100%

AUTHORITATIVE
WHAT YOU NEED

Master JavaScript
and DOM concepts with
The Evaluator, an
exclusive interactive
workbench

Capture your target
audience with Web

sites featuring

creative effects and =
instant interactivity

Optimize your

scripts for effective 1

pnsonlullon on the] I 1 umnllﬂ S Al 15)

newest browser Wl s Wenn o i inpaints iy, {.|| r
versions """S A 10

BONUS B
CD-ROM @@ ,
Includes 22 bonus chapters, 1)/
over 300 ready-to-run HTML .

documents, nine complete JavaSript #
real-world opplications, a searchable W Danny Goodman with Michael Morrison

e-book, and much more! Foreward by Brendan Eich, reator of JavaScript

JavaScript Bible

5th Edition

Danny Goodman with Michael Morrison
With a foreword by Brendan Eich, JavaScript’s creator

WILEY
Wiley Publishing, Inc.

Praise for Danny Goodman'’s JavaScript™ Bible

“JavaScript™ Bible is the definitive resource in JavaScript programming. [am never more
than three feet from my copy.”
— Steve Reich, CEO, PageCoders

“This book is a must-have for any web developer or programmer.”
— Thoma Lile, President, Kanis Technologies, Inc.

“Outstanding book. I would recommend this book to anyone interested in learning to
develop advanced Web sites. Mr. Goodman did an excellent job of organizing this book
and writing it so that even a beginning programmer can understand it.”

—Jason Hensley, Director of Internet Services, NetVoice, Inc.

“Goodman is always great at delivering clear and concise technical books!”
— Dwayne King, Chief Technology Officer, White Horse

“JavaScript™ Bible is well worth the money spent!”
— Yen CY. Leong, IT Director, Moo Mooltimedia, a member of SmartTransact Group

“A must-have book for any internet developer.”
— Uri Fremder, Senior Consultant, TopTier Software

“I love this book! I use it all the time, and it always delivers. It’s the only JavaScript
book I use!”
—Jason Badger, Web Developer

“Whether you are a professional or a beginner, this is a great book to get.”
— Brant Mutch, Web Application Developer, Wells Fargo Card Services, Inc.

“I never thought I'd ever teach programming before reading your book [JavaScript™

Bible]. It’s so simple to use —the Programming Fundamentals section brought it all back!

Thank you for such a wonderful book, and for breaking through my programming block!”
— Susan Sann Mahon, Certified Lotus Instructor, TechNet Training

“Danny Goodman is very good at leading the reader into the subject. JavaScript™ Bible
has everything we could possibly need.”
— Philip Gurdon

“An excellent book that builds solidly from whatever level the reader is at. A book that is
both witty and educational.”
— Dave Vane

“I continue to use the book on a daily basis and would be lost without it.”
— Mike Warner, Founder, Oak Place Productions

“JavaScript™ Bible is by far the best JavaScript resource I've ever seen (and I've seen
quite a few).”
—Robert J. Mirro, Independent Consultant, RIM Consulting

JavaScript Bible

5th Edition

Danny Goodman with Michael Morrison
With a foreword by Brendan Eich, JavaScript’s creator

WILEY
Wiley Publishing, Inc.

JavaScript™ Bible, 5th Edition

Published by:

Wiley Publishing, Inc.
10475 Crosspoint Blvd.
Indianapolis, Indiana 46256
www.wiley.com

Copyright © 2004 Danny Goodman. All rights reserved.
Library of Congress Control Number: 2004101606
ISBN: 0-7645-5743-2

Printed in the United States of America
10987654321

5B/RY/QS/QU/IN

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS
OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates. JavaScript is a trademark or registered trademark of Sun Microsystems, Inc. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in
this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

WILEY

About the Authors

Danny Goodman is the author of numerous critically acclaimed and best-selling books, includ-
ing The Complete HyperCard Handbook, Danny Goodman’s AppleScript Handbook, Dynamic
HTML: The Definitive Reference, and JavaScript & DHTML Cookbook. He is a renowned authority
and expert teacher of computer scripting languages. His writing style and pedagogy continue to
earn praise from readers and teachers around the world. To help keep his finger on the pulse of
real-world programming challenges, Goodman frequently lends his touch as consulting pro-
grammer and designer to leading-edge World Wide Web and intranet sites from his home base
in the San Francisco area.

Michael Morrison is a writer, developer, toy inventor, and author of a variety of books cover-
ing topics such as Java, Web scripting, game development, ActiveX, and Pocket PCs. Some of
Michael’s notable writing projects include Faster Smarter HTML and XML, Teach Yourself XML
in 24 Hours, and The Complete Idiot’s Guide to Java 2. Michael is also the founder of Stalefish
Labs (www.stalefishlabs.com), an entertainment company specializing in traditional
games and toys.

Credits

Vice President and
Executive Group Publisher
Richard Swadley

Vice President and
Executive Publisher
Robert Ipsen

Vice President and Publisher
Joseph B. Wikert

Acquisitions Editor
Debra Williams Cauley

Production Editor
Angela Smith

Copy Editor
Kim Cofer

Permissions Editor
Laura Moss

Media Development Specialist
Travis Silvers

Project Coordinator
Ryan Steffen

Graphics and Production Specialists
Karl Brandt

Amanda Carter

Lauren Goddard

Denny Hager

Joyce Haughey

Jennifer Heleine

Michael Kruzil

Heather Ryan

Mary Gillot Virgin

Quality Control Technician
Carl William Pierce

Proofreading and Indexing
TECHBOOKS Production Services

Foreword

As JavaScript’s creator, I would like to say a few words about where JavaScript has been,
where it is going, and how the book you’re holding will help you to make the most of the
language.

JavaScript was born out of a desire to let HTML authors write scripts directly in their docu-
ments. This may seem obvious now, but in the spring of 1995 it was novel and more than a lit-
tle at odds with both the conventional wisdom (that HTML should describe static document
structure only) and the Next Big Thing (Java applets, which were hyped as the one true way
to enliven and extend Web pages). Once I got past these contentions, JavaScript quickly
shaped up along the following lines:

4+ “Java-lite” syntax. Although the “natural language” syntax of HyperTalk was fresh in my
mind after a friend lent me The Complete HyperCard Handbook by some fellow named
Goodman, the Next Big Thing weighed heavier, especially in light of another goal: script-
ing Java applets. If the scripting language resembled Java, then those programmers who
made the jump from JavaScript to Java would welcome similarities in syntax. But insist-
ing on Java’s class and type declarations, or on a semicolon after each statement when a
line ending would do, were out of the question — scripting for most people is about writ-
ing short snippets of code, quickly and without fuss.

4+ Events for HTML elements. Buttons should have onClick event handlers. Documents load
and unload from windows, so windows should have onLoad and onUnload handlers.
Users and scripts submit forms: thus the onSubmit handler. Although not initially as flexi-
ble as HyperCard’s messages (whose handlers inspired the onEvent naming convention),
JavaScript events let HTML authors take control of user interaction from remote servers
and respond quickly to user gestures and browser actions. With the adoption of the W3C
DOM Level 2 event handling recommendations, JavaScript in modern browsers has fully
flexible control over events.

4+ Objects without classes. The Self programming language proved the notion of prototype-
based inheritance. For JavaScript, [wanted a single prototype per object (for simplicity
and efficiency), based by default on the function called using the new operator (for
consonance with Java). To avoid distinguishing constructors from methods from func-
tions, all functions receive the object naming them as the property that was called in
the parameter. Although prototypes didn’t appear until Navigator 3, they were prefigured
in Version 2 by quoted text being treated as an object (the Strong object prototype, to
which users could attach methods).

4 Generated HTML. Embedding JavaScript in HTML gave rise to a thought: Let the script
speak HTML, as if the emitted text and markup were loaded in place of the script itself.
The possibilities went beyond automating current or last-modified dates, to computing
whole trees of tables where all the repeated structure was rolled up in a scripted loop,
while the varying contents to be tabulated came in minimal fashion from JavaScript
objects forming a catalog or mini-database.

VI

Foreword

At first, [thought JavaScript would most often find use in validating input to HTML forms. But
before long, I was surprised to see how many Web designers devised compelling applications
by way of script-generated HTML and JavaScript objects. It became clear from user demon-
stration and feedback that Web designers sought to build significant applications quickly and
effectively with just a few images, HTML, and JavaScript. Eventually they demanded that the
browser support what is now known as “Dynamic HTML” (one fun link: http://www.
javascript-games.org/).

As legions of Web authors embraced the authoring power of JavaScript, they, in turn, demon-
strated the crucial advantages of a scripting environment over old-school application devel-
opment. Not only were the HTML and JavaScript languages comparatively easy to use, but
development did not require the programming expertise needed to light all pixels and handle
all events as in a big, traditional application.

The primacy of JavaScript on the Web today vindicates our early belief in the value of a
scripting language for HTML authors. By keeping the “pixel-lighting” bar low, HTML with
images has made Web designers out of millions of people. By keeping the “event-handling”
bar low, JavaScript has helped many thousands of those designers become programmers.
Perhaps the ultimate example of Web development’s convergence with application develop-
ment is the Mozilla browser, wherein all of the user-interface and even some custom widgets
and modular components are implemented entirely using JavaScript, Cascading Style Sheets
(CSS), custom XML-based markup languages, and images.

JavaScript is also a general language, useful apart from HTML and XML. It has been embedded
in servers, authoring tools, browser plug-ins, and other kinds of browsers (for such things as 3D
graphical worlds). Its international standard, ECMA-262 (ISO 16262), has advanced to a Third
Edition. But compared to languages such as Perl and even Java, it is still relatively young. Work
toward a Fourth Edition of the language, supporting optional types, classes, and versioning
facilities progresses within the ECMA technical committee (see the “JS2” proposal to the ECMA
technical committee documented at http://www.mozilla.org/js/language/js20/).

It is clear to me that JavaScript would not have survived without a creative, loyal, and patient
community of developers; I owe them each a huge debt of thanks. Those developers who
took up the beta releases of Navigator 2, and disseminated vital workarounds and feature
requests by e-mail and net-news, are the language’s godparents. Developer support and feed-
back continue to make JavaScript the eclectic, rambunctious success it is.

The book in your hands compiles thousands of those “developer miles” with the insight of an
expert guide and teacher. Danny didn’t know at the time how much inspiration I found in his
HyperCard book, but it was on my desk throughout the development of JavaScript in 1995.
His energy, compassion, and clear prose helped me keep the goal of “a language for all” in
mind. It is enormously gratifying to write the foreword to the fourth edition of this book,
which has earned so many “satisfied reader miles.”

I highly recommend Danny Goodman'’s JavaScript Bible to anyone who wants to learn JavaScript,
and especially to those HTML authors who've so far written only a few scripts or programs —
you're in for a lifetime of fun on the “scripting road” with a trusty guide at your side.

Brendan Eich
The Mozilla Organization (http://www.mozilla.org)

Preface

For over 20 years, | have written the books | wished had already been written to help me
learn or use a new technology. Whenever possible, I like to get in at the very beginning of
a new authoring or programming environment, feel the growing pains, and share with readers
the solutions to my struggles. This fifth edition of the JavaScript™ Bible represents knowledge
and experience accumulated over eight years of daily work in JavaScript and a constant moni-
toring of newsgroups for questions, problems, and challenges facing scripters at all levels.
My goal is to help you avoid the same frustration and head scratching I and others have
experienced through multiple generations of scriptable browsers.

While the earliest editions of this book focused on the then predominant Netscape Navigator
browser, the swing of the browser market share pendulum currently favors Microsoft Internet
Explorer on the Windows platform. But the more important trend is the Web developer commu-
nity’s demand for browser compliance with a growing body of industry standards. Potential con-
flicts arise when the dominant browser on the Internet does not fully support existing standards,
but instead provides proprietary alternatives. The job of a book claiming to be the “bible” is not
only to present both the standard and proprietary details when they diverge, but also to show
you how to write scripts that blend the two so that they work on as many browsers as possible.
Empowering you to design and write good scripts is my passion, regardless of browser. It’s true
that my bias is toward industry standards, but not to the exclusion of proprietary features that
may be necessary to get your content and scripting ideas flowing equally well on today’s and
tomorrow’s browsers.

Organization and Features of This Edition

Like the previous fourth and Gold editions of the JavaScript Bible, this fifth edition contains far
more information than can be printed and bound into a single volume. The complete contents
can be found in the electronic version of this book (in Adobe Acrobat form) on the CD-ROM
that accompanies the book. This new edition is structured in such a way as to supply the most
commonly needed information in its entirety in the printed portion of the book. Thus, numer-
ous complete code listings, which had been diverted to CD-ROM in the previous editions, are
now readily available in the printed pages. Content that you use to learn the fundamentals of
JavaScript and reference frequently are at your fingertips in the printed version, while chapters
with advanced content are in the searchable electronic version on the CD-ROM. Here are some
details about the book’s structure.

X

Preface

Part |

Part I of the book begins with a chapter that shows how JavaScript compares with Java and dis-
cusses its role within the rest of the World Wide Web. The Web browser and scripting world
have undergone significant changes since JavaScript first arrived on the scene. That’s why
Chapter 2 is devoted to addressing challenges facing scripters who must develop applications
for both single- and cross-platform browser audiences amid rapidly changing standards
efforts. Chapter 3 provides the first foray into JavaScript, where you get to write your first
practical script.

Part 1l

All of Part Il is handed over to a tutorial for newcomers to JavaScript. Nine lessons provide
you with a gradual path through browser internals, basic programming skills, and genuine
browser scripting with an emphasis on industry standards as supported by most of the
scriptable browsers in use today. Exercises follow at the end of each lesson to help reinforce
what you just learned and challenge you to use your new knowledge (you’ll find answers to
the exercises in Appendix C). The goal of the tutorial is to equip you with sufficient experi-
ence to start scripting simple pages right away while making it easier for you to understand
the in-depth discussions and examples in the rest of the book. By the end of the final lesson,
you'll know how to create the mouse-rollover image swapping effect that is popular in a lot of
Web pages these days, and modify the content of a Web page dynamically.

Part 111

Part III, the largest section of the book, provides in-depth coverage of the document object
models as implemented in today’s browsers. In all reference chapters, a compatibility chart
indicates the browser version that supports each object and object feature. One chapter in
particular, Chapter 15, contains reference material that is shared by most of the remaining
chapters of Part IIl. To help you refer back to Chapter 15 from other chapters, a dark tab
along the outside edge of the page shows you at a glance where the chapter is located.
Additional navigation aids include guide words near the tops of most pages to indicate which
object and object feature is covered on the page.

Part IV

Reference information for the core JavaScript language fills Part IV. As with reference chapters
of Part III, the JavaScript chapters display browser compatibility charts for every JavaScript
language term. Guide words near the tops of pages help you find a particular term quickly.

Part V

Several appendixes at the end of the book provide helpful reference information. These
resources include a JavaScript and Browser Objects Quick Reference in Appendix A, a list of
JavaScript reserved words in Appendix B, answers to Part II’s tutorial exercises in Appendix C,
and Internet resources in Appendix D. In Appendix E, you also find information on using the
CD-ROM that comes with this book, which includes numerous bonus chapters and examples.

Preface

CD-ROM

The CD-ROM is a gold mine of information. It begins with an Adobe Acrobat (PDF) version of
the entire contents of this fifth edition of the JavaScript Bible. This version includes not only
the unprinted advanced material from Parts IIl and IV, but also 23 bonus chapters covering:

4 Advanced DOM, XML, and JavaScript objects

4 Dynamic HTML, data validation, plug-ins, and security

4+ Techniques for developing and debugging professional Web-based applications
4 Nine full-fledged JavaScript real-world applications

Another treasure trove on the CD-ROM is the Listings folder where you'll find over 300 ready-
to-run HTML documents that serve as examples of most of the document object model and
JavaScript vocabulary words in Parts Il and IV. All of the bonus chapter example listings are
also included. You can run these examples with your JavaScript-enabled browser, but be sure
to use the index.html page in the Listings folder as a gateway to running the listings. This
page shows you the browsers that are compatible with each example listing. I could have
provided you with humorous little sample code fragments out of context, but I think that
seeing full-fledged HTML documents (simple though they may be) for employing these con-
cepts is important. | intentionally omitted the script listings from the tutorial part (Part II) of
this book to encourage you to type the scripts. I believe you learn a lot, even by aping listings
from the book, as you get used to the rhythms of typing scripts in documents.

Be sure to check out the Chapter 13 listing file called evaluator.html. Many segments of
Parts Ill and IV invite you to try out an object model or language feature with the help of an
interactive workbench, called The Evaluator — a JavaScript Bible exclusive! You see instant
results and quickly learn how the feature works.

The Quick Reference from Appendix A is in PDF format on the CD-ROM for you to print out
and assemble as a handy reference, if desired. Adobe Acrobat Reader is also included on the
CD-ROM, in case you don’t already have it, so that you can read both of these PDF files.

Prerequisites to Learning JavaScript

Although this book doesn’t demand that you have a great deal of programming experience
behind you, the more Web pages you've created with HTML, the easier you will find it to
understand how JavaScript interacts with the familiar elements you normally place in your
pages. Occasionally, you will need to modify HTML tags to take advantage of scripting. If you
are familiar with those tags already, the JavaScript enhancements will be simple to digest.

Forms and their control elements (text fields, buttons, and selection lists) play an especially
important role in much of typical JavaScript work. You should be familiar with these elements
and their HTML attributes. Fortunately, you won’t need to know about server scripting or
passing information from a form to a server. The focus here is on client-side scripting, which
operates independently of the server after the JavaScript-enhanced HTML page is fully
loaded into the browser.

Xii

Preface

The basic vocabulary of the current HTML standard should be part of your working knowl-

edge. You should also be familiar with some of the latest document markup standards, such
as XHTML and Cascading Style Sheets (CSS). You don’t need to be an expert, by any means.
Web searches for these terms will uncover numerous tutorials on the subjects.

If you've never programmed before

To someone who learned HTML from a slim guidebook a few years ago, the size of this book
must be daunting. JavaScript may not be the easiest language in the world to learn, but
believe me, it’s a far cry from having to learn a full programming language, such as Java or C.
Unlike developing a full-fledged monolithic application (such as the productivity programs
you buy in the stores), JavaScript lets you experiment by writing small snippets of program
code to accomplish big things. The JavaScript interpreter built into every scriptable browser
does a great deal of the technical work for you.

Programming, at its most basic level, consists of nothing more than writing a series of instruc-
tions for the computer to follow. We humans follow instructions all the time, even if we don’t
realize it. Traveling to a friend’s house is a sequence of small instructions: Go three blocks
that way; turn left here; turn right there. Amid these instructions are some decisions that we
have to make: If the stoplight is red, then stop; if the light is green, then go; if the light is yel-
low, then floor it. Occasionally, we must repeat some operations several times (kind of like
having to go around the block until a parking space opens up). A computer program not only
contains the main sequence of steps, but it also anticipates what decisions or repetitions may
be needed to accomplish the program’s goal (such as how to handle the various states of a
stoplight or what to do if someone just stole the parking spot you were aiming for).

The initial hurdle of learning to program is becoming comfortable with the way a programming
language wants its words and numbers organized in these instructions. Such rules are called
syntax, the same as in a living language. Because computers generally are dumb electronic
hulks, they aren’t very forgiving if you don’t communicate with them in the specific language
they understand. When speaking to another human, you can flub a sentence’s syntax and still
have a good chance of the other person’s understanding you fully. Not so with computer pro-
gramming languages. If the syntax isn’t perfect (or at least within the language’s range of
knowledge that it can correct), the computer has the brazenness to tell you that you have
made a syntax error.

The best thing you can do is to just chalk up the syntax errors you receive as learning experi-
ences. Even experienced programmers make them. Every syntax error you get —and every
resolution of that error made by rewriting the wayward statement — adds to your knowledge
of the language.

If you've done a little programming before

Programming experience in a procedural language, such as BASIC, may almost be a hindrance
rather than a help to learning JavaScript. Although you may have an appreciation for preci-
sion in syntax, the overall concept of how a program fits into the world is probably radically
different from JavaScript. Part of this has to do with the typical tasks a script performs (car-
rying out a very specific task in response to user action within a Web page), but a large part
also has to do with the nature of object-oriented programming.

Preface

In a typical procedural program, the programmer is responsible for everything that appears
on the screen and everything that happens under the hood. When the program first runs, a
great deal of code is dedicated to setting up the visual environment. Perhaps the screen con-
tains several text entry fields or clickable buttons. To determine which button a user clicks,
the program examines the coordinates of the click and compares those coordinates against a
list of all button coordinates on the screen. Program execution then branches out to perform
the instructions reserved for clicking in that space.

Object-oriented programming is almost the inverse of that process. A button is considered an
object —something tangible. An object has properties, such as its label, size, alignment, and
so on. An object may also contain a script. At the same time, the system software and browser,
working together, can send a message to an object —depending on what the user does—to
trigger the script. For example, if a user clicks in a text entry field, the system/browser tells
the field that somebody has clicked there (that is, has set the focus to that field), giving the
field the task of deciding what to do about it. That’s where the script comes in. The script is
connected to the field, and it contains the instructions that the field carries out after the user
activates it. Another set of instructions may control what happens when the user types an
entry and tabs or clicks out of the field, thereby changing the content of the field.

Some of the scripts you write may seem to be procedural in construction: They contain a
simple list of instructions that are carried out in order. But when dealing with data from form
elements, these instructions work with the object-based nature of JavaScript. The form is an
object; each radio button or text field is an object as well. The script then acts on the prop-
erties of those objects to get some work done.

Making the transition from procedural to object-oriented programming may be the most diffi-
cult challenge for you. When [was first introduced to object-oriented programming a number of
years ago, [didn’t get it at first. But when the concept clicked —a long, pensive walk helped —
so many light bulbs went on inside my head that I thought [might glow in the dark. From then
on, object orientation seemed to be the only sensible way to program.

If you've programmed in C before

By borrowing syntax from Java (which, in turn, is derived from C and C++), JavaScript shares
many syntactical characteristics with C. Programmers familiar with C will feel right at home.
Operator symbols, conditional structures, and repeat loops follow very much in the C tradi-
tion. You will be less concerned about data types in JavaScript than you are in C. In JavaScript,
avariable is not restricted to any particular data type.

With so much of JavaScript’s syntax familiar to you, you will be able to concentrate on docu-
ment object model concepts, which may be entirely new to you. You will still need a good
grounding in HTML to put your expertise to work in JavaScript.

If you've programmed in Java before

Despite the similarity in their names, the two languages share only surface aspects: loop and
conditional constructions, C-like “dot” object references, curly braces for grouping state-
ments, several keywords, and a few other attributes. Variable declarations, however, are quite
different, because JavaScript is a loosely typed language. A variable can contain an integer
value in one statement and a string in the next (though I'm not saying that this is good style).
What Java refers to as methods, JavaScript calls methods (when associated with a predefined

X1l

XV

Preface

object) or functions (for scripter-defined actions). JavaScript methods and functions may
return values of any type without having to state the data type ahead of time.

Perhaps the most important aspects of Java to suppress when writing JavaScript are the
object-oriented notions of classes, inheritance, instantiation, and message passing. These
aspects are simply non-issues when scripting. At the same time, however, JavaScript’s design-
ers knew that you’d have some hard-to-break habits. For example, although JavaScript does
not require a semicolon at the end of each statement line, if you type one in your JavaScript
source code, the JavaScript interpreter won’t balk.

If you've written scripts (or macros) before

Experience with writing scripts in other authoring tools or macros in productivity programs
is helpful for grasping a number of JavaScript’s concepts. Perhaps the most important con-
cept is the idea of combining a handful of statements to perform a specific task on some data.
For example, you can write a macro in Microsoft Excel that performs a data transformation
on daily figures that come in from a corporate financial report on another computer. The
macro is built into the Macro menu, and you run it by choosing that menu item whenever a
new set of figures arrives.

Some modern programming environments, such as Visual Basic, resemble scripting environ-
ments in some ways. They present the programmer with an interface builder, which does
most of the work or displaying screen objects with which the user will interact. A big part of
the programmer’s job is to write little bits of code that are executed when a user interacts
with those objects. A great deal of the scripting you will do with JavaScript matches that pat-
tern exactly. In fact, those environments resemble the scriptable browser environment in
another way: They provide a finite set of predefined objects that have fixed sets of properties
and behaviors. This predictability makes learning the entire environment and planning an
application easier to accomplish.

Formatting and Naming Conventions

The script listings and words in this book are presented in a monospace font to set them
apart from the rest of the text. Because of restrictions in page width, lines of script listings
may, from time to time, break unnaturally. In such cases, the remainder of the script appears
in the following line, flush with the left margin of the listing, just as they would appear in a
text editor with word wrapping turned on. If these line breaks cause you problems when you
type a script listing into a document yourself, I encourage you to access the corresponding
listing on the CD-ROM to see how it should look when you type it.

As soon as you reach Part III of this book, you won't likely go for more than a page before read-
ing about an object model or language feature that requires a specific minimum version of one
browser or another. To make it easier to spot in the text when a particular browser and browser
version is required, most browser references consist of an abbreviation and a version number.
For example, WinlE5 means Internet Explorer 5 for Windows; NN6 means Netscape Navigator 6
for any operating system; Moz stands for the relatively new browsers now under the steward-
ship of The Mozilla Foundation; and Safari is Apple’s own browser for MacOS X. If a feature is
introduced with a particular version of browser and is supported in subsequent versions, a
plus symbol (+) follows the number. For example, a feature marked WinlE5.5+ indicates that
Internet Explorer 5.5 for Windows is required at a minimum, but the feature is also available in

AI ote

Preface

WinlE6 and probably future WinlE versions. Occasionally, a feature or some highlighted behav-
ior applies to only one browser. For example, a feature marked NN4 means that it works only in
Netscape Navigator 4.x. A minus sign (e.g., WinlE-) means that the browser does not support
the item being discussed.

The format of HTML and code listings in this edition has changed radically from previous
editions. To emphasize the Web developer community’s trend toward the latest Web stan-
dards, the HTML examples in this edition follow XHTML coding conventions, which dictate
all-lowercase tag and attribute names, as well as self-closing tags that do not act as containers
(such as the XHTML
 tag in place of the HTML
 tag). Another pervasive style change
is the explicit inclusion of semicolons at the end of JavaScript statement lines. Semicolons are
still optional in the language, but I have changed my personal coding style, as demonstrated
throughout this book.

Tip Caution Note, Tip, and Caution icons occasionally appear in the
preti : book to flag important points.

(S

XV

Acknowledgments

Bringing this 1750-page edition up to the current state of the art was a task greater than
one author could possibly handle in a timely manner. While I busied myself with updat-
ing the tutorial and validating terminology and listings with the latest browsers, | was fortu-
nate to have the tireless help of Michael Morrison — a first-rate author in his own right —who
carefully pruned obsolete content, modernized tens of thousands of lines of code, restored
linearity to the previous edition’s maze, and kept the project on track at a breakneck pace.
David Wall, a long-time JavaScript Bible helper, thankfully contributed his time and expertise
to this effort as well. Many thanks to the hard-working folks at Wiley Publishing: Debra
Williams Cauley, Mary Beth Wakefield, Angela Smith. Above all, I want to thank the many
readers of the earlier editions of this book for investing in this ongoing effort. I wish I had the
space here to acknowledge by name so many who have sent e-mail notes and suggestions:
Your input has been most welcome and greatly appreciated.

Contents at a Glance

Foreword e vii
Preface e ix
Acknowledgments xvii
PART I: Getting Started with JavaScript 1
Chapter 1: JavaScript’s Role in the World Wide Web and Beyond 3
Chapter 2: Authoring Challenges Amid the Browser Wars 9
Chapter 3: Your First JavaScript Script 17
PART II: JavaScript Tutorial 25
Chapter 4: Browser and Document Objects 27
Chapter 5: Scripts and HTML Documents 47
Chapter 6: Programming Fundamentals, PartI 59
Chapter 7: Programming Fundamentals, PartI. 69
Chapter 8: Window and Document Objects 83
Chapter 9: Forms and Form Elements 97
Chapter 10: Strings, Math,and Dates 111
Chapter 11: Scripting Frames and Multiple Windows 121
Chapter 12: Images and Dynamic HTML 131

PART lll: Document Objects Reference 141

Chapter 13: JavaScript Essentials 143
Chapter 14: Document Object Model Essentials 163
Chapter 15: Generic HTML Element Objects 201
Chapter 16: Window and Frame Objects 359
Chapter 17: Location and History Objects 485
Chapter 18: The Document and Body Objects 509
Chapter 19: Link and Anchor Objects 591
Chapter 20: Image, Area, and Map Objects 601
Chapter 21: The Form and Related Objects 629
Chapter 22: Button Objects e 651
Chapter 23: Text-Related Form Objects 673
Chapter 24: Select, Option, and FileUpload Objects 695
Chapter 25: Event Objects e 719

Chapter 26: Style Sheet and Style Objects 793

PART IV: JavaScript Core Language Reference 847

Chapter 27: The String Object e 849
Chapter 28: The Math, Number, and Boolean Objects 877
Chapter 29: The Date Object e 891
Chapter 30: The Array Object e e 909
Chapter 31: Control Structures and Exception Handling 931
Chapter 32: JavaScript Operators e 961
Chapter 33: Functions and Custom Objects 981
Chapter 34: Global Functions and Statements 1009
Chapter 35: Body Text Objects it 1023
PARTV:Appendixesciiiiirnrnnnnnnnrnnss 1105
Appendix A: JavaScript and Browser Object Quick Reference 1107
Appendix B: JavaScript ReservedWords L L Lo 1121
Appendix C: Answers to Tutorial Exercises 1123
Appendix D: JavaScript and DOM Internet Resources 1139
Appendix E: What’'sonthe CD-ROM 1143
Index e 1147
End-User License Agreement e 1243
PARTVI: Bonus Chapters On the CD-ROM

Chapter 36: HTML Directive Objects

Chapter 37: Table and List Objects

Chapter 38: The Navigator and Other Environment Objects
Chapter 39: Positioned Objects

Chapter 40: Embedded Objects

Chapter 41: XML Objects

Chapter 42: The Regular Expression and RegExp Objects
Chapter 43: Data-Entry Validation

Chapter 44: Scripting Java Applets and Plug-Ins

Chapter 45: Debugging Scripts

Chapter 46: Security and Netscape Signed Scripts
Chapter 47: Cross-Browser Dynamic HTML Issues
Chapter 48: Internet Explorer Behaviors

Chapter 49: Application: Tables and Calendars

Chapter 50: Application
Chapter 51: Application
Chapter 52: Application
Chapter 53: Application
Chapter 54: Application
Chapter 55: Application
Chapter 56: Application
Chapter 57: Application

: A Lookup Table

: A “Poor Man’s” Order Form

: Outline-Style Table of Contents

: Calculations and Graphics

: Intelligent “Updated” Flags

: Decision Helper

: Cross-Browser DHTML Map Puzzle
: Transforming XML Data

Contents

Foreword e vii
Preface X
Acknowledgments Xvii
Part I: Getting Started with JavaScript 1
Chapter 1: JavaScript's Role in the World Wide Web and Beyond 3
Competing for Web Traffic, 4
Other Web Technologies 4
JavaScript: A Language for All L L 6
JavaScript: The Right Tool for the RightJob 8
Chapter 2: Authoring Challenges Amid the BrowserWars 9
Leapfrog e 9
Duckand Cover 10
Compatibility Issues Today, 11
Developing a Scripting Strategy 14

Chapter 3: Your First JavaScript Script17

The Software Tools 17
Setting Up Your Authoring Environment 18

What Your First Script WillDo 20
Entering Your First Script 21
Examining the Script L 22
HaveSomeFun 24
Part II: JavaScript Tutorial 25
Chapter 4: Browser and Document Objects27
Scripts RuntheShow L 27
JavaScriptin Action L 28

The Document Object Model 34
WhenaDocument Loads 36
Object References e 39

Node Terminology e 41

What Defines an Object? e 42

Exercises e 46

XXIi

Contents

Chapter 5: Scripts and HTML Documents 47

Where Scripts GoinDocuments 47
JavaScript Statements 51
When Script Statements Execute L. 51
Viewing Script Errors 54
Scripting versus Programming, 55
EXercises 56
Chapter 6: Programming Fundamentals, Part1 59
What Language Is This? 59
Working with Information 59
Variables 60
Expressions and Evaluation 62
Data Type COnversionso i ittt it et e e 64
OPerators i e e e e 66
Exercises 67

Decisionsand Loops 69
Control Structures e 70
About Repeat Loops 71
Functions e 72
About Curly Braces 76
AXrays . . . oo e e 76
Exercises 80

Top-Level Objects e 83
The window Object e 84
Window Properties and Methods 87
Thelocation Object e 89
The navigator Object e 90
The document Object e 90
Exercises 95
Chapter 9: Forms and FormElements 97
The form Object e e 97
Form Controls as Objects 100
The Button Object e 102
The Checkbox Object 102
The Radio Object e 103
The select Object e 104
Passing Form Data and Elements to Functions 106
Submitting and Prevalidating Forms 108

Exercises e 110

Contents XX

Chapter 10: Strings, Math,andDates 111

Core Language Objects e 111
String Objects e 111
The Math Object e e e 115
The Date Object 116
Date Calculations e 117
Exercises e 119
Chapter 11: Scripting Frames and Multiple Windows 121
Frames: Parents and Children 121
References among Family Members 123
Frame Scripting Tips e 125
About iframe Elements 125
Controlling Multiple Frames —NavigationBars 126
References for Multiple Windows 128
Exercises e 130

Chapter 12: Images and DynamicHTML 131

TheImage Object e 131
The javascript: Pseudo-URL 137
Popular Dynamic HTML Techniques 137
Exercises e 140

Chapter 13: JavaScript Essentials 143
JavaScript Versions 143
Core Language Standard —ECMAScript 144
Embedding Scripts in HTML Documents 144
Browser Version Detection L 148
Designing for Compatibility 155
Language Essentials for Experienced Programmers 158
Onward to Object Models 161
Chapter 14: Document Object Model Essentials 163
The Object Model Hierarchy 163
How Document Objects AreBorn 165
Object Properties e 166
Object Methods e 167
Object EventHandlers 168
Object Model Smorgasbord 169
Basic Object Model e 170
Basic Object Model PlusImages 171
Navigator 4-Only Extensions 171
Internet Explorer 4+ Extensions 0oL, 173
Internet Explorer 5+ Extensions L L L oL, 177

The W3CDOM e 177

XXIV

Contents

Mixing Object Models e 192
Standards Compatibility Modes (DOCTYPE Switching) 198
Whereto GofromHere L 199
Chapter 15: Generic HTML Element Objects 201
Generic Objects e e e 201
Chapter 16: Window and Frame Objects 359
Window Terminology i e 359
Frames 359
window Object 366
frame Element Object 462
frameset Element Object 468
iframe Element Object 474
popup Object L 480

Chapter 17: Location and History Objects 485

location Object e 485
history Object e 501
Chapter 18: The Document and Body Objects 509
document Object e 510
body Element Object 576
TreeWalker Object e 586
Chapter 19: Link and Anchor Objects 591
Anchor, Link, and a Element Objects 592
Chapter 20: Image, Area, and Map Objects 601
Image and img Element Objects 601
area Element Object 621
map Element Object 624
Chapter 21: The Form and Related Objects 629
The Form in the Object Hierarchy 629
form Object 630
fieldset and legend Element Objects 646
label Element Object 648
Chapter 22: ButtonObjects 651
The button Element Object, and the Button, Submit, and Reset Input Objects . . . 651
checkbox Input Object e 656
radio Input Object 663

image Input Object 669

Contents XXV

Chapter 23: Text-Related Form Objects673

Text Input Object e 674
password Input Object 689
hidden Input Object 689
textarea Element Object 690
Chapter 24: Select, Option, and FileUpload Objects 695
select Element Object e 695
option Element Object 713
optgroup Element Object 714
file Input Element Object 717
Chapter 25: EventObjects out. 719
Why “Events”™? e 719
Event Propagation 721
Referencing the eventobject oL 740
event Object Compatibility 741
Dueling Event Models 742
Event Types e 745
NN4 event Object e 747
[E4+ event Object e 753
NN6+/Moz/Safari event Object 773
Chapter 26: Style Sheet and Style Objects 793
Making Sense of the Object Names 794
Imported Stylesheets 795
Reading Style Properties 795
style Element Object e 796
styleSheet Object 798
cssRuleand rule Objects 807
currentStyle , runtimeStyle , and style Objects 810
filter Object e 837

Part IV: JavaScript Core Language Reference

Chapter 27: The StringObject 849

String and Number Data Types 849
String Object e 851
String Utility Functions 873
URL String Encoding and Decoding 876
Chapter 28: The Math, Number, and Boolean Objects 877
Numbers in JavaScript 877
Math Object e e 883
Number Object e e 886

Boolean Object e 890

XX\/i Contents

Chapter 29: The Date Object891

Time Zonesand GMT 891
The Date Object e e e 892
Validating Date EntriesinForms Lo . 904
Chapter 30: The Array Object 909
StructuredData 909
Creating an Empty Array e 910
Populatingan Array 911
JavaScript Array Creation Enhancements 911
Deleting Array Entries 912
Parallel Arrays e 912
Multidimensional Arrays e 915
SimulatingaHash Table 916
Array Object Properties 916
Array Object Methods 918

Chapter 31: Control Structures and Exception Handling 931

IfandIf.. .ElseDecisions 931
Conditional Expressions 936
Repeat (for) Loops 936
Thewhile Loop e 940
The do-while Loop e 942
Looping through Properties (for-in) 942
The with Statement 943
Labeled Statements 944
The switch Statement 946
ExceptionHandling 948
Using try-catch-finally Constructions 950
Throwing Exceptions e 953
Error Object e e 957

Chapter 32: JavaScript Operators96l

Operator Categories e 961
Comparison Operators v vttt e e e e e 962
Equality of Disparate Data Types 963
Connubial Operators e 965
Assignment Operators 967
Boolean Operators. 968
Bitwise Operators 972
Object Operators i i i e e e e 973
Miscellaneous Operators e 976
Operator Precedence 978
Chapter 33: Functions and Custom Objects 981
Function Object e 981
Function Application Notes 988

Custom Objects e 994

Contents XXV| |

Object-Oriented Concepts o ittt i e 1003
Object Object e 1006
Chapter 34: Global Functions and Statements 1009
Functions 1010
Statements L e 1016
Chapter 35: Body TextObjects 1023
blockquote and q Element Objects 1023

br Element Object. 1024

font Element Object. 1025
hl..h6 Element Objects 1028

hr Element Object. 1029

label Element Object 1033
marquee Element Object. 1034
Methods e 1038
EventHandlers e 1039
Range Object. e 1039
selection Object. e 1061

Text and TextNode Objects 1068
TextRange Object e 1074
TextRectangle Object. 1101
Part V: Appendixes 1105
Appendix A: JavaScript and Browser Object Quick Reference 1107
Appendix B: JavaScript ReservedWords 1121
Appendix C: Answers to Tutorial Exercises 1123
Appendix D: JavaScript and DOM Internet Resources 1139
Appendix E: Whatsonthe CD-ROM 1143
INdeX. . . .o 1147
End-User License Agreementt 1243

Part VI: Bonus Chapters On the CD-ROM

Chapter 36: HTML Directive Objects

Chapter 37: Table and List Objects

Contents

Chapter 38:
Chapter 39:
Chapter 40:
Chapter 41:
Chapter 42:
Chapter 43:
Chapter 44:
Chapter 45:
Chapter 46:
Chapter 47:
Chapter 48:
Chapter 49:
Chapter 50:
Chapter 51:
Chapter 52:
Chapter 53:
Chapter 54:
Chapter 55:
Chapter 56:

Chapter 57:

The Navigator and Other Environment Objects
Positioned Objects

Embedded Objects

XML Objects

The Regular Expression and RegExp Objects
Data-Entry Validation

Scripting Java Applets and Plug-Ins
Debugging Scripts

Security and Netscape Signed Scripts
Cross-Browser Dynamic HTML Issues

Internet Explorer Behaviors

Application: Tables and Calendars
Application: A Lookup Table
Application: A “Poor Man’s” Order Form
Application: Outline-Style Table of Contents
Application: Calculations and Graphics
Application: Intelligent “Updated” Flags
Application: Decision Helper
Application: Cross-Browser DHTML Map Puzzle

Application: Transforming XML Data

Getting Started
with JavaScript

YR TR SRS
In This Part

Chapter 1
JavaScript’s Role in the
World Wide Web and
Beyond

Chapter 2
Authoring Challenges
Amid the Browser Wars

Chapter 3
Your First JavaScript
Script

+ 0+ o+

JavaScript’'s Role
in the World Wide
Web and Beyond

M any of the technologies that make the World Wide Web possi-
ble have far exceeded their original goals. Envisioned at the
outset as a medium for publishing static text and image content
across a network, the Web is forever being probed, pushed, and
pulled by content authors. By taking for granted so much of the
“dirty work” of conveying the bits between server and client comput-
ers, content developers and programmers dream of exploiting that
connection to generate new user experiences and practical applica-
tions. It’s not uncommon for a developer community to take owner-
ship of a technology and mold it to do new and exciting things. But
with so many Web technologies —especially browser programming
with JavaScript — being within reach of everyday folks, we have wit-
nessed an unprecedented explosion in turning the World Wide Web
from a bland publishing medium into a highly interactive, operating
system—-agnostic authoring platform.

The JavaScript language, working in tandem with related browser fea-
tures, is a Web-enhancing technology. When employed on the client
computer, the language can help turn a static page of content into an
engaging, interactive, and intelligent experience. Applications can be
as subtle as welcoming a site’s visitor with the greeting “Good morn-
ing!” when it is morning in the client computer’s time zone —even
though it is dinnertime where the server is located. Or applications
can be much more obvious, such as delivering the content of a slide
show in a one-page download while JavaScript controls the sequence
of hiding, showing, and “flying slide” transitions while navigating
through the presentation.

Of course, JavaScript is not the only technology that can give life to
drab Web content. Therefore, it is important to understand where
JavaScript fits within the array of standards, tools, and other tech-
nologies at your disposal. The alternative technologies described in
this chapter are HTML, Cascading Style Sheets (CSS), server pro-
grams, and plug-ins. In most cases, JavaScript can work side by side
with these other technologies, even though the hype around some
make them sound like one-stop shopping places for all your interac-
tive needs. That’s rarely the case. Finally, you learn about the origins
of JavaScript and what role it plays in today’s advanced Web
browsers.

CHAPTER

+ 0+ o+
In This Chapter

How JavaScript blends
with other Web-

authoring technologies
The history of JavaScript

What kinds of jobs you
should and should not
entrust fo JavaScript

¢+ 4+ o+

4

Part | + Getting Started with JavaScript

Competing for Web Traffic

Web page publishers revel in logging as many visits to their sites as possible. Regardless of
the questionable accuracy of Web page hit counts, a site consistently logging 10,000 dubious
hits per week is clearly far more popular than one with 1,000 dubious hits per week. Even if
the precise number is unknown, relative popularity is a valuable measure. Another useful
number is how many links from outside pages lead to a site. A popular site will have many
other sites pointing to it— a key to earning high visibility in Web searches.

Encouraging people to visit a site frequently is the Holy Grail of Web publishing. Competition
for viewers is enormous. Not only is the Web like a fifty million-channel television, but the
Web competes for viewers’ attention with all kinds of computer-generated information. That
includes anything that appears onscreen as interactive multimedia.

Users of entertainment programs, multimedia encyclopedias, and other colorful, engaging, and
mouse finger-numbing actions are accustomed to high-quality presentations. Frequently, these
programs sport first-rate graphics, animation, live-action video, and synchronized sound. In
contrast, the lowest common denominator Web page has little in the way of razzle-dazzle.
Even with the help of Dynamic HTML and stylesheets, the layout of pictures and text is highly
constrained compared with the kinds of desktop publishing documents you see all the time.
Regardless of the quality of its content, an unscripted, vanilla HTML document is flat. At best,
interaction is limited to whatever navigation the author offers in the way of hypertext links

or forms whose filled-in content magically disappears into the Web site’s server.

Other Web Technologies

With so many ways to spice up Web sites and pages, you can count on competitors for your
site’s visitors to do their darndest to make their sites more engaging than yours. Unless you
are the sole purveyor of information that is in high demand, you continually must devise
ways to keep your visitors coming back and entice new ones. If you design for an intranet,
your competition is the drive for improved productivity by colleagues who use the internal
Web sites for getting their jobs done.

These are all excellent reasons why you should care about using one or more Web technolo-
gies to raise your pages above the noise. Let’s look at the major technologies you should
know about.

Hypertext Markup Language (HTML and XHTML)

As an outgrowth of SGML (Standard Generalized Markup Language), HTML is generally viewed
as nothing more than a document formatting, or tagging, language. The tags (inside <> delim-
iter characters) instruct a viewer program (the browser or, more generically, the clienf) how
to display chunks of text or images.

Relegating HTML to the category of a tagging language does disservice not only to the effort
that goes into fashioning a first-rate Web page, but also to the way users interact with the
pages. To my way of thinking, any collection of commands and other syntax that directs the
way users interact with digital information is programming. With HTML, a Web page author
controls the user experience with the content just as the engineers who program Microsoft
Excel craft the way users interact with spreadsheet content and functions.

Version 4.0 and later of the published HTML standards endeavor to define the purpose of HTML
as assigning context to content, leaving the appearance to a separate standard for stylesheets.
In other words, it’s not HTML'’s role to signify that some text is italic, but rather to signify why

Chapter 1 4 JavaScript's Role in the World Wide Web and Beyond

it is italic. For example, you would tag a chunk of text that conveys emphasis (via the
tag) regardless of how the stylesheet or browser sets the appearance of that emphasized text.

XHTML is a more recent adaptation of HTML that adheres to stylistic conventions established
by the XML (eXtensible Markup Language) standard. No new tags come with XHTML, but it
reinforces the notion of tagging to denote a document’s structure and content.

Cascading Style Sheets (CSS)

Specifying the look and feel of a Web page via stylesheets is a major trend taking over the
modern Web. The basic idea is that given a document’s structure spelled out by its HTML or
XHTML, a stylesheet defines the layout, colors, fonts, and other visual characteristics to pre-
sent the content. Applying a different set of CSS definitions to the same document can make
it look entirely different, even though the words and images are the same.

Mastery of the fine points of CSS takes time and experimentation, but the results are worth
the effort. The days of using HTML tables and transparent “spacer” images to generate elabo-
rate multicolumn layouts are on the wane. Every Web developer should have a solid ground-
ing in CSS.

Server scripting

Web sites that rely on database access or change their content very frequently incorporate
programming on the server that generates the HTML output for browsers and/or processes
forms that site visitors fill out on the page. Even submissions from a simple login or search
form ultimately trigger some server process that sends the results to your browser. Server
programming takes on many guises, the names of which you may recognize from your surfing
through Web development sites. PHP, ASP, .Net, JSP, and Coldfusion are among the most pop-
ular. Associated programming languages include Perl, Python, Java, C++, C#, Visual Basic,
and even server-side JavaScript in some environments.

Whatever language you use, the job definitely requires the Web page author to be in control
of the server, including whatever back-end programs (such as databases) are needed to sup-
ply results or massage the information coming from the user. Even with the new, server-based
Web site design tools available, server scripting often is a task that a content-oriented HTML
author will need to hand off to a more experienced programmer.

As powerful and useful as server scripting can be, it does a poor job of facilitating interactiv-
ity in a Web page. Without the help of browser scripting, each change to a page must be pro-
cessed on the server, causing delays for the visitor and an extra burden on the server for
simple tasks. This wastes desktop processing horsepower, especially if the process running
on the server doesn’t need to access big databases or other external computers.

Of helpers and plug-ins

In the early days of the World Wide Web, a browser needed to present only a few kinds of
data before a user’s eyes. The power to render text (tagged with HTML) and images (in popu-
lar formats such as GIF and JPEG) was built into browsers intended for desktop operating sys-
tems. Not wanting to be limited by those data types, developers worked hard to extend
browsers so that data in other formats could be rendered on the client computer. It was
unlikely, however, that a browser would ever be built that could download and render, say,
any of several sound file formats.

One way to solve the problem was to allow the browser, upon recognizing an incoming file
of a particular type, to launch a separate application on the client machine to render the

6 Part | + Getting Started with JavaScript

content. As long as this helper application was installed on the client computer (and the asso-
ciation with the helper program set in the browser’s preferences), the browser would launch
the program and send the incoming file to that program. Thus, you might have one helper
application for a MIDI sound file and another for an animation file.

Beginning with Netscape Navigator 2 in early 1996, software plug-ins for browsers enabled
developers to extend the capabilities of the browser without having to modify the browser.
Unlike a helper application, a plug-in can enable external content to blend into the document
seamlessly.

The most common plug-ins are those that facilitate the playback of audio and video from the
server. Audio may include music tracks that play in the background while visiting a page or
live (streaming) audio, similar to a radio station. Video and animation can operate in a space
on the page when played through a plug-in that knows how to process such data.

Today’s browsers tend to ship with plug-ins that decode the most common sound file types.
Developers of plug-ins for Internet Explorer for the Windows operating system commonly
implement plug-ins as ActiveX controls — a distinction that is important to the underpinnings
of the operating system but not to the user.

Plug-ins and helpers are valuable for more than just audio and video playback. A popular
helper application is the Adobe Acrobat Reader, which displays Acrobat files that are format-
ted just as if they were being printed. But for interactivity, developers today frequently rely
on Macromedia Corporation’s Flash plug-in. Created using the Macromedia Flash authoring
environment, a Flash document can have active clickable areas and draggable elements.
Some authors even simulate artistic video games and animated stories in Flash. A browser
equipped with the Flash plug-in displays the content in a rectangular area embedded within
the browser page.

One potential downside for authoring interactive content in Flash or similar environments is
that if the user does not have the correct plug-in version installed, it can take some time to
download the plug-in (if the user even wants to bother). Moreover, once the plug-in is
installed, highly graphic and interactive content can take longer to download to the client
(especially on a dial-up connection) than some users are willing to wait. This is one of those
situations in which you must balance your creative palette with the user’s desire for your
interactive content.

Another client-side technology — the Java applet —was popular for a while in the late 1990s
but has fallen out of favor for a variety of reasons (some technical, some corporate-political).
But this has not diminished the use of Java as a language for server and even cellular tele-
phone programming, extending well beyond the scope of the language’s founding company,
Sun Microsystems.

JavaScript: A Language for All

Sun’s Java language is derived from C and C++, but it is a distinct language. Its main audience
is the experienced programmer. That leaves out many Web page authors. | was dismayed at
this situation when I first read about Java’s preliminary specifications in 1995. I would have
preferred a language that casual programmers and scripters who were comfortable with
authoring tools, such as Apple’s once-formidable HyperCard and Microsoft’s Visual Basic,
could adopt quickly. As these accessible development platforms have shown, nonprofes-
sional authors can dream up many creative applications, often for very specific tasks that no
professional programmer would have the inclination to work on. Personal needs often drive
development in the classroom, office, den, or garage. But Java was not going to be that kind
of inclusive language.

Chapter 1 4 JavaScript's Role in the World Wide Web and Beyond

My spirits lifted several months later, in November 1995, when | heard of a scripting language
project brewing at Netscape Communications, Inc. Initially born under the name LiveScript,
this language was developed in parallel with a new version of Netscape’s Web server soft-
ware. The language was to serve two purposes with the same syntax. One purpose was as a
scripting language that Web server administrators could use to manage the server and con-
nect its pages to other services, such as back-end databases and search engines for users
looking up information. Extending the “Live” brand name further, Netscape assigned the
name LiveWire to the database connectivity usage of LiveScript on the server.

On the client side —in HTML documents — authors could employ scripts written in this new
language to enhance Web pages in a number of ways. For example, an author could use
LiveScript to make sure that the user had filled in a required text field with an e-mail address
or credit card number. Instead of forcing the server or database to do the data validation
(requiring data exchanges between the client browser and the server), the user’s computer
handles all the calculation work — putting some of that otherwise wasted computing horse-
power to work. In essence, LiveScript could provide HTML-level interaction for the user.

LiveScript becomes JavaScript

In early December 1995, just prior to the formal release of Navigator 2, Netscape and Sun
Microsystems jointly announced that the scripting language thereafter would be known as
JavaScript. Though Netscape had several good marketing reasons for adopting this name,
the changeover may have contributed more confusion to both the Java and HTML scripting
worlds than anyone expected.

Before the announcement, the language was already related to Java in some ways. Many of
the basic syntax elements of the scripting language were reminiscent of the Java style. For
client-side scripting, the language was intended for very different purposes than Java—
essentially to function as a programming language integrated into HTML documents rather
than as a language for writing applets that occupy a fixed rectangular area on the page (and
that are oblivious to anything else on the page). Instead of Java’s full-blown programming
language vocabulary (and conceptually more difficult to learn object-oriented approach),
JavaScript had a small vocabulary and a more easily digestible programming model.

The true difficulty, it turned out, was making the distinction between Java and JavaScript
clear to the world. Many computer journalists made major blunders when they said or
implied that JavaScript provided a simpler way of building Java applets. To this day, some
new programmers believe JavaScript is synonymous with the Java language: They post Java
queries to JavaScript-specific Internet newsgroups and mailing lists.

The fact remains that client-side Java and JavaScript are more different than they are similar.
The two languages employ entirely different interpreter engines to execute their lines of code.

Enter Microsoft and others

Although the JavaScript language originated at Netscape, Microsoft acknowledged the poten-
tial power and popularity of the language by implementing it (under the JScript name) in
Internet Explorer 3. Even if Microsoft might prefer that the world use the VBScript (Visual
Basic Script) language that it provides in the Windows versions of IE, the fact that JavaScript
is available on more browsers and operating systems makes it the client-side scripter’s
choice for anyone who must design for a broad range of users.

With scripting firmly entrenched in the mainstream browsers from Microsoft and Netscape,
newer browser makers automatically provided support for JavaScript. Therefore, you can
count on fundamental scripting services in browsers such as Opera or the Apple Safari

8 Part | + Getting Started with JavaScript

browser (the latter built upon an Open Source browser called KHTML). Not that all browsers
work the same way in every detail — a significant challenge for client-side scripting that is
addressed throughout this book.

JavaScript: The Right Tool for the Right Job

Knowing how to match an authoring tool to a solution-building task is an important part of
being a well-rounded Web site author. A Web designer who ignores JavaScript is akin to a
plumber who bruises his knuckles by using pliers instead of the wrench from the bottom of
the toolbox.

By the same token, JavaScript won't fulfill every dream. The more you understand about
JavaScript’s intentions and limitations, the more likely you will be to turn to it immediately
when it is the proper tool. In particular, look to JavaScript for the following kinds of solutions:

4+ Getting your Web page to respond or react directly to user interaction with form ele-
ments (input fields, text areas, buttons, radio buttons, checkboxes, selection lists) and
hypertext links

4+ Distributing small collections of database-like information and providing a friendly
interface to that data

4+ Controlling multiple-frame navigation, plug-ins, or Java applets based on user choices
in the HTML document

4+ Preprocessing data on the client before submission to a server

4 Changing content and styles in modern browsers dynamically and instantly in response
to user interaction

At the same time, it is equally important to understand what JavaScript is not capable of
doing. Scripters waste many hours looking for ways of carrying out tasks for which JavaScript
was not designed. Most of the limitations are designed to protect visitors from invasions of
privacy or unauthorized access to their desktop computers. Therefore, unless a visitor uses a
modern browser and explicitly gives you permission to access protected parts of his or her
computer, JavaScript cannot surreptitiously perform any of the following actions:

4 Setting or retrieving the browser’s preferences settings, main window appearance fea-
tures, action buttons, and printing

4 Launching an application on the client computer

4+ Reading or writing files or directories on the client or server computer
4 Capturing live data streams from the server for retransmission

4+ Sending secret e-mails from Web site visitors to you

Web site authors are constantly seeking tools that will make their sites engaging (if not
“cool”) with the least amount of effort. This is particularly true when the task is in the hands
of people more comfortable with writing, graphic design, and page layout than with hard-core
programming. Not every Webmaster has legions of experienced programmers on hand to
whip up some special, custom enhancement for the site. Nor does every Web author have
control over the Web server that physically houses the collection of HTML and graphics files.
JavaScript brings programming power within reach of anyone familiar with HTML, even when
the server is a black box at the other end of a telephone line.

