading the most recent version of the cURL source package from curl.haxx.se/
download.html, move it to the location where you will build it. If you are using the 7-zip
utility, extract it as follows, adjusting the tarball name if you have a more recent version:

7z x curl-7.15.4.tar.gz
7z x curl-7.15.4.tar

The .tar.gz and .tar files may be deleted.

2. Navigate to the library source directory:

cd curl-7.15.4\lib

3. If you are using version 6 of Microsoft’s Visual C++ software development kit, the makefile of
interest is Makefile.vc6 located in the lib subdirectory. Some small adjustments may need to
be made to this file on your system. Look for the definition of CFLAGS and add the following
text to the end of the line:

/Dsocklen_t=int

4. Locate the section that begins with the line:

release-dll

5. A few lines below this, on the line that begins with LNK, remove the occurrence of $(RTLIB).
One line below this, on the line that begins with CC, add a space and $(RTLIB) following
$(CCNODBG).

6. Execute the following to build the dynamic-link library:

nmake -f Makefile.vc6 CFG=release-dll

This generates the dynamic-link library libcurl.dll and its associated libcurl_imp.lib import
library. The library should compile without warnings except for a few messages like this after
the link step:

File not found - libcurl.lib
0 File(s) copied

These may be safely ignored.

7. Issue the following command to copy libcurl.dll to a standard location where it will be
found by Windows when needed:

xcopy libcurl.dll “%UTIL_DIR%*.*”

8. Use the following command to copy the import library to a standard development directory
where the linker will be able to find it:

xcopy libcurl_imp.lib “%SDK_DIR%\lib\usr*.*”

391

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 391

9. Use the following command to copy the cURL header to a standard development directory
where the compiler can find them:

xcopy ..\include\curl*.h “%SDK_DIR%\include\usr\curl*.*”

10. Buildthe command line cURL program, curl.exe, as follows:

cd ..\src
nmake -f Makefile.vc6 CFG=release-dll

11. Test the build with the following command:

.\curl -V

This should result in the following output:

curl 7.15.4 (i386-pc-win32) libcurl/7.15.4
Protocols: tftp ftp telnet dict ldap http file
Features: Largefile

12. Copy curl.exe to your utility directory as follows:

xcopy curl.exe “%UTIL_DIR%*.*”

Building luacurl
The luacurl library is a binding that joins Lua to libcurl. It was created by Alexander Marinov and is
available at the LuaForge website at luaforge.net.

Download the latest version of the luacurl source package and place it in the location where you
intend to build it. The example shown here is for version 1.1 of the binding, so you’ll need to make the
changes to its name in the following instructions if you are building an updated version.

Building luacurl on Unix-Like Systems
Follow these steps:

1. Extract the zip file in the location where you will build it:

unzip luacurl-1.1.zip

2. Drop into the luacurl directory:

cd luacurl-1.1

3. Compile the library was follows:

cc -ansi -pedantic -Wall -O2 -o luacurl.so -shared luacurl.c -lcurl

4. Execute the following command to test whether the library can be loaded:

lua -e ‘package.cpath=”./?.so” require “luacurl” print(curl)’

5. The curl table identifier should be reported. If it is, copy luacurl.so to your Lua library
directory:

cp luacurl.so $LUA_DIR/

392

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 392

Building luacurl on Windows
Follow these steps:

1. Extract the zip file in the location where you will build it:

7z x luacurl-1.1.zip

2. Drop into the luacurl directory:

cd luacurl-1.1

3. Compile the library as follows. These instructions will work if you are using Microsoft Visual
C++ 6.0. Join the line ending with ; with the fragment that follows it.

cl /c /W1 /Zl /Zd /Yd /MD /DWIN32 luacurl.c
link /dll /base:0x68000000 /machine:ix86 /export:luaopen_luacurl ;
luacurl.obj lua5.1.lib msvcrt.lib libcurl_imp.lib

4. Execute the following command to make sure the library can be loaded:

lua -e “package.cpath=’./?.dll’ require ‘luacurl’ print(curl)”

5. The curl table identifier should be reported. If it is, copy luacurl.dll to your Lua library
directory:

xcopy luacurl.dll “%LUA_DIR%*.*”

Using luacurl
The luacurl binding provides file transfer capabilities to your Lua scripts by exposing functions from
the cURL library. The documentation for luacurl is included in the source package as luacurl.html.
Most of the library’s functionality is encapsulated in the object that is returned from a call to curl.new.
With this object, various options are set using the setopt method. These options specify details of the
request. The documentation for cURL itself, located in the docs subdirectory of the curl source tree, has
more information about these options. When these options are set, the actual request is made using the
perform method.

Try It Out Retrieving a Web Document
In this exercise, you will use luacurl to programmatically request a resource on the Web.

1. Save the following listing as curltest.lua:

require “luacurl”
require “show”

local FileStr = “test”
local SiteStr = “http://www.lua.org/”

local function LclWrite(FileHnd, BufStr)
FileHnd:write(BufStr)
return string.len(BufStr)

end

393

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 393

local function LclProgress(UserPrm, DownTotal, DownNow, UpTotal, UpNow)
print(DownTotal, DownNow, UpTotal, UpNow)

end

local Hnd = curl.new()
if Hnd then
local FileHnd = io.open(FileStr, “wb”)
if FileHnd then
Hnd:setopt(curl.OPT_WRITEFUNCTION, LclWrite)
Hnd:setopt(curl.OPT_WRITEDATA, FileHnd)
Hnd:setopt(curl.OPT_PROGRESSFUNCTION, LclProgress)
Hnd:setopt(curl.OPT_NOPROGRESS, false)
Hnd:setopt(curl.OPT_BUFFERSIZE, 5000)
Hnd:setopt(curl.OPT_HTTPHEADER, “Connection: Keep-Alive”,
“Accept-Language: en-us”)

Hnd:setopt(curl.OPT_URL, SiteStr)
Hnd:setopt(curl.OPT_CONNECTTIMEOUT, 15)
local R = { Hnd:perform() }
ObjectShow(R, “perform”)
local Ok, ErrStr, RetCode = Hnd:perform()
if Ok then
io.write(“Resource successfully saved as “, FileStr, “\n”)

else
io.write(“Error: “, ErrStr, “ (“, RetCode, “)\n”)

end
FileHnd:close()

else
io.write(“Error opening “, FileStr, “\n”)

end
Hnd:close()

else
io.write(“Error instantiating curl object.\n”)

end

2. Run the script with the Lua interpreter:

lua curltest.lua

This should result in the periodic printing of progress lines indicating the total size of the transfer and
how much of it has been downloaded. Because the time needed to resolve the name of the web server is
included in this progress, the first few notifications may indicate no transfer of content. The progress
notification is done in a callback that could be used to drive a progress bar in an application.

How It Works
After requiring the luacurl module, some local variables are declared that identify the resource to be
retrieved and the name with which to save it. Placing values like this near the top of a script can help
make it a bit more convenient to modify later.

The LclWrite function is used as a callback, which is a function that is called by the library back into the
script. In this case, it is called by luacurl when there is retrieved data to be written.

Beneath this is another callback. This one is called at intervals with arguments that indicate the number
of bytes transferred and the number of bytes to be transferred.

394

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 394

This is followed by a call to curl.new, which is the function that creates a new transaction handle. If this
succeeds, the returned value will not be nil and a new block is entered. Here, a file is opened in binary
mode to save the resource to be downloaded. If the file is successfully opened, a number of options are set
which modify how the request is to be made and handled. In this case, the two callbacks are registered.
The curl.OPT_WRITEDATA option specifies the first parameter to the write callback. Here, the handle to
the open file is passed. The cURL library merely passes this parameter back to the calling script without
acting on it. This feature makes it easier to avoid global variables or the need to make a closure.

You can use the curl.OPT_PROXY option to make a web request through a proxy server. It should
receive a string of the form “http://proxyserver:8888” where proxyserver and 8888 is the name
and address of your proxy server and its port, respectively.

Even the address of the desired resource is conveyed to the cURL library by means of an option, in this
case, curl.OPT_URL. There are dozens of other options, including timeout value, buffer size, and addi-
tional headers.

When all options have been set up, the actual request is made with a call to the perform method. This
method returns true if the request succeeds, or false followed by a message and a result code if the
request fails. Note that cURL considers the transaction a success if everything sent by the server is
received. The returned page might, however, be a notification page indicating that the requested page
could not be found or that some other error occurred at the server. You must examine the headers of the
returned resource to determine that.

The cURL website, curl.haxx.se, contains a wealth of information on how the library can be used. In
Chapter 16 you’ll become familiar with LuaSocket, an alterative and more general package for network
communication that was designed from the ground up to work with Lua.

The gd Graphics Library
The gd graphics library enables programs to noninteractively construct images in a number of formats.
It has become a fixture on web servers around the world for dynamically generating web content at run-
time, an example of which you will encounter in Chapter 15. The library was created by Thomas Boutell
and is available from www.boutell.com/gd.

The notion of a graphics library that is entirely driven by program commands rather than through inter-
active use is a powerful one. As a programmer, you are accustomed to specifying in exact terms the steps
needed to accomplish some goal. When applied to graphic generation, this skill can be leveraged to pro-
duce precise images repeatedly and automatically.

Building gd
The gd library makes use of a number of libraries for image formatting, font specification, and data com-
pression. Meeting these library requirements on Unix-like systems is nothing out of the ordinary, but it
can be a hardship on Windows. Consequently, the documentation for gd encourages developers on
Windows to use the precompiled DLL and the related files it comes packaged with. That’s the approach
taken here.

395

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 395

Building gd on Unix-Like Systems
Before building gd, you should check to see if your system already has it. You can do this with the fol-
lowing command:

find / -name “libgd.*”

If you see lines like this, you’ve already got the gd library installed, and you can skip the building step:

/usr/local/lib/libgd.so.2.0.0

Even if the gd library is not present on your system, you may be able to install it as a package tailored
for your platform.

Follow these steps to build gd:

1. Acquire gd-2.0.33.tar.gz from www.boutell.com/gd and place it in the location where
you’ll build it. Unpackage it with this:

tar xzvf gd-2.0.33.tar.gz

2. Drop into the newly-created directory like this:

cd gd-2.0.33

3. Take time to read the files README.TXT and INSTALL that are in this directory. They’re short
and explain library dependencies that may be relevant to your system. Assuming you’ve got the
libraries you need, run the configure script as follows:

./configure

4. Compile and link the library by running this:

make

5. As root, install the library by running this:

make install

Installing gd on Windows
To install gd on Windows, follow these steps:

1. Download gdwin32.zip from www.boutell.com/gd and place it in the location where you’ll
unzip it. If you’re using 7-zip, unpackage it as follows:

7z x gdwin32.zip

This extracts the zipfile’s contents into a directory named gdwin32. Drop into that directory
now by issuing this command:

cd gdwin32

The gd library is implemented in the bgd.dll file.

396

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 396

2. Copy that file to your utility directory like this:

xcopy bgd.dll “%UTIL_DIR%*.*”

3. Assuming you’re using version 6 of the Microsoft Visual C++ development kit, create and
install the import library for this DLL as follows:

lib /machine:i386 /def:bgd.def
xcopy bgd.lib “%SDK_DIR%\lib\usr*.*”

4. Install the header files as follows:

xcopy *.h “%SDK_DIR%\include\usr*.*”

Building lua-gd
Alexandre Erwin Ittner has written a binding that allows the gd library to be used from Lua scripts. The
following instructions use lua-gd-2.0.33r2.tar.gz. In the package name, the number to the left of the
r corresponds to the gd library version, and the number to the right indicates the binding release version.
If you are using an updated version, make sure it conforms to the gd library version you have installed.

Download the source tarball from lua-gd.luaforge.net and move it to location where you will build
the library.

Building lua-gd on Unix-Like Systems
To build lua-gd on Unix-like systems, follow these steps:

1. Extract the package’s contents as follows:

tar xzvf lua-gd-2.0.33r2.tar.gz

2. Change the working directory to this newly-created directory like this:

cd lua-gd-2.0.33r2

3. The luagd is built to match the functionality of the gd library. For example, if the gd library sup-
ports JPEG operations but not XPM operations, then the luagd library will provide bindings for
JPEG but not XPM. In order to find out what libraries gd supports, run that library’s configura-
tion reporter, as follows:

gdlib-config --features --version

This should result in a report like this:

GD_JPEG GD_FREETYPE GD_PNG GD_GIF
2.0.33

4. Compile luagd as follows:

You may need to modify the symbol definitions to match the features of the gd library. Every feature
shown in the previous output should be defined using the -D switch.

cc -ansi -pedantic -Wall -O2 -DGD_JPEG -DGD_PNG -DGD_FREETYPE ;
-DGD_GIF -o gd.so -lgd -shared luagd.c

397

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 397

5. Test the new library as follows:

lua -e ‘package.cpath=”./?.so”’ test_features.lua

A report like this should be generated:

Lua-GD version: lua-gd 2.0.33r2
Lua-GD features:

PNG support Enabled
GIF support Enabled
JPEG support Enabled
XPM/XBM support Disabled
FreeType support Enabled
Fontconfig support Disabled

6. Copy gd.so to the Lua module directory with this command:

cp gd.so $LUA_DIR/

Building lua-gd on Windows
To build lua-gd on Windows, follow these steps:

1. Extract the package’s contents as follows:

7z x lua-gd-2.0.33r2.tar.gz
7z x lua-gd-2.0.33r2.tar

You can now delete these files.

2. Jump into the newly created directory as follows:

cd lua-gd-2.0.33r2

3. Compile the library as follows:

cl /c /W1 /Zl /Zd /Yd /MD /DWIN32 /DGD_PNG /DGD_GIF /DGD_FREETYPE ;
/DGD_JPEG /DGD_XPM /DGD_FONTCONFIG luagd.c

link /dll /out:gd.dll /base:0x67500000 /machine:ix86 ;
/export:luaopen_gd luagd.obj lua5.1.lib msvcrt.lib bgd.lib

4. Test the luagd library with the following command:

lua -e “package.cpath=’./?.dll’” test_features.lua

The following report should be displayed:

Lua-GD version: lua-gd 2.0.33r2
Lua-GD features:

PNG support Enabled
GIF support Enabled
JPEG support Enabled
XPM/XBM support Enabled
FreeType support Enabled
Fontconfig support Enabled

398

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 398

5. If this test succeeds, install luagd as follows:

xcopy gd.dll “%LUA_DIR%*.*”

Using lua-gd
The demos subdirectory of the luagd source package has an abundance of sample scripts that demon-
strate the capabilities of the gd library and luagd binding. Most of the scripts end with a construction
something like this:

im:png(“out.png”)
os.execute(“display out.png”)

That is, the gd library is called to create an image file, and then the system is called to display it. If this is
appropriate for your system, no changes need to be made to the scripts. On Windows, however, you will
likely need to modify the command submitted to os.execute. If you have a visual display program like
IrfanView that is registered to display PNG files, then changing display to start is sufficient.

Now that you’ve installed the gd library and luagd module on your system, you’ll use it in the follow-
ing Try It Out to programmatically generate the Lua logo.

Try It Out Generating the Lua Logo
The Lua logo would have delighted Euclid. The center of the moon element is positioned at the corner
of the bounding square of the planet, and its radius is based on metrics of this bounding square. The
instructions to construct the logo are adapted from a sample script in Luiz Henrique de Figueiredo’s PDF
binding, with a friendly tip of the hat to its author and to Alexandre Nakonechnyj, the designer of the
Lua logo.

1. Copy the following contents to a script named lua-logo.lua:

require “gd”

local Lcl = {}

local function LclWriteCtr(Hnd, X, Y, Clr, FontStr, PtSize, TextStr)
local Ext = {gd.stringFT(nil, Clr, FontStr, PtSize, 0, 0, 0, TextStr)}
Hnd:stringFT(Clr, FontStr, PtSize, 0, X - (Ext[3] - Ext[1]) / 2,
Y + (Ext[4] - Ext[6]) / 2, TextStr)

end

Lcl.Size = 256
--Lcl.FontStr = “c:/windows/fonts/arial.ttf” -– Windows
Lcl.FontStr = “vera “ -– Linux and friends
Lcl.Scale = 1 - math.sqrt(2) / 2
Lcl.RadiusLg = Lcl.Size / 3
Lcl.DiameterLg = 2 * Lcl.RadiusLg
Lcl.RadiusSm = Lcl.Scale * Lcl.RadiusLg
Lcl.DiameterSm = 2 * Lcl.RadiusSm
Lcl.CenterX = (Lcl.Size - Lcl.RadiusSm / 2) / 2
Lcl.CenterY = (Lcl.Size + Lcl.RadiusSm / 2) / 2

399

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 399

Hnd = gd.createTrueColor(Lcl.Size, Lcl.Size)
Lcl.White = Hnd:colorAllocate(255, 255, 255)
Lcl.Blue = Hnd:colorAllocate(32, 32, 128)
Lcl.Gray = Hnd:colorAllocate(192, 192, 192)
Lcl.Black = Hnd:colorAllocate(0, 0, 0)
Hnd:setAntiAliased(Lcl.Blue)
Hnd:filledRectangle(0, 0, Lcl.Size - 1, Lcl.Size - 1, Lcl.White)
-- Planet
Hnd:filledArc(Lcl.CenterX, Lcl.CenterY, Lcl.DiameterLg, Lcl.DiameterLg,
0, 360, gd.ANTI_ALIASED, gd.ARC)

-- Moon
Hnd:filledArc(Lcl.CenterX + Lcl.RadiusLg, Lcl.CenterY - Lcl.RadiusLg,
Lcl.DiameterSm, Lcl.DiameterSm, 0, 360, gd.ANTI_ALIASED, gd.ARC)

-- Moonshadow
Hnd:setAntiAliased(Lcl.White)
Hnd:filledArc(Lcl.CenterX + Lcl.RadiusLg - Lcl.DiameterSm,
Lcl.CenterY - Lcl.RadiusLg + Lcl.DiameterSm,
Lcl.DiameterSm, Lcl.DiameterSm, 0, 360, gd.ANTI_ALIASED, gd.ARC)

-- Orbit
Hnd:setAntiAliased(Lcl.Gray)
Hnd:arc(Lcl.CenterX, Lcl.CenterY,
Lcl.DiameterLg + Lcl.DiameterSm, Lcl.DiameterLg + Lcl.DiameterSm, 0, 300,
gd.ANTI_ALIASED, gd.ARC)

Hnd:arc(Lcl.CenterX, Lcl.CenterY,
Lcl.DiameterLg + Lcl.DiameterSm, Lcl.DiameterLg + Lcl.DiameterSm, 330, 360,
gd.ANTI_ALIASED, gd.ARC)

-- Text
LclWriteCtr(Hnd, Lcl.CenterX, Lcl.CenterY + Lcl.RadiusSm, Lcl.White,
Lcl.FontStr, 48, “Lua”)

Hnd:png(“logo.png”)
Hnd:gif(“logo.gif”)
Hnd:jpeg(“logo.jpg”, 90)
os.execute(“start logo.png”)

2. The font specification may need some adjustment on your system. On Windows, the full path of
the Arial font is specified; on systems with Helvetica, use that instead. The gd library is gener-
ally successful in finding fonts without path information on Unix-type systems Also, depending
on how you view PNG images, you may need to adjust the final line or remove it entirely.

3. To generate the logo, run the script with the Lua interpreter as follows:

lua lua-logo.lua

This will generate the file logo.png, which should look like Figure 12-3.

400

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 400

Figure 12-3

How It Works
Requiring the lua-gd module introduces the gd namespace to your script. A blank image is created by
passing the width and height in pixels to the gd.createTrueColor function or the gd.createPalette
function. These functions return an object that is used for subsequent image construction.

The origin for subsequent operations is the upper-left corner. X values increase to the right; Y values
increase to the bottom. Units are measured in pixels. Arcs are drawn clockwise starting from the 3
o’clock position using degrees.

Colors need to be allocated using red, green and blue values ranging from 0 to 255. In the case of a palette
image, the first color allocated becomes the background color. The stairstep appearance of nonvertical and
nonhorizontal lines in the image can be mitigated by anti-aliasing, a technique which blends the bound-
ary between different colors with appropriate shades. This feature is available only with truecolor images.
To use it, call the setAntiAliased method with the color you will be using. Then, instead of specifying
this color for a drawing operation, specify gd.ANTI_ALIASED.

The extent of a string is obtained using the same function used to render it on an image, namely the
stringFT method. Instead of calling it as a method, however, it is called as an ordinary namespace
function with the value nil instead of an image object. In this case, the coordinates of the bound rectan-
gle are returned. Both the extent retrieval and text rendering are combined into a helper function named
LclWriteCtr in this script.

The graphical drawing in this script is done with the filledRectangle, filledArc, and arc methods.

The gd library constructs the image using its own internal format. The actual file generation occurs with
a call to png, pngEx, jpeg, gif, or gd2. These methods are not mutually exclusive — more than one can
be called to generate copies in various destination formats. The last image type is the internal format of
gd— it is not intended for use by other programs, but it can be useful when images will be subsequently
processed by the gd library.

401

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 401

The gd library and lua-gd binding are well suited to many kinds of image production. In the next Try It
Out, you use them to generate a graphical representation of a function’s output.

Try It Out Producing a Function Plot
In Chapter 11, a number of the math function summaries were accompanied by a graphical plot that
was generated using gd and lua-gd. In this exercise, you specify a function that accepts a number and
returns a correlated number. The Lua script creates and initializes a graphic object and uses it to plot the
specified function over a range of values. The diagram is then saved as a PNG image.

1. With your text editor, create a new file with the following contents:

Depending on your platform, you may need to adjust the value of the FontStr field near the top of the
script. In particular, you need to specify the full path of the directory in which fonts are stored.

require “gd”

local Cn = {
-- FontStr = “c:/windows/fonts/arial.ttf”,
FontStr = “vera”,
Height = 1024,
Margin = 12,
PointSize = 36,

}

local function ImgInit()
local Img = {}
Img.Height = Cn.Height
Img.Width = Img.Height * (1 + math.sqrt(5)) / 2
Img.Hnd = gd.createTrueColor(Img.Width, Img.Height)
Img.White = Img.Hnd:colorAllocate(255, 255, 255)
Img.Black = Img.Hnd:colorAllocate(0, 0, 0)
Img.Gray = Img.Hnd:colorAllocate(192, 192, 192)
local Ext = {gd.stringFT(nil, Img.White,
Cn.FontStr, Cn.PointSize, 0, Cn.Margin, Cn.Margin, “X”)}

Img.ChHt = Ext[2] - Ext[8]
Img.Left = Cn.Margin
Img.Right = Img.Width - Img.Left - 1
Img.Top = Cn.Margin + Img.ChHt + Cn.Margin
Img.Bottom = Img.Height - Img.Left - 1
Img.Hnd:setAntiAliased(Img.Black)
Img.Hnd:filledRectangle(0, 0, Img.Width - 1, Img.Height - 1, Img.White)
Img.Hnd:rectangle(Img.Left, Img.Top, Img.Right, Img.Bottom, Img.Black)
return Img

end

-- Write antialiased text. XAlign is “left”, “center”, or “right” and qualifies
-- X. YAlign is “top”, “middle”, or “bottom” and qualifies Y.

local function LclWrite(Img, X, XAlign, Y, YAlign, Clr, TextStr)
local Lf, Bt, Rt, _, _, Tp = gd.stringFT(nil, Clr, Cn.FontStr,
Cn.PointSize, 0, 0, 0, TextStr)

local Wd = Rt - Lf
X = XAlign == “center” and X - Wd / 2 or XAlign == “right” and X - Wd or X
Y = YAlign == “middle” and Y + Img.ChHt / 2 or

402

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 402

YAlign == “top” and Y + Img.ChHt or Y
Img.Hnd:stringFT(Clr, Cn.FontStr, Cn.PointSize, 0, X, Y, TextStr)

end

-- Plot Y = Fnc(X) from X1 to X2. Disjoint is true if change in Y lifts pen.

local function Plot(Img, X1, Y1, X2, Y2, Fnc, TitleStr, Disjoint)
-- Mapping functions
-- X = Xm * H + Xb where H is horizontal pixel unit
-- H = Hm * X + Hb
-- Y = Fnc(X)
-- V = Vm * Y + Vb where V is vertical pixel unit
local Lift, X, Xm, Xb, V, Vm, Vb, Y, H, HPrv, VPrv, Ht, Wd,
Hm, Hb, YPrv, BadVal

Ht = Img.Bottom - Img.Top
Wd = Img.Right - Img.Left
Xm = (X2 - X1) / Wd
Xb = X2 - Xm * Img.Right
Hm = Wd / (X2 - X1)
Hb = Img.Left - Hm * X1
Vm = Ht / (Y1 - Y2)
Vb = Img.Bottom - Vm * Y1

LclWrite(Img, Cn.Margin, “left”, Cn.Margin, “top”, Img.Black, TitleStr)
Img.Hnd:setClip(Img.Left, Img.Top, Img.Right, Img.Bottom)
Img.Hnd:line(Img.Left + 1, Vb, Img.Right - 1, Vb, Img.Gray) -- Y = 0
Img.Hnd:line(Hb, Img.Top + 1, Hb, Img.Bottom - 1, Img.Gray) -- X = 0
BadVal = tostring(math.asin(2))
Lift = true
for H = Img.Left, Img.Right do
X = Xm * H + Xb
X = X < X1 and X1 or X > X2 and X2 or X -- Constrain sign at boundaries
Y = Fnc(X)
if tostring(Y) ~= BadVal then
if Disjoint and Y ~= YPrv then
Lift = true

end
YPrv = Y
V = Vm * Y + Vb
if Lift then
Lift = false

else
if Y >= Y1 and Y <= Y2 then
Img.Hnd:line(HPrv, VPrv, H, V, Img.Hnd.ANTI_ALIASED)

end
end
VPrv = V
HPrv = H

end
end
LclWrite(Img, Img.Left + Cn.Margin, “left”, Img.Bottom - Cn.Margin, “bottom”,
Img.Gray, “(“ .. X1 .. “, “ .. Y1 .. “)”)

LclWrite(Img, Img.Right - Cn.Margin, “right”, Img.Top + Cn.Margin, “top”,
Img.Gray, “(“ .. X2 .. “, “ .. Y2 .. “)”)

end

403

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 403

function Waveform(X)
return math.sin(3*X) * math.sin(X/3)

end

local Img = ImgInit()
Plot(Img, -12, -1.2, 12, 1.2, Waveform, “Waveform”)
Img.Hnd:png(“waveform.png”)

2. Save this file as plot.lua.

3. Run the script as follows:

lua plot.lua

An image file in PNG format named waveform.png will be generated, which is shown in
Figure 12-4.

Figure 12-4

How It Works
The local table named Cn near the top of the script holds various constants that the script uses. Placing
these values in one place makes it easier to make adjustments later if you need to modify the script’s
behavior.

The ImgInit function instantiates a graphic object using some of the specified constants. This is a gen-
eral purpose routine that isn’t bound to the plotting function called later in the script.

404

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 404

The LclWrite function is another general purpose routine. This one positions text in relation to a speci-
fied point. For example, you can render text so that it is centered horizontally on a point and positioned
vertically just beneath the point.

The main function in the script is Plot. This function takes care of all the scaling and iterating needed
to plot the function that you specify with an image object. As arguments, you specify the domain of the
function (the allowable input values) and the range of the function (its output values). These are passed
as endpoints. For example, in this script, the value for X1 indicates the low point at which the function is
evaluated, and X2 indicates the high point. The main iteration begins with the following line:

for H = Img.Left, Img.Right do

This loop steps through the drawing region from the left side to the right. The block of the loop deter-
mines the input value that corresponds with the position and calls the passed-in function with this
value. The value returned from the passed-in function is mapped to a vertical position, and a line is
drawn to the previous point.

The Waveform function is a custom function that you pass to the Plot function for rendering. Experiment
with different replacement functions, adjusting the values for X1, X2, Y1, and Y2 as needed.

The SQLite Database Library
There are Lua bindings to many relational databases systems. The one discussed here binds to SQLite, a
fast and remarkably compact embeddable database engine that implements much of the SQL92 standard.
SQLite is a trouble-free, dependable database system suitable for a wide spectrum of applications. It was
created by D. Richard Hipp to fill a niche left vacant by large-scale relational database management sys-
tems, such as the need for serverless data management in which an application and its data can be moved
together. Relational databases will be explored in more detail in Chapter 14.

Building SQLite3
The SQLite documentation, changelogs, source code comments, and rational version numbering all indi-
cate an exemplary development environment. It is no surprise that SQLite compiles very nicely on a
large number of platforms. The version covered here is 3.3.6 — if you’re using an updated version, make
the appropriate changes to these instructions.

Building SQLite3 on Unix-Like Systems
SQLite is a very popular system, and there is a good chance that it is already installed on your Unix-like
system or that a package has been prepared for your platform that will expedite its installation. To see if
it is already installed, issue the following command:

which sqlite3

If this results in a line that looks like the following, then SQLite is installed and you can dispense with
the following building procedure:

/usr/local/bin/sqlite3

405

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 405

If SQLite is not installed, or you have an outdated version of SQLite, you should check to see if a pack-
age is available for your platform.

If you are going to build SQLite, start by downloading sqlite-3.3.6.tar.gz from www.sqlite.org
and placing it in your source code development directory. Then do the following:

1. Extract it with the following command:

tar xzvf sqlite-3.3.6.tar.gz

2. Make the newly created directory your working directory as follows:

cd sqlite-3.3.6

3. Configure the makefiles as follows:

./configure

4. Compile the library and database shell like this:

make

5. As root, install SQLite as follows:

make install

Building SQLite3 on Windows
Developers on the Windows platform are provided a zip file called sqlite-source-3_3_6.zip, which
contains preconfigured source code that simplifies the process of building SQLite. Download this zip file
and then follow these steps:

1. Create a directory for building the package as follows:

mkdir sqlite-3.3.6
cd sqlite-3.3.6

2. Extract the contents of the zip file into this directory, replacing path\to with the directory
where the zip file is located, as follows:

7z x path\to\sqlite-source-3_3_6.zip

3. Some files can be effectively removed from the build. Do this by renaming them like this:

ren os_os2.c os_os2.c0
ren os_unix.c os_unix.c0
ren tclsqlite.c tclsqlite.c0

4. A small modification to the SQLite shell source file needs to be made to address Microsoft’s
naming conventions. Open shell.c with your editor and locate the following line:

extern int isatty();

5. Above this line, insert the following preprocessor definitions:

#define isatty _isatty
#define fileno _fileno
#define access _access

406

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 406

Unfortunately, these definitions can’t be made on the compiler command line because they
would interfere with definitions in the header files.

6. Compile the files as follows:

cl /c /nologo /I. /Zl /Zd /Yd /MD /W0 *.c

7. Exclude shell.obj from being pulled into the SQLite DLL by renaming it like this:

ren shell.obj shell.o

8. Create the DLL and its import library as follows:

link /DLL /OUT:sqlite3.dll /BASE:0x66000000 /DEF:sqlite3.def *.obj msvcrt.lib

9. Install these products and the SQLite header file as follows:

xcopy sqlite3.dll “%UTIL_DIR%*.*”
xcopy sqlite3.lib “%SDK_DIR%\lib\usr*.*”
xcopy sqlite3.h “%SDK_DIR%\include\usr*.*”

10. Build the SQLite shell like this:

link shell.o /OUT:sqlite3.exe sqlite3.lib msvcrt.lib

11. Install the shell to your utility directory as follows:

xcopy sqlite3.exe “%UTIL_DIR%*.*”

Building lua-sqlite3
Michael Roth has written a two-layer Lua binding to SQLite3. One layer, the backend, is written in C and
serves as a thin binding to the SQLite API. This binding is thin in the sense that it doesn’t add a lot of
functionality to what is provided by SQLite. On top of this is the front-end layer. This is written in Lua
and provides an interface that uses natural Lua expressions and capabilities. It permits query results to
be read in a for loop, supports coroutines, and allows handlers to augment database operations.

Download lua-sqlite3-0.4.1.tar.bz2 from the LuaForge site to the location where you will build it.

Building lua-sqlite3 on Unix-Like Systems
Follow these steps:

1. Extract the source package as follows:

tar xjvf lua-sqlite3-0.4.1.tar.bz2

The export definition file sqlite3.def has been problematic in recent releases of the
SQLite source package for Windows. In version 3.3.7, you need to add the sqlite3_
enable_load_extension and sqlite3_load_extension symbols to the file before
the DLL can be linked properly. In version 3.3.8, the export definition file is missing
completely.

407

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 407

2. Drop into the source directory like this:

cd lua-sqlite3-0.4.1

3. Configure the build process as follows:

./configure

4. Compile the shared library as follows:

make

5. Open the file libluasqlite3-loader.lua with a text editor, and locate the line that begins
with the following:

local shared_lib_path =

6. Modify the line so that it points to the directory where you place Lua shared libraries. For exam-
ple, if this directory is /usr/local/lib/lua/5.1, then change the line to the following:

local shared_lib_path = “/usr/local/lib/lua/5.1”

7. Save the file and exit the editor.

8. Install the package as follows:

cp *.so $LUA_DIR/
cp libluasqlite3-loader.lua $LUA_DIR/
cp sqlite3.lua $LUA_DIR/

Building lua-sqlite3 on Windows
1. Extract the source package as follows:

7z x lua-sqlite3-0.4.1.tar.bz2
7z x lua-sqlite3-0.4.1.tar
del lua-sqlite3-0.4.1.tar

2. Make the source directory the default working directory like this:

cd lua-sqlite3-0.4.1

3. Compile the dynamic-link library as follows:

cl /c /Zl /Zd /Yd /MD /DWIN32 libluasqlite3.c

link /dll /base:0x67A00000 /machine:ix86 /export:luaopen_sqlite3 ;
libluasqlite3.obj lua5.1.lib msvcrt.lib sqlite3.lib

4. Create a new file with the following contents. If the directory in which you place your Lua bind-
ings is different from that shown, make the appropriate change.

The value of LibStr is quoted using double brackets to ensure that the Microsoft-style path delimiters
are treated literally.

local LibStr = [[c:\program files\lua\5.1\libluasqlite3.dll]]
load_libluasqlite3 = assert(package.loadlib(LibStr, “luaopen_sqlite3”))

408

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 408

5. Save this file as libluasqlite3-loader.lua.

6. Install the package as follows:

xcopy *.dll “%LUA_DIR%*.*”
xcopy libluasqlite3-loader.lua “%LUA_DIR%*.*”
xcopy sqlite3.lua “%LUA_DIR%*.*”

Using lua-sqlite3
The documentation for lua-sqlite3 is named documentation.html and is located in the main direc-
tory of the source package. The documentation for SQLite, found at www.sqlite.org, is a very helpful
source of information. Its pages on SQL language support, keywords, and pragmas provide a good intro-
duction to using this database library. Pragmas are SQLite-specific commands that allow you to examine
the details of a database and control the way SQLite operates.

If you are new to SQLite and lua-sqlite3, you’ll find it helpful to initially include the show module
that was developed in Chapter 7 in your scripts. The ObjectShow function can give you a thorough
view of a function’s return value. This can help you get your bearings when looking at query results.

Try It Out Providing a Database Standard Deviation Function
The lua-sqlite3 library lets you write functions that can be called from within SQL commands, including
an aggregate function that returns one value for an entire series of database rows. The way that an aggregate
function is registered to lua-sqlite3 is elegant Lua. You register a function that itself returns two func-
tions: a row-by-row function and a wrapup function. The advantage of this is that any variables that need to
be shared between the two generated functions can do so by means of upvalues. This limits the scope of
these variables to exactly the parties that need to access them.

As of version 3.3.6, SQLite doesn’t have a built-in function to calculate the standard deviation of a series
of numbers. This example fills that gap.

1. Copy the following script to a file named sqlstddev.lua:

require “sqlite3”

local Cn = {}
Cn.DbStr = “test.db”
Cn.InitStr = [[
BEGIN TRANSACTION;
DROP TABLE IF EXISTS T3;
CREATE TABLE T3(A);
INSERT INTO T3 VALUES (12);
INSERT INTO T3 VALUES (27);
INSERT INTO T3 VALUES (32);
INSERT INTO T3 VALUES (91);
INSERT INTO T3 VALUES (79);
INSERT INTO T3 VALUES (66);
INSERT INTO T3 VALUES (40);
INSERT INTO T3 VALUES (5);
INSERT INTO T3 VALUES (53);
END TRANSACTION;

]]

409

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 409

local function LclStdDev()
local Sum, List = 0, {}

local function LclStep(Val)
if type(Val) == “number” then
table.insert(List, Val)
Sum = Sum + Val

end
end

local function LclFinal(Count)
local StdDev = 0
Count = #List
if Count > 1 then
local SumDevSq = 0
local Mean = Sum / Count
for J, Val in ipairs(List) do
local Dev = Val - Mean
SumDevSq = SumDevSq + Dev * Dev

end
StdDev = math.sqrt(SumDevSq / (Count - 1))

end
return StdDev

end

return LclStep, LclFinal
end

local DbHnd, ErrStr = sqlite3.open(Cn.DbStr)
if DbHnd then
if DbHnd:exec(Cn.InitStr) then
DbHnd:set_aggregate(“stddev”, 1, LclStdDev)
print(DbHnd:first_cols(“SELECT STDDEV(A) FROM T3”))

else
io.write(“Error initializing “, Cn.DbStr, “\n”)

end
DbHnd:close()

else
io.write(“Error opening “, Cn.DbStr, “: “, tostring(ErrStr), “\n”)

end

2. Run the script as follows:

lua sqlstddev.lua

This displays the following standard deviation:

29.546573405388

How It Works
This script initializes a table in the test.db database file. The file is created if it doesn’t already exist. The
T3 table is created, or effectively overwritten if it already exists, and is populated with a series of numbers.

410

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 410

The LclStdDev function is the factory function that produces the row-by-row function (LclStep) and the
wrapup function (LclFinal). These two closures share a Lua table that holds each value submitted to
LclStep. Also shared is a variable that holds the running sum of the values.

When all rows have been visited, the wrapup function is called. Here, the mean is calculated and, for
each value in the series, the square of the deviation from this mean is summed. The variance is calcu-
lated by dividing this sum by the degrees of freedom in the sample. Finally, the square root of the vari-
ance, the standard deviation, is calculated and returned.

The set_aggregate method is used to register the aggregate function with the database instance. The first
argument is the name of the function to be used case-insensitively in a query. The next argument specifies
the number of arguments the row-by-row function is to be called with. The last argument is the factory
function that generates the two closures. This function is not called with any arguments.

User functions can extend SQLite in many useful ways. If you find that you use certain extensions fre-
quently, you can modularize them to promote their reusability and limit their scope. In this case, only a
registration function that receives an open database handle need be exported from the module; every-
thing else could be hidden inside it. The module would include the LclStdDev function and a line like
the following, which registers the function with the specified database handle:

DbHnd:set_aggregate(“stddev”, 1, LclStdDev)

Summary
In this chapter, you learned about interfacing Lua with open source libraries. These libraries can be cate-
gorized as follows:

❑ Libraries that have nothing to do with Lua and everything to do with a particular functionality,
such as the cURL, SQLite, and gd libraries.

❑ Libraries that provide a binding between Lua and another library, such as the luacurl,
lua-sqlite3, and lua-gd libraries.

❑ Libraries that combine functionality with a Lua interface, such as the pack library.

You saw how a binding can expose a library’s C API closely or, at the other end of the spectrum, through
a layer of expressive Lua mechanisms such as iterators and objects.

By compiling and installing a small cross-section of libraries, you learned some techniques that can be
applied to a large number of other open source libraries. Try your hand at the exercises that follow to
stretch these techniques a bit.

If learning about how Lua can be extended with community libraries has stirred an interest in writing
your own extensions in C, the next chapter will provide an introduction.

411

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 411

Exercises
1. The lua-sqlite3 binding lets you register a function, including one that can receive multiple

arguments that can be called within a database query. Use this feature to provide a format func-
tion for SQLite results. Name the function format. It should receive a format string followed by
a variable number of arguments to be formatted, very much like string.format (hint, hint).
And just like string.format (hint, hint), it should return one value, the formatted string. An
example of its usage is as follows:

print(DbHnd:first_cols(“SELECT FORMAT(‘%05d %05d’, 12, 34)”))

This should return the following:

00012 00034

The example shows FORMAT receiving fixed arguments, but ordinary database expressions are
supported too. Note that the second argument to the set_function method can be -1 to indicate
that the registered function can receive multiple arguments.

2. A PNG image file is made up of a signature string followed by a chunk, which is a variable
length data structure that follows a relatively simple format. All numbers in a PNG file are big-
endian. The signature is made up of the following eight bytes, shown here in decimal:

137, 80, 78, 71, 13, 10, 26, 10

The string.char function is useful for constructing strings from lists like this one.

Each chunk has the following layout:

Data length: unsigned long integer
Chunk header: four character string
Data: <Data length> bytes
CRC: unsigned long integer

CRC stands for Cyclic Redundancy Check, a standard hash checksum of data. In this case, it
covers the chunk header and data, but not the data length field.

Chunks can come in any order, except that chunks with the IHDR and IEND headers are first
and last respectively.

Write a script that steps through each chunk of a PNG file and prints a listing that shows the
header, data length and CRC values. A chunk summary for the Lua logo that was constructed in
the gd library discussion looks like this:

Header Length CRC
------ ------ ----------
IHDR 13 0xD3103F31
IDAT 4867 0xF5459E04
IEND 0 0xAE426082

Remember to open the PNG file in binary mode to prevent problems on Windows.

Because the data length field does not immediately precede the data field, you will need to make
two calls to string.unpack for every chunk. The first will pick up the chunk’s data length and
header fields, and the second will pick up the CRC field. You don’t need to read the data field for
the purposes of this exercise.

412

Chapter 12: Using Community Libraries

15_069172 ch12.qxp 1/2/07 8:09 PM Page 412

13
Interfacing Lua with Other

Languages

Lua has a flexible mechanism for binding to program elements written in languages other than Lua.
As you saw in the preceding chapter, functions in libraries written in C can be made available to
your Lua programs through Lua’s C application programming interface (C API or simply API). In
this chapter, you delve a little deeper into this interface and learn the basics of writing routines in C
that can be used in conjunction with Lua. This includes the following:

❑ Embedding Lua in an application

❑ Extending Lua with C functions

❑ Manipulating the virtual stack in C

❑ Passing values between Lua and C

❑ Storing Lua values in C

❑ Guarding against errors in your C code

❑ Structuring the binding layer

Although the focus in this chapter is the C programming language, most mainstream implementa-
tions of compiled languages like C++ and Pascal are compatible with the C calling convention —
these languages work fine with Lua. In this chapter, references to C programs and libraries are
intended to include those that are written in other compatible languages as well.

If you are unfamiliar with C, take a moment to skim through some of the C examples. It should
provide ample grounds for appreciating the clean, readable syntax of Lua.

How C Programs Use Lua
Lua’s C API can be used both by a host application that embeds Lua and by libraries that extend Lua.
The distinction between these two ways of using Lua can be blurred somewhat because a host

16_069172 ch13.qxp 1/2/07 8:10 PM Page 413

application often provides its own functions to extend Lua, and extension libraries can contain their own
independent Lua instances. Nevertheless, understanding the distinction can help you make the right
design decisions when developing your applications.

Embedding Lua
Lua is packaged as a library. It doesn’t include a main function (the entry point of a C application) and
can’t run apart from a host application. The standalone Lua interpreter that you use throughout this
book is one such host application. It has a relatively small main source file that uses Lua’s API but doesn’t
itself add anything to the Lua core. In this way, it embeds Lua. Its job is to manage the way scripts are
submitted to Lua — either interactively or noninteractively — and the way Lua’s output is delivered.

The distinguishing hallmark of an embedding application is that it calls lua_open to create and initialize
a Lua state. If this function succeeds, it returns a pointer to the newly created state structure. This pointer
is used as the first argument to all other functions in the API. When an embedding application is finished
running Lua scripts with a particular state, it finalizes and destroys the state by calling lua_close.

Extending Lua
The Lua API supports the extension of a Lua state by allowing C functions to be called from scripts.
There are two basic ways this can happen:

❑ An embedding application can register extension functions directly.

❑ A running script can, usually with a call to require, load and transfer control to a C library that
in turn registers its extension functions.

In both cases, the Lua state that is extended is already active in the context of a host application.

Embedding or Extending: Which Is Best?
If you’re developing a library that will perform services for an application, you’ll be extending Lua. If,
however, you’re developing an application, you’ve got a choice between embedding Lua and extending it.
A number of factors have a bearing on which path you choose, including the following:

❑ Will your program use Lua only intermittently, for example, to run user-provided helper scripts
or to interpret a configuration script?

❑ Does your application need to modify the behavior of the standalone Lua interpreter, for exam-
ple, to specify which libraries are loaded or which functions are present within a library?

❑ Does your application run in a special environment, such as one that doesn’t support dynamic
linking of libraries?

If none of these characteristics apply to your application, there are compelling reasons for you to config-
ure it as an extension library. Doing so preserves Lua’s flexibility and modularity to the greatest extent,
which often leads to serendipitous opportunities for your program to interoperate with other libraries,
and will conform to standard usage patterns that developers expect when working with your applica-
tion. Designing, or redesigning, your application as a library can require a fair amount of effort up front,

414

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 414

especially with regard to initialization and finalization sequences and event handling. But after the ini-
tial work is done, libraries are generally no harder to maintain than an embedding application.

The standalone Lua interpreter needs to be modified to work well with some platforms. For example,
programs that use the Windows graphical user interface don’t have a main function and don’t, by
default, handle standard streams in the expected manner. If you develop for a platform like this, your
best choice may be to write your own embedding application, but preserve the behavior of the stan-
dalone Lua interpreter as much as possible. Resist the temptation to put application-specific code into
the interpreter — usually, this is best placed in a library.

A case for embedding Lua applies to programs like the Zeus programmer’s editor. Here, Zeus is an
already self-contained application and Lua is used to run scripts provided by end users to automate
tasks. Another case is the Plua application for Palm devices, which you will explore in Chapter 18.
The Palm OS has certain restrictions that prevent a standard Lua interpreter from being installed.

Communicating Between Lua and C
In the previous chapter, you compiled a minimal interpreter from min.c found in the etc subdirectory
of the Lua source package. When doing that, you saw that a C function needs to conform to a certain
prototype to be callable from Lua. This prototype is specified in the following declaration within Lua’s
principal header file, lua.h:

typedef int (*lua_CFunction) (lua_State *L);

.A C function of type lua_CFunction can be either of the following:

❑ A loader function, which is exported from a library and called by Lua when the library is loaded

❑ An extension function, which is registered with a Lua state so that it can be called like any other
Lua function

After an extension function is registered, the function can be called from a Lua program or, using the
Lua API, from within C. Within the Lua program, the function is indistinguishable from one written
completely in Lua.

In Chapter 3, you became familiar with the call stack used by Lua. A C extension or loader function has a
similar runtime structure — the virtual stack — available to it through the Lua API. When the C function
is first called, this stack is empty except for any arguments that were passed to the function from Lua.
The leftmost argument passed occupies position one in the stack. This stack can contain values of any
Lua type, including nil. It is used to manage operations such as setting up Lua function calls, accessing
and manipulating tables, and returning values to the caller.

The proper use of the virtual stack is one of the keys to writing a Lua extension in C. The stack is of
limited size, so when you’re using deeply recursive routines, you may need to lengthen it with the
lua_checkstack function. More typically, you need to take care not to inadvertently fill up the stack
with temporary values that should have been removed after use.

High-level programming languages like Lua and C handle stack operations transparently. When it comes
to interfacing Lua and C, however, you’ll have to be aware of the virtual stack and what it looks like at each

415

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 415

statement. You should get in the habit of writing stack snapshots in the form of single-line comments. For
example, the following comment indicates that you expect a table and a string to occupy positions one and
two of the stack:

// Stk: Tbl? Str?

When a verification has been made, for example with the lua_istable function, the question mark of
the verified value can be removed as follows:

// Stk: Tbl Str?

Often, you’ll have a deeply occupied stack, or will write a helper function, and will be concerned only
with the top of the stack. Lua facilitates stack access in these situations by letting you use a negative
index to effectively count from the top of the stack. When using negative indexes, index -1 refers to the
topmost item, index -2 the second from top item, and so on. Three consecutive dots can be used in a
stack diagram to denote the presence of zero or more stack items that will be preserved in the current
set of statements. Here’s an example:

// Stk: ... TitleStr MsgStr

In this example, index -1 refers to the message string, and index -2 refers to the title string. The objective
of these diagrams is to help the programmer keep the stack in balance and to keep track of positions.
Some operations such as manipulating table fields in a loop can generate quite a lot of stack activity, and
in these cases, any technique that helps you monitor where values are on the stack is of some value.

Returning values to the caller occurs with the virtual stack. You use the Lua API to place the return val-
ues at the top of the stack, with the rightmost value occupying the top position. You do not need to clear
the stack before setting this up. Lua handles all items beneath the return values on the stack properly.
The integer value that is returned by the C extension function is used by Lua to determine the number
of Lua values to return to the caller. For example, suppose you want to return two values —nil and an
error message — to the caller of your extension function. Assume that the stack already contains a num-
ber and a table in its topmost positions. The following code fragment accomplishes this:

// Stk: Id NameTbl
lua_pushnil(L);
// Stk: Id NameTbl nil
lua_pushfstring(L, “Error locating user %d”, Id);
// Stk: Id NameTbl nil ErrStr
return 2;

Stack diagrams make handling multiple return values properly somewhat easier. This is especially the
case when different sets of values are conditionally returned.

In addition to the customary push and pop functions, Lua provides functions for removing, replacing,
inserting, copying, and retrieving values on the stack at any valid position.

You may want to explore the use of tools that can automatically generate bindings from specially
marked up C or C++. For example, SWIG (www.swig.org) processes a specially prepared interface file
and generates a source file that is linked to your application.

416

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 416

Try It Out Stacking Gymnastics
In this exercise, you create a C extension function that does the following:

❑ Receives zero or more integers as arguments

❑ Verifies that each argument is an integer

❑ Juggles some of these values using the Lua API and, after each maneuver, prints a diagram of
the stack

❑ Returns some values

In addition to exploring various stack operations, this library illustrates the essential framework of an
extension module written in C.

1. Create a new C file with the following contents:

#include “lua.h”
#include “lualib.h”
#include “lauxlib.h”
#include <stdio.h>

#define STACKOP(Code) (Code), LclStackPrint(L, #Code)

/* * */

static void LclStackPrint(
lua_State *L,
const char * Str)

{ // LclStackPrint
int J, Top;

printf(“%-26s [“, Str);
Top = lua_gettop(L);
for (J = 1; J <= Top; J++) {
if (lua_isnil(L, J)) printf(“ - “);
else printf(“ %d “, lua_tointeger(L, J));

} // J
printf(“]\n”);

} // LclStackPrint

/* * */

static int LclStackLook(
lua_State *L)

// three integers <- stack.look(zero or more integers)

{ // LclStackLook
int J, Top;

for (J = 1, Top = lua_gettop(L); J <= Top; J++)

417

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 417

luaL_checkinteger(L, J);
LclStackPrint(L, “Initial stack”);
STACKOP(lua_settop(L, 3));
STACKOP(lua_settop(L, 5));
STACKOP(lua_pushinteger(L, 5));
STACKOP(lua_pushinteger(L, 4));
STACKOP(lua_replace(L, -4));
STACKOP(lua_replace(L, 5));
STACKOP(lua_remove(L, 3));
STACKOP(lua_pushinteger(L, 3));
STACKOP(lua_insert(L, -3));
STACKOP(lua_pushvalue(L, 2));
STACKOP(lua_pop(L, 1));
return 3;

} // LclStackLook

/* * */

int luaopen_stacklook(
lua_State *L)

{ // luaopen_stacklook
static const luaL_reg Map[] = {
{“look”, LclStackLook},
{NULL, NULL}

};

luaL_register(L, “stack”, Map);
return 1;

} // luaopen_stacklook

2. Save the file as stacklook.c.

3. Compile the file into a shared library. On Linux and other Unix-type systems, run the following:

cc -o stacklook.so -shared -Wall stacklook.c

On Windows, run the following:

cl /c /Zl /Zd /Yd /MD /W4 /DWIN32 stacklook.c
link /dll /out:stacklook.dll /base:0x68100000 /machine:ix86 ;
/export:luaopen_stacklook stacklook.obj msvcrt.lib lua5.1.lib

4. With your editor, create a new Lua file with the following contents:

package.cpath = “./?.so;./?.dll”
require “stacklook”

print(“stack.look”, stack.look(1, 2, 3, 4, 5, 6, 7))

5. Save it as look.lua.

6. Run this script with the standalone Lua interpreter, as follows:

lua look.lua

418

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 418

The output is this:

Initial stack [1 2 3 4 5 6 7]
lua_settop(L, 3) [1 2 3]
lua_settop(L, 5) [1 2 3 - -]
lua_pushinteger(L, 5) [1 2 3 - - 5]
lua_pushinteger(L, 4) [1 2 3 - - 5 4]
lua_replace(L, -4) [1 2 3 4 - 5]
lua_replace(L, 5) [1 2 3 4 5]
lua_remove(L, 3) [1 2 4 5]
lua_pushinteger(L, 3) [1 2 4 5 3]
lua_insert(L, -3) [1 2 3 4 5]
lua_pushvalue(L, 2) [1 2 3 4 5 2]
lua_pop(L, 1) [1 2 3 4 5]
stack.look 3 4 5

How It Works
The sequence of steps taken when this script is run follows a pattern that is common to many extension
libraries.

This is the first line to be executed in the script:

package.cpath = “./?.so;./?.dll”

It restricts Lua’s search for C libraries to the current directory. This is appropriate here because, as a
demonstration, the stacklook library won’t be copied to the Lua library directory.

The next line engages Lua’s package system to search for and load the stacklook module:

require “stacklook”

The steps taken here are summarized in Chapter 7.

Lua joins the string luaopen_ with the name of the module and calls the function with that name in the
loaded library, passing it a pointer to the active Lua state. Here, the function luaopen_stacklook is
called. That function must be visible to Lua when it links with the library. When linking the dynamic
link library on Windows, the following switch is used to satisfy this requirement:

/export:luaopen_stacklook

Notice that luaopen_stacklook receives only the state pointer as an argument. When a C function is
called by Lua (either a loader function like this one, or a C extension function), it receives arguments that
were passed to it on the virtual stack.

The luaopen_stacklook function is where the extension function LclStackLook is registered with
Lua. This can be done in a number of ways, but a standard way of doing it is to use luaL_register.
This function places the extension functions you specify into a namespace table and associates them
with the names you want them to have in Lua. The current program uses it as follows:

luaL_register(L, “stack”, Map);

419

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 419

As always with Lua API functions other than lua_open, the Lua state pointer is passed as the first argu-
ment. The convention of naming this pointer L is used here. The second argument is the name of the
table to use as a namespace. In this case, stack is used. If a name is specified that doesn’t identify a
table and isn’t a key in the package.loaded table, a new table with the specified name will be created.
Alternatively, you can arrange to place a table at the top of the stack using the Lua API and specify NULL
for this argument, in which case the table will be used. The third and last argument is the address of an
array of records of type luaL_Reg. Records of this type pair a name with an extension function. The last
element in this array must contain NULL values to mark the end of the array. In this case, the array is
named Map and contains only two elements: the record that pairs the function LclStackLook with
the name “look”, and the terminating record. The call to luaL_register associates stack.look
with the C function LclStackLook and leaves the stack table at the top of the stack.

The following line indicates that luaopen_stacklook is to return the virtual stack’s topmost value,
that is, the stack table, as the return value from require:

return 1;

If luaopen_stacklook returned 0 instead, then require would have returned nothing.

After luaopen_stacklook returns, control is transferred back to look.lua. The next line to be executed
is as follows:

print(“stack.look”, stack.look(1, 2, 3, 4, 5, 6, 7))

This function calls stack.look with a number of integer arguments and prints the values that this func-
tion returns. Nothing in this setup makes a distinction between a C function and a Lua function — that’s
a detail that the Lua engine takes care of. Like every C extension function, LclStackLook is called with
the single state pointer argument and a new virtual stack containing the passed arguments.

When stack.look is called, control is transferred back to the C library, this time to the function
LclStackLook. The first operation it performs is to verify the passed-in arguments:

for (J = 1, Top = lua_gettop(L); J <= Top; J++)
luaL_checkinteger(L, J);

Like all Lua functions that begin with luaL_, the luaL_checkinteger function is an auxiliary function —
it is not part of the formal API but a helper function that uses API functions. And like all Lua functions that
begin with luaL_check, this function verifies some characteristic about the virtual stack. In this particular
case, a check is made to verify that each argument is an integer. If it is, the integer is returned (and ignored
in this case); otherwise, an error is generated.

The effect of the various stack functions should be clear from the program output. The lua_settop
function lets you specify the number of values on the stack. As shown in the first two lua_settop calls,
reducing the stack top effectively clears the truncated values. These can’t be recovered by increasing the
stack top. The functions beginning with lua_push increase the top position by one and place the speci-
fied value in that location. The lua_replace function moves the top value to another position, over-
writing the value currently in that location. The lua_insert function is similar, except that room for the
moved value is made by moving every item above it up by one. To remove one or more items from the
top of the stack, call lua_pop. To remove an item from a specified location in the stack, call lua_remove.

420

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 420

The following line indicates that three values are to be returned from stack.look, with the topmost
value on the stack corresponding to the rightmost value returned:

return 3;

Just like the loader function, an extension function returns values to Lua on the virtual stack. The integer
return value of the C function indicates the number of items at the top of the stack that will be trans-
ferred as return values to the Lua function.

Calling Lua from C
A function written in Lua or one written in C and registered with a Lua state is a Lua value of type
function. As such, it can be managed on the stack like any other Lua value.

Obtaining a Lua Function
You can place a function value on the virtual stack in a number of ways, including the following:

❑ Pass a function as an argument to a C function

❑ Retrieve a function from a global variable or namespace table

❑ Create a function from C code using the lua_pushcfunction or lua_pushcclosure functions

❑ Load some Lua code as a chunk using the lua_load, luaL_loadstring or luaL_loadfile
functions

Calling a Lua Function
To call a Lua function, do the following:

1. Push the function on the stack.

2. Push the arguments to the function, left to right, on the stack.

3. Call lua_call with the state pointer, the number of arguments you have just pushed, and the
number of results to receive from the called function.

The following example assumes that a function like the following is located at position 1 on the stack:

local function MouseClick(X, Y, Button)
print(“Mouse click”, X, Y, Button)

end

This would be the case if, for example, the function was passed as the first argument to a C function. For
example:

// Stk: ...
lua_pushvalue(L, 1);
// Stk: ... Fnc
lua_pushinteger(L, X);

421

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 421

// Stk: ... Fnc X
lua_pushinteger(L, Y);
// Stk: ... Fnc X Y
lua_pushstring(L, Btn == 1 ? “left” : Btn == 2 ? “right” : “middle”);
// Stk: ... Fnc X Y BtnStr
lua_call(L, 3, 0);
// Stk: ...

