Advanced CORBA® Programming with C++
Michi Henning
Steve Vinoski

Publisher: Addison Wesley
First Edition February 12, 1999
ISBN: 0-201-37927-9, 1120 pages

Advanced CORBA
Progrum s

Book for “Rain Manager”, IT-SC

IT-SC book: Advanced CORBA® Programming with C++

IT-SC book: Advanced CORBA® Programming with C++

Review

Here is the CORBA book that every C++ software engineer has been waiting for.
Advanced CORBA® Programming with C++ provides designers and developers with the
tools required to understand CORBA technology at the architectural, design, and source
code levels. This book offers hands-on explanations for building efficient applications, as
well as lucid examples that provide practical advice on avoiding costly mistakes. With
this book as a guide, programmers will find the support they need to successfully
undertake industrial-strength CORBA development projects.

The content is systematically arranged and presented so the book may be used as both a
tutorial and a reference. The rich example programs in this definitive text show CORBA
developers how to write clearer code that is more maintainable, portable, and efficient.
The authors’ detailed coverage of the IDL-to-C++ mapping moves beyond the mechanics
of the APIs to discuss topics such as potential pitfalls and efficiency. An in-depth
presentation of the new Portable Object Adapter (POA) explains how to take advantage
of its numerous features to create scalable and high-performance servers. In addition,
detailed discussion of advanced topics, such as garbage collection and multithreading,
provides developers with the knowledge they need to write commercial applications.

Other highlights:

In-depth coverage of IDL, including common idioms and design trade-offs

Complete and detailed explanations of the Life Cycle, Naming, Trading, and Event
Services

Discussion of I[IOP and implementation repositories

Insight into the dynamic aspects of CORBA, such as dynamic typing and the new
DynAny interfaces

Advice on selecting appropriate application architectures and designs

Detailed, portable, and vendor-independent source code

IT-SC book: Advanced CORBA® Programming with C++

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book and Addison-
Wesley was aware of the trademark claim, the designations have been printed in initial
caps or all caps.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information, please contact:

Corporate, Government, and Special Sales

Addison Wesley Longman, Inc.

One Jacob Way

Reading, Massachusetts 01867

(781) 944-3700

Library of Congress Catalog-in-Publication Data

Henning, Michi

Advanced CORBA® Programming with C++/ Michi Henning, Steve Vinoski.
p. cm. — (Addison-Wesley professional computing series)

Includes bibliographical references and index.

ISBN 0-201-37927-9

1. C++ (Computer program language) 2. CORBA (Computer architecture)
I. Vinoski, Steve. II. Title. III. Series.

QA76.73.C153 H4581999

005.13'3—dc21

98-49077

CIP

IT-SC book: Advanced CORBA® Programming with C++

Copyright © 1999 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher. Printed
in the United States of America.

Published simultaneously in Canada.

Text printed on recycled and acid-free paper.

456789 10—CRS—0302010099

Third printing, August 1999

IT-SC book: Advanced CORBA® Programming with C++

Dedication

To Anni and Harry, for setting me on the path.

To Jocelyn, for letting me follow it.

—Michi

To Cindy, my wife and best friend—for your sacrifices, your support, your patience, and
your love.

—Steve

IT-SC book: Advanced CORBA® Programming with C++

Preface
Prerequisites
Scope of this Book
Acknowledgments
Michi's Acknowledgments
Steve's Acknowledgments

1. Introduction
1.1 Introduction
1.2 Organization of the Book
1.3 CORBA Version
1.4 Typographical Conventions
1.5 Source Code Examples
1.6 Vendor Dependencies
1.7 Contacting the Authors

I: Introduction to CORBA

2. An Overview of CORBA
2.1 Introduction
2.2 The Object Management Group
2.3 Concepts and Terminology
2.4 CORBA Features
2.5 Request Invocation
2.6 General CORBA Application Development

2.7 Summary

3. A Minimal CORBA Application
3.1 Chapter Overview
3.2 Writing and Compiling an IDL Definition
3.3 Writing and Compiling a Server
3.4 Writing and Compiling a Client
3.5 Running Client and Server

3.6 Summary

II: Core CORBA

4. The OMG Interface Definition Language
4.1 Chapter Overview
4.2 Introduction
4.3 Compilation
4.4 Source Files
4.5 Lexical Rules
4.6 Basic IDL Types
4.7 User-Defined Types
4.8 Interfaces and Operations
4.9 User Exceptions
4.10 System Exceptions
4.11 System Exceptions or User Exceptions?
4.12 Oneway Operations
4.13 Contexts
4.14 Attributes

IT-SC book: Advanced CORBA® Programming with C++

15 Modules
16 Forward Declarations
17 Inheritance
1
1

8 Names and Scoping

9 Repository Identifiers and pragma Directives
20 Standard Include Files
21 Recent IDL Extensions
22 Summary

4.
4.
4.
4.
4.
4.
4.
4.

5. IDL for a Climate Control System
5.1 Chapter Overview
5.2 The Climate Control System
5.3 IDL for the Climate Control System
5.4 The Complete Specification

6. Basic IDL-to-C++ Mapping

6.1 Chapter Overview

6.2 Introduction

6.3 Mapping for Identifiers

6.4 Mapping for Modules

6.5 The CORBA Module

6.6 Mapping for Basic Types

6.7 Mapping for Constants

6.8 Mapping for Enumerated Types

6.9 Variable-Length Types and var Types

6.10 The String var Wrapper Class

6.11 Mapping for Wide Strings

6.12 Mapping for Fixed-Point Types
14 Mapping for Sequences
15 Mapping for Arrays
16 Mapping for Unions
17 Mapping for Recursive Structures and Unions
18 Mapping for Type Definitions
1
2

9 User-Defined Types and var Classes
0 Summary

6.
6.
6.
6.
6.
6.
6.

7. Client-Side C++ Mapping
7.1 Chapter Overview
7.2 Introduction
7.3 Mapping for Interfaces
7.4 Object Reference Types
7.5 Life Cycle of Object References
7.6 Semantics of ptr References
7.7 Pseudo-Objects
7.8 ORB Initialization
7.9 Initial References
7.10 Stringified References
7.11 The Object Pseudo-Interface
7.12 var References
7.13 Mapping for Operations and Attributes
7.14 Parameter Passing Rules
7.15 Mapping for Exceptions
7.16 Mapping for Contexts

IT-SC book: Advanced CORBA® Programming with C++

7.17 Summary

8. Developing a Client for the Climate Control System
8.1 Chapter Overview
8.2 Introduction
8.3 Overall Client Structure
8.4 Included Files
8.5 Helper Functions
8.6 The main Program
8.7 The Complete Client Code

8.8 Summary

9. Server-Side C++ Mapping
9.1 Chapter Overview
9.2 Introduction
9.3 Mapping for Interfaces
9.4 Servant Classes
9.5 Object Incarnation
9.6 Server main
9.7 Parameter Passing Rules
9.8 Raising Exceptions
9.9 Tie Classes
9.10 Summary

10. Developing a Server for the Climate Control System
10.1 Chapter Overview
10.2 Introduction
10.3 The Instrument Control Protocol API
10.4 Designing the Thermometer Servant Class
10.5 Implementing the Thermometer Servant Class
10.6 Designing the Thermostat Servant Class
10.7 Implementing the Thermostat Servant Class
10.8 Designing the Controller Servant Class
10.9 Implementing the Controller Servant Class
10.10 Implementing the Server main Function
10.11 The Complete Server Code
10.12 Summary

11. The Portable Object Adapter
11.1 Chapter Overview
11.2 Introduction
11.3 POA Fundamentals
11.4 POA Policies
11.5 POA Creation
11.6 Servant IDL Type
11.7 Object Creation and Activation
11.8 Reference, Objectld , and Servant
11.9 Object Deactivation
11.10 Request Flow Control
11.11 ORB Event Handling
11.12 POA Activation
11.13 POA Destruction
11.14 Applying POA Policies

IT-SC book: Advanced CORBA® Programming with C++

11.15 Summary

12. Object Life Cycle

12.1 Chapter Overview

12.2 Introduction

12.3 Object Factories

12.4 Destroying, Copying, and Moving Objects

12.5 A Critigue of the Life Cycle Service

12.6 The Evictor Pattern

12.7 Garbage Collection of Servants

12.8 Garbage Collection of CORBA Objects

12.9 Summary

III: CORBA Mechanisms

13. GIOP, IIOP, and IORs

13.1 Chapter Overview

13.2 An Overview of GIOP

13.3 Common Data Representation

13.4 GIOP Message Formats

13.5 GIOP Connection Management

13.6 Detecting Disorderly Shutdown

13.7 An Overview of IIOP

13.8 Structure of an IOR

13.9 Bidirectional IIOP

13.10 Summary

14. Implementation Repositories and Binding

14.1 Chapter Overview

14.2 Binding Modes

14.3 Direct Binding

14.4 Indirect Binding via an Implementation Repository

14.5 Migration, Reliability, Performance, and Scalability

14.6 Activation Modes

14.7 Race Conditions

14.8 Security Considerations

14.9 Summary

VI: Dynamic CORBA

15. C++ Mapping for Type any

15.1 Chapter Overview

15.2 Introduction

15.3 Type any C++ Mapping

15.4 Pitfalls in Type Definitions

15.5 Summary

16. Type Codes

10

16.1 Chapter Overview

16.2 Introduction

16.3 The TypeCode Pseudo-Object

16.4 C++ Mapping for the TypeCode Pseudo-Object

16.5 Type Code Comparisons

IT-SC book: Advanced CORBA® Programming with C++

16.6 Type Code Constants

16.7 Type Code Comparison for Type any
16.8 Creating Type Codes Dynamically
16.9 Summary

17. Type DynAny
17.1 Chapter Overview
17.2 Introduction
17.3 The DynAny Interface
17.4 C++ Mapping for DynAny
17.5 Using DynAny for Generic Display
17.6 Obtaining Type Information
17.7 Summary

V: CORBAservices

18. The OMG Naming Service
18.1 Chapter Overview
18.2 Introduction
18.3 Basic Concepts
18.4 Structure of the Naming Service IDL
18.5 Semantics of Names
18.6 Naming Context IDL
18.7 Iterators
18.8 Pitfalls in the Naming Service
18.9 The Names Library
18.10 Naming Service Tools
18.11 What to Advertise
18.12 When to Advertise
18.13 Federated Naming
18.14 Adding Naming to the Climate Control System
18.15 Summary

19, The OMG Trading Service
19.1 Chapter Overview
19.2 Introduction
19.3 Trading Concepts and Terminology
19.4 IDL Overview
19.5 The Service Type Repository
19.6 The Trader Interfaces
19.7 Exporting Service Offers
19.8 Withdrawing Service Offers
19.9 Modifying Service Offers
19.10 The Trader Constraint Language
19.11 Importing Service Offers
19.12 Bulk Withdrawal
19.13 The Admin Interface
19.14 Inspecting Service Offers
19.15 Exporting Dynamic Properties
19.16 Trader Federation
19.17 Trader Tools
19.18 Architectural Considerations
19.19 What to Advertise

IT-SC book: Advanced CORBA® Programming with C++

19.20 Avoiding Duplicate Service Offers
19.21 Adding Trading to the Climate Control System
19.22 Summary

20. The OMG Event Service
20.1 Chapter Overview
20.2 Introduction
20.3 Distributed Callbacks
20.4 Event Service Basics
20.5 Event Service Interfaces
20.6 Implementing Consumers and Suppliers
20.7 Choosing an Event Model
20.8 Event Service Limitations
20.9 Summary

VI: Power CORBA

21. Multithreaded Applications
21.1 Chapter Overview
21.2 Introduction
21.3 Motivation for Multithreaded Programs
21.4 Fundamentals of Multithreaded Servers
21.5 Multithreading Strategies
21.6 Implementing a Multithreaded Server
21.7 Servant Activators and the Evictor Pattern
21.8 Summary

22. Performance, Scalability, and Maintainability
22.1 Chapter Overview
22.2 Introduction
22.3 Reducing Messaging Overhead
22.4 Optimizing Server Implementations
22.5 Federating Services
22.6 Improving Physical Design
22.7 Summary

A. Source Code for the ICP Simulator
A.1 Overview
A.2 Transient Simulator Code
A.3 Persistent Simulator Code

B. CORBA Resources
B.1 World Wide Web
B.2 Newsgroups
B.3 Mailing Lists
B.4 Magazines

Bibliography

12

IT-SC book: Advanced CORBA® Programming with C++

Preface

For years, both of us have been (and still are) teaching CORBA programming with C++
to software engineers all over the world. One of the most frequently asked questions in
our courses is, "Where can I find a book that covers all this?" Although many books have
been written about CORBA, most of them focus on high-level concepts and do not
address the needs of software engineers. Even though CORBA is conceptually simple,
the devil lies in the detail. Or, more bluntly, books focusing on high-level concepts are of
little use when you must find out why your program is dumping core.

To be sure, there are resources available about CORBA, such as newsgroups, Web pages,
and the Object Management Group (OMG) specifications. However, none of them really
meets the needs of a programmer who must get the code to work (and preferably by
yesterday). We wrote this book so that there would finally be a tutorial and reference that
covers CORBA programming with C++ at the level of detail required for real-life
software development. (And, of course, we wrote it so that we would have a good answer
for our students.)

Writing such a book is a tall order. Explaining the CORBA specification and APIs is one
thing, and it's a necessary part of the book. However, knowing the various APIs will not,
by itself, make you a competent programmer (only a knowledgeable one). To be
competent, you need not only knowledge of the mechanics of the platform but also an
understanding of how the different features interact. You must combine them effectively
to end up with an application that performs and scales well and is maintainable,
extensible, portable, and deployable.

To help you become competent (as opposed to merely knowledgeable), we go beyond the
basics in a number of ways. For one thing, we provide advice as to what we consider
good (and bad) design, and we make no attempt to hide problems with CORBA (which,
like any other complex software system, has its share of wrinkles). Second, we go beyond
the APIs by explaining some of CORBA's internal mechanisms. Even though you can use
an ORB without knowing what goes on under the hood, it is useful to understand these
mechanisms because they have a profound influence on how well (or how poorly) an
application will perform. Third, we devote considerable space to a discussion of the
merits of various design decisions; typically, when a design provides a gain in one area it
also involves a loss in another. Understanding these trade-offs is crucial to building
successful applications. And fourth, where appropriate, we make recommendations so
that you are not left without guidance.

Inevitably, our approach required us to make value judgments, and, just as inevitably, a
number of people will disagree with at least some of the recommendations we make.
Whether you agree or disagree with us, you should still profit from our approach: if you
agree, you can stick to the advice we give; if you disagree, the discussion will have at
least encouraged you to think about the topic and form your own opinion. Either way,

13

IT-SC book: Advanced CORBA® Programming with C++

you are better off than you would be with a book that just dumps the facts on you without
providing the deeper insight required to use them.

Prerequisites

This book is not a beginner's book, in the sense that we do not devote much space to
explaining the structure of the OMG or the specification adoption process. We also do
not provide a high-level overview of the architectural goals of CORBA or all its services
and facilities (see [31] for a high-level overview). Instead, we assume that you want to
know how to write real CORBA applications with C++. Despite the lack of overview
material, you should be able to follow the material even if you have never seen CORBA
before. If you have experience in network programming or have used another RPC
platform, you will find it easy to pick things up as you go.

Much of this book consists of source code, so we expect you to be literate in C++.
However, you do not need to be a C++ guru to follow the code. We have avoided obscure
or little-understood features of C++, preferring clarity to cleverness. If you understand
inheritance, virtual functions, operator overloading, and templates (not necessarily in
intricate detail), you will have no problems. Some of the source code uses the Standard
Template Library (STL), which is now part of the ISO/IEC C++ Standard. We have
limited ourselves to very simple uses of this library, so you should be able to understand
the source code even if you have never seen STL code before.

If you have never written threaded code, you will find the chapter on writing threaded
servers tough going. Unfortunately, there was not enough room to provide an
introduction to programming with threads. However, the Bibliography lists a number of
excellent books on the topic.

Despite our best efforts to show realistic and working source code, we had to make a
number of compromises to keep code examples understandable and of manageable size.
When we demonstrate a particular feature, we often use straight-line code, whereas in a
realistic application the code would better be encapsulated in a class or helper function.
We have also minimized error handling to avoid obscuring the flow of control with lots
of exception handlers. We chose this approach for didactic purposes; it does not imply
that the code pretends to reflect best possible engineering practice. (The Bibliography
lists a number of excellent books that cover source code design in great detail.)

Scope of this Book

OMG members are continually improving CORBA and adding new features. As a result,
available ORB implementations conform to different revision levels of the specification.
This book covers CORBA 2.3. (At the time of writing, CORBA 2.3 is being finalized by
the OMG.) Throughout the text, we indicate new features that may not yet be available in
your ORB implementation; this allows you to restrict yourself to an earlier feature set for
maximum portability.

14

IT-SC book: Advanced CORBA® Programming with C++

Despite its size, our main regret is that this book is too short. Ever-increasing page counts
and ever-closer deadlines forced us to drop chapters on the Dynamic Invocation Interface
(DII), the Dynamic Skeleton Interface (DSI), and the Interface Repository (IFR).
Fortunately, the vast majority of applications do not need those features, so dropping
these chapters is not much of a loss. If your application happens to require the dynamic
interfaces, the background we provide here will enable you to easily pick up what you
need from the CORBA specification.

Another feature notable by its absence is Objects-By-Value (OBV). We chose not to
cover OBV because it is too new for anyone to have any substantial engineering
experience with it. In addition, at the time of writing, there are still a number of technical
wrinkles to be ironed out and we expect the OBV specification to undergo further
changes before it settles down.

Size and time limitations also meant that we could not cover every possible CORBA
service. For example, we did not cover the Transaction Service or Security Service
because each of them would require a book of its own. Rather than being complete, we
have restricted ourselves to those services that are most essential for building applications:
the Naming, Trading, and Event Services. We cover those services in more detail than
any other publication we are aware of.

An important part of this book is the presentation of the Portable Object Adapter (POA),
which was added in CORBA 2.2. The POA provides the server-side source code
portability that was missing from the (now deprecated) Basic Object Adapter. The POA
also provides a number of features that are essential for building high-performance and
scalable applications. We have therefore paid particular attention to showing you how to
use the POA effectively in your designs.

Overall, we believe this book offers the most comprehensive coverage to date of CORBA
programming with C++. We have arranged the material so that you can use the book both
as a tutorial and as a reference. Our hope is that after the first reading, you will have this
book open at your side when you are sitting at your terminal. If so, we will have achieved
our goal of creating a book that is used by real engineers to build real applications.

15

IT-SC book: Advanced CORBA® Programming with C++

Acknowledgments

As with any book, the authors are only part of the story, and this is the place to thank the
large number of people who have contributed to making this book possible. At Addison
Wesley Longman, Mike Hendrickson and our editor, Deborah Lafferty, believed us when
we told them that this book needed to be written. Without their faith in us, you would not
be reading this. Brian Kernighan reviewed several drafts and made us redo the job where
necessary. His clarity of thought and critical eye have greatly improved this book. John
Fuller and Genevieve Rajewski, our production editors, put up with all our naive
questions and enabled two amateurs to take a book to camera-ready stage. Our copy
editor, Betsy Hardinger, edited every page in this book with meticulous attention to detail.
Her efforts taught us more about clarity of style than we thought possible.

Particular thanks go to Colm Bergin, Jonathan Biggar, Bart Hanlon, Jishnu Mukerji, and
Doug Schmidt, our expert reviewers. They read the entire manuscript and spotted many
problems that would have otherwise gone unnoticed. Their comments kept us honest
throughout. Alan Shalloway reviewed the book from the perspective of a newcomer and
made valuable suggestions on how to improve the presentation of some of the more
difficult topics.

Todd Goldman and Tim Gill from Hewlett-Packard gave us permission to draw on earlier
ORB training material written by Michi. John Vinoski and Dan Rabideau of Green Bay
Engraving take credit for designing the Mobius strip on the cover.

We are grateful to Steve's employer, [IONA Technologies, for allowing us to use the next
generation of their Orbix product (called "ART") to develop and test our code examples.
Their generosity provided us with the opportunity to make sure that our examples were
correct and functional. The fact that ART conforms to CORBA 2.3 allowed us to target
the most recent version of the CORBA specification available as of this writing.

We also would like to thank the many contributors to comp.object.corba and the corba-
dev mailing list. The discussions there have influenced much of the content of this book.
A number of people have provided feedback, corrections, and constructive criticism since
the first printing of this book. Rather than list them all here (and have to keep updating
this Preface for each new printing), we have placed a list of everyone who contributed at
<http://www.awl.com/cseng/titles/0-201-37927-9>. Our thanks go to all
these people for helping to make this a better book.

Michi's Acknowledgments

I would like to thank my former employer, DSTC Pty Ltd, for providing me with an
environment that was conducive to writing. Joachim Achtzehnter, Martin Chilvers, Wil
Evers, Ted McFadden, and Michael Neville reviewed parts of the manuscript and made
valuable suggestions for improvement. Particular thanks go to David Jackson, who read
all my drafts and made sure that loose ends were not allowed to remain hanging. Finally,
I would like to thank my wife, Jocelyn, and our son, Tyson, for their love and

16

IT-SC book: Advanced CORBA® Programming with C++

encouragement. Without their support and patience, this book would have never been
written.

Steve's Acknowledgments

I would like to thank my employer, IONA Technologies, for supporting my efforts to
write this book, which occasionally kept me away from the office. In particular, I would
like to thank Barry Morris for his support and encouragement, Stephen Keating for taking
up the slack when I had to miss work because of all-night writing sessions, and the whole
IONA Boston product development team for their patience and support.

I would also like to thank Bart Hanlon, who not only reviewed this book but also was my
manager at my former employer, for continually encouraging me for several years to
tackle this project and for teaching me a lot about tackling projects in general. In the
technical realm, I have learned from many people over the course of my career, but I owe
much to John Morris, Craig Bardenheuer, Denis deRuijter, Dale LaBossiere, Tom
Moreau, and Bob Kukura, who at one time or another greatly influenced my education in
the realms of distributed systems and engineering in general. I would also like to thank
my C++ Report co-columnist, Doug Schmidt, a true technical visionary whose work in
object-oriented network programming, C++ frameworks, and CORBA has paved the way
for books such as this one. He not only helped review this book, but also agreed to let me
use material from our columns in writing it.

Finally, without the support of my family, I would have never been able to even consider
writing this book. I'd like to thank my wife, Cindy, and our children, Ryan and Erin, for
putting up with my extremely long hours and days of writing and working. Thanks also to
my parents, Ed and Dooley, who have always supported me with their seemingly
limitless patience and love. I also owe my brother, John, a special thanks for his
wonderful artwork on our book cover.

Michi Henning and Steve Vinoski

October 1998

17

IT-SC book: Advanced CORBA® Programming with C++

Chapter 1. Introduction

1 Introduction

2 Organization of the Book
1.3 CORBA Version

1.4 Typographical Conventions
1.5 Source Code Examples

1.6 Vendor Dependencies

1.7 Contacting the Authors

1.
1.

1.1 Introduction

CORBA (Common Object Request Broker Architecture) is now well established in the
mainstream of software development and has found phenomenal industry acceptance.
CORBA is supported on almost every combination of hardware and operating system in
existence. It is available from a large number of vendors (even as freeware), supports a
large number of programming languages, and is now being used to create mission-critical
applications in industries as diverse as health care, telecommunications, banking, and
manufacturing. The increasing popularity of CORBA has created a corresponding
increase in demand for software engineers who are competent in the technology.

Naturally, CORBA has had to evolve and grow (sometimes painfully) to reach its current
levels of popularity and deployment. When the first version of CORBA was published in
1991, it specified how to use it only in C programs. This was a result of building CORBA
from proven technology. At that time, most production-quality distributed systems were
written in C.

By 1991, object-oriented (OO) languages such as Smalltalk, C++, and Eiffel had been in
use for years. Not surprisingly, many developers thought it strange that a language-
independent distributed OO system such as CORBA could be programmed only using C,
a non-O0, procedural language. To correct this short-coming, several development
groups at companies such as Hewlett-Packard, Sun Microsystems, HyperDesk
Corporation, and IONA Technologies started developing their own proprietary mappings
of CORBA to the C++ language. These proprietary mappings of CORBA to C++, all
invented independently, differed in many ways. As most C++ programmers know, C++ is
a multiparadigm language that supports varied approaches to application development,
including structured programming, data abstraction, OO programming, and generic
programming. The proprietary C++ mappings reflected this diversity; each of them
mapped different CORBA data types and interfaces into different (sometimes very
different) C++ types and classes. The mapping differences reflected not only the varied
backgrounds of the developers but also the ways they intended to use CORBA to build
systems as diverse as software integration middleware, operating systems, and even
desktop tool kits.

18

IT-SC book: Advanced CORBA® Programming with C++

When the Object Management Group (OMG) issued a Request For Proposals (RFP) for a
standard mapping of CORBA to C++, these developers and other groups submitted their
mappings to the standardization process. As is common for OMG RFP submissions, the
submitting groups joined forces to try to reach consensus and arrive at a single C++
mapping specification that would draw from the strengths of all the submitted mappings.
The process of producing a single standard C++ mapping for CORBA took
approximately 18 months, lasting from the spring of 1993 until the fall of 1994. For
technical reasons, such as the richness of C++ and its support for diverse programming
styles, the consensus-building process was not an easy one. At one point, because of the
competitive spirit and political nature of some of the parties involved (both characteristics
are inevitable in any industry standards group), the C++ mapping standardization effort
fell apart completely. However, the need for a standard C++ mapping eventually
overcame all obstacles, and the standardization was completed in the fall of 1994.

The C++ mapping was first published with CORBA 2.0. Since its adoption, the mapping
has been revised several times to fix flaws and to introduce minor new functionality.
Despite this, the mapping has remained surprisingly stable and portable even while the
C++ language was undergoing its own standardization process. The standard C++
mapping removed a major obstacle to broad acceptance of CORBA because it created
source code portability, at least for the client side. The server side still suffered from
portability problems until CORBA 2.2.

CORBA 2.0 also removed another major obstacle by providing the Internet Inter-ORB
Protocol (IIOP). IIOP guarantees that system components developed for different
vendors' ORBs can interoperate with one another, whereas before CORBA 2.0, different
system components could communicate only if all of them used the same vendor's ORB.

The C++ mapping and IIOP were key features that initiated CORBA's move into the
mainstream and made it a viable technology for many commercial companies. This
increased popularity of CORBA also meant an increased demand for extensions and bug
fixes. As a result, the specification has been revised three times since the publication of
CORBA 2.0. CORBA 2.1 was largely a cleanup release that addressed a number of
defects. CORBA 2.2 added one major new feature: the Portable Object Adapter (POA).
The POA, together with an update to the C++ mapping, removed the server-side
portability problems that existed to that point. CORBA 2.3, the most recent release, as of
this writing, fixed many minor bugs and added one major new feature, Objects-By-Value.

The OMG has now grown to more than 800 members, making it the world's largest
industry consortium, and CORBA has become the world's most popular and widely used
middleware platform. In our estimation, C++ is the dominant implementation language
for CORBA (although Java is making some inroads for client development). Demand for
CORBA-literate C++ programmers continuously outstrips supply, and it seems likely that
CORBA will remain the dominant middleware technology for at least several more years.
This book is all about making you CORBA-literate and giving you the information you
need to be able to write production-quality CORBA-based systems.

19

IT-SC book: Advanced CORBA® Programming with C++

1.2 Organization of the Book

The book is divided into six parts and two appendices.

Part I, Introduction to CORBA, provides an overview of CORBA and presents the source
code for a minimal CORBA application. After reading this part, you will know the basic
architecture and concepts of CORBA, understand its object and request dispatch model,
and know the basic steps required to build a CORBA application.

Part II, Core CORBA, covers the core of CORBA with C++: the Interface Definition
Language (IDL), the rules for mapping IDL into C++, how to use the POA, and how to
support object life cycle operations. This part introduces the case study we use
throughout this book; following each major section, we apply the material presented there
to the case study so that you can see how the various features and Application
Programming Interfaces (APIs) are used for a realistic application. After reading this part,
you will be able to create sophisticated CORBA applications that exploit many CORBA
features.

Part 1II, CORBA Mechanisms, presents an overview of the CORBA networking
protocols and shows the mechanisms that underpin CORBA's object model, such as
location transparency and protocol independence. After reading this part, you will have a
good idea of what goes on beneath the hood of an ORB and how design choices made by
various vendors influence a particular ORB's scalability, performance, and flexibility.

Part IV, Dynamic CORBA, covers dynamic aspects of CORBA: type any, type codes,
and type DynAny. After reading this part, you will know how you can use these CORBA
features to deal with values whose types are not known at compile time. This knowledge
is essential for building generic applications, such as browsers or protocol bridges.

Part V, CORBAservices, presents the most important CORBA services, namely the
Naming, Trading, and Event Services. Almost all applications use one or more of these
services. The Naming and Trading Services allow applications to locate objects of
interest, whereas the Event Service provides asynchronous communication so that clients
and servers can be decoupled from each other. After reading this part, you will
understand the purpose of these services and you will be aware of the architectural
consequences and trade-offs implied by their use.

Part VI, Power CORBA, discusses how to develop multithreaded servers and presents a
number of architectural and design issues that are important for building high-

performance applications.

Appendix A shows the source code for an instrument control protocol simulator that
you can use if you want to experiment with the source code in this book.

Appendix B contains a list of useful resources you can use to get more information
about various aspects of CORBA.

20

IT-SC book: Advanced CORBA® Programming with C++

1.3 CORBA Version

At the time of this writing, CORBA 2.3 is in the final stages of review, so this book
describes CORBA as of revision 2.3. We try to point out when we use newer CORBA
features in our examples in case those features are not yet supported by your particular
ORB. We do not describe CORBA 3.0 because at the time of this writing (October 1998),
CORBA 3.0 does not exist, even in draft form.

1.4 Typographical Conventions

This book uses the following typographical conventions:

IDL source code appears in Lucida Sans Typewriter.

C++ source code appears in Courier.

File names (whether they contain IDL or C++ code) appear in Courier.
UNIX commands appear in Courier Bold.

IDL and C++ frequently use identical names, such as TypeCode and TypeCode. If you
see a term in Lucida, it typically refers to the corresponding IDL construct; however,
we also use Lucida when we use a term in its general, language-independent sense. If
you see a term in Courier, it definitely refers to the corresponding C++ construct.

1.5 Source Code Examples

You can find the source code for the case study in this book at <http://www.awl.
com/cseng/titles/0-201-37927-9>. Although we have made every effort to
ensure that the code we present is correct, there may be bugs we have missed, so we
cannot warrant the code as being fit for any particular use (although we would appreciate
hearing from you if you find any bugs!).

Keep in mind that in many code examples, we have made compromises in favor of clarity.
For example, we have omitted industrial-strength error handling in order to keep
examples short and to avoid losing the message in the noise. Similarly, the code examples
are designed to be understandable by sight, so we often use in-line code where, for a
well-engineered application, the same code would better be encapsulated in a function or
class. In this sense, the source code does not always reflect best engineering practice.
However, we point out style, design, and portability issues in many places. The
Bibliography also lists a number of excellent books that cover such engineering issues.

The source code was written for an ISO/IEC C++ Standard [9] environment and uses a
number of ISO/IEC C++ features, such as namespaces and the C++ bool and string
types. However, if you do not have access to a standard C++ compiler, you should find it
easy to convert the code to whatever subset of C++ is available to you (although you will
need at least C++ exception support).

21

IT-SC book: Advanced CORBA® Programming with C++

In a number of examples, we have made simple use of the Standard Template Library
(STL). You should be able to follow these examples even if you do not yet know STL.
(However, if you are not familiar with STL, we strongly suggest that you acquaint
yourself with this library as soon as possible. STL has made a greater contribution to C++
programmer productivity than any other ISO/IEC C++ feature.)

We compiled and tested all of our example code against the next generation of the IONA
Technologies Orbix product that, as of this writing, is still in development. This system,
called ART, closely tracks ongoing changes to the CORBA specification and enabled us
to verify our code against an ORB that conforms to the latest version (2.3) of the CORBA
specification.

1.6 Vendor Dependencies

This book is free of vendor-dependent code and will work with any CORBA 2.3-
compliant ORB (that is, an ORB that provides a POA). If your ORB vendor does not
provide a POA yet, do not despair—much of this book is concerned with things other

than the POA, and you will find a lot of material that is useful even if you are using a pre-
CORBA 2.3 ORB.

We do not explain common, but vendor-specific, extensions to CORBA. Doing so would
have distracted from the standards focus of the book and would have cluttered the
presentation with proprietary material that is useful only to a subset of readers (and
subject to change without warning). If you are interested in using proprietary extensions,
you still need to read your vendor's documentation.

A number of aspects of CORBA, such as the development environment and
implementation repositories, are not standardized at all. This makes it difficult to show
concrete examples without choosing a specific vendor's implementation. In such cases,
we show examples that use a hypothetical ORB and explain the principles in sufficient
detail for you to be able to easily pick up the remaining details from your vendor's
documentation.

1.7 Contacting the Authors

If you find any mistakes in the text or bugs in the code, we would like to hear from you.
We would also like to hear from you if you have any other suggestions for improvement.
If possible, we will integrate corrections and improvements in future printings and will
acknowledge the first person to point out each particular correction or improvement. You
can send e-mail to us at <http://corba@awl.com>.

22

IT-SC book: Advanced CORBA® Programming with C++

Part I: Introduction to CORBA

23

IT-SC book: Advanced CORBA® Programming with C++

Chapter 2. An Overview of CORBA

2.1 Introduction

2.2 The Object Management Group

2.3 Concepts and Terminology

2.4 CORBA Features

2.5 Request Invocation

2.6 General CORBA Application Development
2.7 Summary

2.1 Introduction

Computer networks typically are heterogeneous. For example, the internal network of a
small software company might be made up of multiple computing platforms. There might
be a mainframe that handles transactional database access for order entry, UNIX
workstations that supply hardware simulation environments and a software development
backbone, personal computers that run Windows and provide desktop office automation
tools, and other specialized systems such as network computers, telephony systems,
routers, and measurement equipment. Small sections of a given network may be
homogeneous, but the larger a network is, the more varied and diverse its composition is
likely to be.

There are several reasons for this heterogeneity. One obvious reason is that technology
changes over time. Because networks tend to evolve rather than being built all at once,
the best technologies from different time periods end up coexisting on the network. In
this context, "best" may refer to qualities such as the lowest cost, the highest performance,
the least expensive mass storage, the most transactions per minute, the tightest security,
the flashiest graphics, or other qualities deemed important at the time of purchase.
Another reason for network heterogeneity is that one size does not fit all. Any given
combination of computer, operating system, and networking platform will work best for
only a subset of the computing activities performed within a network. Still another reason
is that diversity within a network can make it more resilient because any problems in a
given machine type, operating system, or application are unlikely to affect other
networked systems running different operating systems and applications.

The factors that lead to heterogeneous computer networks are largely inevitable; thus,
developers of practical distributed systems, whether they like it or not, must cope with
heterogeneity. Whereas developing software for any distributed system is difficult,
developing software for a heterogeneous distributed system sometimes borders on the
impossible. Such software must deal with all the problems normally encountered in
distributed systems programming, such as the failure of some of the systems in the
network, partitioning of the network, problems associated with resource contention and
sharing, and security-related risks. If you add heterogeneity to the picture, some of these
problems become more acute, and new ones crop up.

24

IT-SC book: Advanced CORBA® Programming with C++

For example, problems you encounter while porting a networked application for use on a
new platform in the network may result in two or more versions of the same application.
If you make any changes to any version of the application, you must go back and modify
all the other versions appropriately and then test them individually and in their various
combinations to make sure they all work properly. The degree of difficulty presented by
this situation increases dramatically as the number of different platforms in the network
rises.

Keep in mind that heterogeneity in this context does not refer only to computing
hardware and operating systems. Writing a robust distributed application from top to
bottom—for example, from a custom graphical user interface all the way down to the
network transports and protocols—is tremendously difficult for almost any real-world
application because of the overwhelming complexity and the number of details involved.
As a result, developers of distributed applications tend to make heavy use of tools and
libraries. This means that distributed applications are themselves heterogeneous, often
glued together from a number of layered applications and libraries. Unfortunately, in
many cases, as the distributed system grows, the chance decreases dramatically that all
the applications and libraries that compose it were actually designed to work together.

At a very general level, you can tackle the problem of developing applications for
heterogeneous distributed systems by following two key rules.

Find platform-independent models and abstractions that you can apply to help solve a
wide variety of problems.

Hide as much low-level complexity as possible without sacrificing too much performance.
These rules are general enough to be used to develop any portable application whether or
not it is distributed. However, the additional complexities introduced by distribution
make each rule carry more weight. Using the right abstractions and models can
essentially provide a new homogeneous application development layer over the top of all
the distributed heterogeneous complexity. This layer hides low-level details and allows
application developers to solve their immediate problems without having to first solve the
low-level networking details for all the diverse computing platforms used by their
applications.

The CORBA specification, written and maintained by the OMG, supplies a balanced set
of flexible abstractions and concrete services needed to realize practical solutions for the
problems associated with distributed heterogeneous computing. After describing the
OMG and CORBA, the remainder of this chapter provides a high-level overview of the
computing model, the components, and the important concepts of CORBA.

2.2 The Object Management Group
In 1989, the Object Management Group was formed to address the problems of

developing portable distributed applications for heterogeneous systems. The OMG has
received a tremendous amount of industry backing since then and is now the world's

25

IT-SC book: Advanced CORBA® Programming with C++

largest software consortium, with more than 800 members. This is due in no small part to
the skills that OMG participants have for specifying reasonable high-level abstractions
that hide low-level details. In particular, the first key specifications produced by the
OMG—the Object Management Architecture (OMA) and its core, the CORBA
specification—provide a complete architectural framework that is both rich enough and
flexible enough to accommodate a wide variety of distributed systems.

The OMA uses two related models to describe how distributed objects and the
interactions between them can be specified in platform-independent ways. The Object
Model defines how the interfaces of objects distributed across a heterogeneous
environment are described, and the Reference Model characterizes interactions between
such objects.

The Object Model defines an object as an encapsulated entity with an immutable distinct
identity whose services are accessed only through well-defined interfaces. Clients use an
object's services by issuing requests to the object. The implementation details of the
object and its location are kept hidden from clients.

The Reference Model provides interface categories that are general groupings for object
interfaces. As Figure 2.1 shows, all interface categories are conceptually linked by an
Object Request Broker (ORB). Generally, an ORB enables communication between
clients and objects, transparently activating those objects that are not running when
requests are delivered to them. The ORB also provides an interface that can be used
directly by clients as well as objects.

Figure 2.1 OMA interface categories.

—
i

— #iif' \\\:?

Application ¢ Domain 1/
1
Interfaces _Interfaces
' S I T
i i} | ¥ L
Object Request Broker
[
7~ Object ™

. Services f,,z}

— -

Figure 2.1 shows the interface categories that use the ORB's activation and
communication facilities.

Object Services are domain-independent, or horizontally oriented, interfaces used by
many distributed object applications. For example, all applications must obtain references
to the objects they intend to use. Both the OMG Naming Service and the OMG Trading

Service [21] are object services that allow applications to look up and discover object

26

IT-SC book: Advanced CORBA® Programming with C++

references. Object services are normally considered part of the core distributed
computing infrastructure.

Domain Interfaces play roles similar to those in the Object Services category except that
domain interfaces are domain-specific, or vertically oriented. For example, there are
domain interfaces used in health care applications that are unique to that industry, such as
a Person Identification Service [28]. Other interfaces are specific to finance,
manufacturing, telecommunications, and other domains. The multiple Domain Interface
bubbles in Figure 2.1 indicate this multiplicity of domains.

Application Interfaces are developed specifically for a given application. They are not
standardized by the OMG. However, if certain application interfaces begin to appear in
many different applications, they become candidates for standardization in one of the
other interface categories.

As the OMG gradually populates the interface categories, the bulk of its standardization
efforts will shift upward from the ORB infrastructure and Object Services levels into
domain-specific object frameworks. The object framework concept, illustrated in Figure
2.2, builds from the interface categories just described, recognizing and promoting the
notion that CORBA-based programs are composed of multiobject components supporting
one or more of the OMA interface categories. Figure 2.2 represents these components
as circles, some with only one interface category and others with multiple categories.
Unfortunately, the term framework is overused in general, but used in this context it
follows the classic definition of a software framework: a partial solution to a set of
similar problems that requires application customization for completeness. The OMG is
likely to standardize specifications for object frameworks for use in industries
represented by its Domain Task Forces.

Figure 2.2 OMA object frameworks.

Object Framework

% S %j

Al = Application Interfaces Dl = Domain Interfaces 0S5 = Object Services

These models may not seem very complicated or profound, but their apparent simplicity
is misleading. Many pages of this book, as well as other books, articles, and

27

IT-SC book: Advanced CORBA® Programming with C++

specifications, are devoted to exploring the effects and consequences of these seemingly

simple models, so this is all we will say about them for now. See [31] for more details
about the OMA and the OMG.

2.3 Concepts and Terminology

CORBA provides platform-independent programming interfaces and models for portable
distributed object-oriented computing applications. Its independence from programming
languages, computing platforms, and networking protocols makes it highly suitable for
the development of new applications and their integration into existing distributed
systems.

Like all technologies, CORBA has unique terminology associated with it. Although some
of the concepts and terms are borrowed from similar technologies, others are new or
different. Understanding these terms and the concepts behind them is key to having a
firm grasp of CORBA itself. The most important terms in CORBA are explained in the
following list.

A CORBA object is a "virtual" entity capable of being located by an ORB and having
client requests invoked on it. It is virtual in the sense that it does not really exist unless it
is made concrete by an implementation written in a programming language. The
realization of a CORBA object by programming language constructs is analogous to the
way virtual memory does not exist in an operating system but is simulated using physical
memory.

A target object, within the context of a CORBA request invocation, is the CORBA object
that is the target of that request. The CORBA object model is a single-dispatching model
in which the target object for a request is determined solely by the object reference used
to invoke the request.

A client is an entity that invokes a request on a CORBA object. A client may exist in an
address space that is completely separate from the CORBA object, or the client and the
CORBA object may exist within the same application. The term client is meaningful only
within the context of a particular request because the application that is the client for one
request may be the server for another request.

A server is an application in which one or more CORBA objects exist. As with clients,
this term is meaningful only in the context of a particular request.

A request is an invocation of an operation on a CORBA object by a client. Requests flow
from a client to the target object in the server, and the target object sends the results back
in a response if the request requires one.

An object reference is a handle used to identify, locate, and address a CORBA object. To

clients, object references are opaque entities. Clients use object references to direct
requests to objects, but they cannot create object references from their constituent parts,

28

IT-SC book: Advanced CORBA® Programming with C++

nor can they access or modify the contents of an object reference. An object reference
refers only to a single CORBA object.

A servant is a programming language entity that implements one or more CORBA
objects. Servants are said to incarnate CORBA objects because they provide bodies, or
implementations, for those objects. Servants exist within the context of a server
application. In C++, servants are object instances of a particular class.

The definitions of these terms will be refined in later chapters, but these definitions will
be sufficient for understanding the CORBA features described in the next section.

2.4 CORBA Features

This section provides an overview of the following major features of CORBA:
OMG Interface Definition Language

Language mappings

Operation invocation and dispatch facilities (static and dynamic)

Object adapters

Inter-ORB Protocol

Figure 2.3 shows the relationships between most of these CORBA features, which we
describe in the following sections. Later chapters cover each feature in much greater
detail.

Figure 2.3 Common Object Request Broker Architecture (CORBA).

Client Application Servar Application
' L ! | | 'y
Y L Y ¥ Y ¥
R Ny S N s N 7777
Static D ORB ORB skeletan| | DSI Object
Stub I Interface Interface Adaptar
Cliant ORB Cors ‘/\ Sarver ORB Cors
Matwork
@ |DL-dependant Same for all I7] There may be multiple
applications object adapters

2.4.1 General Request Flow

In Figure 2.3, the client application makes requests and the server application receives
them and acts on them. Requests flow down from the client application, through the ORB,
and up into the server application in the following manner.

29

IT-SC book: Advanced CORBA® Programming with C++

The client can choose to make requests either using static stubs compiled into C++ from
the object's interface definition (see Section 2.4.2) or using the Dynamic Invocation
Interface (DII) (see Section 2.4.4). Either way, the client directs the request into the
ORB core linked into its process.

The client ORB core transmits the request to the ORB core linked with the server
application.

The server ORB core dispatches the request to the object adapter (see Section 2.4.5)
that created the target object.

The object adapter further dispatches the request to the servant that is implementing the
target object. Like the client, the server can choose between static and dynamic
dispatching mechanisms for its servants. It can rely on static skeletons compiled into C++
from the object's interface definition, or its servants can use the Dynamic Skeleton
Interface (DSI).

After the servant carries out the request, it returns its response to the client application.
CORBA supports several styles of requests.

When a client invokes a synchronous request, it blocks while it waits for the response.
These requests are identical to remote procedure calls.

A client that invokes a deferred synchronous request sends the request, continues
processing, and then later polls for the response. Currently, this style of request can be
invoked only using the DII.

CORBA also provides a oneway request, which is a best-effort request that may not
actually be delivered to the target object and is not allowed to have responses. ORBs are
allowed to silently drop oneway requests if network congestion or other resource
shortages would cause the client to block while the request was delivered.

A future version of CORBA (very likely version 3.0) will also support asynchronous
requests that can be used to allow occasionally connected clients and servers to
communicate with one another. It will also add support for making deferred synchronous
calls using static stubs as well as the DII.

The next few sections describe the CORBA components required to make requests and to
get responses.

2.4.2 OMG Interface Definition Language
To invoke operations on a distributed object, a client must know the interface offered by
the object. An object's interface is composed of the operations it supports and the types of

data that can be passed to and from those operations. Clients also require knowledge of
the purpose and semantics of the operations they want to invoke.

30

IT-SC book: Advanced CORBA® Programming with C++

In CORBA, object interfaces are defined in the OMG Interface Definition Language
(IDL). Unlike C++ or Java, IDL is not a programming language, so objects and
applications cannot be implemented in IDL. The sole purpose of the IDL is to allow
object interfaces to be defined in a manner that is independent of any particular
programming language. This arrangement allows applications implemented in different
programming languages to interoperate. The language independence of IDL is critical to
the CORBA goal of supporting heterogeneous systems and the integration of separately
developed applications.

OMG IDL supports built-in simple types, such as signed and unsigned integer types,
characters, Boolean, and strings, as well as constructed types such as enumerated types,
structures, discriminated unions, sequences (one-dimensional vectors), and exceptions.
These types are used to define the parameter types and return types for operations, which
in turn are defined within interfaces. IDL also provides a module construct used for name
scoping purposes.

The following example shows a simple IDL definition:

interface Employee {
long number () ;

}s

This example defines an interface named Employee that contains an operation named
number. The number operation takes no arguments and returns a 1ong. A CORBA
object supporting the Employee interface is expected to implement the number
operation to return the number of the employee represented by that object.

Object references are denoted in IDL by using the name of an interface as a type. For
example:

interface EmployeeRegistry {
Employee lookup(in long emp number);
}i

The lookup operation of the EmployeeRegistry interface takes an employee
number as an input argument and returns an object reference of type Employee that
refers to the employee object identified by the emp number argument. An application
could use this operation to retrieve an Employee object and then use the returned object
reference value to invoke Employee operations.

Arguments to IDL operations must have their directions declared so that the ORB knows
whether their values should be sent from client to target object, vice versa, or both. In the
definition of the 1ookup operation, the keyword in signifies that the employee number
argument is passed from the client to the target object. Arguments can also be declared
out to indicate that, like return values, they are passed from the target object back to the

31

IT-SC book: Advanced CORBA® Programming with C++

client. The inout keyword indicates an argument that is initialized by the client and
then sent from the client to the target object; the object can modify the argument value
and return the modified value to the client.

A key feature of IDL interfaces is that they can inherit from one or more other interfaces.
This arrangement allows new interfaces to be defined in terms of existing ones, and
objects implementing a new derived interface can be substituted where objects supporting
the existing base interfaces are expected. For example, consider the following Printer
interfaces:

interface Printer {
void print();

}s

interface ColorPrinter : Printer {
enum ColorMode { BlackAndWhite, FullColor };
void set color (in ColorMode mode) ;

}i

The ColorPrinter interface is derived from the Printer interface. If a client
application is written to deal with objects of type Printer, it can also use an object
supporting the ColorPrinter interface because such objects also fully support the
Printer interface.

IDL provides one special case of inheritance: all IDL interfaces implicitly inherit from
the Object interface defined in the CORBA module. This special base interface supplies
operations common to all CORBA objects.

2.4.3 Language Mappings

Because OMG IDL is a declarative language, it cannot be used to write actual
applications. It provides no control constructs or variables, so it cannot be compiled or
interpreted into an executable program. It is suitable only for declaring interfaces for
objects and defining the data types used to communicate with objects.

Language mappings specify how IDL is translated into different programming languages.
For each IDL construct, a language mapping defines which facilities of the programming
language are used to make the construct available to applications. For example, in C++,
IDL interfaces are mapped to classes, and operations are mapped to member functions of
those classes. Similarly, in Java, IDL interfaces are mapped to public Java interfaces.
Object references in C++ map to constructs that support the operator-> function (that
is, either a pointer to a class or an object of a class with an overloaded operator->
member function). Object references in C, on the other hand, map to opaque pointers (of
type void *), and operations are mapped to C functions that each require an opaque
object reference as the first parameter. Language mappings also specify how applications
use ORB facilities and how server applications implement servants.

32

IT-SC book: Advanced CORBA® Programming with C++

OMG IDL language mappings exist for several programming languages. As of this
writing, the OMG has standardized language mappings for C, C++, Smalltalk, COBOL,
Ada, and Java. Other language mappings exist as well—for example, mappings have also
been independently defined for languages such as Eiffel, Modula 3, Perl, Tcl,
Objective—C, and Python--but at this time they have not been standardized by the OMG.
IDL language mappings are critical for application development. They provide concrete
realizations of the abstract concepts and models supplied by CORBA. A complete and
intuitive language mapping makes it straightforward to develop CORBA applications in
that language; conversely, a poor, incomplete, or ineffective language mapping seriously
hampers CORBA application development. Official OMG language mapping
specifications therefore undergo periodic revision and improvement to ensure their
effectiveness.

The existence of multiple OMG IDL language mappings means that developers can
implement different portions of a distributed system in different languages. For example,
a developer might write a high-throughput server application in C++ for efficiency and
write its clients as Java applets so that they can be downloaded via the Web. The
language independence of CORBA is key to its value as an integration technology for
heterogeneous systems.

2.4.4 Operation Invocation and Dispatch Facilities

CORBA applications work by receiving requests or by invoking requests on CORBA
objects. When the OMG originally issued its RFP for the technologies that eventually
became the CORBA specification, two general approaches to request invocation were
submitted.

Static invocation and dispatch In this approach, OMG IDL is translated into language-
specific stubs and skeletons that are compiled into applications. Compiling stubs and
skeletons into an application gives it static knowledge of the programming language
types and functions mapped from the IDL descriptions of remote objects. A stub is a
client-side function that allows a request invocation to be made via a normal local
function call. In C++, a CORBA stub is a member function of a class. The local C++
object that supports stub functions is often called a proxy because it represents the remote
target object to the local application. Similarly, a skelefon is a server-side function that
allows a request invocation received by a server to be dispatched to the appropriate
servant.

Dynamic invocation and dispatch This approach involves the construction and
dispatch of CORBA requests at run time rather than at compile time (as in the static
approach). Because no compile-time information is available, the creation and
interpretation of requests at run time requires access to services that can supply
information about the interfaces and types. Your application can obtain this information
by querying a human operator via a GUI Alternatively, you can obtain it
programmatically from the Interface Repository, a service that provides run-time access
to IDL definitions.

33

IT-SC book: Advanced CORBA® Programming with C++

Developers writing applications in statically typed languages such as C++ usually prefer
to use the static invocation approach because it provides a more natural programming
model. The dynamic approach can be useful for applications, such as gateways and
bridges, that must receive and forward requests without having compile-time knowledge
of the types and interfaces involved.

2.4.5 Object Adapters

In CORBA, object adapters serve as the glue between servants and the ORB. As
described by the Adapter design pattern [4], which is independent of CORBA, an object
adapter is an object that adapts the interface of one object to a different interface
expected by a caller. In other words, an object adapter is an interposed object that uses
delegation to allow a caller to invoke requests on an object without knowing the object's
true interface.

CORBA object adapters fulfill three key requirements.

They create object references, which allow clients to address objects.

They ensure that each target object is incarnated by a servant.

They take requests dispatched by a server-side ORB and further direct them to the
servants incarnating each of the target objects.

Without object adapters, the ORB would have to directly provide these features in
addition to all its other responsibilities. As a result, it would have a very complex
interface that would be difficult for the OMG to manage, and the number of possible
servant implementation styles would be limited.

In C++, servants are instances of C++ objects. They are typically defined by deriving
from skeleton classes produced by compiling IDL interface definitions. To implement
operations, you override virtual functions of the skeleton base class. You register these
C++ servants with the object adapter to allow it to dispatch requests to your servants
when clients invoke requests on the objects incarnated by those servants.

Until version 2.1, CORBA contained specifications only for the Basic Object Adapter
(BOA). The BOA was the original CORBA object adapter, and its designers felt that it
would suffice for the majority of applications, with other object adapters filling only
niche roles. However, CORBA did not evolve as expected because of the following
problems with the BOA specification.

The BOA specification did not account for the fact that, because of their need to support
servants, object adapters tend to be language-specific. Because CORBA originally
provided only a C language mapping, the BOA was written to support only C servants.
Later attempts to make it support C++ servants proved to be difficult. In general, an
object adapter that provides solid support for servants in one programming language is
not likely to also provide adequate support for servants written in a different language
because of differences in implementation style and usage of those servants.

34

IT-SC book: Advanced CORBA® Programming with C++

A number of critical features were missing from the BOA specification. Certain
interfaces were not defined and there were no servant registration operations. Even those
operations that were specified contained many ambiguities. ORB vendors developed their
own proprietary solutions to fill the gaps, resulting in poor server application portability
between different ORB implementations.

