The Hidden Language of
mputer Hardware and Software

Co

® o
.._
1001%11

® o

Charles Petzold

“[A] gem that will appeal to anyone who wants to understand
computer technology at its essence.”

—David Wall, Amazon.com Editorial Reviews, www.amazon.com

"You can tell writing CODE was a labor of love for Petzold—
and reading it is, too.”
—Bill Camarda, Editor, barnesandnoble.com

C O D E

The Hidden Language of
Computer Hardware and Software

What do flashlights, the British invasion, black cats, and seesaws have to do
with computers? In CODE, they show us the ingenious ways we manipulate
language and invent new means of communicating with each other. And through
CODE, we see how this ingenuity and our very human compulsion to communicate

have driven the technological innovations of the past two centuries.

Using everyday objects and familiar language systems such as Braille and Morse
code, author Charles Petzold weaves an illuminating narrative for anyone who's

ever wondered about the secret inner life of computers and other smart machines.

It's a cleverly illustrated and eminently comprehensible story—and along the
way, you'll discover you've gained a real context for understanding today’s world
of PCs, digital media, and the Internet. No matter what your level of technical

savvy, CODE will charm you—and perhaps even awaken the technophile within.

General Computing USA $17.99

ISBN 0-7356-1131-9 UK. £13.99
20000 Canade $25.99
[Recommended]
L}
(]
M Microsoft

90145 9%780735"611313

The Hidden Language of
Computer Hardware and Software

Charles Petzold -

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by Charles Petzold

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the
publisher.

Library of Congress Cataloging-in-Publication Data
Petzold, Charles, 1953-
Code / Charles Petzold.
p. cm.
ISBN 0-7356-0505-X -- ISBN 0-7356-1131-9 (paperback)
1. Computer programming. 2. Coding theory. I. Title.

QA76.6 .P495 1999
005.7'2 21--dc21 99-040198

Printed and bound in the United States of America.

123456789 QWIQWT 543210

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide.
For further information about international editions, contact your local Microsoft
Corporation office or contact Microsoft Press International directly at fax

(425) 936-7329. Visit our Web site at mspress.microsoft.com. Send comments

to mspinput@microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Microsoft, MS-DOS, and
Windows are either registered trademarks or trademarks of Microsoft Corpo-
ration in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

Images of Charles Babbage, George Boole, Louis Braille, Herman Hollerith,
Samuel Morse, and John von Neumann appear courtesy of Corbis Images and were
modified for this book by Joel Panchot. The January 1975 cover of Popular
Electronics is reprinted by permission of Ziff-Davis and the Ziff family. All other
illustrations in the book were produced by Joel Panchot.

Unless otherwise noted, the example companies, organizations, products, people,
and events depicted herein are fictitious. No association with any real company,
organization, product, person, or event is intended or should be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Kathleen Atkins
Technical Editor: Jim Fuchs

= Contents =

Chapter One
Chapter Two
Chapter Three
Chapter Four
Chapter Five
Chapter Six

Chapter Seven
Chapter Eight
Chapter Nine
Chapter Ten

Chapter Eleven
Chapter Twelve
Chapter Thirteen
Chapter Fourteen
Chapter Fifteen
Chapter Sixteen
Chapter Seventeen
Chapter Eighteen
Chapter Nineteen
Chapter Twenty
Chapter Twenty-One
Chapter Twenty-Two
Chapter Twenty-Three
Chapter Twenty-Four
Chapter Twenty-Five

Preface

Best Friends

Codes and Combinations
Braille and Binary Codes
Anatomy of a Flashlight
Seeing Around Corners
Telegraphs and Relays

Our Ten Digits

Alternatives to Ten

Bit by Bit by Bit

Logic and Switches

Gates (Not Bill)

A Binary Adding Machine
But What About Subtraction?
Feedback and Flip-Flops
Bytes and Hex

An Assemblage of Memory
Automation

From Abaci to Chips

Two Classic Microprocessors
ASCII and a Cast of Characters
Get on the Bus

The Operating System

Fixed Point, Floating Point
Languages High and Low
The Graphical Revolution
Acknowledgments

Index

i

15
22
32
40
47
54
69
86

102

131

143

155

180

190

206

238

260

286

301

320

335

349

364

383

385

Preface to the
= Paperback Edition =

writing it. As I was contemplating Code and then writing it, and even
after the book was published, people would ask me, “What’s the
book about?”

I was always reluctant to answer this question. I'd mumble something
about “a unique journey through the evolution of the digital technologies
that define the modern age™ and hope that would be sufficient.

But finally I had to admit it: “Code is a book about how computers work.”

As 1 feared, the reactions weren’t favorable. “Oh, I have a book like that,”
some people would say, to which my immediate response was, “No, no, no,
you don’t have a book like this one.” I still think that’s true. Code is not like
other how-computers-work books. It doesn’t have big color illustrations of
disk drives with arrows showing how the data sweeps into the computer.
Code has no drawings of trains carrying a cargo of zeros and ones.
Metaphors and similes are wonderful literary devices but they do nothing
but obscure the beauty of technology.

The other comment I heard was, “People don’t want to know how
computers work.” And this ’'m sure is true. I personally happen to enjoy
learning how things work. But I also like to choose which things I learn about
and which I do not. I'd be hard pressed to explain how my refrigerator works,
for example.

Yet I often hear people ask questions that reveal a need to know something
about the inner workings of personal computers. One such common question
is, “What’s the difference between storage and memory?”

That’s certainly a critical question. The marketing of personal computers
is based on such concepts. Even novice users are expected to know how many
megas of the one thing and gigas of the other thing will be necessary for their
particular applications. Novice users are also expected to master the concept
of the computer “file” and to visualize how files are loaded from storage into
memory and saved from memory back to storage.

The storage-and-memory question is usually answered with an analogy:
“Memory is like the surface of your desk and storage is like the filing
cabinet.” That’s not a bad answer as far as it goes. But I find it quite
unsatisfactory. It makes it sound as if computer architecture were patterned
after an office. The truth is that the distinction between memory and storage

C ode rattled around in my head for about a decade before I started

is an artificial one and exists solely because we don’t have a single storage
medium that is both fast and vast as well as nonvolatile. What we know
today as “von Neumann architecture”—the dominant computer architecture
for over 50 years—is a direct result of this technical deficiency.