When lua_call is called, the arguments and the function are popped from the stack. Any values that
are returned from the function are adjusted to the specified result count and pushed on the stack. In this
example, the result count is zero, so any values that the called function returns will be thrown away. If a
result count is specified that is greater than the number of values actually returned, nils are pushed to
take up the slack. If you want to receive as many values as the function returns, specify LUA_MULTRET
for the result count. If you do this, you’ll want to call lua_gettop before you push the function and
again after the function returns to ascertain the number actually returned.

Protected Calls
You can call a Lua function in protected mode — in other words,call the function and handle the error
if one is generated. For this, use the lua_pcall function. This function is like lua_call except that it
returns a status code and has an additional argument: the location on the stack of an error handler.
The return code is zero if the function succeeds. In this case, the return values will be pushed just as
lua_call would do. If an error occurs, LUA_ERRRUN, LUA_ERRMEM, or LUA_ERRERR will be returned,
and only a single error message will be pushed on the stack, regardless of the value specified for the
result count.

The error handler is a function that will be called when an error occurs, before the stack has been trun-
cated to its state as of the call to lua_pcall. It receives as its single argument an error message, and
returns a single value: the revised error message. Typically, an error handler will call on the services
of debug.traceback to augment the error message with stack information. To avoid having an error
handler called, specify 0 for its stack location. Otherwise, you need to arrange to have the error handler
placed on the stack so you can specify its position when calling lua_pcall.

Here’s an example of making a protected call. It is assumed that the function to call is located at position 1,
and that debug.traceback has been placed in position 2.

// Stk: ...
lua_pushvalue(L, 1);
// Stk: ... Fnc
lua_pushinteger(L, X);
// Stk: ... Fnc X
lua_pushinteger(L, Y);
// Stk: ... Fnc X Y
lua_pushstring(L, Btn == 1 ? “left” : Btn == 2 ? “right” : “middle”);
// Stk: ... Fnc X Y BtnStr
Code = lua_pcall(L, 3, 0, 2);
if (Code) {
// Stk: ... ErrStr
printf(“%s occurred.\n%s\n”,
Code == LUA_ERRRUN ? “A runtime error” :
Code == LUA_ERRMEM ? “A memory error” : “An error handling error”,

422

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 422

lua_tostring(L, -1));
lua_pop(L, 1);
// Stk: ...

} // if
// Stk: ...

Now, when the following Lua function from the preceding example is called:

local function MouseClick(X, Y, Button)
print(“Mouse click”, X, Y, Button)
error(“Intentionally generated error”)

end

it produces output like this:

Mouse click 245 168 right
A runtime error occurred.
test.lua:7: Intentionally generated error
stack traceback:
[C]: in function ‘error’
test.lua:7: in function <test.lua:5>
[C]: in function ‘run’
test.lua:11: in main chunk
[C]: ?

Lua takes care of cleaning up items on the stack left after an error, just as it does when no errors occur.

Working with Userdata
The userdata basic type maps to memory that is only accessible in C. In fact, unless the userdata has been
extended with metatables, all a Lua script can do with one is to assign it to a variable and to check
whether it is identical to another variable. From within C, the lua_touserdata function is used to
retrieve the pointer associated with the userdata.

Userdata comes in two varieties: light and full. A low-calorie userdata is created with the lua_push
lightuserdata function. It simply maps the new userdata to a pointer that you provide to the API —
Lua does not allocate any memory for it and won’t allow you to extend it with metatables. A full
userdata is much more useful for the purposes of an extension library. You create it with a call to
lua_newuserdata, passing it the obligatory state pointer and the size of the memory you want to have
allocated. Always use the C program’s sizeof operator to specify the size of the record you’ll associate
with the userdata. The calling C program receives the address of the full userdata, and the userdata
value is pushed on the virtual stack.

Metatables are used both to define operations for a userdata and to classify it as an instance of a particu-
lar user-defined type. For example, if you use a full userdata to encapsulate a printer connection,
you’ll want to provide relevant methods that can be called from Lua. Furthermore, you don’t want to
confuse a printer userdata with a database userdata. Lua’s auxiliary library helps by letting you give a
name to the user-defined type, such as printer. You can create a metatable for this purpose with the
luaL_newmetatable function. A good place to create a metatable is in an extension library’s loader

423

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 423

function. It’s also convenient to set the metatable’s __index metamethod to the metatable itself. This
way, you can use luaL_register to register any methods you want to associate with the user-defined
type directly in the metatable.

The __gc garbage collection metamethod is a particularly useful mechanism for cleaning up the
resources that a userdata may have open in C. Where appropriate, it is good practice to provide a close
method for your userdata types. However, the close method may not have been called when the user-
data is collected as garbage. You can check for this condition in the __gc metamethod and finalize
resources if necessary.

Try It Out The Life and Times of a Userdata
This exercise implements some of a userdata’s rites of passage from cradle to grave, including its creation,
association with a metatable, access from Lua, and destruction.

1. Create a new C file with the following contents:

#include “lua.h”
#include “lualib.h”
#include “lauxlib.h”
#include <stdio.h>

#define CnExampleStr “example”

typedef struct {
int Val;
int Open;

} ExampleType, * ExamplePtrType;

/* * */

static ExamplePtrType LclExamplePtrGet(
lua_State *L,
int StkPos)

/* Returns example pointer if value at position StkPos is valid and open,
otherwise an error is generated. */

{ // LclExamplePtrGet
ExamplePtrType ExamplePtr = luaL_checkudata(L, StkPos, CnExampleStr);
if (! ExamplePtr->Open)
luaL_error(L, “attempt to use a closed “ CnExampleStr);

return ExamplePtr;
} // LclExamplePtrGet

/* * */

static int LclExampleStr(
lua_State *L)

// “example” <- tostring(ExampleHnd)

{ // LclExampleStr
ExamplePtrType ExamplePtr;

424

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 424

// Stk: ExampleHnd?
ExamplePtr = luaL_checkudata(L, 1, CnExampleStr);
if (ExamplePtr->Open)
lua_pushfstring(L, CnExampleStr “ (%d)”, ExamplePtr->Val);

else lua_pushfstring(L, CnExampleStr “ (%d, closed)”, ExamplePtr->Val);
// Stk: ExampleHnd IdStr
return 1;

} // LclExampleStr

/* * */

static int LclExampleGet(
lua_State *L)

// Val <- ExampleHnd:get()

{ // LclExampleGet
ExamplePtrType ExamplePtr = LclExamplePtrGet(L, 1);
// Stk: ExampleHnd
lua_pushnumber(L, ExamplePtr->Val);
printf(“Retrieving value of “ CnExampleStr “ (%d)\n”, ExamplePtr->Val);
// Stk: ExampleHnd Val
return 1;

} // LclExampleGet

/* * */

static int LclExampleSet(
lua_State *L)

// OldVal <- ExampleHnd:set(NewVal)

{ // LclExampleSet
int Val;
// Stk: ExampleHnd? NewVal?
ExamplePtrType ExamplePtr = LclExamplePtrGet(L, 1);
// Stk: ExampleHnd NewVal?
Val = luaL_checkint(L, 2);
// Stk: ExampleHnd NewVal
printf(“Setting value of “ CnExampleStr “ from %d to %d\n”,
ExamplePtr->Val, Val);

lua_pushnumber(L, ExamplePtr->Val);
// Stk: ExampleHnd NewVal OldVal
ExamplePtr->Val = Val;
return 1;

} // LclExampleSet

/* * */

static int LclExampleClose(
lua_State *L)

// ExampleHnd:close()

{ // LclExampleClose

425

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 425

ExamplePtrType ExamplePtr = LclExamplePtrGet(L, 1);
printf(“Closing “ CnExampleStr “ (%d) explicitly\n”, ExamplePtr->Val);
ExamplePtr->Open = 0;
return 0;

} // LclExampleClose

/* * */

static int LclExampleGc(
lua_State *L)

// metatable(ExampleHnd).__gc(ExampleHnd)

{ // LclExampleGc
ExamplePtrType ExamplePtr = luaL_checkudata(L, 1, CnExampleStr);
if (ExamplePtr->Open) {
printf(“Collecting and closing “ CnExampleStr “ (%d)\n”,
ExamplePtr->Val);

ExamplePtr->Open = 0;
} // if
else printf(“Collecting “ CnExampleStr “ (%d), already closed\n”,
ExamplePtr->Val);

return 0;
} // LclExampleGc

/* * */

static int LclExampleOpen(
lua_State *L)

// ExampleHnd <- example.open(PosNum)

{ // LclExampleOpen
int Val;
ExamplePtrType ExamplePtr;

// Stk: Val?
Val = luaL_checkint(L, 1);
// Stk: Val
ExamplePtr = lua_newuserdata(L, sizeof(ExampleType));
printf(“Opening “ CnExampleStr “ (%d)\n”, Val);
// Stk: Val ExampleHnd
ExamplePtr->Val = Val;
ExamplePtr->Open = 1;
luaL_getmetatable(L, CnExampleStr);
// Stk: Val ExampleHnd metatable
lua_setmetatable(L, -2);
// Stk: Val ExampleHnd
return 1;

} // LclExampleOpen

/* * */

int luaopen_ud_example(
lua_State *L)

426

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 426

{ // luaopen_ud_example

static const luaL_reg MetaMap[] = {
{“close”, LclExampleClose},
{“get”, LclExampleGet},
{“set”, LclExampleSet},
{“__tostring”, LclExampleStr},
{“__gc”, LclExampleGc},
{NULL, NULL}

}; // MetaMap

static const luaL_reg Map[] = {
{“open”, LclExampleOpen},
{NULL, NULL}

}; // Map

// Stk: ModuleStr
// Create metatable for handles of type “example”
luaL_newmetatable(L, CnExampleStr);
// Stk: ModuleStr Meta
// Push copy of metatable
lua_pushvalue(L, -1);
// Stk: ModuleStr Meta Meta
// Retrieve indexed fields from metatable itself
lua_setfield(L, -2, “__index”);
// Stk: ModuleStr Meta
// Register functions in metatable at top of stack
luaL_register(L, NULL, MetaMap);
// Stk: ModuleStr Meta
luaL_register(L, “ud_example”, Map);
// Stk: ModuleStr Meta Namespace
return 1;

} // luaopen_ud_example

2. Save the file as ud_example.c.

3. Compile this extension into a shared library. On Linux and other Unix-type systems, run this
command:

cc -o ud_example.so -shared -Wall ud_example.c

On the Windows platform, compile the extension as follows:

cl /c /Zl /Zd /Yd /MD /W4 ud_example.c
link /dll /out:ud_example.dll /base:0x68200000 /machine:ix86 ;
/export:luaopen_ud_example ud_example.obj msvcrt.lib lua5.1.lib

4. Create a new Lua file with the following contents:

package.cpath = “./?.so;./?.dll”
require “ud_example”

local HndA = ud_example.open(1)
local HndB = ud_example.open(2)
do -- local block
local HndC = ud_example.open(3)

427

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 427

io.write(tostring(HndA), “, “, tostring(HndB), “, “, tostring(HndC), “\n”)
HndA:set(4)
HndA:set(1)
HndA:close()
io.write(“End of local block\n”)

end
collectgarbage(“collect”)
io.write(“End of script\n”)

5. Save this file as ud.lua.

6. Run this script from a command shell:

lua ud.lua

The script generates this output:

Opening example (1)
Opening example (2)
Opening example (3)
example (1), example (2), example (3)
Setting value of example from 1 to 4
Setting value of example from 4 to 1
Closing example (1) explicitly
End of local block
Collecting and closing example (3)
End of script
Collecting and closing example (2)
Collecting example (1), already closed

How It Works
This example implements a simple userdata whose only job is to store an integer and, on demand, return
it. But the essential framework is the same as the implementation of more practical user-defined types.
The important aspects of this are as follows:

❑ The association of a userdata with a metatable to both extend its functionality and to identify it
as a particular user-defined type

❑ The access of userdata memory in C

❑ The registration of the __gc metamethod so that a userdata will be eventually closed by the
garbage collector if it isn’t closed explicitly in a Lua script

The script and the library follow a number of steps. Like the preceding Try It Out, this example is a
demonstration that really doesn’t belong in a standard Lua location, so the library search is restricted
to the current directory. This is done with the following line:

package.cpath = “./?.so;./?.dll”

The following line loads the extension library and calls luaopen_ud_example:

require “ud_example”

428

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 428

This function calls luaL_newmetatable to create a metatable that will be shared by all userdata instances
created in ud_example extension. The new metatable is associated with the name (which in this case is
example) by which it can be retrieved later.

A userdata can’t contain key/value pairs directly the way a Lua table can, but it can implement this
behavior using the __index metamethod. For example, when a userdata is indexed in the following
line, the __index metamethod that resolves the get method:

Hnd:get()

Here, the metatable itself is associated with the “__index” key, so that is where values are looked for
by name.

The ordinary methods close, get, and set and the metamethods __tostring and __gc are placed
into the metatable with the following line:

luaL_register(L, NULL, MetaMap);

Notice that the second argument to this function, the library name, is specified as NULL. This instructs the
function to place the specified functions into the table that resides at the top of the stack, which in this
case is the metatable.

The registration of the userdata methods is followed by the registration of the ud_example library’s only
function: open.

The return value of 1 indicates that the stack’s topmost value, namely the namespace table containing
the open function, is to be returned from the call to require.

Back in the ud.lua script, three example handles are created with calls to ud_example.open. To test
the __gc metamethod, the third handle is created in a local block where it will be allowed to go out of
scope without being explicitly closed.

The LclExampleOpen C function manages the opening of these example handles. After verifying that the
passed argument is indeed an integer, the userdata is created with a call to lua_newuserdata. In this
extension library, the returned userdata memory is mapped to a structure of ExampleType. The fields of
this structure are initialized; the Val field receives the value of the passed-in argument, and the Open field
is set to a non-zero value. These operations are just placeholders for what could be, in a library having
more features, the initialization of resources such as database connections.

As a last step before returning the handle to the caller, the metatable is retrieved and assigned to the new
userdata. The metatable that was created in the loader function is retrieved by name in the following line:

luaL_getmetatable(L, CnExampleStr);

The same metatable will be shared by all userdatas created by ud_example.open. The stack’s topmost
value, the new userdata, is returned by specifying a return value of 1.

After receiving a handle to the new userdata, the Lua script can interact with it by calling its various
methods. When a method such as set is called, the invoked C function calls on the helper function
LclExamplePtrGet to retrieve a pointer to the structure associated with the userdata. This helper

429

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 429

function first verifies that the specified argument is a userdata of the right type. It does this in the
following line:

ExamplePtrType ExamplePtr = luaL_checkudata(L, StkPos, CnExampleStr);

This auxiliary function checks to make sure the value is a userdata and that its metatable is the one
associated with the specified name (which in this example is CnExampleStr). If these criteria are met,
luaL_checkudata returns a pointer to the memory structure associated with the userdata. If they
aren’t, an error is generated. The returned structure is then checked to verify that the handle is still open.
This is strictly an extension issue — Lua doesn’t know anything about the resources that you manage in
the memory structure. If everything is as expected, LclExamplePtrGet returns the structure pointer to
the caller; if not, an error is generated.

In the ud.lua script, the third handle is allowed to fall out of scope while it is still open. It can’t be
accessed by the Lua script and, because no copy of the userdata was stored in the C code, it can’t
be accessed by C. Lua consequently is able to classify the userdata as garbage. Lua calls the __gc
metamethods of collectable userdata in the reverse order of their creation. When it is invoked in this
library, the LclExampleGc C function has the chance to close its open resources.

Of the two remaining handles, one is closed explicitly and the other is left dangling when the script
ends. Because the script ends normally, Lua’s garbage collector is run one last time, and this is where the
remaining open handle is closed.

Although a userdata’s __gc metamethod is a good place to make sure resources have been finalized,
garbage collection cycles may occur somewhat sporadically. It’s usually prudent to include and docu-
ment a close method in your library’s interface so the Lua script can avoid taxing the system with too
many open resources or situations where a resource needs to be closed for further processing.

Unlike Unix-type systems, Windows performs some character processing when it reads from and writes
to text files. For example, when a linefeed control character (decimal value 10) is written in text mode,
it is converted to a carriage return/linefeed pair (decimal values 13 and 10). The reverse is done when
reading in text mode. Additionally, the Ctrl+Z control character (decimal value 26) is interpreted as the
end of a file. Whatever arguments can be made for or against this type of character translation, programs
that work with Windows need to deal with it. (Unix-like systems don’t distinguish text files from other
types of files.) Fortunately, when you’re explicitly opening a file in Lua or C, you’ve got control over the
mode it will be opened in, and you can avoid the consequences of having character translation occur
on the wrong type of file by opening it in binary mode. Unfortunately, when Windows launches a pro-
gram, it sets up the standard input, output and error file handles in text mode. This effectively prevents
Windows programs from reading and writing binary data using the standard input and output streams
in the default case.

In the following Try It Out, you extend the io library by working with the file userdata.

Try It Out Setting the Mode of Files
Here, you extend Lua so that the mode of a file can be changed after it has been opened. You do it in
such a way that it intentionally has no effect on Unix-like systems. Before proceeding, make sure your
development system is set up as recommended in Chapter 1.

430

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 430

1. Using your text editor, create a new file with the following C program:

#include “lua.h”
#include “lualib.h”
#include “lauxlib.h”
#include <string.h>
#ifdef WIN32
#include <io.h>
#include <fcntl.h>
#endif

/* * */

static int LclIoModeSet(
lua_State *L)

{ // LclIoModeSet
FILE **StrmPtr = (FILE **) luaL_checkudata(L, 1, LUA_FILEHANDLE);
if (*StrmPtr) {
int Bin = 0;
const char *ModeStr = luaL_checkstring(L, 2);
if (0 == strcmp(“binary”, ModeStr)) Bin = 1;
else if (0 != strcmp(“text”, ModeStr)) luaL_error(L, “expecting either “
LUA_QL(“binary”) “ or “ LUA_QL(“text”) “ mode”);

#ifdef WIN32
_setmode(_fileno(*StrmPtr), Bin ? _O_BINARY : _O_TEXT);

#endif
} // if
else luaL_error(L, “attempt to access a closed file”);
return 0;

} // LclIoModeSet

/* * */

int luaopen_iomode(
lua_State *L)

{ // luaopen_iomode
static const luaL_reg Map[] = {
{“modeset”, LclIoModeSet},
{NULL, NULL}

};

luaL_register(L, LUA_IOLIBNAME, Map);
return 1;

} // luaopen_iomode

2. Save this file as iomode.c.

3. Compile this extension into a shared library. On Linux and other Unix-type systems, run this
command:

cc -o iomode.so -shared -Wall iomode.c

On the Windows platform, compile the extension as follows:

431

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 431

cl /c /Zl /Zd /Yd /MD /W4 /DWIN32 iomode.c
link /dll /out:iomode.dll /base:0x67900000 /machine:ix86 ;
/export:luaopen_iomode iomode.obj msvcrt.lib lua5.1.lib

4. Copy the generated module to your designated Lua library directory. On Unix-type systems,
run this:

cp iomode.so $LUA_DIR/

On Windows, run this:

xcopy iomode.dll “%LUA_DIR%*.*”

5. Create a new file with the following contents:

local Arg = string.lower(arg[1] or “”)
local Read = string.match(Arg, “r”)
local Mode = string.match(Arg, “b”) and “binary” or “text”

require “iomode”

io.modeset(io.stdout, Mode)
io.modeset(io.stdin, Mode)

if Read then
local Str = io.read(“*all”)
for J = 1, #Str do
local Val = string.byte(Str, J, J)
if Val >= 32 then
io.write(“‘“, string.sub(Str, J, J), “‘ “)

else
io.write(string.format(“0x%02x “, Val))

end
end
io.write(“\n”)

else -- Write
io.write(“1\0132\0103\0264”)

end

6. Save this file as iotest.lua.

7. Test the library as follows:

Depending on your platform, the generated output you get may not look the same as shown here; that
will be discussed shortly.

lua iotest.lua w | lua iotest.lua r
‘1’ 0x0d ‘2’ 0x0a ‘3’

lua iotest.lua wb | lua iotest.lua r
‘1’ 0x0d ‘2’ 0x0a ‘3’

lua iotest.lua w | lua iotest.lua rb
‘1’ 0x0d ‘2’ 0x0d 0x0a ‘3’ 0x1a ‘4’

lua iotest.lua wb | lua iotest.lua rb
‘1’ 0x0d ‘2’ 0x0a ‘3’ 0x1a ‘4’

432

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 432

How It Works
Like the preceding examples, this one shows you the basic framework of an extension module written in
C. It may seem like a lot of code to wrap around the _setmode and _fileno functions. But much of this
is boilerplate code that is relatively unchanged from extension to extension. Additionally, you’ll likely
write helper functions to consolidate common statement sequences.

When the test script iotest.lua is run, the first three lines of the script examine the command line
argument:

local Arg = string.lower(arg[1] or “”)
local Read = string.match(Arg, “r”)
local Mode = string.match(Arg, “b”) and “binary” or “text”

If r or R is present, data is read from the standard input stream. If not, a series of bytes is written to the
standard output stream. If b or B is present, binary mode is used; otherwise, text mode is used.

The next line of the test script handles the search for and loading of a Lua module:

require “iomode”

In this case, the dynamic link library iomode.dll or iomode.so is found and loaded.

The luaopen_iomode calls luaL_register to register LclIoModeSet. In this case, note that the name of
an existing table is used for the LUA_IOLIBNAME namespace — this is Lua’s symbolic name for the io table.

After luaopen_iomode returns, control is transferred back to iotest.lua. The next line to be executed
is as follows:

io.modeset(io.stdout, Mode)

This function will set the mode of the standard output stream to either binary or text, depending on the
argument passed to the script.

When io.modeset is called, control is transferred back to the C library, this time to the function
LclIoModeSet. The first line it executes is this:

FILE **StrmPtr = (FILE **) luaL_checkudata(L, 1, LUA_FILEHANDLE);

This line verifies that the value at position one on the call stack (corresponding to the first argument
passed to io.modeset) is in fact a file. If it is, the file (actually, a doubly indirected stream) is returned;
otherwise an error is generated.

The userdata returned by luaL_checkudata is a pointer to a stream pointer. If the stream pointer is
NULL, the file has been closed and an error with an appropriate message is generated. Otherwise, the
luaL_checkstring function is used to verify that the second argument is a string. If it is, this function
will return the string; otherwise, it will generate an error with a descriptive message.

It is extremely important that you do not modify string buffers that are held by Lua. Doing so would
disrupt Lua’s string interning mechanism with dire consequences for your program. Furthermore, any
string pointer you obtain should be assumed valid only until control is returned to Lua.

433

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 433

If the second argument is the binary or text string, a mode value is set accordingly; otherwise, an error is
generated. Note that the error message uses the macro LUA_QL to provide standard quotes. This gives
error messages a uniform appearance throughout Lua. The actual setting of the file mode takes place
with the following lines:

#ifdef WIN32
_setmode(_fileno(*StrmPtr), Bin ? _O_BINARY : _O_TEXT);

#endif

The fact that the real work of this binding occurs only on the Windows platform suggests that a Lua-
only module could be implemented for Unix-like systems that could replace the iomode C library. At its
simplest, it could consist of the following lines:

function io.modeset(Hnd, Mode) end
return io

Additional argument checking could be done to increase compatibility with the Windows library.

The following line indicates that no value is to be returned from io.modeset:

return 0;

The next line to be executed in the script is this:

io.modeset(io.stdin, Mode)

It follows the same sequence as the one preceding it in the script, except that it is the standard input
stream that is modified.

The remainder of the script serves as a test of the io.modeset extension. If the script is to read the
standard input stream (r or R is included as a command line argument to the script), the following code
is run:

434

Chapter 13: Interfacing Lua with Other Languages

About the File Value
At the shell prompt, if you execute the following:

lua -e “print(io.stdin)”

you see something like this:

file (0x401d76e0)

Lua has eight basic types and file isn’t one of them. In fact, io.stdin is of type
userdata. It is rendered by tostring (used by print) as file because of its particu-
lar metatable.

Usually, a C library defines its own userdatas. In this case, however, a userdata defined
in the io library (the file liolib.c in the Lua source distribution) is used, because the
function LclIoModeSet needs to operate on the underlying stream.

16_069172 ch13.qxp 1/2/07 8:10 PM Page 434

local Str = io.read(“*all”)
for J = 1, #Str do
local Val = string.byte(Str, J, J)
if Val >= 32 then
io.write(“‘“, string.sub(Str, J, J), “‘ “)

else
io.write(string.format(“0x%02x “, Val))

end
end
io.write(“\n”)

Everything in the stream is read into a string, and each character in this string is visited in a loop. If the
character is printable, it is displayed in quotes; otherwise, its value is displayed in hexadecimal.

If the script is to write a sequence to standard output (a w or W is included in the command line argument
to the script), the following line is run:

io.write(“1\0132\0103\0264”)

This writes the following seven characters:

1 carriage return 2 linefeed 3 Ctrl+Z 4

You specify the control characters using Lua’s standard escape sequence in which a one-, two-, or three-
digit decimal value follows a backslash. (Three digits are required if a decimal digit follows the sequence,
as it does in each of the previous cases.)

To test the behavior of the extension library from a Windows command shell, the script is invoked in
write mode, and its output is piped to the same script invoked in read mode. The four permutations of
text and binary mode (text-text, binary-text, text-binary, and binary-binary) reveal how Windows trans-
lates certain characters, and how the iomode module can be used to enable binary data transfers through
the standard streams.

Take a look at the output of the following commands:

lua iotest.lua w | lua iotest.lua r
‘1’ 0x0d ‘2’ 0x0a ‘3’

lua iotest.lua wb | lua iotest.lua r
‘1’ 0x0d ‘2’ 0x0a ‘3’

lua iotest.lua w | lua iotest.lua rb
‘1’ 0x0d ‘2’ 0x0d 0x0a ‘3’ 0x1a ‘4’

lua iotest.lua wb | lua iotest.lua rb
‘1’ 0x0d ‘2’ 0x0a ‘3’ 0x1a ‘4’

This output illustrates the following:

❑ When writing in text mode, a single linefeed is translated as a carriage return/linefeed pair. A
single carriage return or Ctrl+Z is not translated.

435

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 435

❑ When reading in text mode, a carriage return/linefeed pair is translated to a single linefeed.
A single carriage return is not translated. The Ctrl+Z character is processed as the end of the
stream contents.

❑ Reading and writing in binary mode disables character processing; everything written in this
mode can be read again intact. This is the standard behavior in Linux and other Unix-like systems.

Indexing Values in C
Manipulating tables is as important and pervasive in C as it is in Lua. The API gives you a number of
ways to access tables and, by means of metamethods, other indexed values.

Retrieving Indexed Values
The lua_gettable function is used in C to perform the operation that performs in Lua:

Val = Tbl[Key]

The __index metamethod can make this operation valid for values of Tbl other than a table, or for a
table that doesn’t contain Key. This same metamethod behavior applies in C, so whether Tbl is a table or
some other value that has an associated __index metamethod, the way to retrieve a value by key is as
follows:

1. Place Tbl on the stack at some known position.

2. Arrange to have Key placed at the top of the stack using one of the functions that begin with
lua_push, such as lua_pushvalue or lua_pushstring.

3. Call lua_gettable with the Lua state pointer as the first argument and the stack position of
Tbl as the second. For example, if Tbl occupies the fourth position from the top of the stack,
you could call the following

lua_gettable(L, -4);

4. Replace the key at the top of the stack with Tbl[Key]. This value may be nil. In either case, the
stack’s top position does not change.

In the event that you want to retrieve a value from a table without invoking __index if the key is miss-
ing, you can use the lua_rawget function. This does in C what rawget does in Lua. lua_rawget and
lua_gettable are similar in that the key is pushed on the stack and the table’s position on the stack is
specified as the second argument. The function replaces the key with the key’s associated value.

When you want to retrieve a value associated with an integer key, you can omit the step where you push
the key by using the lua_rawgeti function. For example, if you want to retrieve Tbl[7] and Tbl resides
in position 3 of the stack, you would call the function as follows:

lua_rawgeti(L, 3, 7);

The value of Tbl[7] is pushed on the stack. Like lua_rawget, this function bypasses the metamethod
mechanism.

436

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 436

In the absence of metamethods, only tables can be indexed, so lua_rawget and lua_rawgeti operate
only on tables. This restriction can be used to point out an important distinction between programming
in Lua and programming in C. If you try the following in Lua:

local J = 42
print(J[3])

you’ll be presented with this Lua error message:

attempt to index local ‘J’ (a number value)

Using a protected call, you can recover from an error like this. If you try something similar in C, such as
the following:

// Stk: ...
lua_pushinteger(L, 42);
// Stk: ... 42
lua_rawgeti(L, -1, 3);
// Stk: ... 42[3]

you’re in for this less-pleasant response:

Segmentation fault

A protected call can’t prevent the host from abnormally terminating like this. When you’re programming
with Lua’s C API, all of the sharp edges are exposed.

Setting Indexed Values
Each of the API functions for retrieving an indexed value has a complement for setting an indexed value.
For example, use the lua_settable function in C to perform what the following line does in Lua:

Tbl[Key] = Val

For example, to make the following assignment in C:

Tbl.Name = “Don Quixote”

you would use the following sequence:

// Stk: ...
lua_newtable(L);
// Stk: ... Tbl
lua_pushstring(L, “Name”);
// Stk: ... Tbl “Name”
lua_pushstring(L, “Don Quixote”);
// Stk: ... Tbl “Name” NameStr
lua_settable(L, -3);
// Stk: ... Tbl

437

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 437

In this case, a new table is created but, because lua_settable will invoke the __newindex metamethod
if needed, any indexable value could be used instead. The sequence shows how the topmost value on the
stack must be the value to be assigned, and the value just below it must be the key.

If Tbl is a table and you want to avoid any use of metamethods, you can use the lua_rawset function
as a drop-in replacement for lua_settable.

If you’re making an assignment to a table with an integer key and want to avoid the use of metameth-
ods, a shortcut is to use the lua_rawseti function. For example, you would perform the following Lua
function:

Tbl[42] = “Hello, world”

with the following C code:

// Stk: ...
lua_newtable(L);
// Stk: ... Tbl
lua_pushstring(L, “Hello, world”);
// Stk: ... Tbl Str
lua_rawseti(L, -2, 42);
// Stk: ... Tbl

Retaining Values in C
Userdata can be used by a C library to retain contextual information. No provision needs to be made in
the C code to store and retrieve its state information — it simply gets passed in from Lua when needed.
But Lua is nothing if not flexible, so it gives you some other choices for storing persistent values. As
you’ve seen so far in this chapter, when you extend Lua with C, you’ve got to manage many details that
are taken care of transparently when working strictly in Lua. For example, the Lua compiler will recog-
nize whether a variable referenced in a Lua script is a local variable or upvalue or one that will need to
be looked for in the global environment. In C, the only way to retrieve Lua variables will be to know in
advance where they are stored. This applies to the following storage mechanisms.

The Registry
Every Lua state has a table referred to as the registry for storing Lua values. Any C code that has access
to the Lua state pointer has access to the registry. Lua code, by design, does not. The shared nature of
the registry makes it suitable for some purposes and not for others. As with any table, you need to
choose keys well to avoid inadvertent duplicates. This is especially important with the registry, because
you can’t know what other C libraries will be loaded along with yours. One technique is to use light
userdata initialized with the addresses of static variables in the C code. Within an application, each static
variable will have a unique address.

The registry is just a table, so it would be a shame to have to provide a bunch of API functions to manip-
ulate it when there are already functions available for table access. Lua’s elegant solution is to make the
registry table available on the stack at a special position that can’t be used for other purposes. Lua gives
the symbolic name LUA_REGISTRYINDEX to the pseudo-index (an index that is treated specially by Lua)
that refers to the registry. To access the registry, use any of the table indexing methods you already know
about and specify LUA_REGISTRYINDEX as the table’s stack position.

438

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 438

C Function Environments
Every registered C function is associated with a table known as its environment. When a C function is
registered, it inherits the current environment. This can later be changed by means of the lua_replace
function. This table is accessed, in C only, with the pseudo-index LUA_ENVIRONINDEX the same way
the registry is. The difference is that the table referenced by LUA_ENVIRONINDEX by one function may
be different than the one similarly referenced in another function, and the table referenced by LUA_REG
ISTRYINDEX will always be the same.

It’s easy to create an environment that will be shared by all registered functions in a library and by no
others. Prior to calling luaL_register to register one or more C functions, create a new table and
replace the current environment with it. Here is some sample code:

int luaopen_sample(
lua_State *L)

{ // luaopen_sample
static const luaL_reg Map[] = {
{“run”, LclRun},
{NULL, NULL}

}; // Map

// Stk: ModuleStr
lua_newtable(L);
// Stk: ModuleStr Tbl
lua_replace(L, LUA_ENVIRONINDEX);
// Stk: ModuleStr
luaL_register(L, “sample”, Map);
// Stk: ModuleStr Namespace
return 1;

} // luaopen_sample

Upvalues in C
So far in this chapter, you have called luaL_register to register one or more C functions so that they can
be called from Lua. The pattern has been to call this function in a library’s loader function, but this is not a
requirement. Lua provides a lower level function named lua_pushcclosure that lets you push a func-
tion of type lua_CFunction on the stack. This is the critical step that creates a value of type function
from a C function. For example, in the following C code, the value that lua_pushcclosure pushes at the
top of stack can be made available to a Lua script and called from there:

// Stk: ...
lua_pushcclosure(L, LclRun, 0);
// Stk: Fnc

The functions lua_isfunction and lua_iscfunction will both return 1 on this value. (When a function
is written in Lua, the former function returns 1 and the latter function returns 0.) From its position on the
stack, it can be treated like any other Lua value. For example, it can be assigned to a global variable, associ-
ated with a key in a table, kept on the stack as a return value or, because it is a function, called in place.

The third argument to lua_pushcclosure indicates the number of upvalues to associate with the new
Lua function. These values should be at the top of the stack when lua_pushcclosure is called. Here’s
an example:

439

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 439

// Stk: ...
lua_pushstring(L, “First upvalue”);
// Stk: ... Str
lua_pushinteger(L, 42);
// Stk: ... Str Num
lua_newtable(L);
// Stk: ... Str Num Tbl
lua_pushcclosure(L, LclRun, 3);
// Stk: ... LclRun

These values are bound to the closure function and are available to it whenever it is called. The function
accesses its upvalues as if they resided on the stack. The stack position to use is calculated by the
lua_upvalueindex macro defined in lua.h. This macro maps the position of the upvalue to a pseudo-
index value. For example, here is how the first two upvalues (the string and the integer) in the preceding
example would be retrieved:

Str = lua_tostring(L, lua_upvalueindex(1));
Pos = lua_tointeger(L, lua_upvalueindex(2));

You can treat the pseudo-index that lua_upvalueindex returns as an ordinary stack position. With this
index, you can retrieve upvalues and assign new values to them.

Upvalues in C are private to the function to which they are bound. But the third upvalue in the example is
a Lua table, and the values in that table can be shared by using that table as an upvalue for different func-
tions. In this way, you have a lot of control over what information is shared between select functions.

Referencing Values
Lua’s auxiliary library has some referencing functions that help you keep track of Lua values in your C
code. When given a table, the luaL_ref function will do the following:

1. Generate a unique integer key to be used in the specified table.

2. Associate the stack’s topmost value with the new integer key in the specified table.

3. Pop the value off of the stack.

4. Return the integer key.

To retrieve the referenced value, use the lua_rawgeti function. To remove the stored value from the
table, and to make the reference identifier available for reuse, call luaL_unref.

Because integers are so easily stored in C, the reference system is a convenient way to have access to Lua
values in your library. Any table can be used with the reference system, but it is important that you not
subvert the system by using your own numeric keys in it. The registry and C function environment
tables are particularly well-suited to the reference mechanism because you don’t need to worry about
key clashes. Here’s an example of using the reference functions to store, retrieve, and release a string
value in the registry:

int Ref = LUA_NOREF;

// Stk: ...
lua_pushstring(L, “Hello, world”);

440

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 440

// Stk: ... Str
Ref = luaL_ref(L, LUA_REGISTRYINDEX);
// Stk: ...
lua_rawgeti(L, LUA_REGISTRYINDEX, Ref);
// Stk: ... Str
printf(“Retrieved string: %s\n”, lua_tostring(L, -1));
luaL_unref(L, LUA_REGISTRYINDEX, Ref);
Ref = LUA_NOREF;
// Stk: ... Str
lua_pop(L, 1);
// Stk: ...

The LUA_NOREF symbolic constant is an integer value that Lua will never return as a valid reference. It is
useful to assign this value to a reference identifier before and after use to mark it as inactive. This way,
you won’t inadvertently try to dereference or release it.

The Thread Environment
Global variables are held in a table known as the thread environment. As with the registry and C func-
tion environments, a pseudo-index is used to access the table, which in this case is LUA_GLOBALSINDEX.
The lua_getglobal and lua_setglobal macros retrieve and set values in this table by using this
pseudo-index. Here’s an example that sets a global variable in the thread environment:

// Stk: ...
lua_pushstring(L, “0.4.8”);
// Stk: ... VerStr
lua_setglobal(L, “APP_VERSION”);
// Stk: ...

Values stored in this table are accessible in both Lua and C code.

Layering Your Extension Library
The iomode extension library is made up of a single C module, and its loader function is called directly
by the require mechanism. Another approach is to provide a Lua script that acts as the principal mod-
ule; this script in turn loads a C extension library. This combination gives you the opportunity to lever-
age Lua and C in the places where they work best: C for low-level primitives and linking to third-party
libraries and Lua for everything else.

Sometimes it is worthwhile to distinguish the C code that is aware of Lua from the C code that isn’t. If
you find that large amounts of C code are sprinkled with only a few calls into the Lua API, it may be
beneficial to redesign the interface and place the code that isn’t aware of Lua into its own library. This
library is then more widely usable, and the Lua-aware code acts as a binding layer between it and Lua.

Try It Out Creating a Layered-Extension Library for CSV Records
A fairly common way to package row and column information is to place it in CSV (comma-separated
value) format. Each row occupies one line of text, and each field within a row is delimited with a
comma. There are variations in how to handle a field that includes one or more literal commas. One

441

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 441

peculiar but pervasive convention is to enclose such a field in double quotes, and to interpret each occur-
rence of two adjacent double quotes within a quoted field as one double quote. These rules make it diffi-
cult to handle CSV records in pure Lua.

This exercise demonstrates a layered extension library to facilitate the reading and writing of CSV records.
It handles the low-level parsing in C, and the higher-level functions in Lua.

1. Using your text editor, create a new file and include the following C contents:

#include “lua.h”
#include “lualib.h”
#include “lauxlib.h”
#include <string.h>

/* * */

static const char * LclCsv(
const char * Str,
luaL_Buffer * BufPtr)

/* This function parses the comma separated value (CSV) segment beginning at
the start of Str. In CSV format

* commas delimit text segments

* double quotes which surround text are not copied

* commas occurring within double quoted text are copied verbatim

* each occurrence of two consecutive double quotes within double quoted
text are copied as one double quote

Examples

abc -> |abc|
“abc” -> |abc|
“abc, def” -> |abc, def|
“abc “”def”” ghi” -> |abc “def” ghi|

*/

{ // LclCsv

typedef enum {CnaIgnore = 0, CnaCopy = 1, CnaInc = 2, CnaQuit = 4} ActionType;

typedef enum {CnsStart, CnsText, CnsQuoted, CnsHyperQuoted} StateType;

typedef enum {CncComma, CncQuote, CncChar, CncNull} CatType;

typedef struct {
ActionType A;
StateType S;

} ContextType;

static ContextType ContextList[CnsHyperQuoted + 1][CncNull + 1] = {

442

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 442

{ // CnsStart
{CnaInc, CnsStart}, // CncComma
{CnaIgnore, CnsQuoted}, // CncQuote
{CnaCopy, CnsText}, // CncChar
{CnaQuit, CnsStart}}, // CncNull

{ // CnsText
{CnaInc, CnsStart}, // CncComma
{CnaIgnore, CnsQuoted}, // CncQuote
{CnaCopy, CnsText}, // CncChar
{CnaInc | CnaQuit, CnsText}}, // CncNull

{ // CnsQuoted
{CnaCopy, CnsQuoted}, // CncComma
{CnaIgnore, CnsHyperQuoted}, // CncQuote
{CnaCopy, CnsQuoted}, // CncChar
{CnaInc | CnaQuit, CnsQuoted}}, // CncNull

{ // CnsHyperQuoted
{CnaInc, CnsStart}, // CncComma
{CnaCopy, CnsQuoted}, // CncQuote
{CnaCopy, CnsText}, // CncChar
{CnaInc | CnaQuit, CnsHyperQuoted}}}; // CncNull

char Ch;
ContextType Context;
CatType Cat;

Context.S = CnsStart;
do {
Ch = *(Str++);
if (! Ch) Cat = CncNull;
else if (Ch == 34) Cat = CncQuote;
else if (Ch == ‘,’) Cat = CncComma;
else {
Cat = CncChar;
if (Ch < ‘ ‘) Ch = ‘ ‘;

} // else
Context = ContextList[Context.S][Cat];
if (CnaCopy & Context.A) luaL_addchar(BufPtr, Ch);
if (CnaInc & Context.A) Ch = 0;

} while (Ch);
return Str;

} // LclCsv

/* * */

static int LclCsvParse(
lua_State *L)

// str_segment, pos <- csv.parse(str [, pos])

{ // LclCsvParse
const char *Str, *EndStr;
int Len, Pos;

443

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 443

luaL_Buffer Buf;

Str = luaL_checkstring(L, 1);
if (lua_isnil(L, 2)) Pos = 1;
else Pos = luaL_checkinteger(L, 2);
Len = strlen(Str);
if ((Pos >= 1) && (Pos <= Len)) {
luaL_buffinit(L, &Buf);
EndStr = LclCsv(Str + Pos - 1, &Buf);
luaL_pushresult(&Buf);
Pos = EndStr - Str;
Pos = Pos > Len ? -1 : Pos + 1;
lua_pushinteger(L, Pos);

} // if
else luaL_error(L, “pos is out of range”);
return 2;

} // LclCsvParse

/* * */

int luaopen_csvparse(
lua_State *L)

{ // luaopen_csvparse
static const luaL_reg Map[] = {
{“parse”, LclCsvParse},
{NULL, NULL}

};

luaL_register(L, “csv”, Map);
return 1;

} // luaopen_csvparse

2. Save the file as csvparse.c.

3. Compile this extension into a shared library. On Linux and other Unix-type systems, run this
command:

cc -o csvparse.so -shared -Wall csvparse.c

On the Windows platform, compile the extension as follows:

cl /c /Zl /Zd /Yd /MD /W4 /DWIN32 csvparse.c
link /dll /out:csvparse.dll /base:0x67C00000 /machine:ix86 ;
/export:luaopen_csvparse csvparse.obj msvcrt.lib lua5.1.lib

4. Copy the generated module to your designated Lua library directory. On Unix-type systems,
run this:

cp csvparse.so $LUA_DIR/

On Windows, run this:

xcopy csvparse.dll “%LUA_DIR%*.*”

5. Create another new file with the following Lua contents:

444

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 444

require “csvparse”

-- Return a string which has been properly quoted for inclusion in a
-- comma-separated value file.

function csv.escape(str)
local wrap = “”
str = tostring(str)
if string.find(str, ‘“‘) then
str = string.gsub(str, ‘“‘, ‘“”’)
wrap = ‘“‘

end
if string.find(str, ‘,’) then
wrap = ‘“‘

end
return wrap .. str .. wrap

end

-- Iterator to allow traversal of CSV cells

function csv.cells(str)
local pos = 1
local function nextcell()
local cellstr
if pos > 0 then
cellstr, pos = csv.parse(str, pos)

else
cellstr = nil

end
return cellstr

end
return nextcell

end

6. Save this file as csv.lua.

7. Copy this module to your designated Lua library directory. On Unix-type systems, run this:

cp csv.lua $LUA_DIR/

On Windows, run this:

xcopy csv.lua “%LUA_DIR%*.*”

8. Create another new Lua file with these contents:

require “csv”

local Str = ‘Natty Bumppo,”Natty Bumppo, Pathfinder”,”Natty “”Hawkeye”” Bumppo”’

local SubStr, Pos

io.write(“--- csv.parse ---\n”)
Pos = 1
io.write(Str, “\n”)
for J = 1, 10 do

445

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 445

if Pos > 0 then
SubStr, Pos = csv.parse(Str, Pos)
io.write(string.format(“Pos %3d, field [%s], escaped [%s]\n”, Pos, SubStr,
csv.escape(SubStr)))

end
end

io.write(“--- csv.cells ---\n”)
for CellStr in csv.cells(Str) do
io.write(CellStr, “\n”)

end

9. Save this file as csvtest.lua.

10. From a command shell, run the test script as follows:

lua csvtest.lua
--- csv.parse ---
Natty Bumppo,”Natty Bumppo, Pathfinder”,”Natty “”Hawkeye”” Bumppo”
Pos 14, field [Natty Bumppo], escaped [Natty Bumppo]
Pos 41, field [Natty Bumppo, Pathfinder], escaped [“Natty Bumppo, Pathfinder”]
Pos -1, field [Natty “Hawkeye” Bumppo], escaped [“Natty “”Hawkeye”” Bumppo”]
--- csv.cells ---
Natty Bumppo
Natty Bumppo, Pathfinder
Natty “Hawkeye” Bumppo

How It Works
This extension processes CSV rows and leaves the matter of reading and writing those lines to the io library.
It comprises two layers: the low level parsing component in C, and the escaping and iterator routines in Lua.

The format of csvparse.c is similar to that of iomode.c. The loader function luaopen_csvparse is
called by Lua’s package system. It calls luaL_register to create (or reuse, if it already exists) the csv
namespace table and to place into it the LclCsvParse extension function keyed with the string “parse”.

The extension function uses Lua’s string buffering routines. This mechanism lets you construct a string
in stages without having to worry about memory issues. You have to pay attention to the virtual stack,
however. Here’s how string buffering works:

1. The following line initializes Buf (of type luaL_Buffer) in preparation to building up a CSV
field string:

luaL_buffinit(L, &Buf);

2. Characters are added to the string in the following line:

if (CnaCopy & Context.A) luaL_addchar(BufPtr, Ch);

The function luaL_addchar appends the specified character to the string buffer. When called, it
and the other string buffer functions except luaL_addvalue expect to find the stack as it was
left after the previous string buffer call. (In the case of luaL_addvalue, the stack should be the
same except that an additional value should be pushed on the top.) In between string buffer
calls, you are able to perform operations that manipulate the stack. You just need to make sure
the stack is returned to the expected level before calling a string buffer function again.

446

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 446

3. The completed string is pushed on the stack with the following line:

luaL_pushresult(&Buf);

The csv.parse function is called with a string to process and, optionally, a one-based position that indicates
where in the string to begin parsing. The arguments are obtained and validated with the following lines:

Str = luaL_checkstring(L, 1);
if (lua_isnil(L, 2)) Pos = 1;
else Pos = luaL_checkinteger(L, 2);

If the second argument is missing, Pos is assigned a default value of one indicating the beginning of
the string. If it’s an integer, its value is assigned to Pos. If it is neither of these, an error is generated. The
value of Pos is checked to be sure it points to a valid position in Str.

The csv.parse function is intended to be called repeatedly, each time returning the next field. It does
this by returning, in addition to the field string, the position of the next field. When the last field of the
CSV row is returned, the value of this position is set to -1. A scheme like this is efficient because parsing
takes place only as needed and, using Lua’s string buffer mechanism, no overhead is spent on transient,
partial strings during string construction. If the function succeeds, the call to luaL_pushresult pushes
the field string on the stack, and the call to lua_pushinteger pushes the next position or -1. The return
value of 2 indicates to Lua that these two values are to be returned, in the order they were pushed, to the
caller of csv.parse.

The Lua layer of this extension library, csv.lua, includes routines to help with reading and writing CSV
fields. The csv.cells function is an iterator generator that wraps csv.parse, allowing the fields of a
CSV record to be read in a generic for loop. The csv.escape function applies the quoting rules to a sin-
gle field, helping with the construction of a CSV record.

Summary
The C API is a substantial part of Lua, and this chapter has glossed or outright skipped over some of its
features. But, having come this far, you have learned enough to create a basic C extension library for
Lua. In particular, you’ve learned the following:

❑ The distinction between embedding Lua and extending it

❑ To use the virtual stack to exchange values between Lua and C

❑ To write and register C functions that can be called from Lua

❑ To call Lua functions from C

❑ Where you can store persistent values in C

❑ To program userdata to create versatile Lua handles that, behind the scenes, can manage C
resources

❑ Different ways to layer your extensions to get the most out of C and the most out of Lua

Take some time to test what you’ve learned by tackling the following exercises. From there, the next
chapters will lead you through the use of Lua for database, web, and network access.

447

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 447

Exercises
1. In the ud_example Try It Out, you created and used an example handle as follows:

local Hnd = ud_example.open(1)
Hnd:set(2)
Hnd:close()

What changes would you need to make to the C library so that it would additionally support
the following usage?

local Hnd = ud_example.open(1)
ud_example.set(Hnd, 2)
ud_example.close(Hnd)

2. Add stack diagrams in the form of single line comments to the following C fragment:

lua_newtable(L);
lua_newtable(L);
lua_pushstring(L, “Rip Van Winkle”);
lua_setfield(L, -2, “Name”);
lua_pushvalue(L, -1);
lua_pushcclosure(L, FncA, 1);
lua_setfield(L, -3, “a”);
lua_pushcclosure(L, FncB, 1);
lua_setfield(L, -2, “b”);
lua_pushvalue(L, -1);
lua_setglobal(L, “test”);

Now explain what this code accomplishes:

3. Write an extension library for bit operations. The bit._and function should return each argu-
ment (which must be an integer) linked with and. Similarly, the bit._or function should return
each argument (which must be an integer) linked with or.

and and or are reserved keywords and cannot be used as names. Nevertheless, you can use them as
table keys for your functions, but then you need to invoke your functions as bit[‘and’] and bit[‘or’].

For example, the following script:
.

package.path = “”
package.cpath = “./?.so;./?.dll”
require “bit”

print(bit._and(301, 251, 491))
print(bit[‘and’](301, 251, 491))
print(bit._or(32, 8, 1))
print(bit[‘or’](32, 8, 1))

should print these lines:

41
41
41
41

448

Chapter 13: Interfacing Lua with Other Languages

16_069172 ch13.qxp 1/2/07 8:10 PM Page 448

14
Managing Information

with Databases

As a programmer, you’ll sooner or later need to store information in between invocations of a pro-
gram. You can store this information in a text file and decode it with patterns, or you can store it
in a Lua file and reloade it with loadfile. But sometimes these methods aren’t sufficiently fast,
powerful, flexible, or scalable, in which case, you should store the information in a database. This
chapter is a very brief introduction to databases and database systems. It will cover the following:

❑ How data is organized in and retrieved from a database

❑ SQL, the special-purpose language used to interact with databases

❑ LuaSQL, a set of Lua bindings for a number of popular database systems

Some Basic Relational
Database Concepts

This section demonstrates some basic database concepts by having you implement a simple
database and a system for retrieving data from it entirely in Lua.

Almost all databases in use today are what are known as relational databases because they are
designed to work with relationships between things (the previous generation of databases was not
good at this). In the following example, the things in question are customers, products, and orders
of an imaginary business. The relational aspect is the fact that the orders are defined in terms of
the products ordered and the customers who ordered them.

17_069172 ch14.qxp 1/2/07 8:10 PM Page 449

Try It Out Creating a Simple Database Entirely in Lua
1. Save the following as join.lua:

-- A demonstration of a simple relational database with join
-- functionality entirely in Lua.

-- Example database tables:
Cust = {
{Id = “C001”, NameLast = “Bumppo”, NameFirst = “Natty”},
{Id = “C002”, NameLast = “Finn”, NameFirst = “Huckleberry”},
{Id = “C003”, NameLast = “Darcy”, NameFirst = “Fitzwilliam”},
{Id = “C004”, NameLast = “Bennet”, NameFirst = “Elizabeth”},
{Id = “C005”, NameLast = “Marner”, NameFirst = “Silas”},

}
Product = {
{Id = “P001”, DescStr = “whatchamacallit”},
{Id = “P002”, DescStr = “gizmo”},
{Id = “P003”, DescStr = “gewgaw”},
{Id = “P004”, DescStr = “thingamajig”},
{Id = “P005”, DescStr = “widget”},
{Id = “P006”, DescStr = “doodad”},
{Id = “P007”, DescStr = “whatsit”},

}
Order = {
{Id = “O001”, CustId = “C003”, ProductId = “P002”, Count = 52},
{Id = “O002”, CustId = “C003”, ProductId = “P004”, Count = 87},
{Id = “O003”, CustId = “C004”, ProductId = “P001”, Count = 12},
{Id = “O004”, CustId = “C004”, ProductId = “P003”, Count = 8},
{Id = “O005”, CustId = “C004”, ProductId = “P005”, Count = 20},
{Id = “O006”, CustId = “C002”, ProductId = “P004”, Count = 2},

}

-- Returns a new database table composed of the selected columns of
-- Tbl1 and Tbl2 where WhereFnc is true:
function Join(Tbl1, Tbl1Select, Tbl2, Tbl2Select, WhereFnc)
local Ret = {}
-- For each pairing of rows:
for _, Tbl1Row in ipairs(Tbl1) do
for _, Tbl2Row in ipairs(Tbl2) do
if WhereFnc(Tbl1Row, Tbl2Row) then
-- WhereFnc is true, so include the selected fields of this
-- pairing in the result:
local RetRow = {}
for _, Tbl1Col in ipairs(Tbl1Select) do
RetRow[Tbl1Col] = Tbl1Row[Tbl1Col]

end
for _, Tbl2Col in ipairs(Tbl2Select) do
RetRow[Tbl2Col] = Tbl2Row[Tbl2Col]

end
Ret[#Ret + 1] = RetRow

end
end

end

450

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 450

return Ret
end

-- Space-padding helper function for ShowDbTbl:
local function ShowField(Str, Width, Numeric)
local Pad = string.rep(“ “, Width - string.len(Str))
if Numeric then
io.write(Pad, Str, “ “)

else
io.write(Str, Pad, “ “)

end
end

-- Displays a database table (an array of associative rows):
function ShowDbTbl(Tbl)
local ColList = {}
-- Get the width of each column name and type of each column:
for ColStr, Val in pairs(Tbl[1]) do
ColList[#ColList + 1] = {Name = ColStr,
Width = string.len(ColStr), Numeric = type(Val) == “number”}

end
-- Get the maximum width of each column:
for _, Row in ipairs(Tbl) do
for _, Col in ipairs(ColList) do
Col.Width = math.max(string.len(Row[Col.Name]), Col.Width)

end
end
-- Display a column header:
for _, Col in ipairs(ColList) do
ShowField(Col.Name, Col.Width, Col.Numeric)

end
io.write(“\n”)
for _, Col in ipairs(ColList) do
ShowField(string.rep(“-”, Col.Width), Col.Width, false)

end
io.write(“\n”)
-- Display the rows:
for _, Row in ipairs(Tbl) do
for _, Col in ipairs(ColList) do
ShowField(Row[Col.Name], Col.Width, Col.Numeric)

end
io.write(“\n”)

end
end

-- Demonstration:
CustOrder = Join(Cust, {“NameLast”},
Order, {“ProductId”, “Count”},
function(Cust, Order) return Cust.Id == Order.CustId end)

print(“*** Cust joined to Order ***”)
ShowDbTbl(CustOrder)
print()
CustOrderProduct = Join(CustOrder, {“NameLast”, “Count”},
Product, {“DescStr”},

451

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 451

function(CustOrder, Product)
return CustOrder.ProductId == Product.Id

end)
print(“*** Cust joined to Order joined to Product ***”)
ShowDbTbl(CustOrderProduct)
print()
Bennet = Join(CustOrder, {“Count”},
Product, {“DescStr”},
function(CustOrder, Product)
return CustOrder.ProductId == Product.Id
and CustOrder.NameLast == “Bennet”

end)
print(“*** All orders by customer ‘Bennet’ ***”)
ShowDbTbl(Bennet)

2. Run it with this:

lua join.lua

The output will be:

*** Cust joined to Order ***
Count NameLast ProductId
----- -------- ---------

2 Finn P004
52 Darcy P002
87 Darcy P004
12 Bennet P001
8 Bennet P003
20 Bennet P005

*** Cust joined to Order joined to Product ***
DescStr Count NameLast
--------------- ----- --------
thingamajig 2 Finn
gizmo 52 Darcy
thingamajig 87 Darcy
whatchamacallit 12 Bennet
gewgaw 8 Bennet
widget 20 Bennet

*** All orders by customer ‘Bennet’ ***
Count DescStr
----- ---------------

12 whatchamacallit
8 gewgaw
20 widget

How It Works
The word “table” has two meanings in this chapter. The Lua Cust, Product, and Order tables are also
tables in a database-specific sense. They are called tables because they can be visualized as arrangements
of rows and columns. The columns have names, but the rows don’t. For instance, take a look at this table of
customers:

452

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 452

Cust = {
{Id = “C001”, NameLast = “Bumppo”, NameFirst = “Natty”},
{Id = “C002”, NameLast = “Finn”, NameFirst = “Huckleberry”},
{Id = “C003”, NameLast = “Darcy”, NameFirst = “Fitzwilliam”},
{Id = “C004”, NameLast = “Bennet”, NameFirst = “Elizabeth”},
{Id = “C005”, NameLast = “Marner”, NameFirst = “Silas”},

}

The following table shows how you can visualize this.

Id NameLast NameFirst

C001 Bumppo Natty

C002 Finn Huckleberry

C003 Darcy Fitzwilliam

C004 Bennet Elizabeth

C005 Marner Silas

An array of associative tables is just one of several ways to conveniently represent a database table as a
Lua table.

In another intersection with Lua terminology, database column names (such as NameLast) can also be
called field names, and particular columns in particular rows can be called fields. For example, the NameLast
field of the second row in the previous table is “Finn.”