The Portability Enhancement RFP [27] issued by the OMG in 1995 to address these
issues contained a seven-page listing of problems with the BOA specification.

CORBA version 2.2 introduced the Portable Object Adapter to replace the BOA. Because
the POA addresses the full gamut of interactions between CORBA objects and
programming language servants while maintaining application portability, the quality of
the POA specification is vastly superior to that of the BOA. As a result, the BOA
specification has been removed from CORBA. We provide detailed coverage of the POA

in Chapter 11.
2.4.6 Inter-ORB Protocols

Before CORBA 2.0, one of the most common complaints lodged against CORBA was its
lack of standard protocol specifications. To allow remote ORB applications to
communicate, every ORB vendor had to develop its own network protocol or borrow one
from another distributed system technology. This resulted in "ORB application islands."
Each one was built over a particular vendor's ORB, and thus they were unable to
communicate with one another.

CORBA 2.0 introduced a general ORB interoperability architecture called the General
Inter-ORB Protocol (GIOP, pronounced "gee-op"). GIOP is an abstract protocol that
specifies transfer syntax and a standard set of message formats to allow independently
developed ORBs to communicate over any connection-oriented transport. The Internet
Inter-ORB Protocol (IIOP, pronounced "eye-op") specifies how GIOP is implemented
over Transmission Control Protocol/Internet Protocol (TCP/IP). All ORBs claiming
CORBA 2.0 interoperability conformance must implement GIOP and IIOP, and almost
all contemporary ORBs do so.

ORB interoperability also requires standardized object reference formats. Object
references are opaque to applications, but they contain information that ORBs need in
order to establish communications between clients and target objects. The standard object
reference format, called the Interoperable Object Reference (IOR), is flexible enough to
store information for almost any inter-ORB protocol imaginable. An IOR identifies one
or more supported protocols and, for each protocol, contains information specific to that
protocol. This arrangement allows new protocols to be added to CORBA without
breaking existing applications. For IIOP, an IOR contains a host name, a TCP/IP port
number, and an object key that identifies the target object at the given host name and port
combination.

35

IT-SC book: Advanced CORBA® Programming with C++

2.5 Request Invocation

Clients manipulate objects by sending messages. The ORB sends a message to an object
whenever a client invokes an operation. To send a message to an object, a client must
hold an object reference for the object. The object reference acts as a handle that uniquely
identifies the target object and encapsulates all the information required by the ORB to
send the message to the correct destination.

When a client invokes an operation via an object reference, the ORB does the following:
Locates the target object

Activates the server application if the server is not already running

Transmits any arguments for the call to the object

Activates a servant for the object if necessary

Waits for the request to complete

Returns any out and inout parameters and the return value to the client when the call
completes successfully

Returns an exception (including any data contained in the exception) to the client when
the call fails

The entire request invocation mechanism is completely transparent to the client, to whom
a request to a remote object looks like an ordinary method invocation on a local C++
object. In particular, request invocation has the following characteristics.

Location transparency The client does not know or care whether the target object is
local to its own address space, is implemented in a different process on the same machine,
or is implemented in a process on a different machine. Server processes are not obliged to
remain on the same machine forever; they can be moved around from machine to
machine without clients becoming aware of it (with some constraints, which we discuss

in Chapter 14).

Server transparency The client does not need to know which server implements which
objects.

Language independence The client does not care what language is used by the server.
For example, a C++ client can call a Java implementation without being aware of it. The
implementation language for objects can be changed for existing objects without
affecting clients.

Implementation independence The client does not know how the implementation
works. For example, the server may implement its objects as proper C++ servants, or the
server may actually implement its objects using non-OO techniques (such as
implementing objects as lumps of data). The client sees the same consistent object-
oriented semantics regardless of how objects are implemented in the server.

36

IT-SC book: Advanced CORBA® Programming with C++

Architecture independence The client is unaware of the CPU architecture that is used
by the server and is shielded from such details as byte ordering and structure padding.

Operating system independence The client does not care what operating system is used
by the server. The server may even be implemented without the support of an operating
system—for example, as a real-mode embedded program.

Protocol independence The client does not know what communication protocol is used
to send messages. If several protocols are available to communicate with the server, the
ORB transparently selects a protocol at run time.

Transport independence The client is ignorant of the transport and data link layer used
to transmit messages. ORBs can transparently use various networking technologies such
as Ethernet, ATM, token ring, or serial lines.

2.5.1 Object Reference Semantics

Object references are analogous to C++ class instance pointers but can denote objects
implemented in different processes (possibly on other machines) as well as objects
implemented in the client's own address space. Except for this distributed addressing
capability, object references have semantics much like ordinary C++ class instance
pointers have.

Every object reference identifies exactly one object instance.

Several different references can denote the same object.

References can be nil (point nowhere).

References can dangle (like C++ pointers that point at deleted instances).
References are opaque (the client is not allowed to look at their contents).
References are strongly typed.

References support late binding.

References can be persistent.

References can be interoperable.

These points deserve further explanation because they are central to the CORBA object
model.

Each reference identifies exactly one object.

Just as a C++ class instance pointer identifies exactly one object instance, an object
reference denotes exactly one CORBA object (which may be implemented in a remote
address space). A client holding an object reference is entitled to expect that the reference
will always denote the same object while the object continues to exist. An object
reference is allowed to stop working only when its target object is permanently destroyed.
After an object is destroyed, its references become permanently non-functional. This
means that a reference to a destroyed object cannot accidentally denote some other object
later.

37

IT-SC book: Advanced CORBA® Programming with C++

An object can have several references.

Several different references can denote the same object. In other words, each reference
"names" exactly one object, but an object is allowed to have several names.

If you find this strange, remember that the same thing can happen in C++. A C++ class
instance pointer denotes exactly one object, and the pointer value (such as 0x48bf0)
identifies that object. However, as shown in [15], multiple inheritance can cause a single
C++ instance to have as many as five different pointer values.

The situation is similar in CORBA. If two object references have different contents, it
does not necessarily mean that the two references denote different objects. It follows that
an object reference is not the same as an object's identity. This has profound implications
for the design of object systems, and we explore some of these implications in Sections
7.11.3 and 20.3.2.

References can be nil.

CORBA defines a distinguished nil value for object references. A nil reference points
nowhere and is analogous to a C++ null pointer. Nil references are useful for conveying
"not found" or "not there" semantics. For example, an operation can return a nil reference
to indicate that a client's search for an object did not locate a matching instance. Nil
references can also be used to implement optional reference parameters. Passing a nil
value at run time indicates that the parameter is "not there."

References can dangle.

After a server has passed an object reference to a client, that reference is permanently out
of the server's control and can propagate freely via means invisible to the ORB (for
example, as a string carried by e-mail). This means that CORBA has no built-in
automatic mechanism for the server to inform a client when the object belonging to a
reference is destroyed. Similarly, there is no built-in automatic way for a client to inform
a server that it has lost interest in an object reference. This does not mean that you cannot
create such semantics if your application requires them; it means only that CORBA does
not provide these semantics as built-in features.

To find out whether an object reference still denotes an existing object, a client can
invoke the non existent operation, which is supported by all objects.

References are opaque.
Object references contain a number of standardized components that are the same for all

ORBs as well as proprietary information that is ORB-specific. To permit source code
compatibility across different ORBs, clients and servers are not allowed to see the

38

IT-SC book: Advanced CORBA® Programming with C++

representation of an object reference. Instead, they must treat an object reference as a
black box that can be manipulated only through a standardized interface.

The encapsulation of object references is a key aspect of CORBA. It lets you add new
features, such as different communication protocols, over time without breaking existing
source code. In addition, vendors can use the proprietary part of object references to
provide value-added features, such as performance optimizations, without compromising
interoperability with other ORBs.

References are strongly typed.

Every object reference contains an indication of the interface supported by that reference.
This arrangement allows the ORB run time to enforce type safety. For example, an
attempt to send a print message to an Employee object (which does not support that
operation) is caught at run time.

For statically typed languages such as C++, type safety is also enforced at compile time.
The language mapping does not permit you to invoke an operation unless the target
object is guaranteed to offer that operation in its interface. (This is true only if you are
using the generated stubs to invoke operations. If you are using the Dynamic Invocation
Interface, static type safety is necessarily lost.)

References support late binding.

Clients can treat a reference to a derived object as if it were a reference to a base object.
For example, assume that the Manager interface is derived from Employee. A client
may actually hold a reference to a Manager but may think of that reference as being of
type Employee. As in C++, a client cannot invoke Manager operations via an
Employee reference (because that would violate static type safety). However, if a client
invokes the number operation via the Employee reference, the corresponding message
is still sent to the Manager servant that implements the Employee interface.

This arrangement is exactly analogous to C++ virtual function calls: invoking a method
via a base pointer calls the virtual function in the derived instance. One of the major
advantages of CORBA, compared with traditional RPC platforms, is that polymorphism
and late binding work for remote objects exactly as they do for local C++ objects. This
means that there is no artificial wall through your architecture in which you must map an
object-oriented design onto a remote procedure call paradigm. Instead, polymorphism
works transparently across the wire.

References can be persistent.
Clients and servers can convert an object reference into a string and write the string to

disk. Sometime later, that string can be converted back into an object reference that
denotes the same original object.

39

IT-SC book: Advanced CORBA® Programming with C++

References can be interoperable.

CORBA specifies a standard format for object references. This means that one ORB can
use references created by a different vendor's ORB, whether they are exchanged as
parameters or as strings. For that reason, these standard object references are also known
as Interoperable Object References, as we explained in Section 2.4.6.

Note that in addition to the standard IOR format, an ORB can provide proprietary
reference encodings. This capability can be useful if an ORB is tailored for a particular
environment, such as an object-oriented database. However, proprietary references
cannot be exchanged with ORBs from a different vendor.

2.5.2 Reference Acquisition

Object references are the only way for a client to reach target objects. A client cannot
communicate unless it holds an object reference. How, then, does a client obtain
references (the client must have at least one reference to start with)? We address this
bootstrapping issue in Chapter 18. For now, it is sufficient to say that references are
published by servers in some way. For example, a server can

Return a reference as the result of an operation (as the return value or as an inout or
out parameter)

Advertise a reference in some well-known service, such as the Naming Service or
Trading Service

Publish an object reference by converting it to a string and writing it into a file

Transmit an object reference by some other out-of-band mechanism, such as sending it in
e-mail or publishing it on a Web page

By far the most common way for a client to acquire object references is to receive them
in response to an operation invocation. In that case, object references are parameter
values and are no different from any other type of value, such as a string. Clients simply
contact an object, and the object returns one or more object references. In this way,
clients can navigate an "object web" in much the same way as following hypertext links.

Clients use other methods to acquire object references only rarely. For example, the
lookup of a reference in a Trader or the reading of an object reference from a file
typically happens only during bootstrapping. After the client has the first few object
references, it uses them to acquire more references to other objects by invoking
operations.

Regardless of the origin of object references, they are always created by the ORB run
time on behalf of the client. This approach hides the internal representation of references
from the client.

40

IT-SC book: Advanced CORBA® Programming with C++

2.5.3 Contents of an Object Reference

Given the transport and location transparency offered by CORBA, there must be some
minimum amount of information encapsulated in every IOR. Figure 2.4 shows a
conceptual view of the contents of an IOR.

Figure 2.4 Object reference contents.

Object Heference

Repository 1D

Endpoint Info § Objact Kay
{standardized) 5

istandardiz ed) {propristary)

An IOR contains three major pieces of information.

Repository ID The repository ID is a string that identifies the most derived type of the
IOR at the time the IOR was created. (We discuss the details of repository IDs in
Section 4.19.) The repository ID allows you to locate a detailed description of the
interface in the Interface Repository (if the ORB provides one). The ORB can also use
the repository ID to implement type-safe down-casts (see Section 7.6.4).

Endpoint Info This field contains all the information required by the ORB to establish a
physical connection to the server implementing the object. The endpoint information
specifies which protocol to use and contains physical addressing information appropriate
for a particular transport. For example, for the IIOP, which is supported by all
interoperable ORBs, the endpoint info contains an Internet domain name or IP address
and a TCP port number.

The addressing information in the Endpoint Info field may directly contain the address
and port number of the server that implements the object. However, in most cases, it
contains the address of an implementation repository that can be consulted to locate the
correct server. This extra level of indirection permits server processes to migrate from
machine to machine without breaking existing references held by clients.

CORBA also allows information for several different protocols and transports to be
embedded in the reference, permitting a single reference to support more than one
protocol (the ORB chooses the most appropriate protocol transparently). A future version
of CORBA will likely permit the client to influence the choice of protocol by selecting
quality-of-service policies for object references.

Chapter 14 discusses in more detail how an ORB uses the endpoint information.
Object key The repository ID and endpoint information are standardized, whereas the

object key contains proprietary information. Exactly how this information is organized

41

IT-SC book: Advanced CORBA® Programming with C++

and used depends on the ORB. However, all ORBs allow the server to embed an
application-specific object identifier inside the object key when the server creates the
reference. The object identifier is used by the server-side ORB and object adapter to
identify the target object in the server for each request it receives.

The client-side run time simply sends the key as an opaque blob of binary data with every
request it makes. It therefore does not matter that the reference data is in a proprietary
format. It is never looked at by any ORB except the ORB hosting the target object (which
is the same ORB that created the object key in the first place).

The combination of endpoint information and object key can appear multiple times in an
IOR. Such multiple endpoint-key pairs, known as multicomponent profiles, permit an
IOR to efficiently support more than one protocol and transport that share information.
An IOR can also contain multiple profiles, each containing separate protocol and
transport information. The ORB run time dynamically chooses which protocol to use
depending on what is supported by both client and server.

The preceding discussion shows that all the essential ingredients for successful request
dispatch are encapsulated in a reference. The repository ID provides type checking, the
endpoint information is used by the client-side ORB to identify the correct target address
space, and the object key is used by the server-side ORB to identify the target object
inside the address space.

2.5.4 References and Proxies

When a reference is received by a client, the client-side run time instantiates a proxy
object (or proxy, for short) in the client's address space. A proxy is a C++ instance that
supplies to the client an interface to the target object. The interface on the proxy is the
same as the interface on the remote object; when the client invokes an operation on the
proxy, the proxy sends a corresponding message to the remote servant. In other words,
the proxy delegates requests to the corresponding remote servant and acts as a local
ambassador for the remote object, as shown in Figure 2.5.

Figure 2.5 Local proxy to remote object.

42

IT-SC book: Advanced CORBA® Programming with C++

Client Sarver
, \ Illr(- \
V] o—— I Skeletan]l,
| Proxy —p—lw W |
foo () Y i Too(h i instance _,!I .
h, d | A foa)
. E AN Y " goot)
— -, -~ - -~ - - ™, —
A oo T — A I
] / M
Object III ! Servant llI
rafarence | | /
N, !
S R “*-m.___.--’/

The C++ mapping does not change if client and server are collocated in the same address
space. In particular, no changes to the source code are necessary in either client or server
if we decide to link the server into the client (see Figure 2.6).

Figure 2.6 Proxy to collocated object.

Client and Server

fooi)
foo)

Obiject
reference

If client and server are collocated, the client's request is still transparently forwarded by
the proxy to the correct servant; in this way, we preserve the location transparency of
CORBA. (Some ORBs do not use a proxy for collocated objects. Instead, the servant
object acts as the proxy. However, such implementations are not strictly compliant with
the POA specification and do not strictly preserve location transparency. We therefore
consider ORBs that do not keep a proxy in the collocated case as deficient.)

In both the remote and the collocated scenarios, the proxy delegates operation
invocations made by the client to the servant. In the remote scenario, the proxy sends the
request over the network, whereas in the collocated scenario, the request is dispatched via
C++ function calls. The interaction between the skeleton and the servant in the remote
case is usually implemented as a C++ virtual function call (but can also be implemented
by delegation). We discuss these details in Chapter 9.

Note that the proxy instance provides the client with an interface that is specific to the
type of object being accessed. The proxy class is generated from the IDL definition of the

43

IT-SC book: Advanced CORBA® Programming with C++

corresponding interface and implements the stub through which the client dispatches calls.
This approach ensures type safety; the client cannot invoke an operation unless it holds a
proxy of the correct type because only that proxy has the correct member function.

2.6 General CORBA Application Development

In the previous few sections, we have briefly explored all the parts of CORBA that you
need to know about when developing applications. Here, we cover the general steps
required to actually build CORBA-based systems. The intent is not to provide a false
sense of simplicity but rather to help you see how all the portions of CORBA described in
this chapter relate to one another in the context of application development.

To develop a C++ CORBA application consisting of two executables—one a client and
one a server—you generally perform the following steps.

Determine your application's objects and define their interfaces in IDL.

As with the development of any object-oriented program, you must find your objects,
define their interfaces, and define how they relate to one another. This process is usually
a difficult and iterative one, and CORBA does not make this part of the development life
cycle any easier for you.

In fact, designing a CORBA application, or any distributed object application for that
matter, is often more difficult than designing a normal program because you must deal
with issues related to distribution. Although CORBA and its language mappings hide
much of the complexity and many of the low-level details associated with typical
network programming, it does not magically take care of all the problems that distributed
systems encounter, such as messaging latency, network partitions, and partial system
failure. Basing your application on an ORB certainly helps in this regard, but you must
still take latency and distributed failure modes into account if you want to write high-
quality distributed applications. We discuss some of these design issues in Chapter 22.
Compile your IDL definitions into C++ stubs and skeletons.

ORB implementations normally supply IDL compilers that follow language mapping
rules to compile your IDL into client stubs and server skeletons. For C++, IDL compilers
typically emit C++ header files that contain declarations for proxy classes, server
skeletons, and other supporting types. They also generate C++ implementation files that
implement the classes and types declared in the header files.

By translating your IDL definitions into C++, you generate a code base that allows you to
write clients and servants that respectively access and implement CORBA objects

supporting your IDL interfaces.

Declare and implement C++ servant classes that can incarnate your CORBA objects.

44

IT-SC book: Advanced CORBA® Programming with C++

Each of your CORBA objects must be incarnated by an instance of a C++ servant class
before the ORB can dispatch requests to it. You must define your servant classes and
implement their member functions (which represent their IDL methods) to perform the
services that you want your CORBA objects to provide to your clients.

Write a server main program.

As with all C++ programs, the main function provides the entry and exit points for a C++
CORBA application. For your server, your main must initialize the ORB and the POA,
create some servants, arrange for the servants to incarnate your CORBA objects, and
finally, start listening for requests.

Compile and link your server implementation files with the generated stubs and skeletons
to create your server executable.

For a C++ CORBA server, you provide the method implementations. The generated stubs
and skeletons provide the IDL type implementations and the request dispatching code to
translate incoming CORBA requests into C++ function calls on your servants.

Write, compile, and link your client code together with the generated stubs.

Finally, you implement your clients to first obtain object references for your CORBA
objects. To have services performed on their behalf, your clients then invoke operations
on your CORBA objects. Your client code invokes requests and receives replies as if
making normal C++ function calls. The generated stubs translate those function calls into
CORBA request invocations on the objects in your server.

Naturally, these steps vary somewhat depending on the nature of the application. For
example, sometimes the server already exists, and you need only write a client. In that
case, you would perform only those steps related to developing clients.

If this CORBA application development process is not clear to you, do not worry. We
have kept our explanation of these steps at a high level; we want only to give you an
overview of what you must do to create C++ CORBA applications. Subsequent chapters
cover many more details related to the development of real-world applications, so do not
be disheartened by the lack of depth in the coverage provided here.

2.7 Summary

The problems associated with distributed heterogeneous computing are with us for the
foreseeable future. Computer networks will continue to be heterogeneous for some time
to come because of continued advances in computing hardware, networking, and
operating systems. This heterogeneity makes the development, deployment, and
maintenance of networked applications difficult because of the overwhelming number of
low-level details that must be considered and addressed.

45

IT-SC book: Advanced CORBA® Programming with C++

CORBA provides the abstractions and services you need to develop portable distributed
applications without worrying about low-level details. Its support for multiple request-
response models, transparent object location and activation, and programming language
and operating system independence provides a solid basis for both the integration of
legacy systems and the development of new applications.

Application developers define the interfaces of their CORBA objects in the OMG IDL, a
C++-like declarative language. You use it to define types such as structures, sequences,
and arrays to be passed to operations supported by objects. Using object-oriented
development techniques, you group related operations in interfaces in much the same
way that you define related C++ member functions in C++ classes.

To implement CORBA objects in C++, you create C++ object instances called servants
and register them with the POA. The ORB and POA cooperate to dispatch all requests
invoked on a target object to the servant incarnating that object.

Clients invoke requests via object references, which are opaque entities that contain
communication information used by ORBs to direct requests to their target objects. IORs
have a standardized format that allow independently developed ORBs to interoperate.

Because the first step in implementing CORBA objects is to define their interfaces, we
describe IDL in detail in Chapter 4. Before that, however, we continue to ease you into
the development of CORBA applications with C++ in Chapter 3 by showing you how
to write a simple client and server.

46

IT-SC book: Advanced CORBA® Programming with C++

Chapter 3. A Minimal CORBA Application

3.1 Chapter Overview

This chapter shows how to build a simple CORBA application consisting of a server that
implements a single object and a client that accesses that object. The point of this chapter
is to familiarize you with the basic steps required to build a minimal application, and we
explain very few details of the source code here. Do not be concerned if something does
not seem clear—later chapters provide all the detail.

Section 3.2 shows how to write and compile a simple interface definition, Section
3.2 covers how to write the server, Section 3.4 shows how to write the client, and
Section 3.5 illustrates how to run the complete application.

3.2 Writing and Compiling an IDL Definition

The first step for every CORBA application is to define its interfaces in IDL. For our
minimal application, the IDL contains a structure definition and a single interface:

struct TimeOfDay {

short hour; // 0 - 23
short minute; // 0 - 59
short second; // 0 - 59

b

interface Time {
TimeOfDay get gmt () ;
b

The Time interface defines an object that delivers the current time. A Time object has
only a single operation, get gmt. Clients invoke this operation to obtain the current
time in the Greenwich time zone. The operation returns the current time as a structure of
type TimeOfDay, which contains the current hour, minute, and second.

Having written this IDL definition and placed it in a file called time.id1, you must
compile it. The CORBA specification standardizes neither how to invoke the IDL
compiler nor what the names of the generated files should be, so the example that follows
may need some adjustment for your particular ORB. However, the basic idea is the same
for all ORBs with a C++ language mapping.

To compile the IDL, you invoke the compiler with the IDL source file name as a

command-line argument. Note that for your ORB, the actual command may be something
other than id1.

47

IT-SC book: Advanced CORBA® Programming with C++

[1] we assume a UNIX environment and a Bourne or Korn shell whenever we show commands
in this book.

$ idl time.idl

Provided there are no errors in the IDL definition, you will find several new files in the
current directory. (The names of these files are ORB-dependent, so you may see file
names that differ in name and number from the ones shown here.)

time.hh

This is a header file for inclusion in the client source code. It contains C++ type
definitions corresponding to the IDL types used in time.id1.

timeC.cc

This file contains C++ stub code to be compiled and linked into the client application. It
provides a generated API that the client application can call to communicate with objects
defined in time.idl.

timeS.hh
This is a header file for inclusion in the server source code. It contains definitions that
allow the application code to implement an up-call interface to the objects defined in
time.idl.

timeS.cc

This file contains C++ skeleton code to be compiled and linked into the server application.
It provides the run-time support required by the server application, so it can receive
operation invocations sent by clients.

3.3 Writing and Compiling a Server

The source code for the entire server takes only a few lines:

#include <time.h>
#include <iostream.h>
#include "timeS.hh"

class Time impl : public virtual POA Time {
public:

virtual TimeOfDay get gmt () throw(CORBA::SystemException);
bi

TimeOfDay

Time impl::

get gmt () throw (CORBA::SystemException)
{

48

IT-SC book: Advanced CORBA® Programming with C++

time t time now = time(0);
struct tm * time p = gmtime (&time now);

TimeOfDay tod;

tod.hour = time p->tm hour;
tod.minute = time p->tm min;
tod.second = time p->tm sec;

return tod;

int
main (int argc, char * argvl[])
{
try A
// Initialize orb
CORBA::0RB var orb = CORBA::0ORB init (argc, argv);

// Get reference to Root POA.
CORBA: :Object var obj

= orb->resolve initial references ("RootPOA");
PortableServer::POA var poa

= PortableServer::POA:: narrow (obj);

// Activate POA manager
PortableServer: :POAManager var mgr

= poa—->the POAManager () ;
mgr->activate () ;

// Create an object
Time impl time servant;

// Write its stringified reference to stdout

Time var tm = time servant. this();
CORBA::String var str = orb->object to string(tm);
cout < str < endl;

// Accept requests
orb->run () ;
}
catch (const CORBA::Exception &) {
cerr < "Uncaught CORBA exception" < endl;
return 1;

}

return 0;

The server implements one Time object. The t imeS . hh header file contains an abstract
base class called POA Time. Its definition looks like this (tidied up a little to get rid of
code that is irrelevant to the application):

// In file timeS.hh:

class POA Time
public virtual PortableServer::ServantBase {

49

IT-SC book: Advanced CORBA® Programming with C++

public:
virtual ~POA Time () ;
Time ptr _this();
virtual TimeOfDay get gmt ()

throw (CORBA: : SystemException) = 0;
bi

Note that this class contains a get gmt pure virtual method. To create an
implementation object that clients can call, we must derive a concrete class from
POA Time that provides an implementation for the get gmt method. This means that
the first few lines of our server program look like this:

#include <time.h>
#include <iostream.h>
#include "timeS.hh"

class Time impl : public virtual POA Time {
public:

virtual TimeOfDay get gmt() throw(CORBA::SystemException);
}i

Here, we define a class Time impl that inherits from POA Time. This class provides a
concrete implementation of a Time object that clients actually can communicate with.
Our implementation class is very simple. It has only the single method get gmt (which
is not pure virtual because we require a concrete class that can actually be instantiated).
The next step is to implement the get gmt method of Time impl. For now, we are
ignoring error conditions. If the call to t ime fails with a return value of -1, get gmt
returns a garbage time value instead of raising an exception. (We discuss how to deal
with errors in Chapters 7 and 9.)

TimeOfDay

Time impl::

get gmt () throw (CORBA::SystemException)
{

time t time now = time(0);

struct tm * time p = gmtime (&time now) ;
TimeOfDay tod;

tod.hour = time p->tm hour;

tod.minute = time p->tm min;

tod.second = time p->tm sec;

return tod;

This completes the object implementation. What remains is to provide a main function
for the server. The first few lines are identical for most servers and initialize the server-
side ORB run time:

int

50

IT-SC book: Advanced CORBA® Programming with C++

main (int argc, char * argv[])
{
try {
// Initialize orb
CORBA::0RB var orb = CORBA::0ORB init (argc, argv);

// Get reference to Root POA.
CORBA: :Object var obj

= orb->resolve initial references ("RootPOA");
PortableServer::POA var poa

= PortableServer::POA:: narrow (obj);

// Activate POA manager
PortableServer: :POAManager var mgr
= poa->the POAManager () ;
mgr->activate () ;

Do not be concerned about the details of this code for the moment—we will discuss its
precise purpose in later chapters.

The next step is to provide an actual servant for a Time object so that clients can send
invocations to it. We do this by creating an instance of the Time impl servant class:

// Create a Time object
Time impl time servant;

For the client to be able to access the object, the client requires an object reference. In this
simple example, we provide that reference by writing it as a string to stdout. Of course,
this is not a distributed solution, but it will suffice for now:

// Write a stringified reference

// for the Time object to stdout

Time var tm = time servant. this();
CORBA::String var str = orb->object to string(tm);
cout < str < endl;

The call to this creates an object reference for the object, and object to string
converts that reference into a printable string.

At this point we have a concrete implementation of a Time object whose reference is
available to the client. The server is now ready to accept requests, something that it
indicates to the ORB run time by calling run:

// Accept requests

orb->run () ;

The run method starts an event loop that waits for incoming requests from clients.

51

IT-SC book: Advanced CORBA® Programming with C++

The remainder of the server source code sets an exception handler that prints an error
message if anything goes wrong and terminates main. (The closing curly brace at the
start of this code fragment completes the t ry block we opened at the beginning of main.)

}

catch (const CORBA::Exception &) {
cerr < "Uncaught CORBA exception" < endl;
return 1;

}

return 0;

This completes the server source code. In this short example, most of the source code is
boilerplate that you will find in every server. In a more realistic application, most of the
server source code consists of the actual operation implementations.

We are now ready to compile and link the server code. The exact compile and link
commands you use depend on your compiler and ORB. For example, include paths differ
from vendor to vendor, and you may have to add various preprocessor or compiler
options. However, the basic idea is the same for all ORBs: you compile the generated
stub file (timeC. cc), the generated skeleton file (timeS. cc), and the server source
code you have written, which we assume is in the file myserver.cc. Simple
compilation commands could look like this:

$ CC -c -I/opt/myORB/include timeC.cc
$ CC -c -I/opt/myORB/include timeS.cc
$ CC -c -I/opt/myORB/include myserver.cc

Assuming that there are no errors, this produces three object files that we can link into an
executable. Again, the exact link command you use depends on your C++ compiler and
ORB vendor. Also, the name and location of the ORB run-time libraries you link with
will differ for each vendor. A simple link command is

$ CC -o myserver timeC.o timeS.o myserver.o \
> -L/opt/myORB/1ib -lorb

Here, we assume that the ORB run-time library is called 1iborb. Assuming that there
are no errors, we now have a complete executable we can run from the command line. On
start-up, the server prints a reference to its Time object on stdout. The server then
waits indefinitely for client requests. (To stop the server, we must kill it by sending it a
signal.)

$./myserver

TOR:000000000000000d49444c3a54696d653a312e300000000000000001000000
00000000£000010100000000066d65726765000600000000d47030231310c000016
7€0000175d360aed118143582d466163653a20457348795e426e5851664e527333
3d4d7268787b72643b4b4c4e59295a526a4c3a39564628296e4345633637533d6a
2c77245879727¢c7Tb637175207434567d613830b3422535e514a2b48322e772£354f

52

IT-SC book: Advanced CORBA® Programming with C++

245e573e69512b6b24717a412£7822265c2172772d577d303927537d5e715c5757
70784a2734385832694£3e7433483753276£4825305a2858382e4a30667577487b
3647343e3e7e5b554b21643d67613c6d367a4e784d414£7a7658606d214a45677e
272£737756642420000000000000

3.4 Writing and Compiling a Client

The source code for the client also takes only a few lines of code:

#include <iostream.h>
#include <iomanip.h>
#include "time.hh"

int
main (int argc, char * argv[])

{

try {
// Check arguments
if (argc '= 2) {
cerr < "Usage: client IOR string" < endl;
throw 0;

}

// Initialize orb
CORBA: :0RB var orb = CORBA::0ORB init (argc, argv);

// Destringify argv[1l]
CORBA: :0Object var obj = orb->string to object (argv[l]);
if (CORBA::is nil(obj)) {
cerr < "Nil Time reference" < endl;
throw 0;
}

// Narrow

Time var tm = Time:: narrow(obj);

if (CORBA::is nil(tm)) {
cerr < "Argument is not a Time reference" < endl;
throw 0;

}

// Get time
TimeOfDay tod = tm->get gmt();
cout < "Time in Greenwich is "
< setw(2) < setfill('0') < tod.hour < ":"
< setw(2) < setfill('0') < tod.minute < ":"
< setw(2) < setfill('0') < tod.second < endl;
}
catch (const CORBA::Exception &) {
cerr < "Uncaught CORBA exception" < endl;
return 1;
}
catch (...) {
return 1;

}

return 0;

53

IT-SC book: Advanced CORBA® Programming with C++

We must include the client-side header file, time.hh, to make the IDL definitions
available to the client application code. The code then does a simple argument check and
initializes the ORB run time with ORB_init:

#include <iostream.h>
#include <iomanip.h>
#include "time.hh"

int

main (int argc, char * argv[])

{

try {
// Check arguments
if (argc '= 2) {
cerr < "Usage: client IOR string" < endl;
throw 0;

}

// Initialize orb
CORBA: :0RB var orb = CORBA::0ORB init (argc, argv);

Note that we throw zero to implement a simple form of error handling. An exception
handler at the end of main ensures that the client exits with non-zero status if anything
goes wrong.

The next few lines convert the command-line argument, which is expected to be a
stringified reference to a Time object, back into an object reference:

// Destringify argv[1l]
CORBA: :Object var obj = orb->string to object(argv[1l]);
if (CORBA::is nil(obj)) {

cerr < "Nil Time reference" < endl;

throw 0;

This results in a reference to an object of type Object. However, before the client can
invoke an operation via the reference, it must down-cast the reference to the correct type,
namely Time:

// Narrow

Time var tm = Time:: narrow(obj);

if (CORBA::is nil(tm)) {
cerr < "Argument is not a Time reference" < endl;
throw 0;

The call to Time:: narrow has the same purpose as a C++ dynamic cast: it tests
whether a reference is of the specified type. If the reference has the specified type,
_narrow returns a non-nil reference and nil otherwise.

54

IT-SC book: Advanced CORBA® Programming with C++

The client now holds an active object reference to the Time object in the server and can
use that object reference to obtain the current time:

// Get time
TimeOfDay tod = tm->get gmt();
cout < "Time in Greenwich is "
< setw(2) < setfill('0') < tod.hour < ":"
< setw(2) < setfill('0') < tod.minute < ":"
< setw(2) < setfill('0') < tod.second < endl;

The call to get gmt invokes a remote procedure call to the get gmt method in the
server. The call blocks until the current time is returned by the server; the client prints the
result on stdout. Note that this will work no matter where the server is located. The
ORB transparently takes care of locating the Time object and dispatching the request to
it.

The remainder of the client consists of two exception handlers that implement simple
error handling. (The closing curly brace at the start of this code fragment completes the
try block we opened at the beginning of main.)

}

catch (const CORBA::Exception &) {
cerr < "Uncaught CORBA exception" < endl;
return 1;

}

catch (...) {
return 1;

}

return 0;

Again, how to compile the client depends on your compiler and ORB. The main point is
that we must compile both the generated stub code (timeC.cc) and our client
application code, which we assume is in the file myclient.cc. The link line also
depends on your compiler and ORB. We assume here that both client and server use the
same ORB run-time library:

$ CC -c -I/opt/myORB/include timeC.cc
$ CC -c -I/opt/myORB/include myclient.cc
$ CC -o myclient timeC.o myclient.o -L/opt/myORB/lib -lorb

Assuming that there are no errors, this results in a client executable called myclient.

3.5 Running Client and Server

To run our application, we must first start the server. We redirect the object reference
string printed by the server into a file so that we can easily pass it on the command line

55

IT-SC book: Advanced CORBA® Programming with C++

for the client. To retain use of the terminal while the server is running, we run the server
in the background.

After the server is running, we start the client, passing it the object reference printed by
the server on the command line. The client reads the current time via the passed reference
and prints the time on stdout before it exits again. Finally, we terminate the server by
sending ita STGTERM:

$./myserver >/tmp/myserver.ref &

[1] 7898

$./myclient ‘cat /tmp/myserver.ref’

Time in Greenwich is 01:35:39

$ kill %1

[1] + Terminated ./myserver &

$

3.6 Summary

This chapter presents a simple, but complete, CORBA application. As you can see,
building a complete application involves four basic steps:

Step 1.
Define the IDL.

Step 2.
Compile the IDL.

Step 3.
Write and compile the server.

Step 4.
Write and compile the client.
Of course, you may be writing a client to communicate with an existing server, in which
case steps 1 and 3 are unnecessary.
Looking back at the source code, you may be intimidated by the number of lines that is
required for something as simple as this application. However, you need to keep in mind
that most of the code in both client and server is boilerplate and seldom changes. In fact,
the client really consists of only a single line that is interesting as far as the application is
concerned: namely, the call to get gmt. Similarly, the server contains only a few
interesting lines: namely, the body of the get gmt method.
Our minimal application is so small that the source code is dominated by the number of
lines required to initialize the ORB run time. (In a more realistic application, that code
would be encapsulated by a wrapper class.) As applications get larger, the overhead
incurred by CORBA remains fixed, so almost all the code you write can concern itself
with the actual application logic instead of the details of how to communicate. This is one
major advantage of CORBA: it relieves you of the burden of dealing with infrastructure
concerns and allows you to put your effort where you really need it—namely, toward
developing the business logic of your application.

56

IT-SC book: Advanced CORBA® Programming with C++

Part I1I: Core CORBA

57

IT-SC book: Advanced CORBA® Programming with C++

Chapter 4. The OMG Interface Definition Language

4.1 Chapter Overview

In this chapter we present the OMG Interface Definition Language (IDL). We start by
discussing the role and purpose of IDL, explaining how language-independent
specifications are compiled for particular implementation languages to create actual
implementations. Sections 4.4 through 4.7 present the low-level (and sometimes
boring) details you must eventually confront with any programming language. You may
wish to skim this material and return to it later. Sections 4.8 through 4.20 cover the
core IDL concepts of interfaces, operations, exceptions, and inheritance. These concepts
have profound influence on the behavior of a distributed system and should be read in
detail. Section 4.21 discusses recent changes and additions to IDL.

4.2 Introduction

The OMG IDL is CORBA's fundamental abstraction mechanism for separating object
interfaces from their implementations. OMG IDL establishes a contract between client
and server that describes the types and object interfaces used by an application. This
description is independent of the implementation language, so it does not matter whether
the client is written in the same language as the server.

IDL definitions are compiled for a particular implementation language by an IDL
compiler. The compiler translates the language-independent definitions into language-
specific type definitions and APIs. These types and APIs are used by the developer to
provide application functionality and to interact with the ORB. The translation algorithms
for various implementation languages are specified by CORBA and are known as
language mappings. Currently, CORBA defines language mappings for C, C++,
Smalltalk, COBOL, Ada, and Java. Independent efforts are under way to provide
additional language mappings for Eiffel, Modula 3, Lisp, Perl, Tcl, Python, Dylan,
Oberon, Visual Basic, and Objective-C. Some of these mappings may eventually become
standards.

Because IDL describes interfaces but not implementations, it is a purely declarative
language. There is no way to write executable statements in IDL, and there is no way to
say anything about object state (execution and state are implementation concerns).

IDL definitions focus on object interfaces, the operations supported by those interfaces,
and exceptions that may be raised by operations. This requires quite a bit of supporting
machinery; in particular, a large part of IDL is concerned with the definition of data types.
This is because data can be exchanged between client and server only if their types are
defined in IDL. You cannot exchange arbitrary C++ data between client and server
because it would destroy the language independence of CORBA. However, you can

58

IT-SC book: Advanced CORBA® Programming with C++

always create an IDL type definition that corresponds to the C++ data you want to send,
and then you can transmit the IDL type.

We present the full syntax and semantics of IDL here. Because much of IDL is based on
C++, we focus on those areas where IDL differs from C++ or constrains the equivalent
C++ feature in some way. IDL features that are identical to C++ are mentioned mostly by
example. You can find the full IDL specification in [18].

Note that there are many interface definition languages, typically all called "IDL." For
example, DCE uses its own version of an interface definition language to describe types
and remote procedure calls. In this book, when we use IDL, we are referring to the IDL
defined and published by the OMG.

4.3 Compilation

An IDL compiler produces source files that must be combined with application code to
produce client and server executables. In this section, we present only a conceptual view
of this process because CORBA does not standardize the development environment. This
means that details, such as the names and number of generated source files, vary from
ORB to ORB. However, the concepts are the same for all ORBs and implementation
languages.

The outcome of the development process is a client executable and a server executable.
These executables can be deployed anywhere, whether they are developed using the same
ORB or different ORBs and whether they are implemented using the same or different
languages. The only constraint is that the host machines must provide the necessary run-
time environment, such as any required dynamic libraries, and that connectivity can be
established between them.

4.3.1 Single Development Environment for Client and Server
Figure 4.1 shows the situation when both client and server are developed in C++ and
use the same ORB. The IDL compiler generates four files from the IDL definition: two

header files (types.hh and serv.hh), a stub file (stubs.cc), and a skeleton file
(skels.cc).

59

IT-SC book: Advanced CORBA® Programming with C++

Figure 4.1 Development process if client and server share the same
development environment.

STl IDL “Server ™\
\ Developer / f‘;nume Compiler \Dwelupe _/
_,.-" M, "'__
f{." \"\.) -
F: ‘_,.-' f" oy
H
E'E}'pes.rchj ﬂtubs.u’:c\l Fapy hh 31e1ﬂ E_‘L [
i
__\w_'_,_,.-'-'_‘- -h\"'rv—"'---'-.-\- \w.-n*"#‘“
I
f’ﬁa entﬂ-‘ Cliant RPC Servar
: E] ey
‘. Developer i Executable - Executable
— i |
I i
p S oy I
C++ ORE
Run-Tims

Library

The types.hh header file contains definitions that correspond to the types used in the
IDL. It is included in the source code of both client and server to ensure that client and
server agree about the types and interfaces used by the application.

The serv.hh header file contains definitions that correspond to the types used in the
IDL, but the definitions are specific to the server side, so this file is included only in the
server source code. (serv.hh includes types.hh.)

The stub source code provides an API to the client for sending messages to remote
objects. The client source code (app.cc, written by the client developer) contains the
client-side application logic. The stub and client code are compiled and linked into the
client executable.

The skeleton file contains source code that provides an up-call interface from the ORB
into the server code written by the developer and provides the connection between the
networking layer of the ORB and the application code. The server implementation file
(impl.cc, written by the server developer) contains the server-side application logic
(the object implementations, properly termed servants). The skeleton and stub source
code and the implementation source code are compiled and linked into the server
executable.

Both client and server also link with an ORB library that provides the necessary run-time
support.

60

IT-SC book: Advanced CORBA® Programming with C++

You are not limited to a single implementation of a client or server. For example, you can
build multiple servers, each of which implements the same interfaces but uses different
implementations (for example, with different performance characteristics). Multiple such
server implementations can coexist in the same system. This arrangement provides one
fundamental scalability mechanism in CORBA: if you find that a server process starts to
bog down as the number of objects increases, you can run an additional server for the
same interfaces on a different machine. Such federated servers provide a single logical
service that is distributed over a number of processes on different machines. Each server
in the federation implements the same interfaces but hosts different object instances. Of
course, federated servers must somehow ensure consistency of any databases they share
across the federation, possibly using the OMG Concurrency Control Service [21].

Some ORBs also offer load-balancing features that allow a number of servers to
implement the same objects redundantly; the ORB automatically dispatches requests to
the server with the lowest load or dispatches requests on a round-robin basis. However,
the CORBA specification currently does not standardize load balancing and redundancy,
so any such features are proprietary.

4.3.2 Different Development Environments for Client and
Server

Client and server cannot share any source or binary components if they are developed in
different languages or different ORBs. Clearly, a client written in Java cannot include a
C++ header file. Similarly, sharing source code or binaries from different ORB vendors is
impossible because it would create tight implementation dependencies among clients,
servers, and run-time libraries.

Figure 4.2 shows the situation when a client written in Java is developed with vendor
A's ORB and the corresponding server is written in C++ and developed with vendor B's
ORB. In this case, the client and server developers are completely independent, and each
uses his or her own development environment, language mapping, and ORB
implementation. The only link between client and server developers is the IDL definition
each one uses.

61

IT-SC book: Advanced CORBA® Programming with C++

Figure 4.2 Development process for different development environments.

DL
Developer
DL
ORB A Source ORE B
e
s ;
]
Clisnt IDL-to-Java | IDL-to-C++ Sarvar
Developer Compilar I Compiler Developar
]
I [| o N
Y Y : s ¥ Yot Yo
|
tmjf\ stubs. java | types.hh| [stubs.cs| | serv.hh | [skels.cc| | impl.ce
M :
]
|
I
I

Y Y

Java ORB . RPC]
Fun-Time - e Gnimbl &E‘———‘. £ SEP:ELI
Libl’al’j" NBCLADe | Xecuiablie

C++ ORB
Run-Time
Library

Because only the stubs are used by the client, the client developer simply ignores the
skeleton generated by the IDL compiler or suppresses the skeleton code generation.

4.4 Source Files

The IDL specification defines a number of rules for the naming and contents of IDL
source files.

4.4.1 File Naming

The names of source files containing IDL definitions must end in .id1. For example,
CCS.1idl is a valid source file name. An IDL compiler is free to reject source files
having other file name extensions.

For file systems that are case-insensitive (such as DOS), the case of the file name
extension is ignored, so CCS. IDL is legal. For file systems that are case-sensitive (such
as UNIX), the extension must be in lowercase and CCS. IDL is not legal.

4.4.2 File Format

IDL is a free-form language. This means that IDL allows free use of spaces, horizontal
and vertical tab stops, form feeds, and newline characters (any of these characters serves
as a token separator). Layout and indentation do not carry semantics, so you can choose
any textual style you prefer. You may wish to follow the style we have used for the IDL
examples throughout this book. These examples follow the OMG style guide for IDL.

62

IT-SC book: Advanced CORBA® Programming with C++

4.4.3 Preprocessing

IDL source files are preprocessed. The preprocessor can be implemented as part of the
compiler, or it can be an external program. However, its behavior is identical to the C++
preprocessor. This means that the usual C++ rules for lexical translation phases apply: the
preprocessor maps source file characters onto the source character set, replaces trigraphs,
concatenates lines ending in a backslash, replaces comments with white space, and so on.
The most common use of the preprocessor is for #1include directives. This permits an
IDL definition to use types defined in a different source file. You may also want to use
the preprocessor to guard against double inclusion of a file:

#ifndef MYMODULE IDL
#define MYMODULE IDL_

module MyModule { /* ... */ };

#endif /* MYMODULE IDL */

Another frequent use of the preprocessor is to control the repository IDs that are
generated by the compiler with #pragma directives. We look at the #pragma directives
specified by CORBA in Section 4.19.

4.4.4 Definition Order

IDL constructs, such as modules, interfaces, or type definitions, can appear in any order
you prefer. However, identifiers must be declared before they can be used.

4.5 Lexical Rules

IDL's lexical rules are almost identical to those of C++ except for some differences in
identifiers.

4.5.1 Comments

IDL definitions permit both the C and the C++ style of writing comments:
/ *
* This is a legal IDL comment.

*/
// This IDL comment extends to the end of this line.

4.5.2 Keywords

IDL uses a number of keywords, which must be spelled in lowercase. For example,
interface and struct are keywords and must be spelled as shown. There are three

63

IT-SC book: Advanced CORBA® Programming with C++

exceptions to this lowercase rule: Object, TRUE, and FALSE are all keywords and
must be capitalized as shown.

4.5.3 Identifiers

Identifiers begin with an alphabetic character followed by any number of alphabetics,
digits, or underscores. Unlike C++ identifiers, IDL identifiers cannot have a leading
underscore (but see also Section 4.21.5). In addition, IDL identifiers cannot contain
non-English letters, such as A, because that would make it very difficult to map IDL to
target languages that lack support for such characters.

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example,
TimeOfDay and TIMEOFDAY are considered the same identifier within a naming scope.
However, IDL enforces consistent capitalization. After you have introduced an identifier,
you must capitalize it consistently throughout; otherwise, the compiler will reject it as
illegal. This rule exists to permit mappings of IDL to languages (such as Pascal) that
ignore case in identifiers as well as to languages (such as C++) that treat differently
capitalized identifiers as distinct.

Identifiers That Are Keywords

IDL permits you to create identifiers that happen to be keywords in one or more
implementation languages. For example, while is a perfectly good IDL identifier but of
course is a keyword in many implementation languages. Each language mapping defines
its own rules for dealing with IDL identifiers that are keywords. The solution typically
involves using a prefix to map away from the keyword. For example, the IDL identifier
while ismappedto cxx while in C++.

This rule for dealing with keywords is workable but results in hard-to-read source code.
Identifiers such as package, then, import, PERFORM, and self will clash
with some implementation language or other. To make life easier for developers
(possibly yourself), you should try to avoid IDL identifiers that are likely to be
implementation language keywords.

4.6 Basic IDL Types

IDL provides a number of built-in basic types, and they are shown in Table 4.1.

Table 4.1. IDL basic types.

Type Range Size
short 2%t 215 -1 = 16 bits
long -2°1 to 2% -1 = 32 bits
unsigned short 0 to 2'%-1 = 16 bits
unsigned long 0 to 232-1 = 32 bits
float IEEE single-precision = 32 bits

64

IT-SC book: Advanced CORBA® Programming with C++

double IEEE double-precision = 64 bits

char ISO Latin-1 = 8 bits
string ISO Latin-1, except ASCII NUL Variable-length
boolean TRUE Or FALSE Unspecified
octet 0-255 = 8 bits

any Run-time identifiable arbitrary type Variable-length

The CORBA specification requires that language mappings preserve the size of these
types as shown. The value ranges shown in Table 4.1 need not be maintained by all
language mappings, but CORBA requires implementations to document any deviations
from the specified ranges. (The C++ mapping preserves all value ranges.)

These requirements may sound confusing. For example, when you look at the size
requirements, you will find that IDL specifies only a lower bound instead of an exact size.
The reason is that some CPU architectures do not have, for example, an 8-bit character
type or a 16-bit integer type; on such CPUs, these types are mapped to a type larger than
8 or 16 bits. Similarly, some language mappings cannot preserve the full range of all
types; for example, Java does not have unsigned integers and maps both unsigned
long and long to Java int. To avoid restricting the possible target environments and
languages, the CORBA specification leaves the size and range requirements for IDL
basic types loose.

All the basic types (except octet) are subject to changes in representation as they are
transmitted between clients and servers. For example, a 1ong value undergoes byte
swapping when sent from a big-endian to a little-endian machine. Similarly, characters
undergo translation in representation if they are sent from an EBCDIC to an ASCII
implementation. What happens if a character does not have a precise match in the target
character set is implementation-dependent. For example, the EBCDIC character — does
not have an ASCII equivalent. An ORB might translate EBCDIC - into ASCII ~, or it
might raise a DATA CONVERSION exception (see Section 4.10) to indicate that
translation is impossible. Characters may also change in size (not all architectures use 8-
bit characters). However, these changes are transparent to the programmer and do exactly
what is required.

Table 4.1 does not include a pointer type. There are a number of good reasons for this.
Pointer types are used much less in object-oriented programming than in non-OO
languages.

Some implementation languages (such as COBOL and Java) do not support pointers.
Pointers would complicate the implementation of marshaling for ORB vendors and
would incur additional run-time costs.

As you will see in Section 4.8.2, the lack of pointers is no great hardship. IDL uses
object references to achieve what in a non-OO environment would normally be done with
a pointer. In effect, object references are pointers. However, object references can denote

65

IT-SC book: Advanced CORBA® Programming with C++

only objects but cannot point to data. IDL supports recursive data types, such as trees,
without introducing a data pointer type (see Section 4.7.8).

CORBA recently extended IDL to support additional numeric and character types.
Because many ORBs do not yet provide these types, we cover them separately in
Section 4.21.

4.6.1 Integer Types

IDL does not have a type int, so there are no guessing games as to its range. An IDL
short is mapped to at least a 2-byte type, and IDL 1ong is mapped to at least a 4-byte
type.

Some languages (notably Java) do not support unsigned types. Because of this,
unsigned short and unsigned long map toJava short and int, respectively.
This means that a Java programmer must ensure that large unsigned IDL values are
treated correctly when represented as Java signed values.

4.6.2 Floating-Point Types

These types follow the IEEE specification for single- and double-precision floating-point
representation [/]. If an implementation cannot support IEEE format floating-point
values, it must document how it deviates from the IEEE specification.

4.6.3 Characters

IDL characters support the ISO Latin-1 character set [8], which is a superset of ASCIL.
The bottom 128 character positions (0—127) are identical to ASCII. The top 128 character
positions (128-255) are taken up by characters such as A, B, and C. This arrangement
allows most European languages to be used with an 8-bit character set. Recently, IDL
was extended to support wide characters and strings. This permits use of arbitrary wide
character sets, such as Unicode.

4.6.4 Strings

IDL strings support the ISO Latin-1 character set with the exception of ASCII NUL (0).
Disallowing NUL inside IDL strings is a concession to C and C++; the notion of NUL-
terminated strings is so deeply ingrained in C and C++ that allowing embedded NUL
characters would make the use of IDL strings impossibly difficult in these languages.

IDL strings can be bounded or unbounded. An unbounded string has the IDL type
string and can grow to any length. A bounded string type specifies an upper limit on
the length of the string. For example, string<10> is a string type that permits only
strings of up to ten characters.

66

IT-SC book: Advanced CORBA® Programming with C++

The bound of a string does not include any terminating NUL character, so the string
"Hello" will fit into a string of type string<5>. (Many programming languages do
not represent strings as NUL-terminated arrays, so the concept of NUL termination does
not apply to IDL.)

Most C and C++ ORB implementations ignore bounded strings and treat them as if they
were unbounded. This limitation arises because C and C++ do not support bounded
strings natively, and emulating bounded string support would result in awkward language
mappings. As a C++ programmer, you are made responsible for enforcing the bound at
run time.

4.6.5 Booleans

Boolean values can have only the values TRUE and FALSE. IDL makes no requirement
as to how these values are to be represented in particular languages nor about the size of a
Boolean value.

4.6.6 Octets

The IDL type octet is an 8-bit type that is guaranteed not to undergo any changes in
representation as it is transmitted between address spaces. This guarantee permits
exchange of binary data so that it is not tampered with in transit. All other IDL types are
subject to changes in representation during transmission.

4.6.7 Type any

Type any is a universal container type. A value of type any can hold a value of any
other IDL type, such as 1ong or string, or even another value of type any. Type any
can also hold object references or user-defined complex types, such as arrays or
structures.

Type any is useful when you do not know at compile time what IDL types you will
eventually need to transmit between client and server. Type any is IDL's equivalent of
what in C++ is typically achieved with a void * or a stdarg variable argument list.
However, type any is substantially safer because it is self-describing (you can find out at
run time what type of value is contained in an any). Manipulation of values of type any
is type-safe; attempts to, for example, extract a float as a string return an error
indication. As a result, careless misinterpretation of a value as the wrong type is much
less likely than it is with the completely type-unsafe mechanism of using a void *.

We look at type any and its C++ mapping in detail in Chapter 15.

67

IT-SC book: Advanced CORBA® Programming with C++

4.7 User-Defined Types

In addition to providing the built-in basic types, IDL permits you to define complex types:
enumerations, structures, unions, sequences, and arrays. You can also use typedef to
explicitly name a type.