+ o+ 0+

CHAPTER

Authoring
Challenges Amid
the Browser Wars

¢+ 4+ o+

In This Chapter

How leapfrogging
browser developments

hurt Web developers

If you are starting to learn JavaScript at this point in the brief his-

tory of scriptable browsers, you have both a distinct advantage Separating the core
and disadvantage. The advantage is that you have the wonderful JavaScript language
capabilities of mature browser offerings from Microsoft, Netscape, from document objects
The Mozilla Foundation, Apple, and others at your bidding. The dis-
advantage is that you have not experienced the painful history of The importance of
authoring for older browser versions that were buggy and at times developing a cross-
incompatible with one another due to a lack of standards. You have browser strategy
yet to learn the anguish of carefully devising a scripted application
for the browser version you use only to have site visitors sending you + + + +

voluminous e-mail messages about how the page triggers all kinds of
script errors when run on a different browser brand, generation, or
operating system platform.

Welcome to the real world of scripting Web pages with JavaScript.
Several dynamics are at work to help make an author’s life difficult if
the audience for the application uses more than a single type of
browser. This chapter introduces you to these challenges before you
type your first word of JavaScript code. My fear is that the subjects I
raise may dissuade you from progressing further into JavaScript and
its powers. But as a developer myself —and as someone who has
been using JavaScript since the earliest days of its public prerelease
availability —I dare not sugarcoat the issues facing scripters today.
Instead, [want to make sure you have an appreciation of what lies
ahead to assist you in learning the language. I believe if you under-
stand the big picture of the browser-scripting world as it stands in
the year 2004, you will find it easier to target JavaScript usage in your
Web application development and be successful at it.

Leapfrog

Browser compatibility has been an issue for authors since the earli-
est days of the Web gold rush —long before JavaScript. Despite the
fact that browser developers and other interested parties voiced
their opinions during formative stages of standards development,
HTML authors could not produce a document that appeared the
same pixel by pixel on all client machines. It may have been one thing
to establish a set of standard tags for defining heading levels and line

10

Part | + Getting Started with JavaScript

breaks, but it was rare for the actual rendering of content inside those tags to look identical
on different brands of browsers on different operating systems.

Then, as the competitive world heated up—and Web browser development transformed
itself from a volunteer undertaking into profit-seeking businesses — creative people defined
new features and new tags that helped authors develop more flexible and interesting looking
pages. As happens a lot in any computer-related industry, the pace of commercial develop-
ment easily surpassed the studied progress of standards. A browser maker would build a new
HTML feature into a browser and only then propose that feature to the relevant standards
body. Web authors were using these features (sometimes for prerelease browser versions)
before the proposals were published for review.

When the deployment of content depends almost entirely on an interpretive engine on the
client computer receiving the data—the HTML engine in a browser, for example — authors
face an immediate problem. Unlike a standalone computer program that can extend and even
invent functionality and have it run on everyone’s computer (at least for a given operating
system), Web content providers must rely on the functionality built into the browser. This led
to questions such as, “If not all browsers coming to my site support a particular HTML fea-
ture, then should I apply newfangled HTML features for visitors only at the bleeding edge?”
and “If I do deploy the new features, what do I do for those with older browsers?”

Authors who developed pages in the earliest days of the Web wrestled with these questions
for many HTML features that we today take for granted. Tables and frames come to mind.
Eventually, the standards caught up with the proposed HTML extensions — but not without a
lot of author woe along the way.

Despite the current dominance of Microsoft’s Internet Explorer browser on the dominant
Windows operating system, the number of browsers that people use is not shrinking. Several
recent browsers, including the modern Netscape 7 and Firebird browsers, are based on an
Open Source browser called Mozilla. The Macintosh operating system now includes its own
Apple-branded browser, Safari (released in 2003). And the independent Opera browser also
has a home on some users’ computers. All of these non-Microsoft browser makers obviously
believe that they bring improvements to the world to justify their development — building
better mousetraps you might say.

Duck and Cover

Today’s browser wars are fought on different battlegrounds than in the early days of the Web.
The breadth and depth of established Web standards have substantially fattened the browser
applications —and books that developers read to exploit those standards for their content.
On the one hand, most developers clamor for deeper standards support in new browser ver-
sions. On the other hand, everyday users care little about standards. All they want is to have
an enjoyable time finding the information they seek on the Web. Most users are slow to
upgrade their browsers, holding out until their favorite sites start breaking in their ancient
browsers.

Industry standards don’t necessarily make the Web developer’s job any easier. For one thing,
the standards are unevenly implemented across the latest browsers. Some browsers go further
in their support than others. Then there are occasional differences in interpretation of vague
standards details. And sometimes the standards don’t provide any guidance in areas that are
vital to content developers. At times we are left to the whims of browser makers who fill the
gaps with proprietary features, in the hope that those features will become de facto standards.

As happens in war, civilian casualties mount when the big guns start shooting. The browser
battle lines shifted dramatically in only a few years. The huge market share territory once

Chapter 2 4 Authoring Challenges Amid the Browser Wars

under Netscape’s command now lies in Microsoft hands. The Netscape brand, itself, is fading
as a result of corporate dealings; but the spirit continues in the populist, Open Source Mozilla
effort. While a fair amount of authoring common ground exists between the latest versions of
today’s browsers, uneven implementation of the newest features causes the biggest problems
for authors wishing to deploy on all browsers. Trying to define the common denominator
may be the toughest part of the authoring job.

Compatibility Issues Today

Allow me to describe the current status of the compatibility situation among the top three
browser families: Microsoft’s Internet Explorer, browsers based on Mozilla, and Apple’s Safari.
The discussion in the next few sections intentionally does not get into specific scripting tech-
nology very deeply — some of you may know very little about programming at this point. In
many chapters throughout Parts Il and 1V, I offer scripting suggestions to accommodate a
variety of browsers.

Separating language from objects

Although early JavaScript authors initially treated client-side scripting as one environment
that permitted the programming of page elements, the scene has changed as the browsers
have matured. Today, a clear distinction exists between specifications for the core JavaScript
language and for the elements you script in a document (for example, buttons and fields in

a form).

On one level, this separation is a good thing. It means that one specification exists for basic
programming concepts and syntax, which could become the programming language in any
number of other environments. You can think of the core language as basic wiring. Once
you know how electric wires work, you can connect them to all kinds of electrical devices.
Similarly, JavaScript today is used to wire together elements in an HTML document.
Tomorrow, operating systems could use the core language to enable users to wire together
desktop applications that need to exchange information automatically.

At the ends of today’s JavaScript wires are the elements on the page. In programming jargon,
these items are known as document objects. By keeping the specifications for document
objects separate from the wires that connect them, you can use other kinds of wires (other
languages) to connect them. It’s like designing telephones that can work with any kind of
wire, including a type of wire that hasn’t been invented yet. Today the devices can work with
copper wire or fiber optic cable. You get a good picture of this separation in Internet Explorer,
whose set of document objects can be scripted with JavaScript or VBScript. They're the same
objects, just different wiring.

The separation of core language from document objects enables each concept to have its
own standards effort and development pace. But even with recommended standards for each
factor, each browser maker is free to extend the standards. Furthermore, authors may have to
expend more effort to devise one version of a page or script that plays on multiple browsers
unless the script adheres to a common denominator (or uses some other branching tech-
niques to let each browser run its own way).

Core language standard

Keeping track of JavaScript language versions requires a brief history lesson. The first ver-
sion of JavaScript (in Netscape Navigator 2) was Version 1.0, although that numbering was
not part of the language usage. JavaScript was JavaScript. Version numbering became an

11

12

Part | + Getting Started with JavaScript

issue when Navigator 3 was released. The version of JavaScript associated with that
Navigator version was JavaScript 1.1. The first appearance of the Navigator 4 generation
increased the language version one more notch with JavaScript 1.2.

Microsoft’s scripting effort contributes confusion for scripting newcomers. The first version
of Internet Explorer to include scripting was Internet Explorer 3. The timing of Internet
Explorer 3 was roughly coincidental to Navigator 3. But as scripters soon discovered,
Microsoft’s scripting effort was one generation behind. Microsoft did not license the
JavaScript name. As a result, the company called its language JScript. Even so, the HTML tag
attribute that lets you name the language of the script inside the tags could be either JScript
or JavaScript for Internet Explorer. Internet Explorer 3 could understand a JavaScript script
written for Navigator 2.

During this period of dominance by Navigator 3 and Internet Explorer 3, scripting newcomers
were often confused because they expected the scripting languages to be the same.
Unfortunately for the scripters, there were language features in JavaScript 1.1 that were not
available in the older JavaScript version in Internet Explorer 3. Microsoft improved JavaScript
in IE3 with an upgrade to the .dll file that gives IE its JavaScript syntax. However, it’s hard to
know which .dll is installed in any given visitor’s IE3. The situation smoothed out for Internet
Explorer 4. Its core language was essentially up to the level of JavaScript 1.2 as in early
releases of Navigator 4. Microsoft still officially called the language JScript. Almost all lan-
guage features that were new in Navigator 4 were understood when you loaded the scripts
into Internet Explorer 4.

While all of this jockeying for JavaScript versions was happening, Netscape, Microsoft, and
other concerned parties met to establish a core language standard. The standards body is a
Switzerland-based organization originally called the European Computer Manufacturer’s
Association and now known simply as ECMA (commonly pronounced ECK-ma). In mid-1997,
the first formal language specification was agreed on and published (ECMA-262). Due to
licensing issues with the JavaScript name, the body created a new name for the language:
ECMAScript.

With only minor and esoteric differences, this first version of ECMAScript was essentially the
same as JavaScript 1.1 found in Navigator 3. Both Navigator 4 and Internet Explorer 4 offi-
cially supported the ECMAScript standard. Moreover, as happens so often when commerce
meets standards bodies, both browsers went beyond the ECMAScript standard. Fortunately,
the common denominator of this extended core language is broad, lessening authoring
headaches on this front.

JavaScript version 1.3 was implemented in Netscape Navigator 4.06 through 4.7x. This lan-
guage version is also the one supported in IE 5, 5.5, and 6. A few new language features are
incorporated in JavaScript 1.5, as implemented in Mozilla-based browsers (including
Navigator 6 and later).

In practice, so many browsers in use today support all but a few leading-edge features of the
Mozilla browsers that JavaScript version numbers are mostly irrelevant. Other compatibility
issues with older browsers will likely get in your way before core language problems. The
time has come to forget about elaborate workarounds for inadequacies of the oldest
browsers.

Document object model

If prevalent browsers have been close to each other in core JavaScript language compatibil-
ity, nothing could be further from the truth when it comes to the document objects. Internet
Explorer 3 based its document object model (DOM) on that of Netscape Navigator 2, the same

Chapter 2 4 Authoring Challenges Amid the Browser Wars

browser level it used as a model for the core language. When Netscape added a couple of new
objects to the model in Navigator 3, the addition caused further headaches for neophyte
scripters who expected those objects to appear in Internet Explorer 3. Probably the most
commonly missed object in Internet Explorer 3 was the image object, which lets scripts swap
the image when a user rolls the cursor atop a graphic — mouse rollovers, they’re commonly
called.

In the Level 4 browsers, however, Internet Explorer’s document object model jumped way
ahead of the object model that Netscape implemented in Navigator 4. The two most revolu-
tionary aspects of IE4 were the ability to script virtually every element in an HTML document
and the instant reflow of a page when the content changed. This opened the way for HTML
content to be genuinely dynamic without requiring the browser to fetch a rearranged page
from the server. NN4 implemented only a small portion of this dynamism, without exposing
all elements to scripts or reflowing the page. It introduced a proprietary layering concept that
was abandoned in future Navigator versions. Inline content could not change in NN4 as it
could in [E4. Suffice it to say IE4 was an enviable implementation.

At the same time, a DOM standard was being negotiated under the auspices of the World Wide
Web Consortium (W3C). The hope among scripters was that once a standard was in place, it
would be easier to develop dynamic content for all browsers that supported the standard. The
resulting standard — the W3C DOM — formalized the notion of being able to script every ele-
ment on the page, as in [E4. But it also invented an entirely new object syntax that no browser
had used previously. The race was on for browsers to support the W3C DOM standards.

An arm of the Netscape company, called Mozilla.org, was formed to create an all-new browser
dedicated to supporting industry standards. The engine for the Mozilla browser became the
foundation for the all-new Navigator 6. It incorporated all of the W3C DOM Level 1 and a good
chunk of Level 2. Mozilla 1.01 became the basis for the Netscape 7 browser, while Netscape
7.1 was built on the Mozilla 1.4 generation. In the summer of 2003, Netscape’s parent com-
pany, AOL Time Warner, decided to end further Netscape-branded browser development. The
work on the underlying Mozilla browser, however, continues under an independent organiza-
tion called The Mozilla Foundation. Mozilla-branded browsers, and others using the same
engine, continue to be upgraded and released to the public. The Mozilla engine offers
arguably the most in-depth support for the W3C DOM Level 2 standard.

Even though Microsoft participated in the W3C DOM standards development, IE5 and 5.5
implemented only some of the W3C DOM standard — in some cases, just enough to allow sim-
ple cross-browser scripting that adheres to the standard. Microsoft further filled out W3C
DOM support in IE6, but chose to omit several important parts. DOM support in Apple’s
Safari 1.0 lies in between that of Mozilla and IE6. Of course, the standard is not perfect either,
lacking some practical features that IE offered back in IE4.

Despite this seemingly tortuous history of DOM development and browser support, you may
wonder how anyone can approach DOM scripting with hope of success. Yet you’d be amazed
at how much you can accomplish with today’s browsers. You'll certainly encounter compati-
bility issues along the way, but this book will guide you through the most common problems
and equip you to tackle others.

Cascading Style Sheets

Navigator 4 and Internet Explorer 4 were the first browsers to claim compatibility with a

W3C recommendation called Cascading Style Sheets Level 1 (CSS1). This specification provided
designers an organized way to customize the look and feel of a document (and thus minimized
the HTML in each tag). As implementations go, NN4 had a lot of rough edges, especially when

13

14

Part | + Getting Started with JavaScript

trying to mix stylesheets and tables. But IE4 was no angel, either, especially when comparing
the results of stylesheet assignments as rendered in the Windows and Macintosh versions
of the browser (developed by two separate teams).

CSS Level 2 adds more style functionality to the standard, and IE6, Mozilla-based browsers,
and Safari support a good deal of Level 2 (albeit unevenly). Rendering of styled content is
more harmonious among browsers, largely thanks to guidelines about how styles should ren-
der. Complex layouts, however, still need careful tweaking from time to time because of differ-
ent interpretations of the standard.

JavaScript plays a role in stylesheets in I[E4+, Mozilla, and Safari because those browsers’
object models permit dynamic modification to styles associated with any content on the
page. Stylesheet information is part of the object model and is therefore accessible and modi-
fiable from JavaScript.

Dynamic HTML

Perhaps the biggest improvements to the inner workings of the Level 4 browsers from both
Netscape and Microsoft revolved around a concept called Dynamic HTML (DHTML). The ulti-
mate goal of DHTML was to enable scripts in documents to control the content, content posi-
tion, and content appearance in response to user actions. To that end, the W3C organization
developed another standard for the precise positioning of HTML elements on a page as an
extension of the CSS standards effort. The CSS-Positioning recommendation was later blended
into the CSS standard, and both are now part of CSS Level 2. With positioning, you can define
an exact location on the page where an element should appear, whether the item should be
visible, and what stacking order it should take among all the items that might overlap it.

IE4+ adheres to the positioning standard syntax and makes positionable items subject to
script control. Navigator 4 followed the standard from a conceptual point of view, but it
implemented an alternative methodology involving an entirely new, and eventually unsanc-
tioned, tag for layers. Such positionable items were scriptable in Navigator 4 as well, although
a lot of the script syntax differed from that used in Internet Explorer 4. Fortunately for
DHTML authors, Mozilla, by its adherence to the CSS standard, is more syntactically in line
with DHTML style properties employed in [E4+. Numerous issues still surround the IE imple-
mentation because of Microsoft’s shift with IE6 to a more accurate interpretation of certain
measurement systems in CSS. The new system can be switched on in IE6 to be more in sync
with the CSS standard as implemented in Mozilla and Safari browsers. Cross-browser DHTML
scripting can be challenging, yet it is certainly possible if you understand the limitations
imposed by following a common denominator.

Developing a Scripting Strategy

Browsers representing the latest generation contain a hodgepodge of standards and propri-
etary extensions. Even if you try to script to a common denominator among today’s
browsers, your code probably won'’t take into account the earlier versions of both the
JavaScript core language and the browser document object models.

The true challenge for authors these days is determining the audience for which scripted
pages are intended. You learn techniques in Chapter 13 that enable you to redirect users
to different paths in your Web site based on their browser capabilities. In Chapter 14, you
discover the alternatives you can take depending on the object model version(s) and
specific features you need to support. Each new browser generation not only brings with
it new and exciting features you are probably eager to employ in your pages, it also adds

Chapter 2 4 Authoring Challenges Amid the Browser Wars 15

to the fragmentation of the audience visiting a publicly accessible page. With each new
browser upgrade, fewer existing users are willing to download megabytes of browser merely
to have the latest and greatest browser version. For many pioneers — and certainly for most
nontechie users —there is a shrinking imperative to upgrade browsers, unless that browser
comes via a new computer or operating system upgrade.

At this stage in the history of scriptable browsers, I take the stand that we should assume
that a Web surfer arrives with a browser equipped with support for at least simple W3C DOM
and DHTML capabilities. That certainly won’t be the case 100 percent of the time, so it is also
your obligation to apply scripting in an additive, or value-added manner. By this I mean that
your pages should convey their primary information to the most brain-dead browser; but
visitors with recent scriptable browsers will have a more enjoyable experience — better
interactivity, faster performance, and a more engaging presentation. You will not only be
contributing to the state of the art, but also carrying on the original vision of scripting in

the browser.

+ o+

CHAPTER

Your First JavaScript
Script

¢+ 4+ o+

In This Chapter

How to choose basic
JavaScript authoring
tools

In this chapter, you set up a productive scriptwriting and preview-
ing environment on your computer, and then you write a simple
script whose results you can see in your JavaScript-compatible
browser.

How to set up your

Because of differences in the way various personal computing operat- - :
authoring environment

ing systems behave, I present details of environments for two popular
variants: Windows (95 through XP) and MacOS X. For the most part,
your JavaScript authoring experience is the same regardless of the
operating system platform you use —including Linux or UNIX.
Although there may be slight differences in font designs depending + + + +
on your browser and operating system, the information remains the

same. Most illustrations of browser output in this book are made

from the Windows XP version of Internet Explorer 6. If you run

another browser or version, don’t fret if every pixel doesn’t match

with the illustrations in this book.

The Software Tools

The best way to learn JavaScript is to type the HTML and scripting
code into documents in a text editor. Your choice of editor is up to
you, although I provide you with some guidelines for choosing a text
editor in the next section.

How to enter a simple
script to a Web page

Choosing a text editor

For the purposes of learning JavaScript in this book, avoid WYSIWYG
(What You See Is What You Get) Web-page authoring tools, such as
FrontPage and DreamWeaver, for now. These tools certainly will come
in handy afterward when you can productively use those facilities for
molding the bulk of your content and layout. But the examples in this
book focus more on script content (which you must type in anyway),
so there isn’t much HTML that you have to type. Files for all complete
Web page listings in this book (except for the tutorial chapters) also
appear on the companion CD-ROM.

An important factor to consider in your choice of editor is how easy
it is to save standard text files with an .html filename extension. In
the case of Windows, any program that not only saves the file as text
by default but also enables you to set the extension to .htm or .html
prevents a great deal of problems. If you use Microsoft Word, for

18 Part | + Getting Started with JavaScript

example, the program tries to save files as binary Word files —something that no Web
browser can load. To save the file initially as a text or .html extension file requires mucking
around in the Save As dialog box. This requirement is truly a nuisance.

Nothing’s wrong with using bare-essentials text editors. In Windows, that includes the
WordPad program or a more fully featured product such as the shareware editor called
TextPad. For MacOS X, TextEdit is also fine. A favorite among Mac HTML authors and
scripters is BBEdit (Bare Bones Software), which includes a number of useful aids for
scripters, such as optional line numbers (which help in debugging JavaScript).

Choosing a browser

The other component that is required for learning JavaScript is the browser. You don’t have
to be connected to the Internet to test your scripts in the browser. You can perform all testing
offline. This means you can learn JavaScript and create cool, scripted Web pages with a lap-
top computer —even on a boat in the middle of an ocean.

The browser brand and version you use is up to you. Because the tutorial chapters in this
book teach the W3C DOM syntax, you should be using a recent browser. Any of the following
will get you through the tutorial: Internet Explorer 5 or later (Windows or Macintosh); any
Mozilla-based browser (including Netscape 7 and later); and Apple Safari.

et object model (DOM) features that work on only specific browsers and versions. Check the
compatibility listing for that language or DOM feature to make sure you use the right browser
to load the page.

,ﬁ\lote Many example listings in Parts Il and IV of this book demonstrate language or document

Setting Up Your Authoring Environment

To make the job of testing your scripts easier, make sure that you have enough free memory
in your computer to let both your text editor and browser run simultaneously. You need to be
able to switch quickly between editor and browser as you experiment and repair any errors
that may creep into your code. The typical workflow entails the following steps:

1. Enter HTML and script code into the source document in the text editor.
2. Save the latest version to disk.
3. Switch to the browser.

4. Do one of the following: If this is a new document, open the file via the browser’s Open
menu. If the document is already loaded, reload the file into the browser.

Steps 2 through 4 are the key ones you will follow frequently. I call this three-step sequence
the save-switch-reload sequence. You will perform this sequence so often as you script that
the physical act quickly will become second nature to you. How you arrange your application
windows and effect the save-switch-reload sequence varies according to your operating
system.

Windows

You don’t have to have either the editor or browser window maximized (at full screen) to
take advantage of them. In fact, you may find them easier to work with if you adjust the size

Chapter 3 4 Your First JavaScript Script

and location of each window so both windows are as large as possible while still enabling you
to click a sliver of the other’s window. Or, you can leave the taskbar visible so you can click
the desired program’s button to switch to its window (see Figure 3-1). A monitor that displays
more than 800 x 600 pixels certainly helps in offering more screen real estate for the windows
and the taskbar.

3 The Fualuator - Microsaft Intecoet Exploer

B evaluator.html - WardPad
Fla Edc Wew [Deert Fomat Help
DEdH SR & B B

Y tuncticn oaliChilclodes(shiief, n) 4 a
var chi

if |obikef) §
if (typeof cbiRef == “string") {
oki = decuwment.g=tElementById{okiRef)
+ elae |
okl = okiRef

=
B
b
v elas |
a3 = (document.body, parentElement) 7

Aneument Bady. pArentEleme T @ document body. parentinds

var aurput = T

var indsat = "%

war i, group, £xt

Fi if Imy 4

| for (i = 0; 1 < o7 i++) |
ipdent 4= F4---"

'

¥ las {

ot e
n=0
OUTpUL += "Child Nodea of <" 4+ abl.cagHsme
OUTPUL = Tain=

¥

ot = -
Fus Heb, press FL

‘4 start R Thervae e, B ey

Figure 3-1: Editor and browser window arrangement in Windows XP.

In practice, however, the Windows Alt+Tab task-switching keyboard shortcut makes the job
of the save-switch-reload steps outlined earlier a snap. If you run Windows and also use a
Windows-compatible text editor (which more than likely has a Ctrl+S file-saving keyboard
shortcut), you can effect the save-switch-reload sequence from the keyboard all with the left
hand: Ctrl+S (save the source file); Alt+Tab (switch to the browser); Ctrl+R (reload the saved
source file).

As long as you keep switching between the browser and text editor via Alt+Tab task switch-
ing, either program is always just an Alt+Tab away.

MacOS X

In MacOS X you can change between your text editor and browser applications via the Dock
or, more conveniently, by typing 8-Tab. As long as you stay strictly in those two applications,
the other program is only one 88-Tab away (see Figure 3-2).

With this setup, the save-switch-reload sequence is a simple affair:
1. Press 8-S (save the source file).
2. Press 8-Tab (switch to the browser).
3. Press 8-R (reload the saved source file).

To return to editing the source file, press 3-Tab again.

19

20 Part | + Getting Started with JavaScript

| & BBEdit File Eoit Text Font Search Tools Markup Window # % Halp W T 4w 000% Wed £:58:27 FM |

The Evaluatos < Mozilla (==
== = = s y & . m
Forward_ Reload Swa. | i Serh) it e
868 . Bk = HiacIRTEERETHD)
= VI [n [|12 |5 (@] @ Las Savad: 0B/05/03 10:05:15 AM
721 8 |8 | SN T N) B Sty Pualumes Maciniash HOCurree e Fobser;Chag 13 evaluame. heml

Eaiter s expig
furntio B

Results i [+ 11

—The Evaluator

U R R L

chjFul = eyt d .
Are et et | ek A Rnt b

T

wios {
oo = il
alan
b = ol by Lt |
B e b RnT A e s

Enter a referen

Now is the time

[Sample hesl e Ty = 0w geowp [l LnneeTpe e
T Tl L s gty > 61§
Choose the D B e e) B e

 Fasest g —
B b s

Figure 3-2: Editor and browser window arrangement on the Macintosh screen.

Reloading issues

For the most part, a simple page reload is enough to let you test a revised version of a script
right away. But sometimes the browser’s cache (with its default settings) can preserve parts
of the previous page’s attributes when you reload, even though you have changed the source
code. To perform a more thorough reload, hold down the Shift key while clicking the
browser’s Reload/Refresh button. Alternatively, you can turn off the browser’s cache in the
preferences area, but that setting may negatively affect the overall performance of the
browser during your regular Web surfing.

What Your First Script Will Do

For the sake of simplicity, the kind of script you look at in the next section is the kind that
runs automatically when the browser loads the HTML page. Although all scripting and brows-
ing work done here is offline, the behavior of the page is identical if you place the source file
on a server and someone accesses it via the Web.

Figure 3-3 shows the page as it appears in the browser after you're finished. (The exact word-
ing differs slightly if you run your browser on an operating system platform other than
Windows XP or if you use a browser other than Internet Explorer.) The part of the page that is
defined in regular HTML contains nothing more than an <h1>-level header with a horizontal
rule under it. If someone does not use a JavaScript-equipped browser, all he or she sees is the
header and horizontal rule (unless that person has a truly outmoded browser, in which case
some of the script words appear in the page).

Below the rule, the script displays plain body text that combines static text with informa-
tion about the browser you use to load the document. The script writes a stream of HTML

Chapter 3 4 Your First JavaScript Script

information to the browser, including a tag that applies a stylesheet to render a portion of the
information in boldface. Even though two lines of code are writing information to the page,
the result is rendered as one line—just as it is when all the text is hard-coded in HTML.

2B My First Seeipt - Microsoft Internel Explorer E
i\ Fle Edt Wew Fevorkes Took Help o
- A) -k i
[« 2 g 2 ¥ @ @ |
stap Refrash Home sparch Fawoddtes Mocka Hisoey Mal

Let’s Script...

Thas browrser 1z version 4.0 (cempankle, METE 6 0; Wiadows FIT 5.1, 0212467 of Microsoft
Internet Explorer.

& Done 8 Local irkranst

Figure 3-3: The finished page of your first JavaScript script.

Entering Your First Script

It’s time to start creating your first JavaScript script. Launch your text editor and browser. If
your browser offers to dial your Internet service provider (ISP) or begins dialing automati-
cally, cancel or quit the dialing operation. If the browser’s Stop button is active, click it to halt
any network searching it may try to do. You may receive a dialog box message or page indi-
cating that the URL for your browser’s home page (usually the home page of the browser’s
publisher — unless you've changed the settings) is unavailable. That’s fine. You want the
browser open, but you needn’t be connected to your ISP. If you're automatically connected to
the Internet via a local area network in your office or school, or via cable modem or DSL,
that’s also fine. However, you don’t need the network connection for now. Next, follow these
steps to enter and preview your first JavaScript script:

1. Activate your text editor and create a new, blank document.

2. Type the script into the window exactly as shown in Listing 3-1.

Listing 3-1: Source Code for script1.html

<html>

<head>

<title>My First Script</title>
{style type="text/css">
.highlight {font-weight: bold)
</style>

</head>

Continued

21

22

Part | + Getting Started with JavaScript

Listing 3-1 (continued)

<body>

<h1>Let's Script...</hl>

<hr>

{script type="text/javascript">

<l-- hide from old browsers

document.write("This browser is version " + navigator.appVersion);
document.write(" of " + navigator.appName + ".");
// end script hiding -->

</script>

</body>

</html>

3. Save the document with the name scriptl.html.
4. Switch to your browser.

5. Choose Open (or Open File on some browsers) from the File menu and select
scriptl.html. (On some browsers, you have to click a Browse button to reach the File
dialog box.)

If you typed all lines as directed, the document in the browser window should look like the
one in Figure 3-3 (with minor differences for your computer’s operating system and browser
version). If the browser indicates that a mistake exists somewhere as the document loads,
don’t do anything about it for now. (Click the OK button if you see a script error dialog box.)
Let’s first examine the details of the entire document so you understand some of the finer
points of what the script is doing.

Examining the Script

You do not need to memorize any of the commands or syntax discussed in this section.
Instead, relax and watch how the lines of the script become what you see in the browser.
In Listing 3-1, all of the lines up to the <script> tag are very standard HTML with one
Cascading Style Sheet (CSS) rule in the head portion.

The <script> tag

Any time you include JavaScript verbiage in an HTML document, you must enclose those
lines inside a <script>...</script> tag pair. These tags alert the browser program to
begin interpreting all the text between these tags as a script. Because other scripting lan-
guages (such as Microsoft’s VBScript) can take advantage of these script tags, you must spec-
ify the kind of language in which the enclosed code is written. Therefore, when the browser
receives the signal that your script is of the type text/javascript, it employs its built-in
JavaScript interpreter to handle the code. You can find parallels to this setup in real life:

If you have a French interpreter at your side, you need to know that the person with whom
you're conversing also knows French. If you encounter someone from Russia, the French
interpreter can’t help you. Similarly, if your browser has only a JavaScript interpreter inside,
it can’t understand code written in VBScript.

/N ote

Chapter 3 4 Your First JavaScript Script

Now is a good time to instill an aspect of JavaScript that will be important to you throughout
all your scripting ventures: JavaScript is case-sensitive. Therefore, you must enter any item in
your script that uses a JavaScript word with the correct uppercase and lowercase letters.
Your HTML tags (including the <script> tag) can be in the case of your choice, but every-
thing in JavaScript is case-sensitive.! When a line of JavaScript doesn’t work, look for the
wrong case first. Always compare your typed code against the listings printed in this book
and against the various vocabulary entries discussed throughout it.

A script for all browsers

The next line after the <script> tag in Listing 3-1 appears to be the beginning of an HTML
comment tag. It is, but the JavaScript interpreter treats comment tags in a special way.
Although JavaScript dutifully ignores a line that begins with an HTML comment start tag, it
treats the next line as a full-fledged script line. In other words, the scripting machinery inside
the browser begins interpreting the next line after a comment start tag. If you want to put a
comment inside JavaScript code, the comment must start with a double slash (//). Such a
comment may go near the end of a line (such as after a JavaScript statement that is to be
interpreted by the browser) or on its own line. In fact, the latter case appears near the end of
the script. The comment line starts with two slashes.

Step back for a moment and notice that the entire script (including comments) is contained
inside a standard HTML comment tag (<! - -comment - ->). The value of this containment is
not clear until you see what happens to your scripted HTML document in a non-JavaScript-
compatible browser. Such a browser blows past the <script> tag as being an advanced tag it
doesn’t understand. But it treats a line of script as regular text to be displayed in the page. If
you enclose script lines between HTML comment tags, most older browsers don’t display the
script lines.

Remember, too, that some users don’t have access to modern browsers or graphical
browsers. (They use the Lynx text-oriented UNIX Web reader software or lightweight
browsers in handheld computers.) By embracing your script lines within these comments,
your Web pages don’t look completely broken in relatively modern, non-JavaScript browsers.

Notice that the comment lines that shield older browsers from your scripts go inside the
i {script>...</script> tags. Do not put these comment lines above the <script> tag
or below the </script> tag and expect them to work.

One more issue about the script-hiding comment lines in this book. To save space on the
page, most examples do not have comment lines inserted in them. But as you can see in the
full-fledged application examples from Chapters 48 through 57 on the CD-ROM, the comment
lines are where they should be. For any pages you produce for public consumption, always
encase your script lines inside these comments.

Displaying some text

Both script lines in Listing 3-1 use one of the possible actions a script can ask a document to
perform (document.write(), meaning display text in the current document). You learn more
about the document object in Chapter 18.

I XHTML style, if you intend to follow its conventions, requires all lowercase tags and attribute names.
This is the style observed throughout this book.

25

24

Part | + Getting Started with JavaScript

Whenever you ask an object (a document in this case) to perform a task for you, the name
of the task is always followed by a set of parentheses. In some cases—the write() task, for
example — JavaScript needs to know what information it should act on. That information
(called a parameter) goes inside parentheses after the name of the task. Thus, if you want to
write the name of the first U.S. president to a document, the command to do so is

document.write("George Washington");

The line of text that the script writes starts with some static text (“This browser is version”)
and adds some evaluated text (the version of the browser) to it. The writing continues with
more static text that includes an HTML tag (" of "), more
evaluated text (the name of the browser application), and an HTML closing tag and the sen-
tence’s period ("."). JavaScript uses the plus symbol (+) to join (concatenate) text
components into a larger, single string of text characters to be written by the document.
Neither JavaScript nor the + symbol knows anything about words and spaces, so the script
is responsible for making sure that the proper spaces are passed along as part of the param-
eters. Notice, therefore, that an extra space exists after the word “version” in the first
document.write() parameter, and extra spaces exist on both sides of “of” in the second
document.write() parameter.

To fetch the information about the browser version and name for your parameters, you call
upon JavaScript to extract the corresponding properties from the navigator object. You
extract a property by appending the property name to the object name (navigator in this
case) and separating the two names with a period. If you're searching for some English to
mentally assign to this scheme as you read it, start from the right side and call the right item
a property “of” the left side: the appVersion property of the navigator object. This dot syn-
tax looks a great deal like the document.write() task, but a property name does not have
parentheses after it. In any case, the reference to the property in the script tells the
JavaScript interpreter to insert the value of that property in the spot where the call is made.
For your first attempt at the script, JavaScript substitutes the internal information about the
browser as part of the text string that gets written to the document.

Finally, notice the semicolon characters at the end of each JavaScript statement. Trailing
semicolons are purely optional. There is no penalty for leaving them out. If you intend to
investigate other programming languages, such as Java or C++, for example, you’ll find those
semicolons are required. Program listings in this book use semicolons.

Have Some Fun

If you encounter an error in your first attempt at loading this document into your browser, go
back to the text editor and check the lines of the script section against Listing 3-1, looking
carefully at each line in light of the explanations. There may be a single character out of
place, a lowercase letter where an uppercase one belongs, or a quote or parenthesis missing.
Make necessary repairs, switch to your browser, and click Reload.

To see how dynamic the scriptin scriptl.html is, go back into the text editor and replace
the word “browser” with “client software.” Save, switch, and reload to see how the script
changes the text in the document. Feel free to substitute other text for the quoted text in the
document.write() statement. Or, add more text with additional document.write() state-
ments. The parameters to document.write() are HTML text, so you can even write "
"
to make a line break. Always be sure to save, switch, and reload to see the results of your
handiwork.

+ o+ 4

JavaScript Tutorial

1]

YR TR SRS
In This Part

Chapter 4
Browser and Document
Obijects

Chapter 5
Scripts and HTML
Documents

Chapter 6
Programming
Fundamentals, Part |

Chapter 7
Programming
Fundamentals, Part Il

Chapter 8
Window and

Document Objects

Chapter 9
Forms and Form
Elements

Chapter 10
Strings, Math, and
Dates

Chapter 11
Scripting Frames and

Multiple Windows

Chapter 12
Images and
Dynamic HTML

¢+ 4+ 0+

CHAPTER

Browser and
Document Objects

This chapter marks the first of nine tutorial chapters tailored to Web
authors who have at least basic grounding in HTML concepts. In
particular, you should already be familiar with common HTML tags
and their attributes, as well as the fundamentals of Cascading Style
Sheets (CSS). In this chapter, you see several practical applications

of JavaScript and begin to see how a JavaScript-enabled browser
turns familiar HTML elements into objects that your scripts control.
This tutorial teaches concepts and terminology that apply to modern
browsers with special focus on standards-compatibility to equip you
to work with today’s and tomorrow’s browsers. You should study this
tutorial in conjunction with any of the following browsers: Internet
Explorer 5 or later (Windows or Macintosh), any Mozilla-based
browser, or Apple’s Safari.

Scripts Run the Show

If you have authored Web pages with HTML, you are familiar with
how HTML tags influence the way content is rendered on a page
when viewed in the browser. As the page loads, the browser recog-
nizes angle-bracketed tags as formatting instructions. Instructions
are read from the top of the document downward, and elements
defined in the HTML document appear onscreen in the same order in
which they appear in the document’s source code. As an author, you
do a little work one time and up front—adding the tags to text
content —and the browser does a lot more work every time a visitor
loads the page into a browser.

Assume for a moment that one of the elements on the page is a text
input field inside a form. The user is supposed to enter some text in
the text field and then click the Submit button to send that informa-
tion back to the Web server. If that information must be an Internet
e-mail address, how do you ensure the user includes the “@” symbol
in the address?

One way is to have a Common Gateway Interface (CGI) program on
the server inspect the submitted form data after the user clicks

the Submit button and the form information is transferred to the
server. If the user omits or forgets the “@” symbol, the CGI program
sends the page back to the browser —but this time with an instruc-
tion to include the symbol in the address. Nothing is wrong with this

+ 0+ o+
In This Chapter

What client-side scripts
do

What happens when a
document loads

How the browser
creates objects

How scripts refer to
objects

What distinguishes one
object from another

¢+ 4+ o+

28

Part Il 4+ JavaScript Tutorial

exchange, but it means a significant delay for the user to find out that the address does not
contain the crucial symbol. Moreover, the Web server has to expend some of its resources to
perform the validation and communicate back to the visitor. If the Web site is a busy one, the
server may try to perform hundreds of these validations at any given moment, probably slow-
ing the response time to the user even more.

Now imagine that the document containing that text input field has some intelligence built
into it that makes sure the text field entry contains the “@” symbol before ever submitting
one bit (literally!) of data to the server. That kind of intelligence would have to be embedded
in the document in some fashion — downloaded with the page’s content so it can stand ready
to jump into action when called upon. The browser must know how to run that embedded
program. Some user action must start the program, perhaps when the user clicks the Submit
button. If the program runs inside the browser and detects a lack of the “@” symbol, an alert
message should appear to bring the problem to the user’s attention. The same program also
should be capable of deciding if the actual submission can proceed or if it should wait until a
valid e-mail address is entered into the field.

This kind of pre-submission data entry validation is but one of the practical ways JavaScript
adds intelligence to an HTML document. Looking at this example, you might recognize that a
script must know how to look into what is typed in a text field; a script must also know how
to let a submission continue or how to abort the submission. A browser capable of running
JavaScript programs conveniently treats elements such as the text field as objects. A
JavaScript script controls the action and behavior of objects — most of which you see on the
screen in the browser window.

JavaScript in Action

By adding lines of JavaScript code to your HTML documents, you control onscreen objects in
whatever way your applications require. To give you an idea of the scope of applications you
can create with JavaScript, [show you several applications on the CD-ROM (in the Listings
folders for Chapters 48 through 57). I strongly suggest you open the applications and play
with them in your browser as they are described in the next several pages. You can find links
to the application files for these chapters via the index.htm] file located in the Listings
folder on the CD-ROM.

Interactive user interfaces

HTML hyperlinks do a fine job, but they’re not necessarily the most engaging way to present
a table of contents for a large site or document. With a bit of JavaScript, you can create an
interactive, expandable table of contents listing that displays the hierarchy of a large body of
material (see Figure 4-1). Just like the text listings (or tree views) in operating system file man-
agement windows, the expandable table of contents lets the user see as much or as little as
possible while displaying the big picture of the entire data collection.

Click a gray widget icon to expand the items underneath. An endpoint item has an orange and
black widget icon. Items in the outline can be links to other pages or descriptive information.
You also maintain the same kind of font control over each entry, as expected from HTML.
While such outlines have been created with the aid of server programs in the past, the
response time between clicks is terribly slow. By placing all of the smarts behind the outline
inside the page, it downloads once and runs quickly after each click.

Chapter 4 + Browser and Document Objects

2 Outline Table of Contents - Microsoft Internet Explorer

File Edit ‘iew Favoeites Tocls Help I‘l'
= Q\ — =) . - - »
Q. © N @B & L ¥k @ & 2 K B.
Back T Stop Refresh Homme: Search Favorkes Media Histary Mal Frint Edk
Pickles—Cucumber it
Composition of Selected
Foods Pickles--Cucumber--Dill
Water (percent
@ Peas 9(P3 3)
B Pickdes Food energy (calories)
B Cucumbpr 1
& Dl Protem (grams)
E Fresh 07
& Sour Fat (grams)
0.2

Pickles--Cucumber--Fresh

Water (percent)
787
Food energy (calories)
73
Protein (grams)
0.9
Fat (grams)
na

h_‘] Chick to expand/collapse nested items .3 Local ntranet
—

Figure 4-1: An expandable table of contents.

Small data lookup

A common application on the Web is having a server program present a page that visitors use
to access large databases on the server. Large data collections are best left on the server
where search engines and database technologies are the best fit. But if your page acts as a
front end to a small data collection lookup, you can consider embedding that data collection
in the document (out of view) and letting JavaScript act as the intermediary between user
and data.

I do just that in a Social Security prefix lookup system shown in Figure 4-2. [convert a printed
table of about 55 entries into a JavaScript list that occupies only a few hundred bytes. When
the visitor types the three-character prefix of his or her Social Security number into the field
and clicks the Search button, a script behind the scenes compares that number against the 55
or so ranges in the table. When the script finds a match, it displays the corresponding state of
registration in a second field.

If the application were stored on the server and the data stored in a server database, each
click of the Search button would mean a delay of many seconds as the server processed the
request, got the data from the database, and reformulated the page with the result for the
user. Built instead as a JavaScript application, once the page downloads the first time, scripts
perform all lookups instantaneously.

29

30

Part Il 4+ JavaScript Tutorial

2 Where Were You Born? - Microsoft Internet Explorer

File Edit ‘iew Faworites Tools Help ﬁi
- J) — g S) »
€ 2 H B & L %k @ & 2 5 8.
| AT Stop Refresh Home: Search Favortes Media Hestory Ml Print Edk

Where Were You Born?

According to an article in the Wadl Street Journal, the first three digits of a 7.5, Social Secunty munber is a code that may
indicate the state or tetritory in whuch your application stated you were born (because the code reveals the state in which
you registered). For recent inmigrants, the number is supposed to match up with the state or territory in which you were
Iwing when you received proper working papers.

Mote: The database in this document is not 100 percent complete, Populous states have added mmmeric ranges not
contamed here.

Instructions:
1. Enter the first three digits of a U.S. Social Secunty mamber i question
2. Click on the Search button,
3. See the corresponding state or terrtory m the feld,

For the paranoid: IMo information vou enter here 13 recorded or monitored--it stays entwely withmn your browser.

Enter the first three digits of a Social Secunity number; 558

The Feds ld this number to, West Virginia

g] Done 8 Local intranet
—

Figure 4-2: Looking up data in a small table.

Forms validation

I've already used data entry form validation as an example of when JavaScript is a good fit.
In fact, the data entry field in the Social Security lookup page (see Figure 4-2) includes script-
ing to check the validity of the entered number. Just as a server program for this task has to
verify that the entry is a three-digit number, so, too, must the JavaScript program verify the
entered value. If a mistake appears in the entry — perhaps a finger slips and hits a letter

key —the visitor is advised of the problem and directed to try another entry. The validation
script even preselects the text in the entry field for the visitor so that typing a new value
replaces the old one.

Interactive data

JavaScript opens opportunities for turning static information into interactive information.
Figure 4-3 shows a graphical calculator for determining the value of an electrical component
(called a resistor) whose only markings are colored bars.

Chapter 4 4+ Browser and Document Objects 31

2 Graphical Resistance Calculator - Microsoft Internet Explorer

File Edit ‘View Favoeites Toos Help ﬁ'
: = = 0 = »
€ >, ® B @ /- w @ & B 5 B .
1 T Stop Refresh Haome: Search Favorkes Media Histary Mal Frint Edk

Calculate Resistor Values from Color Codes

[Red ¥|[vellow ¥|[Bue ¥ [God ¥

Resistance |24 Mohms, +/-5%

l

MNustration Copyright 1956 Danny Goodman. All Rights Resered.

JE:] Done 8 Local imtranat
—

Figure 4-3: An interactive graphical calculator.

The image in the bottom half of the page is composed of seven images in vertical slices all
bunched up against each other. Four slices display the colored bands, while the remaining
three slices contain the ends of the resistor and the spacer between groups of bands. As the
visitor selects a color from a pop-up list near the top, the associated image slice changes to
the selected color and the resistance value is calculated and displayed.

Again, once the page is loaded, response time is instantaneous. Conversely, a server-based
version of this calculator would take many seconds between color changes. Moreovetr,
JavaScript provides the power to preload all possible images into the browser cache while
the main page loads. Therefore, with only a slight extra delay to download all images with the
page, no further delay occurs when a visitor chooses a new color. Not only is the application
practical (for its intended audience), but it’s just plain fun to play with.

Multiple frames

While frames are the domain of HTML, they suddenly become more powerful with some
JavaScript behind them. The Decision Helper application shown in Figure 4-4 takes this
notion to the extreme.

The Decision Helper is a full-fledged application that includes four input screens and one
screen that displays the results of some fairly complex calculations based on the input
screens. Results are shown both in numbers and in a bar graph form, as displayed in
Figure 4-4.

32

Part Il 4+ JavaScript Tutorial

2 Dacision Helper - Microsoft Internet Explorer

File Edit ‘iew Favoeites Tools Help '1"

’ A)) =l A =
.0 M B @ L % @ € 2 & 8.
Back 1 Stop Refresh Home Search Favorkes Media Histowy Mal Frint Edic

Buying a FAX machine

Results Ranking
Fax-O-Matic 1000 472 | mmm
InkyFax300 (556 | oo
LaryFaxLX 72 | oo
Loose Cannon M-200 724]

2

|i%

Step 5: Viewing Results A

Resulls are calculated based on the various weights and rankings you entered in previous screens, The specific numbers are not
particularly important: their relative positions, however, are whal you're looking for. The highest number represents the alternative rating
the highest based on your input. Values are shown 10 four decimal places in case of close races.

Unforfunately, this results screen cannot be printed or saved. |fyou want to preserve this information fake a screen shot using your
operating system’s screen capture utility (2.0, Windows 95 Press PrSc; Mac0S: Press Crd-Shif-3).

Review This Declsion || Start 2 Mew Decision,.

£

eb_‘] Done 84 Local imtranst
—

Figure 4-4: The Decision Helper.

Interaction among the three frames requires JavaScript. For example, suppose the user clicks
one of the directional arrows in the top-left frame. Not only does the top-right frame change
to another document, but the instructions document in the bottom frame also shifts to the
anchor point that parallels the content of the input screen. Scripting behind the top-right
frame documents uses various techniques to preserve entry information as the user navi-
gates through the sequence of input pages. These are the same techniques you might use to
build an online product catalog and shopping cart —accumulating the customer’s selections
from various catalog pages and then bringing them together in the checkout order form.

Certainly you could fashion this application out of a CGI program on the server. But the high
level of interaction and calculation required would turn this now speedy application into a
glacially slow exchange of information between user and server.

Dynamic HTML

Starting with the version 4 browsers from both Netscape and Microsoft, you can modify more
and more content on the page with the help of client-side scripts. In Figure 4-5, for example,
scripts in the page control the dragging of map pieces in the puzzle. Highlighted colors
change as you click the state maps, instruction panels fly in from the edge of the screen, and
another item appears when you place all the states in their proper positions.

Applying scripts to modify HTML content or position on the fly is commonly called Dynamic
HTML (DHTML). JavaScript becomes the vital connection between the user and dynamically
respositionable elements on the screen. Not even a program on the server could help this
application because you need immediate programmatic control in the page to respond to
user mouse motion and instantaneous changes to screen elements.

Chapter 4 4+ Browser and Document Objects 33

2 Map Game - Microsoft Internet Explorer

File Edit ‘View Favorites Tools Help

<) 0 - BN B & L ¥ @ © g %

Stop Refresh Home Search Favur-l&s Media HIst\gry Mall Brink

"Lower 48" U.S. Map Puzzle @

& 4 Qb

Wevada

JE:] Done .:) Local ntranet
—

Figure 4-5: A map game in scriptable Dynamic HTML.

When to use JavaScript

The preceding examples demonstrate a wide range of applications for JavaScript, but by no
means do they come close to exhausting JavaScript’s possibilities. When faced with a Web
application task, I look to client-side JavaScript for help with the following requirements:

4+ Data entry validation: If form fields need to be filled out for processing on the server, |
let client-side scripts prequalify the data entered by the user.

4+ Serverless CGls: I use this term to describe processes that, were it not for JavaScript,
would be programmed as CGIs on the server, yielding slow performance because of the
interactivity required between the program and user. This includes tasks such as small
data collection lookup, modification of images, and generation of HTML in other frames
and windows based on user input.

4+ Dynamic HTML interactivity: It’s one thing to use DHTML'’s capabilities to position ele-
ments precisely on the page —you don’t need scripting for that. But if you intend to
make the content dance on the page, scripting makes that happen.

4+ CGI prototyping: Sometimes you may want a CGI program to be at the root of your
application because it reduces the potential incompatibilities among browser brands
and versions. It may be easier to create a prototype of the CGI in client-side JavaScript.
Use this opportunity to polish the user interface before implementing the application
as a CGL

4+ Offloading a busy server: If you have a highly trafficked Web site, it may be beneficial
to convert frequently used CGI processes to client-side JavaScript scripts. Once a page

34

Part Il 4+ JavaScript Tutorial

is downloaded, the server is free to serve other visitors. Not only does this lighten
server load, but users also experience quicker response to the application embedded
in the page.

4+ Adding life to otherwise dead pages: HTML by itself is pretty “flat.” Adding a blinking
chunk of text doesn’t help much; animated GIF images more often distract from, rather
than contribute to, the user experience at your site. But if you can dream up ways to
add some interactive zip to your page, it may engage the user and encourage a recom-
mendation to friends or repeat visits.

4+ Creating “Web pages that think”: If you let your imagination soar, you may develop
new, intriguing ways to make your pages appear “smart.” For example, in the applica-
tion Intelligent “Updated” Flags (Chapter 54 on the CD-ROM), you see how (without a
server CGI or database) an HTML page can “remember” when a visitor last came to the
page. Then any items that have been updated since the last visit —regardless of the
number of updates you’'ve done to the page — are flagged for that visitor. That’s the
kind of subtle, thinking Web page that best displays JavaScript’s powers.

The Document Object Model

Before you can truly start scripting, you should have a good feel for the kinds of objects you
will be scripting. A scriptable browser does a lot of the work of creating software objects that
generally represent the visible objects you see in an HTML page in the browser window.
Obvious objects include form controls (text boxes and buttons) and images. However, there
may be other objects that aren’t so obvious by looking at a page but which make perfect
sense when you consider the HTML tags used to generate a page’s content — paragraph
objects or frames of a frameset, for example.

To help scripts control these objects —and to help authors see some method to the madness
of potentially dozens of objects on a page —the browser makers define a document object
model (DOM). A model is like a prototype or plan for the organization of objects on a page.

Evolution of browser DOMs has caused much confusion and consternation among scripters
due to a lack of compatibility across succeeding generations and brands of browsers.
Fortunately, the DOM world is stabilizing around a formal specification published by the
World Wide Web Consortium (W3C). Today’s modern browsers continue to support some of
the “old ways” of the earliest DOM because so much existing script code on the Web relies on
these traditions continuing to work (you’ll see some of these in Chapter 9). But with the vast
majority of browsers in use today supporting the basic W3C DOM syntax and terminology,
scripters should aim toward standards compatibility whenever possible.

HTML structure and the DOM

An important trend in HTML markup is applying markup solely to define the structure of a
document and the context of each piece of content in the document. The days of using HTML
tags solely to influence the appearance of a chunk of text are drawing to a close. It is no longer
acceptable to enclose a line of text in, say, an <h1> tag because you want the line to appear in
the text size and weight that browsers automatically apply to text tagged in that way. An <h1>
element has a special context within a document’s structure: a first-level heading. In today’s
HTML world, if you wish to display a standalone line of text with a particular style, the text
would likely be in a simple paragraph (<p>) tag; the precise look of that paragraph would be

Chapter 4 4+ Browser and Document Objects 35

under the control of a Cascading Style Sheet (CSS) rule. Current practice even frowns upon
the application of and <i> tags to assign boldface and italic styles to a span of text.
Instead surround the text in a contextual tag (such as the element to signify emphasis)
and define the CSS style you wish applied to any emphasized text in the document.

The result of applying strict structural design to your HTML tagging is a document that has a
well-defined hierarchy of elements based on their nesting within each other. For example, an
empty HTML document has the following minimum elements:

<html>
<head></head>
<body></body>
</html>

The htm1 element contains two nested elements, head and body. The hierarchy of elements
can be charted like a corporate organizational chart, as shown in Figure 4-6. For the sake of
upcoming terminology lessons, however, it is more convenient to visualize the chart in Figure
4-6 as a family tree — except that, unlike most real family trees each point that spawns chil-
dren is a single-parent. In the empty HTML document, the htm1 element is the parent of two
child elements: head and body. The htm1 element is, in turn, a child of the document.

Figure 4-6: Element hierarchy of an empty HTML
document document.

html

head body

The DOM in a browser window

As its name implies, the formal Document Object Model focuses primarily on the HTML docu-
ment and the content nested inside it. From a practical standpoint, however, scripters often
need to control the environment that contains the document: the window. The window object
is the top of the hierarchy that browser scripts work with. The basic structure of the object
model in modern browsers (given an empty HTML document) is shown in Figure 4-7.

window

[[[|
navigator screen history location

document

Figure 4-7: Basic object model for all modern browsers.

36

Part Il 4+ JavaScript Tutorial

It’s not important to memorize the model. But to give you a sense of the relationships among
these top-level objects, the following describes their respective roles:

4+ window object: At the very top of the hierarchy is the window. This object represents
the content area of the browser window where HTML documents appear. In a multiple-
frame environment, each frame is also a window (but don’t concern yourself with this
just yet). Because all document action takes place inside the window, the window is the
outermost element of the object hierarchy. Its physical borders contain the document.

4 navigator object: This is the closest your scripts come to accessing the browser pro-
gram, primarily to read the brand and version of browser that holds the current docu-
ment. This object is read-only, protecting the browser from inappropriate access by
rogue scripts.