The following call does what is known as a join between the Cust table and the Order table:

CustOrder = Join(Cust, {“NameLast”},
Order, {“ProductId”, “Count”},
function(Cust, Order) return Cust.Id == Order.CustId end)

The Join function takes a database table (a table in the previously described row/column format), a (not
necessarily exhaustive) list of field names from that table, another table, a list of field names from that table,
and a two-argument function. Using nested for loops, it goes through every possible pairing of one row
from the first table and one from the second (in this case, five times six = thirty pairings) as follows:

function Join(Tbl1, Tbl1Select, Tbl2, Tbl2Select, WhereFnc)
local Ret = {}
for _, Tbl1Row in ipairs(Tbl1) do
for _, Tbl2Row in ipairs(Tbl2) do
if WhereFnc(Tbl1Row, Tbl2Row) then

If a pairing makes WhereFnc return true, then the selected fields of that pairing are added to the table
to be returned (which itself is a row/column-formatted database table) like this:

if WhereFnc(Tbl1Row, Tbl2Row) then
local RetRow = {}
for _, Tbl1Col in ipairs(Tbl1Select) do
RetRow[Tbl1Col] = Tbl1Row[Tbl1Col]

453

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 453

end
for _, Tbl2Col in ipairs(Tbl2Select) do
RetRow[Tbl2Col] = Tbl2Row[Tbl2Col]

end
Ret[#Ret + 1] = RetRow

end

So joining two tables means getting the selected fields for all pairings of rows where WhereFnc is true
(which is why it’s called WhereFnc). In the join between Cust and Order, the WhereFnc returns true
only if Cust’s Id is equal to Order’s CustId. Because each row of Order has a unique Id, and each of
Order’s CustId fields has a corresponding Id field in Cust, this join returns one row for every row
in Order. Specifically it returns the following for every order:

❑ The last name of the customer who made the order

❑ The product ID

❑ The quantity of the product ordered

For example, this shows that Huckleberry Finn ordered two of product P004:

*** Cust joined to Order ***
Count NameLast ProductId
----- -------- ---------

2 Finn P004
52 Darcy P002
87 Darcy P004
12 Bennet P001
8 Bennet P003
20 Bennet P005

This Join function operates on only two database tables at a time, but because the result is itself a
database table, it can be joined with yet another table. That’s how the product descriptions for each
order are retrieved — the join between CustOrder and Product gets every order’s customer name,
count, and product description as follows:

CustOrderProduct = Join(CustOrder, {“NameLast”, “Count”},
Product, {“DescStr”},
function(CustOrder, Product)
return CustOrder.ProductId == Product.Id

end)

The result shows that the product (P004) that Huckleberry Finn ordered two of is a thingamajig:

*** Cust joined to Order joined to Product ***
DescStr Count NameLast
--------------- ----- --------
thingamajig 2 Finn
gizmo 52 Darcy
thingamajig 87 Darcy
whatchamacallit 12 Bennet
gewgaw 8 Bennet
widget 20 Bennet

454

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 454

The two joins used their WhereFncs to determine which rows of one table go with which rows of the
other. The third join’s WhereFnc does this, but then it disqualifies some of those rows for not having
the right NameLast field, as follows:

Bennet = Join(CustOrder, {“Count”},
Product, {“DescStr”},
function(CustOrder, Product)
return CustOrder.ProductId == Product.Id
and CustOrder.NameLast == “Bennet”

end)

The result shows only Elizabeth Bennet’s three orders and none of the other customers’ orders:

*** All orders by customer ‘Bennet’ ***
Count DescStr
----- ---------------

12 whatchamacallit
8 gewgaw
20 widget

If a WhereFnc always returns true, it pairs every row of the first table with every row of the second
table, even if those rows have nothing to do with each other. To demonstrate this, run the Lua interpreter
(in the same directory as join.lua) and type:

> dofile(“join.lua”)

The join.lua functions and database tables are global, so after it’s done printing, you can do the
following:

> ShowDbTbl(Join(Cust, {“NameLast”},
>> Order, {“ProductId”, “Count”},
>> function() return true end))

This will print out 30 rows. Here are the first 10:

Count NameLast ProductId
----- -------- ---------

52 Bumppo P002
87 Bumppo P004
12 Bumppo P001
8 Bumppo P003
20 Bumppo P005
2 Bumppo P004
52 Finn P002
87 Finn P004
12 Finn P001
8 Finn P003

This (joining every row of one table with every row of the other) is called a cross join or Cartesian product.
It is important for two reasons:

455

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 455

❑ It is the theoretical basis for all other joins. (A cross join will have as many rows as the Join
function’s nested loops have iterations.)

❑ You may sometimes do it by mistake.

An example of doing it by mistake would be leaving out the CustOrder.ProductId == Product.Id
condition in the WhereFnc to get all of Elizabeth Bennet’s orders:

Bennet = Join(CustOrder, {“Count”},
Product, {“DescStr”},
function(CustOrder, Product)
return CustOrder.NameLast == “Bennet” -- UH-OH, CROSS JOIN!

end)
ShowDbTbl(Bennet)

This will print Elizabeth’s three orders, mixed in with 18 orders that don’t even exist (they’re junk gener-
ated by the cross join). Another way of putting that is that it prints each of Elizabeth’s three orders seven
times, with only one of the seven having the right DescStr, as shown here:

Count DescStr
----- ---------------

12 whatchamacallit
12 gizmo
12 gewgaw
12 thingamajig
12 widget
12 doodad
12 whatsit
8 whatchamacallit
8 gizmo
8 gewgaw
8 thingamajig
8 widget
8 doodad
8 whatsit
20 whatchamacallit
20 gizmo
20 gewgaw
20 thingamajig
20 widget
20 doodad
20 whatsit

In addition to showing what tables, rows, columns, and joins are, join.lua demonstrates a few other
things.

One is a principle of database design: don’t duplicate information. The Order table could have looked
like this:

Order = {
{Id = “O001”, NameLast = “Darcy”, NameFirst = “Fitzwilliam”,
DescStr = “gizmo”, Count = 52},

{Id = “O002”, NameLast = “Darcy”, NameFirst = “Fitzwilliam”,
DescStr = “thingamajig”, Count = 87},

456

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 456

{Id = “O003”, NameLast = “Bennet”, NameFirst = “Elizabeth”,
DescStr = “whatchamacallit”, Count = 12},

{Id = “O004”, NameLast = “Bennet”, NameFirst = “Elizabeth”,
DescStr = “gewgaw”, Count = 8},

{Id = “O005”, NameLast = “Bennet”, NameFirst = “Elizabeth”,
DescStr = “widget”, Count = 20},

{Id = “O006”, NameLast = “Finn”, NameFirst = “Huckleberry”,
DescStr = “thingamajig”, Count = 2},

}

This would have made Cust and Product unnecessary, but if Elizabeth Bennet got married to Fitzwilliam
Darcy and needed to change her last name, it would need to be changed in three places rather than one,
which is a hassle and an opportunity for error. Also, real-world database systems generally don’t do
the string interning discussed in Chapter 10, which means that three occurrences of “Bennet” take up
three times as much space as one.

If you read up on databases, you’ll find out about “normal forms,” which for the most part are applica-
tions of the “don’t duplicate information” principle. The principle is sometimes disobeyed for reasons of
efficiency and simplicity.

Another lesson of join.lua is that a real database system needs to be more optimized. Imagine if there
were a thousand customers and one hundred thousand orders. Finding all orders with the last name
“Bennet” would make the nested loop in Join do one hundred million iterations.

This is solved in real database systems by using indexes. This is yet another meaning for a word already
well-laden with meanings. In this case, you should think of an index in the back of a book, which lets
you go right to the page or pages where a topic is mentioned. An index for Cust’s NameLast field might
look like this:

{Bumppo = {1}, Finn = {2}, Darcy = {3}, Bennet = {4},
Marner = {5}}

If Join were able to look inside the WhereFnc and see that the last name “Bennet” was being sought, the
table would tell it that the fourth element of Cust had that last name. (The reason the numbers are
wrapped in arrays is in case multiple customers share a last name.)

The previous table wouldn’t speed up a search for “all customers whose last names start with B,” but an
index that would speed it up might look like this:

{{NameLast = “Bennet”, 4},
{NameLast = “Bumppo”, 1},
{NameLast = “Darcy”, 3},
{NameLast = “Finn”, 2},
{NameLast = “Marner”, 5}}

This array is sorted by last name, so a technique called binary search can be used to do the following:

1. Jump into the middle of the array.

2. If the array element in the middle’s NameLast starts with “B”, then the B’s have been found.

3. If not, repeat these steps with the first half or the second half of the array, depending on whether
the just-tested element’s NameLast starts with a letter after or before “B”.

457

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 457

If there are a lot of customers, this method is much faster than searching through every single customer,
because with every iteration, the distance to the thing being searched for is halved or more than halved.

Use of database indexes is outside the scope of this chapter, but all serious database systems offer some
way to control what indexes are created.

SQL, LuaSQL, and MySQL
Most database systems use a language called SQL to express interaction with a database. (It’s pronounced
“ESS-CUE-ELL,” or sometimes even “SEE-kwuhll,” and it stands for Structured Query Language, but
nobody actually uses the full name.) SQL was designed specifically for this purpose, and is not really
usable as a general-purpose language, so it is generally combined with a language (like Lua) that is
good for general-purpose programming. A program that needs to interact with a database is written in
the general-purpose language, except for those parts of program that deal with the database, which are
written in SQL.

There are many database systems, all with their own pluses and minuses (and all with their own slightly
different dialects of SQL). One is SQLite, which you met in Chapter 12. Another popular one is MySQL
(pronounced “MY-ESS-CUE-ELL”).

LuaSQL is a collection of Lua bindings to these and other database systems (PostgreSQL, ODBC, JDBC,
Oracle, and ADO). In the remainder of this chapter, you’ll be using the LuaSQL binding to MySQL.

MySQL and LuaSQL are available respectively on dev.mysql.com and www.keplerproject.org/
luasql/. You will need to download and install both (according to the instructions on their websites)
for the following example to work.

LuaSQL is part of the Kepler project (www.keplerproject.org), so if you have Kepler installed, then
you already have LuaSQL. The following example assumes that a Lua 5.0 interpreter called lua50 is in
your search path. If this is not the case, give the full path to the interpreter, changing the following line:

lua50 mysql.lua Create

to this (for example):

“C:\Program Files\Kepler\lua50” mysql.lua Create

The script init.lua in the Kepler directory makes sure that require knows where to look for the
LuaSQL module. The Kepler installer sets your shell’s LUA_INIT environment variable to @C:\Program
Files\Kepler\init.lua (or something similar, depending on where Kepler is installed). This value for
LUA_INIT causes Lua to run init.lua before running mysql.lua. (init.lua has no effect on Lua 5.1.)

LuaSQL currently only exists for Lua 5.0. (That’s why the examples here use
string.len instead of #.)

458

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 458

Try It Out Creating a Customers, Products, and Orders Table in MySQL
In this exercise, you programmatically interact with the MySQL database server by means of a Lua script.

1. At your shell, use the following mysqladmin function to create a new MySQL database called
Lua”:

mysqladmin -u root -p create Lua

You’ll be prompted for a password. If you set up a password for the root (administrator)
account when you installed MySQL, type that one. If no password has been set, press Enter.

2. Invoke the MySQL client application as follows:

mysql -u root -p

After submitting the MySQL root password, you’ll see a mysql> prompt.

3. At the mysql> prompt, create a new MySQL user account with the username Lua by typing the
following:

‘SmPlPaSs’ is the new account’s password in this example.

GRANT ALL PRIVILEGES ON Lua.* TO ‘Lua’@’localhost’
IDENTIFIED BY ‘SmPlPaSs’;

4. Type exit, quit, or \q to leave the MySQL client.

5. With your text editor, create a file with the following contents and save it as mysql.lua:

require(“luasql.mysql”)

-- Executes all of the the SQL statements in List (stopping if one
-- fails):
function ExecSqlList(Conn, List)
local Succ, ErrStr
for _, SqlStr in ipairs(List) do
Succ, ErrStr = Conn:execute(SqlStr)
if not Succ then break end -- BREAK ON ERROR.

end
return Succ, ErrStr

end

-- Space-padding helper function for ShowCursor:
local function ShowField(Str, Width, Numeric)
local Pad = string.rep(“ “, Width - string.len(Str))
if Numeric then
io.write(Pad, Str, “ “)

else
io.write(Str, Pad, “ “)

end
end

-- Displays all the rows in a database cursor, then closes the
-- cursor:
function ShowCursor(Cursor)

459

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 459

---- Get the name of each column and that name’s width:
local ColNames = Cursor:getcolnames()
local ColWidths = {}
for I, Name in ipairs(ColNames) do
ColWidths[I] = string.len(Name)

end
-- Find out which columns hold numbers:
local ColTypes = Cursor:getcoltypes()
local ColIsNums = {}
for I, Type in ipairs(ColTypes) do
if string.sub(Type, 1, 6) == “number” then
ColIsNums[I] = true

else
ColIsNums[I] = false

end
end

-- A wrapper for Cursor:fetch that lets it return a table without
-- being given one:
local function RowsIter()
local Row = {}
return Cursor:fetch(Row)

end

-- Store all rows and the maximum widths of all columns:
local Rows = {}
for Row in RowsIter do
table.insert(Rows, Row)
for I, Field in ipairs(Row) do
ColWidths[I] = math.max(ColWidths[I], string.len(Field))

end
end
-- Display a column header:
for I, ColName in ipairs(ColNames) do
ShowField(ColName, ColWidths[I], ColIsNums[I])

end
io.write(“\n”)
for I, ColWidth in ipairs(ColWidths) do
ShowField(string.rep(“-”, ColWidth), ColWidth, false)

end
io.write(“\n”)
-- Display the rows:
for _, Row in ipairs(Rows) do
for I, Field in ipairs(Row) do
ShowField(Field, ColWidths[I], ColIsNums[I])

end
io.write(“\n”)

end
Cursor:close()

end

-- Creates the Cust, Product, and Ord tables:
function Create(Conn)
return ExecSqlList(Conn, {[[
CREATE TABLE Cust (

460

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 460

Id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
NameLast CHAR(50),
NameFirst CHAR(50))]], [[

CREATE TABLE Product (
Id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
DescStr CHAR(50))]], [[

CREATE TABLE Ord (
Id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
CustId INT UNSIGNED,
ProductId INT UNSIGNED,
Count INT UNSIGNED)]]})

end

-- Puts rows into Cust, Product, and Ord:
function Populate(Conn)
return ExecSqlList(Conn, {[[
TRUNCATE TABLE Cust]], [[
INSERT INTO Cust (NameLast, NameFirst) VALUES
(‘Bumppo’, ‘Natty’),
(‘Finn’, ‘Huckleberry’),
(‘Darcy’, ‘Fitzwilliam’),
(‘Bennet’, ‘Elizabeth’),
(‘Marner’, ‘Silas’)]], [[

TRUNCATE TABLE Product]], [[
INSERT INTO Product (DescStr) VALUES
(‘whatchamacallit’), (‘gizmo’), (‘gewgaw’), (‘thingamajig’),
(‘widget’), (‘doodad’), (‘whatsit’)]], [[

TRUNCATE TABLE Ord]], [[
-- These CustIds and ProductIds are hardcoded, which means this
-- INSERT would break if the previous INSERTs’ auto-increment IDs
-- didn’t start at 1, but the TRUNCATEs make sure they do:
INSERT INTO Ord (CustId, ProductId, Count) VALUES
(3, 2, 52),
(3, 4, 87),
(4, 1, 12),
(4, 3, 8),
(4, 5, 20),
(2, 4, 2)]]})

end

-- Does some sample SELECTs (joins) and displays the results:
function Test(Conn)
local Cursor, ErrStr
Cursor, ErrStr = Conn:execute([[
SELECT NameLast, ProductId, Count
FROM Cust, Ord
WHERE Cust.Id = Ord.CustId]])

if Cursor then
print(“*** Cust joined to Order ***”)
ShowCursor(Cursor)
print()
Cursor, ErrStr = Conn:execute([[
SELECT NameLast, Count, DescStr
FROM Cust, Ord, Product
WHERE Cust.Id = Ord.CustId

461

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 461

AND Ord.ProductId = Product.Id]])
if Cursor then
print(“*** Cust joined to Order joined to Product ***”)
ShowCursor(Cursor)
print()
Cursor, ErrStr = Conn:execute([[
SELECT Count, DescStr
FROM Cust, Ord, Product
WHERE Cust.Id = Ord.CustId
AND Ord.ProductId = Product.Id
AND Cust.NameLast = ‘Bennet’]])

if Cursor then
print(“*** All orders by customer ‘Bennet’ ***”)
ShowCursor(Cursor)

end
end

end
return not ErrStr, ErrStr

end

-- Drops the Cust, Product, and Ord tables:
function Drop(Conn)
return Conn:execute(“DROP TABLE IF EXISTS Cust, Product, Ord”)

end

-- Get what the LuaSQL documentation calls an “environment”:
local MysqlEnv, ErrStr = luasql.mysql()
if MysqlEnv then
-- Get a connection to the “Lua” database as the user “Lua”:
local Conn
Conn, ErrStr = MysqlEnv:connect(“Lua”, “Lua”, “SmPlPaSs”)
if Conn then
-- Obey the command given as a command-line argument:
local Cmd = arg[1]
local Succ
if Cmd == “Create” then
Succ, ErrStr = Create(Conn)
if Succ then
print(“Successfully created Cust, Product, and Ord tables”)

end
elseif Cmd == “Populate” then
Succ, ErrStr = Populate(Conn)
if Succ then
print(“Successfully populated Cust, Product, and Ord tables”)

end
elseif Cmd == “Test” then
Succ, ErrStr = Test(Conn)

elseif Cmd == “Drop” then
Succ, ErrStr = Drop(Conn)
if Succ then
print(“Successfully dropped Cust, Product, and Ord tables”)

end
else
ErrStr = “A command-line argument of ‘Create’, ‘Populate’,”
.. “ ‘Test’, or ‘Drop’ is required”

462

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 462

end
Conn:close()

end
MysqlEnv:close()

end
if ErrStr then
io.stderr:write(ErrStr, “\n”)

end

6. At the shell, run it with the Create command-line argument as follows:

lua50 mysql.lua Create

It will print this:

Successfully created Cust, Product, and Ord tables

7. Run it again with the Populate command-line argument as follows:

lua50 mysql.lua Populate

It will print this:

Successfully populated Cust, Product, and Ord tables

8. Run it one more time with the Test command-line argument as follows:

lua50 mysql.lua Test

It will print this:

*** Cust joined to Order ***
NameLast ProductId Count
-------- --------- -----
Finn 4 2
Darcy 2 52
Darcy 4 87
Bennet 1 12
Bennet 3 8
Bennet 5 20

*** Cust joined to Order joined to Product ***
NameLast Count DescStr
-------- ----- ---------------
Finn 2 thingamajig
Darcy 52 gizmo
Darcy 87 thingamajig
Bennet 12 whatchamacallit
Bennet 8 gewgaw
Bennet 20 widget

*** All orders by customer ‘Bennet’ ***
Count DescStr
----- ---------------

12 whatchamacallit
8 gewgaw
20 widget

463

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 463

How It Works
require(“luasql.mysql”) creates the luasql namespace table and puts a function in it called mysql.
With this function, an object (called an environment in the LuaSQL documentation) is created. This
object has a connect method, with which a connection is opened to the database Lua as the user Lua
with the password SmPlPaSs:

Conn, ErrStr = MysqlEnv:connect(“Lua”, “Lua”, “SmPlPaSs”)

After this connection object is obtained, the command-line argument decides which function to run. The
first one run is Create, which calls the function ExecSqlList with the connection object and a three-
element array as arguments. The array’s first element is this string:

CREATE TABLE Cust (
Id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
NameLast CHAR(50),
NameFirst CHAR(50))

This is what SQL looks like. SQL keywords, function names, and so on are case-insensitive, but they
are often typed in all-uppercase as shown. This is partly to make SQL’s rather baroque syntax a bit easier
to process visually, and partly just out of tradition. In MySQL, column names are case-sensitive, but
database names and table names are only case-sensitive if the filesystem where the database is stored is
case-sensitive.

The preceding CREATE TABLE statement creates a table called Cust with columns Id, NameLast, and
NameFirst. In MySQL, as in most database systems (SQLite being a notable exception), a given column
can hold only one datatype. The CHAR(50) after NameLast and NameFirst means that those columns can
each hold a string of up to 50 characters. The INT UNSIGNED NOT NULL after Id means that Id can hold
an unsigned integer, but cannot hold the special value NULL. PRIMARY KEY has to do with the indexing
described at the end of the previous section. (AUTO_INCREMENT will be explained later.)

This and the two other CREATE TABLE statements are passed to ExecSqlList, which uses the connec-
tion object’s execute method to execute them, creating three tables.

The Order table from the example earlier in this chapter was renamed Ord here because Order is a
reserved word in MySQL.

Next, the Populate function is called, which fills the three tables with data. The TRUNCATE statements
clean out anything that’s already in the tables (so that things will still work if you run Populate twice),
and the INSERT INTO statements do the actual insertion of data.

Notice that values are inserted into all the columns except for the Id columns. This is because the Id
columns of all three tables are auto-increment columns, which means that the first row inserted into a given
table will get an Id of 1, the next will get an Id of 2, and so on. In this example, where all the data is being
loaded at once, it would be just as easy to hard-code the Id fields, but the auto-increment functionality
shows its usefulness in more realistic programs, where non-hardcoded rows are added one at a time.

Finally, Test is called. It executes three SELECT statements and uses ShowCursor to display the results.
Each of these SELECTs consists of three parts:

❑ A SELECT clause, which names the columns that will be in the result. This is equivalent to the
second and fourth arguments of the Join function from earlier in the chapter.

464

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 464

❑ A FROM clause, which names the tables that the previously selected columns are in. This is
equivalent to the first and third arguments of Join.

❑ A WHERE clause, which constrains which rows will be in the result. This is equivalent to Join’s
fifth (WhereFnc) argument. If no WHERE clause is given, but multiple tables are given in the
FROM clause, then a cross join is done.

In both the SELECT clause and the WHERE clause, a column can be specified with or without its table
name: TblName.ColName or ColName. The first form is mandatory if the same column name is used in
two tables named in the FROM clause. This WHERE clause:

SELECT NameLast, ProductId, Count
FROM Cust, Ord
WHERE Cust.Id = Ord.CustId

could have been written WHERE Cust.Id = CustId, because Cust doesn’t have a CustId column, but
not WHERE Id = CustId, because Ord does have an Id column. (The = in SQL means the same thing as
== in Lua.)

More than two tables can be joined by one SELECT statement, by including them all in the FROM clause
and the appropriate join conditions in the WHERE clause. If the FROM clause only names one table, then
just rows from that table are selected, and no join is done.

These SELECTs are executed by the connection object’s execute method:

local Cursor, ErrStr
Cursor, ErrStr = Conn:execute([[
SELECT NameLast, ProductId, Count

When execute is given a statement that doesn’t return any data, like CREATE or INSERT, it returns a
success Boolean. When it is given a SELECT, it returns a cursor object that is used to read the SELECT’s
results. The cursor has the following methods:

❑ getcolnames: Returns an array of the result’s column names.

❑ getcoltypes: Returns an array of the datatypes of the result’s columns.

❑ fetch: Returns the first row the first time it’s called, the second row the second time it’s called,
and so on. It returns nil when there are no more rows.

❑ close: Closes the cursor.

The fetch method takes two optional arguments. If given no arguments, it returns as many values as
there are columns. If given a Lua table as a first argument, it puts the columns of the row being returned
into that table and returns it. If the second argument is not given or if it is “n” (for “numeric”), then the
returned Lua table is an array indexed by column number such as the following:

{“Finn”, “4”, “2”}

If the second argument is “a” (alphanumeric), then the returned table is associative by column name,
like this:

{NameLast = “Finn”, ProductId = “4”, Count = “2”}

465

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 465

Notice also that LuaSQL’s MySQL driver (as of this writing) returns even numeric values as strings.

The ShowCursor function uses these methods to display all the rows in the cursor given to it. Most of
the work it does is formatting: getting the maximum width of each column and making sure that strings
are left-justified and numbers are right-justified.

If you want to delete the Cust, Product, and Ord tables and start over, use Drop as a command-line
argument to mysql.lua.

Summary
This has been a very brief introduction to databases. You haven’t even learned about UPDATE and DELETE,
the SQL statements that change and remove rows, nor have you learned about the nonintuitive behavior
of the SQL value NULL. That information is available in the many books and websites about SQL.

Here are the highlights of what this chapter did cover:

❑ Relational databases store data in tables, which are organized in rows and columns.

❑ Combining the data from multiple tables is called joining those tables.

❑ Combining every single row of one table with every single row of another table is called a
cross join.

❑ Duplication of data in a database should be avoided when possible.

❑ Database systems use indexes for faster searching.

❑ SQL is a special-purpose language for interacting with databases.

❑ The SQL CREATE statement creates a table. The INSERT INTO statement puts rows into a table.
The SELECT statement reads rows from a table.

❑ LuaSQL is a set of Lua bindings for a number of popular database systems, including MySQL.

❑ LuaSQL returns the results of a SELECT as a cursor object with getcolnames, getcoltypes,
fetch, and close methods.

Before you go on to the next chapter, which is about web programming, check out these exercises.
(Answers are in the appendix.)

Exercises
1. Write a function that takes a LuaSQL cursor and returns a table in the format used by Join (an

array of associative tables).

2. The following SELECT doesn’t work — it returns an error message. Why?

SELECT Id, CustId, NameLast, ProductId, DescStr, Count
FROM Cust, Ord, Product
WHERE Cust.Id = Ord.CustId
AND Ord.ProductId = Product.Id

466

Chapter 14: Managing Information with Databases

17_069172 ch14.qxp 1/2/07 8:10 PM Page 466

15
Programming for the Web

Although the Internet is the infrastructure for a myriad of protocols, e-mail and the Web are the
two services most people associate with it. In this chapter, you’ll learn how nicely Lua fits into
the Web part of the equation. In this chapter, you learn about the following:

❑ The basic operation of web servers

❑ Generating web content dynamically with Lua

❑ Issues with serving dynamic content

❑ Handling input from users by means of forms

❑ The basics of the Lua-based Kepler web server environment

Along the way, you’ll see how Lua can make use of community libraries to dynamically generate
attractive, informative web pages.

A Web Server Primer
To generate web pages using Lua, you should have a comfortable grasp on how web servers oper-
ate. This understanding will let you develop Lua programs that focus on the Web’s strengths and
deal with the Web’s limitations in as graceful a manner as possible. As you’ll see in this chapter,
a successful web application draws on many different tools, with the web server itself playing the
central role.

Conceptually, a web server is pretty simple. It’s an application that runs on a host and listens for
inbound connections. It has access to resources, generally web pages, that are handed out in response
to requests made by other applications, usually web browsers. These requests and responses con-
form to a standard known as hypertext transfer protocol, or HTTP. Unlike many other protocols that
define how two applications can have an ongoing conversation, HTTP defines a self-contained trans-
action. It describes how one application, the client, can properly initiate a request and how another

18_069172 ch15.qxp 1/2/07 8:10 PM Page 467

application, the server, can properly respond to that request. The lack of dialog is the reason HTTP is often
referred to as a connectionless protocol.

The notion of the World Wide Web derives from the presence of many web servers and many web
browsers throughout the Internet. The one-shot nature of HTTP transactions simplifies the construction
of web servers and allows them to scale efficiently to support frequent requests from many clients.
The original intent of the Web as a collection of static, browsable, hyperlinked documents was served
quite well by this simple model. The web pages themselves are usually prepared in HTML (HyperText
Markup Language), a standard that defines how tags are used to define a page’s structure, appearance,
and links to other pages.

The request/response model has simplicity going for it, but it’s got two drawbacks: poor performance
and poor memory. Performance suffers when a client needs to connect repeatedly to the same server
to retrieve related resources such as the images, scripts, and style sheets associated with a given page.
Version 1.1 of the HTTP standard addresses this by specifying that connections be kept alive by default.
The second drawback deals with the server’s inability to retain the context of a series of transactions.
Each transaction, even one that occurs over a keepalive connection, appears to the server as a brand new
request from an unknown client. This is not a problem for static documents, but it becomes an issue for
dynamically generated content in which a server response depends on the transactions that precede it.
One solution to this deficiency is for the server to embed a limited amount of contextual information
in the hyperlinks or HTML forms that are part of a dynamically created page. Requests that are based on
these links or forms return this information to the server where it can be used to reconstruct the context
of the transaction. Another method is for the server to use a cookie, which is a small packet of informa-
tion that is optionally stored by a web browser at the request of a server and is returned by the browser
when making a request of that server. Often, the information passed between the client and web server
is simply a small identifier that indexes more information stored on the server.

Dynamic Web Content
Much of what you see in your web browser is generated on the server after you submit an HTTP
request. This is where Lua fits into the picture, because it will be called on to generate web pages
dynamically. There are two basic server configurations that are responsible: the embedded web server
and the extended web server.

Embedded Web Server
A limited web server is simple enough to embed into even small applications. A growing number of
devices, such as network routers, are implemented this way. One advantage of this approach is that
managing the user interface can be made trivially easy. Another advantage is that resources such as file
handles or database connections can be kept open for the duration of the application. For the purposes
of most applications, an embedded web server needs only a small number of features that a mainstream
web server would require. Even a file system is not required.

Embedding a web server is suitable for applications of all types, not just hardware devices. For example,
using the LuaSocket library, you can write a short Lua script that opens a database connection and
begins accepting connections on some specific port. Interaction between the user and the database can
occur without the overhead of reestablishing the database connection for each transaction.

468

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 468

Extended Web Server
A general-purpose web server can be extended to run an application that it knows nothing about, as long
as it and the application both agree on how to communicate. Mainstream web servers all implement a
standard named the Common Gateway Interface (CGI). In this model, when a client requests a resource
that specifies a program, the server invokes that program, passing it information about the client, server,
and the request itself. The output of the program is then returned to the client. CGI is often associated
with HTML forms and user interaction, but at its root, it simply specifies how a web server interfaces with
external programs. Much of the dynamically created content on the web is generated this way.

FastCGI is an optimized variation of CGI in which the application and its resources remain active
between HTTP transactions.

Creating Content at Run Time with Lua
For many applications, Lua is the ideal language with which to write CGI programs. One complaint that
is leveled against CGI is that each request for dynamic content requires an external program to be exe-
cuted. Large or otherwise slow programs can degrade performance noticeably. Lua, however, is known
for its small footprint and its fast loading and execution of scripts, so it fits in nicely with the CGI model.
Lua’s flexible text handling and ability to connect with low-level libraries are features that definitely
enhance the creation of web applications.

Executing CGI Scripts
A key to configuring CGI is to make sure the web server can distinguish programs from static deliver-
able resources. When a web server identifies a CGI program, it hands the task of actually executing it to
the operating system. In order to function properly, the CGI program generally requires some informa-
tion about the request, network connection, client, and server.

When you tell a web client to request a resource from a server, whether by clicking a hyperlink or using
a browser address bar, you are submitting a uniform resource locator (URL, which is pronounced you-
are-ell) to the client. Here is an example of a URL:

http://localhost/cgi-bin/date.lua?num=3

In this example, http:// is the scheme, localhost is the server, /cgi-bin/date.lua is the path, and
num=3 is the query. In a hyperlink, the scheme and server are often left out, in which case, the browser
uses the values that apply to the page that contains the link. The question mark and query apply only
when a dynamic resource is requested and even then only sometimes.

When a web client like a browser contacts a web server, it submits a packet of information that starts
with a command that looks like this:

POST /cgi-bin/postform.lua HTTP/1.1

or this:

GET /cgi-bin/submit.lua?name=Natty&number=11 HTTP/1.1

469

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 469

Other types of web clients, such as curl, can request that the web server accept a file for upload using a
command like this:

PUT /address.html HTTP/1.1

In all cases, the command line is followed by headers that provide more details about the transaction.
The web server conveys the command and headers to the CGI program by means of the shell environ-
ment, a per-process collection of key/value pairs.

You can recognize the portion of text immediately following the command as the URL with the scheme
and server removed. In particular, notice in the GET example that the query is intact. This is one way of
transferring user-provided information to the web server.

The other way of conveying information to the server is to include it in the information packet. This is
how content is uploaded with the POST and PUT commands. As you can see from the examples of those
commands, the information doesn’t appear in the HTTP command. In this case, the headers are followed
by the submitted data with one blank line in between. This submitted data will be delivered to the CGI
program through a standard pipeline. This conduit connects the standard output of the web server to
the standard input of the CGI program, permitting a large amount of data to be streamed efficiently.

All of the content that the CGI program generates, regardless of the initial command, is returned to the
web server through a similar pipeline in the reverse direction. This model simplifies the creation of CGI
programs because it keeps network communication issues with the web server and application details
with the external program.

CGI Scripts on Unix-Type Systems
On Unix-type systems, scripts may begin with a line (known as a shebang) that specifies the path of
the interpreter that is to process the program. For example, if a Lua script is marked as executable and
begins with the following line, the system will invoke /usr/local/bin/lua with the name of the script
as an argument:

#!/usr/local/bin/lua

The Lua interpreter will skip the first line of a script if it begins with the # character. This can be a conve-
nience for general scripting because it allows you to launch a Lua script directly from a shell prompt
without explicitly invoking lua itself. With CGI, however, it is imperative, because without the special
first line, the system wouldn’t know what to do with the script. If you installed Lua in another directory,
make the appropriate change.

CGI Scripts on Windows
In general, Windows examines the extension of a script to determine how to launch it. You need to add
some entries into the registry to tell Windows how to properly invoke Lua scripts. The following registry
script will set things up for you. Make the appropriate changes if you installed Lua in a different location
from the one shown here. Create a new file called lua.reg and put the following lines into it:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\.lua]

470

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 470

@=”luafile”
“Content Type”=”application/lua”

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\.luac]
@=”luafile”
“Content Type”=”application/lua”

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\luafile]
@=”Lua script”

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\luafile\DefaultIcon]
@=”C:\\Program Files\\utility\\lua.ico,0”

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\luafile\Shell]

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\luafile\Shell\open]

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\luafile\Shell\open\command]
@=”\”c:\\program files\\utility\\lua.exe\” \”%1\””

To add the entries to the registry from the Windows Explorer, double-click the file. Alternatively, from
the command shell, you can issue this command:

start lua.reg

In either case, choose Yes when you are asked if you want to add the entries.

Additionally, for recent versions of Windows, an environment variable named PATHEXT can be aug-
mented with the .lua extension so that the system recognizes Lua scripts as executable. The value of
this variable is a semicolon-delimited series of extensions including the period. To edit it, go to the envi-
ronment variables dialog box in the control panel systems applet. After this is done, you can type the
name of a script directly without specifying its extension.

Installing a Web Server
You’ll need access to a working web server with CGI capability to proceed with the exercises in this
chapter. Even if your Internet service provider has given you everything you need to create and run CGI
scripts, you’ll likely find it beneficial to develop and test your Lua CGI scripts with a local web server.
Doing so will obviate the need to frequently upload scripts or edit them remotely.

The following sections focus on Apache and a small Win32 server named TinyWeb. Another excellent
multi-platform web server is Abyss from Aprelium Technologies. Abyss is highly configurable using a
web browser. Kepler is a Lua-based web server environment that will be covered briefly in a later section.

Apache
Apache is an excellent, free choice for your local web server. It operates smoothly and dependably on a
wide variety of platforms. Although it is highly configurable, its default settings should need little or no
adjustment after you install it. Should you decide to learn its advanced features, your knowledge can be

471

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 471

applied to Apache installations on any platform. Source and precompiled binary distributions are avail-
able from httpd.apache.org. If you are a Windows user, you’ll find the Apache setup program to be a
straightforward way of installing this web server on your system.

On Windows, Apache will install an entry in the programs menu. When started, this server will place an
icon in the task bar tray. You can right-click this tray icon to restart or stop the server. Apache on Unix-
type systems will typically have a script in the /etc/rc.d directory to manage starting, restarting, and
stopping the server.

After installing Apache, you’ll need to make an adjustment to its configuration file, httpd.conf, to
make it work with Lua.

For security reasons, Apache will not make its own environment fully available to the CGI programs it
launches. This means that the usual LUA_PATH and LUA_CPATH environment variables will not be avail-
able to CGI scripts by default. One way or another, you’ll need to let Lua scripts know where to look
for the modules they need. One way would be to explicitly assign values to the package.path and
package.cpath variables at the beginning of scripts that require modules. Alternatively, Apache lets
you set environment variables for all or parts of its web directory tree. Here you will make the LUA_PATH
and LUA_CPATH variables known throughout the entire tree. First, retrieve the current values of the vari-
ables. From a command shell, execute the following to scroll through the environment listing:

set | more

If your system has grep, you can use it as follows to focus the output:

set | grep LUA

Back up Apache’s configuration file, httpd.conf, and then open it for editing. You’ll find this file in the
conf subdirectory of Apache’s installation directory. Locate the following line:

<Directory />

Beneath it, add two lines such as the following, making the appropriate substitutions for your system’s
particular values and platform:

SetEnv LUA_CPATH “/usr/local/lib/lua/5.1/?.so”
SetEnv LUA_PATH “?.lua;/usr/local/lib/lua/5.1/?.lua”

Restart Apache to make the changes take effect.

TinyWeb
For Windows users looking for a very lightweight web server with CGI capabilities, TinyWeb from Ritlabs
may be a suitable choice. It is free, easy to install, and consumes few resources. Obtain the tinyweb.zip
package from www.ritlabs.com/en/products/tinyweb.

In a command shell, set up your server environment as follows:

The instructions shown here assume this will be beneath c:\program files.

472

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 472

c:
cd “\program files”
md tinyweb
cd tinyweb
md package
md htdocs
md log
cd htdocs
echo Hello from TinyWeb > index.html
md cgi-bin
md images
md scripts
md css

To start up properly, TinyWeb needs to find an index file. The one created here is not valid HTML, but it
will satisfy the startup requirement.

Unzip the tinyweb package in the package subdirectory as follows:

The 7-zip utility is used here, but any unzipping utility should work.

cd ..\package
7z x tinyweb.zip

Start TinyWeb in its log directory as follows:

c:
cd “\program files\tinyweb\log”
start ..\package\tiny “c:\program files\tinyweb\htdocs”

The argument to tiny specifies the document root. It must be fully specified. You can create a batch file
with these lines to facilitate starting the web server.

TinyWeb buffers its log files, so in general, you won’t be able to read log entries right after submitting
a request to the server or encountering a problem. If you need to do this, obtain sync, which is a free
command-line program from www.sysinternals.com. Place sync in a directory that is in the Windows
search path, for example the utility directory recommended in Chapter 1. Invoking the following com-
mand commits all pending file buffers on the C drive:

sync c

To stop TinyWeb, terminate it with the task manager.

Every file in TinyWeb’s cgi-bin directory (and in every subdirectory you may make beneath it) needs
to be a program that can be run from the command shell. As long as Lua has been registered properly (as
described in the “CGI Scripts on Windows” section earlier in this chapter), you should have no problems
running the Lua scripts you place in this directory. TinyWeb does not filter its own environment when
executing a CGI program, so it will pass the LUA_PATH and LUA_CPATH variables intact to the Lua scripts
it runs. Consequently, nothing special needs to be done to make sure that your Lua CGI scripts will be
able to successfully load the modules they need.

473

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 473

Testing Your Web Server with Static Content
In the following sections, you will be accessing your web server by means of a web browser. Make sure
your web server has been started before proceeding. The following examples assume you have installed
the web server on your own machine. By default, a web server will listen on all network interfaces of the
machine on which it is running. For example, if the machine you start the web server on is part of a net-
work and is reachable with the name schubert, then the web server can be reached from a browser
with both this:

http://localhost/

and this:

http://schubert/

The localhost address works only on the same machine as the web server. The following examples
assume this to be the case. Make the appropriate changes if your setup is different.

Make sure that your web server is functioning properly by asking it for a static page. Point your browser
to the following URL to verify that it is serving static pages correctly:

http://localhost/

In the case shown here, the trailing slash following the server name means that you are asking for the
default page in the web server’s document root, a directory that the web server is configured to treat as
the topmost folder. Usually this refers to a page named index.html, although this can typically be con-
figured to something else. If your browser reports that it cannot establish a connection with localhost,
your web server has not been started or is somehow not listening on the right interface or port. If it
reports a permissions problem, then the server doesn’t have authority to read the page. In most cases,
the error log of the web server will contain more details about the problem than will be reported to the
client. Other problems here will almost certainly involve a visit to the web server’s documentation.

Serving Dynamic Web Content
When your server is delivering static pages properly, test it to see how it does with CGI scripts. This is
where you’ll start using Lua in a web server environment.

Try It Out Creating a Simple Time Server
In this Try It Out, you arrange to have your web server call Lua to fulfill a dynamic resource request.
Lua will generate a plain-text page with the appropriate header and a line containing the server time.

1. In your web server’s cgi-bin directory, make a file called date.lua with the following line:

io.write(‘Content-Type: text/plain\n\n’, os.date(), ‘\n’)

2. On Unix-type systems that require scripts to have an interpreter path, insert the following line
at the top:

474

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 474

If lua is installed somewhere else on your system, modify this line accordingly.

#!/usr/local/bin/lua

3. On Unix-type systems, mark the script as readable and executable by the web server, as follows:

chmod a+rx date.lua

4. Request the following resource with your web browser:

http://localhost/cgi-bin/date.lua

The response should be a simple, unformatted display of the system date.

How It Works
If you receive the system date in an unadorned web page, the web server correctly identified date.lua as
a script, executed it with Lua, and returned the content that the script generated. In this case, the ground-
work is in place to develop more advanced CGI programs in Lua. You may want to examine your web
server’s log to see how it records a successful CGI transaction.

If you don’t receive the expected page, note the response that you get instead. Your browser will typically
report a status code, but you should consult your web server’s error log for more details. The following
section covers the problems you are most likely to encounter.

Problems with CGI Scripts
A response from a web server is always accompanied by a three-digit response code. Values in the 200s
indicate success; values in the 400s and 500s indicate problems.

When a CGI request goes bad, the error that is reported is generally one of these:

400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
500 Internal Server Error

Problems with CGI scripts usually involve one of the following usual suspects:

❑ The server mistakes the script for a static page. In this case, the server happily returns the file to
your browser, which in turn may display the source code or ask you where you want to save it.
This is a web server configuration issue. Remedy this by taking the steps needed to convince
your web server that it’s dealing with a CGI program, which generally entails placing the script
in the designated cgi-bin directory or configuring the server to allow CGI execution in the
script’s directory.

❑ The server doesn’t have authority to run the script. This stems from a permissions problem
with the operating system and results in a 403 Forbidden response. When it comes to CGI pro-
grams, getting permissions right is an important task. You should run the web server as a user
with very limited authority, because CGI scripts can be a source of security breaches. On Unix-
type systems, this user (often nobody) should never be a member of groups that would widen its
authority. However, this can make it tricky for a CGI developer to assign correct privileges to a

475

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 475

script. A reasonable policy is to require all CGI scripts to be cleared by an administrator who has
the necessary privileges to place the script in the cgi-bin directory and to change the script’s
permissions to make it executable by the web server.

❑ The script itself has an error. Lua’s error message may be reported as a web page, or you may
get a rather vague message like Premature end of script headers. In the latter case, the web
server’s error log should contain the full error message. Running a CGI script from the command
shell can be a good way to make sure it doesn’t contain errors. In general, it’s easier to diagnose
problems this way than in a web server environment. With a little effort, more sophisticated CGI
scripts that depend on environment variables and possibly standard input can be made to work
as well. If you are simply interested in catching syntax errors, you can use luac to compile it.

❑ Your CGI script may have executed properly, but it sent back content that your browser doesn’t
know how to render. For example, content of type text/plain cannot be displayed by older
versions of Internet Explorer.

❑ On Unix-like systems, or on Windows when you have configured Apache to emulate Unix-type
behavior, your Lua script may lack or have an improperly specified shebang. This is the first
line of the script that looks like #!/usr/local/bin/lua.

Asynchronous Calls to the Server
The previous example uses a standard synchronous call to the web server to request the output of the
date.lua CGI script. Each time you refresh the page, the contents of the page (which is not a whole lot
in this example) are entirely replaced. Modern browsers support an asynchronous method of calling the
server as well. In this case, your browser issues a standard request of the server, but rather than waiting
for the server’s response, it returns control immediately. Then, when the server does respond, a handler
is called that can programmatically deal with the returned content, often by making localized changes to
the displayed page.

In the following examples, a JavaScript page named AjaxRequest.js will be used to simplify the process
of making asynchronous calls. It can be obtained freely from here:

http://www.ajaxtoolbox.com/request/full/AjaxRequest.js

If it doesn’t already exist, create a directory named scripts beneath the document root of your web
server. Place AjaxRequest.js in this directory. You can test whether it is properly accessible by request-
ing it explicitly. Point your browser to the following URL and verify that the script is returned:

http://localhost/scripts/AjaxRequest.js

Try It Out Implementing the Time Server using AJAX
Enhance the previous server time example with an asynchronous call to the server. To do this, you’ll use
HTML which links in the AJAX toolkit script.

1. With your text editor, create a new file and copy the following lines to it:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

476

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 476

<head>

<title>Server time</title>

<script type=”text/javascript” src=”/scripts/AjaxRequest.js”></script>

<script type=”text/javascript”>

function NodeReplace(NodeStr, ValStr) {
var El = document.getElementById(NodeStr);
var TxtNode = document.createTextNode(ValStr);
El.replaceChild(TxtNode, El.firstChild);

} // NodeReplace

function Get(UrlStr, NodeStr) {
function LclPrint(Req) {
NodeReplace(NodeStr, Req.responseText);

} // LclPrint
var Req = { ‘url’:UrlStr, ‘onSuccess’:LclPrint }
AjaxRequest.get(Req);
return false;

} // Get

</script>

</head>

<body>

<p>Server
time <i> </i></p>

</body>

</html>

2. Save this file as date.html in your web server’s document root directory. Request the follow-
ing page with your browser:

http://localhost/date.html

3. Click the Server Time hyperlink at intervals to update the time display.

How It Works
Clicking the hyperlink initiates a request for the output of the date.lua script. Rather than waiting for
this call to return, the JavaScript call to the server returns immediately. When the updated system time
does arrive, only its designated area (specifically, the span block with the id value “time”) on the page is
updated. Each time you click the server time link, another call is made, and when the response is received,
the contents of the time compartment are updated. The browser page history is not modified, which
means that clicking your browser’s back button will not take you back to a page with the previous time.

AJAX is strictly a client-side mechanism. From the web server’s point of view, the synchronous and
asynchronous calls to date.lua are indistinguishable.

477

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 477

If, as you study this example, you begin to imagine a browser that supports a <script type=”text/lua”>
script tag and the use of Lua coroutines as an elegant replacement for event handlers, you are not alone.
But for now, the province of browser scripting belongs to JavaScript.

For security reasons, an asynchronous call cannot be made to a web server other than the one that served
the current page. If it’s crucial for you to contact multiple servers from your application, you may need to
add a level of indirection by sending all of your asynchronous requests to only one server. This server can
then make calls to other web servers and return the content to the original requester.

Producing a Calendar Dynamically
A CGI script is essentially a noninteractive program and can call any library function that applies in
that context. The following example demonstrates this by presenting a script that, except for producing
HTML rather than plain text, functions just as well in a command shell as a web server environment.

Try It Out Displaying a Calendar of the Current Month
Prepare a script that displays the current month with the current day highlighted. The script will make
use of the os.date function to determine attributes of the current month, such as the day of week that
the first day of the month falls on.

1. Save the following file as calendar.lua to your web server’s cgi-bin directory:

#!/usr/local/bin/lua

local Cn = {}

Cn.HdrStr = [[Content-Type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

<head>

<title>Calendar</title>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

<link rel=”stylesheet” href=”/css/general.css” type=”text/css” />

<style type=”text/css”>

table.data td {border-right : 1px solid; border-bottom : 1px solid;
border-color:inherit; color:#404040; background-color:#FFFFFF;
vertical-align:top; width:14%;}

table.data td.today {background-color:#f0f0ff;}

table.data td.name {font-weight:bold; text-align:center; color:#505060;

478

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 478

background-color:#f0f0ff;}

table.data td.edge {width:15%;}

</style>

</head>

<body>

]]

Cn.FtrStr = “</body>\n\n</html>”

local DaysInMonth = { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

-- For the specified month and year, this function returns the day of week of
-- the first day in the month, and the number of days in the month.

local function Calendar(Year, Month)
assert(Year > 1900 and Year < 2100, “Year out of range”)
assert(Month >= 1 and Month <= 12, “Month out of range”)
local Rec = os.date(“*t”, os.time{year = Year, month = Month, day = 1})
local DayMax = DaysInMonth[Rec.month]
if DayMax == 0 then
DayMax = math.mod(Rec.year, 4) == 0 and 29 or 28

end
return Rec.wday, DayMax

end

local Today = os.date(“*t”)
local Dow, DayMax = Calendar(Today.year, Today.month)

io.write(Cn.HdrStr)

io.write(‘<table class=”data shade” border=”0” cellspacing=”0” ‘,
‘cellpadding=”5” summary=”” width=”100%”>\n’,
‘<tbody>\n’,
‘<tr><th colspan=”7”>’, os.date(‘%B’), ‘</th></tr>\n’,
‘<tr>\n’)

local Base = 8 - Dow -- Map day to column
for Col = 1, 7 do
local Wd = (Col == 1 or Col == 7) and ‘ edge’ or ‘’
io.write(‘<td class=”name’, Wd, ‘“>’, os.date(“%a”,
os.time{year = Today.year, month = Today.month, day = Base + Col}),
‘</td>\n’)

end
io.write(‘</tr>\n’)
local Day = 2 - Dow -- Map day to column
while Day <= DayMax do
io.write(‘<tr>’)
for Col = 1, 7 do
io.write(Today.day == Day and ‘<td class=”today”>’ or ‘<td>’,
(Day >= 1 and Day <= DayMax) and Day or ‘ ’, ‘</td>\n’)

479

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 479

Day = Day + 1
end
io.write(“</tr>\n”)

end
io.write(‘</tbody></table>\n’)
io.write(Cn.FtrStr)

2. This script and others in this chapter generate web pages that refer to the following style sheet.
Create a subdirectory named css in your web server’s document. Save the following contents
to a file named general.css in the css directory:

body {background-color : #FFFFFF; color : #404040; font: 9pt/13pt arial;
margin-left:4em; margin-top:2em; margin-bottom:1em; margin-right:4em;}

.hdr {padding:3pt; padding-left:1em; font-weight:bold; border-style: solid;
border-width:1px;}

.shade {color:#505060; background-color:#D0D0F0; border-color:#B0B0D0;}

.white {background-color:#FFFFFF;}

.top {vertical-align:top;}

.note {font: 8pt/12pt arial; color: #606060; margin-top: 0px;}

h1 {font: 11pt/15pt arial; color: #606060; font-weight:bold;}

.right {text-align: right;}

span.super {vertical-align: super; font-size: smaller;}

table.data {border-style:solid; border-top-width:1px; border-left-width:1px;
border-right-width:0px; border-bottom-width:0px;}

table.data tbody {border-color:inherit; font: 9pt/13pt arial;}

table.data tr {padding-top:0px; padding-bottom:0px; border-color:inherit;}

table.data th {border-right : 1px solid; border-bottom : 1px solid;
border-color:inherit;}

table.data td {border-right : 1px solid; border-bottom : 1px solid;
border-color:inherit; color:#404040; background-color:#f6f6ff;}

table.data td.in {padding-left:16px;}

form table {border: 1px solid; padding: 6px;}

form table td {border-right: 0px; border-bottom: 0px;}

form table td.label {text-align: right; font-weight:bold;}

form table td.input {text-align: left;}

480

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 480

3. Verify that your web server can read this page by requesting the following page:

http://localhost/css/general.css

Figure 15-1 shows the kind of page you should see when you request the following URL with your
browser:

http://localhost/cgi-bin/calendar.lua

Figure 15-1

How It Works
The calendar script is invoked by the web server as a CGI program. It uses date arithmetics to construct
the calendar’s attributes, and writes out this calendar using a styled table. Notice that the function
Calendar is independent of the script’s web context. This makes it a prime candidate for inclusion in a
general date module.

Producing Charts Dynamically
Charts and other graphs in your web pages are a great way to present at-a-glance data aggregation and
to offer insights into informational patterns. The gd graphics library that you became familiar with in
Chapter 12 is ideally suited for this because with it you can create images programmatically. In this sec-
tion, you’ll learn how to use the gd library to generate a bar chart that can be presented in a dynamically
built web page.

Usually when you place a graph based on some live data in a web page, you want supporting textual
details to accompany it. For example, in a business environment, you may want to produce a web page
that details recent customer or vendor transactions. In this page, you may want to place a bar chart that
summarizes this activity. Embedding the image right into the dynamically created page would be nice,
but this isn’t the way HTML works. An image in a web page must be referenced as a separate resource

481

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 481

using the src attribute with the tag. This presents a problem, because you’ve got two dynami-
cally generated resources — the web page and the chart — that must somehow remain synchronized.

The solution presented here works as follows. When a request is made for a dynamic page, the appropri-
ate CGI script is called. It produces a web page with the appropriate details, usually gleaned from a
database. In this page, there is a reference to the image. The src attribute of the tag identifies a
CGI script that will actually produce the graph. The details of what the graph should look like are sub-
mitted as part of the query. This way, the web page details and the query that specifies the appearance of
the graph are bound together and any synchronization issues are avoided.

In the cgi-bin directory of your web server, create a file with the following contents and name it
bar.lua, marking the file as executable and readable by the web server where necessary:

#!/usr/local/bin/lua

require “gd”
require “iomode”

io.modeset(io.stdin, “binary”)
io.modeset(io.stdout, “binary”)

local function LclPng(Str)

local ValMax = 1 -- Prevent subsequent division by zero
local ValList = {}
local ValCount = 0
local ClrList = {}
local Factor, Ht, Wd, BarWd, Gap, Hnd, PngStr, ErrStr

Str = “_” .. string.gsub(string.lower(Str), “_”, “__”) .. “_”

local function LclPrm(Prefix, Default)
local PatStr = “_” .. Prefix .. “(%d+)_”
local Pos, Pos, NumStr = string.find(Str, PatStr)
return Pos and tonumber(NumStr) or Default

end

Ht = LclPrm(“h”, 200)
BarWd = LclPrm(“b”, 12)
Gap = LclPrm(“g”, 4)
for ValStr in string.gmatch(Str, “_([%.%d%:]+)_”) do
local Pos, NumStr, ClrStr, Val
Pos, Pos, NumStr, ClrStr = string.find(ValStr, “([%d%.]+)%:(%d+)”)
Val = tonumber(Pos and NumStr or ValStr)
if Val > ValMax then
ValMax = Val

end
table.insert(ValList, { Val, tonumber(ClrStr) })
ValCount = ValCount + 1

end
if ValCount > 0 then
Wd = ValCount * (Gap + BarWd) + Gap + 1

482

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 482

Factor = (Ht - Gap) / ValMax
Hnd = gd.createPalette(Wd, Ht)
if Hnd then
-- Background is first color allocated
ClrList.White = Hnd:colorAllocate(255, 255, 255)
ClrList.Gray = Hnd:colorAllocate(150, 150, 150)
ClrList.Black = Hnd:colorAllocate(0, 0, 0)
-- Allocate colors specified in query string
for Mode, RdStr, GrStr, BlStr in string.gmatch(Str,
“_([cfl])(%x%x)(%x%x)(%x%x)_”) do
local Clr = Hnd:colorAllocate(tonumber(RdStr, 16),
tonumber(GrStr, 16), tonumber(BlStr, 16))

if Mode == ‘c’ then
table.insert(ClrList, Clr)

elseif Mode == ‘l’ then
ClrList.Line = Clr

else
ClrList.Fill = Clr

end
end
local ClrDef = ClrList[1] or ClrList.Gray
ClrList.Line = ClrList.Line or ClrList.Gray
-- By default, background color is the first color allocated. If a fill
-- color was specified, fill in the image now.
if ClrList.Fill then
Hnd:filledRectangle(1, 1, Wd, Ht, ClrList.Fill)

end
local X = Gap
for J = 1, ValCount do
local Y = Factor * ValList[J][1]
local ClrPos = ValList[J][2] or 0
local Clr = ClrList[ClrPos] or ClrDef
Hnd:filledRectangle(X, Ht - Y, X + BarWd,
Ht, ClrList.Line)

Hnd:filledRectangle(X + 1, Ht + 1 - Y, X + BarWd - 1,
Ht, Clr)

X = X + Gap + BarWd
end
-- Create border around image
Hnd:line(0, 0, 0, Ht, ClrList.Line)
Hnd:line(0, 0, Wd, 0, ClrList.Line)
Hnd:line(Wd - 1, 0, Wd - 1, Ht - 1, ClrList.Line)
Hnd:line(0, Ht - 1, Wd - 1, Ht - 1, ClrList.Line)
-- Load image into Lua string
PngStr = gd.pngStr(Hnd)
if not PngStr then
ErrStr = “Error generating PNG image.”

end
Hnd = nil

else
ErrStr = “Error creating palette-based PNG image.”

end

483

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 483

else
ErrStr = “No values retrieved from query string.”

end
return PngStr, ErrStr

end

local Http, PngStr, ErrStr, QueryStr

Http = os.getenv(“SERVER_SOFTWARE”)
QueryStr = arg[1] or os.getenv(“QUERY_STRING”)
if QueryStr then
PngStr, ErrStr = LclPng(QueryStr)

else
ErrStr = “Error retrieving query string.”

end
if PngStr then
if Http then
io.write(‘Date: ‘, os.date(), ‘\r\n’)
io.write(‘X-Scripting-Engine: ‘, _VERSION, ‘\r\n’)
io.write(‘X-Graphics-Library: ‘, gd.VERSION, ‘\r\n’)
io.write(“Content-Transfer-Encoding: binary\r\n”)
io.write(‘Content-Length: ‘, string.len(PngStr), ‘\r\n’)
io.write(“Content-Type: image/png\r\n\r\n”);

end
io.write(PngStr)

else
io.write(Http and ‘Content-Type: text/plain\r\n\r\n’ or ‘’, ErrStr, “\r\n”)

end

This script uses the gd library to create a simple bar chart in PNG format based only on the arguments
that are passed to it. This makes it easy for other dynamic scripts to include charts since no images need
to be cached on the server.

Notice the following lines in bar.lua:

Http = os.getenv(“SERVER_SOFTWARE”)
QueryStr = arg[1] or os.getenv(“QUERY_STRING”)

These lines let the script know with a moderate degree of certainty whether it is being run in a web
server environment or in a command shell. If Http is not nil, an HTTP header will be written before the
PNG file contents. This is the response a web browser expects from its request. This technique is useful
when developing a CGI script. It is generally easier to develop a script while working in a command
shell than while working with a web server, and this practice permits the script to be run in either envi-
ronment without modification.

To test bar.lua from a command shell, invoke it as in the following example:

lua bar.lua 12_23_34 > test.png

484

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 484

The string of numbers delimited with underscores is used by bar.lua to construct a simple bar chart.
You can view the resulting test image with a web browser by opening it as a file.

To generate the same chart in a web server environment, request the following:

http://localhost/cgi-bin/bar.lua?12_23_34

The question mark after bar.lua in this reference separates the resource name from the arguments to be
submitted by the web server to the CGI script.

To include a chart in a web page, reference it as follows:

The arguments to a CGI script are conventionally divided into key/value pairs. For example:

height=200&width=500

To save some space in the URL, the bar chart script deviates from this practice and uses its own format.
The argument string comprises a series of tokens that are separated from one another with an underscore
character. Basically, you specify the height of each vertical bar in order. The following sequence creates a
chart with bars of height 12, 23, and 34, scaled so that the tallest bar just fits into the height of the chart:

12_23_34

To specify the same chart with a non-default height, use a sequence like this:

H150_12_23_34

The token H150 indicates a chart height of 150 pixels.

The following table shows all of the supported tokens. Prefixes and hexadecimal numbers can be speci-
fied in either uppercase or lowercase.