4.7.1 Named Types

You can use typedef to create a new name for a type or to rename an existing type:

typedef short YearType;
typedef short TempType;
typedef TempType TemperatureType; // Bad style

The usual style considerations apply to typedef. The definition of TempType in this
case is useful. To the reader, it indicates that a value represents a temperature rather than
some non-specific number. Similarly, defining YearType allows the reader to see that
some other number represents a calendar year. The fact that both temperatures and years
are represented as short is effectively abstracted away by this style, and that makes the
specification more readable and self-documenting.

On the other hand, the definition of TemperatureType is stylistically poor because it
needlessly creates an alias for an existing type instead of introducing a conceptually
different type. In the preceding specification, TempType and TemperatureType
can be used interchangeably. This can lead to inconsistency and confusion and so should
be avoided.

Be careful about the semantics of IDL typedef. It depends on the language mapping
whether an IDL typedef results in a new, separate type or only an alias. In C++,
YearType and TempType are compatible types that can be used interchangeably.
However, CORBA provides no guarantee that this must be true for all implementation
languages. For a mapping to another language, such as Pascal, conceivably YearType
and TempType could be mapped to incompatible types. To avoid potential future
problems, you should define each logical type exactly once and then use that definition
consistently throughout your specification.

4.7.2 Enumerations

An IDL enumerated type definition looks much like the C++ version:

enum Color { red, green, blue, black, mauve, orange };

This definition introduces a type named Color that becomes a new type in its own right
(there is no need to use a t ypedef to name the type). IDL guarantees that enumerators
are mapped to a type with at least 32 bits.

68

IT-SC book: Advanced CORBA® Programming with C++

IDL does not define how ordinal values are assigned to enumerators. For example, you
cannot assume that the enumerator orange will have the value 5 in different
implementation languages. IDL guarantees only that the ordinal values of enumerators
will increase from left to right, so red will compare less than green in all
implementation languages. However, the actual ordinal values are not further constrained
and may not even be contiguous.

Unlike C++, IDL does not permit you to control the ordinal values of enumerators. This
limitation exists because many implementation languages do not allow control of
enumerator values. If the feature were permitted, it would result in awkward mappings
for such languages.

enum Color { red = 0, green = 7 }; // Not legal IDL!

In practice, you do not care about the values used for enumerators as long as you do not
transmit the ordinal value of an enumerator between address spaces. For example,
sending the value 0 to a server to mean red is asking for trouble because the server may
not use 0 to represent red in its implementation language. Instead, simply send the value
red itself. If red is represented by a different ordinal value in the receiving address
space, that value will be translated by the ORB run time as appropriate.

As with C++, IDL enumerators enter the enclosing namespace, so the following is illegal:

enum InteriorColor { white, beige, grey };
enum ExteriorColor { yellow, beige, green }; // beige redefined

IDL does not permit empty enumerations.
4.7.3 Structures

IDL supports structures containing one or more named members of arbitrary type,
including user-defined complex types. For example:

struct TimeOfDay {
short hour;
short minute;
short second;

}s

As in C++, this definition introduces a new type called TimeOfDay. Structure
definitions form a namespace, so the names of the structure members need to be unique
only within their enclosing structure. The following is legal (if ugly) IDL:

struct Outer {
struct FirstNested ({
long first;
long second;

69

IT-SC book: Advanced CORBA® Programming with C++

} first;

struct SecondNested {
long first;
long second;

} second;

}i

The example demonstrates that the various first and second identifiers do not cause
a name collision. However, such in-line definition of types is hard to read, so the
preceding is better expressed as follows:

struct FirstNested {
long first;
long second;
}i
struct SecondNested {
long first;
long second;
}i
struct Outer {
FirstNested first;
SecondNested second;
bi

Note that this definition is much more readable but is not exactly equivalent to the
previous example. The nested version adds only the single type name Outer to the
global namespace, whereas the non-nested version also adds FirstNested and
SecondNested.

Of course, this definition still must be considered bad style because it ruthlessly reuses
the identifiers first and second for different purposes. In the interest of clarity, you
should avoid such reuse even though it is legal.

4.7.4 Unions

IDL unions differ quite a bit from their C++ counterparts. In particular, they must be
discriminated; they allow multiple case labels for a single union member; and they
support an optional default case:

union ColorCount switch (Color) {
case red:

case green:

case blue:

unsigned long num_in stock;
case black:

float discount;
default:

string order details;

}s

70

IT-SC book: Advanced CORBA® Programming with C++

The semantics of unions are the same as in C++. Only one member of the union is active
at a time. However, IDL adds a discriminator (similar to a Pascal variant record) that
indicates which member is currently active. In this example, num in stock is active
when the discriminator value is red, green, or blue, and discount is active when
the discriminator value is black. Any other discriminator value indicates that
order details isactive.

Union members can be of any type, including user-defined complex types. The
discriminator type must be an integral type (char, an integer type, boolean, or an
enumeration type). You cannot use octet as a union discriminator type.

As in C++, unions create a namespace, so union member names need be unique only
within the enclosing union.

The default case of a union is optional. However, if it is present, there must be at least
one unused explicit case label in the range of discriminator values; otherwise, the union
is illegal, as in the following example:

union U switch (boolean) {
case FALSE:

long count;
case TRUE:
string message;
default: // Illegal, default case cannot happen

float cost;

}i

The compiler rejects this because there is no value left over that could ever activate the
default member of the union.

The usual caveat for unions also applies to IDL: any attempt to interpret a value as a type
other than the type of the active member results in undefined behavior. Unions are not
meant to be used as a backdoor mechanism for type casting, so if you insist on
interpreting a float value as a string, you will likely end up with a core dump.

We recommend that you never use the default case for unions. In addition, you should

never use more than one case label per member. As you will see in Section 6.16, this
practice substantially simplifies use of the generated C++ code for unions.

One particular use of IDL unions has become idiomatic and deserves special mention:

union AgeOpt switch (boolean) {
case TRUE:
unsigned short age;

}i

71

IT-SC book: Advanced CORBA® Programming with C++

Unions such as this one are used to implement optional values. A value of type AgeOpt
contains an age only if the discriminator is TRUE. If the discriminator value is FALSE,
the union is empty and contains no value other than the discriminator itself.

IDL does not support optional or defaulted parameters, so the preceding union construct
is frequently used to simulate that functionality. This is particularly useful if no special
sentinel ("dummy") value is available to indicate the "this value is absent" condition for a
parameter.

You should exercise caution before deciding to use unions in your IDL. In some cases,
unions are a good way to express the desired semantics and provide better static type
safety than type any. However, unions are frequently used to simulate overloading. By
passing a union with several members as a parameter, you can achieve with a single
operation what would otherwise require several separate operations. For example:

enum InfoKind { text, numeric, none };
union Info switch (InfoKind) {
case text:
string description;
case numeric:
long index;
}i
interface Order {
void set details(in Info details);

b

With this definition, the operation set details can do triple duty and accept
parameters of type st ring or 1ong or (conceptually) accept no parameter at all to clear
the details stored by an Order object. Although this looks attractive at first, the client
must supply a correctly initialized union parameter to the operation, something that is
more complex and error-prone than passing a simple value. The following approach is
simpler and easier to understand:

interface Order {
void set text details(in string details);
void set details index(in long index);
void clear details();

bi

This definition is semantically equivalent to the earlier one but abandons the union in
favor of three separate operations.

As always, you must exercise judgment when designing your interfaces. If you are
tempted to use a union, double-check to see whether there is a simpler or more elegant
solution. Too often, unions are abused to create operations that are like Swiss army
knives. Typically, it is better to have several operations, each operation doing exactly one
thing, than to have a single operation that does many different things. If you compare the

72

IT-SC book: Advanced CORBA® Programming with C++

preceding definitions, you will probably agree that the second one, which avoids the
union, is much easier to understand.

4.7.5 Arrays

IDL supports both single- and multidimensional arrays of arbitrary element type. For
example:

typedef Color ColorVector[10];
typedef string IDtable[10]([20];

As in C++, the array bounds must be positive constant integer expressions. You must use
a typedef to declare array types. The following declaration is syntactically invalid:

Color ColorVector[10]; // Invalid IDL, missing typedef

All array dimensions must be specified. IDL does not support open arrays because IDL
does not support pointers. (In C and C++, open arrays are just pointers in disguise.) The
following is illegal:

typedef string IDtable[][20]; // Error, open arrays are illegal

An array type definition determines the number of elements of an array, but IDL does not
specify how arrays are to be indexed in different implementation languages. This means
that you cannot portably send an array index from a client to a server and expect the
server to interpret the index correctly. For example, the client may be written in C++, in
which arrays are indexed starting at 0, but the server may be written in a different
language, which may start array indexes at 1.

To portably pass array indexes across implementations, you must create a convention that
determines the logical origin for indexes. For example, you can use the convention that
arrays are indexed starting at 0. Clients and servers then are responsible for converting
between the logical index (using a 0 origin) and the actual index value used by their
respective implementation languages.

In practice, non-portable use of array indexes rarely causes a problem because it is easier
and more intuitive to send the array element itself instead of its index.

4.7.6 Sequences

Sequences are variable-length vectors. Sequences can contain any element type and can
be bounded or unbounded:

typedef sequence<Color> Colors; // Unbounded sequence
typedef sequence<long, 100> Numbers; // At most 100 numbers

73

IT-SC book: Advanced CORBA® Programming with C++

An unbounded sequence can hold any number of elements up to the memory limits of
your platform.

A bounded sequence can hold any number of elements up to the bound.
Either sequence can be empty—that is, it can contain no elements.

Sequences can contain elements that are themselves sequences. This arrangement allows
you to create lists of lists (which are often used to model trees):

typedef sequence<Numbers> ListOfNumberVectors;

IDL permits you to create sequences in which the element type is anonymous, so the
following definition is legal:

typedef sequence<sequence<long, 100> > ListOfNumberVectors;

This is equivalent to the preceding definition but defines the nested sequence inline. The
outer sequence has a well-defined named type (ListOfNumberVectors). However,
the inner sequence of 1ong is of anonymous type.

Anonymous types make it impossible to declare a variable of that type in the
implementation code (the type has no name, so you cannot declare a variable of that type).
This can make it impossible to initialize certain data structures, or to pass a value of
anonymous type as an operation argument, because you cannot declare parameters of
anonymous type.

It is possible that anonymous types may be banned in a future revision of CORBA.
Currently, anonymous types are permitted in the definition of structures, unions,
sequences, arrays, and exceptions. They all share the same problems when mapped to
implementation languages, so you should avoid anonymous IDL types.

A final glitch about in-line definition of nested sequences is the following:

typedef sequence<sequence<long>> ListOfNumberVectors; // Error

This causes a syntax error because the string >> is parsed as a right-shift operator instead
of two separate > tokens. To avoid the problem, you must insert white space or a
comment between the two > tokens:

typedef sequence<sequence<long> > ListOfNumberVectors; // OK

If you use named types instead of in-line definitions, this parsing problem never arises.

74

IT-SC book: Advanced CORBA® Programming with C++

4.7.7 Sequences Versus Arrays

Sequences and arrays are similar—both provide a vector of elements of the same type.
Here are some guidelines to help you decide whether a sequence or an array is the more

appropriate type.
If you require a variable-length list, use a sequence.

If you have a list with a fixed number of elements, all of which exist at all times, use an
array.

Use sequences to implement recursive data structures.

Use a sequence to pass a sparse array to an operation (a sparse array is an array in which
most elements have the same value). Sending a sparse array as a sequence is more
efficient because only those elements that do not have the default value are transmitted,
whereas for arrays, all elements are sent.

As an example of encoding a sparse array using a sequence, consider an application that
transmits 2-D matrices containing numbers (such matrices frequently contain mostly
zeros and are therefore sparse). Here is a simple IDL definition to transmit the array:

typedef long Matrix[100]([100];
interface MatrixProcessor {
Matrix invert matrix(in Matrix m);

}s

The invert matrix operation accepts a matrix containing 10,000 numbers and
returns an inverted matrix containing another 10,000 numbers. This is fine, but it requires
transmission of 80,000 bytes of data (40,000 bytes in each direction). If matrices typically
contain a large number of zeros, it is more efficient to transmit only the non-zero
elements:

struct NonZeroElement {
unsigned short row; // row index
unsigned short col; // column index
long val; // value in this cell
}i

typedef sequence<NonZeroElement> Matrix;

interface MatrixProcessor {
Matrix invert matrix(in Matrix m);

}s

This version of the interface is far more efficient in bandwidth than the previous version
provided that most matrices contain mostly zeros. Instead of sending all the elements
every time, we send the row and column index of the non-zero elements. For each

75

IT-SC book: Advanced CORBA® Programming with C++

sequence element, we transmit 8 bytes, so the sparse version is more efficient if at least
half the elements are zeros.

Note that IDL provides no performance guarantees for sequences and arrays. Instead, the
run-time performance for sequences and arrays depends on the language mapping. The
C++ mapping guarantees random array access in constant time because it maps IDL
arrays to C++ arrays. For sequences, the C++ mapping provides no performance
guarantees. Most C++ mapping implementations provide constant-time performance for
random access to sequences. However, constant-time performance is not guaranteed by
the specification.

4.7.8 Recursive Types

Even though IDL does not have pointers to data, it supports recursive data types.
Recursion is legal only for structures and unions. In either case, recursion is expressed as
an anonymous sequence of the incomplete (recursive) type.

Recursion Via Structures

Structures can contain data members that are sequences of the structure under definition,
making the structure definition recursive. Here is an example:

struct Node {
long value;
sequence<Node> children;

}i

This code defines a data structure consisting of nodes, in which each node contains a
long value and a number of descendant nodes. Such constructs can be used to express
arbitrary complexity graphs, such as expression trees; leaf nodes, which have an out-
degree of one, are indicated by an empty descendant sequence.

Recursion Via Unions

A recursive sequence must have an incomplete structure or union type as its element type
(Node in the preceding example). The sequence can be bounded or unbounded. Here is
another example that defines an expression tree for bitwise and logical operators on
long values:

enum OpType {
OP AND, OP OR, OP NOT,
OP_ BITAND, OP BITOR, OP BITXOR, OP BITNOT
}i
enum NodeKind { LEAF NODE, UNARY NODE, BINARY NODE };
union Node switch (NodeKind) {
case LEAF NODE:
long value;
case UNARY NODE:
struct UnaryOp {

76

IT-SC book: Advanced CORBA® Programming with C++

OpType op;
sequence<Node, 1> child;
} u op;

case BINARY NODE:
struct BinaryOp {

OpType op;
sequence<Node, 2> children;
} bin op;

}s

Note that in this example, the incomplete type for the recursion is a union (instead of a
struct) and that bounded sequences are used. The use of bounded sequences is not
mandatory but it improves the type safety of the specification. (It does not make sense for
a unary node to have more than one descendant and for a binary node to have more than
two descendants, so we might as well express this.) However, we cannot enforce at the
type level that a binary node must have exactly two descendants. The following attempt
to achieve this is simply illegal IDL because recursion must be expressed via a
sequence:

//
case BINARY NODE:
struct BinaryOp {

OpType op;
Node children([2]; // Illegal recursion, not a sequence

} bin op;
/] ...

Finally, note that the operator enumerators in this example are named OP AND, OP OR,
and so on (instead of AND, OR, and so on). This is because AND and OR are keywords in
several implementation languages, and that causes awkward language mappings.
(Remember that standard C++ has added quite a few new keywords, among them and
and or.)

Multilevel Recursion

Recursion can extend over more than one level. Here is an example that shows the
recursion on the incomplete type TwoLevelRecursive nested inside another structure
definition:

struct TwolLevelRecursive {
string id;
struct Nested {

long value;
sequence<TwoLevelRecursive> children;
} data;

}s

Mutually Recursive Structures

77

IT-SC book: Advanced CORBA® Programming with C++

Occasionally, you may find yourself in a situation when you want to implement mutually
recursive structures along the following lines:

// Not legal IDL!
typedef something Adata; // Data specific to A's

typedef whatever Bdata; // Data specific to B's
struct Astruct {
Adata data;
sequence<Bstruct, 1> nested; // Illegal - undefined Bstruct

}i

struct Bstruct {
Bdata data;
sequence<Astruct, 1> nested;

}s

This need typically arises during legacy application integration, when existing C or C++
interfaces are translated into IDL. The problem can also arise with automated translation
algorithms, such as ASN.1 to IDL conversion. Unfortunately, the preceding IDL is illegal.
It is impossible to create mutually recursive structures as shown; the compiler complains
when you try to use type Bstruct before it is defined. A forward declaration does not
solve the problem because IDL does not permit forward declarations for anything except
interfaces. However, you can use a union to achieve the desired semantics:

typedef something Adata; // Data specific to A's
typedef whatever Bdata; // Data specific to B's
enum StructType { A TYPE, B TYPE };
union ABunion switch (StructType) {
case A TYPE:
struct Acontents {
Bdata data;
sequence<ABunion, 1> nested;
} A member;
case B TYPE:
struct Bcontents {
Adata data;
sequence<ABunion, 1> nested;
} B _member;

}s

This definition is not pretty because it loses some type safety. (At the type level, it is not
enforced that an A must always contain a B and that a B must always contain an A.)
However, it works and adequately expresses the requirement.

4.7.9 Constant Definitions and Literals
IDL permits the definition of constants. Syntax and semantics are identical to C++; you
can define floating-point, integer, character, string, Boolean, octet, and enumerated

constants.! IDL does not allow you to define a constant of type any nor a user-defined
complex type. Here are some examples of legal constants:

78

IT-SC book: Advanced CORBA® Programming with C++

11 Octet and enumerated constants were added with the CORBA 2.3 revision, so they work
only with a CORBA 2.3 (or later) ORB.

const float PI = 3.1415926;

const char NUL = '\0';

const string LAST WORDS = "My god, it's full of stars!";
const octet MSB MASK = 0x80;

enum Color { red, green, blue };

const Color FAVORITE COLOR = green;

const boolean CONTRADICTION = FALSE; // Bad idea...
const long ZERO = 0; // Bad idea, too...

The last two definitions are marked as bad ideas because they do not add any value to the
specification (they are an example of needless aliasing and so should be avoided).
Aliases for basic types can be used to define constants, so the following is legal:

typedef short TempType;
const TempType MAX TEMP = 35; // Max temp in Celsius

IDL supports exactly the same literals as C++. For example, integer constants can be
specified in decimal, hex, or octal notation, floating-point literals use the usual C++
conventions for exponent and fraction, and character and string constants support the
standard C++ escape sequences. Here are some examples:

// Integer constants

const long Il = 123; // decimal 123

const long I2 = 0123; // octal 123, decimal 83

const long I3 = 0x123; // hexadecimal 123, decimal 291
const long I4 = 0XaB; // hexadecimal ab, decimal 171
// Floating point constants

const double D1 = 5.0e-10; // integer, fraction, & exponent
const double D2 = -3.14; // integer part and fraction part
const double D3 = .1; // fraction part only

const double D4 = 1.; // integer part only

const double D5 = .1E10; // fraction part and exponent
const double D6 = 1E10; // integer part and exponent
// Character literals

const char Cl = 'c'; // the character c

const char C2 = '\007'; // ASCII BEL, octal escape

const char C3 = '"\x41'; // ASCII A, hex escape

const char C4 = '\n'; // newline

const char C5 = '"\t'; // tab

const char C6 = '"\v'; // vertical tab

const char C7 = '"\b'; // backspace

const char C8 = '\r'; // carriage return

const char C9 = '\f'; // form feed

const char Cl10 = '"\a'; // alert

const char Cl11l = '"\\'; // backslash

const char Cl2 = '\?'; // question mark

const char C13 = '"\'"'; // single quote

// String literals

const string S1 = "Quote: \""; // string with double quote

79

IT-SC book: Advanced CORBA® Programming with C++

const string S2 = "hello world"; // simple string

const string S3 = "hello" " world"; // concatenate

const string S4 = "\xA" "B"; // two characters \
("\xA' and 'B"), \

not the single \
character '\xAB'
const string<5> BS = "Hello"; // Bounded string constant

Note that the last four lines in this example do nof contain a syntax error. The
preprocessor concatenates the final four lines, making the last three lines part of the
preceding comment.

4.7.10 Constant Expressions
IDL offers arithmetic and bitwise operators, as shown in Table 4. 2. These operators

are familiar from C++, but not all of them behave like their C++ counterparts.
Table 4.2. IDL operators.

Operator Type IDL Operators
Arithmetic +-*/%

Bitwise | &N < >> ~

Semantics for Arithmetic Operators

The arithmetic operators apply to both floating-point and integer expressions with the
exception of %, which must have integer operands.

The arithmetic operators do not support mixed-mode arithmetic. You cannot mix integer
and floating-point constants in the same expression, and there is no form of explicit type
casting. The restriction exists to keep IDL compiler implementations simple.

Integer expressions are evaluated as unsigned long unless a negative integer is
contained in the expression, which causes evaluation as 1 ong. The result is coerced back
into the target type. If intermediate values in the expression exceed the range of 1ong or
unsigned long or if the resulting value does not fit into the target type, the behavior
is undefined.

Here are some examples of arithmetic constant expressions:

const short MIN TEMP = -10;

const short MAX TEMP 35;

const short AVG TEMP (MAX_TEMP + MIN_TEMP) / 2;

const float TWICE PI = 3.14 * 2.0; // Can't use 3.14 * 2 here

Semantics for Bitwise Operators

80

IT-SC book: Advanced CORBA® Programming with C++

Bitwise operators apply only to integer expressions. Shifting a short or unsigned
short value by more than 16 bits or shifting a 1ong or unsigned long by more
than 32 bits has undefined behavior.

In C++, right-shifting a negative number has implementation-defined behavior (most
implementations sign-extend). In IDL, in contrast, the right-shift operator >> always
performs a logical shift. This means that the value of RHW MASK in this example is
guaranteed to be Oxf £ £f even though it is obtained by right-shifting a signed value:

const long ALL ONES = -1; // Oxffffffff
const long LHW MASK = ALL ONES < 16; // Oxff££0000
const long RHW MASK = ALL ONES >> 16; // 0x0000ffff, guaranteed

4.8 Interfaces and Operations

As we state in the introduction to this chapter, the focus of IDL is on interfaces and
operations. Here is a simple interface for a thermostat device:

interface Thermostat ({
// Read temperature
short get temp();
// Update temperature, return previous value
short set nominal temp(in short new temp);

}s

This definition defines a new CORBA interface type called Thermostat. The interface
offers two operations: get temp and set nominal temp. If a client accesses an
object via its interface (or, more correctly, via an object reference to that interface), it
does so by invoking operations on the interface. For example, to read the current room
temperature, a client invokes the get temp operation, and to change the setting of a
thermostat, the client invokes the set nominal temp operation.

The act of invoking an operation on an interface causes the ORB to send a message to the
corresponding object implementation. If the target object is in another address space, the
ORB run time sends a remote procedure call to the implementation. If the target object is
in the same address space as the caller, the invocation is usually accomplished as an
ordinary function call to avoid the overhead of marshaling and using a networking
protocol. Some ORBs also offer a shared memory transport to optimize calls to
implementations that are in a different address space but on the same machine.

Intuitively, IDL interfaces correspond to C++ classes, and IDL operations correspond to
C++ member functions. However, there are differences between C++ class definitions
and IDL interface definitions. IDL interfaces define only the interface to an object and
say nothing about the object's implementation. This has a number of consequences.

81

IT-SC book: Advanced CORBA® Programming with C++

IDL interfaces do not have a public, private, or protected part. By definition, everything
in an interface is public. Things are made private by simply not saying anything about
them.

IDL interfaces do not have member variables. IDL has no concept of member variables,
not even public ones. Member variables store state, and the state of an object is an
implementation concern.’2 Of course, you can create objects that store state, and you can
allow clients to manipulate that state. However, clients must do this by invoking
operations on the interface, and the details of how the state of an object is changed are
hidden behind its interface.

21 IDL attributes are not public member variables even though they look as if they
were. We discuss IDL attributes in Section 4.14.

As you can see, CORBA carefully separates the interface of an object from its
implementation. There is no way for a client to interact with an object except to invoke
an operation (or to set or get an attribute). This is what makes possible the contract
between client and server and permits clients and servers to be implemented on different
platforms or in different languages and still communicate transparently.

Every CORBA object has exactly one interface, but there can be thousands of objects of
the same interface type in a distributed system. In that respect, IDL interfaces correspond
to C++ class definitions and CORBA objects correspond to C++ class instances. The
difference is that CORBA objects can be implemented in many different address spaces.
You can implement interface instances in a single address space, spread them over a
number of processes on the same machine, or spread them over a number of processes on
different machines. However, an interface instance denoted by an object reference is
CORBA's only notion of a remotely addressable entity. IDL interfaces therefore define
the smallest granularity of distribution in a CORBA system. The way an application is
broken into interfaces determines how it can be distributed over physical address spaces;
application functionality can be distributed only if there is an interface to access that
functionality.

4.8.1 Interface Syntax

IDL interfaces form a namespace. Identifiers are scoped by their enclosing interface and
need be unique only within that interface. You can nest other definitions within the scope
of an interface. Specifically, you can nest the following constructs inside an interface
definition:

Constant definitions

Type definitions

Exception definitions

Attribute definitions

Operation definitions

Note that you cannot define an interface within another interface, so IDL does not
support the nested class concept of C++.

82

IT-SC book: Advanced CORBA® Programming with C++

Following is an example of an IDL interface showing the legal nested definitions that can
occur. (We have not yet discussed all the features shown in the example, which are
covered over the next few pages.)

interface Haystack {

exception NotFound {
unsigned long num straws_ searched;

}i
const unsigned long MAX LENGTH = 10; // Max len of a needle

readonly attribute unsigned long num straws; // Stack size

typedef long Needle; // ID type for needles
typedef string Straw; // ID type for straws

void add (in Straw s); // Grow stack
boolean remove (in Straw s); // Shrink stack
void find (in Needle n) raises (NotFound); // Find needle

bi

The scope resolution rules of IDL are the same as for C++. In the preceding example, the
type Needle is used in the definition of the £ind operation. Because both the type and
the operation definition are in the same scope, no qualification is needed. Because the
nested definitions are not hidden, you can use types defined in a different scope by using
the : : scope resolution operator to qualify a name:

interface FeedShed {
typedef sequence<Haystack> StackList;

StackList feed on hand(); // Return all stacks in shed
void add (in Haystack s); // Add another haystack

void eat (in Haystack s); // Cows need to be fed

// Look for needle in all haystacks

boolean find(in Haystack::Needle n)

raises (Haystack: :NotFound) ;
// Hide a needle
void hide (in Haystack s, in Haystack::Needle n);

}s

Note that this definition uses the qualified type names Haystack::Needle and
Haystack: :NotFound. As with C++, these names also could have been written
as ::Haystack::Needle and : :Haystack: :NotFound (a leading : : indicates
the global scope).

4.8.2 Interface Semantics and Object References
The haystack example illustrates a central IDL feature. Note that a feed shed is a
collection manager for haystacks, which in turn are collection managers for straws. You

add a haystack to the shed by passing a parameter of type Haystack to the add
operation. This illustrates two things.

83

IT-SC book: Advanced CORBA® Programming with C++

Interface names become type names in their own right.
Interface instances can be passed as parameters.

Conceptually, a client invoking the add operation passes a particular haystack to be
added to the feed shed. The semantics are as if the haystack object itself were passed.
However, what really happens is that the client passes an object reference to the add
operation, and the implementation of add appends that object reference to its list of
haystacks in the shed. In other words, an object reference acts as a pointer and can be
stored in a collection.

The semantics of object references are very much like those of a C++ class instance
pointer except that an object reference can point at an object outside the caller's address
space. It follows that if each of two clients holds an object reference to the same object,
any changes made by one client will be visible to the other client. If a client does not
want to share state changes, it must make an explicit copy of the object. We discuss how
to do this in Chapter 12.

Like C++ pointers, object references are strongly typed. The FeedShed::add
operation expects a parameter of type Haystack. You cannot pass some other interface
to the operation unless that interface is derived from Haystack. For the C++ mapping,
the type safety of object references is enforced at compile time, in keeping with the
strong typing model of C++. Conversely, for dynamically typed languages such as
Smalltalk, type safety is enforced at run time instead.

CORBA defines a special nil object reference. Like a C++ null pointer, a nil reference
denotes no object (points nowhere). Nil references are useful for implementing optional
or "not found" semantics.

The Haystack: : £ind operation looks for a particular needle in the haystack and, if it
finds the needle, removes it from the stack. The FeedShed: : find operation searches
all the haystacks in the shed for a needle. (One possible implementation is simply to
iterate over the shed's list of haystacks and invoke the £ind operation on each haystack
via its stored object reference.)

Of course, FeedShed and Haystack instances may be implemented in different
address spaces (that is the whole point of making them IDL interfaces). When the
FeedShed implementation invokes the find operation on a Haystack, it sends a
remote procedure call to the object nominated by the object reference. In OO terms, it
sends a message to the object. Because the feed shed interacts with each haystack only
through a defined interface, all the sheds and haystacks can in fact be implemented on
different machines. The semantics of this are the same as if haystack objects were
implemented in the same address space as their feed shed.

84

IT-SC book: Advanced CORBA® Programming with C++

4.8.3 Interface Communication Model

Another interesting feature of the haystack example relates to the hide operation. Notice
that a feed shed allows you to hide a needle in a nominated haystack. This is fine, but
consider the haystack interface—haystacks have no operation that would allow a needle
to be hidden. However, haystacks have a find operation that allows searching for a
needle.

The question is, how does a needle get from a feed shed into a haystack? The answer is
that we don't know. There must be some form of hidden communication between a feed
shed and its haystacks that arranges for the hiding of needles. We can only guess at what
form of communication this might be. The point is that the communication path is not
visible in the IDL definition and therefore, as far as CORBA is concerned, simply does
not exist. Presumably, needles get from sheds into haystacks by dropping out of the
farmer's pocket. (That is fine because the farmer, as far as CORBA is concerned, does not
exist either.)

It is important to note that IDL operations and attributes define the only communication
path between objects. The kinds of information traveling along the communication path
are the parameters, return value, and exceptions of an operation. In the haystack example,
it is clear that there is some other form of communication behind the scenes. This is not
uncommon in object systems. For example, iterator objects typically share some hidden
state with the collection they are iterating over.

Be aware, though, that such hidden communication creates a tight coupling between
objects (similar to friend relationships in C++). For example, if we ever wanted to
implement feed sheds and haystacks on different architectures or in different languages,
we would have to invent a mechanism for the safe exchange of needles all over again.
Because the passing of a needle from a feed shed to a haystack is not described by IDL,
this would mean having to deal with all the potentially nasty issues, such as different byte
ordering or networking APIs. You can solve the problem more easily by adding a hide
operation to Haystack that creates the required portable communication path.

Object interfaces using hidden communication are sometimes called cooperating
interfaces. In practice, cooperating interfaces are almost always implemented by the same
process because this makes it easy to share state between objects without interoperability
problems.

4.8.4 Operation Definitions

An operation definition can occur only as part of an interface definition. An operation
definition must contain

A return result type

An operation name

Zero or more parameter declarations

Here is an interface showing the simplest possible operation:

85

IT-SC book: Advanced CORBA® Programming with C++

interface simple {
void op();

b

The operation op requires no parameters and does not return a value. Because op does
not transmit any data between client and server, its only purpose can be to change the
state of the target object as a side effect. Such operations are rare, and you should be
wary if you find yourself writing definitions like this one. Typically, there are better ways
to achieve the desired state that do not require the client to make a separate call, such as
implementing the behavior of op as part of another operation that accepts or returns a
value.

The void return type must be specified. It is illegal to leave it out:

interface Simple {
op ()7 // Error, missing return type
}i
Here is a more interesting interface containing a number of operations:

interface Primes {
typedef unsigned long prime;

prime next prime(in long n);
void next prime2(in long n, out prime p);
void next prime3 (inout long n);

Directional Attributes

Notice that the parameter lists for the three operations are qualified with one of three
directional attributes:

in

The in attribute indicates that the parameter is sent from the client to the server.

out

The out attribute indicates that the parameter is sent from the server to the client.

inout

The inout attribute indicates a parameter that is initialized by the client and sent to the
server. The server can modify the parameter value, so, after the operation completes, the
client-supplied parameter value may have been changed by the server.

Directional attributes are necessary for two reasons.

Directional attributes are required for efficiency.

86

IT-SC book: Advanced CORBA® Programming with C++

Without directional attributes, there would be no way for the IDL compiler to work out
whether a parameter value is sent from the client to the server or vice versa. This in turn
would mean that all parameters would have to be transmitted over the network in both
directions just in case they are required (and even if they are not initialized).

Directional attributes enable some saving in transmission cost. An in parameter is sent
only from the client to the server, and an out parameter is sent only from the server to the
client. Only inout parameters are transmitted in both directions.

Directional attributes determine responsibility for memory management.

As you will see in Section 7.14, memory management for operation parameters varies
with the direction and type of parameter. Directional attributes control whether the client
or the server is responsible for allocating and deallocating memory for parameters.

Style of Definition

The final three operations on interface Primes all achieve the same thing. Each
operation, given some number as a starting point, returns the first prime number that is
larger than the starting point. For example, next prime of 2 is 3, and next prime
of 26 is 29. Note that the starting point is a signed integer, and that permits negative
starting points. For all starting points less than 2, next prime returns 2. However,
each operation offers a different style of interaction.

next prime accepts the starting point n as an in parameter and returns the prime as
the return value.

next prime2 accepts the starting point n as an in parameter and returns the prime in
the out parameter p. The value of p need not be initialized by the client but is modified
to contain the result when next prime?2 returns.

next prime3 uses the single inout parameter n to communicate both the starting
point and the result. The client initializes the parameter, and the operation overwrites it
with the result.

You would never write an interface like Primes, which offers three operations with
identical semantics. Instead, you would decide which style of interaction you wanted to
offer to clients. The question is, which style is best, and how do you choose it? Here are

some guidelines.

If an operation accepts one or more in parameters and returns a single result, the result
should be returned as the return value.

This style is simple and familiar to programmers.

If an operation has several return values of equal importance, all values should be
returned as out parameters, and the return type of the operation should be void.

87

IT-SC book: Advanced CORBA® Programming with C++

By making all return values out parameters, you emphasize that none of them is
"special" (whereas if one value is returned as the return value and the others are out
parameters, you can easily create the impression that the return value is somehow more
important).

If an operation returns several values but one of the values is of special importance, make
the special value the return value and return the remainder as out parameters.

This style of interaction is most often found on iterator operations. For example:

boolean get next (out ValueType value);

This operation is used to incrementally retrieve a result set one value at a time. The return
value is special because it is not part of the actual result. Instead, it indicates when the set
of values is exhausted. Using the return value to indicate the terminating condition is
useful for loop control. It allows the caller to write code along the following lines:

while (get next(val)) {
// Process val

}

This code is more natural and easier to read than code that tests a Boolean out parameter
to detect the terminating condition.

Treat inout parameters with caution.

By using an inout parameter, the designer of the interface assumes that the caller will
never want to keep the original value and that it is OK to overwrite it. Therefore, inout
parameters dictate interface policy. If the client wants to keep the original value, it must
make a copy first, and that can be inconvenient.

In C++, the equivalent of IDL inout is passing a value by reference. This is typically
done for efficiency reasons (pass by reference saves copying the data). IDL inout
parameters do not provide the same savings because on-the-wire transmission forces data
copying in both directions. The only saving of inout is in the amount of temporary
buffer space required, because clients and servers require only a single block of memory
to hold the data before and after the call. Because of this, inout parameters are typically
used only for very large values, when local memory consumption becomes an issue.

Overloading

Let's look at the Primes interface once more. A C++ programmer would likely have
written it as follows:

interface Primes {

88

IT-SC book: Advanced CORBA® Programming with C++

typedef unsigned long prime;

prime next prime(in long n);
void next prime(in long n, out prime p); // Error
void next prime (inout long n); // Error

}s

Unfortunately, this is not legal IDL. Operation names are scoped by their enclosing
interface and must be unique within that interface, so overloading of operations is
impossible. This restriction was introduced because overloading makes it difficult to map
IDL to a non-OO language such as C. For C, overloaded functions would have to use
some form of name mangling (which is fine for a compiler but not very nice for a human
developer).

Anonymous Types

Parameters and return values for operations must be declared using a named type.
Anonymous types are illegal as a return type and in parameter declarations:

sequence<long> get longs(); // Error, anonymous type
void get octets(out sequence<octet> s); // Error, anonymous type

Because anonymous types create awkward language mappings, you should make it a
habit always to use named types, even when anonymous types are legal. (They are legal
as sequence and array elements and as structure, union, and exception member
definitions.)

Constant Operations

Unlike C++, IDL does not distinguish between operations for read and write access. The
following is in error:

SomeType read value() const; // Error, illegal const qualifier

As a consequence, if a client has a reference to an object, it can invoke al// operations on
that object whether or not they modify object state. (On ORBs that provide it, you can use
the CORBA Security Service to create read-only access for specific operations.)

4.9 User Exceptions

IDL uses exceptions as a standard way to indicate error conditions. An IDL user
exception is defined much like an IDL structure, and that allows an exception to contain
an arbitrary amount of error information of arbitrary type. However, exceptions cannot be
nested. Here is an example:

exception Failed {};

exception RangeError ({
unsigned long supplied val;

&9

IT-SC book: Advanced CORBA® Programming with C++

unsigned long min permitted val;
unsigned long max_permitted val;

}s

Exceptions, like structures, create a namespace, so the exception member names need be
unique only within their enclosing exception.

Exceptions are types but cannot be used as data members of user-defined types. For
example, the following is illegal:

struct ErrorReport ({

Object obj;

RangeError exc; // Error, exception as data member
bi

An operation uses a raises expression to indicate the exceptions it may possibly raise:

interface Unreliable {
void can fail() raises(Failed);
void can_also fail (in long 1) raises(Failed, RangeError);

}i

As you can see, an operation may raise more than one type of exception. Operations must
indicate all the exceptions they may possibly raise. It is illegal for an operation to throw a
user exception that is not listed in the raises expression. A raises expression must
not be empty.

IDL does not support exception inheritance. This means that you cannot arrange error
conditions into logical hierarchies (as you can in C++) and catch all exceptions in a
subtree by catching a base exception. Instead, every user exception creates a new type
that is unrelated to any other exception type. This restriction exists because exception
hierarchies using multiple inheritance are difficult to map to languages that do not
support the concept directly. (Because exceptions have data members, the target language
would have to support implementation inheritance.) However, single inheritance for
exceptions could have been mapped quite easily, even to target languages that lack
support for implementation inheritance.

Unfortunately, even single inheritance for exceptions did not make it into the initial OMG
IDL specification, so we are stuck without it. (It is unlikely that exception inheritance
will ever be added to OMG IDL because it would be disruptive to some language

mappings.)
4.9.1 Exception Design Issues
When designing your interfaces, keep in mind that it is harder for a programmer to deal

with exceptions than ordinary return values because exceptions break the normal flow of
control. You should take some care in deciding whether something is an exception or a

90

IT-SC book: Advanced CORBA® Programming with C++

return value. Consider the following interface, which provides a database lookup
operation:

interface DB {

typedef sequence<Record> ResultsSeq;
typedef string QueryType;
exception NotFound { // Bad approach

QueryType failed query;
}i
ResultSeqg lookup (in QueryType query) raises (NotFound) ;
}i

The lookup operation in this interface returns a sequence of results in response to a
passed query. If no matching records are found, it raises Not Found. There are a number
of things wrong with this interface.

When searching a database, it is expected that a search will occasionally not locate
anything. It is therefore inappropriate to raise an exception to indicate this. Instead, you
should use a parameter or return value to indicate the empty result.

In the preceding example, raising an exception is redundant because you can indicate the
empty result by returning an empty sequence. The Not Found exception complicates the
interface unnecessarily.

The NotFound exception contains the failed query member. Because only one
query is passed to the operation, there is only one possible query that can fail—namely,
the one that was passed to 1ookup. The exception contains information that is already
known to the caller, and that is pointless.

The DB interface does not allow the caller to find out why a query failed. Was it because
no records matched the query, or was it because the query contained a syntax error?
Compare the preceding version with this one:

interface DB {

typedef sequence<Record> ResultSeq;

typedef string QueryType;

exception SyntaxError {

unsigned short position;

}i

ResultSeqg lookup (in QueryType query) raises (SyntaxError);
}i

This version is almost identical to the previous one. However, the flaws are eliminated.
A search that returns no results is indicated by returning an empty sequence instead of
raising an exception.

An exception is raised if the query itself is unacceptable. This enables the caller to
distinguish between a bad query and a query that merely did not return any results.

91

IT-SC book: Advanced CORBA® Programming with C++

The exception contains useful information. In this case, it contains the index of the
character position in the query string at which a syntax error was found.

The DB example highlights some lessons that many designers still refuse to heed. They
can be summarized as follows.

Raise exceptions only for exceptional conditions.

Operations that raise exceptions for expected outcomes are ergonomically poor. Consider
the programmer who needs to call such an operation. The C++ mapping maps IDL
exceptions to C++ exceptions. C++ exceptions are harder to deal with than normal return
values or parameters because exceptions break the normal flow of control. Forcing the
programmer to catch an exception for expected behavior is simply bad style.

Make sure that exceptions carry useful information.

It is worse than useless to tell the caller something that is already known.

Make sure that exceptions convey precise information.

An exception should convey precisely one semantic error condition. Do not lump several
error conditions together so that the caller can no longer distinguish between them.

Make sure that exceptions carry complete information.

If exceptions carry incomplete information, the caller will probably need to make further
calls to find out what exactly went wrong. If the initial call did not work, there is a good
chance that subsequent calls will also fail, and that can make precise error handling
impossible for the caller.

Design interfaces so that they cater to the needs of the caller and not the needs of the
implementer.

Computing abounds with difficult-to-use APIs that provide poor abstractions of
functionality. Typically, such APIs come into existence because they are written by the
implementer of the functionality and not its user. But good tools are built for the
convenience of the tool user; the effort required by the tool maker to create the tool is
usually considered irrelevant (within reason). APIs are tools, and you should build them
to suit their users.

Do not use normal return values or parameters to indicate errors.
As you will see in the next section, operations can raise exceptions even if they do not
have a raises expression. If you use error codes instead of exceptions, callers end up

with inconsistent and convoluted error handling because they must check for exceptions
as well as an error return code.

92

IT-SC book: Advanced CORBA® Programming with C++

4.10 System Exceptions

CORBA makes remote communication as transparent as possible. At the source code
level, sending a message to a CORBA object looks the same whether the object is
implemented on a remote machine, is implemented in a different process on the same
machine, or is actually linked into the client. However, by necessity, remote
communication means that many more things can go wrong than for a local call. For
example, connectivity may be lost because a bulldozer tears a cable.

IDL defines a number of system exceptions to capture common error conditions. Any
operation can raise a system exception even if the operation has no raises expression.

IDL defines 29 system exceptions. System exceptions have different names, but they all
use the same exception body. The following definition uses the preprocessor to define a
notational shorthand for the body of all the system exceptions (we will discuss the
meaning of the data members in a moment):

enum completion status {
COMPLETED YES, COMPLETED NO, COMPLETED MAYBE
bi

#define SYSEX (NAME) exception NAME ({ \
unsigned long minor; \
completion status completed; \

}

The system exceptions themselves are defined as follows.

SYSEX (BAD CONTEXT) ; // error processing context object

SYSEX (BAD INV_ORDER) ; // routine invocations out of order

SYSEX (BAD OPERATION) ; // invalid operation

SYSEX (BAD_ PARAM) ; // an invalid parameter was passed

SYSEX (BAD TYPECODE) ; // bad typecode

SYSEX (COMM FAILURE) ; // communication failure

SYSEX (DATA CONVERSION) ; // data conversion error

SYSEX (FREE MEM) ; // cannot free memory

SYSEX (IMP_LIMIT) ; // violated implementation limit

SYSEX (INITIALIZE) ; // ORB initialization failure

SYSEX (INTERNAL) ; // ORB internal error

SYSEX (INTF REPOS) ; // interface repository unavailable

SYSEX (INVALID TRANSACTION) ; // invalid TP context passed

SYSEX (INV_FLAG) ; // invalid flag was specified

SYSEX (INV_IDENT) ; // invalid identifier syntax

SYSEX (INV_OBJREF) ; // invalid object reference

SYSEX (INV POLICY) ; // invalid policy override

SYSEX (MARSHAL) ; // error marshaling param/result

SYSEX (NO_IMPLEMENT) ; // implementation unavailable

SYSEX (NO_MEMORY) ; // memory allocation failure

SYSEX (NO_PERMISSION) ; // no permission for operation

SYSEX (NO_RESOURCES) ; // out of resources for request

SYSEX (NO_RESPONSE) ; // response not yet available

SYSEX (OBJECT NOT EXIST) ; // no such object

SYSEX (OBJ_ ADAPTER) ; // object adapter failure

93

IT-SC book: Advanced CORBA® Programming with C++

SYSEX (PERSIST STORE) ; // persistent storage failure

SYSEX (TRANSACTION REQUIRED) ; // operation needs transaction
SYSEX (TRANSACTION ROLLEDBACK); // operation was a no-op

SYSEX (TRANSIENT) ; // transient error, try again later
SYSEX (UNKNOWN) ; // the unknown exception

Some of these exceptions, such as NO MEMORY, have the obvious meaning. The meaning
of others, such as BAD INV ORDER, is less obvious. Rather than list the meaning of
every exception in detail here, we point out their uses as we discuss the relevant topic
throughout the remainder of this book. The CORBA specification itself does not
precisely state under exactly what circumstances each exception should be raised, so you
have to expect different behavior from different ORBs (see Section 7.15.2).

An operation definition must not include system exceptions in its raises expression. It
is understood that all operations may raise system exceptions. You are not allowed to
explicitly state that, so the following is in error:

interface X {
void opl() raises (BAD PARAM) ; // Illegal!
void op2() raises(CORBA::BAD PARAM) ; // Illegall!
}i

The list of system exceptions is open-ended and is occasionally added to by updates to
the CORBA specification. To be future-proof, your code must be prepared to handle
system exceptions not included in the preceding list in at least a general manner. If your
code simply dumps core if it gets a new system exception, you will likely get problems as
ORBs are upgraded over time (Section 7.15 shows how to deal with this problem).

A system exception body contains two data members: minor and completed. The
completed member tells you at what point during call dispatch a failure occurred.

COMPLETED YES
The failure occurred sometime after the operation in the server completed. This tells you
that any state changes made by the failed invocation have happened.

Knowledge of whether the operation completed on the server side is important if an
operation is not idempotent. An operation is idempotent if invoking it twice has the same
effect as invoking it once. For example, the statement x=1; is idempotent, whereas the
statement x++; is not.

COMPLETED NO

The failure occurred on the way out of the client address space or on the way into the
server address space. It is guaranteed that the target operation was not invoked, or, if it
was invoked, no side effects of the operation have taken effect.

COMPLETED MAYBE

94

IT-SC book: Advanced CORBA® Programming with C++

The completion status is indeterminate. This typically happens if the client invokes an
operation and loses connectivity with the server while the call is still in progress. In this
case, there is no way for the client run time to decide whether the operation was actually
invoked in the server or whether the problem occurred before the request reached the
servant.

The minor data member in system exceptions is meant to convey additional information
about the exact cause of a failure with an error code. Unfortunately, CORBA does not
specify the meaning of the minor codes and leaves their assignment to each ORB
implementation (ORB vendors can reserve a section of minor code values for their
exclusive use). For you as a developer, this means that there is no way to interpret the
minor member in your program, at least not if you want to write portable code.

However, the minor code can be useful for debugging if an ORB vendor uses it to
provide further information about the precise cause of a system exception. This means
that you should at least show the minor code when you report or log a system exception
(even though you cannot interpret the minor code programmatically).

4.11 System Exceptions or User Exceptions?

As you will see in Chapter 9, the implementation of an operation in the server can raise
system exceptions as well as the user exceptions in the operation's raises expression.

Consider again the EmployeeRegistry interface from Section 2.4.2:

interface EmployeeRegistry {
Employee lookup(in long emp number);

}s

The question is, how should 1ookup behave if it is called with a non-existent employee
number? One option is to return a nil reference to indicate a failed lookup. This is
certainly acceptable, in particular if you anticipate that clients will look for non-existent
employees as part of normal operation.

However, you may decide that it would be better to treat lookup of a non-existent
employee as an error condition and to raise an exception. Because 1ookup does not
have a raises expression, you must pick a system exception to indicate that an
employee number is unknown. Looking through the list of system exception on page 92,
a likely choice is BAD PARAM.

For an operation as simple as 1ookup, raising a BAD PARAM exception may be OK.
However, it is bad practice to rely on system exceptions to indicate application-level
errors. For example, consider the following modified version of 1ookup:

interface EmployeeRegistry {

Employee lookup(in string emp name, in string emp birthday);
bi

95

IT-SC book: Advanced CORBA® Programming with C++

With this version of the interface, we must supply both a name and a birth date to locate
an employee. The problem now is that there are several possible error conditions. For
example, the supplied name could denote a non-existent employee, or the birth date could
be malformed (for example, the birth date could be the empty string). If 1ookup still
raises BAD PARAM to indicate failure to locate an employee, the client can no longer tell
which parameter was considered in error. Moreover, the ORB run time itself may raise a
BAD PARAM exception, for example if a null pointer is passed to Lookup (it is illegal to
pass null pointers across IDL interfaces). In that case, the client has yet another problem
because, on receipt of a BAD PARAM exception, it can no longer tell whether the
exception was raised by the ORB run time or by the application code in the server.

For these reasons, we recommend that you always define appropriate user exceptions for
application-level error conditions. This approach not only ensures that error reporting
takes place at the appropriate level of detail, but it also allows the client to distinguish
application errors from platform errors (something that can be essential for debugging).

4.12 Oneway Operations

IDL permits an operation to be declared as oneway:

interface Events {
oneway void send(in EventData data);

}i

Intuitively, oneway operations are intended for building unreliable signaling
mechanisms with semantics similar to UDP datagrams (the send-and-forget approach).
A oneway operation must adhere to the following rules.

It must have return type void.

It must not have any out or inout parameters.

It must not have a raises expression.

These restrictions exist to disallow any traffic in the return direction from server to client.
Because user exceptions are return values in disguise, they are included in the preceding
list of restrictions. However, oneway calls may raise system exceptions.

Oneway operations have "best effort" semantics. This means that oneway calls may not
be delivered but are guaranteed to be delivered at most once. Beyond this, the CORBA
specification says nothing about the semantics of oneway. For example, an ORB that
simply drops every oneway call on the floor is a compliant implementation. (Its best
effort happens to be a very poor one.) Conversely, an ORB is entitled to simply ignore
the oneway keyword and to dispatch oneway calls in the same way as any other call.
(That ORB's best effort is a particularly good one because oneway calls are as reliable
as ordinary calls.)

96

IT-SC book: Advanced CORBA® Programming with C++

The CORBA specification makes no other guarantees. In particular, the specification
does not guarantee non-blocking behavior, does not guarantee asynchronous call dispatch,
and does not even guarantee that oneway calls will be received in the same order as they
were sent. Do not create designs that assume either non-blocking or asynchronous
behavior just because operations are declared oneway. The actual behavior at run time
of such calls depends on the ORB and typically also depends on whether client and server
are threaded and whether or not they are collocated.

IDL defines interfaces, but oneway has nothing to do with the interface of an operation.
Instead, it influences the implementation of the operation's call dispatch. As you will see
in Section 7.13.1, the C++ interfaces for oneway operations are identical to those of
normal operations, and it is possible to invoke a normal operation as if it had been
declared as oneway by using the Dynamic Invocation Interface. This indicates that
oneway is really an implementation concern and should not have been made a part of
IDL, because it operates at a different level of abstraction.

The semantics established by oneway are too weak to be really useful, and we
recommend that you avoid the feature. If you need to guarantee non-blocking behavior or
want to build some form of signaling mechanism, the CORBA Event Service (see
Chapter 20) is likely to be a much better choice. It has defined semantics and avoids
the uncertainty associated with oneway. (The CORBA Messaging specification [20],
adopted in 1998, has added features that permit you to control the semantics of oneway

invocations in more detail. However, ORB vendors are unlikely to offer implementations
before mid-1999.)

4.13 Contexts

Operation definitions can optionally use a context clause. For example:

ValType read value () context ("USER", "GROUP", "X*");

The context clause must contain one or more string literals, starting with an alphabetic
character and consisting of alphabetics, digits, period (.), underscore (_), and asterisk (*).
An asterisk can occur only as the final character.

A context clause permits one or more values to be made available to the server implicitly
with a call. The idea is similar to UNIX environment variables, in which a child process
automatically inherits the environment of its parent. The preceding declaration states that
when a client calls the read value operation, the values of the client's context
variables USER and GROUP, and the value of all context variables starting with X, will be
made available to the server. CORBA defines a Context interface that allows you to
connect context objects into defaulting hierarchies, something that creates a more
powerful mechanism than just a single vector of variables.

Contexts create a number of problems with respect to type safety.

97

IT-SC book: Advanced CORBA® Programming with C++

If a particular context variable is not set by the client, its value is (silently) not
transmitted to the server.

This means that the server cannot rely on the value of a particular context variable being
available even though it appears in the context clause.

Context variables are untyped.

For the preceding example, the server may expect to find a numerical user ID in the
USER variable. However, the client may have placed the user name into the variable.

This illustrates that context clauses provide no guarantees to the server implementation.
A context variable may not be set at all, and, even if it is set, it may contain a string that
does not correctly decode to the expected type. This is a recipe for disaster because it
shoots a big hole through the IDL type system. CORBA implements strict type checking
for operations, and that makes it impossible for a client to forget to supply a parameter or
to supply a parameter of the wrong type.! In contrast, context variables provide no such
guarantees.

B 1t is possible to violate the type system by using "sledgehammer" C++ casts. However, if
you insist on using casts, you deserve what you get. It is also possible to violate the type
system by using the DII incorrectly, but that is the price of its flexibility.

Because IDL contexts are unsafe, we recommend that you avoid using them. It is also
possible that contexts may be removed from CORBA, so the future of this (mis)feature is
uncertain anyway.