Here’s another question that someone once asked me: “Why can’t you run
Macintosh programs under Windows?” My mouth opened to begin an
answer when I realized that it involved many more technical issues than I'm
sure my questioner was prepared to deal with in one sitting.

I want Code to be a book that makes you understand these things, not
in some abstract way, but with a depth that just might even rival that of
electrical engineers and programmers. I also hope that you might recognize
the computer to be one of the crowning achievements of twentieth century
technology and appreciate it as a beautiful thing in itself without metaphors
and similes getting in the way.

Computers are constructed in a hierarchy, from transistors down at the
bottom to the information displayed on our computer screens at the top.
Moving up each level in the hierarchy—which is how Code is structured—
is probably not as hard as most people might think. There is certainly a lot
going on inside the modern computer, but it is a lot of very common and
simple operations.

Although computers today are more complex than the computers of 25
years or 50 years ago, they are still fundamentally the same. That’s what’s
so great about studying the history of technology: The further back in time
you go, the simpler the technologies become. Thus it’s possible to reach a
point where it all makes relatively easy sense.

In Code, I went as far back as I could go. Astonishingly, I found that I
could go back into the nineteenth century and use early telegraph equipment
to show how computers are built. In theory at least, everything in the first
17 chapters of Code can be built entirely using simple electrical devices that
have been around for over a century.

This use of antique technology gives Code a fairly nostalgic feel, I think.
Code is a book that could never be titled The Faster New Faster Thing or
Business @ the Speed of a Digital Nervous System. The “bit” isn’t defined
until page 68; “byte” isn’t defined until page 180. I don’t mention transistors
until page 142, and that’s only in passing.

So, while Code goes fairly deep into the workings of the computer (few
other books show how computer processors actually work, for example),
the pace is fairly relaxed. Despite the depth, I tried to make the trip as
comfortable as possible.

But without little drawings of trains carrying a cargo of zeros and ones.

Charles Petzold
August 16, 2000

o

code (kod) ...
3.a. A system of signals used to represent letters or numbers in
transmitting messages.

b. A system of symbols, letters, or words given certain
arbitrary meanings, used for transmitting messages
requiring secrecy or brevity.

4. A system of symbols and rules used to represent instructions
to a computer...

— The American Heritage Dictionary of the English Language

LR < e

Chapter One

Best Friends

CTADMGIIEEST

the windows of your bedrooms face each other. Every night, after

your parents have declared bedtime at the usual indecently early
hour, you still need to exchange thoughts, observations, secrets, gossip, jokes,
and dreams. No one can blame you. After all, the impulse to communicate
is one of the most human of traits.

While the lights are still on in your bedrooms, you and your best friend
can wave to each other from the windows and, using broad gestures and
rudimentary body language, convey a thought or two. But sophisticated
transactions seem difficult. And once the parents have decreed “Lights out!”
the situation seems hopeless.

How to communicate? The telephone perhaps? Do you have a telephone
in your room at the age of 10? Even so, wherever the phone is you’ll be
overheard. If your family personal computer is hooked into a phone line, it
might offer soundless help, but again, it’s not in your room.

What you and your best friend do own, however, are flashlights. Everyone
knows that flashlights were invented to let kids read books under the bed
covers; flashlights also seem perfect for the job of communicating after dark.
They’re certainly quiet enough, and the light is highly directional and prob-
ably won’t seep out under the bedroom door to alert your suspicious folks.

Can flashlights be made to speak? It’s certainly worth a try. You learned
how to write letters and words on paper in first grade, so transferring that
knowledge to the flashlight seems reasonable. All you have to do is stand
at your window and draw the letters with light. For an O, you turn on the
flashlight, sweep a circle in the air, and turn off the switch. For an I, you make
a vertical stroke. But, as you discover quickly, this method simply doesn’t

j 7 ou’re 10 years old. Your best friend lives across the street. In fact,

work. As you watch your friend’s flashlight making swoops and lines in the ‘

Chapter One

air, you find that it’s too hard to assemble the multiple strokes together in
your head. These swirls and slashes of light are not precise enough.

You once saw a movie in which a couple of sailors signaled to each other
across the sea with blinking lights. In another movie, a spy wiggled a mir-
ror to reflect the sunlight into a room where another spy lay captive. Maybe
that’s the solution. So you first devise a simple technique. Each letter of the
alphabet corresponds to a series of flashlight blinks. An A is 1 blink, a B is
2 blinks, a C is 3 blinks, and so on to 26 blinks for Z. The word BAD is 2
blinks, 1 blink, and 4 blinks with little pauses between the letters so you
won’t mistake the 7 blinks for a G. You’ll pause a bit longer between words.

This seems promising. The good news is that you no longer have to wave
the flashlight in the air; all you have to do is point and click. The bad news
is that one of the first messages you try to send (“How are you?”) turns
out to require a grand total of 131 blinks of light! Moreover, you forgot
about punctuation, so you don’t know how many blinks correspond to a
question mark.

But you’re close. Surely, you think, somebody must have faced this prob-
lem before, and you’re absolutely right. With daylight and a trip to the li-
brary for research, you discover a marvelous invention known as Morse code.
It’s exactly what you’ve been looking for, even though you must now relearn
how to “write” all the letters of the alphabet.

Here’s the difference: In the system you invented, every letter of the al-
phabet is a certain number of blinks, from 1 blink for A to 26 blinks for Z.
In Morse code, you have two kinds of blinks—short blinks and long blinks.
This makes Morse code more complicated, of course, but in actual use it
turns out to be much more efficient. The sentence “How are you?” now
requires only 32 blinks (some short, some long) rather than 131, and that’s
including a code for the question mark.