Prefix Numeric Type Description Default

H Integer Chart height in pixels 200

B Integer Bar width in pixels 12

G Integer Gap between bars in pixels 4

C Hexadecimal Bar color 969696

F Hexadecimal Chart background fill color FFFFFF

L Hexadecimal Chart line color 969696

Float or Integer Height of bar

485

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 485

The color prefixes (C, F, and L) are followed by a six-digit hexadecimal number in which the first pair
of digits is red, the middle pair is green, and the last pair is blue. For example, the following specifies
bright red for the bar color:

CFF0000

The first bar color value that you specify is used for each of the bars, unless the bar height token is fol-
lowed by a colon and a bar color position. For example, this sequence results in a chart with three bars,
with the first and last bars in red and the middle bar in blue:

CFF0000_C0000FF_12_23:2_34

Try It Out Creating a Simulated Report with Bar Chart
1. Using the bar chart script, generate a live report. Create a new file and copy in these lines:

#!/usr/local/bin/lua

local Cn = {}

Cn.HdrStr = [[Content-Type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

<head>

<title>Bogosity Index</title>

<link rel=”stylesheet” href=”/css/general.css” type=”text/css” />

</head>

<body>

]]

Cn.FtrStr = “</body>\n\n</html>”

-- This function returns an indexed table and bar chart specifier. The table
-- contains DayCount (default 31) simulated data records. Each record is an
-- indexed table of the form {date, value}. The chart specifier is a string
-- with each value separated by an underscore.

local function LclDataRetrieve(DayCount)
DayCount = DayCount or 31
local Lo, Hi, SecPerDay = -0.3, 2.3, 60 * 60 * 24
local Tm = os.time() - DayCount * SecPerDay
local ValList, RecList = {}, {}

486

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 486

for J = Lo, Hi, (Hi - Lo) / DayCount do
local DtStr = string.gsub(os.date(“%A %d %B”, Tm), “ 0”, “ “)
Tm = Tm + SecPerDay
local Val = 100 + math.floor(300 * math.sin(J) + math.random(0, 60))
table.insert(RecList, {DtStr, Val})
table.insert(ValList, Val)

end
return RecList, table.concat(ValList, “_”)

end

local Out = io.write
local CnColCount = 3
local List, UrlStr = LclDataRetrieve()
local RowCount = #List
local Split = math.ceil(RowCount / CnColCount)

Out(Cn.HdrStr, ‘<h1>Recent Bogon Flux Averages</h1>\n’,
‘<div><img src=”/cgi-bin/bar.lua?h50_cD0D0F0_l9090B0_ff6f6ff_’, UrlStr,
‘“ alt=”Bogosity chart” /></div>\n’,
‘<p class=”note”>Average bogon flux values (109 ‘,
‘bogons / m2) from ‘, List[1][1],
‘ to ‘, List[RowCount][1], ‘</p>\n’,
‘<table summary=””><tbody><tr>\n’)

local Row = 1
for Col = 1, CnColCount do
Out(‘<td><table class=”data shade” border=”0” cellspacing=”0” ‘,
‘cellpadding=”5” summary=””>\n’,
‘<tbody>\n’,
‘<tr><th>Date</th><th>Bogon Flux</th></tr>\n’)
for J = 1, Split do
local Dt, Val
local Rec = List[Row]
if Rec then
Dt, Val = Rec[1], Rec[2]
Row = Row + 1

else
Dt, Val = “ ”, “ ”

end
Out(‘<tr><td>’, Dt, ‘</td><td class=”right”>’, Val, ‘</td></tr>\n’)

end
Out(‘</tbody>\n</table></td>\n’)

end
Out(‘</tr></tbody></table>\n’, Cn.FtrStr)

2. Save this file as bogosity.lua in your web server’s cgi-bin directory. As always, make sure
the permissions are set so that the web server can read and execute the script.

3. Request http://localhost/cgi-bin/bogosity.lua in your web browser. Figure 15-2
shows the kind of page you can expect.

487

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 487

Figure 15-2

How It Works
When you request the bogosity.lua resource, your web server recognizes it as a CGI script. During
execution, it obtains a table of information to display. In this case, the data is generated internally, but
it would be typical for this information to come from a database, system logs, or some other external
source. It then writes out the text of what will become a valid HTML page. Note that the bar chart
graphic is not created in this step; it is only specified in the tag. When the browser displays the
page, it makes another call to the server to obtain the chart. All of the information needed to produce
the graph is passed along with the URL.

Even though the contents of this page are nonsensical, the script provides a good platform on which to
base dynamic, informative pages.

A graph generated this way is limited by the amount of descriptive information you can convey to the
script that creates it. Browsers and servers may each impose limits on the number of characters that can
be transferred as part of URL. If you must submit more information than can fit within several hundred

488

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 488

characters, you may need to devise an alternate method of describing the graph. For example, you could
encode the bar heights in base 64 (a common method of expressing binary data using a set of 64 charac-
ters). Each bar could then be specified with two such characters (allowing a range from 0 to 4095), mak-
ing the bar height delimiters unnecessary. Additionally, you could predefine a color table in bar.lua
and specify colors by table offset rather than 24-bit values.

Interactive CGI Applications
The dynamic pages you’ve generated so far have not been interactive. You’ll now learn about HTML
forms that allow you to write scripts that process information provided by the user. HTML forms are
rather primitive when compared with most desktop applications, and the simple HTTP request/response
model that works so well with static content is decidedly clumsy with interactive content. However,
even with its limitations, the interactive web is an integral part of the Internet experience.

CGI Helper Routines
The following file, cgi.lua, includes several routines that simplify writing CGI scripts in Lua. Place it
in your server’s module directory (as discussed in Chapter 7).

local Cgi = {}

-- Return a urlencoded copy of Str. For example,
-- “Here & there + 97% of other places”
-- is encoded as
-- “Here%20%26%20there%20%2B%2097%25%20of%20other%20places”

function Cgi.Encode(Str)
return string.gsub(Str, ‘%W’, function(Str)
return string.format(‘%%%02X’, string.byte(Str)) end)

end

-- Returns a urldecoded copy of Str. This function reverses the effects of
-- Cgi.Encode.

function Cgi.Decode(Str)
Str = string.gsub(Str, ‘%+’, ‘ ‘)
Str = string.gsub(Str, ‘%%(%x%x)’, function(Str)
return string.char(tonumber(Str, 16)) end)

return Str
end

-- Returns an escaped copy of Str in which the characters &<>” are escaped for
-- display in HTML documents.

function Cgi.Escape(Str)
Str = string.gsub(Str or “”, “%&”, “&”)
Str = string.gsub(Str, ‘%”’, “"”)
Str = string.gsub(Str, “%<”, “<”)
return string.gsub(Str, “%>”, “>”)

end

489

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 489

-- This function returns an associative array with the parsed contents of the
-- urlencoded string Str. Multiple values with the same name are placed into an
-- indexed table with the name.

local function LclParse(Str)
local Decode, Tbl = Cgi.Decode, {}
for KeyStr, ValStr in string.gmatch(Str .. ‘&’, ‘(.-)%=(.-)%&’) do
local Key = Decode(KeyStr)
local Val = Decode(ValStr)
local Sub = Tbl[Key]
local SubCat = type(Sub)
-- If there are multiple values with the same name, place them in an
-- indexed table.
if SubCat == “string” then -- replace string with table
Tbl[Key] = { Sub, Val }

elseif SubCat == “table” then -- insert into existing table
table.insert(Sub, Val)

else -- add as string field
Tbl[Key] = Val

end
end
return Tbl

end

-- Returns an associative array with both the GET and POST contents which
-- accompany an HTTP request. Multi-part form data, usually used with uploaded
-- files, is not currently supported.

function Cgi.Params()
local PostLen, GetStr, PostStr, KeyList, Obj
KeyList = {
‘PATH_INFO’,
‘PATH_TRANSLATED’,
‘REMOTE_HOST’,
‘REMOTE_ADDR’,
‘GATEWAY_INTERFACE’,
‘SCRIPT_NAME’,
‘REQUEST_METHOD’,
‘HTTP_ACCEPT’,
‘HTTP_ACCEPT_CHARSET’,
‘HTTP_ACCEPT_ENCODING’,
‘HTTP_ACCEPT_LANGUAGE’,
‘HTTP_FROM’,
‘HTTP_HOST’,
‘HTTP_REFERER’,
‘HTTP_USER_AGENT’,
‘QUERY_STRING’,
‘SERVER_SOFTWARE’,
‘SERVER_NAME’,
‘SERVER_PROTOCOL’,
‘SERVER_PORT’,
‘CONTENT_TYPE’,
‘CONTENT_LENGTH’,
‘AUTH_TYPE’ }

490

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 490

Obj = {}
for J, KeyStr in ipairs(KeyList) do
Obj[KeyStr] = os.getenv(KeyStr)

end
if not Obj.SERVER_SOFTWARE then -- Command line invocation
Obj.QUERY_STRING = arg[1]
PostStr = arg[2]

elseif “application/x-www-form-urlencoded” == Obj.CONTENT_TYPE then
-- Web server invocation with posted urlencoded content
PostLen = tonumber(Obj.CONTENT_LENGTH)
if PostLen and PostLen > 0 then
PostStr = io.read(PostLen)

end
end
PostStr = PostStr or “”
Obj.Post = LclParse(PostStr)
Obj.POST_STRING = PostStr
GetStr = Obj.QUERY_STRING or “”
Obj.Get = LclParse(GetStr)
return Obj

end

return Cgi

Your CGI scripts can then make use of this module as follows:

local Cgi = require(“cgi”)

The module provides some routines that facilitate the transfer of information between the script and the
web server. In particular, the Cgi.Params function makes it easy to collect information that a user has
submitted in a form. Cgi.Escape prepares text for display in an HTML document by replacing the
ampersand, less than, greater than and double quote characters with symbolic replacements. Similarly,
Cgi.Encode makes character substitutions to prepare text for inclusion in a URL. This process is known
as urlencoding. Cgi.Decode reverses this process to extract information.

The following Try It Out demonstrates how user input is processed by a CGI script.

Try It Out Specifying a Simple Form
The advantages of inspecting Lua values apply as much to web applications as to other kinds of pro-
grams. Here, you will specify a form in a static web page. When you submit the form, a request for the
cgishow.lua resource is made. This is a CGI program that simply displays the values that are part of
this request.

1. Place the following form.html file in the document root of your web server, and then make
sure it is readable by the web server:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

491

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 491

<head>

<title>Simple HTML Form</title>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

<link rel=”stylesheet” href=”/css/general.css” type=”text/css” />

</head>

<body>

<h1>Simple form demonstration</h1>

<form action=”/cgi-bin/cgishow.lua?Number=42” method=”get”>

<div><input type=”hidden” name=”Number” value=”42” /></div>

<table class=”shade” summary=””><tbody>

<tr>

<td class=”label”>User</td>

<td><input type=”text” size=”20” name=”User” /></td>

<td class=”label”>Password</td>

<td><input type=”password” size=”20” name=”Pass” /></td>

</tr>

<tr>

<td class=”label top”>Site(s)</td><td>

<select name=”Site” size=”4” multiple=”multiple”>
<option value=”1”>Abbey of Pomposa, near Ferrara</option>
<option value=”2”>Castle del Monte, Apulia</option>
<option value=”3”>Cathedral of Pisa, Pisa</option>
<option value=”4”>Chancellery Palace, Rome</option>
<option value=”5”>Church of San Spirito, Florence</option>
<option value=”6”>Doge’s Palace, Venice</option>
<option value=”7”>Ducal Palace, Urbino</option>
<option value=”8”>Florence Cathedral, Florence</option>
<option value=”9”>Leaning Tower, Pisa</option>
<option value=”10”>Orvieto Cathedral, Orvieto</option>
<option value=”11”>Ospedale Degli Innocenti, Florence</option>
<option value=”12”>Palazzo Strozzi, Florence</option>
<option value=”13”>Pazzi Chapel, Florence</option>
<option value=”14”>Piazza del Campo, Siena</option>
<option value=”15”>Ponte Vecchio, Florence</option>

492

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 492

<option value=”16”>S. Andrea, Mantua</option>
<option value=”17”>S. Maria Della Pace, Rome</option>
<option value=”18”>S. Maria Novella, Florence</option>
<option value=”19”>S. Maria degli Angeli, Florence</option>
<option value=”20”>San Lorenzo, Florence, Florence</option>
<option value=”21”>San Sebastiano, at Mantua</option>
<option value=”22”>San Zeno Maggiore, Verona</option>
<option value=”23”>St. Mark’s, Venice</option>

</select>

</td>

<td class=”label top”>Remarks</td>

<td><textarea name=”Text” rows=”3” cols=”32”></textarea></td>

</tr>

<tr>

<td class=”label”>Artist</td>

<td colspan=”3”>

<input type=”radio” name=”Artist” value=”1” checked=”checked” />
Filippo Brunelleschi

<input type=”radio” name=”Artist” value=”2” />Leon Battista Alberti
<input type=”radio” name=”Artist” value=”3” />Donato Bramante

</td>

</tr>

<tr>

<td class=”label”>Art</td>

<td colspan=”3”>

<input type=”checkbox” name=”Art” value=”Arch” checked=”checked” />Architecture
<input type=”checkbox” name=”Art” value=”Paint” />Painting
<input type=”checkbox” name=”Art” value=”Sculpt” />Sculpture

</td>

</tr>

<tr>

<td class=”right” colspan=”4”><input type=”submit” value=”Submit” /></td>

</tr>

493

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 493

</tbody></table>

</form>

</body>

</html>

2. Place the following cgishow.lua file in the web server’s cgi-bin directory, and then make
sure it is readable and executable by the web server:

#!/usr/local/bin/lua

local Cgi = require(“cgi”)
require(“show”)

local Cn = {}

Cn.HdrStr = [[Content-Type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

<head>

<title>CGI Environment</title>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

<link rel=”stylesheet” href=”/css/general.css” type=”text/css” />

</head>

<body>

]]

Cn.FtrStr = “</body>\n\n</html>”

local Prm = Cgi.Params()
local List = {}
ObjectDescribe(List, Prm, “CGI parameters”)
io.write(Cn.HdrStr, ‘<p class=”hdr shade”>CGI Environment</p>\n’)
for J, Rec in ipairs(List) do
local Key, Val = string.match(Rec[2], ‘^%[%”?(.-)%”?%]%s+(.+)$’)
if Key then
io.write(‘<div style=”margin-left:’, Rec[1] * 0.5, ‘cm;”>’,
‘’, Cgi.Escape(Key), ‘ ‘, Cgi.Escape(Val), ‘</div>\n’)

else

494

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 494

io.write(Rec[2], ‘
\n’)
end

end
io.write(Cn.FtrStr)

Two files, show.lua (introduced in Chapter 7) and cgi.lua, need to be located in Lua’s
module directory.

The general.css style sheet (which was used in a previous example) is used by both
form.html and cgishow.lua. It must be located in css subdirectory beneath the docu-
ment root.

3. With your web browser, request the following resource:

http://localhost/form.html

The resulting page should look like the one shown in Figure 15-3.

Figure 15-3

4. Fill in the various fields and click the Submit button. Figure 15-4 shows the kind of page you
will get.

495

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 495

Figure 15-4

How It Works
In form.html, the following line specifies where the form contents should be sent (in this case, /cgi-bin/
cgishow.lua) and in what manner (using the GET command in this example):

<form action=”/cgi-bin/cgishow.lua” method=”get”>

Because the scheme and server segments are missing from the action URL, the values of the current page
(http://localhost) are used.

The GET command instructs the browser to append a question mark, followed by the name/value fields
from the form, to the end of the URL. The principal advantage of this method is that the full URL can be

496

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 496

saved and later used to request the resulting page without needing to revisit the initial form page. This
is valuable in the case of a search engine. From another perspective, however, the GET method can be
undesirable because it places the form’s name/value pairs out in the open where they can show up in
server logs and bookmarks. Examine the URL of the cgishow.lua page, and you’ll see the unmasked
password value. Also, nothing prevents you from pasting a very large amount of text into a form’s text
field, but limitations with the web browser and web server may prevent your CGI script from actually
receiving the complete text.

The POST method places the form’s name/value pairs after the HTTP headers, away from the URL. Try
changing the form method in form.html from get to post and examine the differences in the CGI
parameters table as shown in the resulting page.

A remark should be made regarding the way multiline text appears in the cgishow.lua page. If you
type the following into a <textarea> control:

Line 1
Line 2
Line 3

it will appear as this in the display page:

Line 1\013\010Line 2\013\010Line 3

The actual data contains carriage returns (\013) and newlines (\010); the backslash notation is used by the
show module to present control characters and conforms with Lua’s method of embedding binary data in
a string.

When you develop a CGI program in Lua, it’s helpful to have a glimpse into the data that is transferred
to your script. You can temporarily set the action attribute of a form to cgishow.lua in order to exam-
ine what your CGI script can expect.

The CGI module presented here supports only urlencoded data uploads. This method is always used
with a GET command and is used by default with a POST command. Control characters such a carriage
returns are always coded into a printable form in this type of encoding.

If you want to extend the module to accept uploaded files, you’ll need to write a routine to handle data
that has been encoded with the multipart/form-data method. This type of encoding uses a special form of
delimiter that separates the various uploaded field values. These values can contain binary data and, on
the Windows platform, special attention must be paid to avoid problems while reading from the standard
input stream. Your script, or the revised CGI script, will need to call the following after requiring the
iomode module:

io.modeset(io.stdin, “binary”)

Without this, the content read from the standard input stream will have had carriage returns removed. In
addition to corrupting binary uploads, this will cause the content to be smaller than the CONTENT_LENGTH
value indicates. This discrepancy will cause io.read to block indefinitely as it attempts to read data that
isn’t there.

497

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 497

Developing CGI Scripts
As helpful as cgishow.lua is in developing CGI applications, the cycle of editing a Lua script and then
testing it with a web browser can be tedious. Here are some hints to expedite the development process:

❑ Modularize your application by factoring out parts that don’t involve the user interface. Place
these in modules if appropriate.

❑ Test scripts in a command shell. Any error messages will be displayed in the same console win-
dow from which you launch the script, making it unnecessary to examine web server logs.

❑ Make a development replacement for Cgi.Params that fills the fields you require with test data.

❑ Make sure your script generates standard HTML. The Html Validator extension for Firefox is a
convenient and valuable tool in this regard.

❑ Consider writing a Lua script that automates the testing of your dynamic web pages. Tools such
as wget or curl can be used from the command shell to submit HTTP requests. Both allow you
to specify posted content.

Security Issues
The CGI mechanism allows web users to run designated scripts from your web server. Your primary
concern when developing CGI scripts is the validity of submitted form data. Put simply, expect the
worst. HTML forms support enumerated selections and JavaScript can validate data at the browser, but
don’t for a moment think that these features do anything except make it easier for a well-intentioned
user to enter data.

Lua’s tonumber function can be used to validate numeric input. Regular expressions, covered in Chapter 5,
are very useful in validating and cleaning data in your CGI script. Apply these techniques prior to includ-
ing any user-provided data into a command to be executed by Lua, a database server, or some other inter-
preter. For example, if you expect numeric data from a particular field, use a command like this:

local Quantity = tonumber(Prm.Post.Quantity)
if Quantity and Quantity >= Cn.QuantityLow and
Quantity <= Cn.QuantityHigh then
-- database code goes here

end

A very common practice is to construct a database or system command dynamically. When you do this,
be especially wary of any quotes that are submitted in form data. Devious quoting can allow a malicious
user to alter the intent of your command.

The Kepler Project
Kepler is a versatile Lua-based web server environment that supports a number of extensions that facili-
tate web applications. It is named after the German astronomer Johannes Kepler (1571–1630), who math-
ematically described the motion of orbiting bodies. Follow the link to the Kepler project on LuaForge
(luaforge.net/) to read about Kepler and download the package. A mailing list for Kepler is hosted by
LuaForge at lists.luaforge.net/pipermail/kepler-project.

498

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 498

Kepler’s objective is to provide an integrated web development environment that functions with all
mainstream web servers as well as Xavante, its own web server. The project comprises many interrelated
components. One of them, CGILua, manages user interface issues, while the others provide support
for services such as database connectivity, session management, FastCGI on Apache and platform-
independent filesystem access. Kepler is compatible with the LuaBinaries distribution, and a Windows
installer for it is available. Lua enthusiasts are encouraged to explore its many features.

CGI the Kepler Way
The following examples assume that you have Kepler installed and are using the Xavante web server
with its default configuration. Examine the Lua configuration files for cgilua and xavante to see more
details about how Kepler is set up.

CGILua is the layer between the web server and your CGI scripts. With it, you can register handlers to
process scripts based on their extension.

As a first step in using Kepler, this Try It Out re-implements the time server covered earlier in this chapter.

Try It Out Creating a Time Server with Kepler
This Try It Out generates a simple page with the current server time. It demonstrates how headers and
ordinary content are output in the Kepler web environment.

1. In the Kepler installation directory, locate the subdirectory named web. In this directory, create
two new subdirectories named cgi-bin and scripts, as follows:

cd web
mkdir cgi-bin
mkdir scripts

2. Using your text editor, prepare a CGI script that shows the system date. Save the following file
as date.lua in the cgi-bin directory created in the previous step:

cgilua.contentheader(“text”, “plain”)
cgilua.put(os.date())

3. Copy AjaxRequest.js to the scripts directory created in step 1.

4. With your web browser, request the following:

http://localhost/cgi-bin/date.lua

You should see the system date displayed in plain text.

5. Copy date.html from the AJAX-based server date example to the web directory and verify that
it works as expected with the new date.lua.

How It Works
With Kepler, writing to standard output does not work as it does with the CGI scripts you’ve seen so far.
Instead, Lua scripts use functions in the cgilua namespace. There are many functions and variables in
this namespace that help with tasks such as encoding issues and error handling. This module is included
automatically with Kepler CGI scripts.

499

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 499

Lua Pages
A Lua page is a hybrid between a static HTML page and a Lua script. In the examples you’ve worked
with so far, you generated HTML output completely within Lua CGI scripts. With Lua pages, that
approach is turned around so that you embed Lua code into an HTML page. The Lua page handler in
CGILua processes the embedded Lua and replaces each Lua snippet with the content it generates.

Try It Out Displaying the Server Time Using a Lua Page
1. Generate an HTML page with the system time using a Lua page. Save the following file as

date.lp in Xavante’s web directory:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>Server time</title>

</head>
<body>
<p>The system time is <i><% cgilua.put(os.date()) %></i>.</p>
</body>
</html>

2. With your web browser, request this:

http://localhost/date.lp

The system date is displayed in an HTML page.

How It Works
The Lua page handler in CGILua copies the content of an .lp file verbatim, except for the text beginning
with <% and ending with %>. It considers the text between these markers to be Lua code. It executes this
code and replaces the entire sequence with whatever content is generated. The Lua code doesn’t actually
have to generate any content; it can contain variables, even local variables, that are referenced in Lua code
elsewhere in the Lua page. For example, near the top of date.lp you could have this line:

<% local function TimePut() cgilua.put(os.date()) end %>

And, in the body of the page, you could have this line:

<p>The system time is <i><% TimePut() %></i>.</p>

The function declaration doesn’t generate any content, so the sequence is replaced with nothing.

CGILua will detect the <% and %> markers even within Lua strings. If you want to display them in
HTML or a Lua string, represent them as <% and %> respectively.

500

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 500

Summary
In this chapter, you had a chance to use Lua to dynamically generate web content. In particular, you
learned the following:

❑ Some details about how the Common Gateway Interface (CGI) works

❑ How to implement CGI scripts in Lua

❑ A method for presenting dynamically generated graphics in your web pages

❑ How to retrieve and examine user-provided data from HTML forms

❑ The rudiments of using Lua pages with Kepler

Before you head to the next chapter, where you’ll learn how to use Lua in a wider variety of network
applications, try out your new skills with the following exercises.

Exercises
1. Write a CGI script that displays a message like “Good Afternoon” based on the system time.

Follow this with the value of the Name parameter on the URL. For example:

http://localhost/cgi-bin/ex1.lua?Name=Kit

should result in a message like this:

Good afternoon, Kit!

2. Write an HTML form that accepts a name from the user. When the form is submitted, call the
CGI script from the previous exercise appropriately.

3. Modify the calendar script to accept a month and year as follows:

http://localhost/cgi-bin/calendar.lua?Month=3&Year=2007

If you’re feeling ambitious, obtain these values from an HTML form. And if you really want to
go the extra mile, set the default values in this form to the current month and year.

501

Chapter 15: Programming for the Web

18_069172 ch15.qxp 1/2/07 8:10 PM Page 501

18_069172 ch15.qxp 1/2/07 8:10 PM Page 502

16
Connecting to a Larger World

In the previous chapter, you used Lua in conjunction with web servers and web browsers —
applications that take care of networking details and let you focus on dynamic content and presenta-
tion. In this chapter, you’ll burrow in a little deeper and learn how to manage those communication
details using Lua. The principal tool you’ll use in doing this is the LuaSocket library. This package
lets you connect your Lua scripts to other programs, whether those programs are running on your
own machine, on another machine in your home or office network, or on an Internet server located
on the other side of the globe. The facets of this library and networking in general that you’ll learn
about are as follows:

❑ Building and installing LuaSocket

❑ The rudiments of the Berkeley sockets interface

❑ The basics of programming for the Internet

❑ Implementing simple client and server scripts

❑ Retaining a server-side state with coroutines

❑ Sending and receiving e-mail

❑ Serving and retrieving web pages

❑ Processing content with filters

❑ Using standard streams in a networked environment

You’ll find the LuaSocket library to be a natural extension of the language that adds an entirely
new dimension to your applications. At its simplest, it makes communicating with another pro-
gram as easy as reading from and writing to a file.

Installing LuaSocket
LuaSocket is the work of Diego Nehab, an active member of the Lua community, and is made
available with the same terms as Lua itself. It is widely used on the Linux, Mac OS X, and Windows
platforms, and should work fine on all Unix-like systems. In addition to the source package, a

19_069172 ch16.qxp 1/2/07 8:11 PM Page 503

package with precompiled dynamic link libraries is available for Windows. Obtain LuaSocket from
luaforge.net. The instructions that follow assume version 2.0.1, but you’ll want to download a later
version if one is available. In the event that a more recent version is available, the instructions regarding
the compatibility module may no longer apply.

Compiling LuaSocket
Compiling the LuaSocket library is straightforward. The installable product comprises two core dynami-
cally linked libraries and a number of Lua scripts.

Compiling on Linux and Other Unix-Like Systems
To compile the LuaSocket library on Linux and other Unix-like systems, follow these steps:

1. Extract the downloaded package.

2. Replace /path/to in the following command with the location of the source package:

tar xzvf /path/to/luasocket-2.0.1.tar.gz

3. Drop into the source package’s directory:

cd luasocket-2.0.1

4. Using your text editor, open the file named config and make the following changes, using val-
ues that pertain to your particular system:

LUAINC=-I/usr/local/include
INSTALL_TOP_SHARE=/usr/local/lib/lua/5.1
INSTALL_TOP_LIB=/usr/local/lib/lua/5.1

5. After saving these changes, open the file named makefile and remove all lines that refer to
compat, such as this:

$(COMPAT)/compat-5.1.o

6. Save your changes and do the same with the src/makefile.

7. Build and install the library:

make
make install

Compiling on Windows
You can run the following instructions from a Windows command shell. The makefiles that come with
LuaSocket are Unix-oriented, so you won’t use them here. These instructions assume that you’ve got
your development environment set up as shown in Chapter 1.

Follow these steps:

1. Extract the contents of the luasocket-2.0.1.tar.gz package to the directory in which you will
compile the library. To do this with 7-zip, use the following commands, replacing \path\to with
the location of the downloaded package:

504

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 504

7z x \path\to\luasocket-2.0.1.tar.gz
7z x luasocket-2.0.1.tar
del luasocket-2.0.1.tar

2. Drop into the src subdirectory of the newly created tree, like this:

cd luasocket-2.0.1\src

3. The unix.c and usocket.c files are not used in the Windows version. Effectively remove them
from the set by renaming their extension as follows:

ren unix.c unix.c00
ren usocket.c usocket.c00

4. Compile the C files as follows:

cl /c /nologo /Zl /Zd /Yd /MD /W3 /DWIN32 /DWIN32_LEAN_AND_MEAN *.c

5. Separate the MIME library module from the others like this:

ren mime.obj mime.o

6. Link the socket library as follows:

link /DLL /out:socket.dll /base:0x67800000 /export:luaopen_socket_core ;
*.obj msvcrt.lib lua5.1.lib wsock32.lib

7. Link the MIME library as follows:

link /DLL /out:mime.dll /base:0x67700000 /export:luaopen_mime_core ;
mime.o msvcrt.lib lua5.1.lib

8. Copy the dynamic link libraries and support scripts to the installation directory as follows:

xcopy socket.dll “%LUA_DIR%\socket\core.*”
xcopy mime.dll “%LUA_DIR%\mime\core.*”
xcopy socket.lua “%LUA_DIR%*.*”
xcopy mime.lua “%LUA_DIR%*.*”
xcopy ltn12.lua “%LUA_DIR%*.*”
xcopy ftp.lua “%LUA_DIR%\socket*.*”
xcopy http.lua “%LUA_DIR%\socket*.*”
xcopy smtp.lua “%LUA_DIR%\socket*.*”
xcopy tp.lua “%LUA_DIR%\socket*.*”
xcopy url.lua “%LUA_DIR%\socket*.*”

Installing Windows Binaries
A binary package of LuaSocket that is compatible with the Window binary package of Lua is available
on luaforge.net. Download luasocket-2.0.1-lua5.1-win32.zip or a higher version if one is
available. The zip file’s contents are as follows, with directory names shown in italic:

lib
mime
core.dll

socket

505

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 505

core.dll
lua
socket.lua
mime.lua
ltn12.lua
socket
url.lua
tp.lua
smtp.lua
http.lua
ftp.lua

You can use an interactive tool like WinZip to extract the files, or you can use the Windows command
shell as follows:

1. Replace \path\to with the location of the downloaded zip file:

7z x \path\to\luasocket-2.0.1-lua5.1-win32.zip
xcopy lua*.lua “%LUA_DIR%*.*”
xcopy lua\socket*.lua “%LUA_DIR%\socket*.*”
xcopy lib\mime*.dll “%LUA_DIR%\mime*.*”
xcopy lib\socket*.dll “%LUA_DIR%\socket*.*”

2. Remove the lua and lib directories by executing the following:

del /s /q lib lua

The del command on older versions of Windows doesn’t support these switches. In this case,
try the following command instead:

deltree lib lua

Network Overview
To effectively use the LuaSocket library, you need at least a rudimentary understanding of networks,
such as how computers on a network identify one another and how they exchange information.

Virtually all mainstream networks nowadays support the Internet Protocol (IP) as a means of routing
data packets from one network device to another. The wide acceptance of this open standard ushered
in the Internet boom. IP is just one of the well-engineered layers that allow remote computers to commu-
nicate with each other. Beneath it are layers involving standards for low-level protocols — such as com-
munication by means of Ethernet and wireless devices — and above it are layers that coordinate packets
and present them in a format suitable for applications like email programs and web browsers. Each of
these layers encapsulates its tasks and presents a well-defined interface to adjacent layers, allowing for
varied implementations that work well and reliably together. The LuaSocket library doesn’t give you
access to the lower layers of this model but, as you’ll see in the sections that follow, it gives you a lot of
control over the upper layers.

Routed Packets
From its inception, the Internet was designed to be fault tolerant. As long as a path exists between two
computers on the Internet, they should be able to communicate even if shorter and more direct paths are

506

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 506

inaccessible due to equipment failure. The Internet supports this objective by breaking all data transfer into
individual packets that make the journey from the originating machine to the destination machine inde-
pendently. At each step along the way, routers guide a packet closer to its destination based on routing
tables and current performance metrics.

Addresses
Each machine with direct access to the Internet is identified with a unique address, either a 32-bit value (the
format specified in version 4 of the IP protocol, or IPv4) or a 128-bit value (the format specified by the back-
wards compatible version 6 of the IP protocol, or IPv6). IPv4 addresses are conventionally expressed in
dotted-decimal or dotted-quad notation in which the individual byte values, or octets, are delimited with a dot,
for example 192.168.0.1. The most significant portion of the address identifies the network in which a
machine resides and the least significant portion identifies the device within the network.

Domain Names
An important level of indirection allows you to use symbolic names like www.lua.org rather than IP
addresses. If you were to move the Lua website to another network, its nameserver record would be
updated to point to the new address relieving users throughout the world from the need to modify
their records. The mechanism that supports this mapping is hierarchical and distributed and is known
as DNS (Domain Name System). The hierarchy is apparent in the ordering of the dot-delimited names;
for example, www is just one of possibly many hosts or subdomains at the Lua site, and lua is just one
of many second level domains in the org top level domain. The mappings between host name and IP
address are managed by name servers distributed throughout the Internet, each having authority for its
own particular domain.

LuaSocket gives you access to DNS, allowing you to obtain host information either by IP address or
by host name. There are three functions in the dns namespace (which in turn belongs to the socket
namespace):

❑ socket.dns.gethostname(): Returns the host name of the machine on which the function is
called.

❑ socket.dns.tohostname(IP address or host name): Returns, on success, the canonical
name corresponding to the specified address followed by a table containing summary informa-
tion including alias host names. On error, it returns nil followed by an error message. The
canonical name is the principal host name registered with an IP address; aliases are alternative
host names that resolve to this same IP address.

❑ socket.dns.toip(host name or IP address): Returns, on success, the IP address corre-
sponding to the specified address followed by a table containing summary information including
alias host names. On error, it returns nil followed by an error message.

The last two functions accept either an IP address or a host name. This is a convenient feature shared
by most functions in the LuaSocket library. You should note that the convenience of using host names
comes at a cost; a potentially long DNS lookup will need to be made to resolve the name to an IP address.
However, subsequent lookups for a given name are usually fast because the name and address associa-
tion will be cached locally.

507

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 507

Try It Out Name and Number, Please
Usually when you access the principal Lua website, you specify www.lua.org and let your browser
handle the details of obtaining the site’s IP address. Here, you dig a little beneath the surface and use
DNS to find out more about this site.

1. With your text editor, create a new Lua file with the following contents:

local socket = require(“socket”)
require(“show”)

local Ip = {socket.dns.toip(“www.lua.org”)}

ObjectShow(Ip, “toip”)

The ObjectShow function comes from the show module introduced in Chapter 7.

2. Save this file as dns_test.lua.

3. While connected to the Internet, run this script from a command shell:

lua dns_test.lua
[“toip”] table: 00414F28 (n = 2)
[1] “62.197.40.9”
[2] table: 00414FD8 (n = 0)
[“alias”] table: 00410C68 (n = 2)
[1] “www.lua.org”
[2] “zeus.pepperfish.net”

[“ip”] table: 00410C00 (n = 1)
[1] “62.197.40.9”

[“name”] “babel.pepperfish.net”

How It Works
The socket.dns.toip function calls on the services of a resolver library to obtain information about the
specified host. The first value that is returned is the current IP address of www.lua.org; this is followed
by a table containing summary information including alias host names, canonical host name and IP
address. In this case, you can see that www.lua.org is an alias for babel.pepperfish.net. Note that
this behind-the-scenes information is subject to change; when you run this script, the site hosting
www.lua.org may have changed.

Identifying Internet Resources
Most resources on the Internet can be named with a URL, which is a standard way of identifying web
pages, images, and other resources and the means by which you access them. URLs are described in
more detail in Chapter 15. LuaSocket provides support for, according to Diego, “anything you could
possibly want to do with” a URL.

If you write an application that works with Internet resources, you can use url.parse to get the details
you need to connect with a remote server and make a request. This function receives a URL string and
breaks it into its constituent parts.

508

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 508

url.parse(URL string, optional result table) returns a table with the specified URL’s
string components keyed with the names url, scheme, authority, path, params, query, fragment,
userinfo, host, port, user, and password. If the result table is provided, the components are placed
into it rather than a new table. Fields in this table that are not overwritten are left alone.

Try It Out Unfurling a URL
As one example pertaining to the socket.url module, use url.parse to break a rather contrived URL
into its component parts.

1. Create a Lua file with the following contents:

local url = require(“socket.url”)
require(“show”)

local UrlStr = “http://natty:pathfinder@www.example.net:8888” ..
“/susquehanna;loc?date=1793#title”

ObjectShow(url.parse(UrlStr), “URL”)

2. Save this script as url_01.lua.

3. Run the script as follows:

lua url_01.lua
[“URL”] table: 00413760 (n = 0)
[“authority”] “natty:pathfinder@www.example.net:8888”
[“fragment”] “title”
[“host”] “www.example.net”
[“params”] “loc”
[“password”] “pathfinder”
[“path”] “/susquehanna”
[“port”] “8888”
[“query”] “date=1793”
[“scheme”] “http”
[“user”] “natty”
[“userinfo”] “natty:pathfinder”

How It Works
The url.parse function extracts components within the specified URL as substrings. For example, notice
that the value of port is saved as a string rather than a number. Also, note that certain intermediate com-
ponents are stored in the result table as well. For example, in this case the authority field includes the
intermediate userinfo field which in turn includes the user and password fields.

Transport Protocols
On top of IP are two protocols to which LuaSocket gives you access: UDP (User Datagram Protocol) and
TCP (Transmission Control Protocol). These are so-called transport protocols, which means that they’re in
charge of getting information from one application to another. In a characteristic layered approach, they
use IP to handle packet routing details, and IP in turn uses the underlying hardware to handle the physi-
cal signal transmission details needed to transfer information.

509

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 509

Here are more detailed descriptions of UDP and TCP:

❑ UDP: A short step away from IP is UDP, a protocol that specifies how datagrams are exchanged
between applications. This protocol has low overhead and is consequently very fast. However,
UDP doesn’t attempt to straighten out problems with datagrams that are lost in transit, arrive at
their destination out-of-sequence, or contain errors introduced in transmission. The high relia-
bility of modern networks has made problems like this less likely to occur than in earlier years.
The LuaSocket documentation includes an example client script that uses UDP to connect with a
remote daytime server.

❑ TCP: The predominant transport protocol of the Internet is TCP. A veritable roster of application
protocols with initialized names depend on it: the web (HTTP and HTTPS), mail (SMTP, IMAP,
POP), file transfer (FTP), and secure shell (SSH) among many others. This protocol allows appli-
cations to send and receive a stream of data without worrying about the problems that may
beset the data in transit. When data is transmitted, TCP splits it into packets suitable for con-
veyance by IP. On the receiving end, TCP requests that missing or corrupted packets be resent,
puts arriving packets in their original order, and recombines the packets into a stream of bytes.

Sockets: Streams and Datagrams
A library of routines and data structures that provide applications with abstracted access to the UDP and
TCP protocols was developed at Berkeley in the early 80s. The model this library implements is known as
the Berkeley sockets interface and has become the standard way for applications to communicate with one
another on the Internet. In the Berkeley model, a socket represents one end of a connection. It has associ-
ated with it an IP address and a port and must be of type TCP or UDP. The IP address must be associated
with one of the machine’s interfaces; these can be physical such as Ethernet interfaces, or virtual such as
the loopback interfaces or virtual private network interfaces. The port number is a two-byte value that
identifies a particular service accessible on an interface.

❑ UDP: This is sometimes referred to as a datagram socket. You generally want to read the entire
datagram when receiving data with this type of socket; anything not read is discarded.

❑ TCP: This is often referred to as a stream or connection-oriented socket because, when you connect
it to a peer, you can use it for a two way dialog in which streams of bytes are exchanged. Reading
data from a remotely connected socket is done with a client socket’s receive method. On suc-
cess, ClientHnd:receive(read pattern, optional prefix) returns a Lua string contain-
ing the received data matching the specified pattern. If the method fails, nil is returned followed
by an error message and the partial contents of the received data. The first argument to this
method indicates how much data is to be read: the next line (the default), the next fixed block of
bytes, or everything that is sent by the remote socket until the connection is closed. All patterns
have comparable performance, so select the one that is easiest to work with for your particular
application. The following table provides a summary of the LuaSocket receive patterns.

Pattern Explanation

*a Before closing a socket, an application can indicate by means of the shutdown
method that it is finished sending data. The receiver can detect this condition, or a
closed sending socket, and use it to deliver the entire amount of data transmitted.

510

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 510

Pattern Explanation

*l LuaSocket reads data up to the next end-of-line marker. This can be a CR (carriage
return) LF (linefeed) pair, or a standalone LF. These markers are not returned. Many
application protocols are line-oriented. This pattern is used if the pattern argument
is missing.

Number The next available number of bytes is read. In this case, LuaSocket does not translate
or interpret end-of-line markers. Blocks of specified length may be useful when
reading a header that contains information about the amount of data to follow.

If a prefix is specified, it will be prepended to the returned data string.

Client TCP sockets send data to one another by means of the send method. On success, ClientHnd:send
(data string, optional start, optional end) returns the position of the last byte sent. On error,
the method returns nil followed by an error message and the position of the last byte successfully sent.
You can use the start and end arguments to send a substring rather than the entire string.

By default, the functions used to send and receive data will block; that is, they will retain control until
the operation has completed. A blocking function simplifies programming somewhat, but it can be a
trapdoor for the unwary because it can deprive your program of control needed for other connections.
The Berkeley sockets interface provides an effective way to deal with this by including a select func-
tion that lets you know which sockets in a pool are ready for reading and which are ready for writing.
Additionally, LuaSocket lets you set timeout values to bail out of a function if it doesn’t respond in the
specified time. As you’ll see, a combination of these two features makes it possible to write responsive
application servers in Lua.

TCP Socket Sociology
A TCP socket is created by calling socket.tcp. If this function succeeds, a new socket handle is returned,
otherwise nil followed by an error message is returned. The returned socket is referred to in the LuaSocket
documentation as a master object, but in some respects it isn’t yet even an apprentice; it has a limited skill set
and is unable to communicate with peers. There are two career paths open to such a socket: through calls to
bind and listen it can become a server object, or through a call to connect it can become a client object.
One thing it cannot do in this phase is transfer information with another socket.

When a TCP socket graduates to client or server status, its associated methods change. LuaSocket lets
you know if you attempt to call a method on a socket that isn’t of the right type. For example, calling
accept on a master socket will result in an error with the following message:

calling ‘accept’ on bad self (tcp{server} expected, got userdata)

The tcp{server} notation is how LuaSocket renders a server socket with tostring. In general, a server
socket’s job is to listen on a well-known port, which is a port that is associated with the service that the
application renders. For example, a web server listens on port 80 and an FTP server listens on port 21.
When the accept method of a server socket detects an inbound connection request, it creates and returns
a new socket that is connected with the remote socket. The returned value is a client socket. The nomencla-
ture can be a little misleading because such a socket is part of a server application, but it’s arguably appro-
priate, because the socket has the same capabilities as a client socket returned from a call to connect.

511

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 511

A client socket created by accept and a client socket created by connect are peers. Their job is to trans-
fer information with each other, and the principal means used to do this are the send and receive
methods. When peers are connected, there is an IP address and a port at each end. The address and port
of the server are usually well-known, for example port 80 at www.example.com, but in general the
address and port of the connecting client are decided by the sockets library rather than the application
itself. The port that the library selects for you is called ephemeral because it is recycled after the connec-
tion is closed. When using the socket.connect shortcut to create a client socket, you can optionally
specify an address and port. You might want to do this if you have more than one interface that could
be used to connect with the remote server and have some reason to favor one. If you want to specify an
address but don’t care about the port, you can use 0 as the port value.

Using LuaSocket for Network
Communication

The following Try It Outs demonstrate sockets in action. Keep in mind that these examples use LuaSocket
at a rather low level; many applications using the package never deal directly with sockets. The first exer-
cise will use Lua scripts for both ends — the server and the client — of a communication link. In the second
exercise, you’ll implement a very simplistic web server with a Lua script. In this case, you’ll use a web
browser for the client side of the connection.

Try It Out Using Two Servers and a Client
LuaSocket gives your Lua scripts access to Berkeley sockets. Here, you’ll open up three command shells
and explore the basic practice of listening and connecting sockets.

1. With your text editor, create a new Lua file with the following contents:

local socket = require(“socket”)

local Addr = arg[1] or “127.0.0.1”
local Port = tonumber(arg[2] or 11250)
local Str, Len, SckHnd, ClientHnd, ErrStr, BindAddr, BindPort, ClAddr, ClPort
SckHnd, ErrStr = socket.bind(Addr, Port)
if SckHnd then
BindAddr, BindPort = SckHnd:getsockname()
io.write(“Listening on “, BindAddr, “, port “, BindPort, “\n”)
ClientHnd, ErrStr = SckHnd:accept()
if ClientHnd then
ClAddr, ClPort = ClientHnd:getpeername()
io.write(“Connection from “, ClAddr, “, port “, ClPort, “\n”)
Str = string.format(“Greetings from %s:%d to %s:%d\r\n”,
BindAddr, BindPort, ClAddr, ClPort)

Len, ErrStr = ClientHnd:send(Str)
if Len then
Str, ErrStr = ClientHnd:receive()
if Str then
io.write(“Received from client: [“, Str, “]\n”)

else
io.write(“Receive error: “, ErrStr, “\r\n”)

512

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 512

end
ClientHnd:shutdown(“both”)

else
io.write(“Send error: “, ErrStr, “\n”)

end
ClientHnd:close()

else
io.write(“Client connection. “, ErrStr, “\n”)

end
SckHnd:close()

else
io.write(“Listening socket. “, ErrStr, “\n”)

end

2. Save this file as server_01.lua.

3. With your text editor, create another new Lua file with the following contents:

local socket = require(“socket”)

local Addr = arg[1] or “127.0.0.1”
local Port = tonumber(arg[2] or 11250)
local SckHnd, ErrStr, Str, ClAddr, ClPort, SrvAddr, SrvPort
SckHnd, ErrStr = socket.connect(Addr, Port, “127.0.0.1”, 0)
if SckHnd then
ClAddr, ClPort = SckHnd:getsockname()
SrvAddr, SrvPort = SckHnd:getpeername()
io.write(“Connected with “, SrvAddr, “ on port “, SrvPort, “\n”)
Str, ErrStr = SckHnd:receive()
if Str then
SckHnd:send(string.format(“Greetings from %s:%d to %s:%d\r\n”,
ClAddr, ClPort, SrvAddr, SrvPort))

io.write(“Got [“, Str, “] from server\n”)
else
io.error(“Error. “, ErrStr, “\n”)

end
SckHnd:close()

else
io.write(“Connecting socket. “, ErrStr, “\n”)

end

4. Save this file as client_01.lua.

5. Open three command shells and, in each, use cd to change to the directory in which the two
scripts are saved. If possible, size and arrange each shell display so they are all visible on the
screen.

6. In one command shell, invoke the server as follows:

lua server_01.lua 127.1.2.3
Listening on 127.1.2.3, port 11250

7. In another command shell, invoke another server as follows:

lua server_01.lua 127.101.102.103
Listening on 127.101.102.103, port 11250

513

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 513

8. In the third command shell, invoke the client script as follows:

lua client_01.lua 127.1.2.3
Connected with 127.1.2.3 on port 11250
Got [Greetings from 127.1.2.3:11250 to 127.0.0.1:32822] from server

The script in the first shell will terminate after displaying the following line:

Connection from 127.0.0.1, port 32822
Received from client: [Greetings from 127.0.0.1:32822 to 127.1.2.3:11250]

In general, you’ll see an ephemeral port value different than 32822 in the server’s response.

9. In the third command shell, reinvoke the client script as follows:

lua client_01.lua 127.101.102.103
Connected with 127.101.102.103 on port 11250
Got [Greetings from 127.101.102.103:11250 to 127.0.0.1:32821] from server

The script in the second shell will terminate after displaying the following line:

Connection from 127.0.0.1, port 32821
Received from client: [Greetings from 127.0.0.1:32821 to 127.101.102.103:11250]

As before, you’ll likely see a value different than 32821 when you run the script.

How It Works
This example illustrates network connections that take place over your machine’s virtual loopback
device, effectively connecting your machine to itself. A number of observations can be made from the
output of these scripts:

❑ Your machine can listen for incoming connections on the same port as long as the listening sock-
ets are bound to different interfaces. Virtual web servers are set up this way.

❑ A socket-based network connection involves client sockets at each end. The server application
creates a client socket when accept responds to a connection request, and the client application
creates a client socket by calling connect.

❑ IP address and port information about the remote socket is available through the getpeername
method, but this information is not required to conduct a dialog.

A design objective of the World Wide Web was to keep web servers simple. While today’s mainstream
servers are a good deal more complex than their early predecessors, they are still considerably simpler
than web browsers because they don’t have to deal with content rendering and the user interface.

Try It Out Creating a Simple Web Server
LuaSocket has everything you need to script a functional web server. The server you’ll build here is
light-duty by any definition, but it provides you with a basic framework on which you can add features,
including the generation of dynamic content.

514

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 514

1. Create a new Lua file with your text editor and add the following contents:

local socket = require(“socket”)
require “show”

local Cn = {}

Cn.Host = “localhost”

Cn.Port = 80

Cn.MimeList = {
css = “text/css”,
gif = “image/gif”,
htm = “text/html”,
html = “text/html”,
png = “image/png”,
txt = “text/plain” }

local function LclHdrRead(ClSck)
local Hdr = {}
local LineStr, ErrStr
LineStr, ErrStr = ClSck:receive()
if LineStr then
-- “GET /page.html HTTP/1.1” -> “GET”, “page.html”
Hdr.Cmd, Hdr.Path = string.match(LineStr, “^(%S+)%s+%/(%S*)”)
while LineStr do
LineStr, ErrStr = ClSck:receive()
if LineStr then
if LineStr ~= “” then
local Key, Val = string.match(LineStr, “^(.-)%:%s*(.*)$”)
Hdr[string.lower(Key)] = Val

else
LineStr = nil -- End loop at first blank line

end
end

end
end
if (not Hdr.Path) or (Hdr.Path == “”) then
Hdr.Path = “index.html”

end
return Hdr

end

local function LclSend(Client, BodyStr, MimeStr, CodeStr)
local SendStr =
‘HTTP/1.1 ‘ .. (CodeStr or ‘200 OK’) .. ‘\r\n’ ..
‘Date: ‘ .. os.date() .. ‘\r\n’ ..
‘Server: webserver.lua/0.1\r\n’ ..
‘Content-Length: ‘ .. string.len(BodyStr) .. ‘\r\n’ ..
‘Content-Type: ‘ .. (MimeStr or ‘text/html’) .. ‘\r\n\r\n’ .. BodyStr

Client:send(SendStr)
Client:shutdown() -- We’re finished with this transaction

end

515

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 515

local function LclSendFile(Client, FileStr)
local Hnd = io.open(FileStr, “rb”)
if Hnd then
local Str = Hnd:read(“*all”)
if Str then
local ExtStr = string.lower(string.match(FileStr, “%P+$”))
local MimeStr = Cn.MimeList[ExtStr] or “application/octet-stream”
LclSend(Client, Str, MimeStr)

else
LclSend(Client, ‘Error reading file.’, ‘text/plain’,
‘500 Internal Server Error’)

end
Hnd:close()

else
LclSend(Client, ‘Error opening file.’, ‘text/plain’, ‘404 Not Found’)

end
end

local Addr, Port, Server, Client, Hdr, Loop

Server = socket.bind(Cn.Host, Cn.Port)
if Server then
Addr, Port = Server:getsockname()
if Addr and Port then
io.write(“Waiting for connection from client on “, Addr, “:”, Port, “\n”)
local PortStr = Port == 80 and “” or (“:” .. Port)
io.write(‘To end server, request “http://’, Cn.Host, PortStr,
‘/quit” from browser\n’)

Loop = true
while Loop do
Client = Server:accept()
if Client then
io.write(“Got client request\n”)
Addr, Port = Client:getpeername()
if Addr and Port then
io.write(“Connected to “, Addr, “:”, Port, “\n”)
Hdr = LclHdrRead(Client)
ObjectShow(Hdr, “Hdr”)
if not string.find(Hdr.Path, “..”, 1, true) then
if Hdr.Path == “quit” then
LclSend(Client, “Shutdown”, “text/plain”)
Loop = false

else
LclSendFile(Client, Hdr.Path)

end
else
LclSend(Client, ‘Unauthorized’, ‘text/plain’, ‘401 Unauthorized’)

end
else
io.write(“Could not retrieve client address\n”)

end
Client:close()

else
io.write(“Error connecting to client\n”)

end
end

516

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 516

io.write(“Ending server loop\n”)
else
io.write(“Could not retrieve server address\n”)

end
Server:close()

else
io.write(“Error creating server socket\n”)

end

2. Save the file as webserver.lua.

3. Before starting the server, create a web page and name it index.html. If you want to generate a
sample page with a Lua script, you can use the following:

local function FncList(Tbl, Name)
local List = {}
for Key, Val in pairs(Tbl) do
if type(Val) == “function” then
List[#List + 1] = Key

end
end
table.sort(List)
io.write(‘<h1>’, Name, ‘ library</h1>\n\n<p>’)
for J, Str in ipairs(List) do
io.write(Str, “ “)

end
io.write(“</p>\n\n”)

end

io.write(‘<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”\n’,
‘“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>\n\n’,
‘<html>\n\n<head>\n\n<title>Lua Environment</title>’,
‘\n\n</head>\n\n<body>\n\n’)

local Namespace = {“coroutine”, “debug”, “io”, “math”, “os”, “package”,
“string”, “table”}

FncList(_G, “base”)
for J, Tbl in ipairs(Namespace) do
FncList(_G[Tbl], Tbl)

end
io.write(‘</body>\n\n</html>\n’)

4. Save this file as env_page.lua and use it to create an index page as follows:

lua env_page.lua > index.html

5. Running this script requires that you don’t currently have a TCP service listening on port 80 of
your machine. If you do, change the value of Cn.Port at the top of the script to an unused port
number. Fire up the web server as follows:

lua webserver.lua

6. With your web browser, access http://localhost/ to test the server. You can add links and
references to images and style sheets in your index page to verify that the server returns every-
thing as it should.

517

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 517

How It Works
This script has a very simple structure. First it creates a socket and binds it to the local machine
(localhost is associated with the loopback address 127.0.0.1), as follows:

Server = socket.bind(Cn.Host, Cn.Port)

It then enters a loop in which it blocks on the following line, waiting for a connection request:

Client = Server:accept()

Because the socket is bound to the loopback device, you can only access the server from the local
machine, but if your machine is part of a network, you can modify the value of Cn.Host and access
the script from a different machine.

One limitation of this server is that only one request is handled at a time. A fair amount of work is required
to address this deficiency in a robust and efficient way. An elegant way to approach this problem with Lua
is to use coroutines, but even with these it can be a trick to get a central event dispatcher to conform to the
Berkeley sockets model. Another limitation is that it expects each inbound header to occupy only one line.
Finally, this implementation does not handle nested directories in the document root robustly.

Handling Multiple Persistent Connections
This section examines an effective way for a server to maintain ongoing connections with clients. When
you interact with an FTP or telnet server, your connection is persistent: the server maintains the context
of the interaction between transactions until you log off. The emerging SSE (Server-Sent Events) stan-
dard will carry this behavior over to web browsers as well.

Using Lua Coroutines with the select Function
Lua coroutines and the LuaSocket select function make it easy for a server application to handle
simultaneous connections from multiple clients. In this example, a coroutine is dedicated to each client
connection. Each coroutine is uncluttered with connection details or even an awareness of other concur-
rent connections, allowing it to focus on the ongoing dialog with a particular client.

Follow these steps:

1. Create a new file with your text editor and copy in the following Lua script:

local socket = require(“socket”)

local Cn = {SrvPort = 3072, SrvAddr = “localhost”}

local SckHnd = socket.connect(Cn.SrvAddr, Cn.SrvPort)
if SckHnd then
local Loop = true
local CnnSrvStr, CnnSrvPort = SckHnd:getpeername()
local CnnNameStr = socket.dns.tohostname(CnnSrvStr)
io.write(string.format(“Connected to %s (%s) on port %d.\n”,
CnnSrvStr, CnnNameStr, CnnSrvPort))

518

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 518

io.write(‘Issue .quit to end connection, .shutdown to terminate server.\n’)
while Loop do
local Str, ErrStr
io.write(“Send: “)
Str = io.read() or “.quit”
SckHnd:send(Str .. “\r\n”)
Str, ErrStr = SckHnd:receive()
if Str then
io.write(“Received: “, Str, “\n”)

else
Loop = false
if ErrStr == “closed” then
io.write(“Closing connection to server\n”)

else
io.write(“Error: “, ErrStr, “\n”)

end
end

end
SckHnd:close()

else
io.write(“Error creating client socket\n”)

end

2. Save this file as client_02.lua.

3. Create another new file with your editor and copy in the following Lua script:

local socket = require(“socket”)

local Cn = {HostPort = 3072, HostAddr = “*”}

local function ClientSession(SckHnd)
local Loop, Str, ErrStr = true
local Rcv = {}
while Loop do
coroutine.yield(Str)
Str, ErrStr = SckHnd:receive()
if Str then
Loop = Str ~= “.quit” and Str ~= “.shutdown”
if Loop then
for J = 1, #Str do
Rcv[string.byte(Str, J, J)] = true

end
local SendStr = “”
for J = 33, 255 do
if Rcv[J] then
SendStr = SendStr .. string.char(J)

end
end
SckHnd:send(SendStr .. “\r\n”)

end
else
io.write(“Error: “, ErrStr, “\n”)

end
end

519

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 519

return Str
end

local SckHnd = socket.bind(Cn.HostAddr, Cn.HostPort)
if SckHnd then
local SckList = {} -- Array of sockets, beginning with accepting socket
local CoList = {} -- Table of coroutines keyed by socket
local Loop = true
-- Prevent this socket from blocking for too long in call to accept
SckHnd:settimeout(250)
SckList[1] = SckHnd
while Loop do
io.write(‘Waiting for connection or data from\n’)
for J, Hnd in ipairs(SckList) do
io.write(‘ ‘, J, ‘: ‘, tostring(Hnd), ‘, ‘, tostring(CoList[Hnd]), ‘\n’)

end
local ReadTbl, WriteTbl, ErrStr = socket.select(SckList)
for K, SckHnd in ipairs(ReadTbl) do
if SckHnd == SckList[1] then -- Server socket
local ClientHnd, ErrStr = SckHnd:accept()
if ClientHnd then
local NewPos = #SckList + 1
SckList[NewPos] = ClientHnd
CoList[ClientHnd] = coroutine.wrap(ClientSession)
CoListClientHnd

elseif ErrStr ~= “timeout” then
io.write(ErrStr, “\n”)
Loop = false

end
else -- Client connection
local Cmd = CoList[SckHnd]()
if “.quit” == Cmd then
CoList[SckHnd] = nil
SckHnd:close()
local L, Pos = #SckList
while L > 1 do
if SckHnd == SckList[L] then
table.remove(SckList, L)
L = 1 -- Terminate search

else
L = L - 1

end
end

elseif “.shutdown” == Cmd then
io.write(“Shutting down server\n”)
Loop = false

end
end

end
end
for J, SckHnd in ipairs(SckList) do
SckHnd:close()

end

520

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 520

else
io.write(“Error creating server socket\n”)

end

4. Save this file as server_02.lua.

5. Open a command shell, use cd to change to the directory where you saved the scripts, and exe-
cute the following server script:

The hexadecimal socket identifier will almost certainly be different in your case.

lua server_02.lua
Waiting for connection or data from
1: tcp{server}: 00658CA0, nil

6. Open another command shell, use cd to change to the directory where you saved the scripts,
and execute the following client script:

lua client_02.lua
Connected to 127.0.0.1 (localhost) on port 3072.
Issue .quit to end connection, .shutdown to terminate server.
Send:

At this point, the server script prints new information indicating that the client has connected
with it:

Waiting for connection or data from
1: tcp{server}: 00658CA0, nil
2: tcp{client}: 0065BD18, function: 007684A0

7. In response to the Send prompt, transmit some character sequences to the server, such as the
following:

Send: ajx
Received: ajx
Send: bky
Received: abjkxy
Send: clz
Received: abcjklxyz
Send:

8. Open another command shell, use cd to change to the directory where you saved the scripts,
and execute the following instance of the client script:

lua client_02.lua
Connected to 127.0.0.1 (localhost) on port 3072.
Issue .quit to end connection, .shutdown to terminate server.
Send:

The server script will now indicate multiple connected clients:

Waiting for connection or data from
1: tcp{server}: 00658CA0, nil
2: tcp{client}: 0065BD18, function: 007684A0
3: tcp{client}: 0065DD8C, function: 0076A1D0

521

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 521

9. Alternate between the two client scripts, inputting characters and verifying that the server is
returning the set of accumulated characters for the particular connection.