4.14 Attributes

An attribute definition can be used to create something akin to a C++ public member
variable:

interface Thermostat {
readonly attribute short temperature; // Probably bad
attribute short nominal temp; // Probably bad
}i

The attribute keyword may be used only inside an interface definition. Attributes
can be of any type (including user-defined complex types). An attribute defines a pair of
operations the client can call to send and receive a value. A readonly attribute defines
a single operation the client can call to receive a value.

Attributes look like C++ public member variables, but in fact they do not define storage
or state. For example, the following interface is semantically equivalent to the preceding
one:

interface Thermostat {

98

IT-SC book: Advanced CORBA® Programming with C++

short get temperature();
short get nominal temp();
void set nominal temp (in short t);

b

Even though attribute definitions look like variables, in reality they are just a shorthand
for defining a pair of operations (or a single operation for readonly attributes). There
simply is no semantic difference between the preceding two interfaces. In both cases,
attribute access is implemented by remote procedure calls.

There is a problem relating to attributes, though: an attribute definition cannot contain a
raises expression. The following is illegal:

interface Thermostat {
exception TooHot {};
exception TooCold {};

readonly attribute short temperature;
attribute short nominal temp
raises(// Illegal

TooHot, TooCold
) 7
bi

Attributes cannot raise user exceptions (system exceptions are possible). This makes
attributes second-class citizens, because error reporting is quite limited. For example,
setting the temperature of a thermostat should raise an out-of-range exception if an
attempt is made to set the nominal temperature too high or too low. However, attributes
limit you to error reporting via system exceptions. This means that you must resort to a
system exception (for example, CORBA: : BAD PARAM) when an illegal temperature is
requested. This exception is less informative than TooHot and TooCold user
exceptions.

You cannot safely use the minor member in a system exception to encode the "too hot"
and "too cold" conditions. This is because the specification gives no guarantee that an
ORB will preserve the minor value of a system exception. Most ORBs will preserve it,
but, if you rely on this behavior, you are, strictly speaking, outside the CORBA
specification. (And, as we point out in Section 4.11, you should not use system
exceptions for application-level error conditions anyway.)

The implementation of attributes by the ORB run time is identical to using operations
(attributes are implemented as a pair of operations). This means that there is no difference
in performance between attribute accesses and operation invocations. Because attributes
offer no performance advantage but suffer from limited error reporting, some
organizations have banned attributes in their style guides. You may want to consider
doing the same.

99

IT-SC book: Advanced CORBA® Programming with C++

If you choose to use attributes, you should limit yourself to readonly attributes.
Typically, not all values in the range of a modifiable attribute are legal, so modifiable
attributes can lead to the ambiguities caused by raising system exceptions, as with the
nominal temp attribute in the preceding example.

4.15 Modules

IDL uses the module construct to create namespaces. Modules combine related
definitions into a logical group and prevent pollution of the global namespace:

module CCS {
typedef string LocType;
typedef short TempType;
interface Thermostat {

LocType get location();

TempType get temperature();

TempType get nominal temp();

void set nominal temp (in TempType t);

}s
}s

Identifiers in a module need be unique only within that module. IDL's module scope
resolution rules are the same as those for C++: the IDL compiler searches for the
definition of an identifier from the innermost scope outward toward the outermost scope.
This means that inside the module CCS, a temperature type can be referred to as
TempType, CCS: :TempType,and : : CCS::TempType.

Modules do not hide their contents, so you can use a type defined in one module inside
another module:

module Weather ({
enum WType { sunny, cloudy, rainy, foggy };
interface Forecast {

CCS: :TempType tomorrows minimum(); // From module CCS
CCS: :TempType tomorrows maximum() ; // From module CCS
WType outlook () ;

}s
}s

Modules can contain any definition that can appear at global scope (type, constant,
exception, and interface definitions). In addition, modules can contain other modules, so
you can create nested hierarchies.

The main purpose of modules is to avoid polluting the global namespace. If you place all
the definitions for an application into a module that reflects the application's name, you

are less likely to clash with definitions created by other developers.

Modules are similar to C++ namespaces in that they can be reopened:

100

IT-SC book: Advanced CORBA® Programming with C++

module A {

// Some definitions here
}i
module B {

// Some other definitions here
}i
module A {

// Reopen module A and add to it
i

Incremental definition of modules is useful if specifications are written by a number of
developers. Instead of creating a giant definition inside a single module, you can break
the module into a number of separate source files. For example:

//

// File: partl.idl

//

module A { // First half of module A
//

}i

//

// File: part2.idl

//

module A { // Second half of module A
//

}i

//

//File: myspec.idl // Full definition of module A

//

#include "partl.idl"
#include "part2.idl"

Using this technique, developers are better shielded from changes. For example, a change
inpartl.idl does not affect the parts of the application that require only part2.idl
(and that avoids recompiling the source code).

Currently, many ORBs do not permit reopening of modules because module reopening
requires standard C++ namespaces (reopened modules cannot be sensibly mapped to C++
nested classes). Once standard C++ compilers become ubiquitous, reopening of modules
will be supported universally.

4.16 Forward Declarations

As you saw earlier, interfaces define types and can be passed as parameters to operations.
Occasionally, interfaces are mutually dependent on each other, each one expecting a
parameter of the other interface type. Such definitions require a forward declaration:

interface Husband; // Forward declaration
interface Wife {

Husband get spouse();
}i

101

IT-SC book: Advanced CORBA® Programming with C++

interface Husband {
Wife get spouse();
bi

The forward declaration makes it possible to use Husband in the definition of
Wife::get spouse without getting an error about an unknown type. Multiple
forward declarations of the same interface are legal. A forward declaration obliges you to
eventually supply the definition of the forward-declared interface later in the
specification. It is illegal to inherit from a forward-declared interface until after its
definition is supplied.

The identifier used in a forward declaration must be a simple (non-qualified) identifier.
The following is an illegal attempt to forward-declare an interface in a different module:

module Females {
interface Males::Husband; // Error, simple identifier required
//

}i

If you require mutually dependent interfaces across module boundaries, you must use the
following technique:

module Females ({
interface Wife; // Forward declaration
bi
module Males {
interface Husband {
Females::Wife get spouse(); // OK, Wife has been declared
bi
bi
module Females { // Reopen Females
interface Wife { // Finish off defining Wife
Males: :Husband get spouse(); // OK, Husband is defined
bi
bi

Notice that this technique requires reopening of modules. However, you should rarely
need to write something like the preceding. Modules are a construct to group related
definitions. This means that things in different modules should be less closely coupled
than things in the same module. Mutually dependent interfaces in different modules are
therefore almost a contradiction in terms. It does not make sense to couple the two
interfaces this tightly while insisting at the same time that they should belong to different
modules.

Typically, such definitions are created not by humans but rather by automatic tools that

translate some other type system into IDL. If you find yourself writing IDL definitions
like the preceding example, it may be a good idea to step back and rethink your approach.

102

IT-SC book: Advanced CORBA® Programming with C++

4.17 Inheritance

IDL interfaces can inherit from each other:

interface Thermometer {

typedef short TempType;

readonly attribute TempType temperature;
}i
interface Thermostat : Thermometer {

void set nominal temp (in TempType t);

}s

This definition makes Thermometer a base interface of Thermostat. A
Thermostat automatically has the inherited temperature attribute as well as the
set nominal temp operation.

Scope resolution for inheritance works as for C++: identifiers are resolved by
successively searching base interfaces toward the root. This rule allows TempType to be
used without qualification inside interface Thermostat, although
Thermometer: :TempType and ::Thermometer: :TempType could also have
been used.

Inheritance gives rise to polymorphism and has the same semantics as for C++. A derived
interface can be treated as if it were a base interface, so in all contexts in which a base
interface is expected, a derived interface can actually be passed at run time:

interface Logger {
long add(in Thermometer t, in unsigned short poll interval);
void remove (in long id);

}s

The Logger interface maintains a collection of thermometers whose temperatures are to
be recorded at specific intervals. Thermometers can be added and removed from the
collection by passing an object reference to the add operation. The add operation
returns an identifier for the reference that is used to remove the reference later by calling
the remove operation. The logger records the temperature of each monitored
thermometer by reading the temperature attribute at the specified interval.

Because Thermostat inherits from Thermometer, a Thermostat interface is
compatible with a Thermometer interface. This means that at run time, a client can
pass a Thermostat reference to the add operation, and the implementation of
Logger is unaware that it is actually dealing with a thermostat.

103

IT-SC book: Advanced CORBA® Programming with C++

4.17.1 Implied Inheritance from Type Object

All IDL interfaces implicitly inherit from type Object, which is at the root of the IDL
inheritance tree. The IDL we saw in the preceding section therefore forms the inheritance
graph shown in Figure 4.3.1«

] We use the Unified Modeling Language (UML) for the object model diagrams in this book
(see [1] and [32] for details).

Figure 4.3 Implicit inheritance from Object.

Object
Thermometer Logger
Thermostat

Because all IDL interfaces directly or indirectly inherit from Object, all interfaces are
type-compatible with type Object. This allows you to write generic IDL operations that
can accept and return object references to arbitrary interface types:

interface Generic {
void accept (in Object o);
Object lookup(in KeyType key);
}i

Because parameters and return values are of type Object, you can pass an object
reference to any type of interface to accept, and you can return a reference to any type
of interface from 1ookup. Exchanging object references as type Object is particularly
useful for the creation of generic services when the precise interface types are not known
at compile time. For example, the CORBA Naming Service (sce Chapter 18) uses this
technique to implement a hierarchy of named object references.

IDL does not allow you to explicitly inherit from type Object (it is understood that all
interfaces inherit from Object, and you are not allowed to restate it), so the following is
illegal:

interface Thermometer : Object { // Error

//
}s

104

IT-SC book: Advanced CORBA® Programming with C++

4.17.2 Empty Interfaces

It is legal to define an empty interface:

interface Empty {};

One use for an empty interface is to create a common abstract base interface for a number
of other interfaces. For example:

interface Vehicle {}; // Abstract base interface
interface Car : Vehicle {
void start();
void stop () ;
}i
interface Airplane : Vehicle {
void take off();

void land() ;
bi

In this definition, Vehicle acts as an abstract base interface that does not have
operations or attributes and therefore does not have behavior. Note that IDL does not
directly offer a mechanism to mark an interface as abstract, so inserting a comment (as
with the preceding definition of Vehicle) is the next best thing we can do. Interfaces
Car and Airplane inherit from Vehicle and add the behavior specific to cars and
airplanes. The Vehicle interface allows us to generically pass both Car and
Airplane interfaces. For example:

interface Garage {
void park(in Vehicle v);
void make ready (in Vehicle v);

}s

Interface Garage permits vehicles to be parked or made ready and therefore can deal
with both cars and airplanes. However, an interface not derived from Vehicle cannot
be passed to either park or make ready. The empty Vehicle interface therefore
improves the type safety of the specification. (We could have used Object instead of
Vehicle, but then things other than cars and airplanes could be placed in garages.)

A word of warning is appropriate here: if you find yourself using empty interfaces such
as Vehicle, it may be an indication that you are modeling things inappropriately. After
all, an empty interface, by definition, cannot have behavior (because you cannot send a
message to an empty interface). This in turn may indicate that you are artificially creating
a base type when none is necessary. For example, in the preceding example, it may be
more appropriate not to treat both cars and airplanes as vehicles. In particular, after some

105

IT-SC book: Advanced CORBA® Programming with C++

thought, it may turn out to be better to store airplanes in hangars instead of garages. If so,
there is no need for an empty base interface such as Vehicle.

Note that you should not use an empty interface to indicate an aspect of the behavior of
an object. For example, an earlier version of the OMG Object Transaction Service [21]
used an empty interface to indicate that an object can participate in a two-phase commit
protocol:

module CosTransactions {
interface TransactionalObject {};

//
}i

The intent of this IDL is that to receive a transaction context and to indicate transactional
behavior, an interface must inherit from TransactionalObject. The problem with
this approach is that the empty interface is used to indicate behavior instead of interface.
As a result, it becomes impossible to add transactional behavior to an existing non-
transactional object without modifying its IDL definition. In other words, using
inheritance from an empty interface to indicate behavior breaks the separation of
interface and implementation and should therefore be avoided.®!

151 The Object Transaction Service has since been revised so that objects can be transactional
without having to inherit from TransactionalObject.

4.17.3 Interface Versus Implementation Inheritance

It is important to remember that IDL inheritance applies only to interfaces. C++
programmers often have difficulty with this because, by default, C++ uses
implementation inheritance. In contrast, IDL inheritance says nothing about the
implementation of the related interfaces. Even though Thermometer and
Thermostat are in an inheritance relationship, the implementation of the two
interfaces is completely unconstrained. This means that the following implementation
options are all open to the implementer (we discuss the details of these techniques in

Chapter 11).

Both interfaces are implemented in the same address space using C++ implementation
inheritance.

Both interfaces are implemented in the same address space, but instead of inheritance,
delegation serves to reuse the implementation of the base class.

Both interfaces are implemented in the same address space, but each interface has a
completely separate implementation, so the derived class does not reuse any of the base
class implementation.

Each interface is implemented in a different address space, but delegation across address

spaces simulates implementation inheritance.

106

IT-SC book: Advanced CORBA® Programming with C++

Each interface is implemented in a different address space with completely separate
implementations.

IDL inheritance does not imply anything about implementation; it simply establishes
compatibility between interfaces at the type level. You need to keep in mind this
difference in inheritance semantics between IDL and C++. The inheritance structure of
the IDL need not be reflected in the implementation. As you will see in Chapter 11,
IDL interfaces need not even be implemented as C++ classes, and CORBA objects can
actually be implemented as lumps of data.

4.17.4 Inheritance Redefinition Rules

Derived interfaces can redefine types, constants, and exceptions defined in their base
interfaces. For example, the following is legal:

interface Thermometer {

typedef long IDType;
const IDType TID = 5;
exception TempOutOfRange {};
}i
interface Thermostat : Thermometer ({
typedef string IDType;
const IDType TID = "Thermostat";
exception TempOutOfRange { long temp; };

}i

This example shows the legal redefinitions in a derived interface. Nevertheless,
redefining identifiers in this way, although legal, is extremely confusing and you should
avoid it.

4.17.5 Inheritance Limitations

IDL does not permit the redefinition of attributes or operations:

interface Thermometer {
attribute long temperature;

void initialize();

bi

interface Thermostat : Thermometer {
attribute long temperature; // Error, redefinition
void initialize(); // Error, redefinition

}s

Even though the definitions in interface Thermostat do not conflict with those in
interface Thermometer, they are illegal. It is understood that by inheritance, interface
Thermostat already has an attribute temperature and an operation initialize,
and you are not allowed to explicitly restate this.

107

IT-SC book: Advanced CORBA® Programming with C++

Any form of operation or attribute overloading is also illegal:

interface Thermometer {

attribute string my id;
string get 1id();
void set id(in string s);

}i

interface Thermostat : Thermometer {
attribute double my id; // Redefinition!
double get id(); // Redefinition!
void set id(in double d); // Redefinition!

}i

Overloading is prohibited because it is difficult to map into languages that do not directly
support the feature. For example, to map overloaded operations to C, the IDL compiler
would have to generate mangled function names. Although it is technically possible, it
would make the use of the generated interfaces too difficult to be practical.

4.17.6 Multiple Inheritance

IDL supports multiple inheritance. For example:

interface Thermometer { /* ... */ };
interface Hygrometer { /* ... */ };
interface HygroTherm : Thermometer, Hygrometer { /* ... */ };

A base interface can be inherited from more than once:

interface Sensor { /* ... */ };

interface Thermometer : Sensor { /* ... */ };

interface Hygrometer : Sensor { /* ... */ };

interface HygroTherm : Thermometer, Hygrometer { /* ... */ };

This definition gives rise to the familiar diamond shape shown in Figure 4.4. As in
C++, multiple inheritance is useful for interface aggregation. The wusual type
compatibility rules apply. (An interface of type HygroTherm can be passed where an
interface of type Thermometer, Hygrometer, or Sensor is expected.) Because IDL
deals in interface inheritance only, the declaration order of base interfaces is not
significant.

108

IT-SC book: Advanced CORBA® Programming with C++

Figure 4.4 Multiple inheritance of the same base interface.

Object
Sensor
Thermometer Hygrometer
< v
HygroTherm

IDL does not have the C++ concepts of virtual versus non-virtual inheritance. In C++, the
difference influences how many base class instances are physically present in a derived
instance and therefore whether or not updates to the base class are shared by the
intermediate classes. Whether virtual or non-virtual inheritance is used does not affect the
interface of a class; it affects only its implementation. It follows that the
concept of virtual versus non-virtual inheritance simply does not apply to IDL—there is
only interface inheritance.

4.17.7 Limitations of Multiple Inheritance

IDL requires that operations and attributes must not be inherited more than once from
separate base interfaces:

interface Thermometer {

attribute string model;

void initialize();
}i

interface Hygrometer {

attribute string model;
string initialize();

}i

interface HygroTherm : Thermometer, Hygrometer ({ // Ambiguous
//

}s

The definition of HygroTherm is illegal, because it inherits identical identifiers (mode 1
and initialize) from Thermometer and Hygrometer. It is therefore ambiguous
which operation is meant when a caller invokes HygroTherm::initialize.
Ambiguous inheritance is prohibited because of the difficulties of mapping it to non-OO
languages. (A future version of CORBA may remove this restriction.)

A similar problem arises through inheritance of conflicting type definitions:

109

IT-SC book: Advanced CORBA® Programming with C++

interface Thermometer {
typedef string<l6> ModelType;
}i
interface Hygrometer {
typedef string<32> ModelType;
}i
interface HygroTherm : Thermometer, Hygrometer {
attribute ModelType model; // Error, 16 or 32 chars?
}i

This is illegal because it is no longer clear whether HygroTherm: :ModelType has 16
or 32 characters. You can easily get around this problem by using a qualified name:

interface Thermometer {
typedef string<l6> ModelType;
}i
interface Hygrometer
typedef string<32> ModelType;
}i
interface HygroTherm : Thermometer, Hygrometer ({
attribute Thermometer::ModelType model; // Fine, 16 chars
}i

4.18 Names and Scoping

IDL's rules for names and name scope resolution are similar to those used by C++ but
add a few restrictions to avoid awkward constructs in a number of language mappings.
We present these rules here mainly for completeness. If you write clean IDL that uses
different identifiers for different things, you will never be in doubt as to which particular
definition of an identifier is in scope.

4.18.1 Naming Scopes

Each of the following IDL constructs establishes its own naming scope:

Modules

Interfaces

Structures

Unions

Exceptions

Operation definitions

Identifiers need be unique only within their own scope, so the following IDL is legal:

module CCS {
typedef short TempType;

const TempType MAX TEMP = 99; // MAX TEMP is a short
interface Thermostat {

typedef long TempType; // OK

TempType temperature () ; // Returns long

CCS: :TempType nominal temp () ; // Returns short

110

IT-SC book: Advanced CORBA® Programming with C++

}s
}s

Even though it is legal, you should obviously avoid such reuse of identifiers because it is
highly confusing.

4.18.2 Case Sensitivity

Within a naming scope, identifiers must be consistently capitalized:

module CCS {

typedef short TempType;

const temptype MAX TEMP = 99; // Error
bi

The preceding specification does not compile because after an identifier is introduced
into a scope, the identifier must be capitalized consistently. Identifiers that differ only in
case within the same scope are illegal:

module CCS {

typedef short TempType;

typedef double temptype; // Error
}i

After TempType is introduced into a scope, all other capitalizations are "used up."
Within different naming scopes, different capitalizations are legal (but confusing):

module CCS {
typedef short TempType;
interface Thermometer {

typedef long temptype; // OK

temptype temperature () ; // Returns long
CCS: :TempType nominal temp () ; // Returns short
TempType max temp () ; // Error

}s
}s

The definition of max temp does not compile because the name resolution rules ignore
the case of an identifier during name lookup. The TempType return type of max temp
first resolves to Thermometer: : temptype and then generates an error because the
compiler detects that TempType and temptype are used within the same scope.

On the other hand, the definition of nominal temp compiles OK because the return

type CCS: :TempType uses a qualified name, and the capitalization of the qualified
name agrees with the capitalization at the point of definition.

111

IT-SC book: Advanced CORBA® Programming with C++

4.18.3 Names in Nested Scopes

A name in a nested scope cannot be the same as a name in its immediately enclosing
scope. For example:

module CCS {
//
module CCS { // Error
//
}i
}s

Similarly, an interface cannot define a name that is the same as the name of the interface:
interface SomeName {

typedef long SomeName; // Error
}i

4.18.4 Name Lookup Rules

The IDL compiler resolves names by successively searching enclosing scopes. For
example:

module CCS {
typedef short TempType;

//
module Sensors {
typedef long TempType; // Ugly, but legal
interface Thermometer {
TempType temperature(); // Returns a long

}s
bi
module Controllers {
//
module TemperatureControllers {
interface Thermostat {
TempType get nominal temp(); // Returns a short

bi

In this example, the temperature operation returns a long value because as the
compiler searches through the enclosing scopes, the closest definition of the name
TempType appears inside module Sensors. The definition of CCS: : TempType is
hidden inside interface Thermometer by Sensors: : TempType.

112

IT-SC book: Advanced CORBA® Programming with C++

On the other hand, the get nominal temp operation returns a short value because
searching outward through its enclosing scopes, the compiler finds the CCS: : Temp-
Type definition.

In the presence of inheritance, the compiler searches base interfaces first and then
searches the enclosing scopes from the point of lookup. The enclosing scope of base
interfaces is never searched during name lookup:

module Sensors {
typedef short TempType;
typedef string AssetType;
interface Thermometer ({
typedef long TempType;
TempType temperature () ; // Returns a long
AssetType asset num() ; // Returns a string
}i
}i
module Controllers {
typedef double TempType;

interface Thermostat : Sensors::Thermometer {
TempType nominal temp () ; // Returns a long
AssetType my asset num(); // Error

}s
}s

In this example, nominal temp returns a long instead of a double because base
interfaces are searched before the enclosing scope. In other words, inside interface
Thermostat, Sensors: :Thermometer: : TempType hides
Controllers::TempType.

The definition of my asset num fails because AssetType is not defined at this point.
Even though interface Thermometer is a base interface and uses AssetType,
interface Thermometer does not define AssetType. When the compiler looks at the
definition of my asset num, it does not consider Sensors: :AssetType because
the enclosing scope of base interfaces is never searched.

4.19 Repository Identifiers and pragma Directives

CORBA provides an Interface Repository that allows run-time access to IDL definitions.
The IDL compiler assigns a repository ID to every type in a specification. This repository
ID provides a unique identifier for each IDL type and is used as a key into the Interface
Repository, where the corresponding type definition is stored.

Repository identifiers can have one of three possible formats, indicated by their ID field:
IDL format (default):

e IDL:acme.com/CCS/TempType:1.0

113

IT-SC book: Advanced CORBA® Programming with C++

DCE UUID format:

e DCE:700dc518-0110-11ce-ac8£f-0800090b5d3e:1

LOCAL format:

e ILOCAL:my personal favorite type name identifier

By default, the IDL compiler generates repository IDs in IDL format.

The DCE format permits DCE universally unique identifiers (UUIDs) [29] to be used as
repository identifiers. This is useful, for example, for CORBA-to-DCE protocol
translation. The final digit following the colon is a minor version number.

The LOCAL format is completely unconstrained and permits any sequence of characters
following the LOCAL : prefix. This format is useful for local interface repositories that do
not need to conform to any convention. For example, you could use the LOCAL format
to add repository identifiers that link into your revision control system.

4.19.1 The IDL Repository ID Format

The following specification illustrates how the default repository identifiers (in IDL
format) are generated:

module CCS {
typedef short TempType;
interface Thermometer {
readonly attribute TempType temperature;
}i
interface Thermostat : Thermometer {
void set nominal temp (in TempType t);
b7
}i

The generated repository identifiers for this specification are as follows:

IDL:CCS:1.0

IDL:CCS/Temptype:1.0
IDL:CCS/Thermometer:1.0
IDL:CCS/Thermometer/temperature:1.0
IDL:CCS/Thermostat:1.0
IDL:CCS/Thermostat/set nominal temp:1.0

As you can see, an IDL format repository ID consists of three parts (the IDL prefix, a
scoped type name, and a version number). The scoped type name is formed by traversing

114

IT-SC book: Advanced CORBA® Programming with C++

the IDL definition from the outermost to the innermost scope, concatenating the
identifiers for each scope with a slash.

4.19.2 The prefix Pragma

IDL repository identifiers provide unique names for every IDL type. However, the
mechanism is not perfect; there is always the niggling question, "What if someone else
also has created a module called CCS?" Of course, you can make a name clash highly
unlikely by choosing a longer name. For example, if you work at the famous Acme
Corporation, you could call the module Acme Corporation CCS. However, this is
not pretty, and it generates very long identifier names for some language mappings.
Alternatively, you could nest the CCS module inside another module called
Acme Corporation. This technique works, but it means that all the company's IDL
definitions end up in a single module, and that creates administrative problems.

The IDL prefix pragma alleviates the problem by permitting you to add a unique
prefix to a repository ID:

#pragma prefix "acme.com"
module CCS {

//
}i

This definition prepends the prefix acme . com to every repository ID:

IDL:acme.com/CCS:1.0
IDL:acme.com/CCS/Temptype:1.0
IDL:acme.com/CCS/Thermometer:1.0
IDL:acme.com/CCS/Thermometer/temperature:1.0
IDL:acme.com/CCS/Thermostat:1.0
IDL:acme.com/CCS/Thermostat/set nominal temp:1.0

The obvious question is, how does this help? After all, by adding another prefix at the
front, we have simply pushed the problem further away and not solved it. The answer is
twofold.

By using a distinct prefix, such as a trademark or a registered Internet domain name, you
can make a name clash extremely unlikely.

The prefix for repository identifiers does not affect the generated code. Even though
every repository ID has the acme.com prefix, the API generated from the IDL still
looks exactly as if no prefix had been specified. Thus, you avoid ending up with ugly
identifiers such as Acme Corporation CCS::Thermometer in the generated
code.

A prefix pragma stays in effect either until it is changed explicitly or until the scope
containing the pragma closes (at which point the previous prefix takes effect again). Note

115

IT-SC book: Advanced CORBA® Programming with C++

that an IDL source file is a scope for the purposes of #pragma prefix processing.
This means that if you include a file in an IDL definition, any prefix in the included file
does not affect the definitions following the #include directive.

It is a good idea to establish a unique prefix for your projects and to use it consistently.
This practice ensures that other developers will not clash with your IDL (possibly months
or years after it is deployed).

All specifications published by the OMG carry the prefix omg. org.
4.19.3 The version Pragma

IDL also supports a version pragma. It applies only to repository IDs in IDL format.
For example:

#fpragma prefix "acme.com"
module CCS {
typedef short TempType;
#pragma version TempType 1.8
//
}i

This definition assigns version 1.8 to the repository ID for TempType, so the repository
ID becomes IDL:acme.com/CCS/TempType:1.8.

The version identifier is a historical relic and is ignored by the ORB. You should never
have any reason to change it from the 1.0 default. The version ID was added to repository
IDs to allow an interface versioning mechanism to be added to CORBA in the future. As
of this writing, no such versioning mechanism exists, and there are no moves in the OMG
to add one. This means that versioning in CORBA is limited to specialization—you can
treat a derived interface as a later version of a base interface.

Versioning by specialization works fine, provided that you do not have to change any of
the base interface's type definitions. In addition, versioning by specialization requires that
the semantics of operations in the base interface must not be changed if they are
implemented in the derived interface. In practice, versioning is frequently used to address
defects in a base interface instead of only to extend the base interface's functionality.
Unfortunately, versioning by specialization is not suitable in this case. If types in the base
interface must be changed or if the semantics of a base interface's operation must be
changed, you have no choice except to define a new, unrelated interface.

4.19.4 Controlling Repository ID Formats with the 1D Pragma

The ID pragma allows you to specify explicitly the format of the repository identifier for
a type. The pragma applies to all three formats. Its use is best shown by example:

#pragma prefix "acme.com"

116

IT-SC book: Advanced CORBA® Programming with C++

module CCS {
typedef short TempType;
#pragma ID TempType "DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1"
interface Thermometer ({
#fpragma prefix "climate.acme.com"
readonly attribute TempType temperature;
}i
interface Thermostat : Thermometer {
void set nominal temp (in TempType t);
}i
#pragma ID Thermostat "LOCAL:tmstat rev 1.19b checked"
}i
#pragma ID CCS::Thermometer "IDL:comp.com/CCS/Thermometer:1.0"

The repository identifiers for this specification are as follows:

IDL:acme.com/CCS:1.0
DCE:700dc518-0110-11ce-ac8£f-0800090b5d3e:1
IDL:comp.com/CCS/Thermometer:1.0
IDL:climate.acme.com/temperature:1.0
LOCAL:tmstat rev 1.19b checked
IDL:acme.com/CCS/Thermostat/set nominal temp:1.0

The ID pragma must follow the type to which it assigns a repository identifier. It cannot
precede it because the type name used in the pragma is resolved following the usual
scope resolution rules (qualified type names are allowed).

This example also demonstrates that a prefix pragma extends only as far as its
enclosing scope. (The prefix for set nominal temp is acme.com and not
climate.acme.com.)

4.20 Standard Include Files

The CORBA specification requires every ORB to provide a file with the name orb.id1.
If you intend to pass an IDL type description to a remote object, you must include
orb.idl in your specification:

#include <orb.idl>
// Your specification here...

orb.idl contains the definition for CORBA: : TypeCode as well as definitions for all
types used by the Interface Repository. We discuss type codes in more detail in Chapter
16. Note that depending on your ORB, the orb. id1 file may be in a subdirectory (such
as corba), so you may have to modify the include path to specify the correct directory.

4.21 Recent IDL Extensions

In 1997, the OMG accepted a proposal to add new types to IDL. Following is a brief
summary of these new types. Be aware that even though these extensions are officially

117

IT-SC book: Advanced CORBA® Programming with C++

part of CORBA 2.2 and later versions, they are unlikely to be available for some time.
Availability not only depends on ORB vendors updating their code but also requires
support from the underlying architecture and compilers (for example, to support 64-bit
integer arithmetic). If you decide to rely on the new types, you need to make sure that
they are supported by the platforms you intend to use.

4.21.1 Wide Characters and Strings

Two new keywords—wchar and wstring—are used for wide characters and wide
strings, respectively. The specification does not mandate support for particular codesets,
such as Unicode. Instead, it allows each client and server to use the codeset native to the
local machine, and it specifies how characters and strings are to be converted for
transmission between environments using different codesets.

Wide character and string literals follow the C++ syntax of prepending an L to the literal:

const wchar C =1L1L'X";
const wstring GREETING = L"Hello";

In addition, wide characters and wide strings provide Unicode escape sequences of the
form \uhhhh. For example, the letter ? can be represented by the escape sequence
\u03A9. Leading zeros are optional, and the hexadecimal digits a to £ can be in
uppercase or lowercase:

const wchar OMEGA = L'\u03a9';
const wstring OMEGA STR = L"Omega: \u3A9";

Wide strings must not contain the character with value zero (\u0000).
4.21.2 64-bit Integers

The type extensions add type long long and type unsigned long long for 64-
bit integer types. Language mappings for these types are not yet complete, so you should
use them only if your architecture natively supports 64-bit integers.

4.21.3 Extended Floating-Point Type

The IDL type 1ong double is used to specify an extended floating-point type. The
specification requires IEEE 754-1985 format [/] (at least 64-bit mantissa and at least 15-
bit exponent). Language mappings for long double are not yet complete, so you
should use this type only if your architecture provides native support for extended
floating-point values.

4.21.4 Fixed-Point Decimal Types

118

IT-SC book: Advanced CORBA® Programming with C++

The type extensions add the fixed keyword for specifying fixed-point decimal types.
Fixed-point types permit accurate representation of decimal fractions. Floating-point
types permit exact representation only when the value happens to be a fractional power of
2. This makes fixed-point types particularly useful to represent business quantities, such
as monetary amounts or interest rates. Here are examples of fixed-point types:

typedef fixed<9,2> AssetValue; // up to 9,999,999.99,
// accurate to 0.01
typedef fixed<9,4> InterestRate; // up to 99,999.9999,
// accurate to 0.0001
typedef fixed<31,0> BiglInt; // up to 10731 - 1

The first number in a £ixed type definition specifies the total number of digits, and the
second number specifies the scale—that is, the number of digits following the decimal
point. A fixed type is limited to at most 31 digits, and the scale must be a positive
number (zero is legal as a scale value).

The following IDL shows some examples of legal and illegal uses of type fixed:

const fixed wvall = 3.14D;
const fixed val2 = -3000D;
const fixed rate = 0.03D;
typedef fixed<9,2> AssetValue;
typedef fixed<3,2> Rate;
struct FixedStruct {
fixed<8,3> meml; // Bad style, but OK
AssetValue mem2;
}i
interface foo {
void record(in AssetValue val); // OK
void op(in fixed<10,4> wval); // Illegal anonymous type!
}i

Note that fixed-point literals must end in the character d or D. The integer or fraction part
(but not both) is optional, as is the decimal point. For constant definitions, we use the
keyword fixed without specifying the digits and scale of the constant. This is because
digits and scale are implicit in the fixed-point literal. For example, 03. 14D implicitly
has the type fixed<3,2>, and -03000. 00D implicitly has the type fixed<4, 0>
(leading and trailing zeros are ignored).

You can use the in-fix arithmetic operators (+, -, *, /) and unary minus (-) for fixed-point
constant definitions. You cannot mix fixed-point, integer, or floating-point operands in a
constant expression. Be careful about overflow; if an intermediate value or the final value
has more than 31 digits, truncation without rounding occurs.

Even though it is not strictly required, we strongly recommend that you use a t ypedef

for all fixed-point types. This technique avoids problems with anonymous types in some
language mappings.

119

IT-SC book: Advanced CORBA® Programming with C++

Languages such as Ada and COBOL have direct support for fixed-point types, and that
gives natural mappings. For languages such as C++ and Java, fixed-point types are
supported by abstract data types.

The specification for fixed was changed significantly in CORBA 2.3 because the
CORBA 2.2 specification for fixed-point types suffered from a number of problems. In
particular, the syntax for fixed-point constants as well as the C++ mapping for fixed-
point types are different in CORBA 2.3. For these reasons, we recommend that you use
fixed-point types only with an ORB that supports CORBA 2.3 or later.

4.21.5 Escaped Identifiers

The Objects-By-Value Specification adopted for CORBA 2.3 adds the notion of escaped
identifiers to IDL. The need for these identifiers arose because ongoing extensions to
CORBA occasionally require the addition of new keywords to IDL. This creates a
problem: whenever a new keyword is added to IDL, it may potentially clash with an
existing specification that uses that keyword. Consider the following IDL:

typedef string valuetype; // Syntax error in CORBA 2.3 and later
interface Value {

valuetype get value();

void set value (in valuetype val);

}s

This IDL is perfectly valid for an ORB that conforms to CORBA 2.2 or earlier. However,
for an ORB compliant with CORBA 2.3, the definition of valuetype causes a syntax
error because valuetype is one of the keywords added to the CORBA 2.3 specification.
To make it possible to add new keywords to OMG IDL without completely breaking
existing specifications, identifiers are allowed to have a leading underscore:

typedef string valuetype; // OK in CORBA 2.3 and later
interface Value {

_valuetype get value();

void set value(in valuetype val);
}i

Note the leading underscore on valuetype, which maps the identifier away from the
valuetype keyword. This mechanism allows us to migrate the earlier IDL definition
that is no longer valid in CORBA 2.3 simply by adding an underscore to all occurrences
of the now illegal valuetype identifier. The IDL compiler treats identifiers with a
leading underscore exactly as if they did not have an underscore. In other words, the
language mapping for the valuetype identifier is exactly the same as if it had been
spelled valuetype, and the repository ID is still IDL:valuetype:1.0. In that way,
existing source code does not have to be changed if its IDL happens to contain an
identifier that later becomes a keyword.

120

IT-SC book: Advanced CORBA® Programming with C++

Keep in mind that escaped identifiers were added only to permit addition of new
keywords. There is no point or purpose in using a leading underscore for IDL identifiers
otherwise, even though it is legal:

interface Thermometer { // Legal in CORBA 2.3, but useless

/] ...
}i

In CORBA 2.3 and later, this definition behaves exactly as if we had used
Thermometer as the interface name.

4.22 Summary

OMG IDL is CORBA's language-independent mechanism for defining data types and
object interfaces. IDL decouples client implementations from server implementations and
establishes the contract that clients and servers adhere to. IDL specifications are
translated by a compiler into language-specific stubs and skeletons. The stubs and
skeletons provide client-side and server-side APIs to support implementations in a
particular language.

IDL provides a set of built-in types that can easily be translated into most programming
languages. The set of built-in types can be augmented by user-defined types, such as
structures and sequences. IDL provides object orientation through interface inheritance,
which in turn establishes type compatibility and polymorphism. Exceptions serve as a
uniform error-handling mechanism, and modules provide a grouping construct to prevent
namespace pollution. Repository IDs provide unique internal names for IDL types;
#pragma directives permit you to change default repository IDs transparently to the
application code and prevent accidental clashes with other developers.

With CORBA 2.2, IDL was extended to support wide characters and strings, 64-bit
integers, type 1ong double, and fixed-point types. Escaped identifiers, added with
CORBA 2.3, permit new keywords to be added to IDL without breaking existing
implementation code.

121

IT-SC book: Advanced CORBA® Programming with C++

Chapter 5. IDL for a Climate Control System

5.1 Chapter Overview

Throughout the remainder of this book, we use a simple climate control system as a case
study. The initial implementation of this system has a number of limitations. As we
discuss new features, we progressively improve the implementation until we end up with
a full-featured and realistic application.

Section 5.2 describes the functionality provided by the climate control system,
Section 5.3 incrementally develops the interfaces to the system in IDL, and Section
5.4 contains the complete IDL specification for the system.

5.2 The Climate Control System

The climate control system controls the air-conditioning for various rooms in a large
building. In addition, the same system controls the temperature of a number of
manufacturing devices, such as freezers and annealing ovens. The system contains two
kinds of devices: thermometers and thermostats. These devices are installed at various
locations and support a proprietary instrument control protocol.

Thermometers report the current temperature at a location, whereas thermostats also
permit a desired temperature to be selected. The climate control system attempts to keep
the actual temperature as close as possible to this selected temperature. We assume that
the system contains hundreds of thermometers and thermostats.

The entire collection of thermometers and thermostats can be controlled from a single
remote monitoring station. An operator can monitor and set the desired temperature for
each location, find specific devices via various search criteria, and raise or lower the
temperature for a number of rooms as a group.

A climate control system server acts as a gateway between the proprietary instrument
control network and CORBA applications. We use CORBA to manage the system
because it allows us to use the regular corporate computing infrastructure instead of
having to extend the proprietary network to all clients. In addition, APIs for the
proprietary protocol may not be available for all the combinations of operating system
and platform we want to use for clients. By using CORBA, we permit a much wider
variety of client implementations, including client implementations in languages for
which the proprietary API is not available.

5.2.1 Thermometers
A thermometer is a reporting device. Its purpose is to allow the monitoring station to

inquire about the current temperature at the thermometer's location. Thermometers come
equipped with a small amount of memory that holds additional information.

122

IT-SC book: Advanced CORBA® Programming with C++

Asset number

Each thermometer has an asset number. This number is unique and is assigned when the
thermometer is manufactured (for example, written into EPROM). The asset number
therefore cannot change during the lifetime of a thermometer. The asset number also acts
as the unique proprietary network address for each device; the proprietary API requires
an asset number for remote access to a device.

Model

Thermometers come in different models. The model determines aspects such as the
precision and range of the device. The model identification is stored in read-only memory
and can be read remotely.

Location

Each thermometer stores a short string identifying its current location, such as "Room
414." This string is held in writable memory, so it can be updated. This may be necessary
when a thermometer is physically moved to a different location or if the name of a room
is changed.

5.2.2 Thermostats

Thermostats offer all the functionality of thermometers—that is, thermostats can report
the current temperature, and they have an asset number, model, and location. The asset
numbers of thermostats and thermometers share a namespace. This means that if a
particular thermostat has asset number 5, no other thermostat or thermometer can have
asset number 5.

Thermostats come equipped with a dial for setting the desired temperature. It is possible
to remotely read as well as change the setting of the dial.

Each thermostat imposes limits on the range of temperatures that can be selected and
does not permit a setting outside the legal range. Different thermostats have different

legal temperature ranges, depending on the model. Different models are required for
different environments, such as offices, freezers, and semiconductor annealing ovens.

5.2.3 The Monitoring Station

The monitoring station (known as a controller) permits access to and control of the
devices in the system. An operator can list all devices in the system, locate specific
devices by various search criteria, and make relative changes to the temperature setting of
a group of thermostats.

Listing Devices

A list operation returns a list of all devices connected to the system.

Relative Temperature Changes

123

IT-SC book: Advanced CORBA® Programming with C++

A change operation accepts a list of thermostats together with a relative temperature
setting (a delta value). The operation adjusts the nominal temperature setting of each
thermostat on the list up or down by the requested amount.

Some thermostats may not be able to make the required adjustment. For example, one of
the thermostats on the list may already be at its maximum setting and unable to increase
the nominal temperature any further. For changes that exceed the permissible range of
one or more thermostats, the operation behaves as follows.

For thermostats that can accept the requested change, the new setting is established.

For thermostats that cannot accept the requested change, the original temperature remains
unchanged. In addition, an error report shows the details of what went wrong for each
thermostat.

Finding Devices

This operation permits an operator to locate specific devices by their asset number,
location string, or model number.

5.3 IDL for the Climate Control System

Please note that the IDL for the climate control system was designed mainly as an
educational exercise. We sacrificed elegance in order to use a representative subset of the
language while keeping the example to manageable size. This also meant ignoring some
of our own advice; for example, we have used attributes when operations would be more
appropriate. Keep in mind that there are hundreds of ways to write the IDL for this
application, many of which are better than the one we use here.

The problem description for the climate control system suggests the object model shown
in Figure 5.1. (The diagram omits the implied inheritance of every IDL interface from
Object.) Because a thermostat offers all the functionality of a thermometer, it can be
considered a special kind of thermometer. We use inheritance to express this.

Figure 5.1 UML Object model for the climate control system.

4 manages 1
Thermometer = g Controller

i

Thermostat

b

Each thermometer—and, by inheritance, each thermostat—has a mandatory association
with exactly one controller. A controller manages any number of devices (possibly none).
As indicated by the association arrow, we can navigate the association from the controller

124

IT-SC book: Advanced CORBA® Programming with C++

to a device but cannot navigate the association in the opposite direction. Given a device,
it is not possible to find its managing controller.

5.3.1 IDL for Thermometers

From the problem description, we can easily model a thermometer as follows:

typedef unsigned long AssetType;

typedef string ModelType;

typedef short TempType;

typedef string LocType;

interface Thermometer ({
readonly attribute ModelType model;
readonly attribute AssetType asset num;
readonly attribute TempType temperature;

attribute LocType location;

}i

The model, asset number, location, and current temperature can all be provided as IDL
attributes. The location of the thermometer is the only modifiable attribute. The
remaining attributes are declared read-only.

5.3.2 IDL for Thermostats

The IDL for thermostat devices simply adds to the basic functionality provided by
thermometers:

interface Thermostat : Thermometer {
struct BtData {
TempType requested;
TempType min permitted;
TempType max permitted;
string error msg;

b7

exception BadTemp { BtData details; };

TempType get nominal();

TempType set nominal (in TempType new temp) raises (BadTemp) ;
}i

Instead of using attributes, a thermostat provides an accessor (get nominal) and a
modifier operation (set nominal). set nominal returns the previously set
temperature if it succeeds. If it fails, it raises a BadTemp exception. The return value is
undefined in the presence of an exception.

Note that the BadTemp exception has only a single data member, which in turn is a
structure. This may seem strange. After all, we could have written this as follows:

exception BadTemp {

TempType requested;
TempType min permitted;

125

IT-SC book: Advanced CORBA® Programming with C++

TempType max_permitted;
string error msg;

}s

The reason for placing the details in a separate structure is that exceptions are not
permissible as a data type. As you will see in a moment, by using a structure, you can
reuse the exception details from a set nominal operation for the change operation on
the controller.

5.3.3 IDL for the Controller

The 11ist operation can be implemented by returning a polymorphic list of devices:

interface Controller {
typedef sequence<Thermometer> ThermometerSeq;
ThermometerSeq list () ;

//
}i

The 1ist operation simply returns a sequence of Thermometer references. Because
thermostats are thermometers, the sequence can contain a mixture of thermometers and
thermostats. Clearly, this implies that the receiver must somehow be able to work out
whether a particular object reference in the sequence belongs to a thermostat or denotes
only a thermometer. As you will see in Section 7.6.4, this is possible (CORBA
provides a mechanism similar to a C++ dynamic cast for object references).

The change operation implements a bulk update of a number of thermostats:

interface Controller {
//
typedef sequence<Thermostat> ThermostatSeq;
struct ErrorDetails {
Thermostat tmstat ref;
Thermostat::BtData info;
}i
typedef sequence<ErrorDetails> ErrSeq;
exception EChange ({
ErrSeqg errors;
}i
void change (in ThermostatSeq tlist, in short delta)
raises (EChange) ;
//
b7

Note that change expects a sequence of Thermostat references. Only thermostats
(but not thermometers) permit a nominal temperature to be set. A thermometer is not a
thermostat, and therefore a thermometer cannot appear in a sequence of thermostats. This
makes the definition of change type-safe; there is no way to accidentally get a

126

IT-SC book: Advanced CORBA® Programming with C++

thermometer into the input sequence (at least with the C++ mapping, which is statically
type-safe.)

If one or more of the thermostats cannot make the requested change, an EChange
exception is raised. The exception contains the single data member errors, which is a
sequence of error reports. Each error report in turn contains the object reference of the
thermostat that encountered the problem (in the member tmstat ref) together with
the details of the exception raised by that thermostat (in the member info).

The £ind operation permits searching for devices by asset number, location, or model
number. An enumerated type indicates the type of search, and the search key is supplied
as a union:

interface Controller {
//
enum SearchCriterion { ASSET, LOCATION, MODEL };
union KeyType switch (SearchCriterion) {
case ASSET:

AssetType asset num;
case LOCATION:
LocType loc;

case MODEL:
ModelType model desc;
}i
//
}i

The £ind operation expects a sequence of pairs of search key and object references:

interface Controller {
//
struct SearchType {
KeyType key;
Thermometer device;
}i
typedef sequence<SearchType> SearchSeq;
void find(inout SearchSeqg slist);

//
}s

For instructional purposes, we have made the definition of this operation unnecessarily
complicated. A more realistic approach would split £ind into three separate operations
(one for each type of search) and would return the matching object references as the
return value (instead of using an inout parameter).

To locate one or more devices, the caller supplies a sequence of type SearchSeq. The

sequence contains one element for each search key. This permits the caller to search for
devices by several search criteria in a single call. For example, to locate all devices in

127

IT-SC book: Advanced CORBA® Programming with C++

the object reference of the matching device.

Room 414 or with the asset number 123, the caller creates a sequence with two elements,
one for each search criterion.

The f£ind operation looks for the devices nominated by the search keys. If a matching
device is found, it overwrites the device member in the SearchType structure with
If no matching device is found, the device
member is set to the nil reference to indicate a failed search for this key to the caller. The
initial value of the device member (as sent by the client) is ignored.

Figure 5.2 shows an example in which the client supplies two search records. One
record looks for devices in Room 414, and the other record looks for the device with
asset number 123. Assume that no devices are in Room 414 but that a device with asset
number 123 actually exists. The corresponding search sequence is shown before and after
the call.

Figure 5.2 Search sequence before and after a call.

tlist before calling find:

tlist[0] tlist[1]

key 1 device by device

Room 414 (LOCATION) :ignored | 123 (ASSET) Cignored
tlist after calling find:
Hist[0] tlist[1]

by ' device ke s device

Room 414 (LOCATION) «nil | 123 (ASSET) . object reference

Figure 5.3 Growing

tlist before calling find:

Some search keys can result in more than one matching device. For example, we may
have two model Sens-A-Temp thermometers in the system. In this case, the find
operation increases the length of the inout sequence to return the matching devices, as

shown in Figure 5.3.

a search sequence.

tlist[0]

key device

Sens-A-Temp (MODEL) :ignored
tlist after calling find:
tlist[0] tist{1]

kay device key device

Sens-A-Temp (MODEL) : object reference 1

Sens-A-Temp (MODEL) -+ object referance 2

IT-SC book: Advanced CORBA® Programming with C++

5.4 The Complete Specification

All that remains is to combine the preceding pieces of IDL into a single specification. As
good IDL citizens, we wrap everything in a module called CCS and use a pragma to
establish a unique prefix for repository IDs:

#pragma prefix "acme.com"
module CCS {
typedef unsigned long AssetType;
typedef string ModelType;
typedef short TempType;
typedef string LocType;
interface Thermometer
readonly attribute ModelType model;
readonly attribute AssetType asset num;
readonly attribute TempType temperature;
attribute LocType location;
}i
interface Thermostat : Thermometer {
struct BtData {
TempType requested;
TempType min permitted;
TempType max permitted;
string error msg;
}i
exception BadTemp { BtData details; };
TempType get nominal () ;
TempType set nominal (in TempType new_ temp)
raises (BadTemp) ;
}i
interface Controller {
typedef sequence<Thermometer> ThermometerSeq;
typedef sequence<Thermostat> ThermostatSeq;
enum SearchCriterion { ASSET, LOCATION, MODEL };
union KeyType switch (SearchCriterion) {
case ASSET:

AssetType asset num;
case LOCATION:
LocType loc;

case MODEL:
ModelType model desc;
}i
struct SearchType {
KeyType key;
Thermometer device;

}i

typedef sequence<SearchType> SearchSeq;
struct ErrorDetails {
Thermostat tmstat ref;

Thermostat::BtData info;
}i
typedef sequence<ErrorDetails> ErrSeq;
exception EChange {

ErrSeq errors;

bi

129

IT-SC book: Advanced CORBA® Programming with C++

ThermometerSeq list();

void find (inout SearchSeq slist);
void change (

in ThermostatSeqg tlist, in short delta
) raises (EChange) ;

130

IT-SC book: Advanced CORBA® Programming with C++

Chapter 6. Basic IDL-to-C++ Mapping

6.1 Chapter Overview

This chapter explains how IDL types are mapped to their corresponding C++ types by an
IDL compiler. Sections 6.3 to 6.8 cover identifiers, modules, and simple IDL types.
Section 6.9 covers memory management issues related to variable-length types, and
Section 6.10 presents detailed examples of memory management for strings.
Sections 6.11 and 6.12 discuss the mapping for wide strings and fixed-point types.
The mapping for user-defined complex types is covered in Sections 6.13 to 6.18.
Section 6.19 shows how smart pointers can eliminate the need to take care of memory
management.

This chapter does not cover all of the mapping. Chapter 7 presents the client-side
mapping for operations and exceptions, Chapter 9 details the server-side mapping, and
Chapter 15, Chapter 16, Chapter 17, cover the dynamic aspects of IDL. (The
complete C++ mapping specification can be found in [17/a].)

This chapter is long, and you probably won't be able (or inclined) to absorb all of it by
reading it from beginning to end. Instead, you may prefer to browse the sections that
interest you and refer to the details later. The chapter is arranged so that it is suitable as a
reference. All the material for a particular topic is presented together, so you should be
able to find the answers to specific questions as they arise.

6.2 Introduction

e The mapping from IDL to C++ must address a large number of requirements:

e The mapping should be intuitive and easy to use.

e It should preserve commonly used C++ idioms and "feel" like normal C++ as
much as possible.

e [t should be type-safe.

e It should be efficient in its use of memory and CPU cycles.

e [t must work on architectures with segmented or hard (non-virtual) memory.

e It must be reentrant so that it can be used in threaded environments.

e The mapping must preserve location transparency; that is, the source code for
client and server must look identical whether or not client and server are
collocated (are in the same address space).

Some of these requirements conflict with others. For example, typically we cannot
achieve ease of use and optimum efficiency at the same time, so we must make trade-offs.
The C++ mapping adopted by the OMG deals with these compromises by choosing
efficiency over convenience. The reason for this approach is twofold.

131

IT-SC book: Advanced CORBA® Programming with C++

It is possible to layer a slower but more convenient mapping on top of a faster but less
convenient one, but we cannot layer a fast mapping on top of a slow one. Favoring a
mapping that is fast but less convenient lets the OMG and ORB vendors add other
options, such as code generation wizards, later.

Increasingly, designers use IDL to describe in-process interfaces, which have the
advantage of location transparency. Such interfaces let you build systems that implement
different functional units in a single process and then let you later split that single process
into multiple processes without breaking existing source code. The run-time efficiency of
the mapping may be irrelevant for interprocess communication, but it matters for in-
process communication.

These design choices mean that the C++ mapping is large and complex, but things are not
as bad as they may seem. First, the mapping is consistent. For example, once you have
understood the memory management of strings, you also know most of the rules for other
variable-length types. Second, the mapping is type-safe; no casts are required, and many
mistakes are caught at compile time. Third, the mapping is easy to memorize. Although
some classes have a large number of member functions, you need call only a small
number of them for typical use; some member functions exist to provide default
conversions for parameter passing, and you need not ever call them explicitly.

Keep in mind that you should not try to read and understand the header files generated by
the IDL compiler. The header files typically are full of incomprehensible macros,
mapping implementation details, and cryptic workarounds for various compiler bugs. In
other words, the header files are not meant for human consumption. It is far easier to look
at the IDL instead. IDL and a knowledge of the C++ mapping rules are all you need to
write high-quality code.

6.3 Mapping for Identifiers

IDL identifiers are preserved without change in the generated C++ code. For example,
the IDL enumeration

enum Color { red, green, blue };

maps to the C++ enumeration

enum Color { red, green, blue };

The C++ mapping also preserves the scoping of IDL. If a scoped name such as Outer: :
Inner is valid in IDL, the generated C++ code defines the same name as
Outer: :Inner.

A problem arises if C++ keywords are used in an IDL definition. For example, the
following IDL definition is legal:

132

IT-SC book: Advanced CORBA® Programming with C++

enum class { if, this, while, else };

Clearly, this definition cannot be translated without mapping away from the C++
keywords. The C++ mapping specifies that IDL identifiers that are C++ keywords get a
cxx prefix, so the preceding is translated as

enum cxx class { cxx if, cxx this, c¢cxx while, cxx else };

The resulting code is harder to read, so you should avoid using IDL identifiers that are
C++ keywords.