When discussing how Morse code works, people don’t talk about “short
blinks” and “long blinks.” Instead, they refer to “dots” and “dashes” be-
cause that’s a convenient way of showing the codes on the printed page. In
Morse code, every letter of the alphabet corresponds to a short series of
dots and dashes, as you can see in the following table.

1
1
<|%X|€|<|c|H]|»

1
!
i
N

Lol ol Hol N B 8 Bl Roll i--B B3
RlO|=|0|Z|Z2|-| R |—
1

Best Friends

Although Morse code has absolutely nothing to do with computers, becom-
ing familiar with the nature of codes is an essential preliminary to achiev-
ing a deep understanding of the hidden languages and inner structures of
computer hardware and software.

In this book, the word code usually means a system for transferring
information among people and machines. In other words, a code lets you
communicate. Sometimes we think of codes as secret. But most codes are not.
Indeed, most codes must be well understood because they’re the basis of
human communication.

In the beginning of One Hundred Years of Solitude, Gabriel Garcia
Marquez recalls a time when “the world was so recent that many things
lacked names, and in order to indicate them it was necessary to point.” The
names that we assign to things usually seem arbitrary. There seems to be no
reason why cats aren’t called “dogs™ and dogs aren’t called “cats.” You could
say English vocabulary is a type of code.

The sounds we make with our mouths to form words are a code intelli-
gible to anyone who can hear our voices and understands the language that
we speak. We call this code “the spoken word,” or “speech.” We have other
code for words on paper (or on stone, on wood, or in the air, say, via sky-
writing). This code appears as handwritten characters or printed in news-
papers, magazines, and books. We call it “the written word,” or “text.” In
many languages, a strong correspondence exists between speech and text.
In English, for example, letters and groups of letters correspond (more or
less) to spoken sounds.

For people who can’t hear or speak, another code has been devised to help
in face-to-face communication. This is sign language, in which the hands and
arms form movements and gestures that convey individual letters of words
or whole words and concepts. For those who can’t see, the written word can
be replaced with Braille, which uses a system of raised dots that correspond
to letters, groups of letters, and whole words. When spoken words must be
transcribed into text very quickly, stenography or shorthand is useful.

We use a variety of different codes for communicating among ourselves
because some codes are more convenient than others. For example, the code
of the spoken word can’t be stored on paper, so the code of the written word
is used instead. Silently exchanging information across a distance in the dark
isn’t possible with speech or paper. Hence, Morse code is a convenient al-
ternative. A code is useful if it serves a purpose that no other code can.

As we shall see, various types of codes are also used in computers to store
and communicate numbers, sounds, music, pictures, and movies. Comput-
ers can’t deal with human codes directly because computers can’t duplicate
the ways in which human beings use their eyes, ears, mouths, and fingers.
Yet one of the recent trends in computer technology has been to enable our
desktop personal computers to capture, store, manipulate, and render all
types of information used in human communication, be it visual (text and
pictures), aural (spoken words, sounds, and music), or a combination of both
(animations and movies). All of these types of information require their own

" Chapter One

codes, just as speech requires one set of human organs (mouths and ears)
while writing and reading require others (hands and eyes).

Even the table of Morse code shown on page 4 is itself a code of sorts.
The table shows that each letter is represented by a series of dots and dashes.
Yet we can’t actually send dots and dashes. Instead, the dots and dashes cor-
respond to blinks.

When sending Morse code with a flashlight, you turn the flashlight switch
on and off very quickly (a fast blink) for a dot. You leave the flashlight
turned on somewhat longer (a slower on-off blink) for a dash. To send an
A, for example, you turn the flashlight on and off very quickly and then on
and off at a lesser speed. You pause before sending the next character. By
convention, the length of a dash should be about three times that of a dot.
For example, if a dot is one second long, a dash is three seconds long. (In
reality, Morse code is transmitted much faster than that.) The receiver sees
the short blink and the long blink and knows it’s an A.

Pauses between the dots and dashes of Morse code are crucial. When you
send an A, for example, the flashlight should be off between the dot and the
dash for a period of time equal to about one dot. (If the dot is one second
long, the gap between dots and dashes is also a second.) Letters in the same
word are separated by longer pauses equal to about the length of one dash
(or three seconds if that’s the length of a dash). For example, here’s the
Morse code for “hello,” illustrating the pauses between the letters:

Words are separated by an off period of about two dashes (six seconds if a
dash is three seconds long). Here’s the code for “hi there™:

The lengths of time that the flashlight remains on and off aren’t fixed.
They’re all relative to the length of a dot, which depends on how fast the
flashlight switch can be triggered and also how quickly a Morse code sender
can remember the code for a particular letter. A fast sender’s dash may be
the same length as a slow sender’s dot. This little problem could make reading
a Morse code message tough, but after a letter or two, the receiver can usu-
ally figure out what’s a dot and what’s a dash.

At first, the definition of Morse code—and by definition I mean the
correspondence of various sequences of dots and dashes to the letters of the
alphabet—appears as random as the layout of a typewriter. On closer inspec-
tion, however, this is not entirely so. The simpler and shorter codes are as-
signed to the more frequently used letters of the alphabet, such as E and T.
Scrabble players and Wheel of Fortune fans might notice this right away. The
less common letters, such as Q and Z (which get you 10 pomts in Scrabble),
have longer codes.

Best Friends

Almost everyone knows a little Morse code. Three dots, three dashes, and
three dots represent SOS, the international distress signal. SOS isn’t an ab-
breviation for anything—it’s simply an easy-to-remember Morse code se-
quence. During the Second World War, the British Broadcasting Corporation
prefaced some radio broadcasts with the beginning of Beethoven’s Fifth Sym-
phony—BAH, BAH, BAH, BAHMMMMM—which Ludwig didn’t know at
the time he composed the music is the Morse code V, for Victory.

One drawback of Morse code is that it makes no differentiation between
uppercase and lowercase letters. But in addition to representing letters, Morse
code also includes codes for numbers by using a series of five dots and dashes:

PN
1
.
1
1

slw e
3
2
1
1
o|le|lw|w]|a

“n

These codes, at least, are a little more orderly than the letter codes. Most
punctuation marks use five, six, or seven dots and dashes:

'
- — — b

N = — (— ——

2 o) -

+

A | o

/ p—

Additional codes are defined for accented letters of some European languages
and as shorthand sequences for special purposes. The SOS code is one such
shorthand sequence: It’s supposed to be sent continuously with only a one-
dot pause between the three letters.