10. End a client session as follows:

Send: .quit
Closing connection to server

Note that the server prints a summary with one fewer client connection.

11. Terminate the server from the remaining active client as follows:

Send: .shutdown
Closing connection to server

The server script ends after printing the following:

Shutting down server

The client script creates a TCP socket and connects it to a server with a well-known port (here, an arbi-
trarily selected value). This is done in one command:

local SckHnd = socket.connect(Cn.SrvAddr, Cn.SrvPort)

As presented, the server and clients all run on the same machine, but with the appropriate adjustment to
Cn.SrvAddr, you can run the client script on a remotely connected machine. The following lines obtain
information about the server for display purposes:

local CnnSrvStr, CnnSrvPort = SckHnd:getpeername()
local CnnNameStr = socket.dns.tohostname(CnnSrvStr)

A loop is entered in which the following things are done repeatedly:

1. Text is obtained from the user (io.read).

2. The acquired text is sent to the server (SckHnd:send).

3. The server’s response is obtained (SckHnd:receive).

4. The response is displayed to the user (io.write).

This loop continues until one of the following occurs:

❑ The user issues the .quit command to end the session.

❑ The user issues the .shutdown command to terminate the server.

❑ Another client issues the .shutdown command. In this case, the client loop won’t end until it
attempts to send some data to the now defunct server.

Multiple Connections on the Server Side
Things are a little more involved on the server side, but the actual business logic (the code that actually
interacts with the client) is refreshingly simple due to coroutines. The actual connection logic is some-
thing that you can write once and tuck away in a module.

522

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 522

The key to handling concurrent client connections is the socket.select function. As you saw in
Chapter 9, a properly implemented dispatcher forms the basis for properly managing asynchronous
events, which are events that originate outside of the application. The feature that you want is the ability
to call a function that blocks until an event occurs. In this case, the event can be a connection request by
a new client or the arrival of information from an already connected client. The socket.select fills
this role by blocking until one or more of the sockets you indicate are ready for reading or writing.
socket.select(receive array, send array, optional timeout in seconds) returns three
values: a table of sockets from the receive array that have data waiting, a table of sockets from the send
array that are ready to be written to, and an error message. On success the error message is nil.

Follow these steps to use socket.select:

1. Place the client and server sockets you expect input from into an array (a table indexed with
contiguous integers beginning with 1), and pass this table as the first argument.

2. Place all the sockets that you are waiting to write to into another array. If either of these tables
is empty, you can use nil instead. If you need the function to return after some designated
number of seconds in the event that none of the specified sockets become ready for reading or
writing, indicate a timeout value as the third argument.

The returned tables are structured as follows:

{
[1] = tcp{client}: 0065E214,
[2] = tcp{client}: 0065E394,
[tcp{client}: 0065E214] = 1,
[tcp{client}: 0065E394] = 2

}

You can see that each socket is represented two ways in the table: once as an array element
and once as an associative key. The script presented here uses an ipairs loop to handle only
the arrayed sockets.

All incoming connection requests are handled by the server socket. Recall that a server socket calls
accept to establish a connection and create a new client socket, but does not exchange data with the
remote socket. The server socket is kept in the first position of an array that holds all active sockets.
Subsequent positions hold client sockets. This array is in the form required by socket.select so it is
passed as the function’s first argument (the receive array) to wait until inbound data or a connection
request arrives.

This example is line oriented: the server expects to receive a single line from the client and in return
sends back a line. Because of this, there are no special writing considerations and the second argument
to socket.select (the send array) is passed as nil.

Setting Timeout Values for the Server Socket
One quirk in the Windows implementation of sockets is worked around in the multiple-connection
example. Generally, a server socket can be included along with client sockets in the receive array, and
an inbound connection request for the server socket is treated like inbound data for a client socket.
However, Windows is known to occasionally report that a server socket is ready to accept a new connec-
tion when in fact it is not. To deal with this, you can do the following:

523

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 523

1. Set a timeout value for the server socket:

SckHnd:settimeout(250)

This forces a call to accept to return in a quarter second if in fact no connection requests are
pending.

2. Check the return values of this function to determine whether a viable connection was made.
In this example, a timeout condition terminates the main loop. In a real application, you would
ignore it.

3. For each new client connection, create a coroutine and associate it with the client socket. When a
client connection is terminated, this coroutine is set to nil and the client socket is removed from
the read array.

The actual dialog between client and server is quite simple. Essentially it is a loop that begins with a
yield. This transfers control back to the main script loop where it spends most of its time blocking in a
call to socket.select. When this mechanism indicates that data has arrived from a client, the associ-
ated coroutine is resumed. The client data is read and examined. If it constitutes a termination request
(either to end the connection or shut down the server) the dialog loop is terminated and the coroutine
returns rather than yields. Otherwise, it processes the data and responds with its own data. In this exam-
ple, the data returned is simply a string comprising the unique characters received from the client so far.
This illustrates the ease with which the dialog state can be retained between transmissions.

The Application Protocols
LuaSocket’s C layer interfaces with platform-specific sockets libraries to handle networking details at the
TCP and UDP level. LuaSocket also provides a rich interface to the Internet’s application protocols such
as SMTP, FTP, HTTP and a number of modules to support them.

The application protocols in wide use throughout the Internet are presented in RFC (Request for
Comments) documents that are informative and generally easy to read. If you need Lua to interact with
an Internet server, such as a server that uses NNTP (Network News Transfer Protocol), the relevant
RFCs will help you implement a working client. Visit www.rfc-editor.org for indexes to all RFCs.

Many application protocols involve transforming data prior to sending it or after receiving it. The fol-
lowing section describes an elegant solution that the LuaSocket libraries bring to this task.

Filtering the Flow of Data
As data is moved from one point to another, it often has to be manipulated to do the following:

❑ Conform with protocol constraints

❑ Enhance transmission efficiency

❑ Accommodate application formats and platform-dependent issues such as end-of-line conventions

LuaSocket includes a framework for flexibly massaging inbound and outbound data. It treats data as a
fluid that is pumped from a source through a series of filters to a sink. While Diego Nehab created this

524

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 524

framework in conjunction with the development of LuaSocket version 2, it is quite general and has been
made into a standalone module named ltn12. An article Diego wrote detailing the principles of this
framework (available on the Lua wiki at http://lua-users.org/wiki/FiltersSourcesAndSinks)
was evidently slated to become the 12th in a series of Lua technical notes. The first eleven of these articles
are maintained on the main Lua website; newer contributions by members of the Lua community are
placed on the lua-users wiki.

The sources, filters and sinks framework implemented in ltn12 is based on the modification of data
chunks rather than transacted data as a whole. This reduces the memory requirements of applications,
especially server applications that handle concurrent connections involving large transactions. The basic
parts of an ltn12 circuit are shown in the following table.

Component Explanation

Source Where data chunks originate. You can supply your own function to do
this, or use one of the sources included in the ltn12 module. Of these,
ltn12.source.file is convenient if your data is stored in a file or origi-
nates from the standard input stream.

Filter At its simplest, a filter receives a string of bytes and returns a transformed
string of bytes. You can use the ltn12.filter.chain function to sequen-
tially combine multiple filters into a single chain. Filters may need to retain
some context from chunk to chunk, in which case, a factory is generally
used to create a filter as a closure.

Sink The destination of all data chunks passing through the circuit. As with the
source, you can associate a file, (including the standard output stream)
with this component.

Pump A pump function pushes data from a source to a sink. Two pumps are
included in the module: ltn12.pump.all blocks until all data has been
pumped through the system, and ltn12.pump.step blocks until one
chunk has been pumped.

Many of the application protocols in use today were created when only ASCII text was being moved
around on networks. To support the transmission of text that includes characters outside of the ASCII
range as well as binary data such as images and compressed data, various encoding techniques have
evolved to work within the original protocol limitations. MIME (Multipurpose Internet Mail Extensions)
standardizes the ways non-ASCII data can be exchanged. Two common encoding methods are Quoted-
Printable and Base64, which do the following:

❑ The Quoted-Printable encoding expands non-ASCII characters to a three-character sequence: an
equal sign followed by a two-character hexadecimal representation of the out-of-range charac-
ter. The equal sign itself is given the same treatment, as are tabs and spaces at the end of a line.
For text messages that include occasional non-ASCII characters, this method of encoding has
the advantage of being readable and compact.

❑ Base64 encoding is suited for transmitted data that includes many non-ASCII characters. In this
method of encoding, all data is expanded so that each sequence of three bytes becomes four
ASCII characters. In a sense, data is transformed from a 256 character alphabet to a 64 character
alphabet.

525

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 525

The mime module included in LuaSocket implements encodings from the MIME standard. It requires the
ltn12 module but is independent of the socket routines.

Try It Out Text Hydraulics
The ltn12 module gives you everything you need to construct a source-to-sink data transformation rou-
tine. The mime module provides filters for encodings, text wrapping and end-of-line manipulation. Here
you’ll use both modules to demonstrate the ways to combine a source, filters, sink, and pump to encode
and decode a string.

1. Create a Lua file with the following contents:

local mime = require(“mime”)
local ltn12 = require(“ltn12”)

-- This function receives one string and one or more high level filters. On
-- success it returns the filtered string, otherwise nil followed by an error
-- message.

local function Transform(Str, ...)
-- Source is specified string
local Src = ltn12.source.string(Str)
-- Chain all specified filters into one
local Filter = ltn12.filter.chain(...)
-- Send all data chunks to table
local Snk, Tbl = ltn12.sink.table()
-- Filter chunks before delivering to sink
Snk = ltn12.sink.chain(Filter, Snk)
-- Open the valve
local Code, ErrStr = ltn12.pump.all(Src, Snk)
return Code and table.concat(Tbl) or nil, ErrStr

end

local function Test(Str, EncodingStr)
local CodeStr, StatStr
CodeStr = Transform(Str, mime.encode(EncodingStr)) or “”
StatStr = Str == Transform(CodeStr, mime.decode(EncodingStr)) and
“OK” or “Not OK”

io.write(string.format(“%-18s [%s] %s\n”, EncodingStr, CodeStr, StatStr))
end

local Str = “Gabriel Garc\237a M\225rquez”
io.write(Str, “\n”)
Test(Str, “base64”)
Test(Str, “quoted-printable”)

2. Run the script as follows:

lua mime_01.lua
Gabriel García Márquez
base64 [R2FicmllbCBHYXJj7WEgTeFycXVleg==] OK
quoted-printable [Gabriel Garc=EDa M=E1rquez] OK

526

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 526

How It Works
The Transform function is a general-purpose routine for applying one or more filters to a string. Receiving
and returning whole strings in some respects defeats the purpose of a filtered circuit, but even if the input
and output strings are enormous, the actual filtering operations take place on smaller portions of data. The
routine illustrates how you can place filters between a source and a sink. In this case, the amalgamated fil-
ter is chained to the sink (in ltn12.sink.chain), but you could just as easily have chained to the source
instead (by using ltn12.source.chain).

The Test function receives a string to transform and a MIME encoding identifier (either base64 or
quoted-printable). It uses this identifier to obtain an encoding filter with which it calls Transform
to generate an encoded string. To test this, it compares the original string with a decoded version to
make sure the process is functioning properly.

Examine the encoded versions of the text. For this example, the Quoted-Printable encoding makes the
most sense, as most of the data is already in ASCII characters. The two equal signs at the end of the
Base64-encoded string are padding added to make the length of the encoded string a multiple of four.

Accessing Web Pages
The http module of LuaSocket lets you retrieve a web resource with one function call. http.request
(URL string, optional post body) requests a resource from a web server. If there is no second
argument, the request is made using the GET method; otherwise the second argument is sent to the
server as post data and the POST method is used. On success, the function returns four response values
from the server. In order, these are the web resource body, the status code, the headers and the status
line. On error, the function returns nil followed by an error message. If the function succeeds, remem-
ber to also check the status code.

When data is posted to the server, it is assumed to be urlencoded. See the section on CGI programming
in Chapter 15 for more details.

The following global variables are consulted by http.request and can be used to modify its behavior:

❑ PORT specifies the port used to contact the web server if a value isn’t included in the URL.

❑ PROXY is used as a proxy server. If it is used, it should be in the form http://proxy.example
.com:8080.

❑ TIMEOUT specifies the timeout value in seconds of the request.

❑ USERAGENT specifies the user-agent header that will be sent to the server.

An alternate version of the same function gives you finer-grained control over the HTTP request. Instead
of submitting a URL to the function, you pass an associative table instead. http.request(request
attribute table) requests a resource from a web server. Its return values are like the URL string ver-
sion of this function, except that on success, the first value returned is 1 rather than the resource body.

The request attribute table can have values for the following keys (only the url field is mandatory):

❑ url specifies the URL of the requested resource.

527

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 527

❑ sink indicates where you want the retrieved resource to be stored. Common values are
ltn12.sink.file to save the resource as a file, and ltn12.sink.table to store the retrieved
chunks in a table where they can be easily converted to a string using table.concat.

❑ method should be “GET”, “HEAD”, or “POST”.

❑ headers is an associative table that includes headers that will be sent to the server in addition
to the standard headers. For example:

headers = {[“content-length”] = 1094}

❑ You use source if you are posting data to the server. When using this, you should specify
content-length in the headers table. For example:

source = ltn12.source.string(PostStr)
headers = {[“content-length”] = string.len(PostStr)}

❑ step enables you to specify a step pump other than the default ltn12.pump.step.

❑ proxy allows you to request a resource through a proxy server. You use this like the PROXY
global variable.

❑ You can set redirect to false to prevent server redirection.

❑ create specifies an alternate function to create the client socket.

Additionally, you can include any or all of the keys user, password, host, port, and path in the table
with appropriate values to override the fields embedded in url.

When http.request is called with a table, it saves the retrieved resource to the specified sink rather
than returning it.

Try It Out Grabbing a File
You can conveniently retrieve binary files with http.request. Here the table form of the function is
used with a file sink.

1. With your text editor, create a new Lua file with the following contents:

local http = require(“socket.http”)
require(“show”)

local ResFileStr = “lascii85.tar.gz”
local PathStr = “http://www.tecgraf.puc-rio.br/~lhf/ftp/lua/5.0/”
local ResHnd, ErrStr = io.open(ResFileStr, “wb”)
if ResHnd then
local Req = {
url = PathStr .. ResFileStr,
sink = ltn12.sink.file(ResHnd),
-- proxy = “http://proxy.example.com:8888”

}
local Response = {http.request(Req)}
ObjectShow(Response, “Response”)

else
io.write(“Error opening “, ResFileStr, “ for writing\n”)

end

528

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 528

2. Save this file as http_01.lua.

3. Run the script as follows:

lua http_01.lua
[“Response”] table: 0041C6B0 (n = 4)
[1] 1
[2] 200
[3] table: 00429F28 (n = 0)
[“accept-ranges”] “bytes”
[“content-encoding”] “x-gzip”
[“content-length”] “2641”
[“content-type”] “application/x-gzip”
[“date”] “Thu, 07 Sep 19:49:29 GMT”
[“etag”] “”3f60e-a51-3fbb6735””
[“last-modified”] “Wed, 19 Nov 2003 12:51:01 GMT”
[“server”] “Apache”
[“via”] “1.1 tinyproxy (tinyproxy/1.7.0)”

[4] “HTTP/1.1 200 OK”

Some headers may be different when you run the script. When the request completes, the
lascii85.tar.gz file is saved in the current directory.

How It Works
The table form of http.request is used here for extra control over the file retrieval request. To save the
downloaded file directly to disk, the ltn12.sink.file factory is called with the handle to a file opened
for writing. The function this factory returns is called for each chunk of data received. When there is no
more data to process, it closes the file handle.

If there are no special request attributes, you can retrieve the file directly into a string with the follow-
ing call:

UrlStr = “http://www.tecgraf.puc-rio.br/~lhf/ftp/lua/5.0/lascii85.tar.gz”
BodyStr, Code, Hdr, StatStr = http.request(UrlStr)

Sending and Receiving E-mail Messages
LuaSocket provides high-level support for sending messages with SMTP (Simple Mail Transfer
Protocol), which is the standard means of sending Internet e-mail. LuaSocket currently doesn’t
support email retrieval directly, but its lower-level TCP socket routines let you do this if you follow
the protocol — usually POP (Post Office Protocol) or IMAP (Internet Message Access Protocol) — that
your mail server uses.

Try It Out Sending E-mail
The smtp module comprises two functions: smtp.message and smtp.send. The first function prepares
a message for sending by the second function. Both are used in the following example. This exercise
works only with SMTP servers that accept plain-text password authentication.

529

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 529

1. Create a new file with the following Lua script:

local smtp = require(“socket.smtp”)

local Recipient = {“<recipient_1@example.net>”, “<recipient_2@example.net>”}

-- Run the specified configuration file in an empty environment. On success,
-- returns a table that contains all global variables that are assigned in
-- configuration file, otherwise (nil, error string).

local function Configure(CfgFileStr)
local Gl, Cfg = getfenv(0), {}
setfenv(0, Cfg)
local Code, ErrStr = pcall(dofile, CfgFileStr)
setfenv(0, Gl)
return Code and Cfg or nil, ErrStr

end

local BodyStr = [[
Now the hungry lion roars,
And the wolf behowls the moon;

Whilst the heavy ploughman snores,
All with weary task foredone.

]]

local Msg = {
headers = {
to = “Oberon <oberon@example.com> Titania <titania@example.com>”,
cc = “William Shakespeare <bard@globe.example.org>”,
subject = “Moonlight”,
from = “Puck <puck@example.com>”,

},
body = BodyStr

}

local Packet = {}
local Code
local CfgFileStr = “smtp.cfg”
local Cfg, ErrStr = Configure(CfgFileStr)
if Cfg then
if type(Cfg.ServerStr) == “string” and type(Cfg.ServerPort) == “number” and
type(Cfg.UserStr) == “string” and type(Cfg.PassStr) == “string” then
io.write(“Connecting to “, Cfg.ServerStr, “\n”)
Packet.from = “<puck@example.com>”
Packet.rcpt = Recipient
Packet.source = smtp.message(Msg)
Packet.server = Cfg.ServerStr
Packet.port = Cfg.ServerPort
Packet.password = Cfg.PassStr
Packet.user = Cfg.UserStr
Code, ErrStr = smtp.send(Packet)
if Code then
io.write(“Successfully sent messages”)

end

530

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 530

else
ErrStr = “Improper configuration: “ .. CfgFileStr

end
end
if ErrStr then
io.write(ErrStr, “\n”)

end

2. Modify the contents of the Recipient table to include one or more of your e-mail addresses.

3. Save this file as smtp_01.lua.

4. Create a configuration file with your editor and add the following fields, using appropriate
values for your SMTP account:

ServerStr = “mail.example.com”
ServerPort = 25
UserStr = “user”
PassStr = “password”

5. Save this file as smtp.cfg

6. Send the message as follows:

lua smtp_01.lua
Connecting to mail.example.com
Successfully sent messages

7. Use your regular e-mail retrieval software to verify that the message was sent or, if you have
POP access to your e-mail account, you can retrieve it programmatically in the next exercise.

How It Works
The e-mail sending process begins by obtaining account particulars (such as the server name, user name,
and password) as follows:

Cfg, ErrStr = Configure(CfgFileStr)

It’s a good policy to keep this information out of general-purpose scripts. The technique used in the
Configure function is to execute the configuration file as a Lua script that does not have access to
library functions. Environment manipulation places the global variables it creates into a table that is
returned by Configure.

After the presence of the fields expected in the configuration table have been verified, a table is
prepared that will be used by smtp.send. This includes fields such as from, rcpt, source, server,
port, password, and user.

The rcpt table specifies the only addresses to which the message is sent. As shown in this example, the
to and cc fields of the message headers table are completely incidental to this process and are included
for the purpose of display by the email client. Don’t make the mistake of including a bcc field. To send
a blind copy, simply include the recipient in the rcpt table and do not include it in either the to or cc
header fields. This is done in the example.

531

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 531

The source field is a simple ltn12 source. Here, the smtp.message factory is used to condition the
specified message and generate a suitable source.

Now that you’ve sent a message, you can retrieve it programmatically if you have POP access to your
e-mail account.

Try It Out Getting E-mail
The POP specification lets you list, retrieve, and delete e-mail that has arrived at your mail server. To do
this with LuaSocket, you create a client socket and connect it with a POP server on which you have an
account. The following example assumes that your POP server does not require an SSL (Secure Sockets
Layer) or the APOP (Authenticated Post Office Protocol) command.

1. Create a new Lua file with the following contents:

local socket = require(“socket”)

-- Run the specified configuration file in an empty environment. On success,
-- returns a table that contains all global variables that are assigned in
-- configuration file, otherwise (nil, error string).

local function Configure(CfgFileStr)
local Gl, Cfg = getfenv(0), {}
setfenv(0, Cfg)
local Code, ErrStr = pcall(dofile, CfgFileStr)
setfenv(0, Gl)
return Code and Cfg or nil, ErrStr

end

-- Obtain POP server response. On success, return (string), otherwise (nil,
-- error string).

local function LclGet(PopHnd)
local Str, ErrStr = PopHnd:receive()
if Str then
-- All POP responses begin with “+OK “ or “-ERR “
if string.sub(Str, 1, 1) == “+” then
Str = string.sub(Str, 5)

else
ErrStr = string.sub(Str, 6)
Str = nil

end
end
-- return Ok, string.sub(Str, Ok and 5 or 6)
return Str, ErrStr

end

-- Send a command to the POP server and obtain its response. Returns (string)
-- on success and (nil, error string) otherwise. The Multi argument is true if
-- the caller expects a multiline response from the POP server. If Multi is
-- true and command succeeds, returns (string, table) where table contains
-- returned data lines, otherwise (nil, error string).

532

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 532

local function LclTransact(PopHnd, SendStr, Multi)
local Ok, Str, ErrStr, Tbl
Ok, ErrStr = PopHnd:send(SendStr .. “\r\n”)
if Ok then
Str, ErrStr = LclGet(PopHnd)
if Str and Multi then
Tbl = {}
local DataStr
while Multi and not ErrStr do
DataStr, ErrStr = PopHnd:receive()
if DataStr then
if string.sub(DataStr, 1, 1) == “.” then
DataStr = string.sub(DataStr, 2)
if DataStr == “” then
Multi = false

end
end
if Multi then
Tbl[#Tbl + 1] = DataStr

end
end

end
if ErrStr then
Str = nil

else
ErrStr = Tbl -- 2nd return value for Multi

end
end

end
return Str, ErrStr

end

-- Close the connection to the POP server. It is assumed that the server is in
-- a state to receive the “quit” command.

local function LclClose(PopHnd)
LclTransact(PopHnd, “quit”)
PopHnd:close()

end

-- Connect to the POP server and authenticate user. If this function succeeds,
-- (client socket) is returned, otherwise (nil, error string) is returned.

local function LclOpen(Cfg)
local Ok, Str, RetHnd, PopHnd, ErrStr
PopHnd, ErrStr = socket.connect(Cfg.ServerStr, Cfg.ServerPort)
if PopHnd then
Str, ErrStr = LclGet(PopHnd)
if Str then
if LclTransact(PopHnd, “user “ .. Cfg.UserStr) then
if LclTransact(PopHnd, “pass “ .. Cfg.PassStr) then
RetHnd = PopHnd

end
end

533

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 533

if not RetHnd then
ErrStr = “Invalid username or password submitted”

end
end
if not RetHnd then
LclClose(PopHnd)

end
end
return RetHnd, ErrStr

end

-- This function requests header information for each stored email message. On
-- success, it returns (header table), otherwise it returns (nil, error
-- string). Only the first line of each multiline value is saved.

local function LclHeaders(PopHnd)
local Ok, Str, ErrStr, RetTbl, ListTbl

Str, ListTbl = LclTransact(PopHnd, “list”, true)
if Str then
RetTbl = {}
for J, Str in ipairs(ListTbl) do
local HdrTbl, MsgTbl = {}
HdrTbl.size = tonumber(string.match(Str, “(%d+)$”) or 0)
Str, MsgTbl = LclTransact(PopHnd, “top “ .. J .. “ 1”, true)
if Str then
for J, Str in ipairs(MsgTbl) do
local KeyStr, ValStr = string.match(Str, “^([%a%-]+)%:%s*(.*)”)
if KeyStr then
HdrTbl[string.lower(KeyStr)] = ValStr

end
end
RetTbl[#RetTbl + 1] = HdrTbl

else
ErrStr = ErrStr and (ErrStr .. “, “ .. MsgTbl) or MsgTbl

end
end
if ErrStr then
RetTbl = nil

end
else
ErrStr = ListTbl

end
return RetTbl, ErrStr

end

local Cfg, PopHnd, ErrStr, Ok, HdrTbl, CfgFileStr

CfgFileStr = “cfg”
Cfg, ErrStr = Configure(CfgFileStr)
if Cfg then
if type(Cfg.ServerStr) == “string” and type(Cfg.ServerPort) == “number” and
type(Cfg.UserStr) == “string” and type(Cfg.PassStr) == “string” then

534

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 534

io.write(“Connecting to “, Cfg.ServerStr, “\n”)
PopHnd, ErrStr = LclOpen(Cfg)
if PopHnd then
io.write(“Retrieving headers\n”)
HdrTbl, ErrStr = LclHeaders(PopHnd)
if HdrTbl then
for J, Rec in ipairs(HdrTbl) do
io.write(“--- Msg “, J, “ ---\n”,
“ Subject: “, Rec.subject or “---”, “\n”,
“ From: “, Rec.from or “---”, “\n”,
“ Date: “, Rec.date or “---”, “\n”,
“ Size: “, Rec.size or “---”, “\n”)

end
end
io.write(“Disconnecting from “, Cfg.ServerStr, “\n”)
LclClose(PopHnd)

end
else
io.write(“Improper configuration: “, CfgFileStr, “\n”)

end
end
if ErrStr then
io.write(ErrStr, “\n”)

end

2. Save this file as pop_01.lua.

3. Using your editor, create a new configuration file following this template:

PassStr = “pass”
ServerPort = 110
ServerStr = “mail.example.com”
UserStr = “user”

4. Save this file as cfg.

5. Substitute values that apply to your POP account.

6. Run the script as follows:

The particular headers that are displayed may vary according to your POP server.

lua pop_01.lua
Connecting to localhost
Retrieving headers
--- Msg 1 ---
Subject: Moonlight
To: Oberon <oberon@example.com> Titania <titania@example.com>
Cc: William Shakespeare <bard@globe.example.org>
From: Puck <puck@example.com>
Date: Thu, 07 Sep 19:52:19 GMT
Size: 970

Disconnecting from localhost

535

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 535

How It Works
Like the previous example, the e-mail header retrieval process begins by obtaining account particulars
(such as server name, user name, and password) as follows:

Cfg, ErrStr = Configure(CfgFileStr)

After the presence of the fields expected in the configuration table has been verified, a connection with
the POP server is established. The authentication process shown here involves sending the following
lines (where username and secret are replaced with values from the configuration file):

user username
pass secret

If the POP server is okay with each of these, a list of the waiting e-mail sizes is requested by sending the
list command. If this command succeeds, the response will contain multiple lines. In this case, lines
are read from the server until a line made up of only a single period is encountered. To address the pos-
sibility of such a line being transmitted in an email message, servers conventionally prepend a period to
every line beginning with a period. Clients, including the one shown here, remove these initial periods.
Based on the retrieved message list, the headers of each waiting message are requested using the top
command. This is done so that a list of the message details can be presented to the user prior to down-
loading message bodies. Use the RETR command to retrieve the full body of the message. You can delete
a message with the DELE command. Both of these commands are followed by a space and the one-based
position of the message.

For more information about retrieving message bodies and dealing with possible encoding issues, refer
to documentation concerning MIME techniques.

Networking with Lua and Streams
In this chapter, you’ve surveyed some (but by no means all) of the uses of the LuaSocket library. Other
viable means of communicating over the Internet exist in the form of programs like inetd and ssh that
handle the networking details for you.

On the Server Side: inetd and Friends
Unix-type systems and the Cygwin system for Windows come with a super-server application named
inetd, xinetd or launchd that you can configure to listen on various ports. When a connection request
arrives on one of these ports, it executes the program associated with the port, mapping the program’s
standard input, output and error streams to the new socket connection. In this way, your program can
receive data from a remote client simply by reading its standard input stream, and send data back to the
client by writing to its standard output stream. Many of the issues that arise when writing a full-fledged
server application are taken care of by the super-server. These include managing execution privileges
and restricting connections by address and frequency. Any program that can read from and write to its
standard streams can be registered with a super-server, so what makes Lua special in this regard? In a
nutshell, speed. Unlike a dedicated application server that runs continuously as a process, a server appli-
cation registered with a super-server is executed whenever a new connection for it is made. Lua’s small
size and rapid loading make it a perfect choice for use in this arrangement.

536

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 536

Try It Out Creating a Stream-Based Server
If you work on a Unix-type platform, including Cygwin for Windows, you can arrange to have a Lua
program act as a network server by registering it with your system’s super-server. The example shown
here assumes you have xinetd available.

If you use a system with inetd, consult its man page for configuration details. In particular, you need
to add an entry in /etc/services to give the listening port a service name. It is this service name
rather than the port number itself that is put in the inetd.conf file.

The super-server usually runs as root and executes server programs with minimal permissions to reduce
the possibility of a security breach. In the following example, the user nobody (often associated with
web servers) is used in this capacity. You may want or need to replace references to nobody in the fol-
lowing files with another suitable low-authority user. In general, you should restrict the writers of server
scripts as much as practical. In this example, only root can write to the script.

1. With your text editor, create a new Lua script with the following contents:

-- Sample echo server for testing with inetd and cousin xinetd

local Str = “Lua echo server opening / “ .. os.date(“%T”)
while Str and Str ~= “” and Str ~= “\r” do
io.write(Str, “\r\n”)
io.flush()
Str = io.read()

end
io.write(“Lua echo server closing / “, os.date(“%T”), “\r\n”)

2. Save this file as echo.lua in a suitable directory. (/var/local/lua is used here, but the choice
is yours.)

3. As root, modify the permissions of echo.lua so that it is readable by nobody and writeable
only by suitable users, like this:

chown root:nobody echo.lua
chmod u=rw,g=r,o= echo.lua

4. In the /etc/xinetd.d directory, create a new file named lua-echo with the following contents,
changing the directory and user if necessary:

description: A sample Lua server

service lua-echo
{
socket_type = stream
type = UNLISTED
protocol = tcp
user = nobody
wait = no
server = /usr/local/bin/lua
server_args = /var/local/lua/echo.lua
disable = no
port = 23032

537

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 537

log_type = FILE /var/local/lua/log
log_on_success = PID HOST DURATION
log_on_failure = HOST

}

5. Restart the super-server. On some systems this is done with a command like this:

service xinetd restart

or this:

/etc/rc.d/rc.inetd restart

Consult the documentation for your particular super-server and platform.

6. Use telnet to connect with the server (localhost if you are accessing the echo server from the
machine on which it will run or the name of the host if you are accessing the script remotely),
and submit a blank line when you are ready to terminate the session, as follows:

You can also invoke concurrent connections.

telnet localhost 23032
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
Lua echo server opening / 09:40:56
abc
abc
xyz
xyz

Lua echo server closing / 09:41:08
Connection closed by foreign host.

How It Works
When the super-server receives a TCP connection request on port 23032, it makes sure that the remote
client is eligible to be connected. If so, it executes the following, with the stdin, stdout, and stderr
channels hooked to the socket connection:

/usr/local/bin/lua /var/local/lua/echo.lua

The echo script begins by writing a welcome message with the time. It then waits for input from the client
and, when it receives a non-empty line, writes it back. The loop is broken when an empty line arrives from
the client. The script then writes a closing line with the time and terminates. This causes the Lua interpreter
to terminate as well, a condition that prompts the super-server to close the network connection.

On the Client Side: ssh and Friends
You can use the Lua io.popen function in conjunction with programs like ssh and nc (sometimes
named netcat) to do for clients one-half of what super-servers provide for servers. Why one-half?
Unfortunately, you can only open the stock popen in the C runtime library, on which Lua’s io.popen

538

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 538

is based, in either read mode or write mode but not both together. Here’s the way it works: io.popen
accepts the name of a program and program arguments as its first argument, and either “w” (or “wb”)
for writing or “r” (or “rb”) for reading as its second argument. The “b” qualifiers indicate binary mode,
an important consideration on the Windows platform. Here’s an example use of io.popen:

Hnd, ErrStr = io.popen(“nc server.example.net 4583”, “r”)

In this example, the netcat program (nc) will be invoked with the name of a server followed by the port
on which the server is listening. Whatever this program writes to its standard output will be readable
from the handle that io.popen returns. In this case, because the pipe is read-only, the launched program
has to run without input.

The io.popen function isn’t supported on all platforms, including older versions of Windows.

A versatile program named plink can be used with io.popen on Windows and Unix-type systems.
This stream-based program is part of Simon Tatham’s outstanding PuTTY suite of secure shell client
applications. With it, you can connect to a server using the SSH or telnet protocol or use it to transfer
data in “raw” mode. The SSH option makes it an excellent tool for accessing servers protected behind
a firewall.

Try It Out Using a Stream-Based Client
In this example, you programmatically connect to the server from the previous example. You need to
have either netcat (www.vulnwatch.org/netcat) or plink (www.chiark.greenend.org.uk/
~sgtatham/putty) to run the client script.

Because of the one-way nature of io.popen, the stdin channel of netcat or plink will be taken from a
file. The stdout channel is attached to the handle returned from io.popen.

1. Create a new Lua script with the following contents. If you run the client script from a machine
other than the one the echo server is running on, change the value of ServerStr accordingly.
Also, there are two variations of CmdStr— comment or delete the one that doesn’t apply
depending on which network tool you will use.

local ServerStr = “localhost”
local Port = 23032
local CmdStr = “nc “ .. ServerStr .. “ “ .. Port
-- local CmdStr = “plink -raw -P “ .. Port .. “ “ .. ServerStr
local SendFileStr = “send.txt”

local Hnd = io.open(SendFileStr, “w”)
if Hnd then
Hnd:write(“One\nTwo\nThree\n\n”)
Hnd:close()
Hnd = io.popen(CmdStr .. “ < “ .. SendFileStr)
if Hnd then
for Str in Hnd:lines() do
io.write(Str, “\n”)

end
Hnd:close()

else

539

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 539

io.write(“Error executing ‘“, CmdStr, “‘\n”)
end

else
io.write(“Error opening “, SendFileStr, “ for writing\n”)

end

2. Save this file as client_03.lua.

3. Run the script as follows:

lua client_03.lua
Lua echo server opening / 10:39:31
One
Two
Three
Lua echo server closing / 10:39:31

How It Works
The first order of business for the client script is to prepare some lines to transmit to the echo server. It
writes these lines to a file, taking care to include a blank line at the end to signal to the echo server a
request to end the session. Putting these lines in a file is necessary because after io.popen is called the
script will have no way to send data to the echo server. The network utility, either netcat or plink, is
invoked with a call to io.popen. The command uses the < redirector to attach the utility’s standard
input stream to the file just prepared. After making a network connection with the server, the lines are
sent by the utility to the server. Server output is obtained by the client through the io.popen handle.
The following line is used to loop through the lines from the server until the session has been ended:

for Str in Hnd:lines() do

Note that the Lua scripts on both the client and the server have external requirements for network con-
nectivity, but don’t require any Lua modules.

The technique of using external tools for network communication can facilitate many tasks. For example,
if you administer a number of network hosts, you can write short scripts that collect and print critical
information about each script’s host. You can register each script with the super-server on its host or,
more securely, invoke it through SSH. You can then run a client script to collect this information with
one invocation. You can use the plink tool whether you access the scripts in raw mode or through SSH.

When implementing client and server scripts for network operations, moving basic data back and forth in
the form of text lines often suffices. This can be limiting, however, for exchanging richly structured data.
Currently, the prevailing standard is to exchange data in XML format, and libraries for Lua are available
on luaforge.net to read and write in this format. If the scripts exchanging data are both written in Lua,
however, another solution may be the easiest. As a data description language, Lua has a very clean
and compact notation. Translating the Booleans, numbers, and strings of nested tables to Lua code is a
straightforward variation of the ObjectDescribe you worked with in Chapter 7. In addition to being
easy to write, data that is received in this format couldn’t be easier to read — you let Lua do it for you
with the loadstring function. For example, suppose you have a Lua data structure that would be cre-
ated with the following code:

540

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 540

Classes = {
Laura = {“BIO 102”, “SPA 221”, “MTH 150”, “CHM 100”, Id = 120},
Jasmine = {“ENG 154”, “LIT 204”, “HUM 120”, “PHY 100”, Id = 390}

}

You can use a routine with the following characteristics to convert this structure back to Lua code:

❑ Special characters like quotes and newlines in strings are properly escaped.

❑ Boolean values are converted to “true” and “false.”

❑ Tables are handled by calling the routine recursively, with attention paid to already-defined
tables to avoid unbound recursion.

The string that is returned by such a routine might look something like this:

[‘Classes’]={Laura={[1]=”BIO 102”,[2]=”SPA 221”,[3]=”MTH 150”,;
[4]=”CHM 100”,[‘Id’]=120},Jasmine={[1]=”ENG 154”,[2]=”LIT 204”,;
[3]=”HUM 120”,[4]=”PHY 100”,[‘Id’]=390}}

With a little finesse, you could generate a rendition that is more readable. This readability doesn’t matter
to the receiving machine, but it might be desirable if some type of monitoring by people is required.
When the receiving script receives the string, it can reconstruct the data structure as follows:

Fnc = loadstring(“return {“ .. Str .. “}”)
if Fnc then
Tbl = Fnc()

end

To avoid the concatenation on the receiving side, wrap the string with return { and } on the sending
side instead.

Summary
Network communication with Lua is well-supported by the excellent LuaSocket library and other tools
such as the plink utility. In this chapter, you learned about the following:

❑ Berkeley sockets and their use in Internet communication

❑ LuaSocket’s support for domain name queries, URL parsing, and socket communication

❑ Sending e-mail with SMTP and receiving it with POP

❑ Requesting web pages and other Internet resources via the Web

❑ The system of filters, sources, sinks, and pumps that can condition data in transit

❑ Using external tools for networking with standard streams

In the next chapter, you’ll explore how Lua is used in computer games. But before you leave this chapter,
try the following exercises to enhance your Lua networking skills.

541

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 541

Exercises
1. A simple cipher known as rot13 is often used to casually obscure text. This method is often used

in newsgroup postings to veil potentially offensive jokes or the answers to riddles. This forces
the reader to intentionally apply the cipher to make the text understandable. Each ASCII charac-
ter in the text is effectively rotated 13 positions, so that characters in the range from A through
M are shifted up to N through Z, and characters in the range N through Z are shifted down to
A through M. A similar rotation takes place with lowercase letters. All characters outside of
these ranges remain unaffected. The cipher rotates from the midpoint of each character range
(that is A-Z and a-z), so it is its own inverse in the sense that applying it to converted text
restores the original text.

Write a simple filter (a function that accepts a string and returns a converted string) that imple-
ments rot13. Use the Transform function from the Text Hydraulics example to check your filter.
The decimal values of the characters A and a are 65 and 97, respectively.

Tbbq yhpx!

2. Extend the e-mail retrieval example to include the message body when displaying the headers if
the size of the message is less than or equal to 4096 bytes. Do this by writing a function named
LclBodyPrint that is called in the existing header loop as follows:

for J, Rec in ipairs(HdrTbl) do
io.write(“--- Msg “, J, “ ---\n”,
“ Subject: “, Rec.subject or “---”, “\n”,
“ To: “, Rec.to or “---”, “\n”,
“ Cc: “, Rec.cc or “---”, “\n”,
“ From: “, Rec.from or “---”, “\n”,
“ Date: “, Rec.date or “---”, “\n”,
“ Size: “, Rec.size or “---”, “\n”)

if Rec.size <= 4096 then
LclBodyPrint(PopHnd, J)

end
end

The POP command to retrieve a message body is RETR position, where position is the value J
in the header loop shown above. If the RETR command is successful, it returns the entire message
including headers in multiple lines. Use the blank line between the headers and the message body
to print only the body.

3. In the Stream-Based Client exercise, you used netcat or plink to pass three lines to an echo
server. Do the same using the LuaSocket package rather than an external tool.

542

Chapter 16: Connecting to a Larger World

19_069172 ch16.qxp 1/2/07 8:11 PM Page 542

17
Programming Games

with Lua

Although Lua was not designed for video game programming in particular, it is quite popular
with game programmers — in fact, they were the first programming subculture in which Lua
became a household word.

This chapter is only a short introduction to a large topic. It talks about why and when you would
want to use Lua in a game, but most of it is occupied with an example: a simple 2-D action game.
In this chapter you learn how to do the following:

❑ Program with the SDL library

❑ Define sprites

❑ Make the sprites move, either automatically or in response to user input

❑ Detect collisions between sprites

Understanding Why and When to Use Lua
It is possible to write games entirely in Lua, but generally there’s a division of labor between Lua
and at least one other language. This is for two reasons:

❑ There are some things (graphics, sound, and interaction with non-character-oriented hard-
ware) that Lua simply cannot do on its own.

❑ As languages of its type go, Lua is very fast, but some games, because of their real-time
nature, have speed demands that can only be satisfied by less flexible languages like C
and C++.

In parts of a game (or any program, really) where either of those reasons apply, you should use
another language. In parts where they don’t apply, you can use Lua and benefit from its strong

20_069172 ch17.qxp 1/2/07 8:11 PM Page 543

points (that generally aren’t shared by languages that beat it in the preceding two departments). The
benefits of Lua include the following:

❑ Lightweight compilation: In Lua, there’s a very short distance between changing a program
and seeing the effects of the change. (By loading Lua code at run time, you can even make
changes without restarting the program.)

❑ High-level nature: Lua includes as basic features things like tables, closures, and coroutines.
These allow programs to be written at a higher level of abstraction.

❑ Ease of learning: Lua has a simple syntax and type system. It doesn’t have a lot of rules that are
there just to make things easier for the computer.

This division of labor means that things like graphics are generally written in some lower-level language,
and things like game logic, AI for computer-controlled characters, level definitions, and saved-game files
can be written in Lua, possibly by different team members than those working in the other language.

You can also use Lua for prototyping. Write as much of the game as possible in Lua, and then translate
anything that’s too slow (and can’t be sufficiently optimized within Lua) to a lower-level language.

The rest of this chapter demonstrates a simple graphical game. So simple, in fact, that it barely deserves
to be called a game (there is no scoring or way to win, and the gameplay gets old fast), but this simplic-
ity is intentional — it allows you to examine some basic concepts in more detail than would be possible
with a more amusing game.

Simple 2-D Action Game Using SDL
The example game will be entirely in Lua, except for the low-level graphics, which will use the Simple
DirectMedia Layer (SDL) library. SDL is a cross-platform library that lets you do graphics, audio, joy-
stick access, and other things that are useful in games. It is licensed under the GNU Lesser General
Public License. More information, including documentation, is available at www.libsdl.org.

SDL is written in C, but you will be using a Lua binding to it in this chapter. Specifically, you’ll be using
the binding that comes with LuaCheia. LuaCheia (Portuguese for full moon) is a distribution of Lua that
includes a bunch of add-on libraries, including SDL. (LuaCheia’s SDL binding was done by Asko Kauppi,
and an updated version is included in his Lua distribution LuaX, available at luaforge.net.)

Installing SDL and LuaCheia
For the SDL examples to work, you need to install LuaCheia. If you are using Windows, then your job is
easy, because there’s a Windows installer that installs everything you need.

On either platform, first follow these steps:

LuaCheia uses Lua 5.0 rather than Lua 5.1, which is why math.mod is used instead of
the % operator in the following examples.

544

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 544

1. Go to LuaCheia’s SourceForge.net page (sourceforge.net/projects/luacheia/). Click the
Download LuaCheia link, select the file luacheia5-win32-5.0.1a5.exe (you may need to
scroll down to see it), select a mirror site near you, save the file, and run it. This will install
LuaCheia in the directory C:\Program Files\luacheia (or somewhere else if your Program
Files directory is somewhere else).

2. In the following examples, you access LuaCheia typing luacheia5 at the shell. For this to work,
add C:\Program Files\luacheia to your search path (as described in Chapter 1).
Alternatively, you can run LuaCheia by typing the following:

“C:\Program Files\luacheia\luacheia5”

Notice that you use quotes instead of just luacheia5.

If you are using a Windows system, you’re done. If however, you’re using a Unix-like operating system,
then you have a bit more work ahead of you. Before installing anything, make sure that you have the
following:

❑ gcc or another C compiler

❑ C++ compiler, such as g++ or c++ (because the LuaCheia SDL binding is actually done in C++)

This compiler may be gcc too, but gcc can be installed in a way that doesn’t include its C++ components.

❑ The X Window System, including its header files (usually located at /usr/include/X11/)

You may be able to get the following examples to work without the X Window System, using the frame-
buffer on Linux or native graphics on Mac OS X, but that’s not covered here.

Follow these steps to install SDL:

1. Go to the SDL 1.2 section of www.libsdl.org (listed under the Download header) and down-
load the file SDL-1.2.11.tar.gz to /usr/local/src/ or somewhere in your home directory.
(If a more recent version is available, it will probably work too.)

2. Unpack the file and use cd to change to the directory that unpacking the file creates, as follows:

tar xzvf SDL-1.2.11.tar.gz
cd SDL-1.2.11

You can remove the .tar.gz file after it’s unpacked.

3. Build the SDL makefiles as follows:

./configure

This will print a lot of data. Somewhere in the middle, you should see something like checking
for X... libraries /usr/X11R6/lib, headers. If you instead see checking for X... no,
then the X Window System (or its header files) could not be found.

4. Compile SDL as follows:

make

5. As root, install SDL like this:

make install

545

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 545

Now follow these steps to compile and install LuaCheia:

1. Go to LuaCheia’s SourceForge.net page (sourceforge.net/projects/luacheia/). Click the
Download LuaCheia link, select the file luacheia5-5.0.1a5.tar.gz, select a mirror site near
you, and save the file to /usr/local/src/ or somewhere in your home directory.

2. Unpack the file and use cd to change to the directory that unpacking the file creates, as follows:

tar xzvf luacheia5-5.0.1a5.tar.gz
cd luacheia5-5.0.1a5

You can remove the .tar.gz file after it’s unpacked.

3. Build LuaCheia’s makefiles as follows:

./configure

This will print a lot of data, including something like this in the middle:

checking for sdl-config... /usr/local/bin/sdl-config
checking for SDL - version >= 1.2.5... yes

4. Compile LuaCheia as follows:

make

5. As root, install LuaCheia like this:

make install

Using SDL
Now that you have LuaCheia installed, it’s time to use its binding to SDL in an example program.
To make things a little more digestible, two versions of the example program will be given.

Try It Out Writing Your First SDL Program
1. Save the following as movearound.lua:

-- Simple SDL graphics demo. Usage: luacheia5 test.lua

assert(cheia.load(“SDL”))
assert(cheia.load(“bit”))

-- Returns a “screen” (a canvas within a window upon which the
-- sprites will be drawn):
local function MakeScreen()
local ErrStr
local Screen = SDL.SDL_SetVideoMode(640, 480, 8,
bit.bor(SDL.SDL_SWSURFACE, SDL.SDL_ANYFORMAT))

if not Screen then
ErrStr = debug.traceback(SDL.SDL_GetError())

end
return Screen, ErrStr

end

-- Returns a sprite object; ImgName is the filename of a .bmp file:

546

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 546

local function MakeSprite(Screen, ImgName)
local Sprite, ErrStr
local Img = SDL.SDL_LoadBMP(ImgName)
if Img then
local Background = SDL.SDL_MapRGB(Screen.format, 0, 0, 0)
-- Current X and Y positions:
local CurX, CurY = 0, 0
-- Tables to be (re)used as rectangle arguments to
-- SDL_FillRect and SDL_BlitSurface:
local FillRect = {x = 0, y = 0, w = Img.w, h = Img.h}
local BlitRect = {x = 0, y = 0, w = Img.w, h = Img.h}
-- The sprite object:
Sprite = {}

-- Moves the sprite; X and Y default to the current position if
-- they are nil:
function Sprite:Move(X, Y)
local Succ, ErrStr
X, Y = math.floor(X or CurX), math.floor(Y or CurY)
-- Erase the sprite at its current position:
FillRect.x, FillRect.y = CurX, CurY
if SDL.SDL_FillRect(Screen, FillRect, Background) == 0 then
-- Write it to its new position:
BlitRect.x, BlitRect.y = X, Y
if SDL.SDL_BlitSurface(Img, nil, Screen, BlitRect) == 0 then
CurX, CurY = X, Y
Succ = true

else
Succ, ErrStr = false, debug.traceback(SDL.SDL_GetError())

end
else
Succ, ErrStr = false, debug.traceback(SDL.SDL_GetError())

end
return Succ, ErrStr

end

-- Give the sprite its initial position:
local Succ
Succ, ErrStr = Sprite:Move()
if not Succ then
Sprite = nil

end
else
ErrStr = debug.traceback(SDL.SDL_GetError())

end
return Sprite, ErrStr

end

-- Returns a function that gets pending events (all it returns in
-- this version is whether to quit):
local function MakeGetEvents()
-- An SDL_Event structure -- this is how SDL.SDL_PollEvent returns
-- any event it finds in the event queue:
local Event = SDL.SDL_Event_new()

-- Returns whether to quit:
return function()

547

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 547

local Quit = false
-- Consume pending events:
while not Quit and SDL.SDL_PollEvent(Event) == 1 do
-- Was the window closed?
if Event.type == SDL.SDL_QUIT then
Quit = true -- Break the loop.

-- Was “q” pressed?
elseif Event.type == SDL.SDL_KEYDOWN
and Event.key.keysym.sym == SDL.SDLK_q

then
Quit = true -- Break the loop.

end
end
return Quit

end
end

local function MainLoop(Screen, UserSprite)
local Succ, ErrStr = true
-- Put the sprite 32 pixels from the left side, and 0 pixels
-- from the top, of the screen (window):
Succ, ErrStr = UserSprite:Move(32, 0)
if Succ then
-- Update the entire screen:
SDL.SDL_UpdateRect(Screen, 0, 0, 0, 0)
local GetEvents = MakeGetEvents()
-- GetEvents returns true if the user quits; loop until that
-- happens:
while not GetEvents() do end

end
return Succ, ErrStr

end

local function Main()
local ErrStr
local InitRes = SDL.SDL_Init(SDL.SDL_INIT_VIDEO)
if InitRes == 0 then
local Screen
Screen, ErrStr = MakeScreen()
if Screen then
-- The window title is somewhat misleading in this initial
-- version:
SDL.SDL_WM_SetCaption(“Move Around”, “Move Around”);
SDL.SDL_EnableKeyRepeat(SDL.SDL_DEFAULT_REPEAT_DELAY,
SDL.SDL_DEFAULT_REPEAT_INTERVAL)

-- Create a sprite (eventually to be controlled by the user):
local UserSprite
UserSprite, ErrStr = MakeSprite(Screen, “goodie.bmp”)
if UserSprite then
io.write(“In the new window, press ‘q’ (or close the”,
“ window) to quit.\n”)

io.flush()
local _
_, ErrStr = MainLoop(Screen, UserSprite)

end
end
SDL.SDL_Quit()

548

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 548

else
ErrStr = debug.traceback(SDL.SDL_GetError())

end
return not ErrStr, ErrStr

end

local Succ, ErrStr = Main()
if not Succ then
io.stderr:write(ErrStr, “\n”)

end

2. Use a drawing program (such as Microsoft Paint or The Gimp) to draw a picture roughly 32 pix-
els wide by 32 pixels tall, and save it in Windows bitmap format as goodie.bmp.

3. On Unix-like systems, start the X Window System if it’s not already running.

4. Run movearound.lua as follows:

luacheia5 movearound.lua

As mentioned previously, if you’re on Windows and you didn’t add the LuaCheia directory to
your search path, you’ll need to type something like this instead:

“C:\Program Files\luacheia\luacheia5” movearound.lua

A new window will appear that looks like Figure 17-1. (For this example, the Lua logo was used
to create goodie.bmp.)

5. Close the window with the mouse or by pressing q.

Figure 17-1

549

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 549

How It Works
This is a preliminary version of this example. Despite the name, nothing actually moves around yet.

assert(cheia.load(“SDL”)) loads the SDL library, creating a global table called SDL. This table con-
tains the SDL library’s functions and constants. SDL.SDL_Init is the Lua version of the C function
SDL_Init, SDL.SDL_INIT_VIDEO is the Lua version of the C constant SDL_INIT_VIDEO, and so on.
Before any of SDL’s other functions can be used, SDL.SDL_Init is called as follows:

local function Main()
local ErrStr
local InitRes = SDL.SDL_Init(SDL.SDL_INIT_VIDEO)

The SDL.SDL_INIT_VIDEO argument tells SDL that you want to initialize the video (graphics) subsys-
tem. (SDL also can do things with sound, joysticks, CD-ROMs, and more.) As documented on the SDL
website, the SDL_Init C function returns 0 if it succeeds and -1 if it fails. From a Lua standpoint, it
would be more idiomatic to return true on success and false on failure, but this binding is a relatively
thin one that doesn’t hide SDL’s C-ish nature, so the check for success looks like this:

if InitRes == 0 then

The thinness of the binding also explains why the names are so verbose. The second SDL in
SDL.SDL_Init is only there because all of the C functions (and constants) start with SDL_.

After SDL is initialized, the next step is to make a screen — a surface that you can draw on, which
appears in its own window. This is accomplished with the following:

local function MakeScreen()
local ErrStr
local Screen = SDL.SDL_SetVideoMode(640, 480, 8,
bit.bor(SDL.SDL_SWSURFACE, SDL.SDL_ANYFORMAT))

For details about the SDL.SDL_SetVideoMode arguments, see the SDL website. For now, just note
that this and some other functions take on-off switches (flags) for various behaviors, and that when mul-
tiple flags need to be given, they’re combined with a bitwise or. A bitwise or means that two (or more)
numbers are treated as binary and a logical or is performed on the ones columns, the twos columns, the
fours columns, and so on, with 1 used for true and 0 for false. The bitwise or here (bit.bor) is
supplied by the LuaCheia library loaded earlier in the file with cheia.load(“bit”). (This particular
set of flags, SDL.SDL_SWSURFACE and SDL.SDL_ANYFORMAT, actually could have been handled
without a bitwise operation, but other sets of flags you may use cannot.)

A title is then given to the window, and key repeat is enabled (so that holding down a key is like rapidly
tapping it over and over).

Next, a sprite is created. A sprite is basically a picture that can be moved around the screen as a unit. SDL
has no built-in support for sprites, so they need to be implemented in terms of more basic operations.
Specifically, MakeSprite returns a table with a Move method. When this method is called, the sprite’s
image (goodie.bmp) is erased from its current location on the screen and redrawn so that its upper-left
corner is at the given coordinates.

550

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 550

The first coordinate, X, gives the horizontal component of the position, with 0 being the leftmost column
of pixels on the screen. The second coordinate, Y, gives the vertical component of the position, with 0
being the topmost row of pixels.

The erasing is done with SDL.SDL_FillRect, whose second argument shows the position and size of
the rectangle to be painted with the background color. This second argument is a rectangle, which in SDL
means a table with x, y, w (width), and h (height) fields.

The redrawing is done with SDL.SDL_BlitSurface. (Blitting means copying pixels from one area of
memory to another.) SDL.SDL_BlitSurface takes the following four arguments:

❑ The first argument is the source surface which in this example is the surface generated by read-
ing goodie.bmp. (A surface is just a chunk of memory viewed as a rectangle of pixels.)

❑ The second argument is a rectangle showing what part of the source surface to copy. If this is
nil, the whole source surface is copied.

❑ The third argument is the destination surface, which in this example is the screen.

❑ The fourth arument is a rectangle showing where in the destination surface to copy the source
surface to (the w and h fields are ignored).

After the sprite is created, it’s given to MainLoop, which moves it to 32, 0 (an arbitrary location chosen
for demonstration purposes) and then makes sure that the sprite is visible by calling SDL.SDL_UpdateRect.
Until SDL.SDL_UpdateRect is called, there’s no guarantee that anything done by SDL.SDL_BlitSurface
will be visible — it may be or it may not be. SDL.SDL_UpdateRect is your way of saying that you’re
done slinging bits around the screen and are ready for what you’ve done to become visible.

Apart from the surface to be updated, SDL.SDL_UpdateRect takes four arguments: the X position, Y
position, width, and height of the rectangular section of the surface that is to be updated. As a special
case, if it sees that all four of these arguments are 0, it updates the whole surface (the screen in this case).

The GetEvents function uses SDL.SDL_PollEvent to check for new events. The only events it cares
about are the window being closed and the Q key being pressed — if either of these happens, it returns
true. If some other event or events occur, or if no events have occurred since the last time SDL.SDL_
PollEvent was called, GetEvents returns false. Waiting for the user to quit is the job of the main loop
of the program (which MainLoop is named after). This empty-bodied loop just calls GetEvents over
and over until it returns true:

while not GetEvents() do end

Finally, SDL.SDL_Quit is called to shut down SDL, and if an error occurred anywhere along the way, its
error message is printed.

The next version of movearound.lua will still have very low entertainment value as a game, but it will
at least live up to its name — you’ll be able to control the movement of a sprite. Meanwhile another
sprite will be moving on its own.