It is also a good idea to avoid IDL identifiers containing a double underscore, such as

typedef long my long;

The identifier my long is legal and maps to C++my long. However, standard C++
reserves identifiers containing double underscores for the implementation, so, strictly
speaking, my long invades the compiler's namespace. In practice, IDL identifiers
containing double underscores are not likely to cause problems, but you should be aware
that the C++ mapping does not address this potential name clash.

6.4 Mapping for Modules

IDL modules are mapped to C++ namespaces. The contents of an IDL module appear
inside the corresponding C++ namespace, so the scoping of an IDL definition is
preserved at the C++ level. Here is an example:

module Outer {
// More definitions here...
module Inner {
//
}s
bi

This maps to correspondingly nested namespaces in C++:

namespace Outer {
// More definitions here...
namespace Inner {

/7
}

A useful feature of namespaces is that they permit you to drop the name of the namespace
by using a using directive. This technique eliminates the need to qualify all identifiers
with the module name:

133

IT-SC book: Advanced CORBA® Programming with C++

using namespace Outer::Inner;
// No need to qualify everything
// with Outer::Inner from here on...

IDL modules can be reopened. A reopened module is mapped by reopening the
corresponding C++ namespace:

module M1 {

// Some M1l definitions here...
b
module M2 {

// M2 definitions here...
}s
module M1 { // Reopen M1

// More M1l definitions here...
bi

This maps to C++ as

namespace M1 {
// Some Ml definitions here...

}
namespace M2 {
// M2 definitions here...

}
namespace M1 { // Reopen M1
// More M1 definitions here...

}

Because not all C++ compilers have caught up with the ISO/IEC C++ Standard [9],
namespaces are not universally available. For compilers not supporting namespaces,
CORBA specifies an alternative that maps IDL modules to C++ classes instead of
namespaces:

class Outer {
public:
// More definitions here...
class Inner {
public:
//
}i
}i

This alternative mapping is workable but has drawbacks.

No using directive is available, so you must fully qualify names that are not in the
current scope (or in one of its enclosing scopes).

134

IT-SC book: Advanced CORBA® Programming with C++

There is no sensible mapping of reopened modules onto classes. This means that IDL
compilers will not permit you to reopen an IDL module if code generation is for a C++
compiler that does not support namespaces.

For the remainder of this book, we use the mapping to namespaces.

6.5 The CORBA Module

CORBA defines a number of standard IDL types and interfaces. To avoid polluting the
global namespace, these definitions are provided inside the CORBA module. The CORBA
module is mapped in the same way as any other module, so the ORB header files provide
a CORBA namespace containing the corresponding C++ definitions.

We discuss the contents of the CORBA namespace incrementally throughout this book.

6.6 Mapping for Basic Types

IDL basic types are mapped as shown in Table 6.1. Except for string, each IDL type
is mapped to a type definition in the CORBA namespace. The type definitions allow the
mapping to maintain the size guarantees provided by IDL. To ensure that your code
remains portable, always use the names defined in the CORBA namespace for IDL types
(for example, use CORBA: : Long instead of 1ong to declare a variable). This will also
help the transition of your code to 64-bit architectures (which may define
CORBA: :Longas int).

Note that IDL string is mapped directly to char * instead of a type definition. The
reason is that when the OMG first produced the C++ mapping, it was felt that binary
layout of data in memory had to be the same for both the C and the C++ mappings.= This
precludes mapping strings to something more convenient, such as a string class.

11 In hindsight, imposing this restriction was probably a mistake because it forces the C++
mapping to be less type-safe and convenient than it could have been otherwise.

6.6.1 64-bit Integer and long double Types

The specification assumes that the underlying C++ implementation provides native
support for (unsigned) long long and long double. If such support is not
available, the mapping for these types is not specified. For that reason, you should avoid
64-bit integers and 1ong double unless you are sure that they are supported as native
C++ types on the platforms relevant to you.

Table 6.1. Mapping for basic types.

IDL C++
short CORBA: :Short
long CORBA: :Long
long long CORBA: :LongLong

135

IT-SC book: Advanced CORBA® Programming with C++

unsigned short CORBA: :UShort
unsigned long CORBA: :ULong
unsigned long long CORBA: :ULongLong
float CORBA: :Float
double CORBA: :Double
long double CORBA: :LongDouble
char CORBA: :Char
wchar CORBA: :WChar
string char *

wstring CORBA: :WChar *
boolean CORBA: :Boolean
octet CORBA: :Octet

any CORBA: :Any

6.6.2 Overloading on Basic Types

All the basic types are mapped so that they are distinguishable for the purposes of C++
overloading; the exceptions are char, boolean, octet, and wchar. This is because
all three of the types char, boolean, and octet may map to the same C++ character
type, and wchar may map to one of the C++ integer types or wchar t. For example:

void foo (CORBA: :Short param) {/*...%/ };
void foo (CORBA::Long param) {/*...%/ };
void foo (CORBA::Char param) {/*...%) };
void foo (CORBA::Boolean param) {/*...%) }; // May not compile
void foo (CORBA::Octet param) {/*...%) }; // May not compile
void foo (CORBA::WChar param) { /*...%/ }; // May not compile

The first three definitions of foo are guaranteed to work, but the final three definitions
may not compile in some implementations. For example, an ORB could map IDL char,
boolean, and octet to C++ char and map IDL wchar to C++ short. (In that case,
the preceding definitions are ambiguous and will be rejected by the compiler.) To keep
your code portable, do not overload functions solely on Char, Boolean, and Octet,
and do not overload on WChar and an integer type even if it happens to work for your
particular ORB.

6.6.3 Types Mappable to char
IDL char, boolean, and octet may map to signed, unsigned, or plain char. To
keep your code portable, do not make assumptions in your code about whether these

types are signed or unsigned.

6.6.4 Mapping for wchar

136

IT-SC book: Advanced CORBA® Programming with C++

IDL wchar may map to a C++ integer type, such as int, or may map to C++ wchar t.
The mapping to integer types accommodates non-standard compilers, in which wchar t
is not a distinct type.

6.6.5 Boolean Mapping

On standard C++ compilers, IDL boolean may be mapped to C++ bool; the
specification permits this but does not require it. If it is not mapped to C++ bool—for
example, on classic C++ compilers—CORBA : : Boolean maps to plain char, signed
char,orunsigned char.

The C++ mapping does not require Boolean constants TRUE and FALSE (or true and
false) to be provided (although true and false will work in a standard C++
environment). To keep your code portable, simply use the integer constants 1 and 0 as
Boolean values; this works in both standard and classic environments.

6.6.6 String and Wide String Mapping

Strings are mapped to char *, and wide strings are mapped to CORBA: :wchar *.
This is true whether you use bounded or unbounded strings. If bounded strings are used,
the mapping places the burden of enforcing the bound on the programmer. It is
unspecified what should happen if the length of a bounded string is exceeded at run time,
so you must assume that the behavior is undefined.

The use of new and delete for dynamic allocation of strings is not portable. Instead,
you must use helper functions in the CORBA namespace:

namespace CORBA {

//

static char * string alloc(ULong len);
static char * string dup (const char *);
static void string free(char *);

static wchar * wstring alloc(ULong len);
static wchar * wstring dup(const wchar *);
static void wstring free (wchar *);

//

These functions handle dynamic memory for strings and wide strings. The C++ mapping
requires that you use these helper functions to avoid replacing global operator new/|]
and operator delete[] and because non-uniform memory architectures may have
special requirements. Under Windows, for example, memory allocated by a dynamic
library must be deallocated by that same library. The string allocation functions ensure
that the correct memory management activities can take place. For uniform memory
models, such as in UNIX, string alloc and string free are usually
implemented in terms of new [] and delete[].

137

IT-SC book: Advanced CORBA® Programming with C++

The string alloc function allocates one more byte than requested by the len
parameter, so the following code is correct:

char * p = CORBA::string alloc(5); // Allocates 6 bytes
strcpy (p, "Hello"); // OK, "Hello" fits

The preceding code is more easily written using string dup, which combines the
allocation and copy:

char * p = CORBA::string dup("Hello");

Both string alloc and string dup return a null pointer if allocation fails. They
do not throw a bad alloc exception or a CORBA exception.

The string free function must be used to free memory allocated with
string alloc or string dup. Calling string free for a null pointer is safe
and does nothing.

Do not use delete or delete[] to deallocate memory allocated with
string alloc or string dup. Similarly, do not use string free to deallocate
memory allocated with new or new []. Doing so results in undefined behavior.

The wstring* helper functions have the same semantics as the string* helper
functions, but they operate on wide strings. As with string alloc,
wstring alloc allocates an additional character to hold the zero terminating value.

6.7 Mapping for Constants

Global IDL constants map to file-scope C++ constants, and IDL constants nested inside
an interface map to static class-scope C++ constants. For example:

const long MAX_ENTRIES = 10;
interface NameList {

const long MAX NAMES = 20;
}s

This maps to

const CORBA::Long MAX ENTRIES = 10;

class NameList {

public:
static const CORBA::Long MAX NAMES; // Classic or standard C++
// OR:
static const CORBA::Long MAX NAMES = 20; // Standard C++

}i

138

IT-SC book: Advanced CORBA® Programming with C++

This mapping preserves the nesting of scopes used in the IDL, but it means that IDL
constants that are nested inside interfaces are not C++ compile-time constants. In classic
(non-standard) C++, initialization of static class members is illegal, so instead of
generating the initial value into the header file, the IDL compiler generates an
initialization statement into the stub file. Standard C++, on the other hand, permits
initialization of constant class members in the class header for integral and enumeration
types. Therefore, in a standard environment, you may find that constants defined inside
an interface end up being initialized in the class header.

Normally, the point of initialization is irrelevant unless you use an IDL constant to
dimension an array:

char * entry array[MAX ENTRIES]; // OK
char * names array[NameList::MAX NAMES]; // May not compile

You can easily get around this restriction by using dynamic allocation, which works no
matter how your IDL compiler maps constants:

char * entry array[MAX ENTRIES]; // OK
char ** names array = new char *[NameList::MAX NAMES] ; // OK

String constants are mapped as a constant pointer to constant data:

const string MSG1l = "Hello";

const wstring MSG2 = L"World";

This maps to the following:

//

// If IDL MSGl and MSG2 are at global scope:
//

const char * const MSG1 = "Hello";

const CORBA::wchar * const MSG2

L"World";

//
// If IDL MSGl and MSG2 are in an IDL interface "Messages":
//
class Messages {
public:
static const char * const MSGl; // "Hello"
static const CORBA::wchar * const MSG2; // L"World"
}i

Note that if IDL constants are declared inside a module (instead of an interface), their
mapping depends on whether you are using a classic or a standard C++ compiler:

module MyConstants {

const string GREETING = "Hello";
const double PI = 3.14;

139

IT-SC book: Advanced CORBA® Programming with C++

}i

In classic C++, this maps to

class MyConstants {

public:
static const char * const GREETING; // "Hello"
static const CORBA::Double PI; // 3.14

}i

With a standard C++ compiler, the module maps to a namespace and the constants are in
the generated header file:

namespace MyConstants {
const char * const GREETING = "Hello";
const CORBA::Double PI = 3.14;

6.8 Mapping for Enumerated Types

IDL enumerated types map to C++ enumerations. The C++ definition appears at the same
scope as the IDL definition. The enumeration is mapped to C++ unchanged except that a
trailing dummy enumerator is added to force enumerators to be a 32-bit type:

enum Color { red, green, blue, black, mauve, orange };

This appears in C++ as

enum Color {
red, green, blue, black, mauve, orange,
_Color dummy=0x80000000 // Force 32-bit size
bi

The mapping specification does not state what name is used for the dummy enumerator.
The IDL compiler simply generates an identifier that will not clash with anything else in
the same scope.

Note that this mapping guarantees that red will have the ordinal value 0, green will
have the ordinal value 1, and so on. However, this guarantee applies only to the C++
mapping and not to all language mappings in general. This means that you cannot
portably exchange the ordinal values of enumerators between clients and servers.
However, you can portably exchange the enumerators themselves. To send the
enumerator value red to a server, simply send red (and not zero). If red is represented
by a different ordinal value in the target address space, the marshaling code translates it
appropriately. (The mapping for enumerations is type-safe in C++, so you cannot make

140

IT-SC book: Advanced CORBA® Programming with C++

this mistake unless you use a cast. However, for other implementation languages, this
may not be the case.)

6.9 Variable-Length Types and var Types

IDL supports a number of variable-length types, such as strings and sequences. Variable-
length types have special mapping requirements. Because the sizes of variable-length
values are not known at compile time, they must be dynamically allocated at run time.
This raises the issue of how dynamic memory is allocated and deallocated as well as your
responsibilities as the programmer with respect to memory management.

The C++ mapping operates at two different levels. At the lower, or "raw," level, you are
responsible for all memory management activities. You can choose to code to this level,
but the price is that you must remember exactly under what circumstances you need to
allocate and deallocate dynamic memory. The lower level of the mapping also exposes
you to differences in memory management rules for fixed- and variable-length structured

types.

At the higher level, the C++ mapping makes life easier and safer by providing a set of
smart pointer classes known as var types. var types relieve you of the burden of
having to explicitly deallocate variable-length values and so make memory leaks less
likely. These types also hide differences between fixed- and variable-length structured
types, so you need not worry constantly about the different memory management rules
that apply to them.

6.9.1 Motivation for var Types

Programmers new to CORBA and the C++ mapping usually have difficulties coming to
grips with var types and understanding when and when not to use them. To clarify the
motivation for var types, let us consider a simple programming problem. The problem
is not specific to CORBA; it applies to C and C++ in general. Here is the problem
statement:

Write a C function that reads a string from an I/O device and returns that string to the
caller. The length of the string is unlimited and cannot be determined in advance.

The problem statement captures a frequent programming problem, namely, how to read a
variable-length value without advance knowledge of the total length of the value. There
are several approaches to addressing the problem, and each has its own trade-offs.

Approach 1: Static Memory

Here is one approach to implementing the helper function:
const char *

get string()
{

141

IT-SC book: Advanced CORBA® Programming with C++

static char buf[10000]; /* Big enough */
/* Read string into buf... */
return buf;

This approach has the advantage of simplicity, but it suffers from a number of serious
drawbacks.

The string to be returned may be longer than you expect. No matter what value you pick
to dimension the bu f array, it may be too small. If the actual string is too long, either you
overrun the array and the code fails catastrophically, or you must arbitrarily truncate the
string.

For short strings, the function wastes memory because most of the buf array is not used.
Each call to get string overwrites the result of the previous call. If the caller wants
to keep a previous string, it must make a copy of the previous result before calling the
function a second time.

The function is not reentrant. If multiple threads call get string concurrently, the
threads overwrite one another's results.

Approach 2: Static Pointer to Dynamic Memory

Here is a second try at writing get string:

const char *
get string()
{
static char * result = 0;
static size t rsize = 0;
static const size t size of block = 512;
size t rlen;

rlen = 0;
while (data remains_ to be read()) {
/* read a block of data... */
if (rsize - rlen < size of block) {
rsize += size of block;
result = realloc(result, rsize);
}
/* append block of data to result... */

rlen += size of block;
}

return result;

This approach uses a static pointer to dynamic memory, growing the buffer used to hold
the data as necessary. Using dynamic memory gets rid of the arbitrary length limitation
on the string but otherwise suffers the problems of the previous approach: each call still
overwrites the result of the previous call, and the function is not reentrant. This version

142

IT-SC book: Advanced CORBA® Programming with C++

can also waste significant amounts of memory, because it permanently consumes
memory proportional to the worst case (the longest string ever read).

Approach 3: Caller-Allocated Memory

In this approach, we make the caller responsible for providing the memory to hold the
string:

size t
get string(char * result, size t rsize)

{

/* read at most rsize bytes into result... */
return number of bytes read;

This is the approach taken by the UNIX read system call. It solves most of the problems
in that it is reentrant, does not overrun memory or arbitrarily truncate data, and is frugal
with memory. (The amount of potentially wasted memory is under control of the caller.)

The disadvantage is that if the string is longer than the supplied buffer, the caller must
keep calling until all the data has been read. (Repeated calls by multiple threads are
reentrant if we assume that the data source is implicit in the calling thread.)

Approach 4: Return Pointer to Dynamic Memory

In this approach, get string dynamically allocates a sufficiently large buffer to hold
the result and returns a pointer to the buffer:

char *
get string()
{
char * result = 0;
size t rsize = 0;
static const size t size of block = 512;
while (data remains to be read) {

/* read a block of data... */

rsize += size of block;

result = realloc(result, rsize);

/* append block of data to result... */

}

return result;

This is almost identical to approach 2 (the difference 1s that get string does not use
static data). It neatly solves all the problems: the function is reentrant, does not impose
arbitrary size limitations on the result, does not waste memory, and does not require
multiple remote calls for long results (but dynamic allocation adds a little to the cost of
collocated calls).

143

IT-SC book: Advanced CORBA® Programming with C++

The main drawback of this approach is that it makes the caller responsible for
deallocating the result:

/e K/

{
char * result;
result = get string();
/* Use result... */

free (result);

/* oL %/
result = get string();
ANV

} /* Bad news, forgot to deallocate last result! */

Here, the caller returns from a block without deallocating the result returned by
get string. The memory occupied by the result can never be reclaimed. Repeated
mistakes of this kind doom the caller to an inevitable death. Eventually, the caller runs
out of memory and is aborted by the operating system, or, in an embedded system, the
caller may lock up the machine.

6.9.2 Memory Management for Variable-Length Types

From the preceding discussion, it should be clear that approaches 1 and 2 are not suitable
for the C++ mapping because they are not reentrant. Approach 3 is not an option, because
the cost of repeated calls becomes prohibitive if caller and callee are on different
machines.

This leaves approach 4, which is the approach taken by the C++ mapping for variable-
length types. The C++ mapping makes the caller responsible for deallocating a variable-
length result when it is no longer needed.

By definition, the following IDL types are considered variable-length:
Strings and wide strings (whether bounded or unbounded)

Object references

Type any

Sequences (whether bounded or unbounded)

Structures and unions if they (recursively) contain variable-length members

Arrays if they (recursively) contain variable-length elements

For example, an array of double is a fixed-length type, whereas an array of string is
a variable-length type.

For each structured IDL type in a definition, the IDL compiler generates a pair of C++
types. For example, for an IDL union foo, the compiler generates two C++ classes: class

144

IT-SC book: Advanced CORBA® Programming with C++

foo and class foo var. Class foo provides all the functionality required to use the
union and corresponds to the lower mapping level. Class foo var provides the higher
mapping level by acting as a memory management wrapper around class foo. In
particular, if class foo happens to represent an IDL variable-length type, class foo var
takes care of deallocating foo instances at the appropriate time.

The correspondence between IDL types and the lower and higher mapping levels is
shown in Table 6.2.

Table 6.2. Correspondence of IDL types to C++ types.

IDL Type C++ Type Wrapper C++ Type
string char * CORBA: :String var
any CORBA: :Any CORBA: :Any var
interface foo foo ptr class foo var
struct foo struct foo class foo _var
union foo class foo class foo var
typedef sequence<X> foo[l1l0]; class foo class foo var
typedef X fool[l0]; typedef X fool[l0]; class foo_var

Note that structures, unions, and arrays can be fixed-length or variable-length. The IDL
compiler generates a var class even if the corresponding IDL type is fixed-length. For
a fixed-length type, the corresponding var class effectively does nothing. As you will
see in Section 6.19, this class is useful for hiding the memory management differences
between fixed-length and variable-length types.

_var classes have similar semantics as the standard C++ auto ptr template. However,
the C++ mapping does not use auto ptr (and other standard C++ types) because at the
time the mapping was developed, many of the standard C++ types were not yet conceived.
We explore var classes and their uses incrementally throughout the next few chapters.
For now, we examine CORBA: : String var as an example of how var classes help
with dynamic memory management.

6.10 The string var Wrapper Class

The class CORBA: : String var provides a memory management wrapper for char
*_ shown in Figure 6.1. The class stores a string pointer in a private variable and takes
responsibility for managing the string's memory. To make this more concrete, following
is the class definition for String var. We examine the purpose of each member
function in turn. Once you understand how String var works, you will need to learn
little new for the remaining var classes. The var classes for structures, unions, and
so on are very similar to String var.

145

IT-SC book: Advanced CORBA® Programming with C++

Figure 6.1 String_var wrapper class.

class String_war {

public:
String wvar();
String_wvar (char *);
String_wvar (const char *);:
~String_wvar():
ffoete, ..

private:
char * s; »Hl|e|l|1l|o]|\0]

class String var {
public:
String var();
String var (char * p);
String var (const char * p);
String var (const String var & s);
String var();

String var & operator=(char * p);
String var & operator=(const char * p);
String var & operator=(const String var & s);

operator char *();
operator const char *() const;
operator char * &();

char & operator[] (ULong index) ;

char operator[] (ULong index) const;
const char * in() const;

char * ¢& inout () ;

char * & out () ;

char * _retn();

}i

String var ()

The default constructor initializes a String var to contain a null pointer. If you use a
default-constructed St ring var value without initializing it first, you will likely suffer
a fatal crash because the code ends up dereferencing a null pointer:

CORBA: :String var s;
cout < "s = \"" < s < "\"" < endl; // Core dump imminent!

String var (char *)

This constructor initializes the String var from the passed string. The String var
takes responsibility for the string: it assumes that the string was allocated with
CORBA::string alloc or CORBA::string dup and calls

146

IT-SC book: Advanced CORBA® Programming with C++

CORBA::string free when its destructor runs. The point is that you can initialize
the String var with a dynamically allocated string and forget about having to
explicitly deallocate the string. The String var takes care of deallocation when it
goes out of scope. For example:

{
CORBA::String var s (CORBA::string dup("Hello"));

//

} // No memory leak here, ~String var() calls string free().

String var (const char *)

If you construct a String var using the const char * constructor, the
String var makes a deep copy of the string. When the String var goes out of
scope, it deallocates its copy of the string but leaves the original copy unaffected. For
example:

const char * message = "Hello";

//

{
CORBA::String var s(message); // Makes a deep copy
//

} // ~String var() deallocates its own copy only.

cout < message < endl; // OK

String var (const String var &)

The copy constructor also makes a deep copy. If you initialize one String var from
another String wvar, modifications to one copy do not affect the other copy.
~String_var__

The destructor calls CORBA: :string free to deallocate the string held by the

String var.

String var & operator=(char *)

String var & operator=(const char *)
String var & operator=(const String var &)

The assignment operators follow the conventions of the constructors. The char *
assignment operator assumes that the string was allocated with string alloc or
string dup and takes ownership of the string.

The const char * assignment operator and the String var assignment operator
each make a deep copy.

Before accepting the new string, the assignment operators first deallocate the current
string held by the target. For example:

147

IT-SC book: Advanced CORBA® Programming with C++

CORBA::String var target;

target = CORBA::string dup ("Hello"); // target takes ownership
CORBA: :String var source;

source = CORBA::string dup ("World"); // source takes ownership
target = source; // Deallocates "Hello" and takes

// ownership of deep copy of "World".
operator char * ()
operator const char *() const

These conversion operators permit you to pass a String var asa char * or const
char *.For example:

CORBA: :String var s;

s = get_string(); // get string() allocates with string alloc(),
// s takes ownership

size t len;

len = strlen(s); // const char * expected, OK

The main reason for the conversion operators is to let you transparently pass a
String var to IDL operations that expect an argument of type char * or const
char *. We discuss the details of parameter passing in Chapter 7.

operator char * &()

This conversion operator allows you to pass a string for modification to a function using
a signature such as

void update string(char * &);

Conversion to a reference to the pointer (instead of just to the pointer) is necessary so that
the called function can increase the length of the string. A reference to the pointer is
passed because lengthening the string requires reallocation, and this in turn means that
the pointer value, and not just the bytes it points to, needs to change.

char & operator|[] (ULong)
char operator[] (ULong) const

The overloaded subscript operators permit you to use an index to get at the individual
characters of a String var as if it were an array. For example:

CORBA::String var s = CORBA::string dup("Hello");
cout < s[4] < endl; // Prints 'o'

Strings are indexed as ordinary arrays are, starting at zero. For the "Hello" string, the
expression s [5] is valid and returns the terminating NUL byte. Attempts to index

beyond the NUL terminator result in undefined behavior.

148

IT-SC book: Advanced CORBA® Programming with C++

6.10.1 Pitfalls of Using String var

As you will see in Section 7.14.12, class String var (and the other var classes)
exists mainly to deal with return values and out parameters for operation invocations.
There are a number of situations in which String var can be used inefficiently or
inappropriately. Following are some of the pitfalls.

Initialization or Assignment from String Literals

String literals need special attention, at least if you are using classic (non-standard) C++;
the type of a string literal is char * in classic C++ but is const char * in standard
C++. If you are using a classic C++ compiler, the following code is guaranteed to crash
sooner or later:

CORBA::String var sl ("Hello"); // Looming disaster!
CORBA::String var s2 = "Hello"; // Same problem!

Note that even though the second declaration looks like an assignment, it really is a
declaration, and therefore both s1 and s2 are initialized by a constructor. The question is,
which constructor?

In classic C++, the type of the string literal "Hello", when passed as an argument, is
char *. The compiler therefore invokes the char * constructor, which takes
ownership of the passed string. When s1 and s2 are destroyed, the destructor invokes
string free with an address in the initialized data segment. Of course, freeing non-
heap memory results in undefined behavior and in many implementations causes a core
dump.

The same problem arises if you assign a string literal to a String var:

CORBA: :String var s3;
s3 = "Hello"; // Calls operator=(char *), looming disaster!

Again, in classic C++, the type of "Hello" is char * (and not const char *),so
the assignment is made by a call to String var::operator=(char *). As with
the char * constructor, this operator assigns ownership of the string to the
String var, and that will cause the destructor to attempt to free non-heap memory.

To work around this problem, either you can create a copy of the literal yourself and
make the String var responsible for the copy, or you can force a deep copy by
casting to const char *:

// Force deep copy
CORBA: :String var sl ((const char *)"Hello");

// Explicit copy

149

IT-SC book: Advanced CORBA® Programming with C++

CORBA::String var s2(CORBA::string dup ("Hello"));

// Force deep copy
CORBA::String var s3 = (const char *)"Hello";

// Explicit copy
CORBA::String var s4 = CORBA::string dup ("Hello");

CORBA: :String var s5;
s5 = (const char *)"Hello"; // Force deep copy

CORBA::String var s6;

s6 = CORBA::string dup("Hello"); // Explicit copy

const char * p = "Hello"; // Make const char * pointer
CORBA::String var s7(p); // Make deep copy

CORBA: :String var s8 = p; // ditto...

CORBA: :String var s9;

s9 = p; // ditto...

The preceding code shows various ways of initializing and assigning string literals. In all
cases, each String var variable ends up with its own separate copy of the literal,
which can be deallocated safely by the destructor.

Wherever a cast to const char * is used, the constructor or assignment operator
makes a deep copy. Wherever a call to st ring dup is used, a copy of the string literal
is created explicitly, and the String var takes responsibility for deallocation of the

copy.

Both approaches are correct, but as a matter of style we prefer a call to string dup
instead of a cast. To a casual reader, casts indicate that something unusual is happening,
whereas calling string dup emphasizes that an allocation is made.

The explicit copy style works correctly for both classic and standard C++, and we use
that style throughout the remainder of this book. Of course, if you are working
exclusively in a standard C++ environment, the following is safe:

CORBA::String var s = "Hello"; // OK for standard C+ +, deep copy

Assignment of String var to Pointers

If you assign a String var variable to a char * or const char * variable, you
need to remember that the assigned pointer will point at memory internal to the
String var. This means that you need to take care when using the pointer after such
an assignment:

CORBA::String var sl = CORBA::string dup ("Hello");

150

IT-SC book: Advanced CORBA® Programming with C++

const char * pl = sl; // Shallow assignment
char * p2;
{
CORBA::String var s2 = CORBA::string dup ("World");
p2 = s2; // Shallow assignment
sl = s2; // Deallocate "Hello", deep copy "World"

} // Destructor deallocates s2 ("World")

cout < pl < endl; // Whoops, pl points nowhere
cout < p2 < endl; // Whoops, p2 points nowhere

This code illustrates two common mistakes. Both of them arise from the fact that
assignment from a String_var to a pointer is always shallow.

The first pointer assignment (p1 = s1) makes pl point at memory still owned by s1.
The assignment s1 = s2 is a deep assignment, which deallocates the initial value of s1
("Hello"). The value of pl is not affected by this, so p1 now points at deallocated
memory.

The second pointer assignment (p2 = s2) is also a shallow assignment, so p2 points at
memory owned by s2. When s2 goes out of scope, its destructor deallocates the string,
which leaves p2 pointing at deallocated memory.

This does not mean that you should never assign a String var to a pointer (in fact,
such assignments are often useful). However, if you make such an assignment and want
to use the pointer, you must ensure that the pointed-to string is not deallocated by
assignment or destruction.

6.10.2 Passing Strings as Parameters for Read Access

Frequently, you will find yourself writing functions that accept strings as parameters for
read access. Your program is also likely to have variables of both type char * and type
String var. It would be nice to have a single helper function that could deal with both
types. Given the choice of char * and String var, how should you declare the
formal parameter type of such a function?

Here is how not to do it:

void
print string (CORBA::String var s)
{
cout < "String is \"" < s < "\"" < endl;

}

int
main ()

{
CORBA::String var msgl = CORBA::string dup ("Hello");
print string(msgl); // Pass String var

151

IT-SC book: Advanced CORBA® Programming with C++

return 0;

This code is correct but inefficient. The print string function expects a parameter
of type String var. The parameter is passed by value, and that forces the compiler to
create a temporary String var instance that is passed to print string. The result
is that for every call to print string, several function calls are actually made: a call
to the copy constructor to create the temporary, followed by a call to an overloaded
ostream operator< to print the string, followed by a call to the destructor to get rid
of the temporary String var again. The constructor calls st ring dup (which calls
strcpy), and the destructor calls string free. The string dup and
string free functions will probably call operator new[] and operator
delete[], which in turn are often implemented in terms of malloc and free. This
means that the preceding innocent-looking piece of code can actually result in as many as
ten function calls for each call to print string!

In most implementations, at least some of the function calls will be inlined, so the cost is
not quite as dramatic as it may first seem. Still, we have observed massive slowdowns in
large systems because of such innocent mistakes. Most of the cost arises from the hidden
dynamic memory allocation. As shown in [11], allocating and destroying a class instance
on the heap is on average about 100 times as expensive as allocating and destroying the
same instance on the stack.

Here is another problem with the print string function:

print string("World"); // Call with char *, looming disaster!

This code compiles fine, and it prints exactly what you think it should. However, it will
likely cause your program to dump core. This happens for the same reasons as discussed
earlier: the type of the string literal is char * (at least in classic C++), and that
eventually results in an attempt to deallocate non-heap memory in the destructor.

The key to writing print string correctly is to pass a formal argument of type
const char *:

void
print string(const char * s)
{
cout < "String is \"" < s < "\"" < endl;
}

int

main ()

{
CORBA: :String var msgl = CORBA::string dup ("Hello");
print string(msgl); // Pass String var, fine
print string("World"); // Pass as const char *, fine too

152

IT-SC book: Advanced CORBA® Programming with C++

return 0;

With this definition of print string, things are well behaved. When the actual
parameter is of type String var, the compiler uses the const char * conversion
operator to make the call. The conversion operator returns the private pointer inside the
String var and is typically inlined, and that keeps the cost of the call to a minimum.
Passing the string literal "Wor1d" to print string does not create problems. The
literal is simply passed as a const char * to the function.

No temporary is created in either case, and no calls to the memory allocator are necessary.
6.10.3 Passing Strings as Parameters for Update Access

To pass a string either as a char * or asa String var to a function for update, a
formal parameter of type String var & will not work. If you pass a char * where a
String var & is expected, the compiler creates a temporary. This results in
construction of a String var from a char * literal and eventually causes a core
dump. To get it right, we must use a formal argument type of char * &:

void
update string(char * & s)
{
CORBA: :string free(s);
s = CORBA::string dup ("New string");
}
int
main ()
{
CORBA::String var sv = CORBA::string dup ("Hello");
update string(sv);
cout < sv < endl; // Works fine, prints "New string"
char * p = CORBA::string dup ("Hello");
update string(p);
cout < p < endl; // Fine too, prints "New string"
CORBA::string free(p);
return 0;

A final warning: update string assumes that the string it is passed was allocated
with string alloc or string dup. This means that the following code is not
portable:

char * p = new char[sizeof ("Hello")];

strcpy(p, "Hello");

update string(p); // Bad news!
delete[] p;

153

IT-SC book: Advanced CORBA® Programming with C++

This code causes a string allocated by new [] to be deallocated by string free and
causes a string allocated by string dup to be deallocated by delete[], and that
simply does not work on some platforms.

Calling update string with an uninitialized pointer is also asking for trouble,
because it results in passing a stray pointer to string free, most likely with
disastrous consequences. However, passing a variable initialized to null is safe;
string free does nothing when given a null pointer.

6.10.4 Problems with Implicit Type Conversions

Passinga String var where a char * is expected relies on implicit type conversion.
Some compilers do not correctly apply conversion operators, or they incorrectly complain
about ambiguous calls. Rather than expect every C++ compiler to be perfect, the C++
mapping provides member functions that allow you to perform explicit conversions.
These member functions are in, inout, out, and retn (the names suggest the use
for passing a parameter in the corresponding direction).

const char * in() const

You can call this conversion function if your compiler rejects an attempt to pass a
String var wherea const char * isexpected. For example:

void print string(const char * s) { /* ... */ } // As before

//

CORBA: :String var sv(CORBA::string dup ("Hello"));

print string(sv); // Assume compiler bug prevents this
print string(sv.in()); // Explicit call avoids compiler bug

The in member function returns the private pointer held by the String var wrapper
asaconst char *.You could achieve the same thing by using a cast:

print string((const char *)sv);

This code explicitly invokes operator const char * on the String var.
However, using the in member function is safer than a "sledge-hammer" cast that
bypasses all type checking. Similar arguments apply to using the inout and out
member functions in preference to a cast.

char * & inout ()

You can call the inout member function if your compiler refuses to accept a
String var whereachar * & isexpected. For example:

154

IT-SC book: Advanced CORBA® Programming with C++

void update string(char * & s) { /* ... */ } // As before

//

CORBA: :String var sv;

update string(sv); // Assume compiler bug prevents this
update string(sv.inout()); // Explicit call avoids compiler bug

The inout member function returns a reference to the pointer held by the
String var wrapper so that it can be changed (for example, by reallocation).

char * & out ()

This conversion operator allows you to pass a String var as an oufput parameter
where a char * & is expected. The out member function differs from the inout
member function in that out deallocates the string before returning a reference to a null
pointer. To see why this is necessary, consider the following helper function:

void
read string(char * & s) // s is an out parameter

{

// Read a line of text from a file...
s = CORBA::string dup(line of text);

The caller can use read string as follows without causing a memory leak:

CORBA: :String var line;

read string(line.out()); // Skip first line
read string(line.out()); // Read second line - no memory leak
cout < line < endl; // Print second line

Calling the out member function does two things: it first deallocates whatever string is
currently held by the String var, and then it returns a reference to a null pointer. This
behavior allows the caller to call read string twice in a row without creating a
memory leak. At the same time, read string need not (but can) deallocate the string
before allocating a new value. (If it deallocates the string, no harm is done because
deallocation of a null pointer is safe.)

6.10.5 Yielding Ownership of a String

The retn member function returns the pointer held by a St ring var and also yields
ownership of the string. This behavior is useful if a function must return a dynamically
allocated string and also must worry about error conditions. For example, consider a
get line helper function that reads a line of text from a database. The caller uses the
function this way:

155

IT-SC book: Advanced CORBA® Programming with C++

for (int 1 = 0; i < num lines; i++) {
CORBA::String var line = get line();
cout < line < endl;

} // Destructor of line deallocates string

Consider how this works. The get 1line function dynamically allocates the returned
string and makes the caller responsible for deallocation. The caller responds by catching
the return value in the String var variable 1ine. This makes 1ine responsible for
deallocating each returned line in its destructor. Because 1ine is declared inside the
body of the loop, it is created and destroyed once per iteration, and the memory allocated
to each line is deallocated immediately after each line is printed.

Following is an outline of the get line function. The important point is that
get line may raise an exception after it has allocated the string:

char *
get line()
{

// Open database connection and read string into buffer...

// Allocate string
CORBA::String var s = CORBA::string dup (buffer);

// Close database connection

if (db.close() == ERROR) {
// Whoops, a serious problem here
throw DB CloseException();

}

// Everything worked fine, return string
return s. retn();

The trick here is that the variable s is a String var. If an exception is thrown
sometime after memory is allocated to s, there is no need to worry about memory leaks;
the compiler takes care of invoking the destructor of s as it unwinds the stack to
propagate the exception.

In the normal case, in which no error is encountered, get 1line must return the string
and make the caller responsible for freeing it. This means that get 1ine cannot simply
return s (even though it would compile), because then the string would be incorrectly
deallocated twice: once by the destructor of s, and a second time by the caller.

The final statement in get 1line could be the following instead:

return CORBA::string dup(s);

156

IT-SC book: Advanced CORBA® Programming with C++

This code is correct but makes an unnecessary and expensive copy of the string. By
invoking the retn member function instead, get line transfers responsibility for
deallocating s to the caller. This technique leaves the string in place and avoids the cost
of making a copy.

6.10.6 Stream Operators

The C++ mapping provides overloaded String var insertion and extraction operators
for C++ iostreams:

CORBA::String var s = ...;

cout < "String is "" < (s != 0 2?2 s : "") < """ < endl;
cin >> s;
cout < "String is now "" < (s !=0 ? s : "") < "\"" < endl;

Overloaded operators are provided for istream and ostream, so they can also be
used with string (strstream) and file (fstream) classes.

6.11 Mapping for Wide Strings

The mapping for wide strings is almost identical to that for strings. Wide strings are
allocated and deallocated with the functions wstring alloc, wstring dup, and
wstring free. The mapping also provides a WString var class (in the CORBA
namespace) that behaves like a String var but operates on wide strings.

6.12 Mapping for Fixed-Point Types

C++ does not have built-in fixed-point types, so C++ support for fixed-point types and
arithmetic is provided by a class and a number of overloaded operator functions:

namespace CORBA {

//

class Fixed {

public:
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed

int val = 0);
unsigned) ;
Long) ;
LongLong) ;
ULongLong) ;
Double) ;
LongDouble) ;
const char *);

o~~~ o~ o~~~ —~

Fixed(const Fixed &);
~Fixed () ;

operator LongLong () const;

operator LongDouble () const;
Fixed round (UShort scale) const;

157

IT-SC book: Advanced CORBA® Programming with C++

Fixed

Fixed
Fixed
Fixed
Fixed
Fixed

22 22 &2 &2 &

Fixed &
Fixed
Fixed &
Fixed
Fixed
Fixed
Boolean

UShort
UShort
}s

istream &
ostream &
Fixed
Fixed
Fixed
Fixed

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

/7

This mapping enables you to use fixed-point quantities in C++ and to perform
computations on them. Note that a single generic Fixed class is used, so the IDL
compile-time digits and scale for fixed-point types become run-time values in C++.

truncate (UShort scale)

operator=(const Fixed &

operator+=(const
operator-=(const
operator*=(const
operator/=(const

operator++ () ;

const;

)
Fixed &
Fixed &
Fixed &
Fixed &

operator++ (int) ;

operator--();

operator--(int) ;

operator+ ()
operator-()
operator! ()

fixed digits()

fixed scale()

operator>> (istream ¢&,
operator<(ostream &,
operator+ (const
operator- (const
operator* (const
operator/ (const

operator<(const
operator> (const
operator<=(const
operator>=(const
operator==(const
operator!=(const

6.12.1 Constructors

The Fixed class provides a number of constructors that permit construction from integer

and floating-point types.

The default constructor initializes the value of a Fixed to zero and internally sets the
digits to 1 and the scale to 0—that is, the value has the type fixed<1, 0>.

Constructing a Fixed value from an integral value sets the digits to the smallest value

Fixed
Fixed
Fixed
Fixed

Fixed
Fixed

const;
const;
const;

const;
const;

Fixed &);

const Fixed &);

&, const Fixed
&, const Fixed
&, const Fixed
&, const Fixed

2 22 &2 &

Fixed
Fixed &)
Fixed &
Fixed &
Fixed &
Fixed &

const

const
const
const
const
const

&y

&y
&,
&,y
&y
&y

Fixed
Fixed
Fixed
Fixed

that can hold all the value's digits and sets the scale to zero:

158

&) ;

o N

’
’

’

’

)
)
)
)

’

’

’

’

IT-SC book: Advanced CORBA® Programming with C++

Fixed f = 999; // As if IDL type fixed<3, 0>

Constructing a Fixed value from a floating-point value sets the digits to the smallest
value that can represent the floating-point value. The scale is set to preserve as much of
the fractional part of the floating-point value as possible, truncating at the relevant digit.
Here are a few examples:

Fixed f1 = 1000.0; // As if IDL type fixed<4,0>

Fixed f2 = 1000.05; // As if IDL type fixed<6,2>

Fixed £3 = 0.1; // Typically as if IDL type fixed<18,17>
Fixed f4 = 1E30; // As if IDL type fixed<31,0>

Fixed f5 = 1E29 + 0.89; // As if IDL type fixed<31l,1>, // value 1is
1E29 + 0.8

Note that initialization from floating-point values can result in surprising digits and scale
because of the vagaries of binary floating-point representation. For example, the value
0.1 results in an actual value of 0.10000000000000001 in many implementations. Also
note that even though the value 1E29 + 0.89 is treated as 1E29 + 0.8 for the
purpose of truncation, it is unlikely that your C++ compiler will be able to represent
floating-point numbers with the required precision. For example, on many
implementations, the Fixed value will be initialized to
99999999999999991000000000000 instead.

Initialization with a value that has more than 31 integral digits throws a
DATA CONVERSION exception (see Section 7.15 for details on exception handling):

Fixed f = 1E32; // Throws DATA CONVERSION

Constructing a Fixed value from a string follows the rules for IDL fixed-point constants
(see Section 4.21.4). Leading and trailing zeros are ignored, and a trailing "D" or "d"
is optional:

Fixed f1 "1.3"; // As if fixed<2,1>
Fixed f2 = "01.30D"; // As if fixed<2,1>

Note that for initialization of strings, the digits and scale of the value are set precisely
according to the rules in Section 4.21.4, whereas initialization from floating-point
values may result in a much larger number of digits than you would expect, depending on
how accurately a value can be represented as a floating-point number. For that reason, it
is probably best to avoid initialization from floating-point numbers.

6.12.2 Accessors

The fixed digits and fixed scale member functions return the total number of
digits and the number of fractional digits respectively:

159

IT-SC book: Advanced CORBA® Programming with C++

Fixed £ = "3.14D";
cout < f.fixed digits() < endl; // Prints 3
cout < f.fixed scale() < endl; // Prints 2

6.12.3 Conversion Operators

The LongLong conversion operator converts a Fixed value back into a LongLong
value, ignoring fractional digits. If the integral part of a Fixed value exceeds the range
of LongLong, the operator throws a DATA CONVERSION exception.

The LongDouble conversion operator converts a Fixed value to Long-Double.

6.12.4 Truncation and Rounding

The truncate member function returns a new Fixed value with the specified digits
and scale, truncating fractional digits if necessary:

Fixed £ = "0.999";

cout < f.truncate(0) < endl; // Prints 0
cout < f.truncate(l) < endl; // Prints 0.9
cout < f.truncate(2) < endl; // Prints 0.99

The round member function returns a new Fixed value with the specified digits and
scale, rounded to the specified digit:

Fixed r;

Fixed f1 = "0.4";

Fixed f2 = "0.45";

Fixed £3 = "-0.445";

r = fl.round(0); // 0

r = fl.round (1) ; // 0.4

r = £2.round (0) ; // 0

r = f2.round (1) ; // 0.5

r = f3.round (1) ; // -0.4
r = £f3.round (2); // —-0.45

Neither t runcate nor round modifies the value it is applied to; instead, they return a
new value.

6.12.5 Arithmetic Operators

The Fixed class provides the usual set of arithmetic operators. Arithmetic is carried out
internally with at least 62-digit precision, and the result is coerced to fit a maximum of 31

160

IT-SC book: Advanced CORBA® Programming with C++

digits, truncating fractional digits. If the result of an arithmetic operation exceeds 31
integral digits, arithmetic operators throw a DATA CONVERSION exception.

6.12.6 Stream Operators

The Fixed mapping provides stream insertion (<) and extraction (>>) operators. They
work like their floating-point counterparts; that is, you can control padding and precision
using the usual stream features.

6.13 Mapping for Structures

The C++ mapping treats fixed-length structures differently from variable-length
structures, particularly with respect to parameter passing (see Section 7.14). We first
examine the mapping for fixed-length structures and then show the mapping and memory
management rules for variable-length structures.

6.13.1 Mapping for Fixed-Length Structures

IDL structures map to C++ structures with corresponding members. For example:

struct Details {

double weight;
unsigned long count;
bi
This IDL maps to

class Details var;

struct Details {
CORBA: :Double weight;
CORBA: :ULong count;
typedef Details var var type;
// Member functions here...
}i

Note that the structure may have member functions, typically class-specific operator
new and operator delete. These member functions allow use of the ORB on
platforms that have non-uniform memory management. However, any additional member
functions in the structure are purely internal to the mapping; you should ignore them and
write your code as if they did not exist. The var type definition is used for template-
based programming, and we show an example of its use in Section 18.14.1.

You can use the generated structure just as you use any other C++ structure in your code.
For example:

Details d;

161

IT-SC book: Advanced CORBA® Programming with C++

d.weight = 8.5;
d.count = 12;

C++ permits static initialization of aggregates. A class, structure, or array is an aggregate
if it does not have user-declared constructors, base classes, virtual functions, or private or
protected non-static data members. The preceding structure is an aggregate, so you can
initialize it statically:

Details d = { 8.5, 12 };

Some C++ compilers have problems with aggregate initializations, so use the feature with
caution.

6.13.2 Mapping for Variable-Length Structures

The Details structure shown in the preceding section is a fixed-length type, so there
are no memory management issues to consider. For variable-length structures, the C++
mapping must deal with memory management. Here is an example:

struct Fraction {
double numeric;
string alphabetic;
}i

This structure is a variable-length type because one of its members is a string. Here is the
corresponding C++ mapping:

class Fractionivar;

struct Fraction {
CORBA: :Double numeric;
CORBA: :String mgr alphabetic;
typedef Fraction var var type;
// Member functions here...

}i

As before, you can pretend that any member functions in the structure do not exist. As
you can see, the IDL string 1s mapped to a type String mgr instead of String var
or char *. String mgr behaves like a String var except that the default
constructor initializes the string to the empty string instead of initializing it to a null
pointer.

In general, strings nested inside user-defined types (such as structures, sequences,
exceptions, and arrays) are always initialized to the empty string instead of to a null
pointer. Initializing to the empty string for nested types is useful because it means that
you need not explicitly initialize all string members inside a user-defined type before

162

IT-SC book: Advanced CORBA® Programming with C++

sending it across an IDL interface. (As you will see in Section 7.14.15, it is illegal to
pass a null pointer across an IDL interface.)2

[2] Note that initialization to the empty string for nested string members was introduced with
CORBA 2.3. In CORBA 2.2 and earlier versions, you must explicitly initialize nested string
members.

If you look at the generated code for your ORB, you may find that the actual name of this
class 1s something other than String mgr, such as String item or
String member. The exact name is not specified by the C++ mapping. For the
remainder of this book, we use the name String mgr whenever we show a string that
is nested inside another data structure. A word of warning: do not use String mgr (or
its equivalent) as a type in your application code. If you do, you are writing non-portable
code because the name of the type is not specified by the C++ mapping. Instead, always
use String var when you require a managed string type.

Apart from the initialization to the empty string, String mgr behaves like a
String var. After you assign a string to the member alphabetic, the structure
takes care of the memory management for the string; when the structure goes out of
scope, the destructor for alphabetic deallocates its string for you. String mgr
provides the same conversions as String var,and String mgr and String var
can be freely assigned to each other, so you can effectively forget about the existence of
String mgr.

Automatic memory management is common to all structured types generated by the
mapping. If a structure (or sequence, union, array, or exception) contains (perhaps
recursively) a variable-length type, the structure takes care of the memory management
of its contents. To you, this means that you need worry about the memory management
only for the outermost type, and you need not worry about managing memory for the
members of the type.

Here is an example to make this concept more concrete:

{

Fraction £f;

f.numeric = 1.0/3.0;

f.alphabetic = CORBA::string dup("one third");
} // No memory leak here

Here, we declare a local variable f of type Fraction. The structure's constructor
performs memberwise initialization. For the member numeric, it does nothing.
However, the member alphabetic is a nested string, so the constructor initializes it to
the empty string.

The first assignment to the member numeric does nothing unusual. To assign to
alphabetic, we must allocate memory, and alphabetic takes responsibility for

163

IT-SC book: Advanced CORBA® Programming with C++

deallocating that memory again (the assignment invokes operator=(char *) on
alphabetic).

When f goes out of scope, its default destructor uses memberwise destruction and calls
the destructor of alphabetic, which in turn calls CORBA: :string free. This
means that there is no memory leak when f goes out of scope.

Note that you cannot statically initialize £, because it is not a C++ aggregate (it contains
a member with a constructor):

Fraction £ = { 1.0/3.0, "one third" }; // Compile-time error

In general, variable-length structures can never be statically initialized, because they
contain members that have constructors.

6.13.2 Memory Management for Structures

You can treat structures in much the same way that you treat any other variable in your
program. Most of the memory management activities are taken care of for you. This
means that you can freely assign structures and structure members to one another:

{
struct Fraction f1;
struct Fraction f2;
struct Fraction £3;

fl.numeric = .5;

fl.alphabetic = CORBA::string dup ("one half");
f2.numeric = .25;

f2.alphabetic = CORBA::string dup ("one quarter");
f3.numeric = .125;

f3.alphabetic = CORBA::string dup("one eighth");

f2 = f1; // Deep assignment
f3.alphabetic = fl.alphabetic; // Deep assignment
f3.numeric = 1.0;

f3.alphabetic[3] = '\0'; // Does not affect fl or f2
fl.alphabetic[0] = 'O'; // Does not affect f2 or £3
fl.alphabetic[4] = 'H'; // Ditto

} // Everything deallocated OK here

Figure 6.2 shows the initial and final values of the three structures for this example. As
you can see, structure and member assignments make deep copies. Moreover, when the
structures are deleted, the memory held by the three string members is automatically
deallocated by the corresponding String mgr destructor.

164

IT-SC book: Advanced CORBA® Programming with C++

Figure 6.2 Structures before and after assignments.

f1 f2 f3

numeric | 0.5 | [o.25 0.125
Before O I —_—
alphabetic | one half 1 one guarter one eighth
f1 f2 fa
numeric | 0.5 0.5 1.0
After o —
aMhab&hc[Gne Half | one half one

If you need to work with dynamically allocated structures, you use new and delete:

Fraction * fp = new Fraction;

fp->numeric = 355.0 / 113;

fp->alphabetic = CORBA::string dup("Pi, approximately");
/o

delete fp;

There is no need to call special helper functions for allocation and deallocation. If such
functions are required for non-uniform memory architectures, they are generated as class-
specific operator new and operator delete members of the structure.

6.13.4 Structures Containing Structure Members

Structure members that are themselves structures do not require any special mapping
rules:

struct Fraction {
double numeric;
string alphabetic;
}s

struct Problem {
string expression;
Fraction result;
boolean 1is correct;

bi

This generates the following mapping:

struct Fraction {
CORBA: :Double numberic;
CORBA: :String mgr alphabetic;
//

}i

struct Problem {
CORBA: :String mgr expression;
Fraction result;
CORBA: :Boolean 1is correct;

165

IT-SC book: Advanced CORBA® Programming with C++

//
}i

Using a variable of type Problem follows the usual rules for initialization and
assignment. For example:

Problem p;

p.expression = CORBA::string dup("7/8");

p.result.numeric = 0.875;

p.result.alphabetic = CORBA::string dup ("seven eighth s");
p.is _correct = 1;

Problem * p ptr = new Problem;

*p ptr = p; // Deep assignment

//

// It would be more efficient to use

// Problem * p ptr = new Problem(p); // (deep) copy constructor
//
delete p ptr; // Deep deletion

6.14 Mapping for Sequences

The mapping for sequences is large, mainly because sequences permit you to control
allocation and ownership of the buffer that holds sequence elements. We discuss simple
uses of unbounded sequences first and then show how you can use more advanced
features to efficiently insert and extract data. The advanced features are particularly
useful if you need to transmit binary data as an octet sequence. Finally, we explain the
mapping for bounded sequences, which is a subset of the mapping for unbounded
sequences.

6.14.1 Mapping for Unbounded Sequences

IDL sequences are mapped to C++ classes that behave like vectors with a variable
number of elements. Each IDL sequence type results in a separate C++ class. For
example:

typedef sequence<string> StrSeq;

This maps to C++ as follows:
class StrSeq_var;

class StrSeqg {
public:
StrSeql()
StrSeq (CORBA: :ULong max) ;
StrSeqg(
CORBA: :ULong max,
CORBA: :ULong len,

166

IT-SC book: Advanced CORBA® Programming with C++

char ** data,

CORBA: :Boolean release = 0
)7
~StrSeq() ;

StrSeqg(const StrSeq &);
StrSeq & operator=(const StrSeq &)

CORBA::String mgr & operator[] (CORBA::ULong idx);

const char * operator[] (CORBA: :ULong idx) const;
CORBA: :ULong length () const;

void length (CORBA: :ULong newlen) ;

CORBA: :ULong maximum () const;

CORBA: :Boolean release () const;

void replace (

CORBA: :ULong max,

CORBA: :ULong length,

char ** data,
CORBA::Boolean release = 0

)7

const char ** get buffer () const;

char ** get buffer (CORBA: :Boolean orphan = 0);
static char ** allocbuf (CORBA: :ULong nelems) ;

static void freebuf (char ** data);

typedef StrSeq var var type;
}i

This class is complicated. To get through all the definitions without too much pain, we
discuss basic usage first and then cover the more esoteric member functions.=

Bl The var type definition generated into the class is useful for template-based
programming. We show an example in Section 18.14.1.