You’ll find that it’s much easier for you and your friend to send Morse code
if you have a flashlight made specifically for this purpose. In addition to the
normal on-off slider switch, these flashlights also include a pushbutton switch
that you simply press and release to turn the flashlight on and off. With some
practice, you might be able to achieve a sending and receiving speed of 5 or
10 words per minute—still much slower than speech (which is somewhere
in the 100-words-per-minute range), but surely adequate.

Chapter One

When finally you and your best friend memorize Morse code (for that’s
the only way you can become proficient at sending and receiving it), you can
also use it vocally as a substitute for normal speech. For maximum speed,
you pronounce a dot as dib (or dit for the last dot of a letter) and a dash as
dah. In the same way that Morse code reduces written language to dots and
dashes, the spoken version of the code reduces speech to just two vowel
sounds.

The key word here is two. Two types of blinks, two vowel sounds, two
different anything, really, can with suitable combinations convey all types
of information.

LR e e A

Chapter Two

Codes and

Combinations

ARG

orse code was invented by Samuel Finley Breese Morse (1791-1872),
M whom we shall meet more properly later in this book. The inven-
tion of Morse code goes hand in hand with the invention of the
telegraph, which we’ll also examine in more detail. Just as Morse code pro-
vides a good introduction to the nature of codes, the telegraph provides a
good introduction to the hardware of the computer.
Most people find Morse code easier to send than to receive. Even if you
don’t have Morse code memorized, you can simply use this table, conve-
niently arranged in alphabetical order:

——

Z=lo|=|O|Z|Z|c|&R|—

THHHOHIHE

N|=<|X%X|d]|<|c|H]|»
i

10

Chapter Two

Receiving Morse code and translating it back into words is considerably
harder and more time consuming than sending because you must work
backward to figure out the letter that corresponds to a particular coded se-
quence of dots and dashes. For example, if you receive a dash-dot-dash-dash,
you have to scan through the table letter by letter before you finally discover
that the code is the letter Y.

The problem is that we have a table that provides this translation:

Alphabetical letter - Morse code dots and dashes
But we don’t have a table that lets us go backward:
Morse code dots and dashes — Alphabetical letter

In the early stages of learning Morse code, such a table would certainly be
convenient. But it’s not at all obvious how we could construct it. There’s
nothing in those dots and dashes that we can put into alphabetical order.
So let’s forget about alphabetical order. Perhaps a better approach to
organizing the codes might be to group them depending on how many dots
and dashes they have. For example, a Morse code sequence that contains
either one dot or one dash can represent only two letters, which are E and T:

A combination of exactly two dots or dashes gives us four more letters—
I, A, N, and M:

. I - N
- A - M

A pattern of three dots or dashes gives us eight more letters:

q|=|c|»
I
!
cla|R|C

And finally (if we want to stop this exercise before dealing with numbers and
punctuation marks), sequences of four dots and dashes give us 16 more
characters:

Codes and Combinations

e

~lm|>|r|cm]l<]|D
W | CIOIN|I=<|O|X]|=

Taken together, these four tables contain 2 plus 4 plus 8 plus 16 codes for a
total of 30 letters, 4 more than are needed for the 26 letters of the Latin
alphabet. For this reason, you’ll notice that 4 of the codes in the last table
are for accented letters.

These four tables might help you translate with greater ease when some-
one is sending you Morse code. After you receive a code for a particular letter,
you know how many dots and dashes it has, and you can at least go to the
right table to look it up. Each table is organized so that you find the all-dots
code in the upper left and the all-dashes code in the lower right.

Can you see a pattern in the size of the four tables? Notice that each table
has twice as many codes as the table before it. This makes sense: Each
table has all the codes in the previous table followed by a dot, and all the
codes in the previous table followed by a dash.

We can summarize this interesting trend this way:

Number of
Dots and Dashes Number of Codes
1 2
2 4
3 8
4 16

Each of the four tables has twice as many codes as the table before it, so if
the first table has 2 codes, the second table has 2 x 2 codes, and the third
table has 2 x 2 x 2 codes. Here’s another way to show that:

Number of
Dots and Dashes Number of Codes
1 2
2 2:%2
3 2X2X2
-+ 2%2X2 %2

11

12

Chapter Two

Of course, once we have a number multiplied by itself, we can start us-
ing exponents to show powers. For example, 2 x 2 x 2 x 2 can be written
as 2* (2 to the 4th power). The numbers 2, 4, 8, and 16 are all powers of
2 because you can calculate them by multiplying 2 by itself. So our summary
can also be shown like this:

Number of
Dots and Dashes Number of Codes
1 2!
2 22
3 23
4 2

This table has become very simple. The number of codes is simply 2 to the
power of the number of dots and dashes. We might summarize the table data
in this simple formula:

number of codes = 2number of dots and dashes

Powers of 2 tend to show up a lot in codes, and we’ll see another example
in the next chapter.

To make the process of decoding Morse code even easier, we might want
to draw something like the big treelike table shown here.

ANAANAAAA

Codes and Combinations

This table shows the letters that result from each particular consecutive
sequence of dots and dashes. To decode a particular sequence, follow the
arrows from left to right. For example, suppose you want to know which
letter corresponds to the code dot-dash-dot. Begin at the left and choose the
dot; then continue moving right along the arrows and choose the dash and
then another dot. The letter is R, shown next to the last dot.

If you think about it, constructing such a table was probably necessary
for defining Morse code in the first place. First, it ensures that you don’t make
the dumb mistake of using the same code for two different letters! Second,
you’re assured of using all the possible codes without making the sequences
of dots and dashes unnecessarily long.