4 screen object: Another read-only object lets scripts learn about the physical environ-
ment in which the browser is running. For example, this object reveals the number of
pixels high and wide available in the monitor.

4 history object: While the browser maintains internal details about the browser’s recent
history (such as the list available under the Back button), scripts have no access to the
details. At most this object assists a script in simulating a click of the Back or Forward
button.

4 location object: This object is the primary avenue to loading a different page into the
current window or frame. URL information about the window is available under very
controlled circumstances so that scripts cannot track access to other Web sites.

4 document object: Each HTML document that gets loaded into a window becomes a
document object. The document object contains the content that you are likely to
script. Except for the html, head, and body element objects that are found in every
HTML document, the precise makeup and structure of the element object hierarchy of
the document depends on the content you put into the document.

When a Document Loads

Programming languages, such as JavaScript, are convenient intermediaries between your
mental image of how a program works and the true inner workings of the computer. Inside
the machine, every word of a program code listing influences the storage and movement of
bits (the legendary 1s and 0Os of the computer’s binary universe) from one RAM storage slot
to another. Languages and object models are inside the computer (or, in the case of
JavaScript and the DOM, inside the browser’s area of the computer) to make it easier for pro-
grammers to visualize how a program works and what its results will be. The relationship
reminds me a lot of knowing how to drive an automobile from point A to point B without
knowing exactly how an internal combustion engine, steering linkages, and all that other
internal “stuff” works. By controlling high-level objects such as the ignition key, gearshift, gas
pedal, brake, and steering wheel, I can get the results [need.

Of course, programming is not exactly like driving a car with an automatic transmission. Even
scripting requires the equivalent of opening the hood and perhaps knowing how to check the
transmission fluid or change the oil. Therefore, now it’s time to open the hood and watch
what happens to a document’s object model as a page loads into the browser.

Chapter 4 4+ Browser and Document Objects 37

A simple document

Figure 4-8 shows the HTML and corresponding object model for a document that I'll be
adding to in a moment. The figure shows only the document object portion—the window
object and its other top-level objects (including the document object) are always there, even
for an empty document. When this page loads, the browser maintains in its memory a map of
the objects generated by the HTML tags in the document. At this point, only three objects
exist, one for the outermost htm1 element and its two nested elements.

<htm1>
<head></head> document
<body></body>
</htm1>
html
| |
head body

Figure 4-8: Object map of an empty document.

Add a paragraph element

Now, I modify the HTML file to include an empty paragraph element and reload the docu-
ment. Figure 4-9 shows what happens to both the HTML (changes in boldface) and the object
map as constructed by the browser. Even though no content appears in the paragraph, the
<{p> tags are enough to tell the browser to create that p element object. Also note that the p
element object is contained by the body element object in the hierarchy of objects in the cur-
rent map. In other words, the p element object is a child of the body element object. The
object hierarchy matches the HTML tag containment hierarchy.

<html>
<head></head> document
<body> |
<p></p>
</body> html
</html> |
| |
head body
|
p

Figure 4-9: Adding an empty paragraph element.

38

Part Il 4+ JavaScript Tutorial

Add paragraph text

I modify and reload the HTML file again, this time inserting the text of the paragraph between
the element’s start and end tags, as shown in Figure 4-10. A run of text extending between
tags is a special kind of object in the DOM, called a text node. A text node always has an ele-
ment acting as its container. Applying the official genealogy metaphor to this structure, the
text node is a child of its parent p element. We now have a branch of the document object
tree that runs several generations: document->html->body->p->text node.

<html>

<head></head> document

<body> |

<p>This is the one and
only paragraph.</p> html

</body>

</htm1> |
| |
head body

“This is the one and only paragraph.”

Figure 4-10: Adding a text node to the p element object.

Make a new element

The last modification [make to the file is to wrap a portion of the paragraph text in an
tag to signify emphasis for the enclosed text. This insertion has a large effect on the hierarchy
of the p element object, as shown in Figure 4-11. The p element goes from having a single (text
node) child to having three children: two text nodes with an element between them. In the
W3C DOM, a text node cannot have any children and therefore cannot contain an element
object. The bit of the text node now inside the em element is no longer a child of the p ele-
ment, but rather a child of the em element. That text node is now a grandchild of the p ele-
ment object.

Now that you see how objects are created in memory in response to HTML tags, the next step
is to figure out how scripts can communicate with these objects. After all, scripting is mostly
about controlling these objects.

Chapter 4 4+ Browser and Document Objects 39

<html>
<head></head> document
<body> |
<p>This is the one and
only paragraph.</p> html
</body>
</htm1> |
| |
head body
|
p
[
[| |
“ This is the” em ‘“ paragraph.”

‘“one and only”

Figure 4-11: Inserting an element into a text node.

Object References

After a document is loaded into the browser, all of its objects are safely stored in memory in
the containment hierarchy structure specified by the browser’s document object model. For
a script to control one of those objects, there must be a way to communicate with an object
and find out something about it such as, “Hey, Mr. Text Field, what did the user type?” To let
your scripts “talk to” an object, you need a way to refer to that object. That is precisely what
an object reference in a script does for the browser.

Object naming

The biggest aid in creating script references to objects is assigning a name to every scriptable
object in your HTML. In the W3C DOM (and current HTML specification), the way to assign a
name to an element is by way of the id attribute. This attribute is optional, but if you plan to
use scripts to access an element in the page, it is most convenient to assign a name to that
element’s id attribute directly in the HTML code. Here are some examples of id attributes
added to typical tags:

<p id="firstParagraph" >

<div class="draggable" id="puzzlePiece">

40 Part Il + JavaScript Tutorial

The only rules about object IDs (also called identifiers) are that they
4 May not contain spaces
4 Should not contain punctuation except for the underscore character
4 Must be inside quotes when assigned to the id attribute
4 Must not start with a numeric character
4 May not occur more than once in the same document

Think of assigning IDs as the same as sticking nametags on everyone attending a conference
meeting. To find a particular conference attendee whose name you know, you could wait at
the entrance and scan each nametag until you find the name you’re looking for; or you could
bump around the attendees at random in the hope that you’ll find a known name. But it
would be more efficient if you had a way to immediately target an attendee by name — like
broadcasting the name on the public address system to the whole crowd.

Referencing a particular object

The W3C DOM provides that kind of instant access to any named element in the document.

If you haven’t programmed before, the syntax for this access command may be intimidating
by its length —a hazard when a standard such as the W3C DOM is designed by programmers.
Like it or not, we're stuck with this syntax. Here is the syntax you will use frequently in your
browser scripting:

window.document.getElementById("elementID")

You substitute the ID of the element you wish to reference for e/ ement ID. For example, if
you want to reference the paragraph element whose ID is firstParagraph, the reference
would be:

window.document.getElementById("firstParagraph")

Be careful! JavaScript is case-sensitive. Be sure you use uppercase for the three uppercase
letters in the command, and use a lowercase “d” at the end, and that you capitalize the
ID accurately as well.

The getElementById() command belongs to the document object, meaning that the

entire document’s collection of elements is subject to this instantaneous search for a match-
ing ID. The dot — a traditional period character —is the JavaScript way of indicating that the
item to the left of the dot (the document object here) has the item to the right of the dot
(getElementById() here) as a resource to call upon whenever needed. Each type of object
has a list of such resources, as you'll see in a moment (and as summarized in Appendix A).

id versus name Attributes

Prior to the HTML 4.0 specification’s introduction of the 1d attribute, scripts could access a hand-
ful of elements that also supported the name attribute. Elements supporting the name attribute
are predominantly related to forms, images, and frames. You will see how name attributes work
in forms in Chapter 9. In fact, most browsers still require the name attribute for forms and form
controls (text fields, buttons, and select lists) for their data to be submitted to a server. It is per-
missible to assign the same identifier to both the id and name attributes of an element.

Chapter 4 + Browser and Document Objects 41

Node Terminology

W3C DOM terminology uses metaphors to assist programmers in visualizing the containment
hierarchy of a document and its content. One concept you should grasp early in your learning
is that of a node; the other concept is the family relationship among objects in a document.

About nodes

While the English dictionary contains numerous definitions of “node,” the one that comes
closest to its application in the W3C DOM is the one that implies a knob or bump on a tree
branch. Such nodules on a branch usually lead to one of two things: a leaf or another branch.
A leaf is a dead end in that no further branches emanate from the leaf; but the branch kind of
node leads to a new branch that can, itself, have further nodes, whether they be leaves or
more branches. When you define the structure of an HTML document, you also define a node
structure (also called a node tree) whose placement of branches and leaves depends entirely
on your HTML elements and text content.

In the W3C DOM, the fundamental building block is a simple, generic node. But inside an
HTML document, we work with special kinds of nodes that are tailored to HTML documents.
The two types of nodes that scripts touch most often are element nodes and text nodes.
These node types correspond exactly to HTML elements and the text that goes between an
element’s start and end tags. You've been working with element and text nodes in your HTML
authoring, and you didn’t even know it.

Look again at the simple document assembled earlier, along with its containment hierarchy
diagram in Figure 4-12. All of the boxes representing HTML elements (htm1, head, body, p,
and em) are element nodes; the three boxes containing actual text that appears in the ren-
dered document are text nodes. You saw in the transition from one long text node (Figure 4-10)
to the insertion of the em element (Figure 4-11) that the long text node divided into three
pieces. Two text node pieces stayed in the same position in the hierarchy relative to the con-
taining p element. The new em element bullied its way into the tree between the two text
nodes, and shifted the third text node one level away from the p element.

<html>
<head></head> document
<body> |
<p>This is the one and
only paragraph.</p> html
</body>
</html1> |
| |
head body
|
p
[
[[|
““ This is the” em ‘““ paragraph.”

““one and only”

Figure 4-12: A simple HTML document node tree.

42

Part Il 4+ JavaScript Tutorial

Parents and children

Looking more closely at the p element and its content in Figure 4-12, you can see that element
has three child nodes. The first and last are of the text node type, while the middle one is an
element node. When an element contains multiple child nodes, the sequence of child nodes is
entirely dependent upon the HTML source code order. Thus, the first child node of the p ele-
ment is the text node containing the text “This is the “. In the case of the em element, a single
child text node is the sole descendant of the element.

Element node children are not always text nodes, nor do branches always end in text nodes.
In Figure 4-12, the htm1 element has two child nodes, both of which are element nodes; the
body element has one child node, the p element. Even though the head element node appears
to be at the end of a branch, it is still an element node because it is capable of containing
other nodes (such as a title element). A tag in the HTML indicates an element node,
whether or not it has any child nodes. In contrast, a text node can never contain another
node —it’s one of those dead-end leaf type of nodes.

Notice that a child node is always contained by one element node. That container is the par-
ent node of its child or children. For example from the point of view of the em element node, it
has both one child (a text node) and one parent (the p element node). A fair amount of W3C
DOM terminology (which you’ll meet in Chapter 14) concerns itself with assisting scripts to
start at any point in a document hierarchy and obtain a reference to a related node if neces-
sary. For instance, if a Dynamic HTML script wants to modify the text inside the em element of
Figure 4-12, it would typically do so by starting with a reference to the em element via the
document.getElementById() command (assuming the em element has an ID assigned to it)
and then modifying the element’s child node.

In case you're wondering, the document object at the top of the node tree is, itself, a node.
Its place in the tree is special and is called, simply, the document node. Each document con-
tains a single document node, and that node becomes the scripter’s gateway to the rest of
the document’s nodes. It’s no accident that the syntax for referencing an element node —
document.getElementById() —begins with a reference to the document object.

What Defines an Object?

When an HTML tag defines an object in the source code, the browser creates a slot for that
object in memory as the page loads. But an object is far more complex internally than, say,

a mere number stored in memory. The purpose of an object is to represent some “thing.” In
the browser and its Document Object Model, the most common objects are those that corre-
spond to elements, such as a text input form field, a table element, or the whole HTML docu-
ment. Outside of the pared-down world of the DOM, an object can also represent abstract
entities, such as a calendar program’s appointment entry or a layer of graphical shapes in a
drawing program. It is common for your browser scripts to work with both DOM objects and
abstract objects of your own design.

Every type of DOM object is unique in some way, even if two or more objects look identical to
you in the browser. Three very important facets of an object define what it is, what it looks
like, how it behaves, and how scripts control it. Those three facets are properties, methods,
and event handlers. They play such key roles in your future DOM scripting efforts that the
Object Quick Reference in Appendix A summarizes the properties, methods, and event han-
dlers for each object in the object models implemented in various browser generations.

Chapter 4 4+ Browser and Document Objects 43

Properties

Any physical object you hold in your hand has a collection of characteristics that defines it. A
coin, for example, has shape, diameter, thickness, color, weight, embossed images on each
side, and any number of other attributes that distinguish it from, say, a feather. Each of those
features is called a property. Each property has a value of some kind attached to it (even if the
value is empty or null). For example, the shape property of a coin might be “circle”—in this
case, a text value. In contrast, the denomination property is most likely a numeric value.

You may not have known it, but if you've written HTML for use in a scriptable browser, you
have set object properties without writing one iota of JavaScript. Tag attributes are the most
common way to set an HTML element object’s initial properties. For example, the following
HTML tag defines an input element object that assigns four property values:

{input type="button" id="clicker" name="clicker" value="Hit Me...">

In JavaScript parlance, then, the type property holds the word “button,” the id and name
properties hold the same word, “clicker,” and the value property is the text that appears on
the button label, “Hit Me. . . .” In truth, a button input element has more properties than just
these, but you don’t have to set every property for every object. Most properties have
default values that are automatically assigned if nothing special is set in the HTML or later
from a script.

The contents of some properties can change after a document has loaded and the user inter-
acts with the page. Consider the following text input tag:

<input type="text" id="entry" name="entry" value="User Name?">

The id and name properties of this object are the same word, “entry.” When the page loads,
the text of the value attribute setting is placed in the text field —the automatic behavior of
an HTML text field when the value attribute is specified. But if a user enters some other text
into the text field, the value property changes —not in the HTML, but in the memory copy of
the object model that the browser maintains. Therefore, if a script queries the text field about
the content of the value property, the browser yields the current setting of the property —
which isn’t necessarily the one specified by the HTML.

To gain access to an object’s property, you use the same kind of dot notation addressing
scheme you saw earlier for objects. A property is a resource belonging to its object, so the
reference to it consists of the reference to the object plus one more extension naming the
property. Therefore, for the button and text object tags just shown, references to various
properties are

document.getElementById("clicker").name
document.getETementById("clicker").value
document.getElementById("entry").value

You may wonder what happened to the window part of the reference. It turns out that there
can be only one document contained in a window, so references to objects inside the docu-
ment can omit the window portion and start the reference with document. You cannot omit
the document object, however, from the reference.

44

Part Il 4+ JavaScript Tutorial

Internet Explorer References

Before the W3C DOM came into existence, Microsoft had created its own way of referencing ele-
ment objects by way of their id attributes. You will find many instances of this syntax in existing
code that has been written only for Internet Explorer 4 or later. The syntax uses a construction
called document.al1. Although there are a few different ways to use this construction, the most
commonly applied way is to continue the dot notation to include the ID of the element. For
example, if a paragraph element’s ID is myParagraph, the IE-only reference syntax is:

document.all.myParagraph

You can also completely omit the lead-in parts of the reference, and simply refer to the ID of the
element:

myParagraph

Be aware, however, that none of these approaches is supported in the W3C DOM standard. Both
the IE-specific and W3C DOM reference syntax styles are implemented in IE5 or later. Going for-
ward, you should migrate existing code to the W3C DOM style to be compatible with more
browsers.

Methods

If a property is like a descriptive adjective for an object, then a method is a verb. A method is
all about action related to the object. A method either does something to the object or with
the object that affects other parts of a script or document. They are commands of a sort, but
whose behaviors are tied to a particular object.

An object can have any number of methods associated with it (including none at all). To set a

method into motion (usually called invoking a method), a JavaScript statement must include a

reference to it—via its object with a pair of parentheses after the method name —as in the
following examples:

document.getElementById("orderForm").submit()
document.getETementById("entry").focus()

The first is a scripted way of sending a form (named orderForm) to a server. The second
gives focus to a text field named entry.

Sometimes a method requires that you send additional information with it so that it can do its

job. Each chunk of information passed with the method is called a parameter or argument

(you can use the terms interchangeably). You saw examples of passing a parameter in your
first script in Chapter 3. Two script statements invoked the write () method of the document
object:

document.write("This browser is version " + navigator.appVersion)
document.write(" of " + navigator.appName + ".")

As the page loaded into the browser, each document.write() method sent whatever text

was inside the parentheses to the current document. In both cases, the content being sent as
a parameter consisted of straight text (inside quotes) and the values of two object properties:
the appVersion and appName properties of the navigator object.

Some methods require more than one parameter. If so, the multiple parameters are separated
by commas. For example, version 4 and later browsers support a window object method that

Chapter 4 + Browser and Document Objects

moves the window to a particular coordinate point on the screen. A coordinate point is
defined by two numbers that indicate the number of pixels from the left and top edges of the
screen where the top-left corner of the window should be. To move the browser window to a
spot 50 pixels from the left and 100 pixels from the top, the method is:

window.moveTo(50,100)

As you learn more about the details of JavaScript and the document objects you can script,
pay close attention to the range of methods defined for each object. They reveal a lot about
what an object is capable of doing under script control.

Event handlers

One last characteristic of a DOM object is the event handler. Events are actions that take place
in a document, usually as the result of user activity. Common examples of user actions that
trigger events include clicking a button or typing a character into a text field. Some events,
such as the act of loading a document into the browser window or experiencing a network
error while an image loads, are not so obvious.

Almost every DOM object in a document receives events of one kind or another — summa-
rized for your convenience in the Object Quick Reference of Appendix A. What determines
whether the object does anything in response to the event is an extra attribute you enter into
the object’s HTML definition. The attribute consists of the event name, an equal sign (just like
any HTML attribute), followed by instructions about what to do when the particular event
fires. Listing 4-1 shows a very simple document that displays a single button with one event
handler defined for it.

Listing 4-1: A Simple Button with an Event Handler

<html>
<body>
<form>
<input type="button" value="Click Me" onclick="window.alert ('Ouch!"')">
</ form>
</body>
</html>

The form definition contains what, for the most part, looks like a standard input element.
But notice the last attribute, onclick="window.alert('Ouch!"')". Button input objects, as
you see in their complete descriptions in Chapter 22, react to mouse clicks. When a user
clicks the button, the browser sends a click event to the button. In this button’s definition,
the attribute says that whenever the button receives that event, it should invoke one of the
window object’s methods, alert(). The alert() method displays a simple alert dialog box
whose content is whatever text is passed as a parameter to the method. Like most arguments
to HTML attributes, the attribute setting to the right of the equal sign goes inside quotes. If
additional quotes are necessary, as in the case of the text to be passed along with the event
handler, those inner quotes can be single quotes. In actuality, JavaScript doesn’t distinguish
between single or double quotes but does require that each pair be of the same type.
Therefore, you can write the attribute this way:

onclick="alert("Quch!")"

45

46 Part Il 4 JavaScript Tutorial

Exercises

1. Which of the following applications are well suited to client-side JavaScript? Why or
why not?

a. Music jukebox

b. Web-site visit counter

c. Chat room

d. Graphical Fahrenheit-to-Celsius temperature calculator
e. All of the above

f. None of the above

2. Which of the following object names are valid in JavaScript? For each one that is
invalid, explain why.

a. lastName

b. company_name
c. IstLineAddress
d. zip code

e. today's_date

3. Using the diagram from Figure 4-12 for reference, draw a diagram of the object model
containment hierarchy that the browser would create in its memory for the following
HTML. Write the script reference to the second paragraph element using W3C DOM
syntax.

<html>

<head>

{title>Search Form</title>

</head>

<body>

<p id="logoPar"><img src="images/logo.jpg" height="90" width="300"
alt="Logo" /></p>

<p id="formPar">

<form name="searchForm" action="cgi-bin/search.pl" method="POST">
Search for: <input type="text" name="searchText" />

<input type="submit" value="Search" />

</form>

</p>

</body>

</html1>

4. Describe at least two characteristics that a text node and an element node have in
common; describe at least two characteristics that distinguish a text node from an
element node.

5. Write the HTML tag for a button input element named “Hi,” whose visible label reads
“Howdy” and whose onc1ick event handler displays an alert dialog box that says
“Hello to you, too!”

+ o+

CHAPTER

Scripts and HTML
Documents

+ 0+ o+
In This Chapter

In this chapter’s tutorial, you begin to see how scripts are embed- Where to place scripts

ded within HTML documents and what comprises a script state- im [ETL dsaumeit
ment. You also see how script statements can run when the
document loads or in response to user action. Finally, you find out What a JavaScript
where script error information is hiding. statement is

What makes a script

Where Scripts Go in Documents

Chapter 4 did not thoroughly cover what scripts look like or how you Viewing script errors
add them to an HTML document. That’s where this lesson picks up
the story. + + + 4+

The <script> tag

To assist the browser in recognizing lines of code in an HTML docu-
ment as belonging to a script, you surround lines of script code with
a<script>...</script> tag set. This is common usage in HTML
where start and end tags encapsulate content controlled by that tag,
whether the tag set is for a form or a paragraph.

Depending on the browser, the <script> tag has a variety of
attributes you can set that govern the script. One attribute, type,
advises the browser to treat the code within the tag as JavaScript.
Some other browsers accept additional languages (such as
Microsoft’s VBScript in Windows versions of Internet Explorer). The
following setting is one that all scriptable browsers accept:

{script type="text/javascript">

Be sure to include the ending tag for the script. Lines of JavaScript
code go between the two tags:

<script type="text/javascript">
one or more lines of JavaScript code here
</script>

If you forget the closing script tag, the script may not run properly
and the HTML elsewhere in the page may look strange.

Although you don’t work with it in this tutorial, another attribute
works with more recent browsers to blend the contents of an exter-
nal script file into the current document. An src attribute (similar to

48

Part Il 4+ JavaScript Tutorial

the src attribute of an tag) points to the file containing the script code. Such files must
end with a .js extension. The tag set looks like the following:

{script type="text/javascript" SRC="myscript.js"></script>

All script lines are in the external file, so no script lines are included between the start and
end script tags in the document.

Tag positions

Where do these tags go within a document? The answer is, anywhere they're needed in the
document. Most of the time it makes sense to include the tags nested within the
<head>...</head> tag set; other times it is essential that you drop the script into a very spe-
cific location in the <body>...</body> section.

In the following four listings, I demonstrate — with the help of a skeletal HTML document —
some of the possibilities of <script> tag placement. Later in this lesson, you see why scripts
may need to go in different places within a page depending on the scripting requirements.

Listing 5-1 shows the outline of what may be the most common position of a <script> tag set
in a document: in the <head> tag section. Typically, the Head is a place for tags that influence
noncontent settings for the page —so-called HTML “directive” elements, such as <meta> tags

and the document title. It turns out that this is also a convenient place to plant scripts that
are called on in response to user action.

Listing 5-1: Scripts in the Head

<html>

<head>

<title>A Document</title>

<script type="text/javascript">
//script statement(s) here

</script>
</head>
<body>
</body>
</html>

The Old language Attribute

Another <script> tag attribute, Tanguage, used to be the way to specify the scripting language
for the enclosed code. That attribute allowed scripters to specify the language version. For
example, if the scripts included code that required JavaScript syntax available only in version 4
browsers (which implemented JavaScript version 1.2), the <script> tag used to be written as
follows:

<script language="JavaScriptl.2">...</script>

The 1anguage attribute was never part of the HTML 4.0 specification, and is now falling out of
favor. If W3C validation is one of your development concerns, the attribute does not validate in
strict versions of HTML 4.01 or XHTML 1.0. Older browsers that do not know the type attribute
automatically default to JavaScript anyway. Use only the type attribute.

Chapter 5 4 Scripts and HTML Documents 49

On the other hand, if you need a script to run as the page loads so that the script generates
content in the page, the script goes in the <body> portion of the document, as shown in
Listing 5-2. If you check the code listing for your first script in Chapter 3, you see that the
script tags are in the Body because the script needs to fetch information about the browser
and write the results to the page as the page loads.

Listing 5-2: A Script in the Body

<html>

<head>

<title>A Document</title>

<{/head>

<body>

<script type="text/javascript">
//script statement(s) here

<scripty
</body>
</html>

It’s also good to know that you can place an unlimited number of <script> tag sets in a docu-
ment. For example, Listing 5-3 shows a script in both the Head and Body portions of a docu-
ment. Perhaps this document needs the Body script to create some dynamic content as the
page loads, but the document also contains a button that needs a script to run later. That
script is stored in the Head portion.

Listing 5-3: Scripts in the Head and Body

<html>

<head>

<title>A Document</title>

<script type="text/javascript">
//script statement(s) here

</script>

</head>

<body>

<script type="text/javascript">
//script statement(s) here

</séfipt>
</body>
</html>

You also are not limited to one <script> tag set in either the Head or Body. You can include
as many <script> tag sets in a document as are needed to complete your application. In
Listing 5-4, for example, two <script> tag sets are located in the Body portion, with some
other HTML between them.

50 Part Il + JavaScript Tutorial

Listing 5-4: Two Scripts in the Body

<html>

<head>

<title>A Document</title>

</head>

<body>

<script type="text/javascript">
//script statement(s) here

</script>

<more html>

<script type="text/javascript">
//script statement(s) here

<Iscript>
</body>
</html>

Handling non-JavaScript browsers

Only browsers that include JavaScript in them know to interpret the lines of code between
the <script>...</script> tag pair as script statements and not HTML text for display in
the browser. This means that a pre-JavaScript browser or a simplified browser in a cell phone
not only ignores the tags, but it also treats the JavaScript code as page content. The results
can be disastrous to a page.

You can reduce the risk of non-JavaScript browsers displaying the script lines by playing a
trick. The trick is to enclose the script lines between HTML comment symbols, as shown in
Listing 5-5. Most nonscriptable browsers completely ignore the content between the <! - -
and - -> comment tags, whereas scriptable browsers ignore those comment symbols when
they appear inside a <script> tag set.

Listing 5-5: Hiding Scripts from Most Old Browsers

<script type="text/javascript">
<l--

//script statement(s) here
/-5
</script>

The odd construction right before the ending script tag needs a brief explanation. The two
forward slashes are a JavaScript comment symbol. This symbol is necessary because
JavaScript otherwise tries to interpret the components of the ending HTML symbol (-->).
Therefore, the forward slashes tell JavaScript to skip the line entirely; a nonscriptable
browser simply treats those slash characters as part of the entire HTML comment to be
ignored.

Chapter 5 4 Scripts and HTML Documents 51

Despite the fact that this technique is often called hiding scripts, it does not disguise the
scripts entirely. All client-side JavaScript scripts are part of the HTML document and down-
load to the browser just like all other HTML. Furthermore, you can view them as part of the
document’s source code. Do not be fooled into thinking that you can hide your scripts
entirely from prying eyes.

JavaScript Statements

Virtually every line of code that sits between a <script>... </script)> tag pairis a
JavaScript statement. To be compatible with habits of experienced programmers, JavaScript
accepts a semicolon at the end of every statement (the computer equivalent of a period at
the end of a sentence). Fortunately for newcomers, this semicolon is optional: The carriage
return at the end of a statement suffices for JavaScript to know the statement has ended. It is
possible that in the future the semicolon will be required, so it’s a good idea to get into the
semicolon habit now.

A statement must be in the script for a purpose. Therefore, every statement does “some-
thing” relevant to the script. The kinds of things that statements do are

4 Define or initialize a variable

4 Assign a value to a property or variable

4 Change the value of a property or variable
4+ Invoke an object’s method

4+ Invoke a function routine

4+ Make a decision

If you don’t yet know what all of these mean, don’t worry —you will by the end of this tuto-
rial. The point [want to stress is that each statement contributes to the scripts you write. The
only statement that doesn’t perform any explicit action is the comment. A pair of forward
slashes (no space between them) is the most common way to include a comment in a script.
You add comments to a script for your benefit. They usually explain in plain language what a
statement or group of statements does. The purpose of including comments is to remind you
six months from now how your script works.

When Script Statements Execute

Now that you know where scripts go in a document, it’s time to look at when they run.
Depending on what you need a script to do, you have four choices for determining when a
script runs:

4 While a document loads

4+ Immediately after a document loads

4 In response to user action

4 When called upon by other script statements

The determining factor is how the script statements are positioned in a document.

52

Part Il 4+ JavaScript Tutorial

While a document loads —immediate execution

Your first script in Chapter 3 (reproduced in Listing 5-6) runs while the document loads into
the browser. For this application, it is essential that a script inspects some properties of the
navigator object and includes those property values in the content being rendered for the
page as it loads. It makes sense, therefore, to include the <script> tags and statements in
the Body portion of the document. I call the kind of statements that run as the page loads
immediate statements.

Listing 5-6: HTML Page with Immediate Script Statements

<html>

<head>

<title>My First Script</title>
{style type="text/css">
.highlight {font-weight: bold}
{/style>

</head>

<body>

<hl>Let's Script...</hl>

<hr>

{script type="text/javascript">

<!-- hide from old browsers

document.write("This browser is version " + navigator.appVersion);
document.write(" of " + navigator.appName + ".");
// end script hiding -->

</script>

</body>

</html>

Deferred scripts

The other three ways that script statements run are grouped together as what I call deferred
scripts. To demonstrate these deferred script situations, I must introduce you briefly to a con-
cept covered in more depth in Chapter 7: the function. A function defines a block of script
statements summoned to run some time after those statements load into the browser.
Functions are clearly visible inside a <script> tag because each function definition begins
with the word function followed by the function name (and parentheses). Once a function is
loaded into the browser (commonly in the Head portion so it loads early), it stands ready to
run whenever called upon.

One of the times a function is called upon to run is immediately after a page loads. The
window object has an event handler called on1oad. Unlike most event handlers, which are
triggered in response to user action (for example, clicking a button), the onload event han-
dler fires the instant that all of the page’s components (including images, Java applets, and
embedded multimedia) are loaded into the browser. The onload event handler goes in the
<body> tag, as shown in Listing 5-7. Recall from Chapter 4 (Listing 4-1) that an event handler
can run a script statement directly. But if the event handler must run several script state-
ments, it is usually more convenient to put those statements in a function definition and then
have the event handler invoke that function. That’s what happens in Listing 5-7: When the
page completes loading, the onload event handler triggers the done () function. That func-
tion (simplified for this example) displays an alert dialog box.

Chapter 5 4 Scripts and HTML Documents

Listing 5-7: Running a Script from the onload Event Handler

<html>
<head>
<title>An onload script</title>
{script type="text/javascript">
-
function done() {
alert("The page has finished Toading.");
}
/] -->
{/script>
</head>
<body onload="done()">
Here is some body text.
</body>
</htm1>

Don’t worry about the curly braces or other oddities in Listing 5-7 that may cause you con-
cern at this point. Focus instead on the structure of the document and the flow. The entire
page loads without running any script statements, although the page loads the done () func-
tion in memory so that it is ready to run at a moment’s notice. After the document loads, the
browser fires the on1oad event handler, which causes the done () function to run. Then the
user sees the alert dialog box.

Getting a script to execute in response to a user action is very similar to the preceding exam-
ple for running a deferred script right after the document loads. Commonly, a script function
is defined in the Head portion, and an event handler in, say, a form element calls upon that
function to run. Listing 5-8 includes a script that runs when a user clicks a button.

Listing 5-8: Running a Script from User Action

<html>

<head>

<title>An onclick script</title>

{script type="text/javascript">

<=

function alertUser() {
alert("Ouch!");

}

/[l -->

</script>

</head>

<body>

Here is some body text.

<form>
nput type="text" name="entry">
<input type="button" name="oneButton" value="Press Me!"

onclick="alertUser()">

</form>

</body>

</htm1>

53

54

Part Il 4+ JavaScript Tutorial

Not every object must have an event handler defined for it in the HTML, as shown in
Listing 5-8 — only the ones for which scripting is needed. No script statements execute in
Listing 5-8 until the user clicks the button. The alertUser () function is defined as the page
loads, and it waits to run as long as the page remains loaded in the browser. If it is never
called upon to run, there’s no harm done.

The last scenario for when script statements run also involves functions. In this case, a func-
tion is called upon to run by another script statement. Before you see how that works, it
helps to read through the next lesson (Chapter 6). Therefore, I will hold off on this example
until later in the tutorial.

Viewing Script Errors

In the early days of JavaScript in browsers, script errors displayed themselves in very obvi-
ous dialog boxes. These boxes were certainly helpful for scripters who wanted to debug their
scripts. However, if a bug got through to a page served up to a non-technical user, the error
alert dialog boxes were not only disruptive, but also scary. To prevent such dialog boxes from
disturbing unsuspecting users, the browser makers tried to diminish the visual impact of
errors in the browser window. Unfortunately for scripters, it is often easy to overlook the fact
that your script contains an error because the error is not so obvious. Recent browser ver-
sions have different ways of letting scripters see the errors.

In IE5+, you can set its preferences so that scripts do not generate error dialog boxes (go to
Tools = Internet Options = Advanced => Browsing and find the check-box entry that says
“Display a notification about every script error”). Even with error dialog boxes turned off,
error indications are displayed subtly at the left edge of the browser window’s status bar. An
alert icon and message (“Error on page.”) appear in the status bar. If you double-click the
icon, the error dialog box appears (see Figure 5-1). Be sure to expand the dialog box by click-
ing the Show Details button. Unless you turn on script error dialog boxes and keep them com-
ing, you have to train yourself to monitor the status bar when a page loads and after each
script runs.

X Internet Explorer

v Prablems with thiz 'Web page might prevent it fiom being displayed properly
o functioritg properdy. In the future, you can dsplay this message by
double-clicking the waning icon displaped in the status bar

-

Alvaps display thiz message when a page contains errors.

[k [Hide Detait << |

Line: 214

Char §

Enor: ‘fred'is undefined

Code:0

URL: file: /224 testhevaiiatar html

Figure 5-1: The expanded IE error dialog box.

For Mozilla-based browsers, choose Tools &> Web Development > JavaScript Console. The
JavaScript console window (a separate window from the Java console) opens to reveal the
error message details (see Figure 5-2). You can keep this window open all the time if you like.
Unless you clear the window, subsequent error messages are appended to the bottom of the
window.

Chapter 5 4 Scripts and HTML Documents

[5 JavaScript Console

T Ble Edi Yew Tools Window Help

i A Errors Warnings Messages | Clear

I | Error: fred is not defined
Source File: FileffiZ:) testjevaluator.himl Line: 200

Evaluate

Figure 5-2: The Mozilla 1.4 JavaScript console window.

Safari 1.0 records script errors, but it’s not obvious how to read them. You must first enable
Safari’s Debug menu by typing the following command in the Terminal application:

defaults write com.apple.Safari IncludeDebugMenu 1

Then, each time you launch Safari, choose the Log JavaScript Exceptions item in the Debug
menu. Open the MacOS X Console application window, where JavaScript error messages
appear amid other Console logging messages. With luck, future versions will be more
developer-friendly.

Understanding error messages and doing something about them is a very large subject,
reserved for advanced discussion in Chapter 45 on the CD-ROM. During this tutorial, how-
ever, you can use the error messages to see if you have perhaps mistyped a script from a list-
ing in the book.

Scripting versus Programming

You may get the impression that scripting is easier than programming. “Scripting” simply
sounds easier or more friendly than “programming.” In many respects, this is true. One of my
favorite analogies is the difference between a hobbyist who builds model airplanes from
scratch and a hobbyist who builds model airplanes from commercial kits. The “from scratch”
hobbyist carefully cuts and shapes each piece of wood and metal according to very detailed
plans before the model starts to take shape. The commercial kit builder starts with many pre-
fabricated parts and assembles them into the finished product. When both builders are fin-
ished, you may not be able to tell which airplane was built from scratch and which one came
out of a box of components. In the end, both builders used many of the same techniques to
complete the assembly, and each can take pride in the result.

As you've seen with the Document Object Model, the browser gives scripters many prefabri-
cated components with which to work. Without the browser, you’d have to be a pretty good
programmer to develop from scratch your own application that served up content and

55

56

Part Il 4+ JavaScript Tutorial

offered user interaction. In the end, both authors have working applications that look equally
professional.

Beyond the DOM, however, “real programming” nibbles its way into the scripting world.
That’s because scripts (and programs) work with more than just objects. When I said earlier
in this lesson that each statement of a JavaScript script does something, that “something”
involves data of some kind. Data is the information associated with objects or other pieces of
information that a script pushes around from place to place with each statement.

Data takes many forms. In JavaScript, the common incarnations of data are numbers; text
(called strings); objects (both from the object model and others you can create with scripts);
and true and false (called Boolean values).

Each programming or scripting language determines numerous structures and limits for each
kind of data. Fortunately for newcomers to JavaScript, the universe of knowledge necessary
for working with data is smaller than in a language such as Java. At the same time, what you
learn about data in JavaScript is immediately applicable to future learning you may undertake
in any other programming language — don’t believe for an instant that your efforts in learning
scripting will be wasted.

Because deep down scripting is programming, you need to have a basic knowledge of funda-
mental programming concepts to consider yourself a good JavaScript scripter. In the next two
lessons, | set aside most discussion about the DOM and focus on the programming principles
that will serve you well in JavaScript and future programming endeavors.

Exercises

1. Write the complete script tag set for a script whose lone statement is
document.write("Hello, world.");

2. Build an HTML document and include the answer to the previous question such that
the page executes the script as it loads. Open the document in your browser to test the
results.

3. Add a comment to the script in the previous answer that explains what the script does.

4. Create an HTML document that displays an alert dialog box immediately after the page
loads and displays a different alert dialog box when the user clicks a form button.

5. Carefully study the document in Listing 5-9. Without entering and loading the docu-
ment, predict

a. What the page looks like
b. How users interact with the page
c. What the script does

Then type the listing into a text editor as shown (observe all capitalization and punctu-
ation). Do not type a carriage return after the “=” sign in the upperMe function state-
ment; let the line word-wrap as it does in the following listing. It’s okay to use a
carriage return between attribute name/value pairs, as shown in the first <input> tag.
Save the document as an HTML file, and load the file into your browser to see how well
you did.

Chapter 5 4 Scripts and HTML Documents

Listing 5-9: How Does This Page Work?

<html>

<head>

<title>Text Object Value</title>

{script type="text/javascript">

<h--

function upperMe() {
document.getElementById("output").value =

document.getElementById("input").value.toUpperCase();

}

/-

</script>

</head>

<body>
Enter Towercase letters for conversion to uppercase:

<form name="converter">

input type="text" name="input" id="input"

value="sample" onchange="upperMe()" />

dinput type="text" name="output" id="output" value="" />
</form>
</body>
</htm1>

57

C H AgP T\E R

Programming
Fundamentals,
Part | CC

In This Chapter

What variables are and
how to use them

The tutorial breaks away from HTML and documents for a while as Why you must learn
you begin to learn programming fundamentals that apply to prac- how to evaluate
tically every scripting and programming language you will encounter. expressions

Here, you start learning about variables, expressions, data types, and

operators — things that might sound scary if you haven’t pro- How to convert data
grammed before. Don’t worry. With a little practice, you will become from one type to
quite comfortable with these terms and concepts. another

How to use basic

What Language Is This? operators

The language you're studying is called JavaScript. But the language + + + +

has some other names that you may have heard. JScript is
Microsoft’s name for the language. By leaving out the “ava,” the com-
pany doesn’t have to license the “Java” name from its trademark
owner: Sun Microsystems.

A standards body called ECMA (pronounced ECK-ma) now governs
the specifications for the language (no matter what you call it). The
document that provides all of the details about the language is known
as ECMA-262 (it’s the 262nd standard published by ECMA). Both
JavaScript and JScript are ECMA-262 compatible. Some earlier
browser versions exhibit very slight deviations from ECMA-262 (which
came later than the earliest browsers). The most serious discrepan-
cies are noted in the core language reference in Part IV of this book.

Working with Information

With rare exception, every JavaScript statement you write does
something with a hunk of information — data. Data may be text infor-
mation displayed on the screen by a JavaScript statement or the
on/off setting of a radio button in a form. Each single piece of infor-
mation in programming is also called a value. Outside of program-
ming, the term value usually connotes a number of some kind; in the
programming world, however, the term is not as restrictive. A string

60

Part Il 4+ JavaScript Tutorial

of letters is a value. A number is a value. The setting of a checkbox (whether it is checked
or not) is a value.

In JavaScript, a value can be one of several types. Table 6-1 lists JavaScript’s formal data
types, with examples of the values you will see displayed from time to time.

Table 6-1: JavaScript Value (Data) Types

Type Example Description

String "Howdy" A series of characters inside quote marks

Number 4.5 Any number not inside quote marks

Boolean true A logical true or false

Null null Completely devoid of any content, but a value just the same

Object A software “thing” that is defined by its properties and methods
(arrays are also objects)

Function A function definition

A language that contains these few data types simplifies programming tasks, especially those
involving what other languages consider to be incompatible types of numbers (integers ver-
sus real or floating-point values). In some definitions of syntax and parts of objects later in
this book, I make specific reference to the type of value accepted in placeholders. When a
string is required, any text inside a set of quotes suffices.

You will encounter situations, however, in which the value type may get in the way of a
smooth script step. For example, if a user enters a number into a form’s text input field, the
browser stores that number as a string value type. If the script is to perform some arithmetic
on that number, you must convert the string to a number before you can apply the value to
any math operations. You see examples of this later in this lesson.

Variables

Cooking up a dish according to a recipe in the kitchen has one advantage over cooking up
some data in a program. In the kitchen, you follow recipe steps and work with real things: car-
rots, milk, or a salmon fillet. A computer, on the other hand, follows a list of instructions to
work with data. Even if the data represents something that looks real, such as the text
entered into a form’s input field, once the value gets into the program, you can no longer
reach out and touch it.

In truth, the data that a program works with is merely a collection of bits (on and off states)
in your computer’s memory. More specifically, data in a JavaScript-enhanced Web page occu-
pies parts of the computer’s memory set aside for exclusive use by the browser software. In
the olden days, programmers had to know the numeric address in memory (RAM) where a
value was stored to retrieve a copy of it for, say, some addition. Although the innards of a pro-
gram have that level of complexity, programming languages such as JavaScript shield you
from it.

The most convenient way to work with data in a script is to first assign the data to a variable.
It’s usually easier to think of a variable as a basket that holds information. How long the vari-
able holds the information depends on a number of factors. But the instant a Web page clears
the window (or frame), any variables it knows about are immediately discarded.

Chapter 6 4+ Programming Fundamentals, Part | 61

Creating a variable

You have a couple of ways to create a variable in JavaScript, but one covers you properly in
all cases. Use the var keyword, followed by the name you want to give that variable.
Therefore, to declare a new variable called myAge, the JavaScript statement is

var myAge;

That statement lets the browser know that you can use that variable later to hold information
or to modify any of the data in that variable.

To assign a value to a variable, use one of the assignment operators. The most common one by
far is the equal sign. If | want to assign a value to the myAge variable at the same time I declare
it (a combined process known as initializing the variable), I use that operator in the same
statement as the var keyword:

var myAge = 45;

On the other hand, if I declare a variable in one statement and later want to assign a value to
it, the sequence of statements is

var myAge;
myAge = 45;

Use the var keyword only for declaration or initialization — once for the life of any variable
name in a document.

A JavaScript variable can hold any value type. Unlike many other languages, you don’t have
to tell JavaScript during variable declaration what type of value the variable will hold. In fact,
the value type of a variable can change during the execution of a program. (This flexibility
drives experienced programmers crazy because they’re accustomed to assigning both a data
type and a value to a variable.)

Variable names

Choose the names you assign to variables with care. You'll often find scripts that use vague
variable names, such as single letters. Other than a few specific times where using letters is a
common practice (for example, using i as a counting variable in repeat loops in Chapter 7), |
recommend using names that truly describe a variable’s contents. This practice can help you
follow the state of your data through a long series of statements or jumps, especially for com-
plex scripts.

A number of restrictions help instill good practice in assigning names. First, you cannot use
any reserved keyword as a variable name. That includes all keywords currently used by the
language and all others held in reserve for future versions of JavaScript. The designers of
JavaScript, however, cannot foresee every keyword that the language may need in the future.
By using the kind of single words that currently appear in the list of reserved keywords (see
Appendix B), you always run a risk of a future conflict.

To complicate matters, a variable name cannot contain space characters. Therefore, one-word
variable names are fine. Should your description really benefit from more than one word, you
can use one of two conventions to join multiple words as one. One convention is to place an
underscore character between the words; the other is to start the combination word with a
lowercase letter and capitalize the first letter of each subsequent word within the name —

I refer to this as the interCap format. Both of the following examples are valid variable names:

my_age
myAge

62

Part Il 4+ JavaScript Tutorial

My preference is for the second version. I find it easier to type as I write JavaScript code and
easier to read later. In fact, because of the potential conflict with future one-word keywords,
using multiword combinations for variable names is a good idea. Multiword combinations are
less likely to appear in the reserved word list.

Variable names have a couple of other important restrictions. Avoid all punctuation symbols
except for the underscore character. Also, the first character of a variable name cannot be a
numeral. If these restrictions sound familiar, it’s because they’re identical to those for HTML
element identifiers described in Chapter 4.

Expressions and Evaluation

Another concept closely related to the value and variable is expression evaluation — perhaps
the most important concept of learning how to program a computer.

We use expressions in our everyday language. Remember the theme song of The Beverly
Hillbillies?

Then one day he was shootin’ at some food
And up through the ground came a-bubblin’ crude
Oil that is. Black gold. Texas tea.

At the end of the song, you find four quite different references (“crude,” “oil,” “black gold,”
and “Texas tea”). They all mean oil. They’re all expressions for oil. Say any one of them and
other people know what you mean. In our minds, we evaluate those expressions to mean one
thing: oil.

In programming, a variable always evaluates to its contents, or value. For example, after
assigning a value to a variable, such as

var myAge = 45;

any time the variable is used in a statement, its value (45) is automatically applied to what-

ever operation that statement calls. Therefore, if you're 15 years my junior, I can assign a
value to a variable representing your age based on the evaluated value of myAge:

var yourAge = myAge - 15;
The variable, yourAge, evaluates to 30 the next time the script uses it. If the myAge value

changes later in the script, the change has no link to the yourAge variable because myAge
evaluated to 45 when it was used to assign a value to yourAge.

Expressions in script1.htm

You probably didn’t recognize it at the time, but you saw how expression evaluation came in
handy in your first script of Chapter 3. Recall the second document.write() statement:

document.write(" of " + navigator.appName + ".");

The document.write() method (remember, JavaScript uses the term method to mean com-
mand) requires a parameter in the parentheses: the text string to be displayed on the Web
page. The parameter here consists of one expression that joins three distinct strings:

"oof
navigator.appName

Chapter 6 4+ Programming Fundamentals, Part | 63

Testing JavaScript Evaluation

You can begin experimenting with the way JavaScript evaluates expressions with the help of The
Evaluator Jr. (seen in the following figure), an HTML page you can find on the companion
CD-ROM. (I introduce the Senior version in Chapter 13.) Enter any JavaScript expression into the
top text box, and either press Enter/Return or click the Evaluate button.

2 The Evaluator Jr. - Wicrosoft Internet Exploren

. File EdE View Favorites Tooks Help .
: : : 7 e T 5
(€ </ %] 2 d »>~ w @ 0 2 =
Forward Stop Refresh Home Search Faveorites Media History Mail Prirt
The Evaluator Jr.

Enter an expression to evaluate:
| | Evaluaie

Reghlts:
15

Enter areference to an object:

| | List Froperties

&i Dore “J Local inkranet
—

The Evaluator Jr. for testing expression evaluation.

The Evaluator Jr. has 26 variables (lowercase a through z) predefined for you. Therefore, you can
assign values to variables, test comparison operators, and even do math here. Using the age vari-
able examples from earlier in this chapter, type each of the following statements into the upper
text box and observe how each expression evaluates in the Results field. Be sure to observe case-
sensitivity in your entries. The trailing semicolons are optional in The Evaluator.

QL 9 T T o @

To start over, click the Reload button.

64

Part Il 4+ JavaScript Tutorial

The plus symbol is one of JavaScript’s ways of joining strings. Before JavaScript can display
this line, it must perform some quick evaluations. The first evaluation is the value of the
navigator.appName property. This property evaluates to a string of the name of your
browser. With that expression safely evaluated to a string, JavaScript can finish the job of
joining the three strings in the final evaluation. The evaluated string expression is what ulti-
mately appears on the Web page.

Expressions and variables

As one more demonstration of the flexibility that expression evaluation offers, this section
shows you a slightly different route to the document.write() statement. Rather than join
those strings as the direct parameter to the document.write() method, I can gather the
strings in a variable and then apply the variable to the document.write() method. Here’s
how that sequence looks, as [simultaneously declare a new variable and assign it a value:

var textToWrite = " of " + navigator.appName +
document.write(textToWrite);

non,
. s

This method works because the variable, textToWrite, evaluates to the combined string. The
document.write() method accepts that string value and does its display job. As you read a
script or try to work through a bug, pay special attention to how each expression (variable,
statement, object property) evaluates. | guarantee that as you learn JavaScript (or any lan-
guage), you will end up scratching your head from time to time because you haven’t stopped
to examine how expressions evaluate when a particular kind of value is required in a script.

Data Type Conversions

I mentioned earlier that the type of data in an expression can trip up some script operations
if the expected components of the operation are not of the right type. JavaScript tries its best
to perform internal conversions to head off such problems, but JavaScript cannot read your
mind. If your intentions differ from the way JavaScript treats the values, you won'’t get the
results you expect.

A case in point is adding numbers that may be in the form of text strings. In a simple arith-
metic statement that adds two numbers together, you get the expected result:

3+3 // result = 6

But if one of those numbers is a string, JavaScript leans toward converting the other value to

a string — thus turning the plus sign’s action from arithmetic addition to joining strings.
Therefore, in the statement

3+ "3" // result = "33"

the “string-ness” of the second value prevails over the entire operation. The first value is
automatically converted to a string, and the result joins the two strings. Try this yourself in
The Evaluator Jr.

If I take this progression one step further, look what happens when another number is added
to the statement:

3+ 3+ "3" // result = "63"

This might seem totally illogical, but there is logic behind this result. The expression is evalu-
ated from left to right. The first plus operation works on two numbers, yielding a value of 6.

Chapter 6 4+ Programming Fundamentals, Part | 65

But as the 6 is about to be added to the “3,” JavaScript lets the “string-ness” of the “3” rule.
The 6 is converted to a string, and two string values are joined to yield “63.”

Most of your concern about data types will focus on performing math operations like the
ones here. However, some object methods also require one or more parameters of particular
data types. While JavaScript provides numerous ways to convert data from one type to
another, it is appropriate at this stage of the tutorial to introduce you to the two most com-
mon data conversions: string to number and number to string.

Converting strings to numbers

As you saw in the last section, if a numeric value is stored as a string—as it is when entered
into a form text field — your scripts may have difficulty applying that value to a math opera-
tion. The JavaScript language provides two built-in functions to convert string representa-
tions of numbers to true numbers: parselnt() and parseFloat().

There is a difference between integers and floating-point numbers in JavaScript. Integers are
always whole numbers, with no decimal point or numbers to the right of a decimal. Floating-
point numbers, on the other hand, have fractional values to the right of the decimal. By and
large, JavaScript math operations don’t differentiate between integers and floating-point num-
bers: A number is a number. The only time you need to be cognizant of the difference is when
a method parameter requires an integer because it can’t handle fractional values. For exam-
ple, parameters to the scrol1() method of a window require integer values of the number of
pixels vertically and horizontally you want to scroll the window. That’s because you can’t
scroll a window a fraction of a pixel on the screen.

To use either of these conversion functions, insert the string value you wish to convert as a
parameter to the function. For example, look at the results of two different string values when
passed through the parselInt () function:

parselnt("42") /] result = 42
parselnt("42.33") /] result = 42

Even though the second expression passes the string version of a floating-point number to
the function, the value returned by the function is an integer. No rounding of the value occurs
here (although other math functions can help with that if necessary). The decimal and every-
thing to its right are simply stripped off.

The parseFloat() function returns an integer if it can; otherwise, it returns a floating-point
number as follows:

parseFloat("42") // result = 42
parsefFloat("42.33") // result = 42.33

Because these two conversion functions evaluate to their results, you simply insert the entire
function wherever you need a string value converted to a number. Therefore, modifying an
earlier example in which one of three values was a string, the complete expression can evalu-
ate to the desired result:

3+ 3 + parselnt("3") // result =9

Converting numbers to strings

You'll have less need for converting a number to its string equivalent than the other way
around. As you saw in the previous section, JavaScript gravitates toward strings when faced

66

Part Il 4+ JavaScript Tutorial

with an expression containing mixed data types. Even so, it is good practice to perform data
type conversions explicitly in your code to prevent any potential ambiguity. The simplest way
to convert a number to a string is to take advantage of JavaScript’s string tendencies in addi-
tion operations. By adding an empty string to a number, you convert the number to its string
equivalent:

("" + 2500) // result = "2500"
("" + 2500).1ength // result = 4

In the second example, you can see the power of expression evaluation at work. The paren-
theses force the conversion of the number to a string. A string is a JavaScript object that has
properties associated with it. One of those properties is the 1ength property, which evalu-
ates to the number of characters in the string. Therefore, the length of the string “2500” is 4.
Note that the length value is a number, not a string.

Operators

You will use lots of operators in expressions. Earlier, you used the equal sign (=) as an assign-
ment operator to assign a value to a variable. In the preceding examples with strings, you
used the plus symbol (+) to join two strings. An operator generally performs some kind of cal-
culation (operation) or comparison with two values (the value on each side of an operator is
called an operand) to reach a third value. In this lesson, I briefly describe two categories of
operators —arithmetic and comparison. Chapter 32 covers many more operators, but once
you understand the basics here, the others are easier to grasp.

Arithmetic operators

It may seem odd to talk about text strings in the context of “arithmetic” operators, but you
have already seen the special case of the plus (+) operator when one or more of the operands
is a string. The plus operator instructs JavaScript to concatenate (pronounced kon-KAT-en-
eight), or join, two strings together precisely where you place the operator. The string con-
catenation operator doesn’t know about words and spaces, so the programmer must make
sure that any two strings to be joined have the proper word spacing as part of the strings —
even if that means adding a space:

firstName = "John";
lastName = "Doe";
fullName = firstName + " " + TastName;

JavaScript uses the same plus operator for arithmetic addition. When both operands are
numbers, JavaScript knows to treat the expression as an arithmetic addition rather than a
string concatenation. The standard math operators for addition, subtraction, multiplication,
and division (+, -, *, /) are built into JavaScript.

Comparison operators

Another category of operator helps you compare values in scripts —whether two values are
the same, for example. These kinds of comparisons return a value of the Boolean type —true
or false. Table 6-2 lists the comparison operators. The operator that tests whether two
items are equal consists of a pair of equal signs to distinguish it from the single equal sign
assignment operator.

Chapter 6 4+ Programming Fundamentals, Part | 67

Table 6-2: JavaScript Comparison Operators

Symbol Description

== Equals

= Does not equal

> Is greater than

>= Is greater than or equal to
< Is less than

<= Is less than or equal to

Where comparison operators come into greatest play is in the construction of scripts that
make decisions as they run. A cook does this in the kitchen all the time: If the sauce is too
watery, add a bit of flour. You see comparison operators in action in the next chapter.