StrSeqg()

The default constructor creates an empty sequence. Calling the 1ength accessor of a
default-constructed sequence returns the value 0. The internal maximum of the sequence
is set to 0.

StrSeqg(const StrSeqg &)

StrSeq & operator=(const StrSeqg &)

The copy constructor and assignment operator make deep copies. The assignment
operator first destroys the target sequence before making a copy of the source sequence
(unless the release flag is set to false;). If the sequence elements are variable-length,

167

IT-SC book: Advanced CORBA® Programming with C++

the elements are deep-copied using their copy constructor. The internal maximum of the
target sequence is set to the same value as the internal maximum of the source sequence.

~StrSeqg()

The destructor destroys a sequence. If the sequence contains variable-length elements,
dynamic memory for the elements is also released (unless the release flag is set to
false;).

CORBA: :ULong length() const

The length accessor simply returns the current number of elements in the sequence.

void length (CORBA::ULong newlen)

The length modifier changes the length of the sequence.

Increasing the length of a sequence creates newlen - length () new elements. The
new eclements are appended to the tail. Growing a sequence initializes the newly
appended elements with their default constructor. (If the appended elements are strings or
are complex types containing strings, the strings are initialized to the empty string.)

Decreasing the length of a sequence truncates the sequence by destroying the 1ength ()
- newlen elements at the tail. If you truncate a sequence by reducing its length, the
truncated elements are permanently destroyed. You cannot expect the previously
truncated elements to still be intact after you increase the length again.

CORBA: :String mgr & operator[] (CORBA::ULong idx)
const char * operator[] (CORBA::ULong idx) const

The subscript operators provide access to the sequence elements (the operator is
overloaded to allow use of sequence elements in both rvalue and lvalue contexts). In this
example, using a sequence of strings, the return values are String mgr and const
char *, respectively. In general, for a sequence containing elements of type T, these
operators return values of type T & and const T &, respectively. You may find that
the actual type is something other than a reference to a T, depending on exactly how your
ORB implements sequences. However, whatever type is returned, it will behave as if it
were a reference to a T.

Sequences are indexed from 0 to length () - 1. Attempts to index into a sequence
beyond its current length result in undefined behavior, and many ORBs will force a core

dump to alert you of this run-time error.

If you do not like this, consider the alternatives: either you can run on blindly, happily
corrupting memory as you go, or the ORB could throw an exception when a sequence

168

IT-SC book: Advanced CORBA® Programming with C++

index is out of bounds. However, that would not do you much good. After all, indexing a
sequence out of bounds is a serious run-time error (just as overrunning an array is). What
would be the point of throwing an exception? None—it would just tell you that you have

a bug in your code.

Simple Use of Sequences

The few member functions we have just discussed are sufficient to make use of
sequences. The following example demonstrates use of a sequence. The string elements

behave like String mgr instances:

const char * values[] = { "first", "second", "third", "fourth"

StrSeq myseq; // Create empty sequence

// Create four empty strings

myseq.length (4) ;

for (CORBA::ULong i = 0
myseq[i] = values[i

; 1 < myseqg.length(); i++)
1; // Deep copy

// Print current contents
for (CORBA::ULong i = 0; 1 < myseqg.length(); i++)

cout < "myseqg[" < 1 < "] = \"" < myseq[i] <"\"" < endl;
cout < endl;

// Change second element (deallocates "second")

myseq[l] = CORBA::string dup("second element");
// Truncate to three elements
myseq.length (3) ; // Deallocates "fourth"

// Grow to five elements (add two empty strings)
myseq.length (5) ;

// Initialize appended elements
myseq[3] = CORBA::string dup("4th");
myseq[4] = CORBA::string dup("5th");

// Print contents once more

for (CORBA::ULong i = 0; 1 < myseqg.length(); i++)
cout < "myseqg[" < 1 < "] = \"" < myseq[i] <"\"" < endl;

This code produces the following output:

myseq[0] = "first"

myseq[l] = "second"
myseq[2] = "third"

myseq[3] = "fourth"
myseq[0] = "first"

myseg[l] = "second element”
myseq[2] = "third"

myseq[3] = "4th"

myseq[4] = "5th"

169

IT-SC book: Advanced CORBA® Programming with C++

Once myseq goes out of scope, it invokes the destructor for its elements, so all the
strings in the sequence are deallocated properly.
To manage heap-allocated sequences, use new and delete:

StrSeqg * ssp = new StrSeq;

ssp->length (4) ;

for (CORBA::ULong i = 0; i < ssp->length(); i++)
(*ssp) [1] = values[i];

//

delete ssp;

If special allocation rules apply for non-uniform memory architectures, the sequence
class contains appropriate class-specific allocation and deallocation operators.
You may be worried by the expression

(*ssp) [1] = values([i];

Dereferencing the pointer is necessary, because we need an expression of type StrSeq
for the subscript operator. If we instead write

sspl[i] = values[i]; // Wrong!!!

the compiler assumes that we are dealing with an array of sequences and are assigning a
const char * to the i-th sequence, which causes a compile-time error.

Controlling the Sequence Maximum

When you construct a sequence variable, you can supply an anticipated maximum
number of elements using the maximum constructor:

StrSeq myseq(10); // Expect to put ten elements on the sequence
myseq.length (20); // Maximum does *not* limit length of sequence
for (CORBA::ULong i = 0; 1 < myseqg.length(); i++)

// Initialize elements

As you can see, even though this code uses an anticipated maximum of 10 elements, it
then proceeds to add 20 elements to the sequence. This is perfectly all right. The
sequence extends the maximum as necessary to accommodate the additional elements.

Why bother with supplying an anticipated maximum? The answer has to do with how a
sequence manages its buffer space internally. If you use the maximum constructor, the
sequence sets an internal maximum to a value at least as large as the one you supply (the
actual maximum may be set to a larger value than the one you supply). In addition, a
sequence guarantees that elements will not be relocated in memory while the current
length does not exceed the maximum.

170

IT-SC book: Advanced CORBA® Programming with C++

Typically, you do not care about relocation of elements in memory unless you are
maintaining pointers to the sequence elements. In that case, you must know when
sequence elements may relocate in memory because relocation will invalidate your
pointers.

Another reason for supplying a maximum is efficiency. If the sequence has some idea of
the expected number of elements, it can chunk memory allocations more efficiently. This
approach reduces the number of calls to the memory allocator and reduces the number of
times elements need to be copied as the sequence grows in length. (Memory allocation
and data copying are expensive.)

You can retrieve the current maximum of a sequence by invoking the maximum member
function. The following small program appends octets to a sequence one octet at a time
and prints the maximum every time it changes:

int

main ()

{
BinaryFile s(20); // IDL: typedef sequence<octet> BinaryFile;

CORBA: :ULong max = s.maximum() ;
cout < "Initial maximum: " < max < endl;

for (CORBA::ULong i = 0; i < 256; i++) {
s.length(i + 1);

if (max != s.maximum()) {

max = s.maximum() ;

cout < "New maximum: " < max < endl;
}
s[i] = 0;

return 0;

On a particular ORB, this code might produce the following output:

Initial maximum: 64
New maximum: 128
New maximum: 192
New maximum: 256

This output allows you to reverse-engineer some knowledge about the sequence's internal
implementation. In this particular implementation, the sequence uses chunked allocation
of 64 elements at a time, so the maximum of 20 given to the constructor is rounded up to
64. Thereafter, the sequence extends its internal buffer space by another 64 elements
whenever the length is incremented beyond a multiple of 64.

The same code, when run on a different ORB, might produce this output:

Initial maximum: 20

171

IT-SC book: Advanced CORBA® Programming with C++

New maximum: 21
New maximum: 22
New maximum: 23

New maximum: 255
New maximum: 256

In this implementation, the sequence simply allocates buffer space as needed for each
element.

For both implementations, whenever the maximum value changes, the actual octets may
be relocated in memory, but they also may stay where they are, depending on the
sequence implementation and the specific memory allocator in use.

Be careful not to interpret too much into the maximum constructor and the behavior of
sequences.

The mapping does not guarantee that the maximum constructor will preallocate memory
at the time it is called. Instead, allocation may be delayed until the first element is created.
The mapping does not guarantee that the maximum constructor will allocate memory for
exactly the requested number of elements. It may allocate more.

The mapping does not guarantee that the maximum constructor will use a single
allocation to accommodate the requested number of elements. It may allocate sequence
elements in several discontiguous buffers.

The mapping does not guarantee that sequence elements occupy a contiguous region of
memory. To avoid the cost of relocating elements, the sequence may add new
discontiguous buffer space as it is extended.

The mapping does not guarantee that extending the length of a sequence immediately
default-constructs the newly created elements. Although this would be far-fetched, the
mapping implementation could delay construction until a new element is first assigned to
and at that point create the element using its copy constructor.

It should be clear that the maximum constructor is no more than a hint to the
implementation of the sequence. If you create a sequence and have advance knowledge of
the expected number of elements, then by all means, use the maximum constructor. It

may help to get better run-time performance from the sequence. Otherwise, do not bother.

Do not maintain pointers to sequence elements. If you do, you need to be extremely
careful about reallocation. Usually, the trouble is not worth it.

Using the Data Constructor

The data constructor allows you to assign a preallocated buffer to a sequence. The main
use of the data constructor is to efficiently transmit binary data as an octet sequence

172

IT-SC book: Advanced CORBA® Programming with C++

without having to use bytewise copying. There are a number of problems associated with
the data constructor, and we recommend that you do not use it unless you have an
overriding reason; you may wish to skip this section and continue reading. Still, we
describe the data constructor for completeness.

The signature of the data constructor depends on the sequence element type. For example,
for the sequence of strings shown on page 139, the signature is as follows:

StrSeq(// IDL: typedef sequence<string> StrSeq;
CORBA: :ULong max,
CORBA: :ULong len,
char ** data,
CORBA: :Boolean release = 0

)7

On the other hand, for a sequence of octets, the data constructor's signature becomes

BinaryFile (// IDL: typedef sequence<octet> BinaryFile;
CORBA: :ULong max,
CORBA: :ULong len,
CORBA: :Octet * data,
CORBA: :Boolean release = 0

)7

Note that the data parameter is of type pointer to element. The idea is that you can
provide a pointer to a buffer full of elements and have the sequence use that buffer for its
internal storage. To see why this may be useful, consider the following scenario.

Imagine you have a GIF image in a file and want to transmit that image to a remote
server. The file contents are binary and need to get to the server without being tampered
with in transit, so you decide to send the image as an octet sequence:

41 A word of caution here: sending a binary file as shown will not work once the file size
exceeds an ORB-dependent limit. We discuss how to get around this in Section 18.7.

typedef sequence<octet> BinaryFile;

interface BinaryFileExchange {
void send (in BinaryFile f, in string file name);
BinaryFile fetch(in string file name);

}i

On a UNIX system, a simple version of the code to initialize the sequence for
transmission might look something like this (for simplicity, we have omitted error
checking):

int fd;

fd = open("image.gif", O RDONLY) ; // Open file for reading
struct stat st;

fstat (fd, &st); // Get file attributes

173

IT-SC book: Advanced CORBA® Programming with C++

CORBA::0ctet * buf;

buf = new CORBA::Octet[st.st sizel; // Allocate file buffer
read(fd, buf, st.st size); // Read file contents
BinaryFile image seqg(st.st size); // Create octet sequence
image seq.length(st.st size); // Set length of sequence

// Fill sequence

for (off t 1 = 0; 1 < st.st size; i++)

image seq[i] = buf[i];
delete[] buf; // Don't need buffer anymore
close (fd) ; // Done with file

// Send octet sequence to server...

The image file might be several hundred kilobytes long, but the preceding code copies
the file contents into the octet sequence one byte at a time. Even if the sequence's
subscript operator is inlined, this approach is still massively inefficient.

We can avoid this problem by using the data constructor:

// Open file and get attributes as before...

CORBA: :0Octet * buf;

buf = new CORBA::Octet[st.st size]; // Allocate file buffer
read (fd, buf, st.st size); // Read file contents
close (fd) ; // Done with file

// Initialize sequence with buffer just read
BinaryFile image seqg(st.st size, st.st size, buf, 0);

// Send octet sequence to server...

delete[] buf; // Deallocate buffer

The interesting line here is the call to the data constructor:

BinaryFile image seqg(st.st size, st.st size, buf, 0);

This call initializes both the maximum and the length of the sequence to the size of the
file, passes a pointer to the buffer, and sets the release flag to false. The sequence now
uses the passed buffer for its internal storage, thereby avoiding the cost of initializing the
sequence one byte at a time. Setting the release flag to false indicates that we want to
retain responsibility for memory management of the buffer. The sequence does not
deallocate the buffer contents. Instead, the preceding code does this explicitly by calling
delete [] when the sequence contents are no longer needed.

174

IT-SC book: Advanced CORBA® Programming with C++

If you set the release flag to true, the sequence takes ownership of the passed buffer.
In that case, the buffer must have been allocated with allocbuf, and the sequence
deallocates the buffer with freebuf:

// Open file and get attributes as before...

CORBA: :Octet * buf;

buf = BinaryFile::allocbuf (st.st size); // Allocate file buffer
read (fd, buf, st.st size); // Read file contents

// Initialize, sequence takes ownership
BinaryFile image seqg(st.st size, st.st size, buf, 1);

close (fd) ; // Done with file
// Send octet sequence to server...

// No need to deallocate buf here, the sequence
// will deallocate it with BinaryFile::freebuf ()

The allocbuf and freebuf member functions are provided to deal with non-uniform
memory architectures (for uniform architectures, they are simply implemented in terms of
new [] and delete []). The allocbuf function returns a null pointer if it fails to
allocate memory (it does not throw C++ or CORBA exceptions). It is legal to call
freebuf with a null pointer.

If you initialize a sequence with release set to true as shown earlier, you cannot make
assumptions about the lifetime of the passed buffer. For example, a compliant (although
inefficient) implementation may decide to immediately copy the sequence and deallocate
the buffer. This means that after you have handed the buffer to the sequence, the buffer
becomes private memory that is completely out of your control.

If the release flag is true and the sequence elements are strings, the sequence will
release memory for the strings when it deallocates the buffer. Similarly, if the release flag
is true and the sequence elements are object references, the sequence will call
CORBA: : release on each reference.

String elements are deallocated by a call to CORBA: :string free, so you must
allocate them with CORBA: : string alloc. The following example shows use of a
sequence of strings with the release flag set to true. The code reads lines of text from
a file, making each line a sequence element. Again, for brevity, we have not included any
error handling. (The code also causes lines longer than 512 characters to be split, which
we will assume is acceptable.)

char linebuf[512]; // Line buffer

CORBA: :ULong len = 0; // Current sequence length
CORBA: :ULong max = 64; // Initial sequence max
char ** strvec = StrSeqg::allocbuf (max); // Allocate initial chunk
ifstream infile("file.txt"); // Open input file

175

IT-SC book: Advanced CORBA® Programming with C++

infile.getline (linebuf, sizeof (linebuf)); // Read first line
while (infile) { // While lines remailn
if (len == max) {

// Double size if out of room
char ** tmp = StrSeq::allocbuf (max *= 2);
for (CORBA::ULong i = 0; 1 < len; i++) {
CORBA: :string free(tmp[i]);
tmp[i] = CORBA::string dup(strvec[i]);
}

StrSeq::freebuf (strvec);

strvec = tmp;
}
strvec([len++] = CORBA::string dup(linebuf); // Copy line
infile.getline(linebuf, sizeof (linebuf)); // Read next line
}
StrSeqg line seg(max, len, strvec, 1); // Initialize seq

// From here, line seq behaves like an ordinary string sequence:
for (CORBA::ULong i = 0; i < line seqg.length(); i++)

cout < line seq[i] < endl;

line seqg.length(len + 1); // Add a line
line seqgllen++] = CORBA::string dup("last line");
line seq[0] = CORBA::string dup("first line"); // No leak here

This example illustrates the memory management rules. The buffer that is eventually
handed to the string sequence is strvec. This buffer is initialized by a call to
StrSeq: :allocbuf, with sufficient room to hold 64 strings. During the loop reading
the file, the code checks whether the current maximum has been reached; if it has, the
code doubles the maximum (this requires reallocating and copying the vector). Each line
is copied into the vector by deallocating the previous string element and calling
CORBA: :string dup. When the loop terminates, strvec is a dynamically allocated
vector of pointers in which each element points at a dynamically allocated string. This
vector is finally used to initialize the sequence with the release flag set to true, so the
sequence assumes ownership of the vector.

Once the sequence is initialized in this way, it behaves like an ordinary string sequence;
that is, the elements are of type String mgr, and they manage memory as usual.
Similarly, the sequence can be extended or shortened and will take care of allocating and
deallocating memory as appropriate.

Contrast this with a string sequence with release set to false:

// Assume that:

// argv[0] == "a.out"
// argv[l] == "first"
// argv[2] == "second"
// argv[3] == "third"

176

IT-SC book: Advanced CORBA® Programming with C++

// argv[4] == "fourth"

{
StrSeq myseq(5, 5, argv); // release flag defaults to 0
myseq[3] = "3rd"; // No deallocation, no copy

cout < myseq[3] < endl; // Prints "3rd"
} // myseq goes out of scope but deallocates nothing
cout < argv[l] < endl; // argv[l] intact, prints "first"
cout < argv[3] < endl; // argv[3] was changed, prints "3rd"

Because the release flag is false, the sequence uses shallow pointer assignment; it
neither releases the target string "third" nor makes a copy of the source string "3rd".
When the sequence goes out of scope, it does not release the string vector, so the
assignment's effect is visible beyond the lifetime of the sequence.

Be careful, though: assignment to a sequence element is not guaranteed to affect the
original vector. By slightly modifying the preceding code, we get different behavior:

// Assume that:

// argv[0] == "a.out"

// argv[l] == "first"

// argv[2] == "second"

// argv[3] == "third"

// argv[4] == "fourth"

{
StrSeq myseq(5, 5, argv); // release flag defaults to 0
myseq[3] = "3rd"; // No deallocation, no copy
cout < myseq[3] < endl; // Prints "3rd"
myseq.length (10000) ; // Force reallocation
myseqg[l] = "1lst"; // Shallow assignment

cout < myseq[l] < endl; // Prints "lst"/
} // deallocate whatever memory was allocated by length (10000)
cout < argv[l] < endl; // prints "first" (not "lst")
cout < argv[3] < endl; // prints "3rd"

This example uses two assignments to sequence elements but separates them by a large
increase in the length of the sequence. This increase in length is likely to cause
reallocation. (It is not guaranteed to force reallocation. An implementation is free instead
to allocate additional separate memory while keeping the original vector, even though
such an implementation is unlikely.) The effect is that the first assignment (before
reallocation) affects the original vector, but the second assignment (after reallocation)
affects only an internal copy, which is deallocated when the sequence goes out of scope.
This example demonstrates that initializing a sequence with release set to false
requires a lot of caution. Unless you are very careful, you will leak memory or lose the
effects of assignments.

Never pass a sequence with release set to false as an inout parameter to an

operation. Although the called operation can find out how the sequence was allocated, it
will typically assume that release is set to true. If the actual sequence has release

177

IT-SC book: Advanced CORBA® Programming with C++

set to false, assignment to sequence elements by the called operation can result in
deallocation of non-heap memory, typically causing a core dump.

Manipulating the Sequence Buffer Directly

As you saw on page 180, sequences contain member functions to manipulate the buffer
of a sequence directly. For the BinaryFile sequence, the generated code contains the
following:

class BinaryFile {
public:
// Other member functions here...
void replace (
CORBA: :ULong max,
CORBA: :ULong length,
CORBA: :Octet * data,
CORBA: :Boolean release = 0
) 7

const CORBA::Octet * get buffer () const;

CORBA::0ctet * get buffer (CORBA::Boolean orphan =
0);

CORBA: :Boolean release () const;

}s

These member functions let you directly manipulate the buffer underlying a sequence.
The replace member function permits you to change the contents of a sequence by
substituting a different buffer. The meaning of the parameters is the same as that for the
data constructor. Obviously, the same caveats apply here as for shortening or lengthening
of a sequence: if you are holding pointers into a sequence buffer and replace the buffer,
the pointers are likely to point at garbage afterward.

The get buffer accessor function provides read-only access to the underlying buffer.
(If you call get buffer on a sequence that does not yet have a buffer, the sequence
allocates a buffer first.) The get buffer function is useful for efficient extraction of
sequence elements. For example, you can extract a binary file without copying the
sequence elements:

BinaryFile bf = ...; // Get an image file...
CORBA: :Octet * data = bf.get buffer(); // Get pointer to buffer

CORBA: :ULong len = bf.length?); // Get length
display gif image (data, len); // Display image

This code obtains a pointer to the sequence data and passes the pointer to a display
routine. The advantage here is that you can display the sequence contents without
copying any elements.

The get buffer modifier function provides read-write access to a sequence buffer. Its
orphan argument determines who gets ownership of the buffer. If orphan is false (the

178

IT-SC book: Advanced CORBA® Programming with C++

default), the sequence retains ownership and releases the buffer when it goes out of scope.
If orphan is true, you become responsible for the returned buffer and must eventually
deallocate it using freebuf.

You need to exercise caution if you decide to use the get buffer modifier. The
modifier enables you to assign to sequence elements in place. However, if the elements
are strings, wide strings, or object references, you need to check the release flag of the
sequence (returned by the release member function). If the release flag is false, you
must not deallocate elements before assigning to them. If the release flag is true, you
must deallocate sequence elements before assigning to them. The deallocation functions
are CORBA: :string free, CORBA:: wstring free, and CORBA: :release,
depending on whether the sequence elements are strings, wide strings, or object
references. (Other element types require no memory management from you.)

After you have taken ownership of the buffer from a sequence, the sequence reverts to the
same state it would have if it had been constructed by its default constructor. If you
attempt to remove ownership of a buffer from a sequence whose release flag is false,
get buffer returns a null pointer.

6.14.2 Mapping for Bounded Sequences

The mapping for bounded sequences is identical to the mapping for unbounded sequences
except that the maximum is hard-wired into the generated class. For example:

typedef sequence<double, 100> DoubleSeqg;

This results in the following class:
class DoubleSeq var;

class DoubleSeq {

public:
DoubleSeq() ;
DoubleSeqg(
CORBA: :ULong len,
CORBA: :Double * data,
CORBA::Boolean release = 0
) ;
~DoubleSeq() ;
DoubleSeqg(const DoubleSeq &);
DoubleSeqg & operator=(const DoubleSeqg &)
CORBA: :Double & operator[] (CORBA: :ULong idx) ;
const CORBA::Double & operator[] (CORBA: :ULong idx) const;
CORBA: :ULong length () const;
void length (CORBA: :ULong newlen) ;
CORBA: :ULong maximum () const;

179

IT-SC book: Advanced CORBA® Programming with C++

Boolean release () const;
void replace (
CORBA: :ULong length,
CORBA: :Double * data,
CORBA: :Boolean release = 0
)7

CORBA: :Double * get buffer () const;

CORBA: :Double * get buffer (CORBA::Boolean orphan = 0);
static CORBA::Double * allocbuf (CORBA: :ULong nelems) ;

static void freebuf (CORBA: :Double * data);

typedef DoubleSeq var var type;
bi

As you can see, the only differences between a bounded sequence and an unbounded
sequence are that for a bounded sequence, the maximum constructor is missing and that
the data constructor does not accept a maximum parameter. (The maximum value of 100
is generated into the source code for the class.)

Attempts to set the length of a bounded sequence beyond the maximum result in
undefined behavior, usually a core dump. Calls to allocbuf need not specify a number
of elements that is the same as the sequence bound.

6.14.3 Sequence Limitations
Insertion and Deletion of Elements

An annoying aspect of the sequence mapping is that you can change the length of a
sequence only at its tail. To insert an element somewhere in the middle, you must open a
gap by copying the elements to the right of the insertion point. The following helper
function preinserts an element into a sequence at a nominated position. Passing an index
value equal to the length of the sequence appends the element at the tail. The function
assumes that only legal index values in the range 0 to 1ength () -1 will be passed:

template<class Seq, class T>
void
pre insert (Seq & seq, const T & elmt, CORBA::ULong id x)
{
seqg.length (seqg.length() + 1);

for (CORBA::ULong i = seqg.length() - 1; i > idx;i--)
seq[i] = seql[i - 11;
seg[idx] = elmt;

This code extends the sequence by one element, opens a gap by copying elements from
the insertion point to the tail over by one position, and then assigns the new element.
Similar code is required for removal of an element, in which you need to close the gap
that is left behind at the deletion point:

template<class Seg>

180

IT-SC book: Advanced CORBA® Programming with C++

void
remove (Seq & seq, CORBA::ULong idx)
{

for (CORBA::ULong i = idx; 1 < seg.length() - 1; i++)
seqli] = seqli + 1];
seqg.length (seqg.length() - 1);

Insertion and removal operations on sequences have O(n) run-time performance. This
performance becomes unacceptable if frequent insertions or deletions are made,
particularly for long sequences with elements of complex type. In such a case, you are
better off using a more suitable data structure instead of trying to manipulate sequence
elements in place.

For example, you can use an STL set or multiset to perform insertions and deletions in
O(log n) time. After the set is in its final state, simply create an equivalent sequence by
copying the contents of the set in a single pass. This technique is particularly useful if
you need to make many updates to a sequence but want to keep the sequence in sorted
order.

Using the Data Constructor with Complex Types

The data constructor is of limited value if a sequence contains elements of user-defined
complex type. Consider the following IDL:

typedef string Word;
typedef sequence<Word> Line;
typedef sequence<Line> Document;

This IDL represents a line of text as a sequence of words, and a document as a sequence
of lines. The problem for the data constructor is that we have no idea how the C++ class
for a sequence of words is represented internally. For example, the sequence class will
almost certainly have private data members that point at the dynamic memory for the
sequence buffer. It follows that we cannot write a sequence value into a binary file and
read the file later to reconstruct the sequence. By the time the file is read, the private
pointer values of the sequence will likely point at the wrong memory locations.

You can use the sequence data constructor to create a sequence of complex values, but
the sequence elements of the vector must be created by memberwise assignment or copy.
For example:

Line * docp = Document::allocbuf (3); // Three-line document
Line tmp; // Temporary line
tmp.length (4); // Initialize first line
tmp[0] = CORBA::string dup ("This");

tmp[l] = CORBA::string dup("is");

tmp[2] = CORBA::stringidup("llne");

tmp[3] = CORBA::string dup("one.");

181

IT-SC book: Advanced CORBA® Programming with C++

docp[0] = tmp; // Assign first line
tmp.length(1); // Initialize second line
tmp[0] = CORBA::string dup("Line2");

docp[l] = tmp; // Assign second line
tmp[0] = CORBA::string dup ("Line3"); // Initialize third line
docp[2] = tmp; // Assign third line
Document my doc(3, 3, docp, 1); // Use data constructor
//

This code is correct, but use of the data constructor no longer offers any advantage in
performance (because the sequence elements cannot be created by reading them from a
binary file or by copying memory). For this reason, you should avoid using the data
constructor for anything except sequences of simple types and for sequences of string
literals with the release flag set to false.

6.14.4 Rules for Using Sequences
Here are some rules for safe use of sequences.

Do not make assumptions about when constructors or destructors run. The
implementation of the sequence mapping is free to delay construction or destruction of
elements for efficiency reasons. This means that your code must not rely on side effects
from construction or destruction. Simply assume that elements are copy-constructed
during the first assignment, default-constructed during the first access, and destroyed
when a sequence is shortened or goes out of scope. In that way, you will not get any
unpleasant surprises.

Never pass a sequence to a function for modification if the release flag is false. If the
sequence does not own its buffer, the called function will most likely cause memory leaks
if it modifies sequence elements.

Avoid using the data constructor for elements of complex type. For complex types, the
data constructor does not offer any advantages but makes the source code more complex.
Remember that increasing the length of a sequence beyond the current maximum may
cause relocation of elements in memory.

Do not index into a sequence beyond the current length.

Do not increase the length of a bounded sequence beyond its bound.

Do not use the data constructor or the buffer manipulation functions unless you really
need to. Direct buffer manipulation is fraught with potential memory management errors,

and you should first convince yourself that any savings in performance justify the
additional coding and testing effort.

182

IT-SC book: Advanced CORBA® Programming with C++

6.15 Mapping for Arrays

IDL arrays map to C++ arrays of the corresponding element type. String elements are
mapped to String mgr (or some other type proprietary to the mapping
implementation). The point is that string elements are initialized to the empty string but
otherwise behave like a String var (that is, manage memory). For example:

typedef float
typedef string

struct S {
string s mem;
long 1 mem;
}i
typedef S

This maps to C++ as follows:

typedef CORBA::Float
typedef CORBA::Float
FloatArray slice *
FloatArray slice *

void

void

typedef CORBA::String mgr
typedef CORBA::String mgr
StrArray slice *
StrArray slice *

FloatArray[4];
StrArray[15][10];

StructArray[20];

FloatArray[4];
FloatArray slice;
FloatArray alloc();
FloatArray dup (
const FloatArray slice *
) i
FloatArray copy (
FloatArray slice * to,
const FloatArray slice * from
) ;
FloatArray free (FloatArray slice *);

StrArray[15][10];

StrArray slice[10];

StrArray alloc();

StrArray dup (const StrArray slice *);

void StrArray copy (
StrArray slice * to,
const StrArray slice * from
)i
void StrArray free(StrArray slice *);
struct S {
CORBA: :String mgr S_mem;
CORBA: :Long 1 mem;
}i
typedef S StructArray[20];
typedef S StructArray slice;

StructArray slice *
StructArray slice *

void

void

StructArray alloc();
StructArray dup (
const StructArray slice *
) i
StructArray copy (
StructArray slice * to,
const StructArray slice * from
) i

StructArray free(StructArray slice *);

IT-SC book: Advanced CORBA® Programming with C++

As you can see, each IDL array definition generates a corresponding array definition in
C++. This means that you can use IDL array types just as you use any other array type in
your code. For example:

FloatArray my £ = { 1.0, 2.0, 3.0 };
my f£[3] = my f[2];

StrArray my str;
my str[0][0] = CORBA::string dup("Hello"); // Transfers ownership
my str[0][1] = my str[0][0]; // Deep copy

StructArray my_s;
my s[0].s mem = CORBA::string dup("World"); // Transfers ownership
my s[0].1 mem = 5;

To dynamically allocate an array, you must use the generated allocation and deallocation
functions (use of new [] and delete [] is not portable):

// Allocate 2-D array of 150 empty strings
StrArray slice * spl = StrArray alloc();

// Assign one element
spl[0] [0] = CORBA::string dup ("Hello");

// Allocate copy of spl
StrArray slice * sp2 = StrArray dup(spl);

StrArray x; // 2-D array on the stack
StrArray copy (&x, spl); // Copy contents of spl into x

StrArray free(sp2); // Deallocate
StrArray free(spl); // Deallocate

The allocation functions return a null pointer to indicate failure and do not throw CORBA
or C++ exceptions.

The allocation functions use the array slice type that is generated. The slice type of an
array is the element type of the first dimension (or, for a two-dimensional array, the row
type). In C++, array expressions are converted to a pointer to the first element and the
slice types make it easier to declare pointers of that type. For an array type T, a pointer to
the first element can be declared as T slice *. Because IDL arrays map to real C++
arrays, you can also use pointer arithmetic to iterate over the elements of an array.

The SstrArray copy function deep-copies the contents of an array. Neither the source
nor the target array need be dynamically allocated. This function effectively implements
assignment for arrays. (Because IDL arrays are mapped to C++ arrays and C++ does not
support array assignment, the mapping cannot provide an overloaded operator for array
assignment.)

184

IT-SC book: Advanced CORBA® Programming with C++

6.16 Mapping for Unions

IDL unions cannot be mapped to C++ unions; variable-length union members (such as
strings) are mapped to classes, but C++ does not permit unions to contain class members
with non-trivial constructors. In addition, C++ unions are not discriminated. To get
around this, IDL unions map to C++ classes. For example:

union U switch (char) {

case 'L':

long long mem;
case 'c':
case 'C':

char char mem;
default:

string string mem;

}i

The corresponding C++ class has an accessor and a modifier member function for each
union member. In addition, there are member functions to control the discriminator and
to deal with initialization and assignment:

class U var;

class U {

public:
u();
U(const U &) ;
~U();
U & operator=(const U &)
CORBA: :Char _d() const;
void _d(CORBA: :Char) ;
CORBA: :Long long mem() const;
void long mem (CORBA: :Long) ;
CORBA: :Char char mem() const;
void char mem (CORBA: :Char) ;
const char * string mem() const;
void string mem(char *);
void string mem(const char *);
void string mem(const CORBA::String var &);

typedef U var var type;
b7

As with other IDL generated types, there may be additional member functions in the class.
If there are, these functions are internal to the mapping implementation and you should
pretend they do not exist.™!

Bl we delay explanation of the var type definition in this class until Section 18.14.1, where
we show an example of its use.

185

IT-SC book: Advanced CORBA® Programming with C++

6.16.1 Union Initialization and Assignment

As with other complex IDL types, a union has a constructor, a copy constructor, an
assignment operator, and a destructor.

U()

The default constructor of a union performs no application-visible initialization of the
class. This means that you must explicitly initialize the union before reading any of its
contents. You are not even allowed to read the discriminator value of a default-
constructed union.

U(const U &)
U & operator=(const U &)

The copy constructor and assignment operator make deep copies, so if a union contains a
string, the string contents are copied appropriately.

~U ()

The destructor destroys a union. If the union contains a variable-length member, the
memory for that member is deallocated correctly. Destroying an uninitialized default-
constructed union is safe.

6.16.2 Union Member and Discriminator Access

To activate or assign to a union member, you invoke the corresponding modifier member
function. Assigning to a union member also sets the discriminator value. You can read
the discriminator by calling the d member function. For example:

U my u; // 'my u' is not initialized
my u.long mem(99); // Activate long mem
assert (my u. d() == 'L"); // Verify discriminator
assert (my u.long mem() == 99); // Verify value

In this example, the union is not initialized after default construction. Calling the
modifier function for the member long mem initializes the union by activating that
member and setting its value. As a side effect, assigning to a member via the modifier
function also sets the discriminator value. The preceding code tests the discriminator
value in an assertion to verify that the union works correctly. It also reads the value of
long mem by calling its accessor member function. Because we just set the value to 99,
the accessor must of course return that value. The code tests this with another assertion.
To change the active member of a union, you can use the modifier for a different member
to assign to that member:

my u.char mem('X'); // Activate and assign to char mem

186

IT-SC book: Advanced CORBA® Programming with C++

// Discriminator is now 'c' or 'C', who knows...
my u. d('C'); // Now it is definitely 'C'

Activating the member char mem sets the discriminator value accordingly. The
problem in this case is that there are two legal discriminator values: 'c' and 'C'.
Activating the member char mem sets the discriminator to one of these two values, but
you have no way of knowing which one (the choice is implementation-dependent). The
preceding code example explicitly sets the value of the discriminator to 'C' after
activating the member.

You cannot set the discriminator value if that would deactivate or activate a member:

my u.char mem('X'); // Activate and assign char mem
assert (my u. d() == 'c' [| my u. d() == 'C");

my u. d('c"); // OK

my u. d('C"); // OK

my u. d('X"); // Illegal, would activate string mem

The preceding example shows that you can set the discriminator only to a value that is
consistent with the currently active union member (the only legal values here are 'c'
and 'C"). Setting the discriminator value to anything else results in undefined behavior,
and many implementations will deliberately force a core dump to let you know that your
program contains a serious run-time error.

Setting the default member of the union leaves the discriminator in a partially undefined
state:

my u.string mem(CORBA::string dup ("Hello"));
// Discriminator value is now anything except 'c', 'C', or 'L'.
assert (my u. d() != 'c' && my u. d() != 'C' && my u. d() != 'L'");

The implementation of the union type picks a discriminator value that is legal for the
default member, but, again, the precise value chosen is implementation-dependent.

This behavior can be inconvenient, for example during tracing. Suppose you have trace
statements throughout your code that print the discriminator value to the display at
various points. A problem arises if the default member string mem is active in the
union, because the value of the discriminator can be any character except 'c', 'C', and
'L'. This makes it entirely possible for the discriminator to contain non-printable
characters, such as a form feed, escape, or Ctrl-S. Depending on the display you are using,
these characters may cause undesirable effects. For example, an escape character can
cause the display to clear its screen or switch into block mode, and a Ctrl-S typically acts
as a flow-control character that suspends output.

In general, the default case and multiple case labels for the same union member do
not assign a definite value to the discriminator of the union. We recommend that you use
these IDL features with caution. Usually, you can express the desired design in some
other way and avoid the potentially awkward coding issues involved.

187

IT-SC book: Advanced CORBA® Programming with C++

The preceding example also illustrates another important point. String members inside a
union behave like a String var. In particular, the modifier function for the member
string mem is overloaded for const char *,char *,and String var &. As
always, the char * modifier takes ownership of the assigned string, whereas the const
char *and String var modifiers make deep copies:

U my u;

// Explicit copy
my u.string mem(CORBA::string dup ("Hello"));

// Free "Hello", copy "World"
my u.string mem((const char *)"World");

CORBA::String var s = CORBA::string dup ("Again");
// Free "World", copy "Again"
my u.string mem(s);

// Free "Again", activate long mem
my u.long mem(999);
cout < s < endl; // Prints "Again"

For dynamically allocated unions, use new and delete:

U * up = new U;

up->string mem(CORBA::string dup ("Hello"));
// .

delete up;

On architectures with non-uniform memory management, the ORB generates class-
specific allocation and deallocation operators for the union, so you can still safely use
new and delete.

6.16.3 Unions without a default Case

Here is a union that can be used to simulate optional parameters:
union AgeOpt switch (boolean) {
case TRUE:

unsigned short age;

}i

This union does not have an explicit default case but has an implicit default member
when the discriminator is FALSE. If a union has an implicit default member, the mapping
generates an additional default member function for the corresponding C++ class:

class AgeOpt var;

class AgeOpt {

188

IT-SC book: Advanced CORBA® Programming with C++

public:
AgeOpt () ;
AgeOpt (const AgeOpt &)
~AgeOpt () ;
AgeOpt & operator=(const AgeOpt &);

CORBA: :Boolean d() const;
void d (CORBA: :Boolean) ;

CORBA: :UShort age () const;
void age (CORBA: :UShort) ;

void _default();
typedef AgeOpt var var type;
}i

The mapping follows the normal rules but also adds the default member function. (It
is a little unfortunate that a union without a default case has an extra member function
called default. You have to get used to this.) The default member function
activates the implicit default member of the union and sets the discriminator value
accordingly:

AgeOpt my age;
my age. default(); // Set discriminator to false

In this case, the only legal default value for the discriminator is 0 (which represents false).
Note that the following code is illegal:

AgeOpt my age;
my age. d(0); // Illegal!

This code has undefined behavior, because it is illegal to activate a union member by
setting the discriminator. (The non-existent implicit default member of the union is
considered a member.)

Similarly, you cannot reset an initialized union to the default member by setting the
discriminator. You must instead use the default member function:

AgeOpt my age;

my age.age (38); // Sets discriminator to 1
my age. d(0); // Illegall!!!
my age. default(); // Much better!

Here is another interesting union, taken from the Trading Service Specification [21]:
enum HowManyProps { none, some, all };
union SpecifiedProps switch (HowManyProps) {

case some:
PropertyNameSeq prop names;

189

IT-SC book: Advanced CORBA® Programming with C++

}i

This union permits two different discriminator values for the no-value case: none and
all. Suppose you want to initialize the union to set the discriminator value to none.
Again, you must use the default member function:

SpecifiedProps sp;

sp. default(); // Activate implicit default member
// Discriminator is now none or all
sp. d(none); // Fix discriminator

The call to default is necessary. Without it, we would attempt to activate the implicit
default member by setting the discriminator, and that is illegal.

6.16.4 Unions Containing Complex Members

If a union contains a member that is of type any or contains a member that is a structure,
union, sequence, or fixed-point type, the generated class contains three member functions
for each union member instead of the usual two member functions. Consider the
following union:

struct Details {
double weight;
long count;

}i
typedef sequence<string> TextSeqg;

union ShippingInfo switch (long) {
case O:

Details packaging info;
default:

TextSeq other info;
}i

This union has two members: one is a structure and the other one is a sequence. The
generated class contains all the member functions we discussed previously but has three
member functions for each union member:

class ShippingInfo {

public:
// Other member functions as before...
const Details & packaging info () const; // Accessor
void packaging info(const Details &); // Modifier
Details & packaging info(); // Referent
const TextSeq & other info() const; // Accessor
void other info(const TextSeq &) ; // Modifier
TextSeq & other info(); // Referent

190

IT-SC book: Advanced CORBA® Programming with C++

}i

As with simple types, the union contains accessor functions that return the value of a
member. (To avoid unnecessary data copying, accessors for complex types return the
value by constant reference.) Also, as with simple types, each member has a modifier
function that makes a deep copy.

The referent member function returns a non-constant reference to the union member and
exists for efficiency reasons. For large types, such as sequences, it is inefficient to change
a member by calling its accessor followed by its modifier, because both functions make
deep copies. The referent permits you to modify the value of a union member in place
without copying:

ShippingInfo info = ...; // Assume we have an initialized union...
if (info. d() != 0) { // other info is active
TextSeq & s = info.other info(); // get ref to other info

// We can now modify the sequence while it is
// inside the union without having to copy
// the sequence out of the union and back in again...
for (CORBA::ULong i = 0; 1 < s.length(); i++) {
// Modify sequence elements...

}

Of course, if you obtain a reference to a union member, that member must currently be
active (otherwise the behavior is undefined). Once you have a reference to a member, you
must take care to use it only for as long as its corresponding member remains active. If
you activate a different union member and use a reference to a previously active member,
you are likely to end up with a core dump.

6.16.5 Rules for Using Unions

Here are some rules for using unions safely.

Never attempt to access a union member that is inconsistent with the discriminator value.
This is just common sense. Unions are not meant to be used as a backdoor mechanism for
type casts. To safely read the value of a union member, first check the discriminator
value. It is common to check the discriminator in a switch statement and to process each
union member in a different branch of the switch. Be careful if you obtain a reference to a
union member. The reference stays valid only for as long as its member remains active.

Do not assume that union members overlay one another in memory. In C and C++, you
are guaranteed that union members overlay one another in memory. However, no such
guarantee is provided by the C++ mapping for IDL unions. A compliant ORB may keep
all union members active simultaneously, or it may overlay some union members but not
others. This behavior allows the ORB to intelligently adjust the behavior of a union

191

IT-SC book: Advanced CORBA® Programming with C++

depending on its member types. (For some member types, keeping them active
simultaneously may be more efficient.)

Do not make assumptions about when destructors run. The C++ mapping does not state
when members should be destroyed. If you activate a new union member, the previous
member's destructor may be delayed for efficiency reasons. (It may be cheaper to delay
destruction until the entire union is destroyed, especially if members occupy only a small
amount of memory.) You should write your code as if each member were destroyed the
instant it is deactivated. In particular, do not expect a union member to retain its value if
it is deactivated and reactivated later.

6.17 Mapping for Recursive Structures and Unions

Consider the following recursive union:

union Link switch (long) {

case 0:

typeA ta;
case 1:

typeB tb;
case 2:

sequence<Link> sc;

}s

The union contains a recursive member sc. Assume that you would like to activate the
sc member of this union so that sc is an empty sequence. As you saw earlier, the only
way to activate a union member is to pass a value of the member's type to its accessor.
However, sc is of anonymous type, so how can you declare a variable of that type?

The C++ mapping deals with this problem by generating an additional type definition
into the union class:

class Link {
public:
typedef some internal identifier sc seq;

// Other members here...

}s

The generated class defines the type name sc seq to give a name to the otherwise
anonymous type. In general, if a union u contains a member mem of anonymous type, the
type of mem has the name u:: mem seq. You can use this type name to correctly
activate the recursive member of a union:

Link:: sc seq myseq; // myseq is empty
Link mylink; // uninitialized union
mylink.sc (myseq) ; // activate sc

192

IT-SC book: Advanced CORBA® Programming with C++

The same mapping rule applies to recursive structures. If a structure s contains an
anonymous sequence member mem, the type of memis s:: mem seq.

6.18 Mapping for Type Definitions

IDL type definitions map to corresponding type definitions at the C++ level. If a single
IDL type results in multiple C++ types, each C++ type has a corresponding type
definition. Aliasing of type definitions is preserved. If function declarations are affected
by aliasing, a corresponding function using the alias name is defined (usually as an inline
function):

typedef string StrArrayl[4];
typedef StrArray Address;

This definition maps as follows:

typedef CORBA::String mgr StrArrayl[4];
typedef CORBA::String mgr StrArray slice;

StrArray slice * StrArray alloc();

StrArray slice * StrArray dup (const StrArray slice *);
void StrArray free(StrArray slice *);
typedef StrArray Address;

typedef StrArray slice Address_slice;

Address_slice * Address_alloc()

{ return StrArray alloc(); }

Address_slice * Address_dup (
const Address slice * p
) { return StrArray dup(p); }

void Address_ free (Address_slice * p)
{ StrArray free(p); }

The preceding code looks complicated, but it really means that aliases for types can be
used in exactly the same way as the original type. For example, with the preceding
mapping, you can use StrArray and Address interchangeably in your code.

6.19 User-Defined Types and var Classes

As shown earlier in Table 6.2, the IDL compiler generates a var class for every user-
defined structured type. These var classes serve the same purpose as String var;
that is, they take on memory management responsibility for a dynamically allocated
instance of the underlying type.

Figure 6.3 shows the general idea of the generated var class for an IDL type T,
where T is a structure, union, or sequence. An instance of a var class holds a private

193

IT-SC book: Advanced CORBA® Programming with C++

pointer to an instance of the underlying type. That instance is assumed to be dynamically
allocated and is deallocated by the destructor when the var instance goes out of scope.

Figure 6.3 _var class for structures, unions, and sequences.

m

class T_war |
public:
T _wvar();
T _wvar(T *);
T _wvar (const T_var &);
~T(}:
T_wvar & operator=(T *);
T_wvar & operator=(const T_war &):
T * operator->();
const T * operator-=() conskt;

.if eto. .. clags T { ff or struct T
private: public:
T * myT; - f/ Public members of T...

b ¥

The var class acts as a smart pointer that wraps the underlying type. The overloaded
indirection operator delegates member function calls on the var instance to the
underlying instance. Consider the following code fragment, which assumes that T is a
sequence type:

{

T var sv = new T; // T 1s a sequence, Sv assumes ownership
sv->length (1) ; // operator-> delegates to underlying T
//

} // ~T var() deallocates sequence

This example illustrates that instances of a var class behave much like ordinary C++
class instance pointers. The difference is that var classes also manage memory for the
underlying type.

6.19.1 var Classes for Structures, Unions, and Sequences

The following code shows the general form of var classes for structures, unions, and
sequences. (Depending on the exact underlying type, there may be additional member
functions, which we discuss shortly.)

class T var {

public:
T var();
T var (T *);
T var(const T var &);
~T var();
T var & operator=(T *);
T var & operator=(const T var &);
T * operator->() ;

194

IT-SC book: Advanced CORBA® Programming with C++

const T * operator->() const;

operator T &();

operator const T &() const;
T & operator[] (CORBA: :ULong) ; // For sequences
const T & operator[] (CORBA: :ULong) const; // For sequences

// Other member functions here...
private:

T * myT;
}i

T var ()

The default constructor initializes the internal pointer to the underlying instance to null.
As a result, you cannot use a default-constructed var instance until after you have
initialized it.

T var(T *)

The pointer constructor assumes that the passed pointer points to a dynamically allocated
instance and takes ownership of the pointer.

T var(const T var &)

The copy constructor makes a deep copy of both the T var and its underlying instance
of type T. This means that assignment to a copy-constructed T var affects only that
copy and not the instance it was copied from.

~T var ()

The destructor deallocates the instance pointed to by the internal pointer.

T var & operator=(T *)

The pointer assignment operator first deallocates the instance of type T currently held by
the target T var and then assumes ownership of the instance pointed to by its argument.

T var & operator=(const T var &)

The T var assignment operator first deallocates the instance of type T currently held by
the target T var and then makes a deep assignment of both the T var argument and
the instance of type T that the argument points to.

T * operator->()
const T * operator->() const

195

IT-SC book: Advanced CORBA® Programming with C++

The indirection operator is overloaded to permit its use on both constant and non-constant
instances of the underlying type. It returns a pointer to the underlying instance. This
means that you can use the T var to invoke any member function of the underlying type.

operator T &()
const operator T &() const

These conversion operators permit a T var to be used in places where a constant or
non-constant reference to the underlying type is expected.

T & operator[] (CORBA: :ULong)
const T & operator[] (CORBA::ULong) const

The subscript operators are generated if the T var represents a sequence or an array.
They permit you to index into a sequence as if the T var were the actual sequence or
array type. The operators exist for convenience, letting you avoid awkward expressions
such as sv->operator[] (0).

6.19.2 Simple Use of var Classes

Let us consider a simple example of using the var class for a sequence. The IDL
definition of the sequence is

typedef sequence<string> NameSeq;

This generates two C++ types: NameSeq, which is the actual sequence, and
NameSeqg var, which is the corresponding memory management wrapper. Here is a
code fragment that illustrates use of NameSeq var instances:

NameSeq var ns; // Default constructor
ns = new NameSeq; // ns assumes ownership
ns->length (1) ; // Create one empty string
ns[0] = CORBA::string dup ("Bjarne"); // Explicit copy
NameSeq var ns2(ns); // Deep copy constructor
ns2[0] = CORBA::string dup("Stan"); // Deallocates "Bjarne"
NameSeq var ns3; // Default constructor
ns3 = ns2; // Deep assignment
ns3[0] = CORBA::string dup ("Andrew"); // Deallocates "Stan"
cout < ns[0] < endl; // Prints "Bjarne";

cout < ns2[0] < endl; // Prints "Stan";

cout < ns3[0] < endl; // Prints "Andrew";

// When ns, ns2, and ns3 go out of scope,
// everything is deallocated cleanly...

196

IT-SC book: Advanced CORBA® Programming with C++

As with String var, the generated var types are useful mainly to catch return
values for dynamically allocated variable-length types. For example:

extern NameSeq * get names|(); // Returns heap-allocated instance
NameSeq var nsv = get names(); // nsv takes ownership
// No need to worry about deallocation from here on...

As you will see in Section 7.14, such allocation frequently happens when a client
invokes an IDL operation. Using a var instance to take ownership means that you need
not constantly remember to deallocate the value at the correct time.

6.19.3 Some Pitfalls of Using _var Classes

Similar caveats apply to generic var classes as apply to String var. If you
initialize a var instance with a pointer or assign a pointer, you need to make sure that
the pointer really points at dynamically allocated memory. Failure to do so results in
disaster:

NameSeq names; // Local sequence

/] ... // Initialize sequence
NameSeq var nsv(&names) ; // Looming disaster!
NameSeq var nsv(new NameSeq(names)); // Much better!

After you have assigned a pointer to a var instance, you must be careful when
dereferencing that pointer:

NameSeq var famous = new NameSeq;

famous->length (1) ;

famous[0] = CORBA::string dup ("Bjarne");

NameSeq * fp = famous; // Shallow assignment

NameSeq * ifp;
{

NameSeq var infamous = new NameSeq;
infamous->length (1) ;
infamous[0] = CORBA::string dup("Bill");
ifp = infamous; // Shallow assignment
famous = infamous; // Deep assignment
}
cout < (*fp)[0] < endl; // Whoops, fp points nowhere

cout < (*ifp) [0] < endl; // Whoops, ifp points now here

These problems arise because assignment to a var deallocates the previous underlying
instance and so invalidates a pointer still pointing to that instance. Similarly, when a
_var instance goes out of scope, it deallocates the underlying instance and invalidates
any pointers still pointing at that instance.

197

IT-SC book: Advanced CORBA® Programming with C++

In practice, such problems rarely occur because var classes are used mainly to avoid
memory leaks for return values and out parameters. You will see more examples of using
_var classes in Section 7.14.12.

6.19.4 Differences Among Fixed- and Variable-Length
Structures, Unions, and Sequences

The generated var classes vary slightly in their interfaces depending on whether they
wrap a fixed-length or a variable-length type. Normally, these differences are transparent
to you. They exist to hide differences in parameter passing rules for fixed-length and
variable-length types (we discuss this in more detail in Section 7.14.12).

All var classes provide in, inout, out, and retn member functions (with
different signatures depending on whether the var class wraps a variable- or a fixed-
length type). In addition, var classes for variable-length types have an extra conversion
operator, whereas var classes for fixed-length types provide an extra constructor and
assignment operator.

Additional T _var Member Functions for Variable-Length Types

In addition to the member functions discussed on page 212, for a variable-length structure,
union, or sequence of type T, the IDL compiler generates the following:

class T var {
public:
// Normal member functions here...

// Member functions for variable-length T:
operator T * &();

const T & in() const;
T & inout () ;

T * & out () ;

T * _retn();

operator T * &()

This additional conversion operator allows you to pass a variable-length T var where a
reference to a pointer to T is expected. This operator is used if T var instances for

variable-length types are passed as out parameters. We discuss this in detail in Section
7.14.

const T & in() const
T & inout ()
T * & out()

198

IT-SC book: Advanced CORBA® Programming with C++

These member functions allow you to explicitly passa T var as an in, inout, or out
parameter instead of relying on default conversions. The functions are useful mainly if
your compiler has defects relating to default conversions. You can also call these
functions explicitly to improve code readability. If you pass a T var instance to a
function, it may not be immediately obvious whether the called function will modify the
underlying value. By using these member functions, you can improve readability of the
code:

StrSeq var sv = ...;
some_func (sv) ; // Passed as 1in, 1inout, or out?
some func(sv.out()); // Much clearer...

The out member function deallocates the underlying instance of type T as a side effect
to prevent memory leaks if the same T var instance is passed to successive calls:

StrSeq var sv = ...;

some_ func(sv.out()); // Sets sv to heap-allocated instance.

some func (sv.out()); // Deallocates previous instance, assumes
// ownership of new instance.