At the risk of extending this table beyond the limits of the printed page,
we could continue it for codes of five dots and dashes and more. A sequence
of exactly five dots and dashes gives us 32 (2x2x2x2x2, or 2°) additional
codes. Normally that would be enough for the 10 numbers and the 16 punc-
tuation symbols defined in Morse code, and indeed the numbers are encoded
with five dots and dashes. But many of the other codes that use a sequence
of five dots and dashes represent accented letters rather than punctuation
marks.

To include all the punctuation marks, the system must be expanded to six
dots and dashes, which gives us 64 (2x2x2x2x2x2, or 2¢) additional codes
for a grand total of 2+4+8+16+32+64, or 126, characters. That’s overkill for
Morse code, which leaves many of these longer codes “undefined.” The word
undefined used in this context refers to a code that doesn’t stand for any-
thing. If you were receiving Morse code and you got an undefined code,
you could be pretty sure that somebody made a mistake.

Because we were clever enough to develop this little formula,

number Of codes = 2number of dots and dashes

we could continue figuring out how many codes we get from using longer
sequences of dots and dashes:

Number of
Dots and Dashes Number of Codes

21=2
22=4
=8
2¢=16
25=32
26 =64
27 =128
2 =256
27 =512
210 = 1024

S 00N Lh W=

o

13

14

Chapter Two

Fortunately, we don’t have to actually write out all the possible codes to
determine how many there would be. All we have to do is multiply 2 by itself
over and over again.

Morse code is said to be a binary (literally meaning two by two) code
because the components of the code consist of only two things—a dot and
a dash. That’s similar to a coin, which can land only on the head side or the
tail side. Binary objects (such as coins) and binary codes (such as Morse code)
are always described by powers of two.

What we’re doing by analyzing binary codes is a simple exercise in the
branch of mathematics known as combinatorics or combinatorial analysis.
Traditionally, combinatorial analysis is used most often in the fields of prob-
ability and statistics because it involves determining the number of ways that
things, like coins and dice, can be combined. But it also helps us understand
how codes can be put together and taken apart.

81

LR < 2

Chapter Three

Braille and
Binary Codes

amuel Morse wasn’t the first person to successfully translate the let-

ters of written language to an interpretable code. Nor was he the first

person to be remembered more as the name of his code than as him-
self. That honor must go to a blind French teenager born some 18 years after
Samuel Morse but who made his mark much more precociously. Little is
known of his life, but what is known makes a compelling story.

Louis Braille was born in 1809 in Coupvray,
France, just 25 miles east of Paris. His father
was a harness maker. At the age of three—an age
when young boys shouldn’t be playing in their
fathers’ workshops—he accidentally stuck a
pointed tool in his eye. The wound became in-
fected, and the infection spread to his other eye,
leaving him totally blind. Normally he would
have been doomed to a life of ignorance and
poverty (as most blind people were in those days),
but young Louis’s intelligence and desire to learn
were soon recognized. Through the intervention
of the village priest and a schoolteacher, he first
attended school in the village with the other

children and at the age of 10 was sent to the Royal Institution for Blind Youth

in Paris.

16

Chapter Three

One major obstacle in the education of the blind is, of course, their in-
ability to read printed books. Valentin Haity (1745-1822), the founder of
the Paris school, had invented a system of raised letters on paper that could
be read by touch. But this system was very difficult to use, and only a few
books had been produced using this method.

The sighted Haily was stuck in a paradigm. To him, an A was an A was
an A, and the letter A must look (or feel) like an A. (If given a flashlight to
communicate, he might have tried drawing letters in the air as we did be-
fore we discovered it didn’t work very well.) Haiiy probably didn’t realize
that a type of code quite different from the printed alphabet might be more
appropriate for sightless people.

The origins of an alternative type of code came from an unexpected
source. Charles Barbier, a captain of the French army, had by 1819 devised
a system of writing he called écriture nocturne, or “night writing.” This
system used a pattern of raised dots and dashes on heavy paper and was
intended for use by soldiers in passing notes to each other in the dark when
quiet was necessary. The soldiers were able to poke these dots and dashes
into the back of the paper using an awl-like stylus. The raised dots could then
be read with the fingers.

The problem with Barbier’s system is that it was quite complex. Rather
than using patterns of dots and dashes that corresponded to letters of the
alphabet, Barbier devised patterns that corresponded to sounds, often requir-
ing many codes for a single word. The system worked fine for short mes-
sages in the field but was distinctly inadequate for longer texts, let alone
entire books. '

Louis Braille became familiar with Barbier’s system at the age of 12. He
liked the use of raised dots, not only because it proved easy to read with the
fingers but also because it was easy to write. A student in the classroom
equipped with paper and a stylus could actually take notes and read them
back. Louis Braille diligently tried to improve the system and within three
years (at the age of 15) had come up with his own, the basics of which are
still used today. For many years, the system was known only within the
school, but it gradually made its way to the rest of the world. In 1835, Louis
Braille contracted tuberculosis, which would eventually kill him shortly after
his 43rd birthday in 1852.

Today, enhanced versions of the Braille system compete with tape-
recorded books for providing the blind with access to the written word, but
Braille still remains an invaluable system and the only way to read for people
who are both blind and deaf. In recent years, Braille has become more fa-
miliar in the public arena as elevators and automatic teller machines are made
more accessible to the blind.

What we’re going to do in this chapter is dissect Braille code and see how
it works. We don’t have to actually learn Braille or memorize anything. We
just want some insight into the nature of codes.

In Braille, every symbol used in normal written language—specifically,
letters, numbers, and punctuation marks—is encoded as one or more raised

Braille and Binary Codes

dots within a two-by-three cell. The dots of the cell are commonly numbered
1 through 6:

1906 4
200!s
3..0:0,..6

In modern-day use, special typewriters or embossers punch the Braille dots
into the paper.

Because embossing just a couple pages of this book in Braille would be
prohibitively expensive, I've used a notation common for showing Braille
on the printed page. In this notation, all six dots in the cell are shown. Large
dots indicate the parts of the cell where the paper is raised. Small dots indi-
cate the parts of the cell that are flat. For example, in the Braille character

e -
-9
o -

dots 1, 3, and 35 are raised and dots 2, 4, and 6 are not.