Exercises

1. Which of the following are valid variable declarations or initializations? Explain why
each one is or is not valid. If an item is invalid, how do you fix it so that it is?

a. my_name = "Cindy";

b. var how many = 25;

c. var zipCode = document.getElementById("zip").value
d. var laddress = document.("addressl").value;

2. Assume that the following statements operate rapidly in sequence, where each state-
ment relies on the result of the one before it. For each of the statements in the
sequence, write down how the someVal expression evaluates after the statement exe-
cutes in JavaScript.

var someVal = 2;

someVal = someVal + 2;
someVal = someVal * 10;
someVal = someVal + "20";
someVal = "Robert";

3. Name the two JavaScript functions that convert strings to numbers. How do you give
the function a string value to convert to a number?

4. Type and load the HTML page and script shown in Listing 6-1. Enter a three-digit num-
ber into the top two fields and click the Add button. Examine the code and explain
what is wrong with the script. How do you fix the script so the proper sum is displayed
in the output field?

68 Part Il + JavaScript Tutorial

Listing 6-1: What's Wrong with This Page?

<html>

<head>

<title>Sum Maker</title>
{script type="text/javascript">

<L--

function addIt() {
var valuel = document.getElementById("inputA").value;
var value2 = document.getElementById("inputB").value;

document.getElementById("output").value = valuel + value2;
}
/] -->
{/script>
</head>

<body>

<form name="adder">

<input type="text" name="inputA" id="inputA" value="0" size="4" />

<input type="text" name="inputB" id="inputB" value="0" size="4" />
<input type="button" value="Add" onclick="addIt()">

<p> </p>

<input type="text" name="output" id="output" size="6" />
</form>

</body>

</htm1>

5. What does the term concatenate mean in the context of JavaScript programming?

+ o+ 4

Programming
Fundamentals,
Part Il

Your tour of programming fundamentals continues in this chapter
with subjects that have more intriguing possibilities. For exam-
ple, I show you how programs make decisions and why a program
must sometimes repeat statements over and over. Before you're fin-
ished here, you will learn how to use one of the most powerful infor-
mation holders in the JavaScript language: the array.

Decisions and Loops

Every waking hour of every day you make decisions of some kind —
most of the time you probably don’t even realize it. Don’t think so?
Well, look at the number of decisions you make at the grocery store,
from the moment you enter the store to the moment you clear the
checkout aisle.

No sooner do you enter the store than you are faced with a decision.
Based on the number and size of items you intend to buy, do you pick
up a hand-carried basket or attempt to extricate a shopping cart from
the metallic conga line near the front of the store? That key decision
may have impact later when you see a special offer on an item that is
too heavy to put into the hand basket.

Next, you head for the food aisles. Before entering an aisle, you com-
pare the range of goods stocked in that aisle against items on your
shopping list. If an item you need is likely to be found in this aisle,
you turn into the aisle and start looking for the item; otherwise, you
skip the aisle and move to the head of the next aisle.

Later, you reach the produce section in search of a juicy tomato.
Standing in front of the bin of tomatoes, you begin inspecting them
one by one — picking one up, feeling its firmness, checking the color,
looking for blemishes or signs of pests. You discard one, pick up
another, and continue this process until one matches the criteria you
set in your mind for an acceptable morsel. Your last stop in the store
is the checkout aisle. “Paper or plastic?” the clerk asks. One more
decision to make. What you choose impacts how you get the gro-
ceries from the car to the kitchen as well as your recycling habits.

CHAPTER

<+

In This Chapter

How control structures

<+

4

make decisions

<+

How to define functions

Where to initialize
variables efficiently

What those darned
curly braces are all

about

The basics of data

arrays

<+

<+

4

4

70

Part Il 4+ JavaScript Tutorial

In your trip to the store, you go through the same kinds of decisions and repetitions that your
JavaScript programs also encounter. If you understand these frameworks in real life, you can
now look into the JavaScript equivalents and the syntax required to make them work.

Control Structures

In the vernacular of programming, the kinds of statements that make decisions and loop
around to repeat themselves are called control structures. A control structure directs the exe-
cution flow through a sequence of script statements based on simple decisions and other
factors.

An important part of a control structure is the condition. Just as you may travel different
routes to work depending on certain conditions (for example, nice weather, nighttime, attend-
ing a soccer game), so, too, does a program sometimes have to branch to an execution route
if a certain condition exists. Each condition is an expression that evaluates to true or
false—one of those Boolean data types mentioned in Chapter 6. The kinds of expressions
commonly used for conditions are expressions that include a comparison operator. You do
the same in real life: If it is true that the outdoor temperature is less than freezing, you put on
a coat before going outside. In programming, however, the comparisons are strictly compar-
isons of values.

JavaScript provides several kinds of control structures for different programming situations.
Three of the most common control structures you’ll use are if constructions, if...else
constructions, and for loops.

Chapter 31 covers in great detail other common control structures you should know. For this
tutorial, however, you need to learn about the three common ones just mentioned.

if constructions

The simplest program decision is to follow a special branch or path of the program if a cer-
tain condition is true. Formal syntax for this construction follows. Items in italics get replaced
in a real script with expressions and statements that fit the situation.

if (condition) {
statement[s] 1f true

}

Don’t worry about the curly braces yet. Instead, get a feel for the basic structure. The key-
word, if, is a must. In the parentheses goes an expression that evaluates to a Boolean value.
This is the condition being tested as the program runs past this point. If the condition evalu-
ates to true, one or more statements inside the curly braces execute before continuing on
with the next statement after the closing brace. If the condition evaluates to false, the state-
ments inside the curly braces are ignored and processing continues with the next statement
after the closing brace.

The following example assumes that a variable, myAge, has had its value set earlier in the
script (exactly how is not important for this example). The condition expression compares
the value myAge against a numeric value of 18.

if (myAge < 18) {
alert("Sorry, you cannot vote.");
}

Chapter 7 4+ Programming Fundamentals, Part 11 71

In this example, the data type of the value inside myAge must be a number so that the proper
comparison (via the < comparison operator) does the right thing. For all instances of myAge
less than 18, the nested statement inside the curly braces runs and displays the alert to the
user. After the user closes the alert dialog box, the script continues with whatever statement
follows the entire i f construction.

if . .. else constructions

Not all program decisions are as simple as the one shown for the if construction. Rather
than specifying one detour for a given condition, you might want the program to follow either
of two branches depending on that condition. It is a fine, but important, distinction. In the
plain if construction, no special processing is performed when the condition evaluates to
false. But if processing must follow one of two special paths, you need the if...else con-
struction. The formal syntax definition for an if. . .else construction is as follows:

if (condition) {
statement[s] if true
} else {
statement[s] if false
}

Everything you know about the condition for an if construction applies here. The only differ-
ence is the else keyword, which provides an alternate path for execution to follow if the con-
dition evaluates to false.

As an example, the following if. ..else construction determines how many days are in
February for a given year. To simplify the demo, the condition simply tests whether the year
divides equally by 4. (True testing for this value includes special treatment of end-of-century
dates, but I'm ignoring that for now.) The % operator symbol is called the modulus operator
(covered in more detail in Chapter 32). The result of an operation with this operator yields
the remainder of division of the two values. If the remainder is zero, the first value divides
evenly by the second.

var febDays;
var theYear = 2004;

if (theYear % 4 == 0) {
febDays = 29;

} else {
febDays = 28;

}

The important point to see from this example is that by the end of the if...else construc-
tion, the febDays variable is set to either 28 or 29. No other value is possible. For years evenly
divisible by 4, the first nested statement runs. For all other cases, the second statement runs.
Processing then picks up with the next statement after the if...else construction.

About Repeat Loops

Repeat loops in real life generally mean the repetition of a series of steps until some condition
is met, thus enabling you to break out of that loop. Such was the case earlier in this chapter
when you looked through a bushel of tomatoes for the one that came closest to your ideal
tomato. The same can be said for driving around the block in a crowded neighborhood until a
parking space opens up.

712

Part Il 4+ JavaScript Tutorial

A repeat loop lets a script cycle through a sequence of statements until some condition is
met. For example, a JavaScript data validation routine might inspect every character that you
enter into a form text field to make sure that each one is a number. Or if you have a collection
of data stored in a list, the loop can check whether an entered value is in that list. Once that
condition is met, the script can then break out of the loop and continue with the next state-
ment after the loop construction.

The most common repeat loop construction used in JavaScript is called the for loop. It gets
its name from the keyword that begins the construction. A for loop is a powerful device
because you can set it up to keep track of the number of times the loop repeats itself. The for-
mal syntax of the for loop is as follows:

for (Linitial expression]; [condition]; [update expression]) {
statement[s] inside Toop
}

The square brackets mean that the item is optional. However, until you get to know the for
loop better, | recommend designing your loops to utilize all three items inside the parenthe-
ses. The initial expression portion usually sets the starting value of a counter variable. The
condition —the same kind of condition you saw for if constructions — defines the condition
that forces the loop to stop going around and around. Finally, the update expression is a state-
ment that executes each time all of the statements nested inside the construction complete
running.

A common implementation initializes a counting variable, 1, increments the value of i by one
each time through the loop, and repeats the loop until the value of i exceeds some maximum
value, as in the following:

for (var i = startValue; i <= maxValue; i++) {
statement[s] inside loop
}

Placeholders startValue and maxValue represent any numeric values, including explicit
numbers or variables holding numbers. In the update expression is an operator you have not
seen yet. The ++ operator adds 1 to the value of i each time the update expression runs at
the end of the loop. If startValue is 1, the value of i is 1 the first time through the loop, 2
the second time through, and so on. Therefore, if maxValue is 10, the loop repeats itself 10
times (in other words, as long as i is less than or equal to 10). Generally speaking, the state-
ments inside the loop use the value of the counting variable in their execution. Later in this
lesson, I show how the variable can play a key role in the statements inside a loop. At the
same time, you will see how to break out of a loop prematurely and why you may need to do
this in a script.

Functions

In Chapter 5, you saw a preview of the JavaScript function. A function is a definition of a set of
deferred actions. Functions are invoked by event handlers or by statements elsewhere in the
script. Whenever possible, good functions are designed for reuse in other documents. They
can become building blocks you use over and over again.

If you have programmed before, you can see parallels between JavaScript functions and other
languages’ subroutines. But unlike some languages that distinguish between procedures
(which carry out actions) and functions (which carry out actions and return values), only one

Chapter 7 4+ Programming Fundamentals, Part 11 73

classification of routine exists for JavaScript. A function is capable of returning a value to the
statement that invoked it, but this is not a requirement. However, when a function does
return a value, the calling statement treats the function call like any expression — plugging in
the returned value right where the function call is made. [will show some examples in a
moment.

Formal syntax for a function is as follows:

function functionName ([parameterl]...[,parameterN]) {
statement[s]
}

Names you assign to functions have the same restrictions as names you assign to HTML ele-
ments and variables. You should devise a name that succinctly describes what the function
does. I tend to use multiword names with the interCap (internally capitalized) format that
start with a verb because functions are action items, even if they do nothing more than get or
set a value.

Another practice to keep in mind as you start to create functions is to keep the focus of each
function as narrow as possible. It is possible to generate functions that are literally hundreds
of lines long. Such functions are usually difficult to maintain and debug. Chances are that you
can divide the long function into smaller, more tightly focused segments.

Function parameters

In Chapter 5, you saw how an event handler invokes a function by calling the function by
name. Any call to a function, including one that comes from another JavaScript statement,
works the same way: a set of parentheses follows the function name.

You also can define functions so they receive parameter values from the calling statement.
Listing 7-1 shows a simple document that has a button whose onc11ck event handler calls a
function while passing text data to the function. The text string in the event handler call is in
a nested string— a set of single quotes inside the double quotes required for the entire event
handler attribute.

Listing 7-1: Calling a Function from an Event Handler

<htm1>
<head>
{script type="text/javascript">
function showMsg(msg) {
alert("The button sent: " + msg);
}
</script>
<{/head>
<body>
<form>
<input type="button" value="Click Me"
onclick="showMsg('The button has been clicked!")">
</form>
</body>
</html>

74

Part Il 4+ JavaScript Tutorial

Parameters (also known as arguments) provide a mechanism for “handing off” a value from
one statement to another by way of a function call. If no parameters occur in the function def-
inition, both the function definition and call to the function have only empty sets of parenthe-
ses (as shown in Chapter 5, Listing 5-8).

When a function receives parameters, it assigns the incoming values to the variable names
specified in the function definition’s parentheses. Consider the following script segment:

function sayHiToFirst(a, b, c) {
alert("Say hello, " + a);
}

sayHiToFirst("Gracie", "George", "Harry");
sayHiToFirst("Larry", "Moe", "Curly");

After the function is defined in the script, the next statement calls that very function, passing
three strings as parameters. The function definition automatically assigns the strings to vari-
ables a, b, and c. Therefore, before the alert () statement inside the function ever runs, a
evaluates to “Gracie,” b evaluates to “George,” and c evaluates to “Harry.” Inthe alert ()
statement, only the a value is used and the alert reads

Say hello, Gracie

When the user closes the first alert, the next call to the function occurs. This time through,
different values are passed to the function and assigned to a, b, and c. The alert dialog box
reads

Say hello, Larry

Unlike other variables that you define in your script, function parameters do not use the var
keyword to initialize them. They are automatically initialized whenever the function is called.

Variable scope

Speaking of variables, it’s time to distinguish between variables that are defined outside and
those defined inside of functions. Variables defined outside of functions are called global vari-
ables; those defined inside functions with the var keyword are called local variables.

A global variable has a slightly different connotation in JavaScript than it has in most other
languages. For a JavaScript script, the “globe” of a global variable is the current document
loaded in a browser window or frame. Therefore, when you initialize a variable as a global
variable, it means that all script statements in the page (including those inside functions)
have direct access to that variable value. Statements can retrieve and modify global variables
from anywhere in the page. In programming terminology, this kind of variable is said to have
global scope because everything on the page can “see” it.

It is important to remember that the instant a page unloads itself, all global variables defined
in that page disappear from memory forever. If you need a value to persist from one page to
another, you must use other techniques to store that value (for example, as a global variable
in a framesetting document, as described in Chapter 16; or in a cookie, as described in
Chapter 18). While the var keyword is usually optional for initializing global variables, I
strongly recommend you use it for all variable initializations to guard against future changes
to the JavaScript language.

In contrast to the global variable, a local variable is defined inside a function. You already saw
how parameter variables are defined inside functions (without var keyword initializations).
But you can also define other variables with the var keyword (absolutely required for local

Chapter 7 4+ Programming Fundamentals, Part 11 75

variables or they become recognized as global variables). The scope of a local variable is
only within the statements of the function. No other functions or statements outside of func-
tions have access to a local variable.

Local scope allows for the reuse of variable names within a document. For most variables, |
strongly discourage this practice because it leads to confusion and bugs that are difficult to
track down. At the same time, it is convenient to reuse certain kinds of variable names, such
as for loop counters. These are safe because they are always reinitialized with a starting
value whenever a for loop starts. You cannot, however, nest one for loop inside another
without specifying a different loop counting variable in the nested loop.

To demonstrate the structure and behavior of global and local variables —and show you why
you shouldn’t reuse most variable names inside a document — Listing 7-2 defines two global
and two local variables. | intentionally use bad form by initializing a local variable that has
the same name as a global variable.

Listing 7-2: Global and Local Variable Scope Demonstration

<html>

<head>

{script type="text/javascript">

var aBoy = "Charlie Brown"; // global
var hisDog = "Snoopy"; // global

function demo() {
// using improper design to demonstrate a point
var hisDog = "Gromit"; // Tocal version of hisDog
var output = hisDog + " does not belong to " + aBoy + ".
";
document.write(output);

}

</script>

<{/head>

<body>

{script type="text/javascript">

demo(); // runs as document loads

document.write(hisDog + " belongs to " + aBoy + ".");

</script>

</body>

</html>

When the page loads, the script in the Head portion initializes the two global variables (aBoy
and hisDog) and defines the demo () function in memory. In the Body, another script begins
by invoking the function. Inside the function, a local variable is initialized with the same name
as one of the global variables —hisDog. In JavaScript, such a local initialization overrides the
global variable for all statements inside the function. (But note that if the var keyword is left
off of the local initialization, the statement reassigns the value of the global version to
“Gromit.”)

Another local variable, output, is merely a repository for accumulating the text that is to be
written to the screen. The accumulation begins by evaluating the local version of the hisDog
variable. Then it concatenates some hard-wired text (note the extra spaces at the edges of

the string segment). Next comes the evaluated value of the aBoy global variable — any global

76

Part Il 4+ JavaScript Tutorial

not overridden by a local is available for use inside the function. The expression is accumu-
lating HTML to be written to the page, so it ends with a period and a
 tag. The final state-
ment of the function writes the content to the page.

After the function completes its task, the next statement in the Body script writes another
string to the page. Because this script statement is executing in global space (that is, not
inside any function), it accesses only global variables —including those defined in another
<{script> tag set in the document. By the time the complete page finishes loading, it contains
the following text lines:

Gromit does not belong to Charlie Brown.
Snoopy belongs to Charlie Brown.

About Curly Braces

Despite the fact that you probably rarely — if ever —use curly braces ({ }) in your writing,
there is no mystery to their usage in JavaScript (and many other languages). Curly braces
enclose blocks of statements that belong together. While they do assist humans who are read-
ing scripts in knowing what’s going on, curly braces also help the browser to know which
statements belong together. You always must use curly braces in matched pairs.

You use curly braces most commonly in function definitions and control structures. In the
function definition in Listing 7-2, curly braces enclose four statements that make up the func-
tion definition (including the comment line). The closing brace lets the browser know that
whatever statement comes next is a statement outside of the function definition.

Physical placement of curly braces is not critical (nor is the indentation style you see in the
code I provide). The following function definitions are treated identically by scriptable
browsers:

function sayHiToFirst(a, b, c¢) {
alert("Say hello, " + a);
}

function sayHiToFirst(a, b, ¢)
{

alert("Say hello, " + a);
}

function sayHiToFirst(a, b, c¢) f{alert("Say hello, " + a);}

Throughout this book, I use the style shown in the first example because I find that it makes
lengthy and complex scripts easier to read — especially scripts that have many levels of
nested control structures.

Arrays

The JavaScript array is one of the most useful data constructions you have available to you.
You can visualize the structure of a basic array as if it were a single-column spreadsheet. Each
row of the column holds a distinct piece of data, and each row is numbered. Numbers
assigned to rows are in strict numerical sequence, starting with zero as the first row (pro-
grammers tend to start counting with zero). This row number is called an index. To access an

Chapter 7 4+ Programming Fundamentals, Part 11 77

item in an array, you need to know the name of the array and the index for the row. Because
index values start with zero, the total number of items of the array (as determined by the
array’s length property) is always one more than the highest index value of the array.
More advanced array concepts enable you to create the equivalent of an array with
multiple columns (described in Chapter 30). For this tutorial, I stay with the single-

column basic array.

Data elements inside JavaScript arrays can be any data type, including objects. And, unlike a
lot of other programming languages, different rows of the same JavaScript array can contain
different data types.

Creating an array

An array is stored in a variable, so when you create an array you assign the new array object
to the variable. (Yes, arrays are objects, but they belong to the core JavaScript language
rather than the document object model.) A special keyword — new — preceding a call to the
JavaScript function that generates arrays creates space in memory for the array. An optional
parameter to the Array () function enables you to specify at the time of creation how many
elements (rows) of data eventually will occupy the array. JavaScript is very forgiving about
this because you can change the size of an array at any time. Therefore, if you omit a parame-
ter when generating a new array, your script incurs no penalty.

To demonstrate the array creation process, | create an array that holds the names of the

50 states plus the District of Columbia (a total of 51). The first task is to create that array
and assign it to a variable of any name that helps me remember what this collection of data
is about:

var USStates = new Array(bl);

At this point, the USStates array is sitting in memory like a 51-row table with no data in it. To
fill the rows, I must assign data to each row. Addressing each row of an array requires a spe-
cial way of indicating the index value of the row: square brackets after the name of the array.
The first row of the USStates array is addressed as

USStates[0]

To assign the string name of the first state of the alphabet to that row, I use a simple assign-
ment operator:

USStates[0] = "Alabama";
To fill in the rest of the rows, I include a statement for each row:

USStates[1] = "Alaska";
USStates[2] = "Arizona";
USStates[3] = "Arkansas";

Qéétates[SO] = "Wyoming";

Therefore, if you want to include a table of information in a document from which a script
can look up information without accessing the server, you include the data in the document
in the form of an array creation sequence. When the statements run as the document loads,
by the time the document finishes loading into the browser, the data collection array is built
and ready to go. Despite what appears to be the potential for a lot of statements in a docu-
ment for such a data collection, the amount of data that must download for typical array

78

Part Il 4+ JavaScript Tutorial

collections is small enough not to severely impact page loading —even for dial-up users at
28.8 Kbps. In Chapter 30, you also see some syntax shortcuts for creating arrays that reduce
source code character counts.

Accessing array data

The array index is the key to accessing an array element. The name of the array and an index
in square brackets evaluates to the content of that array location. For example, after the
USStates array is built, a script can display an alert with Alaska’s name in it with the follow-
ing statement:

alert("The largest state is " + USStates[1] + ".");

Just as you can retrieve data from an indexed array element, so can you change the element
by reassigning a new value to any indexed element in the array.

Parallel arrays

Now [show you why the numeric index methodology works well in JavaScript. To help with
the demonstration, I generate another array that is parallel with the USStates array. This
new array is also 51 elements long, and it contains the year in which the state in the corre-
sponding row of USStates entered the Union. That array construction looks like the
following:

var stateEntered new Array(51);

statekntered [0] 1819;
stateEntered [1] = 1959;
stateEntered [2] = 1912;
stateEntered [3] = 1836;

statefntered [50] = 1890;

In the browser’s memory, then, are two data tables that you can visualize as looking like the
model in Figure 7-1. I can build more arrays that are parallel to these for items such as the
postal abbreviation and capital city. The important point is that the zeroth element in each of
these tables applies to Alabama, the first state in the USStates array.

USStates stateEntered
‘Alabama” [0] 1819

"Alaska” [1] 1959

"Arizona" [2] 1912
"Arkansas” [3] 1836
"Wyoming" [50] 1890

Figure 7-1: Visualization of two related parallel data tables.

Chapter 7 4+ Programming Fundamentals, Part 11 79

If a Web page included these data tables and a way for a user to look up the entry date for a
given state, the page would need a way to look through all of the USStates entries to find the
index value of the one that matches the user’s entry. Then, that index value could be applied
to the stateEntered array to find the matching year.

For this demo, the page includes a text entry field in which the user types the name of the
state to look up. In a real application, this methodology is fraught with peril unless the script
performs some error checking in case the user makes a mistake. But for now, I assume that
the user always types a valid state name. (Don’t ever make this assumption in your Web site’s
pages.) An event handler from either the text field or a clickable button calls a function that
looks up the state name, fetches the corresponding entry year, and displays an alert message
with the information. The function is as follows:

function getStateDate() {
var selectedState = document.getElementById("entry").value;

for (var i = 0; i < USStates.length; i++) {
if (USStates[i] == selectedState) {
break;

}
}
alert("That state entered the Union in " + stateEntered[i] + ".");
}

In the first statement of the function, I grab the value of the text box and assign the value to a
variable, selectedState. This is mostly for convenience because [can use the shorter vari-
able name later in the script. In fact, the usage of that value is inside a for loop, so the script
is marginally more efficient because the browser doesn’t have to evaluate that long reference
to the text field each time through the loop.

The key to this function is in the for loop. Here is where I combine the natural behavior of
incrementing a loop counter with the index values assigned to the two arrays. Specifications
for the loop indicate that the counter variable, 1, is initialized with a value of zero. The loop is
directed to continue as long as the value of i is less than the length of the USStates array.
Remember that the length of an array is always one more than the index value of the last
item. Therefore, the last time the loop runs is when i is 50, which is both less than the length
of 51 and equal to the index value of the last element. Each time after the loop runs, the
counter increments by one.

Nested inside the for loop is an if construction. The condition tests the value of an element
of the array against the value typed in by the user. Each time through the loop, the condition
tests a different row of the array starting with row zero. In other words, this if construction
can be performed dozens of times before a match is found, but each time the value of i is one
larger than the previous try.

The equality comparison operator (==) is strict when it comes to comparing string values.
Such comparisons respect the case of each letter. In our example, the user must type the
state name exactly as it is stored in the USStates array for the match to be found. In Chapter
10, you learn about some helper methods that eliminate case and sensitivity in string
comparisons.

When a match is found, the statement nested inside the if construction runs. The break
statement is designed to help control structures bail out if the program needs it. For this
application, it is imperative that the for loop stop running when a match for the state name

80

Part Il 4+ JavaScript Tutorial

is found. When the for loop breaks, the value of the i counter is fixed at the row of the
USStates array containing the entered state. | need that index value to find the correspond-
ing entry in the other array. Even though the counting variable, 1, is initialized in the for
loop, it is still “alive” and in the scope of the function for all statements after the initialization.
That’s why I can use it to extract the value of the row of the stateEntered array in the final
statement that displays the results in an alert message.

This application of a for loop and array indexes is a common one in JavaScript. Study the
code carefully and be sure you understand how it works. This way of cycling through arrays
plays a role not only in the kinds of arrays you create in your code, but also with the arrays
that browsers generate for the document object model.

Document objects in arrays

If you look at the document object portions of the Quick Reference in Appendix A, you can
see that the properties of some objects are listed with square brackets after them. These are,
indeed, the same kind of square brackets you just saw for array indexes. That’s because when
a document loads, the browser creates arrays of like objects in the document. For example, if
your page includes two <form> tag sets, then two forms appear in the document. The
browser maintains an array of form objects for that document. References to those forms are

document.forms[0]
document.forms[1]

Index values for document objects are assigned according to the loading order of the objects.
In the case of form objects, the order is dictated by the order of the <form> tags in the docu-
ment. This indexed array syntax is another way to reference forms in an object reference. You
can still use a form’s identifier if you prefer —and I heartily recommend using object names
wherever possible because even if you change the physical order of the objects in your
HTML, references that use names still work without modification. But if your page contains
only one form, you can use the reference types interchangeably, as in the following examples
of equivalent references to the length property of a form’s elements array (the elements
array contains all the form controls in the form):

document.getElementById("entryForm").elements.length
document.forms[0].elements.Tength

In examples throughout this book, you can see that I often use the array type of reference to
simple forms in simple documents. But in my production pages, I almost always use named
references.

Exercises

1. With your newly acquired knowledge of functions, event handlers, and control struc-
tures, use the script fragments from this chapter to complete the page that has the
lookup table for all of the states and the years they entered into the Union. If you do
not have a reference book for the dates, use different year numbers starting with 1800
for each entry. In the page, create a text entry field for the state and a button that trig-
gers the lookup in the arrays.

Chapter 7 4 Programming Fundamentals, Part II

2. Examine the following function definition. Can you spot any problems with the defini-
tion? If so, how can you fix the problems?

function format(ohmage) {
var result;
if ohmage >= le6 {
ohmage = ohmage / 1leb6;
result = ohmage + " Mohms";
} else {
if (ohmage >= 1e3)
ohmage = ohmage / 1e3;
result = ohmage + " Kohms";
else
result = ohmage + " ohms";
1
alert(result);

3. Devise your own syntax for the scenario of looking for a ripe tomato at the grocery
store, and write a for loop using that object and property syntax.

4. Modify Listing 7-2 so it does not reuse the hisDog variable inside the function.

5. Given the following table of data about several planets of our solar system, create a
Web page that enables users to enter a planet name and, at the click of a button, have
the distance and diameter appear either in an alert box or (as extra credit) in separate
fields of the page.

Planet Distance from the Sun Diameter

Mercury 36 million miles 3,100 miles
Venus 67 million miles 7,700 miles
Earth 93 million miles 7,920 miles
Mars 141 million miles 4,200 miles

+ o+ 0+

Window and
Document
Objects

N ow that you have exposure to programming fundamentals,

it is easier to demonstrate how to script objects in documents.
Starting with this lesson, the tutorial turns back to the document
object model, diving more deeply into each of the objects you will
place in many of your documents.

Top-Level Objects

As a refresher, study the hierarchy of top-level objects in Figure 8-1.
This chapter focuses on objects of this level that you'll frequently
encounter in your scripting: window, Tocation, navigator, and
document. The goal is not only to equip you with the basics so you
can script simple tasks, but also to prepare you for in-depth examina-
tions of each object and its properties, methods, and event handlers
in Part III of this book. I introduce only the basic properties, methods,
and event handlers for objects in this tutorial —you can find far
more in Part Ill. Examples in that part of the book assume you know
the programming fundamentals covered in previous chapters.

CHAPTER

+ 0+ o+
In This Chapter

What the window
object does

How to access key
window object
properties and methods

How to trigger script
actions after a
document loads

The purposes of the
Tocation and
history objects

How the document
object is created

How to access key
document object
properties and methods

+ o+ o+

84

Part Il 4+ JavaScript Tutorial

window

[[[|
navigator screen history location

document

Figure 8-1: The top-level browser object model for all scriptable browsers.

The window Object

At the very top of the object hierarchy is the window object. This object gains that exalted
spot in the object food chain because it is the master container for all content you view in the
Web browser. As long as a browser window is open — even if no document is loaded in the
window —the window object is defined in the current model in memory.

In addition to the content part of the window where documents go, a window’s sphere of
influence includes the dimensions of the window and all of the “stuff” that surrounds the con-
tent area. The area where scrollbars, toolbars, the status bar, and (non-Macintosh) menu bar
live is known as a window’s chrome. Not every browser has full scripted control over the
chrome of the main browser window, but you can easily script the creation of additional win-
dows sized the way you want and that have only the chrome elements you wish to display in
the subwindow.

Although the discussion about frames comes in Chapter 11, I can safely say now that each
frame is also considered a window object. If you think about it, that makes sense because
each frame can hold a different document. When a script runs in one of those documents, it
regards the frame that holds the document as the window object in its view of the object
hierarchy.

As you learn in this chapter, the window object is a convenient place for the document object
model to attach methods that display modal dialog boxes and adjust the text that displays in
the status bar at the bottom of the browser window. A window object method enables you to
create a separate window that appears on the screen. When you look at all of the properties,
methods, and event handlers defined for the window object (see Chapter 16), it should be
clear why they are attached to window objects — visualize their scope and the scope of a
browser window.

Accessing window properties and methods

You can word script references to properties and methods of the window object in several
ways, depending more on whim and style than on specific syntactical requirements. The most
logical and common way to compose such references includes the window object in the
reference:

window.propertyName
window.methodName([parameters])

Chapter 8 + Window and Document Objects 85

A window object also has a synonym when the script doing the referencing points to the win-
dow that houses the document. The synonym is sel f. Reference syntax then becomes

self.propertyName
self.methodName([parameters])

You can use these initial reference object names interchangeably, but I tend to reserve the
use of self for more complex scripts that involve multiple frames and windows. The self
moniker more clearly denotes the current window holding the script’s document. It makes
the script more readable — by me and by others.

Back in Chapter 4, I indicated that because the window object is always “there” when a script
runs, you could omit it from references to any objects inside that window. Therefore, the fol-
lowing syntax models assume properties and methods of the current window:

propertyName
methodName ([parameters])

In fact, as you will see in a few moments, some methods may be more understandable if you
omit the window object reference. The methods run just fine either way.

Creating a window

A script does not create the main browser window. A user does that by virtue of launching
the browser or by opening a URL or file from the browser’s menus (if the window is not
already open). But a script can generate any number of subwindows once the main window is
open (and that window contains a document whose script needs to open subwindows).

The method that generates a new window is window.open (). This method contains up to
three parameters that define window characteristics, such as the URL of the document to
load, its name for target attribute reference purposes in HTML tags, and physical appear-
ance (size and chrome contingent). [don’t go into the details of the parameters here (they’re
covered in great depth in Chapter 16), but [do want to expose you to an important concept
involved with the window.open () method.

Consider the following statement that opens a new window to a specific size and with an
HTML document from the same server directory that holds the current page:

var subWindow = window.open("define.html","def","height=200,width=300");

The important thing to note about this statement is that it is an assignment statement.
Something gets assigned to that variable subWindow. What is it? It turns out that when the
window.open () method runs, it not only opens up that new window according to specifica-
tions set as parameters, but it also evaluates to a reference to that new window. In program-
ming parlance, the method is said to return a value —in this case, a genuine object reference.
The value returned by the method is assigned to the variable.

Your script can now use that variable as a valid reference to the second window. If you need
to access one of its properties or methods, you must use that reference as part of the com-
plete reference. For example, to close the subwindow from a script in the main window, use
this reference to the c1ose () method for that subwindow:

subWindow.close();

86

Part Il 4+ JavaScript Tutorial

If you issue window.close(), self.close(), or just close() in the main window’s script,
the method closes the main window (after confirming with the user) and not the subwindow.
To address another window, then, you must include a reference to that window as part of the
complete reference. This has an impact on your code because you probably want the variable
holding the reference to the subwindow to be valid as long as the main document is loaded
into the browser. For that to happen, the variable has to be initialized as a global variable,
rather than inside a function (although you can set its value inside a function). That way, one
function can open the window while another function closes it.

Listing 8-1 is a page that has a button for opening a blank, new window and closing that win-
dow from the main window. To view this demonstration, shrink your main browser window to
less than full screen. Then when the new window is generated, reposition the windows so you
can see the smaller, new window when the main window is in front. (If you “lose” a window
behind another, use the browser’s Window menu to choose the hidden window.) The key
point of Listing 8-1 is that the newWindow variable is defined as a global variable so that both
the makeNewWindow() and closeNewWindow() functions have access to it. When a variable is
declared with no value assignment, its initial value is nul1. Anull value is interpreted to be
the same as false in a condition, while the presence of any non-zero value is the same as
true in a condition. Therefore, in the closeNewWindow() function, the condition tests
whether the window has been created before issuing the subwindow’s close () method.
Then, to clean up, the function sets the newWindow variable to nul1 so that another click of
the Close button doesn’t try to close a nonexistent window.

Listing 8-1: References to Window Objects

<html>
<head>
<title>Window Opener and Closer</title>
<{script type="text/javascript">
var newWindow
function makeNewWindow() {
newWindow = window.open("","","height=300,width=300");
}
function closeNewWindow() ({
if (newWindow) {
newWindow.close();
newWindow = null;
}
}
</script>
</head>

<body>
<form>
<input type="button" value="Create New Window" onclick="makeNewWindow()">
{input type="button" value="Close New Window" onclick="closeNewWindow()">
</form>
</body>
</html>

Chapter 8 + Window and Document Objects 87

Window Properties and Methods

The one property and three methods for the window object described in this section have an
immediate impact on user interaction. They work with all scriptable browsers. You can find
extensive code examples in Part IIl for each property and method. You can also experiment
with the one-statement script examples by entering them in the top text box of The Evaluator
Jr. (from Chapter 6).

window.status property

The status bar at the bottom of the browser window normally displays the URL of a link when
you roll the mouse pointer atop it. Other messages also appear in that space during docu-
ment loading, Java applet initialization, and the like. However, you can use JavaScript to dis-
play your own messages in the status bar at times that may be beneficial to your users. For
example, rather than display the URL of a link, you can display a friendlier, plain-language
description of the page at the other end of the link (or a combination of both to accommo-
date both newbies and geeks).

You can assign the window.status property some other text at any time. To change the sta-
tus bar text of a link as the cursor hovers atop the link, you trigger the action with an
onmouseover event handler of a link object.

Due to the simplicity of setting the window.status property, it is most common for the script
statements to run as inline scripts in the event handler definition. This is handy for short
scripts because you don’t have to specify a separate function or add <script> tags to your
page. You simply add the script statements to the <a> tag:

<a href="http://www.microsoft.com" onmouseover=
"window.status='Visit the Microsoft Home page (microsoft.com)'"> Microsoft

Look closely at the script statement assigned to the onmouseover event handler:
window.status="Visit the Microsoft Home page (microsoft.com)’

The entire statement is surrounded by double quotes ("..."). To nest the string being
assigned to the window.status property inside the double-quoted script, you surround the
string with single quotes (' ... "). You get a big payoff for a little bit of script when you set
the status bar. The downside is that scripting this property is how those awful status bar
scrolling banners are created. Yech!

window.alert() method

[have already used the alert () method many times so far in this tutorial. This window
method generates a dialog box that displays whatever text you pass as a parameter (see
Figure 8-2). A single OK button (whose label you cannot change) enables the user to dismiss
the alert.

Figure 8-2: A JavaScript alert dialog box (old style).

& You are running the Metzcape browser.

88

Part Il 4+ JavaScript Tutorial

The appearance of this and two other JavaScript dialog boxes (described next) has changed
since the first scriptable browsers. In older browser versions (as shown in Figure 8-2), the
browser inserted words clearly indicating that the dialog box was a “JavaScript Alert.”
Different browsers display different title bars whose content cannot be altered by script. You
can change only the other message content.

All three dialog box methods are good cases for using a window object’s methods without the
reference to the window. Even though the alert () method is technically a window object
method, no special relationship exists between the dialog box and the window that generates
it. In production scripts, I usually use the shortcut reference:

alert("This is a JavaScript alert dialog.");

window.confirm() method

The second style of dialog box presents two buttons (Cancel and OK in most versions on
most platforms) and is called a confirm dialog box (see Figure 8-3). More importantly, this is
one of those methods that returns a value: true if the user clicks OK, false if the user clicks
Cancel. You can use this dialog box and its returned value as a way to have a user make a
decision about how a script progresses.

sl Figure 8-3: A JavaScript confirm dialog box
E| g P 8
(IE6/WinXP style).

Microsoft Internet Explorer:

.\:.‘,’/ Are you sure you want ko start over?

|, QK j[Cancel]

Because the method always returns a Boolean value, you can use the evaluated value of the
entire method as a condition statement inan if or if...else construction. For example, in
the following code fragment, the user is asked about starting the application over. Doing so
causes the default page of the site to load into the browser.

if (confirm("Are you sure you want to start over?")) {
location.href = "index.html";
}

window.prompt() method

The final dialog box of the window object, the prompt dialog box (see Figure 8-4), displays a
message that you set and provides a text field for the user to enter a response. Two buttons,
Cancel and OK, enable the user to dismiss the dialog box with two opposite expectations:
canceling the entire operation or accepting the input typed into the dialog box.

Explorer User Prompt

St P
Fillirs table fior howe maey factors?
Cancel I

[a0

Figure 8-4: A JavaScript prompt dialog box
(IE6/WinXP style).

Chapter 8 + Window and Document Objects 89

The window.prompt () method has two parameters. The first is the message that acts as a
prompt to the user. You can suggest a default answer in the text field by including a string as
the second parameter. If you don’t want any default answer to appear, include an empty
string (two double quotes without any space between them).

This method returns one value when the user clicks either button. A click of the Cancel but-
ton returns a value of nul1, regardless of what the user types into the field. A click of the OK
button returns a string value of the typed entry. Your scripts can use this information in con-
ditions for if and if...else constructions. A value of nul1 is treated as false in a condi-
tion. It turns out that an empty string is also treated as false. Therefore, a condition can
easily test for the presence of real characters typed into the field to simplify a condition test,
as shown in the following fragment:

var answer = prompt("What is your name?","");
if (answer) {

alert("Hello, " + answer + "1");
}

The only time the alert () method is called is when the user enters something into the
prompt dialog box and clicks the OK button.

onload event handler

The window object reacts to several system and user events, but the one you will probably
use most often is the event that fires as soon as everything in a page finishes loading. This
event waits for images, Java applets, and data files for plug-ins to download fully to the
browser. It can be dangerous to script access to elements of a document object while the
page loads because if the object has not loaded yet (perhaps due to a slow network connec-
tion or server), a script error results. The advantage of using the onload event to invoke
functions is that you are assured that all document objects are in the browser’s document
object model. Window event handlers are placed inside the <body> tag. Even though you will
come to associate the <body> tag’s attributes with the document object’s properties, it is the
window object’s event handlers that go inside the tag.

The location Object

Sometimes an object in the hierarchy represents something that doesn’t seem to have the
kind of physical presence that a window or a button does. That’s the case with the Tocation
object. This object represents the URL loaded into the window. This differs from the docu-
ment object (discussed later in this lesson) because the document is the real content; the
location is simply the URL.

Unless you are truly Web-savvy, you may not realize a URL consists of many components that
define the address and method of data transfer for a file. Pieces of a URL include the protocol
(such as http:) and the hostname (such as www.example.com). You can access all of these
items as properties of the Tocation object. For the most part, though, your scripts will be
interested in only one property: the href property, which defines the complete URL.

Setting the 1ocation.href property is the primary way your scripts navigate to other pages:

location.href = "http://www.dannyg.com";

90

Part Il 4+ JavaScript Tutorial

You can generally navigate to a page in your own Web site by specifying a relative URL (that
is, relative to the currently loaded page) rather than the complete URL with protocol and
host information. For pages outside of the domain of the current page, you need to specify
the complete URL.

If the page to be loaded is in another window or frame, the window reference must be part of
the statement. For example, if your script opens a new window and assigns its reference to a
variable named newWindow, the statement that loads a page into the subwindow is

newhWindow.location.href = "http://www.dannyg.com";

The navigator Object

Despite a name reminiscent of the Netscape Navigator branded browser, the navigator object
is implemented in all scriptable browsers. All browsers also implement a handful of properties
that reveal the same kind of information that browsers send to servers with each page request.
Thus, the navigator.userAgent property returns a string text with numerous details about
the browser and operating system. For example, a script running in Internet Explorer 6 in
Windows XP receives the following value for the navigator.userAgent property:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461)

The same script running in Mozilla 1.4 on a Macintosh reveals the following userAgent
details:

Mozilla/5.0 (Macintosh; U; PPC Mac 0S X Mach-0; en-US; rv:1.4) Gecko/20030624

You have already used two other navigator properties (navigator.appVersion and
navigator.appName) in your first script of Chapter 3. See Chapter 38 on the CD-ROM for
more details about this object and the meaning of the values returned by its properties.

It was once used extensively to branch script execution according to various browser ver-
sions. Chapter 14 describes more modern ways to accomplish browser version detection.

The document Object

The document object holds the real content of the page. Properties and methods of the docu-
ment object generally affect the look and content of the document that occupies the window.
All W3C DOM-compatible browsers (and IE4) allow script access to the text con-tents of a
page once the document has loaded. However, as you saw in your first script of Chapter 3,
the document.write() method lets a script dynamically create content as the page loads on
any browser. Many document object properties are arrays of other objects in the document,
which provide additional ways to reference these objects (over and above the document
.getElementById() method).

Accessing a document object’s properties and methods is straightforward, as shown in the
following syntax examples:

[window.]document.propertyName
[window. Jdocument.methodName([parameters])

The window reference is optional when the script is accessing the document object that con-
tains the script. If you want a preview of the long list of document object properties of the
browser you're using, enter document into the bottom text box of The Evaluator Jr. and press
Enter/Return. The object’s properties and current values appear in the Results box. Following
are some of the most commonly used properties and methods of the document object.

Chapter 8 + Window and Document Objects 91

document.forms[] property

It is convenient that the document object contains a property —document.forms —
whose value is an array of all form element objects in the document. As you recall from the
discussion of arrays in Chapter 7, an index number inside an array’s square brackets points
to one of the elements in the array. To find out how many form objects are in the current
document, use

document.forms.length
To access the first form in a document, for example, the reference is
document.forms[0]

As a further convenience, all scriptable browsers let you reference a form more directly by
its name (that is, the identifier assigned to the name attribute of the <form> tag) in one of
two ways. The first way is via array syntax, applying the form’s name as a string index value
of the array:

document.forms["formName"]

You will see in future chapters that scripts sometimes have only the string name of the form
to work with. To derive a valid reference to the form object indicated by that name, use this
string index form with the array.

The second, even shorter way to reference a form object by name is to append the name as a
property of the document object, as in

document.formName

Either methodology reaches the same object. You will see many instances of the shortcut
approach in form-related example scripts throughout this book (including in the next chapter
when working with form controls). Although this syntax dates back to the earliest scriptable
browsers, it is still valid in the most modern versions.

document.images[] property

Just as a document keeps track of forms in an array property, so does the document object
maintain a collection (array) of images inserted into the document by way of tags.
Images referenced through the document.images array may be reached either by numeric or
string index of the img element’s name. Just like forms, the name attribute value is the identi-
fier you use for a string index.

The presence of the document.images property indicates that the browser supports image
swapping. You can therefore use the existence of the property as a controller to make sure
the browser supports images as objects before attempting to perform any script action on an
image. To do so, surround statements that deal with images with an i f construction that veri-
fies the property’s existence, as follows:

if (document.images) {
// statements dealing with img objects
}

Older browsers skip over the nested statements, preventing them from displaying error mes-
sages to their users.

92

Part Il 4+ JavaScript Tutorial

document.write() method

The document.write() method operates in both immediate scripts to create content in

a page as it loads and in deferred scripts that create new content in the same or different
window. The method requires one string parameter, which is the HTML content to write to
the window or frame. Such string parameters can be variables or any other expressions that
evaluate to a string. Very often, the written content includes HTML tags.

Bear in mind that after a page loads, the browser’s output stream automatically closes. After
that, any document.write() method issued to the current page opens a new stream that
immediately erases the current page (along with any variables or other values in the original
document). Therefore, if you wish to replace the current page with script-generated HTML,
you need to accumulate that HTML in a variable and perform the writing with just one docu-
ment.write() method. You don’t have to explicitly clear a document and open a new data
stream; one document.write() call does it all.

One last piece of housekeeping advice about the document.write() method involves its
companion method, document.close(). Your script must close the output stream when

it finishes writing its content to the window (either the same window or another). After

the last document.write() method in a deferred script, be sure to include a document
.close() method. Failure to do this may cause images and forms not to appear. Also, any
document.write() method invoked later will only append to the page, rather than clear the
existing content to write anew. To demonstrate the document.write() method, I show two
versions of the same application. One writes to the same document that contains the script;
the other writes to a separate window. Type in each document in a new text editor document,
save it with an . htm] filename extension, and open it in your browser.

Listing 8-2 creates a button that assembles new HTML content for a document, including
HTML tags for a new document title and color attribute for the <BODY> tag. An operator in

the listing that may be unfamiliar to you is +=. It appends a string on its right side to whatever
string is stored in the variable on its left side. This operator is a convenient way to accumulate
a long string across several separate statements. With the content gathered in the newContent
variable, one document.write() statement blasts the entire new content to the same docu-
ment, obliterating all vestiges of the content of Listing 8-2. The document.close() statement,
however, is required to close the output stream properly. When you load this document and
click the button, notice that the document title in the browser’s title bar changes accordingly.
As you click back to the original and try the button again, notice that the dynamically written
second page loads much faster than even a reload of the original document.

Listing 8-2: Using document.write() on the Current Window

<html>

<head>

<title>Writing to Same Doc</title>

{script type="text/javascript">

function reWrite() {
// assemble content for new window
var newContent = "<html><head><title>A New Doc</title></head>";
newContent += "<body bgcolor="aqua'><h1>This document is brand new.</h1>";
newContent += "Click the Back button to see original document.";
newContent += "</body></html>";
// write HTML to new window document
document.write(newContent);
document.close(); // close layout stream

Chapter 8 4+ Window and Document Objects

</script>

</head>

<body>

<form

<input type="button" value="Replace Content"” onclick="reWrite()">
</form>

</body>

</htm1>

In Listing 8-3, the situation is a bit more complex because the script generates a subwindow
to which is written an entirely script-generated document. To keep the reference to the new
window alive across both functions, the newWindow variable is declared as a global variable.
As soon as the page loads, the onload event handler invokes the makeNewWindow () function.
This function generates a blank subwindow. I added a property to the third parameter of the
window.open() method that instructs the status bar of the subwindow to appear.

A button in the page invokes the subWrite () method. The first task it performs is to check
the closed property of the subwindow. This property (which exists only in newer browser
versions) returns true if the referenced window is closed. If that’s the case (if the user manu-
ally closed the window), the function invokes the makeNewWindow () function again to reopen
that window.

With the window open, new content is assembled as a string variable. As with Listing 8-2, the
content is written in one blast (although that isn’t necessary for a separate window), followed
by a close() method. But notice an important difference: both the write() and close()
methods explicitly specify the subwindow.

Listing 8-3: Using document.write() on Another Window

<html>
<head>
<title>Writing to Subwindow</title>
{script type="text/javascript">
var newWindow;
function makeNewWindow() {
newWindow = window.open("","","status,height=200,width=300");
}

function subWrite() f
// make new window if someone has closed it
if (newWindow.closed) {
makeNewWindow();
1

// bring subwindow to front

newlWindow.focus();

// assemble content for new window

var newContent = "<html><head><title>A New Doc</title></head>";

newContent += "<body bgcolor="coral'><h1>This document is brand new.</h1>";
newContent += "</body></htm1>";

// write HTML to new window document

newWindow.document.write(newContent);

newWindow.document.close(); // close layout stream

Continued

93

94

Part Il 4+ JavaScript Tutorial

Listing 8-3 (continued)

</script>

</head>

<body onload="makeNewWindow()">

<form>

<input type="button" value="Write to Subwindow" onclick="subWrite()">
</form>

</body>

</htm1>

document.createElement() and
document.createTextNode() methods

The document.write() method works on a piece of a Web page only while the page is load-
ing into the browser the first time. Any subsequent invocation of the method erases the page
and writes a new page. But if you want to add to or modify a page that has already loaded,
you need to call upon the Dynamic HTML capabilities of W3C DOM-compatible browsers.
Your goal will be to add to, delete from, or replace sections of the node hierarchy of the docu-
ment. Most element objects have methods to perform those actions (see more in-depth dis-
cussion in Chapter 14). But if you need to add content, you’ll have to create new element or
text nodes. The document object has the methods to do that.

The document.createElement () method lets you create in the browser’s memory a brand
new element object. To specify the precise element you wish to create, pass the tag name of
the element as a string parameter of the method:

var newElem = document.createElement("p");

You may also wish to add some attribute values to the element, which you may do by assign-
ing values to the newly created object’s properties, even before the element becomes part of
the document.

As you saw in Chapter 4’s object hierarchy illustrations, an element object frequently needs
text content between its start and end tags. The W3C DOM way to create that text is to gener-
ate a brand new text node via the document.createTextNode () method, and populate the
node with the desired text. For example:

var newText = document.createTextNode("Greetings to all.");

The act of creating an element or text node does not, by itself, influence the document node
tree. You must invoke one of the various insertion or replacement methods (see Chapter 14)
to place the new text node into its element and place the element into the document. You
learn how to do this in the last tutorial chapter (Chapter 12).

document.getElementByld() method

You met the document.getElementByld() method in Chapter 4 when learning about the syntax
for referencing element objects. This W3C DOM method is one you will use a lot. Get to know
its finger-twisting name well. Be sure to honor the upper- and lowercase spelling of this all-
important method.

Chapter 8 + Window and Document Objects o5

The sole parameter of this method is a quoted string containing the ID of the element you
wish to reference. The method returns a value, which you typically preserve in a variable for
use by subsequent script statements:

var oneTable = document.getElementByld("salesResults");

After the assignment statement, the variable represents the element object, allowing you to
get and set its properties or invoke whatever methods belong to that type of object.

The next logical step past the document level in the object hierarchy is the form. That’s
where you will spend the next lesson.

Exercises

1. Which of the following references are valid and which are not? Explain what is wrong
with the invalid references.

a. window.document.form[0]

b. self.entryForm.submit()

c. document.forms[2].name

d. document.getElementByID("firstParagraph")
e. newWindow.document.write("Howdy")

2. Write the JavaScript statement that displays a message in the status bar welcoming vis-
itors to your Web page.

3. Write the JavaScript statement that executes while the page loads to display the same
message from question 2 to the document as an <h1>-level headline on the page.

4. Create a page that prompts the user for his or her name as the page loads (via a dialog
box) and then welcomes the user by name in the body of the page.

5. Create a page with any content you like, but one that automatically displays a dialog
box after the page loads to show the user the URL of the current page.

+ o+ 4

CHAPTER

Forms and Form
Elements

M ost interactivity between a Web page and the user takes place
inside a form. That’s where a lot of the interactive HTML stuff
lives for every browser: text fields, buttons, checkboxes, option lists,
and so on.

As described in earlier chapters, you may use the modern DOM
document.getElementById() method to reference any element,
including forms and form controls. But this chapter focuses on an
older, yet equally valid way of referencing forms and controls. It’s
important to be familiar with this widely used syntax so that you can
understand existing JavaScript source code written according to the
original (and fully backward-compatible) form syntax — the so-called
DOM Level 0 syntax.

The form Object

Using the original DOM Level 0 syntax, you can reference a form
object either by its position in the array of forms contained by a doc-
ument or by name (if you assign an identifier to the name attribute
inside the <form> tag). If only one form appears in the document, it is
still a member of an array (a one-element array) and is referenced as
follows:

document.forms[0]
Or use the string of the element’s name as the array index:
document.forms[formName]

Notice that the array reference uses the plural version of the word,
followed by a set of square brackets containing the index number
(zero is always first) or name of the element. Alternatively, you can
use the form’s name (not as a quoted string) as if it were a property
of the document object:

document.formName

+ 0+ o+
In This Chapter

What the form object
represents

How to access key
form object properties
and methods

How text, button, and
select objects work

How to submit forms
from a script

How to pass
information from form
elements to functions

I R

o8 Part Il + JavaScript Tutorial

Form as object and container

Unlike the modern DOM’s ID reference model —which lets a script dive anywhere into a docu-
ment to grab an element object reference —DOM Level 0 form syntax imposes a hierarchical
approach. It treats the form object as a container whose contents consist of the form control
element objects (input, select, and textarea elements). Figure 9-1 shows the structure of
this hierarchy and its place relative to the document object. You'll see the effect this struc-
ture has on the way you reference form control elements in a moment. This structure echoes
perfectly the HTML tag organization within the <form> and </form> tag “bookends.”

In addition to a large collection of properties and methods it has in common with all HTML
element objects, the form object features a number of items that are unique to this object.
Almost all of these unique properties are scripted representations of the form element’s
attributes. Scriptable browsers allow scripts to change these properties under script control,
which gives your scripts potentially significant power to direct the behavior of a form sub-
mission in response to user selections on the page.

window
document

form

[1] [11
text J (radio J button

[textarea J [checkboxj reset

(password) (submit J

Figure 9-1: DOM Level 0 hierarchy for forms and controls.

Chapter 9 + Forms and Form Elements

Accessing form properties

Forms are created entirely from standard HTML tags in the page. You can set attributes for
name, target, action, method, and enctype. Each of these is a property of a form object,
accessed by all lowercase versions of those words, as in

document.forms[0].action
document.formName.action

To change any of these properties, simply assign new values to them:

document.forms[0].action = "http://www.giantco.com/cgi/login.pl";

form.elements[] property

In addition to keeping track of each type of element inside a form, the browser also maintains
a list of all control elements within a form. This list is another array, with items listed accord-
ing to the order in which their HTML tags appear in the source code. It is generally more effi-
cient to create references to elements directly, using their names. However, sometimes a
script needs to look through all of the elements in a form. This is especially true if the content
of a form changes with each loading of the page because the number of text fields changes
based on the user’s browser type. (For example, a script on the page uses document.write()
to add an extra text box for information required only from Windows users.)

The following code fragment shows the form.elements[] property at work in a for repeat
loop that looks at every element in a form to set the contents of text fields to an empty string.
The script cannot simply barge through the form and set every element’s content to an empty
string because some elements may be types (for example, a button) whose value properties
have different purposes.

var form = window.document.forms[0];
for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].type == "text") {
form.elements[i].value = "";
}
}

In the first statement, I create a variable — form—that holds a reference to the first form of
the document. I do this so that when [make many references to form elements later in the
script, the typical length of each reference is much shorter (and marginally faster). I can use
the form variable as a shortcut to building references to items more deeply nested in the
form.

Next, I start looping through the items in the elements array for the form. Each form element
has a type property, which reveals what kind of form control it is: text, button, radio, check-
box, and so on. I'm interested in finding elements whose type is text. For each of those, I set
the value property to an empty string.