T * retn()

This function returns the pointer to the underlying instance of type T and also
relinquishes ownership of that pointer. It is useful mainly when you create a T var to
avoid memory leaks but then must transfer ownership of the underlying type.

Additional T_var Member Functions for Fixed-Length Types

Fora T var for a fixed-length structure, union, or sequence of type T, the IDL compiler
generates the following:

class T var {
public:
// Normal member functions here...

// Member functions for fixed-length T:
T var(const T &);

T var & operator=(const T &);
const T & in() const;

T & inout () ;

T & out () ;

T _retn();

bi
T var(const T &)
T & operator=(const T &)

199

IT-SC book: Advanced CORBA® Programming with C++

The additional constructor and assignment operator permit you to construct or assign a
T var fromaT.

const T & in() const
T & inout ()

T & out()

T retn()

These member functions are provided to deal with defective compilers that cannot handle
default conversions correctly. They also make the direction in which a parameter is
passed explicit at the point of call, something that improves code readability.

The out and retn member functions for fixed-length types do not relinquish
ownership of the underlying type. They cannot do this because they do not return a
pointer.

6.19.5 var Types for Arrays

The var types generated for arrays follow a similar pattern as those for structures,
unions, and sequences. The differences are that var types for arrays do not overload the
indirection operator (it is not needed for arrays) and that the return types of some of the
member functions are different. var types for arrays with variable-length and fixed-
length elements also have some differences.

Array _var Mapping for Arrays with Variable-Length Elements

It is easiest to illustrate the mapping with an example. Here we define a three-element
array containing variable-length structures:

struct Fraction { // Variable-length structure
double numeric;
string alphabetic;

bi

typedef Fraction FractArr([3];

This maps to the following C++ definitions:

struct Fraction {
CORBA: :Double numeric;
CORBA: :String mgr alphabetic;
bi

class Fraction var ({
public:

// As before...
bi

typedef Fraction FractArr[3];
typedef Fraction FractArr slice;

200

IT-SC book: Advanced CORBA® Programming with C++

FractArr slice * FractArr alloc();
FractArr slice * FractArr dup(const FractArr slice *);
void FractArr copy (

FractArr slice * to,

const FractArr slice * from
);

void FractArr free(FractArr slice *);

class FractArr var {

public:

FractArr var();
FractArr var (FractArr slice *);
FractArr var (const FractArr var &);
~FractArr var();

FractArr var & operator=(FractArr slice *);

FractArr var & operator=(const FractArr var & rhs);

Fraction & operator[] (CORBA: :ULong) ;

const Fraction & operator[] (CORBA: :ULong) const;
operator FractArr slice *();
operator const FractArr slice *() const;
operator FractArr slice * &();

const FractArr slice * in() const;

FractArr slice * inout () ;

FractArr slice * & out () ;

FractArr slice * _retn();

}i

If all this looks a little intimidating, remember that the various member functions do
exactly the same things as for var types for structures, unions, and sequences.

The default constructor initializes the internal pointer to the underlying array to null.

Constructors and assignment operators that accept an argument of type
FractArr slice * assume that the array was allocated with FractArr alloc or
FractArr dup, and they take ownership of the passed pointer.

The copy constructor and FractArr var & assignment operator each make a deep
copy.

The destructor deallocates the array by calling FractArr free.

The subscript operators allow indexing into the array, so you can use a FractArr var
as if it were the actual array.

The conversion operators permit passing the array as an in, inout, or out parameter
(see Section 7.14.12).

201

IT-SC book: Advanced CORBA® Programming with C++

The explicit conversion functions in, inout, and out behave as for structures, unions,
and sequences.

The retn function permits you to relinquish ownership of the underlying type.

All this means that you can use an array var as if it were the actual array; you just need
to remember that an array var must be initialized with dynamically allocated memory.

const char * fractions[] = { "1/2"™, "1/3"™, "1/4" };
FractArr var fal = FractArr alloc();
for (CORBA::ULong i = 0; i < 3; i++) { // Initialize fal
fal[i] .numeric = 1.0 / (1 + 2);
fal[i].alphabetic = fractions[i]; // Deep copy
}
FractArr var fa2 = fal; // Deep copy
fa2[0] .alphabetic = CORBA::string dup ("half"); // Explicit copy
fa2[1] = fa2([2]; // Deep assignment
cout.precision(2);
for (CORBA::ULong i = 0; i < 3; i++) | // Print fal
cout < "fal[" < i < "].numeric ="
< fal[i] .numeric
< ",\tfal[" < i < "].alphabetic = "

< fal[i].alphabetic < endl;
}

cout < endl;

for (CORBA::ULong i = 0; i < 3; i++) { // Print fa2
cout < "fa2[" < i < "].numeric ="
< fa2[i] .numeric
< ",\tfa2[" < i < "].alphabetic ="

< fa2[i].alphabetic < endl;

The output of this program is as follows:

fal[0] .numeric = 0.5, fal[0].alphabetic = 1/2
fal[l] .numeric .33, fal[l].alphabetic = 1/3
fal[2] .numeric = 0.25, fal[2].alphabetic = 1/4

Il
o

fa2[0] .numeric = 0.5, fa2[0] .alphabetic = half
fa2[1].numeric = 0.25, fa2[l].alphabetic = 1/4
fa2[2] .numeric = 0.25, fa2[2].alphabetic = 1/4

(@)

Array _var Mapping for Arrays with Fixed-Length Elements
The mapping for var types for arrays with fixed-length elements is almost identical to

the mapping for var types for arrays with variable-length elements. Here we define a
three-element array containing fixed-length structures:

202

IT-SC book: Advanced CORBA® Programming with C++

struct S { // Fixed-length structure
long 1 mem;
char c_mem;

}i
typedef S StructArrayl[3];

The mapping for the corresponding StructArray var type is as follows:

class StructArray var {

public:
StructArray var();
StructArray var (StructArray slice *);
StructArray var (const StructArray var &);
~StructArray var();

StructArray var & operator=(StructArray slice *);
StructArray var & operator=(const StructArray var & rhs);

S & operator[] (CORBA: :ULong) ;
const S & operator[] (CORBA: :ULong) const;

operator StructArray slice *();

operator const StructArray slice * () const;
const StructArray slice * in() const;
StructArray slice * inout () ;
StructArray slice * out () ;
StructArray slice * _retn();

}s

The only differences between var types for arrays with fixed-length and those for
variable-length elements are that for fixed-length elements, the out member function
returns a pointer instead of a reference to a pointer and that no user-defined conversion
operator for StructArray slice * & is defined. These differences originate in the
different parameter passing rules for variable-length and fixed-length types. We discuss
these rules in detail in Section 7.14.

6.20 Summary

The basic C++ mapping defines how built-in types and user-defined types map to C++.
Although some of the classes generated by the mapping have a large number of member
functions, within a short time you will find yourself using them as you use any other data
type. Even the memory management rules, which may seem complex right now, soon
become second nature. When writing your code, keep in mind that you should be looking
at the IDL definitions and not at the generated header files. In that way, you avoid getting
confused by many internal details and cryptic work-arounds for different platforms and
compilers.

203

IT-SC book: Advanced CORBA® Programming with C++

Chapter 7. Client-Side C++ Mapping

7.1 Chapter Overview

In Chapter 6, we covered the basic mapping from IDL to C++— that is, how each IDL
type appears at the C++ level. In addition to using IDL types, clients deal with object
references, invoke operations on objects, and handle exceptions raised by operations.
This chapter covers these topics in detail. Sections 7.3 to 7.6 cover the semantics of
object references, sections 7.7 to 7.10 cover ORB initialization, and Section 7.11
presents operations that apply to all object references, regardless of their type. Section
7.12 discusses automatic memory management using var references, and sections
7.13 and 7.14 present the details of invoking operations and parameter passing.
Sections 7.15 and 7.16 discuss exception handling and contexts.

7.2 Introduction

As with the basic C++ mapping we presented in Chapter 6, there is a lot of ground to
cover here. Do not be disheartened by the amount of detail—you do not need to
understand the client-side mapping in full on the first reading. We have arranged the
material so that all the information on a particular topic is presented together, so you can
skip parts of the mapping now and easily refer to this chapter later when you need the
answer to a particular question. However, we recommend that you read at least
Sections 7.5 and 7.6 in detail, as well as Section 7.14.6. These sections contain
core information that is essential to understanding the mapping.

7.3 Mapping for Interfaces

As you saw in Section 2.5.4, a proxy class offers a location-transparent interface to
the client. Proxy classes are generated from IDL definitions, and each IDL interface
results in a separate C++ proxy class. Consider the following IDL interface:

interface MyObject ({
long get value();
}i

The generated proxy class looks like this:

class MyObject : public virtual CORBA::Object ({
public:

virtual CORBA::Long get value() = 0;

/..
}i

For now, we have omitted a number of details in this class. The important points to note
are as follows.

204

IT-SC book: Advanced CORBA® Programming with C++

The generated proxy class MyObject has the same name as the IDL interface
MyObject.

The proxy class inherits from CORRA: :0Object, reflecting the fact that all IDL
interfaces implicitly inherit from Object.

The proxy class provides a get value method that corresponds to the IDL
get value operation.

get value is declared pure virtual, so the proxy class is an abstract base class that
cannot be instantiated.

Note that your ORB may choose to add an exception specification to the get value
signature (the C++ mapping makes exception specifications optional for client-side stubs).
We discuss exception specifications in more detail on page 319. Also note that some
ORBs make proxy classes non-abstract. Non-abstract proxy classes are a legal
implementation of the C++ mapping. Whether or not the proxy class is abstract does not
affect the code.

If a client has a derived instance of the MyObject proxy class and calls the
get value method, the ORB sends a message to the (possibly remote) target object.
The client-side code blocks until the method returns and delivers the result (a long
value).

Because the proxy class is an abstract base class, the client code cannot directly
instantiate it. Even if your ORB does not generate abstract proxy classes, you must still
treat them as if they were abstract; if you instantiate a proxy class yourself, you are
writing non-portable code. In addition, the C++ mapping explicitly prohibits the client
code from

Declaring a pointer to a proxy class
Declaring a reference to a proxy class
This means that the following code contains three errors:

MyObject myobj; // Cannot instantiate a proxy directly
MyObject * mop; // Cannot declare a pointer to a proxy
void f (MyObject &); // Cannot declare a reference to a proxy

These restrictions exist to give ORB vendors maximum freedom in the way proxies are
implemented. Be aware that declaring a pointer or reference to a proxy will not generate a
compile-time error. Instantiating a proxy will go undetected at compile time if your ORB
implements proxies as concrete classes instead of abstract classes.

If a client is not allowed to directly instantiate a proxy, how are these proxies created?

The answer is that proxies are instantiated by the ORB run time when an object reference
enters the client's address space. The client does not manipulate the proxy directly (the

205

IT-SC book: Advanced CORBA® Programming with C++

proxy remains under control of the ORB). Instead, the client accesses proxy instances via
handles known as object reference types.

7.4 Object Reference Types

Apart from the proxy class, the IDL compiler generates two object reference types for
each interface. These object reference types are called InterfaceName ptr and
InterfaceName var. For example, for the MyObject interface, the compiler
generates three different types:

MyObject This is the proxy base class.

MyObject ptr Thisis a raw object reference type that behaves much like a C++ class
instance pointer. In many implementations, it is a C++ instance pointer.

MyObject var The var version of the object reference type acts as a handle to a
proxy in much the same way as a ptr reference but also adds memory management.
Like all var types, a var reference takes care of deallocating its underlying instance
(in this case, the proxy instance) when the reference goes out of scope.

Both ptr references and var references allow the client to access operations on a
proxy instance. For example, for the MyObject interface shown earlier, a client can use
references as follows:

MyObject ptr mop = ...; // Get ptr reference...
CORBA: :Long vl = mop->get value(); // Get value from object
MyObject var mov = ...; // Get another reference...
CORBA::Long v2 = mov->get value(); // Get value from object

It does not matter whether you use a ptr reference or a var reference to invoke an
operation. In either case, you use the indirection operator -> to invoke operations on the
underlying proxy. The proxy in turn ensures that it delivers the invocation to the correct
object, whether that object is local or remote. Note that a line of code such as

some ref->get value();

is sufficient to reach a remote object. The code looks as if it calls an ordinary member
function via a class instance pointer (which is what it does). The code generated into the
body of get value in the proxy class, together with the underlying ORB, does all the
work of locating the object, transmitting the request, and returning any results. The client
application code is completely unaware of things such as networking protocols, object
location, file descriptors, sockets, byte ordering, and many other unpleasant low-level
complications.

206

IT-SC book: Advanced CORBA® Programming with C++

We discuss the differences between ptr and var references in Section 7.12. For
now, the important point to remember is that a reference type acts as a handle to the
underlying proxy. The proxy in turn provides location transparency by hiding from the
application code the differences in call dispatch between local and remote objects. This
makes a remote CORBA object appear as if it were a local C++ object.

7.5 Life Cycle of Object References

Proxies and object references have a life cycle: they can be created, copied, and destroyed.
However, reference creation does not apply to client code. With the exception of nil
references, CORBA does not allow clients to create object references because clients do
not implement objects. Instead, CORBA makes reference creation a server-side issue to
preserve the opaqueness of references. This means that the following rules apply to the
life cycle of proxies and references in the client.

Proxies are created by the client-side ORB run time on behalf of the client when an object
reference enters the client's address space. The ORB returns to the client code a ptr
reference to the new proxy.

The client can destroy a reference.
The client can make a copy of a reference it already holds.
The client can create a nil reference (a reference that points nowhere).

Let us examine what happens when a client receives an object reference to an interface of
type MyObject as the result of invoking an operation. The ORB run time instantiates a
proxy of type MyObject and returns a value of type MyObject ptr to the client. The
new proxy instance carries a reference count that is initialized to 1 by the ORB. For
example, the initialization

MyObject ptr mop = ...; // Get reference from somewhere...

creates the picture shown in Figure 7.1 in the client's address space. Note that because
MyObject can be an abstract base class, the actual proxy type may be derived from
MyObject (but this detail is irrelevant for this discussion). Also, CORBA does not
require reference counting of proxies, so the explanations that follow are somewhat
implementation-dependent. Still, discussing a concrete implementation makes it easier to
understand what goes on behind the scenes. The code we show in this book is portable

and will work correctly whether or not the ORB uses reference counting (most of them
do).

207

IT-SC book: Advanced CORBA® Programming with C++

Figure 7.1 ptr reference and proxy immediately after instantiation.

mop

After the client has obtained a reference, the proxy is instantiated in memory and the
client can invoke operations via the reference:

CORBA::Long v = mop->get value(); // Call operation
cout << "Value is " << v << endl; // Print result

This call sends a message to the (possibly remote) object to invoke the get value
operation. The call blocks until the result is received; a remote invocation looks like a
normal synchronous procedure call to the client. The client code can use the returned
value as it uses any other value. (In this example, it sends the value to the standard output
stream.)

7.5.1 Reference Deletion

A proxy created by the ORB run time consumes resources in the client. Each proxy
requires some memory, but, beyond that, proxies for remote objects also encapsulate
networking resources, such as a file descriptor to a socket representing a TCP/IP
connection. The client code must inform the ORB run time when it is no longer interested
in talking to an object represented by a proxy. This allows the run time to reclaim the
resources associated with that proxy.

Clients deallocate a proxy and its associated networking resources by calling
CORBA: :release:

CORBA: :release (mop) ; // Done with this object

release is a function in the CORBA namespace that informs the run time that the
client no longer wants to communicate with the corresponding object. release
decrements the reference count on a proxy instance. When the reference count drops to
zero, the ORB run time deallocates the proxy and reclaims networking resources (see
Figure 7.2). Because a proxy is initially created with a reference count of 1, a
subsequent call to release drops the count to zero and deletes the proxy instance. The
client must not use a reference after releasing it:

208

IT-SC book: Advanced CORBA® Programming with C++

Figure 7.2 Proxy deletion when reference count drops to zero.

mop

MyObject ptr mop = ...; // Initialize reference...
CORBA: :Long v = mop->get value () ; // Get a value

CORBA: :release (mop) ; // Finished with object

v = mop->get value(); // Looming disaster!!!

The final call has undefined behavior because it accesses deallocated memory (in many
implementations, it will cause a core dump).

7.5.2 Reference Copying

The IDL compiler generates a static member function called duplicate into each
proxy class. For example, the generated code for the MyObject proxy looks like this:

class MyObject : public virtual CORBA::0bject {

public:
virtual CORBA::Long get value() = 0;
static MyObject ptr duplicate (MyObject ptr p);
//

}i

The duplicate member function makes a copy of the reference passed as the
argument p and returns the copy. The original and the copy are identical in all respects
and cannot be distinguished. Conceptually, duplicate makes a physical (deep) copy
of the proxy. However, to avoid the expense of making a physical copy, duplicate
simply increments the reference count of the proxy and returns its pt r reference.

Consider the following code fragment, which makes a copy of a reference after
instantiation:

// Get reference

MyObject ptr mopl = ...;
MyObject:: duplicate (mopl); // Make copy

MyObject ptr mop2

This creates the situation shown in Figure 7.3 in the client.

209

IT-SC book: Advanced CORBA® Programming with C++

Figure 7.3 Reference count after _duplicate is called.

mopl

mop2

The client now holds two initialized ptr references: mopl and mop2. Both references
point at the same proxy and therefore denote the same object. Because duplicate
was called once, the reference count on the proxy is now 2. (The proxy was created with
a reference count of 1, and duplicate incremented it to 2.)

The client now must call release twice (once with each reference as its argument) to
get rid of the proxy:

MyObject ptr mopl = ...; // Get reference
MyObject ptr mop2 = MyObject:: duplicate (mopl); // Make copy

// Use one or both references...

CORBA: :release (mopl) ; // Could release mop2 here
CORBA: :release (mop2) ; // Could release mopl here

// Can't use either mopl or mop2 from here on

The first call to release decrements the reference count to 1, and the second call drops
it to zero, which deallocates the proxy. The order of release of the two references does
not matter, but neither mop 1 nor mop2 must be used after they have been released. Using
a reference after releasing it has undefined behavior. For example, the following code is
in error:

MyObject ptr mopl = ...; // Get reference
MyObject ptr mop2 MyObject:: duplicate (mopl); // Make copy

CORBA: :release (mop2) ; // Release mop?2

CORBA::Long vl = mop2->get value(); // Illegal, released already!
CORBA::Long v2 = mopl->get value(); // OK, not released yet
CORBA: :release (mopl) ; // Release mopl

In many implementations, this code will work just fine. However, it is, strictly speaking,
non-portable because, conceptually, mop2 no longer points at a valid proxy after it is
released. You cannot rely on the knowledge that mop2 still points at the same proxy it
did before (but now with a reference count of 1) because an ORB could implement

210

IT-SC book: Advanced CORBA® Programming with C++

_duplicate by physically copying the proxy instead of using a reference count. On
such an implementation, using mop2 after releasing it would likely cause a core dump.

Similarly, you must not call release twice on the same reference. The simple rule is
that you must release each reference exactly once.

7.5.3 Scope of Reference Counts

There is one thing you need be very clear about: duplicate and release affect the
reference count of the proxy in the client only. The reference count exists purely to deal
correctly with resource allocation and deallocation in the client. In particular, calling
release in the client has no effect whatsoever on the corresponding object in the server.
If a client calls release, the server does not know this has happened (_ duplicate
and release do not communicate with the server at all).

Newcomers to CORBA frequently have the misconception that a client can call
release to indicate it has lost interest in an object and that the server should therefore
clean up and free resources allocated to the object. This is wrong—CORBA simply does
not work this way. Calling duplicate or release in the client affects only the
client, and calling duplicate or release in the server affects only the server. If a
client wants to inform the server that it no longer needs an object, it must invoke a remote
operation on the object to indicate this explicitly. We return to such object life cycle

issues in Chapter 12.

7.5.4 Nil References

The IDL compiler generates a static member function called nil into each proxy class.
For example, the MyObject proxy contains the following:

class MyObject : public virtual CORBA::Object {
public:
virtual CORBA::Long get value() = 0;
static MyObject ptr duplicate (MyObject ptr p);
static MyObject ptr nil();
//
}i

The nil member function creates a reference that points nowhere— that is, a reference
that does not denote any CORBA object. The client code can copy and release nil
references as with any other reference:

MyObject ptr pl = MyObject:: nil(); // Create nil ref
MyObject ptr p2 = MyObject:: duplicate(pl); // Copy nil ref
// .

// Release both references

CORBA: :release (p2) ; // Optional

CORBA: :release (pl); // Optional

211

IT-SC book: Advanced CORBA® Programming with C++

Copying or releasing a nil reference does not change any reference counts. Nil references
are implemented either as null pointers or as a special singleton proxy; the C++ mapping
specification guarantees that no resource leak will occur if you do not release a nil
reference. However, typically it is easier to release nil references just as you release all
other references because it avoids a special case in the code.

Attempting to invoke an operation on a nil reference has undefined behavior:

MyObject ptr p = MyObject:: nil();
CORBA::Long 1 = p->get value(); // Crash imminent here!

Because a nil reference points nowhere, it is illegal to invoke an operation defined on the
non-existent target object. In most implementations, the preceding code causes a core
dump.

Testing for Nil

To test whether a reference is nil before using it, use the CORBA: :is nil library
function:

MyObject ptr p = ...; // Get reference from somewhere...
if (!CORBA::is nil(p))

CORBA::Long 1 = p->get value(); // Call only if not nil
CORBA: :release (p);

In this example, the client obtains an object reference somehow, possibly as the return
value of an operation. The returned reference might well be nil, and that means the code
needs to test that the reference is not nil before it can safely make a call. The example
also illustrates that it is convenient to be able to release nil references. The code
unconditionally calls CORBA: : release whether or not the reference is actually nil.
The following code is in error:

MyObject ptr p = ...;

if (p !'= 0) // Illegal
do_something () ;

if (p == MyObject:: nil()) // Also illegal

do something() ;

Both tests are non-portable and have undefined behavior. They happen to work correctly
for an ORB that implements nil ptr references as C++ null pointers. However, another
ORB may implement ptr references as classes, in which case the preceding code is
simply illegal.

The important point is that the only portable way to test a reference for nil is to call
CORBA::is nil.

212

IT-SC book: Advanced CORBA® Programming with C++

Why Create Nil References?

Clients create nil references mainly to indicate "not there" or "optional" semantics, much
as a C++ null pointer can be used to mean "not there." For example, the CORBA Event
Service (see Chapter 20) allows a client optionally to pass an object reference and
thereby be informed of disconnection from an event channel. If the client passes a non-nil
reference, it indicates that it wants to be informed of disconnection. If the client passes a
nil reference, it indicates that it does not want to know about disconnection. Simplified,
the corresponding IDL looks something like this:

interface Callback {
void disconnect () ;
bi

interface Channel ({
SomeType register me(in Callback c);

//
}s

If the client does not care about disconnection, it can pass a nil reference to
register me:

Channel ptr ch = ...; // Get a channel reference...

// Tell the channel we don't want to know about disconnects

Callback ptr nil cb = Callback:: nil();

SomeType st = ch->register me(nil cb);

// Use channel for other things...

By passing a nil reference, the client conveys the "not there" semantics (there is no
callback object for the server to use).
We discuss this callback pattern in more detail in Section 20.3.

7.6 Semantics of ptr References

As you saw in the preceding section, ptr references act as handles to an underlying
proxy. In this section, we examine the semantics of ptr references in more detail and
consider how inheritance affects the use of ptr references.

7.6.1 Mapping for Proxies and ptr References

Consider part of the IDL for the climate control system:

//
module CCS {
//
typedef short TempType;

213

IT-SC book: Advanced CORBA® Programming with C++

interface Thermometer {

readonly attribute TempType temperature;
//
}i
interface Thermostat : Thermometer ({
TempType get nominal () ;
//
}i
//

}i

Following is one possible way for an ORB to map these interfaces to proxy classes and
their associated ptr references:

namespace CORBA {
class Object;
class Object var;
typedef Object * Object ptr;
class Object {
public:
static Object ptr duplicate(Object ptr p);
static Object ptr nil();
static Object ptr narrow(Object ptr p);
// Other member functions here...
typedef Object var var type;
typedef Object ptr ptr type;
}i
Boolean is nil (Object ptr p);
//
}

namespace CCS {

//

class Thermometer;

class Thermometer var;

typedef Thermometer * Thermometer ptr;

class Thermometer : public virtual CORBA::0Object {

public:
static Thermometer ptr duplicate (Thermometer ptr p);
static Thermometer ptr nil();
static Thermometer ptr narrow(CORBA::0Object ptr p);
// Member functions for attributes of Thermometer here...
typedef Thermometer var var type;
typedef Thermometer ptr ptr type;

}i

class Thermostat;

class Thermostat var;

typedef Thermostat * Thermostat ptr;

class Thermostat : public virtual Thermometer {

public:
static Thermostat ptr duplicate(Thermostat ptr p);
static Thermostat ptr nil();
static Thermostat ptr narrow (CORBA::Object ptr p);

214

IT-SC book: Advanced CORBA® Programming with C++

// Member functions for operations of Thermostat here...
typedef Thermostat var var type;
typedef Thermostat ptr ptr type;

}i

//

Before we launch into the details of this mapping, we need to note that the C++ mapping
specification does not require the precise mapping shown. For example, an ORB could
choose to implement a ptr reference as a class instead of a C++ pointer. However, the
mapping requires that a compliant ORB must preserve the semantics of the mapping just
shown. This means that even if a ptr reference is not implemented as a C++ pointer, it
must behave as if it were a C++ pointer.

The C++ mapping deliberately phrases its requirements this way to give ORB vendors
maximum freedom in how they implement an ORB for particular environments. At the
same time, the mapping guarantees source code portability among different ORBs. All
the code examples shown in this book are fully compliant with the mapping and therefore
are portable. We also point out constructs that happen to work with many ORBs but
nevertheless are nonportable.

Note that we delay until Section 18.14.1 discussion of the var type and
_ptr type definitions that appear at the end of each proxy class.

7.6.2 Inheritance and Widening

In the mapping shown in the preceding section, Thermometer inherits from
CORBA: :Object, and Thermostat inherits from Thermometer. In other words,
the inheritance structure of the proxy classes mirrors the inheritance of the IDL interfaces.
Also note that ptr references are C++ pointers to the corresponding proxy class. (If
they are not implemented as actual pointers, they behave as if they were C++ class
instance pointers.) This means that ptr references, like C++ pointers, support implicit
widening. For example:

CCS::Thermostat ptr tmstat = ...; // Get Thermostat ref...
CCS::Thermometer ptr thermo = tmstat; // OK, compatible assignment
CORBA: :0Object ptr ol = tmstat; // OK too

CORBA: :Object ptr 02 = thermo; // OK too

These assignments are widening assignments. C++ standard conversions ensure that a
pointer to a derived class is assignment-compatible with a pointer to a base class. This
reflects the fact that inheritance expresses an is-a relationship. A thermostat is-a
thermometer, so it makes sense to treat it as one.

Because all IDL interfaces implicitly inherit from Ob-ject, proxy classes form a single-
rooted inheritance tree with CORBA::Object at the root. It follows that ptr

215

IT-SC book: Advanced CORBA® Programming with C++

references of any type can be widened to Object ptr, as shown by the last two
assignments.

The preceding assignments create the situation shown in Figure 7.4 in the client.

Figure 7.4 Effect of widening _ptr assignments.

tmstat

thermo

ol

(o)

The first assignment to tmstat creates the proxy with a reference count of 1 (we
assume that the reference was obtained from an ORB API call). Note that the
assignments that follow do not affect the reference count. Ordinary assignment between
_ptr references is a shallow assignment. Given the mapping for ptr references, this
makes sense because each of the preceding assignments simply assigns a C++ pointer.

The client now holds four separate ptr references that all denote the same (possibly
remote) thermostat object. The C++ type system ensures that the thermostat part of the
object can be accessed only via a Thermostat ptr but not via a
Thermometer ptrorObject ptr:

CCS::TempType t;

t = tmstat->get nominal(); // OK, read nominal temperature

t = thermo->get nominal(); // Compile-time error, cannot access
// derived part via base reference

t = ol->get nominal(); // Compile time error too

Because the reference count on the proxy is still 1, a single call to CORBA: : release
on any one of the references deallocates the proxy and leaves all references dangling:

CORBA: :release (thermo) ; // or CORBA::release (tmstat);
// or CORBA::release (ol);
// or CORBA::release(02);

// Cannot use tmstat, thermo, ol, or o2 from here on...

The client code can also make explicit copies during the assignments. For example:

CCS::Thermostat ptr tmstat = ...; // Get Thermostat reference...
CCS::Thermometer ptr thermo

= CCS::Thermometer:: duplicate(tmstat);
CORBA: :0Object ptr ol = CCS::Thermometer:: duplicate(tmstat);

216

IT-SC book: Advanced CORBA® Programming with C++

CORBA: :0Object ptr o2 = CORBA::0Object:: duplicate (thermo);

This code creates the same picture as before but with a reference count of 4 on the proxy

(see Figure 7.5). Of course, the client now must call CORBA: : release once on each
reference to deallocate the proxy.

Figure 7.5 Effect of widening _ptr assignments with explicit copying.

tmstat

thermo

Thermostat

ol

(o)

The preceding code example also uses widening assignments. For example, the
assignment

CORBA: :Object ptr ol = CCS::Thermometer:: duplicate (tmstat);

uses widening in two places. For the call to duplicate, the actual argument tmstat
is of type Thermostat ptr, which is widened to the formal parameter type
Thermometer ptr. The return wvalue from duplicate of type
Thermometer ptr is widened to CORBA: :0Object ptr during the assignment.
This code works because of the C++ standard conversion from pointer-to-derived to
pointer-to-base.

7.6.3 Narrowing Conversions

C++ type rules make the following illegal:

CCS::Thermometer ptr thermo = ...; // Get Thermometer ref...
CCS::Thermostat ptr tmstat thermo; // Compile-time error

The attempt to assign a thermometer reference to a thermostat reference is rejected by the
compiler. C++, being a statically type-safe language, rejects the assignment from a
pointer-to-base to a pointer-to-derived because it cannot guarantee that, at run time, the
base pointer will really point at a derived object of the correct type. We know that
thermo does point at a thermostat, so you may be tempted to write something such as
this:

CCS::Thermostat ptr tmstat
= (CCS::Thermostat ptr)thermo; // Disastrous!!!

217

IT-SC book: Advanced CORBA® Programming with C++

This code may compile and may even happen to do the right thing at run time, but
nevertheless it has completely undefined behavior. In the presence of multiple inheritance
with virtual base classes, such a sledgehammer cast will get you into trouble eventually.
The C++ mapping is crafted very carefully to make casts unnecessary; if you find
yourself writing a cast, take it as a strong indication that you are doing something wrong.

7.6.4 Type-Safe Narrowing

To allow you to safely down-cast a reference at run time, the IDL compiler generates a
static member function called narrow:

CCS::Thermometer ptr thermo = ...; // Initialize...

// Try type-safe down-cast
CCS::Thermostat ptr tmstat = CCS::Thermostat:: narrow(thermo);
if (CORBA::is nil (tmstat)) {
// thermo is not of type Thermostat
} else {
// thermo *is a* Thermostat, tmstat is now a valid reference

}
CORBA: :release (tmstat); // narrow() calls duplicate()!

The code initializes thermo to point to some object. Because thermo is of type
Thermometer, it can denote either a thermometer or a thermostat depending on the
actual type of the object thermo is initialized to. The «call to
CCS::Thermostat:: narrow performs a run-time test on the reference, and it
returns a non-nil reference only if the actual type of thermo matches the expected type
Thermostat. If the actual type is not compatible with the expected type, narrow
returns a nil reference. This mechanism is very similar to a C++ dynamic cast, which
serves the same purpose for C++ types.

Note that narrow calls duplicate. Conceptually, narrow does not return the
original reference converted to the new type but instead returns a copy that is converted
to the new type. This means that you must release a reference returned from narrow;
otherwise, you will suffer a resource leak.

Depending on the exact type being narrowed to, narrow may need to contact the
server. If the server is registered for automatic start-up, calling narrow may therefore
start the server as a side effect. It follows that narrow may raise exceptions if it is
unable to contact the server (see Section 7.15.2). Note that the C++ mapping cannot
use a C++ dynamic cast instead of narrow because of the need to contact the
server.

218

IT-SC book: Advanced CORBA® Programming with C++

7.6.5 Illegal Uses of ptr References

To avoid unduly restricting ORB implementers, a number of uses of ptr references are
explicitly flagged as having undefined behavior in the C++ mapping. Do not use these
constructs even if they happen to work in your implementation. In other implementations,
they may give incorrect results, or, if ptr references are implemented as classes, these
constructs will not even compile.

Comparison for equality or inequality

CORBA: :0Object ptr ol = ...;
CORBA: :0Object ptr o2 = ...;
if (ol == 02) // Undefined behavior!
if (ol != 02) // Undefined behavior!

.7

The outcome of these comparisons is completely undefined and may or may not yield the
expected result (see Section 7.11.3 for a portable way to compare references).
Applying relational operators to references

CORBA: :0Object ptr ol = ...;
CORBA: :Object ptr o2 = ...;
if (ol < 02) // Undefined behavior!
.3 // <, <=, >, and >= have no meaning

Applying arithmetic operators to references

CORBA: :0Object ptr ol = ...;

CORBA: :Object ptr o2;

02 = ol + 5; // Meaningless!
ptrdiff t diff = o2 - ol; // Meaningless!

Conversion of ptr references to and from void *
CORBA: :0Object ptr o = ...;
void *v = (void *)o; // Undefined!
o = (CORBA::Object ptr)v; // Ditto!
Down-casts other than with narrow
CCS::Thermostat ptr tmstat = ...; // Get reference

CORBA::0Object ptr o = tmstat; // OK
CCSs::Thermostat ptr tmstat2;

tmstat2 = dynamic cast<CORBA::0bject ptr>(o); // Bad!
tmstat2 = static cast<CORBA::Object ptr>(o); // Bad!
tmstat2 = reinterpret cast<CORBA::0Object ptr>(o); // Bad!
tmstat2 = (CORBA::Object ptr)o; // Bad!

219

IT-SC book: Advanced CORBA® Programming with C++

tmstat2 = CCS::Thermostat:: narrow(o); // OK

Testing for nil other than with CORBA: :is nil

CCS::Thermostat ptr tmstat = CCS::Thermostat:: nil();

if (tmstat) ... // Illegal!
if (tmstat !'= 0) ... // Illegal!
if (tmstat != CCS::Thermostat:: nil()) ... // Illegal!
if (!CORBA::is nil (tmstat)) ... // OK

7.7 Pseudo-Objects

So far, we have skirted the issue of how a client actually obtains an object reference. To
address this, we must look at pseudo-objects and examine how a client initializes the
ORB and how it gets its initial object references.

The CORBA specification defines a number of interfaces to the ORB run time. Because
CORBA supports several different implementation languages, these interfaces must be
specified in a language-independent way. IDL is perfectly suited to this; a single IDL
specification describes an interface for all supported implementation languages.

To avoid polluting the global namespace, interfaces defined by CORBA are placed in the
CORBA module. Following is a small part of the contents of that module.

module CORBA ({ // PIDL
interface ORB {
//
}i
//

Note the PIDL comment for the module. It stands for pseudo-IDL. Pseudo-IDL
definitions are like ordinary IDL definitions and use the same data types, operations,
attributes, and so on. There is almost no syntactic difference between PIDL and IDL—
but see the definition of ORB_init on page 242.

Why bother with PIDL? The answer is that some interfaces to the ORB cannot be
implemented as ordinary CORBA objects but instead must be implemented by library
code that ships with the ORB. In particular, interfaces to the ORB run time must be
implemented this way, and the PTDL comment marks such interfaces.

Interfaces defined in PIDL are subject to a number of restrictions.

Pseudo-interfaces do not implicitly inherit from Object.

220

IT-SC book: Advanced CORBA® Programming with C++

Pseudo-interfaces cannot be passed as arguments to operations on ordinary interfaces.
(The TypeCode pseudo-interface is exempt from this rule—see Section 16.3.3))

Operations on pseudo-interfaces cannot be invoked via the Dynamic Invocation Interface
(DID).

Pseudo-interfaces do not have definitions in the Interface Repository.

Pseudo-interfaces may have a special-purpose language mapping that deviates from the
normal rules.

All this sounds terribly restrictive, but it is not because there is no need ever to use any of
the restricted features for pseudo-objects. The one noticeable difference between PIDL
and ordinary objects is that PIDL objects may have a special-purpose language mapping.
We point out such differences as we discuss the relevant PIDL. Usually, differences from
the normal mapping rules exist to avoid restricting ORB implementers in their range of
choices or to make the relevant interface easier to use.

7.8 ORB Initialization

Before a client can do anything, it must initialize the ORB run time. The initialization call
is defined in the CORBA module:

module CORBA { // PIDL
typedef string ORBid;
typedef sequence<string> arg list;
interface ORB; // Forward declaration

ORB ORB_init (inout arg list argv, in ORBid orb identifier);

//
}s

The CORBA module defines an operation ORB_init, which initializes the ORB run time
and returns a pseudo-reference to the ORB object. Note that the ORB_ init operation is
not declared inside an interface. This is legal in PIDL, whereas in normal IDL it would be
an error (operation declarations can occur only inside an interface).

Before we discuss the details of ORB_init, let us take a look at its C++ mapping:

namespace CORBA {

//
ORB ptr ORB init (
int & argc,
char ** argv,
const char * orb identifier = ""
) ;
//

221

IT-SC book: Advanced CORBA® Programming with C++

The ORB_init function expects three arguments.

argc is the number of entries in argv.
argv is the command-line argument vector passed to main.
orb identifier isa vendor-specific string (defaulted to the empty string).

A typical client main looks something like this:

int
main (int argc, char * argv[])

{
CORBA: :0ORB ptr orb;

try {
orb = CORBA::0ORB init (argc, argv);

}

catch (...) {
cerr << "Cannot initialize ORB" << endl;
exit (1) ;

}

// Use ORB...
CORBA: :release (orb);

return 0;

ORB init receives a reference to argc and an argv vector from the client and
examines argv for ORB-specific options beginning with ~ORB. ORB_init removes
any ORB-specific options from argv so when the call returns, the argument vector
contains only the remaining options that concern the application rather than the ORB.

The orb identifier argument to ORB init identifies the particular ORB to
initialize. This behavior is useful if an application needs to initialize more than one ORB
run-time environment. The application can also use orb identifier to select a
particular set of configuration values or quality-of-service parameters. CORBA does not
precisely specify the effects of the orb identifier argument, so you must consult
your ORB's documentation for details.

The default orb identifier is the empty string, which instructs the implementation
to use whatever default behavior has been configured. If orb identifier is the
empty string, ORB_init scans the argument vector for an option of the form -ORBid
arg. If this option is present, the value of arg determines the behavior. If
orb identifier is a non-empty string and if -ORBid is also used,
orb identifier overrides the value of the ~-ORB1id option.

222

IT-SC book: Advanced CORBA® Programming with C++

ORB init returns a reference to the ORB pseudo-object. Clients and servers always
obtain their first object reference this way; the ORB pseudo-object contains operations
that can be called to obtain further references. Note that you must eventually release the
returned reference (pseudo-references must be released just as normal references are).
Releasing the ORB reference instructs the ORB run time to clean up. This means that you
must release the ORB reference last because other ORB-related calls may no longer work
after the run time has cleaned up.

Note that you cannot use the ORB before the code has entered main because you must
pass argc and argv parameters to ORB init. In particular, you cannot make
CORBA-related calls from constructors for global or static C++ objects. Do not try to
cheat by passing dummy argc and argv parameters to ORB init before the code has
entered main; the result may be a core dump. For example, ORB init could fail
catastrophically because it may itself depend on side effects from global constructors in
the ORB run-time libraries.

In general, you should ban global objects from your code. As shown in [11], global
objects inevitably cause more problems than they solve. However, the ORB pseudo-
object typically must be accessible from anywhere in your source code. A good way to
make the object globally accessible is to use the Singleton pattern [4].

7.9 Initial References

After the client has initialized the ORB, it can obtain further references by invoking
operations on the ORB interface:

module CORBA { // PIDL
//
interface ORB {
string object to string(in Object obj);
Object string to object (in string str);
//
b7
//
}i

The ORB interface contains two operations that can be used to create and obtain initial
references.

object to string This operation converts a reference into a printable string—for
example, for storing a reference on disk.

string to object This operation converts a stringified reference back into an
object reference.

The C++ mapping for these operations is as follows:

223

IT-SC book: Advanced CORBA® Programming with C++

namespace CORBA {

//
class ORB {
public:
char * object to string(Object ptr p);
Object ptr string to object (const char * s);
}i
//

A client uses these operations by invoking them on the ORB pseudo-object.

7.9.1 Conversion from String to Reference

The following example shows how a client obtains a reference to our climate controller
object from the command line.

// Initialize ORB.
CORBA::0RB ptr orb = CORBA::0RB init (argc, argv);

// Assume argv([l] is a stringified reference to a controller.
CORBA: :Object ptr obj;
try {
obj = orb->string to object(argv[1l]);
}
catch (...) {
cerr << "Bad format for stringified reference" << endl;
exit (1) ;
}

// Check that reference is non-nil.

if (CORBA::is nil(obj)) {
cerr << "Passed reference is nil" << endl;
exit (1) ;

}

// Narrow to controller.
CCs::Controller ptr ctrl;

try {
ctrl = CCS::Controller:: narrow(obj);
}
catch (...) {
cerr << "Narrow failed" << endl;
exit (1) ;

}

// Don't need base interface anymore.
CORBA: :release (obj);

// Was the reference of the correct type?

if (CORBA::is nil(ctrl)) {
cerr << "Argument is not a controller reference" << endl;
exit(1l);

224

IT-SC book: Advanced CORBA® Programming with C++

//

// Use controller reference...

//

// Clean up

CORBA::release(ctrl); // Narrow calls duplicate
CORBA: :release (orb) ; // Clean up

There is quite a bit happening in this example, so we cover the code in stages.

Note that pseudo-operations such as string to object and narrow can throw
exceptions. We cover exception handling in detail in Section 7.15. For now, our
exception handling is to print an error message and exit whenever any exception is
thrown at all.

Keep in mind that calling exit is fine for operating systems such as UNIX, in which the
kernel guarantees recovery of resources allocated to a process. However, in DOS or
Windows, this strategy will eventually get you into trouble because memory allocated in
DLLs is not necessarily recovered by the operating system when a process exits. If you
are writing code for such an environment, you must release resources allocated to your
process before you exit; otherwise, the machine will eventually run out of memory.

obj = orb->string to object(argv[l]);

This call converts a stringified object reference back to a reference. The returned
reference has the type CORBA: :Object ptr. Because Object is at the root of the
interface inheritance tree, string to object can return references of arbitrary
interface type.

string to object creates a new proxy, so you must eventually release the
reference again by calling CORBA: : release.

If the passed string is syntactically invalid, string to object throws an exception.
if (CORBA::is nil (obj))

The string passed as argv [1] may be a valid reference, but that does not guarantee that
it is non-nil. The client explicitly tests for this condition and complains if a nil reference
is passed.

ctrl = CCS::Controller:: narrow(obj);

The client expects a reference to a climate controller (not to some other interface). The

call to narrow determines whether the passed reference is of the correct type. If
_narrow returns nil, the passed reference is of the wrong type.

225

IT-SC book: Advanced CORBA® Programming with C++

_narrow creates a new proxy, so you must eventually release the returned reference
again by calling CORBA: : release.

_narrow raises an exception if the ORB cannot reliably determine whether the
reference is of the expected type. Usually, the exception is either TRANSIENT or
OBJECT NOT EXIST. We cover the semantics of these exceptions in Section 7.15.2.
CORBA: :release (obj),

The client does not need to keep the reference obj (of type Object ptr) after it has
successfully narrowed it, so it might as well release it.

After the client has narrowed the reference to the correct type, the client can use it to
invoke operations on the corresponding object.

CORBA::release(ctrl),
When the client is no longer interested in the reference, it calls CORBA: : release to
reclaim its resources.

CORBA: :release (orb),
This is the final ORB-related call in all clients. Releasing the ORB pseudo-object instructs
the run time that no further CORBA activity will take place and that all CORBA run-time
resources should be released.

7.9.2 Conversion from Reference to String

The object to string operation converts an object reference into a string:
CORBA::0ORB ptr orb = CORBA::0ORB init (argc, argv);
CCS::Controller ptr ctrl = ...; // Get reference...

char * s;

try {

s = orb->object to string(ctrl);
}

catch (...) {
cerr << "Cannot convert reference to string" << endl;
exit (1) ;
}
cout << s << end; // Print reference
CORBA: :string free(s); // Finished with string
CORBA: :release(ctrl); // Release controller proxy
CORBA: :release (orb); // Shut down run time

object to string returns the stringified form of the passed reference. As always,
the returned string is dynamically allocated, so the preceding code calls string free

226

IT-SC book: Advanced CORBA® Programming with C++

to make sure that the string is not leaked (alternatively, we could have used a
String var).

Note that object to string does not affect the proxy for the reference in any way;
the reference must still be released with CORBA: : release.

object to string can throw exceptions (for example, if you pass a dangling
reference or if the ORB cannot allocate memory for the string).

7.10 Stringified References

CORBA is unusual among object systems for allowing a reference to be converted into a
string that can be stored and converted back into a reference later. This feature, although
useful, is also open to abuse, so it is worthwhile to discuss stringified references in some
detail.

7.10.1 Stringified Initial References

Stringified references are often used to supply a client with one or more references to
initial objects required for bootstrapping. Although this technique works, it is inelegant
and does not distribute well. To get a reference from server to client, the reference must
be transmitted via out-of-band means (such as e-mail), or it must be written into a file
system that is shared by client and server (not a truly distributed solution).

CORBA offers better and more sophisticated means of distributing initial references, and
we cover them in Chapters 18 and 19. For now, we are using stringified references
for bootstrapping because they are the simplest (but not the best) way to get an initial
reference from a server to a client. In practice, you will almost never convert references
to or from strings.

7.10.2 Size of Stringified References

Stringified references begin with the prefix IOR: followed by an even number of
hexadecimal digits. For example:

IOR:000000000000000d49444c3a54696d653a312e300000000000000001000000
00000000d800010100000000066d6572676500060b000000bd030231310c000016
7e0000175d360aed118129582d466163653a20267a682e2a4e394d4£77724d7152
73352a5d443948434b446a702c347634527250722£7d3£5b2b554c74644726485a
3c4d3259797¢c62325e642b65447a37442b21684£473¢c2a39795521302723373£69
633£5e7e7c7d73647052235¢c722c7230694£32535d577e644£2d21455035216a64
562d2b33437362317029554d4e57627c3£303a364£67776b613c6d354b2227443¢
577a215a5d234b484a517175465a200000000000000000

As you can see, stringified IORs are quite long—Ilengths of 200 to 800 bytes are common.
The exact length depends on the ORB and the length of the object key used by the
application. However, do not assume that because stringified IORs are long, they will

227

IT-SC book: Advanced CORBA® Programming with C++

also consume a large amount of memory. For one thing, 50% of the bits of the stringified
representation are wasted (because the string uses only hexadecimal digits). Second, an
ORB can represent the information contained in references in a compact format in
memory: if a client holds multiple references to objects in a single server, the ORB can
keep a single in-memory copy to information that is identical among all the references
(such as the repository ID and the addressing information). In that way, the ORB stores
only the essential information unique to each reference and shares everything else to
conserve memory.

Not all ORBs implement this optimization. However, in a high-quality implementation,
each additional reference in the client can consume as little as 30 bytes.
Nil references can be stringified as with any other reference:

IOR:00000000000000010000000000000000

7.10.3 Interoperability of Stringified References

The string representation of references is standardized by CORBA. This means that you
can safely decode a stringified reference that was produced by a different ORB. Any
differences among ORB environments are portably encoded in the reference itself. For
example, here is an alternative representation of a nil reference:

IOR:01000000010000000000000000000000

This reference is encoded in little-endian byte ordering (indicated by its TOR: 01 prefix),
whereas the nil reference in Section 7.10.2 uses big-endian byte ordering (indicated by its
IOR:00 prefix). An ORB correctly deals with such differences when it decodes a
stringified reference.

7.10.4 Rules for Stringified References

CORBA is very strict about what you can do with stringified references. The only legal
uses are

Conversion of a reference to a string (object to string)

Storage of a stringified reference for later retrieval

Conversion of a stringified reference back to a reference (string to object)

You can legally store a reference on disk or propagate it via out-of-band means (such as
e-mail or even smoke signals). You can store a reference in stringified form indefinitely;

the reference will continue to denote the same object provided that the object still exists
when you de-stringify the reference.

228

IT-SC book: Advanced CORBA® Programming with C++

Beyond that, you cannot make any assumptions about stringified references. In particular,
you cannot assume that stringifying a reference to an object will always produce the same
string. It is perfectly legal for an ORB to produce different strings for the same object at
different times. This happens, for example, if the ORB caches information in the
reference.

Even though you can look at the stringified representation of a reference, you are not
allowed to do that because it violates the opaqueness of references (see Section 2.5.1).
If you compare stringified references to determine whether two references denote the
same object, you are completely outside the CORBA object model. The outcome of such
a comparison is meaningless.

Do not ever use stringified references as database keys; that use involves comparing
string representations, which is illegal. Besides, their large size makes stringified IORs
unsuitable as key values.

If you need to compare references, you can do so portably by calling the
is equivalent operation on the Object pseudo-interface (see Section 7.11.3).

7.11 The Object Pseudo-Interface

As you saw in Section 7.3, all interfaces inherit from Object, which is a pseudo-
interface defined in the CORBA module:

module CORBA { // PIDL

//

interface Object {
Object duplicate () ;
void release();
boolean is nil();
boolean is_a(in string repository id);
boolean non_existent();
boolean is equivalent (in Object other object);
unsigned long hash(in unsigned long max) ;
//

}i

//

We have already seen the mapping for duplicate, release, and is nil (see
Table 7.1 for a summary). This section covers the is a, non existent,
is equivalent, and hash operations. (Interface Object also contains other
operations relating to the DII, security, and administration, but these operations are
outside the scope of this book.)

The operations shown here map to member functions of CORBA: :Object:

class Object {

229

IT-SC book: Advanced CORBA® Programming with C++

public:
//
Boolean 1is a(const char * repository id);
Boolean non existent();
Boolean 1is equivalent (Object ptr other object);
ULong _hash (ULong max) ;
//

}i

Note that all four operations are mapped with a preceding underscore (is a becomes
~is a and so on). This rule prevents clashes with user-defined IDL operations in
derived interfaces. For example, if you create an interface containing an is a operation
of your own, your is a operation maps to C++ is_a, whereas the is a inherited from
Object mapsto is a to avoid clashes.

All four operations are implemented as non-static member functions of class Object.
This means that you cannot invoke them on nil references:

CORBA: :Object ptr p = CORBA::Object:: nil(); // Make nil ref
if (p-> non existent()) // Crash imminent!!!
//

Remember that it is illegal to invoke operations on nil references, and pseudo-references
are no different. The only functions that are safe for use with nil references are static
member functions and functions in the CORBA namespace, such as duplicate,
release,and is nil. If you cannot be sure that a reference is not nil, you can guard
the test with is nil:

if (CORBA::is nil(p) || p-> non existent())
// Objref is nil or dangles

7.11.1 The _is_a Operation

_is a tests whether an object reference supports the interface specified by the
repository id argument. The argument must be a well-formed repository ID in one
of the formats shown in Section 4.19. For example:

CORBA::0Object ptr obj = ...; // Get controller reference
if (!CORBA::is nil(obj)) |
if (obj-> is a("IDL:acme.com/CCS/Controller:1.0")) {
// It's a controller
} else {

// It's something else
}

} else {
// It's a nil reference

230

IT-SC book: Advanced CORBA® Programming with C++

The test returns true if the object reference supports the specified interface. Note that you
canuse 1is a to test whether an object supports a base interface:

CORBA: :Object ptr obj = ...; // Get actual thermostat reference
assert(obj—>7isia("IDL:acme.com/CCS/Thermometer:l.O"));
assert (obj-> is a("IDL:omg.org/CORBA/Object:1.0"));

Assuming that obj really is initialized with a thermostat reference, both assertions
succeed. Of course, the second assertion must succeed for all references because all
interfaces inherit from Object.

If the passed repository ID does not match the syntax for repository IDs in Section
4.19, is_a throws an exception. (The CORBA specification does not state which one;
BAD PARAMis a likely choice.)

_is a is similar to narrow; both functions test whether a reference supports a
particular interface. The difference is that is a does not require compile-time
knowledge of the interface, whereas narrow requires the caller to link the stubs
generated by the IDL compiler. is a is provided mainly for clients using the DII,
which acquire type information at run time.

Note that is a and narrow may send a message to the server (see Section
13.4.1). If the server cannot be contacted, either operation will raise a system exception.
Whether ornot is aand narrow result in a remote message depends on your ORB
implementation. If both the type of the reference and the narrowed-to type were known at
compile time, the client-side run time can determine the result statically by using the
repository IDs of the reference and the narrowed-to type. In that case, no remote message
need be sent. However, if at least one of the repository IDs was not seen at compile time,
the client-side run time is forced to contact the server that implements the object to find
out whether the object supports the narrowed-to type.

In practice, you rarely care whether is a or narrow results in a remote message.
However, your code must be prepared to handle system exceptions from calls to these
operations. For example, if the server for an object cannot be reached, the client gets a
TRANSIENT exception on its call to narrow (instead of getting it when the client
invokes its first operation on the object).

7.11.2 The non_existent Operation
_non existent tests whether a reference denotes an existing object. If the reference

no longer denotes an existing object (the reference dangles), non existent returns
true.

231

IT-SC book: Advanced CORBA® Programming with C++

You must be very clear about what is being tested here. A true return value from
_non_existent is an authoritative answer that the corresponding object does not exist
and will never exist again in the future. If a client receives a true return value, it can (and
should) permanently clean up any resources associated with the object.

CORBA::0Object ptr obj = ...; // Get reference to some object
try {
if (obj-> non existent()) {
// Object is gone forever
} else {

// Object definitely exists
}
}
catch (const CORBA::TRANSIENT &) {
// Couldn't decide whether or not object exists...