What should be interesting to us at this point is that the dots are binary.
A particular dot is either flat or raised. That means we can apply what we’ve
learned about Morse code and combinatorial analysis to Braille. We know
that there are 6 dots and that each dot can be either flat or raised, so the total
number of combinations of 6 flat and raised dotsis 2 x2 x2 x2 x 2 x 2, or
25, or 64.

Thus, the system of Braille is capable of representing 64 unique codes.
Here they are—all 64 possible Braille codes:

. Y .o Y . e

. ° eo

3 £33 .o .o .o .o

. oo . .o . e . .o
. B . ..

*5e . . L -

. - o g .

. . o0 oo . ¥4 Ll e
%3 . e . -

. o0 L L a4 L oo L R
. L oo L) { 3 L .o oo
. .. -) -® e

Y .o e .0

.. - - . .) -

L L L .0 oo . e

. .o = oo . e L oo
Y . .o e -9

. . L . .o .o .o e
° .) . - . -

. . oo L .- .- L34 oo
L] L] L L e .o .o e
. o .- oo .- . .- L
L3 . L L .- ®'s oo e
. . L s e .o e oo

17

18

Chapter Three

If we find fewer than 64 codes used in Braille, we should question why
some of the 64 possible codes aren’t being used. If we find more than 64
codes used in Braille, we should question either our sanity or fundamental
truths of mathematics, such as 2 plus 2 equaling 4.

To begin dissecting the code of Braille, let’s look at the basic lowercase
alphabet:

a b [d e f g h i j

L . a0 oo L oo .o .- i .
e .. ‘e -8 e: ee ee e oo
e o NS - e o
k 1 R o p q r s t
L L oo oo L
oty e i A e
.o .o oo o0 LEJ
u e ey z

For example, the phrase “you and me” in Braille looks like this:

Notice that the cells for each letter within a word are separated by a little
bit of space; a larger space (essentially a cell with no raised dots) is used
between words.

This is the basis of Braille as Louis Braille devised it, or at least as it ap-
plies to the letters of the Latin alphabet. Louis Braille also devised codes for
letters with accent marks, common in French. Notice that there’s no code
for w, which isn’t used in classical French. (Don’t worry. The letter will show
up eventually.) At this point, only 25 of the 64 possible codes have been
accounted for.

Upon close examination, you’ll discover that the three rows of Braille
illustrated above show a pattern. The first row (letters a through j) uses only
the top four spots in the cell—dots 1, 2, 4, and 5. The second row duplicates
the first row except that dot 3 is also raised. The third row is the same ex-
cept that dots 3 and 6 are raised.

Since the days of Louis Braille, the Braille code has been expanded in
various ways. Currently the system used most often in published material
in English is called Grade 2 Braille. Grade 2 Braille uses many contractions
in order to save trees and to speed reading. For example, if letter codes appear
by themselves, they stand for common words. The following three rows
(including a “completed” third row) show these word codes:

Braille and Binary Codes

L L d .0 o0 L] e o Ll ° .
:: L] Ll L] ?: ?? e L] o0
(none) but can do every from go have (none) just
L . e .o L e .o L i J
.. L]] - e - e L o0 o0 L e
L . o L L .- .- .- .- .-

knowledge like ~more not (none) people quite rather so that

L @:» .o L) L .0 e L -9 .
. L . d . L o0 oo .- Lad
.o e e oo .e oo L L) .o e e
us very it you as and for of the with

Thus, the phrase “you and me” can be written in Grade 2 Braille as this:

So far, I've described 31 codes—the no-raised-dots space between words
and the 3 rows of 10 codes for letters and words. We’re still not close to the
64 codes that are theoretically available. In Grade 2 Braille, as we shall see,
nothing is wasted.

First, we can use the codes for letters a through j combined with a raised
dot 6. These are used mostly for contractions of letters within words and
also include w and another word abbreviation:

.- .- e oo .. .o .o .- ‘o .
. .- .. ‘e . oo e .- o0
‘e ‘e ‘e e ‘e ‘e

ch gh sh th wh ed er ou ow w
(or “will”)

For example, the word “about” can be written in Grade 2 Braille this way:

e - - -0
T 8 00 00
. ‘9 o
Second, we can take the codes for letters a through j and “lower” them
to use only dots 2, 3, 5, and 6. These codes are used for some punctuation
marks and contractions, depending on context:

ea bb cc dis en to g8 his in was

s H : : ! () % W

The first four of these codes are the comma, semicolon, colon, and period.
Notice that the same code is used for both left and right parentheses but that
two different codes are used for open and closed quotation marks.

19

20

Chapter Three

We’re up to 51 codes so far. The following 6 codes use various unused
combinations of dots 3, 4, 5, and 6 to represent contractions and some
additional punctuation:

L] L]] L4

Bx oy - 2+ 25 %
L o oo L L o0
st ing ble ar 3 com
/ # -

The code for “ble” is very important because when it’s not part of a word,
it means that the codes that follow should be interpreted as numbers. These
number codes are the same as those for letters a through :

L L o0 .o L o0 Ldd L d .
.. ®- .. -9 Y ® - o0 ?? L o0
1 2 3 4 5 6 7 8 9 0

Thus, this sequence of codes

means the number 256.
If you’ve been keeping track, we need 7 more codes to reach the maxi-
mum of 64. Here they are:

The first (a raised dot 4) is used as an accent indicator. The others are usc:.d
as prefixes for some contractions and also for some other purposes: When
dots 4 and 6 are raised (the fifth code in this row), the code is a decimal point
in numbers or an emphasis indicator, depending on context. When dots 5
and 6 are raised, the code is a letter indicator that counterbalances a num-
ber indicator.