I return to forms later in this chapter to show you how to submit a form without a Submit but-
ton and how client-side form validation works.

99

100

Part Il 4+ JavaScript Tutorial

Form Controls as Objects

Three kinds of HTML elements nested inside a <form> tag become scriptable objects in all
browser document object models. Most of the objects owe their existence to the <input> tag
in the page’s source code. Only the value assigned to the type attribute of an <input> tag
determines whether the element is a text box, password entry field, hidden field, button,
checkbox, or radio button. The other two kinds of form controls, textarea and select, have
their own tags.

To reference a particular form control as an object in DOM Level 0 syntax, you build the
reference as a hierarchy starting with the document, through the form, and then to the con-
trol. You've already seen how many ways you can reference merely the form part — all of
which are valid for building form control references. But if you were using only the identifiers
assigned to the form and form control elements (that is, none of the associated arrays of
elements), the syntax is as follows:

document.formName.controlName
For example, consider the following simple form:

<form name="searchForm" action="cgi-bin/search.pl">
{input type="text" name="entry">
dinput type="submit" name="sender" value="Search">
</form>

The following sample references to the text input control are all valid:

document.searchForm.entry
document.searchForm.elements[0]
document.forms["searchForm"J.elements["entry"]
document.forms["searchForm"].entry

While form controls have several properties in common, some properties are unique to a par-
ticular control type or related types. For example, only a select object offers a property that
reveals which item in its list is currently selected. But checkboxes and radio buttons both
have a property that indicates whether the control is currently set to “on.” Similarly, all text-
oriented controls operate the same way for reading and modifying their content.

Having a good grasp of the scriptable features of form control objects is important to your
success with JavaScript. In the next sections, you meet the most important form control
objects and see how scripts interact with them.

Text-related objects

Each of the four text-related HTML form elements — input elements of the text, password,
and hidden types, plus the textarea element —is an element in the document object hierar-
chy. All but the hidden object display themselves in the page, enabling users to enter infor-
mation. These objects also display text information that changes in the course of using a page
(although browsers capable of modern Dynamic HTML also allow the scripted change of
other body text in a document).

To make these form control objects scriptable in a page, you do nothing special to their nor-
mal HTML tags — with the possible exception of assigning a name attribute. I strongly recom-
mend assigning unique names to every text-related form control element if your scripts will
be getting or setting properties or invoking their methods. Besides, if the form is actually sub-
mitted to a server program, the name attributes must be assigned in order for the server to
receive the element’s data.

Chapter 9 4 Forms and Form Elements] (]

Text Object Behavior

Many scripters look to JavaScript to solve what are perceived as shortcomings or behavioral
anomalies with text-related objects in forms. | want to single these out early in your scripting
experience so that they do not confuse you later.

First, only the most recent browsers let scripts reliably alter the font, font size, font style, and text
alignment of a text object’s content. You can access changes through the element's style-related
properties (see Chapter 26).

Second, most browser forms practice a behavior that was recommended long ago as an informal
standard by Web pioneers. When a form contains only one text input object, a press of the
Enter/Return key while the text object has focus automatically submits the form. For two or more
fields in browsers other than IE5/Mac and Safari, you need another way to submit the form (for
example, a Submit button). This one-field submission scheme works well in many cases, such as
the search page of most Web search sites. But if you are experimenting with simple forms con-
taining only one field, you can submit the form with a press of the Enter/Return key. Submitting
a form that has no other action or target specified means the page performs an unconditional
reload —wiping out any information entered into the form. You can, however, cancel the submis-
sion through an onsubmit event handler in the form, as shown later in this chapter. Also, start-
ing with version 4 browsers, you can script the press of the Enter/Return key in any text field to
submit a form (see Chapter 25).

For the visible objects in this category, event handlers are triggered from many user actions,
such as giving a field focus (getting the text insertion pointer in the field) and changing text
(entering new text and leaving the field). Most of your text field actions are triggered by the
change of text (the onchange event handler). In modern browsers, event handlers fire in
response to individual keystrokes as well.

Without a doubt, the single most used property of a text-related element is the value prop-
erty. This property represents the current contents of the text element. A script can retrieve
and set its content at any time. Content of the value property is always a string. This may
require conversion to numbers (see Chapter 6) if text fields are used to enter values for some
math operations.

To demonstrate how a text field’s value property can be read and written, Listing 9-1 pro-
vides a complete HTML page with a single-entry field. Its onchange event handler invokes the
upperMe () function, which converts the text to uppercase. In the upperMe () function, the
first statement assigns the text object reference to a more convenient variable: field. A lot
goes on in the second statement of the function. The right side of the assignment statement
performs a couple of key tasks. The reference to the value property of the object
(field.value) evaluates to whatever content is in the text field at that instant. That string is
then handed over to one of JavaScript’s string functions, toUpperCase (), which converts the
value to uppercase. The evaluated result of the right-side statement is then assigned to the
second variable: upperCaseVersion. Nothing has changed yet in the text box. That comes in
the third statement where the value property of the text box is assigned whatever the
upperCaseVersion variable holds. The need for the second statement is more for learning
purposes, so you can see the process more slowly. In practice, you can combine the actions
of steps two and three into one power-packed statement:

field.value = field.value.toUpperCase();

102

Part Il 4+ JavaScript Tutorial

Listing 9-1: Getting and Setting a Text Object’s value Property

<htm1>
<head>
<title>Text Object value Property</title>
{script type="text/javascript">
function upperMe() {
var field = document.forms[0].converter;
var upperCaseVersion = field.value.toUpperCase();
field.value = upperCaseVersion;
}
{/script>
</head>
<body>
<form onsubmit="return false">
<input type="text" name="converter" value="sample" onchange="upperMe()">
</form>
</body>
</htm1>

Later in this chapter, I show you how to reduce even further the need for explicit references
in functions such as upperMe () in Listing 9-1. In the meantime, notice for a moment the
onsubmit event handler in the <form> tag. | delve more deeply into this event handler later
in this chapter, but I want to point out the construction that prevents a single-field form from
being submitted when you press the Enter key. If the event handler weren’t there, a press of
the Enter key would reload the page, returning the field to its original text. Try it!

The Button Object

[have used the button-type input element in many examples up to this point in the tutorial.
The button is one of the simplest objects to script. In the simplified object model of this tuto-
rial, the button object has only a few properties that are rarely accessed or modified in day-
to-day scripts. Like the text object, the visual aspects of the button are governed not by
HTML or scripts, but by the operating system and browser that the page visitor uses. By far,
the most useful event handler of the button object is the onc1ick event handler. It fires when-
ever the user clicks the button. Simple enough. No magic here.

The Checkbox Object

A checkbox is also a simple element of the form object, but some of the properties may not
be intuitive entirely. Unlike the value property of a plain button object (the text of the button
label), the value property of a checkbox is any other text you want associated with the
object. This text does not appear on the page in any fashion, but the property (initially set via
the value attribute) might be important to a script that wants to know more about the pur-
pose of the checkbox within the form.

The key property of a checkbox object is whether or not the box is checked. The checked
property is a Boolean value: true if the box is checked, false if not. When you see that a
property is a Boolean value, it’s a clue that the value might be usableinan ifor if...else
condition expression. In Listing 9-2, the value of the checked property determines which alert
box the user sees.

Chapter 9 + Forms and Form Elements

Listing 9-2: The Checkbox Object’s checked Property

<htm1>
<head>
<title>Checkbox Inspector</title>
{script type="text/javascript">
function inspectBox() f
if (document.forms[0].checkThis.checked) {
alert("The box is checked.");
} else |
alert("The box is not checked at the moment.");
}
}
{/script>
</head>
<body>
<form>
<input type="checkbox" name="checkThis">Check here

<input type="button" value="Inspect Box" onclick="inspectBox()">
</form>
</body>
</htm1>

Checkboxes are generally used as preferences setters, rather than as action inducers. While a
checkbox object has an onc1ick event handler, a click of a checkbox should never do any-
thing drastic, such as navigate to another page.

The Radio Object

Setting up a group of radio objects for scripting requires a bit more work. To let the browser
manage the highlighting and unhighlighting of a related group of buttons, you must assign the
same name to each of the buttons in the group. You can have multiple groups within a form,
but each member of the same group must share the same name.

Assigning the same name to a form element forces the browser to manage the elements differ-
ently than if they each had a unique name. Instead, the browser maintains an array list of
objects with the same name. The name assigned to the group becomes the name of the array.
Some properties apply to the group as a whole; other properties apply to individual buttons
within the group and must be addressed via array index references. For example, you can find
out how many buttons are in a group by reading the 1ength property of the group:

document.forms[0].groupName.length

If you want to find out if a particular button is currently highlighted — via the same checked
property used for the checkbox —you must access the button element individually:

document.forms[0].groupName[0].checked

Listing 9-3 demonstrates several aspects of the radio button object, including how to look
through a group of buttons to find out which one is checked and how to use the value
attribute and corresponding property for meaningful work.

The page includes three radio buttons and a plain button. Each radio button’s value
attribute contains the full name of one of the Three Stooges. When the user clicks the button,

103

104

Part Il 4+ JavaScript Tutorial

the onc1ick event handler invokes the fullName () function. In that function, the first state-
ment creates a shortcut reference to the form. Next, a for repeat loop looks through all of the
buttons in the stooges radio button group. An if construction looks at the checked prop-
erty of each button. When a button is highlighted, the break statement bails out of the for
loop, leaving the value of the i loop counter at the number where the loop broke ranks. The
alert dialog box then uses a reference to the value property of the ith button so that the full
name can be displayed in the alert.

Listing 9-3: Scripting a Group of Radio Objects

<html>
<head>
<title>Extracting Highlighted Radio Button</title>
{script type="text/javascript">
function fullName() {
var form = document.forms[0];
for (var i = 0; i < form.stooges.length; i++) {
if (form.stooges[i].checked) {
break;
}
}
alert("You chose " + form.stooges[i].value + ".");
}
</script>
</head>

<body>

<form>

<p>Select your favorite Stooge:

<input type="radio" name="stooges" value="Moe Howard" checked>Moe
<input type="radio" name="stooges" value="Larry Fine">Larry
<input type="radio" name="stooges" value="Curly Howard">Curly

<input type="button" name="Viewer" value="View Full Name..."
onclick="fullName()"></p>

</ form>

</body>

</htm1>

The select Object

The most complex form control to script is the select element object. As you can see from
the DOM Level 0 form object hierarchy diagram (see Figure 9-1), the select object is really a
compound object: an object that contains an array of option objects. Moreover, you can
establish this object in HTML to display itself as either a pop-up list or a scrolling list —the
latter configurable to accept multiple selections by users. For the sake of simplicity at this
stage, this lesson focuses on deployment as a pop-up list that allows only single selections.

Some properties belong to the entire select object; others belong to individual options
inside the select object. If your goal is to determine which item the user selects, and you
want the code to work on the widest range of browsers, you must use properties of both the
select and option objects.

Chapter 9 + Forms and Form Elements

The most important property of the select object itself is the selectedIndex property,
accessed as follows:

document.form[0].selectName.selectedIndex

This value is the index number of the currently selected item. As with most index counting
schemes in JavaScript, the first item (the one at the top of the list) has an index of zero. The
selectedIndex value is critical for enabling you to access properties of the selected option.
Two important properties of an option item are text and value, accessed as follows:

document.forms[0].selectName.options[n].text
document.forms[0].selectName.options[n].value

The text property is the string that appears onscreen in the select object. It is unusual for
this information to be exposed as a form object property because in the HTML that generates
a select object, the text is defined as an <option> tag’s nested text. But inside the <option>
tag, you can set a value attribute, which, like the radio buttons shown earlier, enables you to
associate some hidden string information with each visible entry in the list.

To read the value or text property of a selected option most efficiently for all browsers, you
can use the select object’s selectedIndex property as an index value to the option.
References for this kind of operation get pretty long, so take the time to understand what’s
happening here. In the following function, the first statement creates a shortcut reference to
the select object. The selectedIndex property of the select object is then substituted for
the index value of the options array of that same object:

function inspect() {

var list = document.forms[0].choices;

var chosenltemText = Tist.options[list.selectedIndex].value;
}

To bring a select object to life, use the onchange event handler. As soon as a user makes a
new selection in the list, this event handler runs the script associated with that event han-
dler. Listing 9-4 shows a common application for a select object. Its text entries describe
places to go in and out of a Web site, while the value attributes hold the URLs for those
locations. When a user makes a selection in the list, the onchange event handler triggers a
script that extracts the value property of the selected option and assigns that value to the
location.href object property to effect the navigation. Under JavaScript control, this kind
of navigation doesn’t need a separate Go button on the page.

Listing 9-4: Navigating with a select Object

<htm1>
<head>
<title>Select Navigation</title>
{script type="text/javascript">
function goThere() {
var 1ist = document.forms[0].urllist;
location.href = Tist.options[list.selectedIndex].value;
}
</script>
<{/head>

Continued

105

106

Part

/N ote

Il + JavaScript Tutorial

Listing 9-4 (continued)

<body>

<form>

Choose a place to go:

<select name="urlList" onchange="goThere()">
<option selected value="index.html">Home Page
<option value="store.html">Shop Our Store
<option value="policies.html1">Shipping Policies
<option value="http://www.google.com">Search the Web

<{/select>

</form>

</body>

</html>

Recent browsers also expose the value property of the selected option item by way of the
g value property of the select object. This is certainly a logical and convenient shortcut, and
you can use it safely if your target browsers include IE, Mozilla-based browsers, and Safari.

There is much more to the select object, including the ability to change the contents of a list
in newer browsers. Chapter 24 covers the select object in depth.

Passing Form Data and Elements to Functions

In all of the examples so far in this lesson, when an event handler invokes a function that
works with form elements, the form or form control is explicitly referenced in the function.
But valuable shortcuts exist for transferring information about the form or form control
directly to the function without dealing with those typically long references that start with
the window or document object level.

JavaScript features a keyword — this —that always refers to whatever object contains the
script in which the keyword is used. Thus, in an onchange event handler for a text field, you
can pass a reference to the text object to the function by inserting the this keyword as a
parameter to the function:

{input type="text" name="entry" onchange="upperMe(this)">

At the receiving end, the function defines a parameter variable that turns that reference into a
variable that the rest of the function can use:

function upperMe(field) {
statement[s]
}

The name you assign to the function’s parameter variable is purely arbitrary, but it is helpful
to give it a name that expresses what the reference is. Importantly, this reference is a “live”
connection back to the object. Therefore, statements in the script can get and set property
values of the object at will.

Chapter 9 + Forms and Form Elements

For other functions, you may wish to receive a reference to the entire form, rather than just
the object calling the function. This is certainly true if the function needs to access other ele-
ments of the same form. Because every form control object contains a property that points to
the containing form, you can use the this keyword to reference the current control, plus its
form property as this.form, as in

<input type="button" value="Click Here" onclick="inspect(this.form)">

The function definition should then have a parameter variable ready to be assigned to the
form object reference. Again, you decide the name of the variable. I tend to use the variable
name form as a way to remind me exactly what kind of object is referenced.

function inspect(form) {
statement[s]
}

Listing 9-5 demonstrates passing both an individual form element and the entire form in the
performance of two separate acts. This page makes believe it is connected to a database of
Beatles songs. When you click the Process Data button, it passes the form object, which the
processData() function uses to access the group of radio buttons inside a for loop.
Additional references using the passed form object extract the value properties of the
selected radio button and the text field.

The text field has its own event handler, which passes just the text field to the verifySong()
function. Notice how short the reference is to reach the value property of the song field
inside the function.

Listing 9-5: Passing a Form Object and Form Element to Functions

<html>
<head>
<title>Beatle Picker</title>
<{script type="text/javascript">
function processData(form) {
for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) {
break
}

}

// assign values to variables for convenience

var beatle = form.Beatles[i].value

var song = form.song.value

alert("Checking whether " + song + " features " + beatle + "...")

}

function verifySong(entry) {
var song = entry.value
alert("Checking whether

+ song + " is a Beatles tune...")
}

</script>

<{/head>

Continued

107

108 Partil + JavaScript Tutorial

Listing 9-5 (continued)

<body>

{form onsubmit="return false">

<p>Choose your favorite Beatle:

<input type="radio" name="Beatles" value="John Lennon" checked>John
{input type="radio" name="Beatles" value="Paul McCartney">Paul
{input type="radio" name="Beatles" value="George Harrison">George
{input type="radio" name="Beatles" value="Ringo Starr">Ringo</p>

<p>Enter the name of your favorite Beatles song:

dinput type="text" name="song" value = "Eleanor Rigby"
onchange="verifySong(this)">

<input type="button" name="process" value="Process Request..."
onclick="processData(this.form)"</p>

</form>

</body>

</html>

Get to know the usage of the this keyword in passing formand form element objects to
functions. The technique not only saves you typing in your code, but it also ensures accuracy
in references to those objects.

Submitting and Prevalidating Forms

The scripted equivalent of submitting a form is the form object’s submit () method. All you
need in the statement is a reference to the form and this method:

document.forms[0].submit();

Before you get ideas about having a script silently submit a form to a URL bearing the
mailto: protocol, forget it. Because such a scheme could expose visitors’ e-mail addresses
without their knowledge, mailto: submissions are either blocked or revealed to users as a
security precaution.

Before a form is submitted, you may wish to perform some last-second validation of data in
the form or in other scripting (for example, changing the form’s action property based on
user choices). You can do this in a function invoked by the form’s onsubmit event handler.
Specific validation routines are beyond the scope of this tutorial (but are explained in sub-
stantial detail in Chapter 43 on the CD-ROM), but I want to show you how the onsubmit event
handler works.

You can let the results of a validation function cancel a submission if the validation shows
some incorrect data or empty fields. To control submission, the onsubmit event handler
must evaluate to return true (to allow submission to continue) or return false (to cancel
submission). This is a bit tricky at first because it involves more than just having the function
called by the event handler return true or false. The return keyword must be part of the
final evaluation.

Chapter 9 + Forms and Form Elements

Listing 9-6 shows a page with a simple validation routine that ensures all fields have some-
thing in them before allowing submission to continue. (The sample form has no action
attribute, so this sample form doesn’t get sent to the server.) Notice how the onsubmit event
handler (which passes a reference to the form object as a parameter —in this case the this
keyword points to the form object because its tag holds the event handler) includes the
return keyword before the function name. When the function returns its true or false
value, the event handler evaluates to the requisite return true or return false.

Listing 9-6: Last-Minute Checking Before Form Submission

<html>
<head>
<title>Validator</title>
{script type="text/javascript">
function checkForm(form) {
for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].value == "") {
alert("Fill out ALL fields.");
return false;
}
}
return true;
}
</script>
</head>

<body>

<form onsubmit="return checkForm(this)">

Please enter all requested information:

First Name:<input type="text" name="firstName">

Last Name:<input type="text" name="lastName">

Rank:<input type="text" name="rank">

Serial Number:<input type="text" name="serialNumber">

<input type="submit">
</form>
</body>
</html>

One quirky bit of behavior involving the submit () method and onsubmit event handler
needs explanation. While you might think (and logically so, in my opinion) that the submit ()
method would be the exact scripted equivalent of a click of a real Submit button, it’s not. The
submit () method does not cause the form’s onsubmit event handler to fire at all. If you want
to perform validation on a form submitted via the submi t () method, invoke the validation in
the script function that ultimately calls the submit () method.

So much for the basics of forms and form controls. In the next chapter, you step away from
HTML for a moment to look at more advanced JavaScript core language items: strings, math,
and dates.

109

110

Part Il 4+ JavaScript Tutorial

Exercises

1.

Rework Listings 9-1, 9-2, 9-3, and 9-4 so that the script functions all receive the most
efficient form or form element references directly from the invoking event handler.

. For the following form (assume it’s the only form on the page), write at least 10 ways to

reference the text input field as an object in all modern scriptable browsers.

<form name="subscription" action="cgi-bin/maillist.pl" method="post">
<input type="text" id="email" name="email">
<input type="submit">

</form>

. In the following HTML tag, what kind of information do you think is being passed with

the event handler? Write a function that displays in an alert dialog box the information
being passed.

<input type="text" name="phone" onchange="format(this.value)">

. A document contains two forms named specifications and accessories.In the

accessories form is a field named accl. Write at least two different statements that
set the contents of that field to Leather Carrying Case.

. Create a page that includes a select object to change the background color of the cur-

rent page. The property that you need to set is document.bgColor, and the three val-
ues you should offer as options are red, yellow, and green. In the select object, the
colors should display as Stop, Caution, and Go.

+ o+

Strings, Math,
and Dates

For most of the lessons in the tutorial so far, the objects at the cen-
ter of attention belong to the document object model. But as indi-
cated in Chapter 2, a clear dividing line exists between the document
object model and the JavaScript language. The language has some of
its own objects that are independent of the document object model.
These objects are defined such that if a vendor wished to implement
JavaScript as the programming language for an entirely different kind
of product, the language would still use these core facilities for han-
dling text, advanced math (beyond simple arithmetic), and dates.
You can find formal specifications of these objects in the ECMA-262
recommendation.

Core Language Objects

It is often difficult for newcomers to programming — or even experi-
enced programmers who have not worked in object-oriented worlds
before —to think about objects, especially when attributed to
“things” that don’t seem to have a physical presence. For example, it
doesn’t require lengthy study to grasp the notion that a button on a
page is an object. It has several physical properties that make perfect
sense. But what about a string of characters? As you learn in this
chapter, in an object-based environment such as JavaScript, every-
thing that moves is treated as an object—each piece of data from a
Boolean value to a date. Each such object probably has one or more
properties that help define the content; such an object may also have
methods associated with it to define what the object can do or what
you can do to the object.

I call all objects that are not part of the document object model core
language objects. You can see the full complement of them in the
Quick Reference in Appendix A. In this chapter, [focus on the String,
Math, and Date objects.

String Objects

You have already used String objects many times in earlier lessons.
A string is any text inside a quote pair. A quote pair consists of either
double quotes or single quotes. This allows one string to nest inside

CHAPTER

<+

In This Chapter

How to modify strings
with common string

<+

methods

When and how to use

4

the Math object

How to use the Date

object

<+

<+

4

<+

4

112

Part Il 4+ JavaScript Tutorial

another, as often happens in event handlers. In the following example, the alert () method
requires a quoted string as a parameter, but the entire method call also must be inside
quotes:

onclick="alert('Hello, all")"

JavaScript imposes no practical limit on the number of characters that a string can hold.
However, most older browsers have a limit of 255 characters in length for a script statement.
This limit is sometimes exceeded when a script includes a lengthy string that is to become
scripted content in a page. You need to divide such lines into smaller chunks using tech-
niques described in a moment.

You have two ways to assign a string value to a variable. The simplest is a basic assignment
statement:

var myString = "Howdy";

This works perfectly well except in some exceedingly rare instances. Beginning with
Navigator 3 and Internet Explorer 4, you can also create a string object using the more formal
syntax that involves the new keyword and a constructor function (that is, it “constructs” a
new object):

var myString = new String("Howdy");

Whichever way you use to initialize a variable with a string, the variable receiving the assign-
ment can respond to all String object methods.

Joining strings

Bringing two strings together as a single string is called concatenating strings, a term you
learned in Chapter 6. String concatenation requires one of two JavaScript operators. Even in
your first script in Chapter 3, you saw how the addition operator (+) linked multiple strings
together to produce the text dynamically written to the loading Web page:

document.write(" of " + navigator.appName + ".");

As valuable as that operator is, another operator can be even more scripter friendly. This
operator is helpful when you are assembling large strings in a single variable. The strings may
be so long or cumbersome that you need to divide the building process into multiple state-
ments. The pieces may be combinations of string literals (strings inside quotes) or variable
values. The clumsy way to do it (perfectly doable in JavaScript) is to use the addition opera-
tor to append more text to the existing chunk:

var msg = "Four score";
msg = msg + " and seven";
msg = msg + " years ago,";

But another operator, called the add-by-value operator, offers a handy shortcut. The symbol
for the operator is a plus and equal sign together (+=). This operator means “append the stuff
on the right of me to the end of the stuff on the left of me.” Therefore, the preceding sequence
is shortened as follows:

var msg = "Four score";
msg += " and seven";
msg += " years ago,";

Chapter 10 4+ Strings, Math, and Dates

You can also combine the operators if the need arises:

var msg = "Four score";

msg += " and seven" + " years ago";

[use the add-by-value operator a lot when accumulating HTML text to be written to the cur-
rent document or another window.

String methods

Of all the core JavaScript objects, the String object has the most diverse collection of meth-
ods associated with it. Many methods are designed to help scripts extract segments of a
string. Another group, rarely used and now obsolete in favor of CSS, wraps a string with one
of several style-oriented tags (a scripted equivalent of tags for font size, style, and the like).

To use a string method, the string being acted upon becomes part of the reference followed
by the method name. All methods return a value of some kind. Most of the time, the returned
value is a converted version of the string object referred to in the method call —but the origi-
nal string is still intact. To capture the modified version, you need to assign the results of the
method to a variable:

var result = string.methodName();

The following sections introduce you to several important string methods available to all
browser brands and versions.

Changing string case
Two methods convert a string to all uppercase or lowercase letters:

var result = string.toUpperCase();
var result = string.toLowerCase();

Not surprisingly, you must observe the case of each letter of the method names if you want
them to work. These methods come in handy when your scripts need to compare strings that
may not have the same case (for example, a string in a lookup table compared with a string
typed by a user). Because the methods don’t change the original strings attached to the
expressions, you can simply compare the evaluated results of the methods:

var foundMatch = false;

if (stringA.toUpperCase() == stringB.toUpperCase()) f{
foundMatch = true;

}

String searches

You can use the string.index0f () method to determine if one string is contained by
another. Even within JavaScript’s own object data, this can be useful information. For exam-
ple, the navigator.userAgent property reveals a lot about the browser that loads the page.
A script can investigate the value of that property for the existence of, say, “Win” to deter-
mine that the user has a Windows operating system. That short string might be buried some-
where inside a long string, and all the script needs to know is whether the short string is
present in the longer one — wherever it might be.

113

114

Part Il 4+ JavaScript Tutorial

The string.index0f () method returns a number indicating the index value (zero based) of
the character in the larger string where the smaller string begins. The key point about this
method is that if no match occurs, the returned value is - 1. To find out whether the smaller
string is inside, all you need to test is whether the returned value is something other than -1.

Two strings are involved with this method: the shorter one and the longer one. The longer
string is the one that appears in the reference to the left of the method name; the shorter
string is inserted as a parameter to the index0f () method. To demonstrate the method in
action, the following fragment looks to see if the user is running Windows:

var isWindows = false;

if (navigator.userAgent.index0f("Win") != -1) {
isWindows = true;

}

The operator in the if construction’s condition (!=) is the inequality operator. You can read
it as meaning “is not equal to.”

Extracting copies of characters and substrings

To extract a single character at a known position within a string, use the charAt () method.
The parameter of the method is an index number (zero based) of the character to extract.
When [say extract, | don’t mean delete, but rather grab a snapshot of the character. The origi-
nal string is not modified in any way.

For example, consider a script in a main window that is capable of inspecting a variable,
stringA, in another window that displays map images of different corporate buildings. When
the window has a map of Building C in it, the stringA variable contains “Building C.” The
building letter is always at the tenth character position of the string (or number 9 in a zero-
based counting world), so the script can examine that one character to identify the map cur-
rently in that other window:

var stringA = "Building C";
var bldgletter = stringA.charAt(9);
// result: bldglLetter = "C"

Another method —string.substring() —enables you to extract a contiguous sequence of
characters, provided you know the starting and ending positions of the substring of which
you want to grab a copy. Importantly, the character at the ending position value is not part of
the extraction: All applicable characters, up to but not including that character, are part of
the extraction. The string from which the extraction is made appears to the left of the method
name in the reference. Two parameters specify the starting and ending index values (zero
based) for the start and end positions:

var stringA = "banana daiquiri";
var excerpt = stringA.substring(2,6);
// result: excerpt = "nana"

String manipulation in JavaScript is fairly cumbersome compared to some other scripting
languages. Higher-level notions of words, sentences, or paragraphs are completely absent.
Therefore, sometimes it takes a bit of scripting with string methods to accomplish what
seems like a simple goal. And yet you can put your knowledge of expression evaluation to
the test as you assemble expressions that utilize heavily nested constructions. For example,
the following fragment needs to create a new string that consists of everything from the
larger string except the first word. Assuming the first word of other strings can be of any
length, the second statement utilizes the string.index0f () method to look for the first
space character and adds 1 to that value to serve as the starting index value for an outer

Chapter 10 + Strings, Math,andDates] 15

string.substring() method. For the second parameter, the Tength property of the string
provides a basis for the ending character’s index value (one more than the actual character
needed).

var stringA = "The United States of America";
var excerpt = stringA.substring(stringA.index0f(" ") + 1, stringA.length);
// result: excerpt = "United States of America"

Creating statements like this one is not something you are likely to enjoy over and over again,
so in Chapter 27 [show you how to create your own library of string functions you can reuse
in all of your scripts that need their string-handling facilities. More powerful string-matching
facilities are built into today’s browsers by way of regular expressions (see Chapter 27 and
Chapter 42 on the CD-ROM).

The Math Object

JavaScript provides ample facilities for math — far more than most scripters who don’t have a
background in computer science and math will use in a lifetime. But every genuine program-
ming language needs these powers to accommodate clever programmers who can make win-
dows fly in circles on the screen.

The Math object contains all of these powers. This object is unlike most of the other objects
in JavaScript in that you don’t generate copies of the object to use. Instead your scripts sum-
mon a single Math object’s properties and methods. (One Math object actually occurs per
window or frame, but this has no impact whatsoever on your scripts.) Programmers call this
kind of fixed object a static object. That Math object (with an uppercase M) is part of the refer-
ence to the property or method. Properties of the Math object are constant values, such as pi
and the square root of two:

var piValue = Math.PI;
var rootOfTwo = Math.SQRTZ;

Math object methods cover a wide range of trigonometric functions and other math functions
that work on numeric values already defined in your script. For example, you can find which
of two numbers is the larger:

var larger = Math.max(valuel, value?2);

Or you can raise one number to a power of 10:

var result = Math.pow(valuel, 10);

More common, perhaps, is the method that rounds a value to the nearest integer value:
var result = Math.round(valuel);

Another common request of the Math object is a random number. The Math.random()
method returns a floating-point number between 0 and 1. If you design a script to act like a
card game, you need random integers between 1 and 52; for dice, the range is 1 to 6 per die.
To generate a random integer between zero and any top value, use the following formula:

Math.floor(Math.random() * (n + 1))

where n is the top number. (Math. f1oor returns the integer part of any floating-point num-
ber.) To generate random numbers between 1 and any higher number, use this formula:

Math.floor(Math.random() * n) + 1

116

Part Il 4+ JavaScript Tutorial

where n equals the top number of the range. For the dice game, the formula for each die is
newDieValue = Math.floor(Math.random() * 6) + 1;

To see this, enter the right-hand part of the preceding statement in the top text box of The
Evaluator Jr. and repeatedly click the Evaluate button.

One bit of help JavaScript doesn’t offer except in IE5.5+ and Mozilla-based browsers is a way
to specify a number-formatting scheme. Floating-point math can display more than a dozen
numbers to the right of the decimal. Moreover, results can be influenced by each operating
system’s platform-specific floating-point errors, especially in earlier versions of scriptable
browsers. For other browsers you must perform any number formatting—for dollars and
cents, for example —through your own scripts. Chapter 28 provides an example.

The Date Object

Working with dates beyond simple tasks can be difficult business in JavaScript. A lot of the
difficulty comes with the fact that dates and times are calculated internally according to
Greenwich Mean Time (GMT)— provided the visitor’s own internal PC clock and control panel
are set accurately. As a result of this complexity, better left for Chapter 29, this section of the
tutorial touches on only the basics of the JavaScript Date object.

A scriptable browser contains one global Date object (in truth, one Date object per window)
that is always present, ready to be called upon at any moment. The Date object is another
one of those static objects. When you wish to work with a date, such as displaying today’s
date, you need to invoke the Date object constructor function to obtain an instance of a Date
object tied to a specific time and date. For example, when you invoke the constructor without
any parameters, as in

var today = new Date();

the Date object takes a snapshot of the PC’s internal clock and returns a date object for that
instant. Notice the distinction between the static Date object and a Date object instance,
which contains an actual date value. The variable, today, contains not a ticking clock, but a
value that you can examine, tear apart, and reassemble as needed for your script.

Internally, the value of a Date object instance is the time, in milliseconds, from zero o’clock
on January 1, 1970, in the Greenwich Mean Time zone —the world standard reference point
for all time conversions. That’s how a Date object contains both date and time information.

You can also grab a snapshot of the Date object for a particular date and time in the past or
future by specifying that information as parameters to the Date object constructor function:

var someDate = new Date("Month dd, yyyy hh:mm:ss");

var someDate = new Date("Month dd, yyyy");

var someDate = new Date(yy,mm,dd,hh,mm,ss);

var someDate = new Date(yy,mm,dd);

var someDate = new Date(GMT milliseconds from 1/1/1970);

If you attempt to view the contents of a raw Date object, JavaScript converts the value to the
local time zone string as indicated by your PC’s control panel setting. To see this in action,
use The Evaluator Jr.’s top text box to enter the following:

new Date();

Your PC’s clock supplies the current date and time as the clock calculates them (even
though JavaScript still stores the date object’s millisecond count in the GMT zone). You can,

however, extract components of the Date object via a series of methods that you apply to a

Chapter 10 4+ Strings, Math, and Dates

Date object instance. Table 10-1 shows an abbreviated listing of these properties and infor-
mation about their values.

Table 10-1: Some Date Object Methods

Method Value Range Description

dateObj.getTime() 0-... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.getYear() 70-... Specified year minus 1900; four-digit year for
2000+

dateObj.getFullYear() 1970-. .. Four-digit year (Y2K-compliant); version 4+
browsers

dateObj.getMonth() 0-11 Month within the year (January = 0)

dateObj.getDate() 1-31 Date within the month

dateObj.getDay() 0-6 Day of week (Sunday = 0)

dateObj.getHours() 0-23 Hour of the day in 24-hour time

dateObj.getMinutes() 0-59 Minute of the specified hour

dateObj.getSeconds() 0-59 Second within the specified minute

dateObj.setTime(val) 0-... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.setYear(val) 70-... Specified year minus 1900; four-digit year for
2000+

date0Obj.setMonth(val) -11 Month within the year (January = 0)

dateObj.setDate(val) -31 Date within the month

dateObj.setDay(val) -6 Day of week (Sunday = 0)

date0Obj.setHours(val) 0-23 Hour of the day in 24-hour time

dateObj.setMinutes(val) 0-59
dateObj.setSeconds(val) 0-59

Minute of the specified hour
Second within the specified minute

Caution Be careful about values whose ranges start with zero, especially the months. The
getMonth() and setMonth() method values are zero based, so the numbers are one less
than the month numbers you are accustomed to working with (for example, January is 0,

December is 11).

You may notice one difference about the methods that set values of a Date object. Rather
than returning some new value, these methods actually modify the value of the Date object
referenced in the call to the method.

Date Calculations

Performing calculations with dates frequently requires working with the millisecond values of
the Date objects. This is the surest way to compare date values. To demonstrate a few Date
object machinations, Listing 10-1 displays the current date and time as the page loads.
Another script shows one way to calculate the date and time seven days from the current
date and time value.

117

118

Part Il 4+ JavaScript Tutorial

Listing 10-1: Date Object Calculations

<html>

<head>

<title>Date Calculation</title>

{script type="text/javascript">

function nextWeek() f
var todayInMS = today.getTime();
var nextWeekInMS = todayInMS + (60 * 60 * 24 * 7 * 1000);
return new Date(nextWeekInMS);

}

{/script>

</head>

<body>

Today is:

{script type="text/javascript">
var today = new Date();
document.write(today);
{/script>

Next week will be:

{script type="text/javascript">
document.write(nextWeek());
</script>

</body>

</html>

In the Body portion, the first script runs as the page loads, setting a global variable (today)
to the current date and time. The string equivalent is written to the page. In the second Body
script, the document .write() method invokes the nextWeek () function to get a value to dis-
play. That function utilizes the today global variable, copying its millisecond value to a new
variable: todayInMS. To get a date seven days from now, the next statement adds the number
of milliseconds in seven days (60 seconds times 60 minutes times 24 hours times seven days
times 1000 milliseconds) to today’s millisecond value. The script now needs a new Date
object calculated from the total milliseconds. This requires invoking the Date object con-
structor with the milliseconds as a parameter. The returned value is a Date object, which is
automatically converted to a string version for writing to the page.

To add or subtract time intervals from a Date object, you can use a shortcut that doesn’t
require the millisecond conversions. By combining the date object’s set and get methods, you
can let the Date object work out the details. For example, in Listing 10-1 you could eliminate
the function entirely, and let the following two statements in the second Body script obtain
the desired result:

today.setDate(today.getDate() + 7);
document.write(today);

Because JavaScript tracks the date and time internally as milliseconds, the accurate date
appears in the end, even if the new date is into the next month. JavaScript automatically
takes care of figuring out how many days there are in a month as well as in leap years.

Many other quirks and complicated behavior await you if you script dates in your page. As
later chapters demonstrate, however, the results may be worth the effort.

Chapter 10 + Strings, Math,andDates] 19

Exercises

1. Create a Web page that has one form field for entry of the user’s e-mail address and a
Submit button. Include a pre-submission validation routine that verifies that the text
field has the @ symbol found in all e-mail addresses before you allow submission of the
form.

2. Given the string "Internet Explorer", fill in the blanks of the string.substring()
method parameters here that yield the results shown to the right of each method call:

var myString = "Internet Explorer";
myString.substring(___,) // result = "Int"
myString.substring(___ ,) // result = "plorer"
myString.substring(___,_) // result = "net Exp"

3. Fill in the rest of the function in the listing that follows so that it looks through every

character of the entry field and counts how many times the letter “e” appears in the
field. (Hint: All that is missing is a for repeat loop.)

<html>

<head>

<title>Wheel o' Fortuna</title>

{script type="text/javascript">

function countE(form) {
var count = 0;
var inputString = form.mainstring.value.tolLowerCase();
missing code
var msg = "The string has " + count;
msg += " instances of the letter e.";
alert(msg);

1

</script>

</head>

<body>

<form>

Enter any string: <input type="text" name="mainstring" size="30">

<input type="button" value="Count the Es"
onclick="countE(this.form)">

</form>

</body>

</htm1>

4. Create a page that has two fields and one button. The button should trigger a function
that generates two random numbers between 1 and 6, placing each number in one of
the fields. (Think of using this page as a substitute for rolling a pair of dice in a board
game.)

5. Create a page that displays the number of days between today and next Christmas.

+ o+ 0+

Scripting Frames
and Multiple
Windows

Orle of the attractive aspects of JavaScript for some applications
on the client is that it allows user actions in one frame or win-
dow to influence what happens in other frames and windows. In this
section of the tutorial, you extend your existing knowledge of object
references to the realm of multiple frames and windows.

Frames: Parents and Children

You've see in earlier top-level hierarchy illustrations (such as
Figure 4-1) that the window object is at the very top of the chart.
The window object also has several synonyms, which stand in for
the window object in special cases. For instance, in Chapter 8, you
learned that self is synonymous with window when the reference
applies to the same window that contains the script’s document. In
this lesson, you learn the roles of three other references that point
to objects behaving as windows — frame, top, and parent.

Loading an ordinary HTML document into the browser creates a
model in the browser that starts out with one window object and the
document it contains. (The document likely contains other elements,
but I'm not concerned with that stuff yet.) The top rungs of the hier-
archy model are as simple as can be, as shown in Figure 11-1. This is
where references begin with window or self (or with document
because the current window is assumed).

The instant a framesetting document loads into a browser, the
browser starts building a slightly different hierarchy model. The pre-
cise structure of that model depends entirely on the structure of the
frameset defined in that framesetting document. Consider the follow-
ing skeletal frameset definition:

<html>
<{frameset cols="50%,50%">
{frame name="leftFrame" src="somedocl.html">
<{frame name="rightFrame" src="somedoc2.html">
</frameset>
</htm1>

CHAPTER

<+

In This Chapter

Relationships among
frames in the browser

<+

window

How to access objects
and values in other

frames

How to control
navigation of multiple

frames

Communication skills
between separate

windows

<+

<+

4

<+

<+

<+

122

Part Il 4+ JavaScript Tutorial

Figure 11-1: Single-frame window and document
hierarchy.

Document

This HTML splits the browser window into two frames side by side, with a different document
loaded into each frame. The model is concerned only with structure —it doesn’t care about
the relative sizes of the frames or whether they’re set up in columns or rows.

Framesets establish relationships among the frames in the collection. Borrowing terminology
from the object-oriented programming world, the framesetting document loads into a parent
window. Each of the frames defined in that parent window document is a child frame. Figure
11-2 shows the hierarchical model of a two-frame environment. This illustration reveals a lot
of subtleties about the relationships among framesets and their frames.

<FRAMESET >

<FRAME>

Document Document

Figure 11-2: Two-frame window and document
hierarchy.

Chapter 11 4 Scripting Frames and Multiple Windows

It is often difficult at first to visualize the frameset as a window object in the hierarchy.

After all, with the exception of the URL showing in the Location/Address field, you don’t see
anything about the frameset in the browser. But that window object exists in the object
model. Notice, too, that in the diagram the framesetting parent window has no document
object showing. This may also seem odd because the window obviously requires an HTML
file containing the specifications for the frameset. In truth, the parent window has a document
object associated with it, but it is omitted from the diagram to better portray the relation-
ships among parent and child windows. A frameset parent’s document cannot contain most
of the typical HTML objects such as forms and controls, so references to the parent’s docu-
ment are rarely, if ever, used.

If you add a script to the framesetting document that needs to access a property or method
of that window object, references are like any single-frame situation. Think about the point of
view of a script located in that window. Its immediate universe is the very same window.

Things get more interesting when you start looking at the child frames. Each of these frames
contains a document object whose content you see in the browser window. And the structure
is such that each frame’s document is entirely independent of the other. It is as if each docu-
ment lived in its own browser window. Indeed, that’s why each child frame is also a window
type of object. A frame has the same kinds of properties and methods of the window object
that occupies the entire browser.

From the point of view of either child window in Figure 11-2, its immediate container is the
parent window. When a parent window is at the very top of the hierarchical model loaded in
the browser, that window is also referred to as the top object.

References among Family Members

Given the frame structure of Figure 11-2, it’s time to look at how a script in any one of those
windows can access objects, functions, or variables in the others. An important point to
remember about this facility is that if a script has access to an object, function, or global vari-
able in its own window, that same item can be reached by a script from another frame in the
hierarchy (provided both documents come from the same Web server).

A script reference may need to take one of three possible routes in the two-generation hierar-
chy described so far: parent to child; child to parent; or child to child. Each of the paths
between these windows requires a different reference style.

Parent-to-child references

Probably the least common direction taken by references is when a script in the parent
document needs to access some element of one of its frames. The parent contains two or
more frames, which means the parent maintains an array of the child frame objects. You

can address a frame by array syntax or by the name you assign to it with the name attribute
inside the <frame> tag. In the following examples of reference syntax, I substitute a placeholder
named 0bjFuncVarName for whatever object, function, or global variable you intend to access
in the distant window or frame. Remember that each visible frame contains a document object,
which is generally the container of elements you script— be sure references to the elements
include document. With that in mind, a reference from a parent to one of its child frames fol-
lows any of these models:

124

Part Il 4+ JavaScript Tutorial

[window.]frames[nl.0ObjFuncVarName
[window. Iframes["frameName"1.0bjFuncVarName
[window.]frameName.0bjFuncVarName

Numeric index values for frames are based on the order in which their <frame> tags appear
in the framesetting document. You will make your life easier, however, if you assign recogniz-
able names to each frame and use the frame’s name in the reference.

Child-to-parent references

It is not uncommon to place scripts in the parent (in the Head portion) that multiple child
frames or multiple documents in a frame use as a kind of script library. By loading in the
frameset, these scripts load only once while the frameset is visible. If other documents from
the same server load into the frames over time, they can take advantage of the parent’s
scripts without having to load their own copies into the browser.

From the child’s point of view, the next level up the hierarchy is called the parent. Therefore,
a reference from a child frame to items at the parent level is simply

parent.0bjFuncVarName

If the item accessed in the parent is a function that returns a value, the returned value tran-
scends the parent/child borders down to the child without hesitation.

When the parent window is also at the very top of the object hierarchy currently loaded into
the browser, you can optionally refer to it as the top window, as in

top.0bjFuncVarName

Using the top reference can be hazardous if for some reason your Web page gets displayed in
some other Web site’s frameset. What is your top window is not the master frameset’s top
window. Therefore, | recommend using the parent reference whenever possible (unless you
want to blow away an unwanted framer of your Web site).

Child-to-child references

The browser needs a bit more assistance when it comes to getting one child window to com-
municate with one of its siblings. One of the properties of any window or frame is its parent
(whose value is nul1 for a single window). A reference must use the parent property to work
its way out of the current frame to a point that both child frames have in common —the par-
ent in this case. Once the reference is at the parent level, the rest of the reference can carry
on as if starting at the parent. Thus, from one child to one of its siblings, you can use any of
the following reference formats:

parent.frames[n].0bjFuncVarName
parent.frames["frameName"]1.0bjFuncVarName
parent.frameName.0bjFuncVarName

A reference from the other sibling back to the first looks the same, but the frames[] array
index or frameName part of the reference differs. Of course, much more complex frame hier-
archies exist in HTML. Even so, the object model and referencing scheme provide a solution
for the most deeply nested and gnarled frame arrangement you can think of —following the
same precepts you just learned.

Chapter 11 + Scripting Frames and Multiple Windows |25

Frame Scripting Tips

One of the first mistakes that frame scripting newcomers make is writing immediate script
statements that call upon other frames while the pages load. The problem here is that you
cannot rely on the document loading sequence to follow the frameset source code order. All
you know for sure is that the parent document begins loading first. Regardless of the order of
<frame> tags, child frames can begin loading at any time. Moreover, a frame’s loading time
depends on other elements in the document, such as images or Java applets.

Fortunately, you can use a certain technique to initiate a script once all of the documents in
the frameset are completely loaded. Just as the onload event handler for a document fires
when that document is fully loaded, a parent’s onload event handler fires after the onload
event handler in its child frames is fired. Therefore, you can specify an onload event handler
in the <frameset> tag. That handler might invoke a function in the framesetting document
that then has the freedom to tap the objects, functions, or variables of all frames throughout
the object hierarchy.

Make special note that a reference to a frame as a type of window object is quite separate
from a reference to the frame element object. An element object is one of those DOM element
nodes in the document node tree (see Chapter 4). The properties and methods of this node
differ from the properties and methods that accrue to a window-type object. It may be a diffi-
cult distinction to grasp, but it’s an important one. The way you reference a frame —as a win-
dow object or element node — determines which set of properties and methods are available
to your scripts. See Chapter 15 for a more detailed introduction to element node scripting.

If you start with a reference to the frame element object, you can still reach a reference to the
document object loaded into that frame. But the syntax is different depending on the browser.
IE4+ and Safari let you use the same document reference as for a window; Mozilla-based
browsers follow the W3C DOM standard more closely, using the contentDocument property
of the frame element. To accommodate both syntaxes you can build a reference as follows:

var docObj;
var frameObj = document.getElementById("myFrame");
if (frameObj.contentDocument) {
docObj = frameObj.contentDocument;
} else {
docObj = frameObj.document;
}

About iframe Elements

The iframe element is supported as a scriptable object in IE4+, Mozilla-based browsers, and
Safari (among other modern browsers). It is often used as a way to fetch and load HTML or
XML from a server without disturbing the current HTML page. Therefore it’s not uncommon
for an iframe to be hidden from view, while scripts handle all of the processing between it
and the main document.

An iframe element becomes another member of the current window’s frames collection.
But you may also reference the iframe as an element object through W3C DOM document.
getElementById() terminology. As with the distinction between the traditional frame-as-
window object and DOM element object, a script reference to the document object within an
iframe element object needs special handling. See Chapter 16 for additional details.

126

Part Il 4+ JavaScript Tutorial

Controlling Multiple Frames — Navigation Bars

If you are enamored of frames as a way to help organize a complex Web page, you may find
yourself wanting to control the navigation of one or more frames from a static navigation
panel. Here, I demonstrate scripting concepts for such control using an application called
Decision Helper (which you can find in Chapter 55 on the CD-ROM). The application consists
of three frames (see Figure 11-3). The top-left frame is one image that has four graphical but-
tons in it. The goal is to turn that image into a client-side image map and script it so the pages
change in the right-hand and bottom frames. In the upper-right frame, the script loads an
entirely different document along the sequence of five different documents that go in there. In

the bottom frame, the script navigates to one of five anchors to display the segment of

instructions that applies to the document loaded in the upper-right frame.

Listing 11-1 shows a slightly modified version of the actual file for the Decision Helper appli-
cation’s navigation frame. The listing contains a couple of new objects and concepts not yet
covered in this tutorial. But as you will see, they are extensions to what you already know
about JavaScript and objects. To help simplify the discussion here, I remove the scripting and
HTML for the top and bottom button of the area map. In addition, I cover only the two naviga-
tion arrows.

2 Dacision Helper - Microsoft Internet Explorer

File Edit ‘View Favoeites Tools Help

Q.0 B B & P & @ € 3 S B8

Bark i Stop Refresh Home | Seach Favarkes Media Hstoy | Mal Print Edr
Buying a FAX machine
Results Ranking
Fax-O-Matic 1000 472 | mmmm
InkyFax 300 BE6 | —
LaryFaxLX 72 | oo
Loose Cannon M-200 724 =

0

|i%

Step 5: Viewing Results

Resulls are calculated based on the various weights and rankings you entered in previous screens, The specific numbers are not
particularly important: their relative positions, however, are whal you're looking for. The highest number represents the alternative rating
the highest based on your input. Values are shown 10 four decimal places in case of close races.

Unforfunately, this results screen cannot be printed or saved. |fyou want to preserve this information fake a screen shot using your
operating system’s screen capture utility (2.0, Windows 95 Press PrSc; Mac0S: Press Crd-Shif-3).

Review This Declsion || Start 2 Mew Decision,.

eb_‘] Done 84 Local imtranst
—

£

Figure 11-3: The Decision Helper screen.

Chapter 11 4 Scripting Frames and Multiple Windows |27/

Listing 11-1: A Graphical Navigation Bar

<htm1>
<head>
<title>Navigation Bar</title>
{script type="text/javascript">
<l-- start
function goNext() {
var currOffset = parselnt(parent.currTitle);
if (currOffset < 5) {
currOffset += 1;
parent.entryForms.location.href = "dh" + currOffset + ".htm";
parent.instructions.location.hash = "help" + currOffset;
} else |
alert("This is the Tast form.");
}
}
function goPrev() {
var currOffset = parselnt(parent.currTitle);
if (currOffset > 1) {
currOffset -= 1;
parent.entryForms.location.href = "dh" + currOffset + ".htm";
parent.instructions.location.hash = "help" + currOffset;
} else |
alert("This is the first form.");
}
}
// end -->
</script>
</head>
<body bgColor="white">
<map name="navigation">
<area shape="rect" coords="25,80,66,116" href="javascript:goNext()">
<area shape="rect" coords="24,125,67,161" href="javascript:goPrev()">
</map>

</body>
</htm1>

Look first at the HTML section for the Body portion. Almost everything there is standard stuff
for defining client-side image maps. The coordinates define rectangles around each of the
arrows in the larger image. The href attributes for the two areas point to JavaScript functions
defined in the Head portion of the document (the javascript: pseudo-URL is covered in the
next chapter).

In the frameset that defines the Decision Helper application, names are assigned to each
frame. The upper-right frame is called entryForms; the bottom frame is called
instructions.

128

Part Il 4+ JavaScript Tutorial

Knowing that navigation from page to page in the upper-right frame requires knowledge of
which page is currently loaded there, [build some other scripting into both the parent docu-
ment and each of the documents that loads into that frame. A global variable called
currTitle is defined in the parent document. Its value is an integer indicating which page of
the sequence (1 through 5) is currently loaded. An onload event handler in each of the five
documents (named dh1l.htm, dh2.htm, dh3.htm, dh4.htm, and dh5.htm) assigns its page
number to that parent global variable. This arrangement allows all frames in the frameset to
share that value easily.

When a user clicks the right-facing arrow to move to the next page, the goNext () function is
called. The first statement gets the currTit]le value from the parent window and assigns it to
alocal variable: currOffset. An if...else construction tests whether the current page
number is less than five. If so, the add-by-value operator adds one to the local variable so |
can use that value in the next two statements.

In those next two statements, I adjust the content of the two right frames. Using the parent
reference to gain access to both frames, [set the 1Tocation.href property of the top-right
frame to the name of the file next in line (by concatenating the number with the surrounding
parts of the filename). The second statement sets the 1ocation.hash property (which con-
trols the anchor being navigated to) to the corresponding anchor in the instructions frame
(anchor names helpl, help?2, help3, help4, and helpb).

A click of the left-facing arrow reverses the process, subtracting 1 from the current page num-
ber (using the subtract-by-value operator) and changing the same frames accordingly.

The example shown in Listing 11-1 is one of many ways to script a navigation frame in
JavaScript. Whatever methodology you use, much interaction occurs among the frames in the
frameset.

References for Multiple Windows

In Chapter 8, you saw how to create a new window and communicate with it by way of the
window object reference returned from the window.open () method. In this section, [show
you how one of those subwindows can communicate with objects, functions, and variables in
the window or frame that creates the subwindow.

Every window object has a property called opener. This property contains a reference to the
window or frame that held the script whose window.open() statement generated the subwin-
dow. For the main browser window and frames therein, this value is nul 1. Because the
opener property is a valid window reference, you can use it to begin the reference to items in
the original window — just like a script in a child frame uses parent to access items in the
parent document. The parent-child terminology doesn’t apply to subwindows, however.

Listings 11-2 and 11-3 contain documents that work together in separate windows. Listing
11-2 displays a button that opens a smaller window and loads Listing 11-3 into it. The main
window document also contains a text field that gets filled in when you enter text into a cor-
responding field in the subwindow.

In the main window document, the newWindow () function generates the new window.
Because no other statements in the document require the reference to the new window just
opened, the statement does not assign its returned value to any variable. This is an accept-
able practice in JavaScript if you don’t need the returned value of a function or method.

Chapter 11 4 Scripting Frames and Multiple Windows

Listing 11-2: A Main Window Document

<html>

<head>

<title>Main Document</title>

{script type="text/javascript">

function newWindow() {
window.open("subwind.htm","sub","height=200,width=200");

}

{/script>

</head>

<body>

<form>

<input type="button" value="New Window" onclick="newWindow()">

Text incoming from subwindow:

{input type="text" name="entry">

</form>

</body>

</html>

All of the action in the subwindow document comes in the onchange event handler of the text
field. It assigns the subwindow field’s own value to the value of the field in the opener win-
dow’s document. Remember that the contents of each window and frame belong to a docu-
ment. So even after your reference targets a specific window or frame, the reference must
continue helping the browser find the ultimate destination, which is generally some element
of the document.

Listing 11-3: A Subwindow Document

<html>

<head>

<title>A SubDocument</title>

</head>

<body>

{form onsubmit="return false">

Enter text to be copied to the main window:
<input type="text"
onchange="opener.document.forms[0].entry.value = this.value">
</form>

</body>

</html>

Just one more lesson to go before I let you explore all the details elsewhere in the book. [use
the final tutorial chapter to show you some fun things you can do with your Web pages, such
as changing images when the user rolls the mouse atop a picture.