}
catch (...) {
// Something else went wrong

}

_non_existent Is Not a Ping

_non_existent is quite distinct from a ping operation, which tests whether the server
implementing an object can be reached. To make its decision, non existent may
contact and possibly activate the server implementing the object. In that case, it
effectively works like a ping. However, depending on how your ORB is constructed,
_non_existent may be able to return an answer without involving the target server.
This means that you cannot rely on non existent to actually contact the target
server, and therefore you cannot use non existent as a ping replacement.

If non existent decides to contact the target server to make its decision, the
attempt may fail. This might happen if, for example, connectivity cannot be established.
In that case, non existent does not return true. Instead, it raises an exception to let
you know that no reliable determination could be made.

In summary, the possible outcomes of a callto non existent are as follows.
True

The object is definitely gone forever.

False

The object definitely exists. A false return value does not guarantee that
_non_existent could contact the object; it guarantees only that it is known to exist.

TRANSIENT exception

No reliable determination could be made. If you try again later, you may get a more
definite answer.

232

IT-SC book: Advanced CORBA® Programming with C++

Other system exception

_non_existent results in a call to the server that implements the object (see Section
13.4.1). This means that non existent can raise system exceptions other than
TRANSIENT (such as COMM FAILURE if connectivity is lost before the reply arrives
from the server).

Implementing a Ping Operation

As you just saw, non existent is not quite the same as a ping because it may not
try to contact the object implementation. If you need this functionality, you can easily
implement it yourself.

interface Pingable ({
void ping () ;
}i

interface Foo : Pingable {
//
bi

Any interface that inherits from Pingable supports the ping operation. To ping an
object, the client simply calls that operation. If ping does not raise an exception, the
corresponding object both exists and can be reached:

Foo ptr £ = ...; // Get Foo reference

try {
f->ping();
}
catch (const CORBA::0BJECT NOT EXIST &) {

// Ping failed because object no longer exists
}
catch (...) {

// Could not reach Foo object for some reason

}

// Ping succeeded

If the ping fails, the exception that is raised depends on the circumstances. Most likely,
you will get a TRANSTIENT exception, which indicates that the server could not be
reached. If you get an OBJECT NOT EXIST exception, it is an authoritative indication
that the object does not exist (this is the same as a true return value from
_non_existent).

Side Effects

Both non existent and the ping operation may result in a server being started by
the ORB as a side effect. If a client calls non existent on a large collection of

233

IT-SC book: Advanced CORBA® Programming with C++

references, it may result in a large number of servers starting up just to determine whether
an object can be reached.

For administrative purposes, it is often useful to be able to find out whether an object is
running but without starting its server if it is not running. CORBA does not offer a
portable way to achieve this; remember, the CORBA object model actively hides
anything relating to an object's implementation. However, most ORBs offer
administrative tools that permit you to find out which server implements a particular
object and to check whether a particular server is currently running.

7.11.3 The is_equivalent Operation

_is equivalent tests whether one reference is identical to another reference:

CORBA: :0Object ptr ol = ...; // Get some reference
CORBA::Object ptr o2 = ...; // Get another reference
if (ol-> is equivalent(o2)) {

// ol and 02 denote the same object
} else {

// ol and o2 may or may not denote the same object

}

If a call to is equivalent returns true, the two references compare equal and
therefore denote the same object instance. Unfortunately, a false return value from
_is _equivalent does not indicate that the two references denote different objects. In
other words, a false return value indicates that the references may denote different objects
or that both denote the same object.

This behavior may sound strange, but there are good reasons forit. is equivalent
must be efficient, so the CORBA specification requires that it must be implemented
locally (the ORB is not allowed to make remote calls to implement is equivalent).
This in turn means that is equivalent can unequivocally determine whether two
references are identical (they are identical if they are bitwise equal). However, if the two
references are not bitwise equal, determination of whether they denote the same object
depends on their object keys. As you saw in Section 2.5.3, the object key contains
proprietary information. If is equivalent is asked to compare two references
created by another ORB, it does not know how to decode the object key and
pessimistically concludes that the references are different even though they may happen
to denote the same object. (Comparison of two references using the same ORB that
created them is usually reliable, but it is not guaranteed to be reliable by the CORBA
specification.)

More succinctly put, is equivalent uses object reference identity and not object
identity. If two references are identical, by definition they denote the same object.
However, if two references are different, it may be impossible to decide whether or not
they denote the same object.

234

IT-SC book: Advanced CORBA® Programming with C++

If you require reliable object identity across different ORBs for an application, you must
implement it yourself:

interface Identity {
typedef whatever IDType;
IDType 1id();

}i

This interface is inherited by all interfaces that must provide object identity. To reliably
determine whether two references denote the same object, clients can invoke each
object's id operation; identical return values indicate the same object, and different
return values indicate different objects. Note that object identity is far more expensive
than the weaker identity provided by is equivalent: object identity requires
sending an actual message to each object, whereas reference identity can be established
locally.

You can use whatever identifier is sufficiently unique to establish identity across all
objects with confidence. A UUID [29] is often a good choice.

Remember the advice given in Section 7.10.4: never use stringified references to
determine either reference or object identity.

7.11.4 The _hash Operation

Consider the following problem: You are currently holding a large collection of object
references. Someone hands you a new reference with the question, "Is this reference the
same as one of those already in your collection?"

If is equivalent is your only means of comparing references, answering the
question becomes expensive: you must invoke is equivalent once for every
reference already in the collection, giving O(n) performance. To get around this, hash
computes a hash value that is guaranteed to remain the same for the lifetime of a
reference. The return value is in the range 0 to max-1 (max is passed as a parameter to
_hash). Different references may generate the same hash value, but if two references
return different hash values, the two references are guaranteed to be different. (This does
not mean, however, that they denote different objects.)

Using hash, you can divide your collection of references into as many equivalence
classes as you like. To determine whether a new reference is already in the collection,
you determine the hash value of the new reference and then compare the new references
against references having the same hash value. Provided that there are enough
equivalence classes, the cost per comparison is O(1).

_hash is guaranteed to be implemented as a local operation and therefore will be fast, at
least compared with the cost of sending a remote message.

235

IT-SC book: Advanced CORBA® Programming with C++

Note that CORBA does not specify the hashing algorithm to be used by hash. This
means that if you compute a hash value for the same reference on different ORBs, you
will get different answers. However, the hash value for a reference computed by a given
ORB is immutable for the lifetime of the reference.

Table 07.1. Mapping for operations on CORBA : : Object.
IDL Object Operation C++ Function

static

Object duplicate();

Interface ptriInterface:: duplicate(Interface ptr
src) ;

void release();

void CORBA: :release (Object ptr p);

boolean is nil();

CORBA::is nil (Object ptr p);

boolean is_a(in
string id);

Boolean Object:: is a(const char *id);

boolean

. Boolean Object:: non existent();
non_existent(); - -

boolean

is _equivalent (in
Object other obj);
unsigned long
hash (in unsigned
long max) ;

Boolean Object:: is equivalent (Object ptr
other obj);

ULong Object:: hash(ULong max);

7.11.5 Mapping Summary for Operations on Object

The mapping for operations on Object to C++ is summarized in Table 7.1. Note that
in addition to the functions shown in Table 7.1, the mapping generates a static nil
member function into every proxy class. nil generates a nil reference of the
corresponding interface type:

static Interface ptr nil();

7.12 var References

The code examples you have seen so far have used explicit calls to CORBA: : release.
For example:

CCS::Thermometer ptr tp;

tp = ...;

CCS::TempType t = tp->temperature();
CORBA::release (tp);

// Get reference
// Read temperature
// Release reference

This code reflects the fact that whenever a reference enters an address space, it points to a
dynamically allocated proxy that must be released eventually. Of course, this suffers from
the same potential problem as any other dynamically allocated return value: if you forget
to call release, you suffer a resource leak.

236

IT-SC book: Advanced CORBA® Programming with C++

To make life with object references easier, the C++ mapping provides a _var class that
behaves much like the var classes for other types: it takes ownership of a reference it is
initialized with and calls CORBA: : release in the destructor. Using a var reference,
we can rewrite the preceding example:

CCS::Thermometer var tp;

tp = ...; // Get reference
CCS::TempType t = tp->temperature(); // Read temperature
// Not necessary to release tp here...

By changing the variable tp to a var reference, you are relieved of having to call
release yourself. Instead, the var reference calls release for you when it goes out
of scope.

7.12.1 Mapping for _var References

The mapping for var references is very similar to that of String var. For each IDL
interface, the compiler not only generates the interface class and the Tnterface ptr
type but also adds an Interface var class. Following is the generated
Thermometer var class for the Thermometer interface in Section 7.6.1:

namespace CCS {
class Thermometer { /* ... */ }; // Proxy class
typedef Thermometer * Thermometer ptr; // ptr type

class Thermometer var {

public:
Thermometer var();
Thermometer var (Thermometer ptr &);
Thermometer var (const Thermometer var &);
~Thermometer var();

Thermometer var & operator=(Thermometer ptr &);
Thermometer var & operator=(const Thermometer var &);

operator Thermometer ptr &();
Thermometer ptr operator->() const;

Thermometer ptr in() const;
Thermometer ptr & inout();
Thermometer ptr & out();

Thermometer ptr _retn();
private:
Thermometer ptr p; // actual reference stored here

}i
//

Even though this machinery looks complicated, most of it exists simply to make var
references easy to use. The main rules are as follows.

237

IT-SC book: Advanced CORBA® Programming with C++

If you initialize a var reference with a ptr reference or assign a ptr reference to a
~var reference, the var reference takes ownership (without incrementing the
reference count on the proxy) and eventually calls release on the underlying ptr.

If you initialize a var reference with another var reference or assign var
references to each other, the var makes a deep copy (that is, it increments the reference
count on the proxy). When the var reference goes out of scope, it calls release (it
decrements the reference count on the proxy).

These rules are similar to those for String wvar, in which initialization and assignment
from a char * make a shallow copy and take ownership, whereas initialization and
assignment from another String var make a deep copy.

Thermometer var();

The default constructor initializes the var to a nil reference, so the following code is
guaranteed to pass the assertion:

CCS::Thermometer var v;
assert (CORBA::is nil(v));

Thermometer var (Thermometer ptr &);

If you initialize a var froma ptr reference, the var reference takes ownership and
calls CORBA: : release when it goes out of scope. The reference count on the proxy is
not incremented.

Thermometer var (const Thermometer var &);

If you copy-construct a var, it makes a deep copy (increases the reference count on the
proxy). When the var goes out of scope, it calls CORBA: : release. For example, the
following code contains no leaks:

CCS::Thermometer ptr tp = ...; // Get reference...

{
CCS::Thermometer var tl(tp); // tl takes ownership
CCS::Thermometer var t2(tl); // Copy, ref count is now 2

// Use tl and t2...
} // No leak here - both tl and t2 call
// release and tp now dangles.

~Thermometer var();

The destructor calls CORBA: : release, decrementing the reference count.

Thermometer var & operator=(Thermometer ptr &);

238

IT-SC book: Advanced CORBA® Programming with C++

If you assigna ptr reference toa var reference, the var reference takes ownership.
This technique is useful for preventing memory leaks:

{

CCS::Thermometer ptr p = ...; // Get reference
CCS::Thermometer var v;

v = p; // v takes ownership
// Use v...

} // No leak here - v's destructor calls
// release and p now dangles.

Thermometer var & operator=(const Thermometer var &);

If you assign one var to another, the target var first releases its current reference
(decrements the target reference count) and then calls duplicate on the source
reference (increments the source reference count). The net effect is a proper deep
assignment:

{

CCS::Thermometer var tl(...); // get reference 1
CCS::Thermometer var t2(...); // get reference 2
tl = t2; // Release ref 1 and duplicate ref 2.

// tl and t2 point to the same proxy now -
// the proxy has a reference count of 2.
} // No leak here - both tl and t2 call release.

operator Thermometer ptr &();

The conversion operator allows you tousea var wherea ptr is expected:
extern void foo (CCS::Thermometer ptr p);

CCS::Thermometer var param = ...; // Get reference
foo (param) ; // OK, automatic conversion

Here, foo expects a ptr reference. The conversion operator allows you to pass a
_var reference as if it were a ptr reference. (As you will see in Sections 7.14.10
and 7.14.12, this is useful because proxy methods have formal parameters of ptr
type. But to make memory management easier, you will frequently pass a var type
instead.)

Thermometer ptr in() const;
Thermometer ptr & inout();
Thermometer ptr & out();

These functions allow you to explicitly specify the direction in whicha var is passed to
a function that expects a ptr reference. You can use these functions to get around

239

IT-SC book: Advanced CORBA® Programming with C++

compilers that do not correctly apply the C++ conversion rules. The functions are also
useful for making the code more readable, because calling one of these functions makes it
explicit whether a parameter may be modified by a call:

extern void foo(CCS::Thermometer ptr p); // in param
extern void bar (CCS::Thermometer ptr & ref); // inout param
extern void baz (CCS::Thermometer ptr & ref); // out param
CCS::Thermometer var param = ...; // Get reference

foo (param.in()); // param won't be modified
bar (param.inout ()) ; // param may be modified

baz (param.out ()) ; // param will be modified

Thermometer ptr retn();

The retn function removes ownership of a reference from a var without
decrementing the reference count. This is particularly useful if you have a function that
must allocate and return a _var reference but also throws exceptions, as the following
code shows:

CCS::Thermometer ptr
get therm()
{

CCS::Thermometer var v = ...; // Get ref, v takes ownership
// Some more processing here...

if (error) // Something went wrong...
throw some exception; // v releases ref

// Everything is fine, pass ownership to caller

return v. retn();

This code is free of resource leaks. get therm gets a reference from somewhere and
makes v responsible for it. If get therm throws an exception, v's destructor runs and
releases the reference again. If everything goes well, the code removes ownership from v
by calling retn and so makes the caller responsible for releasing the reference, as
intended.

Of course, the caller had better make sure that it releases the reference eventually. The
easiest way to achieve this is for the caller to use another var reference:

CCS::Thermometer var th = get therm();
// th takes care of calling CORBA::release.

Thermometer ptr operator->() const;

The indirection operator simply returns the underlying Thermometer ptr. This
allows youtouse a var reference as if it were a ptr reference:

240

IT-SC book: Advanced CORBA® Programming with C++

CCS::Thermometer ptr p = ...; // Get ptr reference
CCS::Thermometer var v = ...; // Get var reference

CCS::TempType t;
t = p->temperature(); // Read temperature via ptr
t = v->temperature () ; // Read temperature via _var

Whether a var or a ptr reference is used, the syntax to invoke operations or
attributes is the same.

7.12.2 var References and Widening

_ var references take care of releasing references for you, but they do not permit implicit
widening assignments or initializations from other var types. The following code will
not compile because Thermostat var does not inherit from Thermometer var:

CORBA: :Object var obj; // Base _var
CCS::Thermometer var therm; // Derived var
CCS::Thermostat var tmstat; // Most derived var

obj = therm; // Compile-time error
obj = tmstat; // Compile-time error
therm = tmstat; // Compile-time error

None of these assignments works, because all of them are widening assignments.
Similarly, you cannot widen a var reference during copy construction:

CCS::Thermostat var tmstat = ...; // Derived var
CCS::Thermometer var therm(tmstat); // Compile-time error

If you want to widen between var types for assignment or initialization, you must call
_duplicate explicitly:

CCS::Thermometer var therm; // Base var
CCS::Thermostat var tmstat; // Derived var

therm CCS::Thermometer:: duplicate (tmstat); // OK
therm = CCS::Thermostat:: duplicate (tmstat); // OK too

In both assignments, the explicit call to duplicate creates a copy, and therm takes
ownership of the copy. Note that it does not matter whether you call the base or the
derived duplicate. To see why, let us examine each assignment in more detail.
therm = CCS::Thermometer:: duplicate (tmstat);

This assignment works because Thermometer:: duplicate expects an argument

of type Thermometer ptr. The compiler finds a match because Thermostat var
has a conversion operator to Thermostat ptr, which in turn is compatible with

241

IT-SC book: Advanced CORBA® Programming with C++

Thermometer ptr (using the C++ standard conversions).
Thermometer:: duplicate copies the passed reference and returns the copy as a
Thermometer ptr, for which therm takes ownership.

therm = CCS::Thermostat:: duplicate (tmstat);

Thermostat:: duplicate expects a formal parameter of type
Thermostat ptr. The compiler finds a match because the actual argument has a user-
defined conversion from Thermostat varto Thermostat ptr. The copy returned
by duplicate is of type Thermostat ptr, which widens to
Thermometer ptr by the C++ standard conversion rules; therm takes ownership of
that pointer.

You may wonder why implicit widening between var types is forbidden and instead
requires an explicit call to duplicate. The answer is that it is not possible to permit
widening assignments. Widening assignments would either require base classes to know
about all their derived classes or would end up loosening the type system so much that
narrowing assignments would also become legal (and that would break C++ type safety).
If you find it difficult to understand this, spend some time trying to create a mapping that
retains the semantics of ptr and var references but also permits widening
assignments without weakening the type system. It is an instructive exercise.!!

1l There is a solution to widening between var references that does not weaken the type
system. However, that solution requires member templates, which are not yet supported by
most C++ compilers. Once standard C++ compilers become ubiquitous, the mapping will
probably be updated to permit widening assignments between var references.

7.12.3 Mixing _var and _ptr References

_ var references transparently convert to pointer references, so you can make a widening
assignment from a derived var toabase ptr (butnottoabase var):

CCS::Thermostat var tmstat = ...; // Derived var reference
CCS::Thermometer ptr therm; // Base ptr reference
therm = tmstat; // OK, tmstat owns reference

This code works fine. Assignment from a var to a ptr is always shallow, so the
reference count for tmstat remains at 1 in this example, and tmstat retains
ownership.

The same caveats as for String var apply to var references. If you mix ptr and
_var types, you must keep track of ownership; otherwise, you can end up in trouble:

CCS::Thermostat ptr p = ...;
{ // Open scope

CCS::Thermostat var v = p; // v takes ownership
//

} // Close scope, v calls release

p->op () ; // Disaster, p now dangles!

242

IT-SC book: Advanced CORBA® Programming with C++

Table 7.2 summarizes the possible assignments of var and ptr types and their

effects, assuming the following IDL and C++ definitions:

// IDL

interface Base { /* ... */ };

interface Derived : Base { /* ... */ };
// C++

Base ptr B ptr;

Derived ptr D ptr;

Base var B var;

Derived var D var;

In practice, you will rarely need to mix var and ptr variables. Instead, assignment or
conversion from a var to a ptr happens when var references are passed to
operations or when operations return a ptr reference that is assigned to a var
reference. As you will see in Section 7.14.12, these conversions are invisible and
automatically ensure that the correct memory management activities take place.

Table 7.2. Effects of assignments between _var and _ptr types.

Assignment Effect
B ptr = .
B ptr; Shallow assignment
B ptr = .
D ptr; Shallow assignment
D ptr = . :
B ptr; Illegal, compile-time error
B ptr = . . .
B var: Shallow assignment, B var retains ownership
B ptr = . . .
D vars Shallow assignment, D var retains ownership
D ptr = . .
B var; Illegal, compile-time error
B var = . .
B ptr; Shallow assignment, B_var takes ownership
B var = . .
D ptr; Shallow assignment, B_var takes ownership
D var = Il | ile-ti
B ptr; egal, compile-time error
B var = D . t
B var; eep assignmen
5 var — Illegal, compile-time error; instead use B var =
D var: Derived:: duplicate(D var); OF B var =
- Base:: duplicate(D_var);
D var = Il | ile-ti
B var; egal, compile-time error

7.12.4 References Nested in User-Defined Types

243

IT-SC book: Advanced CORBA® Programming with C++

Recall from our climate control system that object references can appear inside user-
defined types. For example, the 11ist operation on the controller returns a sequence of
object references:

//

interface Controller {
typedef sequence<Thermometer> ThermometerSeq;
//
ThermometerSeq list();

//
}i

If object references are nested in a user-defined type, such as a structure, union, sequence,
array, or exception, they are mapped to a mgr type. For example, the preceding
ThermometerSeq maps to

class ThermometerSeqg {

public:
ThermometerSeq() ;
ThermometerSeq (CORBA: :ULong max) ;
ThermometerSeq (
CORBA: :ULong max,
CORBA: :ULong len,
Thermometer ptr * data,
CORBA: :Boolean release = 0
) ;
Thermometer mgr & operator[] (CORBA: :ULong idx) ;

const Thermometer mgr & operator[] (CORBA::ULong idx) const;

// etc...
bi

We have omitted many of the sequence member functions here; the important point is
that if references are nested in a user-defined type, they are mgr references. (Your ORB
may use a different type, such as Thermometer item. However, if it does, that type
will behave as if it were a Thermometer mgr, so the usual memory management rules
for var references apply—see page 176.)

Here is an example of the use of a thermometer sequence:

CCS::Thermometer var tv = ...; // Get var reference
CCS::Thermometer ptr tp = ...; // Get ptr reference
{
CCS::ThermometerSeq seq; // Local sequence variable
seq.length(2);
seq[0] = tv; // Deep assignment
seql[l] = tp; // seq[l] takes ownership

}
// Sequence releases both seq[0] and seq[1]

244

IT-SC book: Advanced CORBA® Programming with C++

CCS::TempType t;
t = tv->temperature () ; // OK, tv is still intact
tp->temperature () ; // Disaster, tp dangles

ot
Il

Because the sequence is composed of elements that behave like var references, the
assignment to seq [0] makes a deep copy, so the reference count for the corresponding
proxy after the assignment is 2. The second assignment is from a ptr reference to a
_var reference, so seq[1] takes ownership and the reference count remains at 1.

When the sequence goes out of scope, it invokes the destructor for all its elements, so
both seq[0] and seqg[1] call CORBA:: release. Of course, this means that the
reference in tv is still intact after the sequence is destroyed; its proxy now has a
reference count of 1 again. On the other hand, the ptr reference tp now dangles,
because ownership passed to seq[0] during the assignment.

7.12.5 Efficiency of _var Types

Programmers frequently ask the question, "Isn't it too expensive to use var references?
After all, compared with the ptr mapping, the additional function calls slow
everything down." This concern often extends to var types in general, such as the
_var types for structures and sequences.

The answer to this question is, "No, it is not too expensive." A high-quality
implementation of the C++ mapping uses a variety of techniques, such as reference
counting and inlining, to keep the overhead to a minimum. In addition, you need to
remember that if you do not use var types, you must do yourself what otherwise would
be done by the var type for you (namely, allocating and releasing resources at the
appropriate time). This means that the overhead created by var types is essentially
limited to the cost of function calls (which are usually inlined anyway).

If you have a performance problem in your code, it is highly unlikely that it is caused by
use of var types. Before you launch into eliminating all var types, you should have
solid evidence that demonstrates that they are to blame.

Of course, there are pathological cases when inappropriate use of a var reference can
hurt you:

for (int 1 = 0; 1 < 10000; i++) {
SomeObject var v = getNextObject();
v->some_ operation();

}s

245

IT-SC book: Advanced CORBA® Programming with C++

This code declares a var reference inside a loop body, initializes the reference, and
invokes an operation via the reference. This means that the reference is created and
destroyed once per iteration (10,000 times in all). This in itself is not a problem.

However, it can hurt considerably if v is the only object reference to a particular server
process. As we said earlier, releasing a reference not only deallocates memory but also
may deallocate networking resources. If v is the only reference to a particular address
space, this can mean that the ORB opens and closes a TCP/IP connection for every
iteration of the loop. Clearly, this is extremely wasteful and slow.

Note that the problem is not caused by the var reference as such but rather by its
inappropriate use. Exactly the same problem can arise with a ptr reference:

for (int 1 = 0; 1 < 10000; i++) {
SomeObject ptr p = get next object();
p->some_operation();
CORBA::release(p);

}i

The problem with both loops is that the only reference in the client to a particular server
address space is released inside the loop, and that can cause a new connection to be
established for every iteration.

One way around this problem is to keep at least one reference to an object in the server
for the duration of the loop:

SomeObject ptr first = getNextObject();

first->some operation();

for (int 1 = 1; 1 < 10000; i++) {
SomeObject var v = getNextObject();
v->some_operation();

}i

CORBA: :release (first);

Here, the first remote call happens outside the loop, and the remaining 9,999 are done
inside the loop. The var reference v is created and destroyed on every iteration and
takes care of correctly releasing each reference. The ptr reference first denotes a
proxy for the duration of the loop and is explicitly released after the loop terminates. This
technique avoids the problem of the previous version—the same connection is used for
all requests.

Keep in mind that this is a pathological case. In addition, the solution we present is ORB-
specific, because different ORBs use different strategies to manage connections. (For
example, if an ORB caches connections for a while before closing them, the preceding
loops run at exactly the same speed.) However, enough developers get bitten by this
problem that we felt it was worth pointing out.

246

IT-SC book: Advanced CORBA® Programming with C++

Exactly how an ORB manages connections is not specified by CORBA. Most ORB
implementations open a connection when the first reference to an address space is created,
and they close the connection when the last reference to that address space is released. (If
the client has multiple references to different objects in the same server, most ORBs send
all requests to objects in that server over the same single connection.)

7.13 Mapping for Operations and Attributes

As you saw in Section 7.6, an IDL interface maps to a proxy class. The proxy class
contains member functions that correspond to IDL operations and attributes; the client
calls these member functions via an object reference to invoke operations. This section
explains the mapping rules for operations and attributes in more detail.

7.13.1 Mapping for Operations

IDL operations map to member functions in the proxy that have the same name. For
example:

interface Foo {

void send (in char c);

oneway void put(in char c);

long get long();

string id to name (in string id);

}i

The generated proxy member functions look like this:

class Foo {

public:
//
virtual void send (CORBA: :Char c¢) = 0;
virtual void put (CORBA: :Char c) = 0;
virtual CORBA::Long get long() = 0;
virtual char * id to name (const char * id) = 0;
//

}i

After a client holds a reference to a Foo object, it can invoke operations via the
indirection operator ->. The -> operator is used for both ptr and var references:

Foo ptr fp = ...;
Foo var fv = ...;

fp->send ('x");

fv->put ('y');

cout << "get long: " << fv->get long() << endl;
CORBA::String var n = fv->id to name ("ID073");
cout << "Name is " << n << endl;

CORBA: :release (fp);

247

IT-SC book: Advanced CORBA® Programming with C++

This code looks much like any other piece of C++ code; the only visible artifacts of
CORBA are object references and CORBA types (such as String var). Note that it
does not matter whether youuse a ptr ora var reference for an invocation; in either
case, you use the indirection operator ->.

Also note that send is a normal synchronous operation, whereas put is declared
oneway. Yet the signatures for send and put are identical (there is nothing in the
signature of put to indicate it is a oneway operation). When the client invokes put, the
corresponding request will still be dispatched as a oneway request; the stub code
generated by the compiler ensures that the correct semantics are applied during call
dispatch.

7.13.2 Mapping for Attributes

IDL attributes map to a pair of member functions: an accessor and a modifier. If an
attribute is declared readonly, only the accessor is generated:

module CCS {
typedef short TempType;
typedef string LocType;
//
interface Thermometer ({
readonly attribute TempType temperature;
attribute LocType location;

//
}s

The preceding definition generates the proxy:
namespace CCS {
typedef CORBA::Short TempType;
typedef char * LocType;

class Thermometer ({

public:
virtual TempType temperature() = 0; // RAccessor
virtual LocType location() = 0; // RAccessor
virtual void location (const char *) = 0; // Modifier
//

}s

To read the value of an attribute, you simply call the accessor; to write the value, you call
the modifier:

CCS::Thermometer var t = ...; // Get reference

248

IT-SC book: Advanced CORBA® Programming with C++

CCS::TempType temp = t->temperature(); // Read temperature
CCS::LocType var loc = t->location(); // Read location
t->location ("Room 12-514"); // Write location

This example also illustrates that there is truly no difference between attributes and
operations. IDL attributes are simply a shorthand notation for defining a pair of accessor
and modifier operations.

Note that the mapping for the 1ocation accessor uses the LocType definition from
the IDL:

virtual LocType location() = 0;

However, the mapping for the location modifier does not use the LocType
definition even though a location is passed:

virtual void location (const char *) = 0;

This difference is an artifact of mapping IDL strings to char *. If the compiler were to
generate the following instead, the signature would be in error:

virtual void location (const LocType) = 0; // Wrong!!!

This is wrong because the result of applying a const modifier to an alias for char *
results in the type char * const. However, the mapping requires const char *.

7.14 Parameter Passing Rules

The parameter passing rules for operations are complex. They are motivated by two
overriding requirements.

Location transparency Memory management rules for parameters must be uniform
whether the target object is in the same address space or in a different address space. This
requirement allows the same source code to work with collocated and remote objects.

Efficiency Copying of parameter values must be avoided whenever possible. In this way,
calling a collocated CORBA object via an object reference is almost as fast as calling a
C++ object via a virtual function.

If you keep these two requirements in mind when you look at the parameter passing rules,
things will make much more sense. Location transparency requires certain memory
management conventions, such as that variable-length out parameters must be allocated
by the callee and deallocated by the caller. Efficiency requires that large values be passed
by reference rather than by value. (Pass-by-value requires copying to and from the stack,

249

IT-SC book: Advanced CORBA® Programming with C++

whereas pass-by-reference avoids copying.) The function signatures generated by the
mapping simply reflect these requirements.

The rules for parameter passing can be categorized according to the parameter type and
whether that type is fixed- or variable-length. There are rules for the following:

Simple fixed-length types, such as 1ong and char

Complex fixed-length types, such as a fixed-length st ruct or union

Fixed-length arrays

Complex variable-length types, such as a variable-length st ruct or union

Arrays with variable-length elements

Strings

Object references

Within each category, the direction of a parameter (in, inout, out, or return value)
determines the exact passing mode for that parameter.

The following sections discuss the parameter passing rules in detail. Note that we first
present the rules using the low-level (non- var) C++ mapping (Section 7.14.11
shows a summary of these rules). Section 7.14.12 then shows how you can use var
types to hide mapping differences for different parameter types.

7.14.1 Fixed-Length Versus Variable-Length Types

Parameter passing rules differ for fixed-length and variable-length types. By definition,
the following types are fixed-length types:

Integer types (short, long, long long), both signed and unsigned

Floating-point types (float, double, long double)

Fixed-point types (fixed<d, s>) irrespective of the values of d and s

Character types (char and wchar)

boolean

octet

Enumerated types

By definition, the following types are variable-length types:

string and wstring (bounded or unbounded)

Object references

any

Sequences (bounded or unbounded)

This leaves structures, unions, and arrays, which can be fixed-length or variable-length
depending on their contents.

A structure, union, or array is a fixed-length type if it (recursively) contains only fixed-
length types.

A structure, union, or array is a variable-length type if it (recursively) contains one or
more variable-length types.

250

IT-SC book: Advanced CORBA® Programming with C++

Note that exceptions are not mentioned here because they cannot be sent as parameters.
However, system exceptions are always fixed-length, and user exceptions are always
considered variable-length whether or not they contain variable-length members (see
page 318).

7.14.2 Generated out Types

As we discuss the parameter passing rules for the different types, you will see that the
signature for out parameters always uses a formal parameter type typename out. For
example, for an out parameter of type long, the formal parameter type is
CORBA: :Long out. This is because the memory management rules for out parameters
are different for fixed-length and variable-length types.

For fixed-length types, the generated out type is simply a typedef to a reference. For
example, Long out is defined in the CORBA namespace as follows:

e typedef Long & Long out;

For variable-length types, the generated out type is a class. For example,
String out is defined in the CORBA namespace as a class:

e class String out {
° //

e };

The reason for the difference is memory management rules. Variable-length types are
callee-allocated, and the generated out classes for variable-length types ensure that
memory is correctly released. We return to the exact definition of out parameters on
page 300.

7.14.3 Parameter Passing for Simple Types

Simple types, such as char, 1long, or double, are fixed-length types. (Their sizes are
known at compile time.) Simple types are passed by value or by reference depending on
whether the parameter can be changed by the callee. Enumerated types are passed like
simple types because they have fixed size. Here is an IDL operation that uses a 1ong
parameter in all possible directions:

interface Foo {

long op long(in long 1 in, inout long 1 inout, out long 1 out);
bi
The corresponding method in the proxy has this signature:

class Foo : public CORBA::0Object {

251

IT-SC book: Advanced CORBA® Programming with C++

public:

//

virtual CORBA::Long long op (
CORBA: :Long 1 in,
CORBA::Long & 1 inout,
CORBA: :Long out 1 out

) = 0;
//

}s

The type CORBA: : Long out is an alias for CORBA: : Long &. The 1 out parameter
is passed by reference, so the callee can change its value. In other words, the signature for
long op is no different from what it would be if you yourself wrote a function that
deals with input, input/output, and output parameters of simple types. Given a reference,
you can call long op as with any other C++ function:

Foo var fv = ...; // Get reference
CORBA: :Long inout val;

CORBA: :Long out val;
CORBA: :Long ret val;

inout val = 5;

ret val = fv->long op (99, inout val, out val);
cout << "ret val: " << ret val << endl;

cout << "inout val: " << inout val << endl;
cout << "out val: " << out val << endl;

Of course, you must pass initialized values for in and inout parameters because they
are sent to the object. There is no need to initialize ret val or out val, because they
are sent from the object to the client. Because inout val is an inout parameter and
passed by reference, its value may be changed by the call. In contrast, in parameters are
passed by value and are guaranteed to have their original values after the call completes.

7.14.4 Parameter Passing for Fixed-Length Complex Types

Fixed-length complex types (structures and unions) are passed much as simple types are.
However, for efficiency reasons in parameters are passed as references to const
instead of by value to avoid copying the value onto the call stack. Here is an operation
that passes a fixed-length structure in all possible directions:

struct Fls { // Fixed-length struct
long 1 mem;
double d mem;

}i
interface Foo {

Fls fls op(in Fls fls in, inout Fls fls inout, out Fls fls out);
i

252

IT-SC book: Advanced CORBA® Programming with C++

The corresponding method in the generated proxy has this signature:

class Foo : public CORBA::0Object {
public:
//
virtual Fls fls op(
const Fls & fls in,

Fls & fls inout,
Fls out fls out
) = 0;

//
}i

Again, as with simple types, F1s out is simply an alias for F1s &, so the callee can
change the value of the passed parameter. As with simple types, calling the f1s op
operation looks like calling any other C++ function with similar parameters:

Foo var fv = ...; // Get reference

Fls in val;
Fls inout val;
Fls out val;
Fls ret val;

in val.l mem = 99;

in val.d mem = 3.14;

inout val.l mem = 5;

inout val.d mem = 2.18;

ret val = fv->fls op(in _val, inout val, out wval);

// in val is unchanged here, inout val may have
// been modified, and out val and ret val contain
// values returned by the operation.

In general, for a fixed-length user-defined type T, T out is an alias for T & so the
callee can modify the value via the reference.

7.14.5 Parameter Passing for Arrays with Fixed-Length
Elements

Conceptually, arrays are passed just as other fixed-length complex types are passed.
However, because C++ does not permit passing arrays by value, the stub signatures
instead use pointers to an array slice. Here is an operation that passes an array with fixed-
length elements in all possible directions:

typedef double Darr[3];

253

IT-SC book: Advanced CORBA® Programming with C++

interface Foo {
Darr darr_ op (

in Darr darr in,
inout Darr darr inout,
out Darr darr out

}s

The corresponding method in the generated proxy has this signature:

typedef CORBA::Double Darr[3];
typedef CORBA::Double Darr slice;

class Foo : public virtual CORBA::0bject {

public:
//
virtual Darr slice * darr op(
const Darr darr in,
Darr slice * darr inout,
Darr out darr out
) = 0;
//
}i
//
void Darr free(Darr slice *);
//

The signature for darr op is defined in terms of Darr slice * (a pointer to the
element type) because arrays cannot be passed by value in C++. For the in parameter
darr in, the signature uses a formal parameter type of const Darr. By C++ default
conversion rules, this is the same thing as declaring the parameter type as const
CORBA: :Double *, which is a pointer to a constant array slice.

The darr in, darr inout, and darr out parameters must point to caller-
allocated memory. The function uses the darr in pointer to read the array elements
and uses the darr inout and darr out pointers to read or write the array elements
(without allocating storage). This means that for an array with fixed-length elements of
type T, the type T out is simply an alias for T slice *.(The caller passes a pointer
to the first element, and that allows the callee to modify the caller-allocated array via the
pointer.)

The return value is also a pointer, and that raises the question of who owns the memory
allocated to the returned array. For the reasons we discussed in Section 6.9.2, the
return value is allocated by the callee and must be deallocated by the caller:

Foo var fv = ...; // Get reference
Darr in val = { 0.0, 0.1, 0.2 };

Darr inout val = { 97.0, 98.0, 99.0 };
Darr out val;

254

IT-SC book: Advanced CORBA® Programming with C++

Darr slice * ret val;

ret val = fv->darr op(in val, inout val, out val);
// in val is unchanged

// inout val may have been changed

// out val now contains values

// ret val points to dynamically allocated array

Darr free(ret val); // Must free here!

You must remember to eventually deallocate the return value from the call; otherwise, the
memory for the array is leaked. You must use the generated deallocation function
(Darr free in this case) to deallocate the returned array. Use of delete or delete[]
is non-portable and may not work in some environments.

Of course, you can use a _var type both to prevent a memory leak and to ensure use of
the correct deallocation function:

Foo var fv = ...; // Get reference

Darr in val = { 0.0, 0.1, 0.2 };

Darr inout val = { 97.0, 98.0, 99.0 };

Darr out val;

Darr var ret val; // Note var type

ret val = fv->darr op(in val, inout val, out val);

// No need to deallocate anything here -
// ret val is a var type and will call
// Darr free() when it goes out of scope.

You must be careful if your IDL contains more than one array type with the same
element type:

typedef double Darr4df[4];
interface Foo {

Darrd get_darr4(in Darr4d dad);
bi
typedef double Darr3[3];
interface bar {

Darr3 get darr3(in Darr3 da3);
}i

Because of the weak array semantics of C++, you will not get a compile-time error if you
pass an array of the incorrect type to an operation:

Foo var fv = ...; // Get reference

Darr3 in val = { 1, 2, 3 };
Darr3 var ret val;

255

IT-SC book: Advanced CORBA® Programming with C++

ret val = fv->get darr4(in val); // Double disaster!!!

This code contains two serious errors that are not detected at compile time.
The array passed to get darr4 is a three-element array, but get darr4 expects a
four-element array.

The code for get darr4 will overrun the passed array by one element, with
unpredictable results. If the element type is a complex type (such as a union), a core
dump is the most likely outcome.

The returned array has four elements, but ret valisa var for a three-element array.
When ret val goes out of scope, its destructor calls Darr3 free (instead of
Darr4 free). The behavior of this is undefined. The most likely outcome is a memory
leak (at least if the array contains complex elements, because the destructor for the final
element may not be called).

Of course, you can suffer worse consequences: if you deallocate a Darr3 using
Darr4 free, the deallocation function will overrun the array and may invoke a
destructor on an instance that was never constructed. The likely outcome is a core dump.
These problems arise only if you have IDL arrays with differing numbers of elements of
the same type, so these mistakes are rare. The problems could have been avoided entirely
had the C++ mapping chosen to map arrays to classes instead of C++ arrays. However,
some of the designers thought that it was important to permit the binary layout of the C
and C++ mappings to be identical. This arrangement is useful if a client uses both
mappings in the same address space because it permits passing of IDL types between the
two mappings without conversion. In hindsight, allowing binary compatibility between
the C and C++ mappings was probably a mistake. The importance of binary compatibility
was overestimated, and, as a result, the C++ mapping is not as type-safe as it could have
been.

In general, CORBA does not provide binary compatibility simply because it is not a
binary standard. In particular, binary compatibility would severely constrain the options
available to implementers and would reduce the number of different environments
CORBA can be deployed in.

7.14.6 Memory Management for Variable-Length Parameters

Before we examine in detail the rules for passing variable-length parameters, it is worth
looking further at the motivation for these rules. As you saw in Section 6.9.2,
variable-length types that are returned from the callee to the caller are dynamically
allocated; the caller becomes responsible for deallocating the returned value after it is no
longer needed. So far, we have skirted the question of how a client can possibly
deallocate a value that was allocated by a server. (Obviously, a pointer to a dynamically
allocated block of memory in a server makes no sense in a client's address space.)

256

IT-SC book: Advanced CORBA® Programming with C++

Consider this simple interface definition:

interface Person {
string name();

}i

The name operation returns the name of a person as a string. The return value has
variable length and is dynamically allocated by the callee. Figure 7. 6 shows a much
simplified picture of the actions of client and server when a client invokes the name
operation. The client code is shown on the left, and the server code on the right. For both
client and server, the developer-written application code is shaded light gray, and the
ORB run-time support code is shaded dark gray. (To save space, we have omitted explicit
qualification for functions in the CORBA namespace.) Also note that the run-time support
code is pseudocode (the actual code is more complicated than shown here).

Figure 7.6 Returning a variable-length value—remote case.

Client : Server

FErSon_VAr P = ...} I
char * a8;
5 = p->namel) ;

char * name() (
char * s:
8 = atring dupi...];
Faturn &)

string_free(a);

From the perspective of the client applicartion programmer, the code simply looks like
this:

Person var p = ...;

257

IT-SC book: Advanced CORBA® Programming with C++

char * s;

s = p->name () ;

//

CORBA: :string free(s);

When the client calls the name method, it calls a member function on a proxy object.
The sequence of events now is as follows.

The name member function on the proxy creates a request containing the name of the
operation (name in this case), the object key, and the in and inout parameters for the
operation (none in this case).

The proxy member function writes the request to its connection to the server and
immediately calls a blocking read operation on the connection (recv len in this case).
The client-side run time is now blocked until a reply arrives from the server.

Meanwhile, the request makes its way across the network to the server. The server is
blocked in its get request operation, waiting for a request to arrive on the client
connection.

The incoming request from the client unblocks get request, which extracts the
operation name and object key.

The server-side run time calls a generic invoke function, which accepts the operation
name as a parameter. invoke uses that name to identify the correct application member
function to call and then up-calls into the application code.

Control has now been transferred to the application-supplied name function on the server
side. The name function uses string alloc to allocate memory for the string and
returns a pointer to that buffer as its return value.

Control is transferred back to the server-side run time, which expects to be handed a
pointer to the allocated string. The run time now constructs a reply containing a copy of
the string and sends that reply back to the client.

The server-side run time calls string free to deallocate the string. (The string is no
longer needed because its contents are already on their way back to the client.)

The server-side run time has now completed one iteration of its dispatch loop and calls
get request again, which blocks until the next client request arrives.

Meanwhile, the reply has made its way across the network back to the client, whose call

to recv_len unblocks. The return value is a byte count that specifies the length of the
string to follow.

258

IT-SC book: Advanced CORBA® Programming with C++

The client-side run time calls string alloc to create a buffer containing len bytes
and calls recv, which reads the string contents into the buffer.

The stub on the client side completes by returning a pointer to the buffer containing the
string.

Control has now returned to the application code, which uses the string and eventually
deallocates it by calling string free.

It is important to note here that no memory leak occurs in either client or server.

On the server side, the application code calls string alloc, and the generated code
in the skeleton calls string free after it has sent the string back to the client.

On the client side, the generated stub code calls string alloc and returns a pointer to
the string to the application code, which calls string free.

This scenario illustrates how the application code and the ORB run time cooperate to
ensure that the correct memory management activities take place for both client and
server. CORBA's location transparency crucially depends on these memory management
rules.

Let us consider the preceding example once more, this time in the collocated case in
which both client and server share the same address space. Collocation essentially
amounts to removing all the ORB-generated code (apart from some remnants that are
irrelevant here), so we can imagine that we simply slide the server application code
across into the client application code, deleting all the dark gray code (see Figure 7.7).

Figure 7.7 Returning a variable-length value—collocated case.

Client/Server

Fergon var p = ...;
char * s5;
8 = p-=name() ;

[|
] char * s;]
i g8 = gstring alloc(len); 1
[| : 3 [|
7 fof Bkl sering. .. £
" return s; "
] } [
E m m =m =m = = = = = = = = = = = = N O m = m [|

string free(s);

259

IT-SC book: Advanced CORBA® Programming with C++

In the collocated case, the client calls the name member function on its proxy as before.
However, that member function is now local to the client's address space, so there is no
need to go through all the intervening networking code.

Notice that we didn't have to change any application source code to collocate client and
server. Most important, memory management responsibilities are identical. The server
code still calls string alloc, and the client code still calls string free, so there
is no memory leak.

This transparency of remote and collocated invocations is at the heart of the memory
management rules for variable-length parameters. If you keep the preceding pictures in
mind, you will find it much easier to understand why variable-length parameters are
passed the way they are. Note that arguments similar to those for return values also apply
to inout and out parameters. The point is that the sending side allocates a variable-length
value, and the receiving side deallocates it again.

7.14.7 Parameter Passing for Strings and Wide Strings

Given the discussion in the preceding section, it is not hard to work out how strings must
be passed. Here is the IDL for an operation that passes string parameters in all possible
directions:

interface Foo ({
string string op(

in string s_in,
inout string s_inout,
out string s _out

}i

The corresponding method in the generated proxy has this signature:

class Foo : public virtual CORBA::0bject {

public:

//

virtual char * string op(
const char * s_in,
char * & s_inout,
CORBA: :String out s _out

) = 0;
//

}i

For strings, the type CORBA: : String out is a class with a constructor that accepts an
argument of type char * & (see page 300 for a detailed discussion of out types).
Following are the memory management responsibilities.

260

IT-SC book: Advanced CORBA® Programming with C++

The in parameter s in is passed as const char *, so the method cannot change the
contents of the string. The string is allocated, initialized, and deallocated by the caller. It
is legal to pass any string as an in parameter; the string can be allocated on the stack, can
be statically allocated in the data segment, or can be dynamically allocated on the heap.

The inout parameter s inout is also allocated and initialized by the caller. However,
it must be dynamically allocated with string alloc or string dup. The reason
for requiring dynamic allocation is that the callee may need to return a longer string than
what was initially passed by the caller. This requires reallocation; if the returned string is
longer, the proxy deallocates the initial string and allocates a new buffer to hold the
longer value. The need to reallocate explains why string inout parameters are passed as
a reference to a pointer (instead of just a plain pointer). The proxy may need to change
not only the bytes forming the string contents but also, if reallocation is required, the
pointer value itself.

The out parameter s out is set to the address of a string allocated by the proxy, and
that explains why a reference to a pointer is passed (the proxy must set the pointer value
and not just the bytes pointed at). The caller is under no obligation to initialize the passed
pointer in any way. The caller becomes responsible for eventually deallocating the string
with string free.

The return value is treated much like an out parameter. The proxy allocates the string
and initializes it. The caller becomes responsible for eventually deallocating the string
with string free.

Here is some example code that illustrates the memory management rules.
Foo var fv = ...; // Get reference...

// Must use dynamic allocation for inout strings.
char * inout val = CORBA::string dup ("inout string");

// No need to initialize out param or return value.
char * out val;
char * ret val;

ret val = fv->string op("Hello", inout val, out val);

// inout val may now point to a different string, possibly with

// a different address.

//

// out val now points at a dynamically allocated string, filled in
// by the operation.

//

// ret val also points at a dynamically allocated string
// Use returned values here...

// We must deallocate inout val (we allocated it ourselves).
CORBA::string free(inout val);

261

IT-SC book: Advanced CORBA® Programming with C++

// We must deallocate out strings and return strings because they
// are allocated by the proxy.

CORBA: :string free(out val);

CORBA::string free(ret val);

This code illustrates the major points.

in strings must be initialized and can be allocated anywhere (on the stack, in the data
segment, or on the heap).

inout strings must be initialized and must be dynamically allocated. Responsibility for
deallocation remains with the caller.

out strings need not be initialized and are allocated by the callee. Responsibility for
deallocation passes to the caller.

Returned strings need not be initialized and are allocated by the callee. Responsibility for
deallocation passes to the caller.

You need to be aware of one potential problem with strings: the C++ mapping prohibits
passing a null pointer as an in or inout parameter. For example, the following code has
undefined behavior and may well cause a core dump:

CORBA::String var in val; // Initialized to null
CORBA::String var inout val; // Ditto

char * out val;

char * ret val;

// Looming disaster!!!
ret val = fv->string op(in val, inout val, out val);

This code passes a default-constructed String var as the in val and inout val
parameters. The default constructor initializes a String var to the null pointer, so a
null pointer is passed to string op for both the in val and inout val parameters,
and that is illegal. If you need to pass a string that conceptually is optional, you can pass
either an empty string or an IDL union as shown in Section 4.7.4.

The rules for passing wide string parameters are almost exactly the same as for strings.
The only differences are that the parameter types are CORBA: :WChar * instead of
char * and that you must use the wide string allocation functions (wstring alloc,
wstring dup,and wstring free).

7.14.8 Parameter Passing for Variable-Length Complex Types
and Type Any

Recall that sequences are always variable-length and that structures and unions are
variable-length if they (recursively) contain a variable-length member. Here is an
operation that passes a variable-length structure in all possible directions:

struct Vls { // Variable-length struct
long 1 mem;

262

IT-SC book: Advanced CORBA® Programming with C++

string s _mem;

}i

interface Foo {

Vls vls op(
in Vls vls in,
inout Vls vls inout,
out Vls vls out

) ;
}s

The corresponding method in the generated proxy has this signature:

class Foo : public CORBA::0Object {

public:

//

virtual Vls * vls op(
const Vls & vls in,
Vls & vls inout,
V1s out vls out

) = 0;
//

}i

The type V1s out is a class whose constructor accepts an argument of type V1s * &.
(We examine the implementation of out classes again in Section 7.14.13. For now,
assume that V1s out is the same as Vl1s * &.) Following are the memory
management responsibilities.

The in parameter v1s in is passed as a reference to const. This avoids the need to
copy the structure onto the stack and prevents the callee from modifying the parameter.
An in struct can be allocated on the stack, in the data segment, or on the heap.

The inout parameter v1ls inout is allocated and initialized by the caller and passed
by reference. This permits the callee to modify the contents of the structure via the
reference. Note that no pointer need be passed here. If the callee wants to modify the
string member s _mem of the structure, it can do so simply by assignment. The structure
looks after the memory management of its string member (the member is a
String mgr). The caller can allocate the structure it passes anywhere (on the stack, in
the data segment, or on the heap).

The out parameter vls out is passed as a reference to a pointer. The result is
dynamically allocated by the callee. The caller becomes responsible for eventually calling

delete to deallocate the out parameter.

The return value behaves like an out parameter. The value is allocated by the proxy, and
the caller must deallocate it with delete.

263

IT-SC book: Advanced CORBA® Programming with C++

Here is some example code that illustrates the memory management rules:

Foo var fv = ...; // Get reference

Vls in val; // Note stack allocation
Vls inout val; // Note stack allocation
Vls * out val; // Note pointer

Vls * ret val; // Note pointer

in val.l mem = 99; // Initialize in param

in val.s mem CORBA: :string dup ("Hello")

inout val.l mem = 5; // Initialize inout param
inout val.s mem CORBA: :string dup ("World");

ret val = fv->vls op(in _val, inout val, out wval);

// in _val is unchanged here, inout val may have
// been modified, and out val and ret val contain
// structures returned by the operation.

delete out val; // Must deallocate out param
delete ret val; // Must deallocate return value

Values of type any follow the same parameter passing rules (Chapter 15 discusses the

mapping for any in detail).

7.14.9 Parameter Passing for Arrays with Variable-Length
Elements

The responsibilities for memory allocation and deallocation of variable-length elements
in arrays are the same as for other variable-length types. However, because of the limited
array concept of C++, arrays with variable-length elements are passed by pointer to an
array slice. Here is the IDL for an operation that passes an array with variable-length

elements in all possible directions:

struct Vls { // Variable-length struct
long number;
string name;

}s
typedef Vls Varr[3]; // Variable-length array

interface Foo {
Varr varr op(

in Varr varr in,
inout Varr wvarr inout,
out Varr varr out

264

IT-SC book: Advanced CORBA® Programming with C++

To make this example a little more interesting, we use an array containing variable-length
structure elements, and that makes the array itself variable-length. The corresponding
method in the proxy has this signature:

struct Vls {
//
}i

typedef Vlis Varr[3];
typedef Vls * Varr slice;

class Foo : public virtual CORBA::0Object {

public:
//
virtual Varr slice * varr_ op (
const Varr varr_in,
Varr slice * varr_ inout,
Varr out varr out
) = 0;
//
}i
//
void Varr free(Varr slice *);
//

Varr out is a class whose constructor accepts an argument of type Varr slice *
&. If you compare the preceding mapping with the one for arrays having fixed-length
elements, you find only one real difference: for an out parameter for an array having
variable-length elements, a reference to a pointer is passed instead of only a pointer. This
is because for arrays having variable-length elements, out parameters are allocated by the
callee, whereas for arrays having fixed-length elements, out parameters are allocated by
the caller. Following are all the memory management rules for arrays having variable-
length elements.

in arrays must be initialized and can be allocated anywhere (on the stack, in the data
segment, or on the heap).

inout arrays must be initialized and can be allocated anywhere (on the stack, in the data
segment, or on the heap).

out arrays are allocated by the callee. Responsibility for deallocation passes to the caller.
Returned arrays are allocated by the callee. Responsibility for deallocation passes to the

caller.

Arrays having variable-length elements are passed as a pointer to an array slice. For out
arrays, it is a reference to a pointer to an array slice.

Following is example code that illustrates the memory management rules:

265

IT-SC book: Advanced CORBA® Programming with C++

Foo var fv = ...; // Get reference

Varr in val; // Note stack allocation
in vall[0] .number = 0;

in val[0].name = CORBA::string dup ("Jocelyn");

in val[l].number = 1;

in val[l].name = CORBA::string dup("Michi");

in val[2] .number = 2;

in val([2].name = CORBA::string dup("Tyson");

Varr inout val; // Note stack allocation
inout val[0].number = 97;

inout val[0].name = CORBA::string dup ("Anni");
inout val[l].number = 98;

inout val[l].name = CORBA::string dup ("Harry");
inout val[2].number = 99;

inout val[2].name = CORBA::string dup("Michi");
Varr slice * out val; // Note no initialization
Varr slice * ret val; // Note no initialization
ret val = fv->varr op(in val, inout val, out val);

// in_val is unchanged
// inout val may have been changed
// out val and ret val point at d