And finally (if you’ve been wondering how Braille encodes capital letters)
we have dot 6—the capital indicator. This signals that the letter that follows
is uppercase. For example, we can write the name of the original creator of
this system as

oo
il
L L

This is a capital indicator, the letter 1, the contraction ou, the letters i and s,
a space, another capital indicator, and the letters b, , a, i, 1, 1, and e. (In actual
use, the name might be abbreviated even more by eliminating the last two
letters, which aren’t pronounced.) :

Braille and Binary Codes

In summary, we’ve seen how six binary elements (the dots) yield 64 pos-
sible codes and no more. It just so happens that many of these 64 codes
perform double duty depending on their context. Of particular interest is the
number indicator and the letter indicator that undoes the number indicator.
These codes alter the meaning of the codes that follow them—from letters
to numbers and from numbers back to letters. Codes such as these are of-
ten called precedence, or shift, codes. They alter the meaning of all subse-
quent codes until the shift is undone.

The capital indicator means that the following letter (and only the fol-
lowing letter) should be uppercase rather than lowercase. A code such as
this is known as an escape code. Escape codes let you “escape” from the
humdrum, routine interpretation of a sequence of codes and move to a new
interpretation. As we’ll see in later chapters, shift codes and escape codes
are common when written languages are represented by binary codes.

21

TR
Chapter Four

Anatomy
of a Flashlight

lashlights are useful for numerous tasks, of which reading under the

covers and sending coded messages are only the two most obvious.

The common household flashlight can also take center stage in an
educational show-and-tell of the magical stuff known as electricity.

Electricity is an amazing phenomenon, managing to be pervasively useful
while remaining largely mysterious, even to people who pretend to know
how it works. But I'm afraid we must wrestle with electricity anyway. For-
tunately, we need to understand only a few basic concepts to comprehend
how it’s used inside computers.

The flashlight is certainly one of the simpler electrical appliances found
in most homes. Disassemble a typical flashlight, and you’ll find it consists
of a couple of batteries, a bulb, a switch, some metal pieces, and a plastic
case to hold everything together.

You can make your own no-frills flashlight by disposing of everything
except the batteries and the lightbulb. You’ll also need some short pieces of
insulated wire (with the insulation stripped from the ends) and enough hands
to hold everything together.

Anatomy of a Flashlight

Notice the two loose ends of the wires at the right of the diagram. That’s
our switch. Assuming that the batteries are good and the bulb isn’t burned
out, touching these loose ends together will turn on the light.

What we’ve constructed here is a simple electrical circuit, and the first
thing to notice is that a circuit is a circle. The lightbulb will be lit only if the
path from the batteries to the wire to the bulb to the switch and back to the
batteries is continuous. Any break in this circuit will cause the bulb to go
out. The purpose of the switch is to control this process.

The circular nature of the electrical circuit suggests that something is
moving around the circuit, perhaps like water flowing through pipes. The
“water and pipes” analogy is quite common in explanations of how elec-
tricity works, but eventually it breaks down, as all analogies must. Electricity
is like nothing else in this universe, and we must confront it on its own terms.

The prevailing scientific wisdom regarding the workings of electricity is
called the electron theory, which says that electricity derives from the move-
ment of electrons.

As we know, all matter—the stuff that we can see and feel (usually)—is
made up of extremely small things called atoms. Every atom is composed
of three types of particles; these are called neutrons, protons, and electrons.
You can picture an atom as a little solar system, with the neutrons and pro-
tons bound into a nucleus and the electrons spinning around the nucleus like
planets around a sun:

23

24

Chapter Four

I should mention that this isn’t exactly what you’d see if you were able to
get a microscope powerful enough to see actual atoms, but it works as a
convenient model.

The atom shown on the preceding page has 3 electrons, 3 protons, and
4 neutrons, which means that it’s an atom of lithium. Lithium is one of 112
known elements, each of which has a particular atomic number ranging from
1 to 112. The atomic number of an element indicates the number of protons
in the nucleus of each of the element’s atoms and also (usually) the number
of electrons in each atom. The atomic number of lithium is 3.

Atoms can chemically combine with other atoms to form molecules.
Molecules usually have very different properties from the atoms they com-
prise. For example, water is composed of molecules that consist of two at-
oms of hydrogen and one atom of oxygen (hence, H,0). Obviously water
is appreciably different from either hydrogen or oxygen. Likewise, the
molecules of table salt consist of an atom of sodium and an atom of chlo-
rine, neither of which would be particularly appetizing on French fries.

Hydrogen, oxygen, sodium, and chlorine are all elements. Water and salt
are called compounds. Salt water, however, is a mixture rather than a com-
pound because the water and the salt maintain their own properties.

The number of electrons in an atom is usually the same as the number of
protons. But in certain circumstances, electrons can be dislodged from at-
oms. That’s how electricity happens.

The words electron and electricity both derive from the ancient Greek
word nAektpov (elektron), which you might expect means something like
“little tiny invisible thing.” But no—nAextpov is actually the Greek word
for “amber,” which is the glasslike hardened sap of trees. The reason for this
unlikely derivation is that the ancient Greeks experimented with rubbing
amber with wool, which produces something we now call static electricity.
Rubbing wool on amber causes the wool to pick up electrons from the amber.
The wool winds up with more electrons than protons, and the amber ends
up with fewer electrons than protons. In more modern experiments, carpeting
picks up electrons from the soles of our shoes.

Protons and electrons have a characteristic called charge. Protons are said
to have a positive (+) charge and electrons are said to have a negative (-)
charge. Neutrons are neutral and have no charge. But even though we use
plus and minus signs to denote protons and electrons, the symbols don’t
really mean plus and minus in the arithmetical sense or that protons have
something that electrons don’t. The use of these symbols just means that
protons and electrons are opposite in some way. This opposite characteris-
tic manifests itself in how protons and electrons relate to each other.

Protons and electrons are happiest and most stable when they exist to-
gether in equal numbers. An imbalance of protons and electrons will attempt
to correct itself. When the carpet picks up electrons from your shoes, even-
tually everything gets evened out when you touch something and feel a spark.
That spark of static electricity is the movement of electrons by a rather cir-
cuitous route from the carpet through your body back to your shoes.