129

130

Part Il 4+ JavaScript Tutorial

Exercises

Before answering the first three questions, study the structure of the following frameset for a
Web site that lists college courses:

{frameset rows="85%,15%">
{frameset cols="20%,80%">
<{frame name="mechanics" src="historyl0OIM.html">
<frame name="description" src="historyl01D.html">
</frameset>
{frameset cols="100%">
{frame name="navigation" src="navigator.html">
{/frameset>
</frameset>
</html>

1. Each document that loads into the description frame has an onload event handler in
its <body> tag that stores a course identifier in the framesetting document’s global
variable called currCourse. Write the onload event handler that sets this value to
"historyl01".

2. Draw a block diagram that describes the hierarchy of the windows and frames repre-
sented in the frameset definition.

3. Write the JavaScript statements located in the navigation frame that loads the file
"french201M.htm1" into the mechanics frame and the file "french201D.htm1" into
the description frame.

4. While a frameset is still loading, a JavaScript error message suddenly appears saying
that “window.document.navigation.form.selector is undefined.” What do you think is
happening in the application’s scripts, and how can you solve the problem?

5. A script in a child frame of the main window uses window.open() to generate a second
window. How can a script in the second window access the Tocation object (URL) of
the top (framesetting) window in the main browser window?

+ o+ 0+

CHAPTER

Images and
Dynamic HTML

+ 0+ o+
In This Chapter

I he previous eight lessons have been intensive, covering a lot of How to precache

ground for both programming concepts and JavaScript. Now it’s

time to apply those fundamentals to the learning of more advanced s

techniques. I cover two areas here. First, | show you how to imple- How to swap images
ment the ever-popular mouse rollover in which images swap when the for mouse rollovers
user rolls the cursor around the screen. Then I introduce you to tech-

niques for modifying a page’s content after the page has loaded. Assigning scripts as tag

attribute URLs

The Image Object Modifying Body content

dynamically
One of the objects contained by the document is the image object —
supported in all scriptable browsers since the days of NN3 and IE4. + + + +
Image object references for a document are stored in the object
model as an array belonging to the document object. You can there-
fore reference an image by array index or image name. Moreover, the
array index can be a string version of the image’s name. Thus, all of
the following are valid references to an image object:

document.images[n]
document.images["imageName"]
document.imageName

If your goal is to support scriptable images for browsers such as NN3
and NN4, you must be aware of image object limitations for those
browsers. In particular, the range of scriptable properties is limited,
although the all-important src property is accessible. Also, no
mouse-related event handlers are affiliated with the image object
(until you get to IE4+ and NN6+). If you want to make an image a
clickable item in older browsers, surround it with a link (and set

the image’s border to zero) or attach a client-side image mabp to it.
The combination of a link and image is how you make a backward-
compatible clickable image button.

Interchangeable images

The advantage of having a scriptable image object is that a script can
change the image occupying the rectangular space already occupied

by an image. In IE4+ and NN6+, the images can even change size, with
surrounding content automatically reflowing around the resized image.

132

Part Il 4+ JavaScript Tutorial

The script behind this kind of image change is simple enough. All it entails is assigning a new

URL to the image object’s src property. The size of the image on the page is governed by the

height and width attributes set in the tag as the page loads. The most common image
rollovers use the same size image for each of the rollover states.

Precaching images

Images take extra time to download from a Web server until the images are stored in the
browser’s cache. If you design your page so that an image changes in response to user action,
you usually want the same fast response that users are accustomed to in other programs.
Making the user wait seconds for an image to change can severely detract from enjoyment of
the page.

JavaScript comes to the rescue by enabling scripts to load images into the browser’s memory
cache without displaying the image, a technique called precaching images. The tactic that
works best is to preload the image into the browser’s image cache while the page initially
loads. Users are less impatient for those few extra seconds as the main page loads than wait-
ing for an image to download in response to some mouse action.

Precaching an image requires constructing an image object in memory. An image object cre-
ated in memory differs in some respects from the document image object that you create
with the tag. Memory-only objects are created by script, and you don’t see them on
the page at all. But their presence in the document code forces the browser to load the
images as the page loads. The object model provides an Image object constructor function to
create the memory type of image object as follows:

var myImage = new Image(width, height);

Parameters to the constructor function are the pixel width and height of the image. These
dimensions should match the tag’s width and height attributes. Once the image
object exists in memory, you can then assign a filename or URL to the src property of that
image object:

myImage.src = "someArt.gif";

When the browser encounters a statement assigning a URL to an image object’s src property,
the browser fetches and loads that image into the image cache. All the user sees is some
extra loading information in the status bar, as if another image were in the page. By the time
the entire page loads, all images generated in this way are tucked away in the image cache.
You can then assign your cached image’s src property or the actual image URL to the src
property of the document image created with the tag:

document.images[0].src = myImage.src;
The change to the image in the document is instantaneous.

Listing 12-1 is a simple listing for a page that has one tag and a select list that enables
you to replace the image in the document with any of four precached images (including the
original image specified for the tag). If you type this listing— as I strongly recommend — you
can obtain copies of the four image files from the companion CD-ROM in the Chapter 12 direc-
tory of listings (you must still type the HTML and code, however).

Chapter 12 + Images and Dynamic HTML

Listing 12-1: Precaching Images

<html>

<head>

<title>Image Object</title>

{script type="text/javascript">

// initialize empty array

var imagelibrary = new Array();

// pre-cache four images
imagelLibrary["imagel"] = new Image(120,90);
imagelLibrary["imagel"].src = "deskl.gif";
imagelLibrary["image2"] = new Image(120,90);
imagelLibrary["image2"].src = "desk2.gif";
imagelLibrary["image3"] = new Image(120,90);
imagelLibrary["image3"].src = "desk3.gif";
imagelLibrary["image4"] = new Image(120,90);
imageLibrary["image4"].src = "desk4.gif";

// Toad an image chosen from select list

function loadCached(1ist) ({
var img = list.options[list.selectedIndex].value;
document.thumbnail.src = imagelLibraryl[imgl.src;

}

{/script>

</head>

<body >

<h2>Image Object</h2>

<form>

<{select name="cached" onchange="ToadCached(this)">
<option value="imagel">Bands

<option value="image2">Clips

<option value="image3">Lamp

<option value="imaged4">Erasers

{/select>

</form>

</body>

</html>

As the page loads, it executes several statements immediately. These statements create an
empty array that is populated with four new memory image objects. Each image object has a
filename assigned to its src property. These images are loaded into the image cache as the
page loads. Down in the Body portion of the document, an tag stakes its turf on the
page and loads one of the images as a starting image.

A select element lists user-friendly names for the pictures while housing the names of image
objects already precached in memory. When the user makes a selection from the list, the
loadCached() function extracts the selected item’s value—which is a string index of the
image within the imagelibrary array. The src property of the chosen image object is
assigned to the src property of the visible image object on the page, and the precached
image appears instantaneously.

133

134

Part Il 4+ JavaScript Tutorial

Creating image rollovers

A favorite technique to add some pseudo-excitement to a page is to swap button images as
the user rolls the cursor atop them. The degree of change to the image is largely a matter of
taste. The effect can be subtle —a slight highlight or glow around the edge of the original
image — or drastic —a radical change of color. Whatever your approach, the scripting is the
same.

When several of these graphical buttons occur in a group, I tend to organize the memory
image objects as arrays and create naming and numbering schemes that facilitate working
with the arrays. Listing 12-2 shows such an arrangement for four buttons that control a juke-
box. The code in the listing is confined to the image-swapping portion of the application. This
is the most complex and lengthiest listing of the tutorial, so it requires a bit of explanation as
it goes along.

Listing 12-2: Image Rollovers

<html>

<head>

<title>Jukebox/Image Rollovers</title>
<script type="text/javascript">

Only browsers capable of handling image objects should execute statements that precache
images. Therefore, the entire sequence is nested inside an i f construction that tests for the
presence of the document.images array. In older browsers, the condition evaluates to “unde-
fined,” which an i f condition treats as false.

if (document.images) f{

Image precaching starts by building two arrays of image objects. One array stores informa-
tion about the images depicting the graphical button’s “off” position; the other is for images
depicting their “on” position. These arrays use strings (instead of integers) as index values.
The string names correspond to the names given to the visible image objects whose tags
come later in the source code. The code is clearer to read (for example, you know that the
of fImgArray["play"] entry has to do with the Play button image). Also, as you see later in
this listing, rollover images don’t conflict with other visible images on the page (a possibility
if you rely exclusively on numeric index values when referring to the visible images for the
swapping).

After creating the array and assigning new blank image objects to the first four elements of
the array, I go through the array again, this time assigning file pathnames to the src property
of each object stored in the array. These lines of code execute as the page loads, forcing the
images to load into the image cache along the way.

// precache all 'off' button images

var offImgArray = new Array();
offImgArray["play"] = new Image(75,33);
of fImgArray["stop"] = new Image(75,33);
offImgArray["pause"] = new Image(75,33);
of fImgArray["rewind"] = new Image(86,33);

Chapter 12 + Images and Dynamic HTML

// off image array -- set 'off' image path for each button
offImgArray["play"]l.src = "images/playoff.jpg";
offImgArray["stop"].src = "images/stopoff.jpg";
offImgArray["pause"].src = "images/pauseoff.jpg";

of fImgArray["rewind"J.src = "images/rewindoff.jpg";

// precache all 'on' button images

var onImgArray = new Array();
onImgArray["play"] = new Image(75,33);
onlmgArray["stop"] = new Image(75,33);
onImgArray["pause"] = new Image(75,33);
onImgArray["rewind"] = new Image(86,33);

// on image array -- set 'on' image path for each button
onlmgArray["play"].src = "images/playon.jpg";
onImgArray["stop"].src = "images/stopon.jpg";
onlmgArray["pause"].src = "images/pauseon.jpg";
onlmgArray["rewind"].src = "images/rewindon.jpg";

}

As you can see in the following HTML, when the user rolls the mouse atop any of the visible
document image objects, the onmouseover event handler (from the link object surrounding
the image in the document) invokes the imageOn () function, passing the name of the particu-
lar image. The imageOn () function uses that name to synchronize the document.images
array entry (the visible image) with the entry of the in-memory array of “on” images from the
onImgArray array. The src property of the array entry is assigned to the corresponding doc-
ument image src property.

// functions that swap images & status bar
function imageOn(imgName) A{
if (document.images) {
document.images[imgName].src = onImgArray[imgName].src;
}

}

The same goes for the onmouseout event handler, which needs to turn the image off by invok-
ing the imageO0ff () function with the same index value.

function imageOff(imgName) {
if (document.images) {
document.images[imgName].src = offImgArray[imgName].src;
}

}

Both the onmouseover and onmouseout event handlers set the status bar to prevent the ugly
javascript: URL (described later) from appearing there as the user rolls the mouse atop
the image. The onmouseout event handler sets the status bar message to an empty string.

function setMsg(msg) {
window.status = msg;
return true;

}

For this demonstration, I disable the functions that control the jukebox. But I leave the empty
function definitions here so they catch the calls made by the clicks of the links associated
with the images.

135

136

A ote
g

] in one unbroken line; or insert a carriage return before any event handler name.

Part

Il + JavaScript Tutorial

// controller functions (disabled)
function playIt() {

}

function stoplt() {

}

function pauselt(){

}

function rewindIt() {
}

</script>

</head>

<body>

<center>

<form>

Jukebox Controls

I surround each image in the document with a link because the link object has the event han-
dlers needed to respond to the mouse rolling over the area for compatibility back to NN3.
Each link’s onmouseover event handler calls the imageOn () function, passing the name of the
image object to be swapped. Because both the onmouseover and onmouseout event handlers
require a return true statement to work in older browsers, I combine the second function
call (to setMsg()) with the return true requirement. The setMsg() function always
returns true and is combined with the return keyword before the call to the setMsg() func-
tion. It’s just a trick to reduce the amount of code in these event handlers.

If you are typing this listing to try it out, be sure to keep each entire <a> tag and its attributes

<a href="javascript:playIt()"
onmouseover="imageOn('play"'); return setMsg('Play the selected tune')"
onmouseout="imageOff('play'); return setMsg('')">

<a href="javascript:stoplt()"
onmouseover="imageOn('stop'); return setMsg('Stop the playing tune')"
onmouseout="1image0ff("'stop"'); return setMsg('')">

<a href="javascript:pauselt()"
onmouseover="imageOn('pause'); return setMsg('Pause the playing tune')"
onmouseout="imageOff('pause'); return setMsg('"')">

<a href="javascript:rewindIt()"
onmouseover="imageOn('rewind'); return setMsg('Rewind back to the
beginning')"
onmouseout="image0ff('rewind'); return setMsg('')">

</form>
<{/center>
</body>
</html>

Chapter 12 + Images and Dynamic HTML | 37/

You can see the results of this lengthy script in Figure 12-1. As the user rolls the mouse atop
one of the images, it changes from a light to dark color by swapping the entire image. You can
access the image files on the CD-ROM, and I encourage you to enter this lengthy listing and
see the magic for yourself.

il |Pause the playing lune ERr R R

Figure 12-1: Typical mouse rollover image swapping.

The javascript: Pseudo-URL

You have seen several instances in this and previous chapters of applying what is called the

javascript: pseudo-URL to href attributes of <a> and <area> tags. This technique should
be used sparingly at best, especially for public Web sites that may be accessed by users with
non-scriptable browsers (for whom the links will be inactive).

The technique was implemented to supplement the onc11ick event handler of objects that act
as hyperlinks. Especially in the early scripting days, when elements such as images had no
event handlers of their own, hyperlinked elements surrounding those inactive elements
allowed users to appear to interact directly with elements such as images. When the intended
action was to invoke a script function (rather than navigate to another URL, as is usually the
case with a hyperlink), the language designers invented the javascript: protocol for use in
assignments to the href attributes of hyperlink elements (instead of leaving the required
attribute empty).

When a scriptable browser encounters an href attribute pointing toa javascript: pseudo-
URL, the browser executes the script content after the colon when the user clicks on the ele-
ment. For example, near the end of Listing 12-2, all four <a> tags point to javascript:
pseudo-URLs that invoke script functions on the page, such as

Be aware that unless you override the status bar text with mouse event handlers (as shown
in Listing 12-2), the pseudo-URL appears in the status bar for the user to see (and perhaps be
frightened). More importantly, however, remember that this URL is to be used only for assign-
ment to href attributes. Do not use it with event handlers.

Popular Dynamic HTML Techniques

Because today’s scriptable browsers uniformly permit scripts to access each element of the
document and automatically reflow the page’s content when anything changes, a much

138

Part Il 4+ JavaScript Tutorial

higher degree of dynamism is possible in your applications. Dynamic HTML is a very deep
subject, with lots of browser-specific peculiarities. In this final section of the tutorial, you
will learn techniques that work in all W3C DOM-compatible browsers. I'll focus on two of the
most common tasks for which DHTML is used: changing element styles and modifying Body
content.

Changing stylesheet settings

Each element that renders on the page (and even some that don’t) has a property called
style. This property provides script access to all Cascading Style Sheet (CSS) properties
supported for that element by the current browser. Property values are the same as those
used for CSS specifications — frequently a different syntax than similar settings that used to
be made by HTML tag attributes. For example, if you wish to set the text color of a quote ele-
ment whose ID is FranklinQuote, the syntax is

document.getElementById("FranklinQuote").style.color = "rgb(255, 255, 0)";

Because the CSS color property accepts other ways of specifying colors (such as the tradi-
tional hexadecimal triplet—#ff ff00), you may use those as well.

Some CSS property names, however, do not conform to JavaScript naming conventions.
Several CSS property names contain hyphens. When that occurs, the scripted equivalent of
the property compresses the words together and capitalizes the start of each word. For
example, the CSS property font-weight would be set in script as follows:

document.getElementById("highlight").style.fontWeight = "bold";

A related technique puts more of the design burden on the CSS code. For example, if you
define CSS rules for two different classes, you can simply switch the class definition being
applied to the element by way of the element object’s c1assName property. For example, let’s
say you define two CSS class definitions with different background colors:

.normal {background-color: {ffffff}
.highlighted {background-color: #ff0000)}

In the HTML page, the element first receives its default class assignment as follows:
<p id="news" class="normal">...</p>

A script statement can then change the class of that element object so that the highlighted
style applies to it:

document.getElementById("news").className = "highlighted";

Restoring the original class name also restores its look and feel. This approach is also a quick
way to change multiple style properties of an element with a single statement.

Dynamic content via W3C DOM nodes

In Chapter 8 you met the document.createElement() and document.createTextNode()
methods. These methods create new DOM objects out of thin air, which you may then modify
by setting properties (attributes) prior to plugging the new stuff into the document tree for
all to see.

As an introduction to this technique, I'll demonstrate the steps you would go through to
add an element and its text to a placeholding span element on the page. In this example, a

Chapter 12 + Images and Dynamic HTML

paragraph element belonging to a class called centered will be appended to a span whose ID
is placeholder. Some of the text for the content of the paragraph comes from a text field in a
form (the visitor’s first name). Here is the complete sequence:

var newElem = document.createElement("p");
newElem.className = "centered";
var newText = document.createTextNode("Thanks for visiting, " +

document.forms[0].firstName.value);
// insert text node into new paragraph
newElem.appendChild(newText);
// insert completed paragraph into placeholder
document.getElementById("placeholder").appendChild(newElem);

The W3C DOM approach takes a lot of tiny steps to create, assemble, and insert the pieces
into their destinations. After creating the element and text nodes, the text node must be
inserted into the element node. Because the new element node is empty when it is created,
the DOM appendChild() method plugs the text node into the element (between its start and
end tags, if you could see the tags). With the paragraph element assembled, it then gets
inserted at the end of the initially empty span element. Additional W3C DOM methods
(described in Chapters 15 and 16) provide more ways to insert, remove, and replace nodes.

Dynamic content via the innerHTML property

Prior to the W3C DOM specification, Microsoft invented a property of all element objects:
innerHTML. This property first appeared in IE4, and became popular due to its practicality.
The property’s value is a string containing HTML tags and other content, just as it would
appear in an HTML document inside the current element’s tags. Even though the W3C DOM
working group did not implement this property for the published standard, the property
proved to be too practical and popular for modern browser makers to ignore. You can find it
implemented as a de facto standard in Mozilla-based browsers and Safari, among others.

To show you the difference in the approach, the following code example shows the same con-
tent creation and insertion as shown in the previous W3C DOM section, but this time with the
innerHTML property:

// accumulate HTML as a string

var newHTML = "<p class='centered'>Thanks for visiting,
newHTML += document.forms[0].firstName.value;

newHTML += "</p>";

// blast into placeholder element's content
document.getElementById("placeholder").innerHTML = newHTML;

While the innerHTML version seems more straightforward — and it makes it easier for HTML
coders to visualize what’s being added — the more code-intensive DOM node approach is
more efficient when the Body modification task entails lots of content. Extensive string con-
catenation operations can slow down browser script processing. Sometimes the shortest
script is not necessarily the fastest.

And so ends the final lesson of the JavaScript Bible, Fifth Edition tutorial. If you have gone
through every lesson and tried your hand at the exercises, you are now ready to dive into the
rest of the book to learn the fine details and many more features of both the document object
model and the JavaScript language. You can work sequentially through the chapters of Parts
Il and IV, but before too long, you should also take a peek at Chapter 45 on the CD-ROM to
learn some debugging techniques that help the learning process.

139

140

Part Il 4+ JavaScript Tutorial

Exercises

1

. Explain the difference between a document image object and the memory type of image

object.

. Write the JavaScript statements needed to precache an image file named jane. jpg that

later will be used to replace the document image defined by the following HTML:

<img name="people" src="john.jpg" height="120" width="100"
alt="people">

. With the help of the code you wrote for question 2, write the JavaScript statement that

replaces the document image with the memory image.

. Backward-compatible document image objects do not have event handlers for mouse

events. How do you trigger scripts needed to swap images for mouse rollovers?

. Assume that a table element contains an empty table cell (td) element whose ID is

forwardLink. Using W3C DOM node creation techniques, write the sequence of script
statements that create and insert the following hyperlink into the table cell:

Next Page
+ + +

Document Objects
Reference

11

+ 0+ o+

In This Part

Chapter 13
JavaScript Essentials

Chapter 14
Document Object Model
Essentials

Chapter 15
Generic HTML Element
Obijects

Chapter 16
Window and Frame
Obijects

Chapter 17
Location and History
Obijects

Chapter 18
The Document and
Body Objects

Chapter 19
Link and Anchor Objects

Chapter 20
Image, Area, and
Map Objects
Chapter 21

The Form and
Related Objects

Chapter 22
Button Obijects

Chapter 23
Text-Related Form Obijects

Chapter 24
Select, Option, and
FileUpload Objects

Chapter 25
Event Objects

Chapter 26
Style Sheet and
Style Objects

+ 0+ e

CHAPTER

JavaScript
Essentials

Whenever JavaScript is discussed in the context of the Web
browser environment, it is sometimes difficult to distinguish
between JavaScript the scripting language and the objects that you
use the language to control. Even so, it’s important to separate the
language from the object model just enough to help you make impor-
tant design decisions when considering JavaScript-enhanced pages.
You may come to appreciate the separation in the future if you use
JavaScript for other object models, such as server-side programming.
All the basics of the language are identical. Only the objects differ.

This chapter elaborates on many of the fundamental subjects about
the core JavaScript language raised throughout the tutorial (Part II),
particularly as they relate to deploying scripts in a world in which
visitors to your pages may use a wide variety of browsers. Along the
way, you receive additional insights into the language itself. You can
find details about the JavaScript core language syntax in Part IV.

JavaScript Versions

The JavaScript language has its own numbering system, which is com-
pletely independent of the version numbers assigned to browsers. The
language’s creator, Netscape, historically has had the most influence
on the numbering system.

The first version, logically enough, was JavaScript 1.0. This was the
version implemented in Navigator 2 and the first release of Internet
Explorer 3. As the language evolved with succeeding browser versions,
the JavaScript version number incremented in small steps. Internet
Explorer 6 and Mozilla-based browsers support JavaScript 1.5.

Each successive generation of JavaScript employs additional language
features. For example, in JavaScript 1.0, arrays were not developed
fully, causing scripted arrays to not track the number of items in the
array. JavaScript 1.1 filled that hole by providing a constructor func-
tion for generating arrays and an inherent 1ength property for any
generated array.

+ 0+ o+
In This Chapter

How to separate the
language from the
document object model

Where scripts go in
your documents

JavaScript language
versions

Language highlights

for experienced
programmers

+ o+ o+

144

Part Il ¢ Document Objects Reference

The JavaScript version implemented in a browser is not always a good predictor of core lan-
guage features available for that browser. For example, while JavaScript 1.2 (as implemented
by Netscape in NN4) included broad support for regular expressions, not all of those features
appeared in Microsoft’s corresponding JScript implementation in [E4. By the same token,
Microsoft implemented try-catch error handling in its JScript in IE5, but Netscape didn’t
include that feature until the Mozilla-based NN6 implementation of JavaScript 1.5. Therefore,
the language version number is far less important than the browser version in determining
which language features are available for you to use.

Core Language Standard — ECMAScript

‘\I ote

Although Netscape first developed the JavaScript language, Microsoft incorporated the language
in Internet Explorer 3. Microsoft did not want to license the “Java” name from its trademark
owner (Sun Microsystems), which is why the language became known in the IE environment as
JScript. Except for some very esoteric exceptions and the pace of newly introduced features, the
two languages are essentially identical. The levels of compatibility between browser brands for a
comparable generation are remarkably high for the core language (unlike the vast disparities in
object model implementations discussed in Chapter 14).

As mentioned in Chapter 2, standards efforts have been under way to create industry-wide
recommendations for browser makers to follow (to make developers’ lives easier). The core
language was among the first components to achieve standard status. Through the European
standards body called ECMA, a formal standard for the language has been agreed to and pub-
lished. The first specification for the language, dubbed ECMAScript by the standards group,
was roughly the same as JavaScript 1.1 in Netscape Navigator 3. The standard defines how
various data types are treated, how operators work, what a particular data-specific syntax
looks like, and other language characteristics. A newer version (called version 3) adds many
enhancements to the core language (version 2 was version 1 with errata fixed). You can view
the current version of the ECMA-262 specification at http://www.ecma-international.org/.
If you are a student of programming languages, you will find the document fascinating; if you
simply want to script your pages, you will probably find the minutia mind-boggling.

Both Netscape and Microsoft have pledged to make their browsers compliant with the ECMA
standard. The vast majority of the ECMAScript standard has appeared in Navigator since
version 3 and Internet Explorer since version 4. And, as new features are added to the ECMA
standard, they tend to find their way into newer browsers as well. The latest version of
ECMAScript is version 3, which is supported in JavaScript 1.5 (Moz1) and JScript in IE6.

Version 4 of ECMAScript is currently in the works, along with comparable implementations of

et JavaScript (2.0) and JScript by The Mozilla Foundation and Microsoft, respectively.

Embedding Scripts in HTML Documents

Scriptable browsers offer several ways to include scripts or scripted elements in your HTML
documents. Not all approaches are available in all versions of every browser, but you have
sufficient flexibility starting with Navigator 3 and some versions of Internet Explorer 3. When
you consider that the vast majority of computer users are now using at least version 4
browsers, it’s safe to assume a core level of script support among Web users. Exceptions to
this rule include users who have specifically turned off scripting in their browsers, some
organizations that install browsers with scripting turned off, and users with physical disabili-
ties who require specialized browsers.

Chapter 13 + JavaScript Essentials 145

<script> tags

The simplest and most compatible way to include script statements in an HTML document is
insidea <script>. . .</script)> tag set that specifies the scripting language via the type
attribute. You can have any number of such tag sets in your document. For example, you can
define some functions in the Head section to be called by event handlers in HTML tags within
the Body section. Another tag set can reside within the Body to write part of the content of
the page as the page loads. Place only script statements and comments between the start and
end tags of the tag set. Do not place any HTML tags inside unless they are part of a string
parameter to a document.write() statement that creates content for the page.

Every opening <script> tag should specify the type attribute. Because the <script> tagis a
generic tag indicating that the contained statements are to be interpreted as executable
script and not renderable HTML, the tag is designed to accommodate any scripting language
the browser knows.

Specifying the language version

Browsers starting with IE5 and Mozl support the type attribute of the <script> tag. This
attribute accepts the type of a script as a MIME type. For example, the MIME type of
JavaScript is specified as type="text/javascript".So, a <script> block for JavaScript
is coded as follows:

{script type="text/javascript">...</script>

The type attribute is required for the <script> tag as of HTML 4. Earlier versions of HTML,
and therefore earlier browsers, recognize the 1anguage="JdavaScript" attribute setting as
opposed to type. The Tanguage attribute allows the scripter to write for a specific minimum
version of JavaScript or, in the case of Internet Explorer, other languages such as VBScript.
For example, the JavaScript interpreter built into Navigator 3 knows the JavaScript 1.1 ver-
sion of the language; Navigator 4 and Internet Explorer 4 include the JavaScript 1.2 version.
For versions beyond the original JavaScript, you may specify the language version by append-
ing the version number after the language name without any spaces, as in

{script Tlanguage="JavaScriptl.1">...<{/script>

{script Tlanguage="JavaScriptl.2">...<{/script>

It’s important to note that the 1anguage attribute was deprecated in HTML 4, with the type
attribute being the recommended way of specifying the scripting language for <script> tags.
However, only IE5+ and W3C DOM-compatible browsers recognize this attribute, and JavaScript
versions are not taken into account with this methodology. To be both backward compatible
and forward looking, you can specify both the Tanguage and type attributes in your <script>
tags because older browsers ignore the type attribute. Following is an example of how you
might do this:

<script type="text/javascript" language="JavaScript 1.2">...<{/script>

<script for> tags

IE4+ browsers offer a variation on the <script> tag that binds a <script> tag’s statements
to a specific object and event generated by that object. In addition to the language specifica-
tion, the tag’s attributes must include for and event attributes (not part of the HTML 4.0
specification). The value assigned to the for attribute is a reference to the desired object.
Most often, this is simply the identifier assigned to the object’s id attribute (IE4+ enables you
to reference an object by either document.all.objectID or just objectID). The event
attribute is the event handler name that you wish the script to respond to. For example, if

146

Part Il ¢ Document Objects Reference

you design a script to perform some action upon a mousedown event in a paragraph whose ID
is myParagraph, the script statements are enclosed in the following tag set:

<script for="myParagraph" event="onmousedown" type="text/javascript">

%)écript>

Statements inside the tag set execute only upon the firing of the event. No function definitions
are required.

This way of binding an object’s event to a script means that there is no event handler defined
in the element’s tag. Therefore, it guarantees that only IE4 or later can carry out the script
when the event occurs. But the tag and attributes contain a lot of source code overhead for
each object’s script, so this is not a technique that you should use for script statements that
need to be called by multiple objects.

Also be aware that you cannot use this tag variation if non-IE or pre-IE4 browsers load the
page. In such browsers, script statements execute as the page loads, which certainly causes
script errors.

Hiding script statements from older browsers

The number of people using old Web browsers that don’t support scripting languages has
diminished considerably in the past few years. However, new devices, such as mobile phones
and pocket-sized computers, often employ compact browsers that don’t have built-in
JavaScript interpreters.

Nonscriptable browsers do not know about the <script> tag. Normally, browsers ignore tags
they don’t understand. That’s fine when a tag is just one line of HTML, but a <script> tag
sets off any number of script statement lines in a document. Old and compact browsers don’t
know to expect a closing </script> tag. Therefore, their natural inclination is to render any
lines they encounter after the opening <script> tag. Unfortunately, this places script code
squarely in the document — surely to confuse anyone who sees such gibberish on the page.

You can, however, exercise a technique that tricks most nonscriptable browsers into ignor-
ing the script statements: surround the script statements —inside the <script> tag set —
with HTML comment markers. An HTML comment begins with the sequence <! -- and ends
with - ->. Therefore, you should embed these comment sequences in your scripts according
to the following format:

{script type="text/javascript">
<h--

script statements here

/11-=>

</script>

JavaScript interpreters know to ignore a line that begins with the HTML beginning comment
sequence, but they need a little help with the ending sequence. The close of the HTML com-
ment starts with a JavaScript comment sequence (//). This tells JavaScript to ignore the line;
but a nonscriptable browser sees the ending HTML symbols and begins rendering the page
with the next HTML tag or other text in the document. An older browser doesn’t know what
the </script> tagis, so the tag is ignored and rendering begins after that.

If you design your pages for public access, it’s still a good idea to include these HTML com-
ment lines in all your <script> tag sets. Make sure they go inside the tags, not outside. Also
note that most of the script examples in this book do not include these comments for the
sake of saving space in the listings.

Chapter 13 4 JavaScript Essentials |47/

Hiding scripts entirely?
It may be misleading to say that this HTML comment technique “hides” scripts from older
browsers. In truth, the comments hide the scripts from being rendered by the browsers. The

tags and script statements, however, are still downloaded to the browser and appear in the
source code when viewed by the user.

A common wish among authors is to truly hide scripts from visitors to a page. Client-side
JavaScript must be downloaded with the page and is, therefore, visible in the source view of
pages. There are, of course, some tricks you can implement that may disguise client-side
scripts from prying eyes. The most easily implemented technique is to let the downloaded
page contain no visible elements, only scripts that assemble the page that the visitor sees.
Source code for such a page is simply the HTML for the page. But that page is not interactive
because no scripting is attached unless it is written as part of the page — defeating the goal
of hiding scripts. Any scripted solution for disguising scripts is immediately defeatable by
the user turning off scripting temporarily before downloading the page. All of your code is
ready for source view.

If you are worried about other scripters “stealing” your scripts, your best protection is to
include a copyright notification in your page’s source code. Not only are your scripts visible
to the world, but so, too, are a thief’s scripts. This way you can easily see when someone lifts
your scripts verbatim.

ﬁ\lote One other option for minimizing other people “borrowing” your JavaScript code is to use
~ a JavaScript obfuscator, which is a special application that scrambles your code and
mabkes it much harder to read and understand. The code still works fine but it is very hard
to modify in any way. You would use an obfuscator just before placing your code online,
making sure to keep the original version for making changes. One JavaScript obfuscator
that has been available for several years is a shareware program called JavaScript

Scrambler (http://www.quadhead.de/).

Script libraries (s files)

If you do a lot of scripting or script a lot of pages for a complex Web application, you will cer-
tainly develop some functions and techniques that you can use for several pages. Rather than
duplicate the code in all of those pages (and go through the nightmare of making changes to
all copies for new features or bug fixes), you can create reusable script library files and link
them to your pages.

Such an external script file contains nothing but JavaScript code—no <script> tags, no
HTML. The script file you create must be a text-only file, but its filename must end with the
two-character extension . js. To instruct the browser to load the external file at a particular
point in your regular HTML file, you add an src attribute to the <script> tag as follows:

{script type="text/javascript" src="hotscript.js"></script>

This kind of tag should go at the top of the document so it loads before any other in-document
<script> tags load. If you load more than one external library, include a series of these tag sets
at the top of the document.

Take notice of two features about this external script tag construction. First, the <script>
<{/script> tag pair is required, even though nothing appears between them. You can mix
{script> tag sets that specify external libraries with in-document scripts in the same docu-
ment. Second, avoid putting other script statements between the start and end tags when the
start tag contains an src attribute.

148

Part

Il + Document Objects Reference

How you reference the source file in the src attribute depends on its physical location and
your HTML coding style. In the preceding example, the . js file is assumed to reside in the
same directory as the HTML file containing the tag. But if you want to refer to an absolute
URL, the protocol for the file is http:// (just like with an HTML file):

{script type="text/javascript" src="http://www.cool.com/hotscript.js"></script>

A very important prerequisite for using script libraries with your documents is that your
Web server software must know how to map files with the . js extension to a MIME type of
application/x-javascript.If you plan to deploy JavaScript in this manner, be sure to
test a sample on your Web server beforehand and arrange for any necessary server config-
uration adjustments.

When a user views the source of a page that links in an external script library, code from the
. js file does not appear in the window even though the browser treats the loaded script as
part of the current document. However, the name or URL of the . js file is plainly visible (dis-
played exactly as it appears in your source code). Anyone can then turn off JavaScript in the
browser and open that file (using the http:// protocol) to view the . js file’s source code. In
other words, an external JavaScript source file is no more hidden from view than JavaScript
embedded directly in an HTML file.

Browser Version Detection

/N ote

Without question, the biggest challenge facing many client-side scripters is how to program
an application that accommodates a wide variety of browser versions and brands, each one
of which can bring its own quirks and bugs. Happy is the intranet developer who knows for a
fact that the company has standardized its computers with a particular brand and version of
browser. But that is a rarity, especially in light of the concept of the extranet— private corporate
networks and applications that open up for access to the company’s suppliers and customers.

Having dealt with this problem since the original scripted browser (NN2) had to work along-
side a hoard of nonscriptable browsers, | have identified several paths that an application
developer can follow. Unless you decide to be autocratic about browser requirements for
using your site, you must make compromises in desired functionality or provide multiple
paths in your Web site for two or more classes of browsers. In this section, I give you several
ideas about how to approach development in a fragmented browser world.

While JavaScript support has stabilized to some degree when it comes to desktop Web
et browsers, the popularity of mobile phone and handheld Web browsers has complicated the
matter; few compact Web browsers support JavaScript as of yet.

Is JavaScript on?

Very often, the first decision an application must make is whether the client accessing the
site is JavaScript-enabled. Non-JavaScript-enabled browsers fall into two categories: a)
JavaScript-capable browsers that have JavaScript turned off in the preferences; and b)
browsers that have no built-in JavaScript interpreter.

Using the <noscript> tag

Except for some of the earliest releases of NN2, all JavaScript-capable browsers have a prefer-
ences setting to turn off JavaScript (and a separate one for Java). You should know that even

Chapter 13 4 JavaScript Essentials

though JavaScript is turned on by default in most browsers, many institutional deployments
turn it off when the browser is installed on client machines. The reasons behind this MIS
deployment decision vary from scares about Java security violations incorrectly associated
with JavaScript, valid JavaScript security concerns on some browser versions, and the fact
that some firewalls try to filter JavaScript lines from incoming HTML streams.

All JavaScript-capable browsers include a set of <noscript>. . .</noscript> tags to balance
the <script>. . .</script> tag set. If one of these browsers has JavaScript turned off, the
{script> tag is ignored but the <noscript> tag is observed. As with the <noframes> tag, you
can use the body of a <noscript> tag set to display HTML that lets users know JavaScript is
turned off, and therefore the full benefit of the page isn’t available unless they turn on JavaScript.
Listing 13-1 shows a skeletal HTML page that uses these tags.

Listing 13-1: Employing the <noscript> Tag

<html>
<head>
<title>Some Document</title>
{script type="text/javascript">
/] script statements
<{/script>
</head>

<body>
<noscript>Your browser has JavaScript turned off.

You will experience a more enjoyable time at this Web site if you
turn JavaScript on.
<hr /></noscript>

<h2>The body of your document.</h2>
</body>
</html>

You can display any standard HTML within the <noscript> tag set. An icon image is a color-
ful way to draw the user’s attention to the special advice at the top of the page. If your docu-
ment is designed to create content dynamically in one or more places in the document, you
may have to include a <noscript> tag set after more than one <script> tag set to let users
know what they’re missing. Do not include the HTML comment tags that you use in hiding
JavaScript statements from older browsers. Their presence inside the <noscript> tags pre-
vents the HTML from rendering.

Other nonscriptable browsers

At this juncture, | must point out that newcomers to scripting frequently want to know what
script to write to detect whether JavaScript is turned on. Because scripters are so ready to write
a script to work around all situations, it takes some thought to realize that a non-JavaScript
browser cannot execute such a script: If no JavaScript interpreter exists in the browser (or it is
turned off), the script is ignored. [suppose that the existence of a JavaScript-accessible method
for Java detection—the navigator.javatnabled() method —promises a parallel method for
JavaScript. But logic fails to deliver on that unspoken promise.

149

150

Part Il ¢ Document Objects Reference

Another desire is to have JavaScript substitute document content when the browser is
JavaScript-enabled. Only in [E4+ and W3C DOM-compatible browsers can a script replace
regular HTML with scripted content. If you develop content that must be backward compat-
ible with older browsers, remember that all HTML in a document appears in the browser
window, while scripted content can be additive only.

You can use this additive scripting to create unusual effects when displaying different links
and (with a caveat) body text for scriptable and nonscriptable browsers. Listing 13-2 shows a
short document that uses HTML comment symbols to trick nonscriptable browsers into dis-
playing a link to Netscape’s Web site and two lines of text. A scriptable browser takes advan-
tage of a behavior that allows only the nearest <a> tag to be associated with a closing
tag. Therefore, the Microsoft link isn’t rendered at all, but the link to my Web site is. For the
body text, the script assigns the same text color to a segment of HTML body text as the docu-
ment’s background. While the colored text is camouflaged in a scriptable browser (and some
other text written to the document), the “hidden” text remains invisible in the document.
HTML fans frown upon this kind of element spoofing, which will likely run afoul of HTML val-
idators. However, it can be fun to play with.

Listing 13-2: Rendering Different Content for Scriptable and
Nonscriptable Browsers

<html>

<head>
<title></title>

</head>

<body bgcolor="#FFFFFF">

{script type="text/javascript">
<h--
document.writeln("")
/]-->
<{/script> Where?
<hr />
{script type="text/javascript">
<h--
document.write("Howdy from the script!")
/]-->
<{/script>If you can read this, JavaScript is not available.
{script type="text/javascript">

<1--
document.write("<\/font>")
/]/-->

{/script>

Here's some stuff afterward.
</body>
</html>

Scripting for different browsers

A number of solutions exist for accommodating different client browsers because the spe-
cific compatibility need might be as simple as letting a link navigate to a scripted page for

Chapter 13 + JavaScript Essentials |5]

script-enabled browsers, as involved as setting up distinct areas of your application for dif-
ferent browser classes, or any degree in between. The first step in planning for compatibil-
ity is determining what your goals are for various visitor classes.

Establishing goals

Once you map out your application, you must then look at the implementation details to see
which browser is required for the most advanced aspect of the application. For example, if
the design calls for image swapping on mouse rollovers, that feature requires NN3+ and IE4+,
which is a relatively safe assumption these days. In implementing Dynamic HTML features,
you have potentially three different ways to implement tricks (such as movable elements or
changeable content) because the document object models require different scripting (and
sometimes HTML) for NN4, [E4+, and the W3C DOM implemented in Moz1+, IE5+, Safari, and
other recent browsers.

In an ideal scenario, you have an appreciation for the kinds of browsers that your visitors
use. For example, if you want to implement some DHTML features, but NN4 usage is only a
small and decreasing percentage of hits, you can probably get by with designing for the IE4+
and W3C DOM. Or you may wish to forget the past and design your DHTML exclusively for
W3C DOM-compatible browsers. If your Web hosting service maintains a log of visitor activity
to your site, you can study the browsers listed among the hits to see which browsers your
visitors use.

After you determine the lowest common denominator for the optimum experience, you then
must decide how gracefully you want to degrade the application for visitors whose browsers
do not meet the common denominator. For example, if you plan a page or site that requires a
W3C DOM-compatible browser for all the bells and whistles, you can provide an escape path
with content in a simple format that every browser from Lynx to I[E4 and NN4 can view. You
might even provide for users of handheld devices a third offering with limited or no script-
ability that is designed specifically for a constrained user interface.

Creating an application or site that has multiple paths for viewing the same content may
sound good at the outset, but don’t forget that maintenance chores lie ahead as the site
evolves. Will you have the time, budget, and inclination to keep all paths up to date?
Despite whatever good intentions a designer of a new Web site may have, in my experience
the likelihood that a site will be maintained properly diminishes rapidly with the complex-
ity of the maintenance task.

Implementing a branching index page

If you decide to offer two or more paths into your application or content, one place you can
start visitors down their individual paths is at the default page for your site. Numerous tech-
niques are available that can redirect visitors to the appropriate perceived starting point of
the site.

One design to avoid is placing the decision about the navigation path in the hands of the visi-
tor. Offering buttons or links that describe the browser requirements may work for users who
are HTML and browser geeks, but average consumers surfing the Web these days likely don’t
have a clue about what level of HTML their browsers support or whether they are JavaScript-
enabled. It is incumbent upon the index page designer to automate the navigation task as
much as possible.

A branching index page has almost no content. It is not the “home page” per se of the site, but
rather a gateway to the entire Web site. Its job is to redirect users to what appears to be the
home page for the site. Listing 13-3 shows what such a branching index page looks like.

152 Partlll + Document Objects Reference

Listing 13-3: A Branching Index Page

<html>

<head>
<title>GiantCo On The Web</title>
<script type="text/javascript">

<l--
window.location = "homel.html"
/]-=>

{/script>

<{meta http-equiv="REFRESH" content=
"0; URL=http://www.giantco.com/home2.html">
</head>

<body>
{center>
<img src="images/giantcolLogo.gif" height=
"60" width="120" border="0" alt="Go To GiantCo Home Page" />
<{/center>
</body>
</htm1>

Notice that the only visible content is an image surrounded by a standard link. The <body>
tag contains no background color or art. A single script statement is located in the Head. A
<{meta> tag is also in the Head to automate navigation for some users. To see how a variety of
browsers respond to this page, here are what three different classes of browser do with
Listing 13-3:

4 A JavaScript-enabled browser. Although the entire page may load momentarily (at most,
flashing the company logo for a brief moment), the browser executes the script state-
ment that loads homel.html into the window. In the meantime, the image is preloaded
into the browser’s memory cache. This image should be reused in homel.htm1 so the
download time isn’t wasted on a one-time image. If your pages require a specific browser
brand or minimum version number, this is the place to filter out browsers that don’t
meet the criteria (which may include the installation of a particular plug-in). Use the
properties of the navigator object (Chapter 38 on the CD-ROM) to write a browser sniffer
script that allows only those browsers meeting your design minimum to navigate to the
scripted home page. All other browsers fall through to the next execution possibility.

4+ A modern browser with JavaScript turned off or missing. Several modern browsers
recognize the special format of the <meta> tag as one that loads a URL into the current
window after a stated number of seconds. In Listing 13-3, that interval is zero seconds.
The <meta> tag is executed only if the browser ignores the <script> tag. Therefore, any
scriptable browser that has JavaScript turned off or any browser that knows <meta> tags
but no scripting follows the refresh command for the <meta> tag. If you utilize this tag, be
very careful to observe the tricky formatting of the content attribute value. A semicolon
and the subattribute ur1 follow the number of seconds. A complete URL for your non-
scriptable home page version is required for this subattribute. Importantly, the entire
content attribute value is inside one set of quotes.

4+ Older graphical browsers, compact PDA browsers, and Lynx. The last category
includes graphical browsers with limited capabilities, as well as intentionally stripped-
down browsers. Lynx is designed to work in a text-only VT-100 terminal screen; mobile
phones, personal digital assistants (PDAs), and handheld computers have browsers

Chapter 13 4 JavaScript Essentials |53

optimized for usage through relatively slow network connections and viewing on small
screens. Numerous other browsers are designed to provide Web accessibility for users
with disabilities through technologies such as speech synthesis and touch screens (see
http://www.w3.0rg/WAT). If such browsers do not understand the <meta> tag for
refreshing content, they land at this page with no further automatic processing. But by
creating an image that acts as a link, the user will likely click (or tap) on it to continue.
The link then leads to the nonscriptable home page. Also note that the a1t attribute for
the image is supplied. This takes care of Lynx and compact browsers (with image load-
ing off) because these browsers show the alt attribute text in lieu of the image. Users
click or tap on the text to navigate to the URL referenced in the link tag.

I have a good reason to keep the background of the branching index page plain. For those
whose browsers automatically lead them to a content-filled home page, the browser window
flashes from a set background color to the browser’s default background color before the new
home page and its background color appear. By keeping the initial content to only the com-
pany logo, less screen flashing and obvious navigation are visible to the user.

One link — alternate destinations

Another filtering technique is available directly from links. With the exceptions of NN2 and
IE3, a link can navigate to one destination via a link’s onc11ick event handler and to another
via the href attribute if the browser is not scriptable.

The trick is to include an extra return false statement in the onc11ick event handler. This
statement cancels the link action of the href attribute. For example, if a nonscriptable
browser should go to one version of a page at the click of a link and the scriptable browser
should go to another, the link tag is as follows:

<a href="nonJdSCatalog.html" onclick="location.href="JSCatalog.html"';return
false">Product Catalog

Only nonscriptable browsers, NN2, and IE3 go to the nonJSCatalog.html page; all others go
to the JSCatalog.html page.

Object detection

The final methodology for implementing browser version branching is known as object detec-
tion. The principle is simple: If an object type exists in the browser’s object model, it is safe to
execute script statements that work with that object.

Perhaps the best example of object detection is the way scripts can swap images on a page in
newer browsers without tripping up on older browsers that don’t implement images as objects.
In a typical image swap, onmouseover and onmouseout event handlers (assigned to a link sur-
rounding an image, to be backward compatible) invoke functions that change the src property
of the desired image. Each of those functions is invoked for all scriptable browsers, but you
want them to run their statements only when images can be treated as objects.

Object models that implement images always include an array of image objects belonging to
the document object. The document.images array always exists, even with a length of zero
when no images are on the page. Therefore, if you wrap the image swapping statements
inside an if construction that lets browsers pass only if the document.images array exists,
older browsers simply skip over the statements:

function imageSwap(imgName, url) {
if (document.images) {
document.images[imgName].src = url;
}

154

Part Il ¢ Document Objects Reference

Object detection works best when you know for sure how all browsers implement the object. In
the case of document . images, the implementation across browsers is identical, so it is a very
safe branching condition. That’s not always the case, and you should use this feature with care-
ful thought. For example, IE4 introduced a document object array called document.all, which
is used very frequently in building references to HTML element objects. NN4, however, did not
implement that array, but instead had a document-level array object called 1ayers, which was
not implemented in [E4. Unfortunately, many scripters used the existence of these array objects
as determinants for browser version. They set global variables signifying a minimum version of
IE4 if document.all existed and NN4 if document . Tayers existed. This is most dangerous
because there is no way of knowing if a future version of a browser may adopt the object of the
other browser brand or eliminate a language feature. For example, Opera in its native setting
supports the document.all array. But if you expect that browser to support every detail of the
IE4 browser, scripts will break left and right.

This is why I recommend object detection not for browser version sniffing but for object avail-
ability branching, as shown previously for images. Moreover, it is safest to implement object
detection only when all major browser brands (and the W3C DOM recommendation) have
adopted the object so that behavior is predictable wherever your page loads in the future.

Techniques for object detection include testing for the availability of an object’s method. A
reference to an object’s method returns a value, so such a reference can be used in a condi-
tional statement. For example, the following code fragment demonstrates how a function can
receive an argument containing the string ID of an element and convert the string to a valid
object reference for three different document object models:

function myFunc(elemID) {
var obj;
if (document.getElementById) {
obj = document.getElementByld(elemID);
} else if (document.all) {
obj = document.all(elemID);
} else if (document.layers) {
obj = document.layers[elemID];
}
if (obj) {
// statements that work on the object
}

}

With this object detection scheme, it no longer matters which browser brand, operating sys-
tem, and version supports a particular way of changing an element ID to an object reference.
Whichever of the three document object properties or method is supported by the browser
(or the first one, if the browser supports more than one), that is the property or method
used to accomplish the conversion. If the browser supports none of them, no further state-
ments execute.

If your script wants to check for the existence of an object’s property or method, you may
also have to check for the existence of the object beforehand if that object is not part of all
browers’ object models. An attempt to reference a property of a non-existent object in a con-
ditional expression generates a script error. To avoid the error, you can cascade the condi-
tional tests with the help of the && operator. The following fragment tests for the existence of
both the document.body object and the document.body.style property:

if (document.body && document.body.style) {
/] statements that work on the body's style property
}

Chapter 13 + JavaScript Essentials 155

If the test for document . body fails, JavaScript bypasses the second test.

One potential “gotcha” to using conditional expressions to test for the existence of an object’s
property is that even if the property exists but its value is zero or an empty string, the condi-
tional test reports that the property does not exist. To work around this potential problem, the
conditional expression can examine the data type of the value to ensure that the property gen-
uinely exists. A nonexistent property for an object reports a data type of undefined. Use the
typeof operator (see Chapter 32) to test for a valid property:

if (document.body && typeof document.body.scroll != "undefined") {
// statements that work on the body's scroll property
}

Object detection is the wave of the future, and I wholeheartedly recommend designing your
scripts to take advantage of it in lieu of branching on particular browser name strings and
version numbers. Scriptable features are gradually finding their way into browsers embedded
in a wide range of non-traditional computing devices. These browsers may not go by the
same names and numbering systems that we know today, yet such browsers may be able to
interpret your scripts. By testing for browser functionality, your scripts will likely require less
maintenance in the future. You can see more object detection at work in Chapters 47 and 56
on the CD-ROM.

Designing for Compatibility

Each new major release of a browser brings compatibility problems for page authors. It’s not
so much that old scripts break in the new versions (well-written scripts rarely break in new
versions with the rare exception of the jump from NN4 to the new browser engine in Mozilla).
No, the problems center on the new features that attract designers when the designers forget
to accommodate visitors who have not yet advanced to the latest and greatest browser ver-
sion or who don’t share your browser brand preference.

Catering only to the lowest common denominator can more than double your development
time due to the expanded testing matrix necessary to ensure a good working page in all operat-
ing systems and on all versions. Decide how important the scripted functionality you employ in
a page is for every user. If you want some functionality that works only in a later browser, you
may have to be a bit autocratic in defining the minimum browser for scripted access to your
page —any lesser browser gets shunted to a simpler presentation of your site’s data.

Another possibility is to make a portion of the site accessible to most, if not all, browsers, and
restrict the scripting to only the occasional enhancement that nonscriptable browser users
won’t miss. Once the application reaches a certain point in the navigation flow, the user needs a
more capable browser to get to the really good stuff. This kind of design is a carefully planned
strategy that lets the site welcome all users up to a point, but then enables the application to
shine for users of, say, W3C DOM-compatible browsers.

The ideal page is one that displays useful content on any browser, but whose scripting enhances
the experience of the page visitor — perhaps by offering more efficient site navigation or interac-
tivity with the page’s content. That is certainly a worthy goal to aspire to. But even if you can
achieve this ideal on only some pages, you will reduce the need for defining entirely separate,
difficult-to-maintain paths for browsers of varying capabilities.

Regardless of your specific browser compatibility strategy, the good news is that time tends to
minimize the problem. Web standards have solidified greatly in the past few years, and browser
vendors are finally making a more serious effort to support those standards. Furthermore,

as more of the Web community upgrades to modern browsers, the issue of supporting old
browsers becomes less and less significant. Bottom line — there is light at the end of the tunnel.

156

Part Il ¢ Document Objects Reference

Dealing with beta browsers

If you have crafted a skillfully scripted Web page or site, you may be concerned when a pre-
release (or beta) version of a browser available to the public causes script errors or other
compatibility problems to appear on your page. Do yourself a favor —don’t overreact to
bugs and errors that occur in prerelease browser versions. If your code is well written, it
should work with any new generation of browser. If the code doesn’t work correctly, con-
sider the browser to be buggy. Report the bug (preferably with a simplified test case script
sample) to the browser maker.

The exception to the “it’s a beta bug” rule arose in the transition from NN4 to the new Mozilla
engine (first released as NN6). As you learn in Chapter 14, a conscious effort to eliminate a
proprietary NN4 feature (the <1ayer> tag and corresponding scriptable object) caused many
NN4 scripts to break on Moz1 betas (and final release). Had scripters gone to report the prob-
lem to the new browsers’ developer (Mozilla), they would have learned of the policy change,
and planned for the new implementation. It is extremely rare for a browser to eliminate a pop-
ular feature so quickly, but it can happen.

It is often difficult to prevent yourself from getting caught up in browser makers’ enthusiasm
for a new release. But remember that a prerelease version is not a shipping version. Users
who visit your page with prerelease browsers should know that there may be bugs in the
browser. That your code does not work with a prerelease version is not a sin, nor is it worth
losing sleep over. Just be sure to connect with the browser’s maker either to find out if the
problem will continue in the final release or to report the bug so the problem doesn’t make it
into the release version.

The Evaluator Sr.

In Chapter 6, you were introduced to a slimmed-down version of The Evaluator Jr., which pro-
vides an interactive workbench to experiment with expression evaluation and object inspec-
tion. At this point, you should meet The Evaluator Sr., a tool you will use in many succeeding
chapters to help you learn both core JavaScript and DOM terminology.

Figure 13-1 shows the top part of the page. Two important features differentiate this full ver-
sion from the Jr. version in Chapter 6.

IE Browser Version Headaches

As described more fully in the discussion of the navigator object in Chapter 38 on the
CD-ROM,, your scripts can easily determine which browser is the one running the script. However,
the properties that reveal the version don't always tell the whole story about Internet Explorer.

As you can see in detail in Chapter 38 on the CD-ROM, the navigator.appVersion property for
IE5, 5.5, and 6 for Windows reports version 4 (the same as IE4). You can still “sniff” for versions
5 and 6 (you can find the designation MSTE 5 or MSIE6 inthe navigator.userAgent property),
but the process is not as straightforward as it could be. The best advice is to be vigilant when
new browsers come on the scene or adopt object detection techniques in your scripts.

Chapter 13 + JavaScript Essentials |57

€1 The Evaluator - Microsoft Internet Explorer BEX
File Edit View Favorites Tools Help i

€1 D - ﬁ -_h }: Search -i'ﬁmribes @ red &8 - .:f = L) E S @Y

The Evaluator

Enter an expression to evaluate { (] Tse I Code Base Secunty):
document.getElemeniByld (" rmy™"LinneHTL

Results: ([¥] Use tab delimiters)

Mow is the time for <EM id=myEMrall good men to come to the aild of their
COUNTEY.