551

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 551

Try It Out Putting Sprites in Motion
1. Make the following changes to movearound.lua:

-- Simple SDL graphics demo. Usage: luacheia5 test.lua

assert(cheia.load(“SDL”))
assert(cheia.load(“bit”))

-- Returns a “screen” (a canvas within a window upon which the
-- sprites will be drawn):
local function MakeScreen()
local ErrStr
local Screen = SDL.SDL_SetVideoMode(640, 480, 8,
bit.bor(SDL.SDL_SWSURFACE, SDL.SDL_ANYFORMAT))

if not Screen then
ErrStr = debug.traceback(SDL.SDL_GetError())

end
return Screen, ErrStr

end

-- Returns N, or (if N is lower than Min), a number as much above Min
-- as N is below it, or (if N is higher than Max), a number as much
-- below Max as N is above it; also returns a second value telling
-- whether had to return a number other than N:
local function ComputeBounce(N, Min, Max)
local Fix = false
if N > Max then
N = Max - (N - Max)
Fix = true

elseif N < Min then
N = Min + (Min - N)
Fix = true

end
return N, Fix

end

-- Returns N, or Min if N is lower than Min, or Max, if N is higher
-- than Max:
local function Between(N, Min, Max)
return N > Max and Max or N < Min and Min or N

end

-- Returns 1, 0, or -1 depending on whether N is positive, zero, or
-- negative:
local function Sign(N)
if N > 0 then
N = 1

elseif N < 0 then
N = -1

end
return N

end

-- Returns a sprite object; ImgName is the filename of a .bmp file:

552

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 552

local function MakeSprite(Screen, ImgName)
local Sprite, ErrStr
local Img = SDL.SDL_LoadBMP(ImgName)
if Img then
local Background = SDL.SDL_MapRGB(Screen.format, 0, 0, 0)
-- Current X and Y positions:
local CurX, CurY = 0, 0
-- Current velocities along the X and Y axes, in pixels per tick
-- (minimum -1, maximum 1):
local VelX, VelY = 0, 0
-- Velocity increment (the smallest unit by which velocity along
-- a given axis changes):
local VelInc = 1 / 32
-- Tables to be (re)used as rectangle arguments to
-- SDL_FillRect and SDL_BlitSurface:
local FillRect = {x = 0, y = 0, w = Img.w, h = Img.h}
local BlitRect = {x = 0, y = 0, w = Img.w, h = Img.h}
-- The sprite object:
Sprite = {}

-- Moves the sprite; X and Y default to the current position if
-- they are nil:
function Sprite:Move(X, Y)
local Succ, ErrStr
X, Y = math.floor(X or CurX), math.floor(Y or CurY)
-- Erase the sprite at its current position:
FillRect.x, FillRect.y = CurX, CurY
if SDL.SDL_FillRect(Screen, FillRect, Background) == 0 then
-- Write it to its new position:
BlitRect.x, BlitRect.y = X, Y
if SDL.SDL_BlitSurface(Img, nil, Screen, BlitRect) == 0 then
CurX, CurY = X, Y
Succ = true

else
Succ, ErrStr = false, debug.traceback(SDL.SDL_GetError())

end
else
Succ, ErrStr = false, debug.traceback(SDL.SDL_GetError())

end
return Succ, ErrStr

end

-- Call this once for every tick:
function Sprite:Tick(Ticks)
local Succ, ErrStr = true
local NewX
if VelX ~= 0 and math.mod(Ticks, 1 / VelX) < 1 then
NewX = CurX + Sign(VelX)
-- Make sure it doesn’t go off the edges:
local Fix
NewX, Fix = ComputeBounce(NewX, 0,
self:ScreenWidth() - self:Width())

if Fix then VelX = -VelX end
end
local NewY

553

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 553

if VelY ~= 0 and math.mod(Ticks, 1 / VelY) < 1 then
NewY = CurY + Sign(VelY)
-- Make sure it doesn’t go off the edges:
local Fix
NewY, Fix = ComputeBounce(NewY, 0,
self:ScreenHeight() - self:Height())

if Fix then VelY = -VelY end
end
if NewX or NewY then
Succ, ErrStr = self:Move(NewX, NewY)

end
return Succ, ErrStr

end

-- Accelerates the sprite along the X axis (negative values of
-- Accel accelerate to the left):
function Sprite:AccelX(Accel)
if Accel ~= 0 then
VelX = Between(VelX + Accel * VelInc, -1, 1)

end
end

-- Accelerates the sprite along the Y axis (negative values of
-- Accel accelerate upward):
function Sprite:AccelY(Accel)
if Accel ~= 0 then
VelY = Between(VelY + Accel * VelInc, -1, 1)

end
end

-- Stops the sprite cold:
function Sprite:Stop()
VelX, VelY = 0, 0

end

-- More methods:
function Sprite:X() return CurX end
function Sprite:Y() return CurY end
function Sprite:Width() return Img.w end
function Sprite:Height() return Img.h end
function Sprite:ScreenWidth() return Screen.w end
function Sprite:ScreenHeight() return Screen.h end

-- Give the sprite its initial position:
local Succ
Succ, ErrStr = Sprite:Move()
if not Succ then
Sprite = nil

end
else
ErrStr = debug.traceback(SDL.SDL_GetError())

end
return Sprite, ErrStr

end

-- Returns a function that gets pending events:

554

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 554

local function MakeGetEvents()
-- An SDL_Event structure -- this is how SDL.SDL_PollEvent returns
-- any event it finds in the event queue:
local Event = SDL.SDL_Event_new()

-- Returns how much to accelerate to the right, how much to
-- accelerate downward, and whether to stop or quit:
return function()
local AccelX, AccelY, OtherEvent = 0, 0
-- Consume pending events:
while not OtherEvent and SDL.SDL_PollEvent(Event) == 1 do
-- Was the window closed?
if Event.type == SDL.SDL_QUIT then
OtherEvent = “Quit” -- Break the loop.

elseif Event.type == SDL.SDL_KEYDOWN then
local Key = Event.key.keysym.sym
-- Was “q” pressed?
if Key == SDL.SDLK_q then
OtherEvent = “Quit” -- Break the loop.

-- If an arrow key was pressed, accelerate the sprite in that
-- direction:
elseif Key == SDL.SDLK_LEFT then
AccelX = AccelX - 1

elseif Key == SDL.SDLK_RIGHT then
AccelX = AccelX + 1

elseif Key == SDL.SDLK_UP then
AccelY = AccelY - 1

elseif Key == SDL.SDLK_DOWN then
AccelY = AccelY + 1

elseif Key == SDL.SDLK_SPACE then
OtherEvent = “Stop” -- Break the loop.

else
-- Some other key; ignore it.

end
end

end
return AccelX, AccelY, OtherEvent

end
end

-- Moves the user sprite and automatic sprite the appropriate
-- distance for the given amount of ticks:
local function Step(UserSprite, AutoSprite, Ticks)
local Succ, ErrStr = true
-- Move the sprites:
Succ, ErrStr = UserSprite:Tick(Ticks)
if Succ then
Succ, ErrStr = AutoSprite:Tick(Ticks)

end
return Succ, ErrStr

end

-- Are Sprite1 and Sprite2 overlapping?
local function Overlap(Sprite1, Sprite2)
local Ret = false
-- This views the two sprites as rectangle-shaped, even if they

555

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 555

-- look like other shapes.
local DiffX = math.abs(Sprite1:X() - Sprite2:X())
local Width = (Sprite1:Width() + Sprite2:Width()) / 2
if DiffX < Width then
local DiffY = math.abs(Sprite1:Y() - Sprite2:Y())
local Height = (Sprite1:Height() + Sprite2:Height()) / 2
if DiffY < Height then
Ret = true

end
end
return Ret

end

local function MainLoop(Screen, UserSprite, AutoSprite)
local Succ, ErrStr = true
local GetEvents = MakeGetEvents()
-- Loop until the user quits (or an error occurs):
local PrevTicks = SDL.SDL_GetTicks();
local OtherEvent
while Succ and OtherEvent ~= “Quit” do
-- Get any and all pending events:
local AccelX, AccelY
AccelX, AccelY, OtherEvent = GetEvents()
-- Update the sprite’s velocity:
UserSprite:AccelX(AccelX)
UserSprite:AccelY(AccelY)
-- Get the current number of elapsed ticks -- if it’s the same as
-- the previous number, keep checking until it’s different:
local Ticks = SDL.SDL_GetTicks();
while Ticks == PrevTicks do
Ticks = SDL.SDL_GetTicks();

end
-- Call Step once for each tick that has happened since
-- PrevTicks:
for I = PrevTicks + 1, Ticks do
Succ, ErrStr = Step(UserSprite, AutoSprite, I)
if not Succ then break end -- BREAK ON ERROR.

end
PrevTicks = Ticks
if OtherEvent == “Stop” then
-- Screeching halt:
UserSprite:Stop()

end
-- Are the two sprites overlapping?
if Overlap(UserSprite, AutoSprite) then
io.write(“GAME OVER (collision)\n”)
break -- EXIT THE MAIN LOOP.

end
-- Update the entire screen:
SDL.SDL_UpdateRect(Screen, 0, 0, 0, 0)

end
return Succ, ErrStr

556

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 556

end

local function Main()
local ErrStr
local InitRes = SDL.SDL_Init(SDL.SDL_INIT_VIDEO)
if InitRes == 0 then
local Screen
Screen, ErrStr = MakeScreen()
if Screen then
-- Set the window title; enable key repeat:
SDL.SDL_WM_SetCaption(“Move Around”, “Move Around”);
SDL.SDL_EnableKeyRepeat(SDL.SDL_DEFAULT_REPEAT_DELAY,
SDL.SDL_DEFAULT_REPEAT_INTERVAL)

-- Create a sprite to be controlled by the user and another to
-- be controlled by the program:
local UserSprite
UserSprite, ErrStr = MakeSprite(Screen, “goodie.bmp”)
if UserSprite then
local AutoSprite
AutoSprite, ErrStr = MakeSprite(Screen, “baddie.bmp”)
if AutoSprite then
-- Give them their initial positions and velocities:
local Succ
local ScreenWidth, ScreenHeight = Screen.w, Screen.h
Succ, ErrStr = UserSprite:Move(
ScreenWidth / 3 - UserSprite:Width() / 2,
ScreenHeight / 2 - UserSprite:Height() / 2)

if Succ then
Succ, ErrStr = AutoSprite:Move(
ScreenWidth * (2 / 3) - AutoSprite:Width() / 2,
ScreenHeight / 2 - AutoSprite:Height() / 2)

if Succ then
-- Go in one of the four diagonal directions depending
-- on what time it is:
local Time = math.mod(os.time(), 4) + 1
local A = 5 -- AutoSprite initial acceleration.
local AccelX = ({A, A, -A, -A})[Time]
local AccelY = ({A, -A, -A, A})[Time]
AutoSprite:AccelX(AccelX)
AutoSprite:AccelY(AccelY)
io.write([[

In the new window:
- press the arrow keys to change speed
- press space to stop moving
- press ‘q’ (or close the window) to quit.
]])

io.flush()
Succ, ErrStr = MainLoop(Screen, UserSprite, AutoSprite)

end
end

end
end

end

557

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 557

SDL.SDL_Quit()
else
ErrStr = debug.traceback(SDL.SDL_GetError())

end
return not ErrStr, ErrStr

end

local Succ, ErrStr = Main()
if not Succ then
io.stderr:write(ErrStr, “\n”)

end

2. Draw another picture roughly 32 pixels wide by 32 pixels tall, and save it in Windows bitmap
format as baddie.bmp.

3. Run movearound.lua as follows:

luacheia5 movearound.lua

You’ll see something like Figure 17-2. The baddie.bmp sprite is moving. The goodie.bmp sprite
is standing still, and pressing an arrow key makes it move in the arrow key’s direction. Pressing
the key repeatedly makes it go faster and faster in that direction. Pressing the space bar makes
it come to a complete stop. Both sprites bounce when they hit the edges of the screen. The pro-
gram ends when baddie.bmp touches goodie.bmp.

Figure 17-2

558

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 558

How It Works
This version creates two sprites: UserSprite (controlled by the user) and AutoSprite (controlled
by the program). They are initially placed respectively to the left and to the right of the screen’s center.
Then AutoSprite is accelerated (given a push) in a randomly chosen diagonal direction. (The direction
is chosen based on what time it is — on Unix-like systems and Windows, os.time returns a number of
seconds from a particular date in the past.) This acceleration is done with AutoSprite’s AccelX and
AccelY methods as follows:

-- Go in one of the four diagonal directions depending
-- on what time it is:
local Time = math.mod(os.time(), 4) + 1
local A = 5 -- AutoSprite initial acceleration.
local AccelX = ({A, A, -A, -A})[Time]
local AccelY = ({A, -A, -A, A})[Time]
AutoSprite:AccelX(AccelX)
AutoSprite:AccelY(AccelY)

The AccelX method adds the product of its argument and VelInc (1/32) to the sprite’s X velocity
(VelX). Velocity is speed and direction. X velocity is speed along the X axis, but it’s negative if the direc-
tion is to the left. So, if AccelX is called with an argument of 1, then ƒ 1⁄32 is added to the sprite’s X veloc-
ity (which is initialized to 0). AccelX makes sure, though, that the sprite’s X velocity never gets lower
than -1 or higher than 1, like this:

-- Accelerates the sprite along the X axis (negative values of
-- Accel accelerate to the left):
function Sprite:AccelX(Accel)
if Accel ~= 0 then
VelX = Between(VelX + Accel * VelInc, -1, 1)

end
end

AccelY does the same thing for the sprite’s Y velocity.

MainLoop and the main loop it contains are now more complex. Again, the loop (still a while loop) is
based on repeatedly calling GetEvents, but the new GetEvents returns three values. The first two are
based on how many times the arrow keys were pressed since the last call to GetEvents. They tell how
much UserSprite needs to be accelerated along (respectively) the X and Y axes. The third return value
tells whether an event other than an arrow keypress occurred. This third value can be nil, or “Quit”
(if the user pressed q or closed the window), or “Stop” (if the user pressed the space bar).

The main loop keeps track of how many ticks (milliseconds in SDL) have taken place since its previous
iteration. After accelerating UserSprite appropriately, it calls Step once for each elapsed tick:

-- Call Step once for each tick that has happened since
-- PrevTicks:
for I = PrevTicks + 1, Ticks do
Succ, ErrStr = Step(UserSprite, AutoSprite, I)
if not Succ then break end -- BREAK ON ERROR.

end
PrevTicks = Ticks

559

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 559

Step calls each sprite’s Tick method with the current tick as an argument.

Actually, it may not be the current tick, but the for I loop lets the Tick method think that it’s being
called every time a tick occurs, even when several ticks go by in between iterations of the main loop.

In this program, velocity is expressed as the number of pixels to move per tick. Both the X and Y compo-
nents of velocity have a minimum of -1 (one pixel per tick to the left or upwards) and a maximum of 1
(one pixel per tick to the right or downwards). These values are often fractional, so the Tick method
needs to decide on every tick whether or not to move its sprite one pixel. For example, if VelX is 0.25,
then Tick needs to move the sprite one pixel to the right on every fourth tick. It does this with modulo
arithmetic (using the Lua 5.0 function math.mod) as follows:

-- Call this once for every tick:
function Sprite:Tick(Ticks)
local Succ, ErrStr = true
local NewX
if VelX ~= 0 and math.mod(Ticks, 1 / VelX) < 1 then

“< 1” is used instead of “== 0” to account for the fact that 1 / VelX may not be an integer.

After a new X (always one more or one less than the current X) has been computed, the walls(the edges
of the screen) need to be accounted for. If the new X puts part of the sprite offscreen, then it (the new X)
is recomputed so that the sprite is fully onscreen, as though it had bounced off the screen’s edge, and the
sprite’s X direction is reversed:

NewX = CurX + Sign(VelX)
-- Make sure it doesn’t go off the edges:
local Fix
NewX, Fix = ComputeBounce(NewX, 0,
self:ScreenWidth() - self:Width())

if Fix then VelX = -VelX end

Notice that the sprite’s width has to be taken into account, because the sprite’s X position is actually the
position of its left edge.

After doing the same thing for the Y velocity and position, the sprite is moved if necessary:

if NewX or NewY then
Succ, ErrStr = self:Move(NewX, NewY)

end

After Step has called each sprite’s Tick method, it returns control to MainLoop, which checks whether a
“Stop” event has occurred, and responds appropriately:

if OtherEvent == “Stop” then
-- Screeching halt:
UserSprite:Stop()

end

560

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 560

Then the main loop (and after that, the whole program) is exited if AutoSprite and UserSprite have
collided:

-- Are the two sprites overlapping?
if Overlap(UserSprite, AutoSprite) then
io.write(“GAME OVER (collision)\n”)
break -- EXIT THE MAIN LOOP.

end

If the loop hasn’t been exited, then the screen is updated with SDL.SDL_UpdateRect and control goes
back to the top of the loop. (The loop’s while expression is responsible for ending things if a “Quit”
event occurs.)

There are a number of ways you could make this game more interesting. Among other things, you could
add the following:

❑ Some sort of goal. This could be as simple as a literal goal — an area of the screen that must be
reached, possibly by navigating around fixed obstacles, to win the game. Scoring could be based
on how quickly the goal is reached.

❑ More computer-controlled sprites, perhaps with more complex movement patterns. These could
all be kept in a table, rather than each having its own variable (as AutoSprite does now).

❑ Animation (such as making AutoSprite’s eyes blink).

❑ Better collision detection so that sprites are not always considered to be shaped like rectangles.

❑ That old video game standby, shooting things.

You could also improve the interface by making it mouse- or joystick-based, putting it entirely in one
window (instead of using io.write for messages), and allowing the game to be restarted from the
same window.

If any of these changes slowed the game down too much, you could perform optimizations right in Lua,
such as minimizing function calls and runtime table creation, and updating only the parts of the screen
that need to be updated. If such optimizations weren’t enough, you would need to rewrite parts of the
game in a lower-level language.

One of the sample programs included with LuaCheia is Meteor Shower by Thatcher Ulrich. This game
bears a family resemblance to the arcade classic Asteroids — it demonstrates mouse control, creation of
sprites during gameplay, and gravitational physics. On Unix-like systems, you can run it like this:

cd /usr/local/src/luacheia5-5.0.1a5/examples/meteor_shower
luacheia5 meteor_shower.lua

On Windows, it is one of the choices in the luacheia submenu created in the Start menu by the
installer.

561

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 561

Summary
In this chapter, you dipped your toes into the deep water of Lua game programming, and learned about
the following:

❑ Lua’s strong suit in game programming, which is writing the more abstract and less speed-
intensive portions of a program

❑ The SDL library

❑ Game programming concepts such as sprites, events, and ticks

❑ The basics of implementing physics concepts like velocity and collisions

As a self-directed exercise, you can make the improvements to movearound.lua suggested in the last
section at any time. But for now, here’s one exercise to tackle before you move on to the next chapter
(about Lua on handheld devices), here’s one exercise to tackle. The answer is in the appendix.

Exercise
Here’s an SDL program that’s not very well commented. Without running it, figure out what it does.

assert(cheia.load(“SDL”))

local function GetImgs()
local Goodie, Baddie, ErrStr
Goodie = SDL.SDL_LoadBMP(“goodie.bmp”)
if Goodie then
Baddie = SDL.SDL_LoadBMP(“baddie.bmp”)
if Baddie then
if Goodie.w ~= Baddie.w or Goodie.h ~= Baddie.h then
Goodie = nil
ErrStr = debug.traceback(
“goodie.bmp and baddie.bmp must have the same shape”)

end
end

else
ErrStr = debug.traceback(SDL.SDL_GetError())

end
return Goodie, Baddie, ErrStr

end

local function Tile(Goodie, Baddie, Screen)
math.randomseed(os.time())
local ErrStr
for X = 0, 3 do
for Y = 0, 3 do
local Img = math.random(1, 2) == 1 and Goodie or Baddie
if SDL.SDL_BlitSurface(Img, nil, Screen,

562

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 562

{x = X * Goodie.w, y = Y * Goodie.h}) ~= 0
then
ErrStr = debug.traceback(SDL.SDL_GetError())
break -- BREAK ON ERROR.

end
end

end
return not ErrStr, ErrStr

end

local function WaitForQuit()
local Event = SDL.SDL_Event_new()
while Event do
local Pending = SDL.SDL_PollEvent(Event) == 1
if Pending
and (Event.type == SDL.SDL_QUIT
or Event.type == SDL.SDL_KEYDOWN
and Event.key.keysym.sym == SDL.SDLK_q)

then
Event = false

end
end

end

local ErrStr
if SDL.SDL_Init(SDL.SDL_INIT_VIDEO) == 0 then
local Goodie, Baddie
Goodie, Baddie, ErrStr = GetImgs()
if Goodie then
local Screen = SDL.SDL_SetVideoMode(Goodie.w * 4, Goodie.w * 4, 8,
SDL.SDL_SWSURFACE)

if Screen then
local TileSucc
TileSucc, ErrStr = Tile(Goodie, Baddie, Screen)
if TileSucc then
SDL.SDL_UpdateRect(Screen, 0, 0, 0, 0)
WaitForQuit()

end
else
ErrStr = debug.traceback(SDL.SDL_GetError())

end
else
ErrStr = debug.traceback(SDL.SDL_GetError())

end
else
ErrStr = debug.traceback(SDL.SDL_GetError())

end
if ErrStr then
io.stderr:write(ErrStr, “\n”)

end

563

Chapter 17: Programming Games with Lua

20_069172 ch17.qxp 1/2/07 8:11 PM Page 563

20_069172 ch17.qxp 1/2/07 8:11 PM Page 564

18
Carrying Lua with You

Lua’s efficiency and small size make it highly suitable for use with the scaled-down resources of a
handheld device. This chapter introduces the use of Lua in devices that function with Palm OS,
such as PDAs (personal digital assistants) and mobile telephones. The focus will be on Plua, a port
of Lua with a very nicely engineered binding to the Palm OS application programming interface.
In this chapter, you learn how to do the following:

❑ Obtain and set up Plua on your Palm OS device

❑ Obtain and set up tools to develop Plua applications from your desktop

❑ Save your source code in various formats

❑ Develop Lua modules

❑ Generate artwork programmatically using turtle graphics

❑ Create programs with forms

The flexibility of the Plua package enables you to develop Lua applications right on your Palm
device. Alternatively, with the freely available Palm OS Emulator or Simulator, you can build and
test your Lua application from your desktop.

Getting Star ted with Plua
Plua was created by Márcio Migueletto de Andrade and is maintained and copyrighted by him.
Currently, version 1.1 and the most recent beta release of version 2.0 are available. The earlier ver-
sion was a port of Lua version 4.0, and the later version is a port of Lua 5.0. It is the later version,
often referred to as Plua2, that’s covered here. It is referred to as Plua in this chapter, unless it
needs to be distinguished from its predecessor. Because you’ve been using Lua 5.1 in this book,
review the differences between this and Lua 5.0 before developing your own applications with
Plua. A summary of these changes can be found near the end of the Lua reference manual. In par-
ticular, be aware that in version 5.0 of Lua, there is no # operator and the vararg mechanism uses a
table named arg.

21_069172 ch18.qxp 1/2/07 8:11 PM Page 565

Obtaining Plua
To obtain an official release of Plua2, you need to be a registered member of the Plua discussion group
hosted at http://groups.yahoo.com/group/plua. Plua’s author is active in this forum and main-
tains a directory named Plua in the Files section where official releases can be found. Additionally, the
Plua community has placed many other contributions such as applications, tutorials, and libraries in
other directories of this forum.

From the Plua directory in the Files section of the Yahoo Plua group site, locate and download the most
recent plua zip file and examples zip file. Additionally, if a pluac zip file is available for your desktop
operating system, you may want to download it as well. This package will allow you to build Plua
applications that contain bitmaps and other resources.

Like many other applications, Plua uses MathLib for double-precision math functions. If you don’t already
have this library, visit www.radiks.net/~rhuebner/mathlib.html to download MathLib.zip.

Examining the Distribution Contents
Unzip the files you downloaded into a convenient location. For example, assuming you have down-
loaded plua-2.0b6.zip and are using the shell in Windows, the following commands work. Make the
appropriate adjustments if the files you have downloaded are of a more recent version or you are on a
different platform Replace /path/to with the location of the downloaded files.

c:
md plua2
cd plua2
7z x /path/to/plua-2.0b6.zip
7z x /path/to/pluac-2.0b6.windows.zip
7z x /path/to/plua-examples.zip
7z x /path/to/MathLib.zip

The zip files may be deleted at this point. The extraction process creates a number of subdirectories such
as doc, examples, libkit, and prc. The prc subdirectory contains the following three files:

❑ The program plua2.prc file includes the Lua compiler, interpreter, library, and editor. If you
develop applications directly on your Palm device, you will need to install this file.

❑ The plua2help.prc file provides online help for the library functions. This file is highly recom-
mended if you develop program directly on your Palm device.

❑ The plua2rt.prc file includes the library and Lua interpreter and is the only file to be dis-
tributed with your application.

The doc subdirectory contains a file named pluadoc.htm that documents various aspects of Plua’s use
and libraries. Also included here is the Plua2 change log.

The examples subdirectory contains the following subdirectories:

❑ Aquario: This example demonstrates the use of animated graphics known as sprites. If you
want to include graphics in your application, this is a good example to study.

❑ LuaCalc: This example implements a reverse polish notation (RPN) calculator.

❑ Demo: This contains the following three example programs:

566

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 566

❑ Demo1: This program bundles the various controls that are available in the Plua library.
These include check box, selector, button, label, slider, popup, list, and field controls.
Make a point of running this program and referring to Demo1.lua to see how controls
are programmed and how an event loop is used within a program.

❑ Demo2: This demonstrates how various other standard Palm OS windows are invoked.
These include the alert, confirmation, text input, color selection, date selection, and time
selection windows.

❑ Life: This program implements a Palm version of the classic cellular automaton inven-
tion of John Conway. This is an adaptation of the script found in the Lua distribution.

The libkit subdirectory includes examples of extending Plua with libraries written in C. You’ll need the
Palm OS software development kit and a compiler capable of creating Palm executables to build these
libraries. You’ll want to be familiar with developing Plua applications before venturing into this domain.

Exploring Plua’s Features
Using the Palm HotSync Manager, install plua2.prc and plua2help.prc from the prc subdirectory of
the Plua2 distribution onto your Palm device. Also, if it isn’t already on your device, install mathlib.prc.
If you don’t have a Palm device or would rather use your desktop or notebook computer to develop
Plua applications, see “The Palm OS Emulator” later in this chapter. The instructions in this chapter still
apply, except you’ll be working with a computer mouse and keyboard rather than with a handheld device.

Running the Plua Application
You should place the Plua application into its own category if you have one available. Select Edit Categories
from the main screen’s upper right selector. Click the New button, type Lua in the text category name field,
and tap the OK button. From the main screen menu, select Category and, using the category selector to the
right of Plua2, choose the new category. Tap the Done button to approve the action. The online help library
is not directly launchable, so it will not show up in this list. Figure 18-1 shows the Lua category screen.

Figure 18-1
567

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 567

Try It Out Creating Your First Plua Program
In this Try It Out, you tip your hat to Brian Kernighan and Dennis Ritchie, who first published a “Hello,
world” program in the 1970s as a means to test the development environment.

1. Tap the Plua2 icon. You’re presented with the screen shown in Figure 18-2.

Figure 18-2

2. On the first dotted line, type the following:

print “Hello world”

3. Tap the Run button. The greeting appears in the area above the input section as shown in
Figure 18-3. You can repeat the output by tapping the Run button more than once.

4. Tap the Clear button. The Lua code will be cleared from the input section.

5. Text in the output section does not automatically scroll when it becomes full, so it is convenient
to have this area erased when you clear the input section. To enable this behavior, tap the Palm
OS Menu icon (or, alternatively, tap the caption bar) and choose Preferences from the Options
menu. Enable the Clear output check box and tap the Done button. Now when you tap the
Clear button, both the program and its output are cleared.

How It Works
In this mode, you use Plua much like you do the interactive mode of the Lua interpreter when using a
command shell on Windows or a Unix-type system. Unlike the standard Lua interpreter, however, noth-
ing is submitted to the Plua interpreter until you tap the Run button. If you attempt to run an incomplete
Lua program, you get an error message.

568

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 568

Figure 18-3

Saving Plua Programs
Tapping the File button in the Plua2 program presents a screen where you can create, edit, and run per-
sistent Lua programs. Plua will process a source file in any of the standard ways that text can be saved
on a Palm device: as a memo record, a doc file, a stream file, or a file on an expansion card. The particu-
lar format is selected from the pop-up menu in the upper-right part of the file screen. Each format has
some advantages and disadvantages, as described here:

❑ All memo records on a Palm device belong to a single database. Each record has a fairly modest
size restriction of between 4KB to 32KB of text depending on the version of the Palm operating
system. A memo record is identified by its first line. Plua will consider as a source file a memo
whose first line begins with two dashes, a space, a program name (which may include white-
space), and the extension .lua., like this one:

-- Example.lua

The advantage of creating a Plua program as a memo record is that it can be edited within the
Plua application. Additionally, while you’re editing in Plua, an online help system is available
that provides documentation for all supported functions and global variables.

❑ Doc files (not to be confused with word processed files with the .doc extension) are intended
for larger quantities of text than a memo record can have. In fact, many books are available in
this standard format. A number of editors, free and commercial, are available for handheld and
desktop editing of doc files. The freely available SrcEdit editor is popular for handheld pro-
gramming because it has amenities for developers such as brace and quote completion. If this
program is present on your Palm device, Plua will launch it if you select a doc file and tap the
Edit button. However, to return to the file screen, you will need to relaunch Plua.

569

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 569

❑ Stream programs use the File Stream library, a relatively recent addition to the Palm API. This
may be a suitable format if you generate Plua source files programmatically.

❑ Storing source files in the virtual file system (VFS) of an expansion card may facilitate the trans-
fer of programs from one device or platform to another. You’ll see shortly that this source file
format enables you to develop Plua programs from your desktop machine very easily.

Reading the Online Documentation
Plua comes with an online help system that covers the Lua core functions and global variables as well as
functions provided by Plua. In the following Try It Out, you explore this handy interactive resource.

Try It Out Calling for Help
1. In the Files screen of Plua, select Memo from the pop-up menu in the upper-right corner.

2. Tap the New button to create a new Plua program in the memo record format.

3. Type Example.lua in the New File Name field, and then tap the OK button.

4. From the program list, select Example.lua and tap the Edit button. Plua prepares the first line
of the program for you. You can change the name, but don’t introduce any spaces before the two
dashes or add anything after the .lua extension.

5. Tap a line or two below the title line and enter the following:

print(“Hello from Plua”)

6. Tap and drag your stylus to select the text print.

7. Tap the Palm OS Find icon. A help screen appears with documentation for the print function, as
shown in Figure 18-4.

Figure 18-4

570

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 570

How It Works
Plua’s online help system is available from the main screen as well. If you tap the Palm OS Find icon
when no text is selected, you are presented with a scrolling list of all help topics. To jump to a topic from
this list, select the full name of the topic as if this text was in an editor, then tap Goto. If the text you
select is not found in the help system, nothing happens when you click the Find icon.

Using Palm OS Streams
The Palm operating system stores data in record-based flat databases. The file stream API is a layer on
top of this that removes many of the difficulties of working with databases. As mentioned earlier, Plua
can process source code stored as a stream. It also supports the usual reading and writing operations on
streams.

In the following Try It Out, you will write a program in stream format. A stream editor on a Palm device
is a specialized application that you might not have, so in this example you will use Plua itself to create
the program.

Try It Out Writing a Program with a Program
Write a simple Plua program that generates, in stream format, another simple Plua program.

1. Go to the File section of the Plua application.

2. Select Memo format from the pop-up menu in the upper right corner.

3. Tap the New button and type StreamGen.lua as the new filename. Tap OK.

4. Enter the following program:

Some of the longer lines will wrap within the editor.

local ProgStr = [[
screen.clear()
print(“Hello from a stream program!”)
gui.event()
]]

local FileStr = “ExampleStream.lua”
local Hnd = io.open(FileStr, “w”)
if Hnd then
Hnd:write(ProgStr)
Hnd:close()
gui.alert(FileStr .. “ successfully created”)

else
gui.alert(“Error creating “ .. FileStr)

end

5. Tap the Done button when you are finished entering the source code. This should return you to
the list of memo programs with StreamGen.lua highlighted.

571

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 571

6. Tap the Run button. An information box with the text ExampleStream.lua successfully
created appears. Tap OK to dismiss it.

7. Select Stream from the pop-up menu in the upper-right corner.

8. In the resulting list, highlight ExampleStream.lua. Tap Run.

9. A blank screen with the text Hello from a stream program! appears. Tap the screen to exit the
program.

How It Works
In this exercise, you created a memo source file directly and a stream source file programmatically. When
StreamGen.lua, in memo format, was run by Plua, it wrote the text of another short program as a
stream file named ExampleStream.lua. In a subsequent step, Plua ran ExampleStream.lua.

Compiling Applications
So far, you have run your programs from within the Plua development application. Plua lets you com-
pile your programs so that they can be invoked directly from a Palm OS application screen. A program
you build this way isn’t entirely standalone, however. Either the Plua development application or the
Plua runtime library needs to be present on the Palm device for your program to execute. The license for
Plua2 clearly states that you are free to distribute the runtime library with your application, but not the
development application or its online help library.

In the following Try It Out, you prepare a program that runs outside of the Plua development environment.

Try It Out Leaving the Nest
1. From Plua’s File screen, select Memo from the pop-up menu in the upper right corner.

2. Tap the New button and type standalone.lua in the New file name input field. Tap the OK button.

3. Tap the Edit button and, beneath the automatically generated top line, enter the following short
program:

gui.alert(“Look, Ma, no development environment!”)

4. Tap the Done button. Test your program by tapping the Run button. Dismiss the message box
by tapping the OK button.

5. Tap the Compile button to open the New PRC Information dialog box (shown in Figure 18-5).
(PRC refers to a Palm resource such as an application or library.) Select the App button, and
type LkMa for the creator ID, Look Ma for the name, and 1.0 for the version. Then check the
No Title box and tap the OK button.

6. Tap the Palm OS Home icon.

7. Optionally, place the Look Ma application into the Lua category. To do this, tap the Palm OS
Menu icon or, alternatively, tap the caption bar. Select the Category option, and then locate Look
Ma and select Lua for its category.

8. Locate the Look Ma application and tap its icon. This invokes your application, independent of
the development environment.

572

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 572

Figure 18-5

How It Works
When Plua builds an application, it compiles your source code and attaches the generated bytecode to a
Palm OS application that, at runtime, links with either the Plua development application or the Plua
runtime library. No harm is done if both are present. The application that is created is a bona fide Palm
OS program that can be distributed like any other. Note, however, that any device that your program is
installed on needs to have the Plua2 runtime library onboard. Note also that there is no way to modify
the icon that is associated with your standalone application.

Palm OS links an application to its databases with a unique four-character creator ID. Every Palm OS
program requires such an ID. Unless you are going to distribute your application, you are reasonably
safe just coming up with what looks like a unique value that has at least one upper case character. If
your application will be installed on other people’s devices, however, you’ll want to register your appli-
cation at the Palm developer’s site. Visit palmos.com and follow the links to the developer’s pages.

Compiling Libraries
When you built a standalone application, you selected the App option in the compiler dialog box.
You can also build Plua libraries that are used much like modules.

Try It Out Examining Lua Objects with a Library
Here you’ll implement a scaled-down version of the show module as a Plua library. This exercise and the
ones that follow contain a lot of text. You may prefer to acquire the script from the book’s website at
wrox.com and transfer it from your desktop system to your Palm device. The next section in this chap-
ter, “Plua on the Mothership,” has instructions that tell you how to do that.

1. Create a new file in your preferred format. Copy in the following contents:

local function LclVisit(Tbl, Val, Key, Lvl, Seen)
Seen = Seen or {}
Lvl = Lvl or 0
local VtpStr = type(Val)

573

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 573

local Vqt = VtpStr == “string” and ‘“‘ or ‘’
local Kqt = type(Key) == “string” and ‘“‘ or ‘’
local ValStr = tostring(Val)
ValStr = string.gsub(ValStr, “table:%s*.*$”, “(tbl)”)
ValStr = string.gsub(ValStr, “function:%s*.*$”, “(fnc)”)
table.insert(Tbl, string.rep(‘ ‘, Lvl) ..
tostring(Key) .. “ “ .. Vqt .. ValStr .. Vqt)

if VtpStr == “table” then
if not Seen[Val] then
Seen[Val] = true
local SrtTbl = {}
for K, V in Val do
table.insert(SrtTbl, K)

end
table.sort(SrtTbl)
for J, K in ipairs(SrtTbl) do
LclVisit(Tbl, Val[K], K, Lvl + 1, Seen)

end
end

end
end

function ObjectRender(Val, Key)
local Tbl = {}
LclVisit(Tbl, Val, Key, 0)
return Tbl

end

local function Metrics()
local Scr = {}
Scr.Wd, Scr.Ht, Scr.Depth, Scr.Color = screen.mode()
local Base = Scr.Wd / 160
Scr.DlgBrd = Base * 2 -- Border
Scr.ScrollWd = Base * 7
Scr.ChWd, Scr.ChHt = screen.textsize(“X”) -- Character size
Scr.Top = math.floor(Scr.ChHt * 3 / 2)
return Scr

end

function ObjectShow(Obj, TitleStr)
local Tbl = ObjectRender(Obj, TitleStr)
local Scr = Metrics()
local Wd, Ht = Scr.Wd - 2 * Scr.DlgBrd,
Scr.Ht - 2 * Scr.DlgBrd

gui.dialog(0, 0, Wd, Ht, TitleStr)
local ChWd, ChHt = screen.font(0)
local Cols = math.floor((Wd - Scr.ScrollWd) / ChWd) - 1
local Rows = math.floor((Ht - 4 * ChHt) / ChHt)
gui.control{type = “field”, lines = Rows,
columns = Cols, limit = 30000, editable = false,
underlined = false, text = table.concat(Tbl, “\n”)}

gui.nl()
gui.tab()
local IdOk = gui.control{type = “button”, text = “OK”}

574

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 574

local Loop = true
while Loop do
local Evt, Id = gui.event()
if Evt == ctlSelect then

if Id == IdOk then
Loop = false

end
elseif Evt == appStop then
Loop = false

end
end
gui.destroy()

end

2. Save this file as show.lua.

3. Tap the Compile button to open the New PRC Information dialog box. Select the Lib button,
and type SH11 for the creator ID, show for the name, and 1.0 for the version. Then check the No
Title box and tap the OK button.

4. Enter the following script into a new file:

dofile(“show”)

screen.clear()
ObjectShow({gui = gui, screen = screen, bin = bin,
bit = bit, buffer = buffer}, “Plua”)

5. Save this file as showtest.lua.

6. Tap the Run button. A dialog box appears with a scrolling list of some of the Plua namespace
tables, as shown in Figure 18-6.

Figure 18-6

575

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 575

How It Works
The Palm version of ObjectShow is not as detailed as the full version you first saw in Chapter 7, but it still
provides a valuable glimpse into Lua data structures. One of the first function calls made is to Metrics
to determine certain GUI metrics such as the width of a dialog border. These are needed to size the dia-
log correctly so that it appears the same on a 160 × 160 pixel device as it does on a 320 × 320 pixel device.

The scrolling list is actually a text input field with the dotted lines and editability disabled. This is done by
creating the field with the screen.control function. This function receives a table as its only argument.
Various key/value pairs in this table are used to pass in information. In this example, the fields editable
and underlined are both set to false. Variables such as ctlSelect and appStop identify events and
are available to all Plua programs. (See the Plua documentation for gui.event to see a complete list.)

The ObjectShow routine implements its own event loop so it will be called as a blocking function. This
loop is terminated when the user taps either the OK button or a Palm OS icon to exit the program.

Plua on the Mothership
The ability to program directly on your handheld device opens up many opportunities. It’s a simple
matter to use Plua to write a quick program to solve a particular task, and you can develop software in
situations where even a notebook computer would be cumbersome. However, even with a good handheld
editor such as SrcEdit and with well-chosen shortcuts for Graffiti (the Palm method of handwriting),
you may yearn for a more familiar development platform. There are three approaches that let you work
from your main computer: the pluac command-line compiler, the Palm OS Emulator, and the Palm OS
Simulator. Each has a particular niche.

The Command-Line Compiler
A Plua2 command-line compiler can be downloaded as a zip file (pluac-2.0b6.windows.zip as of this
writing) from the same place you obtained the main Plua2 zip file: groups.yahoo.com/group/plua.
This application runs from a shell window on the Windows platform. (Versions for both Linux and
Windows are available for the first version of Plua.)

The Plua command-line compiler is much like the standalone Lua compiler — it is not an interactive or
visual tool. It builds an installable Palm OS application that may include additional resources such as
bitmaps. It accepts the same command line arguments as the Lua compiler plus a few of its own, as
shown in the following table.

Option Action

-l Displays the generated bytecode.

-o name Specifies the name of the generated application or library (the default is
PluaApp.prc).

-p Parses the source but don’t produce an application or library.

-s Strips debug information from the generated bytecode.

576

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 576

Option Action

-v Displays version information for both Lua and the Plua compiler.

-lib Generates a Plua2 library instead of an application.

-nt Specifies that the application not have a title.

-name name Specifies the name of the application or library as used by Palm OS.

-cid ID Specifies the unique application or library creator ID. This is coded as a four-
character string.

-ver version Specifies the application or library version, for example 0.6.

-- Stops handling options.

The command-line compiler allows you to bind bitmap resources to your application, something that
isn’t supported in the handheld version. To do this, you’ll need a resource compiler that bundles the
images into a Palm OS resource. The freely available PilRC resource compiler, which you can find at
pilrc.sourceforge.net, is a good choice. Study the Aquario example that comes with Plua2 to see
how images and sprites are programmed. Note that large bitmaps may exceed a resource size limit
imposed by Palm OS. In this case, they can be divided into smaller sections that are handled individually.

When you have generated an application with the command-line compiler, you can HotSync it to your
Palm device the way you would any other Palm application.

The Palm OS Emulator
An indispensable tool for developing and testing applications on the Palm OS platform is the Palm OS
Emulator (POSE). This open-source graphical program runs on Windows and Unix-like systems. As its
name implies, it contains software that emulates the hardware of a Palm OS device. The current generation
of Palm OS devices uses a processor that is not emulated by POSE, but these devices support programs
for the older processors. Plua generates code for older processors, so it and the programs you create with
it can run on both the newer and the older Palm OS devices.

Obtaining the Emulator
Visit palmos.com/dev/tools/core.html and download a copy of POSE for your platform. To do this,
you’ll need to be a registered member of the ACCESS Developer Network. While you are at the Palm OS
developer’s site, you should download these packages:

❑ Emulator

❑ Emulator HostFS

❑ ROM image for Palm OS version 4 or higher

Ready-to-install binary packages for Windows and Mac OS are available. For other platforms, you’ll
need to download the source distribution and build POSE from that. The HostFS application enables
you to use a directory on your computer as if it is the virtual file system of an expansion card. The ROM
image file corresponds to a system that is embedded in an actual device.

577

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 577

Installing on Windows
Create a directory for POSE and extract the contents of the emulator zip file into it. Additionally, in this
directory create the following four subdirectories:

❑ autoload

❑ Card1

❑ ROM

❑ skins

Any Palm OS programs located in the autoload subdirectory will be loaded automatically when you
start the emulator. Extract the contents of the HostFS zip file into the autoload subdirectory. Extract the
contents of the ROM zip file into the ROM subdirectory. Then copy plua2.prc, plua2help.prc, and
mathlib.prc from your Plua directory to the autoload subdirectory.

Configuring POSE
To start POSE, you can use the Run window from the Windows Start button or you can create a shortcut.
Either way, you will be executing Emulator.exe in the directory you created for POSE.

Figure 18-7 shows what the POSE generic skin looks like. You can download and select graphics that
depict other devices.

To configure POSE, follow these steps:

1. Right-click anywhere on the window.

2. From the pop-up menu, select New to invoke the New Session dialog box.

3. Click the ROM File button, and then click the Other option.

4. In the file browser window, locate the ROM file that you downloaded (such as PalmOS412_
FullRel_EZ_enUS.rom), and then click the Open button.

5. Click the Device button and choose Palm Vx from the menu.

6. Click the RAM Size button and choose 16,384K from the menu.

7. Click OK to approve the session window.

To mount the host-based expansion card, you’ll need to active the POSE host file system. Right-click on
the POSE window, select Settings, select HostFS, and select Slot 1. Click the Browse button and select the
Card1 directory, click the Mounted check box, and then click the OK button. Perform a soft reset of the
emulator. To do this, right-click anywhere on the emulator window, select Reset from the pop-up menu,
choose Soft reset, and click the Reset button.

Running Plua in the Emulator
The appearance and operation of Plua in the emulator are the same as on a handheld device, although
you may notice that the response times may be different between the two. Also, POSE emulates devices
with a 160 × 160-pixel screen area, so if you have a device with a higher screen resolution, the Plua appli-
cation may appear differently on your handheld. The programs you develop with Plua will work fine
with devices having any screen resolution as long as you take into account the screen size when you’re
sizing and positioning elements.

578

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 578

Figure 18-7

Try It Out Programming Plua with the Emulator
The emulator host file system makes it easy to develop applications with Plua using your text editor. In
the following steps, you create and run a Plua program from your main computer.

1. In the emulator, tap the Plua2 icon.

2. Tap the File button.

3. Select Card from the pop-up menu in the upper-right corner of the screen.

4. The Card1 subdirectory that you created in the POSE directory will have had some new subdi-
rectories added in it. The directory tree now looks like this:

Card1
PALM
Launcher
Programs
Plua
src

579

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 579

5. Using your text editor, create a new file with the following contents:

screen.clear()
print(“Hello from HostFS”)
gui.event()

6. Save this file as hostfs.lua in the Card1\PALM\Programs\Plua\src directory.

7. In the Plua application, refresh the card list by choosing Memo and then choosing Card from the
pop-up menu in the upper-right corner.

8. Select hostfs.lua from the file list and tap Run. The program is executed as if it had been
stored in the emulated device’s main memory.

How It Works
The following two features are combined to make it very easy to develop applications with Plua running
in POSE:

❑ Plua’s capability to access Lua files on an expansion card

❑ POSE’s emulation of an expansion card file system in the Card1 subdirectory beneath the point
where it is installed

Although you needed to refresh the card list in Plua when you created a new file, simply modifying a
Lua file that is already present doesn’t require this. You can simply tap Run after making a change using
your desktop editor, and Plua will load the updated file.

Compiling a Program in the Emulator
You can compile applications and libraries using the emulator just as you can on a handheld device.
When you do this, the compiled resource is placed in the main memory rather than the expansion card.
How do you get this resource to your hard drive as a .prc file? There are two ways:

❑ You can right-click anywhere on the emulator window to open the main application menu.
Then select Export Database and your application or library from the menu. Save the file using
the Save As dialog box.

❑ You can tap the Palm OS Applications icon and then the Menu icon, select Copy from the menu,
select POSESlot1 in the Copy To menu and Handheld in the From menu, choose your compiled
resource from the list, and then tap on the Copy button. The emulator will place the .prc file in
the Card1\PALM\Launcher subdirectory beneath its own installation directory.

Exiting the Emulator
To exit POSE, right-click anywhere on its window and choose Exit from the resulting menu. You are given
the opportunity to save the session. Doing so will allow POSE to retain its current state, emulating what
a handheld device would do if you turned it off with the power button. However, because you placed
your essential files in the POSE autoload subdirectory and set up the host file system, saving the session
isn’t critical. If you opt not to save your session when exiting, you should store the applications and
libraries you write in the autoload subdirectory to assure that they are available when you restart POSE.

580

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 580

The Palm OS Simulator
Like POSE, the Palm OS Simulator is a desktop application that lets you run Palm OS applications. From
a user’s point of view, its differences are as follows:

❑ It supports Palm OS version 5.0 and higher. (Like the newer generation of Palm OS handhelds,
it supports applications and libraries written for older versions.)

❑ It supports 320 × 480 screen resolution and up to 65,536 colors.

❑ It is available only for the Windows platform.

In other respects, it functions virtually the same as POSE. It supports the autoload subdirectory, the host
file system mechanism (including the need to issue a soft reset to engage it), and the right-click action to
raise the main menu.

Obtaining the Simulator
From palmos.com/dev/tools/core.html, download PalmOS_Garnet_54_simulator.zip and its
associated host file system application, HostFS_Simulator.zip. Registration is required. When you
extract the simulator zip file on your hard drive, it will create a number of directories, including one
named release. Create the following two directories in the release directory:

❑ autoload

❑ Card1

Unlike the setup for the Palm OS Emulator, you don’t create the skins and ROM directories.

Using the Simulator
Except for configuration, the instructions for POSE apply to the simulator as well. With the simulator,
you don’t choose a device to emulate, but you can specify parameters such as memory size, screen reso-
lution, and color depth. Access these by right-clicking anywhere on the simulator window and choosing
Settings from the resulting pop-up menu. To terminate the program, select Exit from the main menu.

Programming with Plua
Plua greatly facilitates the programming of many aspects of the Palm OS API, including the handling of
data records, expansion card files and directories, image resources and sprites, line and area graphics,
and user interface controls and sound. Programming even the simplest Palm application in a low-level
language like C can be a daunting task. The Plua programming interface does far more than merely map
the Palm OS API to Lua — it encapsulates many details such as memory management and record locking.

In the following sections, you’ll have a chance to briefly explore some of Plua’s capabilities. Be sure to
examine the examples and documentation that come with Plua to find out how much more extensive its
scope is than what is covered here.

581

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 581

Generating Graphics
Plua has three functions —screen.heading, screen.turn and screen.walk— that you can use to
draw surprisingly intricate graphics with very little code. These are the so-called “turtle” functions that
are associated with the Logo programming language.

In this exercise, you’ll explore the use of these functions in a loop to draw a repeating pattern.

Try It Out Turn, Turn, Turn
1. Create a new file (a memo record, a doc file, or a card file — it’s your choice) with the following

contents:

-- graph.lua

local Wd, Ht = screen.mode()
local Turn = 1
local Reduce = 0.98
local WalkLen = Wd
local Color = 0
local ColorInc = 1
local Min = 5

screen.clear()
screen.heading(90)
screen.moveto(0, 0)
repeat
screen.color(screen.rgb(Color, Color, Color))
Color = Color + ColorInc
WalkLen = Reduce * WalkLen
screen.turn(-(90 + Turn))
screen.walk(WalkLen)

until WalkLen < Min
gui.event()

2. Save the file as graph.lua. If you created a memo record, the first line needs to remain intact.

3. From Plua’s File screen, select the type of file you created from the pop-up menu in the upper-
right corner.

4. Select graph.lua from the file list and tap the Run button. The screen shown in Figure 18-8 is
displayed.

5. Tap the screen to dismiss the graphic and return to the file selection screen.

How It Works
The program source code begins with the following:

-- graph.lua

This is a line that the Lua interpreter treats as a comment, but it allows Plua to recognize the file as a Lua
program if it is saved as a memo record. Following this, there are several tweakable parameters. Placing
these above the main code makes it easier to adjust the program’s operation.

582

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 582

Figure 18-8

The actual turtle instructions follow the parameters. The screen is cleared, the turtle is pointed to the top
of the screen with the screen.heading(90) call, and the turtle position is set to the upper-left corner of
the screen.

A loop is entered in which the turtle is turned clockwise a little more than 90 degrees and then walks,
drawing a line as it does so that is a little shorter and lighter than it was in the previous iteration.
This continues until the distance walked becomes smaller than some limiting value. After the loop
terminates, a call to gui.event is made to put the screen on hold until you tap on it or cause some
other Palm OS event to occur.

Programming the User Interface
The Palm OS user interface was designed from the start to support brief, punctuated interactions. This
allows users to quickly perform a task (such as schedule an appointment or consult the address list)
without navigating through complicated program windows. The GUI controls that Plua provides all
support this objective. As you’ll see shortly, including these controls in your programs is straightforward
as well. For example, initializing a list control and keeping it updated is as simple as providing it with a
Lua table of strings.

It is often desirable to view detail information as you scroll through a list of names or other key informa-
tion. In the following exercise, you’ll program an application that allows you to add, edit, and delete
simple records. The main screen will provide a window for viewing the note attached to the currently
selected key.

583

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 583

Try It Out Creating a Note Viewer
1. Create a new doc file or expansion card file (a memo record may work, but on older devices the

program will exceed its size limit) and include the following contents:

-- Returns a table in which keys are names and values are associated notes.

local function ListInitialize()
-- Simulate reading data from a database. This can be replaced with actual
-- Palm OS database access.
return {
Dante = “1265-1321”,
Petrarch = “1304-1374”,
Leonardo = “1452-1519”,
Copernicus = “1473-1543”,
Michelangelo = “1475-1564”,
Cervantes = “1547-1616”,
Galileo = “1564-1642”,
Shakespeare = “1564-1616”,
Donne = “1572-1631”,
Milton = “1608-1674”}

end

-- Stores data from associative data table

local function ListFinalize(List)
-- Store modified data here.

end

-- Place a button at position X, return button ID

local function LclButton(X, Str)
local Id
screen.moveto(X)
Id = gui.control{type = “button”, text = Str}
gui.nl()
return Id

end

-- Initialize main form

local function LclForm(Lcl)
local X, Y
Lcl.ScrWd, Lcl.ScrHt = screen.mode()
Lcl.ScrUnit = Lcl.ScrWd / 160
Lcl.DlgBrd = Lcl.ScrUnit * 2
screen.clear()
gui.title(Lcl.TitleStr)
screen.moveto(1)
Lcl.ListRowCount = 8
Lcl.CtlList = gui.control{type = “list”, lines = Lcl.ListRowCount,
columns = 21, selected = 4, list = Lcl.ShowList}

X, Y = screen.pos()
gui.nl()

584

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 584

screen.moveto(1)
Lcl.CtlNote = gui.control{type = “field”, lines = 4, columns = 28,
limit = 30000, editable = false, underlined = false}

X = X - Lcl.ScrUnit
screen.moveto(X, Y)
Lcl.CtlNew = LclButton(X, “New”)
Lcl.CtlEdit = LclButton(X, “Edit”)
Lcl.CtlDel = LclButton(X, “Delete”)
gui.setfocus(Lcl.CtlList)

end

-- Raises record editor dialog. If NameStr is nil, it will
-- be editable, otherwise noneditable

local function RecDlg(Lcl, NameStr, NoteStr)
local CtlName, CtlNote, CtlOk, CtlCancel,
Name, Note

local New = NameStr == nil
local Border = 2 * Lcl.DlgBrd
gui.dialog(0, 0, Lcl.ScrWd - Border, Lcl.ScrHt - Border,
New and “New record” or “Edit record”)

gui.control{type = “label”, text = “Name”}
gui.nl()
CtlName = gui.control{type = “field”, lines = 1,
columns = 27, limit = 27, text = NameStr or “”,
editable = New},

gui.nl()
gui.control{type = “label”, text = “Note”}
gui.nl()
CtlNote = gui.control{type = “field”, lines = 6,
columns = 27, limit = 1024, text = NoteStr or “”},

gui.nl()
CtlOk = gui.control{type = “button”, text = “OK”}
CtlCancel = gui.control{type = “button”, text = “Cancel”}
gui.setfocus(New and CtlName or CtlNote)
local Loop = true
while Loop do
local Evt, Id = gui.event()
if Evt == appStop then
Loop = false

elseif Evt == ctlSelect then
Loop = false
if Id == CtlOk then
Name = gui.gettext(CtlName)
if string.len(Name) > 0 then
Note = gui.gettext(CtlNote)

else
Name = nil

end
end

end
end
gui.destroy()
return Name, Note -- May be nil

585

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 585

end

-- Returns currently selected name

local function RecName(Lcl)
local Name, Pos
Pos = gui.getstate(Lcl.CtlList)
if Pos then
Name = Lcl.ShowList[Pos]

end
return Name

end

-- Updates note field in main form based on currently selected record

local function NoteRefresh(Lcl)
local Note, Name
Name = RecName(Lcl)
if Name then
Note = Lcl.DataList[Name]

end
gui.settext(Lcl.CtlNote, Note or “”)

end

-- Refreshes selection list on main form. Pos specifies new selection. Nil: no
-- change; number: new selection by position; string: new position by name.

local function ListRefresh(Lcl, Pos)
local J = 1
for Key in pairs(Lcl.DataList) do
Lcl.ShowList[J] = Key
J = J + 1

end
Lcl.ShowList[J] = nil
table.sort(Lcl.ShowList)
gui.settext(Lcl.CtlList, Lcl.ShowList)
local PosCat = type(Pos)
if PosCat == “number” then
gui.setstate(Lcl.CtlList, Pos)

elseif PosCat == “string” then
local J, Count, NewPos = 1, table.getn(Lcl.ShowList)
while J <= Count and not NewPos do
if Lcl.ShowList[J] == Pos then
NewPos = J

else
J = J + 1

end
end
if NewPos then
gui.setstate(Lcl.CtlList, NewPos)

end
end
NoteRefresh(Lcl)

586

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 586

end

-- Handles addition of new record

local function RecNew(Lcl)
local Name, Note = RecDlg(Lcl)
if Name then
if Lcl.DataList[Name] then
gui.alert(“Duplicate name: “ .. Name)

else
Lcl.DataList[Name] = Note
ListRefresh(Lcl, Name)
Lcl.Modified = true

end
end

end

-- Handles modification of existing record

local function RecEdit(Lcl)
local Name, Note
Name = RecName(Lcl)
if Name then
Name, Note = RecDlg(Lcl, Name, Lcl.DataList[Name])
if Name then
Lcl.DataList[Name] = Note
ListRefresh(Lcl)
Lcl.Modified = true

end
end

end

-- Shift the currently selected record with hardware button

local function RecScroll(Lcl, Key)
local Pos = gui.getstate(Lcl.CtlList)
local NewPos
local Count = table.getn(Lcl.ShowList) -- Lua 5.0
if Key == hardKeyDown then -- Down
NewPos = Pos + 1

elseif Key == hardKeyUp then -- Up
NewPos = Pos - 1

elseif Key == hardKey1 then -- Top
NewPos = 1

elseif Key == hardKey2 then -- Page up
NewPos = Pos - Lcl.ListRowCount

elseif Key == hardKey3 then -- Page down
NewPos = Pos + Lcl.ListRowCount

elseif Key == hardKey4 then -- Bottom
NewPos = Count

end
if NewPos then
if NewPos < 1 then

587

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 587

NewPos = 1
elseif NewPos > Count then
NewPos = Count

end
if NewPos ~= Pos then
gui.setstate(Lcl.CtlList, NewPos)
NoteRefresh(Lcl)

end
end

end

-- Handles deletion of currently selected record

local function RecDel(Lcl)
local Name = RecName(Lcl)
if Name then
Lcl.DataList[Name] = nil
ListRefresh(Lcl)
Lcl.Modified = true

end
end

-- Main initialization and event loop

local Lcl = {TitleStr = “Notes”}
screen.clear()
Lcl.DataList = ListInitialize()
Lcl.ShowList = {}
LclForm(Lcl)
ListRefresh(Lcl, 1)
local Loop = true
while Loop do
local Evt, Id = gui.event()
if Evt == appStop then
Loop = false

elseif Evt == ctlSelect then
if Id == Lcl.CtlNew then
RecNew(Lcl)

elseif Id == Lcl.CtlEdit then
RecEdit(Lcl)

elseif Id == Lcl.CtlDel then
RecDel(Lcl)

end
elseif Evt == lstSelect then
NoteRefresh(Lcl)

elseif Evt == keyDown then
RecScroll(Lcl, Id)

end
end
if Lcl.Modified then
ListFinalize(Lcl.DataList)

end

2. Save this file as notes.lua. If you have managed to create this program in a memo record, be
sure to include -- notes.lua as the first line.