Anatomy of a Flashlight

Another way to describe the relationship between protons and electrons is
to note that opposite charges attract and like charges repel. But this isn’t what
we might assume by looking at the diagram of the atom. It looks like the
protons huddled together in the nucleus are attracting each other. The pro-
tons are held together by something stronger than the repulsion of like charges,
and that something is called the strong force. Messing around with the strong
force involves splitting the nucleus, which produces nuclear energy. In this
chapter, we’re merely fooling around with the electrons to get electricity.

Static electricity isn’t limited to the little sparks produced by fingers touch-
ing doorknobs. During storms, the bottoms of clouds accumulate electrons
while the tops of clouds lose electrons; eventually, the imbalance is evened out
with a stroke of lightning. Lightning is a lot of electrons moving very quickly
from one spot to another.

The electricity in the flashlight circuit is obviously much better mannered
than a spark or a lightning bolt. The light burns steadily and continuously
because the electrons aren’t just jumping from one place to another. As one
atom in the circuit loses an electron to another atom nearby, it grabs another
electron from an adjacent atom, which grabs an electron from another ad-
jacent atom, and so on. The electricity in the circuit is the passage of elec-
trons from atom to atom.

This doesn’t happen all by itself. We can’t just wire up any old bunch of
stuff and expect some electricity to happen. We need something to precipi-
tate the movement of electrons around the circuit. Looking back at our dia-
gram of the no-frills flashlight, we can safely assume that the thing that begins
the movement of electricity is not the wires and not the lightbulb, so it’s
probably the batteries.

Almost everybody knows a few things about the types of batteries used
in flashlights:

® They’re tubular in shape and come in different sizes, such as D,
C, A, AA, and AAA.

® Regardless of the battery’s size, they’re all labeled “1.5 volts.”

* One end of the battery is flat and is labeled with a minus sign (-);
the other end has a little protrusion and is labeled with a plus
sign (+).

* If you want your appliance to work right, it’s a good idea to
install the batteries correctly with the plus signs facing the
right way.

® Batteries wear out eventually. Sometimes they can be recharged,
sometimes not.

¢ And finally, we suspect that in some weird way, batteries produce
electricity.

25

Chapter Four

In all batteries, chemical reactions take place, which means that some
molecules break down into other molecules, or molecules combine to form
new molecules. The chemicals in batteries are chosen so that the reactions
between them generate spare electrons on the side of the battery marked with
a minus sign (called the negative terminal, or anode) and demand extra elec-
trons on the other side of the battery (the positive terminal, or cathode). In
this way, chemical energy is converted to electrical energy.

The chemical reaction can’t proceed unless there’s some way that the
extra electrons can be taken away from the negative terminal of the battery
and delivered back to the positive terminal. So if the battery isn’t connected
to anything, nothing much happens. (Actually the chemical reactions still
take place, but very slowly.) The reactions take place only if an electrical
circuit is present to take electrons away from the negative side and supply
electrons to the positive side. The electrons travel around this circuit in a
counterclockwise direction:

v

SR
/ $H7 \

In this book, the color red is used to indicate that electricity is flowing
through the wires.

Electrons from the chemicals in the batteries might not so freely mingle
with the electrons in the copper wires if not for a simple fact: All electrons,
wherever they’re found, are identical. There’s nothing that distinguishes a
copper electron from any other electron.

Notice that both batteries are facing the same direction. The positive end
of the bottom battery takes electrons from the negative end of the top bat-
tery. It’s as if the two batteries have been combined into one bigger battery
with a positive terminal at one end and a negative terminal at the other end.
The combined battery is 3 volts rather than 1.5 volts.

Anatomy of a Flashlight

If we turn one of the batteries upside down, the circuit won’t work:

The two positive ends of the battery need electrons for the chemical reac-
tions, but there’s no way electrons can get to them because they’re attached
to each other. If the two positive ends of the battery are connected, the two
negative ends should be also:

This works. The batteries are said to be connected in parallel rather than in
series as shown earlier. The combined voltage is 1.5 volts, which is the same
as the voltage of each of the batteries. The light will probably still glow, but
not as brightly as with two batteries in series. But the batteries will last twice
as long.

We normally like to think of a battery as providing electricity to a circuit.
But we’ve seen that we can also think of a circuit as providing a way for a
battery’s chemical reactions to take place. The circuit takes electrons away
from the negative end of the battery and delivers them to the positive end
of the battery. The reactions in the battery proceed until all the chemicals
are exhausted, at which time you throw away the battery or recharge it.

27

28

Chapter Four

From the negative end of the battery to the positive end of the battery,
the electrons flow through the wires and the lightbulb. But why do we need
the wires? Can’t the electricity just flow through the air? Well, yes and no.
Yes, electricity can flow through air (particularly wet air), or else we wouldn’t
see lightning. But electricity doesn’t flow through air very readily.

Some substances are significantly better than others for carrying electricity.
The ability of an element to carry electricity is related to its subatomic struc-
ture. Electrons orbit the nucleus in various levels, called shells. An atom that
has just one electron in its outer shell can readily give up that electron, which
is what’s necessary to carry electricity. These substances are conducive to
carrying electricity and thus are said to be conductors. The best conductors
are copper, silver, and gold. It’s no coincidence that these three elements are
found in the same column of the periodic table. Copper is the most com-
mon substance for making wires.

The opposite of conductance is resistance. Some substances are more
resistant to the passage of electricity than others, and these are known as
resistors. If a substance has a very high resistance—meaning that it doesn’t
conduct electricity much at all—it’s known as an insulator. Rubber and plas-
tic are good insulators, which is why these substances are often used to coat
wires. Cloth and wood are also good insulators as is dry air. Just about
anything will conduct electricity, however, if the voltage is high enough.

Copper has a very low resistance, but it still has some resistance. The
longer a wire, the higher the resistance it has. If you tried wiring a flashlight
with wires that were miles long, the resistance in the wires would be so high
that the flashlight wouldn’t work.

The thicker a wire, the lower the resistance it has. This may be somewhat
counterintuitive. You might imagine that a thick wire requires much more
electricity to “fill it up.” But actually the thickness of the wire makes avail-
able many more electrons to move through the wire.

I’ve mentioned voltage b