Enter a reference to an object:

|

Mow is the tme for alf good men to come to the atd of their country.

Thus 15 a table caphon, i
sa
positioned
Quantity Description Price element
= with
-il Mode:BackCompat :i My Computer

Figure 13-1: The Evaluator Sr.

First, you can try some Netscape/Mozilla secure features if you have Code Base Principles
turned on for your browser (Chapter 46 on the CD-ROM) and you check the Use Code Base
Security checkbox (NN4+ only). Second, the page has several HTML elements preinstalled,
which you can use to explore DOM properties and methods. As with the smaller version, a set
of 26 one-letter global variables (a through z) are initialized and ready for you to assign val-
ues for extended evaluation sequences.

You should copy the file evaluator.html from the companion CD-ROM to a local hard disk
and set a bookmark for it in all of your test browsers. Feel free to add your own elements to
the bottom of the page to explore other objects. | describe a version of The Evaluator for
embedding in your projects as a debugging tool in Chapter 45 on the CD-ROM, where you can
learn more built-in functionality of The Evaluator.

Compatibility ratings in reference chapters

With the proliferation of scriptable browser versions since Navigator 2, it is important to
know up front whether a particular language or object model object, property, method, or
event handler is supported in the lowest common denominator for which you are designing.
Therefore, beginning with Chapter 15 of this reference part of the book, I include frequent
compatibility ratings, such as the following example:

Compatibility: WinlE5+, MaclE5+, NN4+, Moz1.01+, Safaril+

158

Part Il ¢ Document Objects Reference

A plus sign after a browser version number means that the language feature was first imple-
mented in the numbered version and continues to be supported in succeeding versions. A
minus sign means that the feature is not supported in that browser. The browsers tested for
compatibility include Internet Explorer for Windows and Macintosh, Netscape Navigator,
Mozilla (including all browsers based on the Mozilla engine), and Apple’s Safari. | also recom-
mend that you print the JavaScript and Browser Objects Quick Reference file shown in
Appendix A. The file is on the companion CD-ROM in Adobe Acrobat format. This quick refer-
ence clearly shows each object’s properties, methods, and event handlers, along with keys to
the browser version in which each language item is supported. You should find the printout
to be valuable as a day-to-day resource.

Language Essentials for Experienced Programmers

In this section, experienced programmers can read the highlights about the core JavaScript
language in terms that may not make complete sense to those with limited or no scripting
experience. This section is especially for you if you found the tutorial of Part Il rudimentary.
Here, then, is the quick tour of the essential issues surrounding the core JavaScript language:

4+ JavaScript is a scripting language. The language is intended for use in an existing host
environment (for example, a Web browser) that exposes objects whose properties and
behaviors are controllable via statements written in the language. Scripts execute
within the context of the host environment. The host environment controls what, if any,
external environmental objects may be addressed by language statements running in
the host environment. For security and privacy reasons, Web browsers generally afford
little or no direct access via JavaScript to browser preferences, the operating system,
or other programs beyond the scope of the browser. The exception to this rule is that
modern browsers allow deeper client access (with the user’s permission) through trust
mechanisms such as signed scripts (Netscape) or trusted ActiveX controls (Microsoft).

4 JavaScript is object-based. Although JavaScript exhibits many syntactic parallels with
the Java language, JavaScript is not as pervasively object-oriented as Java. The core lan-
guage includes several built-in static objects from which working objects are generated.
Objects are created via a call to a constructor function for any of the built-in objects plus
the new operator. For example, the following expression generates a String object and
returns a reference to that object:

new String("Hello");

Table 13-1 lists the built-in objects with which scripters come in contact.

Table 13-1: JavaScript Built-In Objects

Array! Boolean Date Error?
EvalError? Function? Math Number?
Object! RangeError? ReferenceError? RegExp?
String’ SyntaxError? TypekError? URIError?

'Although defined in ECMA Level 1, was first available in NN3 and IE3/J2.
2Defined in ECMA Level 3; implemented in Moz1.
3Defined in ECMA Level 3; implemented fully in NN4 and IE6.

Chapter 13 4 JavaScript Essentials

4 JavaScript is loosely typed. Variables, arrays, and function return values are not
defined to be of any particular data type. In fact, an initialized variable can hold differ-
ent data type values in subsequent script statements (obviously not good practice, but
possible nonetheless). Similarly, an array may contain values of multiple types. The
range of built-in data types is intentionally limited:

e Boolean (true or false)

e Null

e Number (double-precision 64-bit format IEEE 734 value)
e Object (encompassing the Array object)

e String

e Undefined

4+ The host environment defines global scope. Web browsers traditionally define a
browser window or frame to be the global context for script statements. When a doc-
ument unloads, all global variables defined by that document are destroyed.

4+ JavaScript variables have either global or local scope. A global variable in a Web
browser is typically initialized in var statements that execute as the document loads.
All statements in that document can read or write that global variable. A local variable
is initialized inside a function (also with the var operator). Only statements inside that
function may access that local variable.

4 Scripts sometimes access JavaScript static object properties and methods. Some
static objects encourage direct access to their properties or methods. For example, all
properties of the Math object act as constant values (for example, Math.PI).

4 You can add properties or methods to working objects at will. To add a property to
an object, simply assign a value of any type to it. For example, to add an author prop-
erty to a string object named myText, use:

myText.author = "Jane";
Assign a function reference to an object property to give that object a new method:

// function definition
function doSpecial(argl) {
// statements
}
// assign function reference to method name
myObj.handleSpecial = doSpecial;

// invoke method
my0Obj.handleSpecial(argValue);

Inside the function definition, the this keyword refers to the object that owns the
method.

4+ JavaScript objects employ prototype-based inheritance. All object constructors cre-
ate working objects whose properties and methods inherit the properties and methods
defined for the prototype of that object. Starting with NN3 and late versions of IE3,
scripts can add and delete custom properties and/or methods associated with the
static object’s prototype so that new working objects inherit the current state of the

159

160

Part lll 4+

<+

<+

<+

<+

+

<+

Document Objects Reference

prototype. Scripts can freely override prototype property values or assign different
functions to prototype methods in a working object if desired without affecting the
static object prototype. But if inherited properties or methods are not modified in the
current working object, any changes to the static object’s prototype are reflected in the
working object. (The mechanism is that a reference to an object’s property works its
way up the prototype inheritance chain to find a match to the property name.)

JavaScript includes a large set of operators. You can find most operators that you are
accustomed to working with in other languages.

JavaScript provides typical control structures. All versions of JavaScript offer i f,
if-else, for,and while constructions. JavaScript 1.2 (NN4+ and IE4+) added
do-while and switch constructions. Iteration constructions provide break and
continue statements to modify control structure execution.

JavaScript functions may or may not return a value. There is only one kind of
JavaScript function. A value is returned only if the function includes a return keyword
followed by the value to be returned. Return values can be of any data type.

JavaScript functions cannot be overloaded. A JavaScript function accepts zero or more
arguments, regardless of the number of parameter variables defined for the function. All
arguments are automatically assigned to the arguments array, which is a property of a
function object. Parameter variable data types are not predefined.

Values are passed “by reference” and “by value.” An object passed to a function is
actually a reference to that object, offering full read/write access to properties and meth-
ods of that object. But other types of values (including object properties) are passed by
value, with no reference chain to the original object. Thus, the following nonsense frag-
ment empties the text box when the onchange event fires:

function emptyMe(argl) {
argl.value = "";
}

{input type="text" value="Howdy" onchange="emptyMe(this)">
But in the following version, nothing happens to the text box:

function emptyMe(argl) {
argl = "";
}

<input type="text" value="Howdy" onchange="emptyMe(this.value)">
The local variable (argl) simply changes from "Howdy" to an empty string.

Error trapping techniques depend on JavaScript version. There is no error trapping
in NN2 or IE3. Error trapping in NN3, NN4, and [E4 is event-driven in the Web browser
object model. JavaScript, as implemented in IE5+ and Moz1+, Safari, and other recent
browsers, supports try-catch and throw statements, as well as built-in error objects
that are not dependent on the host environment.

Memory management is not under script control. The host environment manages
memory allocation, including garbage collection. Different browsers may handle mem-
ory in different ways.

White space (other than a line terminator) is insignificant. Space and tab characters
may separate lexical units (for example, keywords, identifiers, and so on).

Chapter 13 + JavaScript Essentials] 6]

4+ A line terminator is usually treated as a statement delimiter. Except in very rare con-
structions, JavaScript parsers automatically insert the semicolon statement delimiter
whenever they encounter one or more line terminators (for example, carriage returns
or line feeds). A semicolon delimiter is required between two statements on the same
physical line of source code. Moreover, string literals may not have carriage returns in
their source code (but an escaped newline character (\n) may be a part of the string).

Onward to Object Models

The core language is only a small part of what you work with while scripting Web pages. The
bulk of your job entails understanding the ins and outs of document object models as imple-
mented in several generations of browsers. That’s where the next chapter picks up the
“essentials” story.

+ o+ 0+

Document Object
Model Essentials

Without question, the biggest challenge facing client-side Web
scripters is the sometimes-baffling array of document object
models that have competed for our attention throughout the short his-
tory of scriptable browsers. Netscape got the ball rolling in Navigator 2
with the first object model. By the time the version 4 browsers came
around, the original object model had gained not only some useful
cross-browser features, but also a host of features that were unique to
only Navigator or Internet Explorer. The object models were diverging,
causing no end of headaches for page authors whose scripts had to
run on as many browsers as possible. A ray of hope emerged from the
standards process of the World Wide Web Consortium (W3C) in the
form of a document object model (DOM) recommendation. The DOM
brought forward much of the original object model, plus new ways of
addressing every object in a document. The goal of this chapter is to
put each of the object models into perspective and help you select the
model(s) you intend to support in your Web applications. But before
we get to those specifics, let’s examine the role of the object model in
designing scripted applications.

The Object Model Hierarchy

In the tutorial chapters of Part II, you were introduced to the funda-
mental ideas behind a document object hierarchy in scriptable
browsers. In other object-oriented environments, object hierarchy
plays a much greater role than it does in JavaScript-able browsers.
(In JavaScript, you don’t have to worry about related terms, such as
classes, inheritance, and instances.) Even so, you cannot ignore the
hierarchy concept because much of your code relies on your ability
to write references to objects that depend on their positions within
the hierarchy.

Calling these objects “JavaScript objects” is not entirely correct. These
are really browser document objects: you just happen to use the
JavaScript language to bring them to life. Some scripters of Microsoft
Internet Explorer use the VBScript language to script the very same
document objects. Technically speaking, JavaScript objects apply to
data types and other core language objects separate from the docu-
ment. The more you can keep document and core language objects
separate in your head, the more quickly you can deal with browser
brand compatibility issues.

C HIA P TYE R

+ 0+ o+
In This Chapter

Object models versus
browser versions

Proprietary model
extensions

Structure of the
W3C DOM

Mixing object models in
a single document

¢+ 4+ o+

164

Part Il ¢ Document Objects Reference

Hierarchy as road map

For the programmer, the primary role of the document object hierarchy is to provide scripts
with a way to reference a particular object among all the objects that a browser window can
contain. The hierarchy acts as a road map the script can use to know precisely which object
to address.

Consider, for a moment, a scene in which you and your friend Tony are in a high school class-
room. It’s getting hot and stuffy as the afternoon sun pours in through the wall of windows on
the west side of the room. You say to Tony, “Would you please open a window?” and motion
your head toward a particular window in the room. In programming terms, you've issued a
command to an object (whether or not Tony appreciates the comparison). This human inter-
action has many advantages over anything you can do in programming. First, by making eye
contact with Tony before you speak, he knows that he is the intended recipient of the com-
mand. Second, your body language passes along some parameters with that command, point-
ing ever so subtly to a particular window on a particular wall.

If, instead, you are in the principal’s office using the public address system, and you broad-
cast the same command, “Would you please open a window?,” no one knows what you mean.
Issuing a command without directing it to an object is a waste of time because every object
thinks, “That can’t be meant for me.” To accomplish the same goal as your one-on-one com-
mand, the broadcast command has to be something like, “Would Tony Jeffries in Room 312
please open the middle window on the west wall?”

Let’s convert this last command to JavaScript dot syntax form (see Chapter 4). Recall from the
tutorial that a reference to an object starts with the most global point of view and narrows to
the most specific point of view. From the point of view of the principal’s office, the location
hierarchy of the target object is

room312.Jeffries.Tony

You can also say that Tony’s knowledge about how to open a window is one of Tony’s meth-
ods. The complete reference to Tony and his method then becomes

room312.Jeffries.Tony.openWindow()

Your job isn’t complete yet. The method requires a parameter detailing which window to
open. In this case, the window you want is the middle window of the west wall of Room 312.
Or, from the hierarchical point of view of the principal’s office, it becomes

room312.westWall.middleWindow

This object road map is the parameter for Tony’s openWindow () method. Therefore, the
entire command that comes over the PA system is

room312.Jeffries.Tony.openWindow(room312.westWall.middleWindow)

If, instead of barking out orders while sitting in the principal’s office, you attempt the same
task via radio from an orbiting space shuttle to all the inhabitants on Earth, imagine how
laborious your object hierarchy is. The complete reference to Tony’s openWindow() method
and the window that you want opened has to be mighty long to distinguish the desired
objects from the billions of objects within the space shuttle’s view.

The point is that the smaller the scope of the object-oriented world you're programming, the
more you can assume about the location of objects. For client-side JavaScript, the scope is no
wider than the browser itself. In other words, every object that a JavaScript script can work

Chapter 14 + Document Object Model Essentials 165

with resides within the browser application. With few exceptions, a script does not access
anything about your computer hardware, operating system, other applications, desktop, or
any other stuff beyond the browser program.

The browser document object road map

Figure 14-1 shows the lowest common denominator document object hierarchy that is imple-
mented in all scriptable browsers. Notice that the window object is the topmost object in the
entire scheme. Everything you script in JavaScript is in the browser’s window.

window
frame | self top| parent

[|
| history | |document| | location |
|
[| |
| link | | form | | anchor |
[TT [TT [T |
| text | | radio | | button | | select |
| textarea | |checkbox| | reset | | option |

|password|| submit |

Figure 14-1: The lowest common denominator
browser document object hierarchy.

Pay attention to the shading of the concentric rectangles. Every object in the same shaded
area is at the same level relative to the window object. When a line from an object extends to
the next darker shaded rectangle, that object contains all the objects in darker areas. There
exists, at most, one of these lines between levels. The window object contains the document
object; the document object contains a form object; a form object contains many different
kinds of form control elements.

Study Figure 14-1 to establish a mental model for the basic scriptable elements of a Web
page. Models of more recent browsers have more objects in their hierarchies, but the fun-
damental organization remains. After you script these objects several times, the object
hierarchy will become second nature to you—even if you don’t necessarily remember
every detail (property, method, and event handler) of every object. At least you know
where to look for information.

How Document Objects Are Born

Most of the objects that a browser creates for you are established when an HTML document
loads into the browser. The same kind of HTML code you use to create links, anchors, and
input elements tells a JavaScript-enhanced browser to create those objects in memory. The
objects are there whether or not your scripts call them into action.

166

Part Il ¢ Document Objects Reference

The only visible differences to the HTML code for defining those objects are the one or more
optional attributes specifically dedicated to JavaScript. By and large, these attributes specify
the event you want the user interface element to react to and what JavaScript should do
when the user takes that action. By relying on the document’s HTML code to perform the
object generation, you can spend more time figuring out how to do things with those objects
or have them do things for you.

Bear in mind that objects are created in their load order. And if you create a multiframe envi-
ronment, a script in one frame cannot communicate with another frame’s objects until both
frames load. This trips up a lot of scripters who create multiframe and multiwindow sites
(more in Chapter 16).

Object Properties

A property generally defines a particular current setting of an object. The setting may
reflect a visible attribute of an object, such as the state of a checkbox (checked or not); it
may also contain information that is not so obvious, such as the action and method of a
submitted form.

Document objects have most of their initial properties assigned by the attribute settings of
the HTML tags that generate the objects. Thus, a property may be a word (for example, a
name) or a number (for example, a size). A property can also be an array, such as an array
of images contained by a document. If the HTML does not include all attributes, the
browser usually fills in a default value for both the attribute and the corresponding
JavaScript property.

When used in script statements, property names are case-sensitive. Therefore, if you see a
property name listed as bgColor, you must use it in a script statement with that exact
combination of lowercase and uppercase letters. But when you set an initial value of a
property by way of an HTML attribute, the attribute name (like all of HTML) is not case-
sensitive. Thus, <BODY BGCOLOR="white"> and <body bgcolor="white"> both set the
same bgColor property value. Although XHTML won'’t validate correctly if you use any-
thing but lowercase letters for tag and attribute names, most browsers continue to be
case-insensitive for markup, regardless of the HTML or XHTML version you specify for the
page’s DOCTYPE. The case for property names is not influenced by the case of the markup
attribute name.

Each property determines its own read/write status. Some properties are read-only, whereas
you can change others on the fly by assigning a new value to them. For example, to put some
new text into a text box object, you assign a string to the object’s value property:

document.forms[0].phone.value = "555-1212";

Once an object contained by the document exists (that is, its HTML is loaded into the docu-
ment), you can also add one or more custom properties to that object. This can be helpful if
you wish to associate some additional data with an object for later retrieval. To add such a
property, simply specify it in the same statement that assigns a value to it:

document.forms[0].phone.delimiter = "-";

Any property you set survives as long as the document remains loaded in the window and
scripts do not overwrite the object. Be aware, however, that reloading the page usually
destroys custom properties.

Chapter 14 + Document Object Model Essentials] 67/

A Note to Experienced Object-Oriented Programmers

Although the basic object model hierarchy appears to have a class/subclass relationship, many of
the traditional aspects of a true, object-oriented environment don't apply to the model. The orig-
inal JavaScript document object hierarchy is a containment hierarchy, not an inheritance hierar-
chy. No object inherits properties or methods of an object higher up the chain. Nor is there any
automatic message passing from object to object in any direction. Therefore, you cannot invoke
a window's method by sending a message to it via the document or a form object. All object ref-
erences must be explicit.

Predefined document objects are generated only when the HTML code containing their defini-
tions loads into the browser. You cannot modify many properties, methods, and event handlers
in early object models once you load the document into the browser. In Chapter 33, you learn
how to create your own objects, but those objects do not present new visual elements on the
page that go beyond what HTML, Java applets, and plug-ins can portray.

Inheritance does play a role, as you will see later in this chapter, in the object model defined by
the W3C. The new hierarchy is of a more general nature to accommodate requirements of XML
as well as HTML. But the containment hierarchy for HTML objects, as described in this section, is
still valid in W3C DOM-compatible browsers.

Object Methods

An object’s method is a command that a script can give to that object. Some methods return
values, but that is not a prerequisite for a method. Also, not every object has methods
defined for it. In a majority of cases, invoking a method from a script causes some action to
take place. The resulting action may be obvious (such as resizing a window) or something
more subtle (such as sorting an array in memory).

All methods have parentheses after them, and they always appear at the end of an object’s
reference. When a method accepts or requires parameters, the parameter values go inside
the parentheses (with multiple parameters separated by commas).

While an object has its methods predefined by the object model, you can also assign one or
more additional methods to an object that already exists (that is, after its HTML is loaded
into the document). To do this, a script in the document (or in another window or frame
accessible by the document) must define a JavaScript function and then assign that function
to a new property name of the object. In the following example written to take advantage of
version 4 or later browser features, the fullScreen() function invokes one window object
method and adjusts two window object properties. By assigning the function reference to the
new window.maximize property, [define a maximize() method for the window object. Thus,
a button’s event handler can call that method directly.

// define the function
function fullScreen() {
this.moveTo(0,0);
this.outerWidth = screen.availWidth;
this.outerHeight = screen.availHeight;
}
// assign the function to a custom property
window.maximize = fullScreen;

;il, invoke the custom method -->
<input type="button" value="Maximize Window" onclick="window.maximize()" />

168

Part Il ¢ Document Objects Reference

Object Event Handlers

An event handler specifies how an object reacts to an event that is triggered by a user
action (for example, a button click) or a browser action (for example, the completion of a
document load). Going back to the earliest JavaScript-enabled browser, event handlers
were defined inside HTML tags as extra attributes. They included the name of the attribute,
followed by an equal sign (working as an assignment operator) and a string containing the
script statement(s) or function(s) to execute when the event occurs (see Chapter 5). Event
handlers also have other forms. In NN3+ and IE4+, event handlers have corresponding
methods for their objects and every event handler is a property of its object.

Event handlers as methods

Consider a button object whose sole event handler is onc1ick. This means whenever the but-
ton receives a click event, the button triggers the JavaScript expression or function call
assigned to that event handler in the button’s HTML definition:

{input type="button" name="clicker" value="Click Me" onclick="doIt()" />

Normally, that click event is the result of a user physically clicking the button in the page. In
NN3+ and IE4+, you can also trigger the event handler with a script by calling the event han-
dler as if it were a method of the object:

document.formName.clicker.onclick();

Invoking an event handler this way is different from using a method to simulate the physical
action denoted by the event. For example, imagine a page containing three simple text fields.
One of those fields has an onfocus event handler defined for it. Physically tabbing to or click-
ing in that field brings focus to the field and thereby triggers its onfocus event handler. If the
field does not have focus, a button can invoke that field’s onfocus event handler by referenc-
ing it as a method:

document.formName.fieldName.onfocus();

This scripted action does not bring physical focus to the field. The field’s own focus ()
method, however, does that under script control.

A byproduct of an event handler’s capability to act like a method is that you can define the
action of an event handler by defining a function with the event handler’s name. For example,
instead of specifying an onload event handler in a document’s <body> tag, you can define a
function like this:

function onload() {
statements
}

This capability is particularly helpful if you want event handler actions confined to a script
running in NN3, IE4, or later. Your scripts don’t require special traps for Navigator 2 or
Internet Explorer 3.

Event handlers as properties

Although event handlers are commonly defined in an object’s HTML tag, you also have the
power in NN3+ and IE4+ to assign or change an event handler just like you assign or change
the property of an object. The value of an event handler property looks like a function defini-
tion. For example, given this HTML definition:

Chapter 14 + Document Object Model Essentials] 69

<input type="text" name="entry" onfocus="dolt()" />
the value of the object’s onfocus (all lowercase) property is

function onfocus() {
dolt();
}

You can, however, assign an entirely different function to an event handler by assigning a
function reference to the property. Such references don’t include the parentheses that are
part of the function’s definition. (You see this again much later in Chapter 33 when you assign
functions to object properties.)

Using the same text field definition you just looked at, you can assign a different function to
the event handler because based on user input elsewhere in the document you want the field
to behave differently when it receives the focus. If you define a function like this:

function doSomethingElse() {
statements
}

you can then assign the function to the field with this assignment statement:
document.formName.entry.onfocus = doSomethingElse;

Because the new function reference is written in JavaScript, you must observe case for the func-
tion name. Although NN4 accepts interCap versions of the event handler names, you are best
served across all browsers by sticking with all lowercase event handler names as properties.

Caution Be aware, however, that as with several settable object properties that don’t manifest them-
selves visually, any change you make to an event handler property disappears with a docu-
ment reload. Therefore, | advise you not to make such changes except as part of a script that
also invokes the event handler like a method: Any gap in time leaves room for users to
reload the page accidentally or intentionally.

If your scripts create new element objects dynamically, you can assign event handlers to
these objects by way of event handler properties. For example, the following code uses W3C
DOM syntax to create a new button input element and assign an onc1ick event handler that
invokes a function defined elsewhere in the script:

var newElem = document.createElement("input");
newElem.type = "button";

newElem.value = "Click Here";

newElem.onclick = dolt;
document.forms[0].appendChild(newElem);

Because every event handler operates as both property and method, [don'’t list these proper-
ties and methods as part of each object’s definition in the next chapters. You can be assured
this feature works for every JavaScript object that has an event handler starting with
Navigator 3 and Internet Explorer 4.

Object Model Smorgasbord

A survey of the entire evolution of scriptable browsers from NN2 and IE3 through IE6 and
Moz1 reveals six (yes, six!) distinct document object model families. Even if your job entails
developing content for just one current browser version, you may be surprised that family
members from more than one document object model inhabit your authoring space.

170

Part Il ¢ Document Objects Reference

Studying the evolution of the object model is extremely valuable for newcomers to scripting.
It is too easy to learn the latest object model gadgets in your current browser, only to dis-
cover that your heroic scripting efforts are lost on earlier browsers accessing your pages.
Therefore, take a look at the six major object model types and how they came into being.
Table 14-1 lists the object model families (in chronological order of their release) and the
browser versions that support them. Later in this chapter are some guidelines you can follow
to help you choose the object model(s) that best suit your users’ “appetites.”

Table 14-1: Object Model Families

Model Browser Support

Basic Object Model NN2, NN3, IE3/J1, IE3/)2, NN4, IE4, IE5, IE5.5, IE6, Moz1, Safaril

Basic Plus Images NN3, IE3.01 (Mac only), NN4, IE4, IE5, IE5.5, IE6, Moz1, Safaril

NN4 Extensions NN4

|E4 Extensions IE4, IE5, IE5.5, IE6 (some features in all versions require Win32 OS)

IE5 Extensions IE5, IE5.5, IE6 (some features in all versions require Win32 OS)

W3C DOM (I and II) IE5 (partial), IE5.5 (partial), IE6 (partial), Moz1 (most), Safari 1 (partial)

Basic Object Model

The first scriptable browser, Netscape Navigator 2, implemented a very basic document
object model. Figure 14-1 provides a visual guide to the objects that were exposed to
scripting. The hierarchical structure starts with the window and drills inward toward the
document, forms, and form control elements. A document is a largely immutable page on
the screen. Only elements that are by nature interactive —links and form elements such as
text fields, buttons, and so on — are treated as objects with properties, methods, and
event handlers.

The heavy emphasis on form controls opened up numerous possibilities that were radical
ideas at the time. Because a script could inspect the values of form controls, forms could be
pre-validated on the client. If the page included a script that performed some calculations,
data entry and calculated results were displayed via editable text fields.

Additional objects that exist outside of the document —window, history, and Tocation
objects — provide scriptable access to simple yet practical properties of the browser that
loads the page. The most global view of the environment is the navigator object, which
includes properties about the browser brand and version.

When Internet Explorer 3 arrived on the scene, the short life of Navigator 2 was nearing its
end. Even though NN3 was already widely available in prerelease form, I[E3 implemented the
basic object model from NN2 (plus one window object property from NN3). Therefore, despite
the browser version number discrepancy, NN2 and IE3 are essentially the same with respect
to their document object models. For a brief moment in Internet Time, there was nearly com-
plete harmony between Microsoft and Netscape document object models —albeit at a very
simple level.

Chapter 14 4+ Document Object Model Essentials |7]

Basic Object Model Plus Images

A very short time after IE3 was released, Netscape released Navigator 3 with an object model
that built upon the original version. A handful of existing objects —especially the window
object —gained new properties, methods, and/or event handlers. Scripts could also commu-
nicate with Java applets as objects. But the biggest new object on the scene was the Image
object and the array of image objects exposed to the document object.

Most of the properties for an NN3 image object gave read-only access to values typically
assigned to attributes in the tag. But you could modify one property —the src
property — after the page loaded. Scripts could swap out images within the fixed image
rectangle. Although these new image objects didn’t have mouse-related event handlers,
nesting an image inside a link (which had onmouseover and new onmouseout event han-
dlers) let scripts implement “image rollovers” to liven up a page.

As more new scripters investigated the possibilities of adding JavaScript to their pages, frus-
tration ensued when the image swapping they implemented for NN3 failed to work in IE3.
Although you could easily script around the lack of an image object to prevent script errors
in IE3 (see Chapter 12), the lack of this “cool” page feature disappointed many. Had they also
taken into account the installed base of NN2 in the world, they would have been disappointed
there, too. To confuse matters even more, the Macintosh version of IE 3.01 (the second
release of the IE3/Mac browser) implemented scriptable image objects.

Despite these rumblings of compatibility problems to come, the object model implemented in
Navigator 3 eventually became the baseline reference for future document object models.
With few exceptions, code written for this object model runs on all browsers from NN3 and
IE4 through the latest versions of both brands. Exceptions primarily involve Java applet
object support in non-Windows versions of [E4+.

Navigator 4-Only Extensions

The next browser released to the world was Netscape Navigator 4. Numerous additions to
the existing objects put more power into the hands of scripters. You could move and resize
browser windows within the context of script-detectable screen object properties (for exam-
ple, how big the user’s monitor screen was). Two concepts that represented new thinking
about the object model were an enhanced event model and the layer object.

Event capture model

Navigator 4 added many new events to the repertoire. Keyboard events and more mouse
events (onmousedown and onmouseup) allowed scripts to react to more user actions on form
control elements and links. All of these events worked as they did in previous object models
in which event handlers were typically assigned as attributes to an element’s tag (although
you could also assign event handlers as properties in script statements). To facilitate some of
the Dynamic HTML potential in the rest of the Navigator 4 object model, the event model was
substantially enhanced.

At the root of the system is the idea that when a user performs some physical action on an
event-aware object (for example, clicking a form button), the event reaches that button from
top down through the document object hierarchy. If you have multiple objects that share the

172

Part Il ¢ Document Objects Reference

same event handler, it may be more convenient to capture that event in just one place —the
window or document object level —rather than assigning the same event handler to all the
elements. The default behavior of Navigator 4 allowed the event to reach the target object,
just as it had in earlier browsers. But you could also turn on event capture in the window,
document, or layer object. Once captured, the event could be handled at the upper level,
preprocessed before being passed onto its original target, or redirected to another object
altogether.

Whether or not you capture events, the Navigator 4 event model produces an event object
(lowercase “e” to distinguish from the static Event object) for each event. That object con-
tains properties that reveal more information about the specific event, such as the keyboard
character pressed for a keyboard event or the position of a click event on the page. Any event
handler can inspect event object properties to learn more about the event and process the
event accordingly.

Layers

Perhaps the most radical addition to the NN4 object model was a new object that reflected an
entirely new HTML element, the Tayer element. A layer is a container that is capable of hold-
ing its own HTML document, yet it exists in a plane in front of the main document. You can
move, size, and hide a layer under script control. This new element allowed, for the first time,
overlapping elements in an HTML page.

To accommodate the layer object in the document object hierarchy, Netscape defined a nest-
ing hierarchy such that a layer was contained by a document. As the result, the document
object acquired a property (document.layers) that was an array of layer objects in the doc-
ument. This array exposed only the first level of layer(s) in the current document object.
References to a layer in the main document started with any one of the following:

document.layerName
document.layers[n]
document.layers[TayerName]

Each layer had its own document object because each layer could load an external HTML
document if desired. Thus, if a script needed access to, say, a form control element inside a
layer, the reference would begin:

document.layerName.document.forms[0]....
If a layer contained yet another layer, the reference grew even longer:
document.outerlLayerName.document.innerLayerName.document.forms[0]. ..

As a positionable element, a layer object had numerous properties and methods that allowed
scripts to move, hide, show, and change its stacking order.

Unfortunately for Netscape, the W3C did not agree to make the <1ayer> tag a part of the
HTML 4.0 specification. As such, it is an orphan element that exists only in Navigator 4 (not
implemented in Moz1 or later). The same goes for the scripting of the layer object and its
nested references. Navigator 4 does, however, implement a little bit of the HTML 4.0 and CSS
specifications for positionable elements because you can assign Cascading Style Sheets (with
the position and related attributes) to div and span elements in NN4. Navigator treats posi-
tioned div or span elements as near equivalents of layer objects for scripting purposes. This
means, however, that even if you can get the HTML to work the same across browsers (not
always guaranteed due to occasionally different rendering characteristics of positioned div

Chapter 14 + Document Object Model Essentials |73

elements in NN4 and IE4), the scripting for NN4 must adhere to the layer syntax, which differs
from the [E4 CSS syntax.

Internet Explorer 4+ Extensions

Microsoft broke important new ground with the release of I[E4, which came several months
after the release of NN4. The main improvements were in the exposure of all HTML elements,
scripted support of CSS, and a new event model. Some other additions were available only on
Windows 32-bit operating system platforms.

HTML element objects

The biggest change to the object model world was that every HTML element became a
scriptable object, while still supporting the original object model. Microsoft invented the
document.all array (also called a collection). This array contains references to every ele-
ment in the document, regardless of element nesting. If you assign an identifier (name) to
the id attribute of an element, you can reference the element by the following syntax:

document.all.elementID

In most cases, you can also drop the document.all. part of the reference and begin with
only the element ID.

Every element object has an entirely new set of properties and methods that give scripters a
level of control over document content unlike anything seen before. Table 14-2 shows the
properties and methods that all HTML element objects have in common in IE4 (properties fol-
lowed by brackets are arrays).

Table 14-2: IE4 HTML Element Features in Common

Properties Methods

alll] click()

children[] contains()

className getAttribute()
document insertAdjacentHTML()
filters[] insertAdjacentText ()
id removeAttribute()
innerHTML scrollIntoView()
innerText setAttribute()
isTextEdit

lang

language

offsetHeight

offsetlLeft

offsetParent

Continued

174

Part Il ¢ Document Objects Reference

Table 14-2 (continued)

Properties Methods

offsetTop
offsetWidth
outerHTML
outerText
parentElement
parentTextEdit
sourcelndex
style

tagName

title

You can find details for all of the items listed in Table 14-2 in Chapter 15. But several groups of
properties deserve special mention here.

Four properties (innerHTML, innerText, outerHTML, and outerText) provide read/write
access to the actual content within the body of a document. This means that you no longer
must use text boxes to display calculated output from scripts. You can modify content inside
paragraphs, table cells, or anywhere on the fly. The browser’s rendering engine immediately
reflows a document when the dimensions of an element’s content change. That feature puts
the “Dynamic” in “Dynamic HTML.” To those of us who scripted the static pages of earlier
browsers, this feature — now taken for granted — was nothing short of a revelation.

The series of “offset” properties are related to the position of an element on the page. These
properties are distinct from the kind of positioning performed by CSS. Therefore, you can get
the dimensions and location of any element on the page, making it easier to move position-
able content atop elements that are part of the document and may appear in various loca-
tions due to the browser window’s current size.

Finally, the style property is the gateway to CSS specifications defined for the element.
Importantly, the script can modify the numerous properties of the sty1e object. Therefore,
you can modify font specifications, colors, borders, and the positioning properties after the
page loads. The dynamic reflow of the page takes care of any layout changes that the alter-
ation requires (for example, adjusting to a bigger font size).

Element containment hierarchy

While IE4 still recognizes the element hierarchy of the original object model (see Figure 14-1),
the document object model for IE4 does not extend this kind of hierarchy fully into other ele-
ments. If it did, it would mean that td elements inside a table might have to be addressed via
its next outer tr or table element (just as a form control element must be addressed via its
containing form element). Look at Figure 14-2 to see how all HTML elements are grouped
together under the document object. The document.all array flattens the containment hier-
archy as far as referencing object goes. A reference to the most deeply nested TD element is
still document.all.cel1ID. The highlighted pathway from the window object is the predomi-
nant reference path used when working with the IE4 document object hierarchy.

Chapter 14 + Document Object Model Essentials |75

window

frame | self t0p| parent

I
|navigator| |screen | |hist0ry | |d0cument| | location | |event |
I

[T1 I I I I]
| link | |sterSheets| |app|ets | |f0rm| | images| |p|ugins | |embeds| | all |

[T i i | [elements]
| text | | radio | | button | |se|ect |

i
| textarea | |checkbox| | reset | |option|

| password| |submit |

Figure 14-2: The IE4 document object hierarchy.

Element containment in [E4, however, is important for other reasons. Because an element can
inherit some stylesheet attributes from an element that contains it, you should devise a docu-
ment’s HTML by embedding every piece of content inside a container. Paragraph elements
are text containers (with start and end tags), not tall line breaks between text chunks. [E4
introduced the notion of a parent-child relationship between a container and elements nested
within it. Also, the position of an element may be calculated relative to the position of its next
outermost positioning context.

The bottom line here is that element containment doesn’t have anything to do with object ref-
erences (like the original object model). It has everything to do with the context of an element
relative to the rest of the page’s content.

Cascading Style Sheets

By arriving a bit later to market with its version 4 browser than Netscape, Microsoft benefited
from having the CSS Level 1 specification more fully developed before the browser’s release.
Therefore, the implementation is far more complete than that of NN4 (but it is not 100 per-
cent compatible with the standard).

I should point out that the scriptability of stylesheet properties is a bit at odds with the first-
generation CSS specification, which seemed to ignore the potential of scripting styles with
JavaScript. Many CSS attribute names are hyphenated words (for example, text-align,
z-1index). But hyphens are not allowed in identifier names in JavaScript. This necessitated
conversion of the multiword CSS attribute names to interCap JavaScript property names.
Therefore, text-align becomes textAlign and z-index becomes zIndex. You can access
all of these properties through an element’s style property:

document.all.elementID.style.stylePropertyName

One byproduct of the scriptability of stylesheets in [E4 and later is what some might call the
phantom page syndrome. This occurs when the layout of a page is handled after the primary
HTML for the page has downloaded to the browser. As the page loads, not all content may be
visible, or it may be in a visual jumble. An onload event handler in the page then triggers
scripts to set styles and/or content for the page. Elements jump around to get to their final
resting places. This may be disconcerting to some users who at first see a link to click; but by

176 Part

/N ote

Il + Document Objects Reference

the time the cursor reaches the click location, the page has reflowed, thereby moving the link
to somewhere else on the page.

For Internet Explorer users with 32-bit Windows operating systems, IE4 includes some

~ extra features in the object model that can enhance presentations. Filters are stylesheet
additives that offer a variety of visual effects on body text. For example, you can add a drop
shadow or a glowing effect to text by simply applying filter styles to the text, or you can cre-
ate the equivalent of a slide presentation by placing the content of each slide in a posi-
tioned div element. Although filters follow the CSS syntax, they are not a part of the W3C
specification.

Event bubbling

Just as Netscape invented an event model for NN4, so, too, did Microsoft invent one for IE4.
Unfortunately for cross-browser scripters, the two event models are quite different. Instead of
events trickling down the hierarchy to the target element, an IE event starts at the target ele-
ment and, unless instructed otherwise, “bubbles up” through the element containment hier-
archy to eventually reach the window object. At any object along the way, an event handler
can perform additional processing on that event if desired. Therefore, if you want a single
event handler to process all click events for the page, assign the event handler to the body or
window object so the events reach those objects (provided the event bubbling isn’t cancelled
by some other object along the containment hierarchy).

IE also has an event object (a property of the window object) that contains details about
the event, such as the keyboard key pressed for a keyboard event and the location of a
mouse event. Names for these properties are entirely different from the event object prop-
erties of NN4.

Despite what seems like incompatible, if not completely opposite, event models in NN4 and
IE4, you can make a single set of scripts handle events in both browsers (see Chapter 25 and
Chapter 56 on the CD-ROM for examples). In fact, the two event models are made to work
together in the W3C DOM Level 2 specification, described later in this chapter.

Event binding of scripts

IE4 introduced an additional way of binding events to objects via a <script> tag that has two
additional, non-W3C attributes: for and event (see a syntax example in Chapter 13 in the
section titled “<script for> tags”). The value assigned to the for attribute is the ID of an ele-
ment object for which the script is intended; the value of the event attribute is the name of
the event handler (for example, onc11ick) by which the script statements within the tag are
to be triggered.

Inside the tags are straight script statements, but when the browser sees the special
attributes, execution is deferred until the event fires for the designated object. The instant
the event fires for the object, the script statements inside the tag execute. This special form
of script tag takes the place of a function definition assigned to the event handler by other
means. This technique appears to have been a “dry run” for what eventually became DHTML
behaviors in IE5/Windows (see the following section).

You can use this binding method only if you run the page inside IE4+. All other browsers,
including IE3, ignore the special attributes and treat the statements inside the tags as state-
ments to execute as the page loads.

Chapter 14 + Document Object Model Essentials

Internet Explorer 5+ Extensions

With the release of IE5, Microsoft built more onto the proprietary object model it launched in
IE4. Although the range of objects remained pretty much the same, the number of properties,
methods, and event handlers for the objects increased dramatically. Some of those additions
were added to meet some of the specifications of the W3C DOM (discussed in the next sec-
tion), occasionally causing a bit of incompatibility with IE4. But Microsoft also pushed ahead
with efforts for Windows users only that may not necessarily become industry standards:
DHTML behaviors and HTML applications.

A DHTML behavior is a chunk of script — saved as an external file —that defines some action
(usually a change of one or more style properties) that you can apply to any kind of element.
The goal is to create a reusable component that you can load into any document whose ele-
ments require that behavior. The behavior file is known as an HTML component, and the file
has an . htc extension. Components are XML documents whose XML tags specify events and
event-handling routines for whatever element is assigned that behavior. Script statements in
.htc documents are written inside <script> tag sets just as in regular, scriptable HTML doc-
uments. As an example of a DHTML behavior, you can define a behavior that turns an ele-
ment’s text to red whenever the cursor rolls atop it and reverts to black when the cursor rolls
out. When you assign the behavior to an element in the document (via CSS-like rule syntax),
the element picks up that behavior and responds to the user accordingly. You can apply that
same behavior to any element(s) you like in the document. (Microsoft has submitted behav-
iors to the W3C for possible inclusion into CSS Level 3.) You can see an example of a DHTML
behavior in Chapter 15’s description of the addBehavior () method and read an extended
discussion in Chapter 47 on the CD-ROM.

HTML applications (HTAs in Microsoft parlance) are HTML files that include an XML element
known as the hta:application element. You can download an HTA to IE5+ from the server
as if it were a Web page (although its file extension is .hta rather than .htmor .htm1). A user
can also install an HTA on a client machine so it behaves very much like an application with a
Desktop icon and significant control over the look of the window. HTAs are granted greater
security privileges on the client so that this “application” can behave more like a regular pro-
gram. In fact, you can elect to turn off the system menu bar and use DHTML techniques to
build your own menu bar for the application. Implementation details of HTAs are beyond the
scope of this book, but you should be aware of their existence. More information is available
at http://msdn.microsoft.com.

The W3C DOM

Conflicting browser object models from Netscape and Microsoft made life difficult for devel-
opers. Scripters craved a standard that would serve as a common denominator much like
HTML and CSS standards did for content and styles. The W3C took up the challenge of creat-
ing a document object model standard, the W3C DOM.

The charter of the W3C DOM working group was to create a document object model that
could be applied to both HTML and XML documents. Because an XML document can have
tags of virtually any name (as defined by the Document Type Definition), it has no intrinsic
structure or fixed vocabulary of elements like an HTML document does. As a result, the DOM
specification had to accommodate the known structure of HTML (as defined in the HTML 4.0
specification) as well as the unknown structure of an XML document.

177

178

Part Il ¢ Document Objects Reference

To make this work effectively, the working group divided the DOM specification into two sec-
tions. The first, called the Core DOM, defines specifications for the basic document structure
that both HTML and XML documents share. This includes notions of a document containing
elements that have tag names and attributes; an element is capable of containing zero or
more other elements. The second part of the DOM specification addresses the elements and
other characteristics that apply only to HTML. The HTML portion “inherits” all the features of
the Core DOM, while providing a measure of backward compatibility to object models already
implemented in legacy browsers and providing a framework for new features.

It is important for veteran scripters to recognize that the W3C DOM does not specify all fea-
tures from existing browser object models. Many features of the IE4 (and later) object model
are not part of the W3C DOM specification. This means that if you are comfortable in the IE
environment and wish to shift your focus to writing for the W3C DOM spec, you have to change
some practices as highlighted in this chapter. Navigator 4 page authors lose the <layer> tag
(which is not part of HTML 4.0 and likely will never see the light of day in a standard) as well as
the layer object. In many respects, especially with regard to Dynamic HTML applications, the
W3C DOM is an entirely new DOM with new concepts that you must grasp before you can suc-
cessfully script in the environment.

By the same token, you should be aware that whereas Mozilla-based browsers go to great
lengths to implement all of DOM Level 1 and most of Level 2, Microsoft (for whatever reason)
features only a partial implementation of the W3C DOM through IE5.5. Although IE6 imple-
ments more W3C DOM features, some important parts, notably W3C DOM events, are miss-
ing. Other modern browsers, such as Safari, provide basic W3C DOM support, but have not
yet caught up with Mozilla levels of DOM support.

DOM levels

Like most W3C specifications, one version is rarely enough. The job of the DOM working
group was too large to be swallowed whole in one sitting. Therefore, the DOM is a continually
evolving specification. The timeline of specification releases rarely coincides with browser
releases. Therefore, it is very common for any given browser release to include only some of
the most recent W3C version.

The first formal specification, DOM Level 1, was released well after NN4 and IE4 shipped.
The HTML portion of Level 1 includes DOM Level 0. This is essentially the object model as
implemented in Navigator 3 (and for the most part in Internet Explorer 3 plus image objects).
Perhaps the most significant omission from Level 1 is an event model (it ignores even the
simple event model implemented in NN2 and IE3).

DOM Level 2 builds on the work of Level 1. In addition to several enhancements of both the
Core and HTML portions of Level 1, Level 2 adds significant new sections (published as sepa-
rate modules) on the event model, ways of inspecting a document’s hierarchy, XML names-
paces, text ranges, stylesheets, and style properties. Work on Level 3 is under way, but very
little of it has yet reached browsers.

What stays the same

By adopting DOM Level 0 as the starting point of the HTML portion of the DOM, the W3C pro-
vided a way for a lot of existing script code to work even in a W3C DOM-compatible browser.
Every object you see in the original object model starting with the document object (see
Figure 14-1) plus the image object are in DOM Level 0. Almost all of the same object proper-
ties and methods are also available.

Chapter 14 + Document Object Model Essentials

More importantly, when you consider the changes to referencing other elements in the W3C
DOM (discussed in the next section), we're lucky that the old ways of referencing objects
such as forms, form control elements, and images still work. Had the working group been
planning from a clean slate, it is unlikely that the document object would have been given
properties consisting of arrays of forms, links, and images.

The only potential problems you could encounter with your existing code have to do with a
handful of properties that used to belong to the document object. In the new DOM, four
style-related properties of the document object (alinkColor, bgColor, TinkColor, and
vlinkColor) become properties of the body object (referenced as document.body). In addi-
tion, the three link color properties pick up new names in the process (aLink, 1ink, vLink).
It appears, however, that for now, IE6 and Moz1 maintain backward compatibility with the
older document object color properties.

Also, note that the DOM specification concerns itself only with the document and its content.
Objects such as window, navigator, and screen are not part of the DOM specification through
Level 2. Scripters are still at the mercy of browser makers for compatibility in these areas, but
the window object (or its equivalent) likely will be added to the W3C DOM Level 3.

What isn't available

As mentioned earlier, the W3C DOM is not simply a restatement of existing browser specifica-
tions. Many convenience features of the IE and NN object models do not appear in the W3C
DOM. If you develop Dynamic HTML content in IE4+ or NN4, you have to learn how to get
along without some of these conveniences.

Navigator 4’s experiment with the <layer> tag was not successful in the W3C process. As a
result, both the tag and the scripting conventions surrounding it do not exist in the W3C DOM.
To some scripters’ relief, the document . 1ayerName referencing scenario (even more complex
with nested layers) disappears from the object model entirely. A positioned element is treated
as just another element that has some special stylesheet attributes that enable you to move it
anywhere on the page, stack it amid other positioned elements, and hide it from view.

Among popular IE4+ features missing from the W3C DOM are the document.al1 collection of
HTML elements and four element properties that facilitate dynamic content: innerHTML,
innerText, outerHTML, and outerText. A new W3C way provides for acquiring an array of
all elements in a document, but generating HTML content to replace existing content or be
inserted in a document requires a tedious sequence of statements (see the section “New
DOM concepts” later in this chapter). Mozilla, however, has implemented the innerHTML
property for HTML element objects in Mozilla-based browsers (Moz1+).

“New"” HTML practices

Exploitation of Dynamic HTML possibilities in both I[E4+ and the W3C DOM relies on some
HTML practices that may be new to long-time HTML authors. At the core of these practices
(espoused by the HTML 4.0 specification) is making sure that all content is within an HTML
container of some kind. Therefore, instead of using the <p> tag as a separator between blocks
of running text, surround each paragraph of the running text with a <p>...</p> tag set. If
you don’t do it, the browser treats each <p> tag as the beginning of a paragraph and ends the
paragraph element just before the next <p> tag or other block-level element.

While recent browsers continue to accept the omission of certain end tags (for td, tr, and 11
elements, for instance), it is best to get in the habit of supplying these end tags. If for no other
reason, they help you visualize where an element’s sphere of influence truly begins and ends.

179

180

Part Il ¢ Document Objects Reference

Any element that you intend to script —whether to change its content or its style—should
have an identifier assigned to the element’s id attribute. Form control elements still require
name attributes if you submit the form content to a server. But you can freely assign a differ-
ent identifier to a control’s id attribute. Scripts can use either the id or the document.
formReference.elementName reference to reach a control object. Identifiers are essen-
tially the same as the values you assign to the name attributes of form and form input ele-
ments. Following the same rules for the name attribute value, an id identifier must be a
single word (no white space), it cannot begin with a numeral (to avoid conflicts in
JavaScript), and it should avoid punctuation symbols except for the underscore. While an
element can be accessed by numeric index within the context of some surrounding element
(such as the body), this is a risky practice when content is under construction. Unique
identifiers make it much easier for scripts to reference objects and are not affected by
changes in content order.

New DOM concepts

With the W3C DOM come several concepts that may be entirely new to you unless you have
worked extensively with the terminology of tree hierarchies. Concepts that have the most
impact on your scripting are new ways of referencing elements and nodes.

Element referencing

Script references to objects in the DOM Level 0 are observed in the W3C DOM for backward
compatibility. Therefore, a form input element whose name attribute is assigned the value
userName is addressed just like it always is:

document.forms[0].userName
or
document . formName.userName

But because all elements of a document are exposed to the document object, you can use the
new document object method to access any element whose ID is assigned. The method is
document.getElementById(), and the sole parameter is a string version of the identifier of
the object whose reference you wish to get. To help put this in context with what you may
have used with the IE4 object model, consider the following HTML paragraph tag:

<p id="myParagraph">...</p>
In IE4+, you can reference this element with
var elem = document.all.myParagraph;

Although the document.all collection is not implemented in the W3C DOM, use the new
document object method (available in IE5+, Moz1+, Safari, and others) that enables you to
access any element by its ID:

var elem = document.getElementById("myParagraph");

Unfortunately for scripters, this method is difficult to type since it is case-sensitive, so watch
out for that ending lowercase “d”.

A hierarchy of nodes

The issue surrounding containers (described earlier) comes into play for the underlying
architecture of the W3C DOM. Every element or freestanding chunk of text in an HTML (or
XML) document is an object that is contained by its next outermost container. Let’s look at a

Chapter 14 + Document Object Model Essentials] 8]

simple HTML document to see how this system works. Listing 14-1 is formatted to show the
containment hierarchy of elements and string chunks.

Listing 14-1: A Simple HTML Document

<htm1>
<head>
<title>
A Simple Page
</title>
<{/head>
<body>
<p id="paragraphl">
This is the
<em id="emphasisl">
one and only

paragraph on the page.
</p>
</body>
</html>

What you don’t see in the listing is a representation of the document object. The document
object exists automatically when this page loads into a browser. Importantly, the document
object encompasses everything you see in Listing 14-1. Therefore, the document object has a
single nested element: the htm1 element. The html element, in turn, has two nested elements:
head and body. The head element contains the tit1e element, while the tit1e element con-
tains a chunk of text. Down in the body element, the p element contains three pieces: a string
chunk, the em element, and another string chunk.

According to W3C DOM terminology, each container, standalone element (such as a br ele-
ment), or text chunk is known as a node — a fundamental building block of the W3C DOM.
Nodes have parent-child relationships when one container holds another. As in real life,
parent-child relationships extend only between adjacent generations, so a node can have zero
or more children. However, the number of third-generation nodes further nested within the
family tree does not influence the number of children associated with a parent. Therefore, in
Listing 14-1, the htm1 node has two child nodes, head and body, which are siblings that share
the same parent. The body element has one child (p) even though that child contains three
children (two text nodes and an em element node).

If you draw a hierarchical tree diagram of the document in Listing 14-1, it should look like the
illustration in Figure 14-3.

I_ﬁlote If the document’s source code contains a Document Type Definition (in a DOCTYPE element)
: ~— above the <htm1> tag, the browser treats that DOCTYPE node as a sibling of the HTML ele-
ment node. In that case, the root document node contains two child nodes.

The W3C DOM (through Level 2) defines 12 different types of nodes, 7 of which have direct
application in HTML documents. These seven types of nodes appear in Table 14-3 (the rest
apply to XML). Of the 12 types, the three most common are the document, element, and text
types. All W3C DOM browsers (including IE5+, Moz1, Safari, and others) implement the three
common node types, while Mozl implements all of them.

182 Partlll ¢ Document Objects Reference

document
+--<html>
+--<head>
| +--<title>
| +--"A Simple Page"
+--<body>
+--<p ID="paragraph1">
+--"This is the "

+--<em ID="emphasis1">

| +--"one and only"

+--" paragraph on the page.”
Figure 14-3: Tree diagram of nodes
for the document in Listing 14-1.

Table 14-3: W3C DOM HTML-Related Node Types

Type Number nodeName

nodeValue

Description

IE5+

Moz1

Safaril

Element 1 tag name

Attribute 2 attribute
name

Text 3 fFtext

Comment 8 jfcomment

Document 9 ffdocument

DocumentType 10 DOCTYPE

Fragment 11 ftdocument -
fragment

"Implemented in IE6.

null

attribute
value

text
content

comment
text

null

null

null

Any HTML
or XML
tagged
element
A name-
value
attribute
pairin an
element
A text
fragment
contained
by an
element
HTML
comment

Root
document
object

DTD
specification
Series of
one or
more nodes
outside

of the
document

Yes

No'

Yes

No!

No'

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

Yes

Chapter 14 + Document Object Model Essentials

Applying the node types of Table 14-3 to the node diagram in Figure 14-3, you can see that the

simple page consists of one document node, six element nodes, and four text nodes.

Node properties

A node has many properties, most of which are references to other nodes related to the cur-
rent node. Table 14-4 lists all properties shared by all node types in DOM Level 2.

Table 14-4: Node Object Properties (W3C DOM Level 2)

Property Value Description IE5Win+ IE5Mac+ Mozl Safaril

nodeName String Varies with node type Yes Yes Yes Yes
(see Table 14-3)

nodeValue String Varies with node type Yes Yes Yes Yes
(see Table 14-3)

nodeType Integer Constant representing Some Yes Yes Yes
each type

parentNode Object Reference to next Yes Yes Yes Yes
outermost container

childNodes Array All child nodes in source Yes Yes Yes Yes
order

firstChild Object Reference to first child Yes Yes Yes Yes
node

lastChild Object Reference to last child Yes Yes Yes Yes
node

previousSibling Object Reference to sibling Yes Yes Yes Yes
node up in source order

nextSibling Object Reference to sibling Yes Yes Yes Yes
node next in source
order

attributes NodeMap Array of attribute nodes ~ No Yes Yes Yes

ownerDocument Object Containing document No Yes Yes Yes
object

namespacelURI String URI to namespace No No Yes Yes
definition (element and
attribute nodes only)

prefix String Namespace prefix No No Yes Yes
(element and attribute
nodes only)

localName String Applicable to No No Yes Yes

namespace-affected
nodes

You can find all of the properties shown in Table 14-4 that also show themselves to be

implemented in IE5+ or Moz1 in Chapter 15's listing of properties that all HTML element

objects have in common. That's because an HTML element, as a type of node, inherits all of
the properties of the prototypical node.