588

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 588

3. From Plua’s File screen, tap the file category from the pop-up menu in upper-right corner. Select
notes.lua from the file list.

4. Tap the Run button. Figure 18-9 shows what the main form looks like.

Figure 18-9

5. Experiment with the application: add, edit and delete some records, and use the hardware but-
tons to scroll through the list.

6. When you are finished with the application, tap the Palm OS Home icon.

How It Works
This example follows a standard application format. It begins with a number of helper functions (includ-
ing ones that arrange the user interface), followed by an event loop. Here are some key points to note:

❑ Most Plua functions in the gui namespace return immediately. (The exceptions are those like
gui.alert and gui.selectdate that put up their own dialog box and implement their own
event loop.)

❑ You can call the screen.pos and screen.moveto functions to position the various controls
when you’re building a form.

❑ You can use the gui.gettext and gui.settext functions with different types of controls to
get and set content. In this example, gui.settext is used to assign a table to the list control
and to assign text to the note field. Likewise, gui.getstate and gui.setstate work with dif-
ferent types of controls.

❑ The record dialog box for creating a new record or modifying an existing one uses the
gui.dialog function. After this function is called, the dialog box is populated with form con-
trols and an event loop is entered. When a terminating event occurs, a call to gui.destroy is
made to destroy the dialog box.

589

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 589

In an actual application, information will be stored in a Palm OS database. The program presented here
has functions for retrieving and saving the data (ListInitialize and ListFinalize, respectively)
with the assumption that all of the application database records will be loaded into a Lua table when the
program begins and saved, if modifications have been made, when the program ends.

At the cost of some program complexity, another approach would be to load only the keys of the
database records into a Lua table, and the record IDs into another table. Record insertions, modifications,
and deletions would then take place directly in the database.

Accessing Databases
Plua provides a unified approach to input and output with the io.open function. With it, you can access
standard Palm OS databases, stream files, doc files, memo records, serial port devices, expansion card
files, and network devices. Consult the Unified I/O chart in the Plua documentation to see how to for-
mat the name of the resource or device when opening it.

In the following exercise, you’ll write a script that will access the standard address book database.
This demonstrates how you can use the io library with Palm OS databases.

Try It Out Displaying the Address Book
Programmatically open the address book on your Palm OS device and, using the list control, display the
name and first phone number for each record. Before starting this exercise, make sure you’ve got at least
a couple records in the address book. The Address or Contacts application is used to manage this
database interactively.

1. Open a new file on your handheld and add in the following script:

-- address.lua

screen.clear()
local DbStr = “db:/AddressDB”
local ErrStr
local Hnd, Count = io.open(DbStr, “rb”)
local List = {}
if Hnd then
if Count > 0 then
for J = 0, Count - 1 do
local RecSize = Hnd:openrec(J)
if RecSize then
if RecSize > 0 then
local RecStr = Hnd:read(“*a”)
if RecStr then
local Rec = bin.unpack(“BBBBBBBBBSSS”, RecStr)
table.insert(List, (Rec[11] or “”) .. “ “ .. (Rec[10] or “”) ..
“ “ .. (Rec[12] or “”))

end
end
Hnd:closerec()

end
end

590

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 590

else
ErrStr = “The address book contains no records”

end
Hnd:close()

else
ErrStr = “Error opening the address book”

end
if not ErrStr then
if next(List) then -- At least one item?
gui.title(“Address”)
gui.list(10, 30, List)
gui.nl()
local CtlOk = gui.button(“OK”)
local Evt, Id
repeat
Evt, Id = gui.event()

until Evt == appStop or (Evt == ctlSelect and Id == CtlOk)
end

else
print(ErrStr)
repeat until gui.event() == penDown

end

2. Save the file as address.lua.

3. Tap the Run button. The resulting screen displays the partial contents of your address book as
shown in Figure 18-10.

4. Tap the Palm OS Home key to exit.

Figure 18-10

591

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 591

How It Works
This example opens the address database on your Palm OS device. The db:/ prefix to the resource name
indicates that this is a regular database. The call to io.open returns the handle and record count of the
database if it succeeds, or nil otherwise.

The address book record format includes nine bytes of binary information followed by a number of null-
terminated strings. (This information can be gleaned from various web resources.) No attempt to read
the binary information is made here. In the main record reading loop, a record is opened by position
with a call to the openrec method before it can be accessed. After a record has been opened, it is read
using the io.read function with the same arguments as if the record itself was a file.

Like most databases on a Palm OS device, the address database has records that are binary and packed —
not all fields are text strings, and those that are contain no trailing unused characters. The bin.unpack
function is called with a format string to extract the packed fields into a new record table. Here, the for-
mat string contains one B for each binary byte, and one S for each null terminated string. The code in
this exercise does not handle missing fields robustly.

Summary
In this chapter, you had a chance to become familiar with Plua, which is a port of Lua to the Palm OS
platform. In particular, you’ve learned to do the following:

❑ Use Plua in interactive mode to run quick program snippets

❑ Prepare Lua scripts in various source code formats (memo, doc, stream, and expansion card)
that Plua can process

❑ Access online help while working in the Plua development application

❑ Create and write to a Palm OS stream file

❑ Compile applications and libraries into Palm OS resources that can be distributed to others

❑ Use compiled libraries as modules in your Plua programs

❑ Use the Plua command-line compiler

❑ Run Plua from your desktop computer using the Palm OS Emulator and Simulator

❑ Develop Palm OS programs using turtle graphics, GUI features, and databases

There’s a lot more to programming in Plua. The documentation and examples that come with Plua con-
tain information to get you going with network communication, resource graphics, sound, and more.

In the next chapter, you’ll take a look at the vibrant community that has arisen around Lua and how you
can be a part of it. Before proceeding with that, review the skills you have picked up in this chapter by
trying the following exercises.

592

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 592

Exercises
1. Use turtle graphics to write a Plua script that generates a five-pointed star like the one shown in

Figure 18-11.

Figure 18-11

2. Write a simple Lua expression interpreter that accepts a single line of input and displays what
Lua returns when that string is submitted to tostring. In addition to the Plua GUI functions,
plan on using the Lua loadstring and pcall functions. The screen can look something like
the one shown in Figure 18-12.

Figure 18-12 593

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 593

3. Write a function named Barchart that accepts as arguments a title string and an indexed table
containing numbers. The values in the table are to be displayed as bars in a chart. For example,
the following call should result in a display that looks like Figure 18-13:

Barchart(“Example”, {12, 34, 23, 25, 67, 45, 23, 7, 5, 54, 48, 50})

Use the Plua screen.box function to draw the bars, but avoid using gui.dialog, because it
does not support drawing.

Figure 18-13

594

Chapter 18: Carrying Lua with You

21_069172 ch18.qxp 1/2/07 8:11 PM Page 594

19
Fitting into the Lua

Community

You’re now familiar with the basics of the Lua language, its core libraries, and a sample of the
libraries and applications that developers around the world have made for Lua. The last topic
you’ll explore in this book involves the vibrant community that has developed around Lua and
the resources that can help you with your software development. You’ll learn about the following:

❑ The Lua web site

❑ The Lua reference manual

❑ The Lua mailing list

❑ LuaForge, the principal repository for Lua-based projects

❑ The Lua wiki

❑ The Lua chat room

There is a lot of Lua expertise in the community and insight into the way Lua works. Help is avail-
able to you in the form of printed and online documents, and discussions on the mailing lists,
forums, and chat rooms. The niches these resources fill overlap, sometimes broadly, and you’ll find
a combination of them is sometimes needed to understand an issue thoroughly. Nevertheless, you
can expedite the process of getting over hurdles by selecting the right resources to draw on.

Whether you’ve got a particular question regarding Lua, you’re interested in seeing what people
are doing with the language, or you want to contribute in some way to Lua’s ongoing success,
you’ll find a suitable venue among these resources.

22_069172 ch19.qxp 1/2/07 8:11 PM Page 595

The Lua Web Site
The Lua team — Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes — maintains
a well-organized website at lua.org that serves as the official home of Lua. It’s where you should go to
do any or all of the following:

❑ Obtain the most recent source code for Lua

❑ Read the FAQ (Frequently Asked Questions with answers)

❑ View various documents such as articles and memorabilia about Lua

❑ Read about recent milestones such as conferences and publications

❑ Find links to other websites and resources pertaining to Lua

The Lua website is kept up-to-date, so it’s a good place to visit regularly. The community page on the
Lua website provides a great launch pad to the sites and resources summarized in this chapter.

The Lua Reference Manual
The terseness and sharp focus of the reference manual are its greatest strengths, but these characteristics
can make it a difficult document to read casually. Nevertheless, take the time to read it. Even if you don’t
absorb all of its details and subtleties the first time through, you’ll know where to turn in it later when
you want to delve deeper into some topic. If you ever raise a question in one of the dynamic community
resources like the chat room or mailing list, it will be assumed that you’ve studied the manual first.

Although every important facet of Lua and its libraries are covered in the reference manual, sometimes
there will be omissions in the corner cases. For example, the documentation for string.sub doesn’t
state what the return value will be for out-of-bound indexes, a condition that might arise in a loop. Don’t
sweat things like this. First, you can use the Lua interpreter to find out very quickly what this function
does, like this:

a = string.sub(“abc”, 0, 0) print(a, type(a))

Second, the function’s behavior in the current version is almost certainly what it will be in later versions.

The reference manual is not an afterthought. It is an integral part of Lua, and official releases of Lua are
not made without an up-to-date manual. Its economy matches that of the language implementation
itself, and the Lua authors are to be commended for granting the manual such high significance in the
project.

Roberto Ierusalimschy’s excellent book Programming in Lua (ISBN 8590379825, published by Lua.org) is
filled with practical applications and insights into the concepts presented in the manual.

An online version of the manual in HTML format is included in the source distribution of Lua. You’re
encouraged to purchase a bound copy as well. It’s often more convenient to have a printed book, and the
proceeds help the Lua project. Follow the links on the Lua website or LuaForge to order a copy.

596

Chapter 19: Fitting into the Lua Community

22_069172 ch19.qxp 1/2/07 8:11 PM Page 596

Framing Questions
A big part of working through software development problems is knowing not only where to ask but
how to ask. Some articles on the web address this head on. For one of these, follow the link on Lua’s
mailing list page to an article named, “How To Ask Questions The Smart Way,” by Eric Steven Raymond
and Rick Moen. Before reporting issues with software, you should read the excellent online article
named, “How to Report Bugs Effectively.” written by Simon Tatham (www.chiark.greenend.org.
uk/~sgtatham/bugs.html).

A common theme with these articles is to narrow the scope of the problem. Take the time to strip away
all extraneous content in order to present the smallest possible program that demonstrates the issue.
You may be intimately familiar with every part of your large program, but don’t brazenly expect someone
else to ferret out a particular problem you are having with it. More often than not, the process of distilling
a problem to its bare essentials will allow you to present your question more intelligently if not solve it
completely.

The Lua Mailing List
A central and active part of the Lua community is the mailing list. Messages sent to the mailing list are in
turn sent to all subscribers electing to receive them. Although the mailing list has steadily grown since
Roberto posted the first message in 1997, it is still of a manageable size, handling usually fewer than a
few dozen messages per day. The messages themselves are generally focused and friendly, with subjects
ranging from beginning to advanced.

Here are a number of ways to read the messages that are sent to the mailing list:

❑ Receive e-mails from the list server

❑ Access a web interface site with your web browser

❑ Access a net news interface site with your newsreader

❑ Download daily, recent, and full archives of messages for reading offline

Viewing and Searching the Archives
Before subscribing to the Lua mailing list, take a look at the archives to get a feel for the topics that are
discussed.

Try It Out Visiting the Message Museum
Over the years, a huge amount of ground has been covered in the Lua mailing list. You can search through
the accumulated messages to see if a particular question you’ve got has been discussed. Here’s how:

1. With your web browser, access www.lua.org.

2. Click the community link, the mailing list link, and finally the search archive link.

597

Chapter 19: Fitting into the Lua Community

22_069172 ch19.qxp 1/2/07 8:11 PM Page 597

3. In the Search field, type the following:

The and is implied so it doesn’t have to be specified, but the terms do need to be separated from the
parentheses by at least one space.

(ipairs or pairs) and next

4. Select the Score option as the sorting method. This will place the messages with the greatest
algorithmically-determined relevance at the beginning.

5. Click the Go button. The results page highlights the search terms, hyperlinks the subject lines of
the retrieved messages, and displays the author, date of post, and the first couple lines of the
message contents.

6. Click one of the subject hyperlinks to view the complete message. A diagram showing the con-
text of the post is displayed beneath the message body. It shows, with hyperlinks, the follow-up
messages and references to the message as well as index links.

7. Click the Date Index link. This displays a flat list of all messages that were posted in the same
month as the message you were reading sorted by date.

8. Click your browser’s back button and then click the Thread Index link. The messages that
were posted in the same month as the selected message are hierarchically arranged by subject.
This view gives you a great way to follow the thread of a discussion and shows you the context
of a particular message.

9. Click the back button of your browser a few times to return to the search page. Retry your query
with different terms and sorting options.

10. The matrix beneath the search box is a hyperlinked summary showing the number of messages
archived by month and year. Click a particular value to bring up a sequential list of hyperlinked
message headers for that month.

How It Works
Lua’s mailing list server acts not only as a message dispatcher, but also as an archiver. Searching the
archives can be done with plain-text terms and Boolean operators, and with wildcards (as in luaP_*)
and regular expressions. If you want to restrict your search to particular authors or subject line terms,
use +from: and +subject: notation. For example, the following finds messages written by one of the
mailing list’s top gurus containing the term coroutine:

+from:lake coroutine

Downloading the Archives
The Lua website has a download area from which you can obtain source packages (including older ver-
sions) and mailing list archives. The download area is duplicated (or mirrored) regularly by a number of
sites around the world to distribute server load. A link to a page listing these mirror sites is available on
the mailing list page of Lua’s website.

598

Chapter 19: Fitting into the Lua Community

22_069172 ch19.qxp 1/2/07 8:11 PM Page 598

The archives are provided in standard mbox text format so you can view them in an editor and most
e-mail programs and can easily process them with Lua itself. A complete archive is available as well as
one containing messages from the last month or two and one containing messages from the most recent
complete day.

Using a Web Browser to Access the List
The mailing list page on the Lua web site maintains links to sites that host a web interface to the mailing
list. The Gmane (the G is silent) site displays posts in threaded form. You can submit messages with this
interface, but you have to be a Lua mailing list subscriber for them to be accepted.

Using a Newsreader to Access the List
A huge number of Internet newsgroups are supported by the Usenet system, some of which have been
active since the early 1980s. Unlike a mailing list that distributes e-mail, you access newsgroups anony-
mously with a newsreader, which is a component of many modern e-mail clients. Generally, the news-
reader will show you only unread messages and present them in threaded format. A message is posted
directly to a news server from which it propagates to other news servers.

Gmane (the same project that provides a web interface to the Lua mailing list) lets you access a large
number of mailing lists, including the Lua list, as if they were newsgroups. You might consider this
approach if you would rather pull mailing list messages at your convenience than have them pushed at
you right after they are posted. Posting to the mailing list through Gmane is easy, but just as with the
web interface, you will need to be a list subscriber for your messages to be accepted.

Subscribing to the List Server
If you want to contribute to the mailing list, you’ll need to subscribe to it. This assures a certain level of
accountability so that any abuse of the system can be tracked and dealt with. Even as a subscriber, you
can elect not to receive e-mails if you prefer to access the list by some other means.

To subscribe to the Lua mailing list, visit the community page at the Lua website, and click the Mailing
List link and then the Subscribe link. At the mailing list subscription page, you need to provide a valid
e-mail address and a password. You will receive a confirmation notice at this address that you’ll need to
respond to in order to subscribe. By following the link in this confirmation message, you’ll be able to
configure a number of options such as whether you to receive posts that you submit to the list and
whether to receive acknowledgment when you post. Here are two of the more important options:

❑ Whether you want to receive e-mails: If you’ll be unable to collect e-mail for a length of time
and don’t want your mailbox to fill up, or you intend to read messages by some other means,
you should disable e-mail delivery. If you are temporarily disabling message delivery, you can
always catch up on messages with one of the other methods of reading posts.

❑ Whether you want to receive messages bundled into digests: This option lets you reduce the pos-
sible disruption of having individual messages trickle in as they are posted. The server can be told
to accumulate messages, usually about a day’s worth, and send them to you as a single digest.

599

Chapter 19: Fitting into the Lua Community

22_069172 ch19.qxp 1/2/07 8:11 PM Page 599

Posting Messages
When you send a message to the Lua mailing list, it will be promptly dispatched to over a thousand
subscribers around the world and will be accessible in searchable archives for the foreseeable future.
Before pressing that Send button, make sure you’ve followed the guidelines as presented on the mailing
list page of the Lua website and the web pages it references. These are summarized here:

❑ If you are submitting a new post rather than a follow-up, make sure that you aren’t bringing
up something that’s covered in the documentation or has been discussed and resolved before.
Take the time to search the archives. If the question or subject isn’t covered elsewhere, expend
the effort to present the smallest possible example that illustrates it.

❑ Send your message in plain-text format. Formatting in HTML and including multipart MIME
attachments adds extraneous baggage to your post. This can be annoying to readers, many of
whom use e-mail clients that display markup tags and MIME content verbatim. It can degrade
the accuracy of searches on list archives. Your e-mail software may be converting the messages
you send to HTML automatically, in which case, it is unlikely that you’ll notice that they’ve
been marked up when you read your post. Configure your e-mail software to use plain text
when sending messages to the list server.

❑ Practice netiquette, the art of keeping Internet interactions polite. The Lua mailing list is quite
free of damaging flame wars or even extended sidetracks. To do your part in keeping it this
way, be sure to “remember the human” when posting.

❑ Take the extra time to quote material from previous posts properly. Your message will receive
more attention if you include only the previous material that directly pertains to your response.
If needed for clarity, break up the quoted text into sections with your responses directly beneath.
You can configure many e-mail programs to indent and prepend angle brackets to quoted mate-
rial to make it easier to frame your response.

❑ Don’t depend on mail readers to automatically wrap long lines. Some web interfaces treat mes-
sages as preformatted content, requiring the reader to scroll horizontally to read paragraphs.
Wrap the text of your message so that lines don’t exceed 60 or 70 characters.

❑ Post your message in the right context. You’ve seen the hierarchical arrangement of messages in
the threaded index view of the list archive and possibly in your e-mail software. This tree for-
mat is very helpful for showing where a message fits in a discussion thread. Although it may
appear that these threads are based on subject lines and timestamps, they are in fact based on
internal message headers named Message-ID, References and, less often, In-Reply-To.
There are two rules to follow here. First, when you are starting a new topic, don’t reply to an
existing message and change the subject thinking that this will begin a new thread. Instead,
send a new message to the list server. Second, when posting a response, don’t send a new mes-
sage with a copied-in subject line. Instead, use the reply feature of your e-mail software and let
it handle the internal headers.

Joining the Lua mailing list is a great way to participate in the Lua worldwide community. The Lua
authors are frequent contributors as are a number of undisputed gurus and other elders of the tribe.

600

Chapter 19: Fitting into the Lua Community

22_069172 ch19.qxp 1/2/07 8:11 PM Page 600

The Lua Chat Room
Lua programmers can get together on Lua’s Internet Relay Chat (IRC) channel. The kind of interaction
that occurs here is more spontaneous than that on the mailing list. To participate, you’ll need an IRC
client such as the one integrated into Opera or the Chatzilla extension for Firefox. Follow the irc link
from the Lua website’s community page for connection details.

Like participation in the mailing list, certain rules apply to the chat room. These include the following:

❑ If you’re asking a question, trim it down to the smallest possible size first. If you need to
display source code, you should cut-and-paste it to the designated pasting site. This site will
keep your snippet for a limited length of time and give you a temporary URL that you can in
turn copy-and-paste to your chat submission. Other participants can then access the URL to
examine your code.

❑ Avoid requesting communication with a participant one-on-one. Private messaging is
intrusive.

Long lulls can occur on the Lua IRC channel, but people always seem to be present to step in when an
interesting topic comes up.

Forums
A topic that surfaces with some regularity on the Lua mailing list is whether to abandon the mailing list
in favor of a forum, which is a website that hosts ongoing discussions in various topics. Ultimately, it’s
the community itself that decides these things, and the continued activity on the mailing list is a strong
indication that the list is the favored means of community interaction.

Nothing prevents a site from hosting a Lua forum, however, and one such site, www.icynorth.com/
forums/index.php?c=8, has its share of participants.

The Lua Wiki
The lua-users.org site is maintained by users of Lua and serves as an unofficial repository for all
things Lua. In addition to maintaining the mailing list archives, it provides, in the form of a wiki, an
extensive collection of web pages devoted to tutorials, code, links, and patches. You can visit these pages
at http://lua-users.org/wiki. The wiki pages are contributed and maintained by members of the
community, making it a collaborative endeavor.

Navigating the wiki is a matter of clicking the hyperlinks interspersed throughout the content. From the
home page, you can explore many pages, including a tutorial on programming in Lua, an unofficial FAQ
page, many links for Lua-related projects and libraries, and much more.

601

Chapter 19: Fitting into the Lua Community

22_069172 ch19.qxp 1/2/07 8:11 PM Page 601

You can add and modify wiki pages by clicking the Edit link at the lower-left corner of each page. Rather
than editing directly in HTML, your contributions are made in simplified format. The wiki engine
behind the scenes takes care of converting it to HTML for use by browsers. To learn how to style your
pages, check out the formatting examples page. Click the WikiHelp link on the wiki home page, and
then click the WikiFormattingExamples link. The basic rules are as follows:

❑ Make a large header by surrounding text with three equal signs. For example:

=== Large Header ===

Or, make a smaller header by using two equal signs instead.

❑ Place a blank line between paragraphs.

❑ Italicize text by surrounding it with two consecutive single quotes.

❑ Make text bold by surrounding it with three consecutive single quotes.

❑ Make text monospace by surrounding it with {{ and }}.

❑ Add a horizontal rule by putting ---- on a line of its own.

❑ Create a link to an internal page by referring to its name. Each wiki page has a name that is the con-
catenation of two or more terms where each term begins with one uppercase letter and is followed
by one or more lowercase letters, as in MyPage. This is sometimes referred to as camelback format.

❑ Create a new page by using a camelback name that doesn’t refer to an already existing page.
When you view a page that contains an unresolved page reference, it will be shown with a
question mark link. Click this link to edit the new page.

❑ Refer to an external link by using square brackets as in this example:

[http://www.lua.org/ Lua]

❑ Make a bulleted list by preceding items with an asterisk. Make a sublist by indenting the aster-
isk with a tab or eight spaces.

❑ Surround source code with {{{ and }}}, each on their own line. This disables wiki markup
handling. For example, identifiers in camelback form will be presented verbatim rather than
being treated as internal links. Indent the opening braces to indent the entire code block.

Before you modify a page on the wiki, spend some time getting used to the format and procedure by vis-
iting the sandbox. From the WikiHelp page, click the SandBox link. The sandbox page exists solely for
practice of this kind.

LuaForge
Several references to the LuaForge site at luaforge.net have been made throughout this book. This
site is managed by André Carregal and has been of indispensable value to the Lua community by pro-
viding a single repository of many Lua-related projects.

LuaForge’s home page shows recent news, lists the most active current projects, and contains links to
various pages such as the project catalog tree. Reading the news lets you know of new products and
releases, and scanning the activity lists lets you keep a pulse on what people are using Lua for.

602

Chapter 19: Fitting into the Lua Community

22_069172 ch19.qxp 1/2/07 8:11 PM Page 602

Access a project detail page by drilling into the Project Tree page, clicking one of the news or activity
links, or using the keyword search field at the top of the home page. This will bring you to the summary
page for the project, with information about the project developers, latest file releases, news, source code
management, and access to areas associated with the project such as forums and mailing lists. If the pro-
ject has a home page, there will be a link to it from the summary page.

Some projects such as Kepler maintain one or more mailing lists. Such lists are more appropriate than
the general Lua mailing list for discussions related to the project. The participants of these mailing lists
are generally quite aware of the project’s details and the message topics are focused. When visiting a
project summary page, look for a Lists tab or, alternatively, a Mailing Lists link in the Public Areas sec-
tion. In the page referenced by these links, you can read archived messages and register to participate in
the list. Subscribers receive new posts and are able to post their own messages to the list.

If you’ve got a project that uses Lua, you can host it with LuaForge. You’ll be provided with everything
you need to give your project a good home on the Internet with great exposure, including web space and
the opportunity to host forums, mailing lists, and a source code repository. You’ll need to set up an
account before registering your project. Even if you choose to host your project on another site, you can
still register it with LuaForge for the exposure it can provide.

Annual Workshops
In recent years, Lua enthusiasts have had the chance to get together and actually meet the people behind
the names on the mailing list and wiki. By all accounts, these Lua workshops are informative, fun, and
worthwhile. Participation is free, but attendees need to register because of seat restrictions.

The stated goals of the Lua workshops are to provide a forum for discussing all aspects of Lua and to
increase professional and academic awareness of Lua. Like the mailing list and wiki, participants hail from
all parts of the globe. The workshops have so far been two-day events with structured programs comprising
presentations by participants, with enough free time to become acquainted with one another and engage
in unformatted discussion. Most presentations are 30 minutes and cover a spectrum of topics. Past presen-
tations have included talks by Lua team members, library authors, and other technology professionals.

Summary
This chapter gave you an overview of Lua’s community resources. Lua has a rich global support
system made possible by enthusiasts who share their time and expertise in a variety of ways, including
the following:

❑ Wiki articles

❑ Mailing list, forum, and chat room discussions

❑ Lua-related software projects

❑ Workshop presentations and participation

In this book, you’ve gotten to know about Lua itself and the power it can provide to your software pro-
jects. Its small size, high speed, and ease of integration make it eminently suitable for an extensive array
of applications including, hopefully, yours.

603

Chapter 19: Fitting into the Lua Community

22_069172 ch19.qxp 1/2/07 8:11 PM Page 603

22_069172 ch19.qxp 1/2/07 8:11 PM Page 604

A
Answers

Chapter 2

Exercise 1 Solution

Because the “p” in print needs to be lowercase.

Exercise 2 Solution
“ABC123”

Exercise 3 Solution

Because it reduces to the following, and the attempt to concatenate a Boolean value will trigger an
error:

false .. 123

Exercise 4 Solution

One (the first one). More than one branch of an if is never executed. The first branch when a true
test expression is executed, and after that, the if is exited.

Exercise 5 Solution
for N = 10, 2, -2 do
print(N)

end

Chapter 3

Exercise 1 Solution
function TypedToString(Val)
return type(Val) .. “: “ .. tostring(Val)

end

23_069172 appa.qxp 1/2/07 8:12 PM Page 605

Exercise 2 Solution
function SumProd(A, B)
return A + B, A * B

end

Exercise 3 Solution

It will print the following:

6 10 25

(SumProd(3, 3) returns 6, 9, which is adjusted to one value. SumProd(5, 5) returns 10, 25, and both
values are used.

Exercise 4 Solution

It prints North America. (The Continent inside F is local — assigning to it has no effect on the global
Continent.)

Exercise 5 Solution

For the functions returned to be closures (and thus have private state), Dots needs to be local. Because it’s
global, all the functions returned share the same state, so they all do the same thing. The fix is simply this:

function MakeDotter(N)
local Dots = “”
for I = 1, N do
Dots = Dots .. “.”

end
return function(Str)
return Str .. Dots

end
end

As mentioned earlier, forgetting to make a variable local is a common source of bugs.

Chapter 4

Exercise 1 Solution
C

To figure this sort of thing out, work from left to right: figure out what D is, then what D.C is, and then
what D.C[“B”] is.

Exercise 2 Solution

The main trick to this is to compare things other than numbers and strings by their tostring value, as
follows:

CompAll = function(A, B)
if type(A) ~= type(B) then
-- If they’re of different types, sort them by type:

606

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 606

A, B = type(A), type(B)
elseif type(A) ~= “number” and type(A) ~= “string” then
-- If they’re something other than numbers or strings,
-- sort them by their tostring representation:
A, B = tostring(A), tostring(B)

end
return A < B

end

Exercise 3 Solution

table.concat does most of the hard work:

-- “String print” -- returns a string of the form output by
-- print:
function Sprint(...)
local Args = {...}
-- Using select and a numeric for makes sure that no nils
-- are missed:
local ArgCount = select(“#”, ...)
for I = 1, ArgCount do
Args[I] = tostring(Args[I])

end
return table.concat(Args, “\t”) .. “\n”

end

Exercise 4 Solution
-- Rotates self N elements to the left:
function Methods:RotateL(N)
N = N or 1
if #self > 0 then
self.Pos = OneMod(self.Pos + N, #self)

end
end

Exercise 5 Solution

Here’s one way to do it:

function SortedPairs(Tbl)
local Sorted = {} -- A (soon to be) sorted array of Tbl’s keys.
for Key in pairs(Tbl) do
Sorted[#Sorted + 1] = Key -- Same as table.insert.

end
table.sort(Sorted, CompAll)
local I = 0

-- The iterator itself:
return function()
I = I + 1
local Key = Sorted[I]
return Key, Tbl[Key]

end
end

607

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 607

Chapter 5

Exercise 1 Solution
-- Returns an array of Str’s characters:
function StrToArr(Str)
local Ret = {}
for I = 1, #Str do
Ret[I] = string.sub(Str, I, I)

end
return Ret

end

Exercise 2 Solution
Frmt = “%6s\n”

Exercise 3 Solution
-- Does a “dictionary order” less-than comparison:
function DictCmp(A, B)
-- “Fold” each argument by deleting all non-alphanumeric
-- characters then lowercasing it:
local FoldedA = string.lower(string.gsub(A, “%W+”, “”))
local FoldedB = string.lower(string.gsub(B, “%W+”, “”))
-- Only compare the folded versions if they’re unequal:
if FoldedA ~= FoldedB then
return FoldedA < FoldedB

else
return A < B

end
end

Exercise 4 Solution
-- Reads lines, evaluates them as expressions, prints the
-- results:
function ExprInterp()
io.write(“expression> “)
local Line = io.read()
while Line and Line ~= “quit” do
-- Convert the expression to a statement, convert the
-- statement to a function, call the function, and print
-- its results:
Line = “return “ .. Line
local Fnc = loadstring(Line) -- Missing error check.
print(Fnc()) -- Missing error check.
io.write(“expression> “)
Line = io.read()

end
end

608

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 608

It could also be written with io.lines, like this:

function ExprInterp()
io.write(“expression> “)
for Line in io.lines() do
if Line == “quit” then
break -- QUIT.

end
-- Convert the expression to a statement, convert the
-- statement to a function, call the function, and print
-- its results:
Line = “return “ .. Line
local Fnc = loadstring(Line) -- Missing error check.
print(Fnc()) -- Missing error check.
io.write(“expression> “)

end
end

Exercise 5 Solution

Here’s one way to do it:

-- Trims leading whitespace:
function TrimLeft(Str)
return (string.gsub(Str, “^%s+”, “”))

end

Exercise 6 Solution

No. If there’s whitespace starting at the subject’s first character, it deletes it all and searches no more. If
there’s no whitespace there, it does nothing and searches no more.

Exercise 7 Solution
-- Turns $XYZ into the value of the global variable XYZ (XYZ
-- is any identifier):
function Interpolate(Str)
return (string.gsub(Str, “%$([%a_][%w_]*)”,
function(Ident)
return tostring(getfenv()[Ident])

end))
end

Chapter 6

Exercise 1 Solution

The debug.traceback function is called (by Lua) while setting up the arguments to print, which is
before the print function is actually called.

609

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 609

Exercise 2 Solution

Here is one way:

debug._traceback = debug.traceback

debug.traceback = function(Str)
return debug._traceback(‘Programmer error: ‘ .. Str)

end

Exercise 3 Solution
local function zpcall(Fnc, Err, ...)
local Args = {...}
local function Relay()
return Fnc(unpack(Args))

end
return xpcall(Relay, Err)

end

-- Test

local function Fnc(A, B, C)
print(“Here in Fnc.”, A, B, C)
print(A + B + C)

end

print(zpcall(Fnc, debug.traceback, 1, nil, 3))

Chapter 7

Exercise 1 Solution

Here’s one solution. Add the following line near the top of show.lua:

local Object = Object or {}

This assigns the local variable Object to a global value of that name if it exists; otherwise this assigns
the variable to a newly created empty table.

Find this function header:

function ObjectDescribe(Tbl, Val, Key, TruncLen)

and change it to this:

function Object.Describe(Tbl, Val, Key, TruncLen)

Correspondingly, change ObjectShow to Object.Show, and ObjectDescribe to Object.Describe.

Finally, add the following to the bottom of the module:

return Object

610

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 610

This new version of show.lua can be used as follows:

local Obj = require(“show”)

Obj.Show(_G, “_G”)

Exercise 2 Solution

The following error message is displayed:

lua: nomod.lua:1: cannot find module xyz

Lua first examines “?.lua”, replacing “?” with “xyz”. It doesn’t find xyz.lua, so it then examines
“nomod.lua”, replacing all occurrences of “?” with “xyz”. This results in “nomod.lua” (there are
no “?” characters to replace), so it looks for nomod.lua, finds it, loads it, and runs it, resulting in the
error message.

Note that Lua already has a superior mechanism to report an unfound module. The message it generates
lists all of the filenames it attempted to locate before failing.

Chapter 8

Exercise 1 Solution
Meta = {
-- Returns a reverse-order copy of an array:
__unm = function(Arr)
local Ret = {}
for I = #Arr, 1, -1 do
Ret[#Ret + 1] = Arr[I]

end
return Ret

end}

Exercise 2 Solution
-- Makes Tbl read-only (and returns it):
function Protect(Tbl)
-- Tbl will be used as a proxy table; transfer all its
-- pairs to OrigTbl:
local OrigTbl = {}
for Key, Val in pairs(Tbl) do
OrigTbl[Key] = Val
Tbl[Key] = nil -- Clear the soon-to-be proxy.

end
-- __newindex prevents writes to the table; __index allows
-- reads from the (original) table; __metatable prevents
-- metatable trickery:
local ProtectMeta = {
__newindex = function()
error(“attempt to assign to a protected table”)

end,

611

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 611

__index = OrigTbl,
__metatable = true}

-- As well as setting Tbl’s metatable, return it (for
-- convenience):
return setmetatable(Tbl, ProtectMeta)

end

These techniques can be used to rewrite ring.lua (from Chapter 4) to protect the object returned by
MakeRing from tampering.

Chapter 9

Exercise 1 Solution

The script prints this:

0
1
1
2
3
5
8
13

These are the first eight numbers in the number series named after Leonardo Fibonacci, the medieval
Italian mathematician. Beginning with 0, 1, each value is the sum of the two before it.

Exercise 2 Solution

This is one solution:

function JoinPairs(AList, BList)
local function Iter()
local Pos = 1
local A, B = AList[Pos], BList[Pos]
while A ~= nil and B ~= nil do
coroutine.yield(A, B)
Pos = Pos + 1
A, B = AList[Pos], BList[Pos]

end
end
return coroutine.wrap(Iter)

end

Notice that the iterator is generic in the sense that it doesn’t care what value or type each array element is.

Exercise 3 Solution

Here is one solution:

612

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 612

local function LclConsumer(Evt)
print(“Consumer: initialize”)
while Evt ~= “end” do
print(“Consumer: “ .. Evt)
Evt = coroutine.yield()

end
print(“Consumer: finalize”)

end

local function LclProducer()
print(“Producer: initialize”)
local PutEvent = coroutine.wrap(LclConsumer)
-- Simulate event generation
local List = {“mouse”, “keyboard”, “keyboard”, “mouse”}
for J, Val in ipairs(List) do
local Evt = string.format(“Event %d (%s)”, J, Val)
print(“Producer: “ .. Evt)
PutEvent(Evt)

end
PutEvent(“end”)
print(“Producer: finalize”)

end

LclProducer()

Notice how little the overall structure of the program is changed from the original.

Chapter 10

Exercise 1 Solution

Somehow, the character “\27” (an ASCII escape character) has been left at the beginning of the file,
causing Lua to try (and fail) to treat it as bytecode.

Exercise 2 Solution

This function boils down to: See if it’s a local; if not, then see if it’s an upvalue; if not, then see if it’s a
global. It’s getting all the details right that’s hard. Here they are:

-- Gets the value of the named variable from its calling
-- scope:
function GetVar(Name)
local CallerInfo = debug.getinfo(2, “uf”)
local Caller, Nups = CallerInfo.func, CallerInfo.nups
local Found, FoundVal
-- Look at the variables local to the caller; the last hit
-- (if any) will be the desired one:
local LclIndex = 1
local Loop = true
while Loop do
local MaybeName, MaybeVal = debug.getlocal(2, LclIndex)

613

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 613

if MaybeName then
if MaybeName == Name then
-- Found one hit (of possibly several):
Found, FoundVal = true, MaybeVal

end
LclIndex = LclIndex + 1

else
-- No more locals; break the loop:
Loop = false

end
end
-- If it wasn’t found as a local, search the caller’s
-- upvalues:
if not Found then
for UpIndex = 1, Nups do
local MaybeName, MaybeVal = debug.getupvalue(Caller,
UpIndex)

if MaybeName == Name then
-- FOUND IT! -- RECORD THE VALUE AND BREAK THE LOOP:
Found, FoundVal = true, MaybeVal
break

end
end

end
-- If it wasn’t found as either a local or an upvalue, get
-- it as a global (from the caller’s environment):
if not Found then
FoundVal = getfenv(2)[Name]

end
return FoundVal

end

Chapter 12

Exercise 1 Solution

The following script is one solution.

require “sqlite3”

local Cn = {}
Cn.DbStr = “test.db”
Cn.InitStr = [[
BEGIN TRANSACTION;
DROP TABLE IF EXISTS T1;
CREATE TABLE T1(A, B, C);
INSERT INTO T1 VALUES (12, 91, 40);
INSERT INTO T1 VALUES (27, 79, 5);
INSERT INTO T1 VALUES (32, 66, 53);
END TRANSACTION;

]]

local DbHnd, ErrStr = sqlite3.open(Cn.DbStr)

614

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 614

if DbHnd then
if DbHnd:exec(Cn.InitStr) then
DbHnd:set_function(“format”, -1, string.format)
print(DbHnd:first_cols(“SELECT FORMAT(‘%05d %05d’, 12, 34)”))
for Row in DbHnd:rows(“SELECT FORMAT(‘A %05d, B %05d, C %05d’, A, B, C) “ ..
“AS Rec FROM T1”) do
print(Row.Rec)

end
else
io.write(“Error initializing “, Cn.DbStr, “\n”)

end
DbHnd:close()

else
io.write(“Error opening “, Cn.DbStr, “: “, tostring(ErrStr), “\n”)

end

This simply registers string.format as a SQLite multivalue query function. The -1 value indicates a
variable number of arguments. The string.format function meets the criteria for a lua-sqlite3 user
function, so it didn’t need to be wrapped in a user-written function.

Exercise 2 Solution

Copy the following script to a file named pngchunk.lua:

require “pack”

local PngFileStr = arg[1] or “logo.png”

local function LclFileGet(FileStr)
local Str
local Hnd, ErrStr = io.open(FileStr, “rb”)
if Hnd then
Str = Hnd:read(“*all”)
Hnd:close()

end
return Str, ErrStr

end

local function printf(FrmtStr, ...)
io.write(string.format(FrmtStr, ...))

end

local PngStr, ErrStr = LclFileGet(PngFileStr)
if PngStr then
local PngSize = string.len(PngStr)
local DataLen, DataStr, HdrStr, Crc
-- Documented PNG signature
local SignatureStr = string.char(137, 80, 78, 71, 13, 10, 26, 10)
local Pos = string.len(SignatureStr)
if SignatureStr == string.sub(PngStr, 1, Pos) then
Pos = Pos + 1
printf(“Header Length CRC\n”)
printf(“------ ------ ----------\n”)

615

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 615

while Pos and Pos < PngSize do
Pos, DataLen, HdrStr = string.unpack(PngStr, “>LA4”, Pos)
if Pos then
-- print(“unpack_1”, Pos, DataLen, HdrStr)
if DataLen > 0 then
Pos, DataStr, Crc = string.unpack(PngStr, “>A” .. DataLen .. “L”, Pos)

else
Pos, Crc = string.unpack(PngStr, “>L”, Pos)
DataStr = “”

end
-- print(“unpack_2”, Frmt, Pos, string.len(DataStr), Crc)
if Pos then
printf(“%s %8u 0x%08X\n”, HdrStr, DataLen, Crc)
if HdrStr == “IEND” then
Pos = nil -- End of loop

end
end

end
end

else
io.write(“Error: “, PngFileStr, “ does not have expected signature\n”)

end
else
io.write(“Error: “, ErrStr, “\n”)

end

Pass the name of the PNG file as an argument to the script. For example, if the PNG file you want to
summarize is named chart.png, run the script as follows:

lua pngchunk.lua chart.png

Note that this script actually reads each chunk’s data field. To do this, it uses the A specifier concatenated
with the data length. It implements a special case for zero-length data fields. An alternative method is to
read the data length and chunk header fields in the first call to string.unpack, adjust the starting posi-
tion value based on the data length, and call string.unpack again to retrieve the CRC field.

Chapter 13

Exercise 1 Solution

In the luaopen_ud_example function in ud_example.c, copy the following lines from the MetaMap
array and place them unmodified into the Map array:

{“close”, LclExampleClose},
{“get”, LclExampleGet},
{“set”, LclExampleSet},

Exercise 2 Solution

Here is the code with possible comments:

616

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 616

// Stk: ...
lua_newtable(L);
// Stk: ... Namespace
lua_newtable(L);
// Stk: ... Namespace Upvalue
lua_pushstring(L, “Rip Van Winkle”);
// Stk: ... Namespace Upvalue NameStr
lua_setfield(L, -2, “Name”);
// Stk: ... Namespace Upvalue
lua_pushvalue(L, -1);
// Stk: ... Namespace Upvalue Upvalue
lua_pushcclosure(L, FncA, 1);
// Stk: ... Namespace Upvalue FncA
lua_setfield(L, -3, “a”);
// Stk: ... Namespace Upvalue
lua_pushcclosure(L, FncB, 1);
// Stk: ... Namespace FncB
lua_setfield(L, -2, “b”);
// Stk: ... Namespace
lua_pushvalue(L, -1);
// Stk: ... Namespace Namespace
lua_setglobal(L, “test”);
// Stk: ... Namespace

The code creates a global namespace table called test that includes two functions: “a” and “b”. Each of
these functions has one upvalue: a table that is accessible only to the two functions. Inside this table is
the string “Rip Van Winkle” keyed by the string “Name”. The namespace table is left on the stack as a
possible return value.

Exercise 3 Solution

Here is one possible solution:

#include “lua.h”
#include “lualib.h”
#include “lauxlib.h”

/* * */

static int BitOr(
lua_State *L)

{ // BitOr
int Val, J, Top;

Top = lua_gettop(L);
Val = 0;
for (J = 1; J <= Top; J++) Val |= luaL_checkinteger(L, J);
lua_pushinteger(L, Val);
return 1;

} // BitOr

/* * */

static int BitAnd(

617

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 617

lua_State *L)

{ // BitAnd
int Val, J, Top;

Top = lua_gettop(L);
Val = Top > 0 ? -1 : 0;
for (J = 1; J <= Top; J++) Val &= luaL_checkinteger(L, J);
lua_pushinteger(L, Val);
return 1;

} // BitAnd

/* * */

int luaopen_bit(
lua_State *L)

{ // luaopen_bit
static const luaL_reg Map[] = {
{“_and”, BitAnd},
{“and”, BitAnd},
{“_or”, BitOr},
{“or”, BitOr},
{NULL, NULL}

};

luaL_register(L, “bit”, Map);
return 1;

} // luaopen_bit

Chapter 14

Exercise 1 Solution
-- Converts a cursor to an array of associative tables:
function CursorToTbl(Cursor)
local Ret = {}

-- A wrapper for Cursor:fetch that lets it return a table
-- without being given one:
local function RowsIter()
local Row = {}
return Cursor:fetch(Row, “a”) -- alphanumeric/associative

end

-- Get each row:
for Row in RowsIter do
table.insert(Ret, Row)

end
Cursor:close()
return Ret

end

618

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 618

Exercise 2 Solution

All three tables have an Id column. The database system doesn’t know which one you want, so it returns
the error message Column ‘Id’ in field list is ambiguous. You can fix this by specifying the follow-
ing table:

SELECT Ord.Id, CustId, NameLast, ProductId, DescStr, Count
FROM Cust, Ord, Product
WHERE Cust.Id = Ord.CustId
AND Ord.ProductId = Product.Id

The column will still be called “Id” (not “Ord.Id”) in the result. SQL offers a way to make it appear
under another name — the AS keyword:

SELECT Ord.Id AS OrdId, CustId, NameLast, ProductId, DescStr, Count
FROM Cust, Ord, Product
WHERE Cust.Id = Ord.CustId
AND Ord.ProductId = Product.Id

That gives the following result:

OrdId CustId NameLast ProductId DescStr Count
----- ------ -------- --------- --------------- -----

6 2 Finn 4 thingamajig 2
1 3 Darcy 2 gizmo 52
2 3 Darcy 4 thingamajig 87
3 4 Bennet 1 whatchamacallit 12
4 4 Bennet 3 gewgaw 8
5 4 Bennet 5 widget 20

Chapter 15

Exercise 1 Solution

Save the following file as ex1.lua in your web server’s cgi-bin directory:

#!/usr/local/bin/lua

local Cgi = require(“cgi”)

local Cn = {}

Cn.HdrStr = [[Content-Type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>Greeting</title>
<link rel=”stylesheet” href=”/css/general.css” type=”text/css” />

</head>

619

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 619

<body>

]]

Cn.FtrStr = “</body>\n\n</html>”

local Rec = os.date(“*t”)
local Hr = Rec.hour
local Str
if Hr >= 3 then
if Hr >= 12 then
if Hr >= 18 then
Str = “Good evening”

else
Str = “Good afternoon”

end
else
Str = “Good morning”

end
else
Str = “Good night”

end
local Prm = Cgi.Params()
Str = Str .. “, “ .. (Prm.Get.Name or “Unknown user”) .. “!”
io.write(Cn.HdrStr, ‘<p class=”hdr shade”>’, Cgi.Escape(Str), ‘</p>’, Cn.FtrStr)

Exercise 2 Solution

This solution calls the CGI script from the previous exercise using the GET method. Save the following
file as ex2.html in your web server’s document root directory:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

<head>
<title>Greeting Form</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<link rel=”stylesheet” href=”/css/general.css” type=”text/css” />

</head>

<body>
<h1>Greeting Form</h1>
<form action=”/cgi-bin/ex1.lua” method=”get”>
<table class=”shade” summary=””><tbody>
<tr>
<td class=”label”>Name</td>
<td><input type=”text” size=”20” name=”Name” /></td>
<td><input type=”submit” value=”Submit” /></td>
</tr>
</tbody>
</table>
</form>

</body>

</html>

620

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 620

Exercise 3 Solution

Here is one solution. It uses one CGI script handle both the request form and the calendar presentation.
Save the following file as ex3.lua in your web server’s cgi-bin directory:

#!/usr/local/bin/lua

local Cgi = require(“cgi”)

local Cn = {}

Cn.HdrStr = [[Content-Type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

<head>

<title>Calendar</title>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

<link rel=”stylesheet” href=”/css/general.css” type=”text/css” />

<style type=”text/css”>

table.data td {border-right : 1px solid; border-bottom : 1px solid;
border-color:inherit; color:#404040; background-color:#FFFFFF;
vertical-align:top; width:14%;}

table.data td.today {background-color:#f0f0ff;}

table.data td.name {font-weight:bold; text-align:center; color:#505060;
background-color:#f0f0ff;}

table.data td.edge {width:15%;}

</style>

</head>

<body>

]]

Cn.FtrStr = “</body>\n\n</html>”

local function CalendarShow(Year, Month)

local DaysInMonth = { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

-- For the specified month and year, this function returns the day of week of
-- the first day in the month, and the number of days in the month.

local function Calendar(Year, Month)

621

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 621

assert(Year > 1900 and Year < 2100, “Year out of range”)
assert(Month >= 1 and Month <= 12, “Month out of range”)
local Rec = os.date(“*t”, os.time{year = Year, month = Month, day = 1})
local DayMax = DaysInMonth[Rec.month]
if DayMax == 0 then
DayMax = math.mod(Rec.year, 4) == 0 and 29 or 28

end
return Rec.wday, DayMax

end

local Dow, DayMax = Calendar(Year, Month)

io.write(Cn.HdrStr)

io.write(‘<table class=”data shade” border=”0” cellspacing=”0” ‘,
‘cellpadding=”5” summary=”” width=”100%”>\n’,
‘<tbody>\n’,
‘<tr><th colspan=”7”>’, os.date(‘%B %Y’, os.time{year = Year,
month = Month, day = 1}), ‘</th></tr>\n’,

‘<tr>\n’)
local Base = 8 - Dow
for Col = 1, 7 do
local Wd = (Col == 1 or Col == 7) and ‘ edge’ or ‘’
io.write(‘<td class=”name’, Wd, ‘“>’, os.date(“%a”,
os.time{year = Year, month = Month, day = Base + Col}),
‘</td>\n’)

end
io.write(‘</tr>\n’)
local Day = 2 - Dow
while Day <= DayMax do
io.write(‘<tr>’)
for Col = 1, 7 do
io.write(‘<td>’, (Day >= 1 and Day <= DayMax) and Day or ‘ ’,
‘</td>\n’)

Day = Day + 1
end
io.write(“</tr>\n”)

end
io.write(‘</tbody></table>\n’)
io.write(Cn.FtrStr)

end

local function CalendarRequest(ScriptStr)
io.write(Cn.HdrStr, ‘<h1>Calendar Request</h1>\n’,
‘<form action=”’, ScriptStr, ‘“ method=”get”>\n’,
‘<table class=”shade” summary=””><tbody>\n’,
‘<tr>\n’,
‘<td class=”label”>Month</td>\n’,
‘<td>\n’,

622

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 622

‘<select name=”Month” size=”1”>\n’)
local Today = os.date(“*t”)
for J = 1, 12 do
local AttrStr = Today.month == J and ‘ selected=”selected”’ or “”
local MonthStr = os.date(“%B”, os.time{year=2000, month=J, day = 1})
io.write(‘<option’, AttrStr, ‘ value=”’, J, ‘“>’, MonthStr, ‘</option>\n’)

end
io.write(‘</select>\n’,
‘</td>\n’,
‘<td class=”label”>Year</td>\n’,
‘<td>\n’,
‘<select name=”Year” size=”1”>\n’)

for J = Today.year - 12, Today.year + 12 do
local AttrStr = Today.year == J and ‘ selected=”selected”’ or “”
io.write(‘<option’, AttrStr, ‘ value=”’, J, ‘“>’, J, ‘</option>\n’)

end
io.write(‘</select>\n’,
‘</td>\n’,
‘<td><input type=”submit” value=”Submit” /></td>\n’,
‘</tr>\n’,
‘</tbody></table>\n’,
‘</form>\n’,
Cn.FtrStr)

end

-- If UserMonth and UserYear were passed in and are valid, present the
-- requested calendar, otherwise present a request form.

local Prm = Cgi.Params()
local UserMonth, UserYear
local ShowForm = true
UserMonth = tonumber(Prm.Get.Month)
if UserMonth and UserMonth >= 1 and UserMonth <= 12 then
UserYear = tonumber(Prm.Get.Year)
if UserYear and UserYear >= 1970 and UserYear < 2038 then
ShowForm = false

end
end

if ShowForm then
if Prm.SCRIPT_NAME then
CalendarRequest(Prm.SCRIPT_NAME)

else
io.write(Cn.HdrStr, “<p>Error: could not determine name of script.</p>\n”,
Cn.FtrStr)

end
else
CalendarShow(UserYear, UserMonth)

end

623

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 623

Chapter 16

Exercise 1 Solution

The following is one of many possible solutions:

local ltn12 = require(“ltn12”)

local function Transform(Str, ...)
-- Source is specified string
local Src = ltn12.source.string(Str)
-- Chain all specified filters into one
local Filter = ltn12.filter.chain(...)
-- Send all data chunks to table
local Snk, Tbl = ltn12.sink.table()
-- Filter chunks before delivering to sink
Snk = ltn12.sink.chain(Filter, Snk)
-- Open the valve
local Code, ErrStr = ltn12.pump.all(Src, Snk)
return Code and table.concat(Tbl) or nil, ErrStr

end

-- Return the rot13 cipher of the character Ch

local function Rot13Char(Ch)
local Val = string.byte(Ch)
return string.char(Val < 65 and Val or
Val < 78 and Val + 13 or
Val < 91 and Val - 13 or
Val < 97 and Val or
Val < 110 and Val + 13 or
Val < 123 and Val - 13 or Val)

end

-- Filter that returns a rot13 cipher of the string Str

local function Rot13(Str)
return Str and string.gsub(Str, “(%a)”, Rot13Char)

end

local Str = “The quick brown fox jumps over the lazy dog”
local CnvStr = Transform(Str, Rot13)
io.write(Str, “\n”, CnvStr, “\n”,
Str == Transform(CnvStr, Rot13) and “OK” or “Not OK”, “\n”,
Str == Transform(Str, Rot13, Rot13) and “OK” or “Not OK”, “\n”)

Exercise 2 Solution

The following is a possible solution:

local function LclBodyPrint(PopHnd, Pos)
local Str, Tbl
Str, Tbl = LclTransact(PopHnd, “retr “ .. Pos, true)

624

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 624

if Str then
io.write(Str, “\n”)
local Show
for K, Str in ipairs(Tbl) do
if Show then
io.write(Str, “\n”)

elseif Str == “” then
Show = true

end
end

else
io.write(‘Error: ‘, Tbl, “\n”) -- Tbl is error message

end
end

Exercise 3 Solution

The following script sends three lines, displays the echoed response, and sends an empty string to termi-
nate the session:

local socket = require(“socket”)

local Cn = {SrvPort = 23032, SrvAddr = “localhost”}

local SckHnd = socket.connect(Cn.SrvAddr, Cn.SrvPort)
if SckHnd then
local RcvStr, ErrStr = SckHnd:receive()
if RcvStr then
io.write(RcvStr, “\n”)
local SendList = {“One”, “Two”, “Three”, “”}
for J, Str in ipairs(SendList) do
SckHnd:send(Str .. “\r\n”)
local RcvStr, ErrStr = SckHnd:receive()
if RcvStr then
io.write(RcvStr, “\n”)

elseif ErrStr ~= “closed” then
io.write(“Error: “, ErrStr, “\n”)

end
end

else
io.write(“Error: “, ErrStr, “\n”)

end
SckHnd:close()

else
io.write(“Error creating client socket\n”)

end

Chapter 17

Exercise Solution

It displays a 4×4 grid of goodies and baddies in random order.

625

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 625

Chapter 18

Exercise 1 Solution

Here is one solution:

-- star.lua

screen.clear()
local Wd, Ht = screen.mode()
gui.title(“Star”)
local X, Y = screen.pos()
screen.moveto(Wd / 2, Y + Ht / 10)
screen.heading(252)
for J = 1, 5 do
screen.walk(2 * Wd / 3)
screen.turn(144)

end
gui.event()

Exercise 2 Solution

A possible solution is as follows:

-- lua_expr.lua

screen.clear()
gui.title(“Lua expression”)
local X, Y
local Wd, Ht = screen.mode()
gui.label(“Lua expression”)
gui.nl()
local CtlExpr = gui.control{type = “field”, lines = 1, columns = 24,
limit = 256, editable = true, underlined = true}

local CtlGo = gui.control{type = “button”, text = “Go”}
gui.nl()
gui.label(“Result”)
gui.nl()
local CtlResult = gui.control{type = “field”, lines = 1, columns = 28,
limit = 256, editable = false, underlined = false}

gui.setfocus(CtlExpr)
local Loop = true
while Loop do
local Evt, Id = gui.event()
if Evt == appStop then
Loop = false

elseif Evt == ctlSelect then
if Id == CtlGo then
local Fnc
local Str = gui.gettext(CtlExpr)
if string.len(Str) > 0 then
Fnc, Str = loadstring(“return tostring(“ .. Str .. “)”)
if Fnc then
local Status

626

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 626

Status, Str = pcall(Fnc)
end
gui.settext(CtlResult, tostring(Str))

end
end

end
end

Exercise 3 Solution

Here is a solution:

-- barchart.lua

function Barchart(TitleStr, Tbl)
local Count = table.getn(Tbl) -- Lua 5.0
if Count > 0 then
local ScrWd, ScrHt, ScrDepth = screen.mode()
local ScrBase = ScrWd / 160
screen.clear()
gui.title(TitleStr)
local X, Top = screen.pos()
local BarWd, GapHrz, GapVrt = 3, 3, 4 * ScrBase
if Count * (BarWd + GapHrz) - GapHrz <= ScrWd then
BarWd = math.floor((ScrWd + GapHrz - (Count * GapHrz)) / Count)
local Lf = math.floor((ScrWd + GapHrz - Count * (BarWd + GapHrz)) / 2)
local Max = Tbl[1]
for J, Val in ipairs(Tbl) do
if Val > Max then
Max = Val

end
end
if Max > 0 then
local Mlt = (ScrHt - Top - GapVrt - GapVrt) / Max
local Clr = screen.rgb(128, 128, 128)
X = Lf
for J, Val in ipairs(Tbl) do
local Ht = math.floor(Val * Mlt)
screen.box(X, ScrHt - GapVrt - Ht, BarWd, Ht, Clr)
X = X + BarWd + GapHrz

end
gui.event()

else
gui.alert(“Values must be positive”)

end
else
gui.alert(“Too many elements”)

end
else
gui.alert(“Table is empty”)

end
end

Barchart(“Example”, {12, 34, 23, 25, 67, 45, 23, 7, 5, 54, 48, 50})

627

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 627

Nice extensions to this routine would include the following:

❑ Bar colors

❑ Interactive use, in which tapping a bar would result in detail information for the corresponding
value

❑ A scale

628

Appendix A: Answers

23_069172 appa.qxp 1/2/07 8:12 PM Page 628

In
de

x

Index

Symbols and
Numerics
... (ellipsis). See vararg
. (dot) character class, 193, 209
‘ (apostrophe character, single quote), 33
_ (underscore), 30
* (asterisk) character, 195–198, 200, 209
^ (carat) character

for anchoring patterns, 188, 203
description of, 209

$ (dollar sign) character, 209
- (hyphen) character

in bracket classes, 190
description of, 209
in pattern matching, 197, 198, 200

(length operator) character, 46, 123
(number) character, 139, 470
+ (plus) character, 194, 198, 200, 209
? (question mark) character, 198, 200, 209
% (percent) character classes

in bracket classes, 192
descriptions of, 209
as formatting placeholder, 175–178
in patterns, 187, 192

= (equal) sign, 29, 34
*1 pattern, 511
1stThing identifier, 30
1tn12 module, 525
2-D action game, 544
8-bit clean, 383

A
*a pattern, 510
absolute value, function for, 266, 358
abstraction

benefits of, 70
defined, 69
discussed, 69–70

functions and, 70
statements and, 70

accept method, 511, 512
accumulator, 101
activelines field, 312
actual argument, 84
addition, 24
address, 507
adjusted value, 40
adjustment function, 358–360
aggregate function, 409
AJAX

time server implementation with, 476–478
toolkit, 476–478

algebraic equal sign, 29
ambiguous syntax error, 215
anchor, 188
and operator

discussed, 42–43
nil value from, 43
side effects and, 93

de Andrade, Marcio Migueletto, 565
angle conversion function, 361
anonymous function, 104
ANSI C, 281, 338
Apache, 471–472

defined, 1
on Windows system, 472

API (application program interface), 1, 379
APOP (Authenticated Post Office Protocol), 532
apostrophe character (single quote), 33
application program interface (API), 1, 379
application protocol, 524–536
Aquario, 566, 577
archive (mailing list)

downloading, 598–599
viewing and searching, 597–598

argument. See also Actual argument
actual, 84
formal, 84
keyword, 143–144
variable scope of, 84

24_069172 bindex.qxp 1/2/07 8:12 PM Page 629

arithmetical operation
addition, 24
discussed, 23
division, 24
exponentiation, 24
interpreter interaction for, 24–25
multiplication, 24
nonintuitive actions of, 27–28
notations for, 25–26
rounding, 28
subtraction, 24
in tables, 249–257

array(s)
with gaps, 123
length of, 123–124
receive, 523
send, 523
splicing, with concatenation operator, 250–253
tables and, 121–124

ASCII characters, 174, 192
assert function

described, 333–334
for errors, 220

assertation failed message, 220
assignment(s)

defined, 29
discussed, 29–30
functions as, 103–105
of global variables, 244–245
multiple, 31
variables on right side of, 31

associative table, 121
associativity, 49–51
assumption of errors, 219–221
asynchronous call, 476–478
Authenticated Post Office Protocol (APOP), 532
autoexec.bat, 5, 6
average function

discussed, 74, 137
returning values from, 73–74

B
backslash escaping

for pattern matching, 189
with quoted strings, 35–37

backtracking, 197
balanced delimiter, 202
base case, 97
Base64 encoding, 525
base-two number system, 44
bash shell, 4
basic output, of core library, 333
Berkeley sockets interface, 510
binary mode, 182
binary packages, prebuilt

discussed, 18
installing, on Unix-type systems, 19–20
installing, on Windows systems, 20–21
selection of, 18–19

binding, 375, 407
blitting, 551
block

as chunk, 89
defined, 86

blocking function, 288

Boole, George, 37
Boolean operator

discussed, 41
not unary operator (unary minus), 44–45
and operator, 42–43
or operator, 43–44

Boolean value
comparing numbers with, 37–38
comparing strings with, 38–40
defined, 37
discussed, 37

Boutell, Thomas, 395
bracket classes, 187, 190–191

hyphen character in, 190
percent character in, 192

break statement
discussed, 63–65, 75
return statement vs., 75

building
discussed, 2–3
gd graphics library, 395–397
libcurl, 389–392
luacurl, 392–393
lua-gd, 397–399
lua-sqlite3, 407–409
with Microsoft Visual C++, 12–14
with MinGW package, 16–18
pack library, 383–384
SQLite 3, 405–407
with Tiny C Compiler (TCC), 14–16
in Windows, 12–18

built-in function(s)
discussed, 102–103
replacing, 102–103

byte, 37, 46–47
byte order, 303
bytecode(s)

chunks and, 81
discussed, 299
with luac, 299–303
modules and, 241–242
source codes and, 81, 302
for troubleshooting, 302

bytecode interpreter, 81

C
C++. See Microsoft Visual C++
C compiler, 1, 2
C programming language

calling Lua from, 421–423
communicating between Lua and, 415–421
defined, 1
embedding Lua in, 414–415
extension library of, 441–447
format placeholders in, 179
function environments in, 439
indexing values in, 436–438
libraries written in, 234
modules with, 247
obtaining functions in, 421
retaining values in, 438–441
stack of, 415
upvalues in, 439–440
userdata basic type in, 423–436
using Lua in, 413–414

630

arithmetical operation

24_069172 bindex.qxp 1/2/07 8:12 PM Page 630

C runtime library, 375
C stack, 96
calendars, dynamic, 478–481
call stack. See stack
callback, 130, 394
calls and calling

of anonymous functions, 104
asynchronous, 476–478
functions, 108
of functions, in C, 421–423
for Lua, from C, 421–423
to web server, 476–478

captures, 198–201
Carregal, Andre, 602
case-insensitive tables, 259–261
case-sensitivity

in filenaming, 241
of identifiers, 30

cc command, 8
C/C++ compilers, 12
Celes, Waldemar, 596
CGI application, interactive

discussed, 489
for forms, 497
helper routines, 489–498
Kepler for, 499
security issues of, 498

CGI scripting
developing, 498
executing, 469–470
for images, 482–484
privileges in, 475–476
problems with, 475–476
on Unix-type systems, 470
on Windows systems, 470–471

character(s)
absence of, 39
conversion of, to character codes, 173–174
defined, 32
discussed, 173–174
magic, 209
for pattern-matching, 209

character class, 189, 197–198
character code, 173–174
chart(s)

dynamic, on Web, 481–489
gd graphics library for, 481
in web pages, 485

chat room, for Lua, 601
chunk(s)

as block, 86
compiling and, 81
defined, 75, 89
discussed, 81–82
as functions, 81–83
in lua.exe, 82–83
mechanics of, 82–83
strings executed as, 83

chunk-loading function, 328–330
ChunkSpy, 301, 302
churn, memory pool, 305
client connections, 523
Client for URLs. See cURL file transfer library
client object, 511
client side networking, 538–541
client socket, 512
close (filehandle), 366

closure
defined, 109
discussed, 108–109
storage in, 109
for upvalues, 440

cmd shell, 27
Coco (patchset), 280
code error, 220
“collect” action, 332
collectgarbage function, 304–305
colon syntax, 136
color, 401, 486
columnar data, 174–179
columns

data in, 174–179
packaging, 441–442

command-line argument, 141–142
command-line compiler, 576–577
command-line interface (shell)

defined, 3
discussed, 3
environment (variables) of, 4–6
features of, 4
on Unix and Unix-like systems, 3
on Windows systems, 3

command-line interpreter, 81
comma-separated value (CSV) format, 441–447
comments, 52–53
Common Gateway Interface. See under CGI
communication

discussed, 503
with LuaSocket, 503–518
network, 512–518
by networking, 536–541

community resources
chat room, 601
discussion group, 566
forums, 601
LuaForge, 602–603
for LuaSocket, 508–509
mailing lists, 597–600
mirror sites for, 598
question and answer, 597
reference manual, 596
web site, 596
wiki pages, 601–602
workshops, 603

compile-time error, 215
compiling

applications, in Plua application, 572–573
chunks and, 81
defined, 7
discussed, 2–3, 7–18
libraries, in Plua application, 573–576
on Linux and Unix-like systems, 8–12
Lua tarball and, 7–8
LuaSocket, 503–505
in Palm OS emulator, 580
on Windows systems, 12–18

compound statement
break statement, 63–65
discussed, 54–65
do statement, 63–65
if statement, 54–58
for loop, 60–62
repeat loop, 62–63
while loop, 58–59

631

compound statement

In
de

x

24_069172 bindex.qxp 1/2/07 8:12 PM Page 631

concatenation. See string concatenation operator
concatenation operator, 250–253
concurrent tasks

client connections, 523
management of, with coroutines, 281–282

Configure function, 531
connection handling (LuaSocket), 518–524
connection-oriented (stream) socket, 510
constants, 363–364
control

altering, with return values, 74–76
coroutines for, 271–272
flow of, 74–76
transferring, with coroutines, 273

control character, 32
control sharing, coroutines for, 273–275
control structure, 54
control variable, 159
conversion

automatic, 48–49
of characters to character codes, 173–174
functions for, 171–173
of operands, 48–49
of strings, 171–173, 173–174

cooperation, of coroutines, 273–278
copying tables, 148–152
core library

basic output of, 333
chunk-loading functions in, 328–330
discussed, 325–335
environment functions in, 326
error-condition functions in, 333–334
error-containment functions in, 330–331
garbage-collections functions in, 332
metatable functions in, 326–328
module functions in, 331
table traversal functions in, 334–335
type and conversion functions in, 333
vararg-related functions in, 335–336

coroutine(s)
call stack of, 272
for concurrent tasks management, 281–282
for control sharing, 273–275, 277–278
control transference by, 273
cooperation of, 273–278
defined, 271, 272
discussed, 271
dispatching, 280
for event handling, 287–297
event loop, 288–295
functions vs., 272
instantiated, 272
iterating, 286–287
for multitasking, 273–278
for program control, 271–272
programs vs., 272–273
recursion and, 281
requirements for, 279–281
restrictions on, 280
for retaining state, 282–287
with select function, 518–522
status of, 278–279
thread of, 272–273
tokenizing, 282–286
variable scope in, 280
wrapping of, 273
yielding of, 279–280, 296–297

coroutine library, 336–337
coroutine.create function, 272, 273, 278, 336
coroutine.resume function, 272, 273, 336
coroutine.running function, 273, 336
coroutine.status function, 336
coroutine.wrap function, 272, 279, 336
coroutine.yield function, 272, 273, 275
cosine functions, 346, 352
“count” action, 332
CPU timing, 368
create key, 528
credit card numbers

formatting type for, 186
validating, 187–193

CSV (comma-separated value) format, 441–447
csv.parse function, 447
cURL (Client for URLs) file transfer library

discussed, 389
libcurl, 389–392
luacurl, 392–395

curl.new, 395
curly braces, 202
currentline field, 312
Cygwin system, 2

D
data error, 220
data structure, 117
database

access to, with Plua application, 590–592
discussed, 449
LuaSql, 458
MySQL, 458–465
relational, 449–458
SQL, 458, 464–468

datagram socket, 510
datatype, 40
date functions, 368–369
“dead” status, 278
debug library

for call stack, 216
discussed, 308–321, 370–373
functions in, 321, 371–372
hooks in, 315–321
running code in, 308–315

debug.debug function, 309, 371
debug.getfenv function, 371
debug.gethook function, 321, 371
debug.getinfo function, 311, 314, 371
debug.getlocal function, 309, 310, 371
debug.getmetatable function, 371
debug.getregistry function, 371
debug.getupvalue function, 314, 371
debug.setfenv function, 371
debug.sethook function, 319, 371
debug.setlocal function, 310, 372
debug.setmetatable function, 265–266, 372
debug.setupvalue function, 314, 372
debug.traceback function, 167, 217, 229, 310, 372
decimal-point notation, 28
degrees in radians, function for, 361
delimiters, 202
Demo subdirectory, 399, 566
Demo1 subdirectory, 567
Demo2 subdirectory, 567

632

concatenation

24_069172 bindex.qxp 1/2/07 8:12 PM Page 632

Denom field, 255
digest newsgroup, 599
Dijkstra, Edsger, 76
discussion group, 566
dispatching, 280
division

discussed, 24
by zero, 27–28, 48

DLL (dynamic-linked library)
configuration options for, 376–377
discussed, 376–377

DLL (dynamic-linked library)
external references of, 376
in TCC, 16

DNS (Domain Name System), 507
dns namespace, 507
do block, 86
do statement, 63–65
doc files, 569
doc subdirectory, 8
document root, 474
documentation, for Plua application, 570–571
dofile function, 328, 330
Domain Name System (DNS), 507
domain names, 507–508
doskey utility, 27
dotted-decimal notation, 507
dotted-quad notation, 507
double quotes, 32–33
duplicate lines, 183–185
dynamic linked library. See DLL
dynamic Web calendar, 478–481
dynamic Web chart, 481–489
dynamic Web content

for asynchronous calls to server, 476–478
calendars, 478–481
CGI scripts, problems with, 475–476
charts, 481–489
discussed, 468
on embedded web server, 468
on extended web server, 469
run time, 469
serving, 474–475

E
e-mail, LuaSocket for, 529–536
embedded web server, 468
embedding Lua, 414–415
empty string, 33
encoding, 525
end arguments, 511
end-of-file (EOF), 26
end-of-line character, 35
environment (variables)

of command-line interface, 4–6
discussed, 4
on Unix-like systems, 4–5
on Windows systems, 5–6

environment functions, 326
EOF (end-of-file), 26
ephemeral, 512
equality, of tables, 144–145
error(s)
ambiguous syntax error, 215
anticipating conditions for, 222

assert function for, 220
assumptions of, 219–221
in Boolean values, 38
in call stack, 216–217
code, 220
compile-time error, 215
containment of, functions for, 227–230
data, 220
default behavior of, 218–219
defining conditions for, 221–222
discussed, 213
functions for, 220–221
with global variables, 111
handling, 218
kinds of, 213–218
locating, 230
program termination and, 220
return values and, 222–224
runtime, 217–218
stack overflow, 98–99
stack tracebacks, 220
structuring code and, 224–227
syntax, 213–216
unexpected symbol, 215
unfinished string, 215
in user-written scripts, 230
with vararg, 215

error file, standard, 182
error function, 220–221, 334
error handler, 422
error-condition function, 333–334
error-containment function, 330–331
escape sequence, 36
etc subdirectory, 8
evaluated expression, 56
event handling, 287–297
event loop, 288–295
explicit nil value, 90
exponent function, 354–355
exponentiation, 24, 49
expression, 53–54
extended web server, 469
extending Lua, 414–415
extension function, 415
extension library

of C programming language, 441–447
layering, 441–447

external local variable. See upvalue
extracting tarballs, 6–7

F
Fact, 98–99, 102
factorial, 59
false, 43, 266
de Figueiredo, Luiz Henrique, 596
file handles, 366–367
File Stream library, 570
file transfer protocol (FTP), 510
filenaming, 241
files

input/output for, 181–184
mode setting for, 430–436
naming of, 241
writing and reading from, 181–184

filesystem function, 369

633

filesystem function

In
de

x

24_069172 bindex.qxp 1/2/07 8:12 PM Page 633

filter, 524–525
filtering, of data flow, 524–527
floating point representation, 360
floating-point rounding, 28
flow of control, 74–76
flush (filehandle), 366
for loop

as block, 86
discussed, 60–62
local variables in, 85–86
loop variable of, 111
variable scope of, 84

formal argument
discussed, 84
function definitions with, 103

format code, 386
format placeholders, 175–179
formatting

for credit card numbers, 186
numbers, 174–179
pattern matching for, 186–187
strings, 174–179

formatting placeholder, 175–178
forms

CGI for, 497
JavaScript in, 498
validation of, 498

forums, for Lua, 601
fractional integers, function for, 362
FTP (file transfer protocol), 510
“full” mode, 367
func field, 312
function(s)

as assignments, 103–105
built-in, 102–103
in call stack, 96
call stack for, 95–97
calling, in C, 380–383, 421–423
for calling functions, 95–102
chunks as, 81–83
closures, 108
code inside, 71
comparing, 103
coroutines vs., 272
for creating functions, 108–109
in debug library, 371–372
defining, 108–111
discussed, 69–72
for functions, 95–102, 108–109
limits on, 105
local, 105–106
local variables in, 85–86
for modules, 245–247
multiple, 104
obtaining, in C, 421
printing, 103
with private state, 110–111
recursive, 97–98
replacing, 102–103
replacing, of built-in, 102–103
for return values, 73–74
for returning values, 72–80
semicolons in, 107–108
with side effects, 91–93
side effects of, 91–95
stack frame of, 109

stack overflow and, 98–99
tables and, 128–136, 147–148
tail calls, 99–102
upvalues, 108
as values, 102–106
variable scope and, 84–91, 111–113
whitespace and, 106–107

function argument error, 215
function call, 108
function expression, 103–104
function identifier, 30
function plot, 402–405
function type, 421

G
game programming, with SDL

for 2-D action game, 544
discussed, 543
installing programs for, 544–546
LuaCheia for, 544–546
reasons for, 543–544
sprites in, 551–561
writing programs for, 546–551

gaps, arrays with, 123
garbage collection

discussed, 303
mechanics of, 304–307
metamethods for, 267
usage of, 304

garbage-collection function, 332
GarbageTest, 304, 307
gd graphics library

building, 395
building, on Unix-like systems, 396
for charts, 481
defined, 395
discussed, 395–405
installing, on Windows systems, 396–397
lua-gd, 397–405

Get, 136
GET command (forms), 496–497, 527
GetEvents function, 551
getfenv function, 326
getmetatable function, 326
global environment, 167
global variable(s)

assignments of, 244–245
avoiding, in namespaces, 244–245
defined, 89
errors with, 111
local variable definition and, 111
metatables for, 246–247
in namespaces, 244–245
shadowing, 89–90
in tables, 163–168
variable scope of, 91

Gmane, 599
GNU Readline History libraries, 27
Goldberg, David, 28
graphic generation, 582–583
graphical user interface (GUI)

modal programs vs., 287
shell access with, 3

graphics library. See gd graphics library

634

filter

24_069172 bindex.qxp 1/2/07 8:12 PM Page 634

greedy characters, 197–198
gsub, 186. See also string.gsub
GUI (graphical user interface)

modal programs vs., 287
shell access with, 3

gui namespace, 589
gui.destroy, 589
gui.dialog, 589
gui.getstate, 589
gui.gettext, 589
gui.setstate, 589
gui.settext, 589
.gz extension, 6–7

H
handheld device, Lua on, 565
handle, 180
hash part, 307
hashing, 307
headers key, 528
helper routines (CGI), 489–498
hexadecimal color codes, 486
hexadecimal number, 49
highlighting (text editor), 21
history feature, 27
HISTORY file (tarball), 7
hook, 315–321
hook count, 320
HostFS, 577
HTML, 174, 176, 204, 467–468
HTML forms, 489, 491–497
http.request function, 527–529
hyperbolic angle, functions for, 351–353
hyperbolic functions, 351–353

I
identifier, 29–30
Ierusalimschy, Roberto, 596
if statement
as block, 86
discussed, 54–58

image tag (HTML), 481–482, 488
IMAP (Internet Message Access Protocol), 529
implementation, 233–234
implicit nil value, 90
Inc, 136
include directory, 14
indexed values

in C programming language, 436–438
retrieving, in C, 436–437
setting, in C, 437–438

indexing metamethod, 258–265
inetd (sinetd, launchd), 536
inheritance, 264–265
initializing variables, 40
inner scope, variables from, 87–88
input file, standard, 182
input/output (I/O)

discussed, 180
functions for, 364–367
mechanics of, 184–185
for writing and reading from files, 181–184

input/output (I/O) library, 364–367

INSTALL file (tarball), 7
installation

location of, 12
of Lua, 1–3
of LuaCheia, 544–546
of LuaSocket, 503–506
of pack library, 385
of Palm OS emulator (POSE), 578
of SDL, 544–546

instance (universe), 379
instantiated coroutine, 272
instantiated object, 134
integer (whole number), 26
integer exponent, function for, 360
integers, functions for, 358–359
interactive CGI application. See CGI application, interactive
interface

discussed, 233–234
preservation of, 236–240

interfacing Lua, 413
interned string, 307
Internet Message Access Protocol (IMAP), 529
Internet Protocol (IP), 506
Internet Relay Chat (IRC), 601
interpreter

defined, 1, 81
interaction for arithmetical operations, 24–25
quitting, 26
shortcuts for, 26–27

interrupt signal, 26
intializing loops, 59
inverse cosine function, 349
inverse sine function, 348
inverse tangent function, 350
inverse trigonometric function, 348–350
I/O. See input/output
io.close function, 364
io.flush function, 364
io.input function, 364
io.lines function, 364
io.open function, 223, 226, 364
io.output function, 365
io.popen function, 366, 539, 540
io.read function, 365
io.stderro, 182
io.stdin, 182
io.stdout, 182
io.tmpfile function, 365
io.type function, 365
io.write function, 365
IP (Internet Protocol), 506
ipairs function, 161, 260, 334
IRC (Internet Relay Chat), 601
Iter function, 158
iterating

of coroutines, 286–287
of pattern-matching, 204–207

iterator, 158–159
iterator factory, 158–159
Ittner, Alexandre Erwin, 397

J
JavaScript, for form validation, 498
junk value, 30

635

junk value

In
de

x

24_069172 bindex.qxp 1/2/07 8:12 PM Page 635

K
Kepler, James, 498–499
Kepler project

for CGI, 499
defined, 1
discussed, 498–499
for Lua pages, 500
mailing lists for, 603

keys, for tables, 119–120
KeyToNums, 264
key-value pair, 118
keyword argument, 143–144
keywords (reserved words), 29
Klein bottle, 275

L
lastlinedefined field, 312
launchd (inetd, inetd), 536
layering, of extension library, 441–447
left-associative operator, 49
length operator, 46–47
less command, 7
less filter (Linux), 239
lib directory, 14
libcurl

building, 389–390
building, on Unix-like systems, 390
building, on Windows systems, 391–392
discussed, 389

libkit subdirectory, 567
libraries

building, from source code, 377–379
core library, 325–335
coroutine library, 336–337
cURL file transfer library, 389–395

libraries
debug library, 308–321
debugging library, 370–373
defined, 375
discussed, 325, 375–376
DLL (dynamic-linked libraries), 376–377
gd graphics library, 395–405
input/output (I/O), 364–367
input/output (I/O) library, 364–367
interaction of Lua with, 379–383
math library, 345–364
operating system library, 368–370
pack library, 383–389
package library, 338–340
shared, 376
from source code, 377–379
SQLite database library, 405–411
string library, 340–343
table library, 344

Life subdirectory, 567
“line” mode, 367
linedefined field, 313
lines (filehandle), 366
linker, 7
lint-type program checker, 303

Linux systems
compiling Lua on, 8–12
compiling LuaSocket on, 503
less filter in, 239

list(s). See array(s)
literal strings, 266
literal value, 54
load function, 328
loader function, 415
loadfile function, 328
loadlib function, 338
loadstring function

description, 328
function return by, 168
for multiple return values, 83
use of, 83

local function
discussed, 105–106
variable scope of, 89

local variable(s)
discussed, 85–90
in functions, 85–86
global variable and, 111
for global variable shadowing, 89–90
initializing multiple, 90
in for loop, 85–86
numbering of, 310
in stack, 109
storage of, 109
variable scope of, 85–90

locale, 39
logarithm function, 356–357
Logo programming language, 582
long string, 34–35
loop variable, 111
loop(s) and looping

with custom-made loops, 158–163
defined, 58
intializing, 59
for loop, 60–62
repeat loop, 62–63

through tables, 124–128, 158–163
while loop, 58–59

low watermark, 288
Lua

building, 2–3
communicating between C and, 415–421
compiling, 2–3, 7–18
installation of, 1–3
interfacing, with other languages, 413
prebuilt, 3
using, 543–545
versions of, 2
web site for, 596

Lua API stack, 96
Lua C interface, 1, 379
lua interpreter (lua.exe), 2, 24

chunks in, 82–83
defined, 81
make command affecting, 9
testing, 10

Lua mailing list
accessing, with newsreaders, 599
accessing, with web browsers, 599
discussed, 597
downloading archives of, 598–599
newsreaders for accessing, 599
posting messages to, 600636

Kepler, James

24_069172 bindex.qxp 1/2/07 8:12 PM Page 636

subscribing to, 599
viewing and searching archives of, 597–598
web browsers for accessing, 599

Lua pages, Kepler for, 500
Lua tarball, 7–8
Lua technical notes, 525
luac

bytecode with, 299–303
make command affecting, 9
mechanics of, 300–303

LuaCalc, 566
LuaCheia, 544–546
lua_close, 414
luac.out, 302
luacurl

building, on Unix-like systems, 392
building, on Windows systems, 393
discussed, 392
mechanics of, 394–395
using, 393–394

lua.exe. See lua interpreter; lua interpreter
LuaForge, 602–603
lua-gd

building, on Unix-like systems, 397–398
building, on Windows systems, 398–399
discussed, 397–405
mechanics of, 401–402, 404–405
using, 399–404

LuaSocket
addresses in, 507
application protocols for, 524–536
compiling, 503–505
for connection handling, 518–524
domain names in, 507–508
for e-mail, 529–536
for filtering flow of data, 524–527
installing, 503–506
Internet resources for, 508–509
for network communication, 512–518
networks and, 506
routed packets in, 506–507
select function in, 518–522
sockets in, 510–512
transport protocols, 508–509
for web page access, 527–529
Windows binary package for, 505–506

LuaSql, 458
lua-sqlite3

building, 407
building, on Unix-like systems, 407–408
building, on Windows systems, 408–409
discussed, 407–411
using, 409–411

lynx character-mode web browser, 7–8

M
mad.rad function, 361
magic character

for pattern matching, 198
for pattern-matching, 188–189, 209
punctuation characters, 189
punctuation characters as, 189

mailing list
for Kepler project, 603
for Lua. See Lua mailing list

main thread, of coroutine, 272
make utility, 9–10
makefile utility, 9
Man, Kein-Hong, 301
mantissa, function for, 360
manual, reference, 596
master object, 511
matching. See pattern matching
math library

adjustment functions in, 358–360
angle conversion functions in, 361
constants in, 363–364
discussed, 345
exponent functions in, 354–355
floating point representation in, 360
hyperbolic functions in, 351–353
inverse trigonometric functions in, 348–350
logarithm functions in, 356–357
maximum functions in, 363
minimum functions in, 363
modulus functions in, 362–363
pseudo-random number functions in, 362
trigonometric functions in, 345–347

math.abs function, 358
math.acos function, 349
math.asin function, 348
math.atan function, 350
math.atan2 function, 350
math.ceil function, 359
math.cos function, 346
math.cosh function, 352
math.deg function, 361
math.exp function, 354
math.floor function, 360
math.fmod function, 362
math.frexp function, 360
math.huge function, 363–364
math.ldexp function, 360
MathLib, 566
mathlib.prc, 567
math.log function, 356
math.log10 function, 357
math.max function, 363
math.min function, 363
math.modf function, 362
math.pi function, 364
math.pow function, 355
math.random function, 362
math.randomseed function, 362
math.sin function, 345
math.sinh function, 351
math.sqrt function, 355
math.tan function, 347
math.tanh function, 353
maximum function, 363
memo record, 569
metamethod

applicability of, 268
concatenation and, 249–258
defined, 251
discussed, 249
for garbage collection, 267
indexing, 258–265
non-syntactical, 267
nontables with, 265–267
relational, 257–258
syntactical, 265

637

metamethod

In
de

x

24_069172 bindex.qxp 1/2/07 8:12 PM Page 637

metatable(s)
defined, 251
for global variables, 246–247
mechanics of, 251–253
for userdata, 423

metatable function, 326–328
method key, 528
Microsoft Visual C++. See also C programming language

building Lua with, 12–14
modules of, 247

Microsoft Visual C++ 6.0 SDK, 12
mime module, 526
MIME notation, 600
MinGW package

building Lua with, 16–18
for Windows-Unix compatibility, 2

minimum function, 363
mirror sites, for resources, 598
modal programs, 287
modal windows, 288
modularization technique, 244
module(s)

bookkeeping for, 240–241
bytecodes and, 241–242
with C programming, 247
defined, 233
directory for, 235–236
discussed, 233
function for, 245–247
implementations, 233–234
interface preservation, 236–240
interfaces, 233–234
namespaces and, 242–245
placement of, 235–236
require function and, 234–235
using, 234–235

module directory, 235–236
module function

in core library, 331
discussed, 245, 331
in math library, 362–363
mechanics of, 245–247

modulo operator, 47–48
Moen, Rick, 597
Monotone (revision control system), 22
MSVCRT.DLL, 12
MSYS, 16
multiple assignments, 31
multiple connections (LuaSocket)

on sever side, 522–523
timeout values for, 523–524

multiple-character string, 39
multiple-valued function, 78–79
multiplication, 24
multitasking

with coroutines, 273
coroutines for, 273–278
preemptive, 276

mutable tables, 144, 305
mutating, 144
MySQL, 458–465

N
Nakonechnyj, Alexandre, 399
name field, 313

namespace
creating, 242–243
discussed, 242–245
global variables in, 244–245
modules and, 242–245
reusing, 242–243

namewhat field, 313
natural exponent, function for, 354
nc (netcat) program, 539
Nehab, Diego, 503, 524–525
netcat (nc) program, 539
netiquette, 600
network communication (LuaSocket), 506, 512–518
Network News Transfer Protocol (NNTP), 524
networking

on client side, 538–541
on server side, 536–538

newsgroup, 599
newsreader, 599
next function, 334
nil value(s)

addition of, 97
discussed, 40–41
implicit/explicit, 90
from I/O function, 185
from and operator, 43
replacement function returning, 204

NNTP (Network News Transfer Protocol), 524
“no” mode, 367
nonalphanumeric character, 189
nongreedy character, 197–198
nonpunctuation character, 189
non-syntactical metamethod, 267
nontable, with metamethods, 265–267
“normal” status, 278
not unary operator (unary minus), 44–45
notation

for arithmetical operations, 25–26
RPN, 566
scientific, 25

notation, decimal-point, 28
null byte, 37
Number pattern, 511
numbers

comparing, with Boolean values, 37–38
comparing, with relational operators, 37–38
formatting, 174–179
rational, 255–256

Numer field, 255
NumToKeys, 264
nups field, 313

O
object-oriented programming, 133–136
octets, 507
OneMod function, 157
one-operand (unary) operator, 44
online documentation, 570–571
opaque handle, 282
operands

automatic conversion of, 48–49
defined, 42

operating system library
CPU timing in, 368
discussed, 368

638

metatable(s)

24_069172 bindex.qxp 1/2/07 8:12 PM Page 638

filesystem functions in, 369
other functions in, 370
time and date functions in, 368–369

optimizing rings, 156–157
or operator

discussed, 43–44
side effects and, 93

ordered table, 261–265
os.date function, 368
os.difftime function, 368
os.execute function, 370
os.exit function, 26, 370
os.getenv function, 370
os.remove function, 369
os.rename function, 369
os.setlocale function, 370
os.time function, 368–369
os.tmpname function, 369
outer scope, 87–88
output file, standard, 182
overflow, 27–28. See also stack overflow
overlapping, of pattern matching, 194

P
pack library

building, in Unix-type systems, 383–384
building, in Windows systems, 384
discussed, 383–389
installing, 385
mechanics of, 389
testing, 384–385
using, 385–389

package library functions, 331
package.cpath function, 339
package.loaded function, 339–340
package.loadlib function, 338
package.path function, 338–340
package.preload function, 338–340
package.seall function, 338
packaging, in columns, 441–442
pairs function, 260, 334
Pall, Mike, 280
Palm API, 570
Palm HotSync Manager, 567
Palm OS emulator (POSE)

compiling programs in, 580
configuring, 578
discussed, 577
exiting, 580
installing, 578
obtaining, 577
for Plua application, 577–580
programming Plua in, 579–580
running Plua in, 578–579

Palm OS simulator
discussed, 581
obtaining, 581
for Plua application, 581
using, 581

Palm OS stream, 571–572
parameter (term), 84. See also Formal argument
parentheses

as delimiter, 202
for literal strings, 266

within pattern, 199
use of, 80

parser, 286
pattern(s)

anchor of, 188
receive, 510–511

pattern (substring), 185
pattern item, 189
pattern matching

for any of several characters, 186–193
of balanced delimiters, 202
captures and, 198–201
discussed, 185
for formatting, 186–187
iterating, 204–207
magic characters for, 188–189, 198, 209
overlapping of, 194
searching and, 186
for specific strings, 186
with string.find, 203
with string.gsub, 203–204
with string.match, 203
tricks for, 207–208
for varying lengths, 193–198

pattern-based string function, 340–342
pcall function, 227–229, 330, 422
PDF (portable document format), 383
peers, 512
percent-escaped character, 189
pi, function for calculating, 364
plink, 539
Plot function, 405
Plua application

command-line compiler for, 576–577
compiling applications in, 572–573
compiling libraries in, 573–576
contents of, 566–567
database access with, 590–592
discussed, 565
features of, 567
graphic generation in, 582–583
on main computer, 576
obtaining, 566
online documentation for, 570–571
Palm OS emulator for, 577–580
Palm OS simulator for, 581
in Palm OS streams, 571–572
programming with, 581–592
running, 567–568
saving, 569–570
user interface programming with, 583–590

Plua2, 565, 566
plua2help.prc, 566, 567
plua2.prc, 567
plua2rt.prc, 566
Pluto (persistence library), 149
PNG format, 484
pop, 382
POP (Post Office Protocol), 529, 532–536
PORT variable, 527
portable document format (PDF), 383
POSE. See Palm OS emulator
position capture, 200
POST method (forms), 497, 527
Post Office Protocol (POP), 529
posting messages

to Lua mailing list, 600

639

posting messages

In
de

x

24_069172 bindex.qxp 1/2/07 8:12 PM Page 639

prebuilt binary packages. See binary packages, prebuilt
prebuilt Lua, 3
precedence, 49–51
preemptive multitasking, 276
print function

discussed, 103
for input/output, 180
quoting and, 32

private state, functions with, 110–111
privileges

in CGI scripts, 475–476
root, 11

program control, coroutines for, 271–272
program termination error, 220
program writing, 571–572
Programmer error, 220
programming, 581–592
Programming in Lua (Ierusalimschy), 596
programplua2.prc, 566
programs, coroutines vs., 272–273
protected calls (C), 422–423
proxy key, 528
proxy table, 261
PROXY variable, 527
pseudo-index, 438
pseudo-random number function, 362
punctuation characters, 189
push, 382

Q
questions, phrasing, 597
Quoted-Printable encoding, 525
quoting strings

backlash escaping with, 35–37
discussed, 32
with double quotes, 32–33
with single quotes, 33
with square brackets, 33–35

R
radians, functions for calculating, 361
random numbers, function for, 362
rational numbers

defined, 255
defining, 253–255
mechanics of, 255–256

rawequal function, 326
rawget function, 326
rawset function, 326, 328
Raymond, Eric Steven, 597
read (filehandle), 366
read mode, 182
README file (tarball), 7
RealTbls, 264
receive array, 523
receive patterns, 510–511
recurse.lua, 215–216
recursion

coroutines and, 281
discussed, 97–98

recursive calls, 99
recursive descent, 286
recursive function, 97–98

redirect key, 528
redirection operators, 185
reference manual (Lua), 596
referencing value (C), 440–441
register (temporary storage), 301
registering variables, 379–380
registry, retaining values with (C), 438
regular assignment, 91
relational database, 449–458
relational metamethod, 257–258
relational operator

comparing numbers with, 37–38
comparing strings with, 38–40
discussed, 37

release directory, 581
repeat loop

as block, 86
discussed, 62–63

replaying, of captures, 201
Request for Comments (RFC), 524
require function

defined, 331
loadlib function vs., 338
modules and, 234–235, 241, 247

reserved words (keywords), 29
resolver library, 508
resources. See community resources
“restart” action, 332
retaining values, in C, 438–441
return statement

to alter control flow, 74–76
defining functions for, 73–74
errors and, 222–224
for flow of control, 74–76
functions for, 72–74
for multiple values, 77
with no value, 76–77
tail call as, 101
using functions for, 72–73
value lists for, 78–80

ReturnArgs function, 78–79
reverse argument, 144
reverse polish notation (RPN), 566
ReverseIpairs, 159
revision control system, 22
RFC (Request for Comments), 524
right-associative operator, 49
ring (data structure), 153–157
root privileges, 11
Roth, Michael, 407
rounding, 28
routed packet, 506–507
rows, 441–447
RPN (reverse polish notation), 566
run time, 469
“running” status, 278
runtime, 217–218
runtime error, 217–218

S
SampleWindow function, 296
sandboxing, 165
saving, 569–570
scientific notation, 25
scope, variable. See variable scope

640

prebuilt binary packages

24_069172 bindex.qxp 1/2/07 8:12 PM Page 640

screen.heading, 582
screen.moveto, 589
screen.pos, 589
screen.turn, 582
screen.walk, 582
scripts

CGI. See CGI scripting
for form validation, 498
JavaScript, 498
user-written, 230
as vararg functions, 140–143

SDK. See software development kit
SDL. See Simple DirectMedia Layer library
search path (Windows), 5–6, 11
searching

pattern-matching and, 186
strings, 185–186
substrings, 185

secure shell handling (SSH), 510
secure sockets layer (SSL), 390
security issues

in Apache, 472
with asynchronous calls, 478
of CGI applications, 498

seek (filehandle), 366
select function

described, 335
in LuaSocket, 518–522

Selene Unicode Library, 192
semicolons, in functions, 107–108
send array, 523
server object, 511
server side

multiple connections on, 522–523
networking on, 536–538

Server Sockets Layer (SSL), 532
set command, 4
setfenv function, 164–167, 326
SETGLOBAL instruction, 244–245
setmetatable function, 326
“setpause” action, 332
“setstepmul” action, 332
setvbuf (filehandle), 366
shadowing, of global variables, 89–90
shallow copy, 148–149
shared library, 376
shebang (Unix), 470
shell. See command-line interface
short-circuit evaluation, 93–95
short_src field, 313
show module, 237–240
side effects

discussed, 91–95
of functions, 91–95
functions with, 91–93
ordering of, 91–93
short-circuit evaluation and, 93–95

sieve.lua, 281
Simple DirectMedia Layer (SDL) library

defined, 544
for game programming. See game programming, with SDL
installing, 544–546

Simple Mail Transfer Protocol (SMTP), 529
sine functions, 345, 351
sinetd (inetd, launchd), 536
single quote (apostrophe character), 33
single-character string, 39

sink, 524–525
sink key, 528
SMTP (Simple Mail Transfer Protocol), 529
smtp module, 529
smtp.message function, 529
smtp.send function, 529
socket namespace, 507
socket.dns.gethostname function, 507
socket.dns.tohostname function, 507
socket.dns.toip function, 507, 508
sockets

Berkeley sockets interface, 510
in LuaSocket, 510
TCP sockets, 511–512
types of, 510–511
in Windows system, 523

socket.select, 524
socket.tcp, 511
software development kit (SDK)

Microsoft Visual C++ 6.0 SDK, 12
need for, 1
for Windows, 12

source, 524–525
source code

building libraries from, 377–379
bytecodes and, 81, 302

source field, 313
Spolsky, Joel, 192
sprite

defined, 550
in game programming with SDL, 551–561

SQL (structured query language), 458, 464–468
SQLite 3. See SQLite database library
SQLite database library (SQLite 3)

building, 405
building, on Unix-like systems, 405–406
building, on Windows systems, 406–407
discussed, 405–411
lua-sqlite3, 407–411

square brackets
as delimiter, 202
quoting strings with, 33–35
use of, 209

square root, function for calculating, 355
squeeze function, 193–198
src subdirectory, 8, 9
SSH (secure shell handling), 510
SSL (Server Sockets Layer), 532
SSL (secure sockets layer), 390
stack (call stack)

for C function calls, 96
debug library for, 216
defined, 95
errors in, 216–217
for functions, 95–97
functions in, 96

stack diagrams, 416
stack frame, 109
stack overflow, 98–99
stack overflow error, 98–99
stack traceback

defined, 97
discussed, 220

stack traceback function, 218
stack.look function, 420
standard error file, 182
standard input file, 182

641

standard input file

In
de

x

24_069172 bindex.qxp 1/2/07 8:12 PM Page 641

standard output file, 182
start arguments, 511
state, 282–287
stateful iterator, 159
stateless iterator, 159
statement(s)

abstractions and, 70
compound, 54–65
defined, 70
discussed, 53–54

“step” action, 332
step key, 528
“stop” action, 332
storage

in closures, 109
temporary, 31

stream programs, 570
stream (connection-oriented) socket, 510
stream-based server, 537–538
strict.lua module, 244
string(s)

of character codes, 173–174
of characters, 173–174
comparing, with Boolean values, 38–40
comparing, with relational operators, 38–40
conversion functions for, 171–173
conversion of, 173–174
defined, 32
discussed, 32, 171, 307
executed as chunk, 83
formatting, 174–179
implementation of, 307
interned, 307
length of, 173
multiple-character, 39
pattern-matching for, 185–209, 186
quoting, 32–35
searching, 185–186

string concatenation operator
discussed, 45–46, 49
metamethods and, 249–258
on tables, 249–257

string library
discussed, 340
pattern-based string functions in, 340–342
string-conversion functions in, 342–343

string.byte function, 173–174, 342
string.char function, 174, 342
string-conversion functions, 342–343
string.dump function, 185, 302, 342
string.find function

captures return from, 200
described, 340–341
pattern matching with, 196, 203
string.match function vs., 200
for zero-length match, 196

string.format, 174–179, 342–343
string.gmatch function, 204–206, 341
string.gsub function

bytecode and, 305
captures within, 201
defined, 186
described, 341
pattern matching with, 196–197, 203–204
of squeeze, 194

string.len function, 173, 343
string.lower function, 171–172, 343

string.match function
described, 341
features of, 199, 203
string.find vs., 200

string.pack function, 385, 386
string.rep function, 172, 343
string.reverse function, 172, 343
string.sub function, 172–173, 343
string.unpack function, 386
string.upper function, 172, 191, 343
structured query language. See SQL
structuring code, 224–227
subject (string), 185
substring, 185
subtraction, 24
sudo command, 10
super-server application, 536
surface, 551
“suspended” status, 278
SWIG, 416
syntactic sugar, 134
syntactical metamethods, 265
syntax, 134–135, 214, 303
syntax error, 213–216
system thread, 276

T
table(s)

altering contents of, 120–121
arithmetical operations in, 249–257
arrays and, 121–124
associative, 121
building data structures in, 152–158
case-insensitive, 259–261
changing content of, 144
content, changing, 144
contents of, altering, 120–121
copying, 148–152
defined, 117, 118
discussed, 117–119, 307
equality of, 144–145
functions and, 128–136, 147–148
global variables in, 163–168
implementation of, 307
keys for, 119–120
keyword arguments in, 143–144
looping through, 124–128, 158–163
mutable, 144, 305
object-oriented programming with, 133–136
ordered, 261–265
vararg functions in, 136–143
variables in, 145–147

table constructor, 122
table fields, 121
table library

discussed, 128
table.concat function, 131
table.maxn function, 132–133
table.remove function, 132
table.sort function, 128–131

table traversal functions, 334–335
table.concat function, 131, 344
table.insert function, 130, 132, 156, 344
table.maxn function, 132–133, 344
table.remove function, 132, 156, 344

642

standard output file

24_069172 bindex.qxp 1/2/07 8:12 PM Page 642

table.sort function, 128–131, 224, 344
tail call

defined, 100
discussed, 99–102
stack frame of, 109

tail calls, 99
tail recursive, 101
tail return, 320
tangent functions, 347, 353
.tar extension, 6–7
tar utility, 8
tarball

contents of, 7
discussed, 6
extracting, 6–7

Tatham, Simon, 597
TCC. See Tiny C Compiler
TCP (Transmission Control Protocol), 509–510
TCP sockets, 511–512
technical notes, 525
termination, program, 220
Test function, 527
text editor, 21
.tgz extension, 6–7
this-var identifier, 30
thread, of coroutines, 272–273
time function, 368–369
time server

creating, 474–475
implementing, with AJAX, 476–478

timeout value, 523–524
TIMEOUT variable, 527
timing, 368
Tiny C Compiler (TCC)

building Lua with, 14–16
discussed, 3
web site for, 14

TinyWeb, 472–473
token

coroutine, 282–286
defined, 204
discussed, 204
string.gmatch as, 204
supported, 485

tonumber function, 333
tools

revision control system, 22
text editor, 21

ToString, 157
tostring, 174
tostring function, 333
total order, 258
Transform function, 527
Transmission Control Protocol (TCP), 509–510
transport protocol, 508–509
trigonometric function, 345–347
troubleshooting, bytecodes for, 302
“turtle” functions, 582
type and conversion function, 333
type function

described, 333
returning values from, 72–73

U
UDP (User Datagram Protocol), 509–510
unary minus (not unary) operator, 44–45
unary (one-operand) operator, 44
unexpected symbol error, 215
unfinished string error, 215
Unicode, 192
Unicode (UTF-8 format), 192
uninitializing variables, 40
universe (instance), 379
Unix/Unix-like system

CGI scripts on, 470
command-line interface on, 3
compiling Lua on, 8–12
compiling LuaSocket on, 503
environment of, 4–5
gd graphics library on, 396
libcurl on, 390
libraries on, building, 378
luacurl on, 392
lua-gd on, 397–398
lua-sqlite3 on, 407–408
pack library in, 383–384
prebuilt binary packages on, 19–20
SQLite 3 on, 405–406
Windows system and, 2

unpack function, 139, 335–336
until expression, 86
upvalue (external local variable)

in C programming language, 439–440
closures for, 440
in functions, 108, 109

url key, 527
url.parse function, 508–509
User Datagram Protocol (UDP), 509–510
user interface programming, 583–590
USERAGENT variable, 527
userdata

in C programming language, 423–436
metatables for, 423

user-written script, errors in, 230
usr subdirectory, 14
UTF-8 format (Unicode), 192

V
validation, of credit card numbers, 187–193
value(s)

in C, 436–438, 438–441
defined, 118
discussed, 51–52
functions as, 102–106
indexing, 436–438
multiple, 77
none, 76–77
retaining, 438–441

value list
adjusting, 78–80
defined, 78
discussed, 78
multiple-valued functions in, 78–79
for return values, 78–80

value-less function, 79, 80

643

value-less function

In
de

x

24_069172 bindex.qxp 1/2/07 8:12 PM Page 643

vararg (...)
defining, 136–140
discussed, 136
errors with, 215
for loadstring, 83
as placeholder, 240
scripts as, 140–143
in tables, 136–143

vararg-related function, 335–336
variable(s)

defined, 28
discussed, 28, 51–52
global, 91, 163–168, 244–245
initializing, 40
from inner scopes, 87–88
local, 85–90
in namespaces, 244–245
from outer scopes, 87–88
registering, 379–380
on right side of assignments, 31
in tables, 145–147
uninitializing, 40
variable scope, 85–91

variable scope
arguments, 84
in coroutines, 280
determining, 111
discussed, 84
functions and, 84–91, 111–113
global variables, 91
of local function, 89
local variables, 85–90
of for loop, 84
tricky situations involving, 111–113

velocity (VelX), 559
VFS (virtual file system), 570
virtual file system (VFS), 570
virtual machine, 299
virtual stack, 415
Visual C. See C programming language
Visual C++. See Microsoft Visual C++
Visual C++ 6.0 SDK, 12

W
watermark, low, 288
WaveForm function, 405
weak key, 305
weak value, 306
Web applications

CGI applications, interactive, 489–498
CGI scripts, execution of, 469–471
discussed, 467
dynamic content for, 468–469, 474–489
Kepler project, 498–500
run time, 469

web browser
for Lua mailing list access, 599
lynx character-mode, 7–8

Web content, dynamic. See dynamic Web content
web page

access to, with LuaSocket, 527–529
charts in, 485

web server
Apache, 471–472
creating, 514–518

discussed, 467–468
embedded, 468
extended, 469
installing, 471–473
testing, with static content, 474
TinyWeb, 472–473

wget program, 8
what field, 313
while loop

as block, 86
discussed, 58–59

whitespace
functions and, 106–107
squeezing, 193–198

whole number (integer), 26
wiki pages, for Lua, 601–602
Win32 subdirectory, 20
Window.Close, 296
Windows binary package, 505–506
Windows system

Apache on, 472
CGI scripts on, 470–471
character processing in, 430
command-line interface on, 3
compiling Lua on, 12–18
compiling LuaSocket on, 503–504
control code processing in, 365
environment of, 5–6
filenaming in, 241
gd graphics library on, 396–397
libcurl on, 391–392
libraries on, building, 378–379
luacurl on, 393
lua-gd on, 398–399
lua-sqlite3 on, 408–409
pack library in, 384
prebuilt binary packages on, 20–21
SDK for, 12
search path mechanism of, 5–6
settings recommended for, 6
sockets in, 523
SQLite 3 on, 406–407
Unix-type systems and, 2

Window.Show, 296
Wirth, Niklaus, 214–215
workshops, for Lua, 603
World Wide Web, 468
wrapping

of coroutines, 273
of messages, 600

write (filehandle), 367
write mode, 182

X
X Window System, 288
XNextEvent function, 288
xpcall function, 229, 330

Z
zero, division by, 27–28, 48
zero-length match, 196
Zeus programmer’s editor, 415

644

vararg (...)

24_069172 bindex.qxp 1/2/07 8:12 PM Page 644

	Beginning Lua Programming
	Acknowledgments
	Contents
	Introduction
	The Facets of Lua
	Lua Is a Programming Language
	Lua Is an Implementation
	Lua Is Fast
	Lua Is Free and Open

	Who This Book Is For
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Getting Situated
	Choosing How to Install Lua
	Building Lua Yourself
	Selecting Prebuilt Lua

	Finding Your System’s Shell
	Windows Shells
	Shells on Unix and Unix-Like systems
	Shell Features
	The Environment

	Dealing with Tarballs and Zip Files
	Compiling Lua
	The Lua Source Tarball
	Compiling Lua on Linux and Other Unix-Like Systems
	Compiling Lua on Windows

	Binary Packages
	Selecting a Prebuilt Binary Package
	Installing a Prebuilt Binary Package on a Unix-Type System
	Installing a Prebuilt Binary Package on Windows

	Additional Tools
	Programmer’s Editor
	Revision Control System

	Summary

	First Steps
	Numbers and Arithmetic Operations: Basic Interpreter Usage
	Addition, Subtraction, Multiplication, Division, and Exponentiation
	Interacting with the Interpreter
	Other Notations for Numbers

	Interpreter Know-How
	Quitting the Interpreter
	Interpreter Shortcuts

	Numerical Gotchas
	Division by Zero and Overflow
	Floating-Point Rounding

	Variables and Assignment
	Assignment Basics
	Multiple Assignment
	Variables on the Right Side of Assignments

	Strings
	Quoting Strings
	Backslash Escaping

	Relational Operators and Boolean Values
	Comparing Numbers
	Comparing Strings

	The nil Value
	Boolean Operators
	The and Operator
	The or Operator
	The not Unary Operator

	The Concatenation, Length, and Modulo Operators
	The String Concatenation Operator
	The Length Operator
	The Modulo Operator

	Automatic Conversion of Operands
	Precedence and Associativity
	Variables and Values
	Comments
	Expressions and Statements
	Compound Statements
	The if Statement
	The while Loop
	The for Loop
	The repeat Loop
	The break and do Statements

	Summary
	Exercises

	Extending Lua with Functions
	Return Values
	Using a Function that Returns a Value
	Defining a Function that Returns a Value
	Using return to Alter Control Flow
	Returning Nothing
	Returning Multiple Values
	Adjusting Value Lists

	Chunks as Functions
	Variable Scope
	Actual and Formal Arguments
	Local Variables

	Understanding Side Effects
	Ordering Side Effects
	Short-Circuit Evaluation

	Functions Calling Functions
	The Call Stack
	Recursion
	Stack Overflow
	Tail Calls

	Functions as Values
	Replacing Built-In Functions
	Comparing and Printing Functions
	Function Definitions as Assignments
	Local Functions

	Whitespace, Semicolons, and Function Calls
	Upvalues and Closures
	Defining Functions that Create Functions
	Defining Functions with Private State
	Figuring Out Tricky Scope Situations

	Summary
	Exercises

	Working with Tables
	Tables Introduced
	A Shorter Way to Write Some Keys
	Altering a Table’s Contents
	Tables as Arrays
	Array Length
	Looping through Tables
	Tables of Functions
	The Table Library
	Object-Oriented Programming with Tables

	Functions with Variable Numbers of Arguments
	Defining Vararg Functions
	Scripts as Vararg Functions

	Keyword Arguments
	Different but the Same
	Table Equality
	Avoiding Bugs by Understanding Mutability
	Variables and Mutable Values
	Tables and Functions
	Copying Tables

	Building Other Data Structures from Tables
	Custom-Made Loops
	Global Variable Environments
	Summary
	Exercises

	Using Strings
	Basic String Conversion Functions
	String Length
	Converting Between Characters and Character Codes
	Formatting Strings and Numbers with string.format
	Input/Output
	Writing to and Reading from a File

	Pattern-Matching
	Searching for a Specific String
	Matching Any of Several Characters
	Matches of Varying Lengths
	Captures
	Matching Balanced Delimiters
	More on string.find, string.match, and string.gsub
	Iterating Through All Matches
	Tricks for the Tricky
	Magic Characters Chart

	Summary
	Exercises

	Handling and Avoiding Errors
	Kinds of Errors
	Syntax Errors
	Runtime Errors

	Handling Errors
	Default Error Behavior
	Checking Assumptions
	Anticipating Error Conditions
	Working with Return Values
	Structuring Code
	Error-Containment Functions

	Locating Errors
	Summary
	Exercises

	Using Modules
	Interfaces and Implementations
	The require Function
	Where to Put Modules
	Creating a Module Directory
	Setting Lua’s Environment Variable

	Preserving a Module’s Interface
	Module Bookkeeping
	Bytecode
	Namespaces
	Creating and Reusing Namespaces
	Avoiding Global Variables

	The module Function
	C Modules
	Summary
	Exercises

	Extending Lua’s Behavior with Metamethods
	Using Concatenation and Arithmetical Operators on Tables
	Relational Metamethods
	Indexing and Call Metamethods
	Non-Tables with Metamethods
	Non-Syntactical Metamethods
	Metamethod Applicability
	Summary
	Exercises

	Handling Events Naturally with Coroutines
	Coroutines and Program Control
	Coroutines Are Not Functions
	How Coroutines Are Like Programs
	Coroutines Are Cooperative
	Coroutines Have Status
	Rules of Conduct

	Managing Concurrent Tasks
	Retaining State
	Exercising a Coroutine’s Memory
	Iterating with Coroutines

	Handling Events Simply
	The Event Loop
	Yielding to Another Coroutine

	Summary
	Exercises

	Looking Under the Hood
	Bytecode and luac
	Garbage Collection
	The Implementation of Tables and Strings
	The Debug Library
	Inspecting and Manipulating Running Code
	Hooks
	Other Functions in the Debug Library

	Summary
	Exercises

	Exploring Lua’s Libraries
	Core Library
	Environment Functions
	Metatable Functions
	Chunk-Loading Functions
	Error-Containment Functions
	Module Functions
	The Garbage-Collection Function
	Type and Conversion Functions
	Basic Output
	Error-Condition Functions
	Table Traversal Functions
	Vararg-Related Functions

	Coroutine Library
	Package Library
	String Library
	Pattern-Based String Functions
	String-Conversion Functions

	Table Library
	Math Library
	Trigonometric Functions
	Inverse Trigonometric Functions
	Hyperbolic Functions
	Exponent Functions
	Logarithm Functions
	Adjustment Functions
	Floating Point Representation
	Angle Conversion Functions
	Pseudo-Random Number Functions
	Modulus Functions
	Minimum and Maximum Functions
	Constants

	Input/Output Library
	Operating System Library
	CPU Timing
	Time and Date Functions
	Filesystem Functions
	Other Operating System Functions

	Debugging Library
	Summary

	Using Community Libraries
	Library Overview
	Dynamically Linked Libraries
	Libraries Built from Source Code
	Limits to Portability

	How Lua Interacts with Libraries
	The Variable Registration Process
	Calling a C Function from Lua

	The pack Binary Structuring Library
	Building the pack Library on Unix-type Systems
	Building and Installing the pack Library on Windows
	Testing the pack Library
	Installing the pack Library
	Using the pack Library

	The cURL File Transfer Library
	Building libcurl
	Building luacurl
	Using luacurl

	The gd Graphics Library
	Building gd
	Building lua-gd
	Using lua-gd

	The SQLite Database Library
	Building SQLite3
	Building lua-sqlite3
	Using lua-sqlite3

	Summary
	Exercises

	Interfacing Lua with Other Languages
	How C Programs Use Lua
	Embedding Lua
	Extending Lua
	Embedding or Extending: Which Is Best?

	Communicating Between Lua and C
	Calling Lua from C
	Obtaining a Lua Function
	Calling a Lua Function
	Protected Calls

	Working with Userdata
	Indexing Values in C
	Retrieving Indexed Values
	Setting Indexed Values

	Retaining Values in C
	The Registry
	C Function Environments
	Upvalues in C
	Referencing Values
	The Thread Environment

	Layering Your Extension Library
	Summary
	Exercises

	Managing Information with Databases
	Some Basic Relational Database Concepts
	SQL, LuaSQL, and MySQL
	Summary
	Exercises

	Programming for the Web
	A Web Server Primer
	Dynamic Web Content
	Embedded Web Server
	Extended Web Server
	Creating Content at Run Time with Lua

	Executing CGI Scripts
	CGI Scripts on Unix-Type Systems
	CGI Scripts on Windows

	Installing a Web Server
	Apache
	TinyWeb

	Testing Your Web Server with Static Content
	Serving Dynamic Web Content
	Problems with CGI Scripts
	Asynchronous Calls to the Server
	Producing a Calendar Dynamically
	Producing Charts Dynamically

	Interactive CGI Applications
	CGI Helper Routines
	Developing CGI Scripts
	Security Issues

	The Kepler Project
	CGI the Kepler Way
	Lua Pages

	Summary
	Exercises

	Connecting to a Larger World
	Installing LuaSocket
	Compiling LuaSocket
	Installing Windows Binaries

	Network Overview
	Routed Packets
	Addresses
	Domain Names
	Identifying Internet Resources
	Transport Protocols
	Sockets: Streams and Datagrams
	TCP Socket Sociology

	Using LuaSocket for Network Communication
	Handling Multiple Persistent Connections
	Using Lua Coroutines with the select Function
	Multiple Connections on the Server Side
	Setting Timeout Values for the Server Socket

	The Application Protocols
	Filtering the Flow of Data
	Accessing Web Pages
	Sending and Receiving E-mail Messages

	Networking with Lua and Streams
	On the Server Side: inetd and Friends
	On the Client Side: ssh and Friends

	Summary
	Exercises

	Programming Games with Lua
	Understanding Why and When to Use Lua
	Simple 2-D Action Game Using SDL
	Installing SDL and LuaCheia
	Using SDL

	Summary
	Exercise

	Carrying Lua with You
	Fitting into the Lua Community
	The Lua Web Site
	The Lua Reference Manual
	Framing Questions
	The Lua Mailing List
	Viewing and Searching the Archives
	Downloading the Archives
	Using a Web Browser to Access the List
	Using a Newsreader to Access the List
	Subscribing to the List Server
	Posting Messages

	The Lua Chat Room
	Forums
	The Lua Wiki
	LuaForge
	Annual Workshops
	Summary

	Getting Started with Plua
	Obtaining Plua
	Examining the Distribution Contents

	Exploring Plua’s Features
	Running the Plua Application
	Saving Plua Programs
	Reading the Online Documentation
	Using Palm OS Streams
	Compiling Applications
	Compiling Libraries

	Plua on the Mothership
	The Command-Line Compiler
	The Palm OS Emulator
	The Palm OS Simulator

	Programming with Plua
	Generating Graphics
	Programming the User Interface
	Accessing Databases

	Summary
	Exercises

	Appendix A: Answers
	Index