183

184 Partlll + Document Objects Reference

To help you see the meanings of the key node properties, Table 14-5 shows the property val-
ues of several nodes in the simple page shown in Listing 14-1. For each node column, find the
node in Figure 14-3 and then follow the list of property values for that node, comparing the
values against the actual node structure in Figure 14-3.

Table 14-5: Properties of Selected Nodes for a Simple HTML Document

Properties Nodes
document html p "one and only"
nodeType 9 1 1 3
nodeName ffidocument htm]l p fftext
nodeValue null null null "one and only"
parentNode null document body em
previousSibling null null null null
nextSibling null null null null
childNodes html head "This is the " (none)
body em

“ paragraph on the page!”
firstChild html head "This is the " null
lastChild html body " paragraph on the null

page."

The nodeType property is an integer that is helpful in scripts that iterate through an
unknown collection of nodes. Most content in an HTML document is of type 1 (an HTML ele-
ment) or 3 (a text node), with the outermost container, the document, of type 9. A node’s
nodeName property is either the name of the node’s tag (for an HTML element) or a constant
value (preceded by a # [hash mark] as shown in Table 14-3). And, what may surprise some,
the nodeValue property is nul1 except for the text node type, in which case the value is the
actual string of text of the node. In other words, for HTML elements, the W3C DOM does not
expose a container’s HTML as a string.

It is doubtful that you will use all of the relationship-oriented properties of a node, primarily
because there is some overlap in how you can reach a particular node from any other. The
parentNode property is important because it is a reference to the current node’s immediate
container. While the firstChild and TastChild properties point directly to the first and last
children inside a container, most scripts generally use the childNodes property with array
notation inside a for loop to iterate through child nodes. If there are no child nodes, the
childNodes array has a length of zero.

Node methods

Actions that modify the HTML content of a node in the W3C DOM world primarily involve the
methods defined for the prototype Node. Table 14-6 shows the methods and their support in
the W3C DOM-capable browsers.

Chapter 14 + Document Object Model Essentials 185

The Object-Oriented W3C DOM

If you are familiar with concepts of object-oriented (OO) programming, you will appreciate the
0O tendencies in the way the W3C defines the DOM. The Node object includes sets of properties
(see Table 14-4) and methods (see Table 14-6) that are inherited by every object based on the
Node. Most of the objects that inherit the Node’s behavior have their own properties and/or
methods that define their specific behaviors. The following figure shows (in W3C DOM terminol-
ogy) the inheritance tree from the Node root object. Most items are defined in the Core DOM,
while items shown in boldface are from the HTML DOM portion.

Node

+--Document

| +--HTMLDocument
+--CharacterData

| +--Text

| | +--CDATASection
| +--Comment

+--Attr

+--Element

| +--HTMLElement

| +-- (Each specific HTML element)
+--DocumentType
+--DocumentFragment
+--Notation

+--Entity

+--Entity Reference
+--Processinglnstruction

W3C DOM Node object inheritance tree.

You can see from the preceding figure that individual HTML elements inherit properties and
methods from the generic HTML element, which inherits from the Core E1ement object, which,
in turn, inherits from the basic Node.

It isn't important to know the Node object inheritance to script the DOM. But it does help explain
the ECMA Script Language Binding appendix of the W3C DOM recommendation, as well as explain
how a simple element object winds up with so many properties and methods associated with it.

Table 14-6: Node Object Methods (W3C DOM Level 2)

Method Description IE5+ Mozl Safaril
appendChild(newChild) Adds child node to end of current node Yes Yes Yes
cloneNode(deep) Grabs a copy of the current node (optionally Yes Yes Yes

with children)

Continued

186 Partlll + Document Objects Reference

Table 14-6 (continued)

Method Description IE5+ Mozl Safaril
hasChildNodes() Determines whether current node has Yes Yes Yes
children (Boolean)

insertBefore(new, ref) Inserts new child in front of another child Yes Yes Yes
removeChild(old) Deletes one child Yes Yes Yes
replaceChild(new, old) Replaces an old child with a new one Yes Yes Yes
isSupported(feature, Determines whether the node supports a No Yes Yes
version) particular feature

The important methods for modifying content are appendChild(), insertBefore(),
removeChild(), and replaceChild(). Notice, however, that all of these methods assume
that the point of view for the action is from the parent of the nodes being affected by the
methods. For example, to delete an element (using removeChild()), you don’t invoke that
method on the element being removed, but rather on its parent element. This leaves open the
possibility for creating a library of utility functions that obviate having to know too much
about the precise containment hierarchy of an element. A simple function that lets a script
appear to delete an element actually does so from its parent:

function removeElement(elemID) ({
var elem = document.getElementById(elemID);
elem.parentNode.removeChild(elem);

}

If this seems like a long way to go to accomplish the same result as setting the outerHTML
property of an [E4+ object to empty, you are right. While some of this convolution makes
sense for XML, unfortunately the W3C working group doesn’t seem to have HTML scripters’
best interests in mind. All is not lost, however, as you see later in this chapter.

Generating new node content

The final point about the node structure of the W3C DOM focuses on the similarly gnarled
way scripters must go about generating content they want to add or replace on a page. For
text-only changes (for example, the text inside a table cell), there is both an easy and a hard
way to perform the task. For HTML changes, there is only the hard way (plus a handy
workaround discussed later). Let’s look at the hard way first and then pick up the easy way
for text changes.

To generate a new node in the DOM, you look to the variety of methods that are defined for
the Core DOM’s document object (and are therefore inherited by the HTML document object).
A node creation method is defined for nearly every node type in the DOM. The two important
ones for HTML documents are createElement () and createTextNode(). The first gener-
ates an element with whatever tag name (string) you pass as a parameter; the second gener-
ates a text node with whatever text you pass.

When you first create a new element, it exists only in the browser’s memory and not as part
of the document containment hierarchy. Moreover, the result of the createElement ()
method is a reference to an empty element except for the name of the tag. For example, to
create a new p element, use

var newkElem = document.createElement("p");

Chapter 14 + Document Object Model Essentials] 87

The new element has no ID, attributes, or any content. To assign some attributes to that ele-
ment, you can use the setAttribute() method (a method of every element object) or assign
a value to the object’s corresponding property. For example, to assign an identifier to the new
element, use either

newElem.setAttribute("id", "newP");
or
newElem.id = "newP";

Both ways are perfectly legal. Even though the element has an ID at this point, it is not yet
part of the document so you cannot retrieve it via the document.getETementById()
method.

To add some content to the paragraph, you next generate a text node as a separate object:

var newText = document.createTextNode("This is the second paragraph.");

Again, this node is just sitting around in memory waiting for you to apply it as a child of some
other node. To make this text the content of the new paragraph, you can append the node as
a child of the paragraph element that is still in memory:

newElem.appendChild(newText);

If you were able to inspect the HTML that represents the new paragraph element, it would
look like the following:

<p id="newP">This is the second paragraph.</p>

The new paragraph element is ready for insertion into a document. Using the document
shown in Listing 14-1, you can append it as a child of the body element:

document.body.appendChild(newElem);

At last, the new element is part of the document containment hierarchy. You can now refer-
ence it just like any other element in the document.

Replacing node content

The addition of the paragraph shown in the last section requires a change to a portion of
the text in the original paragraph (the first paragraph is no longer the “one and only” para-
graph on the page). As mentioned earlier, you can perform text changes either via the
replaceChild() method or by assigning new text to a text node’s nodeValue property.
Let’s see how each approach works to change the text of the first paragraph’s em element
from “one and only” to “first.”

To use replaceChild(), a script must first generate a valid text node with the new text:
var newText = document.createTextNode("first");

The next step is to use the replaceChild() method. But recall that the point of view for this
method is the parent of the child being replaced. The child here is the text node inside the
em element, so you must invoke the replaceChild() method on the em element. Also, the
replaceChild() method requires two parameters: the first is the new node; the second is a
reference to the node to be replaced. Because the script statements get pretty long with the
getElementById() method, an intermediate step grabs a reference to the text node inside
the em element:

var oldChild = document.getElementById("emphasisl").childNodes[0];

188

Part Il ¢ Document Objects Reference

Now the script is ready to invoke the replaceChild() method on the em element, swapping
the old text node with the new:

document.getElementById("emphasisl").replaceChild(newText, oldChild);

If you want to capture the old node before it disappears entirely, be aware that the
replaceChild() method returns a reference to the replaced node (which is only in mem-
ory at this point, and not part of the document node hierarchy). You can assign the method
statement to a variable and use that old node somewhere else, if needed.

This may seem like a long way to go; it is, especially if the HTML you are generating is com-
plex. Fortunately, you can take a simpler approach for replacing text nodes. All it requires is a
reference to the text node being replaced. You can assign that node’s nodeValue property its
new string value:

document.getElementById("emphasisl").childNodes[0].nodeValue = "first";

When an element’s content is entirely text (for example, a table cell that already has a text node
in it), this is the most streamlined way to swap text on the fly using W3C DOM syntax. This
doesn’t work for the creation of the second paragraph text earlier in this chapter because the
text node did not exist yet. The createTextNode () method had to explicitly create it.

Also remember that a text node does not have any inherent style associated with it. The style
of the containing HTML element governs the style of the text. If you want to change not only
the text node’s text but also how it looks, you have to modify the style property of the text
node’s parent element. Browsers that perform these kinds of content swaps and style
changes automatically reflow the page to accommodate changes in the size of the content.

To summarize, Listing 14-2 is a live version of the modifications made to the original docu-
ment shown in Listing 14-1. The new version includes a button and script that makes the
changes described throughout this discussion of nodes. Reload the page to start over.

Listing 14-2: Adding/Replacing DOM Content

<html>
<head>
<title>A Simple Page</title>
{script type="text/javascript">
function modify() {
var newElem = document.createElement("p");
newElem.id = "newP";
var newText = document.createTextNode("This is the second paragraph.");
newElem.appendChild(newText);
document.body.appendChild(newElem);
document.getElementById("emphasisl").childNodes[0].nodeValue = "first";
}
<{/script>
</head>

<body>
<button onclick="modify()">Add/Replace Text</button>

<p id="paragraphl">This is the <em id="emphasisl">one and
only paragraph on the page.</p>

</body>

</html>

/N ote

Chapter 14 + Document Object Model Essentials] 89

Chapter 15 details node properties and methods that are inherited by all HTML elements.
Most are implemented in both IE5+ and W3C DOM browsers. Also look to the reference mate-
rial for the document object in Chapter 18 for other valuable W3C DOM methods.

A de facto standard: innerHTML

Microsoft was the first to implement the innerHTML property of all element objects starting
with [E4. While the W3C DOM has not supported this property, scripters frequently find it
more convenient to modify content dynamically by way of a string containing HTML markup,
rather than creating and assembling element and text nodes. As a result, most modern W3C
DOM browsers, including Moz1 and Safaril, support the read/write innerHTML property of all
element objects as a de facto standard.

When you assign a string containing HTML markup to the innerHTML of an existing element,
the browser automatically inserts the newly rendered elements into the document node tree.
You may also use innerHTML with unmarked text to perform the equivalent of the IE-only
innerText property.

Despite the apparent convenience of the innerHTML property compared to the step-by-step
process of manipulating element and text node objects, browsers operate on nodes much
more efficiently than on assembly of long strings. This is one case where less JavaScript code
does not necessarily translate to greater efficiency.

Static W3C DOM HTML objects

The Mozl DOM (but unfortunately not IE5+) adheres to the core JavaScript notion of prototype
inheritance with respect to the object model. When a page loads into Moz1, the browser creates
HTML objects based on the prototypes of each object defined by the W3C DOM. For example, if
you use The Evaluator Sr. (Chapter 13) to see what kind of object the myP paragraph object is
(enter document.getElementById("myP") into the top text box and click the Evaluate button),
it reports that the object is based on the HTMLParagraphElement object of the DOM. Every
“instance” of a p element object in the page inherits its default properties and methods from
HTMLParagraphElement (which, in turn, inherits from HTMLETement, ETement, and Node
objects —all detailed in the JavaScript binding appendix of the W3C DOM specification).

You can use scripting to add properties to the prototypes of some of these static objects. To
do so, you must use new features added to Moz1. Two new methods—__ defineGetter__ ()
and __defineSetter__ () —enable you to assign functions to a custom property of an
object.

These methods are Mozilla-specific. To prevent their possible collision with standardized
g implementations of these features in future implementations of ECMAScript, the underscore
characters on either side of the method name are pairs of underscore characters.

The functions execute whenever the property is read (the function assigned via the
__defineGetter__() method) or modified (the function assigned via the __defineSetter
__ () method). The common way to define these functions is in the form of an anonymous
function (see Chapter 33). The formats for the two statements that assign these behaviors
to an object prototype are as follows:

object.prototype.__defineGetter__("propName", function([paramll,...[,paramN111)
{

/] statements

return returnValue;
1)

190 Partlll ¢ Document Objects Reference

object.prototype.__defineSetter__("propName", function(l[paramll,...[,paramN111)
{

/] statements

return returnValue;
1)

The example in Listing 14-3 demonstrates how to add a read-only property to every HTML
element object in the current document. The property, called childNodeDetail, returns an
object; the object has two properties, one for the number of element child nodes and one for
the number of text child nodes. Note that the this keyword in the function definition is a ref-
erence to the object for which the property is calculated. And because the function runs each
time a script statement reads the property, any scripted changes to the content after the page
loads are reflected in the returned property value.

Listing 14-3: Adding a Read-Only Prototype Property to All HTML
Element Objects

{script type="text/javascript">
if (HTMLETement) A
HTMLETement.prototype.__defineGetter__("childNodeDetail", function() {
var result = {elementNodes:0, textNodes:0 }
for (var i = 0; i < this.childNodes.length; i++) {
switch (this.childNodes[i].nodeType) {
case 1:
result.elementNodes++;
break;
case 3:
result.textNodes++;
break;
}
}
return result;
b
}
</script>

To access the property, use it like any other property of the object. For example:
var BodyNodeDetail = document.body.childNodeDetail;

The returned value in this example is an object, so you use regular JavaScript syntax to
access one of the property values:

var BodyElemNodesCount = document.body.childNodeDetail.elementNodes;

Bidirectional event model

Despite the seemingly conflicting event models of NN4 (trickle down) and IE4 (bubble up),
the W3C DOM event model (defined in Level 2) manages to employ both event propagation
models. This gives the scripter the choice of where along an event’s propagation path the
event gets processed. To prevent conflicts with existing event model terminology, the W3C
model invents many new terms for properties and methods for events. Some coding probably
requires W3C DOM-specific handling in a page aimed at multiple object models.

Chapter 14 + Document Object Model Essentials]9]

The W3C event model also introduces a new concept called the event listener. An event lis-
tener is essentially a mechanism that instructs an object to respond to a particular kind of
event —very much like the way the event handler attributes of HTML tags respond to events.
But the DOM recommendation points out that it prefers use of a more script-oriented way of
assigning event listeners: the addEventlListener() method available for every node in the
document hierarchy. Through this method, you advise the browser whether to force an event
to bubble up the hierarchy (the default behavior that is also in effect if you use the HTML
attribute type of event handler) or to be captured at a higher level.

Functions invoked by the event listener receive a single parameter consisting of the event
object whose properties contain contextual details about the event (details such as the posi-
tion of a mouse click, character code of a keyboard key, or a reference to the target object).
For example, if a form includes a button whose job is to invoke a calculation function, the
W3C DOM prefers the following way of assigning the event handler:

document.getETementById("calcButton").addEventListener("click", doCalc, false);

The addEventlListener() method takes three parameters. The first parameter is a string of
the event to listen for; the second is a reference to the function to be invoked when that event
fires; and the third parameter is a Boolean value. When you set this Boolean value to true, it
turns on event capture whenever this event is directed to this target. The function then takes
its cue from the event object passed as the parameter:

function doCalc(evt) {
// get shortcut reference to input button's form
var form = evt.target.form;
var results = 0;
// other statements to do the calculation //
form.result.value = results;

}

To modify an event listener, you use the removeEventListener () method to get rid of the
old listener and then employ addEventListener () with different parameters to assign the
new one.

Preventing an event from performing its default action is also a different procedure in the
W3C event model than in IE. In IE4 (as well as NN3 and NN4), you can cancel the default
action by allowing the event handler to evaluate to return false. While this still works in
IE5+, Microsoft includes another property of the window.event object, called returnValue.
Setting that property to false anywhere in the function invoked by the event handler also
kills the event before it does its normal job. But the W3C event model uses a method of the
event object, preventDefault(), to keep the event from its normal task. You can invoke this
method anywhere in the function that executes when the event fires.

Detailed information about an event is contained in an event object that must be passed to an
event handler function where details may be read. If you assign event handlers via the W3C
DOM addEventListener() method or an event handler property, the event object is passed
automatically as the sole parameter to the event handler function. Include a parameter vari-
able to “catch” the incoming parameter:

function swap(evt) {
// statements here to work with W3C DOM event object
}

But if you assign events via a tag attribute, then you must explicitly pass the event object in
the call to the function:

192

Part Il ¢ Document Objects Reference

Unfortunately, neither IE5 through IE6 on Windows nor IE5 for Macintosh implements the
W3C DOM event model. You can, however, make the two event models work together if you
assign event handlers by way of object properties or tag attributes, and throw in a little
object detection described later in this chapter and in more detail in Chapter 25.

Mixing Object Models

The more browsers that your audience uses, the more likely you will want to make your pages
work on as many browsers as possible. You've seen in this chapter that scripts written for older
browsers, such as Navigator 2 and Internet Explorer 3, tend to work in even the latest browsers
without modification. But aiming at that compatibility target doesn’t let you take advantage of
more advanced features, in particular Dynamic HTML. You must balance the effort required to
support as many as four classifications of browsers (non-DHTML, NN4, IE4/5, and W3C DOM
common denominator in IE6 and Moz1) against the requirements of your audience. Moreover,
those requirements can easily change over time. For example, the share of the audience using
non-DHTML and NN4 browsers will diminish over time, while the installed base of browsers
capable of using the Microsoft IE DOM (for IE4+) and the W3C DOM (IE6+ and Moz1+) will
increase. If the percentage of visitors using NN4 is not significant at this point, you may well
decide to not worry about implementing DHTML features for that browser and lump NN4
together with the rest of the non-DHTML browsers.

For any given application or Web site, it is important to develop a strategy to apply to the
deployment of scripted features. But be aware that one strategy simply cannot fit all situa-
tions. The primary considerations are the breadth of browser versions reaching your site
(many for public sites; perhaps only one for a tightly controlled intranet) and the amount of
DHTML you intend to implement.

In the rest of this section, you see three scenarios and strategies employed to meet the devel-
oper’s requirements. Although they are labeled as three different levels of aggressiveness, it
is likely that you can apply individual techniques from each of the levels in establishing a
strategy of your own.

The conservative approach

In the first scenario, the content requires a modest level of data entry interaction with a user
via a form as well as image rollovers. Supported browsers encompass the entire range of non-
scriptable and scriptable browsers, with one version of each page to serve all visitors.

If the form gathers information from the user for submission to a server CGI that stores the
data in a database or performs a search based on user-supplied criteria, the obvious mode
of entry is through traditional form control elements. Scriptable browsers can perform pre-
submission validations to hasten the correction of any improperly formatted fields. Event
handlers attached to the text fields (onchange event handlers) and an onsubmit event han-
dler for the form itself can do the validation on the client. Nonscriptable browsers ignore the
event handlers, and the form is submitted as usual, relying on server-side validation of input
data (and the slow back-and-forth processing that this entails when there is an error or miss-
ing field data).

For image rollovers, links surround the image elements. The onmouseover and onmouseout
event handlers for the links trigger functions that swap images. By wrapping the statements
in the event handler functions in if constructions that test for the presence of the document
.images array, first-generation scriptable browsers that don’t implement images as objects
perform no action:

Chapter 14 + Document Object Model Essentials

function imageOn(imgName) {
if (document.images) {
document.images[imgName].src = onlmages[imgName].src;
|
}

The same goes for script statements in the Head that precache the swappable images as the
page loads:

if (document.images) {
var onImages = new Array();
onlmages["home"] = new Image(50,30);
onlmages["home"].src = "images/homeOn.gif";

}

This scenario can also provide added content on the page for scriptable browser users by
embedding scripts within the body that use document.write() to generate content as the
page loads. For example, the page can begin with a time-sensitive greeting (“Good Morning,”
“Good Afternoon,” and so on), while nonscriptable browser users see a standard greeting
inside the <noscript> tag pair.

Middle ground

The second scenario includes pages that employ stylesheets. The goal again is to support all
browser users with the same HTML pages, but also provide users of modern browsers with
an enhanced experience. Where supported by the browser, styles of objects change in
response to user action (for example, links highlight with a special font color and background
during rollover). One of the design elements on the page is a form within a table. As users
enter values into some text boxes, calculated results appear at the bottom of the table,
preferably as regular content within a table cell (otherwise in another text box).

This scenario requires browser version branching in several places to allow for variations in
browser treatment of the features and to avoid problems with older scriptable browsers and
nonscriptable browsers alike. You can (and should) perform some (if not all) of the branching
via object detection, as you will see in a moment. Table 14-7 highlights the major feature
requirements for this scenario and describes the browser support for each.

Table 14-7: Features and Support for a Typical “Middle Ground” Scenario

Feature Support and Approach

Dynamic Styles IE4+ and W3C DOM browsers through the sty1e property of any HTML
element object.

Form Calculations Unless requiring regular expression parsing of input, should work with all
scriptable browsers without any branching required.

Dynamic Content IE4+ and W3C DOM browsers support Dynamic HTML content within a cell, but
MS and W3C object models require different ways of changing a table cell's
content. (Or you can use the nonstandard, but convenient, innerHTML
property of the cell.) For older scriptable browsers, the cell should contain a
text box to display the results; for nonscriptable browsers, the cell should
contain a button that submits the form to a server CGI to process the
calculation and return a new page with the results.

193

194

Part Il ¢ Document Objects Reference

Dynamic styles

For dynamic styles, both the IE4+ and W3C object models provide access to stylesheet set-
tings via the style property of any HTML element. This simplifies matters because you can
wrap modifications to style properties inside if clauses that check for the existence of the
style property for the specified object:

function hilite(elem) {
if (elem.style) {
elem.style.fontWeight = "bold";
1
}

If the event handler that triggers the change can be localized to the affected element (for
example, an onmouseover event handler for a span element surrounding some text), the
event doesn'’t fire in browsers that don’t also support the style property. (By good fortune,
browsers that implement the style property also expose all elements to the object model.)
To compensate for the differences in object references between the IE4+ and W3C models,
you can pass the object as a parameter to event handler functions:

<span onmouseover="hilite(this)" onmouseout="revert(this)"
onclick="go('...")>...<{/span>

This technique obviates the need to use browser version detection because the functions
invoked by the event handlers do not have to build DOM-specific references to the objects to
adjust the style.

Branching variables

If, for now, you continue to be more comfortable with browser version detection than object
detection, you can apply version detection for this “middle ground” scenario by establishing
branches for the IE4+ and W3C object models. Global variables that act as flags elsewhere in
your page’s scripts are still the primary mechanism. For this scenario, you can initialize two
global variables as follows:

function getIEVersion() {

var ua = navigator.userAgent;

var IEoffset = ua.indexOf("MSIE ");

return parseFloat(ua.substring(lEoffset+5, ua.index0f(";", leoffset)));
}

var isIE4 = ((navigator.appName.indexOf("Microsoft") == 0 &&
parselnt(getIEVersion()) >= 4));
var isW3C = (document.documentElement) ? true : false;

Notice how the getIEVersion() function digs out the precise IE version from deep within
the navigator.userAgent property. Both global variables are Boolean values. While each
variable conveys valuable information on its own, the combination of the two reveals even
more about the browser environment if necessary. Figure 14-4 shows the truth table for using
the AND (&&) operator in a conditional clause with both values. For example, if you need a
branch that works only in [E4, the i f clause is

if (isIE4 && !isW3C) {...}

The overlap between MS and the W3C object models in IE5+ means that you need to deter-
mine for each branch which model to use when the script is running. This governs the order
of nested if conditions when they arise. If you trap for the W3C version first, IE5+ runs the
branch containing the W3C DOM syntax.

Chapter 14 + Document Object Model Essentials

is|E4 isW3C islE4 && isW3C
true true IE5+

true false IE4 Only
false true Non-IE W3C Only
false false Older browser

Figure 14-4: Truth table for two browser version
ariables with the AND operator.

Dynamic content

Once you have the branching variables in place, your scripts can use them for executing func-
tions invoked by event handlers as well as for scripts that run while the page loads. The
importance of the second type comes when you want a page to display one kind of HTML for
one class of browsers and other HTML for other classes (or all of the rest). The design for the
current scenario calls for a table cell to display the results of a form’s calculation in HTML
where capable. In lesser scriptable browsers, the results should appear in a text box in the
table. Nonscriptable browsers should display a button to submit the form.

In the Body of the page, a script should take over and use document.write() for the td ele-
ment that is to show the results. Buggy behavior in early versions of Navigator require that at
least the entire td element be written dynamically, instead of just the cell’s content. The
structure of such a form and table is as follows:

<form name="calculator" action="http://xxx/cgi-bin/calculate.pl"
onsubmit="return false">
<{table>
<tr>
<td>. L. </td>
<{script type="text/javascript">
if (isIE4 || isW3C) |
document.write("<td id="result'>0</td>");
} else {
document.write("<td>");
document.write("<input type='text' name='result' size='10"' value='0"' />");
document.write("</td>");
}
{/script>
<{noscript>
<td>Click 'Submit' for Results</td>
<{/noscript>
</tr>
</table>
<noscript>
<input type="submit" />
<{/noscript>
</form>

195

196

Part Il ¢ Document Objects Reference

The preceding code assumes that other table cells contain text boxes whose onchange event
handlers trigger a calculation script. That calculation script must also branch for the two
classes of scriptable browser so that results are displayed to fit the browser’s object model:

function calculate(form) {
var results;

H.statements here that perform math and stuff answer into 'results' variable

if (isIE4) |
document.all.result.innerText = results;

}oelse if (isW3C) {
document.getElementById("result").childNodes[0].nodeValue = results;

} else {
document.calculator.result.value = results;

}

}

Adding dynamic content for NN4 requires a little more planning. The technique usually
involves nesting an absolute-positioned div inside a relative-positioned span. Scripts can
then use document.write() to create new content for the deeply nested div element.
Pulling this off successfully entails pretty complex references through multiple layers and
their documents. But no matter what lengths you go to in an effort to employ dynamic con-
tent in NN4, the new content does not automatically resize the table or cell to accommo-
date larger or smaller chunks of text. Without automatic reflow of the page, as is found in
[E4+ and most W3C DOM browsers, writing to an NN4 positioned layer does not force other
page content to move.

A radical approach

By “radical,” I mean that the page content is designed to employ extensive DHTML features,
including positioned (if not flying) elements on the page. Perhaps some clicking and dragging
of elements can add some fun to the page while you're at it.

Employing these kinds of features requires some extensive forethought about your audience
and the browsers they use. While some aspects of DHTML, such as CSS, degrade gracefully in
older browsers (the content is still presented, although not in optimum font display perhaps),
positioned elements do not degrade well at all. The problem is that older browsers ignore the
CSS attributes that control positioning, stacking order, and visibility. Therefore, when the page
loads in a pre-version 4 browser, all content is rendered in source code order. Elements that
are supposed to be positioned, hidden, or overlapped are drawn on the page in “old-fashioned”
rendering.

To use element positioning for the greatest effect, your Web site should preexamine the
browser at some earlier page in the navigation sequence to reach the DHTML-equipped page.
Only browsers capable of your fancy features should be allowed to pass onto the “cool”
pages. All other browsers get diverted to another page or pathway through your application
so they can at least get the information they came for, if not in the most lavish presentation.
Techniques detailed in Chapter 13 demonstrate how to make a branching index page.

By filtering out non-DHTML-capable browsers, some of your job is easier — but not all. On the
plus side, you can ignore a lot of weirdness that accrues to scripting bugs in earlier browsers.
But you must still decide which of the three element positioning models to follow: IE4+, NN4,
or W3C. Chances are that you will want to support at least two of the three unless you are in
the luxurious position of designing for a single browser platform (or have taken a stand that
you will support only one DOM, probably the newer W3C).

Chapter 14 + Document Object Model Essentials] 97/

Of the three models, NN4’s DOM is the trickiest one to deal with at the HTML level. While it
may be possible that your content design will look the same using positioned div and span
elements in all DHTML-capable browsers, often the appearance in NN4 is unacceptable. At
that point, you will probably have to use scripts in your Body to dynamically generate HTML,
specifying the <layer> tag for NN4 and positioned <div> elements for the rest.

I,j‘\lote Although IE4+ can use the same basic Microsoft object model, not all DHTML code renders
~— the same on both generations of browsers. Microsoft made some changes here and there
to the way some style attributes are rendered so that IE5.x comes into better compliance
with the CSS recommendation, while IE6 is in full compliance with CSS Level 1 when you
specify a complete DOCTYPE element pointing to URLs of the DTDs for HTML 4.0 or later and

XHTML.

Using script libraries

As long as you plan to use scripts to dynamically generate HTML for the page, you might con-
sider creating separate, external . js libraries for each of the object models you want to sup-
port for the page. Scripts in each library contain code for both the HTML accumulation (for
use with document.write() in the main page) and for processing user interaction. Assuming
that only DHTML-capable browsers reach the page, branching is required only at the begin-
ning of the document where an object model-specific library is loaded:

var isIE4 = ((navigator.appName.indexOf("Microsoft") == 0 &&
parselnt(navigator.appVersion) == 4));
var isW3C = (document.documentElement) ? true : false;
if (isW3C) |
// give priority to W3C model for IE5S+
document.write("<script type='text/javascript' src='page3_W3C.js'><" +
"\/script>");
} else if (islE4) {
document.write("<script type='text/javascript' src='page3_IE4.js'><" +
"\/script>");
} else {
document.write("<script type='text/javascript' src='page3_generic.js'><" +
"\/script>");
}

Each of the statements that writes the <script> tag includes a workaround that is required
on some browsers (NN4 especially) to facilitate using document.write() to write script tags
to the page.

Once these libraries are specified for the page, script statements anywhere later in the page
can invoke functions defined in each library to generate a particular element or set of ele-
ments in the object model HTML optimized for the current browser. Of course, it’s not neces-
sary to have one library devoted to each object model. You might find it more convenient for
authoring and maintenance to keep all the code in one library that has numerous internal
branchings for browser versions. Branches in a library can use the version-sniffing global
variables defined in the main HTML page’s scripts. Better still, a library can be entirely self-
contained by using object detection.

Handling events

Thanks to the W3C DOM’s event model implementing a similar event bubbling scheme as
[E4+, you can apply that event propagation model to IE4+ and W3C DOM browsers. There are
differences in the details, however. IE’s approach does not pass the event object as a parame-
ter to a function invoked by an event handler. Instead, the IE event object is a property of the

198

Part Il ¢ Document Objects Reference

window object. Therefore, your functions have to look for the passed parameter and substi-
tute the window.event object in its place for IE:

function calculate(evt) {
evt = (evt) ? evt : window.event;
// more statements to handle the event //

}

Additional branching is necessary to inspect many details of the event. For example, IE calls
the object receiving the event the srcElement, while the W3C DOM calls it the target.
Canceling the default behavior of the event (for example, preventing a form’s submission if it
fails client-side validation) is also different for the models (although the “old-fashioned” way
of letting HTML-type event handlers evaluate to return false still works). You can find more
event object details in Chapter 25.

Standards Compatibility Modes
(DOCTYPE Switching)

Both Microsoft and Netscape/Mozilla discovered that they had, over time, implemented CSS
features in ways that ultimately differed from the published standards that came later (usu-
ally after much wrangling among working group members). To compensate for these differ-
ences and make a clean break to be compatible with the standards, the major browser
makers decided to let the page author’s choice of <!DOCTYPE> header element details deter-
mine whether the document was designed to follow the old way (sometimes called “quirks
mode”) or the standards-compatible way. The tactic, known informally as DOCTYPE switch-
ing, is implemented in WinlE6, MaclE5, and all Mozilla-based browsers.

While most of the differences between the two modes are small, there are some significant
differences between the two modes in WinlE6, particularly when styles or Dynamic HTML
scripts rely on elements designed with borders, margins, and padding. Microsoft’s original
“box model” measured the dimensions of elements in a way that differed from the eventual
CSS standard.

To place the affected browsers into CSS standards-compatible mode, you should include a
<IDOCTYPE> element at the top of every document that specifies any of the following details:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0org/TR/REC-htm140/100se.dtd">

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN"
"http://www.w3.0rg/TR/REC-htm140/frameset.dtd">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.0rg/TR/REC-htm140/strict.dtd">

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1l-transitional.dtd">

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-frameset.dtd">

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtmll-strict.dtd">

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtm111/DTD/xhtm111.dtd">

Chapter 14 + Document Object Model Essentials] 99

Be aware, however, that older versions of WinlE, such as WinlE5 or WinlE5.5, are ignorant of
the standards-compatible mode, and will use the old Microsoft quirks mode, regardless of
<!IDOCTYPE> setting. But using the standards-compatible mode DOCTYPE is more likely to
force your content and stylesheets to render more similarly across the latest browsers.

Where to Go from Here

These past two chapters provided an overview of the core language and object model issues
that anyone designing pages that use JavaScript must confront. The goal here is to stimulate
your own thinking about how to embrace or discard levels of compatibility with your pages
as you balance your desire to generate “cool” pages and serve your audience. From here on,
the difficult choices are up to you.

To help you choose the objects, properties, methods, and event handlers that best suit your
requirements, the rest of the chapters in Part Ill and all of Part IV provide in-depth references
to the document object model and core JavaScript language features. Observe the compatibil-
ity ratings for each language term very carefully to help you determine which features best
suit your audience’s browsers. Most example listings are complete HTML pages that you can
load in various browsers to see how they work. Many others invite you to explore how things
work via The Evaluator Sr. (see Chapter 13). Play around with the files, making modifications
to build your own applications or expanding your working knowledge of JavaScript in the
browser environment.

The language and object models have grown in the handful of years they have been in exis-
tence. The amount of language vocabulary has increased astronomically. It takes time to
drink it all in and feel comfortable that you are aware of the powers available to you. Don’t
worry about memorizing the vocabulary. It’s more important to acquaint yourself with the
features, and then come back later when you need the implementation details.

Be patient. Be persistent. The reward will come.

+ o+ 0+

C HIA P IL.ER

Generic HTML
Element Objects

¢+ 4+ o+

In This Chapter

The object model specifications implemented in Internet Explorer Working with HTML

4+ and Mozilla-based browsers (including Netscape 6 and 7) fea- element objects

ture a large set of scriptable objects that represent what we often call

“generic” HTML elements. Generic elements can be divided into two Common properties and
groups. One group, such as the b and strike elements, define font methods

styles to be applied to enclosed sequences of text. The need for these

elements (and the objects that represent them) is receding as more Event handlers of all
page designers use stylesheets. The second group of elements element objects

assigns context to content within their start and end tags. Examples

of contextual elements include h1, blockquote, and the ubiquitous p <+ <+ <+ <+

element. While browsers sometimes have consistent visual ways of
rendering contextual elements by default (for example, the large,
bold font of an <h1> tag), the specific rendering is not the intended
purpose of the tags. No formal standard dictates that text within an
em element must be italicized: the style simply has become the cus-
tom since the very early days of browsers.

All of these generic elements share a large number of scriptable prop-
erties, methods, and event handlers. The sharing extends not only
among generic elements, but also among virtually every renderable
element — even if it has additional, element-specific properties, meth-
ods, and/or event handlers that I cover in depth in other chapters of
this reference. Rather than repeat the details of these shared proper-
ties, methods, and event handlers for each object throughout this ref-
erence, | describe them in detail only in this chapter (unless there is a
special behavior, bug, or trick associated with the item in some
object described elsewhere). In succeeding reference chapters, each
object description includes a list of the object’s properties, methods,
and event handlers, but I do not list shared items over and over (mak-
ing it hard to find items that are unique to a particular element).
Instead, you see a pointer back to this chapter for the items in com-
mon with generic HTML element objects.

Generic Objects

Table 15-1 lists all of the objects that I treat in this reference as
“generic” objects. All of these objects share the properties, methods,
and event handlers described in succeeding sections and have no
special items that require additional coverage elsewhere in this book.

202

Part Il ¢ Document Objects Reference

elementObject
Table 15-1: Generic HTML Element Objects

Formatting Objects Contextual Objects
b acronym
big address
center cite
i code
nobr dfn
rt del
ruby div
S em
small ins
strike kbd
sub Tisting
sup p
tt plaintext
u pre
wbr samp

span

strong

var

Xmp
Properties Methods Event Handlers
accessKey addBehavior() onactivate
all[] addEventListener() onbeforecopy
attributes([] appendChild() onbeforecut

behaviorUrns([]
canHaveChildren
canHaveHTML
childNodes[]
children
className
clientHeight
clientlLeft
clientTop
clientWidth
contentEditable
currentStyle
dataFld
dataFormatAs
dataSrc

applyElement()
attachEvent()
blur()
clearAttributes()
click()
cloneNode()
componentfFromPoint()
contains()
detachEvent()
dispatchEvent()
fireEvent()
focus()
getAdjacentText()
getAttribute()
getAttributeNode()

onbeforedeactivate
onbeforeeditfocus
onbeforepaste
onblur

onclick
oncontextmenu
oncontrolselect
oncopy

oncut

ondblclick
ondeactivate
ondrag

ondragend
ondragenter
ondragleave

Chapter 15 4 Generic HTML Element Objects

elementObject
Properties Methods Event Handlers
dir getAttributeNodeNS() ondragover
disabled getAttributeNS() ondragstart
document getBoundingClientRect() ondrop
filters[] getClientRects() onfilterchange
firstChild getElementsByTagName() onfocus
height getElementsByTagNameNS() onhelp
hideFocus getExpression() onkeydown
id hasAttribute() onkeypress
innerHTML hasAttributeNS() onkeyup
innerText hasAttributes() onlosecapture
isContentEditable hasChildNodes() onmousedown
isDisabled insertAdjacentElement () onmouseenter
isMultilLine insertAdjacentHTML() onmouseleave
isTextEdit insertAdjacentText() onmousemove
lTang insertBefore() onmouseout
language item() onmouseover
lastChild isSupported() onmouseup
length mergeAttributes() onpaste
lTocalName normalize() onpropertychange
namespaceURI releaseCapture() onreadystatechange
nextSibling removeAttribute() onresize
nodeName removeAttributeNode() onresizeend
nodeType removeAttributeNS() onresizestart
nodeValue removeBehavior() onselectstart
offsetHeight removeChild()
offsetleft removeEventListener()
offsetParent removeExpression()
offsetTop removeNode ()
offsetWidth replaceAdjacentText()
outerHTML replaceChild()
outerText replaceNode()
ownerDocument scrollIntoView()

parentElement
parentNode
parentTextEdit
prefix
previousSibling
readyState
recordNumber
runtimeStyle
scopeName
scrollHeight

setActive()
setAttribute()
setAttributeNode()
setAttributeNodeNS()
setAttributeNS()
setCapture()
setExpression()
swapNode()

tags()

urns()

Continued

203

204 Partlil 4+ Document Objects Reference

elementObject

Properties Methods Event Handlers

scrollleft
scrollTop
scrollWidth
sourcelndex
style
tabIndex
tagName
taglrn
title
uniquelD

Syntax

To access element properties or methods, use this:

(TE4+) [document.all.JobjectID.property | method([parameters])
(IE5+/W3C) document.getElementBylId(objectID).property | method(Lparameters])

About these objects

All objects listed in Table 15-1 are DOM representations of HTML elements that influence
either the font style or the context of some HTML content. The large set of properties,
methods, and event handlers associated with these objects also applies to virtually every
other DOM object that represents an HTML element. Discussions about object details in
this chapter apply to dozens of other objects described in succeeding chapters of this ref-
erence section.

Properties

accessKey

Value: One-character string. Read/Write
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

For many elements, you can specify a keyboard character (letter, numeral, or punctuation
symbol) that, when typed as an Alt+key combination (on the Win32 OS platform) or Ctrl+key
combination (on the MacOS), brings focus to that element. An element that has focus is the
one that is set to respond to keyboard activity. If the newly focused element is out of view in
the document’s current scroll position, the document is scrolled to bring that focused ele-
ment into view (also see the scrol1IntoView() method). The character you specify can be
an uppercase or lowercase value, but these values are not case-sensitive. If you assign the
same letter to more than one element, the user can cycle through all elements associated
with that accessKey value.

Internet Explorer gives some added powers to the accessKey property in some cases. For
example, if you assign an accessKey value to a Tabel element object, the focus is handed to
the form element associated with that label. Also, when elements such as buttons have focus,
pressing the spacebar acts the same as clicking the element with a mouse.

Chapter 15 4 Generic HTML Element Objects

elementObject.accessKey

Although W3C DOM browsers, such as Mozilla and Safari, expose this property for some ele-
ment types (notably a, area, button, input, 1abel, Tegend, and textarea), these browsers
do not respond to scripted changes of the property.

Exercise some judgment in selecting characters for accessKey values. If you assign a letter
that is normally used to access one of the Windows version browser’s built-in menus (for
example, Alt+F for the File menu), that accessKey setting overrides the browser’s normal
behavior. To users who rely on keyboard access to menus, your control over that key combi-
nation can be disconcerting.

Example

Listing 15-1 shows an example of how to use the accessKey property to manipulate the key-
board interface for navigating a Web page. When you load the script in Listing 15-1, adjust the
height of the browser window so that you can see nothing below the second dividing rule.
Enter any character into the Settings portion of the page and press Enter. (The Enter key may
cause your computer to beep.) Then hold down the Alt (Windows) or Ctrl (Mac) key while
pressing the same keyboard key. The element from below the second divider should come
into view.

Listing 15-1: Controlling the accessKey Property

<html>
<head>
<title>accessKey Property</title>
{script type="text/javascript">
function assignKey(type, elem) {
if (window.event.keyCode == 13) {
switch (type) {
case "button":
document.forms["output"].accessl.accessKey = elem.value;
break;
case "text":
document.forms["output"].access2.accessKey = elem.value;
break;
case "table":
document.getElementById("myTable").accessKey = elem.value;
1
return false;
}
}
</script>
<{/head>
<body>
<hl>accessKey Property Lab</hl>
<hr />
Settings:

<form name="input">
Assign an accessKey value to the Button below and press Return: <input
type="text" size="2" maxlength="1"
onkeypress="return assignKey('button', this)" />

Assign an accessKey value to the Text Box below and press Return:
<input type="text" size="2" maxlength="1"
onkeypress="return assignKey('text', this)" />

Assign an accessKey value to the Table below (IE5.5+ only) and press

Continued

205

Part Il ¢ Document Objects Reference

elementObject.accessKey

Listing 15-1 (continued)

Return: <input type="text" size="2" maxlength="1"
onkeypress="return assignKey('table', this)" />
</form>

Then press Alt (Windows) or Control (Mac) + the key.

Size the browser window to view nothing lower than this line.
<hr />
<form name="output" onsubmit="return false">
dinput type="button" name="accessl" value="Standard Button" /> <input
type="text" name="access2" />
</form>
{table id="myTable" cellpadding="10" border="2">
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Price</th>
</tr>
<tbody bgcolor="red">
<tr>
<td width="100">4</td>
<td>Primary Widget</td>
<td>$14.96</td>
</trd>
<tr>
<td>10</td>
<td>Secondary Widget</td>
<td>$114.96</td>
<Jtr>
</thody>
</table>
</body>
</html>

Related Item: scrollIntoView() method.

alll]

Value: Array of nested element objects. Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

The al1 property is a collection (array) of every HTML element and (in IE5+) XML tag within
the scope of the current object. Items in this array appear in source-code order, and the array
is oblivious to element containment among the items. For HTML element containers, the
source-code order is dependent on the position of the start tag for the element — end tags are
not counted. But for XML tags, end tags appear as separate entries in the array.

Every document.all collection contains objects for the htm1, head, title, and body element
objects even if the actual HTML source code omits the tags. The object model creates these
objects for every document that is loaded into a window or frame. While the document.all
reference may be the most common usage, the al1 property is available for any container ele-
ment. For example, document.forms[0].al1 exposes all elements defined within the first
form of a page.

Chapter 15 4+ Generic HTML Element Objects ()7

elementObject.attributes

You can access any element that has an identifier assigned to its id attribute by that identifier
in string form (as well as by index integer). Rather than use the performance-costly eval ()
function to convert a string to an object reference, use the string value of the name as an array
index value:

var paragraph = document.all["myP"];

Internet Explorer enables you to use either square brackets or parentheses for single collec-
tion index values. Thus, the following two examples evaluate identically:

var paragraph = document.all["myP"];
var paragraph = document.all("myP");

In the rare case that more than one element within the al1 collection has the same ID, the
syntax for the string index value returns a collection of just those identically named elements.
But you can use a second argument (in parentheses) to signify the integer of the initial collec-
tion and thus single out a specific instance of that named element:

var secondRadio = document.all("group0",1);

As a more readable alternative, you can use the item() method (described later in this chap-
ter) to access the same kinds of items within a collection:

var secondRadio = document.all.item("group0",1);

Also see the tags () method (later in this chapter) as a way to extract a set of elements from
an all collection that matches a specific tag name.

Although a few non-IE browsers support the al1 collection, a better choice for future compat-
ibility is the document.getElementById() method described in Chapter 18.

Example

Use The Evaluator (Chapter 13) to experiment with the a1l collection. Enter the following
statements one at a time into the lower text box, and review the results in the text area for

each.
document.all
myTable.all
myP.all

If you encounter a numbered element within a collection, you can explore that element to see
which tag is associated with it. For example, if one of the results for the document.all collec-
tion says document.all.8=[object], enter the following statement into the topmost text
box:

document.all[8].tagName
Related Items: item(), tags(), document.getElementById() methods.

attributes[]

Value: Array of attribute object references. Read-Only
Compatibility: WinlE5+, MaclE5+, NN6+, Moz1+, Safaril +

The attributes property consists of an array of attributes specified for an element. In IE5+, the
attributes array contains an entry for every possible property that the browser has defined
for its elements —even if the attribute is not set explicitly in the HTML tag. Also, any attributes
that you add later via script facilities such as the setAttribute() method are not reflected in
the attributes array. In other words, the IE5+ attributes array is fixed, using default values
for all properties except those that you explicitly set as attributes in the HTML tag.

208

Part Il ¢ Document Objects Reference

elementObject.attributes

Mozilla browsers’ attributes property returns an array that is a named node map (in W3C
DOM terminology) — an object that has its own properties and methods to read and write
attribute values. For example, you can use the getNamedItem(attrName) and item(index)
methods on the array returned from the attributes property to access individual attribute
objects via W3C DOM syntax.

[E5+ and Moz1+ have different ideas about what an attribute object should be. Table 15-2
shows the variety of properties of an attribute object as defined by the two object models.
The larger set of properties in Moz1+ reveals its dependence on the W3C DOM node inheri-
tance model discussed in Chapter 14.

Table 15-2: Attribute Object Properties

Property IE5+ Moz1+ Description

attributes No Yes Array of nested attribute objects (null)
childNodes No Yes Child node array

firstChild No Yes First child node

lastChild No Yes Last child node

localName No Yes Name within current namespace
name No Yes Attribute name

nameSpaceURI No Yes XML namespace URI

nextSibling No Yes Next sibling node

nodeName Yes Yes Attribute name

nodeType No Yes Node type (2)

nodeValue Yes Yes Value assigned to attribute
ownerDocument No Yes document object reference
ownerElement No Yes Element node reference
parentNode No Yes Parent node reference

prefix No Yes XML namespace prefix
previousSibling No Yes Previous sibling node

specified Yes Yes Whether attribute is explicitly specified (Boolean)
value No Yes Value assigned to attribute

The most helpful property of an attribute object is the Boolean specified property. In IE, this
lets you know whether the attribute is explicitly specified in the element’s tag. Because Moz1
returns only explicitly specified attributes in the attributes array, the value in Mozl is always
true. Most of the time, however, you'll probably use an element object’s getAttribute() and
setAttribute() methods to read and write attribute values.

Example

Use The Evaluator (Chapter 13) to examine the values of the attributes array for some of
the elements in that document. Enter each of the following expressions into the lower text
field, and see the array contents in the Results text area for each:

document.body.attributes
document.getElementById("myP").attributes
document.getETementById("myTable").attributes

Chapter 15 4+ Generic HTML Element Objects (9

elementObject.canHaveChildren

If you have both IE5+ and a W3C DOM-compatible browser, compare the results you get for
each of these expressions. To view the properties of a single attribute in WinlE5+, enter the
following statement into the bottom text field:

document.getElementById("myP").attributes["class"]
For W3C browsers and MaclE5, use the W3C DOM syntax:
document.getElementById("myP").attributes.getNamedItem("class")

Related Items: getAttribute(), mergeAttributes(), removeAttribute(),
setAttribute() methods.

behaviorUrns[]

Value: Array of behavior URN strings. Read-Only
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The behaviorUrns property is designed to provide a list of addresses, in the form of URNs
(Uniform Resource Names), of all behaviors assigned to the current object. If there are no behav-
iors, the array has a length of zero. In practice, however, IE5+ always returns an array of empty
strings. Perhaps the potential exposure of URNs by script was deemed to be a privacy risk.

Example

The following function is embedded within a more complete example of WinlE HTML behav-
iors (Listing 15-19 in this chapter). It reports the length of the behaviorUrns array and
shows —if the values are returned —the URL of the attached behavior.

function showBehaviors() {

var num = document.getElementById("myP").behaviorUrns.length;

var msg = "The myP element has " + num + " behavior(s). ";

if (num > 0) {
msg += "Name(s): \r\n";
for (var i = 0; 1 < num; i++) {

msg += document.getElementById("myP").behaviorUrns[i] + "\r\n";

}

}
alert(msg);
}

Related Item: urns () method.

canHaveChildren

Value: Boolean. Read-Only
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

Useful in some dynamic content situations, the canHaveChildren property reveals whether a
particular element is capable of containing a child (nested) element. Most elements that have
start and end tags (particularly the generic elements covered in this chapter) can contain
nested elements. A nested element is referred to as a child of its parent container.

Example

Listing 15-2 shows an example of how to use the canHaveChildren property to visually
identify elements on a page that can have nested elements. This example uses color to
demonstrate the difference between an element that can have children and one that cannot.
The first button sets the color style property of every visible element on the page to red.

210 Partlil 4+ Document Objects Reference

elementObject.canHaveChildren

Thus, elements (including the normally non-childbearing ones such as hr and input) are
affected by the color change. But if you reset the page and click the largest button, only
those elements that can contain nested elements receive the color change.

Listing 15-2: Reading the canHaveChildren Property

<html>
<head>
<{title>canHaveChildren Property</title>
{script type="text/javascript">
function colorA11() {
var elems = document.getElementsByTagName("*");
for (var i = 0; 1 < elems.length; i++) {
elems[i].style.color = "red";
}
}

function colorChildBearing() {
var elems = document.getElementsByTagName("*");
for (var i = 0; i < elems.length; i++) {
if (elems[i].canHaveChildren) {

elems[i].style.color = "red";
}
}
}
</script>
<{/head>
<body>
<hl>canHaveChildren Property Lab</hl>
<hr />

<form name="input">
<input type="button" value="Color A1l Elements"
onclick="colorAT1()" />

{input type="button" value="Reset" onclick="history.go(0)" />

<input type="button"

value="Color Only Elements That Can Have Children"

onclick="colorChildBearing()" />
</form>

<hr />
<form name="output">

{input type="checkbox" checked="checked" />Your basic checkbox <input
type="text" name="access2" value="Some textbox text." />

</form>
{table id="myTable" cellpadding="10" border="2">
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Price</th>
</tr>
<tbody>
<tr>
<td width="100">4</td>
<td>Primary Widget</td>
<td>$14.96</td>

Chapter 15 4 Generic HTML Element Objects]]

elementObject.childNodes

</tr>

<tr>
<td>10</td>
<td>Secondary Widget</td>
<td>$114.96</td>

</t

</tbody>
</table>
</body>
</html>

Related Items: childNodes, firstChild, TastChild, parentElement, parentNode
properties; appendChild(), hasChildNodes(), removeChild() methods.

canHaveHTML

Value: Boolean. Read-Only
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

While most HTML elements are containers of HTML content, not all are. The canHaveHTML
property lets scripts find out whether a particular object can accept HTML content, such as
for insertion or replacement by object methods. The value for a p element, for example, is
true. The value for a br element is false.

Example

Use The Evaluator (Chapter 13) to experiment with the canHaveHTML property. Enter the fol-
lowing statements into the top text field and observe the results:

document.getETementById("input").canHaveHTML
document.getElementById("myP").canHaveHTML

The first statement returns false because an input element (the top text field in this case) can-
not have nested HTML. But the myP element is a p element that gladly accepts HTML content.

Related Items: appendChild(), insertAdjacentHTML(), insertBefore() methods.

childNodes[]

Value: Array of node objects. Read-Only
Compatibility: WinlE5+, MaclES+, NN6+, Moz1+, Safaril+

The childNodes property consists of an array of node objects contained by the current
object. Note that child nodes consist of both element objects and text nodes. Therefore,
depending on the content of the current object, the number of childNodes and children col-
lections may differ.

Caution If you use the childNodes array in a for loop that iterates through a sequence of HTML (or
XML) elements, watch out for the possibility that the browser treats source code whitespace
(blank lines between elements and even simple carriage returns between elements) as text
nodes. This potential problem affects MaclE5 and Moz1. If present, these extra text nodes
occur primarily surrounding block elements.

Most looping activity through the childNodes array aims to examine, count, or modify ele-
ment nodes within the collection. If that is your script's goal, then test each node returned by

212 Partlll + Document Objects Reference

elementObject.childNodes

the childNodes array, and verify that the nodeType property is 1 (element) before process-
ing that node. Otherwise, skip over the node. The skeletal structure of such a loop follows:

for (var i = 0; i < myElem.childNodes.length; i++) {
if (myElem.childNodes[i].nodeType == 1) {
statements to work on element node i
1
}

The presence of these “phantom” text nodes also impacts the nodes referenced by the
firstChild and TastChild properties, described later in this chapter.

Example

Listing 15-3 contains an example of how you might code a function that “walks” the child
nodes of a given node. The walkChildNodes () function shown in the listing accumulates and
returns a hierarchical list of child nodes from the point of view of the document’s HTML ele-
ment (the default) or any element whose ID you pass as a string parameter. This function is
embedded in The Evaluator so that you can inspect the child node hierarchy of that page or
(when using evaluator. js for debugging as described in Chapter 45 on the CD-ROM) the
node hierarchy within any page you have under construction. Try it out in The Evaluator by
entering the following statements into the top text field:

walkChildNodes()
walkChildNodes(getElementById("myP"))

The results of this function show the nesting relationships among all child nodes within the
scope of the initial object. It also shows the act of drilling down to further childNodes collec-
tions until all child nodes are exposed and catalogued. Text nodes are labeled accordingly.
The first 15 characters of the actual text are placed in the results to help you identify the
nodes when you compare the results against your HTML source code.

Listing 15-3: Collecting Child Nodes

function walkChildNodes(objRef, n) {

var obj;
if (objRef) {
if (typeof objRef == "string") {
obj = document.getElementById(objRef);
} else {
obj = objRef;
}
} else {
obj = (document.body.parentElement) ?

document.body.parentElement : document.body.parentNode;
}
var output =
var indent = ;
var i, group, txt;
if (n) |
for (1 =0; i < n; i++) {
indent += "+---";
}
} else {
n=20;
output += "Child Nodes of <" + obj.tagName;

